GRADE SEPARATION

U. S. -16 & P. M. R. R. 3 MILES

WEST OF LANSING

THESIS FOR THE DEGREE OF B. S.

E. H. Aue A. E. Heath

1932

THESIS

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
012 9 002 gp	9	

6/07 p:/CIRC/DateDue.indd-p.1

.

Preliminary Survey and Cost Estimate

Of a

Grade Separation

(U.S.-16 & P.M.R.R. 3 miles west of Lansing)

A Thesis Submitted to

The Faculty of

MICHIGAN STATE COLLEGE

of

AGRICULTURE AND APPLIED SCIENCE

By

E.H. Aue

A.E. Heath

Candidates for the Degree of
Bachelor of Science

June 1932

THESIS

The authors wish to take this opportunity to acknowledge their indebtedness to Professor C.L. Allen for his kind advice in matters of good engineering practice; and to other members of the Civil Engineering Department for their cooperation in allowing us the use of various instruments in connection with the work on this paper.

East Lansing

E.H.A.

June, 1932

A.E.H.

. Ì

TABLE OF CONTENTS

Dis	cussi	lon	•••	• •	•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	1.
Comp	putat	tions.	•••	••	•	• •	•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		2.
Cost	t s .	• • • • •	•••	••	•		•	•	• •		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	••	3.
Map	and	Drawi	ngs	(11	n	n	0	c)	76	t)																		4.

•

DISCUSSION

The purpose of this Thesis is the determination of the location, type, and cost estimate of the completed separation.

A Topegraphic map was made to determine the location and type of separation to be constructed. It was found by inspection of the map that the railroad had already approached its maximum grade at this point. Therefore it would be very costly to change the elevation of the railroad.

It was decided after consulting a set of Michigan State Highway specifications, that the curves at the crossing were too sharp—especially if a separation were to be put in. Accordingly, a new reverse curve was run in with longer radii, and the road relocated.

It was also noted from the map that any dirt for a fill would have to be borrowed and hauled from some discirt could be wasted nearby; and tant source, while excavation would be much less than the fill for a separation, since the surface takes a distinct downward slope just to the west of the crossing. The specifications again influence the design when we consider that fourteen feet clearance is required over a Michigan Trunk Line, while a clear height above the tops of the rails of twenty two feet is required

• • •

for railroad passage. There is a seven foot difference in depth of earth work — other factors being equal. Here also the matter of drainage appears in the project. It is comparatively inexpensive, however, and need not be given very much consideration.

Then the bridge problem is brought up. Would it be more economical to build a one-hundred fifty foot by sixteen foot railroad bridge or to build a highway ft bridge one-hundred seventy wide and with a span of twenty feet. The continuous retaining wall abutments in the latter case would each be one-hundred seventy feet long and twenty six feet high. Retaining wings or head walls would be required in such a design.

The railroad truss bridge would be cheaper than the highway bridge due to cost of materials.

The summation of the above items indicates that the excavated separation would be far more economical to construct than the fill separation.

• • . MAKAN TENDENCE THE PROPERTY OF • · · .

RELOCATION OF CENTER LINE

$$R = 1 \cot \frac{1}{2} = 833.0'$$

$$\sin \frac{D}{2} = \frac{50}{833} =$$

$$\frac{D}{2} = 3^{\circ} 26' 27"$$

This curve is south and east of the rail road.

$$R = T \cot_{\frac{1}{2}} = 414.0'$$

$$\sin \frac{D}{2} = \frac{50}{414}$$

$$\frac{1}{2} = 6^{\circ} 56^{\circ} 00^{\circ}$$

$$\frac{d}{2} = \frac{D}{4} = 3^{\circ}28' 00"$$

$$L_{c} = \frac{100I}{D} = 217.8'$$

This curve is north and particle the rail road.

