x, - 'u . v- ~ ‘ .‘.:1'... ”4“ ‘ .It . , ‘s “-1 "I ‘.‘ ' a §. 0 .' ' 6.‘ :R':‘V~; 3" ‘ ~ ' o ' I ‘ ' ‘ ‘ ‘ , . Q “ .' z ‘ L w... h ("if 'L‘? 5‘ ~ ‘;" ‘; -. ' .l ' . . I ‘. k‘ -I . ‘ A u I .2]. "fi‘cftflo "‘ ‘1 Y 4" '7' ._ ,. I“ .“ -- .u'.-'I~C"Hq‘.. .‘ ~ ‘.]"\".g".' a; ‘ r VTE’ “a “3'33: Wu ' ' ‘ ,' ,y. LVN‘ 0-5 I. Q ‘T: 55:21 .7 ' l” D s a»! V ‘é- 13:7. f5 ‘. q ,- I‘m m.- ‘J u ‘5‘ 'i; 3’5 "h- ~9- . U 41‘ 'e.” ,1 ~ "J“ 01.‘ . . , .., g“ ‘j up: M: r? .:l*‘-w.‘.':~.-‘fi 4-3 IN?" ”.Ifia‘fi‘d'.‘ 3"»3' ' 5“ .J ‘ , .7 J H I .»"'.:.'J- ”\é‘:' ‘ ' .'.‘:".-. ‘, v- , .. -r.,"‘~- . ‘ w u...“ ..;, 9' . - ’- Situh~u ‘K‘. ."‘I .’ : .-..::!~.h’.l~."a-. . 3“! ' i ‘ .fih- ‘ ‘ ~ I I ‘ I '\9 -. u. . o, . , , - ‘ ' fir‘. '-' 3:45... ‘31; Q .4 ‘h" . "u.“ ‘ _ I - " " '- ' " ' .ffi- ,\ “15:. . ’y'..h .‘nt _ o ... -. . . c Q “h. 511‘}, I‘::~:";.'"' h. . .tts ';'I§J‘O' , . as. ‘ 3'2." ”by '~.- 8 ' _-. u‘ c. . \s ‘p N h. y‘a- . \ , .. . V. ~. 8 l. ,‘):(I‘ ,t " .‘ gfiw-zktg . 3h? ' . t... ‘t:;‘ i-uutg ",~'~.' ' U ‘5' , . u. . . “" 5w... ‘ is u . ‘3 r. ." .. "\_ ‘H; “‘suw MCHIGAN STATE UNIVERSITY LIBRA lllll/flllllllfllll II!!! III III! III llllI/Il/llflflllfil/lll 93 50026 1 PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. rem-- 6/07 p:lClRC/DateDue.Indd-p.1 ooxoirrontno MUNICIPAL WATER SUPPLIES A Theeie Submitted to the Faculty of the Michigan State College, Beet Lansing, Michigan. by Olaud Robert Erickson Candidate for the Degree of Civil Engineer June, 193k. THESIS TABLE OF CONTENTS Chapter I Methods of Conditioning Municipal Water Supplies Chapter II The Chemistry of Water Conditioning Chapter III Standard Specifications for Chemicals Used in Water Conditioning Chapter IV Determination of Quantity of Chemical Required Chapter V The Dimensional Homogeneity and - Dynamical Similarity of Models Chapter VI Calculations for the Design of a Lime-Soda Ash Treatment Plant Chapter VII Calculations for the Design of a Zeolite Treatment Plant Chapter VIII Calculations for the Design of a Lime Zeolite Treatment Plant Chapter Ix Comparison of Investment and Operating Costs Chapter x Conclusions 95066 Page 1 - 29 30 - nu #5 - 51 52 - 67 6s - 7o 71 - 89 9o - 9a 99 -106 107-121 122-123 METHODS OF CONDITIONING MUNICIPAL WATER SUPPLIES. Chapter I. It is the intention of this thesis to present in general terms the methods used in the conditioning of municipal water supplies. Three of the principal methods are discussed in considerable detail, viz. lime-soda ash, zeolite, and lime- zeolite. There are three principal sources of water for a muni- cipal supply, viz. surface (lakes, bays, rivers, etc.), ground (from gravel or shallow wells) and deep well sup- ply (water obtained below the glacial drift). Surface water is usually turbid, may be colored varying with the season, has a relatively small amount of scale forming (hardness) elements and occasionally has an odor. In the conditioning of surface water, sedimentation and filtration is generally required to remove the color and odor. Chem- ical treatment is generally not necessary except the addi- tion of a coagulant to form a floc to aid in sedimentation and filtration. Liquid chlorine is usually added for sterilization. Of the 28 Michigan surface water condition- ing plants listed in the ”Census of Municipal Water Purifi- caticn Plants in the United States” by the American Water Works Association, 22 plants use coagulation, filtration, and chlorination only; the other six plants soften as additional treatment. Ground water is usually clear but may contain cal- cium and magnesium which, combined with sulphates, chlor- ides and carbonates, form scale and requires considerable soap to neutralize before a lather is formed. Ground water may be contaminated, requiring sterilization for domestic use. In general terms, the conditioning of ground water will require a chemical treatment to reduce the hard- ness, and sterilization to make a safe drinking water. Deep well water, from sandstone or similar formation, is usually hard, clear and odorless. Treatment of this type of water with lime or lime and soda ash, or zeolite is usually sufficient to remove the excess hardness. Water having a hardness of less than 137 p.p.m. (S grains per gallon) is considered soft. When hard water is conditioned the hardness is usually reduced to 85 p.p.m. (5 grains per gallon). Water, to be acceptable for drink— ing, domestic and industrial use must also be clear, pal- atable and free from odor. Hardness in water can be classified as either temp- orary or permanent. Temporary hardness is that which is removed by boiling. Calcium Carbonate is only slightly soluble in water, 15 p.p.m. When carbon dioxide is pres- ent in the water, the solubility of calcium carbonate in- creases and it is converted into bicarbonate. In boiling the carbon dioxide is driven off and the resultant pre- cipitate is calcium carbonate. Permanent hardness is unaffected by boiling and consists of the remaining car- bonate and sulphate salts. The solubility of magnesium carbonate is 100 p.p.m. Boiling may cause hydrolysis of some carbonates and sulphates to produce less soluble compounds (basic salts and hydroxides). These will also be included in the temporary hardness. Dr. Clark of England in 1sN1 discovered that by the addition of lime the temporary hardness could be consid- erably reduced. The addition of lime to hard water, either as calcium oxide or calcium hydroxide, removes the carbon dioxide forming calcium carbonate. When the carbon diox- ide is removed the remaining carbonates precipitates ex- cept the small amount which is soluble. Lime also produc- es magnesium hydroxide which is very insoluble and precipi- .tates along with the calcium carbonate. The permanent hardness can be removed by the use of soda ash (sodium carbonate). This chemical changes the calcium sulphate to calcium carbonate which is removed as a precipitate. Water can also be softened by passing it thru a filter bed of zeolite mineral. Zeolite is a compound of almninum, silica and sodium. It occurs both in the natur- al state or it can by made synthetically. Zeolite has the -3... property of exchanging its sodium base for calcium and magnesium, consequently it removes both the temporary and the permanent hardness. The process is reversable, after the zeolite bed has absorbed its capacity of calcium and magnesium it can be regenerated into its original condition by passing a solution of sodium chloride thru it. The so- dium replacing the calcium and magnesium in the spent bed. The water obtained by this method is of nearly zero hard- ness. Stations using this method by-pass part of the un- treated water so the resultant water will contain about 85 p.p.m. hardness. In some cases it may be more economical to remove the temporary hardness with lime and then treat the perma- nent hardness down to 85 p.p.m. withzeolite. Permanent hardness can be removed by the zeolite for about one half the cost of removing the same with.soda ash. In a station using this method, the water is treated with lime and a coagulant, clarified, recarbonated and part of the water filtered thru zeolite filters and the rest thru sand fil- ters. The amount of water filtered thru each kind of filter would be dependant upon the resultant hardness finch would be economically desirable. Hardness in water causes a loss of one-fifth of a pmum.of soap per 1,000 gallons for each p.p.m. of hard- - n,‘ ness. Assuming a water having 400 p.p.m. of hardness, serving a municipality having a population of 80,000, and that the average use of water for washing and laundring .is one gallon per day per person and soap at ten cents per pound, the economic loss to the municipality would be 350% per day or 318%,000 per year. This amounts to $2.30 per person per year. These figures are based on the hard water and no allowance is made for households with domes— tic softeners. One pound of lime will soften as much water as twenty pounds of soap. Assuming the cost of lime as $12.00 per ton or 6 cents per pound and soap at ten cents per pound, the cost of softening with lime is only three-tenths of one percent that of soap softening. Of the total water pumped into the distribution, one percent is used as a cleansing agent. The following data is the result of a retail soap survey made in Chicago Heights, Bloomington and Urbana, Illinois and Superior, Wisconsin by the Illinois Water Survey engineers. Superior, Iia. Bloc-ingten, 111. Urban, Ill. (hieago Heights, Ill. Lansing, lieh. (letinated) luperior,lia. Bloomington, Ill. Urbena, Ill. Chicago Heights, Ill. Lena ing, Mich. (Estimated) Superior, lie. Bloomington, 1’11. Urbena, Ill. dingo Heights, in. Lansing, Iieh. (Estimated) Population 36,113 30.930 33,h08 22 ,321 50,000 Annual Per Capita Coat of Soap t 3.60 “02° 5.58 7-27 6.20 Total Hardness of Water Supply pepo‘e ll5 70 298 555 MO Annual Per Capita Soap laete lb. Base 3.3 10. It 17.x 12.5 muglap Per ita Coap Con- sumption,lb. 27.5 30.8 37-9 Mag “0 Annual Per Capita Soap laate Base 0 0.60 1.98 3.67 2.60 Average Cost of Soap per lb. 8 .131 .136 Water pumped to the mains is used for the following purposes: Residential consumption 30 percent Commercial " 30 percent Industrial " l3 ” Municipal " 6 " Street sprinkling Sewer flushing Fire extinguishing Paving, etc. Loss in Distribution, due to Leakage 21 " Underregistration, etc. Total pumpage 100 percent Before an intelligent determination can be made on the type of conditioning process best suitable for any given water, the following factors must be thoroughly in- vestigated: a. Condition of water bacterially. b. The chemical and physical properties of the water. c. The amount of temporary hardness. d. The amount of permanent hardness. e. Amount of dissolved gases. f. Location of conditioning plant in regard to dis— tribution system and disposition of sludge if a _._ 7 _ The treatment 8.. lime and soda ash treatment is indicated. Turbidity and nature of suspended solids. Cost of chemicals, lime, soda ash, and salt. advantages of the lime soda ash method of treat- The resultant water will be safe bacterially without further treatment. This process is more suitable for turbid water. The water contains a lower amount of total sol- ids than the raw water. Treatment can be controlled so as to avoid cor- rosion of distribution system. The water required for filter backwash is only 2 percent. disadvantages of the lime soda ash method of are: Disposal of sludge may be a problem. This may be the determining factor in the choice of treatment. _ The initial cost is more than for a zeolite plant. Operating costs may be higher than for a zeolite plant. Occupies_more space than a zeolite plant. The are: I033 are 8 b. 0. d. advantages of the zeolite method of treatment The resultant water will be soft regardless of changes in composition. to sludge to dispose of. Lower initial cost of plant. Lower operating cost. lo excess chemicals required. Does not require the use of skilled labor. Hardness may be reduced as low as desired. disadvantages of the seclite method of treat- The resultant water contains a larger amount of total solids than the ram sneer. Possibility of corrosion due to lack of chemical balance to calcium carbonate. i! ran eater is not safe bacterially, the soft eater must be sterilized. The quantity of wash or rinse water may be 10 percent of the total Inter treated. Turbid tater requires filtration before treat- ment thru seolite. There are several plans for controlling the hard- ness of seelite treited eater. a. The zero-hardness water cgn be mixed with the proper proportion of hard water for any resul- tant hardness desired. This method is not satisfactory if the raw water contains consid- erable iron. b. The iron can be precipitated by the addition of lime and allowing it to settle out. o. The raw water to be mixed with the zero later can be aerated and filtered before mixing. The conditioned water should have the proper rela- tion between the alkalinity and the pH. marts 1 and 2 shows the proper balance. These curves ere known as the calcium carbonate solubility curves. The values shown are for the solubility of calcium carbonate in distilled water at 22° C. These values are approximately correct for natural water which is low in soluble salts. Iater high in soluble salts should be checked by making an actual determination of the calcim carbonate solubility. Inter treated to the lower curve will not stain toilet fixtures but there will be an occasional occurrence of ”red water“. later treated to ~10 - "i multiplexii- , . . _ s an . ow. . ow. 8 a 9. M . e _, s m _ _ . '- I I A I I I I I I I I .4 ..