

1

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

DFSIGI OP TNPROVEMENTS
IN THR
MATER SOPELY BYSTHEM
02
MICHEAN STATS COTHEGR.
4 Report
Suluitted to the Faculty Of

MIGHIMN STATE COL工EAR OP

 AGRICULTURR AND APRIIED SCIENGE.
By

4. C. GUNI

Candidate for Degree of
Bachelor of Seience.

Jane, 1986.

In the eelection of the aubject for this Thesis the writer is indebted to Professor H. ©. Woode of the Civil Engineering Depertmeat, and to Kro Laver: and Mr. Miller of the Department of Buildings and Grownde.

Since the problem is ose that will in the couree of a few months be corerel to completion in the field and is of a highly practical natare, the writer is well satiafiod in haring obtainod it for a thesis.

The writer almo wishes to exprese his appreciation of the aggestions and cooperation which were accorded him by Professor C. I. Allen, Head of the Ciril Thnginearing Department, Profeesors Maller and Woode also of the Civil Inginearing Department, and Itr. Lavere and Mr. Miller of the Departmont of Buildinge and Gromds.

ITDEI

Page
Dosaription of Froblem 1
Topography 8
Frescent Condition of the Water Supply 5
Selection of Dype of RescrToir and ite Dimensions 8
Wall Pumping Iquipment 11
Mimecllaneon Iquipment 18
Denign of Rocurtois 14
Piping 84
We11 Pumps 25
-••

-••
.

A DESCRIPTION OF THE PROBLEM.

It the present time the water apply aystem at Michigen State College is inadequate for the neods of the College. Water comes entirely from wells, a sufficient number having been aunk, but only two have pumps capable of supplyiag water to the system. Onc of these pumpu is a twooflinder reciprocating puap which will furnish the amomt of whter that the College unal for ordinary consumption, 通ile the other is an air lift promp. The reciprocating prap is in good ropeir and can be clasiced as a dependable piece of machinery, but the air lift pump, wile being itself in joor condition, is depondent for air on a meall compressor operated by an ougine incapable of ruminc at a high enough rate of apeed, which leaves the mait of no roal ralue to the myaten. The College is dopendent on the city of Ract Lansing for all ite water at any time it beoomes necescary to shat down the reciprocating pump, and also dependent in the face of any munual domand such an afire. The College usen a codesiderable mount of water (about 290,000 gallons per et hours) and has power available to pump this water and operators oaring for present machinery who can operate and maintain the aystea. Por reasone of safety and coonomy the myem showl be improved.

A ahort time ago the State Legislature voted an appropriation of $\$ 85,000$ for improvement of the asetem. The Departmont of Buildinge and Grounds is planning to improre the ayster in the eumar of 1926. It is the wioh of the Department to build what improrements it ie poseible to make, liberal
onough and lasting, to the extent that the College can depond on these improvemants to be all that the demands of the College will require them to be for an indefinite period in the future. The problem of this thenim is to furmieh a goneral design which will answor these requirements and which can be built from the funde available.

The stops followed in working out the problem, and as found in this Thesis are as follows:

Firat, the topography of the ground in the region whore all the changes are to be made was takon; as it has an influane on the design.

Becond, The type of puping equipment, amount and kind of atorage, and all miscollaneous equipment was decided арод.

Third, The resertoir was designod.
Popreth, The piping and praping aystem wat designed.
Pifth, The cost was ohocked.
This last item could te cone only epproximately, ane to the limited time arailahle, ani loes mot appear an a soparate part of the Thosis, but it mas considered in piokinc equipment as moch axisting information allowad it to be. It is cortain thet when final ifgures are arailable nome ohanges munt be made, but if the design falls within reasonable limite and the general lajout does not need to be altered, the resulte hopel for in working this problem will be reached.

TOPOGRAPHY

Bofore atarting work on the mapping of the area of melle and reservoir it was necesaary to obtain date on the College triangulation mytom in order that features of the map, and clevations, might be in accordance with maps of the campue. College triangulation etation Fruber Elevea cames juat within the area of the map wich made the orientation of the map and reference for levels cany to obtain. College 8 Station Irmber 6 was sighted from Station 11 for orientation. Date obtained from the Civil Ingineoring Dopartment mas as follows: Aximath of line 6 to 11 - 518* - 07 - 36.7". meration of Station 11 - 848.51 ft. 111 cleration and eirections are based on these two thinge.

