T H 55x5 4 a 4"} / “f n. FLI'IIJQIY‘ L“ I... tllv 4a. VIII-‘3‘ 5.... .. \un. ~ .‘ ‘ . |.\c!nill . I'Jslfif PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. At9r£123126h59_ _- _- -- _- DATE DUE 6/07 p:lClRC/DaleDue.indd—p.1 A Comparison of an Activated Sludge and a Trickling Filter Sewage Disposal Plant for Charlotte, Michigan A Thesis Submitted to The Faculty of MICHIGAN STATE COLLEGE of AGRICULTURE AND APPLIED SCIENCE by U \‘M R. J{ Theron: I. B: Raff Candidates for the Degree of Bachelor of Science June 1942 ; “771,4/ /// Present Sewer System Charlotte is served with a separate sanitary sewer system. There are an undetermined number of roof gutters connected to this sanitary sewer. Immediately before entering the plant, the sewage can be diverted directly to the river by means of a man hole at the plant site. Nearly 100% of the city is connected to the sanitary sewer, which operates completely by gravity. The entire sewage arrives at the plant in a single 18" conduit. The Present Sewage Treatment Plant General Description The Charlotte sewage treatment plant is of the primary type, consisting of a bar rack, primary settling tank, float- ing cover sludge digestor, and glass covered sludge drying beds. The effluent from the settling tank discharges into the Battle Creek river. The present plant was built and placed in Operation in 1934. Its purpose was to removetpart of the suspended solids and discharge the remainder of the suspended solids and dis- solved solids into the river. This type of plant should remove about 30 to 50 percent of organic solids. This, ob- viously, leaves the preponderance of the solids to be dis- charged into the river. Additional treatment is necessary to stabilize the organic matter, making the effluent such that it will not polute the river. 1433.05 Detailed Description The sewage enters the plant site in an 18 inch sewer, discharging into a manhole from which it can be diverted direct- ly to the river or can be passed through the plant. If sewage is passed through the plant, the sewage enters the control building through an 18 inch sewer and immediately passes through a rack, Which has clear openings of one inch. The sewage then passes out of the building in an 18 inch sewer and emptys into the primary tank. The primary tank is 47 feet long, 14 feet wide, and has a 10 foot depth of sewage. The floor of the tank slopes down toward the influent end of the tank where are located hoppers for the accumulation of the sludge. The sludge is brought down the sloping floor into the sludge hoppers by means of a scraping and skimming mechanism. This mechanism is power driven and consists of two endless chains to which are fastened wooden flights which move along the bottom and along the sewage surface in the tank. The sewage is distributed when entering the tank by means of an adjustable wooden baffle placed immed- iately in front of the influent pipe. The sewage then flows to the other end of the tank where the effluent flows over a weir into the effluent channel from which it passes into a 15 inch pipe and is discharged into the Battle Creek river. Near the effluent and of the primary is the scum trough. The scum is accumulated in front of the scum trough by the skim- ming mechanism. This scum is periodically raked into the scum trough from which it is flushed out by a hose into a pit from where it is pumped to the sludge digestor. The sludge col- lected in the hoppers is pumped by a sludge pump through an 8 inch line directly into the sludge digestion tank, and is pumped twice a day for approximately thirty minutes at a time. The sludge digestion tank round, has a diameter of 28 feet and accommodates a 9 foot depth of sludge. It has a floating cover which rises and falls with variations in the amount of gas produced by decomposition of the organic matter in the sludge. As the sludge is pumped into the digestor, it displaces an equal amount of supernatent which can be taken from any desired level by means of pipe arrangements in the tank. The supernatent from the tank is passed into the raw sewage manhole at the beginning of the process. A glass covered sludge bed has been provided for the drying of the digested sludge which has an area of 2700 square feet. The sludge from the digestor flows by gravity to the sludge bed. The sludge bed consists of a graded sand and gravel floor underlaid by tile which conducts the liquid from the sludge to the effluent pipe of the primary tank. The gas that collects in the digestor is piped to the control building where it is burned for the purpose of heating the digestor tank and control building. There is also provided an oil burner that can be used in case the gas produced is insufficient. Treatment Accomplished A primary treatment plant of this nature can be expected to remove from 30 to 80 percent of the organic solids and this plant removes less than 20 percent of the solids. Chemical analysis of the influent and effluent of the plant are given in Table No. 1. Table No. 1 Chemical Analysis April 16, 1942 (Values in p.p.m.) suspended Loss on Total Solids Ignition Solids Loss on 5 Day wignition B.O.D. Influent 168 133.3 685 343 328 2 PM-l AM . Effluent 98 86 650 338 168 3 PM-l AM % Reduction 41.1 35.3 26.3 Influent 124.6 106.6 585 392 138 3 AM-l PM Effluent 83 73 545 276 87.3 3 AM-l PM % Reduction 33.3 32.8 61.5 The following tabulation, Table No. 2, gives the values of different types of sewage and the average of the Charlotte plant. -5— Table No. 2 Strength of Sewage (Values in p.p.m.) Total Loss on Suspended 5 Day Item Solids Ignition Solids B.O.D. Weak Sewage Less than Less than Less than Less then 850 325 175 150 Medium Stg. 800-1000 300-500 150-850 125-235 Sewage Strong 950 plus 460 plus 225 plus 800 plus Sewage Charlotte 640 310 146 180 4-16-1943 ' The values in Table No. 3 shows that the sewage is of a ' weak to medium strength. lorulfition Any sewage rlnnt must be desinged to herdle the nnticiroted flow for some future flute. A common practice is to design on the bseis of the population expected in twenty veers. TLBTE 5 lilPPIuJEICfiT O}‘(3I?£{LOTWKE, 11??017(30UI?fY Year Population 1390 5867 1940 4fl95 4:88 6 5196 5507 5354-4 In table No. 5 is shown the population of Charlotte for the 19st 60 years. These values were plotted on a graph and the curve extended to include the year 1902, as shown in Fir. No. 1. According to this curve the population should be 6110 in the year 1962. This is a relatively small increase for the twenty yesr period. Charlotte at the present is a typical small rural community, with several industries being present. Although the population of such communities 18 is fairly constant, here of its industries expending, or He U) ’D b‘ :3 1 A a. U) 1) id 0 J] 3') E.) e 0" H e {'4 H e d" s: O | .b 0 {3 CD of nevrindustrios being developed, which could cause a large pouulation increase. For this reason it is advisable to arbitrar- ily add a safety factor to the future nooulat on estimate. The 1962 population res therefore estimated to be 7000 persons, as a design basis. TABLJL‘ 5 Charlotte Serese Flow on Anril 16, 1942. £2212 Heisht L - .2h Heed C.F.S. G.P.U. 2IHI 2.07' .72' .52' .900 404 5 2.07 .72 .52 .900 404 4 (.08 .72 .51 .878 594 5 2.10 .72 .49 .821 569 6 2.09 .72 .50 .849 581 7 {.11 .72 .48 .788 554 8 2.15 .75 .46 .759 241 9 2.17 .74 .42 .675 "02 10 2.15 .75 .44 .708 518 11 2.18 .74 .41 .646 291 12 2.12 .75 .47 .781 551 1 AM 2.18 .74 .41 .646 291 2 2.21 .74 .58 .577 259 5 2.24 .75 .55 .518 255 4 2.26 .75 ..55 .475 212 5 2.26 .75 .55 .475 212 2.2. .75 .54 .495 222 2.15 .75 .46 .759 241 .75 .57 .562 252 to C) Q 03 ‘3 o 0'3 \3 2.15 .75 .44 .708 518 10 2.11 .72 .48 .788 554 11 2.08 .72 .51 .878 594 12 2.09 .72 .50 .849 581 1 PM 2.06 .72 .55 .925 415 Average Flow = 325 G.P.M. - 468000 pe1./dey. .|.|k‘l\ :I 1 ALIJILJ hi 1 .. , 41 I. {I ‘lvl f; (an-m be 1210... Charlotte has a scncrote sanitary sewer system. The sewace flovris derived from_thc nublic rater susnly, cround rntcr in- filtration (if any), and runoff from roof Putters durine storms. Table No. A shove the veter numnsce for the year 1941. TABLE 4 water lunnare Record for‘1941 fionth ca1./day Lonth cel./day Jan. 647000 July 861000 Feb. 655000 Au”. 896000 Kdrch 692000 Sent. 57000 Anril 668000 Oct. 752000 Ifiay' 687000 Novu 704000 June 709000 Dec. 650000 Table No. 5 shovs the measured serene flovrat the nlant on Anril 16, l9i2. As “ill be noted, this measured flow is consid- erably less then the normal veter nunnene records. Since all of the senses nesses thru the slant, this indicates that there is either an error in the Water numnese records due to excessive slinnase, or there are important leaks in the water distribut- . ion systmn. Kethod of Treatment Present nractice amend sanitary'ensineers is divided be- treen two systems of final treatment of sewape. One is the act- ivated sludse process, and the other is the tricklind filter UI‘OCBSS o Since the desienine encincer is usuelly faced with the necessity for desidine which of these methods to use, both “fig-:«ruuw’ tynes of treatment rill be investigated in the following treet- ise in order to afford a comparison of the relative merits of L) each. ““775 i—V‘LIK‘A—J V *’*V\ A V uD L.) I 1"Tr ' 7'1' 1 .- ..1 rv- CF“ ‘th-lc .3-L. 1 —‘ U ‘7’", n lctiv. H v r . .....vu F/ C) 1 .. ... ... e c... o. k . . S ..-1 U . 1 .K .0. C .r .1 t t 1. ... .1 n1 1.... ML C ”U. 1.. . s U .r n“ n.-. e .... u ......1 11 no .1 1 H .0 -.. a r. 1. k .1 e L. e a F S v- C 1 r .1 H 1 T t C h .. e "I. 1-” C r a. .1 e. r r. X ..-. L. o t t S E C. .... r t .. .. ..L. t t O r 1 ... .. t S C .1 p 1 . e a... .L ...... a. V. t p 1 . C -.L . . L 1 i S T H C ... u C 8 S ... 1 m1 0 C .2. 1... C 1. 5 1H1 + c r u.“ 1 1..., 1 O ....-. N .1. .1 .11. m 1 C G .r. ..L e, .9. 1 . 1M S n+1 1.0. .TV «.1 .1 S -..U ....1 .1 t «C r... C 1., . . . 1 .1 . O .... s. h... r . o t u - C 1 t r O . R S i 1 1 1.,“ -... a .1 1 .. .1 r t v .. n... 1 . m1 aw t R1 c 1 S .1 .1 T... m- V c .1 .... . c... .21 t . 1- .1 1h .1 to T T s 1 V 8 1 c... I 21 1.1 3 11 8 C C o n... 3 ..U T U 1.1 L1 ml. fix . --._ ,1 V 13* n. v 10 _ _ y .....V AC CU .K..L C 5.