AN ANALYSIS OF THE PROPOSED PEDESTRIAN AND UTILITY BRIDGE ACROSS THE RED CEDAR RIVER

Thesis for the Degree of B. S.
MICHIGAN STATE COLLEGE
Lester R. Shelden
1947

THESIS

SUPPLEMENTAPY AT EPIAL IN BACK OF BOOK

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
AUG 1 4 2009		

6/07 p:/CIRC/DateDue.indd-p.1

An Analysis of the Proposed
Pedestrian and Utility Bridge
Across the Red Cedar River

A Thesis Submitted to
The Faculty of
MICHIGAN STATE COLLEGE

UF

AGRICULTURE AND APPLIED SCIENCE

ΒY

Lester R. Shelden
Candidate for the Degree of
Bachelor of Science

June 1947

THESIS

0.1

CONTENTS

Introduction

Investigation of Locas

Live Load

Dead Load

Determination of Stresses

Floor System

Floor Beam

Floor Beam Con..ections

Main Girder Web

Main Girder Flange

Main Giraer Splice

Stiffeners

Lateral Bracing

End Bearings

Summary of Stresses

Conclusion

Excerpts from "Standard Specifications for Highway Bridges"

Bibliography

An Analysis of the Proposed Pedestrian and Utility Eridge
Across the Red Geoar River

IETRO: UUTIOR

This bridge is actually under consideration by Michigan State College, to be built across the Red Cedar River bening the Ground Building. The purpose of the bridge is primarily to carry steam papes and electric cables across the river from the new steam generation plant to the main part of the campus. A secondary purpose is to act as a footbridge. It is to be particularly useful to those students going to and from the temporary steel classrooms.

The original plans were to build a suspension bridge for the utilities only. Then it was decided to also use the structure as a footbridge, the plate girder bridge was designed. Although everyone concerned favored the plate girder bridge, the State Board of Agriculture decided a less expensive one should be built. Thus the present plans call for a half-through truss costing Cl2,000 to Cl2,000 compared to an estimated Co0,000 for the plate girder bridge.

Time did not permit the author to wait for the final decition as to which type of design was to be used. Increfore, this analysis is of the plate girder type which was favored so much. The present indications are that this type will not be used, much to the chagrin of the author, who had hoped to see the realization of the plans he had worked on.

The author acknowledges his indebtedness to all those who helped him in the analysis. Ir. A. Howell, the engineer, who originally designed the bridge, was very cooperative, as were all those in the Civil Engineering bepartment. Professors C. L. Alien and L. A. Hoberts were particularly neighborn. Thanks should also be given to the Michigan State Highway Department for the loan of a set of specifications.

Investigation of Loads, Live Load

The amount of the live load proved to be quite a problem. The plans called for adherence to the fourth edition of "Standard Specifications for Highway Bridges" as a dopted by the A merican Association of State Highway Officials. These specifications call for a live load of 85 pounds per square foot on the sloewalk while designing the flooring and floor beam. When designing the girders and other members, the live load should be determined by the formula:

$$P = (50 \times \frac{2000}{L}) (\frac{55-1}{50})$$

This gives a live lota of only 54 poones per square foot for designing the main girders. However, these localings were not specifically for footbridges, which seem to be a special case. The third eartion of the same specifications call for slightly higher loadings in each case — 100 pounds per square foot for flooring and its immediate supports and a formula similar to the above for the girders. But the third edition also stipulated that are parts of footbridges should be designed for a live loading of 100 pounds per square foot; no reduction being made for the main girders. In the absence of a specific statement concurring footbridges in the fourth edition, the author was forced to use his own discretion. Faciling that during some college activities, the live loading on this bridge would be more that the usual footbridge loading, the third edition's loading of 100 pounds per square foot was decided upon.

A large amount or thought was also spent in consideration of impact on footbridges. Spec. 5 calls for no impact with sidewalk loads but this again was for highway and railway bridges with sidewalks. The possibilities of having extreme loads on this footbridge at such times as the Water Carmivel, Freshman - Sopeomore tug-o-wer, or when Football games let out, were considered. It was decided that while some impact would very likely be present, the

loo pounds per square foot was generous enough to allow for any locaing which might exist, plus an allowance of 50 to 100 per cent for impact. This allowance for impact offsets a possible reduction in loading due to the large width. It was not thought possible that all 9 feet of the slaewalk would ever be loaded to a packed condition, which would be necessary to product 100 pounds per square foot on the sidewalk, and still have the load moving so that impact should be considered. Thus the live load, with possible impact included, was set at 100 pounds per square foot. For the 9 foot well-way, this gives 900 pounds per lineal foot of bridge.

