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ABSTRACT 

A MULTI-PRODUCT, MULTI-FACTOR THERMAL INACTIVATION MODEL FOR 
SALMONELLA IN TURKEY, BEEF, PORK, AND CHICKEN 

By 

María Isabel Tenorio Bernal 

No current modeling tool accounts for all the necessary factors to validate a thermal 

process for ready-to-eat (RTE) meat and poultry; some do not address Salmonella and/or 

important product/process attributes, and most have not been validated against industry-relevant 

data. Therefore, the objective of this project was to develop a multi-product, multi-factor thermal 

inactivation model for Salmonella in meat and poultry products. First, the effect of sublethal 

thermal injury on subsequent bacterial heat resistance was quantified by expanding the 

capabilities of a previously published path-dependent Salmonella inactivation model. Salmonella 

inoculated ground turkey, beef, and pork samples were subjected to multiple non-isothermal 

treatments. The resulting path-dependent model was validated against equivalent data, showing 

error reductions of 63 to 82%, relative to the state-dependent model, thus confirming the 

importance of accounting for sublethal injury in inactivation models. In the second part, thermal 

inactivation data for Salmonella in turkey, beef, and pork were selected from published sources 

(nobs=411, 764, and 446 for each, respectively) and used to parameterize various versions of a 

multi-product, multi-factor model, using ordinary least squares and mixed-effects statistical 

methods. Validated against industry-relevant data, most models performed favorably when 

considering fat content, sublethal injury, and muscle structure. Overall, this project illustrated the 

current difficulties and positive outcomes of pooling thermal inactivation data from different 

sources, parameterizing models with them, and validating them against industry-relevant data. 
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1. INTRODUCTION  

1.1 Background/problem statement 

Ready-to-eat (RTE) food products have become an important part of the American diet, 

due to their convenience, nutritional value, and palatability. However, because the production 

chain to make these goods is highly sophisticated, there is a high risk for physical, chemical, and 

biological contamination to occur. While it is easier to monitor physical and chemical impurities, 

it is harder to do so for biological elements, such as pathogenic microorganisms, because they 

are naturally occurring in the food materials.  

Regarding meat and poultry products, the pathogens of concern are Escherichia coli, 

Salmonella, Campylobacter, and Listeria monocytogenes. Together with four other pathogens, 

these microbial agents are considered to cause most of the foodborne illnesses in the United 

States (CDC 2011).  Therefore, to protect consumers, the United States Department of 

Agriculture (USDA) bases thermal processing regulations for these products on worst-case 

scenarios for Salmonella contamination, due to the pathogen’s higher resistance to heat 

inactivation treatments (FSIS-USDA 1999b). The regulation requires that the products be cooked 

to reach a specific lethality of 6.5 or 7.0 log10 reduction in Salmonella population for beef or 

poultry, respectively (FSIS-USDA 1999b).  To fulfill these requirements, processors have two 

options: to follow pre-established cooking conditions, also known as “safe harbors”, or to choose 

their own cooking conditions. The safe harbors prescribe how long to hold a product at a certain 

temperature to comply with the regulation (e.g., 12 minutes at 60°C). The problem with this 

option is that it can cause over-processing, which in turn leads to higher energy costs and a 

decrease in product yield and quality. On the other hand, if processors use their own cooking 
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schedules, they have to prove “based on scientific rationale [and] experimental data” that they 

comply with the lethality performance standard (FSIS-USDA 1999b). The drawback in this case 

is that most establishments do not have the financial or scientific resources to provide the 

evidence specific to their process, and the scientific information available is related almost 

exclusively to laboratory studies, and likely have not been validated for industrial processes.  

Essentially, the regulation delegates the problem of validating process lethality to 

industry, which in turn does not have the necessary tools to achieve this. Nonetheless, there are 

microbial inactivation computer programs available to help processors validate their own 

cooking conditions. These are the product of the combined effort of several food safety agencies 

and concerned food industry groups, including the USDA, the American Meat Institute (AMI), 

the Food Standards Agency (FSA) and the Institute of Food Research (IFR) in the United 

Kingdom, and the Food Safety Centre (FSC) in Australia. The federal regulation only mentions 

the program developed by the USDA’s Agricultural Research Service (ARS), the Pathogen 

Modeling Program, and states that “[o]ther programs may be available commercially”. However, 

as explained in more depth in the next chapter, they present several drawbacks and fall short 

from the tool industry needs to provide the scientific evidence required in the federal regulation.  

1.2 Goals and objectives 

Given the importance of assuring food safety for consumers, it is imperative that industry 

obtain the necessary tools to achieve this. A model applicable to any meat or poultry cooking  

process, that could provide processors a documented scientific means to comply with federal 

regulations, would be an important step forward. Therefore, the main goal of this project was to 

develop a multi-product multi-factor model that could be used by industry for thermal 
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inactivation of Salmonella in different meat products. Specific objectives were: (i) to test an 

improved secondary model for thermal inactivation, accounting for enhanced thermal resistance 

resulting from sublethal injury of Salmonella in multiple meat products; (ii) to determine the 

most relevant parameters that should be included in a multi-product multi-factor thermal 

inactivation model for Salmonella; (iii) to propose and parameterize multiple options for a multi-

product multi-factor thermal inactivation model; and (iv) to validate model performance when 

applied to independent pilot-scale data. 
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2. LITERATURE REVIEW 

2.1 Salmonella and foodborne illness 

According to the Center for Disease Control (CDC), there are approximately 48 million 

cases of foodborne illness cases each year in the United States (CDC 2011). These in turn cause 

an estimated 128,000 hospitalizations, and 3,000 deaths (CDC 2011). Among the most common 

bacterial pathogens in food, the CDC lists Campylobacter, Salmonella, and E. coli O157:H7 

(CDC 2011). Salmonella, the leading bacterial cause of foodborne illness, and the pathogen of 

concern for this project, is naturally found in the intestinal tract of birds, reptiles, and mammals 

(USDA-FSIS 2010), and reaches food for human consumption via fecal contamination during 

processing, especially in the case of meat and poultry (Adams and Moss 2008). When infected, a 

person can develop non-bloody diarrhea, abdominal cramps, and fever, which characterize 

salmonellosis (USDA-FSIS 2010). The illness is not considered life-threatening if treated 

promptly. However, small children, the elderly, and individuals with weak immune systems can 

be more susceptible to the infection and develop additional long term complications, such as 

Reiter’s syndrome and chronic arthritis (USDA-FSIS 2010). 

2.2 Federal regulations regarding heat processing in RTE products 

Effective March 8, 1999, there is one regulation governing the performance standards for 

the manufacture of certain ready-to-eat (RTE) meat and poultry products: USDA-FSIS, 9 CFR 

Parts 301, 317, 318, 320, and 381 (FSIS-USDA 1999b). The regulation encompasses three parts: 

lethality, stabilization, and handling. Relevant to this project are the lethality performance 

standards. According to the regulation, the kill can be accomplished with several antimicrobial 
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methods, but inclusion of a cooking step is mandatory, hence the importance of the heating 

process. In addition, there are no documented means of assessing the cumulative effect of several 

antimicrobial methods. Therefore, if this path is chosen, processors must scientifically prove that 

the lethality levels are reached (FSIS-USDA 1999b). 

2.2.1 Safe Harbors 

One of the options available to producers to comply with federal regulations regarding 

RTE meat and poultry products is to follow the pre-established time/temperature cooking 

schedules developed by the FSIS, also known as “safe harbors”. These indicate how long to cook 

a certain product once a minimum specified temperature is reached to achieve the regulatory 

standard (FSIS-USDA 1999a). For example, a beef roast would be deemed safe if cooked for 12 

min once 60°C is reached throughout the product. The full table can be found in “Compliance 

Guidelines For Meeting Lethality Performance Standards For Certain Meat And Poultry 

Products” (FSIS-USDA 1999a). The safe harbors are the easiest way to comply with the 

regulation, and while not required, are given as an option. However, the use of these cooking 

schedules may limit a processor from manipulating product attributes only acquirable during the 

cooking step, such as moisture retention or crust-layered roasts. 

2.2.2 End-point lethality 

When concerned about the final quality of the product and total energy expenditure in 

cooking, processors may prefer to customize their own cooking schedules. In this case, they must 

prove “based on scientific rationale [and] experimental data” that these special cooking 

conditions comply with the regulatory standards (FSIS-USDA 1999b). Currently, processes need 

to accomplish a 6.5 log10 reduction and 7.0 log10 reduction in Salmonella population for RTE 
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meat and poultry products, respectively (FSIS-USDA 1999b). Even though this choice clearly 

gives processors more flexibility in their cooking options, the challenge is proving that their 

time/temperature choices reach the required lethality levels. This is because there currently there 

is no scientifically proven, generalized tool available to present this evidence, and producing 

proof for each specific process is economically burdensome. 

A new regulation involving 9 CFR Parts 301, 303, 317, 318, 319, 320, 325, 331, 381, 

417, and 430 was proposed by the FSIS on February, 2001 (USDA-FSIS 2001). If finalized, the 

new regulation would require that the processing method for all RTE and partially-cooked meat 

and poultry products comply with the 6.5 and 7.0 log reduction currently applicable to only 

certain products. 

2.3 Factors affecting bacterial inactivation 

There are numerous methods to inhibit bacterial growth in foods; these include addition 

of chemical agents (preservatives), freezing, drying, controlled atmospheres, high pressure 

systems, among others. On the other hand, current methods for complete pathogen inactivation 

via processing are mostly limited to heating and irradiation. Even with the application of these 

two technologies, food processors commonly use the “Hurdle concept”, which means several of 

these methods are used to conjointly prevent microbial growth in foods (Jay and others 2005; 

Adams and Moss 2008). For example, in a broad perspective, the ingredients for a RTE chicken 

dinner would come from a high quality source, the meal would be prepared with the addition of 

preservatives, and then cooked to kill any possible incident pathogens, be packaged under 

sanitary conditions, and finally frozen and kept at freezing temperatures until consumed. The 

combination of controls is designed to help ensure product safety. In the case of certain RTE 



7 

 

meat and poultry products, because the use of an inactivation method is imperative for the 

destruction of pathogens, a heating step is always included. While irradiation is approved for 

fresh meat and poultry products, regulations regarding these RTE products require the inclusion 

of a heating step (FSIS-USDA 1999b). For that reason, heating is used as the preferred method 

for bacterial destruction in manufacturing RTE meat and poultry products.  

Bacterial behavior under heating conditions is well documented for a variety of extrinsic 

and intrinsic factors. Extrinsic factors refer to environmental conditions, which include relative 

humidity, temperature, and gaseous atmosphere – the most important of these for thermal 

inactivation being temperature (Adams and Moss 2008). Intrinsic factors denote properties of the 

food that affect bacterial response, such as nutrients, pH and buffering capacity, oxidation-

reduction potential, moisture or water activity, antimicrobial constituents, food structures, and fat 

in the product (Adams and Moss 2008). The most relevant for heat processing would be 

moisture, food structure, and fat (Juneja and Eblen 2000; Juneja and others 2001; Juneja and 

others 2000a; Tuntivanich and others 2008; Mogollon and others 2009; Velasquez and others 

2010; Orta-Ramirez and others 2005; Carlson and others 2005).  

Other critical factors cover the characteristics of the microorganisms, which refer to 

specific growth rate, physiological state of the cells, mutualism, and antagonism (Adams and 

Moss 2008). For thermal processing, the factor of main interest among these would be the 

physiological state of the bacterial cell, specifically referring to sublethal injury. Factors most 

significant for heat inactivation are described in detail in the following sections. 
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2.3.1 Temperature 

Thermal processing inherently involves an increase of temperature in the processing 

environment and consequently in the food product. Subjecting bacterial cells to high 

temperatures for a certain period will injure them and eventually kill them. There is no cut-off 

temperature at which bacterial cells will instantly deactivate; rather, it is a gradual process. This 

is because naturally occurring bacterial populations contain cells in different stages of growth, 

and log-phase cells are more susceptible to heat than their stationary-phase counterparts (Adams 

and Moss 2008). Nonetheless, higher temperature causes faster pathogen inactivation. For 

example, cooked beef is deemed equally safe if held for 71 mins at 55°C or 54 s at 66.1°C (FSIS-

USDA 1999a). While longer cook times also have an influence on bacterial inactivation, 

temperature is the most determining factor (Jay et al. 2005). 

2.3.2 Fat 

Studies conducted by Juneja et al. (Juneja and Eblen 2000; Juneja et al. 2000a; Juneja et 

al. 2001) showed that fat percentage (%) in different meat and poultry products significantly 

increased Salmonella thermal resistance. The same conclusions were reached by Ahmed et al. 

(1995) with regard to E. coli O157:H7. However, the goals of these studies did not include 

investigating the reason behind this. While it is presumed that fat globules present in food can act 

as a shield for bacterial cells against heat (thus increasing their heat resistance) (Adams and 

Moss 2008), it can be argued that from a biological standpoint, the increased resistance could be 

due to biochemical interactions between the pathogens’ cell membrane (a lipid bilayer) and the 

fats in the product. Regardless of the real cause, this means that a high-fat product would need to 
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be cooked for longer times and/or higher temperatures to achieve the same log reduction than a 

low-fat product. 

2.3.3 Muscle structure 

Food structures have been proven to affect bacterial growth and inactivation (Adams and 

Moss 2008). For the case of meat and poultry products, this is relevant to ground vs. whole-

muscle products. Although the exact mechanism by which cells increase their thermal resistance 

in these two different environments is not completely understood, it may be due to the different 

internal structures in the meat and/or available water (Tuntivanich et al. 2008). Orta-Ramirez et 

al. (2005), Tuntivanich et al. (2008), and Velasquez et al. (2010) reported that Salmonella had 

significantly higher thermal resistance (~double) in whole muscle meat and poultry products 

when compared to their ground muscle counterparts. Mogollon et al. (2009) tested whole muscle, 

coarsely ground, finely ground, and pureed beef. Salmonella was significantly more resistant in 

whole-muscle beef than in the other products, but there was no effect of the degree of grinding.  

2.3.4 Media moisture content 

Studies from Carlson et al. (2005), McCann et al. (2009), Goepfert et al. (1970), and 

Reichart (1994) found that pathogens present in a dry environment portray a higher thermal 

resistance than those residing in a moist medium. For example, Carlson et al. reported that the 

thermal inactivation for an 8-servorar Salmonella cocktail decreased 64% (p<0.01) when water 

activity (aw, a measure of available water in a product) in ground turkey was decreased from 

0.99 to 0.95 (2005). In Goepfert et al.’s study, media with different aw were prepared by using 

sucrose, fructose, glycerol, and sorbitol; results showed that the cells in environments with the 
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lower aw yielded D-values 25 to 75% lower than those tested in the media with higher aw 

(1970). 

Moisture as a percentage of product composition is also commonly related to fat 

percentage, meaning that a high-fat product will more likely have lower moisture content than a 

low-fat product. Consequently, the same principle for inactivating pathogens with longer 

cooking times for high-fat products applies to low-moisture products. In addition to the 

biological effect, a secondary consequence of a dry system is that with less water present, the 

heat transfer process is less efficient, making the cooking less lethal to the bacterial cells. 

2.3.5 Sublethal injury 

Cell injury results when a process affects the bacterial cell in a negative way, but fails to 

kill it. Pathogens are inevitably injured when exposed to heating, freezing, and starvation 

environments (Wesche and others 2005). In any of these cases, cells can either become more 

susceptible to further inactivation procedures, or react to the changing environment by adapting, 

thus becoming more resistant to the processes (Mackey and Derrick 1987b; Wesche et al. 2005).  

