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ABSTRACT

A MULTI-PRODUCT, MULTI-FACTOR THERMAL INACTIVATION MODEL FOR
SALMONELLA IN TURKEY, BEEF, PORK, AND CHICKEN

By

Maria Isabel Tenorio Bernal

No current modeling tool accounts for all the necessary factors to validatenalther
process for ready-to-eat (RTE) meat and poultry; some do not a&dhewssella and/or
important product/process attributes, and most have not been validated against ietya&ng-r
data. Therefore, the objective of this project was to develop a multi-product, mtdtitfagrmal
inactivation model foGalmonella in meat and poultry products. First, the effect of sublethal
thermal injury on subsequent bacterial heat resistance was quantified hylieghe
capabilities of a previously published path-depen@&almonella inactivation modelSalmonella
inoculated ground turkey, beef, and pork samples were subjected to multiple non-isotherma
treatments. The resulting path-dependent model was validated against equivalesttayeing
error reductions of 63 to 82%, relative to the state-dependent model, thus confirming the
importance of accounting for sublethal injury in inactivation models. In the seconthpantal

inactivation data foSalmonella in turkey, beef, and pork were selected from published sources

(nops411, 764, and 446 for each, respectively) and used to parameterize various versions of a

multi-product, multi-factor model, using ordinary least squares and mixectsefatistical
methods. Validated against industry-relevant data, most models performedbfavdran
considering fat content, sublethal injury, and muscle structure. Overall, thistpllagrated the
current difficulties and positive outcomes of pooling thermal inactivation datadifferent

sources, parameterizing models with them, and validating them against inélestant data.
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1. INTRODUCTION

1.1 Background/problem statement

Ready-to-eat (RTE) food products have become an important part of the Ameeigan di
due to their convenience, nutritional value, and palatability. However, because thdipnoduc
chain to make these goods is highly sophisticated, there is a high risk for pltysaaical, and
biological contamination to occur. While it is easier to monitor physical and cakimipurities,
it is harder to do so for biological elements, such as pathogenic microorganismse lbleegus

are naturally occurring in the food materials.

Regarding meat and poultry products, the pathogens of concelBscherichia coli,
Salmonella, Campylobacter, and Listeria monocytogenes. Together with four other pathogens,
these microbial agents are considered to cause most of the foedboesses in the United
States (CDC 2011). Therefore, to protect consumers, the UnitgdsSDepartment of
Agriculture (USDA) bases thermal processing regulationstiese products on worst-case
scenarios forSalmonella contamination, due to the pathogen’s higher resistance to heat
inactivation treatments (FSIS-USDA 1999b). The regulation requiegghe products be cooked
to reach a specific lethality of 6.5 or 7.0 Jpgeduction inSalmonella population for beef or
poultry, respectively (FSIS-USDA 1999b). To fulfill these requieais, processors have two
options: to follow pre-established cooking conditions, also known as “sdferbg or to choose
their own cooking conditions. The safe harbors prescribe how long to lpotadiact at a certain
temperature to comply with the regulation (e.g., 12 minutes at 60He).problem with this
option is that it can cause over-processing, which in turn leatigh@r energy costs and a

decrease in product yield and quality. On the other hand, if prosessertheir own cooking
1



schedules, they have to prove “based on scientific rationale [and]iregpé&al data” that they
comply with the lethality performance standard (FSIS-USDA 1999b).dfdeback in this case
is that most establishments do not have the financial or saerggources to provide the
evidence specific to their process, and the scientific infoomadivailable is related almost

exclusively to laboratory studies, and likely have not been validated for iladipsticesses.

Essentially, the regulation delegates the problem of validating protiesktyeto
industry, which in turn does not have the necessary tools to achieve this. Nonethetessethe
microbial inactivation computer programs available to help processodsiteatheir own
cooking conditions. These are the product of the combined effort of several food safetgsage
and concerned food industry groups, including the USDA, the American Meat Ingiiie (
the Food Standards Agency (FSA) and the Institute of Food Research (IFR) intdgk Uni
Kingdom, and the Food Safety Centre (FSC) in Australia. The federal regubally mentions
the program developed by the USDA'’s Agricultural Research Service (ARSyathogen
Modeling Program, and states that “[o]ther programs may be available coialiyeé However,
as explained in more depth in the next chapter, they present several drawbacKshod fal

from the tool industry needs to provide the scientific evidence required in the fedetatios.

1.2 Goals and objectives

Given the importance of assuring food safety for consumers, it is impeftaiviadustry
obtain the necessary tools to achieve this. A model applicable to any meat or gmkKing
process, that could provide processors a documented scientific means to comyevdh f
regulations, would be an important step forward. Therefore, the main goal ofdjleist pras to

develop a multi-product multi-factor model that could be used by industry for thermal
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inactivation ofSalmonella in different meat products. Specific objectives were: (i) to test an
improved secondary model for thermal inactivation, accounting for enhanced thesisg@nce
resulting from sublethal injury @&almonella in multiple meat products; (ii) to determine the
most relevant parameters that should be included in a multi-product multi-factoather
inactivation model foGalmonella; (iii) to propose and parameterize multiple options for a multi-
product multi-factor thermal inactivation model; and (iv) to validate model pesfacewhen

applied to independent pilot-scale data.



2. LITERATURE REVIEW

2.1 Salmondla and foodborne illness

According to the Center for Disease Control (CDC), there are approxymdatehillion
cases of foodborne illness cases each year in the United States (CDC 20Xl Timescause
an estimated 128,000 hospitalizations, and 3,000 deaths (CDC 2011). Among the most common
bacterial pathogens in food, the CDC li€@mpylobacter, Salmonella, andE. coli O157:H7
(CDC 2011).salmonella, the leading bacterial cause of foodborne illness, and the pathogen of
concern for this project, is naturally found in the intestinal tract of birds,espéihd mammals
(USDA-FSIS 2010), and reaches food for human consumption via fecal contamination during
processing, especially in the case of meat and poultry (Adams and Moss 2008). Wited, iafe
person can develop non-bloody diarrhea, abdominal cramps, and fever, which characterize
salmonellosis (USDA-FSIS 2010). The illness is not considered life-thregtétieated
promptly. However, small children, the elderly, and individuals with weak immunensystan
be more susceptible to the infection and develop additional long term complicationss such a

Reiter’s syndrome and chronic arthritis (USDA-FSIS 2010).

2.2 Federal regulations regarding heat processing in RTE products

Effective March 8, 1999, there is one regulation governing the performance standards fo
the manufacture of certain ready-to-eat (RTE) meat and poultry prod&mA-FSIS, 9 CFR
Parts 301, 317, 318, 320, and 381 (FSIS-USDA 1999b). The regulation encompasses three parts:
lethality, stabilization, and handling. Relevant to this project are the tgtpalformance

standards. According to the regulation, the kill can be accomplished with sevenatratial
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methods, but inclusion of a cooking step is mandatory, hence the importance of the heating
process. In addition, there are no documented means of assessing the cumdatioé sdfieral
antimicrobial methods. Therefore, if this path is chosen, processors mustisalgnprove that

the lethality levels are reached (FSIS-USDA 1999b).

221 SafeHarbors

One of the options available to producers to comply with federal regulations nggardi
RTE meat and poultry products is to follow the pre-established time/temperatikiag
schedules developed by the FSIS, also known as “safe harbors”. These indicate hovedakg
a certain product once a minimum specified temperature is reached to achiegta®ry
standard (FSIS-USDA 1999a). For example, a beef roast would be deemed safedffood
min once 60°C is reached throughout the product. The full table can be found in “Compliance
Guidelines For Meeting Lethality Performance Standards For Ceriat Ahd Poultry
Products” (FSIS-USDA 1999a). The safe harbors are the easiest wawty edth the
regulation, and while not required, are given as an option. However, the use of these cooking
schedules may limit a processor from manipulating product attributes onlyadsquduring the

cooking step, such as moisture retention or crust-layered roasts.

2.2.2 End-point lethality

When concerned about the final quality of the product and total energy expenditure in
cooking, processors may prefer to customize their own cooking schedules. In thibeassust
prove “based on scientific rationale [and] experimental data” that thesel spetiang
conditions comply with the regulatory standards (FSIS-USDA 1999b). Currentlyspesceeed

to accomplish a 6.5 lggreduction and 7.0 lagreduction inSalmonella population for RTE
5



meat and poultry products, respectively (FSIS-USDA 1999b). Even though this choilie clea
gives processors more flexibility in their cooking options, the challenge isngrthat their
time/temperature choices reach the required lethality levels. Thisaadwethere currently there
is no scientifically proven, generalized tool available to present this eeidand producing

proof for each specific process is economically burdensome.

A new regulation involving 9 CFR Parts 301, 303, 317, 318, 319, 320, 325, 331, 381,
417, and 430 was proposed by the FSIS on February, 2001 (USDA-FSIS 2001). If finalized, the
new regulation would require that the processing method f&®TE and partially-cooked meat
and poultry products comply with the 6.5 and 7.0 log reduction currently applicable to only

certain products.

2.3 Factors affecting bacterial inactivation

There are numerous methods to inhibit bacterial growth in foods; these include addition
of chemical agents (preservatives), freezing, drying, controlled atmesphegh pressure
systems, among others. On the other hand, current methods for complete pathogetdnactiva
via processing are mostly limited to heating and irradiation. Even with the djgplioathese
two technologies, food processors commonly use the “Hurdle concept”, which meankdevera
these methods are used to conjointly prevent microbial growth in foods (Jay and260ters
Adams and Moss 2008). For example, in a broad perspective, the ingredients for a R&i& chic
dinner would come from a high quality source, the meal would be prepared with the addition of
preservatives, and then cooked to kill any possible incident pathogens, be packaged under
sanitary conditions, and finally frozen and kept at freezing temperaturesamgumed. The

combination of controls is designed to help ensure product safety. In the case nfRERali
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meat and poultry products, because the use of an inactivation method is imperaltige for t
destruction of pathogens, a heating step is always included. While irradisigoraved for

fresh meat and poultry products, regulations regarding these RTE products regjuncusion
of a heating step (FSIS-USDA 1999b). For that reason, heating is used as tmecgneé&thod

for bacterial destruction in manufacturing RTE meat and poultry products.

Bacterial behavior under heating conditions is well documented for a variexyriofsic
and intrinsic factors. Extrinsic factors refer to environmental conditions, winctidie relative
humidity, temperature, and gaseous atmosphere — the most important of these fdr therm
inactivation being temperature (Adams and Moss 2008). Intrinsic factors geapgeties of the
food that affect bacterial response, such as nutrients, pH and bufferingycapadation-
reduction potential, moisture or water activity, antimicrobial constituents, foactstes, and fat
in the product (Adams and Moss 2008). The most relevant for heat processing would be
moisture, food structure, and fat (Juneja and Eblen 2000; Juneja and others 2001; Juneja and
others 2000a; Tuntivanich and others 2008; Mogollon and others 2009; Velasquez and others

2010; Orta-Ramirez and others 2005; Carlson and others 2005).

Other critical factors cover the characteristics of the microosgas)iwhich refer to
specific growth rate, physiological state of the cells, mutualism, aad@msm (Adams and
Moss 2008). For thermal processing, the factor of main interest among these wanld be t
physiological state of the bacterial cell, specifically refgrto sublethal injury. Factors most

significant for heat inactivation are described in detail in the followintyosec



2.3.1 Temperature

Thermal processing inherently involves an increase of temperature in thesprgces
environment and consequently in the food product. Subjecting bacterial cells to high
temperatures for a certain period will injure them and eventually kill themeThao cut-off
temperature at which bacterial cells will instantly deactivatbegerait is a gradual process. This
is because naturally occurring bacterial populations contain cells irediffetages of growth,
and log-phase cells are more susceptible to heat than their stationargqinaeeparts (Adams
and Moss 2008). Nonetheless, higher temperature causes faster pathogen amadtivati
example, cooked beef is deemed equally safe if held for 71 mins at 55°C or 54 s at 66.1°C (FSIS-
USDA 1999a). While longer cook times also have an influence on bacterial inactivat

temperature is the most determining factor (Jay et al. 2005).

232 Fat

Studies conducted by Juneja et al. (Juneja and Eblen 2000; Juneja et al. 2000a; Juneja et
al. 2001) showed that fat percentage (%) in different meat and poultry productsangyif
increasedsalmonella thermal resistance. The same conclusions were reached by Ahmed et al.
(1995) with regard t&. coli O157:H7 However, the goals of these studies did not include
investigating the reason behind this. While it is presumed that fat globakenpm food can act
as a shield for bacterial cells against heat (thus increasing theiebistéamce) (Adams and
Moss 2008), it can be argued that from a biological standpoint, the increased resstdchte
due to biochemical interactions between the pathogens’ cell membrane (a liped)lalad the

fats in the product. Regardless of the real cause, this means that a higiohiiat prould need to



be cooked for longer times and/or higher temperatures to achieve the sagtuttgn than a

low-fat product.

2.3.3 Muscle structure

Food structures have been proven to affect bacterial growth and inactivation (Aa&ms
Moss 2008). For the case of meat and poultry products, this is relevant to ground vs. whole-
muscle products. Although the exact mechanism by which cells increasthéneial resistance
in these two different environments is not completely understood, it may be due tdetrendif
internal structures in the meat and/or available water (Tuntivanich et al. Z0@8)Ramirez et
al. (2005), Tuntivanich et al. (2008), and Velasquez et al. (2010) report&ltnabella had
significantly higher thermal resistance (~double) in whole muscle amegpoultry products
when compared to their ground muscle counterparts. Mogollon et al. (2009) tested whodée muscl
coarsely ground, finely ground, and pureed b&afnonella was significantly more resistant in

whole-muscle beef than in the other products, but there was no effect of the degnedirtd.g

2.3.4 Media moisture content

Studies from Carlson et al. (2005), McCann et al. (2009), Goepfert et al. (1970), and
Reichart (1994) found that pathogens present in a dry environment portray a highat therm
resistance than those residing in a moist medium. For example, Carlson et sddrdyairthe

thermal inactivation for an 8-servor@almonella cocktail decreased 64% (p<0.01) when water

activity (ay, a measure of available water in a product) in ground turkey was decreased from

0.99 to 0.95 (2005). In Goepfert et al.’s study, media with diffekgntexe prepared by using

sucrose, fructose, glycerol, and sorbitol; results showed that the cells in erenterwaith the

9



lower gy yielded D-values 25 to 75% lower than those tested in the media with hjgher a
(1970).

Moisture as a percentage of product composition is also commonly related to fat
percentage, meaning that a high-fat product will more likely have lowetur®iontent than a
low-fat product. Consequently, the same principle for inactivating pathogémbonger
cooking times for high-fat products applies to low-moisture products. In addition to the
biological effect, a secondary consequence of a dry system is that withdies present, the

heat transfer process is less efficient, making the cooking less tethal bacterial cells.

2.3.5 Sublethal injury

Cell injury results when a process affects the bacterial cell in divegay, but fails to
kill it. Pathogens are inevitably injured when exposed to heating, freezingaavatisin
environments (Wesche and others 2005). In any of these cases, cells can eithembe®m
susceptible to further inactivation procedures, or react to the changing envirdnynaelaipting,

thus becoming more resistant to the processes (Mackey and Derrick 1987b; WakcP@O&).

Under sublethal heating conditions, which occurs for example when slowly cooking a
beef roast, a portion of the bacterial population adapts to the gradual increasgeratare by
developing heat-shock proteins (Xavier and Ingham 1997a; Jorgensen and others 1996), or by
other unknown mechanism (Mackey and Derrick 1990). These physiological chhogesels
to resist heat inactivation at higher temperatures, thereby affectakgng time needed to

inactivate the microorganisms (Jorgensen et al. 1996; Xavier and Ingham 1997a).
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Many studies agree that heat-shocking bacterial cells incrdéespspulation resistance
to heat. For example, Knabel et al. (1990) reported that the thermotolerdamnsterod
monocytogenes increased when cells were heat shocked at 43°C for 5, 30, and 60 min. Farber et
al. (1990) subjected the same pathogen to four different heat shock temperatures (40, 44, 48, and
52°C), and reported the same conclusions. Pagan et al.’s (1997) results agree evithdings
with respect to time, but their study also analyzed the effect of heat shquir#tune or.
monocytogenes. They found that just before lethal temperatures were reached, the higher the
temperature, the more thermotolerant the cells became. Therefore, irsprgoesnditions
where sublethal heating is expected, microbial adaptation should be taken into a¢myunt w

predicting subsequent lethality.

A preliminary model addressing this issue was developed by Stasiewic2€08) for
Salmonella inactivation in turkey thigh. The new “path-dependent” model incorporated a term
that accounted for sublethal injury, which considered the amount of time the celised in
the “heat shock region”, which was determined to be between 38°C and 52°C (Stasiekicz
2008). The study fitted data from an 8-serdsalmonella cocktail at different residence times
and hold temperatures within the heat shock region (thus yielding different slefjsedlethal
injury) to the path-dependent model. Results showed that the use of the latter reddiotidmr
error by 56% when compared against a traditional “state-dependent” modél,dichiwot

account for sublethal injury (Stasiewicz et al. 2008).

Cold shock of cells can also lead to a change of bacterial thermal tolerancearT his
happen in the processing environment when raw food materials are stored in chitigd sett
prior to the heat treatment. The effect of cold shock on cells is not fully documented, and

different studies have reached contradicting conclusions. For example, Leenah¢R0£11)
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found in a first study that heat tolerance Eoroli O157:H7 was decreased with cold shock
(TSB for 1 week at 5°C), while a second study (Elhanafi and others 2004) revealesbthat
tolerance increased, although the cold shock treatment was different(sgptroth (TSB) for

4 weeks at 4°C). Also, Bang et al. (2002) observed minimal heat tolerance inorédmseoi
vulnificus after a cold-shock treatment. On the other hand, Wesche et al. (2005) did not find a
significant difference between the thermal tolerance of cold-shocked amdl Gahthonella

cells in turkey. These conclusions, in addition to limited inactivation data on thjsaake it
difficult to account for this type of bacterial injury in heat inactivation madeésults are

similar for the case of starvation stress. For example, Bang et al. (2p02)ed a slight increase
in thermotolerance for one of the three straingibfio vulnificustested, but Wesche et al.

(2005) found no significant difference between control and starved-cell heahtelefa
Salmonella. In addition, because different pathogens experience starvation under mamydiffer
conditions (e.g., phosphate buffer, peptone water, nitrogen or carbon starvation), thel&tek of
availability makes this phenomenon extremely difficult to characteridentroduce in heat

inactivation models.

2.3.6 Inactivation media (liquid vs. meat and species)
Most of the initial laboratory studies measuring bacterial thermal vrzdicin were
carried out in laboratory media, such as tryptic soy broth (TSB). Howeves, ligles
demonstrated that bacterial inactivation rates vary with the medium in whichkltheevelop
(Shah and others 1991; Sergelidis and Abrahim 2009; Smith and others 2001; Murphy and others
2000). Therefore, if the results of any thermal inactivation study are to be apgheldistry

processes, it is imperative to consider the media in which the tests werd oatr This would
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mean, for example, using data from ground beef when evaluating ground beef, but not for othe

products.

2.4 Quantifying bacterial inactivation

Given the impossibility of taking samples from every single RTE product ig&ven
processing line to test for pathogen presence, food processors and academitiizdike
mathematical models that describe the inactivation kinetics of these rg@ngsms. Another
option considered in industry is “challenge studies” specific to the manufactuaimggpid

cooking process. These will be explained in detail in the following sections.

24.1 Mathematical models

Generally, thermal inactivation models are developed and tested on labocalergata.
This fact poses a difficulty when the model is applied to an industrial settirgyisTiecause
industrial conditions (i.e., product characteristics, process conditions, etg)resmemble a
laboratory setting. As a result, due to the aforementioned reasons, the badpoate may be
different. Nonetheless, a recent study (Breslin 2009) tested these modetst praptl data,
which have a closer resemblance to an industry plant, thus producing betteresstinmabdel

performance.

A significant difficulty that arises when trying to apply laboratory datadustrial
settings is that not all scientific studies use the same experimentaldsaetr the same model
(except for maybe the traditional log-linear model); every research@rbterences, and

specific reasons are typically not reported for choosing a certain modsdt{ivet al. 2000);
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(Quintavalla and others 2001; Smith et al. 2001). As a result, it is difficult for srea®

decide which data and/or model best applies to their own processes.

Another obstacle processors face when choosing models is that multiple siadses f
primarily on developing mathematically improved models (Vaidya and Gon2009; Corradini
and Peleg 2009; Corradini and others 2010) . Although they may describe certain inactivati
data sets extremely well, or are able to account for multiple environnfecttais, their
usefulness in industry can be hindered because of the extensive experimemaédathto
characterize them, or due to the lack of sufficient technical expertiseonreces. Furthermore,
numerous reports simply develop the models mathematically and only show ta¢oestilts;
there is no parameterization with real data, and the crucial validation agdeséndent data is
not carried out (Vaidya and Corvalan 2009; Corradini and Peleg 2009; Corradini and others
2009). As a result, the scientific literature contain numerous models, but vergdelwindustry

or have significant implications on the food safety system.

The following section attempts to describe the different types of thermalatamt
models along with the characteristics that affect their utility feersie applications. Notice that,
as stated by McKellar et al. (2004), “the most appropriate model would be thesimpidel
possible for a given purpose and the given data quality, provided that it is validatedcsel’ pre
Although there are multiple studies dedicated to the use of these models, few books imave bee
devoted to their categorization and description, and most of these contain in turn more
information and detail about bacterial growth than about inactivation methodse(lsic&nd Lu

2004; Brul and others 2007; McMeekin and others 1993).
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2.4.1.1Primary models
Primary models define a relationship between bacterial behavior and tnsingte
environmental condition (Whiting and Buchanan 1993) . The most used primary inactivation

model follows log-linear kinetics. However, multiple studies have proven that shoaiuktails

in deactivation curves (log Ng\/s. time) are clearly not well described by this linear model

(Peleg 2006; Juneja and Marks 2003). Therefore, several other models have been segbed. Th
include those following log-normal, Weibull, or log-logistic distributions, and thosedoan

probabilistic models, sigmoidal, or semi-logarithmic survival curves, among others

2.4.1.1.1 Log-linear kinetics (D-value)

The log-linear model describes the most basic form of relationship between pathogen
cells, time, and thermal inactivation. It assumes that a bacterial popypagisent in food will
decrease exponentially with time at a constant temperature. This is yomehalted to as the
“log-linear model” (or first-order kinetics), and can be expressed as Dsviauharacterize
pathogen thermal kinetics. The D-value is the time it takes at a specifiedatumgéo reach a
decimal reduction in a bacterial population. A variety of D-values for diffgnemtucts,
pathogens, and applications can be easily found in literature. Although this model ys widel
accepted and used, in part because of its simplicity, in part because it is thd@dabysstudied,
it presents one, but very important weakness. The drawback when trying to fit tHeenode
inactivation data is that bacteria will often not show a log-linear decay.sTbexause the log-
linearity assumption does not account for any type of bacterial adaptatiangteeat cooling
lag times, cell growth stage, among other natural factors. Van BoekeB@ekel 2002)

collected inactivation data from 55 different studies and found that the bacterit@dabe
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behavior characteristic of the log-linear model in only 2 of them, proving thatadisonal
model represents “the exception rather than the rule”. As a result, ressdrahe in recent

years increasingly sought and studied other models with better predictiolesbilit

2.4.1.1.2 Weibull distribution
The Weibull model is commonly used to describe failure phenomena. In the case of
inactivation kinetics, it can be interpreted as the failure of microorgansmsvive lethal
environmental conditions after a certain time (van Boekel 2002). The solved form of the
equation that is relevant for inactivation microbiology is (Peleg 2006):
N =

logS=log— =-bt"
No (1)

where S is the survival ratio NYNN is the current bacterial population (CFU/gy, iblthe initial
population (CFU/Q), b is a inactivation rate parameter, and n is the shape of the survieal

(Peleg 2006). Depending on the bacterial survival curve, the shape will be eittrévadieas

concave upward or concave downward, yielding values of n<1 and n>1 respectivady (Pele
2006; van Boekel 2002). Common speculations as to why the curvature is upward or downward
refer to the bacterial population characteristics. When the curve shows ari‘shitiulder”, it

might mean that the cells are hardy and are adapting or strongly rethstimal kill; in this

case the curve is said to be concave downward and n>1. On the other hand, there might be a
swift decrease in microorganism numbers with “tailing” as time isggavhich may mean that
most of the population was weak enough to be deactivated fast (Peleg 2006; van Boekel 2002).

Note that when n=1, the model becomes log-linear, a special case of the Wettrlll m
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This model has become increasingly popular among the research commungy for it
simplicity, and the versatility to describe different inactivation dat $&tn Boekel (van Boekel
2002) applied the model to 55 different data sets and obtained acceptable 95% confidence

intervals for each case.

2.4.1.1.3 Logistic distribution function

The survival curve described by this model always has a prominent “shoulderipa sect
in the inactivation curve where there was heating, but negligible pathogematiant Short
shoulders are often the result of thermal lag times, which is the time ttlgs for the cold
spot of a food product to reach lethal temperatures. This is usually due to the sizesod thha
food, and the processing equipment. In such a case, the shoulder is an experitiiactahat a
biological phenomenon. However, when such an effect is observed, and with longer trmes tha
commonly expected, it might be due to characteristics of the bacterial popul&i®efféct can
also be described by the Weibull distribution with n>1 or any unimodal distribution.Jg¢owe
the main difference with the Logistic distribution function is that it willt@or a log-linear
behavior once the shoulder disappears. In the case of the other models, the inacdtigatare |

significantly more curved (Peleg 2006; McKellar and Lu 2004).

24.1.1.4 Sgmoidal survival curves

In a way, sigmoidal curves present both aspects of the Weibull distribution, &dcays
contain both the concave upward and the concave downward behaviors. In terms of cell
characteristics, this means that populations are a mixture of highltargsiad highly-sensitive
individuals. There are two types of these curves; the first ones initially tlgogoncave

downward behavior, and then, as the pathogens are deactivated, the behavior switcloes/éo ¢
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upward. The second group of curves is the exact opposite as the first: they stitbal concave
upward trends and then concave downward (Peleg 2006). Although less used than the Weibull
distribution, several studies (Miller and others 2009; Feng and others 2011) citeutiveseand

show experimental data that are adequately described by this model.

There is no unique equation that describes sigmodial survival curves; what groups them
are the observed characteristics described above. Rather, these curepseaemted by

different empirical models (Peleg 2006).

2.4.1.2Secondary models

Secondary models describe the relationship between primary model parametkes and
conditions in which the bacteria reside, such as temperature, pH, salt cormgrdrabng
others (Whiting and Buchanan 1993). Just like industry has a preference for the Drodkle
the secondary model most commonly used and studied is the z-value, which is genatratly use
conjunction with the D-value. However, just as with the log-linear model, the z-vasents

several drawbacks, which has led scientists, to search for a better model.

24.1.2.1 Z-value

The z-value model follows the same log-linearity assumption the D-value ooel
and describes the temperature dependence of the D-value (Van Boekel 2008l)yBasica
assumes that the D-value decreases exponentially with temperature jtasahdwe defined as
the change in temperature it takes for 10-fold change in D-value. Most studiesinDviaalues
have been determined also include a z-value, and so it is common for the scientific dgmmuni

and industry to associate one parameter with the other, making togetheditrenally used
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complete Bigelow-type model (Bigelow 1921). However, as stated by van Bamkilisf

widely accepted model to be vallahth the rate of bacterial change with time and the rate of D-
value change with temperature have to be semilogarithmic- something éhathagpens,
because when either the D-value or the z-value deviate, the predictions becomeajlest

(Van Boekel 2008). For these reasons, research is continuously being carried ouie devel

better inactivation models.