The possibility of a vehicle crossing the bridge presented itself, since the walkway has sufficient clearance. When examined with this in mind, as shown below, it was discovered that an H-la highway locating would produce less bending moment and shear on the main girder than the specified sidewalk loading of 100 pounds per square foot. Similarly, a single truck of greater weight could cross safely.

Sidewalk-loading of 900 a/ft.

$$V = 8 \text{ wl} = 8 900 \text{ km} = 46,800 \text{ f}$$

$$\pi = 1/8$$
 wiz = 1/8 900 x (104)2 = 1,216,000 ft. 1b.

highway loading E-15 (480 %/rt plus a concentrated load of 19,800% for shear and 18,500% for moment.)

$$V = \frac{1}{2} \text{ wl } \mathbf{x} P = \frac{1}{2} 480 \text{ x } 104 \text{ x } 18,500 \text{ = } 44,400\%$$

$$M = \frac{1}{8} \text{ wl } 2 \text{ x } \frac{1}{4} \text{ Pl} = \frac{1}{8} 480 \text{ (104)} 2 \text{ x } \frac{1}{2} 15,500 \text{ x } 104 \text{ = } 1,000,000 \text{ ft } 16$$

Investigation of Loads, Band Load

The dead load was divided into two parts: that due to the utilities and that due to the bridge components. As shown below, the dead load was found to be 940# per foot due to the utilities and 927# per foot for the remainder of the bridge, a total of 1867# per lineal foot. Actual size and weights of components were obtained from representatives of the college Building and (tilities pept. and Lendscape and Planning Dept. as follows:

Flectric Cables.

(Data obtained from R. moonon, college electrical engineer)

5 conductor power cable of type to be used 6.65%/ft

4" conduit for sheilding electric cables...lo.8//ft

Conquits for Steam Pipes

(Data obtained from Al Howell, college designing engineer)

Conduit	O.D. Conquit	O.D. Connector	Weight
12"	±e }n	15 m	504/it.
15"	16 5/4"	18#	75 /ft.
22 "	25 3/4"	24"	115#/ft.

Weight of molaca fiber insulation (from Al Howell) 604/ft 5

Floor System - T Tri-Lok

(Data from Carnegic Pocket Companion)

Weight of standard 2" USS T Tri-Lok @ 4" c-c.

with concrete........38/sq. it.

Investigation of Loads, read Load

Utility Weights

Electric cables

3 conductor power cable 6.65 #/ft

4" conquit

10.8

5 cables @ 17.5 #/it

ਤਰ ∦/ft

Telephone cables

3 cables @ 15 #/ft (estimated)

45 #/ft

8" Return pipe

8" standard pipe (AlGC Handbook) 29 #/ft

12" Conquit

water

50

insulat_on

19

120 f/tt 22

8" H.P. Steam pipe

8" standard pipe (ALSC handbook) 29 #/ft

15" conduit

steam

7**.**5

insulation

38

11

153 #/ft

12" H.P. Steam pipe

13" standard pipe (AlSC handbook) 50 #/ft

22" conduit

115

insulation

78

steam

24

2 pipes @ 267 "/ft <u>534 #</u>/ft

940 //rt

Investigation of Louds, Dead Loud

Weight of One Panel

(Panel 6)

Main Girder Flange		2650 #
Mein Giraer Web		1140
Railing		డవరి
Floor System		೭ರನ0
Floor Ream		190
Flange Side Plates		52
Lateral Braces		108
Stiffeners		190
Fillers		106
Facia		40
	Total	7650 <i>#</i>

Equivalent uniform load per lineal foot of bridge:

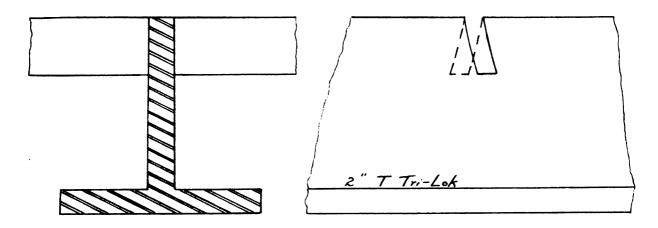
Weight per panel = 7650# = 927 #/ft.
Length of panel = 8.25 Ft