Under sublethal heating conditions, which occurs for example when slowly cooking a 

beef roast, a portion of the bacterial population adapts to the gradual increase in temperature by 

developing heat-shock proteins (Xavier and Ingham 1997a; Jorgensen and others 1996), or  by 

other unknown mechanism (Mackey and Derrick 1990). These physiological changes allow cells 

to resist heat inactivation at higher temperatures, thereby affecting cooking time needed to 

inactivate the microorganisms (Jorgensen et al. 1996; Xavier and Ingham 1997a).  
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Many studies agree that heat-shocking bacterial cells increases the population resistance 

to heat. For example, Knabel et al. (1990) reported that the thermotolerance of Listeria 

monocytogenes increased when cells were heat shocked at 43°C for 5, 30, and 60 min. Farber et 

al. (1990) subjected the same pathogen to four different heat shock temperatures (40, 44, 48, and 

52°C), and reported the same conclusions. Pagan et al.’s (1997) results agree with these findings 

with respect to time, but their study also analyzed the effect of heat shock temperature on L. 

monocytogenes. They found that just before lethal temperatures were reached, the higher the 

temperature, the more thermotolerant the cells became. Therefore, in processing conditions 

where sublethal heating is expected, microbial adaptation should be taken into account when 

predicting subsequent lethality.  

A preliminary model addressing this issue was developed by Stasiewicz et al. (2008) for 

Salmonella inactivation in turkey thigh. The new “path-dependent” model incorporated a term 

that accounted for sublethal injury, which considered the amount of time the cells remained in 

the “heat shock region”, which was determined to be between 38°C and 52°C (Stasiewicz et al. 

2008). The study fitted data from an 8-serovar Salmonella cocktail at different residence times 

and hold temperatures within the heat shock region (thus yielding different degrees of sublethal 

injury) to the path-dependent model. Results showed that the use of the latter reduced prediction 

error by 56% when compared against a traditional “state-dependent” model, which did not 

account for sublethal injury (Stasiewicz et al. 2008). 

Cold shock of cells can also lead to a change of bacterial thermal tolerance. This can 

happen in the processing environment when raw food materials are stored in chilled settings 

prior to the heat treatment. The effect of cold shock on cells is not fully documented, and 

different studies have reached contradicting conclusions. For example, Leenanon et al. (2001) 
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found in a first study that heat tolerance for E. coli O157:H7 was decreased with cold shock 

(TSB for 1 week at 5°C), while a second study (Elhanafi and others 2004) revealed that heat 

tolerance increased, although the cold shock treatment was different (tryptic soy broth (TSB) for 

4 weeks at 4°C). Also, Bang et al. (2002) observed minimal heat tolerance increase in Vibrio 

vulnificus after a cold-shock treatment. On the other hand, Wesche et al. (2005) did not find a 

significant difference between the thermal tolerance of cold-shocked and control Salmonella 

cells in turkey. These conclusions, in addition to limited inactivation data on this area, make it 

difficult to account for this type of bacterial injury in heat inactivation models. Results are 

similar for the case of starvation stress. For example, Bang et al. (2002) reported a slight increase 

in thermotolerance for one of the three strains of Vibrio vulnificus tested, but Wesche et al. 

(2005) found no significant difference between control and starved-cell heat tolerance of 

Salmonella. In addition, because different pathogens experience starvation under many different 

conditions (e.g., phosphate buffer, peptone water, nitrogen or carbon starvation), the lack of data 

availability makes this phenomenon extremely difficult to characterize and introduce in heat 

inactivation models. 

2.3.6 Inactivation media (liquid vs. meat and species) 

Most of the initial laboratory studies measuring bacterial thermal inactivation were 

carried out in laboratory media, such as tryptic soy broth (TSB). However, it has been 

demonstrated that bacterial inactivation rates vary with the medium in which the cells develop 

(Shah and others 1991; Sergelidis and Abrahim 2009; Smith and others 2001; Murphy and others 

2000). Therefore, if the results of any thermal inactivation study are to be applied to industry 

processes, it is imperative to consider the media in which the tests were carried out. This would 
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mean, for example, using data from ground beef when evaluating ground beef, but not for other 

products. 

2.4 Quantifying bacterial inactivation 

Given the impossibility of taking samples from every single RTE product leaving the 

processing line to test for pathogen presence, food processors and academics alike utilize 

mathematical models that describe the inactivation kinetics of these microorganisms. Another 

option considered in industry is “challenge studies” specific to the manufacturing plant and 

cooking process. These will be explained in detail in the following sections. 

2.4.1 Mathematical models 

Generally, thermal inactivation models are developed and tested on laboratory-scale data. 

This fact poses a difficulty when the model is applied to an industrial setting. This is because 

industrial conditions (i.e., product characteristics, process conditions, etc) rarely resemble a 

laboratory setting. As a result, due to the aforementioned reasons, the bacterial response may be 

different. Nonetheless, a recent study (Breslin 2009) tested these models on pilot plant data, 

which have a closer resemblance to an industry plant, thus producing better estimates of model 

performance.  

A significant difficulty that arises when trying to apply laboratory data to industrial 

settings is that not all scientific studies use the same experimental methods or the same model 

(except for maybe the traditional log-linear model); every researcher has preferences, and 

specific reasons are typically not reported for choosing a certain model (Murphy et al. 2000); 
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(Quintavalla and others 2001; Smith et al. 2001). As a result, it is difficult for processors to 

decide which data and/or model best applies to their own processes.   

Another obstacle processors face when choosing models is that multiple studies focus 

primarily on developing mathematically improved models (Vaidya and Corvalan 2009; Corradini 

and Peleg 2009; Corradini and others 2010) . Although they may describe certain inactivation 

data sets extremely well, or are able to account for multiple environmental factors, their 

usefulness in industry can be hindered because of the extensive experimental data needed to 

characterize them, or due to the lack of sufficient technical expertise or resources. Furthermore, 

numerous reports simply develop the models mathematically and only show theoretical results; 

there is no parameterization with real data, and the crucial validation against independent data is 

not carried out (Vaidya and Corvalan 2009; Corradini and Peleg 2009; Corradini and others 

2009). As a result, the scientific literature contain numerous models, but very few reach industry 

or have significant implications on the food safety system.  

The following section attempts to describe the different types of thermal inactivation 

models along with the characteristics that affect their utility for diverse applications. Notice that, 

as stated by McKellar et al. (2004), “the most appropriate model would be the simplest model 

possible for a given purpose and the given data quality, provided that it is validated and precise”. 

Although there are multiple studies dedicated to the use of these models, few books have been 

devoted to their categorization and description, and most of these contain in turn more 

information and detail about bacterial growth than about inactivation methods (McKellar and Lu 

2004; Brul and others 2007; McMeekin and others 1993).  
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2.4.1.1 Primary models 

Primary models define a relationship between bacterial behavior and time at a single 

environmental condition (Whiting and Buchanan 1993) . The most used primary inactivation 

model follows log-linear kinetics. However, multiple studies have proven that shoulders and tails 

in deactivation curves (log N/N0 vs. time) are clearly not well described by this linear model 

(Peleg 2006; Juneja and Marks 2003). Therefore, several other models have been studied. These 

include those following log-normal, Weibull, or log-logistic distributions, and those based on 

probabilistic models, sigmoidal, or semi-logarithmic survival curves, among others. 

2.4.1.1.1 Log-linear kinetics (D-value) 

The log-linear model describes the most basic form of relationship between pathogen 

cells, time, and thermal inactivation. It assumes that a bacterial population present in food will 

decrease exponentially with time at a constant temperature. This is normally referred to as the 

“log-linear model” (or first-order kinetics), and can be expressed as D-values to characterize 

pathogen thermal kinetics. The D-value is the time it takes at a specified temperature to reach a 

decimal reduction in a bacterial population. A variety of D-values for different products, 

pathogens, and applications can be easily found in literature. Although this model is widely 

accepted and used, in part because of its simplicity, in part because it is the most widely studied, 

it presents one, but very important weakness. The drawback when trying to fit the model to 

inactivation data is that bacteria will often not show a log-linear decay. This is because the log-

linearity assumption does not account for any type of bacterial adaptation, heating and cooling 

lag times, cell growth stage, among other natural factors. Van Boekel (van Boekel 2002) 

collected inactivation data from 55 different studies and found that the bacteria presented the 
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behavior characteristic of the log-linear model in only 2 of them, proving that this traditional 

model represents “the exception rather than the rule”. As a result, researchers have in recent 

years increasingly sought and studied other models with better prediction abilities. 

2.4.1.1.2 Weibull distribution 

The Weibull model is commonly used to describe failure phenomena. In the case of 

inactivation kinetics, it can be interpreted as the failure of microorganisms to survive lethal 

environmental conditions after a certain time (van Boekel 2002). The solved form of the 

equation that is relevant for inactivation microbiology is (Peleg 2006):  

nbt
N

N
S −==

0
loglog

   (1)
 

where S is the survival ratio N/N0, N is the current bacterial population (CFU/g), N0 is the initial 

population (CFU/g), b is a inactivation rate parameter, and n is the shape of the survival curve 

(Peleg 2006). Depending on the bacterial survival curve, the shape will be either described as 

concave upward or concave downward, yielding values of n<1 and n>1 respectively (Peleg 

2006; van Boekel 2002). Common speculations as to why the curvature is upward or downward 

refer to the bacterial population characteristics. When the curve shows an initial “shoulder”, it 

might mean that the cells are hardy and are adapting or strongly resisting thermal kill; in this 

case the curve is said to be concave downward and n>1. On the other hand, there might be a 

swift decrease in microorganism numbers with “tailing” as time increases, which may mean that 

most of the population was weak enough to be deactivated fast (Peleg 2006; van Boekel 2002). 

Note that when n=1, the model becomes log-linear, a special case of the Weibull model. 
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This model has become increasingly popular among the research community for its 

simplicity, and the versatility to describe different inactivation data sets. Van Boekel (van Boekel 

2002) applied the model to 55 different data sets and obtained acceptable 95% confidence 

intervals for each case. 

2.4.1.1.3 Logistic distribution function 

The survival curve described by this model always has a prominent “shoulder”, a section 

in the inactivation curve where there was heating, but negligible pathogen inactivation. Short 

shoulders are often the result of thermal lag times, which is the time delay it takes for the cold 

spot of a food product to reach lethal temperatures. This is usually due to the size and mass of the 

food, and the processing equipment. In such a case, the shoulder is an experimental artifact, not a 

biological phenomenon. However, when such an effect is observed, and with longer times than 

commonly expected, it might be due to characteristics of the bacterial population. This effect can 

also be described by the Weibull distribution with n>1 or any unimodal distribution. However, 

the main difference with the Logistic distribution function is that it will portray a log-linear 

behavior once the shoulder disappears. In the case of the other models, the inactivation lines are 

significantly more curved (Peleg 2006; McKellar and Lu 2004). 

2.4.1.1.4 Sigmoidal survival curves 

In a way, sigmoidal curves present both aspects of the Weibull distribution, because they 

contain both the concave upward and the concave downward behaviors. In terms of cell 

characteristics, this means that populations are a mixture of highly-resistant and highly-sensitive 

individuals. There are two types of these curves; the first ones initially show the concave 

downward behavior, and then, as the pathogens are deactivated, the behavior switches to concave 
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upward. The second group of curves is the exact opposite as the first: they initially show concave 

upward trends and then concave downward (Peleg 2006). Although less used than the Weibull 

distribution, several studies (Miller and others 2009; Feng and others 2011) cite these curves and 

show experimental data that are adequately described by this model.  

There is no unique equation that describes sigmodial survival curves; what groups them 

are the observed characteristics described above. Rather, these curves are represented by 

different empirical models (Peleg 2006). 

2.4.1.2 Secondary models 

Secondary models describe the relationship between primary model parameters and the 

conditions in which the bacteria reside, such as temperature, pH, salt concentration, among 

others (Whiting and Buchanan 1993). Just like industry has a preference for the D-value model, 

the secondary model most commonly used and studied is the z-value, which is generally used in 

conjunction with the D-value. However, just as with the log-linear model, the z-value presents 

several drawbacks, which has led scientists, to search for a better model. 

2.4.1.2.1 Z-value 

The z-value model follows the same log-linearity assumption the D-value model does, 

and describes the temperature dependence of the D-value (Van Boekel 2008). Basically, it 

assumes that the D-value decreases exponentially with temperature, and so it can be defined as 

the change in temperature it takes for 10-fold change in D-value. Most studies in which D-values 

have been determined also include a z-value, and so it is common for the scientific community 

and industry to associate one parameter with the other, making together the traditionally used 
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complete Bigelow-type model (Bigelow 1921). However, as stated by van Boekel, for this 

widely accepted model to be valid, both the rate of bacterial change with time and the rate of D-

value change with temperature have to be semilogarithmic- something that rarely happens, 

because when either the D-value or the z-value deviate, the predictions become questionable 

(Van Boekel 2008). For these reasons, research is continuously being carried out to develop 

better inactivation models. 

2.4.1.2.2 Arrhenius relationship 

The Arrhenius model found its way to microbiology from its common and useful 

application in chemistry and other sciences, in which chemical reactions are continuously 

studied. The Arrhenius equation can be presented in several ways, a common one being 

(McKellar and Lu 2004): 
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where k is the reaction rate constant, A is a constant related to the reaction, Ea the reaction 

activation energy, R the Universal gas constant (8.314 J/molK), and T the absolute temperature. 

Because it is common that the Arrhenius equation yields high deviations at extreme 

temperatures, for microbiology it is generally depicted with the use of a reference temperature 
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where kref is the corresponding reaction rate at Tref, T is the temperature of interest, and k the 

reaction rate at T. Notice that with the inclusion of a reference temperature, A is replaced by kref, 

making this form of the model to behave less erratically in the region around Tref, and giving a 

physically relevant meaning to this parameter, rather than using A.  For that reason, in thermal 

inactivation kinetics for Salmonella in meat and poultry products, Tref is commonly chosen as 

60°C (333 K) or similar.   

Peleg (2006) discredits the use of the Arrhenius equation by mentioning that its 

predictions include high errors in low or high temperatures. However, he fails to mention that 

choosing an adequate Tref significantly lowers the risk for erroneous predictions in the 

temperature range of interest. Similarly, he states that the Arrhenius equation is a second 

logarithmic transformation of the inactivation data (the first being log N/N0), which presumes 

the primary model parameters to be linear. According to him, this is not a common case in 

inactivation kinetics, and so the Arrhenius relationship should be invalid. However, he does not 

consider the fact that the parameters for this equation can be estimated via global, non-linear 

regression. If this is the case, the model parameters are free to be linear or non-linear as they fit 

best (vanBoekel 1996; Van Boekel 2008) . In addition, Dolan et al. (Dolan and others 2007) have 

demonstrated that when estimating model parameters for this equation, it is possible to choose an 

optimum Tref so that the correlation coefficient between the equation’s parameters is minimized 

and so all parameter estimates from the regression are the best possible achievable. As stated 

above (McKellar and Lu 2004), a model is useful if it has been appropriately validated and 
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fittingly describes a given set of data. For the case of the Arrhenius model, it has proven to be the 

best fit for several heat inactivation studies (Stasiewicz et al. 2008; McQuestin and others 2009; 

Murphy et al. 2000).  

2.4.1.2.3 Log-logistic model 

The log-logistic secondary model describes the relationship of primary model parameters 

to environmental factors by marking a specific environmental “set point” where the primary 

model parameter will change, so that it significantly affects bacterial inactivation (Peleg 2006). 

For example, if using the Weibull distribution as primary model, temperature as the 

environmental factor, and b as our parameter of interest, the log-logistic model will have the 

following form (Peleg 2006): 

( )[ ]{ }cTTkTb −+= exp1exp)(    (4) 

Where Tc is the “set point” that marks when b(T) will drastically change, and k is the rate 

of change for b with respect to temperature after Tc is reached (Peleg 2006). This means that 

once the system reaches a high enough temperature (Tc), b(T) will make bacterial inactivation 

significant, otherwise, it is insignificant. 

2.4.1.3 Tertiary models 

Tertiary models bring together primary and secondary models and make them available 

to users through a computer interface (Whiting and Buchanan 1993). Not until a tertiary model is 

established do primary and secondary models become useful to industry. Currently, the only 

available tertiary models, which are relatively useful for heat inactivation processes, are the 
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Pathogen Modeling Program (PMP) (USDA-ARS 2007), the American Meat Institute (AMI) 

Lethality Spreadsheet  (American Meat Institute Foundation 2010), and the ComBase Predictor 

(ComBase 2012); all described in the following sections. Apart from their respective advantages 

and disadvantages, the one main flaw present in all tools is that they do not provide the user with 

confidence intervals and prediction intervals for the estimated lethality. Therefore, the user is 

unable to know the prediction reliability. As a result, even if the process predicted lethality is 

over the regulatory target, it might be that the actual outcome is outside of the confidence and/or 

prediction intervals, still yielding an inadequately processed product. 