2.4.1.2.2 Arrheniusrelationship

The Arrhenius model found its way to microbiology from its common and useful
application in chemistry and other sciences, in which chemical reactioogrdn@uously
studied. The Arrhenius equation can be presented in several ways, a common one being

(McKellar and Lu 2004):

.
k=nel RT 2)

where k is the reaction rate constant, A is a constant related to the reagtloay&action

activation energy, R the Universal gas constant (8.314 J/molK), and T the ab=wolpéeature.
Because it is common that the Arrhenius equation yields high deviations atextre

temperatures, for microbiology it is generally depicted with the use éérenee temperature

(Trep) (Nunes and others 1993):

RIT T
k =kef € ref

3)
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where kes is the corresponding reaction rate gdTT is the temperature of interest, and k the

reaction rate at T. Notice that with the inclusion of a reference teraperatis replaced by,

making this form of the model to behave less erratically in the region areghdd giving a

physically relevant meaning to this parameter, rather than using A. Foedlsan, in thermal

inactivation kinetics foGalmonella in meat and poultry products;efis commonly chosen as
60°C (333 K) or similar.

Peleg (2006) discredits the use of the Arrhenius equation by mentioning that its

predictions include high errors in low or high temperatures. However, he failsitmmtnat

choosing an adequategf significantly lowers the risk for erroneous predictions in the

temperature range of interest. Similarly, he states that the Arrheniugadaa second

logarithmic transformation of the inactivation data (the first being loggNAMhich presumes

the primary model parameters to be linear. According to him, this is not a commam case
inactivation kinetics, and so the Arrhenius relationship should be invalid. However, he does not
consider the fact that the parameters for this equation can be estimagibalanon-linear
regression. If this is the case, the model parameters are free to belinearlinear as they fit

best (vanBoekel 1996; Van Boekel 2008) . In addition, Dolan et al. (Dolan and others 2007) have

demonstrated that when estimating model parameters for this equation, itlidepimsshoose an
optimum T SO that the correlation coefficient between the equation’s parametersnszed
and so all parameter estimates from the regression are the best passivalde. As stated

above (McKellar and Lu 2004), a model is useful if it has been appropriately edlmiad
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fittingly describes a given set of data. For the case of the Arrhenius,ndde proven to be the
best fit for several heat inactivation studies (Stasiewicz et al. 2008; Mix@Qaed others 2009;

Murphy et al. 2000).

2.4.1.2.3 Log-logistic model

The log-logistic secondary model describes the relationship of primary modeigiars
to environmental factors by marking a specific environmental “set poimtevthe primary
model parameter will change, so that it significantly affects batiedactivation (Peleg 2006).
For example, if using the Weibull distribution as primary model, temperatune as t
environmental factor, and b as our parameter of interest, the log-logistit wibt@ve the
following form (Peleg 2006):

b(T) = exp{L + exgk(T - T¢ )]} 4

Where T; is the “set point” that marks when b(T) will drastically change, and k isatee
of change for b with respect to temperature aftasTeached (Peleg 2006). This means that

once the system reaches a high enough temperat)ré(T) will make bacterial inactivation

significant, otherwise, it is insignificant.

2.4.1.3Tertiary models

Tertiary models bring together primary and secondary models and makaaiaile
to users through a computer interface (Whiting and Buchanan 1993). Not untéy texddel is
established do primary and secondary models become useful to industry. Currently, the only

available tertiary models, which are relatively useful for heat inditiiv@rocesses, are the
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Pathogen Modeling Program (PMP) (USDA-ARS 2007), the American MeatutestRMI)
Lethality Spreadsheet (American Meat Institute Foundation 2010), and theaSerRB=dictor
(ComBase 2012); all described in the following sections. Apart from theiratespadvantages
and disadvantages, the one main flaw present in all tools is that they do not provide wWithuser
confidence intervals and prediction intervals for the estimated lethaligyefidne, the user is
unable to know the prediction reliability. As a result, even if the process predittalityas

over the regulatory target, it might be that the actual outcome is outside of tlteenoafand/or

prediction intervals, still yielding an inadequately processed product.

2.4.1.3.1 Pathogen Modeling Program (PMP)

The Pathogen Modeling Program (USDA-ARS 2007) is a tool provided by the USDA'’s
Agricultural Research Service (ARS). This is the only program mentionéé federal
regulation as an option to provide “scientific evidence” (FSIS-USDA 1999a). Althiegtool
is designed primarily for pathogen growth, it includes a few heat inactivabdelsn However,
there is none available to pred&tmonella lethality, which is the target pathogen in the
regulation. In addition, those available do not include any secondary model relgsosshihat
the tool cannot account for different product or processing conditions that affectrthalthe
treatment. Furthermore, the program is not customized to work under non-isothermabresndi
an inherent feature of industrial processes. It is evident that although ‘s, this tool

cannot be used at all to help processors comply with the specific regulatioreatarauking.

2.4.1.3.2 AMI Lethality Spreadsheet
The American Meat Institute (AMI) is an association that representsahthe red meat

and turkey processors and suppliers in the US. The Institute revises and distniltstes
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members up-to-date information relevant to the meat and poultry industries. Throddhithe
Foundation, research is carried out to improve processing methods and products (AMI 2010).
One of the most important outcomes of the research related to food safety is thetAMity
Spreadsheet (American Meat Institute Foundation 2010). This program can edlmtalat
process lethality for any pathogen using the log-linear model, as long asdnatade- and z-
values are given. Values f8almonella, E. coli O157:H7 andListeria monocytogenes are listed
for certain products. However, they are only examples from specific labpsttidies, which
cannot adequately describe an industrial process (Breslin 2009). According to tdslspeea
instructions, the users must obtain those figures from their company’s “chaltewlyedata,
from scientific literature, or other reliable sources” (American Mestitute Foundation 2010).
For most producers this is as problematic as proving a process meets the retipailigd Kso,
just like the PMP, this spreadsheet is not adapted to include secondary modelsoilnatt far
other product characteristics that can alter bacterial behavior in food. drieetéfs is tool is

only useful to a certain extent if processors have their own D- and z-values.

2.4.1.3.3 ComBase Predictor

ComBase is the result of the combined efforts of several food safety egjanpdss the
globe: the USDA'’s Agricultural Research Service (ARS) in the Unite@Stthe Food
Standards Agency (FSA) and the Institute of Food Research (IFR) in the Wmgedom, and
the Food Safety Centre (FSC) in Australia (Baranyi and Tamplin 2004). initialas a
compilation of microbiological data published in the UK, collected data from dmémé¢rature
at IFR, data from European research institutions, and data from members oDIRARS

Center of Excellence in Microbiology Modeling Informatics (CEMMIp(@Base 2012). Today,
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researchers are encouraged to submit their data to the database, and so the BoonBas has
grown to be the biggest source for food microbiological data, containing 50,474 data records

from all over the world (ComBase 2012).

Equivalent to the US’s PMP, the UK'’s agencies developed the Food MicroModel, which
eventually evolved to become the ComBase Predictor, by incorporating all trebkevddta in
ComBase (ComBase 2012). Although highly oriented to predict microbial growth with 23
models, the tool also has 6 thermal inactivation models. A variety of foodborne patamgens
targeted on both types of models, while spoilage microorganisms are also includgednovith
models (ComBase 2012). Differing from the PMP and the AMI Lethality Spneatishe

ComBase Predictor does include secondary models, allowing the user to adjustlitteoprto

several environmental factors such as salt concentration, changing temgerd, CQ

concentration, etc (ComBase 2012). Also, predictions for up to four microorganisms can be
carried out simultaneously (ComBase 2012). However, because the data used for the model
comes from those compiled by ComBase, and most such data were developed in non-food
media, the Predictor warns the user that the “growth models representdatesafervative
predictions” (ComBase 2012). This statement is consistent with the resultssaidigdy

Tamplin et al. (2005), where it was determined that “the absence of an appriegigideod at

6, 8, and 10°C suggest that more occurrences of growth at refrigeration tempestatuteéde
expected than are typically assumed in risk assessment models”. In additipecifie siodels
used for each prediction are not documented, and the exact sources of the data usexpto devel
model parameters are not listed. Therefore, the quality of the tool’s predicioeasily be

guestioned.
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An additional drawback is that the Predictor asks for data within the temperaigeeofa
54.5 and 65°C, and the “first time-point must be [zero]” (ComBase 2012). This represents a
problem for processors, because normally time/temperature data ad togge the products
enter the heating instrument and until the end of cooling, meaning that there would have to be
manual manipulations of the data to select the appropriate points that the model ban use.
addition, some processes may reach temperatures higher than 65°C, in which Paedithor

does not accept the data to carry out the prediction.

While the ComBase Predictor may have several useful charactewstgr®wth
predictions, the reasons stated above are sufficient to deem this tool inadeqaterfal t

processing validations in meat and poultry applications.

2.4.2 Challenge studies

Challenge studies involve monitoring a product process from beginning to end and
assessing the bacterial growth and inactivation throughout all its stageméhiably involves
actually inoculating a product with the pathogen of concern and running it through #digbe s
in the production process, then analyzing the lethal effects the complete pratessina
bacterial population (Adams and Moss 2008). This option may seem appealing from the point of
view of obtaining results that are specific to the product and process in question and thus
unequivocally assessing the effectiveness of the procedure. However ateljpetroducing a
pathogen in an industrial setting is not feasible, due to obvious contamination concenmat For t
reason, this method is not highly considered by processors. However, pilot-plantgehallen
studies, such as those carried out by Breslin (2009) and Wiegand (2012) come closer to

resembling an industrial setting and give good approximations of bacteaitd kinetics.
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3. MODELING SUBLETHAL THERMAL INJURY

3.1 Introduction

Although important to certain industrial processes, the potential effects oftraulohgury
on foodborne pathogens have not been quantified in a manner applicable to prediction models.
Currently, most secondary models (whether Arrhenius-type, Bigelpavzywalue, or other
empirical form) assume that the rate of inactivation is a function of thentasieous state of the
system (e.g., temperature, fat content). Such state-dependent models magtieraathen
pathogens are subjected to sublethal heating (Jorgensen et al. 1996; Stephens and others 1994;
Mackey and Derrick 1986), which can occur during slow-cooking processes, and which can
cause cells to increase their thermotolerance (Bunning and others 1990; lsliagki2grrick
1986; Shah et al. 1991; Xavier and Ingham 1997a). If this occurs, then a state-dependent model
might over-predict the process lethality, as bacterial inactivatierdads not depend solely on

the state of the system, but also on the thermal path preceding the lethal condition.

Several prior studies have reported the effect of heating rate on inactie@dMeackey
and Derrick 1987a; Quintavalla and Campanini 1991; Stephens et al. 1994). These studies
reported that slow heating rates (on the order of < 1°C/min) induce a higherdigane in
cells than did fast or instantaneous heating. This is consistent with the understiaatdahgw
heating rates inherently expose the bacteria to extended periods in the teraparge
previously described as inducing the heat shock response (i.e., approximately 40Hs0&GY, t

allowing sufficient time for that response to be expressed.

From this evidence, other studies did modify secondary models and incorporate heating

rate as a variable to account for increasing thermotolerance due toldyea@tian (Corradini and
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Peleg 2009; Valdramidis and others 2007; Stephens et al. 1994). However, the previously cited
heat shock literature indicates that heat shock is a direct function of timerspentttical
temperature range, not of heating rate (Farber and Brown 1990; Pagan et al. 1868¥VeKala

1990; Diller 2006). In other words, the adaptive response of the bacteria is expresseaeover
when exposed to certain temperatures (i.e., a function of time and temperaturd)thso tha

cellular response is not a function specifically of the rate of tempedtarge. Therefore,

heating rate as a variable in an inactivation model is a surrogate for gdyurglcellular
mechanisms of adaptation, and therefore may not be phenomenologically consiktent wit
outcomes that can occur during certain treatments, such as those that includeatagddtes

but static holding periods at sublethal temperatures.

An alternative method to modeling heat inactivation with prior heat shock was developed

by Vaidya et al. (2009). They added a “memory kernel” to their model, wHahieal the model

to account for “events at a temporal distance” that influenced the prederdfaasystem.

However, because a specific value was not assigned to the “temporal distaatatter is only

an arbitrary measure. This means that for any point in time, it is unknown how fag i@ yn

kernel goes back to account for heat effects. Also, using a constant “temparataiisheans

the memory kernel makes no distinction between the sublethal and lethal regions aghis
inconsistent with heat shock literature, given that bacterial adaptatiors ardy over a known
temperature range (Pagan et al. 1997), and once the lethal temperatures allgadaptaion

essentially ceases, and only bacterial inactivation occurs.

Overall, the previously proposed models have potential for industry use, but they still
present significant weaknesses. For instance, with the exception of Viaidratral. (2007),

who reported accuracy and bias factors, sufficient statistical measumeslef performance,
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such as root mean squared errors (RMSES), are rarely given to quanjitasvéhe predictive
ability of the models. Such quantitative measures of the predictive abilitpbustness of

models are critical before they can be adapted to industrial applications.

A different approach was taken by Stasiewicz et al. (2008) (section 2.3.5). Thelr mode
incorporated an integral of thermal history in the sublethal region as aleanfiuencing
subsequent inactivation rate. In comparing this path-dependent secondary moddéto a sta
dependent secondary model, both were incorporated into a Weibull primary model applied to
non-isothermal treatments with varying sublethal histories, the RMSEowasdd from 2.5 to
1.1 log CFU/g for the state- and path-dependent models, respectively (®tasieal. 2008).
However, the experiments were constrained to only one type of meat (groundttugkeyeat),
and few data points accounted for very long exposures to sublethal temperatureghha
correspond to commercial cooking schedules of slow-roasted products. Hencepdriamtito
test whether these results can be extended to longer exposures in the sublethalmd to
what degree substrate affects the model parameters. Therefore,lthef gloia section were: (i)
to extend the capabilities of the previously developed path-dependent model to account for
longer sublethal heating times and three different meat species, anddligaie the model

against isothermal and non-isothermal independent data.

3.2 Materials and Methods

This study entailed non-isothermal heat treatmealrhonella-inoculated meat samples
(turkey, beef, and pork), including treatments designed to impart sublethal injergedtiting

data were used to estimate the parameters for a novel, path-dependent sécactiation
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model that accounts for sublethal history. The model was then validated and compared to a

traditional, state-dependent model.

3.2.1 Mode development
The traditional, state-dependent inactivation model follows a Weibull distributron f

(Peleg 2006):

logS= Iogﬂ = —pt"

No (1)

where S is the survivor ratio, N is the number of microorganisms at time t,gasdh¥ initial

microorganism population. In this work, the expression “log reduction” will be usedsjissira
the federal regulation; log reduction is equivalent to the negative of the surviedii.&ti-log

S) . The parameters b and n are estimated via non-linear regression, wherédesitge shape

of the survival curve. Although any suitable secondary model might be used to descrébe b as
function of temperature, Stasiewicz et al. (2008) previously reported, foridta $o the

present study, that b can be described with an Arrhenius-type dependency:

b(T) =b,of @x{— ﬁl(% —%ﬂ 5)

where[3; describes the effect of temperature (K) on b. The state-dependent modesindiis
was equations (1) and (2). A previously reported, path-dependent inactivation mosleiviSia
et al. 2008) takes the following modified form:

b(T 1) = bref D‘fxr{—ﬁl{%—%}ﬂzr(ﬁ)} (6)
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T =HS|ower
and 7(T,t)= | (T(t) - HSjower )dt (7)
tT = HSupper

where the sublethal history)(is quantified as the integral of the temperature vs. time curve in
the heat shock region (i.e., from T=jgger to T=HY,ppe), WhereSalmonella can increase its

thermal tolerance (Figure 1). In equation (®)scales the impact of this phenomenon so that

increasing sublethal history)(causes a decrease in b. Based on prior research on heat shock

response, Stasiewicz et al. (2008) set the heat shock region to be 38 to 5¢3fe &t

HSower)- The final, path-dependent model is obtained by combining equations 1, 3, and 4.

52
O Sublethal
o region i
=
[
g
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|_
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Figure 1. Representative heating profiles, whereis the integral of the time-temperature
profile within a prescribed heat shock region.
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3.22 Inoculum

The inoculum was an 8-serov@&almonella cocktail, previously obtained from Dr. V.K.
Juneja (Agricultural Research Service, Eastern Regional Research, CSD&-ARS,
Wyndmoor, PA), which include® Thompson FSIS 120 (chicken isolat®)Enteritidis H3527
and H3502 (clinical isolates phage types 13A and 4 respectigeliyphimurium DT 104
H3380 (human isolate Hadar MF60404 (turkey isolateg, Copenhagen 8457 (pork isolate),
S Montevideo FSIS 051 (beef isolate), &hdHeidelberg F5038BGI (human isolate). Before
use, all serovars were kept separately at -80°C in vials containing trypticatbhy(TSB; Difco
Laboratories, Sparks, MD) and 20% glycerol. Cultures were started byetramgione loop of
each frozen culture into separate tubes containing 9 ml of tryptic soy brot.@4thw/v yeast
extract (TSBYE; Difco Laboratories, Sparks, MD) and incubating at 37°C. slVaes were

separately grown for 24-36 h and transferred at least twice at ~24 h before nseudtation.

3.2.3 Meat preparation

Whole-muscle skinless turkey breast, beef round, and pork loin were obtained from a
local supplier as close to the time of harvest as possible, and transferredhigahliState
University’s meat laboratory at <4.4°C. The meat was ground (Hobart, model 41460HD
(twice through the 4.8 mm hole plate, then once through the 3.2 mm hole plate), vacuum
packaged in double plastic bags, frozen and kept at -23°C. The packaged and frozen samples
were irradiated to >10kGy (Food Technology Services, Incorporated, Mulberr§3860) to
eliminate background microflora. The effectiveness of the irradiation evdsroed by thawing

random samples, diluting them (1:5) in sterile 0.1% peptone water {RifBecton, Dickinson

and Company, Sparks, MD), and plating them on Petfifilmerobic count plates (3M
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Microbiology Products, St. Paul, MN). The irradiated samples were kept frozéneeded.
Prior to inoculation, meat packets were thawed overnight at 4°C. Moisture and &ttpgec
measurements were determined on fresh samples using AOAC methods 950.46B and 960.39,

respectively.

3.24 Inoculation
On the day of each experiment, a mixture containing 9 ml of each serovar in TSBYE wa
centrifuged (6000x for 20 min at 4°C). The resulting pellet was then resuspended in 7.2 ml of

peptone water to an inoculum population of **X0FU/mI (confirmed by serially diluting in

0.1% peptone water and plating on Petri?il\(lnaerobic count plates). The inoculum (400 pul)

was manually and aseptically mixed into 40 g of meat for 5 min, targeting a horaogene
population of ~1®CFU/g in the sample. Individual 1 g samples were then pulled from the 40 g

for the heat treatments.

3.25 Heat treatments

All treatments were carried out in a temperature-controlled programnhaitedcycler
(ENE Mate, Model FPROGO2G, ISC Bioexpress, Kaysville, UT), with a matwr&x-stated
accuracy of £0.1°C. For each test, the 1 g sample was divided into 0.2 g portions aed insert
into five 0.2 ml thin-walled PCR microtubes with attached caps (Dot Scielmiifocporated,
Burton, MI). For triplicate testing, fifteen microtubes were placed in thentbeycler and then
equilibrated to 25°C before being subjected to one of the 53 different heating prosleshk:
below). Immediately after the heat treatment, all samples were codlesland held at <€ for

recovery and plating on the same day.
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Each heating profile consisted of a randomly selected combination of a lineagheasi
(1, 2, 3, 4, or 7 K/min), a variable-length sublethal holding period (at 40, 45, or 50°C), and a
final lethal temperature (55, 58, 61, or 64°C). The sublethal holding period was determined
depending on the randomly selected sublethal histpaget (15, 25, 34, 50, 100, 200, 370, or
500 K:min). The holding time at the lethal temperature was chosen to achieve a norgatal tar
lethality of ~3 or 5 log reductions. Total treatment times were between 8.17 and 25iu®&smi
and the full sample set consisted of 159 data points for each species. There wgpeswb t
heating profiles (Figure 1): type A, which included the sublethal holding period ath@niyea
heating rate of 7 K/min, and type B, which did not include a sublethal holding period, but did use

all of the stated heating rates.

3.2.6 Recovery of samples

For each of the triplicate tests, five 0.2 g cooked subsamples were recoveretdhined
into a 1 g sample, diluted (1:5), and serially diluted in 0.1% sterile peptone wadepfmate
plating on Petrifilm™ aerobic count plates, which were incubated at 37°C for ~48 h before
enumeration. A 5 g sample of uncooked, inoculated meat was diluted (1:5) and plated as a
positive control against which the heated samples were compared to determinedlks pr
lethality (i.e., log reductions). In addition, a 5 g sample of non-inoculated medilutasl (1:5)

and plated as a negative control to verify meat sterility.

3.2.7 Model parameterization and validation
Before carrying out the state-dependent model parameter estimation on-the non
isothermal data from this study, the Weibull model (equation (1)) and the corresponding

simplified log-linear version (n=1 in equation (1)) were fitted to raw isataémactivation data
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(individual inactivation curves) previously obtained for the s&aheonella cocktail and turkey,

beef, and pork used in this study (Tuntivanich et al. 2008; Breslin 2009; Velasquez et al. 2010)

(nops=90, 148, and 121 for each species, respectively, from a total of 13 different species-

temperature combinations). Temperatures tested were 55, 58, 60, 62, 62.5, and 63°C. Model
parameters were estimated via non-linear regression (Gauss-Newtotepittalving, as used

by JMP, Version 7. SAS Institute Inc., Cary, NC, 1989-2007) for the Weibull model and linear
regression for the log-linear version. Regressions were performeacfotaamperature and for

each species separately. Following fitting, two tests were conductedltate which model

better described the data: (i) Akaike’s Information Criterion correcteskimple sizes (Alg,

and (ii) a t-test. Alg compares models by creating a balance between goodness-of-fit and the

number of parameters; then it determines the likelihood that one model is betteriatradga
set of data than the other (Motulsky and Christopoulos 2004). For example, model A mght ha

a better goodness-of-fit (represented by the sum of squared errors, SS&¥itm@ler model B,

but when AIG is applied, model A is penalized for having more parameters than model B, and

the result might show that the latter is more likely to be correct in desctiterdata. The t-test
also can be used to test whether a certain parameter estimate isatatistferent ¢=0.05)
from a fixed value (Bardsley and others 1995), in this case, for n=1 in equation (1)lu& tsva

calculated:

_ fixed value— parameter estimate
estimated parameter standard error

(8)
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and compared to thedistribution with psminus yaradegrees of freedom, whergygis the
total number of observations angaphthe number of parameters (Bardsley et al. 1995), to test

the null hypothesis that n=1. Both AJ@nd the t-test calculations were completed in Excel

(Microsoft Excel. Microsoft, 2003. Redmond, \)WAarameter estimates for each individual
inactivation curve and their corresponding standard errors were obtained from thesaohd

linear regressions.

To obtain the state-dependent model parameters for all the pooled data, the same

isothermal inactivation data sets were use@£90, 148, and 121, for turkey, beef, and pork,

respectively). Global regressions on the respective data sets were don®uomgleded by
minimizing the sum of squared errors (SSE) using Excel's Solver function.vi&asodefined as
the difference between the experimental log reduction and the state-depeodehpradicted
lethality (equations 1 and 2). Additionally, the non-isothermal calibration settoged for this
study (section 3.2.5) were used to calculate new parameters for the state-diepenicdd
Parameter estimation for these was done using MATLABIgit function (MATLAB R2011a,
The MathWorks Inc., Natick, MA, 2011). Also using a global regression method, this function
estimates the coefficients of a nonlinear function using the least squaregtioes via the
Gauss-Newton algorithm (with Levenberg-Marquardt modifications for glairalergence). A
sample code can be found in section 6.1. This analysis was carried out to determiee pdueth
predictions by the state-dependent model were due to sublethal heatinghaathteetuse of an

isothermally-calibrated model to predict non-isothermal microbial iretobin.
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For the path-dependent model, all data from the 53 triplicated non-isothermmal test

(nops=159 for each species) were used. To obtain the model parameief3(landpy), 36

randomly selected tests were used (calibration gg&108 for each species). All parameters

were obtained using MATLAB’slinfit function, where the error was defined as the difference
between the experimental and the path-dependent model prediction of log reduqtiatisrie

1, 3, and 4). A sample code for this can be found in section 6.1.
Validation of the calibration results for each meat species was carriagaiost the
remaining 17 non-isothermal tests (validation sgig¥b1 for each species). In addition, the non-

isothermal calibrations for both models were validated against the isotltatado test
whether: (i) the path-dependent model was reducible and applicable to the siothtamsl
case, and (ii) it was possible to obtain better inactivation predictions by ngdrmn a state-

dependent to a path-dependent model while using the same inactivation data.

3.3 Results and discussion

3.3.1 Meat sterility and composition

Tests determining irradiation effectiveness returned negative rasailtz€ro plate
counts) for all irradiated samples and negative controls. For the isothestsalthe product
compositions were as follows: turkey breast was 72.5+0.2% water and 1.0+£0.6% fat
(Tuntivanich et al. 2008), beef round was 72.5+1.2% water and 2.7+1.3% fat (Breslin 2009), and
pork loin was 73.6+2.7% water and 2.5+0.9% fat (Velasquez et al. 2010). For the non-isothermal
tests, turkey breast was 74.0+0.9% water and 1.1+0.2% fat, beef round was 73.8+£0.3% water and

2.31£0.6% fat, and pork loin was 68.5+0.9% water and 10.0£3.3% fat. Product composition
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between isothermal and non-isothermal tests was noticeably differenboplyrk. However,
based on prior results (Juneja et al. 2000a), for a fat difference of 2.5 to 10.0% and-the time
temperature combinations used, lethality would be expected to vary at the most by 0.5 log
CFU/g. Therefore, it was assumed for this study, that the estimatedoraviatuld not

meaningfully affect the final conclusions.

3.3.2 Calibration: state-dependent model parameterization

AIC results showed that in 8 out of the 13 isothermal treatments (species-temperature

combinations), the log-linear model (n=1 in equation 2) was more likely to be dbaradhe
Weibull model (g1) in describing the isothermal data. Likeliness ranged from 52% to 100%,
with the average being 74%. For the remaining 5 tests where the Weibull msdabnealikely

to be correct, likeliness ranged from 62% to 99%, with the average being 86%. In afrage
the 13 tests, the log-linear model was 51% more likely to be correct in describdaahén

addition, even with a relaxed significance lewst@.1), the t-test did not reject the null

hypothesis (Ig: n=1) in 10 out of the 13 tests. The results from both tests do not indicate that the

use of a log-linear model will always give a better outcome, but did give envigginee that it
was marginally the better choice for most of the data used in this study. AltStagjawicz et

al. (2008) reported successful use of the Weibull mogdl)(with the proposed path-dependent
model (equations (1), (3), and (4)), the simpler log-linear version was used in the pedgnt
given the results of the statistical tests reported above. In eithetleaseodification and testing
of the path-dependent secondary model (equations (3) and (4)) was the primaryeobfebis
study, so that confirmation of the performance of equations (3) and (4) with multipkryri

models will further support the underlying construct of the secondary model form.
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The calculated parameters and accuracy of the model, represented by RM&S and bi
(mean residual), for the state-dependent model with both the isothermal and namagothe
calibration sets are shown in Table 1. The reference temperature used was 608C, as

approximately the average of the lethal temperatures used in the treafrhentsrrelation

coefficients, and standard and relative errors for the path-dependent modelt@a épae 31,

B2) can be found in section 6.2.
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Table 1. Model parameters and results against calibration and validation sets.