To obtain serveral acourately bnown points of raforence a clomel travaree was rmi from 8 tation 11 and the asimuth and length of ach line recordod. Later a mecond travaree was attachod to the mest alde of the flrat. The error of closure of each trevare and of the whole figure as one traverse was cemputad and as it was foumd to be to mall $\left(\frac{1}{10,000}\right)$ as to be of no socomt, and the traterse was not balamecd.

Fext, a line of levele were ran from Station 11, undme treverme comper an henches with a faw compenicat benohes at other points.
loat of the foatures and all contoure were run in in tranalt and stadia. With the instrwent orer seme etation and oriontated and the telesoope level the rad was aighted eetting orer a deaired point. The station, asimuth, stadia
distance, object, and in me camor the lovel red realing were recoried. lximuth angies were taken as measured clockwise from the south. Contoure were takem at 1 ft. intervale. With hoight of instrument known a rod reading was computel mich would place the foot of the rol on a cenired contour. A boud wan placod around the rod at this reading and the zod motel np and dom alope matil this band was out by the hoxisontal oromehair. Iote headinge given above wore then conterel under. This located apoint on the contour and a armber of auch pointe at apparent turam, allowed the contour to be traced on the map.

Later levels were rm to all mell pipes and static mater levals determined. Thoy mere found to be almost aractiy the ame. Merations of pray ream floor and of other objecte having a bearing on the leaign were also takon.

The majority of results obtainel are included on the topegraphical map or in some part of this Theais. Ioter taken in the field include all data but are hela by the Departacnt 0 Buildange and Grounds. In the writer's opinion the mape may be depondel upon to the extent that any distance may be sealed with an error of not orer 5 feet.

The College is now waint, as has slmast bece the case, a groun meter source of exply, sesuring it from coal meamure samantones. the peoment wells are fire in mumer lut only two are hooked wp to mexply mater to the aretem. One of thece is praped in a deap mell prip and the other oy alx-lift. It the prescent rate of comeumption the deep-mell jum is alle to suyply the College if no abnormal demands are placed an it.

The ceop-mell yruy is a two-oylimder seciproceting Iift pryp, which prope airectly into the mainc. It in in geod ropair haring fuat beon ororbaviad and can be olaseed as a raliable piece of machinory and a good one to retain in the egstem. The well itscle is a 10 inoh being the largest well and capable of axpplying more water than ary well in the ayntem. This woll and prup are located back of the Fhyeice Duilaing cereral hmaired feet ramote from the othor four melle.

The rmaining four walla are located in the region of the boiler recm. They are 2116 inoh caced domit to a depth of approximately 80 ft. The oldent of these mells was driven in 2000 and has been priped, wntil recemtiy, ive contrifugal doep wall prap. This equipment has been gronked and nothing ramaing but the well and well-howe. the remaining traree wolls ware sunk in about 1900. Two of then have been hooked ny with air lift prope while the other has hever loen in wee. One of the alr lifte can be made to dicoharge thro a preasure proy
to the cystem but the othor dischargee te the semer and has bocn used only for test purpeses.

Iomping equipment from the air-lift to mans conaiste of a Buplex reciprecating stecm pray leeated in the bescmat of the power howse. drrangement of this pump botwon well and maine is to be condemmed. 1 man is required on duty at all times that the ymap is used for if it prope faster than the well expplye it it yrape racum, and if alewor the prap rocm is flooded.

Storage and preasure regulation is obtained from an elevated tank 156.5 ft. high haring a capeoity of 80;000 gellons.

Compreased air is fornishod to the air-lift by a
 single eylinder $18^{\prime \prime} \times 18^{\prime \prime}$ vartical ateam engine. Due te alew apeci and vibration of the engine and poor qualities of the comperenor this equipment is praotically worthlese and makes it impraotical to prap water with it.

Tro mona are providod for applying fire demand. One is to turn on the City of rant Lansing, and the other to prap from a eistern connested to the river. The former is troubleane and contiy and the latter is apt to be more ingurious than e fire for it pollutes the mains.

