THE DESIGN OF A WELDED, ALL ALUMINUM PRAME GREENHOUSE

Thesis for the Degree of B . S . MIGHIGAN STATE COLLEGE

Stuart H. Bogue
1949

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

6/07 p:/CIRC/DateDue.indd-p. 1

The Design of a Welded, All Aluminum

Prame Greenhouse

A Thesis Submitted to

The Faoulty of
hiceigan start cominge of

AGRIULIURS AND APPLIED SGITHCS

Dy

Stuart H. Bogue
 Candidate for the Degree of

Baahelor of Salence

1HESIS
]

$$
\begin{aligned}
& \therefore \text { @!nい 1 } \because \cdots \in t
\end{aligned}
$$

Introdnotion

Aluminum alloys are produced in praotioally all of the forma in which metals are ased: plate, sheot, bar, rod, wire, tubing, whapen, sorginge, onetings, and ingot; as well an Elvets and sorew machine producte" shapea may be the etaciara etructural shapos or they may be of speaial design which oan be produced only by extrualion. The various formen are fabyioated lato finighed shapes and etruotures by drawing, tiampiog, apinning, hamaring, mathialng, welding, bras. ing, Ifroting, and, for mome parposet, solecing. Ease of fabsioatiag and finithiag the motel is one of the reasons for the oholoc of alwainum.

Comparison of costem chould be made on the finlahed artiole at made from the different possible materiale; not on thelz relative pricen per pound. Sinoe the Tolume of motal is anvaliy substantially the same, the prioe per pound of alumsam mould be divided by the ratio of the specific gravition (approximately three for most of the common metals) whon comparing the material oote. In maition, coonomios frequently result from the greater cate with whioh alaminum can be fabricetod, poliahed or otherwise IInishod, and also from the lower oost of alatribution made possible by the Iightness of the metal.

Frequently, theae economios are more than auffielent to overcome an unfavorable comb comparinen trom the atanapolnt of metal value along, at, for example, with commen exades of ateel. In such oomparisonng the higher corap rwiut of
aluminua, when the axtiolo is innally disoorded, 18 always an advantage $t 0$ be oonsidered.
me most generally recogni ged oharacteristion of the alumane alloje are theis light woighty zosistanoe to coryonion (both in soaceagt and induterial areas, and high tepengeh* Thete qualities axt largely roaponsible for the etractust mppliontion of the aluminam alloys: yareloularly In the tranportation industry and in arohiteoture. gom of the very highmatrongth, heavy metal alloye offer minilay atrengthwolght zation but the thinnor acotion somil in Lest Figid and lose ragged ftruaturen and prosent manaing problem during fabrication. In adaition, most of thone
 The modulus of olastioity; whioh is the ratio of ntrens to atrain in the olantic mage, rapies monemat, dopending on the composition of the materialy in genexal, it inoreaten with inaremeing mounts of alloying eleaents from about 20,000,000 to bbout $10,800,000$ pound por aquaze inoh. For mont practien papposer, howevaz, the modulut any be taken as 10,300,000 pounde par equare inch.

Bepanse of the lowar velue of thin monstant an aospared With that of eteoly It Is neoptany to ug deoper sectiong In alumam alloys in oxder to mantain the man collecion oharacteristios when they axt londod an buane It is manaliy poaghble to denign atrueture having the sam dofleation
 be obtalnod Fith structural meal, and, th the mane sime,
to realize atiog in woight of more than pound for each pound of aluminum alloy used. The lower modulue of olastioity is an aseot whon impaot louds are to be rosisted, einoe, other thinge beling equal, the lower the modulus, the greater the ability to absorb enorgy without permanent set. the lower modulua is almo advantageous in zeducing atreseen produood by misalignment, settleaent of supporte, or othor fixel der rleotion, acoldental or intentional.

The modulus of rigiaity is about $3,900,000$ pounde par square inch for aluainum and its oommeroial clloys, corromponding to a velue of ono-shird for Polmon'a giatio.

The new all-aluminum frame greenhouse was de日igned for dusability. A full wind loed of twonty-six pounde per square foot and onowhalf maximue snow load of thirteen pounds per square foot ware used to resist bad weather oon aition. Sinoe double atrength glass is used for the winm dows wolght of two and thirty-two hundredthe pounds per lineal foot was necessary for the computations, sinoe the deaign was ohosen to eliminate all Interior aper atruoture a truss in the form of gable bent was selooted. The varlous members of the gable bent are to be welded together In order to develop the full strength of each piece. In a riveted structure the members are weakened to a certaln ex. tent by the rivet holes. the onds of the truss are welded to bearing plate that ia bolted to a conorete foundation. Sinos the onds of eaoh truse are boltod down the truss is statioaliy indeterminate. Therefore, to sompute the aoments and reation due to the Loading, Gastigliano" theorom was used. It staten that "when meruoture is aotod upon by an equilibrated forse aystem which producen total internal etrain energy $\mathrm{B}_{\text {, the }}$ derivative of 0 with reapoot to any foree gives the displacoment in the diroetion of that foree."