“ q. 1 .-. O t 1 S c _ .1 .. ... .0 a a K .1. a 1.1. r h v. PL -8 t r. n1 . . C r... 1..” c H .1 .1 ..i. 91 ...U. r u G . . a. C V .t. .. o E C .-. 3 . l. t .L. I \l ‘7- ‘& J. b» (T. c O L‘ s) of t N r t is c r a r‘\ (a s.) f -1 1 '1 .LLC Mirfl? 1 j r— set" 1, M. C V 2 ‘C‘ i .. .. .. 1 4..., ...... i n. 1 01 .k .1 . t .. J ..L .1 +0 «(v T v... . - C m. C ,. r. T F. . 1 .. r w.“ .... .1 5 C ..L 1. h .3 .. ..1 U . n1 . ,. _ ..., .0 ., C .. t r. C m 1, L S .1 V f .1 ...” 1. .. ... J ..M. S 6 ...1 C P... o c1 . V . .1 3 C VJ w...“ “.1 .1 u C C r “....1 .-.. u r t . .TU 11. L 1 C $.11 3 . - O O H C S w 1 . ...1 i 1 d. +. n... t t . . 5 a t t t . ._ S S C C 1s” H... mm. +0 ”J .1 t ”H 1 M .1 .1 .1 1...... . V 13 11 u 3 11. H. .. C 11 r H- .. U. C +0 «1. ...1 T c... C 1. 1- S ...1 S s.. . .. n. 1 1.1 2 C t .1 C .nr: -16 C «1 1 .l 11... K +6 v u 2 -1 n1 . ._ t o. n .1 .. .1 LL 1 a, .. ..-... C .1 I o... 3 .. e ..1 n ._ C 1: .-. 1t ...... 1.-“ S .1 L 1 w .1 ..-1 n1 uh ...! . V H e V 1-- 3 n... a... C ....1 r a. .....1 1... l. t 1. . .1 1.. 1 S .1 . S .1 _. , D. ...... u .... ,1 3 S S. t .1 p 1 a... V f .. T -.. o D. .<. w... .0 C A. c +0 ...... S C V. 1..-“ .1 v . r. S G .1 e ..-1 t .1 .1 .1 .1 a _. . a. .1 .... .. u. r - . .1. K t. .1 ..I T n ... - 1 1 ck n1 C 1. o .... C ... ... . .11 1. .1 1. . .1 O n...— ml 8 «I n w. . n.11 n- .. rm ..Tv ..rL. m.“ p _ up Mm t ..1 .1 O C .1 1.-..1 _ .....h d... S 2.1 C ....1 it 1 f O v .J : n» V 1;“ sl ‘7". 1.» t" k 0 1 ho LL\. 1U '/ 'TO “‘8 1 .1 1, J. 1328 n \r T W." e r 1 .i . r p1 31 t 9. h... 1F. .5 . m... t ..c n a... .1 .. . .... t r. U. S n L ....o. ._ 1 .0 .1 C 1.1.. 1 .. .1 T O S v .. n. 1 .0 .1 .0 O u S .1 .0 ..H n ,. ...». .. , 1 .-L . . S -1 .. S .1 G 1 .1 u n1 C t 1.. .. .1.U .. .1 1 1 c t 1.. m1 .1 P -11.. D t S 2 .L n... . .. E. ... ....1 ...... .0 8 O 1.1.. C .1 C a .. S 1: .. 1 n1 .0. H. e .....1 C V t 1 C. S ... . .... -.. a]: ..-.1 S r ..-L. t .1 o .1 3 n. H.-. 1 a. e .. C .1 m 1 C a C U o p .....1 t 11.1 3 0 .-.1 R .1c ...... 1 -. i. n. V C .r ..1 E . m .1 cc, ...: 1L C 1L 46 .. 10 w. .1. t .1 S. a T F S C 3 r1 .1 t .1 1...“ .1 v... u n h t W. e .1 .1 01. ... .1 8 1.. H O .11 1 3 8 C 0.1 8 H1. C .. .. n ....h a C. S .1 C C .... S t m a O S m” S T .1 ... 11.!I int V I -1u DF '4. U1. (‘2 V 11“.. , ‘i‘rtwi k' .L. 7311‘" [u .A L. k A ' two» 7') -J. .5 141,7- ./ 1 .nity to t U opport ‘ .--,—- —,~.. ..f . _04__ _o ‘ r"‘ .' ‘7 CL.1CI‘1;;>;.L+:J., €21;.CC .LL’ .LF? 1'; 17-13-“. ever, this effluc t is ClLSP, we . ‘. \ - ,- . ,—. . and Snould Q3Vu a E.C.D. of lag“ lt‘en Tit; ch 1.1 c 1371111111 1.04.3 The Sltflge is fire m fro t3~ to menthtion tank find is prern to tfie box. Esra the 930933 activ:tef sltfl goes to the primiry Ftttling tank .15 FOL-3.7.. aCtngtp S l“ CL - lfiir‘r fl= ‘03 3: z" . g._ L_- .. ... .... ..L 1'1 '1 .L t: “‘fl ‘3'! (1 ,(‘1 ..v\.. 1' G Ll L‘-1\. jprQVExvt dijyturlxix‘as City“1 CCH1“¢C IQ’CTJ :1 {j “CtiflT Lad :31u5;:: into tie digtsticn t1n1. The mixture f pri try tank glufije anfi activrtdfl alrflge i: yrumred to tie CifeftiCfl tank. After a month or 50, t1: @i:3st:o sltmgn is plated on tLC sludge dryiLg teas. Then it hrs dried, the STUfi'e may be used for fertilizer. UsualLy sufiicient gas i- gCHQr Le. Ly the digcs.i.g sludge to sliow heating of the slvflge digtstion tank, accel- erating its oper1tion. 3 f 5 u _ t O l S .l a no 0.. r «A .u o i mm. a). C /\ \l «C .l o . Q W, H t d S ‘1. C n. _ o 0 Lb C l p f n ._ u 0 O a . Cg nu. .rg.” C .1“ my fit. A -V v1 0 O C C g o _ ... 3 C 3 \ / k fl .1 0 O C Al“ 3 CL «L S C. .1 a; me ,\ . r +b 8 r V f .U h o o T E, L p at. 2U C H. L n. O . b n , .2 r J E 1r M g m“ . Q ..0 :1; AU film... M- .A. I: S l . 5. S a , n1 nu r.\ / A... n O r L t a, m C . . 1.. 9m , y K ‘1 .JC 311* O l a. 4 mp . «C ...u S w * m; p 1i C 3 3 r .. 7 u . .1 u c J v c u cu v G 3 f E S O C 3 w . u H C l a t 3 Hr C O .l O Q t F I, n. t k l a 0 .Tu r4 9 O M f S n S l G i w 2 o u .7: C V. ML; 2 h v V. «mu. ...;— .L f or“ .1 ..r ‘ .mv.“ O LIV \L. J... C .l m C C a x mu 0 I* T S .n n l 3 i r o H, .l S O f r m . C E 3 8 S a n... mt. d a.“ m. r m 1.-” m .n E.._ e 3 U AL V... . n ..U 6 t D. ) m ..U. 3 .. ..r. n I o .1 T t flq m L a L O S n .1 fl.» 0 o—L VJ t Cu 0 ml m m .0; ..1 L m; 1 o 3 P D 7 C a F. G TS. L- ' an ’11: Aug) 8 .L. o T" —. 'O c. .4 #- ,ttk.‘ f. 1.) ‘4. ‘1 c.f. 3530 A f -L \. "x V '. A J... +- ‘7‘ AI. 10 ‘f .1:- 3 r‘ ‘1‘ q QA—‘u/‘k v- 4 & ‘1' ~ J 47 [LG flow. ‘& V'sa..h J". V 7/“, .1 .1 . . (-L *—4- Ha O 7 ssf-q 1 ' -LU. v.1 n w'r ;, U) . ‘ - \ ’ ‘1 7 1‘ T: 0 I11 ‘51.! (33:. q C731,)r'2f Lot/".4 3: -' ‘1‘: :L 0‘40 : OKJKJ C o... o S 0 Use 1' x l' cnanfleis. .3 .. m -. .- Fqufll..Lflflx De;1rc¢ QateLtloh : c “Lovrs bu thm o; gwgr.;v f;CW j V v~ “. \ .3 A .7 t: ‘-’ r a 2'“ F ‘2 \ EA ’3 V3;dfi€ nztgtfi = .Sflu x 1.90 h p x Db x 00 = 7,JCb 0.1. ...: ‘.~-1.- ‘ . V ~‘C' 1 (if 58 a thnn 10' oesp x Lb A av . 1 - ‘1' ‘ l ‘ . ‘ “ 1 ~ ‘. “'\ -q r .- ‘45-! ,,-. -. 