-—4 _. I -r-->‘—‘ .. < I“ .g . .L.. “- he: I" I .I ;“ ‘t-'--.I I “I I r T I . - ‘ I ' ' - > v W———-—~—hv~.o—.‘m—‘- - v . . I . . . . - . - wIIvIIIII .IIIOIIII I I-t ITIIII III I I V -Ii I ' I I I I u I I . ts..IO . : . -‘ . - s I - . “...-.4”...- JL...“ I - L I I . I I I I l- I I I ,4, I . . . , .. . .. . A . .L‘.II‘|II-v‘~.lut.li ItItflllIlI-IIICIIII.IIIIIIVIIIIIYIIIIO‘I'IIIIFII‘IIiI-im . a i _ .. L . .. .y s . . . .. . . a 4 . u, .. at... want—u use; our-.540 z. a w o O O I . . . . . - .‘ . ~Q.-“.—q-$—-p.>_-_... -. . s . I ~I inimgwam--- mun... .1 t 1 I ¥ I I .. I ‘ .‘ . O I -e I I _L 7 1.- I I .._._I_- -.l - I t I I I I I» p ... . . .. v . u .... .. . . e. ._ ........ .. . n . .. . .- I: Tux-L.-- .--..-. ...... . .. .. .- . .- fi..~ M Mr... ... ... . . . , a . .,. . . . . e . , . . ... .. . . _ IIIIOI. I» iI-I+ IO'I‘III'L . III IIIII roll-It|ut.l . . . . . v.. .. o . . u . . - . . . w H § ' v . O. . — t. fits-I o I“ i.|II. ..III. .A "..I ”I . . e. o w , o. 8 As. .«.A . . . . ...rr.I n. . I.I .F I. . ... A 1..h_ v. ”I a . .e . cl. I . “.... ..w . H... . . II. .._ v'leele.' .I'xvl- I e .1“ . _ . H . . . _ . . . ._ . , . I. _ 4 -- III-v III -L.l-III . u.. . . . .. .. I n. h a ..H . M . . .e A Iwoenvif. evl o- . I. 4 . . .~ _ m . n . ~ 'r. [In .1 - t.z:<5diz»~-...--... .- mII- I..-- _ . s _. I IL . . . ..- . _ . . . . .‘IIIII II It. IIIIflI lI-lrIIII.1I‘IAPI I III v.4 , I, . . . . .. . .. . . . . . . _ . - . I. I.- .II.i II . 0.3.0 . i .. . . fl . a . . -. . . . .. . m . .... .- , IL -.. - _ f. _ . H ._.H ..L rII _I. . _- 1 fl w a o . I I V I I O f‘v I l . . .$ v . l e -. . .- *mVsF—‘->r I. I I I I I ...Ir -4 -14-...‘.;+_._2..g--. -. : I i -i .. n -- m©f.fl-.;; ...n . I -I L- IIIIIIQ‘I. IILFI‘lIII wIIII IIIILIIIII- ‘..‘I rang-.58 2.333% .0- I °+- :.--.;..—4»-. . . I~s e ' . . . . T.- --Mg £5433 x IO] ALKAI I. J'TK \AS C6.CO3)8- cod. ARE IN PPM. C. JAL LIATIOF‘J ”I I \II’IATCR g (3 """-O m 7 I V 9! r 7 (111] Y'HIIHII'W‘IIIII'IWI I I 1"? I R MIL L !f‘I .- .— I Y I I I LAPTQ p VVFHLN CHART 44 ’1) TIIII .I \OI. I\.III I'IJIIIIIIIIII . . . . _ a M H m H . .I ..I I. IIJ. . w m . . . . . . _ . u . . . . w H I o . . . v a v I I . y I w I III I. I IIIoI ~.I o '5 . ¢ w _ M u .. A g . . . m . , . . , . . . . . a . . I I IIoI III» II ArI III I.. I l IL I I I vII I IIIII I I II fin I IIIw IIIII III . II. I I-I IIIIIL III' III. fiIIC NII+IIOII I I.. . _ . . . . , . _ _R . _ v . I. . _ fl . . . * A § . . . . . o I . * I. III I- . I r I . «I .1 . v . . . . . ,- . . w . . w . m * .H . . _ . . . o .- . . _ u . .. . n I I III-WI I IJrIII I I M IIIIII . A ”I II 4 I I PIP _ _ . . a 3 i _ -. , . . . . . . . a . m _ fi . _r f“. fl . u . . . . . . . * . . . . I . . _ L w .- ~. ~ . . w ‘ IA 0 a 4 A I . I a I . v I; .I4I .II‘III.0 I II .l.44II and I I ha II I I II JIIYI . .4 M _ . . _ _ n u + . , . H . . . - . _ M n. . a . .~ .~ . . _ v . . . . ._ , . .... .. I .I u I II I .I I I. II I ;I III . rI .. II I I. .III :II L II. II . I I IkIv IIIII .I I v.II ..II—I II II: VI III II4 IIIIIIII.I;_7II III III “IIIIII‘TI‘IIIII.i III III-«III VII I IIII+ I. II IIIII . - . _ . .. . - . - . - . .. w _ ,_ . . . H _ . . .. . . . . _ _ . ‘ ~ . . . . “ - . . . _ . . . . . . . _ . — .. I o . I I I . I L 9 I . . I I . . ID. no I II.I I I . I .I»... I. IIII ..... .I. IIIIII I I II I I ».I . _ . . fl _ . . _ . . - . M . _ .. . . . . ¢ . . < . .. - . . 1 . I ‘ _ . . a _ . o . . . o. 4 I ... a I. . . . . I .- I w .I _ .. M _ . . . p I I J. I I _ . < .- _ . . . H . . . w\ . . M . . . . I . . ,I . .- . . . .. o . . . . . - . .. I * - 4. I. I. ..I .c I I. A . .I .o . I A_ I I r I A I I WY I. .n . . I.¢.4II.I. I 1..le , . . - ‘ . . .. I . l ._ a . . u. o . _ v . .. h to. . I .. - . ... . . . . _ p . . _ . . . .. o .. . I t .I I LIIII 1‘.qu I: I I I I - tIIII “ III I o FIG... I III ‘YI .t It “I u I“ .IVIIILTIII If .II. I .P. I I I I“. ’I IILf.I . Li I ‘ . DI .vItIIOL‘IIII IO-IQIII.IIIA ‘ _ I H “II 7» . . _ . $ . . . 1* . .. 4.. I“ ..1 . . . . . . a . ~ * . . n“ .l - .. . I a .I . II . _ . . .. . . . 4 . . . a I . .a I . I . .. . . . — . . . r . ._ I. I s .._.. .- . - t. w t. - W. ..- . . . . . m - .- T ..-..I -.....-..L: r11: fl . . . : . ...; . .. .r v. . c m . ‘ . . . . . iv. g v Q .I I r.» w . p b r . ~ _ I» .. b I ,. I . ~ . I . . _ . . . 4 . . b .. . . L. . I I - _ I I . I I _ - I 4 J- . . . . . a . .. _. H . . . . _ . . W t . . . . w . I . ... I . _ I. . .- .. .7 . .. . H . .h...... . fi . v a IIIIIII II I o IIIIIIIIIIIVI It I b I IIIIIVI IIIIIIA IIIIIPII IIIII . III-II 0 I III I . . _ h _ H . ._ . n M. . _ u . — . - . . . v . . ._ _ v . . . I I .4 II I I I u I a IIIIII a v- * III I “I II; M H . . .. . I- . . H . . _ . _ III I I II .I I w I. » . . — H _ . . m . .. . fl . _ . . . . _ .. . I . o I‘ u I. OI t I..g .-a4I . . _ .. . _ H w . a . 5 O ‘ fl - . . . o . . . .. I I I OH II 0!. I4 IOIoIIIIIIwII fiIIIIIII¢IIII.I IIIOWII IibIIIA 4|I .I _ ._ h m g . m . . W . . .. . q . . m p. 4 p _ a. A I . 0 Ir I a . H . 1 ..H. o“ .l I“ _ I. s. .d. .I c It 4 “I . . _ « . . u . .- ... .. u _ r. w u h m . _ . L I IIIII II A I {M - . _ . u I f. C . . m . k - _ . . . - . . . . . fl _ . .c H o ‘ I . . s I. ml . ¢ ...... o _ ~ _ . n . a _ . * _ . .H . . n - . . . . _ . . . .. . , _ . ~ I . IIIII I I. II I .. II I v I I--. II I 0 II. 0 I III“! III. III . .I.I|..I III IIIIOIII. - sII «ID-u vII-I...Ol"u|.’..n‘l O ‘I III _ . a . . . . .. .‘ . _ . . .. . _ _ . a k . . . .. w . . . . p 0* l c * . I . .II I ll ‘0 I . _ . _ . _ H . _ . n . . . : . . . u . w . . . . . . Mml .. ._ I I I by V II . I I A 4 A a . . _ . __ . H . a . V . . . . . N a . . . u a . . _ W 2. . . . - ..-...“ .- - * «Inu- - - ..- - -- L . . . . . . . . . . . . h w a I I - I I I , I ~eI mi I K‘s-II '*--I . 21 ' WWI}:~| 4i , ..awg-mm§-s mm-mwm- E... u- I... . I". II [I .IIIII I . the upper curve or higher will for. e protective coating of calciu cerhcnnte. The precipitnte will for: only on eolid eurflcee if the treetnent ie on the upper curve but it it ie much higher, calcium cerbonete may be pre- cipitsted throughout the eoluticn. After the formation of e protective cceting the treatment ehculd he to the «turetion curve or elightly above. By eeturetion or eclubility equilibriu ie meant the point at which the water will neither for. nor dieeolve celoim curbonete. if the wester conteine cerhon dioxide thie rector wuet an be ocneidered. The pH nuet then he edJueted by the eddition of eode eeh eo the» reletion conform to the following: . ' 3003 Free 002 f pa 4 15 p.p.m. O p.p.m. >8.) 100 ‘ <1.75 J. 8.1 200 < 9.25 1.8 300 436.00 77.) >300 >llo.oo 77.1 The reenltent water will then be non-ccrroeive. mm It ie eleo ueeful for the detenineticn or fectore which heve e heering on the condition of the final Met. Thie chert ehowe the relntionhetween c.1- minty, oer-hon dioxide ad hydrogen ion (pH) concen- ‘11 '- traticn. If any two are known the third can be determin- ed by alignment. To prevent after precipitation when using lime—soda ash treatment, the clarified water before being filtered should be carbonated. This is accomplished by the use of carbon dioxide. 'Coks or oil is burned and the flue gases passed thru a scrubber and then a compressor. The oom- pressed gas is then released under water at a depth of ten feet. Ninety percent of the carbon dioxide in the gas is absorbed by the water. The flue gas will contain approx- imately fifteen percent carbon dioxide, the remainder be- ing principally inert nitrogen. To eliminate most of the incrustation of the sand in the filter beds the water should be carbonated to a pH of s.u to $.6. This will also prevent deposits in the distribution system. Calcium carbonate is the least soluble at a pH of 9.4. If this value is used for recarbonation colloidal precipitates are formed and will crystallize and deposit and cause in- cuustation in the filter beds. Recarbonation also re— stores to water a sparkle and makes the water more palat- able, removing the flat taste caused by the addition of Jdme. The life of the filter beds are also materially inc>I'eased by recarbonation. As a general rule the life without recarbcnation may be 5 to 6 years and with re- Carbonation this may be extended to 12 to 15 years. _ 12 _ Ir. Charles P. Hoover lists the design requirements of a line soda softening plant as follows: 1. To require a ainism aacunt of labor in their . operation; 2. To be practically dust proof; 3. To provide for an accurate and uniform applica- tion of the softening chemicals, thus insuring a ainimn of variation in the hardness of the softened tater; h. To make possible the reduction of hardness to practically the theoretical.sclubility lisit; 5. To produce water in chemical balances and there- by" eliainate the building up of incrustations or deposits in the distribution system, or red! water trouble in hot water heating systems; 6. To be capable of softening auddy ester as suc- cessfully as clear ester and should eliainate entirely fro. the softened water all turbidity, practically all color, free carbonic acid, iron, sangsness, hydrogen sulphide, harsful bacteria, ebiecticnable tastes and odors. “KW There are tsc distinct sethcds of airing the cheni- Oals with the water to be conditioned. One nethcd 'is by the use of baffles and the other is sechanical agitation. -13- Ip. There us many different arrangements of baffles, the ones commonly used are the over and under type and the around the end type. Ieohanical agitation can be accomplished by means of paddles mounted on a vertical shaft. One type of mixer has horisontal shafts, normal to the direction ‘of flow. The paddles are also normal to the flow. Another type has the shafts parallel with the flow and the paddles also parallel. This type tends to give the water a spiral flow. heat types start with the mixing at a high rate and ' as the water progresses in the tank the rate of mixing de- OIOHOI e Oars must be used in the design of mixing equipment so that the energy required will not exceed a head less equivalent to one foot. Losses above this figure are pro- bably not Justified. After the chemicals are added to the water, the re- sulting particles due to the precipitation may be from 500 t0 5,000 per cubic centimeter of water. The function of finishing the mixing with a slow motion is to coalesce these particles so there will be 5 to 10 larger particles Der cubic centimeters. This bringing of the particles to— Eether so they will settle out. more readily is called 'rlooculatiod' and is the primary function of the mixing fink. The time necessary for flocculation will vary with -1h- different waters but as a general rule, 30 minutes will be required. The accepted design velocity of water thru the mix- ing tank is from 0.5 to 1.5 feet per second. The velocity must not be too low or sedimentation will take place in the mixing tank. Velocities of 0.3 feet per second will permit sedimentation. The proper velocity will