The loading on the gable bent wan braken into throe parti for the cake of computations. The load wese broken down an follown the forthoal side of the greanhouse wat sonmidered to remist oniy a wind load of four handred and eighty pound per toot: the horizontal component of the wind
and snow load which is wo thousand one hundred and eighty pounde per foots and the vertionl component of thirty-two hundred pound per foot were considered to act on onemait of the roof. It was deoidod that if the atruoture was dosigned to resiet the maximum loading on one side it would be aturas onough.

The first meaber to be deaigned was the tee seotion glasing bar. It wea gonsiaered to be continuoum beam with five mapports and uniform load on it of four and one-half pounde per foot. The maxdmum negative moment was found to be lerger than the marimum positive momenta, therefore, the negative moment governed the deaign. The seotion modulus required was 0.14h. The tee section ohoson was two ineh by one and ono-half lnoh section with asation modulus of 0.195 . The section wat oheoked for chear and found to be tatisfactory.

The parila was the next member to be designed. It was denlgned as almply supported beam with oonoentrated loman at a ittie lose than two foot intervale. The Loading soneldered wal the mow and wind load, the wolght of the glaes. the weight of the tee seotions, and an assumed welght for the purlin itself. The total loading designod for was two hundred thirty pounde at less than two root intervals. The naximam moment was used to compute a seotion modulus of 4.93. A alx inch ohannel seotion with a seotion modulue of 5.06 wan chosen. The channel was oheoked for ahoar on both the X-X axis and the I-I axis and found to bo satiafactory.

The truse was the last member to be dealgned. The moments and reaotion determined by Castiglianola theoren were used to seleot a aeetion modulus of 14, 99. As E-beam, with a section modulus of 15.06 was seleoted to make up the geble bent.

The ealoulations are all oontained in the appendix.

This aluninum frano groenhous has many advantages ovas the Iron pipe and wooden frame houses, The most outstanding adventage of this design is the great decrease in maintone anoe. Tho aluminum atruoture will need no painting. Paintw Ing a woodon creenhouse serves more purposes than for just 2ookn. Hood must be kept covered so it won't dry out and rot and be a collooting place for dirt. A blg problen in the ilowez business is disease control. These alsease organLsma thrife in dirty pleces and are hardor to oliminato by fumigation if they have place to hide. Fos thase reasone a wooden greonhouse mart be wall maintained at large oont. Tho aluainum framework will oliminate the yearly maintainanae and rake the cleaning oomparatively aimple. Wooden houses mint have metal joints and due to the high humidity roquired for flowere these joints will rust euiokly. The aluminum frame houge will not rust oitier in seaooastal areas or indand areas.

Giass maintainance is also another large itac in the Ereenhouse businoss. In addition to the regulas replacom ments due to broken panet a groenhouse munt be reglazed abont prosy ten years. In the wooden freme house this repreaeats abig project. It consiat of removing the old glasm, pulling ont all the glazing mill, ranoving the old putty and then the whole prooedure must be repeated in reserse to replase the glase. Appromimately forty per osnt of the regiazing stim mey be maved with this new aluminum design, Removing
the ola putty, which was somotines hasd as rook meant Lots of beraping and evon ahavinge were removed from the woodon elasing baze trying to remove the putty soraping and nailing are eliminated by the now aluninum glasa olip whioh is mpot wolded to tho alnainum glasing bar. To romove glats simply puth the olip in againet tho glazing bar and piok the glans out; to roplace tho glas punh the olip in. insert the gian and let the olip mpring back into placs aganat tho glame.

The aluminum design will allow no angging of the zoos aiter may yeari as the present housed do unless they are migidy mintained. A zagging roof can be largo oxponge Ane to beat loss even though it may not be noticeable at
 and this is an addod worry during the bad wother months.

The perfeet greenhouse would be one that had roof entirely of glass so thore would be no bhodows inmide whate soevar. ginoe this is imponibleg the next bott ohing is a houne that will allow marimum amont of aunilght through. This aluminum denign fuifille this qualifioation. It is Aenigned to hold glams that is twonty inohen gquar rather Shan the Etandara Elxtoen by elghteen inoh glasis. The elini-
 shatom area. $81 n 00$ chade 1inos are kept to minimum the mun will ponetrate the front quiokes and the wintor sun ia able to thine through longer.

Infide the greanhouse epace 1t very important, this moani that the bonoh axrangemont mut be ouah that meximan
nomber may be used. In the woodon houses bench arrangemant was rather ilmited beounse of the interior supports that were necessary. These supports are elininated in the now design and will allow any bonoh arrangement whioh would be the most profitable.