1 -\ . - Tue tr”; 5&3;l be aimllpec LLM a SJXSLU scraffiiAg HQCQVELSH mg fia- ,3 ~ ‘-fi~ , J -- ' ~ 72 . Lhe eLJiu;zt C¢LQM~L mus* can‘y g g l.uu = .69 c.f.s. P _-n, v It w. ., , use a l " 4wc A 9' 006p Crow 9 . hi P H ’. \fl. m x. 1— ufllQTLQ“ Log Lrna ,". .0 .. -‘ A J_ 1’ -0 n ‘ I _ A , ’ 4_ DgSiPQJ CCbCLtiOn : no TlflJtuS, V-lCC¢uy - .l '/s. — Afr- A r; 1n 1‘ v '7 '7:- :- Volume gs: d = .vlu K V X uu “ l/V = 1,1u0 c.;. T - r: . - . A , r .. L39 a u' nee; 3 1%. f 14' tan“. 3‘ \‘u ~ ‘\ 3" r“ ‘ .- dr“ . '1': “ fi around tue Eu» *a;;* 8 »;ll be 18’” *,-,..~,.‘ -P- L, .‘l , -;, (‘fi A (it bad ta 0; Ch-d‘c; ”,5Uud = .l X 4U x Eu = laC' f ‘ ‘ ‘ " l5 1' area 0: cnmnve; neared : °“ = 9.10 sonar: feet. 0 .L 117' °._ f") ~ “ O I F. .1dtu 01 Cdéflhcl : “-10 = 1.55' W U I 7"? yr ' '. 05' r\ ‘\ ~“'\ ,-,— \ 77" r. . :UJLGP of La;ilcd czuxpcrs : 1+ = 0 C_fi_xcls. ¢.pu 4 ,--,~ 4— D :2 er m!’ I- ‘f‘ . v ’1' '~ 1‘ I’“. . n5" ‘ v- 'fl‘. . A 1 - “’ Lug prcgegt primary tang ugS un 1h¢1ueut sgspebaed colids ff‘ -~\~—.-3 -10 f‘” 4" q of 1&0 p.p.m., anu eLfluunu ; v1 .' - an , w .1..- 1 ' -‘ p r‘.l_ 11th tub WTQSVNt Qe uytl n 0* 4” «~ ‘ 1'", 1 - [:7 / .° A -.-- _fi‘_- aha L;Qy, page u 4, ihCiCEt;S Lgc (“J . A - ‘ n, .‘.L,_. 45 hours. Fgr the pfOFCb ~ cgucp 4' 7C A .. A7, ‘1 : \._ Vw - ."' U Q”? 3 av» TQLUCtLCJ. x 40 = "A"! F: 1 A c: V 3“ — ‘ ‘\~' .C/u 3': 1310 2: U1. popomo T740. -.»-.C1u:_(../.L‘Lo p.p.u., a raduction cf 38%, hears. A di°'*3g in Tctcslf TuiHCtiOn Shoal? t: 47% for tion of F hours, tfla diqg°3n 35$, axjacte¥ reauction. r 0 r -~.o ~ Rafi ”ivi'; 17.1.. 1..-“: 4 . + n \J J.1.J.s--€ (L, 5.. u. C'.L {\J/Q . L; 3.; Spa, 3. : lobl) 2: C ‘7‘ ”r\(\ U 1. "‘Kll / 1,’ [L r-‘F C, r. / a. l J. . ‘1“ .a» L/ .Kp A : VQL i- Tl. (. _:'7. Ir": 7 " III I ‘7 A OCQ k (govt: .1». lob ' ° (3-1., .1 ,. “Cth:tc@ q- 0&8 r: f“ ‘ “. ‘ “ ' u 1 ’ ’1 .2 - 'r.:. ‘r“ ‘l‘ Lfiou’ c- 10 p.p.m. onsppudec 3011 s 13 c.1i*uiL. ‘ '2 m r F. ..1 4/: :1 1m\ r r.‘ . r“ ”A 8118*.‘C' .1160. VP. I if} r‘ 7“ I 7‘ LC! : (lLI'V -V.J'_ -_Lkr / O 93‘: IA. K4 OKLL; : 4r, 3! '_ LIA/O If/C-l;'4}/,O T? \~u ‘l ‘\‘1 ~ ph.'l cu J...‘ 40p ' "| VOl'l‘, e , L.» ~£)\/‘Ir4. C-‘ v‘L/g SU'JI. : (1“. J : L Er“: 't 511. I:1 :1"? ruff ‘, r—Wfi r ’ ‘ ' w "a; A L'o'~--"1: I V' “ ’. - J‘ 1 ... 11 1 '. " ‘ ~ '1“: ‘ x" ‘ -‘ ~ “. .‘ <3} ..‘ 7 AS 51 g -‘3 :chtJ-“I 4 LIVQ 5.1-. —-I-'I\le nip») .id L/KJL:‘ Ll-x‘ 1J1) Elm-LA' .L l”. tEA—JL. ”1 ... .- D 1 .1” " Q 3'". '2 j" .51 'v -- .10th V, 1‘ it. C: O-‘- S-L1L.'KJ" ' . 9U + L»! ’ gleO = ‘v' ’ ll\—" :iA—l../(:i r1. . A ., . , ...-3-.,.. 4-.., - $. C‘nCfi '5- .-.“ H ,1 "'...+. 1:0 , .1 7'11: [“28 LL12? SlliLLL ‘: L/Kml ‘—~ :1 'J ‘U i‘ O 4.4 J, Flr‘k_'~.z 1:- 7 a: ’ -“U U (3.4.4.. -ALI 1: U_:.r ’ a. a '- —, r.‘ t'n rrrv c" .. Tile TEgUlpr : VO x cu : a..- 6;ys. ? UV . Ifl “ -' ‘ ' r r. J‘ '\ . ," hcxf IV."-4‘ ' ~ r-c ~‘ 7 ‘ 3 Assaue Slvvge lJ 5' Webb? 1. b~m KALLr, Sp.;r. of 1.00, Qua __-_ (“f—V! ,- ‘ ,_‘ ’ nr-y (7‘ g'; n no N allonln. duh loss, ‘oluve nzered : z.v (070 + awcl X .(5 z "r"' v :'~ "'1 -- '1 .7 OUU ... Uov‘x n. .1... -u a r~ r -— n aJEOO FE- . :: 5,7..0 (3.4.. 4. 1 g - 1 '- C'7 ,. PS‘SUHt u3fifi volume : J x (l:.¢p)~v.la ; J,uuo C.L. 09- ' ‘ ‘\ " ".+‘ L ’0 Allc ?u1 0L6 “Ohvfl s-orape. .. .. " "1’7 '5" C C L— C'"7 -. Volume = 2,1u0 + U0 x 0,7UO = 0,0c0 c.f. ncched. F”? ’5 41.0 H '-.‘ v -4.‘ . . - - . 4A . - ',.- - tron tulS calcnlvp on, tie vol*_r c; p a rrps,wt 0-”,star .0. '. -.. ‘J- r «In '. A' - ’ ‘ x V" J" "‘ 3 l- J ampe“rs suf41CL~zt th QXLJFLJLCm u” s x H u at Lu ¢s A , I '" ‘, vv H n ‘a‘. 7 ~ f“ n IA.“ fl 1rvn;cc r; to 01112 ~3 C.l./CFLuJRE. b ;,7,CL“)._ cl,O.p 0.1. c An 1": r2: : '7 A ,~ ~ ~~ ' -. - «f ,1- “l,puu ’J,Uu - 1-,UeO c.f. 9.0;.1L131 vcluue hscmd. A A 1 -. 0'": ' 'V- O f‘ .j t". .‘ ’I ".l'\1 U86 8. “LC. C3,_L»_.;;Lt‘:‘l‘ 1.9' (-1- ’91:? '_LO-:.~.ll...~ CC‘ (,7? tani'r. ‘ 1' A Th-q 8110' V J,‘:’ 3 fl ,- _ “J‘_ . .1 a" '7," I _ , r: 1P1 .. , r ...- I)- . ‘ . rrsSun. LQCS a1. v0 A 74' = ~, ‘0 Sgdglu LLCt, glass COVGI’ZU . n’ '.‘ ' ‘ _ (1 . I . ~I‘r 1 ~ “gauge 1 spuure fOCt/Cflpita nub; d. O) k t“ - ‘Ffi v 1 7 Ob“ p ~awr 0:/t w-~fl-1 m a 7'36 7’C\,V 4L : ,VVL .L‘xL/tr'qL 4 .L-T {A 1A‘\-,L.',,..'~_A'.t, LQLLJ. | ‘. f). Ann r‘ q \f‘ ”WA 1 ".~"‘ ’1 fi fi I 4— ' '1 ‘ ' , . . ~ _ - c‘.’ ’l;11r\ 'f "‘1' r“ ‘1 _ z‘v-j r Wfi" r‘ 7 ,kk’v -'-J JC 0" , \J' (k) : ,2 v- n.“~ 1(2L'J .L'y V J V” ‘s_'._ V.LC.L fl. ’ 12;; J». 1 ‘-u J v _‘/ KC v'u DC. a T’m»: 5:: ‘. ,1 ' n f7~| '1 q ,. '1 ’- I .h ‘ ,1 m VLJV N Lg'v. u , \I’L) .LL, L ’ _.'_\, ...._ , . 3.-.. a . PW M \JD \ _ n) mad I- w, + ’ q 1' t . - - - 4 4. L ”v.01 - —L , w '\ ‘ .__ _, \w r v“(‘. (“r w - v~ . *.~ ~ ,, A]. t. a u; L*\ -LlOu C; U, up , _ : L-“ aLLumVLu LMW L 1m h * [f . a ’ . O __f . 1 '\ a n ‘ .J.’ O AD buO ;.U.m. ;lov leCtLCn Du": : ( LLC )~~.l~ - Q1: w ' . VLKJ “L ...; ‘L r-- Tb \J . ‘a<" Pressnt L1“V:tion of safiéfc in primwry fi:ak = 877.14' »~ -v .. D r\ r“. J-O ‘ , ~ q ' -.-.\ sA ‘. ‘- - v - r\ P v Lilo: .b ngb ru93 loss Fro- nr;r;3; tLLL to Iri r’ ”.1, . ' ... v _ Chg G ¢4h3flt CrdjflCl. (“r r‘ /' f: v“"‘*" (:4 J-.° ._ '1' Dari; . \.,,\.1‘. 1-. L//.J¢c-.u - gfo.'&' : .