SURFACE ELEVATIONS ON RELOCATION

					•	
Sta	ı.	50'left	25'left	center line	25'right	50'right.
00	00			852.1		
00	50			851.6		
1	00			851.1		
1	50			850.5		
2	00			850.0		
2	50			849•5		
3	00	847.9	847.2	.49.0	847.2	847.6
3	50	47.1	46.7	48.5	46.5	47.1
4	00	45.9	45.8	47.8	45 •5	46.6
4	32.9		3	.C.47.5		
4	50	45.8	45 •7	47.3	46.1	45 •5
5	00	46.5	45 •3	46.6	46.6	44.7
5	50	47.1	45.2	44.8	46.4	44.5
6	00	45.3	45.2	45•5	46.3	46.3
	50	44.5	45.1	45.9	46.3	46.2
R. 1	00	47.3	46.2 I	P. T45.4	44.4	44.5
7	50	44 .5	44.9	45.8	45.5	46.7
8	00	42.8	46.5	45•3	46.5	47.0
8	50	44.0	46.4	45.2	45.0	43.5
9	00	42.8	46.9	44 .4	44.7	41.0
9	50	44.6	45 •7	43.2	42.7	44.2
10	00	44.8	41.0	41.8	43.6	46.5
10	50	42.3	41.3	P.T.42.0	40.8	41.7
11	00			42.5		

FINAL ELEVATIONS OF SUB-GRADE

Sta.	b Elv.	Sta.	⊈ Elev.
• 0 00	853.1	6 25	827.7
0 50	P.C. 51.6	6 50	27.0
075	51.2	6 75	26.6
1 00	50.8	7 00	P.I.26.5 R.R.
1 25	50.3	7 25	26.6
1 50	49.7	7 50	27.0
175	49.1	7 75	2 7 • 7
2 00	48.3	8 00	28.5
2 25	47.6	8 25	29.6
2 5 0	P.I.46.7	8 50	P.T. 31.0 P.C.
2 75	45 •7	8 75	32.4
3 00	44.7	9 00	33.8
3 25	43.6	9 25	35.0
3 50	42.4	9 50	36.1
3 75	41.2	9 75	37.1
4 00	39.9	10 00	38 0
4 25	38.5	10 25	38. 8
4 50	P.T. 37.0	10 50	P.I. 39.5
4 75	35 • 5	10 75	40.0
5 00	34.0	11 00	40•5
5 25	32•5	11 25	40.9
5 50	P.C.31.0	11 50	41.1
5.75	29.6	11 75	41.2
6 00	28.5	12 00	41.3

FINAL ELEVATIONS OF SUB-GRADE (Continued)

Sta.	Elevations.
12 25	841.2
12 50	Φ. Ψ. Δ1.0

MOTE: -

Stations of P.C., P.T. and P.I. on vertical curves have elevations so marked.

EARTH WORK DESIGN FROM CROSS SECTIONS

Station		Area of sec. (sq. ft.)	Volume (cu. yd.)	Mass.		
0	00	0 00	0 00	0		
0	.50	0 00	20.9	20.9		
1	00	22.5	81.8	102.7		
1	50	65.8	187.0	289.7		
2	00	136.0	314.5	604.2		
2	50	203.5		946.7		
3	00	166.5 .	342,5			
3	50	258.5	393.0	1339.7		
4	00	359.0	571.8	1911.5		
4	5 0	543.7	835.5	2747.0		
5	00	776.5	1222.0	3969.0		
5	50	1012.5	1656.0	5625.0		
6	00	1191.5	2040.0	7665.0		
6	50	1367.5	2368.0	10033.0		
7	00	1403.8	2566.0	12599.0		
7	50	1350.6	2550.0	15149.0		
8	00	1208.7	2370.0	17519.0		
8	50	926.0	1976.0	19495.0		
9	00	683.0	1490.0	20985.0 22020.0		
9	50	\$ 36.3	1035.0	22912		
10	00	215.0	602.0	22622.0		
10	50	98.5	290.0 129.0	22912.0		
11	00		16700	23041.0		
	00	40•5	39.0	23080.0		

DESIGN OF EARTH WORK CONTINUED

Sta	tion	Area of sec. (sq. ft.)	Volume (cu.yd.)	Mass
11	50	00.0	0 00	23080.0
12	00	00.0	000	2)000.0
		·	000	23080.0
12	50	00.0	000	23080.0

Haul:

Station 6 # 50 = mean of Mass

Point of waste is 2000 ft. away.

1000ft. free haul.

:. Haul =10x23080= 230800 yd. stations.

This is on the safe side since super elevation was not considered on either curve.

Construction of pavement:-

1250x 40 = 5560 sq. yds. slab. 9sq. /sq. yd.

2500 linear feet of curb and gutter.

- 1 cent. pump and automatic controlled electric
 moter
- 2 Catch basins at bottom of cut.

700ft. 10" tile from pump outfit to placement.