Iriefly, the oniy real muply equipment the oollege now hat is the one reaiprocating deep woll prmp ani a 80,000 gellop alevated torage and presaure regrating tank. (Fhif) This moans that 30 long an the recippocating primp operaten continuonsly and there are no abnomal domanis that the College
cen furnish its own water but in the face of any break down or masual demands it will be ontirely depandent on outside sourcen.

At the etart of this problem it was known that some storace must be provided. It is a fact established by good preetice that mtorage must be proviced to absorb peak loadn, to aid in purifying the water; to allow olosing dom of the wall prope for whort poriods; and to muply abnormal demande whthout the use of expensive tendiby equipment which might not be meded for lomg poriode of time. Boceuse all wetor has to be prmpel and there alreadr was an eloratod tower for prossure regulation, it was aleo establiahed that the reservoir must met on the ground; or meder grome if poseible to keep the water co0l and more sanitary. The problem then in colecting a reserroir mas to decide on type and nise to be used.

Im types of remertoir could be used, ateal and reinforced ceforete. Pointm in regard to oseh need in making the selection are as followe:

Steel Ciroular Reservoir.

1. Cost approximately $\$ 4000$ per 800,000 gallon eapeoity.
(According to an entimate from Chicago Bridge * Iron Worke).
2. Maintenance cost high.
3. Iife ocmparatively short.
S. Shape of resertoir affords very little settling apece.
4. Tank is high and monen a large lift from the welle,
higher pumping conte, and an intermediate prap
if eir-lift equipment is used.
5. Inflexible. If the tank ia cleaned there can be no storage in the meantime.
6. Ueed but litile in imilar myeneme.
7. Afforde but elight protection againet heat and cold.

Conorete Rectangular Resertois.

1. Cost epproximately $\$ 10,000$ per 200,000 cillons.
(Aocording to a rough ostimate recoived fram Ohristmen Compens).
2. Maintename cost low.
3. Iife c cmparatively long.
4. Bectangular mhape provides vory liberal setting area.
5. Height can be made to mot low learing a low head egainst
the will prups.
6. \& flexible mit allowing one section to be fint down unile another is olemed.
7. Ened almont excluaively in good practice.
8. Protects water from extrame temperatures.

1 . be more expensive but etherwise far more desirable. It wan decided that 2 more serviceable and in the cod eheaper tank could be built fran conorete.

Capacity and Dimensions.

Data effecting required capacity was found to be as follows:

Iargest fire demand necessary to design for $=5-250 \mathrm{gal}$.
Standard fire etreana = 250 gal . per minute.
yaximum posisible rate of praping a 850 cal. par minute.
racimum duration to be expected of any fire $=5$ hours.
By aseruing a 200,000 gallon etorage reservoir deaigned to noter contein lese than $100 ; 000$ gailones. it mea posesible to solre.for the minimu and maximum duration of fire it would be afficiont far.
racimum duration $\frac{100,000}{1,250-850}=280$ minutes 4 hours and
10 minaten.

Maximum duration $=2 \times 4 \mathrm{hrs} \cdot 10 \mathrm{~min} \cdot 8 \mathrm{hrm} 80$ min. These figures show a capacity of 200,000 gallon to be antisfactory.

Dimenalons.

It wan found that two tamks each $20^{\prime} \times 20^{\prime} \times 75^{\prime}$ inside built on a common fomdation lab offered á ficuibie arrangement for wator oireviation, gare rocm for piping, did not make the reaisting hoad against the well prupe too great, and propided the nocessary capacity. Ton feet of depth allowe for an extre foot at the top in which to put aistributing pipen.

WETI PURING BOUIFMFIT.
small considoration was giten to any type of prupe other than airolifts. Other types wero considered but as the olds wers hoarily in faror of ais-lifte, onfy the reasone for pioking them will be giton.

1. More mater ean be securad fram a well w airolift prope than by any other lonown maans, making a

2. The orerall efficiency in good.
3. The College alroady has som airalift equiymont on hana.
4. Thore are no moring parte nit hcace a minimum of upzeep at the well.
5. The welle can all be operated from the power house Emply lex turning a ralre.
6. Ion alresdy angaged in the power plant onn operate the mistom。
7. The wait is flexible allowing a new woll to De instalied With a minimum of expense and without afsecting the rast of the syaten.
8. 11 machinery is moler ceror with operetore prasent whomerar it in used.
9. The first cont is not abromalis high.
10. Iow installation cost.
11. A1r-lifte are becoming a farored type of puap.
12. The City of Lianaing has ueed all types of well prupa and now is uaing airalifts.