-l—wv‘ ‘-1 L- 0;! L;¢L cunnmelJ 1 r- 1"; r. A "- v " " J '7' "‘ , . \I'U I‘V— fi '— P'n f! (‘C I ‘ _ ~ ’3 p‘ ‘ ._ , - -~< '° , ~67 a t~ ,\ - . ...C‘tfll 1139”-) LLt' UL, ' f opoilo .L O. = O.::~ " lgnud = Dov; ' O '\ ”,1 F4 rj" U." Q } _-\ r... l" ‘ C 1 d W ’) : 1.}. i” f: 3 P C. r. ’3 L. (W O } k \ 5:, O H [‘1 3 7 SlLoi; PU‘ps -,- TKO Fro“, t 8;; '; ps.‘ fill' Sfffico for TJ.‘l-¢ i": DPL‘F‘T TZLK “Z”‘f~ +o in“ Plgcfter LOTJVE“ 1 ngp “ill Le Leslofl to pvxp f 2 Sl?fi: lrom + “ i-“l tint to tFo leJCQE,ei*tfiisicx: lcxt. .ZSCLT e 213; IV"‘1“‘ “r“t1*v t~53 LZJW’;€3. FrictLON FPP“ : .Sl' St tic boo? : l.l9' Total boo: : .51 4 l.l3 : 1.70', Sf” 2'. Use hL‘p for 1/3 C.?.u. @ ”' hfififl. Gos flfcnfm 5 C f "no/Cohita 75” FHA CEO V T U /C ? . .4 _,, ..- --v o o o L. - -I "L' , go v--,_£ 3 o o o o A. o 860 x .5 X 7,CCO : Z,CCO,CCC 3.T.U./Cty. AZT?TC t»r* flurizg coldost veitVir, daily hoof loss from taxks : lCOF. *1 ;.T.U. roguireG/fioy to hoop COOP. = 3,ll6(83 -%C)8.34 + 21,700 x 10 X 3.34 = 2,736,0CO. E.T. U. ’\ s,‘ Hove l,sso,cco :.T.U. ’7 . ‘xfi /‘ ‘ ~ ~ wr‘ ‘ J- *r‘ L .1 ‘ ”:r;lor; no nullllary nooL 306363. 0 O T751" t ‘ 7‘) " IT!"11" ‘nv‘nd‘n't ..L‘-.; _,L -—L.‘-.-'~l H—“k;—-—-; .~ {v-- .mfi .-. - 1 x V. ,- In tlc co trol thl\ u ‘m ’M O x V“? . V1. H ‘ {-4 . ‘ ‘ I 'L ~ .1 'r\ 3 . ~ —. T r + JrrC'lLllJ-l*; :tslrgl gm :7 lcuLler 1 ~33 . 11 7'7 . 1| l 1: “my“: '1‘ "" Q f‘ f‘. 1‘ F‘fi“ 'I‘C 70-1 J.‘ r, v”. ‘. 'n‘a 't ‘ .Q 3117'“? {'1 ’.| rm;- ("‘J.’ 33'1") i111 r" 'v’ir'i‘ f“: .‘L‘LlC,J l 1-1.. 1.1.1. a-L bL-v ,7‘L-I~.) E-‘JAA'JA __ LJ'- ....Ll «' .2"; .'A\1.. \¢.L. ~_ V'La~z_L J. v.1..4v J— 'A A *- L ’\ . r- 4- . —. a ‘ 4- J-‘ r ,- R ‘ '* 77"! ‘ 3 b0 M‘LL b'Q dlvechr. Plplhd Lo Loo Flkvst€r . ll lr “ceLLd. ‘hter ~‘ ‘ . h‘ '1‘ ‘ "Y . 1‘ n“. 'f " r‘ 4‘ c— 1 v"~ 1.] ‘. 4" ‘\ v‘ 1 . ~ ’. A Valium; No Le: ‘11]. LA“; l loll-1-; l1 nu; polio .Llue ln order to measure the so ago flow. It will be con octefi to a continuous recorflor device. —/‘ 1 ‘J‘ V . '1 ’ ". L3LOPGLO-4T.Ai1gpfrut FIN- ‘ ,_ ,._.,.J.- .. i - _ 1-. r. ,_ P ‘1 1 ‘1 ': “1 ‘._J_.__\_ 1 . - .'. *, ' 110 P pSouo glfigt “To a S. 11 laLLTLLoPY, Lut “0 Cler- ' f- - .1- ("J .° 1- -‘. ,. .. - ,— A-f‘ - '1 J . I“ ‘Y’ . _ . ‘\ N v H. v ‘ r y I?“flo 101* 'b. allc ....1: .CVLS'-I *cz‘Lcllo;t:.ch r'uvr* . - . - 1.3. - - ‘1 J- .1. A '1 ",- .L. . 101'. 13.:11 acLlLv--- 81‘“ r— p; P‘L, . g --f cz’ er; ‘Jlrt L<3 “ 1. “n5 '5 1 Q €gl.l‘/lr'u\q|. ...LOT d L. '0 filscclf‘er:u;c ‘ I stained. "" .r‘ .’ r‘ I" '. "‘ J: - vv'v'. + l’t \ . I 139 L; oosary mlrln_ :Ad 3 $.1Lc board must :0 o .— ~"",,7 ‘- ' _/v»-’ ‘J-d . "I \ ( \ y...) 1 ‘J D \ . ,7 J 3 1 r3 1 1 '1 1 ' . "I - -° '-.~ -.-- 1 .. me p11 t 51L- .11 7 lo room ., '1 -....-S] ,- 1...! -XL .-L.-. :1 :5 .1-’ _. :.., -..”), :ll_.;111_ to .L1. t 9.. 1.1; 2.1. o. Lzu; Dru- riff L 1L.. 9 L. C4 m () ci- «3 ll) 'Al r-fi vv-‘v-v-j-f a ~1'~ CUL‘J. JAALJ..L 5L...“ Grit Charlor 3 f‘ ooncrcte -7. O .— ~ ' 2 j“, 'g' r: , n : chlC 1708. & 'h’V‘J. - -l QCR T“_'_ I O ' ulcavurlon ' l. 7. A ‘(3 “21.1w. Wot Tell fig“ 'v +fl’ I '1 7 (”“1“) 1790 1’" ‘r' :- .. ‘ 7.? b011 l "J U‘C/ .Ld w --.k4.LC .14)....) 0 gr.» ”xx-J . _ ‘LQJ . T" 11- ~ 7 n n 71 l—I‘.lLC FAXJCLLJlOYJ \fl 1. : \J-L. 477. P up Room v r - ~ V? a‘ -‘ . " . (“u '75" F711 Concrete .0 collc yes. L oo. = Vol. 1‘. . -° L r0 "7!“ Lxcava.lon pa " " l. : oz. f‘f"? GC'J. (11 1 -,-— ‘. . . ‘r 1"“? oluuLo D1VlSlOfl LL” ‘ O 1 .I: '73": P7P— o~ocrutc l 01110 yco. v oo. : vs. «V v ¢~ '1". ‘ C O .11- '\ 1L1C11 L. " " l. 3 a. O ‘ ". I—IC TC Concrete 149 cuolc yqs. w ;o. : u~10. ETC vnticn 5:3 ' " l. : Qaéo ‘ "4 ET": 3 Step 3:3;3 ,, : U0, - woo“ : n 4: 215: “a LOI’S Look, . -_-_- oOCo . }_J H m (TI to O “ r- :— m r‘ F4qu ;““‘ ”A ”v 'KJJ..CI." {JO fl .1. I '_ 1". 53’? ’2 U . ~—C L F.’ Deg groovctlcn Concrete 2-,:(3 o1‘7'} [if->11 v—‘CY I. *‘w‘fl - 7" L‘--O‘fo4.u CC "‘ 41x- P 1‘”; ‘ 1 .. 7'- r\ ...udf G £9515 (ll) Concrete rfi~ ‘_ _ 0 ~ LiChVntlon m orfivol rm 1.. " Tui‘“. luv' 0;. 111-;‘3M . one 150 ;.p. . oue ECO g.p. 1. one SOC g.l.g. one s ” fl "I LiLoritcry ind 0-11C )- VI. (2“ 'a u, '7 H x‘ P",— C k-‘ g.) . \J .I \z"./ . _ | N a. \J . H l _ con . ~ 9"! L4" V, 0 1w 2" r." ’t" '1 1rr~ o A'CC. 4.-..-. K .' .L x L: .3 Z: 4— ' o '1 “c c = .4. .L‘U . 'Y .-\ h r— A PI wrz. . > - ~ -' - S o \L. u.’ x.) o "’ U -1 Q " 1 - (— r~ - o : Q») 0 7v 1 7m 4nco n) 0 =4, I.) \1 Q = u . n 1 __ / “2' -o _ ‘1:qu "C‘ “A 2: .l.~J I Kn 1. I (.31 O O o 6C3. ; :5. I 4:500 " l. : 147. " 7.5G: 110. .lQ/': 15. (.f) P J C) 10 (:1 Lt“ {\{7 ~] 0) U"? p‘LlT'Tp I. or ‘—J. r f ( gunp room 40. JKI-yr-w “a" ’0 ,0:"~S . l ‘11‘7‘~ r .L .L. — I .LA‘ CF9“ r; _"h x, C 0... 1'7 7? ll ll 1 . V1" '7".Q -,u (if: A. -kJ\/l 3 1r 11' C; mu -.rxv. -_ w; 1* ..L m. WV C An .11. .l 7v 4; T S A. F t C 8 fig 1". ,f . 1. II It. ‘ M'b. WIK «I ..IL ...!V .l\. D‘ «Ill— Cu at n 2V . an.” . ”.4 LN; 14 .1. S V .1 :Lc ....“ pg \L . 45 F. . 3 I} "7 L: Y" 4C./yr. .- 7 ”7/”. YV‘QKJ'I A u‘ j ,—\ P.» no ”L . Ag 0 CA. tonce . fl ..‘. 7}- l q F, f. O ‘ ! 