Validation Validation against
o against non-isothermal
Calibration isothermal data (validation
data set, npps=51)
Parameters Statistics Statistics Statistics
b RMSE | bias| RMSH bias | RMSE bias*
Model Datasource | ngps| op | Pt _le 1
(min7) | (K) | (K "min") (log CFU/g)
Isothermal turkey 90 0.97 49,315 NA 0.43 0.06 NA NA 2.91 -1.50
Isothermal beef 148 1.02 46,829 NA 0.90 | -0.03] NA NA 2.22 -1.25
Isothermal pork 121 0.90 42,590 NA 0.99 -0.06/] NA NA 4.55 -2.58
State - | Non-isothermal J
dependent turkey calibration sef| 108| 0-57 | 48491  NA 142 | 051| 1.04| -077 175  0.80
¢ )
Non-isothermal beef| 1 ha | 557 | 40851  NA 153 | 056| 1.45| -098  1.77 0.88
calibration set
Non-isothermal pork| 1na | 545 | 52382  NA 1.33 | 053] 1.94| -1.45  1.49 0.82
calibration set
Non-isothermal 108| 0.91 | 50,787 0.0017 0.66| 0.07 046 -0.09  0.90 0.14
turkey calibration set
Path- | \on-isothermal beef
dependent NONISOINEIMAIDEET| 14551 694 | 44,710 0.0018 093| 012 099 -019 081 0.24
+ calibration set
Non-isothermal pork| 1a | 570 | 54713 0.0016 0.87| 018 152 -073 0.75 0.24
calibration set

*bias: mean residual.
¢ state-dependent model was equations (1) and (2), with n=1 in equation (1).
tpath-dependent model was equations (1), (3), and (4), with n=1 in equation (1).
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3.3.3 Validation: application of the state-dependent model to non-isothermal data

When the isothermally-calibrated state-dependent model was applied to the non-
isothermal validation sets, substantial over-prediction errors were obseiyec (£, Figure 3,
and Figure 4). The largest deviations were -10.1 log CFU/g, -7.5 log CFU/g, and -14.7 log
CFUlqg for turkey, beef, and pork respectivelgll caused at the largest tested sublethal history
(=500 Kimin). Analysis of variance (ANOVA) revealed a statistically digant relationship
between the sublethal histor) @nd the traditional state-dependent model error (p<0.0001 for
all species), indicating that the state-dependent model error increaseatrased. This agrees
with previous work (Stasiewicz et al. 2008), and reaffirms the importance of a thatlean
account for sublethal injury in a variety of heating profiles. In addition, tmswrs with heat
shock literature (Farber and Brown 1990; Knabel et al. 1990; Pagan et al. 1997), in that a
combination of time and temperature in the sublethal region, descrilleddnyses an increase
in bacterial thermotolerance. It can be seen (Table 1) that the RMSEs fatlieensally-
calibrated, state-dependent model applied to the non-isothermal data aree$teoliaag) model
fittings, and that the corresponding biases are located in the fail-dangerousezph@$<0
indicates over-prediction of lethality). These results show that the comisesaf isothermal
data and state-dependent models is ineffective for predicting microlaVaten in cooking

conditions where significant sublethal injury can occur.

The state-dependent model also was fitted to the non-isothermal calibréditm gerify
that it was the model, rather than the isothermal calibration, that caused ptivatiosc
predictions. When applied to the non-isothermal validation sets, the RMSEs for th{$alalse

1) were reduced from the isothermal calibration model predictions, but stile@aalues of
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more than 1.49 log CFU/g. Overall, the biases were ~0.8 log CFU/g, which could be cadnsidere
as being fail-safe. Even though application of such a model might mean a safe, predudd

also mean overprocessing, which leads to lower product yield and therefore minssies.

These findings confirm that the state-dependent model is unable to effedtgelybe

inactivation profiles where sublethal heating takes place, even if non-isotliataare used to

estimate the model parameters.
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Figure 2. Log reduction errors (observed-predicted) for the state-geendent model and
path-dependent model for the turkey calibration set.
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Figure 3. Log reduction errors (observed-predicted) for the state-geendent model and
path-dependent model for the beef calibration set.
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Figure 4. Log reduction errors (observed-predicted) for the state-geendent model and
path-dependent model for the pork calibration set.
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3.34 Calibration: path-dependent model parameterization
In comparison to the state-dependent model, the path-dependent model yielded better
RMSEs (Table 1) in the case of beef and pork, and slightly worse values for (@2 vs. 0.66

log CFU/Qg), while bias was better for all species.

Evaluation of the residuals from the application of both the state- and path-dependent
models to all calibration sets (Figure 2, Figure 3, and Figure 4) shows thattittiepandent
model performed better than the state-dependent model, with maximum faitaageors of
-3.3 and -14.7 log CFU/qg, respectively. Prediction improvement by the path-dependentsmodel i
especially evident as sublethal history increases, showing the positiieoéfiecounting for

this phenomenon in the thermal inactivation model.

3.3.5 Validation: application of the path-dependent model to isothermal and non-isothermal
data

The use of the path-dependent model on the non-isothermal validation tests showed a
substantial reduction in prediction error when compared to the state-dependentliablgel (
and Figures 5-7). All RMSEs were below 0.9 log CFU/g, which translates into a 69%a638%
82% reduction in RMSE from the state-dependent model for turkey, beef, and pork, relspective
This shows that the path-dependent model provides much improved accuracy, compared to the
state-dependent model when describing data where sublethal heating hasloAddiitenally,
all bias values are in the slight underprediction range (0.14-0.24 log CFU/gata gr
improvement over the high overprediction biases from the state-dependent model- 85 to

CFUl/qg). Because the negative values are considered fail-dangerous, they shovatbat a s
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dependent model cannot be relied upon to effectively predict microbial inactivatioa mdrer

isothermal conditions and significant sublethal heating has occurred.

When applied to the isothermal data, the state-dependent model also performed favorably
(Table 1), with RMSEs comparable to those yielded by the isothermalbyatet state-
dependent model for turkey and beef, but slightly larger in the case of pork. Thalbes
show the same trend, and results are also on the slight overprediction rasgefinthegs
indicate that the path-dependent model is capable to also predict microbiakitnactvhen
applied to isothermal data. In contrast, when the non-isothermally-calibratedispendent
model was applied to the isothermal data, results were notably poorer I).alies shows that
even when the same calibration sets were used, the path-dependent model hagradietiee

ability than the state-dependent model.
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Figure 5. Log reduction errors (observed-predicted) for the state-geendent model and
path-dependent model for the turkey validation set.
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Figure 6. Log reduction errors (observed-predicted) for the state-geendent model and
path-dependent model for the beef validation set.
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3.4 Conclusions

This study revealed that the use of a model that considers sublethal thetonglihis
addition to the current state of the product can predict microbial lethality @gittiisantly
improved accuracy when applied to cases with or without sublethal heating, and adtipds m

meat products, and therefore can be useful to assure the safety of slow-coakechdueds.

All possible combinations between the use of isothermal and non-isothermal aalibrati
and validation data sets, and the use of a state-dependent or a path-dependentrenodel we
analyzed for turkey, beef, and pork. Results demonstrated that isothermaligtealistate-
dependent models, as are typically reported and used for meat products, arevieeffesn
predicting lethality in processes where significant sublethal heatshgdzairred, and can
produce fail-dangerous results that could jeopardize the safety of the productstiong@n the
other hand, the non-isothermally-calibrated, path-dependent model effectiveipe®both
isothermal and non-isothermal data sets. Slight fail-safe values reshkedvalidating against
non-isothermal data, but slight fail-dangerous errors did result when the medabpieed to
isothermal data. These systematic errors could indicate that furthexssémelineeded to improve
the function that describes sublethal hista)y ¢o that it better reflects the complex cellular

processes of stress adaptation.
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4. MULTI-PRODUCT, MULTI-FACTOR MODEL

4.1 [ntroduction

As described in the literature review (section 2.4.1.3), there are modelingvaitdd e
to predict bacterial inactivation (i.e., ComBase, PMP, AMI Lethality Sisfezet). However,
these lack the elements necessary to comply with the lethality perfoerstandards set by
federal regulations, such as addresSalgonella or considering product characteristics. On the
other hand, secondary models are presented extensively in scientific @¢r@MSF 1996;
FDA/CFSAN 2000), but each addresses a different factor affectingvatati (in addition to
temperature), and, with few exceptions, none has been validated against indexsanyticata.
Therefore, the problem once again is delegated to processors to find data andiethmabde

would be applicable.

Ideally, a universafalmonella thermal inactivation model applicable to various meat and
poultry products would meet these requirements for the industry. Gathering inactdeta to
understand pathogen inactivation behavior and develop models across product and processes has
been attempted by few researchers, such as van Asselt and Zwietering F2086)s and
Zwietering (2011), and Halder and others (2010). Van Asselt gathered 4066 D-values fo
different pathogens at different temperatures in several food products and fouhd that t

parameter variability between sources was greater than that expectectsée lzy product
conditions (e.g., fat, pH). Farakos et al. collectgevBlues (equivalent topvalue for high

hydrostatic pressure processes, HPP) across different temperatisgs;gseand microbial
species in an attempt to develop global HPP inactivation models for each pathogeiountey

that the obtained data were highly variable across these factors, dgpeipkrature and
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species, resulting in model parameter estimations with high standard atevi@tig., log Pref=

0.27%0.25 log min foBacillus spp.). Halder defined food groups based on the USDA national
nutrient database food groups and set out to obtain growth and inactivation data for foodborne
pathogens from ComBase and scientific literature, with the goal of developimgpfehensive

food safety prediction software” (Halder et al. 2010) . The study avoided treatinggen-

specific effects as general, or being too specific on process and/or prodactefistics.

However, in the case &lmonella, the inactivation model obtained was not sufficiently precise

to validate industry processes in accordance to federal regulations (FB)SR2 example, one
model is specified for red meat, but this food group can be understood to encompass beef, pork,
lamb, and other meat species, not being specific enough to be used to validate agrdbess

other hand, poultry is grouped with baby foods, soups and sauces, vegetables, and seafood,

making the resulting model even less specific than in the red meat case.

Additionally, independent validation of a model is critically important if the rhisde
be used for industrial applications. Few studies have considered this step, and most of those
validated against only laboratory-setting data, often with few quantita@asures. For
example, although Halder stated the importance of model validation, only an examglenesi
model from the study is shown, and no indication is given as to whether the other obtained
models were validated (Halder et al. 2010). Wiegand et al. (2012) did validate avati@cti
model against industry-scale data. Among other objectives, they evaluatkerthetblerance
of E. coli O157:H7 in beef roasts under industry-relevant cooking conditions and compared those
results to predictions by a model with parameters obtained under isothermabeogndibhey

reported high variability from the roasts lethality data, and found that the medéitpms
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greatly overestimated lethality, shedding light onto some of the few issumsé&red when
doing this kind of validation work. Breslin also conducted industry-relevant validatiosiusy
cooking turkey, beef, or pork roasts inoculated \#hmonella (Breslin 2009). The study
concluded that replication error significantly increases when scaling mpcfratrolled
laboratory experiments to pilot-scale cooks, which is an important consideration pghgng
lethality models to industry-scale processes. While insight from both prggaahiable in terms
of scaled-up data, they do not provide quantitative means to account for the high wariabili

possible in commercial applications.

Therefore, there is a need for a validated multi-product multi-f&towonella thermal
inactivation model applicable for meat and poultry processors to use as means ofrgpwitity
federal regulations. Therefore, the objectives of this study were gatfi¢r thermal inactivation
data forSalmonella in poultry, beef, and pork products, (ii) compare multiple statistical methods
to develop a multi-product multi-factor thermal inactivation model and its @ameléng
prediction intervals, and (iii) validate candidate models against industiang]gilot-scale

inactivation data.

4.2 Materials and Methods

4.2.1 Data compilation

To develop a multi-product multi-factor thermal inactivation model (i.e., a modabui
for predictingSalmonella thermal inactivation in various types of meat and poultry products and
under differing conditions), all the relevant published raw data ideally should Ip#lednfpart
from laboratory data developed within our research group at Michigan State lunj\athser

data sets were sought in the electronic database ComBase (ComBase 2012)iantific s
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literature. To comply with the model goal described above, the data ultimaietyesl had to

fulfill the following requirements:

1. Data had to descritfgalmonella thermal inactivation: log N vs. time or log N§Ns. time

at constant or variable temperature. Plots of (a) log N vs. time, or (b) IqgVd/Nme

with multiple sets indistinguishable from each other on one graph, were not used. This

was because, for (a), it was impossible to determine which data points belongeld to e

set and thus obtain the standardized loggW/alue needed for parameter determination;

and in the case of (b) it would not be possible to distinguish between data setsyseze Fig
8), a factor needed for the mixed-effects statistical method (explainedihidlsection

4.2.3.2). D- and z-values are the result of fitting raw data to the traditionahézg-|

model. Therefore, these values, without raw log N or logg\tfata, were not sufficient
for the model development.

2. Data fromSalmonella Senftenberg were not included, as this serovar is significantly
more heat resistant than the rest of the serovars and is not linked to meat or poultry

outbreaks (Goepfert et al. 1970; CDC 2011; Smith et al. 2001).

3. If experiments were done in replicates, the corresponding number of data paints wa

expected (i.e., triplicate: 3 log N§\points per time point); averaged values were already
manipulated data, so they were not included in the raw data pool.

4. Muscle type (ground or whole), and species (e.qg., turkey, beef, or pork) had to dhe state
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5. Degree of grinding was not considered, as this variable does notSalimonella

thermal inactivation (Mogollon et al. 2009).

6. Samples of any size/weight were considered. However, meat had to be inocwated ra

and then cooked to simulate industrial processes.

7. Meat fat percentage (%) had to be reported.

A raw “data set” was considered to be a complete series of log\W/Nime observations at

constant or variable temperature in one experimental trial. Each observasitimewaonsidered

to be an individual raw data point (Figure 8).

Data at 58T
time (sec) | log N/Ng
Data set
0 0
140 -0.7285
280 -1.2047
L T —
< 420 -2.4520 — Data point
™ — //
560 -3.3073 /

Figure 8. Definition of "data set" and "data point" for raw data.
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The general approach was to include or exclude data sources following the above
guidelines. The specific search methods in each case are described in tetdnllowing

sections.

4.2.1.1MSU laboratory data

The raw data collected from MSU and used for model development were all isothermal
and came from the following experimental studies: (Breslin 2009), (Catisdn2905),
(Mogollon et al. 2009), (Orta-Ramirez et al. 2005), (Tuntivanich et al. 2008), (Velastjak
2010), and (Wesche et al. 2005). For Carlson, only the data with the original product moisture
was considered, as the model will not consider moisture content explicitly. lagbet
Wesche, the data including pre-injured cells were ignored. For the restttiesnsal data in

both ground and whole muscle were considered.

4.2.1.2Scientific journals
Relevant data from other research groups were sought electronicakawhes of the
Thomson Reuters’ Web of Knowledge (Reuters 2011). Multiple combinations for theifglow

search terms were used under the fields for Topic and Title:

» Salmonella e Turkey e Ground

* Heat(ing) * Beef Whole

e Thermal * Pork *  Whole muscle
* Inactivation * Poultry « Fat

* Temperature * Meat « Effect of...
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* Resistance * Processing e Tolerance
e Survival * Lethality
» Cooking * Inoculated

Once all possible articles were listed, a complete copy of each papebiaased either
electronically or, for those not available online, through the MSU Library, to wehéther met
criteria described in section 4.2.1. From this second evaluation, it was not possibléntoagbta
data from some of the articles, so they were set aside, and their data soughBms€ (see
section 4.2.1.3). For the remainder, the available data sets were added to the pooldarbe use

this study.

4.2.1.3ComBase Browser

As mentioned in section 2.4.1.3.3, ComBase is an online resource where food
microbiology data are submitted from research groups on a voluntary basis. Althougif mos
the data describe microbial growth, several sets for thermal inactivatiene wuccessfully

obtained. The search parameters used to find relevant data were:
* Food type: Beef, Pork, Poultry
» Organisms: Salmonella spp
* Atmosphere: all selected
* Preparation: all selected
* Additives: all selected

e Other: all selected
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* Temperature: 54°C to 120°C
* pH: 4.0 - 7.5 (default settings)
» Water activity: 0.71 — 1.0 (default settings)

As with the scientific journals, a second review was done on the initially @alléetta to
ensure that the data complied with the criteria described in section 4.2.1. lorgdtditirces
providing only D- and/or z-values were sought in the Web of Knowledge index and/or through

other sources to see whether raw data could be obtained from them.

4.2.2 Mode development
As described in section 3.2.1, the primary model can be described with a log-linear

relationship:

logS= Iogi =—bt 9)
No

where S is the survival ratio, N is the number of microorganisms at time t,gasdh initial

microorganism population. In this work, the expression “log reduction” will be usedsjirst a

the federal regulation; log reduction is equivalent to the negative of the surviedii.&ti-log
S). For this project, log-linear bacterial inactivation was assumed becausegrisedes
section 3.3.2, Algresults indicated that this model was superior to the Weibull mogeliin

equation (2)) when describing the source data. Indeed, the results from section 3 stimv tha
log-linear model performed well in describing both the isothermal and non-isotidataal

(Table 1). Also, there is no known usage of non-log-linear inactivation models in thandeat
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poultry industry or associated regulations. Therefore, to maximize thdédkelithat the results
of this study will be useful, it is reasonable to begin with the log-linear assumfstiditionally,
the purpose of this work is to shed light onto the consequences of gathering data fremtdiffer
sources, not to address specific effects of tailing and similar non-log-theaomena that are
addressed with non-log-linear models. Overall, this study does not suggest tbgtlthedr

model is always the best choice, but only that it is the best for the data and db&lstidy.

Parameter b, the rate of inactivation, can be described by a varietponfilaey models,
including an Arrhenius-type secondary model dependency for temperatureew&iast al.

2008), which is the most important factor for thermal inactivation (Jay et al. 2005):

b(T) =by o [&XP - '@L(Tlt) —ﬁ] ()

Although other models could also be suitable, the Arrhenius model has been shown to
work in other studies. For example, a section of the study by McQuestin et al. 26683ed
the goodness-of-fit between the Arrhenius temperature dependency and “othieraémpi
equations” when fitted to inactivation datakstherichia coli in fermented meat; the study
concluded that the Arrhenius version was more adequate for describing the dS&a GRMO1
vs. 1.19 log CFU/g for the empirical model). Xu et al. fitted Bigelow and Arrhengteis to

Bacillus anthracis thermal inactivation data, and found that the Arrhenius version described the

data better (I?2>O.99 in all strains, vs.%\lo.86-0.94 for the Bigelow model) (Xu and others

2006). Stasiewicz et al. (2008), among other objectives, $sewnella inactivation data to fit
Arrhenius, log-logistic, and empirical models; results showed that therAugheersion gave the

best fit to the model parameters (RMSE of 0.16 log CFU/g vs. 0.45 and 0.23 log CFU/g for log
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logistic and empirical models, respectively). Based on these results anurmaglianalyses of

the data included in the study, the Arrhenius temperature dependency was used.

From section 2.3, other factors that can be considered to include in the secondary model
include fat, muscle type, moisture, sublethal injury, and media. From these, maskighock
injury, and starvation injury were excluded from the model. In the case of moistuent; fat
percentage in the product was sufficient to account for these two factorsy asetireversely
proportional to each other (section 2.3). Cold and starvation shock were excluded becduse, apa
from the lack of data to obtain their describing parameters, it is not feagithlecurrent
technology, to quantify them during processes. For media, meat products from tesfegni
pork were chosen due to their dominance in the available data pool. Therefore, theadioal ve
for the secondary model was established as:

b(T,7,F,M,K,B,P) =

(10)

bref Eéxr{— ﬁ{%—%}—ﬂzr—ﬂﬁ - BaM - BsY - fB - B7P

The meaning of each parameter and variable is ibesicin Table 2. Except for the case
of temperature, a simple relationship was chosealfparameters, as their mathematical
association to lethality has not yet been deterchiAelditionally, this allowed the model to

remain simple, which was beneficial when individyaletermining the effects of each factor.
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Table 2. Description of parameters and variables for secondary model.

Parameter or

Variable Description
b b, inactivation rate (min), dependent onc,Ti-, M, Y, B, and P (see definition
below)
bref Inactivation rate (mi'r%) at a reference temperaturgfl
T Product temperature (K), dependent on process (i
Tref Reference temperature (K)
Thermal sublethal (injury) history (Kin). Explained in detail in section 3.2.
T (Stasiewicz et al. 2008)
F Meat product fat content (%)
M Muscle structure of the meat product. M = 1 forugrd meat, M = 0 for wholg
muscle
Y Variable takes value of 1 if meat product is poulOtherwise, it is O
B Variable takes value of 1 if meat product is b&€gherwise, itis 0
P Variable takes value of 1 if meat product is p@therwise, itis 0
B1 Temperature parameter (K). Describes the effet#raperature on b
B2 Sublethal history parameter(Kin)'l. Describes the effect afon b
B3 Fat content parameter '(g% Describes the effect of Fon b
Ba Muscle type parameter (unitless). Describes thecetif M on b
Bs Species parameter (unitless). Describes the affetton b
B Species parameter (unitless). Describes the affdgton b
B7 Species parameter (unitless). Describes the aiffdeton b

4.2.3 Non-linear parameter estimation

Two methods for model calibration were used ondifferent versions derived from

eqguation (10): the ordinary least squares methuadiflze mixed-effects method. Each one is

detailed in the following sections. For initial iesates, the parameter values obtained from
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section 3 were used. In addition, model parameters recalculated by varying these initial
estimates by at least 500%, and were comparecttoriinal calibration values to test for
parameter sensitivity to initial estimates.

To estimate the sublethal history paramegey, (the collected isothermal data were not

useful because of the parameter’s nature (equétipnTherefore, the parameter values used in

the models were based on those found from theestuidisection 3 (Table 1).
The statistical measures of performance obtaired fach model fitting were the RMSE
(a measure of the goodness-of-fit), the bias (mesiduals), and the AlJAkaike’s

information criterion corrected for finite sampiees, as described in section 3.2.7 ).

4.2.3.10rdinary least squares (OLS) method

4.2.3.1.1 Theory
The ordinary least squares method (OLS) testsrdittgparameter values to minimize the
sum of squares of the errors. For these testsetii@duals were defined as the difference between

the experimental log reductions and the log redustpredicted by the model:

Error = log reduction experimental — log reductpyadicted

4.2.3.1.2 Parameter estimation

As mentioned in section 4.2.3, the values useth®sublethal injury parametdi,

were those estimated from section 3. In additiontfHe OLS method, the temperature effect was

accounted for using only the MSU data. This wasbse:
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* The inactivation rates resulting from the MSU datd the information from other sources
were highly different; for example, for ground p@tk60°C, D-value was 6.21 min from a
study by Juneja and others (2000b), while it wa8 @nin from a MSU study (Velasquez et
al. 2010). Using them both together with the OLShué would cause the prediction

intervals to be particularly large, which would et useful for our purposes.

» Data differences between sources could not be igoldrom simple analysis of the data and

acquisition methods, so it was not possible toesalilthe data to a common baseline.

* Most of the data obtained for model calibration afidhe data for pilot-scale validation
came from MSU, so by choosing the MSU data to patarize the temperature effect, better
consistency across data sets would be kept.

This also meant that it would not be possible torede the fat paramete), as the

MSU data did not contain studies analyzing theatf®é fat on thermal inactivation. Therefore,

the parameter used was obtained with model regrefsim data that did study this effect

(Juneja et al. 2001; Juneja and Eblen 2000; Jamgjathers 2000b). First, an optimumaswas

calculated (procedure described below) with theda,c&nd then model parameters were

estimated using MATLAB'silinfit function (described in section 3.2.7). Thgeused in the final
OLS models was based on the parameter obtainedtfisrprocedure.

For parameter estimation, the first step was to &in optimum reference temperature

(Tref) to minimize errors in future calculations (Dat@93). The process chosen minimizes the

correlation coefficient between the inactivatioterparameter (gs) and the temperature
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dependency parametd; ] (Dolan et al. 2007). To do this, the parametelated to Fef (bref
andp4, equation(2)) were estimated several times wlalging Ter. FOr each case, the
correlation coefficient betweendpand31 was plotted againstds. The optimum Jef is the one

at which the correlation coefficient is a minimuim this case, r~1x16).

Parameter estimation was done using MATLAB®(fit function A sample code can be
found in section 6.3.1. For parameterization, déife versions of the “full” model (equation
(10)) were independently calibrated. This is beeaasen though all factors described by the
model are relevant, the model with the most parareé$ not necessarily the best (Zwietering
and den Besten 2011; Motulsky and Christopoulos p@llowing a naming convention, the
model took the initials of the factors it includee., T F (w) model includes temperature and fat

effects, and uses the whole-muscle data for oligiparameters). The models tested are shown

in Table 3. Note that the fat and sublethal hisfmgameterslo> andf33) were obtained

separately as mentioned at the beginning of tlusce
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Table 3. Versions of the "full" model parameterized with OLS method.

Model Factors Data set(s) used for| Parameters | No. of
3 . Factors excluded A .
name included parameterization in model | models
Fat G turkey
Muscle type
T Temperature G beef 3
©) P Sublethal history bref, B1
Species G pork
Temperature Muscle type G turkey
TF(9) Fat P Sublethal history | G beef bref, B1, B3 3
Secies G pork
Fat G turkey
Temperature
Tt Muscle type G beef 3
@ | Sublethal history| "|USC® P bres, B1. B2
Species G pork
Temperature |\ G turkey ;
T(g)T rat Species " G beef o 3
Sublethal history| ~" G pork B1, B2, B3
Fat W turkey
Muscle type
T(w) | Temperature W beef 3
W) P Sublethal history bref, B1
Species W pork
TF | Temperature Muscle type W turkey
W) | Fat Sublethal history | W beef bref, B1, B3 3
Species W pork
Fat W turkey
Tt | Temperature
Muscle type W beef 3
(W) | Sublethal history e P bref, B1, B2
Species W pork
Temperature |\ W turkey ]
-I-(Vl\j)T Fat Specie " W beef e 3
ies
Sublethal history| ~" W pork B1. B2, B3

*G: ground muscle, W: whole muscle
’(g): model calibrated with ground-muscle data, (w@idel calibrated with whole-muscle data
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4.2.3.1.3 Predictionintervals

A 95% prediction interval (Pl) is the region aroumgredicted value where a new
individual observation is expected to fall with a confident85%. In contrast, a 95%
confidence interval (Cl) is the region around adted value where the meahnew
observations is expected to fall with a confideo85% (Motulsky and Christopoulos 2004).
Although Cls are more commonly used in model ptashs, the application of our model in
food safety requires the use of Pls, because fafetysgoods should be based on the safety of

individual servings, not on the mean.

When using the OLS method, there are two waysltulede a close approximation of
the asymmetric Pls. The first is to use tharedci function in MATLAB, which gives the
asymptotic Pls. Although these are good approxitdetheir width can be further
approximated to the asymmetric value by furtheapueater estimation with the ellipse method
via QR decomposition (Bates and Watts 1988), bagiptng (Mishra and others 2011), or
Monte Carlo (van Boekel 1996) simulations. Thesé valreferred to as the Pl methods from
this point forward. As our objective is to estim&is useful to industry (i.e., those that are both
reliable and small estimates), the Pl methods weterred over thalpredci function in

MATLAB.