Investigation of Loads, Dead Load

Investigation of Lo	eas, Deaa Losa	
The weights of	the Individual members were computed as fo	llows:
Girder Web	4'6" x 3/8" Plate 8.26 rt @ 400 /cu.ft.	570.2 lb.
	4'7" x 5/8" Plate 8.25 ft @ 490%/cu.ft.	530.6
	4'8;"x 3/8" Plate 8.25 ft @ 490 /cu.ft.	598 . 8
	4'lig"x3/8" Plate 3.25 ft @ 490//ou.ft.	6a6 . 9
	5'3" x 5/3" Plute 8.25 ft & 490 /cu.ft.	664.2
	5'7' ₂ "x 3/8" Plate 8.25 ft @ 490 /cu.ft.	710.4
Girder Flange	STIRIF lel 8.25 ft @ lel/ft.	10.28.5
	STIEWF 106 8.25 ft @ 106 /rt.	874.5
Flange Side Plate	5" x 5/16" Picte 8.25 ft @ 490#/cu.ft.	26 . 4
Stiffeners, Inside	5 5/16" x 5/8" Flate 4 ft.7 in. @ 490#/cu.	ft. 50.4
	5g" x 3/8" Plate 5 ft. 7 in. @ 490 cu.ft.	6ವಿ•6
Stiffeners, Outside	5 ₄ " x 5/3" Plate 4 ft. 7 in. @ 490%/cu. f	.t. 33.7
Stiffeners, End	52" x 2" Plate 6 ft @ 490 /cu.ft.	5⊍.2
	5%" x 2" Plate 6 ft © 490%/cu.ft.	5₫.8
Fillers	3" x 9/16" Plate 4 ft. 7 in. @ 490 /ou.ft	
	3" x : " Plate 5 it. 7 in. @ 490#/cu.ft	14.4
	14" x ; " Piste 6 ft @ 490#/cu.ft.	71.6
Facia	5" x ½" Plate 4 ft. 7 in. @ 490%/cu.ft	19.5
	5" x %" Plate 6 ft @ 490%/cu.ft.	25.6
Web Splice	3_8 " x 5" x $5/8$ " A ngie 4 ft. 1_{2} " 10.4 %/it	50.0
	$3_{\overline{z}}$ " x 2 " Plate 4 ft. $1_{\overline{z}}$ in. $6 490_{\overline{z}}$ "/cu.	.ft. 29.6
	62" x 2" Plate 4 ft. 112 in. 2 490 /cu.	ft. 54.9
	3g" x ξ" Plate 4 ft. 11ξ" 6 490#/cu. ft	44.5
	14" x 5/8" Plate 3 ft. @ 490/cu.	ft. 55.7
	5" x 5" x 7/8" Angle 3 ft. 7_{2} in. $6.27.27$	/it. 93.5
	52" x 2" Plate 2 ft. @ 490%/cu.	ft. 18.7

5g" x a" Plate 2 ft. @ 4900/cu.ft. 9.4

Curb angle 6" x 6" x 5/c" Angle 8.25 ft @ 14.9//ft. 125.0


Lateral braces δ_2 " x δ_2 " x δ/δ " angle 10.7 ft @ 3.5./ft. 55.9

Leternination of Stresses, Floor System and Floor Beam

Stress in T Tri-Lok due to 100 #/sq.ft. localing on 8.35 ft. span. (Data from Carnegle Pocket Companion)

concrete fc = 489 psl. (700 psl. altowable)

steel fs = 4696 psl. (18,000 psl. armowable)

Sidewalk live load 100 //sq.ft.

Sidewalk dead load 38

Sidewalk loading 138 g/sq.ft.

Length of panel 8.25 ft.

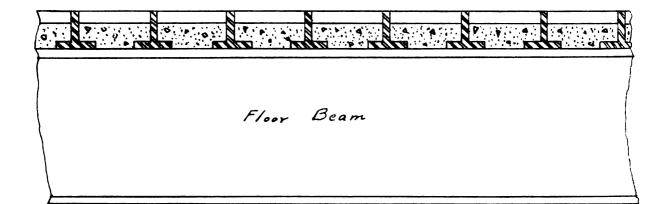
Uniform sidewalk load per lineal foot of floor beam 1159 #/ft.

Dead load of flo r beam

Utility load per lineal foot of bridge 900 #/it.

Longth of panel 8.25 ft.

Utility load per panel 7/55 #


Equivalent uniform utility load per lineal foot of floor beam 862 #/ft.

Shear in Floor Beam: $V = \frac{1}{2} \text{ wl} = \frac{1}{2} \text{NO.2 x 9} = 9,099 \ \#$

 $S = \frac{V}{A} = \frac{9.099}{6.13} = 1,500 \text{ psi.}$ (alrowable 11,000 psi.)

Moment in Floor Beam: M = 1/8 wl 2 = 1/80020 x 81 = 20,475 ft = 1b

 $S = \frac{M}{2} = \frac{1.3 \times 20,473}{38} = 10,650 \text{ psi.}$ (allowa ble 13,000 psi.)

F loor beam to stiftener connection:

End reaction of floor beam (shear found on previous page) 9,099 #

Weight of curb angle $V = \frac{125}{9.222}$ #

Length of Welus = $2 \times 4 \cdot 15/16 = 9 \cdot 5/8" = 9.65"$

Stress of welds = $S = V = 9.222 \times 8 = 3.610 \text{ psi.}$ $(.707=3/8)1 .707 \times 9.63 \times 3$

Allowable (ALSC handbook) 13,600 psi.