300sterse.

The use of airalift prope brought up the questions of getting mieter to the reserroir sinee air mant be ceparated from water bofore it gete far from the well, or trouble will arise in the form of a partial soparation asi back preasuce. Iwo common mathode of doing this were conaidered.

Pirgt, air egparatore eetting high enough to sause gravitir inow to the reserroir.

Second, Boontere net maderground and maintaining a presmere to foree mater into the rescrroir. Quotations showed that the boostere would cost about $\$ 100$ more per well then air-soparators but this being a mall itea in comparison with total cost and thers being many points in favor of wosterw, the docision was made to use themo

The reacons for doing this are an followe:

1. Irorgthing is mader gromd which eliminates ireesing.
troubles and masightiy pliping.
2. The efficienos compares favorably with other methede.
3. Pipen to resarroir oan be made maller.
4. The pressare in the boostor can be varried to suit the particular requirements of ang well.
5. Details of the piping nyetem are amplified.

MISCMMTANMEOUS EQUIPRHIT.

For convenience of the operators and the bettormant of the afstch two additional pieces of apparatus are engeested. One is a 8 indh pipe leadins frem the recarroir into the penoriouse sul compocted with a static hoad recorder. This will gite at a glance the amovat of meter in the reserroir. The other is a recording remturi-meter to be set on the aisoharge line from preserure punpe.

DREIGI OF BESSARTOIR.

The plam of the recortoir had leen settied as two tanke an a coman lase (separated is a partition mill) ceoh, 10 ft. deep $\times 20$ feet wide $x 75$ ft. long; cepth of manter to be - ${ }^{2}$.

Hool and Johnacn's concrate deaign formuleen and constante have been need throughout with consexpative ralues of f_{c} and f_{b} to incure againet eracting. Formoleen and nemonelature are to le found in eithor Heol and Fothinurs Volume $I_{;}^{\prime \prime}$ or in thair Conorete Figineore' Hanabook; and for that reason will not be giren here. 411 deaign ia for a section 1 ft. in wiath.

Mel18.

1:8:4 mix.
$\mathrm{Im}_{\mathrm{n}}=12,000$
Pa 500
n - 22
Porce producing orertuining $=\frac{9 \times 6804 \times 9}{2}=2587$ 1bs.
roment at base of wall = 2587 $\times 9 / 8=7581 \mathrm{ft}$. Ibs 。
a $-\sqrt{\frac{1}{\frac{1}{Z}}}-7 \sqrt{\frac{7589}{74}}=10.2$

8teel ratio - .0069.
$4_{1}=$ pba $-0069 \times 12 \times 107=0.87$ aq. in.

Use $8 / 4^{\text {" }}$ round rode apeced 6 inches an contere $\Lambda_{8}=0.88$

Shear $\overline{7}=2587$
$T=\frac{V}{\text { bjd }} \frac{2 \pi 9 y}{12 \times 10.5 \times .889}{ }^{2}=82.6$ lbe per aq. in.
This is ate as 40 is allomeble.
$u=\frac{V}{80 \mathrm{ja}}=\frac{2587}{8.856 \times 8 \times 0.889 \times 10.8}-57.6$.
This is mafe as 80 is allowahle.
Momant 8 ft up $=\frac{6 \times 6204=6}{2} \times \frac{6}{8}=2240$.
Batio of steal required here to that at Bottom =

$$
\frac{8840}{1581}=0.50
$$

rament 6 ft. we $\frac{8 \times 62_{0} \leqslant x 5}{2} \times 1=280$.
Ratio of ateel required here to that at botton =

$$
\frac{850}{1641}=0.087
$$

Carry twe thirde ce rode up 8 ft , ono third ny 6 ft , and one sixth ty top. 1lthough compatatione show thet this mach stecl if not neoded it is not adrisabie to do amay mith more because of axiger of ehrintage eracke.

To be on the safe side ron the wall stecl a distance of 8 ft. inte and along the vace elab.

Roof

Denigued as flat alab.