DESIGN OF STRINGERS

Maximum Moment Average load method

load (3) M=(<u>1245 \frac{1}{25} x 2.5 \frac{1}{25} x 30.5</u>) 12.5 \frac{1}{25} \frac{1}{25} x 13

10ad (4) $M = (1245 + 135 \times 2.5 - 15 \times 25.5)12.5 - 720 + 15 \times 18$

M = 450'k

M * 450'kips

Shear

load (1) lft. reaction

$$R = 1245 + 135 \times 2 - 60.6 \text{ kips}$$

load (2) lft. reaction

Note: We wish to obtain as shallow a floor system as possible to eliminate excessive earth work.

STRINGERS CONTINUED

Web:

167.46 = 16.75 sq. in. Net for Shear.

7/8" rivets .601 x 16,000 x 2 = 12,020 #/ rivet in Shear.

167,460 =14 rivets required 12,020

7/8 x 7/8 x 24,000 = 18380 #/rivet in Bearing.

167,460 = 10 rivets required

18,380

14 Rivets limits the Depth.

A 33x 15% x 210# I-Beam is sufficient.

Use a CB section as given.

A built up section from a rough estimate would be several inches deeper and about 10 lbs. heavier than the I-beam. We are striving for a shallow floor system as stated before.

DESIGN OF FLOOR BEAMS

Shear

Dead stringer 210#/ft.

210x25=.....5250 #

4Hitch angles 6"x6"x29" •

4x196x29 =189.5#

Floor beams assumed @300#/ft.

300**x8=**·····<u>2400</u> #

Total.....12839.5#

Live

Using loads 5 or 14 on beam =110.2 kips

Total moving load shear=205.1 "

Total max shear = 217.9 "

Moment

Same loading as for maximum shear

Moving = 205.1x3.25- 205.1x8=924.0 kip ft.

Dead 1284x8- 10.44x3.25 -300x4x8= 59.15 " "

Max Total moment = 983.15 "

Note: Live loading Cooper's E-60

Rivets

shear $\frac{217.9}{12x.6x2}$ = 15.12 rivets necessary.

Assume a 40" webb

217.92 .544" thickness webb required

10x40

to carry shear. Use 13" Webb.

Bearing 217.9 215.3 rivets in bearing. 13x20x7 USE 16 RIVETS.

Flanges

Assumed effective depth 2 37"

983.15x12 = 19.9 sq. in. needed for tension. 37x 16

Assume 4 6"x6"x $\frac{7}{8}$ "/sfor flanges.

 $s_{c} = 16,000-200x14x12 = 13570 \text{#per sq. in.}$

USE 13500 #
983.15x12 = 23.62sq. in. needed for compres=
#37x13500
sion.

Area of two $6x6x\frac{87}{8}$ =19.46 sq.in.

40x13x1e2.70 sq. in. taken by the webb. 16 8 19.46+2.70+1.75e20.41 sq. in. available for tension and 19.9 are needed.

OK Tension.

19.46+2.70 = 22.16 sq. in. available for compression and 23.62 are needed.

Change Compression.

DESIGN OF FLOOR BEAMS CONTINUED

We decided to use an angle of larger dimension rather than use a cover plate.

Try 4-6"x6"x1"/s = gross area for 2 = 22 sq. in.

Area needed in compression = $\frac{983.15 \times 12}{36.73 \times 13.5} = 24.45$

sq. in.

Area needed in the angles = 24.45-2.70 = 21.75 sq.in.

We have 22" available. OK COMPRESSION.

Area needed in tension $\pm 983.15 \times 12 = 20.5 \text{ sq. in.}$ 36.72×13.5

Area needed in 2 =20.5+ 1.75-2.70= 19.55 sq. in.
We have available 22-1.75= 20.25 sq. in.

OK tension.

Webb Stiffeners investigation:

40.5-2x6 5 = 27.25 in.clear.

.8125 more than L 60

Stiffeners are unneces-

sary.

Rivet spacing

27.25 - 3 : 1.51 spacing of rivets.

Rivets must be staggered being spaced 3" apart and having 2 rows using total of 17 rivets.

FLOOR BEAMS CONTINUED

Webb 13 x40x16 2110.5 x16 21770	#
4/s 6"x6"x1"x16's 4x16x37.4 s2397	#
8 h/s 6"x6"x $\frac{1}{2}$ "s 8x19.6x $\frac{29}{12}$ =379	#
4 " " = $4x28.7x\frac{12}{38}$ =	#
400 rivets @25#/ 100g	
Weight of floor beam5010	#
The estimate of 300#/ft. was good	
if hitch angles were neglected the wt./ft.	
would be 2903#/ft.	