2.4.1.3.1 Pathogen Modeling Program (PMP) 

The Pathogen Modeling Program (USDA-ARS 2007) is a tool provided by the USDA’s 

Agricultural Research Service (ARS). This is the only program mentioned in the federal 

regulation as an option to provide “scientific evidence” (FSIS-USDA 1999a). Although the tool 

is designed primarily for pathogen growth, it includes a few heat inactivation models. However, 

there is none available to predict Salmonella lethality, which is the target pathogen in the 

regulation. In addition, those available do not include any secondary model relationships, so that 

the tool cannot account for different product or processing conditions that affect the thermal 

treatment. Furthermore, the program is not customized to work under non-isothermal conditions, 

an inherent feature of industrial processes. It is evident that although widely known, this tool 

cannot be used at all to help processors comply with the specific regulations for meat cooking. 

2.4.1.3.2 AMI Lethality Spreadsheet 

The American Meat Institute (AMI) is an association that represents most of the red meat 

and turkey processors and suppliers in the US. The Institute revises and distributes to its 
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members up-to-date information relevant to the meat and poultry industries. Through the AMI 

Foundation, research is carried out to improve processing methods and products (AMI 2010).  

One of the most important outcomes of the research related to food safety is the AMI Lethality 

Spreadsheet (American Meat Institute Foundation 2010). This program can calculate total 

process lethality for any pathogen using the log-linear model, as long as the adequate D- and z-

values are given. Values for Salmonella, E. coli O157:H7, and Listeria monocytogenes are listed 

for certain products. However, they are only examples from specific laboratory studies, which 

cannot adequately describe an industrial process (Breslin 2009). According to the spreadsheet 

instructions, the users must obtain those figures from their company’s “challenge study data, 

from scientific literature, or other reliable sources” (American Meat Institute Foundation 2010). 

For most producers this is as problematic as proving a process meets the required lethality. Also, 

just like the PMP, this spreadsheet is not adapted to include secondary models that account for 

other product characteristics that can alter bacterial behavior in food. Therefore, this is tool is 

only useful to a certain extent if processors have their own D- and z-values. 

2.4.1.3.3 ComBase Predictor 

ComBase is the result of the combined efforts of several food safety agencies across the 

globe: the USDA’s Agricultural Research Service (ARS) in the United States, the Food 

Standards Agency (FSA) and the Institute of Food Research (IFR) in the United Kingdom, and 

the Food Safety Centre (FSC) in Australia (Baranyi and Tamplin 2004). Initially, it was a 

compilation of microbiological data published in the UK, collected data from scientific literature 

at IFR, data from European research institutions, and data from members of the USDA-ARS 

Center of Excellence in Microbiology Modeling Informatics (CEMMI) (ComBase 2012). Today, 
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researchers are encouraged to submit their data to the database, and so the ComBase Browser has 

grown to be the biggest source for food microbiological data, containing 50,474 data records 

from all over the world (ComBase 2012).   

Equivalent to the US’s PMP, the UK’s agencies developed the Food MicroModel, which 

eventually evolved to become the ComBase Predictor, by incorporating all the available data in 

ComBase (ComBase 2012). Although highly oriented to predict microbial growth with 23 

models, the tool also has 6 thermal inactivation models. A variety of foodborne pathogens are 

targeted on both types of models, while spoilage microorganisms are also included in the growth 

models (ComBase 2012). Differing from the PMP and the AMI Lethality Spreadsheet, the 

ComBase Predictor does include secondary models, allowing the user to adjust the prediction to 

several environmental factors such as salt concentration, changing temperature, pH, CO2 

concentration, etc (ComBase 2012). Also, predictions for up to four microorganisms can be 

carried out simultaneously (ComBase 2012). However, because the data used for the models 

comes from those compiled by ComBase, and most such data were developed in non-food 

media, the Predictor warns the user that the “growth models represent fail-safe, conservative 

predictions” (ComBase 2012). This statement is consistent with the results of the study by 

Tamplin et al. (2005), where it was determined that “the absence of an appreciable lag period at 

6, 8, and 10°C suggest that more occurrences of growth at refrigeration temperatures should be 

expected than are typically assumed in risk assessment models”. In addition, the specific models 

used for each prediction are not documented, and the exact sources of the data used to develop 

model parameters are not listed. Therefore, the quality of the tool’s predictions can easily be 

questioned. 
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An additional drawback is that the Predictor asks for data within the temperature range of 

54.5 and 65°C, and the “first time-point must be [zero]” (ComBase 2012). This represents a 

problem for processors, because normally time/temperature data are logged once the products 

enter the heating instrument and until the end of cooling, meaning that there would have to be 

manual manipulations of the data to select the appropriate points that the model can use. In 

addition, some processes may reach temperatures higher than 65°C, in which case the Predictor 

does not accept the data to carry out the prediction. 

While the ComBase Predictor may have several useful characteristics for growth 

predictions, the reasons stated above are sufficient to deem this tool inadequate for thermal 

processing validations in meat and poultry applications. 

2.4.2 Challenge studies 

Challenge studies involve monitoring a product process from beginning to end and 

assessing the bacterial growth and inactivation throughout all its stages. This inevitably involves 

actually inoculating a product with the pathogen of concern and running it through all the steps 

in the production process, then analyzing the lethal effects the complete process had on the 

bacterial population (Adams and Moss 2008). This option may seem appealing from the point of 

view of obtaining results that are specific to the product and process in question and thus 

unequivocally assessing the effectiveness of the procedure. However, deliberately introducing a 

pathogen in an industrial setting is not feasible, due to obvious contamination concerns. For that 

reason, this method is not highly considered by processors. However, pilot-plant challenge 

studies, such as those carried out by Breslin (2009) and Wiegand (2012) come closer to 

resembling an industrial setting and give good approximations of bacterial death kinetics. 
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3. MODELING SUBLETHAL THERMAL INJURY  

3.1 Introduction  

Although important to certain industrial processes, the potential effects of sublethal injury 

on foodborne pathogens have not been quantified in a manner applicable to prediction models.  

Currently, most secondary models (whether Arrhenius-type, Bigelow-type z-value, or other 

empirical form) assume that the rate of inactivation is a function of the instantaneous state of the 

system (e.g., temperature, fat content).  Such state-dependent models may be ineffective when 

pathogens are subjected to sublethal heating (Jorgensen et al. 1996; Stephens and others 1994; 

Mackey and Derrick 1986), which can occur during slow-cooking processes, and which can 

cause cells to increase their thermotolerance (Bunning and others 1990; Mackey and Derrick 

1986; Shah et al. 1991; Xavier and Ingham 1997a). If this occurs, then a state-dependent model 

might over-predict the process lethality, as bacterial inactivation rate does not depend solely on 

the state of the system, but also on the thermal path preceding the lethal condition. 

Several prior studies have reported the effect of heating rate on inactivation rate (Mackey 

and Derrick 1987a; Quintavalla and Campanini 1991; Stephens et al. 1994). These studies 

reported that slow heating rates (on the order of < 1°C/min) induce a higher heat resistance in 

cells than did fast or instantaneous heating. This is consistent with the understanding that slow 

heating rates inherently expose the bacteria to extended periods in the temperature range 

previously described as inducing the heat shock response (i.e., approximately 40-50°C), thereby 

allowing sufficient time for that response to be expressed. 

From this evidence, other studies did modify secondary models and incorporate heating 

rate as a variable to account for increasing thermotolerance due to heat adaptation (Corradini and 
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Peleg 2009; Valdramidis and others 2007; Stephens et al. 1994). However, the previously cited 

heat shock literature indicates that heat shock is a direct function of time spent in a critical 

temperature range, not of heating rate (Farber and Brown 1990; Pagan et al. 1997; Knabel et al. 

1990; Diller 2006).  In other words, the adaptive response of the bacteria is expressed over time 

when exposed to certain temperatures (i.e., a function of time and temperature), so that the 

cellular response is not a function specifically of the rate of temperature change.  Therefore, 

heating rate as a variable in an inactivation model is a surrogate for the underlying cellular 

mechanisms of adaptation, and therefore may not be phenomenologically consistent with 

outcomes that can occur during certain treatments, such as those that include rapid heating rates 

but static holding periods at sublethal temperatures.    

An alternative method to modeling heat inactivation with prior heat shock was developed 

by Vaidya et al. (2009). They added a “memory kernel” to their model, which allowed the model 

to account for “events at a temporal distance” that influenced the present state of a system. 

However, because a specific value was not assigned to the “temporal distance”, the latter is only 

an arbitrary measure. This means that for any point in time, it is unknown how far the memory 

kernel goes back to account for heat effects. Also, using a constant “temporal distance” means 

the memory kernel makes no distinction between the sublethal and lethal regions. This is again 

inconsistent with heat shock literature, given that bacterial adaptation occurs only over a known 

temperature range (Pagan et al. 1997), and once the lethal temperatures are reached, adaptation 

essentially ceases, and only bacterial inactivation occurs.  

Overall, the previously proposed models have potential for industry use, but they still 

present significant weaknesses. For instance, with the exception of Valdramidis et al. (2007), 

who reported accuracy and bias factors, sufficient statistical measures of model performance, 
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such as root mean squared errors (RMSEs), are rarely given to quantitatively test the predictive 

ability of the models. Such quantitative measures of the predictive ability and robustness of 

models are critical before they can be adapted to industrial applications.    

A different approach was taken by Stasiewicz et al. (2008) (section 2.3.5). Their model 

incorporated an integral of thermal history in the sublethal region as a variable influencing 

subsequent inactivation rate.  In comparing this path-dependent secondary model to a state-

dependent secondary model, both were incorporated into a Weibull primary model applied to 

non-isothermal treatments with varying sublethal histories, the RMSE was lowered from 2.5 to 

1.1 log CFU/g for the state- and path-dependent models, respectively (Stasiewicz et al. 2008). 

However, the experiments were constrained to only one type of meat (ground turkey thigh meat), 

and few data points accounted for very long exposures to sublethal temperatures that might 

correspond to commercial cooking schedules of slow-roasted products. Hence, it is important to 

test whether these results can be extended to longer exposures in the sublethal region, and to 

what degree substrate affects the model parameters. Therefore, the goals of this section were: (i) 

to extend the capabilities of the previously developed path-dependent model to account for 

longer sublethal heating times and three different meat species, and (ii) to validate the model 

against isothermal and non-isothermal independent data. 

3.2 Materials and Methods 

This study entailed non-isothermal heat treatment of Salmonella-inoculated meat samples 

(turkey, beef, and pork), including treatments designed to impart sublethal injury. The resulting 

data were used to estimate the parameters for a novel, path-dependent secondary inactivation 
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model that accounts for sublethal history. The model was then validated and compared to a 

traditional, state-dependent model.  

3.2.1 Model development 

The traditional, state-dependent inactivation model follows a Weibull distribution form 

(Peleg 2006): 

nbt
N

N
S −==

0
loglog

   (1)
 

where S is the survivor ratio, N is the number of microorganisms at time t, and N0 is the initial 

microorganism population. In this work, the expression “log reduction” will be used, just as is in 

the federal regulation; log reduction is equivalent to the negative of the survivor ratio (i.e., -log 

S) . The parameters b and n are estimated via non-linear regression, where n describes the shape 

of the survival curve. Although any suitable secondary model might be used to describe b as a 

function of temperature, Stasiewicz et al. (2008) previously reported, for data similar to the 

present study, that b can be described with an Arrhenius-type dependency: 
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where β1 describes the effect of temperature (K) on b. The state-dependent model in this study 

was equations (1) and (2). A previously reported, path-dependent inactivation model (Stasiewicz 

et al. 2008) takes the following modified form: 
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and   ∫
=

=

−=
lowerHSTt

upperHSTt

dtlowerHStTtT )(),(τ     (7) 

where the sublethal history (τ) is quantified as the integral of the temperature vs. time curve in 

the heat shock region (i.e., from T=HSlower to T=HSupper), where Salmonella can increase its 

thermal tolerance (Figure 1). In equation (3), β2 scales the impact of this phenomenon so that 

increasing sublethal history (τ) causes a decrease in b. Based on prior research on heat shock 

response, Stasiewicz et al. (2008) set the heat shock region to be 38 to 52°C (HSupper and 

HSlower). The final, path-dependent model is obtained by combining equations 1, 3, and 4.  

 

Figure 1. Representative heating profiles, where ττττ    is the integral of the time-temperature 
profile within a prescribed heat shock region. 
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3.2.2 Inoculum 

The inoculum was an 8-serovar Salmonella cocktail, previously obtained from Dr. V.K. 

Juneja (Agricultural Research Service, Eastern Regional Research Center, USDA-ARS, 

Wyndmoor, PA), which included: S. Thompson FSIS 120 (chicken isolate), S. Enteritidis H3527 

and H3502 (clinical isolates phage types 13A and 4 respectively), S. Typhimurium DT 104 

H3380 (human isolate), S. Hadar MF60404 (turkey isolate), S. Copenhagen 8457 (pork isolate), 

S. Montevideo FSIS 051 (beef isolate), and S. Heidelberg F5038BGI (human isolate). Before 

use, all serovars were kept separately at -80°C in vials containing tryptic soy broth (TSB; Difco 

Laboratories, Sparks, MD) and 20% glycerol. Cultures were started by transferring one loop of 

each frozen culture into separate tubes containing 9 ml of tryptic soy broth with 0.6% w/v yeast 

extract (TSBYE; Difco Laboratories, Sparks, MD) and incubating at 37°C. All serovars were 

separately grown for 24-36 h and transferred at least twice at ~24 h before use for inoculation.  

3.2.3 Meat preparation 

Whole-muscle skinless turkey breast, beef round, and pork loin were obtained from a 

local supplier as close to the time of harvest as possible, and transferred to Michigan State 

University’s meat laboratory at <4.4°C. The meat was ground (Hobart, model 4146, Troy, OH) 

(twice through the 4.8 mm hole plate, then once through the 3.2 mm hole plate), vacuum 

packaged in double plastic bags, frozen and kept at -23°C. The packaged and frozen samples 

were irradiated to >10kGy (Food Technology Services, Incorporated, Mulberry, FL, 33860) to 

eliminate background microflora. The effectiveness of the irradiation was confirmed by thawing 

random samples, diluting them (1:5) in sterile 0.1% peptone water (Difco, Becton, Dickinson 

and Company, Sparks, MD), and plating them on Petrifilm aerobic count plates (3M 



32 

 

Microbiology Products, St. Paul, MN). The irradiated samples were kept frozen until needed. 

Prior to inoculation, meat packets were thawed overnight at 4°C. Moisture and fat percentage 

measurements were determined on fresh samples using AOAC methods 950.46B and 960.39, 

respectively.  

3.2.4 Inoculation 

On the day of each experiment, a mixture containing 9 ml of each serovar in TSBYE was 

centrifuged (6000xg for 20 min at 4°C). The resulting pellet was then resuspended in 7.2 ml of 

peptone water to an inoculum population of ~1010 CFU/ml (confirmed by serially diluting in 

0.1% peptone water and plating on Petrifilm
TM

 aerobic count plates). The inoculum (400 µl) 

was manually and aseptically mixed into 40 g of meat for 5 min, targeting a homogeneous 

population of ~108 CFU/g in the sample. Individual 1 g samples were then pulled from the 40 g 

for the heat treatments. 