depend principally upon the type of floc produced. If the floc is light or weak, a low velocity may be used but if the floc is heavy or strong the velocity must be high to pre- "m sedimentation in the mixing tank. The mixing tank should produce as strong a floc as podsible. This will result in better clarifying efficiency. WM lmhoff states that sedimentation in smoothly flowa ing water, provided a certain velocity is not exceeded, goes on Just as in still water. This limiting velocity has not been determined, but lmhoff states that it is surely at least 10 feet per minute. Very seldom will velocity affect sedimentation. lhether volume or surface area is the controlling factor in the design of clarifying basins has been a.conp troversial subject. Encode abductions from his experi- - 15.. mants was that sedimentation depends only on surface area and not on depth. it is customary to rate clarifying hep sins in the retention time, which will consider only the volume and neglects the area. Imhoff's conclusions were that for granular sediments, area was the true criterion and.for floocular sediments, volume or time was the true criterion. Both classes of sediments may occur in water conditioning and the type of water and treating will imp dicate which factor should be given the greater consider— ation.in the design of the clarifying basins. lerrill lists the following items which must be de- termined in the design of clarifying basins: l. lumber of basins 2. Length 3. lidth #. Effective depth 5. Velocity of flow 6., Detention time 7. Sludge storage volume 8. lethod of sludge removal 9. Inlet arrangements 10. intermediate arrangements 11. Outlet arrangements 12. Basins open or covered. -16.. The length of the basin should be at least three times its width. This is necessary to obtain good volur metric efficiency. lo limiting rates of the depth and width exists; this factor depending upon economy of comp struction. if no sludge removal equipment is installed, then sufficient volume must be provided for the accumulation of sludge for a 3 to 6 month period. In most cases it is more economical to install continuous sludge removal equipment. One of the most difficult problems to solve is that of the proper arrangement of the inlet to the clarifier basins. The velocity of water in the conduit from the mixing tank to the clarifier basin must be such as to properly transport the floc. This velocity will be from 50 to 100 times more than that in the clarifying basin. The kinetic energy of the water in the transmission con- duit will be d,000 times as much as the kinetic energy of the water in the basin. Due to this relatively great- or amount of kinetic energy the water to the clarifier basins must be started thru uniformly across the basin. There is a considerable tendency to create eddies and disturbances which may viciate the sedimentation action. Thiewhigh entering velocity may be properly reduced by - 17.. the installation of a perforated baffle. Another method is to use vertical slots. To aid the water in starting in.the proper direction short training walls may also be placed in the inlet, the length of which should be approx. imately 101» of the length of the basin. For the outlet, a submerged wier is sufficient. The loss of haul over the wier should not exceed one inch. The wier should extend across the entire end of the clari- fier tank. If this wier results in losses over one inch, auxiliary wiers may be installed to reduce the loss of head. The clarifier basins should be entirely free from all columns. If columns are necessary they should be either stream lined or round. The following data is from the water purifying plant at 8t.l.ouis, lo.: Detention Through Through Velocity time . Gates Blots ft.per min. hours ft.per min. ft.per min Presedimsntat ion 0 . 81$ 3 50 9 Coagulation basins 1.25 2 s3 16 ledimentation basins 0A5 12 1&1 8 -18... filtration is the last step in the conditioning of any water. The function of filtration is to remove my remaining suspended matter. The filtering material is usually a bed of silica sand supported by a well graded bed of gravel. There are a few installations using crush- ed anthracite coal . filters can be classed as either rapid or slow. The present tendency is entirely toward the use of rapid fil- ters. Blow filters are efficient for the removal of bacteria. Since the use of chlorine for sterilisation it is more economical to use the rapid filter and chlorinate if nec- essary. This fact is more concerned with the filtration of turbid surface water. later conditioned with lime needs no sterilisation. The filter should be designed to obtain thslongest possible run between backwashing. The same quantity of water will be required for backwashing and if the filter can be operated twice as long, the famount of wash water will be halved. ‘ The cost of wash water is the major item of expense in the operation of filters. The length of time that a filter may operate before backsashing is determined by the total resistance built up during the run. The econ- omic limiting resistance is usually on the order of 12 feet. -19- The initial loss of head thru the filter is approximate- 1y 2 feet. . Filters constructed with large sized sand grains will have a. small head loss, the length of filter run will be the maximum before building up excessive resistance but it may be necessary to wash the bed more often due to passage of f1 occulated materials . The conventional depth of sand in a filter bed is 30 inches, The present tendency is to reduce this depth. Several beds of 2h. inches are in operation giving excellent rfaults. The depth of the supporting gravel bed varies fr0m 12 to 18 inches. Present practice indicates that high wash rates are deglrable. 15 gallons per minute per square foot of fil— tel. area seems to be the present predominating rate. This is equivalent to a vertical rise of 2h inches per minute. If the temperature of the wash water varies with the season, the rate of backwashing should also be varied to obtain the 8sum results. Tests made at the Baldwin Filtration Plant, Cleveland, Ohio showed that the optimum of filter operation “as obtained when with the variation of wash water tempera- tSure the backwash rate was varied as per the following BChedule: -20.. ‘l'enperature of lnches Rise Iash water °l' per minute 32 - #2 2k #2 - 52 . 28 52‘. 62 32 62 - 72 36 72 (and 38 These tests closely checked the nasen fornula for “0 determination of backwash rate which is, . Rate - 30 4 1-5(1 4 0.060 x) (t 4 30) 180 where Rate is in inches of rise per minute dis effective sise of sand in u. t. is temperature of wash water in °l' x is percent of expansion expressed as a whole nmber. Filter send is usually rated by the tern effective “to. 'lffective else of sand is that also which is coar- '°1‘ than ten percent of the sand grains by weight. The ‘1ae of a sand grain is always taken as the disaster of a 'bhere of equal value. Unifornity coefficient is the 1‘ttio between the sine, such that 60 percent of the sand 1- finer than it and the effective use." -21.. w .- ‘-a. . cAo-e- -e--e «l mmw...m2......=2 z. oz4 ._—‘ --«4 ».—.-+ |02030405060708090 PERCENT BY WEIGHT FINER PHADT ‘ __l l ‘_ . --—. r. .— -_--‘-«__. _——- - 7.4— —_~—.—f .. .—. —— W v ~ - . ... . ..l_T.'I.... _' . . . . . . . . . . . . ..., _ . . . 7 . . . . . - . . e . - . . . _ . . ... . ' I . ' ‘_ ‘ ‘ o e e ' I .. h. - _ ma _. ..- _ .7 --. . - -7+.ll----- - - _._.__._.._ ._- .-_....-_--.___.---_.- -..—... .. _ . . . .-. .. .. .. . ..L.-..... . _ . . . . . . . . . . . — .. .. .... ' e - . - e . . .-a.- .7. . .. . _ . _ . _ _ 4 - - - - e ‘~ . c. - e I .. ‘ . g _ _ _ .—.—w_._ ._......__._.—-- —- --_._..,_- .H._._ -._. .. _ . . . , I ... - ' ‘ v. o . . . . l . . . . _ ._.. . .i e . ‘ . e . . . . ' . _ , "“ ‘ ’ e~- . - . . . . .-. . -. ..._*—_.._.. Wh-..__._.. -..... .-..— -..“... -. . . _ . _ ‘ __ _ ‘-w-‘ - . . . . . . - A . v . . a - e . ‘ r ‘ . -.- e , ‘ - . . , . . . ' —- .—___._— - . . -¢ a . . . . . 1 . . . . . s , \ ... . . . .. . , . . _ a . , . . . 4 . .— . —. .« e . . , - l , . . . . _ _ . . .. . . . . . o *. _- -..—w“, . V " . ‘ ' I ' . ' ' . ' U u I ' 1 .- ‘ Q . " .. .. ..-.-,......._ -... .n.. . .7.. . ... .. .-.e. “e- .. -.. 4.5. ...—..._... e» .... . . . _,_.,. .. .7 .e , _ ' ’ . . . . a . . A . . . . e .- ' . . . - . . , . -'—‘~—~ A A «..-—a L —— ._._...__-_.‘__...__.___.H-.._~__. ...- . -. ...l.-....._-_.__._.... .4_ _. ............ I .- . .. .. . .. .... . e . . . . I s e o J a . u . . e . . - . . . . .- - . . . . . . .... - .....- +4 § . n I. , . ‘ . . I . Q . e . . e. e A I y -w 9 C - u -‘4 . . ‘d—O--—+—.—c ~H-b-u-—' *0.- ——~ ‘——. - ' O. o - . - . . . 3.: - - .. . . . . . . . . , . ' O -- ' . —- . .. . . ,, . . . N— . . ‘ .. . . . . . .- . _ M ...... “Wm—-m -... -.e—__.-—._.._..-__.__-—_.-M# '— ' - l v 'w I . ¢ . w < Q s - . r be ' ' ~ .... .e . . . . . l _ ~--. . Y ‘ +- w 47- . . . . . . ‘ ‘0‘. u a . ~ ,. Fe .- M“ “F- -_—_.__—-. ...-_ ~ V ' t—e . ‘ ‘ " ‘ e—o - b- I v .7 - - . . .- .-. 4 ‘ e . e . V - . . - .- . . . . . -__ J - ‘ ,4 ‘ s . a... . - < »— a . . Nb; .-. fi‘ ‘ ' h I . r. . _ ‘ ...- ...... -_._ .§—..--. - __._ >__. - l .. , . . . . . . . y . . - . . . . . . ...._ -. . . . . . . . . . . . . . -.. . -. e e s e - e -e o o A . - - - - . - l . s . o ...- v . e e . . . ¢ . . . . _. . .. I . . . . . - . . . . I I . . . . . . . . . a . - 9 - - r . . . . - . . _ _4_ O I D ' I . . ‘ -.~ ' I l ' v . - . — . . 0 ~ . . . . . . _ . - . . . . . _ . . . . . . . . . . l Md—fi ‘.H*—_.—. A _. .. . . . . . . . . . . . . . . . . . . . . . - . ‘ . - , . . . . . . . . e e - . . . n . . . -. ..__._ . . . . . . . u e . 't . . , - . .. . n . - . . - . . . . . e . . . . - . y . . s O . s I . — u r t . . . . . . . . . . . . . i . ... . _ . . . ..f-.. ._ .._.- M“.-- TY‘Y Y . , . . . . . . ,. _ . .m . . e a— . - Q e I - . e n . . a . I . . . . . , . - - . . . . . . . . . . - » . . ~ . b . . . . . r L-._ _A__ A —_“‘-.q A v— V— ‘7 I ‘ -‘. D - - I O I d . ' C ‘ I ‘ Q C s A 1 l —' I "» l—I ~e e - e . I - - e a .7 . ~ A a . n e -a ’ 9 -o - . --.. ' ' H 4...... .. . r e . . _ ,_ .. . al._.4 ...-a e ; I e .- ... -.. . . . -.._- -— _- A . . ---d- ...— ___.-_.._,.-_ — - - - - e . . .0005 ._.__._.___._ ..-..- -~-~—---_.~ . o . u . . . . - A- 0—. ”-—.——.——~ ...-...-.. _ . e . . . e a . o . .. . . , -. .— e . .. ._ . . . . ._~ - , . . . .-- . . . . . . - . . e . ~ - . . . _ .. . . . u e e a .. -. . . . v ‘ . e . . . - - > . - . . . . >—.—.—-< . . .. . . 4 - - a - . . . . . -fi‘--__. -._l .0003 .0002 WEIGHT IN GRAMS a i . ... . 'LJ‘IJLLIUIITN no. N. «2 «2 v. "2 n! 1.‘ GRAINS IN MILLIMETERS .0000! I I 1 a a. II, III. ||.|I .Il' .JII"- III.DIIII»A..I .i. I I I v...- .II II! {It all!" ‘t..-.|\II..! .Il! Ii'lltl‘li |l.\ (1.! — . . . _. _ . ._ l . 4 . . M forznamoztmi H. ...M ,, ... 6285334. .n :5 <29 . _. l . W . H 4 n.’ IIVIIIIII ‘II .TII . i. . ... .I . .p . rw IIIII «lg I. luv. IIIIIIYuliulalrvOIeIfO; Io...“ . , e, . . . . l mnwruzr 2..., 3. 955819 I o I I i <17 carer. V ..— 9 I 9 ...—...r”- -__-,_- .II ‘It‘VI'QII.’ .. _ s --9 7r- H ...-......— <0 7-.. Y . - I _ 9;...— e H+F¢¢W' O P . - ...- o-‘ r :- rIII....I‘ t . at" 1.0"; ‘IIIIL «III...» I «e . _ . . . . ¢ _ , . l . _ . . . . _ _ » bl ll |fl 1 4‘ - . . . T T. _ . _ r h 1|! III}?! I I e I - fil . . l. . ~ I I -I IIIIII h w - \ It. LO I . v ~ . V SS - I ‘ ..¢.- .0 a - I v 3.. . . .23: 3 .D --.._' 4 § _ . l a; an“. —.. v I E. ..-;_T, 0 L H t I 0" >4". e -—e 4 v as ‘ ... q 1 Rho-- mmmkwijfli Z. 02~*-- -.. .....— 4- O . s o . I ——_o—-.Ab~._. I I I 2 I , r I I DAILY- , 3.0 .TYPIICAL..DAY . , seer. 24.1930 . I II! I I “I I . , I . . I . - Lflm A..-__.__.o_~—.- I- I I0. .. -I 7.4 ' 5- I . I AVERACE . —..O I I I I I . ——-u I I I I I I I I I I I _. .