A ploasant appoaring ereenhouse is almost a prerequisite
 greenhouse would fulfill this requirement to every extent. The gable bent eliminates the need for any unsightiy auparetructure, the aluminum will never rust or require painting, and most important of all, it will look just as good aftar ten yeary of service as it did an the first day.

 gen. ond (a) Lectst reatimene weluras. Whlah inoludes

ase conalderaliy better whon the welling it porformed in the slat position. Helding in the overhead position is very difiloult and mould be ontiraly avoided if possible. Motalaro welds an be made with stendard D. C. motor-generator sets used for welding other materials. Froper polarity may be dotermined by trial on the joints to be made, Approximate ourrent settinga and eleotrode sines for wolding various thioknesses are an followst for one oizth inah thioknoss, a one elghth inch rod may be used with approxdmately olghty mparist ane quarter inch weld would require a three sixteenthe or one quarter inoh rodet two handred mape; and the same rode may be used for a one halt inoh weld uing a ourrent of about three hasdrod amperes.

Commercial electroden with a heavy R1ux ooating are alway ased. The Ilux coating hat two purpotell to remore the surface axide from the filler metal and from the parent motal and to atabilise and confing the are to the end of the aleatrode. Electroden my be olitalned made from eomseroially pare aluminum of from an alloy oontaining ninatywive por aent oluminam and five per cent silsoong zo milleon alloy oleetrodes are gensmily used, hewover, se thoy mosult in gronter freodom from arnoking diffizaltioin. The pure aluminum deotroden would be used only where severt comroaite serviee condithom are expected or to obtain a better color matoh with meme of the aluminin alloys.

The preparation of butt folate for metal-are welaing is comparmtively almple. Beoause of the oase with which pesetration aan be obtainod, no edge preparation is reguired on
material up to one quarter inah in thioknese. Heavier matoriale chould be partially boreled to within one quarter of an ind of the bottom of the section. This preparation can sometimes be dispensed with if the material is between one quarter and one hale inoh in thioknese if a wold deposit oan be laid down from both sides of the section.

Striking the are for this welding is very similar to lighting a matah. The eleotrode matal meits very sarialy in the aro and, aimilariy, solidifien quite rapidly when the are 1s extinguished. In view of thia fact, it will be found that an attempt to draw the arc by touching the rod to the work will, almost invariably, result in burning fast or freezing the red to the work. After atriling the aro near the point where welding is to start, the arc is brought to the staring point and weldine is begun. During the firet fow seconds of welding tho are may be momet unatable due to the Lower temperature of the parent motal and during this time an are elightly longer than normal thould be held to aned at in briaging the parent metal up to temperature. The ara mould be kept as short as posaikle to laprove ita atability. An are length of one oighth to three sixteenths of an inoh is most satisfaotory and it should never exceed one quarter of an inoh. The aro roltage is from twanty-two to twenty-five volta. Conaiderable molton metal is thrown about in the form of splatter if a long aro length is held. As aro too short will be extinguishod frequently by shoxt eirouiting of the electrode and tho weld pool.

> The rate of burnmoff of alumnum electrodes is from two
to three times the rate obtained on the ame size of ateel eleotrodes; furthermore, a considerably shorter are is held whon welding aluminum. In fiew of this faot an operator who is familiar with arc welding of stod will recuire mome practLoe in order to produce good weld in aluminum. Feaving of the aleotrode is not neoessary as in welding stesl. In welding thlak plate the eleotrode can be moved forward and bacward or moved slowly from side to side to build up the desired height in the wold.

The low moitine point of aluminum, as well as the high rate of diffusion of heat away from the joint, requires epeoial consideration in choosing the exaot ourrent setting to be used. Swall parts or matesial whioh has been pre-hented require considerably lower values of welding ourrent than would be used in making a similar weld on parts of large aime or on oold material. If too high a value of ourrent is used, the operator may find it imposaible to koep from burning holes completely through the work. On the other hand. if too Low a value of wolding ourrent is used, incomplete penetration and a high and narrow bead will be obtained. A good eround conneetion to the material being wolded is very important. A poor ground conneotion will be indieated by difiiculty in starting and maintaining the aro. Then the are is extinguished an insulating fuse flux ooating is forsed over the tip of the electrode sharpif on the work. After this coating has araaked off, the are may be restruck, using the matioh striking" methode.

In making multi-pass wola it is important that the molldified flux be removed rrom each welded bead before pro-
ceeding with suocessive beads. Failure to remove this flux will result in welding diffloulties and with antrapped fiux in the wolds.