3.2.5 Heat treatments 

All treatments were carried out in a temperature-controlled programmable thermocycler 

(ENE Mate, Model FPROGO2G, ISC Bioexpress, Kaysville, UT), with a manufacturer-stated 

accuracy of ±0.1°C. For each test, the 1 g sample was divided into 0.2 g portions and inserted 

into five 0.2 ml thin-walled PCR microtubes with attached caps (Dot Scientific Incorporated, 

Burton, MI). For triplicate testing, fifteen microtubes were placed in the thermocycler and then 

equilibrated to 25°C before being subjected to one of the 53 different heating profiles (described 

below). Immediately after the heat treatment, all samples were cooled in ice and held at ~4°C for 

recovery and plating on the same day.  
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Each heating profile consisted of a randomly selected combination of a linear heating rate 

(1, 2, 3, 4, or 7 K/min), a variable-length sublethal holding period (at 40, 45, or 50°C), and a 

final lethal temperature (55, 58, 61, or 64°C). The sublethal holding period was determined 

depending on the randomly selected sublethal history (τ) target (15, 25, 34, 50, 100, 200, 370, or 

500 K·min). The holding time at the lethal temperature was chosen to achieve a nominal target 

lethality of ~3 or 5 log reductions. Total treatment times were between 8.17 and 251.92 minutes, 

and the full sample set consisted of 159 data points for each species. There were two types of 

heating profiles (Figure 1): type A, which included the sublethal holding period and used only a 

heating rate of 7 K/min, and type B, which did not include a sublethal holding period, but did use 

all of the stated heating rates.  

3.2.6 Recovery of samples 

For each of the triplicate tests, five 0.2 g cooked subsamples were recovered, recombined 

into a 1 g sample, diluted (1:5), and serially diluted in 0.1% sterile peptone water for duplicate 

plating on Petrifilm™ aerobic count plates, which were incubated at 37°C for ~48 h before 

enumeration. A 5 g sample of uncooked, inoculated meat was diluted (1:5) and plated as a 

positive control against which the heated samples were compared to determine the process 

lethality (i.e., log reductions). In addition, a 5 g sample of non-inoculated meat was diluted (1:5) 

and plated as a negative control to verify meat sterility. 

3.2.7 Model parameterization and validation 

Before carrying out the state-dependent model parameter estimation on the non-

isothermal data from this study, the Weibull model (equation (1)) and the corresponding 

simplified log-linear version (n=1 in equation (1)) were fitted to raw isothermal inactivation data 
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(individual inactivation curves) previously obtained for the same Salmonella cocktail and turkey, 

beef, and pork used in this study (Tuntivanich et al. 2008; Breslin 2009; Velasquez et al. 2010) 

(nobs=90, 148, and 121 for each species, respectively, from a total of 13 different species-

temperature combinations). Temperatures tested were 55, 58, 60, 62, 62.5, and 63°C. Model 

parameters were estimated via non-linear regression (Gauss-Newton with step halving, as used 

by JMP, Version 7. SAS Institute Inc., Cary, NC, 1989-2007) for the Weibull model and linear 

regression for the log-linear version.  Regressions were performed for each temperature and for 

each species separately. Following fitting, two tests were conducted to evaluate which model 

better described the data: (i) Akaike’s Information Criterion corrected for sample sizes (AICc), 

and (ii) a t-test. AICc compares models by creating a balance between goodness-of-fit and the 

number of parameters; then it determines the likelihood that one model is better at describing a 

set of data than the other (Motulsky and Christopoulos 2004). For example, model A might have 

a better goodness-of-fit (represented by the sum of squared errors, SSE) than a simpler model B, 

but when AICc is applied, model A is penalized for having more parameters than model B, and 

the result might show that the latter is more likely to be correct in describing the data. The t-test 

also can be used to test whether a certain parameter estimate is statistically different (α=0.05) 

from a fixed value (Bardsley and others 1995), in this case, for n=1 in equation (1). A t-value is 

calculated: 

errorndardstaparameterestimated

estimateparametervaluefixed
t

−
=                                                       (8) 
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and compared to the t distribution with nobs minus npara degrees of freedom, where nobs is the 

total number of observations and npara the number of parameters (Bardsley et al. 1995), to test 

the null hypothesis that n=1. Both AICc and the t-test calculations were completed in Excel 

(Microsoft Excel. Microsoft, 2003. Redmond, WA). Parameter estimates for each individual 

inactivation curve and their corresponding standard errors were obtained from the non-linear and 

linear regressions.   

To obtain the state-dependent model parameters for all the pooled data, the same 

isothermal inactivation data sets were used (nobs=90, 148, and 121, for turkey, beef, and pork, 

respectively). Global regressions on the respective data sets were done using completed by 

minimizing the sum of squared errors (SSE) using Excel’s Solver function. Error was defined as 

the difference between the experimental log reduction and the state-dependent model predicted 

lethality (equations 1 and 2). Additionally, the non-isothermal calibration sets developed for this 

study (section 3.2.5) were used to calculate new parameters for the state-dependent model. 

Parameter estimation for these was done using MATLAB’s nlinfit function (MATLAB R2011a, 

The MathWorks Inc., Natick, MA, 2011). Also using a global regression method, this function 

estimates the coefficients of a nonlinear function using the least squares estimation via the 

Gauss-Newton algorithm (with Levenberg-Marquardt modifications for global convergence). A 

sample code can be found in section 6.1. This analysis was carried out to determine whether poor 

predictions by the state-dependent model were due to sublethal heating rather than the use of an 

isothermally-calibrated model to predict non-isothermal microbial inactivation. 
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For the path-dependent model, all data from the 53 triplicated non-isothermal tests 

(nobs=159 for each species) were used. To obtain the model parameters (bref, β1, and β2), 36 

randomly selected tests were used (calibration set, nobs=108 for each species). All parameters 

were obtained using MATLAB’s nlinfit function, where the error was defined as the difference 

between the experimental and the path-dependent model prediction of log reductions (equations 

1, 3, and 4). A sample code for this can be found in section 6.1. 

Validation of the calibration results for each meat species was carried out against the 

remaining 17 non-isothermal tests (validation set, nobs=51 for each species). In addition, the non-

isothermal calibrations for both models were validated against the isothermal data to test 

whether: (i) the path-dependent model was reducible and applicable to the simpler isothermal 

case, and (ii) it was possible to obtain better inactivation predictions by changing from a state-

dependent to a path-dependent model while using the same inactivation data. 

3.3 Results and discussion 

3.3.1 Meat sterility and composition 

Tests determining irradiation effectiveness returned negative results (i.e., zero plate 

counts) for all irradiated samples and negative controls. For the isothermal tests, the product 

compositions were as follows: turkey breast was 72.5±0.2% water and 1.0±0.6% fat 

(Tuntivanich et al. 2008), beef round was 72.5±1.2% water and 2.7±1.3% fat (Breslin 2009), and 

pork loin was 73.6±2.7% water and 2.5±0.9% fat (Velasquez et al. 2010). For the non-isothermal 

tests, turkey breast was 74.0±0.9% water and 1.1±0.2% fat, beef round was 73.8±0.3% water and 

2.3±0.6% fat, and pork loin was 68.5±0.9% water and 10.0±3.3% fat. Product composition 
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between isothermal and non-isothermal tests was noticeably different only for pork. However, 

based on prior results (Juneja et al. 2000a), for a fat difference of 2.5 to 10.0% and the time-

temperature combinations used, lethality would be expected to vary at the most by 0.5 log 

CFU/g. Therefore, it was assumed for this study, that the estimated variation would not 

meaningfully affect the final conclusions.  

3.3.2 Calibration: state-dependent model parameterization 

AICc results showed that in 8 out of the 13 isothermal treatments (species-temperature 

combinations), the log-linear model (n=1 in equation 2) was more likely to be correct than the 

Weibull model (n≠1) in describing the isothermal data. Likeliness ranged from 52% to 100%, 

with the average being 74%. For the remaining 5 tests where the Weibull model was more likely 

to be correct, likeliness ranged from 62% to 99%, with the average being 86%. In average, for 

the 13 tests, the log-linear model was 51% more likely to be correct in describing the data. In 

addition, even with a relaxed significance level (α=0.1), the t-test did not reject the null 

hypothesis (H0: n=1) in 10 out of the 13 tests. The results from both tests do not indicate that the 

use of a log-linear model will always give a better outcome, but did give enough evidence that it 

was marginally the better choice for most of the data used in this study. Although Stasiewicz et 

al. (2008) reported successful use of the Weibull model (n≠1) with the proposed path-dependent 

model (equations (1), (3), and (4)), the simpler log-linear version was used in the present study, 

given the results of the statistical tests reported above. In either case, the modification and testing 

of the path-dependent secondary model (equations (3) and (4)) was the primary objective of this 

study, so that confirmation of the performance of equations (3) and (4) with multiple primary 

models will further support the underlying construct of the secondary model form.  
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The calculated parameters and accuracy of the model, represented by RMSE and bias 

(mean residual), for the state-dependent model with both the isothermal and non-isothermal 

calibration sets are shown in Table 1. The reference temperature used was 60°C, as it is 

approximately the average of the lethal temperatures used in the treatments. The correlation 

coefficients, and standard and relative errors for the path-dependent model parameters (bref, β1, 

β2) can be found in section 6.2. 
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Table 1. Model parameters and results against calibration and validation sets. 

Calibration 

Validation 
against 

isothermal 
data 

Validation against 
non-isothermal 
data (validation 

set, nobs=51) 

   Parameters Statistics Statistics Statistics 

Model Data source nobs 
bref 

(min
-1

) 
β1  
(K) 

β2 

(K
-1

 min
-1

) 

RMSE bias RMSE bias RMSE bias* 

(log CFU/g) 

State -
dependent

♦ 

Isothermal turkey 90 0.97 49,315 NA 0.43 0.06 NA NA 2.91 -1.50 

Isothermal beef 148 1.02 46,829 NA 0.90 -0.03 NA NA 2.22 -1.25 

Isothermal pork 121 0.90 42,590 NA 0.99 -0.06 NA NA 4.55 -2.58 

Non-isothermal 
turkey calibration set 

108 0.57 48,491 NA 1.42 0.51 1.04 -0.77 1.75 0.80 

Non-isothermal beef 
calibration set 

108 0.57 40,851 NA 1.53 0.56 1.45 -0.98 1.77 0.88 

Non-isothermal pork 
calibration set 

108 0.45 52,382 NA 1.33 0.53 1.94 -1.45 1.49 0.82 

Path-
dependent 

† 

Non-isothermal 
turkey calibration set 

108 0.91 50,787 0.0017 0.66 0.07 0.46 -0.09 0.90 0.14 

Non-isothermal beef 
calibration set 

108 0.94 44,710 0.0018 0.93 0.12 0.99 -0.19 0.81 0.24 

Non-isothermal pork 
calibration set 

108 0.70 54,713 0.0016 0.87 0.18 1.52 -0.73 0.75 0.24 

*bias: mean residual. 
♦ state-dependent model was equations (1) and (2), with n=1 in equation (1). 
†path-dependent model was equations (1), (3), and (4), with n=1 in equation (1). 
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3.3.3 Validation: application of the state-dependent model to non-isothermal data 

When the isothermally-calibrated state-dependent model was applied to the non-

isothermal validation sets, substantial over-prediction errors were observed (Figure 2, Figure 3, 

and Figure 4). The largest deviations were -10.1 log CFU/g, -7.5 log CFU/g, and -14.7 log 

CFU/g for turkey, beef, and pork respectively  ̶  all caused at the largest tested sublethal history 

(τ=500 K⋅min). Analysis of variance (ANOVA) revealed a statistically significant relationship 

between the sublethal history (τ) and the traditional state-dependent model error (p<0.0001 for 

all species), indicating that the state-dependent model error increased as τ increased. This agrees 

with previous work (Stasiewicz et al. 2008), and reaffirms the importance of a model that can 

account for sublethal injury in a variety of heating profiles. In addition, this concurs with heat 

shock literature (Farber and Brown 1990; Knabel et al. 1990; Pagan et al. 1997), in that a 

combination of time and temperature in the sublethal region, described by τ, causes an increase 

in bacterial thermotolerance. It can be seen (Table 1) that the RMSEs for the isothermally-

calibrated, state-dependent model applied to the non-isothermal data are the largest of all model 

fittings, and that the corresponding biases are located in the fail-dangerous zone (i.e., bias<0 

indicates over-prediction of lethality). These results show that the combined use of isothermal 

data and state-dependent models is ineffective for predicting microbial inactivation in cooking 

conditions where significant sublethal injury can occur.  

The state-dependent model also was fitted to the non-isothermal calibration sets to verify 

that it was the model, rather than the isothermal calibration, that caused poor inactivation 

predictions. When applied to the non-isothermal validation sets, the RMSEs for this case (Table 

1) were reduced from the isothermal calibration model predictions, but still reached values of 
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more than 1.49 log CFU/g. Overall, the biases were ~0.8 log CFU/g, which could be considered 

as being fail-safe. Even though application of such a model might mean a safe product, it would 

also mean overprocessing, which leads to lower product yield and therefore monetary losses. 

These findings confirm that the state-dependent model is unable to effectively describe 

inactivation profiles where sublethal heating takes place, even if non-isothermal data are used to 

estimate the model parameters. 

 

Figure 2. Log reduction errors (observed-predicted) for the state-dependent model and 
path-dependent model for the turkey calibration set. 
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Figure 3. Log reduction errors (observed-predicted) for the state-dependent model and 
path-dependent model for the beef calibration set. 

 

Figure 4. Log reduction errors (observed-predicted) for the state-dependent model and 
path-dependent model for the pork calibration set. 
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3.3.4 Calibration: path-dependent model parameterization 

In comparison to the state-dependent model, the path-dependent model yielded better 

RMSEs (Table 1) in the case of beef and pork, and slightly worse values for turkey (0.43 vs. 0.66 

log CFU/g), while bias was better for all species. 

Evaluation of the residuals from the application of both the state- and path-dependent 

models to all calibration sets (Figure 2, Figure 3, and Figure 4) shows that the path-dependent 

model performed better than the state-dependent model, with maximum fail-dangerous errors of 

-3.3 and -14.7 log CFU/g, respectively. Prediction improvement by the path-dependent model is 

especially evident as sublethal history increases, showing the positive effect of accounting for 

this phenomenon in the thermal inactivation model. 

 

3.3.5 Validation: application of the path-dependent model to isothermal and non-isothermal 
data 

The use of the path-dependent model on the non-isothermal validation tests showed a 

substantial reduction in prediction error when compared to the state-dependent model (Table 1 

and Figures 5-7). All RMSEs were below 0.9 log CFU/g, which translates into a 69%, 63%, and 

82% reduction in RMSE from the state-dependent model for turkey, beef, and pork, respectively. 

This shows that the path-dependent model provides much improved accuracy, compared to the 

state-dependent model when describing data where sublethal heating has occurred. Additionally, 

all bias values are in the slight underprediction range (0.14-0.24 log CFU/g), a great 

improvement over the high overprediction biases from the state-dependent model (-1.5 to -2.6 

CFU/g). Because the negative values are considered fail-dangerous, they show that a state-
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dependent model cannot be relied upon to effectively predict microbial inactivation where non-

isothermal conditions and significant sublethal heating has occurred. 

When applied to the isothermal data, the state-dependent model also performed favorably 

(Table 1), with RMSEs comparable to those yielded by the isothermally-calibrated state-

dependent model for turkey and beef, but slightly larger in the case of pork. The bias values 

show the same trend, and results are also on the slight overprediction range. These findings 

indicate that the path-dependent model is capable to also predict microbial inactivation when 

applied to isothermal data. In contrast, when the non-isothermally-calibrated state-dependent 

model was applied to the isothermal data, results were notably poorer (Table 1). This shows that 

even when the same calibration sets were used, the path-dependent model had a better predictive 

ability than the state-dependent model. 

 

Figure 5. Log reduction errors (observed-predicted) for the state-dependent model and 
path-dependent model for the turkey validation set. 
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Figure 6. Log reduction errors (observed-predicted) for the state-dependent model and 
path-dependent model for the beef validation set. 

 
Figure 7. Log reduction errors (observed-predicted) for the state-dependent model and 

path-dependent model for the pork validation set. 
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3.4 Conclusions 

This study revealed that the use of a model that considers sublethal thermal history in 

addition to the current state of the product can predict microbial lethality with significantly 

improved accuracy when applied to cases with or without sublethal heating, and across multiple 

meat products, and therefore can be useful to assure the safety of slow-cooked meat products.  