¢ . . . . I. ' . . - . . . . .a. -—w~- - -_L~—*-~ “...“. 6- WH~—--§— . —-~—-. - I . I I I I ~——-—~L—v¢o~-—m—.- '4 ? M. I I I o I . . . . , . . .. .p N. . . H . I I I . ...I. IIIAI l..-. ..-. - - . _ . . awe-— - 2350.- .e I 2.700" - 42A? ’ 306.0 I I 1' .. .. I .. - ANNUAL -EWW%G& 29 _ ......T... I. I I _ a I... I929 I I . ‘ _ UJU- -’.:-;I93' -1932 » \--,"._...;-.-.- -.-... H ’7‘ fl”. XL I I . I“ I I...I'I . , . . I. -.. . . . q _ w , . , u . .. H. . _ _ _ , . _ .o. -.x I.I..%.III h... ._ . .. My .- 59... mm ezejI . . .. ... . . ”.04. 4.. .0“ I”-.. . . .fi. _. . .. 4 ..o .... ..* ... o. . .. . .. . .... .I.... -. ok0~.. ... ..d . . . . 4. . _. . I _ 4 WIHOLH. ”I 49 on ..— .. h 4 . . . . 4..”.fi ~ua‘ . A.&4Ja ”0 a FL. . Yo...” ~‘.. _ . “L. 4. . .. . on. .A u .14 t bou‘ m..4 ....If.u 9.04 .5 U. . ._._ mu . . . .... .4 4 . . ..~. .. .. o . . .. . o N. ...Arhh....l..u .u 4. . .IQ I . . . . __ . . 4. 4.... ._4. . . . .... 4..u_. . ‘9“. u» . *rf .. 14.. .M . .. .. . .4 . .. . 4.” “Yr. v“. . .I . ”o a. _4‘s ... H . u... . . . ... . fi _ ... ...~ . . o . . ... o _ u 4 _ . . a . . . . .04 on.. ..I .»L a . . ..9 4 t .. . .. . .w 4. ..u . ... . "JIAIF... .Y. . . . . .I. . . . o . ~05 ..’ u... 5 . .p‘ .704 ...” ...o. . .I‘ . 4. , . . . ./ .. .. 44. 4.... . . .. ”For; ... ..4 w: a. . . .. . . . .I . . .4 I . > . . 4 ...¢.. .fn.. .. . .. h .40...J. . .. o. . I . 4. . . I. .+ . .. 4L~f.oI .. .. . ... ... . .. . a... vytov .. . 0.... . . ” . 4 . .... .._ ._ . .. .. . .4.. $7.. .... .. .Io .I.. . . . . . . 4 4 _ .. . .. . .. . ..I. . ... 4:... 7 ... . .. 4. .4 . . 4 4 .. . . ..44. ......4? i .L I.I . I 4 .. _ 4. 4 . 4. . . . 4. .4. . ._ ... 4 . .. a ...H 4 . 4 O. ...41 4; ..., 4. 4 4.4 .4... .... . 44.404. . .4 .4 .444 . 44. ”4. . _ _ oh '.I. o . 4 N . 4 ....IIJ ..1k . n . .m.. o o v w . 4 . . . ¥ 4 . ... . . .... m.. r.wr4H—.W .L.... .wIIIL . 4._ 4.. . _ 4 . 4 .I. . . ... o. I . _ 4 .4. 4* ...“... .. ._ I. 444%.. .....I 4.. e...” .” ~ 4 . . I .< .I. s. A . _ _ . w b _ ... .I. . I.. 4 A..”. h... .~ . 0c .5 ¢ . . 4_ 4 a H . 4 i 4 .4 . 44. 4 4 4 .. . . 4.. 4 .. . h . ... G. . H“ ... .. .4 4 4.. I. r o 4 .4. 4.44444_ .4... 4. . 4 444 : 44 4. a. . . _ . _ . . 4 .. A . .. up A u . d . . m. . i _ * .9. . I . .. . .OIu . . ..AI. .o_ I . Io. . ... . . . _ .4... .. .. 4. .. . .. . .. .. .47 . 4. :4. 44 .4 .... w .4 _ . 4 4 .... . .4 L. .-..I .4 4m. 4.. 4. I4” . o. . r 4. t v .. . .. . o al.v In. I . .. . .. fl. . ._ .4 4’ 4 _ a . .. . r A o ... 444A 4.. u . . L "4. .. .. ¢ . . . u .- .. ‘no‘Taolfi -. a... _ 4 4 .4 4 H 4 . . . .4 4. . 4 .. 4. : .. . . .3 .. ... .. 4 . o . ... O Iv Q fi.. . .. .'.- . h. .4 _ . . _.. o. 00.0 . ‘I .4..A.a ..... . . fl _ I 4... 4 ... . . . . ... .4 II r.. I. o. o . ... . .. v V. I . ..w .. . fl “ I _ .. . o. .p. .. co 1. ' J o .o “I” I V . . .J 4.... . .._ fl. 4.... .. . *. . I. 44“.... . u _ .4... . .4 . . . M 4;: . o .0. . “I 4.. .4 :4 4 54.4 4... 44 o . h . 4. w . .I . . . . u o . 4 a ¢ 4 . . . .... . I . . .... . .o I ~ . +. n ..+.. «.‘ .. . Y 4 . a. .. o . ..... I . Ia . ...... u . . H.. 4 4 A #5 . .«wwLL .. . . ._ .>7 4 4 . .4 .. u 4. A . a? o. 4 . g _ o . . . .. I J o o p .0. . . . . I. >.. .4... .‘A ..¥¢ ...4. o. . .. . I . ..4... ...Luh.+4¢4 4 h ..A . .4 r . . . (OH. . . .4 ¢. 4 ..... .vo. ...¢ . . v 4 Ann“. .,a... . FWUrw a. . r . c u . _... o. . . ._ . . . . o .. o 0 . . . ..o .._ . . ... .v4 . . <4. . .4 _ o . a . o v«4. ... 0.45;. o. . I 7?. f. . _ ......jf ... .4. . 4 I. 4 »p. .... ....4 44 .. o p”. 4 a. H 4 ...5 .o I AIIOI II.- 4..; .o‘ . 0.00.. « .vl o! o J.’ u _ .. v... .o _ 4 0a . . . _ . . 4 4 _ ... “.4 ... H. ”4 .. H1143”. ...... . .... . f .. g .13.; 4. :H_ o ..I 4... Irifi. .I.. .I. 4.. I I ”IOILL ... I 44* “L7. -. 4 “40‘ ... 0444.— JI'Infl .4“ 4n ...-n. I ~u.Dtnr I+T& «A by — . .. ... .. v ..... o .I 4 ... ..r. .. . I . . .. o. .04 n b ‘.>. +. o . ; “‘0‘, $1.. 4 . . c F.‘. I. TVA II‘L nfl Iur. ....fi. 4P 1 VI. .4 . 49 .V; ”o fi*u.j4lu‘ ¢ 0 HI! A IO IL: 0.1 HIAWO roj+ be “ Ob‘* “AI. 0 “fa II I. A“ I. “4; ..J’. ._. _ : L+L.w‘4. 9-. L-..-I.I .1141; 4» I .fio TI“..44J.4F¢II.,4. 4 _ 4 4.44 44-41 I 4 “4; 4 4 ...I. ., 4:4. 4... 4:; 444:4. 4I L 44-.. SO— . - .3... 49.44 ._ 4 4+4 .4 . 144:. 4. 4 3. . It... [44444r4331 41:}: . 4 ...4 r ...4 . 441 .... 144.4 :4 111431... 2.4 $ 4 41.4.;4... .11.. .-.... I.. .44 4,... _ -I 4.. . .I. LJIIJ -.q. 1 I 5 4. I... I4 I... ...;o . I . . . 4. $. . I‘ '0“. I Idl m td“? A.“ O vafinHJ . 4'“ ‘ . J I fly Ohs.q‘ *r r‘ ‘ YnL I_ 1 UL ‘ m . 44g Q .0 4m.."4+jJL.. w.M.—§ *hkfk.oo.‘.c 1+... I...<.QI.1 .IIL .I:%L §~WO . # “N“. k 4k . $ 4. 1% A . 1m 10 v . H.0 FL .. >4 l6..4 “I‘AHA 411 ..<~ .24 ‘ g . 4. A. '4... ”pa: mars. “...—u H.44b H. ~ ‘how .96 4i. . 4 4km” t * x. 5‘ _.L~4.+4~. 9 .43.“ .44.“ - 4 . 4 .. 4w.44.flnmw..44 .W ...D I. 4.4.. 4 . .4 ......Kw I ‘0 I The first factor to determine in the design of any water treatment plant is the capacity. The capacity is expressed in terms of gallons per day. Reservoirs or (near wells are usually provided to take care of the max- imum demands so the water conditioning may be done at a more or less constant rate. From Charts 12 and 13, shows ing pumpage data, the capacity of the proposed plant is determined at 15 million gallons per day. Many factors enter into this determination. Rate of growth of the pop— udation and past pumpage are the initial controlling fac- tors.' Judgment of future requirements is the final and determining factor. In the design of any continually growing utility as a water works in a large municipality, provision should always be made for future extensions and additions. After the capacity of the plant is fixed, the char- acter of the water to be treated must be determined and" Studied. The water to be treated will be assumed to have the following chemibal and physical properties: -27.. ' . q? HI n: D” “non. nitrate or nm to BE connnrom Source - Deep well supply from Sandstone. ”“0 - Ill 15. 1933 Temperature - 51°F. dolor - none, Turbidity - none, Odor - none, Taste oncellent. Total solids - “33 p.p.m.‘ '1 02 '- 3~5 ' Dissolved Ietsllio lone Calcium Os“ 108.0 p.p.m. 5.39 as. iron, ferric 16"” 1.0 " .05 ' Isgnesius lg” 32.1 " 2.“ I seem- n‘ 18.9 I __._§_2_ I Dun of letallic Kiln-equiv. 8.90 me. Dissolved lon-Ietsllio Ions Bicarbonate noo3‘ 3%.0 13.3)... 5.62 no. M‘bonate 00;” none I .. I fluoride 01" 64.9 ' 1.83 " Hydroxide 03' none " .. I Phosphate For" none I - I litrats [03" none I .. I Sulphate sou“ 69.6 I 4,5 I Sum of lon-lletsllic Milli-equiv. 8.90 Dissolved oxygen 6.8 p.p.m. l'rse Carbon Dioxide we 10.} ' pl! 7.6 -26.. he} I! ‘ vfli'v" 225:1 an. lids. I In. a up. ‘a. ll.- ..J Carbonate, Alkalinity as Ca003 none p.p.m. Bicarbonate, Alkalinity as CaCOB 281 " Hydroxide, Alkalinity as Ca003 _p._n_e_ " Tetal, Alkalinity as CaCOB 281 p.p.m. Calcium Hardness as Ca003 270 p.p.m. Magnesium Hardness as Ca003 130 " Total Non-Carbonate Hardness as Ca003 #00 p.p.m. After a study of the characteristics of this water the necessary steps in the conditioning process should be determined. This water being free of suspended matter will require no presedimentation, no colors or odors be- ing present, no consideration need be given activated car- bon treatment; the dissolved gases are not excessive, (not over 30 p.p.m.) no provision for aeration need be provided. This water, which is from Lansing, Michigan, is typical deep well water, is objectionable only in that it contains excessive hardness. The problem then is to condition this water so the total hardness will be 5 grains per gallon instead of 23.4. ...29- SUBSTANCESIN NATURAL WATERS GASES CO2 CARBON DIOXIDE N2 NITROGEN \\ O2 OXYGEN \ CH4 METHANE H23 HYDROGEN SULPHIDE\ SALTS, ETC. ALKALINE fill CQCOa CQSO4 HARDNESS «1:11. » Ca(N03)2 N250. NaCL SALINE F3203 IRON BEARING Si 02 H2 504 P- I I3 FROM 'WATER WORKS MANUAL" LL CALCIUM CARBONATE CHALK MAGNESIUM CARBONATE MAGNESIA CALCIUM SULPHATE GYPSUM, PLASTER OF PARIS MAGNESIUM SULPHATE EPSOM SALTS CALCIUM CHLORIDE MAGNESIUM CHLORIDE MAGNESIUM NITRATE CALCIUM NITRATE SODIUM CARBONATE SODA SODIUM SULPHATE GAUBER SALTS SODIUM CHLORIDE COMMON SALT \ACID # CORROSIVE II IRON OXIDE . RUST SILICATES SILICA -SANO. ETC. SULPHURIC ACID CHART -I4 Chapter II TH]: MIME! 01' WATER CONDITIOHIIG In the laboratory, the elements in the water are determined by ions. The reporting of the results of an nalysis should be in this ionic fora instead of hype- thetical or sc-cslled probable combinations. Tab 5 illustrates a recommended fora of reporting a water analysis. The mbstmcee which are in solution in water are present predominantly as ions and not as compounds. This statement holds for water containing dissolved solids under 2,000 parts per million. Iater containing over this amount of concentration is very rare. The ions in the water are in a state of 98 percent dissociation. By using the ionic form of reporting a water analy- sis, the fundenental ionic reactions may be used. These reactions are shown in Table I. In this table, the ex- Dcnents 4 or - indicates that the element or radical is in a state of ionisation; where no exponent is indicated, the compound is either insoluble (precipitated) or is un- dissociated. Table 2 shows the reagents which are commonly used in water conditioning, together with their common nuns and commercial purity. All calculations made are based on the {unduental reactions and the resulting chemical -30- required must be dividedby the purity to obtain the quantity of commercial chemical necessary. Table 3 shows the common reactions and the choice of reagents. The choice of chemical is usually deter- mined by operating conditioning and by the cost of the chemical. in table 3 is included a key to Table II. Table II shows the reagent requirements and the products of reaction in p.p.m. per p.p.m. of ion in water, The application of the data in Tables l to It to an actual water analysis is made in the chapter under the caption “Determination of Quantity of Conicals Required'. Table 6 gives conversion factors per p.p.m. tc uni-equivalents. Every element or radical has a defin- ite combining capacity and when its weight in p.p.m. is multiplied by its mini-equivalent the results are direct- 1! preportional. for example, to determine the amount of 000 required to remove the 002, llg and H003 in a given tater, the p.p.m. of each ion is multiplied by the milli- equivalent and the sum of these is multiplied by 28. The result will be the quantity of pure reagent necessary. To obtain the calcim hydroxide necessary the factor would be 37. Calculations for soda ash are similar, except 5} is the multiplying factor. Inn-equivalents can also be used to check the correctness of a water analysis; the an -31- of the mini-equivalent of the dissolved metallic ions asst equal the am of the dissolved non-metallic ions. Table 7 shows some miscellaneous factors which are convenient for calculations which involve conversions. -32.. ITEM l —q 0\ \n #7 KN TU 10 ll 12 13 14 15 l6 17 18 19 20 21 22 ' ' :-, -._'~ II -- _::-_\’\ R" ——- “a m ‘ __. TABLE I MOLECULAR.REACTIONS FOR WATER CONDITIONING*** DISSOLVED TREATING REACTION SALT REAGENT PRODUCTS REACTIONS WITH LIME, HYDRATED, Ca(OH)2 Ca++(HCOB)E + Ca*+(OH)§ :2 2(CaCO3) + 2(HZO) Ng++(sco3)§ + 2(Ca++(OR)§ z: 2(Cacc3) I? Mg(os)§ +EKH20) 2(Na*(HCOB)" +— ca++(OH)§ s: CaCO3 i— Nag 003‘ I 2(H20) Nag 003‘“ + ca**(OH)§ :3 Caco3 T- 2(Natcs‘) Mg++804”‘ +— ca++(OH)§ :i Eg(OB7E‘ -+ Ca**SOA ug++01§ I— Ca++(OH)§ :2 Mg(OH)2 I— Ca++C1§ 002 ~+ Ca++(OH)§ :: CaCO; ~+ H20 REACTIONS WITH SODA ASH a Naacc3 Cal+804 + Na2+CO3-= :: CaCOB ‘t N32+804fifl Ca++cI§ +- Na2+003“‘ ;: c3003 + 2(Na+CI*) Mg++804 + Nagcc3 :2 Ng++cos“ -+ Na2+SO4 Ng++012 + Na2+co3‘“ ;: Ng++cO3 -I 2(Na+01‘) Mg++CO3E- + Ca++(OH): ;: Mg (OH)2 —F CaCOB REACTIONS WITH BARIUM CARBONATE — Eaco3 ~ BARIUM HYDROXIDE - Ba(OH)2 Cai+804-_ +- Ba++co3 r: Ca003 I. BaSO4 Ca++804“‘ + Sa++(OH)§ :: Ca++(OH): 4— 133304 Ca++01g + Ba++CO3 :: Caco3 ' I- sa++CIg Ca++01§ + sa++(OH)§ :2 Ce++(OH)§ I— Ba++012 REACTIONS WITH zEcLITE x NaEZ‘ Ca++(HCO3)§ +— N322 :i 2(Na+HCO§) 4. CaZ*‘ Mg++(RCO3)§ +- Naaz :2 2(Na+HCO§) 4— Mgz** Ca+*804“ +- NagZ :2 Nagsou‘" +- CaZ Ng++soyf‘ + NaZZ :2 NaESOQc‘ I— Mgz Ca++01§ + ngz :2 2(Na+01“) +—-Caz Mgl+01§ +~ Naez 4:2 2(Na*Cl*) +- MgZ GENERAL NOTES: The reactions shown should be considered as probably occurring at temperature below 2100 Fahro Items shown without positive or negative charges are in molecular form, and.are removed from the reaction by precipitation or gaseous evolution, for example, CaCO5 is precipitated, C02 is evolved. Items shown wdth the charges remain in solution in ionic form° DETAILED NOTES: Items 1 to 7; Calcium sulphate, sodium sulphate, calcium chloride, sodium chloride, silica and oxide Of iron and alumina do not react with lime. Items 8 = 9. Sodium sulphate, sodium chloride, silica and oxide of iron ani alumina do not react with soda. The preliminary lime treatment removes the temporary, or bicarbonate (calcium and magnesium bicarbonate) hardness, mid some of the permanent hardness (MgSO + MgClg). The ensuing soda treatment removes the remaining permanent hardness (CsSOh an CaClg originally present in the water and.the CaSO4 mid CaClg formed by the lime treatm mento Items 10 a ll. Where the water originally has only permanent hardness, preliminary lime treatment is unnecessary, and reactions 10 and ll take place° Item 12. On account of the solubility of magnesium carbonate, a sufficient amount of lime should be added to the water to convert the soluble magnesium carbonate to the insoluble magnesium hydroxide as reaction 12. Items 13 to 16. Barium compounds after lime treatment are chiefly used for the removal of excess— ive sulphate° (Soda treatment does not remove sulphate; if calcium sulphate is present soda removes the calcium but leaves the soluble sodium sulphate). The reactions of barium treatment after lime treatment are l} to 16. Items 17 to 2#. Sodium salts, silica and oxide of iron and alumina do not react with zeolite. ‘ NagZ, CaZ, and MgZ are not the true chemical formulae of sodium, calcium and magnesium zeolite° Because of their complicated nature the radicals are represented arbitrarily by Z; The approximate formula of zeolite, which is a sodium aluminum silicate, 18, 2 8102.A1203,N&20.6H20. ITEM NSC 23 24 37 38 39 41 42 43 DISSOLVED SALT TREATING REAGENT REACTION PRODUCTS REGENERATION OF ZEOLITE ~ BACKWASHING WITH SALT e NaCI CaZ MgZ +2(Na+cf) +-2(Na+Cl‘) g: N322 :3 Nagz + 03“”013 .8. Mg" -012 REACTIONS WITH TRISODIUM PHOSPHATE NaBPOq w IBHZO 3(CaII(HCO3}E)4.2(Na3IPOE-u) 3(NgI+(HCO3)§)..2(Na3tpofi’“) 3dium diloride, silica and oxide of iron and.alumina do not react with monosodium phosphateo *Usually present in boiler water. *‘In the presence of excess hydrate, bicarbonate is converted to carbonate. q, LS.1 .1 .1 a ITEM NO. ALI 45 46 47 48 49 50 51 52 53 54 55 ***N.E.L.A. Publication 289mll4 DISSOLVED TREATING REACTION SALT REAGENT PRODUCTS REACTIONS WITH PROSPRORIC ACID a H3P04 3(Ca (HOO3)§)<+2(H3 P04’_")-+6(Na (OH)‘) :2 Ca3(POE)2 3(Mg (R003)§)+ 2(H3 ROI,”’“)+6(Na. (CRY) «r-emsfipoim 3(Ca 804-") +-2(H3 POE“ v)+-6(Na (OH)‘) :=.Ca3(POn)2 3(Mg 804“") 4—2(H3 P04¢“-)+’§(Na (OH)=) F: Mg3(POM)2 3(Ca 013) +2(R3 POa“‘“)+-6(Na (OH)“) ee-Ca3(POA)2 ,3(Mg CIE +-2(H3 Pos“')+.6(Na (OH)3) :2 Mg3(P04)2 Na2 003‘“ +-R3 ROE““ + Na (OH)“ -:= Na3 POATTT 3(Na (OH)=) + HBPOA““ .;= Na} POAI"‘ REACTIONS WITH ALUNINUN SULPHATE = ALUM n A12(Soa)3* 3nsiderei that a magnesium aluminate is formed. It appears to have no reaction with calcium sulphate. Ca++ +>(HCOE)2= A+Na,A1 o + “H20 ;: Calcium + bicarbonate -+so ium aluminate and water A12(OH)6**+CaCO T-Nag CO3 4-2H20 aluminum +calc um +—sodium + carbonate +~water T hydroxide +carbonate ' é?loo") (precipitated) Precipit~ ated) 2NaOH + Al2(OH)6 p aNa + 2(OR)= sodium+—hydroxide M. 5555-55 5o5ousEEOU-fl- 005 x 500..Eo5....\,_. 0.5m 5. 5-020 22 5.005.505 0 7.3-3:.EQU 020 55:50. .5-..._.\0-5--_.5 53050 0 525M025 E50- £94003 (ON-fitted 5005:5055 . (5000 55050.55. 5705-0va C 0... 5.0 5.0.5.5555 505. A550... .5055 :0 0: )L5- .. -505 05. 50 55505... 551.53: 105/5 .5... 0-0x05 503500-55 0535.0,«1 5.00.55. 0+ Corr-C0025 +005-«0m-W -__ 035.02 055;. 05-5-5 M30505, 0.4 5.0-0... ....w AC 3505 Es: ...-25059005 «00.55.05». ewe-awash; .-.-:05..-£O _. .....,.:.LC5-... .C. -5 .... 3.5%: 0.7... 5.0.0. :3: -, ”Since 05.5.0.5 5505+ .05.,3a5rtud 0-2- “COL-00.53i4 0.555505455454255 $.20 ROW 00$. +154 #000 OsrnwfnfiomY-Z - 535-4 05,05m5sw {55:58:54 3553030 ...,mem «on 83 ...-0H5 0.03 ofndmsd 5.5 nitsmwesaou silo/5.5530. mas-ea €50> 3.550», 0.1.40.0.anZ mm05 G 50540; 0+0w._5..w EETOfl-u geese-.53.. 5.3a -..oa: .3: .075 Nona 335.8 :52 . N52.5355 £25505 afieééz ...-.05 anew --woa 5055 .02 Nowm 0..: 2.5.0552 8.45393 $25255? 10......3 NOS. -10 3,5. .075 0.3 :0 oz 010% 8.59.00 emcee): genom- SQJZ Kano 50.0% Lao-5 mom md .02 Own: nOUaOZ 5...-v4 010m). 0+Oc055OU£o510W #5555345 Mom @505 -IQ tame .Iofl m.m5m 0.10..51000& £2545 +0 «55535 ~33..me custom 60.5 who 8.8 -.8 09$ :3 :2 .0040. 3:25.553 3225505225 .5156 New 5%... -10 8.0-0 ....0 5.: .3800 35-5 53-546 30225;: 5205.6 00-0 NWQ 9009-10 \VNVE :Ov 5.0m. OdU 055-5 delwcb amule 53.50540 N :3 JO-\u .‘NW ...-NW ...-.3 ~43WU‘RQ. n.0- jruz to: .9..=4FUZ Jog C‘s-{Lou 0“: £053.00 0E4: _4um£U£U.. ..A C.C0.._..1COU 303d; 50% 18m) W.dU.:-.U£U £05500.- N 83d. _ _ .. a}: 5..-m5 enema-n5 .... iom - -+Gml. 2. .. .1 fireman: - --.-saw ...-.5»... > . -.._, 5.5.... 0-5.. as... sags-52 - 55w . ta: .5 m m. 4.0.5 .85; . .5105: 0.550 . Mocm .. .35 5 he. 4-: .00 .. 519$ .- 0.5:. + 1.8 + if. m a-~. 0&5 0&5 5&5 555.com - 55w + 19-5 5 M555 8053-.- .5553fi -o.5.m ..-..oom .- I..»d e- 09 .8m + .5553st $50 ...-6% fish: a “5-0. 9-05 0-05 $-05 55589-5 - -IOm + ...-...... 0 H550 <5. 0..: + ~00 u 250 + EN 55 5-0 .....m. .6055 - 1.53 . .55 2 am am. 0-.... an 0.: - -550 + .55 5 ma 604m - Ion + :60 05 a... 0-5 ...8-0 - ....0 + n8 a ..-5-m.. -505; 50.55 i {.00 .- .00 . .... .0 ...-0 0.0 ...-5.0 0.3 + :30 n -IQN . .00 55 - ... a... O-.. n. m, -.3: - -10 ,. .00 W as 5.0.50.0 - Non; ...-tom 5 4-5. moo-U - -..-.00 t 140 s am. 0..: + ...00 - -10 m3: 5O 4N .6055. + .5105}. no.1m +-...oon + ...-54 u <5 ..oom + .555354N .35..- + ..oom + ...554N n5 “5-5 55.854 -- -55ono + a m .V U-J‘ 0* OX: ”—40.5250? Dig-II C03049d cos .$>..._.0 . _ j . . N . . n . 4 a 4 . I» I I m .. e . . . . I a . e .. v .. I. . I. _ I L . I I! e u I u . . . . n I w . I. . _ .. . ... w . . . . o a . ~ 6.4 e . k . ..I . c . q . o .J. H . . u . . n .. . . w ._ . . v . .. ... .. w II I OI I . I V a .1... ol I .41! L I 9 I I04 e D e O II¢I . I! II iv .‘II. V. Itlfl eI I .e... oti 0.. III. 4 u..1i-et4‘l‘lfiibleii {In ItIIQeNI‘, .. . . I. _ .. . — a I. . ‘ u . . I v. .e .. I .. I a M 4. .. . J .. . . . . . . :L . . 4 . 4 ..... . .. . .. .. .~ . . .. . . . «. w . . I4 H a e H I :fIv .- ._ 4 ... ‘9 I . . . . . . . . {I4 . ... . . . . . .... a ..I .. o._ . . . .. . YIIIIiIo. I’b‘ ..... ki'niflt IKDI! IIOI Ottllr0.4tee‘|0|lI-!\I ‘l OIIOI IIIOII. . ' 0‘ VI‘IV;OIII?JI,..:IQI‘ FOI't’I ’t’O-W’-I £1 1!! s‘.lv. till I... if _ _ . ....I _ .. m . .fi ... I4. ..-?1..- . a...-~ . p . I . I. A I I . . I u e e ~ ~ 0 . 9 raci . o I I - .atq. . _ . M _ e .H . q . ..... .. ... e _ w a I . . . . _ e . . . p u . I. _ o ..v 1e4. o I. ..... . O .... W'I \ 'e . u .0 e v 4 I | GI I'IJ ‘I I I I I toI |% I .5 I t O u I e . y . I. v] 41% 1I' .v I A e . LT I v I e I. 04 I I '1 <0 ‘i..t I ‘IIL' VI IIOIV .‘4 unri”. IOI. I II ...Ile .III .I.. I, I . . .a.. . . . — W- .~ . . ... .a 0“ L. . t ... 1e.- .. ~ .I .. 9.... . .. * . . o . . . ,Ie ... .. v . I. . . a I" . or ..m |.. . . .0... I . , . . .. . . ... .. 4 I . ... . . . . . .- I I I .. . . . * .. ._ . ... H.. .. .. ....I a I . .. ...» I.H, “ H I _ J - F Ir ‘ 4“ L l h F _ .. . .. . . . . i fitQ. J .- 1 . ...Jl ..I i : :J . I _.. . . . . p i . . i . _ .. > . . I. e 4 .A .I .- I .I _ . .. I I . . . — . . e . «a . n. ... I Q. I. . e. _ I .. _ o .4 a .. ... a H _.. . . _ . - . u . . v v ... e . - . . r . .e I . a. . . . . I . l . .I.? o .I - Y\‘ ~_"——- Ahk. ...... Chapter III '1“ fi 7" '71? "a '“f‘fi fltfn'Tfi' .5 TAM-n 1 "‘a w-ua ST ‘\ “‘13 SP‘C IfI 93$$$C¢IJ 2v“ v--a.‘...Lv:J..-v 14an' I1: haTL. fiancnvm#r\‘Y-fx'(\ VV;.~.L~AV&¢*¢‘J w - 3 H; "‘ Swp11ng and Test 1? 0 -~ ' 0 -“. < -= of, - - 1.. The COmpCSlticn 01 the chem1oais sh all dete rn1nei by euaalyzinr seaplee taken protp al at the point of materi £2. Whe. chehicals are ly upon the shipped in bul k, I arrival of the consumption. (0 b H H the sample be 530 taken that it will repr eser at an average of all parts Of tlie shipment fr om top to bottom, and shall not contain a diSp‘oportionate share of the top and bottom levers. It (in shall be crushed if 911611 tered" to provide two l-lb. Shiilgl be 1'ept carefully sealed for use in a possible 99 CD Ti H 9-“ (—1; (D Q; 31’ O H O p. U CD f.” d' (D H O in packages a f 330:2: various Sr». ‘*“l;7led as in the above Ll‘. When Sampling qllic’iime Siblfi, in order to avoid undue ex necessary, the case of lump lime 100 lb. , mixed thoroughly and samples, one of which 4. 0 1*all be 5311:2131. .. that the operation he oeniuctei as to the labora c+ tored rfin‘fi least 3 per cent of the parts of the shipment, dumped, mixed and tory Shel iéut container in which until the shipment hae '5' U) ('0 H o Resainplin? 1. Notice of dissatisfaction with a shipment based on these specificationsm ust be in the hands of the consignor Within 13 days after the receipt of the shipment at the point Of destination. If the oonsignor desires a retest, he shall notify the consignee within 5 days of receipt of the notice 0 f comp1aint. The duplicate sample shall then be forwarded H) or a test to some laboratory agreed upon by both parties. This retest shall be made at the expense of the consignor. The results of the retest all be acce ptcd as final. Lime (Cat?) 81:11" ing Ellen luuzps of quicklihe are immersed in water, they shall readily disintegrate into a sac pension of finely di- Vii e :1 material . Cheiniical Requirements 1 - For quicklime the standard of composition shall be a 9011 ent of 65 per cent available calcium oxide (CaO), but quickl 1me of less CaO con ent may be accepted where condi- “-0113 of service permit and the price of the less pure pro- duct is such as to give increased economy considering the additional quantity of both lime and sludge to be handled 3 - For hydrated lime the standard sh all be a content of 90 percent available calciun'. hy roxide (Ca(OH)2). The mag Hes-inn salt content shall be less than 3 per cent. -146... Ecnus and Reduction Where large quantities of lime are to be purchased it is recommended that the contract be drawn to include a bonus (" or a reduction of 1.5 per cent in payment for each 1 er e=nt by Which the available CaO or Ca(0’:i)2 exceeds or falls below ““3 standard percentage. In case of small purchases the con—- “-va 97nd... tract should permit rejection for failure to reach the etc-... ai-d. Packing and Shipment Quicklime may be shipped in bulk, in wooden barrels, in metal drums or in waterproof bags, packages of each kind to be of uniform weight. Hydrated line is usually shipped in Paper bags holding 50 lb. net each. So a. Ash (Nagoo3) Cheillical Requirements 3 58 per cent light 9) The soda ash shall be that known soda sh and shall contain not less than 98 per cent of sodium Cart, onate (135.2303). The material shall be in a dry po'v'zdered form, stall contain no large lwnps or large crystals, and Shall be free from chips and other foreign patter. Alum (Sulphate of Alumina) (A12(SCh)3 4» Water 0" Crystal— lization) Ch em 1 cal Requirement 3 1 . The material diall be basic, shall contain not less than .1”. 