Stiffener to filter and filler to girder web connections:

Length of welds = $2 \times 4 \times 3 = 24$ "

Stress in welds = $S = \frac{9.222 \times 4}{.707 \times 24} = 2.170 \text{ psi.}$

Allowable (AlSC handbook) 16,600 psi.

Determination of Stresses, Main Girder Web

The web of the main girder was designed for adherence to Spec. It and 27. The shear was not a deciding factor, as shown below. The uniform load, dead and live, is 900 (live load) x 1867 (dead load) or 2767 lb per ft.

Shear at end of bridge = $V = \frac{1}{2} \text{ wl} = \frac{1}{2} 2767 \text{ x } 104 = 143,884 \#$

Shear for each girder = 9V = 71, 942 #

Stress due to shear = $S = \frac{71, 942}{6 \times 12 \times 5/8} = 2,664 \text{ psi.}$

The minimum web thickness is 3/6 inch, according to Spec. 11. As Spec. 27 states, the web must be more than 1/20, in which D is the distance between flanges. Since the width of the web varies, D will vary from 41 inches at the center to 59 inches at the end. As checked below, the web thickness does not follow the specifications at the end. This discrepancy exists only in the first one-half panel and is minor.

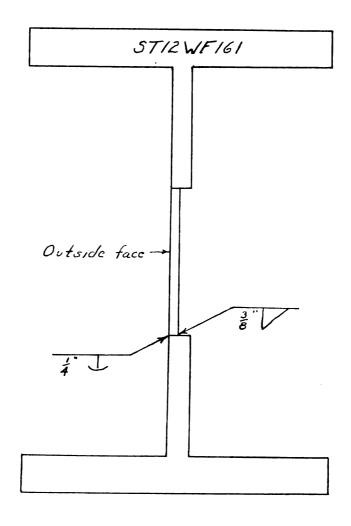
at end $D \div 20 = 59 \div 20 = .38 in.$

at center D + 20 = 41 + 20 = .32 in.

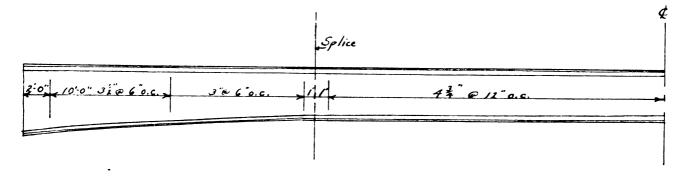
actual web thickness = 3/8 in. = .575 in.

The width of the web, according to Spec. 10, should be not less than 1/25 the length of the span. This is satisfactory, as shown.

depth ratio $1/25 \times 104 = 4.16 \text{ ft.} = 49.9 \text{ inches}$


Minimum dopth at center 4 ft. 6 in. = 54 inches

Determination of Stresses, Main Girder Flange


The flanges were analyzed according to the moment of inertia method, as specified in Spec. 25 and 26.

Bending Stress = Moment and center (1/8 wl2) = 2767 (104) 2 12 = 17,790 ps i. Lepth of section Area of Section dx54x25.50x2

According to Spec. 8, the allowable compressive stress is 18,000 - 5 L2 \ddagger b 2, with an L \ddagger b ratio less than 40. With L = 120 inches and b = 12 inches, L \ddagger b = 10 and the alrowable stress is 17,500 psi. As found above, this stress

Web Welds

is exceeded. The possibility of this girder failing because of this is slight. Only all the flange and 1/8 web was considered in the moment of inertia meteod. By considering the entire web as taking bending, the stress would be below the allowable. This is not according to the specifications, however, and the author would not advise using such a narrow depth of section at the center. An extra 2 inches in the depth of the web would not upset the rest of the design and would bring the stress below the maximum allowable.

Determination of Stresses, Main Girder Weld

The horizontal increment of shear was computed and the connection is checked against that. A sample computation follows:

$$H.I. = \frac{V \cdot Af}{h \left(\frac{Af}{Af} \times \frac{1}{3} \right)} = \frac{1000 \, \frac{4}{3} / \text{in}}{h_W}$$

Stress in welds =
$$\frac{6 \times 1000}{.707 \text{ (c/8 s.5 x 6 x g)}}$$
 = 3,000 psi.

Allowable (1.T.J.C. handbook) 13,600 psi.

Determination of Stresse, Stiffeners

According to Epoc. 31, the outstanding legs of striftener should be more than 2 inches plus 1/30 the depth of the girder and should not exceed sixteen times their thickness. Thus, the length of outstanding legs must fall between 3.8 inches and 6 inches, as computed below. [11] stiffeners fall in this bracket, their sizes ranging from 5 5/16 to 5% inches.