The weight of floor system resting on the floor beam 2.....210+ 200 22 x25 2.20,500. #

WEIGHT OF FLOOR SYSTEM PER PANEL 2... 25,510 #

٠, ٠

DESIGN OF WARREN TRUSS

The bridge will be 150 ft. long consisting of 6panels at 25 ft. per panel. The trusses will be 29 ft. high and will be spaced 16ft. on centers. The truss will be built with verticals at all panel points.

We assume a dead weight per took of 1300 lbs. per foot of truss. The dead stresses were figured by the index method. The daiagnal forces being multiplied by constants which were figured from proportion of lengths.

Diagnal = 38.29 = 1.53 x horizontal force.

" 38.29 • 1.32 x vertical force.

The members of the bridge are numbered as follows;
Starting at the left the lower cord members are numbered
L1 L2 L2L3 and so on up to L6. The upper cord members
are numbered starting at the left with U1 U2 and so on up
to U5. This arrangement causes all vertical members to be
numbered with U1 L1 and so on up to U5 L5, and the diagnals
L0U1,U1L2 and so on up to U5L6.

Dead stresses will be found on the tabulated stress sheetward on Plate II of the drawings.

We here wish to note that the dead stress was assumed to be carried by the upper cord and to by the lower chord.

^{*}Page -

COMPUTATIONS LIVE AND IMPACT STRESSES

L₁L₂ LoLl Loads at panel point I load 3 24546+426x29z14.5 -15x8 =207.4 kips 29 29 24546+39x426+39x195x3 -1245 = 207.5 kips29 209.4 kips (live = Max Live and Impact stresses (impact= 209.4x300=141.1k1@s L_0U_1 Loads to right or left of right reaction. load 1 rt.24546+3x41x20.5= 180.5 kips lt. 24546+3x41x20.5-15x150=165.5 kips 2 rt. 24546+3x49x24.5(120+2250) = 171.75kipsMAX Live and Impact stresses (live=180.5 x1.32 =238.1 kips (dmpast= 238.1x300=158.8 450 UzLz UzLz v_1L_1 Loads placed on panel point V load 3 3232.5+174-690 = 108.5kips 4 4276.5-1440= 113.4 kips 5 5244-2<u>490-</u> 110.16kips (113.4 live Max Live and Impact stresses (113.4x300 = 99.2 kips344

Impact figured by max stress x 300
300+loaded length of truss

· · . • •

•

-

COMPUTATIONS LIVE AND IMPACT (CONTINUED)

U1U2 U2U3 Loads placed on panel point II load 6 24546+(426x23)+(3x23x11.5)=2460=318.8 kips 7 24546+(426x28)+(3x28x14)-3232.5=321.2 kips 8 24546+(426x34)+3x34x17 -4276.5=321.0 kips Max live stress= 321.2 kips Max impact=321 222 kips. Loads at panel point III load 11 24546+(426x30)+(3x30x15)-8772=364.34 kips 12 24546+(426x36)+(3x35x17.5)-10062x364.98 kips 13 24546+(426x40)+(3x40x20)-11502=361.75 kips Max life stress =364.98. Max impact=364.98x300= 246.5 kips U₁L₂ Loads on panel point II for tension (9x4-5x3)-15 load 4 24546+(426x9)+(9x4.5x3)-15x30-15x18 = 161.1Max live stress=161.36x1.32= 213 kins) tension impact stress_213x300 =155 kips

Loads on panel point V for compression

- • - - -

= = =

. = . = . =

COMPUTATIONS LIVE AND IMPACT (CONTINUED)

```
\mathbf{U}_1\mathbf{L}_2
   load 2 <u>2460+154.5x1+3x1</u>5±12.63 kips
150 25
         3 3232.5+174+13x15+5x30 8.91 kips
150 25 25
Max live stress= 12.63x1.32= 16.7 kips )
    impact stress=16.7x300 = 15.04kips | compression 413
L2U3
  Loads on panel point III for compression
       108.d 2
               13092+34x4-8x15=91.76 kips
             3 <u>16224</u>-6-1<u>3x15</u> 2 94.36 kips
             4 18061.5-18x15-15x30=91,60 kips
150 25 25
Max live stresse 94.36x132=124.4 kips
                                                    compression.
    impact stress = 124.4x 300s 95.75 kips )
  Loads on panel point IV for tension.
      load 2
               6948+(2x228)-8x15=44.56 kips
150 25
               6948(228x7)-13x15-5x30s 43.16 kips
150 245 25
Max live stress=44.56x1.32 =58.8 kips )
                                              tension.
    impact stress=58.8x300 = 48.6 "
```

There will be no live load stress on U2L2 as it caries only its own weight and is used more as a brace.