17 per c2 nt available tater- soluble aluzeina (A1203) and shall not contain more than 0.75 per cent iron (Fe303). Insoluble Matter 1. Sulphate of alumina from which the in soluble mate al has been reao'ed shall contain not more than 0.5 per cent of material insol his in istilled water. 2. Sulphate of alumina from which the insoluble material has not been removed shall contain not more than 7.5 per cent of material insoluble in distilled water. f Lumps or Grains 0 Sizes 1. Lunp sulphate of alumina shall range in size from B/H o} in 2. Ground sulphate of alumi afor use in dry-feeding machines shall be of such size that not less than 95 pe cent shall pass a woven sieve havir -g 13 meshes per linea in.,a nd 130 per cent shall pass a sieve having 4 meshes per linear in. Packing and Sh ipmen l. Sulphate of alumina may be shipped in bulk, in bags of uniform weight or in barrels of uniform weight. Sulphate of Iron (FeSOh7H2 0) Chemical Requirements 1. Sulphate of iron shall be what is connonly kno n as ugar sulphate of iron theoretical formula, Fe Soh7H20. .. us. 17 per cent available water-soluble alumina (A1203) and shall not co r1tain mer e than 0 .75 per cent iron (F6303). Insoluble Matter 1. Sulphate of alumina from which the insolue le mater a1 has been removed shall contain not more t. l insoluble in distilled water. ..Jo w of mater 2. Sulphate of alumina from which the insoluole material has not been removed shall contain not here than 7.5 per cent of material insoluble in distilled water. Sizes of Lumps er Grains 1. Ln1p sulphate of 1111111 8.111 r1 ge in size from 3/u to 3 in. 2. Ground sulphate of alumina for use in dry-feedin machines shall be of such size that not less than 95 per cent shall pass a woven sieve having 13 mesheh oer linear 11., and 130 per cent sh all pass a sieve having 4 meshes per linear in. Packing and Shipment l. Sulphate of alu.mi .a may be shipped in bulk, in bags of uniform weight or in barrels of uniform weight. Sulphate of Iron (FeSCh7H20 ) Chemical Requirements 1. Sulphate of iron shall be what is connonly known as Sugar sulphate of ire n theeret ical formula, Fe Soh7320. 5 46— 2. It shall contain not less than 9 ferrous sulphate (Fe30n7320) per cent of free acid and shall be clean and free fron all dirt and particles of foreign hatter. Packing and Shipment Sulphate of iron may be shipped in bulk in pap er-lined (1‘ 1.14 to tight box cars, in bass, in arrc or in casters, packages of each kind to be of uniform weight. Caustic Soda HaC1V) Chemical Requirehents e caustic soda shall be that kncv a'n as 76 per cent actual 0 test sodium oxide and shall contain not less t1an ,3 per cent sod ium hydroxide (haOH). The dry material is manufactured in three forms, viz. 1 1d, ground 'nd flaked. Packing and Snipnent Solid CEJSt ic soda is ustenarily shipped in steel drums containine approrimately 700 lb. net weight. The ground and flake material is commonly shioeed in steel hr ms or in 5 C‘ O {J (,1 D (’0 {11 H m H (D O U :3 (1' fit Lb 15 5)- {J C 1 93 r ”O H 0 :4 PJ- E (if: d H 4: Q 3 H 0' Barium Carbonate, (Withe rite), BaCCE Chemical Peq1iremer1ts This material shall consist of not less than 93 per cer 1t barium ear hcnate (Bude). The hydrochloric acid insoluble matter shall be less than 1/2 ofl per cent. -19.. 7“", “LA - 3 ¢7'r\"‘\ 1") ,- \r (F U\ 'v-fii .- 0 u..“_V,~ 1: .. , d-J '3 to Fr?“ .i‘ N 00 .1... .1... a; .-.1. C *1. n5 7qfi1“11"' --11“- HAOtaJ u... .- ~l~¥.‘ ’\ a fi J'.‘ ,- more th ~_ t scluhle in warm ' +9 ‘ _. .. w h u C ..., v .v u ‘3 1‘ 3 1a..“ .5. 5"“ kc 1‘3 ,. 3.41" - ‘qu‘d‘- ‘- Triscdium pho hm," Q I‘- a: AL L LL ‘ L 4; Disodim Phosphate, (laZHPOulZHZO) Gheaical Requirements Dieodim phosphate for water treatment shall contain not less than 25 per cent of available water-soluble POh. The water-insoluble matter shall not exceed 1/2 of 1 per cent. Packing and Shipment Dieodim phosphate say be chipped in bulk, in bags of unifora weight or in barrels of unifora weight. Bodim Gloride, (laOl) Ghenical Requirenente The sodim chloride shall contain not leee than 98 per cent sodim chloride with a mini-m of calcium and nagne- sin. The aaterial may be either rock salt or evaporated salt. The color shall be white to grayish white; indicap tive of cleanliness. The phenolphthalein alkalinity shall be zero. The salt shall contain no grease, fat or oil con- tent. lt shall be free fron chips and other foreign natter. The fineness shall be between 8 and 50 aesh. The salt ehall dissolve rapidly without packing, farming a clear solution. -51.. Chapter IV nrrrmunrros or ovum! or cannons sequins Lime on be obtained in two forms for water soften- ing. Both forms are widely used. These are the calcium oxide (OaO) or quick lime and caloim hydrate (Oa(03)2 or slahedv lime. Commercial an contains 85% available OaO and the cost is 811.00 per ton. The calcium hydrate (hydrated lime) contains 90$ available «(03);, I36. the cost is 81km per too. On the basis of available OaO the quick lime can be evaluated at 312.90 while the hy- drated lime is 820.50. The quick lime is difficult to handle and store; extreme care and caution must be exer- cised to keep moisture away. considerable heat is evolv- ed s... it is slaked. lo such danger exists with the hydrated form. As a general rule call plants use the hydrated form and larger plants the oalodm oxide. The oxide is considerably cheaper in not only the cost of the lime, but requires a lesser quantity in cubic feet to soften a given amount of water. The storage space required is consequently less. If it is desired to con- vert calculations of chemical quantities in terms of M to the equivalent «(08);: the quantity of mo must be multiplied by 1.25. The calculations for the quntity of chemicals re- quired will be based on the molecular reactions of the -52.. '— —9~._.. s AIS. l - [I ...s y- 1.. 1...: ill- -I ...... Ail: _1 111.111.111.11I..I--.|.-.I.In11.il t l t- - .... -- - - u a M _ ” ... . . l . u M _ . . . . . H m I.“ .. M . . ¢ .. _ - .. .- ..-. . - - - - i -. -.I I-.- ,- ---. a _ w a W. $0.127...§H_zj<§ V I. 1' L. i T E. BEDS f :53 23 FT U BE. P I I 3 i ' . f t" ; ”f71.-.;1 1 ~.t _ :O* i : CL? 9‘; P)PE GALLERY m! N; i o: 3 Li___ I ""4 _ T d:— 4“: } 13* a F‘ bcié P a “ “—55 _ SECTION THRU ZEOLlTE BEDS GRADE. ' STORAG E GALLOHS WATER WASH )OOO 60 FRONT ELEVATION 3T0 RAG E ELEVATION z EOLITE WATER TREATMENT SCALE. Y: 306‘: PLATE 5 Chapter VIII 011.001.1110“ roe m DESIGN or l mu ZEOLITE reruns: PLANT This method of treatment involves a combination of the two previous methods in that lime is used to remove the temporary (carbonate) hardness and zeolite to remove the permanent (non-carbonate) hardness. The conditioning plant will be substantially the same as for treatment with lime and soda ash except that zeolite beds will be substi- tuted for some of the sand filter beds. The mixing tanks, clarifying basins and reoarbonating basins will be the seas. The water leasing the recarbonating basins will con- tain 190.5 p.p.m. hardness as 0a003 as compared to the “00 p.p.m. entering the mixing tank. Instead of using soda ash, seelite can be used to lower the hardness to any lim- it desirable. The limit of 85 p.p.m. has been.previous1y determined. All water passing thru seelite beds will be softened to sero hardness. To obtain a residual hardness of 85 p.p.m. some of the water from the recarbcnating bas- ins must be filtered thru sand filters. The proportion of water that must go thru seelite beds can be determined as follows: M r 55.3 percent. 190.5 The remainder, hh.7 percent, must be passed thru.sand filters. —- The filtration rates for zeolite and sand are the same. The layout of the filter structure is subh that the total filter area is divided with one half of each side of the operating floor. The proportions of filtered to aeo- lite treated water is close enough to 50-50 that one side of the filter structure can be used for zeolite beds and the other half for sand filters. The filtration rate for the sand filters will MW .-.- 1.725 1, x 3 x 30 x 3 gallons per square foot per minute. The rate of backwashing will be the same as for the lime soda ash filters, vis. 6,750 g.p.mt Total quantity of water per filter will be 6,750 x 5 x 2 = 67,500 gallons. The same percentage of water will be required for back- sashing, 2.u3 percent of the water passing thru filters. The quantity of water that must pass thru.the seelite units will be 15,000,000 x .553 8 8,300,000 gallons per day. The filtration rate will be___m§_.6399,99_9_‘____ g 2.13 1, x 30 x 30 x 3 gallons per square foot per minute. Assuming the same period of regeneration as in the cal culaticn for seolite treatment (8 hours) the quantity of zeolite necessary will be: . 0° .00 1 a s - .062 ..ste 0 ts t 96 e r;:-n; . 3 regenerations per day x 2,800 gr. per cu. ft.seolite 1 a 11,700 cubic feet of green— x 17.1 .p.m. to g.p.s. sand zeolite required. - 100 - For a symetrical design of filter structure, the same area for the zeolite beds will be assumed as for the sand filters and the filtration rate will be calculated instead of assuming a filtration rate and calculating the area of the zeolite bed. The filtration rate will be: 9,39%,992 I 1,9925 3 2.27 gallon per square ft. per 1, x ,700 sq.ft. minute. This is not excessive and represents good operation. The depth of the zeolite bed will be: f e : n.33 feet 3 52 inches deep. 2,700 square feet The sand filters should be arranged the same as for the lime soda ash method of treatment. They will consist of three filters, of two sections each. Each section will be 15 x 30 feet in area. Only one rate of flow controller need be installed per filter and by dividing the filter in two sections the rate at which wash water is required will be halved. Due to the length of time necessary for regen- eration, this arrangement is not practicable for the sec- lite beds. By installing six zeolite beds; each 15,: 30 feet in area, extensions to the filter building can be made by installing one sand filter 30 x 30 and two seolite filters 15 x 30 feet. Extensions could then be made to the treatment plant in 5,000,000 gallon steps. The same centrifugal pump that is used for‘backwasb- - 101 - ing theflsand filters can be used for backwashing the zeo- lites. The rate of flow necessary for backwashing the seelite beds is 30 x 15 x 12 g.p.m. per square feet = 5,u00 g.p.m. The rate for the sand filters is 6,750 g.p.m. The pump discharge must be throttled to the 5,uoo g.p.m. rate when used for backwashing the zeolites. The height of the wash water troughs above the strainer heads in the manifold and laterals will be: 15' Gravel 52' Zeolite Bed _2_5" Freeboard 92' Total = 8 feet, 8 inches. The quantity of water passing thru each zeolite bed between regenerations will be: 8,192,999 3 1,9625 3 H90,000 gallons per bed. 3 x zeolite beds Each p.p.m. hardness as 0a003 removed will require 2.87 pounds of salt which is equivalent to 0.Ml pound of salt per 1,000 grains removed. W = 2,240 pounds salt. 1,000 x 17.1 To obtain a 90% saturated solution of brine 0.3? gallons of water are required per pound of salt. 2,2“0 pounds salt 1 0.37 3 838 gallons per regeneration for brining. - 102 - _ The total quantity of water required per regenerar tion will be: For backwash, 5,h00 g.p.m. x 5 minutes 3 27,000 gallons For brining : 350 s For rewash, l$50 sq.ft. 1 2 x 20 minutes = M ' Total 45,850 gallons In terms of million gallons passing thru.the zeolite beds, 93,500 gallons of water are required for regenerating purposes; this is 9.35 percent of the water softened to more by the aeolite. The capacity of the slum and lime storage bins will be the same as for the lime soda ash method of treatment. Ialt may be stored in the same capacity bins as for the lune; 2,n00 cubic feet each. For a 28 day supply of salt there will be required: 2,32% 1b, 151; fier milligg gal, ; 3 g 28 day; . 