Fola Design

Before the emount of wold noeded at each joint can be determince it is neceasary to know which load conditions will produce a maximum momeat. This was deaided by trial and error mothod. A loading was placed on the etructure and the moments wore compated. It was found that the load duc to wind cauced the greatemt atress. The moment due to the dead load was added to that cansed by the wind load and the maximum moment was fifty-two thousand foot pounds in joints "b" and "d", the jointe where the roef joins the vertical member of the trues. By this same mothod the maximum moment at the peak jolnt was found to be alxty-one thousand root pound.

The wald at joint "b" was the first to be considared. A complete butt weld between the designed momber and the vartical was made and the reat of the atrength was provided by a corer plate on woth the top and the botton of the flange. The butt weld would realat a moment of twenty-two thousand foot pounde; therefore, thia loft thirty thousand to be taken by the cover platea. A width of five inchom wae arbitrarily solooted and after finding the moment of inartia of the plate, a thioknose of one-half luch wat found to be satisfactory. The value per inoh of a belf ingh weld in two thousand four hundred and seventy poands. pith a plate stress of sixty thousand pounds. twenty-four inohes of weld ase needed to provent failure. However, twenty-eight inohos was provided for a margin of alety. Nine inchen of plate with a three inch " V^{\prime} notoh was used on each side of the joint. mis will
provide a rigid conneotion for each of the lower joints and yet it is not too conservative.

Sinoe the joint at the peak has a lareer maximum moment it will require a thicker plate and more weld area. The butt
 foot pounde as before, leavine almost forty thousand to be taken by the plate. By the same method of oaloulation a five elghths inch plate was found to be nooessary. A ifve elghthe inch seld with a value of three thousand pounde per inoh of weld was used. With a plate tension of seventy-eight thousand pounds it is shown that about twenty-five inches of weld were necessary. As before, twonty-eight inches was provided. A five eighths inoh plate, nine inches long, with a four inoh "Y" slot sas used.

A welded conneotion was also used for the column anchor2ge. The maximum moment that aix Inch H-section oan resiat was obosen as the design limit for this conneotion. This moment was found to be two hundred and oleven thousand inch pounds.. The size of boit neoessary was first determined by finding the bolt stress oused by this monent. The aize bois necessary was a one and one-half inoh stecl bolt. The bolts will be anohored in the conoret.o at the time of pouring. allowing about twolve inches to protrude above the surface of the condrete. Hext ths size weld desired must be ohosen. A three eighths inoh weld was ohosen with a value of less then ninteen hundred pounds per inoh of weld. With this value and the maximum bolt stress of ninteen hundred pounds, a little over five inches of weld were required. This value mast be
oheoked for shear fron direct pull and shear from flexure and also the resultant shear on the throat of the weld. It was not found to be suffioient therefore a length of ten inches was chosen and found to stay within the limiting stress. A four by four by three-eighths inch ancle was chosen to complete the oonnection. It was cheoked and found to be auffioient to take the stress. The angles must be ten inohea high in order to provide the neoessary weld area.

Computations and skotches are contained in the appendix. An estimate was made on the electrode consumption for the construotion of this greenhouse. There were about fiftyfour pounds of three eighths inch electrodes neoessary for the eighteen butt wells. There are about forty zeet of three eighths lach pillet weld in the column anchorage. This will require about forty-two pounds of elootrodes. In the cover plate welds at joints "b" and "d" there are about one hundrea and twelve feet of one-half inch weld but three passes are necessary, therefore, the requirement here is about one hundred seventeen pounds. The top cover plate needs four passes to flll the five eighths inch fillet weld and since there are fifty-six foet of weld it will take almost ninety pounds of eleotrodes. These figures will give the prospective builder - rough entimate of the amount of each size eleotrode neaessary for the construation of this ereenhouse.

Bibliographys

Analysis of Rigid Framos $-\cdots-\cdots$ - - A. AmiritianGraphia Statios $\quad-\cdots-\cdots$ - Charles H. Malooln
Statioally Indeterminats Struotures $-\cdots$ L. C. Eangh
Helding and Brazine Alcoa Aluminum $\ldots \ldots \ldots \ldots$

Appendix

$$
\begin{aligned}
& \text { Typical Cross Section for } \\
& \text { Aluminum Frame Greanhouse }
\end{aligned}
$$

Solution for Moments in Gable Bent

$E \xi I$ constant

$$
\bar{y}=\frac{5(2.5)+11.325(22)}{27.0}=\frac{12.5+249.1}{27.0}=9.69^{\prime}
$$

$$
A=10+44=54
$$

$$
\begin{aligned}
I_{x-x} & =2\left[\frac{1}{12}(5)^{3}+5(7.14)^{2}+\frac{1}{12}(22)(12.65)^{2}+22(1.635)^{2}\right] \\
& =2[10.41+258.4+293.6+58.8]=1242
\end{aligned}
$$

$$
\begin{aligned}
I_{Y-Y} & =2\left[\frac{1}{3}(22)(18)^{2}+5(18)^{2}\right] \\
& =2[2376+1620]=7992
\end{aligned}
$$

$$
\begin{aligned}
M_{x-x} & =(-1188)(-1.53)+(-810)(-7.19) & M_{y-y} & =(-1188)(-135)+(-810)(-219) \\
& =1818+5820=7638 & & =16040+5820
\end{aligned}
$$