STRESS TABLE FOR TRUSS

All stresses are given in kips and tenths of kips.

Member	baed	Live	Impact	Total
$\mathbf{L}_0\mathbf{v}_1$	-107.2	-238.1	-1 58.8	504.1 Comp.
v_1L_1	+ 24.4	+113.4	• 99.2	237.0 Ten.
L ₁ L ₂ L ₀ L ₁	+ 70.2	◆209·4	+141.1	420.7 Ten.
บ ₂ บ ₂ บ ₂ บ ₃	-112.2	- 321.2	-222.0	655.5 Comp.
L ₂ L ₃	+126.4	+364.98	• 246.5	737.9 Ten.
$v_1 \mathbf{L}_2$	(+ 64.4 R(+ 64.4	• 213 - 16.7	+155 -15.04	432.4 Ten. 32.7 Ten.
U3 L 2	(- 21.4 R(- 21.4	-124.4 + 58.8	- 95.75 + 48.6	241.5 Comp. 86.0 Ten.
մ ⁵ Ր ⁵	- 8.1			8.1 Comp.

Only the members of half the span have been figured this is allowable as the truss is symetrical about its center line.

DESIGN OF TRUSS MEMBERS

DESIGN L2L3

Stress=737,900# tension.

Req'd area =737,900=46.20 sq. in. 16.000

Trial section-

4/s 32x32x5/8"s15.92 sq. in.

4 webs@21"x2" =42.00 " "

Gross area =57.92 " "

-Rivet holes 4 1"x5/8"=2.50 sq. in.

12 1"x½" =6.00 " "

Rivet holes=8.50 " "

57.92-8.50=49.42 sq. in.

Member is OK.

DESIGN L1L2

Stress=420,700# tension/

Req'd area • $\frac{420,700-26.30}{16,000}$ sq. in.

Trial section-

4/s 32x32x9/16"=14.47 " "

2 webs@21"x7/16<u>=18.38</u>" "

Gross area =32.86 " "

-Rivet holes 4 1"x916" = 2.25 "

2x2x1"x7/16"=1.75 " "

Rivet hobes 4.60 &q. in.

32. 86-4.00=28.86 sq. in.

Member 1s OK.

-

-

· =

· · =

, <u>=</u>

• =

•

. =

• • • - • • -

• --

DESIGN U1L2

Stress=432,400# tension.

Req'd area=432,400=27.01 sq. in. 16,000

Trial section-

 $4/s \frac{3}{2}x\frac{3}{2}x9/16$ = 14.48 sq. in.

22webs@21"x7/16=18.38 " "

Gross area _32.86 " "

-Rivet holes 4 119/16" =2.25 " "

4 1"x7/16" =1.75 " " " Rivet holes=4.00

32.86-4.00=28.86 sq. in. Net area.

Memberis OK.

DESIGN U1U2 & U2U3

Stress=655,500# compression.

S allowable=16,000-70x25x12

Assume S=13,500#/sq."

Req'd area <u>655,500</u> 48.5 sq. in. 13,500

Trial section-

4/s 3\frac{1}{2}x5/8"=15.92 sq. in.

2 webs220"x11/16427.50" "

lc Plt.@24"x2" -12.00" "

Total area =55.42" "

 $Z=\frac{12.00x(10 1/8+\frac{1}{4})}{55.42}$ 2.25 "

I (c.plt.)=1x24x($\frac{1}{2}$) $\frac{7}{12+12\cdot0x(10)}$ 1/8+ $\frac{1}{2}$ -2.25)=344"4

I (top/s)=2(4.3+3.98(10 1/9-1.1-2.25)²) =375 "

DESIGN U1U2 &U2U3 continued. I(bot./s)=2(4.3+3.98(10 1/8-1.1+2.25)²)=1023"4 I(webs) =1x1 $3/8x20^{3}+27.50x(2.25)^{2}$ =1137 " $r = \sqrt{\frac{3379}{55.42}} = 7.8$ $r = \sqrt{\frac{I}{A}}$ S=16,000-70x25x12 =13,310#/sq. "
7.8 Area=655,500-49.1 sq. in. 4/s=4(4.3+3.98(7 5/8+11/16+1.10)²)=1431"⁴ $2 \text{webs} = 2(20 \times 11/16)^3 + 13.75(7.5/8 + 11/32)^2) = 1746 \%$ I=.....3753"⁴ r= / 3753 =8.22 55.42 S=16,000-70x25x12 =13,450#/sq." 8.22 Area =655,500=48.70 sq. in. 13m450 Actual stress= 655,500 =11,800#/sq." 55.42 Latticing-Double latticing s=280Ar C S=280x55.42x8.22=10,620# S =10,620 = 5,310# caried by latticing.
Trial I Double 45 orivet at center.