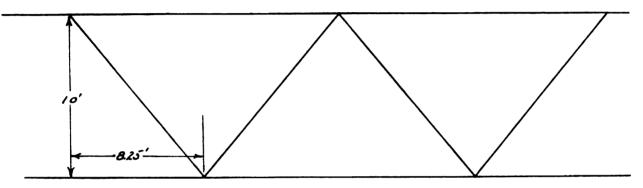
$$2 \times \frac{D}{30} - 2 \times \frac{54}{30} - 3.8$$
"

Stiffeners are placed every 4 ft. 3 in., well below the depth of web limit of 4 ft. 6 in.

The end stiffeners are designed for bearing on their outer flanges only, as stated in Spec. 30.

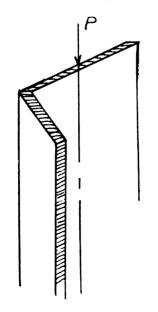
$$z = 5\frac{1}{2}$$
" x $\frac{1}{2}$ " plates 5.5 sq. in.

2 -
$$52$$
" x 2 " Plates 5.75 sq. in.
2 - 5 " x 2 " Plates 2.5 sq. in.
 $\frac{2.5}{10.75}$ sq. in.


The total load on the end stiffeners will be one fourth.

The total weight of the bridge or 71, 942 06.

Bearing Stress -
$$\frac{71, 942 \#}{15.75 \text{ sq.}}$$
 = 5,225 psi.


(allow_ble 18,000 psi.)

Determination of Stresses, Lateral Bracing

The specifications state that later 1 brucing should be designed for a wind load of 300 pounds per lineal foot. (Refer to Spec. 7.) Each lateral would hold the wind load of one panel in either tension or compression.

There would be no danger of buckling under this load. The stress was computed for an eccentric loading as shown below.

$$S = \frac{V}{R} \times \frac{\Sigma}{I}$$

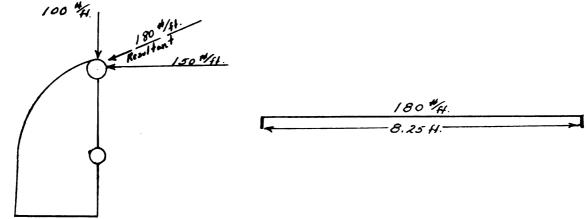
$$= \frac{2475}{2.46} \times \frac{2475 \times 1.25 \times 3.63}{2.9}$$

The allowable stress was computed from Spec. 8, the formula for riveted columns being used. L/r = 130

$$S = 15,000 - \frac{12}{72}$$

 $S = 15,000 - \frac{11.65}{1.07}$

= 4.870 psi.


•

Determination of Stresses, Railings

As per Spec. 1, the top of the railings is 5 feet a rove the sidewalk.

Also, the railing is to be designed to withstand a vertical force of 10c pounds

per foot and a horizontal force of 150 pounds per foot, as shown below.

The unit strestes in the railing were computed as follows:

Shear in railing: $V = \frac{1}{2} 180 \times 8.25 = 742.5 \#$

Stress due to Shear: $S = \frac{V}{A} = \frac{742.5}{2.25} = 533$ psi.

Moment in railing: M = 1/8 180 (8.25) 2 = 1550 ft. lb.

$$S = \frac{\text{Mc}}{T} = \frac{12 \times 1530 \times 1.5}{5.017} = 9,150 \text{ psi.}$$

(allowable 14,500 psi.)

The strength of the ranklings appeared quite sufficient but the welcs were checked as follows, considering only the norizontal force:

$$S = \frac{150 \times 8.25}{.707 \times 5 \times \frac{1}{4}} = 2040 \text{ psi.}$$

(allowable 13,600 psi.)

Determination of Stresses, Ema Bearings

Refer to Spec. 15 to 20 inclusive, for the design of the end bearings. The specifications are followed very well. Expansion must be allowed for a title rate of 1; inches for every 100 feet or 1.3 inches for this span of 104 feet.

3 inches are allowed. Bronze sliding expansion bearings are provided. The anchor bolts prevent any lateral movement. The bolts extend into the masonry the required 12 inches and a 4" x 6" x 3/8" angle adds to their stability. The

girder is supported on metal plates so that the bottom chord is 6 inches above the bridge seat. The base plate is $15" \times 16\%"$, giving a pressure on the masonry of

(allowable 1000 psi.)

Summary of Stresses

The unit stresses for each member, found by assuming the application of a live load of 100 pounds per square foot of sidewalk area, are listed below. The allowable unit stress, according to the A.A.S.H.O. specifications, are listed opposite for comparison. All stresses are in pounds per square inch.