$A B$

$$
M_{b}=M_{a}-5 H_{a}+12.5
$$

$B C$

5-Ha
$M_{b} V_{a} \quad M_{x_{2}}=-M_{b}-\left(5-H_{a}\right)(.575 x)-V_{a}(.818 x)-(.575 x)^{2}\left(\frac{1}{2}\right)(1)$

$$
M_{x_{2}}=-M_{a}+5 H_{a}-12.5-2.875 x+.575 H_{a} x-818 \mathrm{Vax}-.165 x^{2}
$$

$$
\frac{\partial M_{x_{2}}}{\partial M_{a}}=-1
$$

$$
\frac{\partial M_{x_{2}}}{\partial H_{a}}=5 t .575 \mathrm{X}
$$

$$
\frac{\partial M_{x_{2}}}{\partial V_{a}}=-.818 x
$$

$M_{c}=M_{a}-17.65 \mathrm{Ha}+18 \mathrm{Va}+155.65$

$$
\begin{aligned}
& \mathrm{I}^{k / f t} \underset{\rightarrow}{V_{a} V_{b}} \quad M_{x}=-M_{a}+H_{a x}-\frac{1\left(x^{2}\right)}{2} \\
& \begin{array}{l}
1 / 4 t \\
\exists \\
\exists \\
\exists \\
\exists \\
\exists
\end{array} \\
& \mathrm{Ha}_{\mathrm{a}}-5 \\
& \frac{\partial M}{\partial M_{a}}=-1 \\
& {\underset{\text { V}}{V_{a}} H_{a}} H_{a} \quad \frac{\partial M}{\partial H_{a}}=x \\
& \frac{\partial M}{\partial V_{a}}=0
\end{aligned}
$$

$$
\begin{aligned}
& M_{x_{s}}=-M_{c}-V_{a} X_{3}(.818)+\left(1.65-H_{a}\right)\left(.575 x_{3}\right) \\
& =-\left(M_{a}\right)+17.65 \mathrm{Ha}-18 \mathrm{Va}-155.65-.818 \mathrm{Va} \mathrm{X}_{j} \\
& +1015 x_{3}-575 \mathrm{HaX}_{3} \\
& =-\mathrm{Ma}_{a}+17.65 \mathrm{Ha}-18 \mathrm{Va}-155.65: 818 \mathrm{Va} \mathrm{X}_{3} \\
& +10.15 X_{3}-575 \mathrm{HaXe}_{\mathrm{s}} \\
& \frac{\partial M_{x}}{\partial M_{a}}=-1 \\
& \frac{\partial M x_{s}}{\partial H_{a}}=17.65-575 x_{3} \\
& \frac{\partial M_{\times 3}}{\partial V_{a}}=-18-.818 \times 3 \\
& M_{a}=M_{a}-17.65 \mathrm{Ha}+18 \mathrm{Va}+155.65+18 \mathrm{~V} \cdot 223.1+12.65 \mathrm{Ha} \\
& =\mathrm{Ma}_{\mathrm{a}}-5 \mathrm{Ha}+36 \mathrm{Ka}-67.45 \\
& \text { DE } \\
& M_{x_{4}}=-M_{d}+\left(17.65-H_{a}\right)\left(X_{4}\right) \\
& =-M_{a}+5 \mathrm{Ha}_{a}-36 \mathrm{Va}+67.45+\left(17.65-\mathrm{Ha}_{a}\right) X_{4} \\
& =-M_{a}+5 H_{a}-36 \mathrm{Va}+67.45+17.65 \mathrm{X}_{4}-\mathrm{HaX}_{4} \\
& \frac{\partial M_{\times a}}{\partial M_{a}}=-1 \\
& \frac{\partial M_{4}}{\partial H_{a}}=5-X_{4} \\
& \frac{\partial M x_{4}}{\partial V_{a}}=-36
\end{aligned}
$$

$$
\begin{aligned}
& U=\int \frac{M^{2} d x}{2 E I} \\
& \frac{d U}{d M_{a}}=\int \frac{M \frac{\partial M}{\partial M_{a}}}{E I} d x \quad \frac{d U}{d H_{a}}=\int \frac{M \frac{\partial M}{\partial H_{a}}}{E I} d x \quad \frac{d U}{d V_{a}}=\int \frac{M \frac{\partial M}{\partial V_{a}}}{E I} d x
\end{aligned}
$$