S-10,620/2-3760#/bar.

Try $2\frac{1}{2}$ "x9/16"bar.

```
DESIGN OF TRUSS MEMBERS CONTINUED
```

```
DESIGN OF U1U2 & U2U3 continued.
       \frac{3760}{2 \times 9/16} = 2673#/sq. in.
              r=0.163
S=16,000-70x292=3460#/ sq. in.
0.163
                                             OK.
    Trial II
60 center riveted 2½x9/16 bars.
          \frac{5=10.620x}{4} = \frac{1}{\sin 60} = 3065#/sq. in.bar.
                   __2180#/sq. in.
          \frac{3=3065}{2\frac{1}{8}\times9/16}
          r=0.163
                    Se 16,000-70x23.8 =5770#/sq. in.
                                          USE 60°-2½"x9/16" bars.
              E=81
                     def.=sl =11,800x11.9 =00.00422
E 30,000.000
                      def.=23.76136-/20.625^{2}+11.88063^{2}=.0025
                      S<sub>2</sub>.0025x30,000,000 =3290#/sq. in.
                    Total S=2180+3290=5470#/sq. in.
                                                    OK.
DESIGN U3L2
                      (241,500# compression
             Stress: (86,000# tension
                 Try I
                   2/s 15"-45# area 26.34
                 S=16,000-<u>10x38.3x12</u>=9,960#/sq."
                 Area=241,500- 24.31 sq. in.
                 I = 2(10.3+13.17(7.5/8+0.79)^2) = 1886.6
```

 $r = \sqrt{\frac{1885.6}{26.34}} = 8.47$

DESIGNUZL2 continued

S=16,000-70x38.3x12=12,200#/ sq. in. 8.47 Area=241,500 =19.85 sq. in. 12,200 OK.

Actual stress=241,500 =9,180#/ sq. in. 26.34

Checkfor Reversal-

Tension stress=26,000

Net area needed=86,000= 5.34 sq;in. 16,000

OK.

Latticing -

S=280x26.34x8.47 =5550 11.243

Try double @450

Sa5550 x 1 2175#/ bar 4 sin45 Try 25"x#5"bars.

 $\frac{3=2175}{2\frac{1}{2}x\frac{1}{2}}$ =1740#/sq. in. actual

 $r=\frac{1}{2}x0.288=0.144$

Sa 16,000- $\frac{70x28}{0.144}$ =2400#/sq. in. allowable.

essl =9000x22.486=.0067458 30,000,000

27.9306-/19.75-19.7432 .0053

S=.0053x30,000,000 ±570#/sq. in. 27.9306

S=1740+570=2310#/sq. in. actual

OK.

DESIGN UzLzcontinued

Check flanges: -

$$\frac{1}{r}$$
 $\frac{19.75}{1.05}$ = 18.9

$$\frac{38.3x12}{8.47} = 54.3$$

OK.

DESIGN L2U2

The stress 125 Area 48,125 0.602 sq. in. 13,500

Fro m former structures designed

4 /s 3\frac{1}{2}x3\frac{1}{2}x3/8": 9.92sq.in.

1 web@13 $\frac{1}{2}$ "x3/8" $\frac{1}{2}$ 5.06 sq. in.

Total area 214.98 sq.in.

OK.

Use 4" connecting plates at the jointsof the trusses.

DESIGN OF U1LO

Stress=504,100 # compression

S allowable=16,000-70x38.29x12

S assumed = 13,500 #/ sq. in.

Area req'd=504.100 = 37.34 sq. in. 13,500

DESIGN OF U1Lo continued.

Trial section: -

$$Z_{\pm}9.\underline{00x(10 1/8+1)}_{42.00} \pm 2.21$$

I -C. Plt.
$$21x24x^{\frac{3}{2}} + 9.0x(10 \frac{1}{8} + \frac{1}{6} - 2.21)^2$$

$$r = \sqrt{\frac{2513}{45.00}} = 7.47$$

$$S=16,000=70\times38.29\times12$$
 =11,580"/sq. in. 747

.