The end result of the Pl methods is a region maag;g different combinations of

possible parameter values with @& tonfidence (when = 0.05, confidence = 95%), whergh

is the number of simulations executed. Carryingtbese methods with two parameters gives a
contouring area; three parameters would mean #aion of a three-dimensional space; using

four parameters would add another dimension, ara@hsin level of complexity, the ellipse
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method is the simplest, followed by bootstrappany] finally by the Monte Carlo simulations.
For each case of parameter estimation (Table 8)hitee methods were carried out in

MATLAB, and compared against each other to deteenttve best approach for calculating Pls.

Although it is possible to use any number of par@nse studies where the Pl methods
are applied on models with more than two parameterextremely scarce, as the methodologies
for the use of more than two dimensions are nok @esleloped (Dolan 2012). For that reason, a

different empirical approach had to be taken ferrtitodel cases with 3 or more parameters. The

two parameters chosen as main factors in the Fiadstwere R andp4. This is because the

reference inactivation rate,dp and temperaturgd() are the most determinant parameters for
thermal inactivation. The Pls calculated with thiege parameters will be known as the main Pls
from this point forward. To calculate the Pl whée temaining parameter$x 3, etc) were

used, it was determined that the main Pl woulddssland then it would be modified by adding
the remaining parameter confidence intervals toaatfor their variability. This empirical
approach would inevitably make the Pls wider, betdther option would have been to develop

three- and four- dimensional regions — work thahigch beyond the scope of this project.

Once the best Pl method was chosen, to obtainltfoe Pach validation data set, a

prediction was calculated with each of thg{parameter combinations. This yieldegin

predictions, which were arranged in increasingd@ureasing) order. The 2.5% and 97.5%

values represented the upper and lower P for &itee skt in question.
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4.2.3.2Non-linear mixed-effects (NLME) method

4.2.3.2.1 Theory
All statistical models are composed of variablesich change value depending on the
conditions the model is using to estimate (e.gaperature (T) in equation (6)), and fixed

effects, which are the model parameters — valuagerketo an entire population or with

repeatable levels of experimental factors (egsib equation (6)) (Pinheiro 2000). In addition,

some models include a random effect, which areeglinked with “individual experimental
units drawn at random from a population” (Pinh&l@®0). In the case of this project, an
“experimental unit” would be a data set (Figure8)nixed-effects model is a model that

incorporates both fixed and random effects, sudhasshown by the simple linear equation

(11). Here, yis the model prediction for thtehi“experimental unit”, x is the predictor, m and b
are the fixed effects (model parameters), andahdam effect for thetr} “experimental unit” is

symbolized by;.

yi=mx+b+ ¢
(11)

A simple graphical way to represent a mixed-effectglel is shown in Figure 9. Here, we have
two different representations of a linear modeln(y=b). The first shows a “random”
distribution in the y-axis intercept b, while thecend shows the same for the lines’ slopes m.
Therefore, in mixed-effects modeling, a randomatfieould be associated with the intercept
parameter b in the first case, while it would bgoagated with the slope parameter m in the

second case. When parameterizing any of the medsions derived from equation (10), the
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fitting software would evaluate the variability c@a by the “experimental units” on each of the

model parameters (bref, bl, b2, etc), and determinieh one would carry a random effect.

> <

"

Random effect in intercept parameter Random effect in slope parameter
P X X

Figure 9. Graphical representations of mixed-effects models.

For the purpose of developing a multi-product miattor model withSalmonella
inactivation data from different sources, the usa mixed-effects model for repeated measures
is extremely helpful. This is because these typesanlels are designed to handle data
“generated by observing a number of individualeegedly under differing experimental
conditions where the individuals are assumed tatitoibe a random sample from a population of
interest” (Lindstrom and Bates 1990). Basicallyyd assume the “population of interest” to be
all the data describingalmonella thermal inactivation in meat and poultry produetsd a
“random sample of individuals” treated under “diifey experimental conditions” to be the data
obtained from different laboratory settings, thiea mixed-effects model would be able to

characterize all the data sets accounting for én@bility generated by different research groups.
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4.2.3.2.2 Parameter estimation

Parameter estimation was done using the non-lmeeed-effects rflme) function from
the R statistical package (R: A Language and Envismrfor Statistical Computing, Vienna,
Austria, 2011). This function fits a nonlinear milxeffects model using the formulation and
computational methods described in Lindstrom an@$8€Lindstrom and Bates 1990). A sample

code for this method can be found in section 6.3.2.

To determine which parameters carried a randoneteeveral versions of the model

were fitted, associating a random effect with oammeter each time. The statistical measures to

determine the most appropriate model were ARMSE, and variance of the random effect. For

AIC; and RMSE, the model yielding the lowest valuesathlwould be preferred. For the

variance of the random effect, a large value isrdésbecause its approximation to zero would
mean there is no unexplained variability betweda dats, thus no random effect associated

(Pinheiro 2000). After the final model version v&etected, the rest of the data were analyzed.

As with the least squares method (section 4.2 B.different versions for the “full”
model (equation (7)) were parameterized. The sameng convention was followed; the model
took the initials of the factors it described (eTgF (g) model describes temperature and fat

calibrated with ground-muscle data). The model®teare described in Table 4.
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Table 4. Versions of the "full" model parameterized with mixed-effec¢ method (continued

next page).
Model Factors Data set(s) used for| Parameters| No. of
¢ . Factors excluded A .
name included parameterization in model | models
Fat G turkey
Muscle type G beef
T Temperature 3
©) P Sublethal history bref, B1
Species G pork
Fat W turkey
Muscle type W beef
T (w) | Temperature 3
W) P Sublethal history bref, B1
Species W pork
TF | Temperature Muscle type © turkey
Sublethal history | G beef 3
@) | Fat _ y bref, B1. B3
Species G pork
TF | Temperature Muscle type Widrkey
W | Fat Suble_thal history | W beef bref, B, B3 3
Species W pork
Temperature G turkey b
Muscle type ref
TFt Fat us . yp G beef [3 B B 3
(9) _ Species 1, B2, B3
Sublethal history G pork
Temperature Muscle tvoe W turkey ]
T(V';)T Fat Species P W beef ref: 3
Sublethal historyl " W pork B1. B2 s
TEs Temperature Muscle type bref,
Fat G turkey, beef, pork 1
9) _ Sublethal history y por] By, Ba, Bs,
Species Be, B7
TEs Temperature Muscle type bref,
Fat W turkey, beef, pork 1
(W) _ Sublethal history Y port By, Bs, Bs
Species Be, B7

*G: ground muscle, W: whole muscle

‘(g): model calibrated with ground-muscle data, (w@idel calibrated with whole-muscle data.
Where not present, model was calibrated with botirgd- and whole-muscle data.
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Table 4 (cont’d). Versions of the "full" model parameterized with mixed-effects method
(continued next page).

Model Factors Data set(s) used for| Parameters| No. of
¢ . Factors left out A .
name considered parameterization in model | models
Temperature byt
remn
TF St | Fat
Muscle type G turkey, beef, pork 1
(@) | Species yp y P B1, B2, B3,
Sublethal history, Bs, Be, B7
Temperature s
remn
TF St | Fat
Muscle type W turkey, beef, pork 1
(W) | Species yp y P B1, B2, B3,
Sublethal history, Bs, e, B7
Temperature _ G + W turkey
Sublethal hist bref,

TFM | Fat S“eceiesa SOV TG + W beef ref 3
Muscle type P G + W pork B1. B3, B4
Temperature G + W turkey bref

remn
TFM | Fat
Species G + W beef 3
T Muscle type P B1, B2, B3,
Sublethal history, G + W pork Ba
Temperature e
remn
TFM | Fat _ G+W
1
S | Muscle type Sublethal history Turkey, beef, pork Ba. B3, Ba,
Species Bs. Be: B7
Temperature byt
remn
Fat

TFM G+W B, Ba,

TS Muscle type None Turkey, beef, pork v ba b !
Sublethal history| D B4, Bs, Pe:
Species B7

*G: ground muscle, W: whole muscle

’(g): model calibrated with ground-muscle data, (w@idel calibrated with whole-muscle data.
Where not present, model was calibrated with batirgd- and whole-muscle data.
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4.2.3.2.3 Predictionintervals

The importance of Pls for our application is ddsedi in section 4.2.3.1.3. For thiene
method, the approach taken was that described byadgGelman and Hill 2007) (pp.272-275)
with the addition of Monte Carlo simulations. Theséculations were also carried out in R. A

sample code for this method can be found in se@i8r2. The code imported a validation data

set, and computed Pls doings Monte Carlo simulations taking into account thed@n effect

and residual variances. As described in sectiol34.3, the simulations were carried o

times, yielding gjy predictions that were arranged in increasing émrelasing) order to obtain

the 2.5% and 97.5% percentiles, representing therngnd lower Pl values for the

corresponding data set.

4.2.4 Mode validation against pilot-scale data

Validation of a model against independent datd igmost importance to determine
model performance. In addition, it provides insigiib model suitability in cases where it is
tested outside its application range (Halder e2@10). Although manuscripts describing thermal
lethality abound in scientific journals, very feWtbem validate the resulting models. From these
few studies, most are validated against other ktboy-based data (Mattick and others 2001;
Peleg and others 2007), and the rationale for tepa specific data set is rarely reported
(Corradini and Peleg 2009; Vaidya and Corvalan 2808gao and others 2007; Peleg et al.
2007). In a few other instances, a validation isied out, but few statistical parameters to
describe goodness-of-fit or quantify model perfonceare reported (Vaidya and Corvalan

2009; Porto-Fett and others 2008; Sallami and stB@06). While all these works provide
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valuable information on their research topics,rthesults are not directly applicable for
validating industrial processes. If a thermal inatton model is to be useful for lethality
predictions in independent tests, it is essertiat the model be suitably validated. For our
application, it is imperative that the models lstdd against data produced under pilot-scale,
industry-like conditions. For these reasons, eactlehwas validated against the pilot-scale sets
of data described in the following sections, froothorapid (i.e., impingement) and slow
convection processes. For each validation datahsefpllowing statistical values were
calculated: RMSE, bias (mean residual), maximunr éfad-safe), minimum error (fail-
dangerous), and percentage (%) of data pointdehatithin the Pls and above the fail-

dangerous PI.

4.2.4.1Steaks/fillets and patties in impingement oven

These tests involved the cookingSat monella-inoculated (~1Z)— 108 CFU/g) whole-

muscle cuts, and ground and formed patties inad-pdale, moist-air impingement oven, as
reported in detail by Hildebrandt (2012a). Overthle samples (chicken breast fillets, beef steaks
from boneless round roasts, pork chops from bosét@s, and ground and formed patties of
turkey, beef, and pork) were ~120 g and ~11-12 hiok} with fat contents of 0.33 to 10%.

There were 6 different cooking treatments, whicimbmed conditions relevant to commercial
applications: oven air temperature (149 or°Zb4 humidity (20 or 50% moisture by volume),

and target lethality (4 or 6 log reduction, in arttehave reliable survivor counts). The full
factorial combination of the treatments (in triplie for steaks/fillets, in duplicate for patties)

yielded a total of 144 data points, with total cmgktimes of 4 to 11 min. All raw data obtained
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from these experiments complied with the criteeaatibed in section 4.2.1, and were comprised

of log reduction results for the product cores.

4.2.4.2\Whole-muscle roasts

These experimental data, from Breslin (2009), tesuiom pilot-scale, slow cooking of

Salmonella-inoculated (~18'5 CFU/qg at the core) turkey breast, beef round, amid join roasts

in a commercial, moist-air convection oven. Roasta size was ~680 g. There were 7
different cooking schedules representing industog@sses, which combined the following
parameters: cook (in-bag or out-of-bag), time (totek time 86-253 min), oven temperature
(constant at 93°& or ramp-up), and humidity (20, 50, or 78% RH). rallv data obtained from
these experiments complied with the parametergitbescin section 4.2.1. However, only the
data in which cooks were done to a specified léthalere taken into account, ignoring those

which reached 71.1°C, because those generallyedeaid survivors.

4.2.4.3Hot dogs

For these experiments, commercially formulated bedfturkey emulsions (batter) were

acquired from a local processor, inoculated \ghmonella (~1O8 CFU/g),vacuum-stuffed, and

cooked in a pilot-scale convection oven using &kamhedule for low-fat hot dogs similar to that
used in industry. Samples were ~60 g (~15.5 cm,|2rgn diameter) and had a thermocouple
inserted for temperature logging. The cooking cyateeased temperature (60 to 82 °C) and
humidity (38 to 79%RH) over ~145 min. Cooking waggied by quenching the samples in

liquid nitrogen when the data-logger signaled aiated lethality of 4 or 6 log. All raw data
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obtained from these experiments complied with traumeters described in section 4.2.1. A

more detailed description of the tests can be fonrsgéction 0.

4.3 Results and discussion

4.3.1 Data compilation results

Table 5 shows a description of the data obtainaah the MSU studies. Although the

experiments did not include the effect of fat patage (%) orSalmonella inactivation, the data

provided valuable information with respect to madgipe.

Table 5. MSU data characteristics by source.

Species and Data Data Test
Reference N N Fat %
muscle type points sets temperatures
Ground beef 156 21
Breslin (2009) 55,58, 60,62, 745
Whole beef 164 25 63°C
Carlson et al. (2005) Ground turkey 22 4 60°C 1.8%
Ground beef 67
Mogollon et al. (2009) 60°C 4.5%
Whole beef 22 2
) Ground beef 80 10
Orta-Ramirez et al. (2005) 55, 60, 62.5°G 5.6%
Whole beef 27
o Ground turkey 90
Tuntivanich et al. (2008) 55, 60, 62.5°G 1%
Whole turkey 67 9
Ground pork 121 16
Velasquez et al. (2010) i 55, 58’060’ 62 2.5%
Whole pork 120 15 63°C
Wesche et al. (2005) Ground turkey 48 6 60°C 1.5%

*See Figure 8 for illustration and definition oftdgoint and data set (section 4.2.1).
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Regarding data from other research groups, a tb&8 @urnal articles from 12 different
journals were considered possible sources forivetain data. After applying the criteria set in
section 4.3.1, 4 journal articles were selectedtordatabase, with all of them directed to

ComBase for raw-data search.

From the 43,153 total data sets available in ComBa#e time of the initial search, 419
matched the characteristics from section 4.2.@nRhese, 106 data sets were selected
according to the criteria previously describedtha study (section 4.2.1). The raw data missing
from scientific articles (section 4.2.1.2) wereitalae to download from ComBase, allowing the

completion of the data pool.

Because these data were ultimately pooled witltdinebined searches from previous
literature and ComBase, it is fitting to presentrgults as one (Table 6). While muscle type
was not addressed in these studies, the datarsetdgbeneficial information regarding fat

percentage (%) in the meat products.

Table 6. Scientific journals and ComBase Browser data characteristics by swe.

Reference Species and Df_;lta Data Test Fat %
muscle type points sets temperatures

Juneja et al. (2001 Ground turkey 244 372 58, 8H,65°C| 1,7,10,12%
Juneja (2003) Ground beef 44 6 55, 57.5, 60°C 25%
Juneja and Eblen

J Ground beef 100 12 58, 60, 62.5, 65fC 7,12, 18 24
(2000)
Juneja et al. Ground beef 202 24 58°C 7,12, 18, 24%
(2000b) Ground pork 268 32 58, 60, 62.5, 65{C 4, 10, 2428
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Table 7 shows the characteristics for all the datapiled. Beef comprised most of the
collected data, particularly the ground productilevthe least common data were for whole-
muscle turkey, with only 9 data sets with 67 daim{s. Both the MSU data and those from
other sources included the temperature effe@abmonella inactivation with a useful range of
temperatures. Generally, the MSU data focused sesaBg the effect of muscle type, while
those from other sources included varying fat aonfehis shows that, depending on the
application, merging results from different studtesild be beneficial in trying to explain
different phenomena that have not been studiedhegdn this case, the merged data showed
great variability across source studies, due tewht sample preparation, processing, and
recovery methods. Therefore it was decided thdt bethods of parameter estimation would be
used to obtain the multi-product multi-factor modbke standard non-linear estimation (OLS)

(section 4.2.3.1), and the mixed-effects methodtize 4.2.3.2).

Table 7. Final compiled data characteristics and sources (continued nexage).

Data characteristics MSU data Sggmg; Sjguérrlg\liszrr]d All sources
All data

Data points 995 908 1903

Data sets 134 106 240

Temperature range 55-63°C 55-65°C 55-65°C

Fat % range 1-5.6% 1-28% 1-28%
Ground Turkey

Data points 160 244 448

Data sets 19 32 59

Temperature range 55-62.5°C 58 - 65°C 55-65°C

Fat % range 1-1.8% 1-12% 1-12%
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Table 7 (cont'd). Final compiled data characteristics and sources.

Data characteristics MSU data Sggmgg Sjgué?g\l\fszrr]d All sources
Whole Turkey

Data points 67 - 67

Data sets 9 - 9

Temperature range 55-62.5°C - 55 -62.5°C

Fat % range 1% - 1%
Ground Beef

Data points 303 352 655

Data sets 38 42 80

Temperature range 55-63°C 55-65°C 55-65°C

Fat % range 2.7-5.6% 7 —-25% 2.7 -25%
Whole Beef

Data points 224 - 224

Data sets 29 - 29

Temperature range 55-63°C - 55-63°C

Fat % range 2.7-5.6% - 2.7-5.6%
Ground Pork

Data points 121 268 389

Data sets 16 32 48

Temperature range 55-63°C 58 — 65°C 55 -65°C

Fat % range 2.5% 4 — 28% 2.5-28%
Whole Pork

Data points 120 - 120

Data sets 15 - 15

Temperature range 55-63°C - 55-63°C

Fat % range 2.5% - 2.5%
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4.3.2 OLS model parameters, statistics, and Pls

The reference temperatures obtained for each dataesshown in Table 8. As expected,
the reference temperature falls approximately ertiddle of the lethal temperature range data
in the data pool. The obtained parameters andsmoreling statistics for the OLS model are

shown in Table 9. Note that the RMSE and bias femtiodels does not change by the addition

of the estimate@», the sublethal injury parameter from section 3hagests are carried out in

temperature ranges above that of the sublethalinggion. On the other hany should prove

useful when validating the pilot-scale data, esgdBcihe longer-cook roasts. The standard and

relative errors for the model parameters of all elagrsions, including the fits made to obtain

B3, can be found in section 6.5.1. The correlaticgffoadents can be found in section 6.6.1.

Table 8. Reference temperatures by data set.

Data Reference temperature (Fef, °C)*
Ground turkey 59.5943
Ground beef 59.7356
Ground pork 59.0460
Whole turkey 58.9800
Whole beef 59.4870
Whole pork 59.2068

*Temperature in models is in K.
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Table 9. Parameters and statistics for OLS models (calibrated with only M$ data).

Parameters Statistics
Data _
source for Model bref B1 Bo* B3** RMSE Bias
calibration _ _ -
min”t K K1 fat % log (CFU/Q)
T (q) 1.11 | 52,269 ] ] 1.21 -0.04
Ground  [o'e gy 111 | 52,269 i 00300 1.24  -0.13
turkey
nope= 160 | TT©@ 1.11 | 52.269| 0.0017 - 1.21 -0.04
TF1(g) 1.11 | 52.269| 0.0017 00300  1.24 -0.18
T (W) 0.37 | 48589 - - 0.42 0.003
Whole ]
TF (W) 0.37 | 48589 ] 0.030( 0.43 -0.03
turkey
~ T1(w) 0.37 | 48589| 0.0017 - 0.42 0.003
Nobs= 67
TFT (W) 0.37 | 48589| 0.0017 0.0300  0.43 -0.18
T (q) 0.83 | 44242 ; ] 0.77 -0.02
Gé‘;‘é?d TF(g) 0.83 | 44242 ] 0.0227  0.80 -0.18
nope= 303 | T1(@) 0.83 | 44242| 0.0018 - 0.77 -0.02
TF1(g) 0.83 | 447242| 0.0018 0.0277  0.80 -0.18
T (w) 0.44 | 44,799 ] - 0.87 -0.03
Whole beef| T F (w) 044 | 44,799 ] 0.0227 0.87 -0.16
Nobs= 224 | T T (W) 0.44 | 44,799| 0.0018 ; 0.87 -0.03
TFT (W) 0.44 | 44,799| 0.0018 0.0277  0.87 -0.16
T (q) 0.63 | 41,750 - ] 0.99 -0.05
Ggg‘rfd TF(g) 0.63 | 41,750 ] 0.0137  0.99 -0.13
- - B
nope 121 | T 1@ 0.63 | 41,750| 0.0016 0.99 0.05
TF1(q) 0.63 | 41,750| 0.0016 0.0137  0.99 -0.18
T (w) 045 | 47164 ] ] 1.03 -0.04
Whole pork| T F (w) 0.45 | 47,164 - 0.0137 1.03 -0.12
Nobs=120 | T T (W) 045 | 47.164| 0.0016 ; 1.03 -0.04
TFT (W) 045 | 47.164| 0.0016 0.0137  1.03 -0.1P

*Parameters obtained from sublethal injury studidsapter 3, Table 1.
**QObtained from calibrating only data from Table 6.
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Regarding the Pls, the contours produced by all oastiiellipse, bootstrap, Monte

Carlo) were essentially the same in all cases (grourkey in Figure 10, the rest in section
6.7.1), and so the Pls generated were also extyesmailar, with <0.05 log N/Iy difference
between them (ground turkey in Figure 11 and Figi2e the rest in section 6.7.2). Therefore, to

avoid unneeded complexity, it was decided to usedbults from the ellipse method to

determine the final Pls for each model.

s X best fit
) —=FE|lipse
i ——— = =Bootstrap
I T —Monte Carlo
o~ 115
< '
-
® 11F
o]

1.05F

-
-
. -
‘‘‘‘‘‘‘‘‘‘‘
-------------------------

By x10™ (1/K)
Figure 10. Pl methods parameter contours for ground turkey calibration set.
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Figure 11. PIs with all methods for ground turkey calibration data set.

Asymptotic PI Ellipse PI
i Bootstrap PI
s Monte Carlo PI
36.1 36.15 36.2 36.25 36.3 36.35 36.4 36.45 36.5

time (min)
Figure 12. Zoom-in section from Figure 11.
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4.3.3 Mixed-effects model parameters and statistics

Table 10 shows the parameters and statistics éodifferent model versions obtained

with the mixed-effects method. In the cases whagestiblethal injury parametddo) was added,
the RMSE did not change, as mentioned in sectio2 4aBd the Al could not be computed.
This is because the number of observatioggdrchanges, but the RMSE does not take this into

account; therefore, the AjGhat would be obtained does not accurately repteéke model in

guestion. Standard and relative errors for théhallparameters in the different model versions
can be found in section 6.5.2, while the corretatioefficients are in section 6.6.2, and the

random effects for all data sets (groups) in theesenodel versions are in section 6.8.
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Table 10. Parameters and statistics for mixed-effects model (contindi@ext page).

Parameters Statistics
odel | sourcefor | nops | ngous et | PL | P2 | PBa | Pa| Bs | Bo | By | RMSE' ACC
calibration min K Kmin™ | fatoe™ | . . . (CIISLQJ] | °
G turkey 404 51 | 067 50750 - i 038 392
T(g) | G beef 649 80 | 056 44710 - 1T 070 714
G pork 389 48 | 043 53950 - i 056 377
W turkey 67 o | os59] s0750 - i 043 20
T (W) | W beef 224 20 | 054 aa71p - i [ 061 145
W pork 120 15 | 065 53950 - i 077 115
G turkey 404 51 | 158 36470 - 021 |- 038 204
TF (g)| G beef 649 80 | 095 36320 - 0.06 |- 070 640
G pork 389 48 | 074 35040 - 0.06 | 055 313
W turkey 67 o | 136 44710 - 099 | 045 28
(TW'; W beef 224 20 | o0s8d 44710 - 013 |- 067 142
W pork 120 15 | 105 53950 - 019 077 117

*RMSE values for models containimgre repeated from the same models withidgee text).
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Table 10 (cont'd). Parameters and statistics for mixed-effects mod@ontinued next page).

Parameters Statistics
Data - RMSE | AlC
Model | source for nObS* ngrgups bref Bl BZ B3 B4 B5 B6 B? c
calibration . . . lo
min 1 K K mhin 1 fat % 1 . . . . (CFS/g) .
Gturkey | 404+108| 51+36| 1.58 36,4700.0018 | 021 | - i i i 038| NA
T(g)T G beef 649+108] 80+36 095 36,3P(M.0018 | 0.06 | - i ] ] 070 | NA
G pork 389+108| 48+36] 0.74 350400.0016 | 006 | - i i i 055| NA
Wturkey | 67+108 | 9+36| 1.3 4471000018 | 090 | - i i i 045| NA
T(V';)T W beef 224+108| 29+36| 0.80 4471000018 | 013 | - i i i 067 | NA
W pork 120+108| 15+36| 1.05 53,9500.0016 | 0.19 | - i i i 077] NA
TFS | Gturkey, )
@ | ceof onc | 1442 179 | 1.53| 49800 - 007 | - | 083 074 109 058 1449
TFS | Wturkey, 358 53 | 520 45690 - 013 | - | 215 1.88 179 0.70| 26T
(w) | beef, pork
TEST| Gturkey, | 1442+ |179+108 _ (
o | oot ok | a0 - 1.53 | 49,800 0.0017 | 0.07 083 074 1.09 058 NA
T F St | W turkey, 358 + )
o) | beot pok | 324 | 53+108 | 520 | 45690 00017 | 013 | - | 25| 188 179 070 NA

*108 data points correspond to the data used @B in section 3. These correspond in turn to 36 dedaps.
** Parameters obtained from sublethal injury stedi€&hapter 3, Table 1.

TAverage from the 3 species; individual values otgtdifrom Table 1.
%324 data points correspond to the data used tendbian section 3 (for the 3 species). These corresfrotutn to 108 data groups.

NA: not applicable for models containingas Rpsis modified (see text).
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Table 10 (cont'd). Parameters and statistics for mixed-effects model

Parameters Statistics
Data source
Model for Nobs* ngr’(‘)ups bref B1 B2 B3 Ba Bs Be Bz | RMSE | AlCc
calibration 1 1 1 log
min K K hin fat % (CFUIqg)
G+ W 471 60 0.52| 36,860 - 0.21 -1.14 - - - 0.39 321
turkey
TEM G W beef 873 109 | 061 37490 - 006 | 045 - | - | - | o068 | 791
G + W pork 509 63 0.67 40,300 - 0.07 -0.14 - - - 0.61 428
G+W 471+108| 60+36 0.52 36,8600.0018 0.21 -1.14 - - - 0.39 NA
TEM turkey
T G + W beef 873+108 109+36 0.6 37,49®.0018 0.06 -045 - - - 0.68 NA
G + W pork 509+108 63 +3p 0.6 40,3000.0016 0.07 -0.14 - - - 0.61 NA
TEM|CTW
S turkey, beef, 1853 232 1.09| 49,410 - 0.06 -0.51] 0.65| 0.65| 0.86 0.59 161p
pork
G+W
1853 +
TFEM 1 irkey, beef, 232+ | 1 09 | 49,410 00017 | 0.06 | -0.51 0.65| 0.65| 0.8 059| NA
ST pork 324 108

*108 data points correspond to the data used @B in section 3. These correspond in turn to 36 dedaps.
** Parameters obtained from sublethal injury stedi€hapter 3, Table 1.