Spen = 81 ft.

$$
\begin{aligned}
& I_{B}=16,000 \\
& I_{C}=650 \\
& I=15
\end{aligned}
$$

Assume (2t; par ft. = 150f
IITe load per ft. 50 .
.

- 200 안

$d=\sqrt{\frac{11.500}{207.4}}=10.7$
Say d = 11 inches, $D=15^{\prime \prime}$. Taper to any desired thiaknean et adge.

Taning conerete at 180 Ibs. per aubic $f t$. the assmed and setual wishts choak resy clomely.
$p=.0077$
18 - .0077 $\times 22$ c $11=1.02$
Une $8 / 4^{\prime \prime}$ roun rede mpaced 5 inches on conters As $=1.06$ ex. in. per it.
$V=5 / 8$ m $m / 8=200 \times 21=2688$
$T=\frac{\mathrm{T}}{\mathrm{bjQ}}=\frac{2688}{12 \times \cdot 874 \times 11}=85.4 \quad$ Satiafactory.
$\pi=\frac{\nabla}{20 j a}=\frac{8688}{2.856 \times 18 / 5 \times 0.874 \times 11}=49.4$ Satiafactory as
a bond stress of 80 is allowable.

Bape S18b.

Sororal widthe of base slab wore coneidored before the one giren was chosen. It was picked lecanse it gare the loast rariation in atreases ani honce the most miform required depth. For shear and mements eample compatations only will be ciren.

Conditions for Mngum Strenses.

Three conditions wore takon as being the ones mich mould bring out macimum stresses.

Plret, Ifve lead on roof with one tank full.
Secend, If I load on $r 001$ with both tanke full.
Third, Iive load on roof with both tanke anpty.

Matorials and Stresses.

These values are conservative to insure againet ormeking.

Ic - 500
1E $=12,000$
n $=18$

Rarth Prosaures.

The resertoix was designol as eetting on top of the ground although it is expected to eventually partly buxy it. This is on the safe sile and provides for stresses before buyying.

Computation Of Above Forces
Roof reactions considering roof as a 1 ft slab continuous over 3 supports Outer reactions $=\frac{z_{0}}{} \omega l=\frac{K_{8}}{} \times 200 \times 21.5=1612^{*}$ each -2 of them $=3,224^{*}$ Inner reaction $=\frac{10}{8} \omega \rho=\frac{10}{8} \times 300 \times 21.5 \cdots+\cdots \quad 5,375$

WT: of walls $=10 \times 150$ 㐘 1500^{*} each -3 walls $\cdots \cdots+\cdots, 500$
Wt. of foundation $=45 \times 150 \ldots \ldots \ldots=\ldots, 750$

$F_{A}+F_{C}=1612+1500=3,1,12^{*}$
$F_{B}--5375+1500=6,875^{*}$
WT. of water $=62.4 \times 20 \times 9=11,232$ *
Taking moments about left end of foundation
Dist: to pt. opp of res $=\frac{19,849 \times 221 \times 11,232 \times 33}{19,849+11232}=26.294^{\prime}$
Excentricity $=26.294-22.5=3.797^{\circ}$
Unit soil pressure $($ Max $8 \mathrm{Mm} \cdot \mathrm{m})=\frac{p}{4}\left(1 \pm \frac{6 e}{4}\right)=\frac{31,001}{45}\left(1 \pm \frac{6 \times 3.79}{45}\right)=1,04093 \mathrm{~m} / \mathrm{ks}$ Increase per. $f^{t}=\frac{1040-341}{45}=15.5 * / f t$ from which unit stresses $/ f t$ at the various sections are as shown.

Horizontal force of water $=\frac{62.4 \times 9 \times 9}{2}=2521^{*}$ Pt. of app. is $y_{3}=3^{\circ}$ up.

Dimensions.

The walls were considored as 1 ft. tricick to elmplity ecmprations although they are 18 inches at the base and 10 at the top.

Weisht of Conerate.

Oonorete was taken at 150\# per ou. ft. and the base alab comaidered to be uniformiy 1 ft. thick for design purposes. This prored to be reasonably near to correct.

Ponitive and Fegative Yoments.

A positire moment was teken es one which puts compremaion in the top fiber. and a negative momont as one which puts compremsion in the bottom fibers.

Erom Diacram 1.