All possible combinations between the use of isothermal and non-isothermal calibration 

and validation data sets, and the use of a state-dependent or a path-dependent model were 

analyzed for turkey, beef, and pork. Results demonstrated that isothermally-calibrated state-

dependent models, as are typically reported and used for meat products, are ineffective when 

predicting lethality in processes where significant sublethal heating has occurred, and can 

produce fail-dangerous results that could jeopardize the safety of the products in question. On the 

other hand, the non-isothermally-calibrated, path-dependent model effectively described both 

isothermal and non-isothermal data sets. Slight fail-safe values resulted when validating against 

non-isothermal data, but slight fail-dangerous errors did result when the model was applied to 

isothermal data. These systematic errors could indicate that further studies are needed to improve 

the function that describes sublethal history (τ), so that it better reflects the complex cellular 

processes of stress adaptation.   
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4. MULTI-PRODUCT, MULTI-FACTOR MODEL 

4.1 Introduction  

As described in the literature review (section 2.4.1.3), there are modeling tools available 

to predict bacterial inactivation (i.e., ComBase, PMP, AMI Lethality Spreadsheet). However, 

these lack the elements necessary to comply with the lethality performance standards set by 

federal regulations, such as addressing Salmonella or considering product characteristics. On the 

other hand, secondary models are presented extensively in scientific literature (ICMSF 1996; 

FDA/CFSAN 2000), but each addresses a different factor affecting inactivation (in addition to 

temperature), and, with few exceptions, none has been validated against industry-relevant data. 

Therefore, the problem once again is delegated to processors to find data and/or models that 

would be applicable.  

Ideally, a universal Salmonella thermal inactivation model applicable to various meat and 

poultry products would meet these requirements for the industry. Gathering inactivation data to 

understand pathogen inactivation behavior and develop models across product and processes has 

been attempted by few researchers, such as van Asselt and Zwietering (2006), Farakos and 

Zwietering (2011), and Halder and others (2010). Van Asselt gathered 4066 D-values for 

different pathogens at different temperatures in several food products and found that the 

parameter variability between sources was greater than that expected to be caused by product 

conditions (e.g., fat, pH). Farakos et al. collected DP-values (equivalent to DT-value for high 

hydrostatic pressure processes, HPP) across different temperatures, pressures, and microbial 

species in an attempt to develop global HPP inactivation models for each pathogen. They found 

that the obtained data were highly variable across these factors, especially temperature and 
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species, resulting in model parameter estimations with high standard deviations (e.g., log DPref = 

0.27±0.25 log min for Bacillus spp.). Halder defined food groups based on the USDA national 

nutrient database food groups and set out to obtain growth and inactivation data for foodborne 

pathogens from ComBase and scientific literature, with the goal of developing “comprehensive 

food safety prediction software” (Halder et al. 2010) . The study avoided treating pathogen-

specific effects as general, or being too specific on process and/or product characteristics. 

However, in the case of Salmonella, the inactivation model obtained was not sufficiently precise 

to validate industry processes in accordance to federal regulations (FSIS 2001). For example, one 

model is specified for red meat, but this food group can be understood to encompass beef, pork, 

lamb, and other meat species, not being specific enough to be used to validate a process; on the 

other hand, poultry is grouped with baby foods, soups and sauces, vegetables, and seafood, 

making the resulting model even less specific than in the red meat case.  

Additionally, independent validation of a model is critically important if the model is to 

be used for industrial applications. Few studies have considered this step, and most of those 

validated against only laboratory-setting data, often with few quantitative measures. For 

example, although Halder stated the importance of model validation, only an example using one 

model from the study is shown, and no indication is given as to whether the other obtained 

models were validated (Halder et al. 2010). Wiegand et al. (2012) did validate an inactivation 

model against industry-scale data. Among other objectives, they evaluated the thermotolerance 

of E. coli O157:H7 in beef roasts under industry-relevant cooking conditions and compared those 

results to predictions by a model with parameters obtained under isothermal conditions. They 

reported high variability from the roasts lethality data, and found that the model predictions 
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greatly overestimated lethality, shedding light onto some of the few issues encountered when 

doing this kind of validation work. Breslin also conducted industry-relevant validations, by slow-

cooking turkey, beef, or pork roasts inoculated with Salmonella (Breslin 2009). The study 

concluded that replication error significantly increases when scaling up from controlled 

laboratory experiments to pilot-scale cooks, which is an important consideration when applying 

lethality models to industry-scale processes. While insight from both projects is valuable in terms 

of scaled-up data, they do not provide quantitative means to account for the high variability 

possible in commercial applications.   

Therefore, there is a need for a validated  multi-product multi-factor Salmonella thermal 

inactivation model applicable for meat and poultry processors to use as means of complying with 

federal regulations. Therefore, the objectives of this study were to: (i) gather thermal inactivation 

data for Salmonella in poultry, beef, and pork products, (ii) compare multiple statistical methods 

to develop a multi-product multi-factor thermal inactivation model and its corresponding 

prediction intervals, and (iii) validate candidate models against industry-relevant, pilot-scale 

inactivation data. 

4.2 Materials and Methods 

4.2.1 Data compilation 

To develop a multi-product multi-factor thermal inactivation model (i.e., a model suitable 

for predicting Salmonella thermal inactivation in various types of meat and poultry products and 

under differing conditions), all the relevant published raw data ideally should be compiled. Apart 

from laboratory data developed within our research group at Michigan State University, other 

data sets were sought in the electronic database ComBase (ComBase 2012) and in scientific 
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literature. To comply with the model goal described above, the data ultimately selected had to 

fulfill the following requirements: 

1. Data had to describe Salmonella thermal inactivation: log N vs. time or log N/N0 vs. time 

at constant or variable temperature. Plots of (a) log N vs. time, or (b) log N/N0 vs. time 

with multiple sets indistinguishable from each other on one graph, were not used. This 

was because, for (a), it was impossible to determine which data points belonged to each 

set and thus obtain the standardized log N/N0 value needed for parameter determination; 

and in the case of (b) it would not be possible to distinguish between data sets (see Figure 

8), a factor needed for the mixed-effects statistical method (explained in detail in section 

4.2.3.2). D- and z-values are the result of fitting raw data to the traditional log-linear 

model. Therefore, these values, without raw log N or log N/N0 data, were not sufficient 

for the model development. 

2. Data from Salmonella Senftenberg were not included, as this serovar is significantly 

more heat resistant than the rest of the serovars and is not linked to meat or poultry 

outbreaks (Goepfert et al. 1970; CDC 2011; Smith et al. 2001). 

3. If experiments were done in replicates, the corresponding number of data points was 

expected (i.e., triplicate: 3 log N/N0 points per time point); averaged values were already 

manipulated data, so they were not included in the raw data pool. 

4. Muscle type (ground or whole), and species (e.g., turkey, beef, or pork) had to be stated. 



51 

 

5. Degree of grinding was not considered, as this variable does not affect Salmonella 

thermal inactivation (Mogollon et al. 2009). 

6. Samples of any size/weight were considered. However, meat had to be inoculated raw 

and then cooked to simulate industrial processes. 

7. Meat fat percentage (%) had to be reported. 

A raw “data set” was considered to be a complete series of log N/N0 vs. time observations at 

constant or variable temperature in one experimental trial. Each observation was then considered 

to be an individual raw data point (Figure 8). 

 

 

Data at 58°C 

time (sec) log N/N 0 

0 0 

140 -0.7285 

280 -1.2047 

420 -2.4520 

560 -3.3073 

 

Figure 8. Definition of "data set" and "data point" for raw data. 

Data set  

Data point  



52 

 

The general approach was to include or exclude data sources following the above 

guidelines. The specific search methods in each case are described in detail in the following 

sections.  

4.2.1.1 MSU laboratory data 

The raw data collected from MSU and used for model development were all isothermal 

and came from the following experimental studies: (Breslin 2009), (Carlson et al. 2005), 

(Mogollon et al. 2009), (Orta-Ramirez et al. 2005), (Tuntivanich et al. 2008), (Velasquez et al. 

2010), and (Wesche et al. 2005). For Carlson, only the data with the original product moisture 

was considered, as the model will not consider moisture content explicitly. In the case of 

Wesche, the data including pre-injured cells were ignored.  For the rest, the isothermal data in 

both ground and whole muscle were considered. 

4.2.1.2 Scientific journals 

Relevant data from other research groups were sought electronically via searches of the 

Thomson Reuters’ Web of Knowledge (Reuters 2011). Multiple combinations for the following 

search terms were used under the fields for Topic and Title: 

• Salmonella 

• Heat(ing) 

• Thermal 

• Inactivation 

• Temperature 

• Turkey 

• Beef 

• Pork 

• Poultry 

• Meat 

• Ground 

• Whole 

• Whole muscle 

• Fat 

• Effect of… 
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• Resistance 

• Survival 

• Cooking 

• Processing 

• Lethality 

• Inoculated 

• Tolerance 

 

Once all possible articles were listed, a complete copy of each paper was obtained either 

electronically or, for those not available online, through the MSU Library, to verify whether met 

criteria described in section 4.2.1. From this second evaluation, it was not possible to obtain raw 

data from some of the articles, so they were set aside, and their data sought in ComBase (see 

section 4.2.1.3). For the remainder, the available data sets were added to the pool to be used in 

this study. 

4.2.1.3 ComBase Browser 

As mentioned in section 2.4.1.3.3, ComBase is an online resource where food 

microbiology data are submitted from research groups on a voluntary basis. Although most of 

the data describe microbial growth, several sets for thermal inactivation where successfully 

obtained. The search parameters used to find relevant data were: 

• Food type: Beef, Pork, Poultry 

• Organisms: Salmonella spp 

• Atmosphere: all selected 

• Preparation: all selected 

• Additives: all selected 

• Other: all selected 
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• Temperature: 54°C to 120°C 

• pH: 4.0 – 7.5 (default settings) 

• Water activity: 0.71 – 1.0 (default settings) 

As with the scientific journals, a second review was done on the initially collected data to 

ensure that the data complied with the criteria described in section 4.2.1. In addition, sources 

providing only D- and/or z-values were sought in the Web of Knowledge index and/or through 

other sources to see whether raw data could be obtained from them. 

4.2.2 Model development 

As described in section 3.2.1, the primary model can be described with a log-linear 

relationship: 

bt
N

N
S −==

0
loglog      (9) 

where S is the survival ratio, N is the number of microorganisms at time t, and N0 is the initial 

microorganism population. In this work, the expression “log reduction” will be used, just as in 

the federal regulation; log reduction is equivalent to the negative of the survivor ratio (i.e., -log 

S).  For this project, log-linear bacterial inactivation was assumed because, as described in 

section 3.3.2, AICc results indicated that this model was superior to the Weibull model (n≠1 in 

equation (2)) when describing the source data. Indeed, the results from section 3 show that the 

log-linear model performed well in describing both the isothermal and non-isothermal data 

(Table 1).  Also, there is no known usage of non-log-linear inactivation models in the meat and 
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poultry industry or associated regulations. Therefore, to maximize the likelihood that the results 

of this study will be useful, it is reasonable to begin with the log-linear assumption. Additionally, 

the purpose of this work is to shed light onto the consequences of gathering data from different 

sources, not to address specific effects of tailing and similar non-log-linear phenomena that are 

addressed with non-log-linear models. Overall, this study does not suggest that the log-linear 

model is always the best choice, but only that it is the best for the data and goals of this study. 

  Parameter b, the rate of inactivation, can be described by a variety of secondary models, 

including an Arrhenius-type secondary model dependency for temperature  (Stasiewicz et al. 

2008), which is the most important factor for thermal inactivation (Jay et al. 2005): 
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Although other models could also be suitable, the Arrhenius model has been shown to 

work in other studies. For example, a section of the study by McQuestin et al. (2009) assessed 

the goodness-of-fit between the Arrhenius temperature dependency and “other empirical 

equations” when fitted to inactivation data of Escherichia coli in fermented meat; the study 

concluded that the Arrhenius version was more adequate for describing the data (RMSE of 1.01 

vs. 1.19 log CFU/g for the empirical model).  Xu et al. fitted Bigelow and Arrhenius models to 

Bacillus anthracis thermal inactivation data, and found that the Arrhenius version described the 

data better (R
2
>0.99 in all strains, vs. R

2
~0.86-0.94 for the Bigelow model) (Xu and others 

2006). Stasiewicz et al. (2008), among other objectives, used Salmonella inactivation data to fit 

Arrhenius, log-logistic, and empirical models; results showed that the Arrhenius version gave the 

best fit to the model parameters (RMSE of 0.16 log CFU/g vs. 0.45 and 0.23 log CFU/g for log-
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logistic and empirical models, respectively). Based on these results and preliminary analyses of 

the data included in the study, the Arrhenius temperature dependency was used. 

From section 2.3, other factors that can be considered to include in the secondary model 

include fat, muscle type, moisture, sublethal injury, and media.  From these, moisture, cold shock 

injury, and starvation injury were excluded from the model. In the case of moisture content, fat 

percentage in the product was sufficient to account for these two factors, as they are inversely 

proportional to each other (section 2.3). Cold and starvation shock were excluded because, apart 

from the lack of data to obtain their describing parameters, it is not feasible, with current 

technology, to quantify them during processes. For media, meat products from turkey, beef, and 

pork were chosen due to their dominance in the available data pool. Therefore, the final version 

for the secondary model was established as:            
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The meaning of each parameter and variable is described in Table 2. Except for the case 

of temperature, a simple relationship was chosen for all parameters, as their mathematical 

association to lethality has not yet been determined. Additionally, this allowed the model to 

remain simple, which was beneficial when individually determining the effects of each factor. 
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Table 2. Description of parameters and variables for secondary model. 

Parameter or 
Variable Description 

b 
b, inactivation rate (min), dependent on T, τ, F, M, Y, B, and P (see definitions 
below) 

bref Inactivation rate (min
-1

) at a reference temperature Tref 

T Product temperature (K), dependent on process time (t) 

Tref Reference temperature (K) 

τ Thermal sublethal (injury) history (K·min). Explained in detail in section 3.2.1, 
(Stasiewicz et al. 2008) 

F Meat product fat content (%) 

M 
Muscle structure of the meat product. M = 1 for ground meat, M = 0 for whole 
muscle 

Y Variable takes value of 1 if meat product is poultry. Otherwise, it is 0 

B Variable takes value of 1 if meat product is beef. Otherwise, it is 0 

P Variable takes value of 1 if meat product is pork. Otherwise, it is 0 

β1 Temperature parameter (K). Describes the effect of temperature on b 

β2 Sublethal history parameter (K·min)
-1

. Describes the effect of τ on b 

β3 Fat content parameter (%
-1

). Describes the effect of F on b 

β4 Muscle type parameter (unitless). Describes the effect of M on b 

β5 Species parameter (unitless). Describes the effect of Y on b  

β6 Species parameter (unitless). Describes the effect of B on b 

β7 Species parameter (unitless). Describes the effect of P on b 

 

4.2.3 Non-linear parameter estimation 

Two methods for model calibration were used on the different versions derived from 

equation (10): the ordinary least squares method, and the mixed-effects method. Each one is 

detailed in the following sections. For initial estimates, the parameter values obtained from 
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section 3 were used. In addition, model parameters were recalculated by varying these initial 

estimates by at least 500%, and were compared to the original calibration values to test for 

parameter sensitivity to initial estimates.  

To estimate the sublethal history parameter (β2), the collected isothermal data were not 

useful because of the parameter’s nature (equation (4)). Therefore, the parameter values used in 

the models were based on those found from the studies in section 3 (Table 1).  

The statistical measures of performance obtained from each model fitting were the RMSE 

(a measure of the goodness-of-fit), the bias (mean residuals), and the AICc (Akaike’s 

information criterion corrected for finite sample sizes, as described in section 3.2.7 ). 