Omitting EI

$$
\begin{align*}
& \frac{d U}{d M_{a}}=0=\int_{0}^{5}\left(-M_{a}+H_{a} x-\frac{x^{2}}{2}\right)(-1) d x \\
& +\int_{0}^{22}\left(-M_{a}+5 H_{a}-12.5-2.875 x+575 H_{a} x-.818 V_{a} x-165 x^{2}\right)(-1) d x \\
& +\int_{0}^{22}\left(-M_{a}+17.65 H_{a}-18 V_{a}-155.65-818 \mathrm{~V}_{a} x_{3}+10.15 x_{3}-575 H_{a} x_{3}\right)(-1) d x \\
& +\int_{0}^{5}\left(-M_{a}+5 H_{a}-36 V_{a}+67.45+17.65 x_{a}-H_{a} x_{a}\right)(-1) d x \\
& =\left[M_{a} x-\frac{H_{a} x^{2}}{2}+\frac{x^{3}}{6}\right]_{0}^{5}+\left[M_{a} x-5 H_{a} x+12.5 x+1.438 x^{2}-.288 H_{a} x^{2}\right. \\
& \left.+.409 V_{a} x^{2}+.055 x^{3}\right]_{0}^{22}+\left[M_{a} x-17.65 H_{a}-18 V_{a}-155.65 x+409 V_{a} x^{2}\right. \\
& \left.-5.08 x^{2}+288 H_{a} x^{2}\right]_{0}^{22}+\left[M_{a} x-5 H_{a} x+36 V_{a} x-67.45 x-8.83 x^{2}\right. \\
& \left.+.5 H_{a} x^{2}\right]_{0}^{5} \\
& =54 M_{a}-523 H_{a}+972 V_{a}+1987.7=0 \\
& M_{a}-9.68 H_{a}+18 V_{a}+36.80=0 \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \frac{d U}{d H_{a}}=0=\int_{0}^{5}\left(-M_{a}+H_{a} x-\frac{x^{2}}{2^{2}}\right)(x) d x+\int_{0}^{22}\left(-M_{a}+5 H_{a}-12.5-2.875 x\right. \\
& \left.+.575 \mathrm{Ha}-.818 \mathrm{Va} x-.165 x^{2}\right)(5+.575 x) d x+\int_{0}^{22}\left(-M_{a}\right. \\
& +17.65 \mathrm{Ha}-18 \mathrm{Va}-155.65-.818 \mathrm{Va} x+10.15 x-.575 \mathrm{Hax}) \\
& (17.65-.575 x) d x+\int_{0}^{5}\left(-M_{a}+5 H a-36 V_{a}+67.45+17.65 x\right. \\
& -H a x)(5-x) d x=\left[-\frac{M a x^{2}}{2}+\frac{H a x^{3}}{3}-\frac{x^{4}}{8}\right]_{0}^{5}+ \\
& {\left[-5 \mathrm{Ma} x+25 \mathrm{Ha} x-62.5 x-10.78 X^{2}+2.88 \mathrm{Ha}^{2}-2.05 \mathrm{Va} X^{2}-\right.} \\
& \left..826 x^{3}-.288 \mathrm{Ma}^{2}+11 \mathrm{Ha}_{\mathrm{a}} \mathrm{~B}^{3}-.157 \mathrm{~V}_{a} x^{3}-.0237 \mathrm{X}^{4}\right]_{0}^{22} \\
& {\left[-17.65 \mathrm{Max}+311.5 \mathrm{Hax}-317.8 \mathrm{Vax}-2750 \mathrm{X}-2.05 \mathrm{Va} \mathrm{X}^{2}+134.35 \mathrm{X}^{2}\right.} \\
& \text {-10.15 } \left.\mathrm{Hax}^{2}+.288 \mathrm{Ma}^{2}+.157 \mathrm{Va} \mathrm{X}^{3}-1.95 x^{3}+.11 \mathrm{Hax}\right]_{0}^{22} \\
& +\left[-5 M_{a}+25 H_{a} X-180 \mathrm{Va} X-337.25 X+10.40 X^{2}-5 H_{a} X^{2}+.5 \mathrm{Ma}^{2} X^{2}\right. \\
& \left.+18 \mathrm{Va} x^{2}-5.88 x^{3}+.333 \mathrm{Hax}\right]_{0}^{3} \\
& =-523.2 M_{a}+63.13 .4 H_{a}-9419 \mathrm{Va}-36,062=0 \\
& M_{a}-12.06+18.0 V_{a}+68.95=0 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \frac{d U}{d V_{a}}=0=\int_{0}^{5}\left(-M_{a}+H_{a} x-\frac{x^{2}}{2}\right)\left(0 ; d x+\int_{0}^{22}\left(-M_{a}+5 H_{a}-12.5-2.875 x+\right.\right. \\
& \left..575 \mathrm{Ha}_{a} x-.818 \mathrm{Ka} x-.165 x^{2}\right)(-818 x) d x+\int_{0}^{22}\left(-M_{a}+17.65 \mathrm{H}_{a}-18 \mathrm{Va}\right. \\
& \left.-155.65-.818 l_{a}^{\prime} x+10.15 x-.575 H_{a} x\right)(-18: 818 x) d x \\
& +\int_{0}^{5}\left(-M_{a}+5 H_{a}-36 V_{a}+67.45+17.65 x-H a x\right)(-36) d x \\
& =\left[.409 \mathrm{Ma} x^{2}-2.05 \mathrm{Ha} x^{2}+5.12 x^{2}+.78 x^{3}-.16 \mathrm{Ha} x^{3}+.22 \mathrm{Vax}^{3}\right. \\
& \left.+.034 x^{4}\right]_{0}^{22}+\left[18 \mathrm{Ma} x-317.8 \mathrm{Ha} x+324 \mathrm{Va} x+2802 x+14.72 \mathrm{Va}_{a} \mathrm{X}^{2}\right. \\
& -27.6 x^{2}-2.05 \mathrm{Ha}^{2}+.409 \mathrm{Ma} x^{2}+22 \mathrm{Va} x^{3}-2.77 x^{3}+.16 \mathrm{Ha}^{3} \mathrm{~J}_{0}^{22} \\
& +\left[36 \mathrm{Max}-180 \mathrm{Hax}+1296 \mathrm{Va} x-2429 x-317.9 x^{2}+18 \mathrm{Ha}_{\mathrm{a}}\right]_{0}^{5} \\
& =971.9 M_{a}-94.21 H_{a}+25417 V_{a}+17463=0
\end{aligned}
$$