4.h3, 5 bins. , cu.ft. x 0 lb. per cu. ft. The same pneumatic conveyor equipment that unloads the lime and alum can be adapted to unload the salt. The chemical feeders for soda ash will be omitted. A concrete tank 6.5 feet x 30 feet can be installed at one end of the aeolite beds for making the brine. A‘brine pump should be installed.near this tank and brine piped to all the zeolite beds. - 103 - The siae and number of chemical feeders or propor- tioners should be the same as for the lime soda ash method. The capacity of the feeders are: Two Alum feeders, 50 pounds per hour eadh. Two Lime feeders, 1,000 pounds per hour each. The cost of constructing the initial 15,000,000 gallons per day capacity plant is estimated as follows: Building Hiring tanks, chemical proportioners, offices, laboratory and chemical storage 336,000 cu.ft. at 0.20 3 67,200 Clarifying basins 578,000 cu.ft. at 8.18 10H,100 Filter and Zeolite building 233,000 cu.ft. at $.19 H5,200 $216,500 Mixing equipment “.000 ‘ Chemical feeding equipment 6,500 Olarifier equipment (sludge removal) 1h,000 Filters, sand, gravel and underdrains 9,000 Brine pump and piping 1,000 Gravel and underdrain for zeolite beds 5,000 lbolite mineral 5H5 tone at 886 per ton “6,800 Rate of flow controllers fl¥,000 _0ages and meters “,500 — lons- Control tables 3 1,500 Chemical conveyors, pneumatic 8,000 002, stoker, boiler, scrubber and compressor ' 3,000 Backwash pump 5,000 Electrical work 3,000 Plumbing 1,000 Piping and valves in building 26,000 Piping outside building “,000 Miscellaneous 11,200 Engineering and supervision __;34QQQ, Total 3&03,000 The cost of constructing the second 15,000,000 gal- lons of capacity is esthmated as follows: Building Clarifying basins 578,000 cu. ft. at 8.18 $10M,100 Filter and aeolite building 238,000 cu. ft. at 8.19 l$5,200 “#9500 Chemical feeding equipment ' 3,000 Clarifying equipment (sludge removal) 1n,000 Filters, sand, gravel and underdrains 9,000 Gravel and underdrains for zeolite beds 5,000 Zeolite mineral h6,goo Rate of flow controllers 1h,000 Gages and meters “,500 -105- Control tables 3 1.500 Electrical work 1,000 Plumbing . 1,000 Piping and valves in building 22,000 Eisoellaneous 13,900 Engineering and supervision 15,999 Total , $300,000 if the extension is made in three steps of 5,000,000 gallon each, the cost per step would be 300,000/3 8 $100,000. The actual cost would be slightly higher due to spreading the construction over a longer period of time and this fig— ure should be increased to 810h,000. Summary: Estimated cost of initial 15,000,000 capacity 8H03,000 Estimated cost of second 15,000 ,000 capacity 100,999, Total cost $703,000 - 106 - Chapter 1x .. 0010131301! or Iuvrsmcsr um cum Inc cosrs mprgcigt 193 The equipment and structures of each of the three methods of conditioning water will have different depre- ciation rates. The following tabulations indicate the probable life and depreciation rate of the component parts. Lime and Coda Ash Method of Treatment - Initial Installation Assumed Deprecia- Annual , A Life tion Deprecia- Item Rate ticm Buildings 6215.500 50 2 P 0 “.330 Equipment 70,000 25 ll» $ 2,800 Filter sand 8,000 12% 8 $ 6M Piping and valves 28,000 25 it $ 1,120 lisc. , Engr. and Cup. 31,599, 25 J 1. M Total #350,000 2.85 7. 0 9,990 Second Installation Buildings $115,300 50 2 i» 3 2,986 Equipment H.000 25 It at 1,760 Filter sand ' . 8,000 129 8 $ 6110 Piping and valves 20,000 25 n.9, 800 lliso., Engr. and Cup. M 25 Jj £9 Total 321:2,000 2.90 1. a 7,011: Annual depreciation charge per unit extension of 5 ,000,000 gallons: 381$,000 at 2.90% a $2,186. -107- Zeolite Method of Treatment Initial Installation Deprecia- Annual Item ‘33:“ 333 ”$33“. Buildings 8 57.600 50 2 1. 6 1,152 Equipment 345,900 25 It $ 1,836 Zeolite Hineral 1140,000 129 8 $ 11,200 Piping and valves 33,000 25 4 $ 1,320 liec., Engr. and cup. __2_3_,_509, 25 __L$ 959 Total $300,000 5.50 at $16,018. Second Installation suudings 8 36,000 50 2 i t 720 Equipment 36,500 25 it 1. 13160 Zeolite lineral $0,000 121} 8 $ 11,200 Piping and Valves 25,000 25 h 1» 1,000 111-0.. her. and Sup. M 25 ..Lfiv .__1&Q Total 3256, 000 5.90 ‘5 015,120 Annual depreciation charge per unit extension of 3,000,000 gal- lons: 850,000 at 5.90% = 03,186. — 108- Lime and Zeolite lethod of Treatment Initial Installation Deprecia- Annual 1'... ‘2???“ £122 “233’” Buildings $216,500 50 2 i 0 9,330 Equipment 75,500 25 u at 3,020 Filter sand £1,000 12} a at 320 Zeolite lineral 46,800 121} 8 1. 3,710: Piping and Valves 30,000 25 ll» $ 1,200 Ilse. , Engr. and Sup. M 25 J1 ___1...§.Q§. Total $03,000 , 3.112 5 813,822 Second Installation Buildings 01119500 50 2 1. 0 2,936 Equipment 119,000 25 I: 7. 1 ,960 Filter sand l1.,000 12% 8 $ 320 xcciits Mineral 166,800 125 a 71. 3,7111; Piping and Valves 22,000 25 ll» ‘5 880 liec. , Engr. and Cup. M 25 Jj 49159 Total $300,000 3.63 at 1311,0116 Annual depreciation per unit extension of 5,000,000 gallons: 0109.000 at 3.6% . 03,827. - 109.. gapita; gharge The charge on the fixed capital invested in condi- tioning plant will be uniform for all methods; “5 percent. ELM The unit costs of chemicals, water for backwashing and labor will be assumed as follows: Alum .25 per ton, f.o.b. plant Lime (00.0) 811 per ton, f.o.b. plant Bods Ash ‘33 Per ton Belt 8 7 per ton Liquid Chlorine 8 8 per cwt. Coke ‘10 per ton Electric Power 1.25 cents per kwbhr. Cost of untreated water will be $12 per million gal— lons. Labor Cost, . Chemist $2,n00 per year Operators $1,600 per year Labor 50 cents per hour. Utilisation by customers, 80% of pumpage to distribup tion system. 3222.1211 The additional pumping head due to friction losses thru.the various process in treatment will be as follows: Lime soda ash plant, 8 feet for all water - 110 - zeolite plant, 9 feet for 78.8% of water no loss on 21.2%. Weighted loss on all water 7.1 feet. Lime zeolite plant, 8 feet for all water. Assuming that the work done on the untreated water was a lift of 150 feet, which cost 812 per million gallons, the cost per foot would be 312/150 - $0.08 per million gal- lons. MW The quantity of water required for backwashing in the lime soda ash method of treatment was as determined on page 78 , 2.03 percent of the softened water. The sludge from the clarifier will contain 80 percent moisture. Each million gallons of water softened will produce #30.3 p.p.m. x 8.3h'= 3,590 pounds of sludge (calculated dry). hoisture contained in the sludge will increase the actual weight of the sludge and moisture to 17,950 pounds, of which lu,360 pounds is water. This is equivalent to 1,720 gallons per million gallons of water treated. All water used for back- washing in this method of treatment will be water to which chemicals have been added so the unit cost of this water will be the cost of the raw water plus the chemicals re- quired. - 111 - The total water required per million gallons of treated water will be: For backwashing, 2%,300 gallons For desludging, 1,129 gallons Total 26,020 gallons per million gallons of water softened. The quantity of water required for backwashing in the seolite method of treatment was determined on page 95 , e.n3 percent of the water conditioned. The backwash can be untreated water. The total quantity per million gal- lens of water conditioned (85 p.p.m.) is 8n,300 gallons. The quantity of water required for backwashing in the lime aeolite method of treatment is calculated as follows: later passing thru zeolite, 553,000 gallons per million gal. Cater passing thru sand, h47,000 gallons per million gallons. Fbr backwashing seclite units, 553,000 x 9.35 a 51,750 gallons For backwashing sand units, “£7,000 x 2.h3 - 10,870 gallons For desludging, 379.3 p.p.m. x 8.3“ x,1%%,- 15,800 lb. sludge, lees solids 1%:6g8' lb. water - 1,529 gallcns Total 6#,1fl0 gallons per million gallons of water softened. The backwash in this method of treatment mist be conditioned water. - 112 - Ilecgrig figwgr figggiggmeptg The line soda ash method of treatment will require: Kw—hr.per day. 1 .. '2 hp. for mixing, operating 21!» hours per day - 35.8 6- 1 hp. for clarifying, operating 2% hours per day - 107.11 1 .. 37 hp. for backwashing, operating 1 hour per day - 27.6 1 - 20 hp. for chem. conveyor, operating 2 hours per day - 29.8 3 - 1} hp. for chem. feeders, operating 24 hours per day - 26.8 Lights, 20 kw. load, operating 6 hours per day 499.9 Total 11117.11 “#7.“ x 365 II 163,000 kw—hr. per year at 1.25¢ I 2,037. The seclite method of treatment will require: 2 - 5 hp. for brine pumps, operating 6 hours per day - 45.0 1 - 30 hp. backwashing, operating 3 hours per day - 67.3 1 - 15 hp. salt conveyor, operating 2 hours per day - 22.“ Lights, 6 kw-hr. load, operating 6 hours per d” - 1g Q Total 170.7 170.7 x 365 = 62,300 kw-hr. per year at 1.254: = $779. The lime aeolite method of treatment will require the same as for lime soda ash except that 20 kw-hr additional per day will be required for backwashing zeolite. “7o“ x 365 = 170,500 mm. per year at 1.25¢ = $2,131. -113- bo t The lime soda ash plant will require: 1 Chemist at $2,h00 per year - 6 2,900 k Operators at 1,600 per year - 6,u00 1 Laborer at 1,200 per year - 1,200 Allocated share of superintendence - m Total 311,000 The zeolite plant will require: h Operators at $1,600 per year - 3 6,000 1 Laborer at 1,200 per year - 1,200 Allocated share of superintendence - _1.999 Total 8 8,600 The lime zeolite plant will require the same labor as the lime soda ash plant. - 11h - The time when extensions to the water conditioning plant will be required can be determined from the fellows ing data: Per Capita Average Max. Ratio of Pumpage gal. Daily Daily 7 Max.to Avg. Year Population per day Pumpage Pumpage Pumpage 1910- . 31,000 96 2.8 5.9 1.75 1920' 57.237 83 “-75 8.5 1.79 1925- 68,000 10h 7.07 11.2 1.58 1930- 78,105 -109 8.52 11.95 1.75 1932- 75,800 at 6.37 10.78 1.69 1936 (a) 98,000 lou' 10.2 18.0 1.76 1910 (b) 115,000 115‘ 13.2 22.6 1.71 1945 (c) 135,000 118 16.0 27.1 1.71 1950 155,000 121 18.8 32.2 1.71 ' Actual data. (a) Add 5,000,000 gallons per day capacity. (b) Add 5,000,000 gallons per day capacity. (c) Add 5,000,000 gallons per day capacity. - 115 - -Igriaple Charge; - Lime ggda Agh Irggtgegg The charges that vary with the quantity of water con- ditioned for the lime soda ash plant will be: 1'1er 13 Chemicals Alus 83.0 lb. at 825 per ton - \. 3.4-1.0". Lime (CaO) 2,502 lb.at 811 per ton - 13.76 Coda Ash 673 1b. at .33 per ton - 11.10 Coke l+6.7 lb. at $10 per ton - ____,_23_ Total ' " ' $26.13 per mil- ion gal. lash Water Raw water 812 per million gallons Chemicals £6.13, per million gallons Total $38.13 per million gallons 26,020.gallone at 838.13 per million 0.99 per mil- ion gal. Additional pumping head 8 feet at $0.08 0.61!- per mile- _______ lion gal. Total variable costs $27 .76 per mil- lion gal. -116.. ar e 1 r e - 2e lite T eatme The charges that vary with the quantity of water conditioned for the zeolite plant will be: TABLE 1“ Chemicals. salt 7,539 lb. at 87 per ton 826.39 Liquid chlorine 2.5h lb. at $160 per tggggg, Total per million gallons lash Water Raw water 8h,300 gal. at $12 per mil. Additional pumping head 7.1 ft at $0.08 Total variable costs per million gallcns - 117 - 826.59 1.01 823417 a b 8 ar - i e e 1 e Tre t e The charges that vary with the quantity of water conditioned for the lime seelite plant will be : TABLE 15 Chemicals Alum 83.4 lb. at .25 per ton 8 1.08 Lime (CaO) 2,502 lb. at 811 per ton 13.76 Celt 2,527 at 87 per ton 8.8% Coke 96.7 lb. at 810 per ton ___923 Total per million gallons $23a87 ween Water ' Raw water $12.00 per mil.ga1. Chemicals i33.