4.2.3.1 Ordinary least squares (OLS) method 

4.2.3.1.1 Theory 

The ordinary least squares method (OLS) tests different parameter values to minimize the 

sum of squares of the errors. For these tests, the residuals were defined as the difference between 

the experimental log reductions and the log reductions predicted by the model: 

Error = log reduction experimental – log reduction predicted 

4.2.3.1.2 Parameter estimation 

As mentioned in section 4.2.3, the values used for the sublethal injury parameter (β2) 

were those estimated from section 3. In addition, for the OLS method, the temperature effect was 

accounted for using only the MSU data. This was because: 
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• The inactivation rates resulting from the MSU data and the information from other sources 

were highly different; for example, for ground pork at 60°C, D-value was 6.21 min from a 

study by Juneja and others (2000b), while it was 0.99 min from a MSU study (Velasquez et 

al. 2010). Using them both together with the OLS method would cause the prediction 

intervals to be particularly large, which would not be useful for our purposes. 

• Data differences between sources could not be explained from simple analysis of the data and 

acquisition methods, so it was not possible to scale all the data to a common baseline. 

• Most of the data obtained for model calibration and all the data for pilot-scale validation 

came from MSU, so by choosing the MSU data to parameterize the temperature effect, better 

consistency across data sets would be kept. 

This also meant that it would not be possible to estimate the fat parameter (β3), as the 

MSU data did not contain studies analyzing the effect of fat on thermal inactivation. Therefore, 

the parameter used was obtained with model regression from data that did study this effect 

(Juneja et al. 2001; Juneja and Eblen 2000; Juneja and others 2000b). First, an optimum Tref was 

calculated (procedure described below) with these data, and then model parameters were 

estimated using MATLAB’s nlinfit function (described in section 3.2.7). The β3 used in the final 

OLS models was based on the parameter obtained from this procedure.  

For parameter estimation, the first step was to find an optimum reference temperature 

(Tref) to minimize errors in future calculations (Datta 1993). The process chosen minimizes the 

correlation coefficient between the inactivation rate parameter (bref) and the temperature 
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dependency parameter (β1) (Dolan et al. 2007). To do this, the parameters related to Tref (bref 

and β1, equation(2)) were estimated several times while varying Tref. For each case, the 

correlation coefficient between bref and β1 was plotted against Tref. The optimum Tref is the one 

at which the correlation coefficient is a minimum (in this case, r~1x10
-4

). 

Parameter estimation was done using MATLAB’s nlinfit function A sample code can be 

found in section 6.3.1. For parameterization, different versions of the “full” model (equation 

(10)) were independently calibrated. This is because, even though all factors described by the 

model are relevant, the model with the most parameters is not necessarily the best (Zwietering 

and den Besten 2011; Motulsky and Christopoulos 2004). Following a naming convention, the 

model took the initials of the factors it included (i.e., T F (w) model includes temperature and fat 

effects, and uses the whole-muscle data for obtaining parameters). The models tested are shown 

in Table 3. Note that the fat and sublethal history parameters (β2 and β3) were obtained 

separately as mentioned at the beginning of this section.  
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Table 3. Versions of the "full" model parameterized with OLS method. 

Model 
name

♦
 

Factors 
included Factors excluded 

Data set(s) used for 
parameterization* 

Parameters 
in model 

No. of 
models 

T (g)  Temperature 

 Fat  

 Muscle type 

 Sublethal history 

 Species  

 G turkey 

bref, β1 3  G beef 

 G pork 

T F (g) 
 Temperature 

 Fat 

 Muscle type 

 Sublethal history 

 Secies  

 G turkey 

bref, β1, β3 3  G beef 

 G pork 

T τ (g) 
 Temperature 

 Sublethal history 

 Fat 

 Muscle type 

 Species  

 G turkey 

bref, β1, β2 3  G beef 

 G pork 

T F τ 
(g) 

 Temperature 

 Fat 

 Sublethal history 

 Muscle type 

 Species 

 G turkey 
bref, 

β1, β2, β3 
3  G beef 

 G pork 

T(w)  Temperature 

 Fat 

 Muscle type 

 Sublethal history 

 Species  

 W turkey 

bref, β1 3  W beef 

 W pork 

T F 
(w) 

 Temperature 

 Fat 

 Muscle type 

 Sublethal history 

 Species  

 W turkey 

bref, β1, β3 3  W beef 

 W pork 

T τ 
(w) 

 Temperature 

 Sublethal history 

 Fat 

 Muscle type 

 Species  

 W turkey 

bref, β1, β2 3  W beef 

 W pork 

T F τ 
(w) 

 Temperature 

 Fat 

 Sublethal history 

 Muscle type 

 Species 

 W turkey 
bref, 

β1, β2, β3 
3  W beef 

 W pork 

*G: ground muscle, W: whole muscle 
♦
(g): model calibrated with ground-muscle data, (w): model calibrated with whole-muscle data 
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4.2.3.1.3 Prediction intervals 

A 95% prediction interval (PI) is the region around a predicted value where a new 

individual observation is expected to fall with a confidence of 95%. In contrast, a 95% 

confidence interval (CI) is the region around a predicted value where the mean of new 

observations is expected to fall with a confidence of 95% (Motulsky and Christopoulos 2004). 

Although CIs are more commonly used in model predictions, the application of our model in 

food safety requires the use of PIs, because food safety goods should be based on the safety of 

individual servings, not on the mean. 

When using the OLS method, there are two ways to calculate a close approximation of 

the asymmetric PIs. The first is to use the nlpredci function in MATLAB, which gives the 

asymptotic PIs. Although these are good approximate PIs, their width can be further 

approximated to the asymmetric value by further parameter estimation with the ellipse method 

via QR decomposition (Bates and Watts 1988), bootstrapping (Mishra and others 2011), or 

Monte Carlo (van Boekel 1996) simulations. These will be referred to as the PI methods from 

this point forward. As our objective is to estimate PIs useful to industry (i.e., those that are both 

reliable and small estimates), the PI methods were preferred over the nlpredci function in 

MATLAB. 

The end result of the PI methods is a region made of nsim different combinations of 

possible parameter values with a 1-α confidence (when α = 0.05, confidence = 95%), where nsim 

is the number of simulations executed. Carrying out these methods with two parameters gives a 

contouring area; three parameters would mean the creation of a three-dimensional space; using 

four parameters would add another dimension, and so on. In level of complexity, the ellipse 
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method is the simplest, followed by bootstrapping, and finally by the Monte Carlo simulations. 

For each case of parameter estimation (Table 3), the three methods were carried out in 

MATLAB, and compared against each other to determine the best approach for calculating PIs. 

Although it is possible to use any number of parameters, studies where the PI methods 

are applied on models with more than two parameters are extremely scarce, as the methodologies 

for the use of more than two dimensions are not well developed (Dolan 2012). For that reason, a 

different empirical approach had to be taken for the model cases with 3 or more parameters. The 

two parameters chosen as main factors in the PI methods were bref and β1. This is because the 

reference inactivation rate (bref) and temperature (β1) are the most determinant parameters for 

thermal inactivation. The PIs calculated with these two parameters will be known as the main PIs 

from this point forward. To calculate the PI when the remaining parameters (β2, β3, etc) were 

used, it was determined that the main PI would be used and then it would be modified by adding 

the remaining parameter confidence intervals to account for their variability. This empirical 

approach would inevitably make the PIs wider, but the other option would have been to develop 

three- and four- dimensional regions – work that is much beyond the scope of this project. 

Once the best PI method was chosen, to obtain the PI for each validation data set, a 

prediction was calculated with each of the nsim parameter combinations. This yielded nsim 

predictions, which were arranged in increasing (or decreasing) order. The 2.5% and 97.5% 

values represented the upper and lower PI for the data set in question. 
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4.2.3.2 Non-linear mixed-effects (NLME) method 

4.2.3.2.1 Theory 

 All statistical models are composed of variables, which change value depending on the 

conditions the model is using to estimate (e.g., temperature (T) in equation (6)), and fixed 

effects, which are the model parameters – values related to an entire population or with 

repeatable levels of experimental factors (e.g., bref in equation (6)) (Pinheiro 2000). In addition, 

some models include a random effect, which are values linked with “individual experimental 

units drawn at random from a population” (Pinheiro 2000). In the case of this project, an 

“experimental unit” would be a data set (Figure 8). A mixed-effects model is a model that 

incorporates both fixed and random effects, such as that shown by the simple linear equation 

(11). Here, yi is the model prediction for the i
th

 “experimental unit”, x is the predictor, m and b 

are the fixed effects (model parameters), and the random effect for the i
th

 “experimental unit” is 

symbolized by ξi. 

�� = �� + � + 	�  

   (11) 

A simple graphical way to represent a mixed-effects model is shown in Figure 9. Here, we have 

two different representations of a linear model (y=mx+b). The first shows a “random” 

distribution in the y-axis intercept b, while the second shows the same for the lines’ slopes m. 

Therefore, in mixed-effects modeling, a random effect would be associated with the intercept 

parameter b in the first case, while it would be associated with the slope parameter m in the 

second case. When parameterizing any of the model versions derived from equation (10), the 
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fitting software would evaluate the variability caused by the “experimental units” on each of the 

model parameters (bref, b1, b2, etc), and determine which one would carry a random effect. 

 

 

Figure 9. Graphical representations of mixed-effects models. 

 

For the purpose of developing a multi-product multi-factor model with Salmonella 

inactivation data from different sources, the use of a mixed-effects model for repeated measures 

is extremely helpful. This is because these types of models are designed to handle data 

“generated by observing a number of individuals repeatedly under differing experimental 

conditions where the individuals are assumed to constitute a random sample from a population of 

interest” (Lindstrom and Bates 1990). Basically, if we assume the “population of interest” to be 

all the data describing Salmonella thermal inactivation in meat and poultry products, and a 

“random sample of individuals” treated under “differing experimental conditions” to be the data 

obtained from different laboratory settings, then the mixed-effects model would be able to 

characterize all the data sets accounting for the variability generated by different research groups. 

 

Random effect in intercept parameter 

y 

x x 
Random effect in slope parameter 

y 
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4.2.3.2.2 Parameter estimation 

Parameter estimation was done using the non-linear mixed-effects (nlme) function from 

the R statistical package (R: A Language and Environment for Statistical Computing, Vienna, 

Austria, 2011). This function fits a nonlinear mixed-effects model using the formulation and 

computational methods described in Lindstrom and Bates (Lindstrom and Bates 1990). A sample 

code for this method can be found in section 6.3.2. 

To determine which parameters carried a random effect, several versions of the model 

were fitted, associating a random effect with one parameter each time. The statistical measures to 

determine the most appropriate model were AICc, RMSE, and variance of the random effect. For 

AICc and RMSE, the model yielding the lowest values of both would be preferred.  For the 

variance of the random effect, a large value is desired, because its approximation to zero would 

mean there is no unexplained variability between data sets, thus no random effect associated 

(Pinheiro 2000). After the final model version was selected, the rest of the data were analyzed.  

As with the least squares method (section 4.2.3.1.2), different versions for the “full” 

model (equation (7)) were parameterized. The same naming convention was followed; the model 

took the initials of the factors it described (e.g., T F (g) model describes temperature and fat 

calibrated with ground-muscle data). The models tested are described in Table 4. 
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Table 4. Versions of the "full" model parameterized with mixed-effects method (continued 
next page). 

Model 
name

♦
 

Factors 
included Factors excluded 

Data set(s) used for 
parameterization* 

Parameters 
in model 

No. of 
models 

T (g)  Temperature 

 Fat 

 Muscle type 

 Sublethal history 

 Species  

 G  turkey 

bref, β1 3  G beef 

 G pork 

T (w)  Temperature 

 Fat 

 Muscle type 

 Sublethal history 

 Species  

 W  turkey 

bref, β1 3  W beef 

 W pork 

T F  
(g) 

 Temperature 

 Fat 

 Muscle type 

 Sublethal history 

 Species  

 G  turkey 

bref, β1, β3 3  G beef 

 G pork 

T F 
(w) 

 Temperature 

 Fat 

 Muscle type  

 Sublethal history 

 Species  

 W turkey 

bref, β1, β3 3 W beef 

 W pork 

T F τ 
(g) 

 Temperature 

 Fat 

 Sublethal history 

 Muscle type 

 Species  

 G turkey bref, 

β1, β2, β3 
 

3  G beef 

 G pork 

T F τ 
(w) 

 Temperature 

 Fat 

 Sublethal history 

 Muscle type 

 Species  

 W turkey 
bref, 

β1, β2, β3 
3  W beef 

 W pork 

T F S 
(g) 

 Temperature 

 Fat 

 Species 

 Muscle type 

 Sublethal history 
G turkey, beef, pork 

bref, 

β1, β3, β5,  
β6, β7 

1 

T F S 
(w) 

 Temperature 

 Fat 

 Species 

 Muscle type 

 Sublethal history 
W turkey, beef, pork 

bref, 

β1, β3, β5,  
β6, β7 

1 

*G: ground muscle, W: whole muscle 
♦
(g): model calibrated with ground-muscle data, (w): model calibrated with whole-muscle data. 

Where not present, model was calibrated with both ground- and whole-muscle data. 
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Table 4 (cont’d). Versions of the "full" model parameterized with mixed-effects method 
(continued next page). 

Model 
name

♦
 

Factors 
considered Factors left out 

Data set(s) used for 
parameterization* 

Parameters 
in model 

No. of 
models 

T F S τ 
(g) 

 Temperature 

 Fat 

 Species 

 Sublethal history 

 Muscle type G turkey, beef, pork 

bref, 

β1, β2, β3,  
β5, β6, β7 

1 

T F S τ 
(w) 

 Temperature 

 Fat 

 Species 

 Sublethal history 

 Muscle type W turkey, beef, pork 

bref, 

β1, β2, β3,  
β5, β6, β7 

1 

T F M 

 Temperature 

 Fat 

 Muscle type 

 Sublethal history 

 Species  

 G + W turkey 
bref,  

β1, β3, β4 
3  G + W beef 

 G + W pork 

T F M 
τ 

 Temperature 

 Fat 

 Muscle type 

 Sublethal history 

 Species  

 G + W turkey 
bref,  

β1, β2, β3,  
β4 

3  G + W beef 

 G + W pork 

T F M 
S 

 Temperature 

 Fat 

 Muscle type 
Species 

 Sublethal history 
G + W 

Turkey, beef, pork 

bref,  

β1, β3, β4, 

β5, β6, β7 

1 

T F M 

τ S 

 Temperature 

 Fat 

 Muscle type 

 Sublethal history 
Species 

 None 
G + W 

Turkey, beef, pork 

bref, 

β1, β2, β3,  
β4, β5, β6,  

β7 

1 

*G: ground muscle, W: whole muscle 
♦
(g): model calibrated with ground-muscle data, (w): model calibrated with whole-muscle data. 

Where not present, model was calibrated with both ground- and whole-muscle data. 
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4.2.3.2.3 Prediction intervals 

The importance of PIs for our application is described in section 4.2.3.1.3.  For the nlme 

method, the approach taken was that described by Gelman (Gelman and Hill 2007) (pp.272-275) 

with the addition of Monte Carlo simulations. These calculations were also carried out in R. A 

sample code for this method can be found in section 6.3.2. The code imported a validation data 

set, and computed PIs doing nsim Monte Carlo simulations taking into account the random effect 

and residual variances. As described in section 4.2.3.1.3, the simulations were carried out nsim 

times, yielding nsim predictions that were arranged in increasing (or decreasing) order to obtain 

the 2.5% and 97.5% percentiles, representing the upper and lower PI values for the 

corresponding data set. 

4.2.4 Model validation against pilot-scale data 

Validation of a model against independent data is of utmost importance to determine 

model performance. In addition, it provides insight into model suitability in cases where it is 

tested outside its application range (Halder et al. 2010). Although manuscripts describing thermal 

lethality abound in scientific journals, very few of them validate the resulting models. From these 

few studies, most are validated against other laboratory-based data (Mattick and others 2001; 

Peleg and others 2007), and the rationale for selecting a specific data set is rarely reported 

(Corradini and Peleg 2009; Vaidya and Corvalan 2009; Aragao and others 2007; Peleg et al. 