$$
\begin{equation*}
M_{a}-9.70 \mathrm{Ha}+26.19 \mathrm{Va}+17.97=0 \tag{3}
\end{equation*}
$$

Solving (1) \& (2)

$$
H_{a}=13.50^{\kappa}
$$

(2) 4 (3)

$$
\begin{aligned}
& V_{a}=2.33^{k} \\
& M_{a}=52.03 \mathrm{ft}-\mathrm{k} .
\end{aligned}
$$

$$
\begin{aligned}
m_{i} & =\frac{-1998}{54}+\frac{30620 x}{7992}+\frac{7638 y}{1242} \\
& =-37.0+3835 x+6.15 y
\end{aligned}
$$

	x	y	$3835 x$	$6.15 y$	$\frac{\theta}{A}$	$m i$	$m s$	M
A	-18	-9.69	-69.0	-59.6	-37	-165.6	-162	+3.6
B	-18	-4.69	-69.0	-28.8	-37	-134.8	-162	-27.2
C	0	+7.96	0	+48.9	-37	+11.9	0	-11.9
D	+18	-4.69	+690	-28.8	-37	+3.2	0	-3.2
E	+18	-9.69	+69.0	-59.6	-37	-27.6	0	+27.6

$$
\begin{aligned}
& \text { Max. Mon }=4100^{\prime \#}=49,200^{117} \\
& Z=\frac{M}{\omega}=\frac{492}{10,20}=792 \\
& \text { T1, } \quad \text { ○ } 62.034^{\circ} \text { Chminel } Z=5.06 \\
& I_{x-x}=15.19 \quad I_{y \cdot y}=0.07
\end{aligned}
$$

Design of Tea Section

$$
\begin{aligned}
\text { Uniform Load } & =4.5 * / f t \\
\text { Max }+ \text { inoml } & =.077 \mathrm{w} /{ }^{2} \\
\text { Max } \text { Mom } & =.107 \mathrm{w} /{ }^{2} \\
\text { Max shear } & =.607 \mathrm{w} /
\end{aligned}
$$

$$
\begin{aligned}
\text { Max. Mom } & =.107 \mathrm{w}^{2} \\
& =.107 \times 45 \times 25 \\
& =120^{\prime \prime}=1440^{\prime \prime}
\end{aligned}
$$

$$
Z=\frac{M}{S}=\frac{1440}{10000}=.144
$$

$$
\text { Try a } 1 / 1_{2}^{\prime \prime} \times 2^{\prime \prime} \text { Tui } Z=.195
$$

$$
\begin{aligned}
V & =.607 \times 5 \times 45 \\
& =130 *
\end{aligned}
$$

$$
S=\frac{V Q}{I b}=\frac{135 \times 197}{.269 \times .186}=530 \mathrm{psi}
$$

Therefore this suction is sate.