TAverage from the 3 species; individual values otgdifrom Table 1.
%324 data points correspond to the data used tendbian section 3 (for the 3 species). These corresfrotutn to 108 data groups.
NA: not applicable for models containingas Rpsis modified (see text).
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4.3.4 Validation against pilot-scale data

Validation for all developed models against theepehdent pilot-scale data is shown in
the following sections. The comparisons to conswdeen determining model performance are
those within the same types of products, i.e., gtennuscle calibrated models against ground-
muscle data and not against whole-muscle data. Heweurrent limitations in practice might
entail use of ground-muscle calibrated models tolate whole-muscle products (because of the
lack of adequately-calibrated models). These corsmas were also carried out to showcase
possible outcomes. When validating turkey-calilmateodels against the impingement oven
whole-muscle samples, the cooked poultry produst etdcken instead of turkey. In all cases,
the maximum (+, most fail-safe) and minimum (-, ifad-dangerous) errors, and plots showing

model predictions for representative data setseaiound in section 6.9.

Given the various statistical measures of moddbpm@ance, it was considered for this
study that an ideal (although impossible) model quedict lethality with RMSE and bias of
0.0 log CFUl/qg, i.e., a perfect fit, Pl width would bear zero, and percentage of data points
inside it would be 100% (Figure 13). However, du¢hie inherent variability and experimental
error in real-world tests, a best practically pbkesand industry-useful model would present a
low prediction RMSE (say ~1.0 log CFU/qg), positivadbto avoid fail-dangerous errors,
moderately narrow 95% Pls (say ~+1.5 log CFU/g)l #00% of the predicted data points
captured by the 95% PI (Figure 14). When a modelthis is not obtained, one yielding
conservative predictions could also be highly fioral (Figure 15). Also, a model with all data
points above the fail-dangerous PI band couldistiluseful, depending on the other statistical

parameters. For example, with a model capturingd 60the data points above the fail-
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dangerous Pl band, but with a wide PI, negative arad/or high RMSE, the model user would
need to determine whether the width of the Pl efuldor a particular process or not (Figure 16
and Figure 17). In this case, bias and RMSE woulsdoendary parameters to consider, as there
can be a highly negative bias or a highly scatteetd set (high RMSE); however, with all

points above the fail-dangerous Pl band and arp&aiole P1 width, process safety can still be
assured. On the other hand, a model of no use waildecessarily be the complete opposite of
the ideal model; it suffices to have most of theagmints below the fail-dangerous Pl band for

the model to be unacceptable, regardless of Phwielgure 18).

10 -
- 95% Pl widthayg= £0.21 log CFU/g
2 g RMSE = 0.0 log CFU/g
L=
3 bias = 0.0 log CFU/g
o % above low Pl = 100%
[+7] 6 |
Lo
©
=
Q
E 4 1
@
o
=
Hoy e 95% PI

Y pred
o Yexp
O T T T T T T T
0 0.5 1 1.5 2 2.5 3 3.5

Predicted log reduction

Figure 13. Example performance of an ideal model.
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95% Pl widthayg= +1.63 log CFU/g
RMSE = 0.81 log CFU/g el .
bias = 0.24 log CFU/g e

% above low Pl = 100%

----- 95% PI . L
o« .-
Y pred e
e Yexp -
1 2 3 4 5 6 7 8

Predicted log reduction

Figure 14. Example performance of a practically possible ideal model.

95% PI widthayg= +1.76 log CFU/g
RMSE = 1.07 log CFU/g

bias =0.97 log CFU/g

% above low Pl = 100%

---------- -

IS s
L 2 . . : .
f—

——=-= 95% PI _________'__._._—-———"_ B

me
o Yexp | meemememmmTTT
” > 3.5

Predicted log reduction

Figure 15. Example performance of a conservative, but possibly useful model.
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10 - RMSE = 1.40 log CFU/g
bias = 0.30 log CFU/g
5 95% PI widthayg= +2.11 log CFU/g
£ 8 1 %above low Pl = 100% ot
3
o
Lo
S
5
E*
@
o o
I By 95% Pl
Y pred
e Yexp
O T T
0 1 2 3 4 5 6

Predicted log reduction

Figure 16. Example performance of a potentially useful model; all data points flaabove
the fail-dangerous PI, but PI width would need to be evaluated by the ust® determine
usefulness, especially as several data points are quite close to the loRigband.

107 RmsE = 1.72 log CFU/g T
c bias =-1.38 log CFU/g "_,/"
5 8 - 95% Pl widthayg= +2.77 log CFU/g Pt
§ % above low Pl = 100%
g6
=
o
£
7 I 95% P
o
X2 - Y pred
e Yexp
O T T T T T T T 1
0 1 2 3 4 5 6 7 8

Predicted log reduction

Figure 17. Example performance of a possibly useful model; all data points falbove the
fail-dangerous PI, but bias is highly negative, and Pl width would need toebevaluated by
the user to determine usefulness.
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= RMSE = 3.44 log CFU/g
S A 95%PI bias = -3.25 log CFU/g
m —
Y pred 95% Pl widthayg= +2.49 log CFU/g
e Yexp % above low Pl = 22%
O T T T T T T T T
7.1 7.2 7.3 7.4 7.5 7.6 1.7 7.8 7.9

Predicted log reduction

Figure 18. Example performance of a useless model. In addition to not captng all data
points above the fail-dangerous Pl band, notice the width of the PI.

In the next sections, model performance on the-pidale data is analyzed based on the

criteria described above.

4.3.4.1Steaks/fillets and patties

Tables 11-13 show the OLS models’ performance wiadidated against the
impingement-cooked products (whole-muscle and giteand-formed poultry, beef, and pork).
Overall, as expected, the whole-muscle-calibratedets fared better than their ground-muscle-
calibrated counterparts when predicting lethalityvhole-muscle products. This can be
attributed to the fact that the whole-muscle mgadebmeters reflect the significantly greater
thermal resistance &lmonella in whole-muscle than in ground products (Tunticaret al.
2008; Orta-Ramirez et al. 2005; Velasquez et alOpah both the ground-muscle calibrated and

the whole-muscle calibrated versions, and agaiost wf the validation data sets, the addition of
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the fat and sublethal injury parametdss &ndp3,, respectively) improved the models’

performance; decreased RMSE, “pulled” all pointthofail-safe side of prediction, which

improved the bias and the percentage of obsenstiat fell above the lower PI. In some cases,
for example, the ground beef samples, the RMSE alighmprove wherf3o> and/orf33 were

added, but the percentage of points falling abbeddwer PI1 did, which is more important for
the food safety application of this project. Ina@tlcases, for example the whole chicken samples,

this percentage did not change, but the bias wpsowed, meaning that the predictions were less

fail-dangerous. Finally, in all cases, the additdithe fat parametef3§) was fairly more

beneficial to the model prediction than the addiid the sublethal injury paramet@p]. This is

especially noticeable in the ground pork sampl@&qfat) where RMSE improved by 0.4 log
CFU/g and bias by 0.6 log CFU/g with the additionhaf fat content term (Figure 19 and Figure
20). From these observations, it was concludedttteatonsideration of fat percentage and
sublethal injury by the models was beneficial taitipredictions of the independent validation

results.
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Table 11. OLS models validated against chicken fillets and turkey pattiespingement

cooked).
Average 95% )
Data source Model* % above | % that | pj (+/-gvalue) RMSE | bias
for validation low PI fit in PI
log (CFU/qg)
T(9) 27 27 2.61 451 -3.94
TF(g) 27 27 2.60 4.36 -3.80
Ground turkey T 1 (@) 27 27 2.60 4.41| -3.84
+ TF1(Q) 27 27 2.60 4.26 -3.70
Whole chickenl + gy + T (w) 52 34 1.83 350| -1.99
TF(@)+TF (W) 52 34 1.81 3.44 -1.86
nobS: 44
T1(g)+TT (W) 52 34 1.82 352 | -1.91
TF +
19 55 34 1.81 337 -1.79
TFtT (W)
Ground turkey| T (g) 26 26 2.62 4.79 -4.17
TF(g) 26 26 2.59 4.58 -3.96
Nobs=23 | T1(g) 26 26 2.61 469 | -4.07
fat = 1.05%
Tavg = TF1(g) 26 26 2.58 448 | -3.84
8.77 Kmin
T (9) 29 29 2.60 4.17 -3.68
) TF(g) 29 29 2.60 4.11 -3.62
Whole chicken
T1(g) 29 29 2.59 4.08| -3.59
nops=21 | TFT(Q) 29 29 2.60 401 | -352
fat=0.33% | T (w) 81 43 0.96 1.34 0.41
Tavg= TF (w) 81 43 0.95 1.34| 0.44
7.92Kmin- | 14w 81 43 0.95 1.35| 0.45
TFtT (W) 86 43 0.95 1.35| 0.47

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odisthole-muscle data.
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Table 12. OLS models validated against beef steaks and patties (impingemeabked).

Average 95% :
Data source Model* % above | % that | pj +/_g | RMSE | bias
SO odel . (+/- value)
for validation low PI | fitin PI
log (CFU/qg)
T (9) 70 66 1.56 1.88 -0.93
TF(Q) 77 70 1.55 1.72 -0.69
T1(g) 75 70 1.56 1.84| -0.86
Ground+ 1 £1(g) 80 73 1.55 169 -0.62
Whole beef
T@+T (W) 91 80 1.65 1.35 0.20
=44 | TF@+TFW)| 95 75 1.64 1.38| 0.38
Tr(g)+Ttw) | 95 82 1.65 136| 0.25
+
TFt@ 05 73 1.64 139 | 043
TFt (W)
Ground beef | T (9) 84 74 1.54 1.45 -0.07
TF(Q) 95 79 1.54 1.44 0.17
Nobs=19 | T¢(g) 95 84 1.54 1.45| -0.01
fat = 2.32%
Tavg = TF1(g) 95 79 1.54 145| 0.18
9.28 Kmin
T(9) 60 60 1.57 2.14 -1.58
TF 64 64 1.56 1.91 -1.30
Whole beef )
T1(g) 60 60 1.57 209 | -151
nepe=25 | TFT(@ 68 68 1.56 186 | -1.23
fat=2.68% | T (w) 96 84 1.73 1.27 0.41
Tag= | TFMW) 96 72 1.73 1.33| 0.58
8.18Kkmin | 11 () 96 80 1.73 129 | 045
TFT (W) 96 68 1.73 135| 062

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odiethole-muscle data.
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Table 13. OLS models validated against pork steaks and patties (impingement ceol.

Data source Model* % above | % that é\,'?i?g 5;)5;/)0 RMSE | bias
for validation low PI fitin PI
log (CFU/qg)
T (g) 77 75 2.06 1.97| -1.3(
TF (q) 79 75 2.02 179 -0.88
T1(g) 75 73 2.05 1.98 | -1.13
Ground+ 1 £¢(g) 79 75 2.02 176 | -0.82
Whole pork

T(g)+ T (W) 86 82 2.09 1.89| -0.76
=56 |TF@+TFM)| 91 84 2.06 1.66 | -0.43
Tt(g)+ Tt (W) 88 84 2.08 1.86 -0.71
I ; E\?V))Jr 91 84 2.06 165| -0.40
Ground pork | T (g) 78 78 2.05 2.06 -1.53
Nobs= 27 | T F (q) 89 85 2.00 1.64| -0.98
fat=10% | T1(qg) 81 81 2.05 2.01| -1.47
9.;2"}%%” TF1(g) 89 85 2.00 161| -0.93
T (g) 83 79 2.12 1.95| -0.82
Whole pork | TF @ 69 66 2.04 1.92| -0.78
T1(g) 69 66 2.05 1.94| -0.82
Nobs=29 | TFT () 69 66 2.04 189 | -0.72
fat =1.53% | T (w) 93 86 2.12 1.71| -0.04
Tawg= | TFW) 93 83 2.11 1.69| 0.08
8.21Kmin | 11 (w) 93 86 2.11 171 0.0
TFT (W) 93 83 2.11 169 | 0.08

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odiethole-muscle data.
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RMSE = 2.06 log CFU/g
bias =-1.53 log CFU/g
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% above low Pl = 78%

Predicted log reduction

Figure 19. OLS T (g) model validated against ground pork data. Compare with Figure 20.

Experimentallog reduction
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RMSE = 1.61 log CFU/g

bias =-0.93 log CFU/g

95% Pl widthayg= £2.0 log CFU/g
% above low Pl = 89%

----- 95% Pl
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®  Yexp
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Figure 20. OLS T Fr (g) model validated against ground pork data. Notice that by
considering fat content (F) and sublethal history«), model performance is improved.
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In the poultry products, the Pls for the whole-mes@lidated models also performed
better than their ground-muscle counterparts,rimdeof data points above the fail-dangerous Pl
band (~80% vs. ~25%) (Figure 21 and Figure 22). élew, for beef and pork, both model
versions showed high percentages for this meas8@%) in their corresponding validation data
sets. Additionally, the prediction interval “widthsere different across species and whole- or
ground-muscle validated models. For example, fiketys the ground-muscle-validated models
Pls were more than twice as wide than their whalesete-validated counterparts (~2.60 vs
~0.95 log CFU/g). In the case of beef, Pl widthtfer ground-muscle-validated models was only
~0.4 log CFU/g narrower than their whole-muscledatied partners’; and finally for pork, they
were essentially the same. While these intervathsiévidently have an effect on the percentage
of data points falling above the fail-dangerouv&id, they are mostly a consequence of the
source data used to calibrate the models. Alsauorpplication, the choice of a model can be

balanced between percentage of data points abevaitidangerous Pl band and the PI width.
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Figure 21. OLS T Fr (g) model validated against ground turkey data. Compare with

%]

Figure 22.
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Figure 22. OLS T Ft (w) model validated against whole-muscle chicken breast data.
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Table 14 shows model predictions when all the ig@ment oven data were pooled

together. As with the individual species and musel@ples, the addition of the fat and sublethal

injury parameters¥o andp3, represented by F andn model names) improved model

performance. However, substantial differences éngé&rformance parameters were not evident,
meaning, as expected, that temperature is theinfastntial factor in determining process
lethality. On the other hand, the fat and subleithjaly factors may influence model predictions
significantly more in products where they appedrg¢anore prominent, such as sublethal history
for slow-cooking roasts, and fat content for prdadwszich as hot dogs (as reported in the next

section).

Table 14. OLS models validated against ALL impingement oven data.

Average 95% .
Data source Model* % above | % that | p +/_g | RMSE | bias
> odel . (+/- value)
for validation low PI fitin PI
log (CFU/qg)

ALL T@+T(w) 77 67 1.87 2.42 -0.84
impingement| TF (g) + T F (w) 81 66 1.85 2.30 -0.62
ovendata |t )+ Tt (w) 79 68 1.87 238| -0.78

TFt(g) +
= 81 65 1.86 2.26 -0.57
Nobs=144 |+ ey (w)

*In all cases, ground-muscle calibrated models ipted lethality for ground-muscle data and
whole-muscle calibrated models did for whole-musia&a. In addition, models used were
species specific, that is, turkey models preditbedurkey data, and so on.

Tables 15-17 show the mixed-effects models perfoo@avhen validated against whole-
muscle products and ground patties in the impingemeen. These are discussed in detail in the

following paragraphs.
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For the poultry products (Table 15), the modelsddvetter when predicting lethality in
the whole chicken breasts. For example, while tisdd? the more complex models
encompassed high percentages (~80-100%) of datssgor both ground- and whole-muscle
products, the simpler models produced much lowerbers (~40%) against the ground turkey
patties than against the whole-muscle chicken sesr(pl70%). The exception to this would be
the low percentage (38%) obtained with the T F Rt models in the whole chicken breasts
(Figure 23); however, notice here that Pl widtbngy 0.85 log CFU/g. On the other hand, the
RMSE and PI widths were slightly larger for the grduurkey patties, while the bias was also

more prominent towards the fail-dangerous side r@avhen both poultry data sets were

pooled together gps=44), the most complex model (T FiB) performed, in a conservative

manner, the best.

RMSE = 1.86 log CFU/g -~
7 - bias=-1.20 log CFU/g -~

95% PI widthayg= +0.85 log CFU/g
% above low Pl =33%

Experimentallog reduction
N
|

3 - . . ’
, . === 95% Pl e
Y pred -7 o« °
1- e Yexp b ® °
O T T T T T T T |
0 1 2 3 4 5 6 7 8

Predicted log reduction

Figure 23. Mixed-effects T F (w) model validated against whole-muscleicken fillets.
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Table 15. Mixed-effects models validated against chicken steaks and turkegtpes
(impingement cooked) (continued next page).

Average
Data source % % that 95% PI RMSE bias
for Model* above | fitin | 4/ value)
validation low PI Pl
log (CFU/qg)
T (g) 100 100 3.66 1.54 -0.38
T F (g) 66 66 2.90 2.65 2.14
T Ft(q) 66 66 2.89 258 -2.06
TFS(g) 100 100 4.75 1.46 -0.16
TFt1S(g) 100 100 4.67 1.45 -0.12
Ground
Turkey | T(@)+T W) 91 73 2.33 1.53 -0.20
+ TF(g)+TF W) 50 48 1.85 2.27 -1.64
Whole | T F¢(g) + T Fr (w) 50 48 1.86 2.21 -1.57
Chicken
TFS(g)+TFS W) 08 91 3.24 1.48 0.09
_ TF1S(g) +
Nobs= 44 08 91 3.21 1.47 0.13
obs TETS W)
TEM 73 45 2.09 2.28 -0.54
TEFMt 73 45 2.04 2.25 -0.49
TFMS 100 08 3.15 1.90 -0.58
TEFMtS 100 98 3.14 1.88 -0.53
T (g) 100 100 3.70 1.70 -0.59
cround | TF©@ 61 61 2.76 2.58 -2.03
turkey | TF1(g) 61 61 2.78 252 -1.96
TFS(g) 100 100 4.69 1.57 -0.28
Nobs=23 | TF1S(q) 100 100 4.62 1.56 -0.24
fat=1.05%| 1 48 48 2.76 2.69 2.16
Tavg= | TEMt 48 48 2.68 2.62 -2.08
8.77Kmin " ers 100 100 3.69 2.29 1,52
TFMTS 100 100 3.72 2.24 -1.46

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odisthole-muscle data.

98



Table 15 (cont'd). Mixed-effects models validated against chicken steakschaturkey patties

(impingement cooked).

Average
Data source Model* % above | %that | 995% Pl | RMSE bias
for validation low PI | fitin 1 | (+/- value)
log (CFU/qg)
T (9) 100 100 3.30 1.34 -0.16
T F(9) 71 71 3.05 2.72 -2.25
T Ft(g) 71 71 3.02 2.65 -2.18
TFS(g) 100 100 4.82 1.33 -0.04
Whole TF1S(g) 100 100 4.73 1.32 0.01
chicken
T (w) 81 43 0.83 1.31 0.23
_ T F (w) 38 33 0.85 1.86 -1.20
Nobs= 21
fat = 0.33% | TFT(W) 38 33 0.85 1.82 -1.14
o TFS W) 95 81 1.66 1.36 0.50
avg~
792 Kmin | TFTS (w) 95 81 1.66 1.38 0.53
TFM 100 43 1.35 1.73 1.22
TFEFMt 100 43 1.34 1.75 1.25
TFMS 100 95 2.56 1.36 0.45
TFMtS 100 95 2.51 1.37 0.48

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odiethole-muscle data.
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For the beef samples (Table 16), all models pertarnelatively well, with high
percentages of data points (>95%) above the loaredédngerous Pl band (Figure 24), RMSEs
ranging from ~1.2-1.9 log CFU/g, and almost all hiakies on the fail-safe side. Some models
against the whole beef samples produced negatgvailues, but no larger than -0.34 log

CFU/g. Overall, the Pls were slightly, but consifiieacross models, wider than in the poultry

samples.
9 _
o | RMSE=133log CFU/g -
bias = 0.41 log CFU/g el
7 - 95% Pl widthayg= +2.76 log CFU/g ',..-—"
% above low Pl = 100% Rl

Experimental log reduction
N
|

3 -
5 . T 95% Pl
Y pred
1 - o Yexp
U T
0 1 2 3 4 5

Predicted log reduction

Figure 24. Mixed-effects T F Mt S model validated against whole-muscle beef steaks.
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Table 16. Mixed-effects models validated against beef steaks and pattiesgingement
cooked) (continued next page).

Data source Model* % above | % that é\,'?i?g \E,)a?f(:/)o RMSE | bias
for validation low Pl | fitin PI
log (CFU/qg)
T (g) 100 93 2.56 1.58| 0.76
TF (g) 100 95 2.83 1.33|  0.14
TF1(g) 100 95 2.80 1.34|  0.19
TFES(g) 100 100 4.96 1.55  0.20
TFtS(g) 100 100 4.83 1.56]  0.25
T(g)+T (w) 98 82 2.11 1.59|  0.81
Ground |TF(g)+TFWw)| 98 86 2.01 1.37| 0.43
+
Whole beef I EI E\?v); 08 82 2.00 1.38 | 0.8
Nops= 44 I E : E\?v); 98 95 2.78 1.47 | 0.50
TFt1S +
TErS E\?v)) 98 95 2.72 1.48| 0.55
TEM 100 86 2.26 1.48| 0.78
TFEMt 100 84 2.23 151 0.85
TEMS 100 95 2.90 1.41]  0.22
TEMtS 100 98 2.90 1.41|  0.27
T (g) 100 84 2.75 1.93| 1.34
TF (g) 100 89 2.59 1.51|  0.63
Ground beef | T F{ (g) 100 89 2.56 1.53| 0.70
TFES(g) 100 100 4.14 1.71  0.92
Nobs= 19 [+ E{5(g) 100 100 4.00 173 0.96
fat=2.32% e 100 89 2.42 1.48| 0.6
o0 | TFM: 100 89 2.38 150| 0.61
TEFMS 100 95 3.13 1.51|  0.03
TEMtS 100 100 3.08 1.51|  0.09

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-

muscle data and whole-muscle calibrated modelfodidthole-muscle data.
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Table 16 (cont'd). Mixed-effects models validated against beef steaks and ted

(impingement cooked).

Average 95% :
Data source Model* % above | % that | pj +/_g | RMSE | bias
oo odel . (+/- value)
for validation low Pl | fitin PI
log (CFU/qg)
T (g) 100 100 3.46 1.25|  0.32
TF(g) 100 95 3.01 1.18|  -0.2¢
TF1(g) 100 100 2.98 1.17|  -0.2(
TFS(g) 100 100 5.59 1.42  -0.3
Whole beef | T F1 s () 100 100 5.46 1.40, -0.2
T (W) 96 80 1.62 1.27 0.41
Nobs=25 [T F (w) 96 84 157 124] 0.6
fat = 2.68%
TFt (W) 96 76 1.58 1.25| 0.31
g~ [T Eg W) 96 92 1.75 1.25|  0.14
8.18 Kmin
TFTS W) 96 92 1.74 1.26| 0.23
TFM 100 84 2.14 1.47 0.95
TFMt 100 80 2.11 1.51 1.03
TFMS 100 96 2.72 1.32 0.37
TFEFM1S 100 96 2.76 1.33 0.41

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odisthole-muscle data.
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For the pork products (Table 17), the models gégbts better predictions for the
ground-muscle patties in terms of the percentagiata points above the fail-dangerous Pl band.
In addition, the Pl widths for the ground-musclélrated models (g) were slightly narrower
than those of the whole-muscle calibrated modeJsRMSE was consistent (~1.4-1.9 log
CFU/g) throughout all the data set, except for adeaeptions (~2.3-2.6 and ~3.1 log CFU/qg).

On the other hand, bias values were more scattereding from -2.2 to 1.2 log CFU/qg.

However, when both ground- and whole-muscle sanmpégs pooled together {ps=56),

RMSE, bias, and Pl width were consistent acrosseflsazhce more.

12
RMSE = 1.42 log CFU/g
10 | bias=0.36log CFU/g
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Figure 25. Mixed-effects T F Mt S model validated against ground-muscle pork patties.
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Table 17. Mixed-effects models validated against pork steaks and patties (imgement
cooked) (continued next page).

Data source Model* % above | % that é\,'?i?g \E,)a?f(:/)o RMSE | bias
for validation low Pl | fitin PI
log (CFU/qg)
T (q) 93 89 3.54 155 0.12
TF(q) 82 100 1.87 1.60|  0.8(
TF1(g) 100 82 1.87 1.62| 0.82
TFS(g) 100 93 3.54 1.82]  0.93
TF1S(g) 100 93 3.66 1.71] 0.84
T(g) + T (W) 82 80 2.79 1.98| -0.72
Ground
N TF(Q)+TFW)| 89 75 2.36 2.60 | -0.6Q
Whole pork | T FT(9)+ 88 73 2.34 257| -0.58
TF1 (W)
_ TFS(g)+
Nobs= 56 Trs E\?v)) 86 50 1.27 1.98| 057
TFtS +
TELS E\?V)) 89 80 2.30 1.86 0.46
TFM 100 88 1.98 1.54 0.70Q
TFMt 100 84 1.98 1.56 0.73
TFMS 100 82 2.49 1.66 0.67
TFEFM1S 100 86 2.48 1.53 0.6(
T (9) 85 85 2.87 1.47| -0.13
Ground pork | T F (@ 100 74 1.59 1.83| 1.11
TF1(g) 100 74 1.59 1.85| 1.14
nops=27 | TFS( 100 89 2.43 185  1.16
fat=10% | TF1S(g) 100 89 2.72 1.87| 1.18
Tavg= TFM 100 85 1.73 1.67 0.92
9.34Kmin | TFMt 100 81 1.75 1.70 0.95
TFEFMS 100 89 2.43 1.40 0.32
TFMtS 100 93 2.42 1.42 0.364

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odisthole-muscle data.
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Table 17 (cont'd). Mixed-effects models validated against pork steaks and piat
(impingement cooked).

Average 95% .
Data source Model* % above | % that | pj +/_g | RMSE | bias
SO odel 0 (+/- value)
for validation low Pl | fitin PI
log (CFU/qg)
T (9) 100 93 4.17 1.61| 0.3
TF(g) 100 90 2.12 1.35|  0.5(
TF1(g) 100 90 2.13 1.36| 0.53
TFS(g) 100 97 4.57 1.80, 0.71
Whole pork | T F1 S (g) 100 97 4.54 1.56 0.52
T (W) 79 76 2.71 2.35 -1.26
Nobs=29 1 F () 79 76 3.08 315| -2.2¢
fat = 1.53 % .
TFt (W) 76 72 3.03 3.10| -2.13
favg= e g w) 86 76 1.92 1.87| -0.25
8.21 Kmin

TF1S W) 79 72 1.91 1.86| -0.21
TFM 100 90 2.20 1.40 0.49
TFM1 100 86 2.19 1.41 0.52
TFMS 100 76 2.55 1.87 1.0(
TFEFM1S 100 79 2.54 1.64 0.83

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odisthole-muscle data.

The fact that the mixed-effects models performetkbevith the beef and pork samples
(especially in terms of the percentage of datatpan the safe side) is a measure of the

suitability of the calibration data for the choseadels. Just as with the OLS models, the

addition of the sublethal injury parametBp,(represented byin model names), improved

overall, even if slightly, in some manner the maedéle it by reducing RMSE, bias, PI width, or
a combination of the three. On the other hand¢timbination of ground- and whole-muscle

data to obtain models with the M (muscle) param@table 4) had mixed outcomes; it improved
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predictions for the poultry samples, but had batbifove and negative effects for the beef and
pork products. In addition, the separation of aatly by muscle type (that is, lumping all ground
turkey, beef, and pork data in one calibration grand their whole-muscle counterparts in
another (Table 4) to yield the S (species) paramsal this same effect. On the other hand,
within the TFS models, those calibrated with groamascle data (T F S (g) and TtFS (g)) had
wider Pls (~+2.50 vs. ~+1.0 log CFU/g), but consetjlyewvere able to capture higher
percentages of data points above the fail-dangdtbband (~+100% vs. ~+90%). Although
these percentage differences could be considerall, &m food safety applications it is desirable
to err on the safe side. In terms of RMSE, the giletalibrated models fared slightly better
(~0.2 log CFU/qg) for the beef and pork samplesevtiie bias values were evenly fail-safe and

fail-dangerous across all samples.