4’ ‘1 . “—‘ TF 1 Trickling Filter Process The Trickling Filter process is the treatment of sewage by applying it upon a bed of stone in order to obtain oxida- tion of the organic matter in it. There are two types of trickling filter processes, the standard rate and rapid rate filter. The standard rate filter is, up to the present time, the most widely used of the two, and in this type of filter the sewage is applied at a rate of about 300,000 gallons per acre foot per day and does not require the recirculation of any effluent, while the rapid rate filter applies between 25,000,000 and 30,000,000 gallons per acre foot per day and has to recirculate at low flow the necessary effluent to maintain this rate. The trickling filter is an oxidizing device, whose function is to oxidize as much as possible the organic matter of the sewage. This is done by applying the sewage as uniformly as possible over a bed of stone of various sizes ranging from 1% to 3% inches in diameter which are placed in a bed 6 to 8 feet deep. It can be seen from the large size of the stone that they do not act as a screen or strainer for the suspended matter or other impurities of the sewage. Purification is obtained by the formation on the stone of a thin organic surface of slime containing bac- teria. The sewage flows over this slimy surface and the oxidizing bacteria accomplish the process of oxidation with the help of the available air that is in the voids of the bed. Due to the periodic slushing off of the slimy surface, it is necessary that the effluent from the filter pass through a final sedimentation tank. TF 8 Operation g£_proposed trickling filter system In the new system, the sewage will pass through the coarse racks, as at present, but before it is placed in the primary settling tank, it will pass through a grit chamber. The function of the grit chamber will be to re- move the heavier solids such as sand and gravel that are washed into the system during heavy rains. The chamber shall be connected so that during very low flows or when it is desired to clean out the accumulations of grit, the sewage may be by-passed directly to the primary settling tank. The primary settling tank will Operate as at the present time. The effluent from primary settling tanks will go into a sump pit where it will be pumped to a dos- ing tank. There will be two pumps, one that will contin- uously operate at normal flow and the other will Operate intermittently during high flow. At the sump pit there will be a possibility of by-passing the secondary treat- ment if the occasion arises. From the dosing tank the sewage will be sprayed upon the bed of stone by the re- actionary type of rotary distributor. The rotary distrib- utor is considered by present day engineers to be the standard method of distributing sewage in trickling filter, due to the high degree of efficiency obtained. The sewage will pass from the filter bed to the center of a round final sedimentation tank. At the center it will flow from the bottom of a vertical pipe with a radially outward and upward direction to the weir on the outside of the tank TF 3 and then into the effluent channel. The vertical-flow tanks are particularly adapted to the clarificatiomxof the effluent of trickling filters, due to the reduction of contact time between the liquid and the sludge. If contact time is quite long, the sludge reduces the quantity of dissolved oxygen from the effluent which is not desirable because a high dissolved oxygen content in the final effluent is one of the goals in the treatment of sewage. From the final sedimentation tank, the effluent will go through a chlorination tank. The chlorination tank will be designed so that the sewage may pass directly through without chlorination, or may go around the baffled tank and be chlorinated when desired or directed by the State Health Department. The sludge in the final tank will be forced by a mech- anical scrapper to a pit at the center and may be removed without emptying the tank, therefore, making it a continu— ously operating unit. The sludge from the final tank is returned to the influent channel of the primary settling tank. It will then go through the complete process again, with the majority of the final tank sludge settling out in the primary tank. The sludge from the final tank will be delivered to the primary influent by gravity due to the hydrostatic pressure existing above it. The sludge from the primary tank will be pumped into the sludge digestors. The sludge digestors shall be con- nected together so that they may be used in parallel or TF 4 series as the plant operator desires. The new tank shall have a fixed cover and the floating cover tank shall act as gas storage for both. The digested sludge will flow by gravity from either tank into the covered sludge bed or the new proposed open sludge bed. Summary of Design Date Grit Chamber The grit chamber shall have a velocity of one foot per second and a detenticn of one minute, therefore, the length will be 60 feet. The area required for an average flow is A = .915 = .915 square feet, with a width of 12 inches, d = .915 .915 feet. Primary Tank , The present tank will be used without any changes. With a design flow of 592,000 gallons per day, the detention period will be T =.