, . . = , -• = . = - $\cdot \quad \cdot \quad \cdot \quad \cdot \quad = \quad \cdot \quad \cdot \quad = \quad z$

= = 1

. r <u>-</u>

DESIGNOF U1LO continued.

OK.

Actual stress=504,100 =11,200#/sq. in. 45.00

Laticing: -

Double latticing.

Trial I

Trial II

Try 60° center riveted.

$$3 = \frac{2447}{2\frac{1}{2}x^{\frac{1}{2}}}$$
 1757#/sq. in.

DESIGN OFU1LOcontinued

Def.= $\frac{81}{E} = \frac{11,200x11.9}{30,000,000} = 0004443$

Def.=23.81639-/20.625²+11.90820².00052

sm.00053x30,000,000 = 655#/sq.in.
23.81639
S total=1957+655=2610#/sq.in.

Member as designed and use latticing at 60°

2½"x½" center riveted.
Inside clear distance between webs;15½"

DESIGN OF U1L1 & U3L3

Stress=237000# tension.

Req'd area =237.000= 14.81 sq. im. 16,000

Trial section: -

 $4/s 3\frac{1}{2}$ "x3 $\frac{1}{2}$ "x3/8" = 9.92 sq. in.

2 webs @20"x3/8" <u>=15.00</u> " "

Gross area 34.92

-Rivets

4x1"x3/8"=1.50sq. in.

2x2x1"x3/8<u>1.50</u>sq. in.

Rivet holes=3.00 " "

Net area =.....24.92-3.00=21.92 sq. in.

Ok.

• = · · =

Lengith of diagnal = /25 +16 =29.69 ft.

 $\frac{29.69}{16}$ =1.86 x index stress = actual stress. Stresspanel I = 4368.75 x1.86 = 8125 # Max.

" II= 1456.25 x1.86 =2710 # Max.

1000 1.00 1.....

Panel I =2245 x1.86 -41800 # Max

- " II =13420 x1.86 =2500 # Max
- " III= 4490 x1.86 =8350 # Max

TOP; Panel I.

3½"x 3½"x3/8" /s area ≥2.48 sq. in.

 $\frac{8125}{13500}$ = ;60 sq. in. needed.

 $\frac{16000 - 70 \times 15 \times 12}{1.07}$ =4200 # allowable.

8125 • 1.96 sq. in. needed.

Actual stress= 8125 = 3270 #

No computations will be made for other panels.

Panel I

Stress = 41800 #

Try 5"x5"x7/16"/s Area: 4.18 sq. in.

r₌ 1.55 16000-<u>70x8.85x12</u> <u>=</u>i1390#/sq. in. 1.55

41800 = 3.68 sq. in needed.

Actual stress. $=\frac{41800}{418}$ = 10000#/sq. in.

Ok panel I

Panel II

Stress=25000 #

Try 4"x4"x3/8" /s areas 2.86 sq. in.

r= 1.23

 $16000 - \frac{70 \times 8.85 \times 12}{1.23} = 9960 \# / \text{sq. in. allowable.}$

25000 = 2.485 sq. in. needed.

25000=8750 # actual stress. 2.86

Ok panel two.

Panel III

Stress=8350 #

Try $3\frac{1}{2}$ "x $3\frac{1}{2}$ "x3/8"/s area=2.48 sq. in.

r=1.07 16000-70x8.85x12=9050#/sq. in. allowable. 1.07

Continued next page.

DESIGN OF LATERAL BRACING CONTINUED

Panel III lower bracing.

8350 2.924 sq. in. needed.

8350 = 33370 #/sq. in. actual stress. 2.48

Ok panel III

Note:

The design of the pedestals was considered unnecessary in a cost estimate.

DESIGN OF CONCRETE ABUTMENT

Assume bearing power of the soil p= 5,000#/ sq. ft.

Max bridge load = 381,900x2 = 763,800#

Load from weight of abutment=20'x150= 3000#/sq. ft.

Available pressure p= 5000-3000= 2000#/ sq. ft.

763.800 = 391.9 sq. ft. needed.
2,000

Use a 25 x16 abutment Area =400sq. ft. base.

Volume concrete= $2(10+16) \times 20 \times 25$) =485 cu. yd.