Table 18 shows the mixed-effects models perforraiganst all impingement oven data.
Percentage of data points above the fail-dangd?bband was overall satisfactory, with the two
most complicated models (T FM S and T i 8) capturing 100% of them, and all capturing at
least 79%. RMSEs were also acceptable, given thecgagb variability in this kind of data, and
bias values were mostly positive, except for thet three model versions. On the other hand, Pl
width was large -bigger than what could possiblyibeful for industrial applications, especially

in the case of the last two models.

When comparing the OLS models with the mixed-effeetrsions against all the
impingement oven data pooled together (Table 14Tatde 18), it is evident each has its
positive features and drawbacks. For example, whdeOLS models placed, at most, 81% of the

data points above the fail-dangerous Pl bandmitted-effects models were able to capture
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>80% of them in the same region. However, thisd¢oobstly be due to the Pl widths (~2.0-2.8
log CFU/g for mixed-effects models vs. ~1.86 log Gt the OLS versions). On the other
hand, RMSE and bias were more favorable to the metiedts models, with a maximum RMSE
= 2.18 log CFU/g for the mixed-effects models andimum RMSE=2.26 log CFU/g for OLS
versions; and in the case of bias, all were faieggious for the OLS models, while 67% of them

were fail-safe for the mixed-effects versions.

Table 18. Mixed-effects models validated against ALL impingement oven data.

Average 95% .
Data source Model* % above | % that | p +/_g | RMSE | bias
S0Y odel 0 (+/- value)
for validation low PI fitin PI
log (CFU/qg)

T@)+T (W) 90 78 2.44 1.73 -0.09
TF(Q)+TF (W) 80 70 2.10 2.18 -0.60

TF1(g) +
79 68 2.09 2.16 -0.55

ALL TFt (W)
impingement TFES(
g)+
oven data 7 2.34 1. A4
TFSm) 93 6 3 69 0.40
+

TFtS(9) 94 88 2.70 164| 039

nObS=144 TFt1S (W)
TFM 92 74 2.10 1.78 0.34
TFMt 92 72 2.07 1.78 0.39
TEFMS 100 91 2.82 1.67 0.1%
TFEFMtS 100 93 2.81 1.61 0.14

*In all cases, ground-muscle calibrated models ipted lethality for ground-muscle data and
whole-muscle calibrated models did for whole-musia&a. In addition, models used were
species specific, that is, turkey models preditbedurkey data, and so on.
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4.3.4.2Whole-muscle roasts

Table 19 shows the OLS models predictions agaespiiot-scale roasts. Because these
are the biggest pilot-scale samples, high varigialind potential fail-dangerous predictions were
expected (Breslin 2009). For the turkey roasts giiound-calibrated models did not predict
satisfactorily; Pls were wide, RMSESs very big, anslvalues extremely high on the fail-
dangerous side, as would be expected (Figure 26)h©other hand, even though the percentage
of data points above the fail-dangerous PI bandnead the same at 0%, when the whole-
muscle validated models were applied to these wimnlscle roasts, the prediction statistics were
better: narrower Pls, lower RMSEs, and less dangdras values (Figure 27). This shows the
importance of using models calibrated with prodticéd match the characteristics of those to be
involved in model predictions. In the case of baed pork, the same trends were produced with
whole-muscle calibrated models predicting bettanttheir ground-muscle counterparts.
However, the pork models performed significantljtére in terms of reaching 100% of data
points above the fail-dangerous Pl band comparé2%6 in the case of beef. This could be
attributed to the Pl widths of pork being largearitthose of beef (~2.0 CFU/g vs ~1.75 CFU/qg).
On the other hand, the RMSEs for beef were sigmtiy smaller than those of pork (~1.0
CFU/g vs. ~3.0 CFU/qg), and bias values were alse@moyminent on the fail-safe side for the

same products (~-1.6 CFU/g vs. ~0.2 CFU/g for bedfpank, respectively).
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Table 19. OLS models validated against roasts.

0,
Datz'af Osro.urce Vodel 0/;1035) g\lle f?f)i:lh gtl g\ln?i??\?a?uSe/)o RMSE bias
validation log (CFU/g)
T (9) 0 0 2.82 12.41| -12.36
Turkey roasts T F (9) 0 0 2.80 12.27| -12.2
T1(9) 0 0 2.68 10.95 | -10.89
Nobs=9 | TF1(q) 0 0 2.66 10.83 | -10.77
fat=0.27% | 1 ) 0 0 1.11 344 | 325
trange™ | T F (w) 0 0 1.10 3.39 -3.19
200 — 500
K-min T1 (W) 0 0 1.02 2.81 -2.58
TFT (W) 0 0 1.01 2.76 -2.53
T (9) 0 0 1.63 7.57 -6.56
Beef roasts | T F (9) 0 0 1.59 6.94 -5.92
T1(9) 0 0 1.58 6.94 -5.90
Nobs=13 | TF1(q) 8 8 1.55 6.34 -5.30
fat =2.68% | 1 ) 46 46 175 272 | 101
1T0%n831:80 T F (w) 62 62 1.74 2.98 -1.71
K-min T 1 (W) 62 62 1.74 3.00 -1.69
TFT (W) 62 62 1.72 2.73 -1.35
T (9) 60 60 2.02 2.37 -1.98
Pork roasts | T F (g) 65 65 2.01 2.26 -1.86
T1(9) 65 65 2.00 1.96 -1.63
Nobs=20 | TF1(q) 70 70 1.99 1.86 -1.52
fat =1.53% | 1 ) 100 100 2.06 094| 0.0
Trange™ | T F (w) 100 100 2.06 0.96 0.22
100 — 600
K-min T1 (W) 100 100 2.05 0.90 0.31
TFT (W) 100 100 2.04 0.93 0.42
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Figure 26. OLS T Ft (g) model validated with turkey roast data. Compare with Figure 27.
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Figure 27. OLS T Fr (w) model validated against turkey roast data. Notice the significantly
better performance than its (g) counterpart (Figure 26).
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Table 20 shows model predictions when the roast fdatall three species were pooled

together. As with the species-specific roasts Aedrhpingement oven data, the addition of the

fat and sublethal injury parametefs @ndf3,, respectively) enhanced model performance, but
not substantially. On the other hand, wifilfehad a greater effect on the impingement oven data
predictions3> here has a larger impact, reducing Pl width, RM&1g, bias values more

significantly thar33. This is due to the effect the high sublethaldmgtalues of these data

(ranging from 100 to 600 ‘Khin) have on the model predictions (compared t® K8min for the
impingement oven data).

Table 20. OLS models validation against ALL roast data.

Average 95% .
Data source Model % above | %that | p (+/-gvalue) RMSE | bias

for validation low PI fitin PI log (CFUIQ)
0g g

ALL roast T (W) 62 62 1.76 2.29 -1.24

data TF (w) 67 67 1.75 2.38 -1.11

TT (W) 67 67 1.73 220 | -0.93

Mobs=42 | T Fy (w) 67 67 1.72 209 | -0.76

Table 21 shows the mixed-effects models when vi@tlagainst the roast products.
Performance is once more negatively affected wisamguground-muscle calibrated models to
predict lethality on whole-muscle data, as expecladt as with the impingement oven samples,
turkey roasts were once more the most affectethisywith highly dangerous bias (> -5.0 log
CFU/g), extremely wide PIs (> 8.0 log CFU/qg), laRKISEs (<5.50 log CFU/g), and low
percentage of data points above the fail-dangdpbbisnd. It can be argued that the T & (Q)

model on the turkey roasts encompassed 100% afataepoints, but looking at the Pl width

111



(x8.05 log CFU/g), this becomes obvious and notuidef our application. For the beef and
pork roasts, the ground-calibrated modes fare@bigitterms of the percentage values (>90%
above low PI), but most Pl widths were still ouéstie scope of usefulness, as explained in
section 4.2.4 (>x5.5 log CFU/g for beef, and >2@ GU/g for pork, one of the few exceptions
in Figure 28). Even though performance on pork sasfactory in the case of the Tt Q)

model, the whole-muscle validated counterpartsigemi/better predictions. Overall, the whole-
muscle validated models, those including subldtistbry (), or those accounting for muscle
type (M) had better predictions across the prodwats the more complicated model (T FM

S) performing the best conservatively.

Table 21. Mixed-effects models validated against roasts (continued next page).

0,
Dat:-;:c Osro-urce Vodel ()/;)Osvbg\lle f?i:]hgtl @I/?i?-g\?a?je/)o RMSE | bias
validation log (CFU/g)
T (g) 100 100 9.00 434 -4.19
TF(g) 0 0 12.20 18.65| -18.54
T F(g) 11 0 7.70 9.77 | -9.57
TFS(g) 100 100 10.64 1153  -11.38
Turkey roasts T F1 S (g) 100 100 7.83 159 -0.92
T (w) 0 0 0.83 3.27 | -3.00
Nobs=9 | TF (w) 0 0 0.85 18.65 | -18.54
fat=027% [T er w) 0 0 0.85 483 | -454
Trange™ | 7 F 5 (w) 33 33 2.79 3.77|  -3.5§
200 — 500
Kmin | TFTS (W) 89 89 2.10 1.37| -0.6]
TEM 78 78 3.87 3.42 | -3.15
TFM1 89 89 2.52 1.18 | -0.25
TFMS 100 100 5.92 5.44|  -5.25
TFMtS 100 100 3.82 1.25|  -0.18
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Table 21 (cont'd). Mixed-effects models validated against roasts.

Data source % above | % that Average 95% | oo bias
for Model ow Pl | fitin pl |- value)
validation log (CFUI/q)
T (g) 100 92 6.55 348 -2.30
TF (g) 85 85 7.44 658 | -5.80
TFt(g) 92 92 5.34 406 | -3.00
TFS(g) 100 100 10.08 3.92] 26l
Beefroasts | T Fr s (g) 100 92 7.44 2.68 -0.68
T (W) 57 50 235 318 | -2.10
Nobs= 13 [+ ) 54 54 224 358 | -2.42
fat=2.88% It w) 77 54 1.89 242 | -052
Trange™ |1 g () 62 62 2.49 358|  -2.3¢
100 — 480
min | TFTS (W) 96 92 1.74 126| 0.23
TFM 92 92 4.32 317 | 219
TEMt 100 92 3.21 210 | -0.32
TFMS 100 100 4.70 285 -1.35%
TEMTS 100 85 353 226| 022
T (g) 100 100 3.14 171 150
TF(g) 90 90 3.12 191 -1.17
TFt(g) 100 90 2.39 082] 0.9
TFS(g) 100 100 4.04 146 1.8
Porkroasts | T Fr s (g) 100 100 3.18 1.97 1.82
T (W) 100 100 2.25 0.86| 0.33
Nobs=20 [ ) 100 100 2.50 092 -0.31
fat=153% It w) 100 90 212 097 | 0.69
Trange™ 1 F g () 90 90 1.95 112| -0.50
100 — 600
min | TFTS (W) 100 95 1.75 091| 063
TFM 100 100 2.70 123| -0.28
TEMt 100 100 219 111 082
TFMS 100 85 231 166  1.38
TEMTS 100 45 1.97 215|  1.99
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Figure 28. Mixed-effects T Ft S (w) model validated against pork roasts. Notice the
favorable fitting statistics.

Table 22 shows the whole-muscle-validated and thoseunting for muscle type (M)
mixed-effects models against all roast data putttogy. The most complicated models (lower
down the table) fared better in terms of the pesggn of data points captured above the fail-
dangerous PI band, mostly because of the low ptrgervalues from the simpler models’
predictions in the turkey roasts (Table 21). Ondtieer hand, the simpler models had narrower

Pls, but also higher RMSE and more fail-dangeroas alues.
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Table 22. Mixed-effects models validated against ALL roast data.

Average 95% .
Data source M % above | % that | pj (+/_g value) RMSE | bias
o odel "
for validation low PI fitin PI
log (CFU/Q)
T (W) 67 64 1.98 4.00 -2.28
TF (w) 64 64 2.07 8.88 -4.89
AL; roast | TFt(w) 71 60 1.83 2.67 -1.04
ata
TFS W) 69 69 2.30 2.76 -1.74
TF1S W) 90 83 1.92 1.63 0.02
ops=42 | TFM 93 93 3.45 252 | -1.49
TFEM1t 98 95 2.58 1.50 0.24
TEMS 100 93 3.82 3.19 -0.89
TFM1S 100 69 2.85 2.03 0.98

Comparing the OLS models (Table 20) vs. the mixdéelets models (Table 22)
performances in the all the roast data pooled begebnce more the OLS models reach a plateau
in capturing data points above the fail-dangerdusaRd (~67% maximum), while model
complexity in the mixed-effects versions allows gegcentage to reach 100%. On the other
hand, Pl widths on the OLS models are more indusigful than those yielded by the mixed-
effects models (~1.75 log CFU/g vs. 1.83-3.82 log @ff\Finally RMSE and bias values were
inconsistent across all models, but overall presgmhore high numbers compared to the

impingement oven data.

4.3.4.3Hot dogs
Table 23 shows the OLS models predicting leth&ditythe hot dog data. With these few
validations and data sets, it is easier to sepdbgive effect fat and sublethal history have when

included in the models. In the case of the turkatydogs, no improvement in the percentage of
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data points above the fail-dangerous Pl band wasrebd with the separate addition of the two
parameters in question. However, RMSE and biaswimlave. Nevertheless, when applied
together, the percent captured increased from 8388%, RMSE decreased from 3.31 to 2.19
log CFU/g and bias decreased from -2.60 to -1.4@lBY/g. On the other hand, for the beef hot
dogs, fat content and sublethal injury had sigaificeffects when considered individually by the
model; each increased the percentage of data pboige the lower Pl band from 33% to 92%.
Additionally, when acting together, the Pl encongeais100% of the data points. It can be noted
that the fat parameter performed particularly wethese ~15% fat beef products, decreasing the

RMSE and bias more than the sublethal injury parantktl.

Table 23. OLS models validated against hot dogs.

Average 95% .
Data source for |, % above | %that | p (+/_g value) RMSE | bias
o odel "
validation low PI fitin PI
log (CFU/Q)
Turkey hot dogs T (g) 33 33 2.47 3.31 -2.60
Nops= 12 TF(g9) 33 33 2.43 2.74 -2.02
fat = 4.28%
aA=4.28% i) 33 33 2.43 263 | -1.90
Trange™
50 — 125 Kmin | T FT(9) 58 50 2.41 2.19 -1.40
Beef hot dogs | T (Q) 33 33 1.55 2.03 -1.90
Nops= 12 TF(g9) 92 92 1.52 0.81 -0.69
fat =15.42%
T1(g) 92 92 1.52 097 | -0.82
Trange™
100 = 275 Kmin | TF1(9) 100 100 1.52 0.40 0.07
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Figure 29. OLS T (g) model validated against beef hot dogs. Compare with Figure 30.
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Figure 30. OLS T Ft (g) model validated against beef hot dog data. Notice the significantly
better performance than the simpler T (g) model (Figure 29).
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Table 24 shows the OLS models validated against thet turkey and beef hot dogs as a

single data set. Again, the trends shown in theviddal data sets are evident; fat and sublethal

injury considerations meaningfully improved modeddictions.

Table 24. OLS models validated against ALL hot dog data.

Average 95% .
Data source Model % above | %that | p (+/_g value) RMSE | bias
for validation ode low Pl | fitin PI
log (CFU/Q)

ALL hot dog | T (© 33 33 2.01 275 |  -2.25

data TF(g) 63 63 1.97 202 | -1.39

T1(g) 63 63 2.06 1.98 | -1.36

Mobs=24 | T F1 (g) 75 75 2.03 169 | -1.11

Table 25 shows the different versions of the mig#dets models validated against the
hot dog data. Again, the models performed lessfaatorily on the turkey than on the beef
samples, with wider Pls, and higher RMSEs and faegrous bias values. However, the most
complicated model (T F M S) fared sufficiently well for both cases (i.eigire 31), with 100%

of the data points above the lower Pl band, eveagh the interval was relatively wide for the

turkey samples (x2.77 log CFU/q).
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Table 25. Mixed-effects models validated against hot dogs.

validation low P fitin PI

log (CFU/Q)
T (9) 100 83 2.89 1.40 -0.29
Turkey hot dogs TF(9) 67 58 2.29 2.18 -1.48
TFt(9) 67 50 2.03 3.73 -0.94
Nops= 12 TFS(g) 100 83 3.25 1.34 0.29
fat=4.28% | TF1S(Q) 100 83 2.83 2.41 0.57
Trange™ TFM 67 50 2.19 2.82 -1.50
50-125Kmin |TFMt 67 50 1.93 1.82 -0.96
TFMS 100 83 2.67 3.49 -0.59
TFEFMtS 100 83 2.40 2.51 -0.18
T (9) 100 100 2.99 0.43 -0.25
Beef hot dogs TF(9) 100 100 2.18 0.33 0.07
TFt(9) 100 100 1.91 1.07 0.59
Nobs= 12 TFS(g) 100 100 1.98 1.36 1.23
fat = 15.42% | TFtS(Q) 100 100 2.59 1.57 1.48
Trange™ TFM 100 100 1.99 0.34 0.10
100 - 275 Kmin | TF M1 100 100 1.82 0.78 0.65
TFMS 100 100 1.75 1.38 0.82
TFEFMtS 100 92 1.60 1.65 1.18
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Figure 31. Mixed-effects T F M St model validated against beef hot dogs.

Table 26 shows the performance of the mixed-effexdels when the turkey and beef
hot dog data were pooled together. Here, it is regident that the T F M S model gave the
best predictions among the model versions; 100%eotlata points fell above the fail-dangerous
Pl band, RMSE was 1.34 log CFU/g, bias was 0.50 ldd/§,Fand the Pl width was of £2.0 log
CFUlg, which is a fairly acceptable value, compacethe other validated products. It can be
argued that models T F S (g) and T & (g) also covered 100% of the data points irstie
region. However, even though their RMSE and biaseslvere similar, their Pl widths were

bigger (x2.62 log CFU/g and £2.71 log CFU/qg).
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Table 26. Mixed-effects models validated against ALL hot dog data.

Average 95% .
Data source M % above | %that | pj(+ %alue) RMSE | bias
o odel " T
for validation low PI fitin PI
log (CFU/Q)

T (9) 100 4 2.94 1.04] -0.27
TF(q) 83 4 2.23 156 | -0.71
TFt(g) 83 4 1.97 138 | -017
ALL dhaci;dog TFS(g) 100 4 2.62 130 0.76
TFtS(g) 100 4 271 148| 102
nope=24 | TFM 83 4 2.09 157 | -0.70
TFM1 83 4 1.87 1.40 -0.15
TEMS 100 4 2.21 1.27 0.12
TFMtS 100 4 2.00 1.34 0.50

Comparing the OLS and mixed-effects models agaitst the turkey and beef hot dog

data put together (Table 24 and Table 26) it idevi that the mixed-effects versions fared better

in almost all cases. For example, percentage af glaints above the fail-dangerous Pl band in

the mixed-effects models was at least 83%, comparadnaximum 75% from the OLS models.

Additionally, Pl widths were practically the san@@ss all models, giving the mixed-effects

versions the performance advantage. Finally, RM®Bd&as were also better for the mixed-

effects versions; with a maximum RMSE of 1.57 log @Fs. a minimum of 1.69 log CFU/g

from the OLS models, and all bias being fail-dangsrin the OLS versions vs. positive bias in

~50% of the cases in the mixed-effects models.
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4.3.4.40verall model performance on all pilot-scale data

Table 27 shows OLS models performance againstlatigrale data. It can be seen that
Pl width remains practically constant across mqdetsle the percentage of data points above
the fail-dangerous PI band increases. Althoughdh&nge is not substantial (~10%), RMSE and
bias do improve more notably: by 0.27 log CFU/g @l log CFU/g, for each parameter,
respectively. Therefore, the statement from prevmections that a model accounting for fat

content and sublethal history has a better ovpeafbrmance is reinforced.

Table 27. OLS models performance against ALL pilot-scale data.

Data % | %that | Average 9% | oSk | bias
source for Model above | fitin | Pl (+/-value)
validation low PI Pl log (CFU/Q)

AL L T@+T W) 69 62 1.83 2.44) -1.08
pilot-scale| T F (g) + T F (w) 76 66 1.85 228 -0.80

data 't o)+ T1 (w) 75 67 1.83 231| -0.88
Mobs= 2101 ¢ ¢ (g) + T Ft (w) 78 67 1.83 2.17| -0.67

Table 28 shows the different versions of the migdets models when validated against
all pilot-scale data put together. It can be sbkahd@verage Pl widths remain relatively constant
(although it does reach its maximum values in tlstrsomplicated models), but the percentage
of data points above the fail-dangerous Pl bancases with model complexity, reaching the
100%. This does not necessarily mean that the nvaitlethe most parameters will always give

the best predictions and/or is the most adequatesttict lethality in a certain process, but it
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does show the possible positive implications oflipgodata from products with differing

characteristics and obtaining a model that coukbidy account for most of the variability

between them.

Table 28. Mixed-effects models performance against ALL pilot-scale data.

Average 95% .
Data source Model* % above | %that | pj (+/_g value) RMSE | bias
oo odel S
for validation low PI fitin PI
log (CFU/qQ)
T(@)+T(w) 86 77 2.40 2.32 -0.55%
TF(Q)+TF(w) 77 70 2.11 4.40 -1.47
TFt(g) +
7 7 2.02 2.2 -0.61
ALL TFr(w) 8 6 0 0 0.6
pilot-scale | tEg (@) +
89 77 2.36 1.91 0.02
data |15 w)
TF +
T FT : @ 94 88 2.55 1.62 0.39
Nobs=210 'S W)
TFM 91 78 2.37 1.93 -0.14
TFM1 92 77 2.15 1.69 0.30
TFMS 100 91 2.95 2.03 -0.06
TFM1S 100 88 2.73 1.68 0.36
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4.4 Conclusions

This study showed possible sources and methodsdhédte used to develop a multi-
product, multi-factor model fdgalmonella thermal inactivation in meat and poultry produdits.
provides insight on the challenges and difficuloésttempting to complete such a task with the
existing experimental data and without making usextremely complex statistical methods.
Data were gathered, multiple models were develeptdddifferent techniques, and they were all
validated against pilot-scale data to test theafulaess to industrial applications. While there
were significant deviations between model predidiand experimental results, explaining them
was not the purpose of this project, but rathefdimonstrate the degree of the expected
variability and the possible effects of applying taboratory-developed models in industrial

settings.

There is no individual model that can be deemedtibst”, as each would be able to
perform differently under differing processing carhs, in which case the “best” model to use
would be the one that accounts for the paramatgpertant to the user’'s cooking process and
product characteristics. Therefore, while this @codoes not completely close the gap between
scientific work and real-life applications, it dg@®vide new information that should be helpful
both in directing future research in this field andmproving utilization of inactivation models

in industry.
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5. OVERALL CONCLUSIONS

5.1 Sublethal injury

* Models not accounting for bacterial sublethal ipjoan overestimate kill in meat
products cooked under heat regimes where this phenon occurs (i.e., slow

cooking/roasting).

5.2 Model validation

» The literature on thermal inactivation data and etedeveloped in laboratory settings is
extensive. However, almost none of these modelsaidgated. Those that are provide

few quantitative measures of model performance.

* Very little work exists where thermal inactivatiorodels are validated against pilot-scale
data or industry-relevant conditions, and the\siitate the difficulties associated with

this kind of work — largely scattered data and nh@dedictions.

* These results indicate that the existing infornrata thermal inactivation has limitations

in directly helping to improve “real time” food Y.

5.3 Use of models in industry

* Research shows that multiple product and pathogeargaaffect thermal inactivation:
temperature, fat content, muscle structure, mestiep, pH, salt %, sublethal injury, etc.
Processors should identify which of these are timlyortant to their specific product and

choose a model accordingly.
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When choosing a model, industry users should mé&tdie extent possible, the process
to be validated and the nature of the data undehithe considered models were
obtained, especially when allowing for the use oflels developed from laboratory-

based experiments.

Although model complexity does not necessarilystaie into better lethality
predictions, using an overly simplified model thaglects key factors can lead to fail-

dangerous predictions, depending on product anckpsocharacteristics.

5.4 The need for standardized testing methods

Gathering data from different sources to developencomprehensive models can be
done with mixed-effects or other statistical methddowever, due to generally
unquantified data variability, prediction intervald! inevitably be large, decreasing

model utility in industry.

The introduction of standardized microbiologicatiamalytical methods for carrying out
thermal inactivation studies would allow qualitatisomparison of data across studies

and the quantification of their differences.

While the ComBase database is a useful resourcéhehmal inactivation data presented
cannot be pooled together to develop models asstatwithout expecting high

variability due to the diverse methodologies in dhiginal studies.
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5.5 Future work

5.5.1 Enhancement of the AMI lethality spreadsheet

As mentioned in section 2.4.1.3.2, the AMI lethasipreadsheet is a tool currently used
by meat processors to aid in determining procdhaliey. The results from this project could
potentially help to enhance this tool, as seve@els were developed and validated against
industry-relevant data. From what was concludatiisistudy, it is recommended that the model
chosen should account for product fat content,etbll history, muscle structure, and species, as
their incorporation always showed prediction imgnments in some way or another (RMSE,
bias, etc.). The question then remains as to wiiotel version, from those presented in this
study, should be incorporated into the tool, esglycin the case of the mixed-effects varieties,
as even those considering the four aforementioaetdifs could have been calibrated with
different data sets. For example, the T F MiBodel and ground-muscle-beef-specific T F
model are both equally appropriate to predict l@ghan ground-beef products, butthe TFM S
T model was parameterized with both ground- and whalscle data, and turkey, beef, and pork
data sets, while only ground beef data was usedliiorate the T k version. However each
model yielded different fitting statistics, factdrat should also be considered when determining
which model to use. This can lead to three possitlitions: (i) allow the user to choose the
model based on validation statistics and a compauas the process characteristics and the
conditions under which the calibration and/or vatidn data were generated, (ii) have the tool
predict lethality and Pls with all the validated aets relevant to the product, and output the
most conservative values, or (iii) a combinatiorfipénd (ii), where the user can choose the
model, but the tool will additionally output pretid values from other relevant model versions

and allow the user to confirm or change the initiaidel selection. While these choices do not
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entirely solve the issue of validating a process \wD0% certainty, the tool’s outputs based on

these recommendations could certainly be an impnew from the currently available options.

5.5.2 Methods comparison with other research groups

As stated throughout this project, one of the niesnes when attempting to pool and
manipulate data from different sources was thahoulogies varied widely between them,
causing high unexplained variability in the finabults. Further studies, such as that carried out
by Hildebrandt et al. (2012b) could potentiallyghguantify the effects of methodology

variability and gain insight into possible waysstve this problem for future studies.

5.5.3 Theneed for standardized testing methods

Related to the work described in the previous secthis proposed study could be the
next step to possibly separately quantify the douations of methodology and
human/experimental error of data variability. Ajet where the importance of standardized
testing methods is assessed can provide furthighingato the problems and necessities for this,

and hopefully lead to potential improvements actbssfield of research.