Member under consideration	Stress as found	Allowa ble stress
T Tri-Lox Flooring (concrete)	439	760
(stee 1)	4, 696	18,000
Floor beam (que to shear)	1,500	11,000
(due to bending)	13,650	13,000
Floor Beam Connections	3 , 610	1 3,600
	170,	13,600
Main Girder Web (shear)	≳ , 6∪4	11,000
Main Girder Flange (bending)	17 , 790	17,500
Main Girder Welds	გ, 020	13,600
Ena Stiffeners (bearing)	5,225	18,000
Lateral Bracing	4,870	11,750
End Bearings (masonry)	<u> წ</u> ხ0	1,000

In answer to the question, "loss this bridge fulfill the required specifications?" the answer is yes. The fourth eartion of the specifications calls for a live load of 35 pounds per square foot on sloewalks and makes no other statement concerning footbridges. From this, one might conclude that 35 pounds per square foot should be used for this bridge. Inc allowants stresses are not exceeded with such as applied load. Fowever, as explained in the investigation of live loads, the author felt that the statement concerning footbridges in the third eartion of the same specifications ground apply to this case. As it turned out, all unit stresses were very satisfactory, saive for the flexure stress in the main girder flange,.

A comparison of the allowable stresses, according to the fourth edition of "Standard Specifications for Highway Bridges," and the unit stresses found by applying a live load of 100 pounds per square foot is shown on the preceding page. It will be noted that the unit stress in the main girder flange is a bove the allowable. A live load of 90 pounds per square foot could be applied without exceeding the allowable stress for the flange. It is possible that the live load used by the author was too high. A more intensive knowledge of the development of this design will present the possibility that the bridge was slightly under-designed. The designing engineer used a utility load of 700 pounds per lineal foot of bridge. The utility loading as found in this analysis was 940 pounds per foot. There is quite a difference there and could bring the unit stress in the flange well below the allowable.

The reason for the large difference in the two utility loads in evident when the designing conditions are known. The designing engineer did not have a definite knowledge of the type and amount of utilities that were to be put across. The pipe sizes and types were changed several times after the design was started. The utilities shown on the plans included with this enalysis are not exactly the utilities which the bridge was designed for. The engancer considered the changes minor enough and the bridge over-designed enough to carry

COLUMNICA

the extra utility load. Strictly speaking, this was not so; but the resulting over-load is so slight, and the possibility of the structure ever receiving such extreme live loads is so rare, that the enganeer was quife justified in not changing his design. This will be further borne out by the fact that the present plans represent a further change in the arrangement of utilities. The author offers no explanation for the numerous changes.

Except for the girder flange, the design tollows the specifications quite satisfactor. The welded construction allows ample strength for all connections. The secondary members are over-designed in order to fulfill the requirements of the specifications concluding minimum sizes.

Considering that a primary purpose of this analysis was for the benefit of the author, in obtaining experience in structural design and formal reports, the time was well spent and the row rus, were more than expected. The author was quite enlightened concerning the special problems presented by footbridges. This problem brought out quite clearly, the importance and afficulty which arises in the choosing of specifications and applied loads. It is regretted that all the "little things" learned by the author in writing this could not be presented on paper for the benefit of others.

Excerpts from "Standard Specifications for Highway Bridges"

1. Railings. Substantial railings along each side of the bridge shall be provided for the protection of traffic. The top of the railing shall be not less than 3 feet above the finished surface of the roadway adjacent to the curb, or if on a sidewalk, not less than 3 feet above the sidewalk floor.

Railings shall be designed to resist a horizontal force of not less than 150 pounds per linear foot of bridge, applied at the top of the railing, and a vertical force of not less than 100 pounds per linear foot.

2. <u>Dead Load.</u> The dead load shall consist of the weight of the structure complete, including the roadway, sidewalks, car trucks, pipes, conduits, cables, and other public utility services.

The snow and ice load is considered to be offset by an accompanying decrease of live load and impact and shall not be included except under special conditions.

The following weights are to be used in computing the dead load:

- 3. Live food. The live load small consist of the weight of the applied moving load of vehicles, cars or pedestrians.
- 4. Sidewalk Loading. Sidewalk floors, stringers and their immediate supports, shall be designed for a live load of 85 pounds per square foot of sidewalk area. Girders, trusses, arches and other members shall be designed for the following sidewalk live load per square foot of sidewalk area: (for spans over 100 feet)

$$P = (50 \times \frac{5000}{L}) (55 - \frac{1}{50})$$

P = live load per square feet (maximum 60 psf.)

L = loaced length of sluewalk in feet.

W = width of sidewalks in fect.