§§g8 = 2 hours and 14 minutes. As recom- mended in Metcalf and Eddy, Page 573, the surface area, A : égggggg = 900 gallons per square foot per day, will be sufficient. Sump The sump shall have one pump operate continuously at average flow and an auxiliary pump operate at higher flows. At the avera e flow, a pump of size = 592 000 = 400 g.p.m. g 21 x 60 shall be required. The auxiliary pump shall be 618 - 400 3 218 g.p.m. and for a safety factor a 850 g.p.m. pump shall TF 5 be used. The sump will be square with 6 feet on a side. The 400 g.p.m. pump shall have a drawing depth of 1% feet, and the 250 g.p.m. pump a 1 foot drawing depth. At average and maximum flow the 400 g.p.m. pump shall operate continuously, while at low flow, it will operate for 2 minutes and 5 seconds, and be off for 1 minute and 58 seconds. The 250 g.p.m. pump will operate for 2 minutes and 4 seconds and be off for 44 seconds at maximum flow. Siphon Tank The siphon tank will be square and have a surface area of 100 square feet. In order to have the siphon tank empty at maximum flow, the maximum flow will be increased by 20%. The discharge from the siphon will than equal 1.38 X 1.2 = 1.88 c.f.s., and the tank will have a drawing depth of 3 feet. This tank will empty in 3 minutes and 40 seconds when 400 g.p.m. is entering and will fill up again in 5% minutes. At an inflow of 750 g.p.m., it will empty in 8% minutes and fill up again in 3 minutes. Filter Bed With the normal rate of application of 300,000 gallons per acre foot per day and a 7 foot depth, the size of filter 92 000 x 43 560 = 5 : 126 feet. will equal D \f300f000‘i_7_i"77854 Using a 4 arm distributor, Q per arm =.Zg§ = 186 g.p.m. With a 2 foot net head and 7/16" orifices, the number of orifices = .lgg : 35. The area being covered by each 0 orifice will equal .7854 ( 1253 - 93) = 345 square feet. 56 TF 6 Final Tank The final tank will have a 2 hour detention and be of a circular type with sludge removing mschghism. = 592, 000 x 2 VOlume ‘7.48 x 24 Size of unit with a 8. 81‘ average depth d JVé-Tasigg 81: = 8590 cubic feet. 35.4 feet. Chlorination Tank This tank shall have a detention of 20 minutes and a. velocity of .1 foot per second. Volume = .915 x 80 x 20 - 1100 cubic feet. With 8' depth, A =-l%99 = 183 square feet. Size will equal 13.5' x 13.5' x 8‘ with baffles spaced at 1.52 feet apart. Sludge Digestion Tank 2 Volume of present tank - 9 x428.3 x 3.14 a 5880 cu. ft., This allows for a volume of .81 cubic feet per person, which is not considered sufficientx Using a desired 2% cubic feet per person, the volume will equal 17,500 cubic feet. The dia- meter of the tank necessary using a 15 foot depth equals x 11,840 _ 3.14 x 9 _ 32 feet. Sludge Beds The present beds, which are glass covered, have an area of 2,870 square feet. This area will serve 5,340 people and the additional area required will be 7,000 - 5,340 - 1880 square feet. With two beds at 15' x 55' this is accomplished. TF 7 Heating Equipment Additional heating equipment will be installed in the present building that will utilize the gas produced in the sludge digestors. Meter A venturi meter will be installed between the sump and siphon box and will be connected to a continuous recorder giving a record of plant flow at all times. Laboratory The present plant does not have any laboratory equip- ment. For efficient operation it will be necessary to in- stall laboratory equipment. Miscellaneous There shall also be installed a switch board, temper- ature recorder for sludge tanks, and landscaping. Cost Estimate Grit Chamber Concrete - 3 cu. yd. @ $35.00 105.00 Excavation - 7 cu. yd. @ $1.00 7.00 112.00 m Pump - 400 g.p.m. 800.00 Pump - 250 g.p.m. 300.00 Concrete - 15.85 cu. yd. @ $35.00 554.00 Excavation - 28.5 @ $1.00 28.50 Sump Pump 40.00 1,522.50 TF 8 Filter Bed Concrete - 382 cu. yd. @ $35.00 Excavation - 928 cu. yd. @ $1.00 Drainage Tile - 12402 sq. ft. @$.20. Ballast - 3210 cu. yd. @ £3.50 Rotary Distributor Final Settling Tank Concrete - 53.1 cu. yd. @ $35.00 Excavation - 272 cu. yd. @ $1.00 Mechanism Chlorination Tank Concrete - 18 cu. yd. @ $35.00 Excavation - 53 cu. yd. @ $1.00 Digestor Concrete - 125 cu. yd. @ $35.00 Excavation - 505 cu. yd. @ $1.00 Sludge Bed Sand - 73 cu. yd. @ $1.50 Concrete - 13 cu. yd. @ $35.00 Gravel - 147 cu. yd. @ $1.00 Underdrains - 150' @ $.10 Miscellaneous Venturi Meter Laboratory and Office Equipment Piping and Valves 12,890.00 928.00 2,480.40 11,240.00 1,400.00 1,880.00 272.00 900.00 830.00 53.00 4,380.00 505.00 110.00 455.00 147.00 15.00 800.00 700.00 28,736.40 3,032.00 883.00 4,885.00 727.00 TF 9 Landscaping 400.00 Electrical 800.00 Heating Equipment 800.00 3,500.00 Engineering and Contingencies §,OO0.0Q TOTAL PLANT COST . . . . . . . 58,492.80 Operating Costs Cost is based for flow of 500,000 g.p.d., and cost of electrical power at $.02 a K.W.H. Power - Kilowatt Hours Sewage Pumps - 3 H.P. at 85% efficiency. K.W.H. : -7Tg5xx3é53 53-4 = 54 54 Raw Sludge Pumps-3 H.P. @ 3 hours day 7 Final Settling Tank - 1 H.P. @ 24 hours ‘18 I TOTAL POWER . . . . . . . . . 