5.5.4 Statistical improvements and model modifications
While several versions of the multi-product mu#icfor model were tested, there is

definitely room for improvement to obtain a bettemthematical relationship between all the

parameters and/or variables in the exponential teraguation (7) (i.ef3o, T, B3, F, etc) and

process lethality. The current relationships aligechasic. For example, the way sublethal
history ) is determined (equation (4)) assumes that tiseadinear relationship between the

sublethal region temperature and acquired bactesatance. However, taking into account the
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biological aspect of bacterial adaptation, it kely that the vegetative cells become more
thermotolerant up to a certain temperature withengublethal range and then the effect tails at
the transition to the lethal temperature rangel€D006). A study analyzing this behavior could

lead to improvement of equation (4).

Another example is fat content; the current modesion implies that the difficulty of

achieving a certain process lethality increasesmeaptially (and proportionally t83) with the

product fat content. However, future research khtast this rigorously, or whether a different
mathematical relationship is needed. All of thesemeters could potentially be improved with

different mathematical relationships.
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6. APPENDICES
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6.1 MATLAB code for sublethal injury model parameter estimation (sectbn 3)

%thank you to Dr. Dolan for providing the file template, modified by: Isabel Tenorio
% units:

% *time: minutes!!!

% *log reductions: CFU/g or CFU/ml, (-) in model function, and (-) in

% experimental observations (Excel file)

% *Temperature in Excel file in Celsius!!

%Column order in excel: T(C)--time(min)--Tau(sublethal injury)

clear all
nlinfitcheck = statset('nlinfit');
nlinfitcheck.FunValCheck='off";

global nsets nrows
nsets=36;
nrows=2401;

%read in data

%data format must be first column is temperature (C), second column is time (sec), 3rd column
is Tau (sublethal injury history), 3rd dimension is set number

%make it global so that modelTTau function can read it

xTTaul=zeros(nrows,4,nsets);
for k=1:nsets

XxTTaul(:,: k)=xlIsread('G Turkey 2009 calibration.xlsx',k); % sheets are read in order!!!!
end

%now put them together to make replicates
global xTTau

xTTau=zeros(2401,4,nsets*3);
xTTau(:,:,1:36)=xTTaul;
xTTau(:,:,37:72)=xTTaul;
xTTau(:,:,73:108)=xTTaul;

%initial estimates

paramO=xIsread('G Turkey 2009 calibration.xlsx','beta0');
%experimental log reductions observed

XYobs = xIsread('G Turkey 2009 calibration.xlsx','X and Yobs');
Yobs=XYobs(:,2);

%X is the data set number
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X=XYobs(:,1);

%estimate the parameters
%---only-T model
[param,resids,J,covar,mse] = nlinfit(X,Yobs,'modelTTau',param0);

%parameter 95% asymptotic confidence intervals
ci = nlparci(param,resids,J);

%final params, RMSE, and bias of fit
finals(1:3)=param;
finals(4)=sqrt(mse);
finals(5)=mean(resids);

% %asymptotic simultaneous CONFIDENCE intervals for Y

% T-only model

[ypred,delta] = nlpredci('modelTTau',X,param,resids,J,0.05,'on','curve');
asyClup=ypred+delta;

asyCldo=ypred-delta;

%asymptotic simultaneous PREDICTION intervals for Y (number 2 in ypred2

%and such is just to differentiate from Cl's parameter).

% T-only model

[ypred2, deltaob] = nlpredci('modelTTau',X,param,resids,J),0.05,'on','observation');
asyPlup=ypred+deltaob;

asyPldo=ypred-deltaob;

%time=xgtT(:,2); %for plotting later

% Correlation between parameters

%R is the correlation matrix for the parameters, sigma is the standard error vector
[R,sigma]=corrcov(covar);

RTref=R(2,1);

%Relative standard error for parameters

%RSE=zeros(6,9);

RSE(1,1)=sigma(1)/param(1,1);

RSE(2,1)=sigma(2)/param(2,1);

RSE(3,1)=sigma(3)/param(3,1);

%% % % % %% %% %% % % % % % % %% % % % % % % % % % % % % % % % % % % % % %% % % % % % % %
% generic function estimating logN/No for data with T and Tau, nonisothermal
%inputs are: parameters and data set number

function result = modelTTau(params,X)
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%params=paramO;
global xTTau nsets nrows

%columns:

%xTTau(1)= Temperature (C)

%xTTau(2)=time(min)

%xTTau(3)=Tau

%xTTau(4)= total cook time (min) (value repeated through rows for MatLab to accept matrix)
%xTTau(5) = Tref (C) (value repeated through rows also)

bref=params(1);
Bl=params(2);
B2=params(3); %Tau

%Predict b first

Tref=60; %same for all data sets 60 C
b=zeros(nrows,1,nsets*3);
pred=zeros(nrows,1,nsets*3);

for i=1:nrows; %row is b at t=i;
for j=1:nsets*3; % 3rd dimension is set number (with replicates)
b(i,1,j)=bref*exp(-B1*((1/(xTTau(i,1,j)+273.15))-(1/(Tref+273.15)))-B2 *xTTau(i,3,j)); %b at
t=i
end
end

% Get log reductions
pred(1,1,:)=0;
for i=2:nrows; %row is log N/No prediction at t=i;
for j=1:nsets*3; % 3rd dimension is set number (with replicates)
pred(i,1,j)=-((b(i,1,j)+b(i-1,1,j))/2).*(xTTau(i,2,j)-xTTau(i-1,2,j))+pred(i-1,1,j);
end
end

%get result with total cooking time index (total cook time was different
%for each set)
%result has to be nsets*3 long (rows, 1 column)
cooktimeind(X,1)=round(xTTau(1,4,X)*12)+1; %this is for first replicate, repeat to x3
cooktimeind=[cooktimeind;cooktimeind;cooktimeind];
result=zeros(nsets,1);
for i=1:nsets;

result(i)=-pred(cooktimeind(i),i);
end
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6.2 Correlation coefficients, and standard and relative errors for path-degndent model
parameters (section 3)

Table 29. Correlation coefficients for path-dependent model parameter

Species | Parameter bt B1
0.18 -
Turkey Py
Bo 0.74 0.14
0.26 -
Beef Py
Bo 0.77 0.24
0.14 -
Pork P1
Bo 0.76 0.17

. T )
*Parameter units: /s = min ", B1 =K, B2 = K'min

Table 30. Standard and relative errors for path-dependent model paramete.

Species | Parametert Estimate Stgrr:g?rd eFr{r?)I?E%e)
bref 0.9071 0.0214 2.35

Turkey B1 50,787 636 1.25
Bo 0.0017 0.0001 5.47

bref 0.9389 0.0328 3.49

Beef B1 44,710 878 1.96
B 0.0018 0.0001 7.56

bref 0.7040 0.0248 3.52

Pork B1 54,713 836 1.52
B 0.0016 0.0001 8.39

) T )
*Parameter units: /s = min ", B1 =K, B2 = K'min
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6.3 MATLAB and R programming codes for multi-product multi-factor model

parameter estimation (section 4)

6.3.1 MATLAB code example (OLS method)

%thank you to Dr. Dolan for providing the file template
%modified by: Isabel Tenorio

% units:

% *time: minutes!!!

% *log reductions: CFU/g or CFU/ml, (-) in model function, and (-) in

% experimental observations (Excel file)

% *Temperature in Excel file in Celsius!!

%Column order in excel: T(C)--time(min)--logN/NO--muscle--turkey--beef—pork,
% (last 4 are either 0 or 1)

%This program will estimate parameters and produce confidence intervals and
%prediction intervals for a generic data set

clear

clear all

nlinfitcheck = statset('nlinfit');

nlinfitcheck.FunValCheck='off';

%read in data

%data format must be first column is temperature (K), second column is time
%(sec), 3rd column is log reductions (log N/No).

gt = xIsread('MatLab File.xIs','Ground Turkey');

wt = xlIsread('MatLab File.xIs','Whole Turkey');

%initial estimates
initialparams=xIsread('MatLab File.xIs',"initial parameters');

%initial estimates for T-only model
paramOgtT(1)= initialparams(1,1); %bref
paramO0gtT(2)= initialparams(2,1); %B1
paramOwtT(1)= initialparams(1,4); %bref
paramOwtT(2)= initialparams(2,4); %B1

%---Set up for T-only model

%---set up independent variables, ground turkey
xgtT(:,1)=gt(:,1);

xgtT(:,2)=gt(:,2);
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xgtT(:,3)=initialparams(7,1); %Tref

%set up dependent variable, ground turkey
YobsgtT = gt(:,3);

%---set up independent variables, whole turkey
XwtT(:,1)=wt(:,1);

XwWtT(:,2)=wt(:,2);

xwtT(:,3)=initialparams(7,4); %Tref

%set up dependent variable, whole turkey
YobswtT = wt(:,3);

%estimate the parameters

%---only-T model

[paramgtT,residsgtT,JgtT,covargtT,msegtT] = nlinfit(xgtT,YobsgtT,'modelT',param0gtT);
[paramwtT,residswtT,JwtT,covarwtT,msewtT] = nlinfit(xwtT,YobswtT,'modelT',paramOwtT);

%parameter 95% asymptotic confidence intervals
cigtT = nlparci(paramgtT,residsgtT,JgtT);
ciwtT = nlparci(paramwtT,residswtT,JwtT);

%RMSE of fits
RMSE(1,1)=sqrt(msegtT);
RMSE(1,4)=sqrt(msewtT);

%bias of fits
bias(1,1)=mean(residsgtT);
bias(1,4)=mean(residswtT);

%asymptotic simultaneous CONFIDENCE intervals for Y

% T-only model

[ypredgtT, deltagtT] = nlpredci('modelT',xgtT,paramgtT,residsgtT,JgtT,0.05,'on’,'curve');
asyClupgtT=ypredgtT+deltagtT;

asyCldogtT=ypredgtT-deltagtT;

[ypredwtT, deltawtT] = nlpredci('modelT',xwtT,paramwtT,residswtT,JwtT,0.05,'on’,'curve');
asyClupwtT=ypredwtT+deltawtT;

asyCldowtT=ypredwtT-deltawtT;

%asymptotic simultaneous PREDICTION intervals for Y (number 3 in ypredgtT3 and such is just
to differentiate from Cl's parameter).

% T-only model

[ypredgtT3, deltaobgtT] =
nlpredci('modelT',xgtT,paramgtT,residsgtT,JgtT,0.05,'on','observation');
asyPlupgtT=ypredgtT+deltaobgtT;

asyPldogtT=ypredgtT-deltaobgtT;
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tgtT=xgtT(:,2); %for plotting later

[ypredwtT3, deltaobwtT] =
nlpredci('modelT',xwtT,paramwtT,residswtT,JwtT,0.05,'on’,'observation’');
asyPlupwtT=ypredwtT+deltacbwtT;

asyPldowtT=ypredwtT-deltaobwtT;

twtT=xwtT(:,2); %for plotting later

% Correlation between parameters

%R is the correlation matrix for the parameters, sigma is the standard error vector
[RgtT,sigmagtT]=corrcov(covargtT);

[RwtT,sigmawtT]=corrcov(covarwtT);

%Relative standard error for parameters
%RSE=zeros(6,9);
RSE(1,1)=sigmagtT(1)/finalparams(1,1);
RSE(2,1)=sigmagtT(2)/finalparams(2,1);
RSE(1,4)=sigmawtT(1)/finalparams(1,4);
RSE(2,4)=sigmawtT(2)/finalparams(2,4);

%Add B3 to parameter matrices for TF models
B3s=xlsread('MatLab file.xls','B3s');
paramgtTF=[paramgtT,B3s(1,:)];

paramwtTF=[paramwtT,B3s(1,:)];

%Add B2 to parameter matrices for TTau models
B2s=xlsread('MatLab file.xls','B2s');
paramgtTTau=[paramgtT,B2s(1,:)];
paramwtTTau=[paramwtT,B2s(1,:)];

%parameters with B2 and B3 for TFTau models
paramgtTFTau=[paramgtT,B2s(1,:),B3s(1,:)];
paramwtTFTau=[paramwtT,B2s(1,:),B3s(1,:)];

6.3.2 R code example (mixed-effects method)

library(Ime4)
#change data file for species/muscle data desired: GT, GB, GP, WT, WB, WP

dat=read.csv(file="WPmixeffdata, TFw.csv",header=F)

#dat = read.csv("C:/USER/sb/sm.csv",header=F)

colnames(dat)=c("Fat","Temp","Time","Y","Group")
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dat2 = dat[datSTime!=0, ]

model = function(bref,betal,beta3,Time,Temp,Fat){
const = -bref*exp(-betal*(1/Temp-1/333.15)-beta3*Fat)*Time
model = const
gradient <- cbind(const/bref,-const*(1/Temp-1/333.15),-const*Fat)
attr(model, "gradient") <- gradient
model

}

res = nlmer( Y ~ model(bref,betal,beta3,Time, Temp,Fat)~(bref| Group),data=dat2,
start=c(bref=1.0818162302473487,betal=43951.966921578,beta3=0.352765575011846))

res
fixef(res)

fitted(res)

resid(res)

# to get RMSE, change nobs as needed
SSE=resid(res)*resid(res)
SSE=sum(SSE)

RMSE=sqrt(SSE/(105-3))

#Function Coding# with assistance from CSTAT at MSU
pred<-function(res,n.sim,temp,time,fat,level=0.95) {

#Retrieve the standard deviation estimate for the random effect term bref
brefstdev<-sqrt(VarCorr(res)SGroup[1,1])

#Retrieve the standard deviation estimate of the model error
errstdev<-attr(VarCorr(res),"sc"

#Retrive the fixed effect coefficient estimates

betal<-fixef(res)[2]

beta3<-fixef(res)[3]

#Generate n.sim random effect of bref

bref<-rnorm(n.sim,fixef(res)[1],brefstdev)

#Number of time lags

n.time<-length(time)

Y<-rep(NaN,n.sim)

for(j in 1:n.sim) {
#Compute the mean of cumulative predicted log reduction value
cplr.mean<-0
b=bref[j]*exp(-betal*(1/(temp+273.15)-1/333.15)-beta3*fat)

for(i in 1:(n.time-1)) {
cplr.mean<-cplr.mean-(b[i+1]+bl[i])/2*(time[i+1]-timeli])
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}
#Sample a new observation Y based on mean=cplr.mean and st.dev=model's standard
deviation
Y[jl<-rnorm(1,cplr.mean,errstdev)
}
#Obtain the simulated sample mean of new Y
Y.mean=mean(Y)
#Obtain the simulated sample median of new Y
Y.median=median(Y)
#Obtain the Predictive interval of new Y
Y.predictive=quantile(Y,c((1-level)/2,(1+level)/2))
Y.output=list(Y.mean=Y.mean,Y.median=Y.median,Y.predintv=Y.predictive,n.sim=n.sim)
return(Y.output)
}
fat=1.53
validdata=read.csv(file="Tasha PR.csv",header=F)
#To tell R how many sets you have in total in the csv file, you can use col(validdata) to tell how
many columns in total then divide it by 2
n.set=ncol(validdata)/2
predint<-matrix(NaN,n.set,2)
for(iin 1:n.set) {
set=na.omit(validdatal[,(2*i-1):(2*i)])
colnames(set)=c("temp","t.min")
predint[i,]<-pred(res,1000,setStemp,setSt.min,fat)SY.predintv

}
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6.4 Hot dog methods and data (section 4)

6.4.1 Preparation of Salmonella

An 8-serovaSalmonella cocktail consisting of S. Thompson FSIS 120 (chiclsolate),
S. Typhimurium DT 104 H3380 (human isolate), S. &adF60404 (turkey isolate), S.
Copenhagen 8457 (pork isolate), S. Montevideo FSIS(bBeef isolate), and S. Heidelberg
F5038BGI (human isolate), was previously obtainedhf’/.K. Juneja (Agricultural Research
Service, Eastern Regional Research Center, USDA-AR&dWgor, PA). Each serovar was
maintained separately at “&Din vials containing tryptic soy broth (Difco Laladories, Sparks,
MD) with yeast extract (TSBYE) and 20% glycerdCultures were grown separately in TSBYE
at 37C with a minimum of two consecutive 24-hour transferior to inoculation.

6.4.2 Preparation of inoculated frankfurters

Emulsified beef and turkey frankfurter batter veatained from a federally inspected
commercial supplier. Emulsion was vacuum packagdd00 g packages, frozen (°0).
Twenty-four hours prior to experiment, two packagesither beef or turkey batter were thawed
in a refrigerator (24C) until day of experiment.

Concentrated inoculum was prepared by combiningnB3éf each culture to yield a total
of 288 ml. This cocktail was centrifuged (60@g045 minutes) and the pellet was re-suspended
in 14 ml of 1% sterile buffered peptone water (Difaboratories, Sparks, MD). In order to
enumerate the inoculum, a 1 ml sample was taken fn@ 14 ml inoculum and was serially
diluted and plated on modified Tryptic Soy Agar (8A*) (Difco Laboratories, Sparks, MD)

plates (37C, 48 hours). Meat and 13 ml of marinadeg(m:U/g) was added to a Kitchen Aid
mixer and mixed for 180s at setting 1 and usingptiid|e.

Prior to stuffing, the inoculated emulsion ?ICFU/g) was vacuumed (101.325kPa of
vacuum, 10 s) to reduce air bubbles. The emulsas stuffed into cellulose casing using a
hand-crank stuffer system to make three two-linkdwog chains with a mass of about 60 g
(~15.5 cm long, 2 cm diameter) per hot dog. Frart&fa were tied in the center and on each end
to form links. In order to place a probe in theteemwf each hot dog, a jig was created to insert a
hypodermic needle (16G x 12.7cm) at a height ahlircdo the length of the frankfurter, along
its center axis. This needle was pushed all thettwayugh the hot dog and out the other end; a
wire thermocouple was inserted half-way (~7.75amy) the length of the frankfurter, the needle
was pulled out, and the thermocouple remained. filtisedure was repeated for each of the six
frankfurters per treatment.

*mTSA recipe: 2 L deionized distilled water, 80 g TSA, 12 g yeadract, 1g ammonium iron
citrate, 0.6g sodiun thiosulfate.
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6.4.3 Frankfurter cooking and survivor recovery

The hot dogs were cooked in a pilot scale, maistanvection oven (Cres Cor, Mentor,
OH) using a cook schedule for low-fat frankfurtsimilar to that used in industry. This cycle
increased temperature and humidity over a perioeldD min (Table 31). A predicted lethality
of 4 log and 6 log was calculated real-time usimata logger (Datapaq Inc., Wilmington, MA)
with inputs of D- and z- values from previously pshed laboratory data (Table 30) (Breslin
2009; Tuntivanich et al. 2008). When the frankfureaached the end lethality, it was taken out
of the oven and quenched in liquid nitrogen to teate cooking. Additional experiments were
run to end temperatures of P&Dand 165C for beef and turkey, respectively. The goal otthe
cooks was to ensure no bacterial survival at teesitemperatures, often used in industry. The
center 5 cm of length of each hot dog was cut ameldc(1.2 cm diameter), serially diluted, and
plated on mTSA (37°C, 48 h) to enumerate survivors.

Table 31. Commercial cooking schedule for frankfurters.

Cumulative time Dry bulb temperature % Relative
(min) (°C) Humidity
0-20 60 38

20-35 71.1 37
35-50 76.7 39
50 — 140 82.2 79

Table 32. D- and z- values from previous research used to predict real-tinethality.

Parameter | Ground Beef | Ground Turkey

Dref (S€C) 60.55 62.66
z(°C) 5.48 5.14
Tref (OC ) 60 60
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6.4.4 Results

For each sample, the log reduction predicted withD- and z- values from Table 32,
along with the experimental lethality are presemtetiable 33 and Table 34.

Table 33. Predicted and experimental log reductions for turkey hot dogs.

Sample Log reduction predicted Log reduction experimental
Al 3.83 1.10
A2 3.95 0.96
A3 3.65 1.09
A4 3.49 0.97
A5 2.13 1.36
A6 2.03 0.85
Bl 5.23 2.89
B2 5.95 2.97
B3 5.65 3.62
B4 1.73 4.04
B5 1.87 3.41
B6 5.54 3.49
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Table 34. Predicted and experimental log reductions for beef hot dogs.

Sample Log reduction predicted Log reduction experimental
Al 2.47 1.44
A2 3.59 1.74
A3 2.20 1.71
A4 3.62 1.56
A5 3.11 1.36
A6 2.90 1.39
Bl 5.28 2.81
B2 5.79 3.48
B3 6.34 2.82
B4 5.04 2.62
B5 4.01 2.55
B6 4.82 2.80
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6.5 Standard and relative errors for the multi-product, multi-factor mod el parameters

(section 4)

6.5.1 OLS method

Table 35 shows the standard and relative errorth@parameters obtained when doing

the regression on the fat-relevant data (TablevBich would then lead to the use_of solBlyin
the multi-product multi-factor model (see sectioR.d.1.2 for details).

Table 35. Parameter standard and relative errors fof33 estimation.

b
Model | Species Parameter _re_fl B Ea 1
min K fat %
G Estimate 0.461 39,231 0.030
turkey Std error 0.010 542 0.003
% Rel error 2.19 1.38 8.87
Estimate 0.396 39,88% 0.023
T(g) | G beef| Std error 0.011 509 0.002
% Rel error 2.80 1.28 7.73
Estimate 0.344 39,877 0.014
G pork | Std error 0.009 721 0.001
% Rel error 2.62 1.81 10.93

Sincef3»> and33 were obtained separately, they cannot be inclwdgdthe values from
the s andPq regressiong3o’s errors from its corresponding estimation ar&atle 30 (section
6.2).33's errors are on Table 35 (above).

Table 36. Parameter standard and relative errors for OLS models (continuenext page).

Model | Species| Parameter brefl By
min K
G Estimate 1.11 52,269
turkey Std error 0.038 1,673
% Rel error 3.43 3.20
Estimate 0.83 | 44,24p
T(g) | G beef| Std error 0.016 800
% Rel error 1.98 1.81
Estimate 0.63 41,750
G pork | Std error 0.020| 1,206
% Rel error 3.20 2.89
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Table 36 (cont'd). Parameter standard and relative errors for OLS models.

Model | Species| Parameter brefl 2
min K
W Estimate 0.37 | 48,589
turkey Std error 0.014 1,696
% Rel error 3.78 3.49
Estimate 0.44 | 44,799
T (w) | W beef| Std error 0.011 859
% Rel error 2.44 1.92
Estimate 0.45 47,164
W pork | Std error 0.016| 1,337
% Rel error 3.54 2.84

6.5.2 Mixed-effects method

Table 37 shows the parameter standard and rektiges for the mixed-effects models.
Notice that becaud& was estimated from a different regression (secti@rB.1.2), its errors

cannot be presented in the same table. Howgy&rerrors from its corresponding estimation
are in Table 30 (section 6.2).

Table 37. Parameter standard and relative errors for mixed-effects maas (continued next

page).
Model | Species| Parameter b_refl & & 1 By & Be br
min K fat % . . . .
G Estimate 0.672 50,750 - - - - -
turkey Std error 0.052] 4,131 - -
% Rel error 7.74 8.14 - -
Estimate 0.555| 44,710 - - - - -
T(g) | G beef| Std error 0.034| 2,260 - -
% Rel error 6.13 5.05 - -
Estimate 0.430, 53,950 - - - - -
G pork | Std error 0.042] 2,591 - -
% Rel error 9.77 4.80 - -
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Table 37 (cont'd). Parameter standard and relative errors for mixed-effets models
(continued next page).

b
Model | Species Parameter _refl B Fa 1 s bs L bz
min K fat % . . . .
W Estimate 0.593 50,750 - - - - -
turkey Std error 0.024| 1,761 - - - -
% Rel error 4.05 3.47 - - - -
Estimate 0.538 44,710 - - - - -
T (w) | W beef| Std error 0.020] 1,50( - - - -
% Rel error 3.72 3.35 - - - -
Estimate 0.654f 53,950 - - - - -
W pork | Std error 0.045] 2,637 - - - -
% Rel error 6.88 4.89 - - - -
G Estimate 1.582| 36,470 0.2094 - - - -
turkey Std error 0.089] 1,944 0.007 - - -
% Rel error 5.63 5.33 3.34 - - -
TE Estimate 0.949 36,320 0.0627 - - - -
G beef | Std error 0.057 1,833 0.004 - - -
(@) % Relerror | 6.01]| 505  6.38 - - -
Estimate 0.742| 35,940 0.0635 - - - -
G pork | Std error 0.045 1,713 0.004 - - -
% Rel error 6.06 4.77 6.30 - - -
W Estimate 1.363 44,710 0.897 - - - -
turkey Std error 0.133] 1,658 0.098 - - -
% Rel error 9.76 3.71 10.93 - - -
TE Estimate 0.796| 44,710 0.128 - - - -
W) W beef| Std error 0.092 1,424 0.037 - - -
% Rel error 11.56, 3.18 28.91 - - -
Estimate 1.045 53,950 0.188 - - - -
W pork | Std error 0.311] 3,076 0.121 - - -
% Rel error 29.76 5.70 64.36 - - -
G Estimate 1.534| 49,800 0.065 - 0.832 0.776| 1.089
TFS | turkey, | Std error 0.172| 1,778 0.004 0.08@.100| 0.106
(@) g(eﬁi %Relerror | 11.21 357  6.15 10.462.89| 9.73
w Estimate 5.200, 45,690 0.127 - 2.145 1.881| 1.791
TFS | turkey, | Std error 0.877| 1,166 0.046 0.190.211| 0.200
(W) g(eﬁi % Relerror | 16.87] 255  36.22 8.86 11|2p1.17
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Table 37 (cont'd). Parameter standard and relative errors for mixed-effets models.

Model | Species| Parameter b_refl 2 b3 1 By P e br
min K fat % . . . .
G+W Estimate 0.516| 36,860 0.210 -1.140 - - -
turkey Std error 0.034| 1,723 0.008 0.075 1
% Rel error 6.59 4.67 3.81 -6.58 - - -
G+W Estimate 0.612| 37,490 0.062 -0.453 - - -
TEM beef Std error 0.034| 1,433 0.004 0.071 1
% Rel error 5.56 3.82 6.45 -15.67 - - -
G+W Estimate 0.674, 40,300 0.066 -1.355 - - -
oork Std error 0.044| 1,575 0.004 0.083
% Rel error 6.53 3.91 6.06 -6.13 - - -
G + W | Estimate 1.094| 49,410 0.062 -0.506| 0.6520.651| 0.855
TF M | turkey, | Std error 0.064, 1,16( 0.003 0.062 0.086074| 0.073
S gi‘f‘i %Relerror | 585| 2.35| 4.84| -12.25 13J0#.37| 8.54

6.6 Correlation coefficients for multi-product multi-factor model p arameters (section 4)

6.6.1 OLSmodds

Table 38. Parameter correlation coefficients fof3z estimation.

Model | Species | Parameter| g B,
G turkey B1 -0.042 -
B3 0.848 -0.046
T (9) | G beef B1 0.0005 _
B3 0.922 -0.0002
G pork B1 -0.061 -
B3 0.825 -0.073

: T T
*Parameter units: s = min -, B1 =K, B3 = fat %
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Table 39. Correlation coefficients for OLS models parameters.

Model | Species | Parametel Bref
G turkey B1 2.84e-06
T(g) | G beef B1 5.47e-06
G pork B1 1.41e-05
W turkey B1 -6.77e-06
T (w) | W beef B1 -1.33e-05
W pork B1 -1.61e-05

. T
*Parameter units: gf= min ~, B1 =K

6.6.2 Mixed-effects models

Table 40 shows the parameter correlation coeffisi@ar the mixed-effects models.

Notice that becaud& was estimated from a different regression (secti@r3.1.2), its
correlation with the other parameters cannot beguied in the same table. Table 29 (section

6.2) shows the correlation Bp with the parameters from its original estimation.

Table 40. Correlation coefficients for mixed-effects models paramate(continued next

page).
Model | Species | Paramete b_refl P Bs 1 B4 Bs Bo
min K fat % . . .