Mamnte.

$$
M_{y}=1025 \times 1 \times \frac{1}{2} \times 15 \times 1 \times \frac{1}{2} \times 2 / 8-150 \times \frac{1}{3}=+448 .
$$

$$
x_{G}=1009 \times 8=1+81 \times 2 \times \frac{1}{2} \times 1.85-7581-5118 \times 1-
$$

$$
150 \times 2 \times 1=-7378
$$

M_{D} (By forces to right). - $699 \times 22 \times 11+841 \times 88 \times \frac{1}{2} \times 14.67$ - 138, 880 -7561$5112 \times 80.5-150 \times 28 \times 11-+4188$. (By forces to left). $=841 \times 28 \times 11.5+858 \times 23 \times 1 \times 7.67-8112 \times 81.5-$ $6875 \times$ 굴 $7881-150 \times 28 \times 11.5+4170$.
$Y_{C}=10,082$.

Computation Of Above Forces
F_{A}, F_{B}, and F_{c} are as shown on diagram 1
All forces due to water are as shown on diagram 1 with exception that both tanks are 4.4%.

Total wt. on soil $=19,849 \times 2 \times 11232=42,312 *$ (with no eccentricity) Unit sol pressure $=\frac{42,312 *}{45}=940$ *per sq. ft.
y $=-1158$
$M_{A}=+98$
x_{A} - - 8781
$\mathbf{M}_{\text {H }}=\mathbf{1 4 , 4 3 6}$

Shoars.

$\nabla_{F}=-1035+150=+885$
$T_{\text {m }}=8112+150 \times 2-1085 \times 2=+2887$
$V_{D}=-\frac{1789}{2} \times 28+180 \times 28+11,238+8112=-1475$
$\nabla_{0}=4868$
VB - -2698
$\boldsymbol{T}_{\mathbf{A}}=+800$
$\nabla_{G}=-886$
$\mathrm{V}_{\mathrm{H}}=+802$
rements.

Trom Dierren 2.

$y_{T}=940 \times 2 \times 1-7581-8112 \times \frac{1}{2}-150 \times 2 \times 1=-7587$
M_{D} (By forees to right).
$=940 \times 82 \times 11-11,288 \times 10-7581-8112 \times 20.5-150$ $x 11=+7488$
(By forces to left)

- $940 \times 25 \times 17,8-6875 \times \frac{1}{8}-7581-8112 \times 21.5-$ $150 \times 23 \times 11.5-11,288 \times 11=+7476$.
$M_{0}=-21,457$

Forces Acting On Base Slab Both Tanks Empty

Computation Of Above Forces
F_{A}, F_{B}, and F_{c} are as shown on diagram. Forces of water are lacking and there is no eccentricity.

Unit sol pressure $=\frac{19,949}{75}=441 \mathrm{lbs}$. per sq. ft.

$$
\begin{aligned}
& \nabla_{P}=-940+150=-790 \\
& \nabla_{\mathrm{H}}=-940=2+8118+380=+1888 \\
& V_{D}=940 \times 28+11,882+8112+180 \times 88=-8,056 \\
& \nabla_{G}=-778
\end{aligned}
$$

Inom Diargem 3.

Icmentis.
MI 145
$M_{\mathrm{g}}=-974$
$M_{D}=-11,784$

Shoars.
$T_{P}-291$
$V_{\mathrm{E}}=+2580$
$\nabla_{D}=-8890$
$T_{G}=-880$

Maximum momonts and shass at ceah section - moments in ft. Ibs. and hoare in Ibs.

Sotion at which itrass oceure.

Moments		1	B	0	C
	+	448		,	10,082
	\cdots		7557	14,486	
Shoas\%	+	883	2880	308	4,868
	-	790	8698	886	8,056

yoments at other sections eorreapond to the abore.
roment 5 ft. fram partition wall for forcen m diagram 1.
㛺 $-5112 \times 15.5=-7,890$.

Moment 2 ft. from partition wall.

- $841 \times 80 \times 10+818 \times 20 \times$ 天 $\times 6.67$ - 8118×18.6 $150 \times 80 \times 10=+1,400$

The abere compntations show that the moment is 0 1 diatance of $\mathrm{g}_{\mathrm{E}} \mathrm{ft}$. from the partition wall and that the rods should be carried abont 1.5 ft . each way boyond this point to meet any unforseen conditions.