Excerpts from "Standard Specifications for Highway Bridges"

- 5. Impact. Live losa stresses, except those due to showwalk losas and centrifugal, tractive, and wind forces, shall be increased by an allowance for dynamic,
 vibratory, and impact effects.
- 6. Longitudinal Force. Provision shall be made for the effect of a longitudinal force of 10 per cent of the live load on the structure, acting 4 feet a bove the floor.
- 7. Wind Loads. The wind force on the structure shall be assumed as a moving horizontal load equal to 50 pounds per square foot on 12 times the area of the structure as seen in elevation, including the floor system and railings, and on one-half the area of all trusses or girders in except of two in the span. The total assumed wind load shall be not less than 500 pounds per linear foot in the plane of the loaded chord and 150 pounds per linear foot in the plane of the unloaded chord on truss spans, and not less than 500 pounds per linear foot on girder spans.
- 8. Allowable Stresses in Structural Steel and mivets.

Columns: The permissible unit stress in concentrically located columns having values of L/r not greater than 140 may be computed from the following approximate formulas.

L = length of member, in inches; r = least radius of gyration. Compression in extreme fibers of rolled shapes, girders, and built sections subject to behaling (for values of L/b not

8. A llowable Stresses in Etructural Steel and Rivets.

The above bridge seat unit stress will apply only where the edge of the bridge seat projects out at least 5 inches beyond edge of the shoc or plate. Otherwise, the unit stresses permitted will be 75% of the a bove amount.

10. <u>Depth Natio.</u> The ratio of the depth to the length of span, for plate girders, shall be not less than 1/25.

- 11. Thickness of Metal. The minimum thickness of structural steel small be 5/16 inch, except for fillers, railings and unimportant details. Gussets small be not less than 3/8 inch thick. Metal subjected to marked corrosive influence small be of greater thickness.
- 12. Strength of Connections. No connection, except for lattice bars and hand-rails, shall contain less than three rivets. All connections and splices, whether in tension or compression, shall be proportioned to develop the full strength of the members, and no allowance in excess of 50% shall be made for milled ends of compression members. Splices shall be as near the panel points

Excerpts from "Standard Specifications for highway bringes."

as practicable and, in general, shall be on that side of the penul point which is subjected to the smaller stress.

15. Compression Members. Compression members shall be assigned so that the metal shall be concentrated as far as feasible in the webs and flanges, and so that the center of gravity of the section may be as near the center line of the member as practicable.

The thickness of web plates of compressive memoers shall be not less than one-thirtieth of the transverse distance between the lines of rivets connecting them to the flanges. The thickness of cover plates of compression members and cover plates on the compression illenges of plate girders preferably shall not be less than one-fortleth of the transverse distance between the lines of rivets connecting them to the flanges, but the minimum may be one-fiftieth of this distance, provided the width of the plate between the connecting lines of rivets in excess of forty times the thickness shall not be considered as effective in resisting stress.

- 14. Outstanding Legs of Angles. The widths of the outstanding legs of angles in compression (except where reinforced by plates) shall not exceed the following: In girder flanges and main members carring axial stress, twelve times the thickness. In bracing and other secondary members, sixteen times the thickness.
- 15. Expansion. Provision shall be made for expansion and contraction at the rate of $1\frac{1}{4}$ inches for every 100 feet. The expansion ends shall be secured against lateral movement.
- 16. <u>End Bearings.</u> Expansion ends shell be firmly secured against litting or lateral movement. Fixed bearings shell be firmly anchored. Spans of less than 70 feet may be arranged to slide upon metal plates with smooth surfaces. Spans of 70 feet or more shell be provided with rollers or rockers, or else with bronze sliding expansion bearings.

Excerpts from "Standard opecifications for highest Bridges."

- 17. Pollers. Expansion rollers shall not be less than four inches in diemeter for spans of 100 feet or less, and this minimum shall be increased not less than one inch for each additional 100 feet and proportionally for intermediate lengths. They shall be connected by substantial side-bers and shall be effectively guided so as to prevent lateral movement, skewing, or creeping. The rollers and bearing plates shall be protected from dirt and water as far as postible, and the construction shall be such that water shall not be retained and that the roller nests may be inspected and cleaned with the least difficulty.
- 18. Peaestals and Choes. Peaestals and shoes shall be used and be designed to secure rigidity and stability and to distribute the reaction uniformly over the entire bearing area. They shall be made preferably of cast steel or structural steel. The bottom bearing whoths shall not exceed the top bearing whoths by more than twice the depth of the peaestal and, when involving pin bearings, thus depth shall be measured from the center of the pin. There built peacetals and shoes a reused, the web plates and the angles connecting them to the base plates shall not be less than 5/8 inch thick. If the size of the peacetal permits, the webs shall be rigidly connected transversely.
- 19. Encor Polts. Anchor bolts for trusses and girders shall not be less than 11 inches in diameter and shall extend into the masonry not less than 12 inches. Mashers shall be used under the nut. Enchor bolts subjected to tension, as in viaduct towers, shall engage 50 per cent more masonry than is required by the uplift.
- 20. Sole Plates. Sole plates of girders and truspes shall not be less than a inch thick.
- 21. Masonry Bearings. Circlers and trusses on masonry shell be so supported on metal plates or pedestals that the bottom choids will be above the bridge scat, preferably not less than 6 inches.