2007). In a few other instances, a validation is carried out, but few statistical parameters to 

describe goodness-of-fit or quantify model performance are reported (Vaidya and Corvalan 

2009; Porto-Fett and others 2008; Sallami and others 2006). While all these works provide 



70 

 

valuable information on their research topics, their results are not directly applicable for 

validating industrial processes. If a thermal inactivation model is to be useful for lethality 

predictions in independent tests, it is essential that the model be suitably validated. For our 

application, it is imperative that the models be tested against data produced under pilot-scale, 

industry-like conditions. For these reasons, each model was validated against the pilot-scale sets 

of data described in the following sections, from both rapid (i.e., impingement) and slow 

convection processes. For each validation data set, the following statistical values were 

calculated: RMSE, bias (mean residual), maximum error (fail-safe), minimum error (fail-

dangerous), and percentage (%) of data points that fell within the PIs and above the fail-

dangerous PI. 

4.2.4.1 Steaks/fillets and patties in impingement oven 

These tests involved the cooking of Salmonella-inoculated (~10
7
 – 10

8
 CFU/g) whole-

muscle cuts, and ground and formed patties in a pilot-scale, moist-air impingement oven, as 

reported in detail by Hildebrandt (2012a). Overall, the samples (chicken breast fillets, beef steaks 

from boneless round roasts, pork chops from boneless loin, and ground and formed patties of 

turkey, beef, and pork) were ~120 g and ~11-12 mm thick, with fat contents of 0.33 to 10%. 

There were 6 different cooking treatments, which combined conditions relevant to commercial 

applications: oven air temperature (149 or 204°C), humidity (20 or 50% moisture by volume), 

and target lethality (4 or 6 log reduction, in order to have reliable survivor counts). The full 

factorial combination of the treatments (in triplicate for steaks/fillets, in duplicate for patties) 

yielded a total of 144 data points, with total cooking times of 4 to 11 min.  All raw data obtained 
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from these experiments complied with the criteria described in section 4.2.1, and were comprised 

of log reduction results for the product cores.  

4.2.4.2 Whole-muscle roasts 

These experimental data, from Breslin (2009), resulted from pilot-scale, slow cooking of 

Salmonella-inoculated (~10
6.5

 CFU/g at the core) turkey breast, beef round, and pork loin roasts 

in a commercial, moist-air convection oven. Roast sample size was ~680 g. There were 7 

different cooking schedules representing industry processes, which combined the following 

parameters: cook (in-bag or out-of-bag), time (total cook time 86-253 min), oven temperature 

(constant at 93.3°C or ramp-up), and humidity (20, 50, or 78% RH). All raw data obtained from 

these experiments complied with the parameters described in section 4.2.1. However, only the 

data in which cooks were done to a specified lethality were taken into account, ignoring those 

which reached 71.1°C, because those generally yielded no survivors. 

4.2.4.3 Hot dogs 

For these experiments, commercially formulated beef and turkey emulsions (batter) were 

acquired from a local processor, inoculated with Salmonella (~10
8
 CFU/g), vacuum-stuffed, and 

cooked in a pilot-scale convection oven using a cook schedule for low-fat hot dogs similar to that 

used in industry. Samples were ~60 g (~15.5 cm long, 2 cm diameter) and had a thermocouple 

inserted for temperature logging. The cooking cycle increased temperature (60 to 82 °C) and 

humidity (38 to 79%RH) over ~145 min. Cooking was stopped by quenching the samples in 

liquid nitrogen when the data-logger signaled a predicted lethality of 4 or 6 log. All raw data 
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obtained from these experiments complied with the parameters described in section 4.2.1. A 

more detailed description of the tests can be found in section 0. 

4.3 Results and discussion 

4.3.1 Data compilation results 

Table 5 shows a description of the data obtained from the MSU studies. Although the 

experiments did not include the effect of fat percentage (%) on Salmonella inactivation, the data 

provided valuable information with respect to muscle type.  

 

Table 5. MSU data characteristics by source. 

*See Figure 8 for illustration and definition of data point and data set (section 4.2.1). 

 

Reference 
Species and 
muscle type 

Data 
points* 

Data 
sets* 

Test 
temperatures Fat % 

Breslin (2009) 
Ground beef 156 21 55, 58, 60, 62, 

63°C 
2.7% 

Whole beef 164 25 

Carlson et al. (2005) Ground turkey 22 4 60°C 1.8% 

Mogollon et al. (2009) 
Ground beef 67 7 

60°C 4.5% 
Whole beef 22 2 

Orta-Ramirez et al. (2005) 
Ground beef 80 10 

55, 60, 62.5°C 5.6% 
Whole beef 27 6 

Tuntivanich et al. (2008) 
Ground turkey 90 9 

55, 60, 62.5°C 1% 
Whole turkey 67 9 

Velasquez et al. (2010) 
Ground pork 121 16 55, 58, 60, 62, 

63°C 
2.5% 

Whole pork 120 15 

Wesche et al. (2005) Ground turkey 48 6 60°C 1.5% 
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Regarding data from other research groups, a total of 36 journal articles from 12 different 

journals were considered possible sources for inactivation data. After applying the criteria set in 

section 4.3.1, 4 journal articles were selected for our database, with all of them directed to 

ComBase for raw-data search. 

From the 43,153 total data sets available in ComBase at the time of the initial search, 419 

matched the characteristics from section 4.2.1.3. From these, 106 data sets were selected 

according to the criteria previously described for the study (section 4.2.1). The raw data missing 

from scientific articles (section 4.2.1.2) were available to download from ComBase, allowing the 

completion of the data pool.  

Because these data were ultimately pooled with the combined searches from previous 

literature and ComBase, it is fitting to present the results as one (Table 6). While muscle type 

was not addressed in these studies, the data sets provide beneficial information regarding fat 

percentage (%) in the meat products. 

 

Table 6. Scientific journals and ComBase Browser data characteristics by source. 

Reference Species and 
muscle type 

Data 
points 

Data 
sets 

Test 
temperatures 

Fat % 

Juneja et al. (2001) Ground turkey 244 32 58, 60, 62.5, 65°C 1, 7, 10, 12% 

Juneja (2003) Ground beef 44 6 55, 57.5, 60°C 25% 

Juneja and Eblen 
(2000) 

Ground beef 100 12 58, 60, 62.5, 65°C 7, 12, 18, 24% 

Juneja et al. 
(2000b) 

Ground beef 202 24 58°C 7, 12, 18, 24% 

Ground pork 268 32 58, 60, 62.5, 65°C 4, 10, 24, 28% 
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Table 7 shows the characteristics for all the data compiled. Beef comprised most of the 

collected data, particularly the ground product, while the least common data were for whole-

muscle turkey, with only 9 data sets with 67 data points. Both the MSU data and those from 

other sources included the temperature effect on Salmonella inactivation with a useful range of 

temperatures. Generally, the MSU data focused on assessing the effect of muscle type, while 

those from other sources included varying fat content. This shows that, depending on the 

application, merging results from different studies could be beneficial in trying to explain 

different phenomena that have not been studied together. In this case, the merged data showed 

great variability across source studies, due to different sample preparation, processing, and 

recovery methods. Therefore it was decided that both methods of parameter estimation would be 

used to obtain the multi-product multi-factor model: the standard non-linear estimation (OLS) 

(section 4.2.3.1), and the mixed-effects method (section 4.2.3.2). 

 

Table 7. Final compiled data characteristics and sources (continued next page). 

Data characteristics MSU data  Scientific journals and 
ComBase Browser 

All sources 

All data 

Data points 995 908 1903 

Data sets 134 106 240 

Temperature range 55 - 63°C 55 - 65°C 55 - 65°C 

Fat % range 1 – 5.6% 1 – 28% 1 – 28% 

Ground Turkey 

Data points 160 244 448 

Data sets 19 32 59 

Temperature range 55 – 62.5°C 58 - 65°C 55 - 65°C 

Fat % range 1 – 1.8% 1 – 12% 1 – 12% 
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Table 7 (cont’d). Final compiled data characteristics and sources. 

Data characteristics MSU data 
 Scientific journals and 

ComBase Browser All sources 

Whole Turkey 

Data points 67 - 67 

Data sets 9 - 9 

Temperature range 55 – 62.5°C - 55 – 62.5°C 

Fat % range 1% - 1% 

Ground Beef 

Data points 303 352 655 

Data sets 38 42 80 

Temperature range 55 - 63°C 55 - 65°C 55 - 65°C 

Fat % range 2.7 – 5.6% 7 – 25% 2.7 – 25% 

Whole Beef 

Data points 224 - 224 

Data sets 29 - 29 

Temperature range 55 - 63°C - 55 - 63°C 

Fat % range 2.7 – 5.6% - 2.7 – 5.6% 

Ground Pork 

Data points 121 268 389 

Data sets 16 32 48 

Temperature range 55 - 63°C 58 – 65°C 55 - 65°C 

Fat % range 2.5% 4 – 28% 2.5 – 28% 

Whole Pork 

Data points 120 - 120 

Data sets 15 - 15 

Temperature range 55 - 63°C - 55 - 63°C 

Fat % range 2.5% - 2.5% 
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4.3.2 OLS model parameters, statistics, and PIs 

The reference temperatures obtained for each data set are shown in Table 8. As expected, 

the reference temperature falls approximately in the middle of the lethal temperature range data 

in the data pool. The obtained parameters and corresponding statistics for the OLS model are 

shown in Table 9. Note that the RMSE and bias for the models does not change by the addition 

of the estimated β2, the sublethal injury parameter from section 3, as the tests are carried out in 

temperature ranges above that of the sublethal injury region. On the other hand, β2 should prove 

useful when validating the pilot-scale data, especially the longer-cook roasts. The standard and 

relative errors for the model parameters of all model versions, including the fits made to obtain 

β3, can be found in section 6.5.1. The correlation coefficients can be found in section 6.6.1.  

Table 8. Reference temperatures by data set. 

Data Reference temperature (Tref, °C)* 

Ground turkey 59.5943 

Ground beef 59.7356 

Ground pork 59.0460 

Whole turkey 58.9800 

Whole beef 59.4870 

Whole pork 59.2068 

        *Temperature in models is in K. 
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Table 9. Parameters and statistics for OLS models (calibrated with only MSU data). 

Data 
source for 
calibration 

Model 

Parameters Statistics 

bref ββββ1 ββββ2* ββββ3** RMSE Bias 

min
-1

 K K
-1

 fat % 
-1

 log (CFU/g) 

Ground 
turkey 

nobs = 160 

T (g) 1.11 52,269 - - 1.21 -0.04 

T F (g) 1.11 52,269 - 0.0300 1.24 -0.13 

T τ (g) 1.11 52,269 0.0017 - 1.21 -0.04 

T F τ (g) 1.11 52,269 0.0017 0.0300 1.24 -0.13 

Whole 
turkey 

nobs = 67 

T (w) 0.37 48,589 - - 0.42 0.003 

T F (w) 0.37 48,589 - 0.0300 0.43 -0.03 

T τ (w) 0.37 48,589 0.0017 - 0.42 0.003 

T F τ (w) 0.37 48,589 0.0017 0.0300 0.43 -0.13 

Ground 
beef 

nobs = 303 

T (g) 0.83 44,242 - - 0.77 -0.02 

T F (g) 0.83 44,242 - 0.0227 0.80 -0.18 

T τ (g) 0.83 44,242 0.0018 - 0.77 -0.02 

T F τ (g) 0.83 44,242 0.0018 0.0277 0.80 -0.18 

Whole beef 

nobs = 224 

T (w) 0.44 44,799 - - 0.87 -0.03 

T F (w) 0.44 44,799 - 0.0227 0.87 -0.16 

T τ (w) 0.44 44,799 0.0018 - 0.87 -0.03 

T F τ (w) 0.44 44,799 0.0018 0.0277 0.87 -0.16 

Ground 
pork 

nobs= 121 

T (g) 0.63 41,750 - - 0.99 -0.05 

T F (g) 0.63 41,750 - 0.0137 0.99 -0.13 

T τ (g) 0.63 41,750 0.0016 - 0.99 -0.05 

T F τ (g) 0.63 41,750 0.0016 0.0137 0.99 -0.13 

Whole pork 

nobs =120 

T (w) 0.45 47,164 - - 1.03 -0.04 

T F (w) 0.45 47,164 - 0.0137 1.03 -0.12 

T τ (w) 0.45 47,164 0.0016 - 1.03 -0.04 

T F τ (w) 0.45 47,164 0.0016 0.0137 1.03 -0.12 

*Parameters obtained from sublethal injury studies, Chapter 3, Table 1. 
**Obtained from calibrating only data from Table 6. 
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Regarding the PIs, the contours produced by all methods (ellipse, bootstrap, Monte 

Carlo) were essentially the same in all cases (ground turkey in Figure 10, the rest in section 

6.7.1), and so the PIs generated were also extremely similar, with <0.05 log N/N0 difference 

between them (ground turkey in Figure 11 and Figure 12), the rest in section 6.7.2). Therefore, to 

avoid unneeded complexity, it was decided to use the results from the ellipse method to 

determine the final PIs for each model. 

 

 

Figure 10. PI methods parameter contours for ground turkey calibration set. 
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Figure 11. PIs with all methods for ground turkey calibration data set. 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 12. Zoom-in section from Figure 11. 
 

Zoom-in area, 

Figure 12 

Prediction line 
Ellipse, 

bootstrapping, 

Monte Carlo PIs 

Asymptotic PI 

Bootstrap PI 

Monte Carlo PI 

Ellipse PI 

time (min) 

lo
g

 N
/N

0
 (

C
FU

/g
) 

lo
g

 N
/N

0
 (

C
FU

/g
) 

time (min) 

Asymptotic PI 



80 

 

4.3.3 Mixed-effects model parameters and statistics 

Table 10 shows the parameters and statistics for the different model versions obtained 

with the mixed-effects method. In the cases where the sublethal injury parameter (β2) was added, 

the RMSE did not change, as mentioned in section 4.3.2, and the AICc could not be computed. 

This is because the number of observations (nobs) changes, but the RMSE does not take this into 

account; therefore, the AICc that would be obtained does not accurately represent the model in 

question. Standard and relative errors for the all the parameters in the different model versions 

can be found in section 6.5.2, while the correlation coefficients are in section 6.6.2, and the 

random effects for all data sets (groups) in the same model versions are in section 6.8.  
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Table 10. Parameters and statistics for mixed-effects model (continued next page). 

Model 
Data 

source for 
calibration 

nobs ngroups 

Parameters Statistics 

bref ββββ1 ββββ2 ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 RMSE
♦
 AICc 

min
-1

 K K·min
-1

 fat % 
-1

 • • • • 
log 

(CFU/g) 
• 

T (g) 

G turkey 404 51 0.67 50,750 - - - - - - 0.38 392 

G beef 649 80 0.56 44,710 - - - - - - 0.70 714 

G pork 389 48 0.43 53,950 - - - - - - 0.56 377 

T (w) 

W turkey 67 9 0.59 50,750 - - - - - - 0.43 20 

W beef 224 29 0.54 44,710 - - - - - - 0.62 145 

W pork 120 15 0.65 53,950 - - - - - - 0.77 115 

T F (g) 

G turkey 404 51 1.58 36,470 - 0.21 - - - - 0.38 294 

G beef 649 80 0.95 36,320 - 0.06 - - - - 0.70 640 

G pork 389 48 0.74 35,940 - 0.06 - - - - 0.55 313 

T F 
(w) 

W turkey 67 9 1.36 44,710 - 0.90 - - - - 0.45 23 

W beef 224 29 0.80 44,710 - 0.13 - - - - 0.67 142 

W pork 120 15 1.05 53,950 - 0.19 - - - - 0.77 117 
♦
RMSE values for models containing τ are repeated from the same models without τ (see text). 
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Model 
Data 

source for 
calibration 

nobs* 
ngroups

* 

Parameters Statistics 

bref ββββ1 ββββ2** ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 RMSE AICc 

min
-1

 K K⋅min
-1

 fat % 
-1

 • • • • 
log 

(CFU/g) 
• 

T F τ 
(g) 

G turkey 404+108 51+36 1.58 36,470 0.0018 0.21 - - - - 0.38 NA 

G beef 649+108 80+36 0.95 36,320 0.0018 0.06 - - - - 0.70 NA 

G pork 389+108 48+36 0.74 35,940 0.0016 0.06 - - - - 0.55 NA 

T F τ 
(w) 

W turkey 67+108 9+36 1.36 44,710 0.0018 0.90 - - - - 0.45 NA 

W beef 224+108 29+36 0.80 44,710 0.0018 0.13 - - - - 0.67 NA 

W pork 120+108 15+36 1.05 53,950 0.0016 0.19 - - - - 0.77 NA 

T F S 
(g) 

G turkey, 
beef, pork 

1442 179 1.53 49,800 - 0.07 - 0.83 0.78 1.09 0.58 1409 

T F S 
(w) 

W turkey, 
beef, pork 

358 53 5.20 45,690 - 0.13 - 2.15 1.88 1.79 0.70 267 

T F S τ 
(g) 

G turkey, 
beef, pork 

1442 + 
324 ˟  

179+108
˟ 

1.53 49,800 0.0017
†
 0.07 - 0.83 0.78 1.09 0.58 NA 

T F S τ 
(w) 

W turkey, 
beef, pork 

358 + 
324˟  

53+108˟ 5.20 45,690 0.0017
†
 0.13 - 2.15 1.88 1.79 0.70 NA 

*108 data points correspond to the data used to obtain β2 in section 3. These correspond in turn to 36 data groups. 
** Parameters obtained from sublethal injury studies, Chapter 3, Table 1. 
†
Average from the 3 species; individual values obtained from Table 1. 