79 K.W.H. Cost 79 K.w.H. @ $.02 = $1.58 per day A 577/ yr. Operator 2,000.00 Miscellaneous 200.00 TOTAL YEARLY COST FOR OPERATING . .2 2,777.00 Plant Cost @ 4% 2,540.00 TOTAL YEARLY COST . . . . 8 5,117.00 -9- 001-101; 53101:; The foregoing analysis shows that the trickling filter plant rpuld cost $58492 to build, vdth a total yearly capital- ized cost, including operation, of $5147, whereas the activated sludge plant would cost $55858 to build, with a capitalized and Operating cost of $5400 per year. In other words, the trick— ling filter plant would be much more costly to construct, but the activated sludge plant, due primarily to the electricity consumed by the aerators, rmuld.be much more expensive to 0p- eratc. It should be recognized that the true cost of the pro- ject is revealed by the capitalized and operating costs fig- ure, which gives the total yearly expense of the project over the design period of twenty years. However, to construct the trickling filter plant rpuld necessitate an additional capi- tal of $24858, which might easily be prohibitive. Another factor to consider is that whereas the trickling. filter plant may be expected to prOduoe an effluent with a B.O.D. of less than 20p.p.m., the activated sludge plant should reduce the B.O.D. to less than 12 p.p.m.. Either of these results vould be satisfactory. The trickling filter plant has an advantage over activat- ed sludge in that it is less likely to be upset by an unusual condition of the sewase. Often such conditions from the vaste coming from certain industries,the presence of which is im- possible to foresee. Also, activated sludge plants generally reouire more skillful operation than do trickling filters. The above mentioned factors, taken into consideration -10.. with the financial condition and policy of the community in suestion, should enable its sovcrninn body to some to s L decis- ion as to which type of sewnna treatment plant is the more satisfactory. Eff/vent Channc/ Sewage Surface Sludge Mccbcwxsm 5f0f7c Bed fiaff/cs 7 —-—_-—-—._ ._._.__ ——-—._——~ ...—“v.— _. —— .__‘_—.———-‘~—_——__.__.__——-~————— KM FILTER BED CHLORINAI 03 FINAL. SETTLI N6 TANK PROPOSED FILTER BED Potorg d/s fr/but‘or PROPOSED SLUDG E DIGESTOR PRODOSED SI PHON BOX FLOATING COVEB O [J O O SLUDGE'. DIGESTOR II/—~————I /_._ .5 \\ I 'X \ \ ‘ \\ ’X \\ \\\ Eff/(4233,15 Chtg’lfifle/ f/ < Baff/e S PROPOSED CHLORINE. BOX PROPOSED FINAL SETEING LUMpsa SUMP 0-. O I.“ PRIMARY SQTLING TANK FLOW DIAGRAM /”/ / If %/// ’ / 9.“. f". 1';- '.r"--" n'-°¢a'..¢¢o.o¢v Fma/ Eff/vent to P/yer D/qesteoé Sludge __l / fl Sgum [Line _ I l / l // / I PROPOSED ,/o< PUMP PIT a SUMP // / w v’ [I Q Q Q) u 5 \S ‘0 < o o 0' 0! I— g: Q. E 33 ' U) 1.1:: _ .- ___ ____ ___ .___ _______ _:::: M.H. (U I I ,3»:th H t I: » LLI : Q II g H \ II t I‘ «0 §~ __ l D \ch I, m I’m—~— II CD E I: Q m a, GLASS COVERED H ‘3; K09 ‘6 SLUDGE sens II 0 3 g I I C). .I II 3 m _ I r I! a I' O [ I II I II II II _ H. _____ Albania-17““ 4:14—— _i___a41r_n / I II I K // I // f Ky.) DLAN VIEW Gas lme Grit Storage Paw Sludge _., _ {Sewage Surface ‘_ {fi‘fl‘ ‘ E1 .... —:_1 H _——‘-.____._._ [fr *— _ zffiwS/odge from me/f:__ __ :1” Coarse ”’06 9 SEWAGE 1:: j ‘3? “ my 3104”,: 707555755 INTAKE ' [I ____...._ CONTROL FIXED COVEB GRIT CHAMBER BUILDING SLUDGE QIGESTOB ;. «3" P'I).Q.§]U H Mu BTW! what! .~‘~«-5w.. '.~' « G_LASS COVERED SLUDGE. BEE FLOATING COVER OPEN SLUDGE BEDS SLUDGE DIGESTOR CITY OF CHARLOTTE". EAION COUNTY GENERAL PLAN OF SITE. Date: 5-25' 42 Scale =~ I320. Drawn =- B.-RQ'F'¥ Pro/DoseJAeraflbn 7517K S Propos ed Proposed Final TahK C I: [or/hafion Tan? Proposed Press/17‘ 01y esfibn Tank 01:9 957%)» 75m? '- '7 || III 6 u :4 cf/Vdfe d \\ \S/UdyeL/he \ 6” . = \ \ V5/f§+;y:?:: 5HEXC€53 \ \ \ 9 Acfl'vafed \ \ - Sludge Line \ \\ \ _ X 11 fl ‘ \\ Proposed _ p k 1 “fit-"’5‘" Room _ rim r- ‘ \\ P ‘ ' : I” TI? I //t-'Proposec/ We? Well released 614+ Chamber (LP Preset: 1" Co ”erec/ Sludge Bed [8" Ouffall Sewer LI___J_‘__I \ ___ / Pr- esenf‘ DH Ve way / ProposedACf/vafea’ Sludge Pump Pr oposed ch‘ivafed P d F" I T- K Sludge Dir/$10»? Box rOFose r{no Oh \ W1. 883.30 [Pr/Mary Tank J r #11:: v , \ M + 882.2! — «V J W//0 l mz.=a7z/4CI / I: COHW'W’ House ._0 —-— ————— —Ql‘ ——’ 75 Primary S/udje Pam; NJ. PROF/LE OF/ICT/VA TED 5L UDGE FLO ased Proposed P waeaaao Proposed Wef Well ‘ - Ae 'on Tan/<5 WA. 8 . 2 MH.6 rWLS8L52 r ”L. 8822! , Primary M. H. 4 1 875.00 [I ‘ /° """" ‘— ‘Y‘ (— ' I ,_I T R' e ( IL I V JI Corr/“rel House 87642 6% C d d o w r PM“, , / m_%¢afl 375,.- \;f were 5w 96 Bed I _/ . Chlorinafion 7511‘ ~ Prefosed PUMP Room L— Dlyesfion TanK -——~ ————— “In Cover- :2: PROF/LE V/EW CHAPLO TTE SEWAGE TREATMENT pLANT PRE SENT é PROPOSED PL/I N (S ELEV/I 77 ON SCALE /"=~20' MAY, /942 ROBERT 'THEROUX X u o r e m «L .t 531 «a»? :éa.\+ce L. ..1 ......xmm}. 240.132 ...\l..\ A.- Vtrr' " v A! "t ’ . . '\ ‘ , . ‘ . ‘r 1 I w 4 1 H H ‘ ‘ 1293 50023 487‘.