27 for both abutments

WEIGHT OF TRUSS FIGURES

U1LO

wt./ft.
1 G.Plt.(
$$24^{*}x_{2}^{*}$$
")x41' 40.8 = 1675
4 webs($20^{*}x_{2}^{*}$ ") x41' 34.0 27**9**0

4x6285= 25140# for like members.

U1 U2 &U2U3

1 C. Plt.
$$(24^{"}x_{2}^{1}")x24"$$
 40.8 = 980 #

4x2x4531= 36248 #for like members.

L2L3

4 webs (21"
$$x_2^2$$
") x24 35.7 3428 # 4734 # wt. of one.

4x4734= 18936 # for like member

L1 L2% LOL1

2x4x4191 =33528 #for like members.

U_1L_1

6x2550= 15300 # for like members.

WEIGHT OF TRUSS FIGURES CONTINUED

 U_1L_2

wt./ft.

 $4 = (3\frac{1}{2} \times 3\frac{1}{2} \times 9/16) \times 34$ 12.4 = 1685 #

2 webs (21"x7/16") x34' 31.24= 4250 #

5935 # per member 4x5935=23740#for like members.

UpLp

4 \(\frac{3}{5}\) x3\(\frac{1}{5}\) x3\(\frac{1}

1 web (13½x3/8") x30' 17.21=2065 # 3085 # per member

4 x 3 0 85 ± 12 3 40 # for like members.

1203

2 **[9**/***/ 15"-45# x34"

3060 #per member

3060 x4=;2240# for like members.

Portal bracing per portal. 1 web 57"x3/8")x6'

72.7 472.5#

2 webs (72"x3/8") x6'

91.8=1101.6#

2 ∠s (3½"x½5"x3/8")x18'

10.4 382 #

4 " (5"x3\frac{1}{2}"x3/8") 4.2' 10.4 174.8#

2/s (5"x3\frac{1}{2}"x3/8") 14' 10.4 297.0#

4 # (5"x3\frac{1}{2}"x3/8")6.5'

10.4 <u>270.5#</u>

539 2698.4#

2x 2698.4=5396.8# for portals.

Lateral bracing for top.

4 \((3\frac{1}{2}\) \(x3\frac{1}{2}\) \(x3\frac{1}2\) \(x3\frac{1}{2}\) \(x3\frac{1}2\) \(x3\frac{1}2\)

2 **1** (3\frac{1}{2}"x3\frac{1}{2}"x3/8" 27' 8.5 459 # 901 #

4x901=3604 # for upper brac--ing.

WEIGHT OF TRUSS CONTINUED

Lateral bracing for lower cords.

Panel I

wt./ft.

2x700.8 =14016# for end panels.

Panel II

$$1 / (4"x4"x3/8")x27.5' 9.8 \pm 269.5 #$$

2x534 =1068 # for second and

fifth panels.

Panel III

2x563.4=1126.8# forpanels

three and four.

Sway bracing

3x616.2 = 1848.6# total weight of sway bracing.

•

•

•

•

· = = · · ·

=

<u>.</u> .

· = = :

•

<u>.</u>

- ·

WEIGHT OF TRUSS COMPLETED

Weight of rivet heads estimated at	13,020
Latticing of all members	125632
Gusset plates 20 - 6'x4'x3" = 122.4#/ft.	14,700
20 - 6'x2'x3" = 61.2#/ft.	7,350
End Plates taken at	5,000
Weight of floor system	74,257.5#
TOTAL WEIGHT OF STEEL IN BRIDGE	280,985.3#

The weight of ties and rails will add 400#/ ft. to the dead weight of trusses.

Load per foot of truss = $\frac{280985.3}{300}$ + 200 = 1,103.6#

We assumed at the start of the design a load of 1,300#

OUR DESIGN IS SAFE.

COST SHEET

Pavement 5569 yd. @ \$1.10/yd.	\$ 6,116.00
Curb & Gutter 2500ft. \$3.65/ft.	1,625.00
Catch Basins 2 @ \$50.00	100.00
Pumping outfit (Installed)	195.00
Tile 700 ft.@ \$0.42/ft.	2 94. 00
Placing tile 700 ft. @ \$0.50	350.00
Abutments	3,637.50
Excavation, Haul, etc.	22,538.50
Bridge	14,050.00
Cost of Material & Labor	\$48,906.00
Engineering @ 5%	2,445.30
Total	\$51,351.30
Contractor Profits @ 20%	10,270.26
Total cost	\$61,621.56

TOTAL COST OF COMPLETED SEPARATION \$61,621.56