§1,per mil.gal. Total 835.87 per mi1.ga1. 64,1HO gallons at $35.87 per mil. 2.30 Additional pumping head 5 ' 8 feet at 80.08 4,95; Total variable costs per million gallons $26.81 - 118‘- Average 99119 9691 9 9111109 9911919v Maximum 9911? 99919 9 9111109 99113 9 Tfifial 999991 pump9g9 9111199 9911999 Sap9oity 91 91991 ' 9111199 g9119n9 99? 999 Total le99 3991191 Or1g1nal 199191191109 990111099 Total Total 199991 $991999 Variable op999119b 99919 $27.76 999 9111191 99119 99 91 Sperating 19991 Water for operafiing hy9199119 991999 Electric Power Maintenance, 1% 11199 9 g Loss in £1119: 9999 19 9999911y Depreciation Ori ginal plant Additions Total 099191199 Capital ohargea, 99% on £1199 capital Total annual 00909 Operating 90919 991 9111199 gallon Capital charge per 911110n gallon Total annual Costs per m1llion gallon to distribution system Coat cente,p99 100 cu.ftadelivered to customer Cost cents, per 1,000 gallons delivered to customer GQST SF A 3"» <3 1 “r; c’"; :fj 2111.” 0 £2 9,191¢§ 99 91 £717 )2; 4‘ 33"”: {‘F9 VJ 1‘49." ‘9:wa , 997-1799: “ii-1 M T"? 91990 9 $12§§§ 99 1 40.01 9 47.20 M.4l¢ 5.90¢ TABLE 16 GPEEATING LIME SODA ASH TREATMENT PLANT 99 H \95 9 CN 1E,g;0 3 2 . 3 37.02 1.1119 1 42.90 3.96¢ 5.30¢ $101,393 12,000 600 2.237 4 ,340 160 292 93799 11137218 9 36.50 5.35 $ #1.85 3-91¢ 5.22¢ " 119 a. 12 20.# 4,383.0 20 $350 000 fin 000 3933:005 $121,672 12,000 600 2,237 14 . 23.8 5,113.5 25 $350 000 l68 coo $513, 000. 3141,9517. 13,000 700 2.437 .$_34.00 ;_2_2§. 16 .27.2 5,844.0 25 $350 000. 168 000 $518, 000 $162,229 13,000 ..700 . 2.“37’ 5,160 200. 990 9,” _ 2 10 $2» .13 37 96 3 52¢ I u.74¢ .- 18 -30.6 6,574.5 30' $350,000 a 2 000 16651000” $182,508 19,000 80° 2,673 6,020 240 _ 9 990‘ $2 $ 2E:030 'fi 33. 98 ' 4.12 $;39.10 1 .3.56¢ 4.76¢ '\ ‘ .‘A 0 h”; «K. IfiIOT 1d nticteqc .txvss £531? azaqo 101 1533? Iflwcq Imfifil S 1?; ! M r.“ ’T‘ orxr “AA “WV" ‘3' 't v '. "1.. ;~,§ «“s ‘2'”! ... \d- 5 .. ' . . 52.1. '9» ....4 n 5 Q I i ,U .3 a... 5 .... up.“ a; .3 a «L 3 £8.99 ...u out. Siffi Jfl +ufl0rx. ....v I 3 .5 a... ....»I a. «In 9‘ J. g It, ans! I, . fix a... .. .. A. C. . ”s; u ...-«M M! y\ ....u A...» mw . u flux. 0. 4‘ I. —.l .a if; 1C? 9 F ‘1 téq.sinéo Ja- UV 0? .3 Vrhl‘. i ¢ “*{Jhm t4. \ Ismoieuo IsmciaLn o: 7261!? .1 q 83900 'T :1 ~ I“. _ ...Po‘ '1‘?“ v a‘ . --l' -'v- . 9"". W? , D - ‘ ‘ P -.. r ‘ _ . ' ",—"’W4j. QQEE 00 Q.£R&TI§$ ZEQLITE TREATMENT PLANT Avsraga 80110 ' a c - ' ,1 $5. 37: .<:..-. .3 170.11. £001.»; *0: a. , V million 3011000 6 5 10 12 14 16 18 Maximum 1011? pumgag0 , million gallong 10.2 13.0 17.0 20.4 23.8 27.2 30.6 Total annual pumpagg _ million gallono 2,191.5 2,922.0 3,652.5 4,383.0 5,113.5 5,844.0' 6,574.5 030001 ty 0f gloat _ million $011000 p00 day 15 15 18 '21 24 27 30 $0tal Fixed 0301001 . gig-1:11 12130311252102: $300,000 $300,000 $300,308 030:,000 $320,000 $302,000 $300,000 'r;1fi.0na _& w_4w 4 10 000 1 2 000 21 000 2 0 000 To tal 53003.0 $m300“1,0“00 $3 , 0 $W‘”,000 0m $316‘”,000 $317L‘“0,ooo Total Annual 0harg00 Variable opofafiing 0001500 00 , 1 ~ ' ' $28.17 per m11110n $011000. 3 61,735 $ 8;,313 $102,891 $123,469 $144,047 $164,625 $185,204 Operating labor 8,600 8,600 9,000 9,400 - 9,800 -10,200 10,600 Water for Oparatimg hyifaulio 001000 500 500 600 .700 I 800 l 900 1,000 Electric pg... 719 779 879 979 1.079“ 1.179 1.279 Maintenance, 1% $1100 0001101 3,000 3,000 3,540 4,080 4,620 4,160 5.700 Loss in 2001100, due 10 010210100 . ani wasto $0 1%% amnually 2,100 2,100 2,520 2,940 '3,360 3,780 , 4,200 Depreciation , ,1 0 Original plant 10,448 16,448 16,448 16,448 16,448 16,448 16,448 Additions ... - 186 6 2' reg-fig 12' 44 11%;2? Total Operation $93,102 $i199?35 4 3 . $ . $ . $2 . 3 $2 ..3 Capital charges, 1.53; on 11:03. oapi'tal 1%,?"00 1 “‘00 1 0 18 6o Eggkggg 2 220 ' 2 6 Total Annual Costs $1 .0 3 $I§$f5 $ .9 4 ’. 3 . 0 3 3 .2 N 353215;? Operating costs per million gallons 8 42.50 0 38.80 $ 38.16 $ 37.50 $ 37.10 $ 36.80 $ 36.55 Capital charge per million gallons 2.126.231, 4.61 ___4_._3_§_ __4_._l_9_ _____lg_._o_§ __3_._3_7_ ____3_._39_ Total annual @1008 per milliom / _ _ . -. gallons to distribution system $ 48.60 8 43.41 $ 42.52 $ 41.69 -$ 41.16 $ 40.77 $ 40.45 Cost per 100 cu.ft. dolivered to . ‘ "- _" _. , .' customers 4.550 4°05¢ 3.98¢ 3-89¢ 3.84¢ 3-31¢ 3~77¢ ' Cost per 1,000 gallons delivered to . . ‘ ' customers 6.08¢ 5-42¢ 5-32¢ 5-21¢ 5.14¢ _ '5-09¢ 5-05¢ -120~ b'! K‘. . {,1 I n'r H- ,\ t- _ . , .1 (‘1 o:~"~'~‘r. 19.5.?- r .. cur. \ .‘ ~.. i :1 ". ‘ . ' ' b n . j- ..., I, ‘- ‘3 - ' {fi- .— u. _’.. " ‘ 3.. 4 I ‘1’ .. n .a ..., .3 ' 0" —‘ ‘1 ¢L ~45 . P n 1 '~ «1 "~.' "- V‘ 5 V- 1......“ f ,2! :‘.‘,,_ «‘1 .... '0 1' -a ‘5. ‘uk' éJqu ...(," 0‘— . ‘ 'Q. P " v ‘ ‘4 - - - . . x t’ .' f- t . f .o. ~/fi ‘ . o d . V J” 0 .« 1 .. 5 no._" .‘. . ., ‘d 3, a. .t. J, )1 t . (1. ‘e | III ' n {5' -, ‘I b" r ‘1" " Mn \‘ h it. .' fi .\)J 5. '4. - b M);- ’H r r ~ .. \i ' I d a ' . V 0" ': ‘5‘ ‘y '. ". ’ I . " . . Ar 1. a. w‘ .- . ‘5 ’ '~ 0 ' 3' A 1’4.-»| u ' '? ,r '. "Q " V“ '1' I . . e i. 0 " c‘ M i to An I ‘L- x. V - ..., .Y ."‘ v «r ‘:»-n*I"" . ’1: . ' , ' ‘ ‘ .‘ .. ‘4‘, x a J\; S;Iq.' ;m~ L‘ly.‘ 51;. 3‘ I .1 Ice”? -"v'<..-"‘.‘ "3"."1 I‘Nj’r 0‘; w. _‘.. .. 'w .m. ' .0. J ‘ .4 v' '- (. ‘a 9' .‘z” .. o . q .. .. \ I r .‘ .4 I ~ * ‘} -, V ‘v - r' I ,v. ‘ v I . ’I V‘ 1. ‘3' . '__ - 1‘s ‘ I. I '3 ‘o A: l C' 15-31 .. I , ..A 4.‘.‘~ if- ‘9- .‘ ~ ' ’ ‘ ‘r ‘ u I i A I-da vl~ - a G' - .. u“ $l. J, :1 r ‘ . r .. . g“. 4 1.. v' a V» ~. 3‘_ 'p' O- I b! t Q v- .0, v a 3 a -:\ a .I. a. - 5..., E... t. C " i .. .n'J $0 .8 .‘~.‘A-L-A 0‘3:- '~‘ ' ‘ ‘ {o > . ' l ‘ 3' I: J' ' ' .fia “ l ' 0' I ‘q ' n ' :7 :‘u ( Q I r - t .- o: ‘ 9 A.’ ‘l" 'w s ' z." ~ I 4.) ‘9“ l. s Q! . -‘ ‘ I; ‘j ’l ‘ Q'- -’ a: .- ‘ " s .- K. - ‘ ‘ r ‘ h . I' t t 5' n ~1~ ; ‘, v ', ; } ' r1 " ' ‘- _ l' V O" Q ;' ‘ ' J‘ o ' 5, 321* ' -¥~ .1 1.11..-.23 1.. 1-«1151 c... 5.5 ow” ~. ‘ i ,- .. ' . u I )z a. .y- u '3' a r - ‘ ‘1 V ~'t \J lJLa e z .! +I! $ '; o" - ‘1 o . I...“ ’1. ,1 7.1. ‘Qr ‘ L." ’l. r .. 5...?! ' q a 4 l.- . ¢ :- H a. -f ~ ," 1 ~ -. . . s. 21‘.“ t. 0. w .4. .f u I 4 ...;'.. -I.! '1; 32;: .E -- .F 10.10 ..2 ' A 3 0 If! .' 3" f , - rm" « xv. .. f‘ I! ' if n I 22‘ ' . L5 :JJ* v 3.5: u .4.“- h .. V. '.'g , ) .-o n .‘ (Iv ls {'- .'~. h‘ ..o g. N fl ‘3‘! «.I. Q V9“ ex, ewe; Fe‘JYK... f r- . _ .0 '0 .v v. " 3 a V“ o . 7 10 9...: Aft-‘31..£.;~';u it: {.Lf‘QCU " : r ' ' .‘ r... .1 , ‘(1 .. ”m a. i. . 7f . . ‘s M ... 301- H t C.. 9" ,W, ‘ I 3: Q g u 13’ 1“ b. r.) U: 3 ~‘-- #- ,- =.'.~.r- N to? lab .‘ 3:1.» .‘ Y ..‘-- ’ .7. [1" i l. A. ,, ...}... .... .. ~~ ‘ V { --'-r~ 3.1,: ~«.: .5 ~11: ‘ L l.‘.- 4 L ‘ -\ '. t. - ' I l . ' - ‘ ' ‘ 1' + "'- in" 'f i. ' ." "‘ v“ r ' n- -3 I 4'4. ‘1 v" ._‘,_ ,2, . ., . . ...? .1 is.) :. t.§t ‘.,_‘:,.,,§fl,3 ”5:,,_.,.,,; ~ n, -\ ‘5 .‘q- :- .pf ‘ ‘ - - v . - m r "1 a ‘t at '- Q I , ’uqy T . 3.3 \- ' " g " "' ‘ * 8‘... V, {3‘ L15" 4 b Elsi .' 0f; 4' J. {J J- I‘ " f, h r p f ,- (... '- M a h'*f‘t.‘ ' *“- 1 ‘- ._- 4 " .. W * .- ..-a-,- . I v ' l --d-' v {10 \-o‘; u 3" ‘3 (I... .. a ) I )4 3 1‘ E: 0‘ ET 1“ 7:; .t .53 .1 1.; "W ’1 ‘4 If. 1‘ '\ : I '3 q'. Jo l~ :4 3F ’ 5- 'p I- -.a (J. 'Y A 1 J .' r 0‘ " ' r',’ ' .f O .. 0/31‘_J A. . ~.' 3 . 5&1“. :'. -L 4. .11 '. :3~4 H; ‘11 I“ .J ) ‘L“;, .g 3‘ '.) ~-.¢.‘.-..-, -..—.g ‘. . I‘ ‘ § ‘ 0‘ , '- “V ' ‘ n .-, .' 4', 4 0’. - , A p-Ar'w a\" . " A ‘., I .I.: A g a: .2 2' .1 if. CC! ..~'._.';..‘, ;_;,,.2- I 1;”, C1 a I.‘_ , ,n . v ‘ ,' I . ~ . v' ... ‘ . , . ‘ A -. ‘. 3 .,» , t ' ... ..., " . _. - ‘. ‘1 u, PI 1' .f . a , A. . ! \ I . u. an“? 1' .‘s‘v- 2 .C- L- Ju. .1 .. ~.'¢..lui_‘-, 1.... Cu {ii-LC.) 11:33 A . I" ’. "‘ I Hi f . , } r r . v. t o (M . , I. u A . 0'- Av125£dbt3 ‘ Ou‘io. ' ‘x'..-- 1"q J'<-") * "s " ‘1 ~‘ r (I - - ., 'v T" 2" ' ' c.¢~tt¥\t:d :9 g , 1 , .4 ‘f g..- /~. l' -, -.., ’v ' ' 1" ‘..u.su " £ v 4‘- : fl»! Average daily gumpagg “‘1- E HWY“ 6‘ bflfii ’ TABLE 18 SPERATING LIME ZEOLITE TREATMENT PLANT millien gallsma 6 8 10 12 14 16 18 Maximum fiallyigumpggg million ga110m0 10.2 13.6 17.0 20.4 23.8 27.2 30.6 Tetal annual gumyaga A ’ m millicn gall0n0 2 191.5 2,922.0 3,652.5 4,383.0 5,113.5 5,844.0_ 6,574.5 Cayacity of plant 5 ' , ' million g0110n0 00: 10y 15 15 20 20 25 25 30 Tatal Fixeé Capital - giggtgal 100001100100 $403, 00 $403,000 $483,288 $403,000 $403,000 $403,000 $403,000 0H0 ,, 1* ,.7 5 10 000 20 000 208 000 12 000 Total .20.?” 00 $103,000 1W0 ,0 03W , 0 W $€ITf600 457151000 Total Annual 0hafg03 Variable operating chargea at 3 , $26.81 m11110n gallama, p01. $ 58,754 $ 78,339 $ 97,924 $117,508 $137,093 $156,678 $176,202 Operating 1.00: 11,000 11,000 12,000 12,000 _ 113,000 13,000 14,000 Water for operatigg hydraulig 001003 500 500 600 600 ' 700 700 800 Electric Powe? 2,131 2,131 2,331 2,331 2,531 2,531 2,731 Maintenanca, % fixed cagital 4,030 4,030 5,070 5,070 '6,110 6,110 7,150 Logs in £11000 sand 1&1 annually 60 60 so so 100 100 120 Loss in 2001100 15% annually 702 702 936 936 1,170 1,170 1,404 Depreciat1on ' ’ ~ Original planfi 13,822 13,822 13,822‘ 13,822 13,822 13,822 13,822 Add1t10ne " ~,fl= ~,, __;,§g1 82 6 4 . -6"4 11 481, Total operat1cn §§0j§99 0:16:53E’ $130,990 $ 5 .17 0 2,1 $201, $§§7f770’ Capital chargaa, 45% cn 11201 00§1tal “ 18,175 ‘ 18 1 " 22 81 22,815 2 4 27,425 _3§,;1§ Total Annual @0832 $ 093I%E $'3 0 9 $15 0 . $17 :9 9 $ 9: $22901 0 $259394 Operating costs per millian $011000 $ 41.50 $ 37.80 $ 37.40 .$ 35.70 $35.63 $.34.50 $ 34.53 Capital chargss per million gallons 8.20 6.20 6.26 __5;§§, -__§;1§g __4;Z; l;+4g§2 Total annual 00003 per million , _ f . , ' gallons to fiistribution system $ 49.70 3 44.00 $ 43.06 $ 40.92 3 40.99 $ 39.21, 3 39.42 Cost per 100 fiu.ft.deliverad t0 ,- . . customer 4.05¢ 4.110 4.07¢ 3.82¢V 3.83¢ 3.67¢ _3.69¢ Cost per 1,000 gall0ns delivered to ‘ I ~ . . . customer 6.21¢ 5.50¢ 5.45¢ 5.11¢ _ 5'12¢'. 4.91¢ 4.93¢ ~ 121 ~ «T'- u.’ .- .1: If: £113.11 . '4'?‘ “9 ”'1'“ fihAn' tulip.”- ”SW“ VA ,5 {my .2. p ’3‘“ i .1- ‘¥ .J 1.. .... f. M; J .. ...... I. .m. . ...; ....3 5 \...:4 ..m o... J. 1,1 I ‘.~ ' {-.fi 71.1 r do '1‘ . .r 071.! M. J- . "‘. 02." hi 3.1 -,, .4 r .L . Harms. ... . w 1. w. .u .n A \m u a... .r.. a... u. “..-- . ...? 1. .. 1.. . . _ ,. r -. .lo . a ha .0 i" ,5 'V‘l 4w;- 1+ O J. ‘1 | -.r rt" .( fl “.1 .. w' I l . (p " #‘f *f". 3’3‘ .;.:.‘0:- 33. ..L‘ I . .I . ‘0 0 .01; .A. 0~ .... . . .: -,] n. . 9 p 'a5 v.r J )9 \ M! ’1 I] .- ‘1 . .1 r . .4 or. w' - k \ ., --1-..-._.-.1..,. '. f. .1“. x... 4 . i a . . .0 i ., .3. f . .. 4 -.. Y: ’1. a3... ...» rm. .I. .0 .v a... .3. \ ~4-—. ‘. Q. a- -. o ‘1 "-3 1'21- 1:.- - . (A. l‘" .1 a, .L .9, r- h). ' ~ ‘A 34.0.1. -fl-1-1..l.1.1.-...-...1111111 1.2.1..-- 1.- - “11 . 1.11-1111} 1-11..-.1111.¢nm111113 ..1. . mzodao. .._.0 39.52 J J J . : 5m4m>m-wzo:ramzz.m 06.60 :864 .z. . . .0Qom.J;....--J.. _ g . , . W . | ~ . ..\...-‘-aq* H~~—. .w ,—..— - » ._ . I . . . . -.. 7.1.- -- 1-4-1.1-- ..1J11111TJ11:3 o. . . a .. . . J . .. .J- . ; . - ....H .4 ..... .. T. J --.1--. -5.-- .44.-- l 9 g-.. .x 326:...154 400m 2.136 . . _ w ,_ _.M.3.H.Jw . _...J. .J. N .. 1.1.1.11 lmr M m H J J _ J S . .H J. .4u.1 #611 H . .J- . .M ..J. J , d .. ._ .. J . 4 --.. . 11.. a .11.. J1141wi. 1.11.41- 1 H 11 J111111 1N1! 1 I1J-I.¢1........111N.1111J1|1.i [1.1.1.114 . .L ..J..f..1~ . J. J. . J- ..“JH..- J. WhanW J. . 6+ 1.. . .. .J... .. w . .N. OOIFU§4 “54.0w” Tzflw >0: . 4 - . 606%....mt 8T6 +1.. 4, 9 0151111er 1 1 1 1 1- “'10. In -Ji, J»-_ y- 1 1 ‘1 3.0 .Jl .. M I L- c—w... L i l l 4 O 1 Q 0 V l O 1 I ' f “57‘3‘7‘””“‘ ! 1 i { . . - A_J . . .. _ VI}- 1... _ . ' '-;0321n111n 92910711. - | . . O 1-~.-r—¢—-..7- .4}- ”—1. —- A —— p“ 4 -—-.-. - - . . . , . .1 - . . . p .3 i 1.--- 1 l ,1. h \JA‘u-Y- h I ~54 5 1‘1. Win. A‘ V .I./\I U ‘Ikfl .vha ‘w~!\l\ V‘ Inu~£ nMrfi