G turkey B1 0.065 - - - - -

T(9) | G beef B1 0.058 | - - - - -
G pork B1 0.185 - - - ] ]

W turkey Bq 0.318 - - - - -

W beef B1 -0.011 - - - - -

T (w) | W pork B1 0.251 - ; - - -
G pork B1 0.063 - - - - -

B3 0.669 | 0.295 - - - -
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Table 40 (cont'd). Correlation coefficients for mixed-effects modelgarameters (continued

next page).
bref 1 3 4 5 6
Model | Species | Paramete _re_l P P 1 B : :
min K fat % . . .
0.003 - - - - -
G turkey By
TF B3 0.658 | 0.331 - - i ]
(9) G beef B1 -0.194| - - - - i
B3 0.689 | -0.248 - ] . ]
-~ O - - - - -
W turkey al
B3 1.000| ~0 - - i ]
TF | W beet B1 -0.067| - - - - ]
(w) Bs 0955 | -0.062 - i ] ]
W pork B1 -0451| - - ] - _
B3 0.973 | -0.515 - - i ]
B1 -0.362| - - - - ]
s | 6 wrkey B3 -0.004| -0.062 - - i ]
@ | beef, pork|___PS 0.614 | -0.245 -0.092 - : i
Bg 0.668 | -0.395 -0.490 - 0.460 -
B7 0.624 | -0.3317 -0.411 - 0.4240.644
B1 0.032| - - - i _
B3 0.072 | -0.050 - - i )
TFS | W turkey,
w) | beef pork| B | 0846 | -0.032 0176 - -
Bg 0.739 | 0.059| -0.596 - 0.719 -
B7 0.783 | 0.031| -0.571 - 0.8010.952
B1 0.116 | - - . i ]
SJJ(Q’)\,/ B3 0.111 | 0.267 - - i }
B4 0.669 | 0.079| -0.477 - - -
B1 -0.113| - - . i ]
G+W
TEM | B3 0.152 | -0.232 - - - -
B4 0.589 | 0.059| -0.515 - - -
B1 -0.038| - - - - ]
pGO:kW B; | 0094| 0252 - i T
Ba 0.626 | -0.142 -0.519 - - -




Table 40 (cont'd). Correlation coefficients for mixed-effects modelgarameters.

Model | Species | Paramete b_refl P1 Ps 1 s Ps Pe
min K fat % . . .
B1 -0.306| - - - - -
B3 0.053 | -0.103 - - - -
TEM|CGTW Ba 0.013| -0.020 -0.389 - - -
S Luergf yp;ork Bs 0.495| -0.169 0.209| -0.610 - -
Bs 0.627 | -0.273 -0.138| -0.449 0.621 -
B, 0.611 | -0.259 -0.085 -0.372 0.559.683

6.7 OLS method prediction interval calculations (section 4)

6.7.1 Ellipse, bootstrapping, and Monte Carlo (Pl methods) contours for each calibration
product

As described in section 4.2.3.1.3, contours weweldped for each calibration data set
with the PI methods to determine the best appréactalculating Pls. The contours for the
ground turkey data set are shown in the main tedtion 4.3.2, Figure 10).
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X bestfit
<037l + —=Ellipse
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= —Monte Carlo
(3]
© 0.35-
0.33 | | | | | | | | |
4.4 4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3

lelo'4 K™
Figure 32. Pl methods parameter contours for whole turkey calibration set
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Figure 33. Pl methods parameter contours for ground beef calibration set.
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Figure 34. Pl methods parameter contours for whole beef calibration set.
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Figure 35. Pl methods parameter contours for ground pork calibration set.
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Figure 36. Pl methods parameter contours for whole pork calibration set.
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6.7.2 Prediction intervalsfor each Pl method and each calibration product.

Just as shown for the ground turkey data set itose4.3.2 (Figure 11 and Figure 12),
the following plots represent the Pls generatedHemrest of the data sets.

Asymptotic PI

zoom-in area,
; \\ / Figure 38

5 Prediction line .
Ellipse,
Y bootstrapping,
Monte Carlo Pls
-5 | | | | | | |
0 5 10 15 20 25 30 35

time (min)
Figure 37. Pls with all methods for whole turkey calibration data set.
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Figure 38. Zoom-in section from Figure 37.
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Figure 40
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Figure 39. PlIs with all methods for ground beef calibration data set
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Figure 40. Zoom-in section from Figure 39.
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Figure 41. PIs with all methods for whole beef calibration data set.
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Figure 42. Zoom-in section from Figure 41.
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Figure 43. Pls with all methods for ground pork calibration data set.
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Figure 44. Zoom-in section from Figure 43.
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Figure 45. Pls with all methods for whole pork calibration data set.
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Figure 46. Zoom-in section from Figure 45.
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6.8 Random effects variance for the mixed-effects models (section 4)

Table 41. Random effects variance for mixed-effects models.

Random effect

Model Species variance
G turkey 0.13198
T (9) G beef 0.08530
G pork 0.078252
W turkey 0
T (W) W beef 0.0074619
W pork 0.023054
G turkey 0.19477
TF(9) G beef 0.12499
G pork 0.047815
W turkey 4.9773e-14
TF (w) W beef 0.012638
W pork 0.058894
TFS(g) G turkey, beef, pork 1.36663
TFS (W) W turkey, beef, pork 0.64025
G + W turkey 0.018597
TFM G + W beef 0.040271
G + W pork 0.039966
TFMS G + W turkey, beef, pork 0.20553
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6.9 Validation against pilot-scale data (section 4)

6.9.1 Minimum and maximum errors for each model
6.9.1.1Impingement oven data

Table 42. OLS models prediction errors chicken fillets and turkey pates (impingement

cooked).
Data source for Max error Min error
o Model*
validation log (CFU/g)
T(9) -0.12 -9.50
TF(9) 0.05 -9.15
Ground turkey + T T(9) -0.04 -9.29
Whole chicken | T Ft (g) 0.13 -8.95
T(9)+T(w) 2.20 -9.50
Nobs=44 | TF(g) + TF (W) 2.23 -9.15
Tt(g)+ Tt (W) 2.23 -9.29
TF1(g)+TFt (W) 2.25 -8.95
Ground turkey | T (g) -0.12 -9.50
TF(9) 0.05 -9.15
nobS: 23
fat=1.05% | T71(9) -0.04 -9.29
tavg™= TF1(g) 0.13 -8.95
8.77 Kmin
T (9) -0.61 -8.72
TF -0.57 -8.62
Whole chicken @
T1(Q) -0.55 -8.59
Nobs= 21 TFt1(9) -0.51 -8.50
fat=0.33% | T (w) 2.20 -2.89
Tavg= TF (w) 2.23 -2.86
7.92Kmin 11 ) 2.23 2.85
TFt(w) 2.25 -2.81

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odisthole-muscle data.
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Table 43. OLS models prediction errors on beef steaks and patties (impingent cooked).

Data source Model* Max error Min error
for validation log (CFU/q)
T(9) 2.76 -5.45
TF(9) 2.96 -5.05
Whole beef | T Ft(g) 3.03 -4.99
T(@)+T (W) 2.76 -3.39
Nobs=44 | TF (g) + TF (W) 2.96 -3.13
Tt(g)+ Tt (W) 2.84 -3.29
TF1(g)+TFt (W) 3.03 -3.03
Ground beef | T (g) 2.76 -3.39
Nops= 10 TF(9) 2.96 -3.13
fat=2.32% | Tt (9) 2.84 -3.29
Tavg= -

928 kmin | 1 FT(9) 3.03 3.03
T(9) 0.87 -5.45
TF 1.10 -5.05

Whole beef ©
T1(0) 0.95 -5.39
Nobs= 25 TFt(9) 1.17 -4.99
fat=2.68% | T (w) 2.47 -2.68
Tavg = TF (w) 2.60 -2.43
8.18 Kmin | 1 (y) 251 -2.64
TFt(w) 2.65 -2.40

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odisthole-muscle data.
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Table 44. OLS models prediction errors on pork steaks and patties (impingent cooked).

Data source Model* Max error Min error
for validation log (CFU/g)

T (9) 2.91 -6.12

TF(9) 2.42 -5.01

Ground + | TT1(9) 2.02 -6.00

Whole pork | T F1(g) 2.52 -4.91

T@)+T (W) 2.69 -6.12

Nobs=96 | TF(g) +TF (w) 2.77 -5.01

Tt(g)+TT1(W) 2.72 -6.00

TFt1(g) +TFt (W) 2.77 -4.91

Ground pork | T (g) 1.61 -6.12

Nobs=27 | TF(Q) 2.42 -5.01

fat=10% | 11 (qg) 1.73 -6.00

0ol |TF1 (@) 2.52 491

T (9) 2.91 -3.66

Whole pork TF(9) 2.05 -4.78

T1(9) 2.02 -4.85

Nobs= 29 TFt(0) 2.09 -4.71

fat=1.53% | T (w) 2.69 -3.97

Tavg= TF (w) 2.77 -3.77

8.21Kmin | ¢ (w) 2.72 -3.91

TFt(w) 2.77 -3.78

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odiethole-muscle data.
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Table 45. OLS models prediction errors on ALL impingement oven data.

Data source Max error Min error
o Model*

for validation log (CFU/g)

ALL T(@)+T(w) 2.76 -9.50
impingement ]

oven data TF(@Q)+TF(w) 2.96 9.15
Tt(g)+TT1(W) 2.84 -9.29
Nobs=144 | TFt1(9)+TFt (W) 3.03 -8.95

*In all cases, ground-muscle calibrated models ipted lethality for ground-muscle data and
whole-muscle calibrated models did for whole-musia&. In addition, models used were
species specific, that is, turkey models prediébedurkey data, and so on.

Table 46. Mixed-effects models prediction errors on chicken steaks amarkey patties
(impingement cooked) (continued next page).

Data source for Model* Max error Min error
validation log (CFU/g)
T(9) 2.73 -3.75
TF(9) 1.52 -5.55
TFt(9) 1.58 -5.46
TFS(9) 2.97 -3.58
TFtS(9) 3.00 -3.52
Ground Turkey | 1 (g) + T w) 2.73 3.62
Whole chicken | TF @+ TF W) 152 5.03
TFt(g) +TFt(w) 1.58 -5.46
Nobs = 44 TFS(@+TFS(w) 2.97 -3.09
TFtS((@+TFKS (W) 3.00 -3.00
TFM 3.05 -5.22
TFMt 3.07 -5.09
TFMS 2.21 -5.04
TFEFMtS 2.24 -4.91

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odisthole-muscle data.
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Table 46 (cont'd). Mixed-effects models prediction errors on chickerntaaks and turkey

patties (impingement cooked).

Data source for Model* Max error Min error
validation log (CFU/Q)

T (9) 2.73 -3.62

TF(9) 1.52 -5.03

Ground turkey | T Ft(9) 1.58 -4.90

TFS(g) 2.97 -3.09

Nops= 23 TF1S(0) 3.00 -3.00

fat = 1.05% TEM 1.42 -5.22

TFMS 1.98 -5.04

TFEFMtS 2.03 -4.91

T (9) 1.79 -3.75

TF(9) 0.02 -5.55

TFt(9) 0.07 -5.46

TFS(g) 1.84 -3.58

_ TFtS(g) 1.87 -3.52

Whole chicken T W) 205 322

TF (w) 0.97 -4.81

Mobs=21 =0 1.01 473
fat = 0.33% tw) ; -

Tavg= 7.92 Kmin | ' F S W) 229 270

TF1S (W) 2.32 -2.66

TFM 3.05 -1.50

TFMt 3.07 -1.47

TFMS 2.21 -2.90

TFMtS 2.24 -2.86

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-

muscle data and whole-muscle calibrated model$odigdthole-muscle data.
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Table 47. Mixed-effects models prediction errors on beef steaks and patt (impingement
cooked) (continued next page).

Data source for Max error Min error
. Model*
validation log (CFU/g)
T(9) 4.24 -2.80
TF(9) 3.49 -3.14
TF1(g) 3.56 -3.10
TFS(g) 3.82 -4.02
TFt1S(g) 3.88 -3.97
Ground 1 gy + T (w) 4.24 -2.67
+
Whole beef TF@+TFW) 3.49 -2.88
TFt(g)+TFt(w) 3.56 -2.84
Nobs= 44 TFS(@+TFS(w) 3.82 -3.03
TFT1S(@+TFRS W) 3.88 -2.99
TEM 3.41 -2.08
TEM1 3.47 -2.01
TEMS 2.91 -3.65
TEMtS 2.98 -3.54
T (9) 4.24 -1.40
TF(9) 3.49 -1.91
Ground beef | T Fr (g) 3.56 1.84
TFS(9) 3.82 -2.30
Mobs=19 T Er5(g) 3.88 222
fat = 2.32%
TEM 3.41 -2.08
Tavg=
9.28 Kmin |1 " MT 3.47 -2.01
TEFMS 2.91 -3.65
TEMTS 2.98 -3.54

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odievhole-muscle data.
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Table 47 (cont'd). Mixed-effects models prediction errors on beef stealand patties

(impingement cooked).

Data source for Model* Max error Min error
validation log (CFU/Q)

T(9) 2.39 -2.80

TF(9) 1.61 -3.14

TFt(9) 1.67 -3.10

TFS(9) 2.07 -4.02

Whole beef | T FTS(9) 2.12 -3.97

T (w) 2.47 -2.67

Nops=25 | T F(w) 2.35 -2.88

fat=2.68% | TFT1 (W) 2.40 -2.84

Tavg= TFS(w) 2.33 -3.03

8.18Kmin | TFts W) 2.37 -2.99

TFM 2.70 -1.64

TFMt 2.74 -1.61

TFMS 2.58 -2.95

TFEFMtS 2.62 -2.90

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-

muscle data and whole-muscle calibrated model$odigdthole-muscle data.
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Table 48. Mixed-effects models prediction errors on pork steaks and p#&t (impingement
cooked) (continued next page).

Data source for Model* Max error Min error
validation log (CFU/qg)

T(9) 4.08 -4.68

TF(9) 5.51 -1.65

T Ft(g) 5.56 -1.61

TF S(g) 5.59 -1.75

Ground TFt1S(9) 5.64 1.76
+ T@)+T (W) 3.73 -4.68
Whole pork | TF(g) + T F (w) 551 -5.82

TFt(g)+TFt(w) 5.56 -5.75
Nobs=56 | TES(g)+TFS W) 5.59 -3.04
TFtS(Q)+TFS W) 5.64 -2.97

TFM 5.23 -1.70

TFEM1t 5.28 -1.66

TFMS 4.50 -3.09

TFM1S 4.44 -3.01

T(9) 3.73 -4.68

Ground pork TF(Q) 5.51 -0.66
TF1(Q) 5.56 -0.66

Nobs= 27 TFS(9) 5.59 -1.18
fat = 10% TFtS(Q) 5.64 -1.13
Tavg = TFEM 5.23 -1.07

9.34 Kmin TFMt 5.28 -1.02
TEMS 4.37 -3.09

TFEFM1S 4.44 -3.01

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-
muscle data and whole-muscle calibrated model$odiethole-muscle data.
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Table 48 (cont'd). Mixed-effects models prediction errors on pork steakand patties

(impingement cooked).

Data source for Model* Max error Min error
validation log (CFUIQ)

T(9) 4.08 -2.06

TF(9) 3.90 -1.65

TF1(9) 3.92 -1.61

TFS(9) 4.41 -1.75

Whole pork | ' FT1S(9) 4.12 -1.76

T (w) 3.08 -4.44

Nobs= 29 TF (w) 2.50 -5.82

fat=153% | TFt(w) 2.54 -5.75

Tavg= TFS(w) 3.97 -3.04

8.2LKmin | TFtS W) 4.00 2.97

TFM 3.95 -1.70

TFMt 3.98 -1.66

TFEFMS 4.50 -1.36

TFEFM1S 4.32 -1.37

*where (g)+(w) models appear, ground-muscle caldaranodels predicted lethality for ground-

muscle data and whole-muscle calibrated model$odidthole-muscle data.
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Table 49. Mixed-effects models prediction errors on ALL impingement ovedata.

Data source for . Max error Min error
o Model
validation log (CFU/g)
T(Q)+T(w) 4.24 -4.68
TF(@)+TF(w) 5.51 -5.68
ALL
impingement | 1 F1(9) +TFt(w) 5.56 -5.75
ovendata |TFS(Q)+TFS(w) 6.03 -3.09
TF1S(@+THRS (W) 5.64 -3.00
TEM 5.23 -5.22
n0b5=144
TFMt 5.28 -5.09
TFEMS 450 -5.04
TEMTS 4.44 -4.91

*In all cases, ground-muscle calibrated models ipted lethality for ground-muscle data and
whole-muscle calibrated models did for whole-musia&a. In addition, models used were
species specific, that is, turkey models preditbedurkey data, and so on.
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6.9.1.2Big roasts

Table 50. OLS models prediction errors on roasts.

Data source for Max error Min error
validation Model log (CFU/g)
T(9) -10.96 -14.32
Turkey roasts TF(@ ~10.83 1419
T1(0) -9.08 -13.16
Nobs= 9 TF1(g) -8.96 -13.04
fat = 0.27% T (W) -2.06 -5.30
Trange= TF (w) -2.00 -5.25
200 — 500 KMin | 1 ¢ () 121 4.79
TFt (W) -1.16 -4.74
T(9) -2.23 -15.19
Beef roasts TF(9) -1.75 -14.14
T1(g) -1.78 -13.87
Nops= 13 TF1(g) -1.33 -12.90
fat = 2.68% T (W) 1.15 -6.12
Trange= TF (w) 1.45 -7.14
100 — 480 Kmin | 1 ¢ ) 1.43 -6.98
TFT (W) 1.69 -6.41
T (9) -0.11 -4.64
Pork roasts TF(9) -0.01 -4.50
T1(g) 0.03 -3.80
Nops= 20 TFt1(9) 0.14 -3.68
fat =1.53% T (w) 1.60 -1.77
Trange= TF(w) 1.71 -1.65
100 — 600 Kmin | 1 ¢ () 1.70 -1.30
TFt (W) 1.81 -1.16
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Table 51. Mixed-effects models prediction errors on roasts (continued xigpage).

Data source for Max error Min error
validation Model log (CFU/g)
T(9) -2.97 -6.28
TF(9) -15.90 -22.66
TF1(g) -6.51 -12.02
TFS(g) -9.06 -15.21
Turkey roasts | ' F 1S (9) 1.03 -3.54
T (W) -1.78 -5.21
Nobs= 9 TF (w) -15.90 -22.66
fat=0.27% | T Ft (W) -1.98 -7.22
Trange™ TFS (W) -2.39 -5.72
200 — 500 Kmin | T F1 S (w) 1.26 -3.13
TFM -1.58 -5.93
TFMt 1.45 -2.62
TEMS -3.56 -8.17
TEMTS 1.64 -2.75
T(9) 1.00 -8.13
TF(9) -1.97 13.48
TF1(g) 0.89 -8.32
TFS(g) 0.92 -8.81
Beefroasts | 1 F1S(9) 3.33 -5.21
T (W) -1.97 -13.47
Nops= 13 TF(w) 0.91 -8.32
fat=2.68% | TFt (w) 3.08 -4.62
Trange™ TFS (W) 0.97 -8.29
100 - 480 KMin | T 15 (w) 3.15 -4.60
TFM 0.89 -7.68
TFMt 2.66 -4.21
TFEFMS 1.83 -6.67
TEMTS 3.65 -3.72
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Table 51 (cont'd).

Mixed-effects models prediction errors on roasts.

Data source for Max error Min error
validation Model log (CFU/g)

T(9) 2.96 -0.02

TF(9) 0.88 4.47

TF1(g) 1.46 -1.21

TFS(g) 2.58 -0.56

Pork roasts | 1 F1S(9) 3.27 0.71

T (W) 1.81 -1.02

Nops= 20 TF (w) 1.14 -1.77

fat=1.53% | TFrt(w) 1.46 1.21

Trange™ TFS (W) 1.09 -2.53

100 - 600 KMin | T 15 (w) 2.02 -0.48

TFM 1.47 -2.84

TFEFM1t 2.15 -0.42

TEMS 2.81 -0.36

TEMTS 3.44 0.82

Table 52. OLS models prediction errors on ALL roast data.

Data source for Max error Min error
S Model

validation log (CFU/g)
T (w) 1.60 -6.12
ALL roast data TF W) 171 714
1.70 -6.98

Nobs= 42 TTw)

TFt (W) 1.81 -6.41




Table 53. Mixed-effects models prediction errors on ALL roast data.

Data source for Model Max error Min error
validation log (CFU/g)
T (W) 1.81 -13.48
TF(w) 1.14 -22.66
ALL roast data | T FT (W) 3.08 -7.22
TFS W) 1.09 -8.29
TFtS (W) 3.15 -4.60
Nobs=42 | TFM 1.47 -7.68
TFEMt 2.66 -4.21
TEMS 2.81 -8.17
TFEFM1S 3.65 -3.72

6.9.1.3Hot dogs

Table 54. OLS models prediction errors on hot dogs.

Data source for Max error | Min error
. Model
validation log (CFU/g)
Turkey hot dogs | T (9) 1.88 -4.85
Nobs= 12 TF(g) 2.14 -3.90
fat = 4.28%
a 8% 11 2.22 -3.61
Trange™
50— 125 kmin | T FT(9) 2.44 -3.06
Beef hot dogs | T (Q) -0.49 -3.50
fobs=12 | TF (g) 0.16 -1.64
fat =15.42%
T1(9) 0.35 -1.80
Trange™
100 — 275 Kmin | T FT(9) 0.75 -0.46
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Table 55. OLS models predictions errors on ALL hot dog data.

Data source Model Max error Min error
for validation log (CFU/g)

ALL hot dog | " (@ 1.88 -4.85

data TF(9) 2.14 -3.90

T1(Q) 2.22 -3.61

Mobs=24 | T E¢(g) 2.44 -3.06

Table 56. Mixed-effects models prediction errors on hot dogs.

Data source for Model Max error Min error
validation log (CFU/g)

T(9) 2.90 -1.68

Turkey hot dogs TF@ 217 -3.05

TFt(9) 5.92 -2.67

Nobs= 12 TFS(g) 3.16 -1.19

fat=4.28% | TF1S(9) 5.04 -0.89

Trange™ TFM 6.13 -3.06
50-125Kmin | TF Mt 2.47 -2.68

TFMS 5.82 -2.00

TFEFMtS 5.23 -1.73

T(9) 0.41 -0.96

Beef hot dogs TF(9) 0.63 -0.37

TFt(9) 2.72 -0.04

Nobs= 12 TFS(g) 2.07 -1.01

fat=15.42% | TF1S(Q) 3.81 0.77

Trange™ TFM 3.72 -0.33
100 -275Kmin | TFM1t 3.07 0.0

TFMS 2.83 0.35

TFEFMtS 2.33 0.52
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Table 57. Mixed-effects models prediction errors on ALL hot dog data.

Data source Model Max error Min error
for validation log (CFU/g)

T(9) 2.90 -1.68

TF(9) 2.17 -3.05

ALL hot dog | T FT(9) 2.47 -2.67

data | TFS(g) 3.16 -1.08

TFtS(Q) 3.30 -0.89

Nobs=24 | TFM 2.17 -3.06

TFM1 2.47 -2.68

TFEMS 2.76 -2.00

TFMtS 2.96 -1.73

6.9.1.40verall model performance on pilot-scale data

Table 58. OLS models prediction errors on ALL pilot-scale data.

Data source Max error | Min error

L Model
for validation log (CFU/Q)
ALL T(@)+T(w) 2.76 -9.50
pil%t-stcale TF(g) +TF (W) 2.96 -9.15
ata
Tt(g)+ Tt (W) 2.84 -9.29
Nops=210 | TFT(9) +TFt (W) 3.03 -8.95
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Table 59. Mixed-effects models prediction errors on ALL pilot-scale data.

Data source for Max error | Min error
o Model
validation log (CFU/g)
T@+T(Ww) 4.24 -13.48
TF(Q)+TF(w) 5.51 -22.66
TFt(g) + T Ft (w) 5.56 -7.22
. ALL TFS(@+TFS(w) 6.03 -8.29
pilot-scale data
TF1S(Q+TFHS (W) 5.64 -4.60
Nops= 210 TEM 5.23 -7.68
TEM1 5.28 -5.09
TEMS 4 .50 -8.17
TEMTS 4.44 -4.91

6.9.2 Plots showing model predictions and Pl sfor representative data sets and models

Given the large number of validated models and data, this project produced ~320
plots (one for each validation). However, it wascided to present the plots of only a
representative data set across all models, iniaddid any other that may have shown special
features.

6.9.2.10LS models

To show the effect of the addition of the fat andlsthal injury parameter{ and[3»,

represented by F anmdin model names) and the importance of using whalsele calibrated
models (represented by (w)) to predict lethalityvinole-muscle data (instead of ground-muscle
calibrated models, represented by (g)), the impimgyg-cooked whole-muscle pork steaks were

chosen. Notice the slight improvement created leyattidition of3; andBs, but the significant
difference caused by the use of the whole-musdlbrated models (w) instead of the ground-
muscle-calibrated versions (Q).
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Figure 47. OLS T (g) model validated with whole-muscle pork steaks.

| 95% Pl widthayg= +2.04 log CFU/g Ut
RMSE = 1.92 log CFU/g
bias =-0.78 log CFU/g
% above low Pl = 69%

----- 95% PI
Y pred
o Yexp

0 1 2 3 4 5 6 7
Predicted log reduction

Figure 48. OLS T F (g) model validated against whole-muscle pork steaks.
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Figure 49. OLS Tt (g) model validated against whole-muscle pork steaks.
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Figure 50. OLS T Ft (g) model validated against whole-muscle pork steaks.
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Figure 51. OLS T (w) model validated against whole-muscle pork steaks.
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Figure 52. OLS T F (w) model validated against whole-muscle pork steaks.
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Figure 53. OLS Tt (w) model validated against whole-muscle pork steaks.
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Figure 54. OLS T F t (w) model validated against whole-muscle pork steaks.

6.9.2.2Mixed-effects models

For the mixed-effect models, the impingement-cookdtble-muscle chicken breast
samples were chosen because of the significantgelsanoted with the addition of parameters
and with the use of the ground-muscle-calibratedeh@represented by (g)) versus the whole-
muscle-calibrated versions (represented by (w)).
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Figure 55. Mixed-effects T (g) model validated against whole-muscle cken breasts.
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Figure 56. Mixed-effects T F (g) model validated against whole-musclhicken breasts.
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Figure 57. Mixed-effects T Ft (g) model validated against whole-muscle chicken steaks.
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Figure 58. Mixed-effects T F S (g) model validated against whole-muscleidten breasts.
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Figure 59. Mixed-effects T F & (g) model validated against whole-muscle chicken breasts.
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Figure 60. Mixed-effects T (w) model validated against whole-muscle ckien breasts.
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Figure 61. Mixed-effects T F (w) model validated against whole-muscleicken breasts.
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Figure 62. Mixed-effects T Ft (w) model validated against whole-muscle chicken breasts.
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Figure 63. Mixed-effects T F S (w) model validated against whole-muscleicken breasts.
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Figure 64. Mixed-effects T F S (w) model validated against whole-muscle chicken breasts.
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Figure 65. Mixed-effects T F M model validated against whole-muscle icken breasts.
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Figure 66. Mixed-effects T F Mt model validated against whole-muscle chicken breasts.
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Figure 67. Mixed-effects T F M S model validated against whole-muscle cken breasts.
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Figure 68. Mixed-effects T F M St model validated against whole-muscle chicken breasts.
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