Excerpts from "Stane ra Specifications for mighway Briages."

- 2a. Floor Eystom. Floor-beams proferably shall be at right engles to the trusses or main girders and shall be rigidly connected thereto. Spans with floor systems preferably shall have end floor-beams. Then end floor-beams are not used, the end panel stringers shall be secured in correct position by the struts securely connected to the stringers and to the main girders or trusses. The end panel lateral bracing shall be rigidly attached to the main garders, or trusses, and shall be attached to the end struts.
- 23. Minimum Size of Angles. The smallest angle used in bracing shall be a x 23 inches.
- 24. <u>Lateral Eracing</u>. Bottom lateral bracing shall be provided in all spans except 1-beam spans and deck plate girder spans of 50 feet or less.
- 25. Through Plate Girder Spans. Through plate girder spans shall be stiffened against lateral deformation by means of gusset plates, or knee braces with solid webs, a trached to the stiffener angles and floor beams. These braces generally shall extend to the clearance line. If the unsupported longth of the inclined edge of the gusset plate exceeds 60 times its whickness, the gusset plate shall have one or two stiffening angles riveted along its edge.
- 26. Design of Plate Girders. Plate girders shall be proportioned by a sluming that the flam es are concentrated at their centers of gravity. One-eighth of the gross section of the web, if the web is effectively spliced, may be considered as flange section. For girders having unusual sections, the moment of inertial method shall be used.
- 27. Flonge Sections. The flonge angles shall form as large a part of the area of the flonge as practicable, side plates shall not exceed except where flonge angles angles exceeding 7/8 inch in thickness otherwise would be required.

The gross area of the compression flange small not be less than the gross area of the tension flange.

Flange plates shall be of equal thickness, or shall decrease in thickness from the illange angles outward. No plate shall have a thickness greater than

Excerpts from "Standard Specifications for Minway Pringer."

27. Flange Sections.

that of the flance angles.

If the flange plates are used, at least one plate on the top flange shall extend the rull langth of the girder, except where the flange is to be covered with concrete. Any additional flangle plates shall extend at react one foot beyond the theoretical end, and there shall be a sufficient number of rivets at each end of each plate to develop its full stress value before the end of the next outside plate is reached.

- 28. Thickness of Web Plates. The thickness of web plates, except those to be encased in concrete, small be not less than D/20, in which D is the distance in inches between flammes.
- 29. Flance Oplices. Splices in flange parts and II not be used except by special permission of the engineer. Not more than one part shall be spliced at the same cross-section. If practicable, splices shall be located at points where there is an excess of section. The net section of the splice shall exceed by 10 per cent the net section of the part splices. Flange angle splices shall consist of two angles, one on each side of the girder.
- 30. Meb iplices. Web plates shall be spliced symmetrically by plotes on each side. The splice shall be equal to the web in strength in both a car and moment. The splice plates for shear shall be the full depth of the girder between flanges. In the splice, there shall be not less than two rows of rivets on each side of the point.
- 51. End Stiffeners. Over the na bearings of plate giracrs, there shall be stiffener angles, the outstending legs of which shall entine as nearly as practicable to the outer edge of the flange angles. End stiffeners shall be proportioned for bearing on the outstanding legs of the flange angles, no allows noe being made for the portions of the legs fitted to the fillets of the flange angles. End stiffeners shall be arranged, and there shall be sufficient number of rivets in their connections to the web, to transmit the entire end reaction

Excerpts from "Standard Opecifications for Highway Bridges."

bl. Ina Stiffeners.

to the bearings. They shall not be crimped.

52. Intermediate Suiffeners. Webs shall be stiffened by angles riveted thereto in pairs on opposite sides, with outstanding leas not exceeding sixteen times their thickness, nor less than a inches plus one-thirtieth of the depth of the girder. Intermediate stiffeners shall be placed at points of concentrated loading and at intervals not exceeding the depth of the web, no. 6 feet.

Standard Specifications for Lighway Bridges

adopted by the American Association of State Highway Officials, Fourth Laition, 1944

Steel Construction

by the American Institute of Steel Construction,
Fourth and Fifth Laitions

Elements of Strength of Materials

by Timoshenko and MacCullough, Second Edition

Carnegie Pocket Companion

by Carnegie Steel Co., 1954

Design by Steel Structures

by Urquhart and O'Rourke, First Edition, 1980