$$
\begin{aligned}
& \sum M_{b}=2.68-(5 \times 1.05)=2.62^{1 \times} \text { dup to dead load } \\
& \Sigma M_{c}=(1.06 \times 17.65)+(.086 \times 1.8 \times 3)-2.66-(1.55 \times 18)=2^{1 k}
\end{aligned}
$$

$$
\Sigma_{t}=(2.33 \times 5)+(4.12 \times 5)+4.75+20.2-(5 \times 0.45)-2.62
$$

$$
=52^{\prime \prime} \text { Max. Mom. due to W.L. + D.L. }
$$

$$
\begin{aligned}
\sum M_{c}= & (2.33 \times 17.65)+(4.12 \times 17.65)+4.75+20.2-(17.65 \times .48 \times 8.82) \\
& -2.62=61.33^{\prime *} \text { - due to } 1 \text { W.L. }+D . L .
\end{aligned}
$$

$$
\begin{aligned}
& \text { W.L. © H } H=4.86 \times .48=2.33^{k} \\
& \text { W.L. (2)H }=8.59 \times .48=4.12^{\kappa} \\
& W . L .(1) M=3.9 \times .48=4.75^{1 \times} \\
& W . L .(2) M=42.15 \times .42=20.2^{1 \times}
\end{aligned}
$$

léy Destyr for Colmmin thororaz

$$
\begin{aligned}
& \therefore R=1+2 \times \times 1505=\ddot{0} 11.000^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { iret araa nezed }=-10^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \therefore-\vdots-0 \therefore=122
\end{aligned}
$$

Whis Conrmetion

$$
\begin{aligned}
& \text { } \because i \text { a } \bar{y} \text { t tilet } \\
& \text { ihoosi: }=\frac{-5189}{2} \times 1829.17^{\prime \prime} \\
& \text { Tom. ©, } \therefore \because \quad 1.210=\frac{102 x^{2}}{2}=2,0 \cdots 7
\end{aligned}
$$

$$
\begin{aligned}
& s=106(110-500)=1795 \mathrm{p} \\
& \text { Srau from: } \vec{a} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \because \therefore, 4 \times 4 \times 3 / 2-10 \times 101
\end{aligned}
$$

$$
\begin{aligned}
M_{2 x} \text { Morii } & =52^{14} \\
\text { I(for butt weid) } & =\frac{1}{12} \times .313 \times 6^{3}+2\left(6 \times 3^{2}\right) \\
& =113.63 \mathrm{in}^{4}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mcm. rasistaf by outt wald }=\frac{700 \times 113.63}{3}=22.1^{1 \mathrm{~K}} \\
& 52^{\prime *}-2 z^{* *}=30^{\prime k} \text { To ez Thんen by weld } \\
& s=\frac{M}{f}=\frac{2595 \times 12}{10.00}=35.9 \\
& I=A K^{2} \\
& 2(t \times 5) 3^{2}=35.5 \\
& 广=0.4^{\prime \prime} \text { Lise } / 3^{\prime \prime} \text { plata } \\
& T=\frac{M}{9}=\frac{30}{.5}=60,00 \% \\
& \text { V1ire of } / /^{\prime \prime} \text { welt }=1 / 2 \times .707 \times 7000=2470^{*} \\
& \text { Lati,i, ricejed }=\frac{64}{24+0}=24.3^{\prime \prime}
\end{aligned}
$$

H－arvar áz＂ali úprovideć

Outside Cover Plate at Joint "b" ξ " ${ }^{\prime}$ "

Inner ξ outer plates ara the sana.

Weld at Prak Connection ("C")

$$
\begin{aligned}
& \text { Max. Moni at "C" }=61.33^{1 k} \\
& I(\text { tatt weld })=113.63 \mathrm{in}
\end{aligned}
$$

61.33-22.1 $=39.23^{1 k}$ to te taken by plate

$$
\begin{aligned}
& S=\frac{M}{t}=\frac{E 329 \times 12}{10,000}=47.1 \\
& I=A K^{2} \\
& 2(广 \times 4.5) 3^{2}=47.1 \\
& t=0.552^{\prime \prime} \\
& \text { Use 5," plate } \\
& T=\frac{29,06}{.5}=78,000 * \\
& \text { I'alue of } 5 / 6^{\prime \prime} \text { weld }=5 / 8 \times .707 \times 7000=3090 \% / a^{\prime \prime} \\
& \text { Length neaded }=\frac{7290}{30.4}=25.2^{\prime \prime}
\end{aligned}
$$

Howaver $2 e^{\prime \prime}$ will ba providad

To insert glass:
Press clip in.
Place the glass Tee Section
Release the clip. sizing Bar

Aluminum Clip

Piar Vizw of Joncrete Fallidation

(1)

Mar 2 '5s onntis Uce Givi

[^0]

[^0]: 2.7