Depth of Blab.

Seetion B.

$$
a=\frac{7557}{74}=10.6 \quad \operatorname{seg} 111
$$

Section 9.

$$
4=\frac{14,486}{74}=13.95 \quad 88514{ }^{*} .
$$

Seotion C.

$$
4=\frac{10,088}{74}=11.6 \quad \operatorname{sen} 12^{n} .
$$

Por adrantagen of miformity the 14 inch aspth with total dopth of $16 \frac{1}{8}^{\prime \prime}$ will be uned throwghout.

Steel

题 Partition Well.

Try §/4" roun rods spaced $6^{\prime \prime}$ on contern acm $=0.88$

$$
y=\frac{18}{b d} \frac{.88}{12 \times 14}=.00525
$$

Trble 5 of hendrook shows for $p=.00585, k=0.895$ and

$$
j=0.901
$$

 11,180 ft. 1 be.

Thene rearle all show the reaisting moment to be alightiy higher than the actual moment and honce the arrangement of steel is matiafectory. Make thme rods extend 4 ft. esch aide of the conter or 8 ft. long.

At Contor of Tank.

$$
A_{1}=.0069 \times 14 \times 12=1.16
$$

Une $8 / 4$ inoh round rode mpaced 4 inches on contars. 1 in $=1.32$ Hom these rods within 1 ft. of the partition wall and to the outhide of the formataion.

At Beotion 4.

The moment at 1 is so mall that an arbitrary amount of atcel can be usod, any in inch rods apacod 18 inches on centari.

Inveatigation for shoar at worst nection.

$V=\frac{4,868}{12 \times 089 \times 14}=88.6$ 1bs. per eq. inch. - Satiafactory

Inreatigation for bond at morat anction.
$u=\frac{4,863}{2,356 \times 5 \times 0,889 \times 14}=55$ lbs. per mq. in. Satiafactory.

PIPTIS.

The piping was simplified when information was received from two different sourcen that boosters would work. Accoraing to the Sullitan Machinery Company's Bulletin 71-H, the proper alse booster to handle a discharese of 150 galions per minute, if 50 inches in diameter and has an outlet pipe $5^{\prime \prime}$ in diametor. A muation line already in the groma, for the purpose of priping raw river water for fire ume ghortenod piping design still more. This linc is so large that it can be used without question. It somed adrianble to use check raltea on the beosterm and run all wells into a ccumon line inoreasing the aise of line an anothor well was added.

Area of 5 inch pipe $=19.655$ eq. in. " 8 . $\quad 50.265$ mq. in.

To aroid unang soreral sises of pipe it semed desirable to use 5 inch pipe to the point where the eecond well joined and 8 inch frem there to the reserpoir where the fourth well joinod. Inside the reservoir 10 inch. This gives a greater inerease in area in evory ease than the addition of flow from a well calls for.

WRHI PUMPS.

The only design neoded for well pumps is the -levation of footpieces. since static water levels were found to be practically the eame in all wells the operating levels wore reasonably asamed to be the aine. Hoight of point of incharge wae takem as a theoretical point whose al evation is elevation of discharge pipe at reservoie plus fractiomal lose in booster and pipe line. These lossec could not ic compated hy hydravilics because of the problem in the booster but from dete received from the Sullivan Kachinery Compsan it secmed safe to take it an 6 ft. Hocossary operatinis anbmorgonce man taken at 55\%.

Hevation of disaharge pipe at remarvoir	$=846.00$
Head loas	$=\frac{5.00}{}$
Hheration of discharge point (Theoretical)	$=851.00$
Heration of atatic water leval	$=810.00 \mathrm{ft}$.
Dramain	$=100.00$
Operating aleration	$=710.00 \mathrm{ft}$.

851-710 = 141 ft. = total lift $=40 \%$ of required length 01 pipe.

Iongth of pipe (Fheoretical) $=\frac{147}{45}=818^{\prime}$
851-512 = 559 = required elevation of foot piece.

The greatest bottom elevation recorded for eny well is 587 and as there is much silt in the bottom of the wells it appears that this elevation of foot pieces will be satisfactory for after the wells have beem pumped a few houre the ailt will clean out and give ample clearance.
$\ln 18$