˟324 data points correspond to the data used to obtain β2 in section 3 (for the 3 species). These correspond in turn to 108 data groups. 

NA: not applicable for models containing τ, as nobs is modified (see text). 

Table 10 (cont’d). Parameters and statistics for mixed-effects model (continued next page). 
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Table 10 (cont’d). Parameters and statistics for mixed-effects model. 

Model 
Data source 

for 
calibration 

nobs* 
ngroups

* 

Parameters Statistics 

bref ββββ1 ββββ2** ββββ3 ββββ4 ββββ5 ββββ6 ββββ7 RMSE AICc 

min
-1

 K K⋅min
-1

 fat % 
-1

 • • • • 
log 

(CFU/g) 
• 

T F M 

G + W 
turkey 

471 60 0.52 36,860 - 0.21 -1.14 - - - 0.39 321 

G + W beef 873 109 0.61 37,490 - 0.06 -0.45 - - - 0.68 791 

G + W pork 509 63 0.67 40,300 - 0.07 -0.14 - - - 0.61 428 

T F M 
τ 

G + W 
turkey 

471+108 60+36 0.52 36,860 0.0018 0.21 -1.14 - - - 0.39 NA 

G + W beef 873+108 109+36 0.61 37,490 0.0018 0.06 -0.45 - - - 0.68 NA 

G + W pork 509+108 63 + 36 0.67 40,300 0.0016 0.07 -0.14 - - - 0.61 NA 

T F M 
S 

G + W 
turkey, beef, 
pork 

1853 232 1.09 49,410 - 0.06 -0.51 0.65 0.65 0.86 0.59 1612 

T F M 
S τ 

G + W 
turkey, beef, 
pork 

1853 + 
324˟  

232 + 
108˟  

1.09 49,410 0.0017
†
 0.06 -0.51 0.65 0.65 0.86 0.59 NA 

*108 data points correspond to the data used to obtain β2 in section 3. These correspond in turn to 36 data groups. 
** Parameters obtained from sublethal injury studies, Chapter 3, Table 1. 
†
Average from the 3 species; individual values obtained from Table 1. 

˟324 data points correspond to the data used to obtain β2 in section 3 (for the 3 species). These correspond in turn to 108 data groups. 

NA: not applicable for models containing τ, as nobs is modified (see text). 
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4.3.4 Validation against pilot-scale data 

Validation for all developed models against the independent pilot-scale data is shown in 

the following sections. The comparisons to consider when determining model performance are 

those within the same types of products, i.e., ground-muscle calibrated models against ground-

muscle data and not against whole-muscle data. However, current limitations in practice might 

entail use of ground-muscle calibrated models to validate whole-muscle products (because of the 

lack of adequately-calibrated models). These comparisons were also carried out to showcase 

possible outcomes. When validating turkey-calibrated models against the impingement oven 

whole-muscle samples, the cooked poultry product was chicken instead of turkey. In all cases, 

the maximum (+, most fail-safe) and minimum (-, most fail-dangerous) errors, and plots showing 

model predictions for representative data sets can be found in section 6.9.  

Given the various statistical measures of model performance, it was considered for this 

study that an ideal (although impossible) model would predict lethality with RMSE and bias of 

0.0 log CFU/g, i.e., a perfect fit, PI width would be near zero, and percentage of data points 

inside it would be 100% (Figure 13). However, due to the inherent variability and experimental 

error in real-world tests, a best practically possible and industry-useful model would present a 

low prediction RMSE (say ~1.0 log CFU/g), positive bias to avoid fail-dangerous errors, 

moderately narrow 95% PIs (say ~±1.5 log CFU/g), and 100% of the predicted data points 

captured by the 95% PI (Figure 14). When a model like this is not obtained, one yielding 

conservative predictions could also be highly functional (Figure 15). Also, a model with all data 

points above the fail-dangerous PI band could still be useful, depending on the other statistical 

parameters. For example, with a model capturing 100% of the data points above the fail-
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dangerous PI band, but with a wide PI, negative bias and/or high RMSE, the model user would 

need to determine whether the width of the PI is useful for a particular process or not (Figure 16 

and Figure 17). In this case, bias and RMSE would be secondary parameters to consider, as there 

can be a highly negative bias or a highly scattered data set (high RMSE); however, with all 

points above the fail-dangerous PI band and an acceptable PI width, process safety can still be 

assured. On the other hand, a model of no use would not necessarily be the complete opposite of 

the ideal model; it suffices to have most of the data points below the fail-dangerous PI band for 

the model to be unacceptable, regardless of PI width (Figure 18).  

 
 Figure 13. Example performance of an ideal model. 

 

95% PI widthavg= ±0.21 log CFU/g 

RMSE = 0.0 log CFU/g 

bias = 0.0 log CFU/g 

% above low PI = 100% 
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Figure 14. Example performance of a practically possible ideal model. 

 

 

 

 
Figure 15. Example performance of a conservative, but possibly useful model. 

95% PI widthavg= ±1.63 log CFU/g 

RMSE = 0.81 log CFU/g 

bias = 0.24 log CFU/g 

% above low PI = 100% 

95% PI widthavg= ±1.76 log CFU/g 

RMSE = 1.07 log CFU/g 

bias = 0.97 log CFU/g 

% above low PI = 100% 
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Figure 16. Example performance of a potentially useful model; all data points fall above 
the fail-dangerous PI, but PI width would need to be evaluated by the user to determine 

usefulness, especially as several data points are quite close to the lower PI band. 

 

 
Figure 17. Example performance of a possibly useful model; all data points fall above the 
fail-dangerous PI, but bias is highly negative, and PI width would need to be evaluated by 

the user to determine usefulness. 

RMSE = 1.40 log CFU/g 

bias = 0.30 log CFU/g 

95% PI widthavg= ±2.11 log CFU/g 

% above low PI = 100% 

RMSE = 1.72 log CFU/g 
bias = -1.38 log CFU/g 

95% PI widthavg= ±2.77 log CFU/g 

% above low PI = 100% 
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Figure 18. Example performance of a useless model. In addition to not capturing all data 

points above the fail-dangerous PI band, notice the width of the PI. 

 

In the next sections, model performance on the pilot-scale data is analyzed based on the 

criteria described above. 

4.3.4.1 Steaks/fillets and patties 

Tables 11-13 show the OLS models’ performance when validated against the 

impingement-cooked products (whole-muscle and ground-and-formed poultry, beef, and pork). 

Overall, as expected, the whole-muscle-calibrated models fared better than their ground-muscle-

calibrated counterparts when predicting lethality in whole-muscle products. This can be 

attributed to the fact that the whole-muscle model parameters reflect the significantly greater 

thermal resistance of Salmonella in whole-muscle than in ground products (Tuntivanich et al. 

2008; Orta-Ramirez et al. 2005; Velasquez et al. 2010). In both the ground-muscle calibrated and 

the whole-muscle calibrated versions, and against most of the validation data sets, the addition of 

RMSE = 3.44 log CFU/g 

bias = -3.25 log CFU/g 

95% PI widthavg= ±2.49 log CFU/g 

% above low PI = 22% 
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the fat and sublethal injury parameters (β3 and β2, respectively) improved the models’ 

performance; decreased RMSE, “pulled” all points to the fail-safe side of prediction, which 

improved the bias and the percentage of observations that fell above the lower PI. In some cases, 

for example, the ground beef samples, the RMSE did not improve when β2 and/or β3 were 

added, but the percentage of points falling above the lower PI did, which is more important for 

the food safety application of this project. In other cases, for example the whole chicken samples, 

this percentage did not change, but the bias was improved, meaning that the predictions were less 

fail-dangerous. Finally, in all cases, the addition of the fat parameter (β3) was fairly more 

beneficial to the model prediction than the addition of the sublethal injury parameter (β2). This is 

especially noticeable in the ground pork samples (10% fat) where RMSE improved by 0.4 log 

CFU/g and bias by 0.6 log CFU/g with the addition of the fat content term (Figure 19 and Figure 

20). From these observations, it was concluded that the consideration of fat percentage and 

sublethal injury by the models was beneficial to their predictions of the independent validation 

results.  
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Table 11. OLS models validated against chicken fillets and turkey patties (impingement 

cooked). 

Data source 
for validation 

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Ground turkey 
+  

Whole chicken 
 

nobs = 44 

T (g) 27 27 2.61 4.51 -3.94 

T F (g) 27 27 2.60 4.36 -3.80 

T τ (g) 27 27 2.60 4.41 -3.84 

T F τ (g) 27 27 2.60 4.26 -3.70 

T (g) + T (w) 52 34 1.83 3.59 -1.99 

T F (g) + T F (w) 52 34 1.81 3.44 -1.86 

T τ (g) + T τ (w) 52 34 1.82 3.52 -1.91 

T F τ (g) +  

T F τ (w) 
55 34 1.81 3.37 -1.79 

Ground turkey 
 

nobs = 23 

fat = 1.05% 

τavg =  
8.77 K·min  

T (g) 26 26 2.62 4.79 -4.17 

T F (g) 26 26 2.59 4.58 -3.96 

T τ (g) 26 26 2.61 4.69 -4.07 

T F τ (g) 26 26 2.58 4.48 -3.86 

Whole chicken 
 

nobs = 21 

fat = 0.33% 

τavg =  
7.92 K·min 

T (g) 29 29 2.60 4.17 -3.68 

T F (g) 29 29 2.60 4.11 -3.62 

T τ (g) 29 29 2.59 4.08 -3.59 

T F τ (g) 29 29 2.60 4.01 -3.52 

T (w) 81 43 0.96 1.34 0.41 

T F (w) 81 43 0.95 1.34 0.44 

T τ (w) 81 43 0.95 1.35 0.45 

T F τ (w) 86 43 0.95 1.35 0.47 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 12. OLS models validated against beef steaks and patties (impingement cooked). 

Data source 
for validation 

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Ground +  
Whole beef 

 
nobs = 44 

T (g) 70 66 1.56 1.88 -0.93 

T F (g) 77 70 1.55 1.72 -0.69 

T τ (g) 75 70 1.56 1.84 -0.86 

T F τ (g) 80 73 1.55 1.69 -0.62 

T (g) + T (w) 91 80 1.65 1.35 0.20 

T F (g) + T F (w) 95 75 1.64 1.38 0.38 

T τ (g) + T τ (w) 95 82 1.65 1.36 0.25 

T F τ (g) +  

T F τ (w) 
95 73 1.64 1.39 0.43 

Ground beef 
 

nobs = 19 

fat = 2.32% 

τavg =  
9.28 K·min 

T (g) 84 74 1.54 1.45 -0.07 

T F (g) 95 79 1.54 1.44 0.12 

T τ (g) 95 84 1.54 1.45 -0.01 

T F τ (g) 95 79 1.54 1.45 0.18 

Whole beef 
 

nobs = 25 

fat = 2.68% 

τavg =  
8.18 K·min 

T (g) 60 60 1.57 2.14 -1.58 

T F (g) 64 64 1.56 1.91 -1.30 

T τ (g) 60 60 1.57 2.09 -1.51 

T F τ (g) 68 68 1.56 1.86 -1.23 

T (w) 96 84 1.73 1.27 0.41 

T F (w) 96 72 1.73 1.33 0.58 

T τ (w) 96 80 1.73 1.29 0.45 

T F τ (w) 96 68 1.73 1.35 0.62 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 13. OLS models validated against pork steaks and patties (impingement cooked). 

Data source 
for validation 

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Ground +  
Whole pork 

 
nobs = 56 

T (g) 77 75 2.06 1.97 -1.30 

T F (g) 79 75 2.02 1.79 -0.88 

T τ (g) 75 73 2.05 1.98 -1.13 

T F τ (g) 79 75 2.02 1.76 -0.82 

T (g) + T (w) 86 82 2.09 1.89 -0.76 

T F (g) + T F (w) 91 84 2.06 1.66 -0.43 

T τ (g) + T τ (w) 88 84 2.08 1.86 -0.71 

T F τ (g) +  

T F τ (w) 
91 84 2.06 1.65 -0.40 

Ground pork 

nobs = 27 

fat = 10% 

τavg =  
9.34 K·min 

T (g) 78 78 2.05 2.06 -1.53 

T F (g) 89 85 2.00 1.64 -0.98 

T τ (g) 81 81 2.05 2.01 -1.47 

T F τ (g) 89 85 2.00 1.61 -0.93 

Whole pork 
 

nobs = 29 

fat = 1.53% 

τ avg =  

8.21 K·min 

T (g) 83 79 2.12 1.95 -0.82 

T F (g) 69 66 2.04 1.92 -0.78 

T τ (g) 69 66 2.05 1.94 -0.82 

T F τ (g) 69 66 2.04 1.89 -0.72 

T (w) 93 86 2.12 1.71 -0.04 

T F (w) 93 83 2.11 1.69 0.08 

T τ (w) 93 86 2.11 1.71 0.00 

T F τ (w) 93 83 2.11 1.69 0.08 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Figure 19. OLS T (g) model validated against ground pork data. Compare with Figure 20. 

 

 

 

Figure 20. OLS T F τ (g) model validated against ground pork data. Notice that by 
considering fat content (F) and sublethal history (τ), model performance is improved. 

RMSE = 2.06 log CFU/g 
bias = -1.53 log CFU/g 

95% PI widthavg= ±2.05 log CFU/g 

% above low PI = 78% 

RMSE = 1.61 log CFU/g 

bias = -0.93 log CFU/g 

95% PI widthavg= ±2.0 log CFU/g 

% above low PI = 89% 

95% 
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In the poultry products, the PIs for the whole-muscle validated models also performed 

better than their ground-muscle counterparts, in terms of data points above the fail-dangerous PI 

band (~80% vs. ~25%) (Figure 21 and Figure 22). However, for beef and pork, both model 

versions showed high percentages for this measure (>80%) in their corresponding validation data 

sets. Additionally, the prediction interval “widths” were different across species and whole- or 

ground-muscle validated models. For example, for turkey, the ground-muscle-validated models 

PIs were more than twice as wide than their whole-muscle-validated counterparts (~2.60 vs 

~0.95 log CFU/g). In the case of beef, PI width for the ground-muscle-validated models was only 

~0.4 log CFU/g narrower than their whole-muscle-validated partners’; and finally for pork, they 

were essentially the same. While these interval widths evidently have an effect on the percentage 

of data points falling above the fail-dangerous PI band, they are mostly a consequence of the 

source data used to calibrate the models. Also, for our application, the choice of a model can be 

balanced between percentage of data points above the fail-dangerous PI band and the PI width. 
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Figure 21. OLS T F τ (g) model validated against ground turkey data. Compare with 

Figure 22. 

 

 

 

Figure 22. OLS T F ττττ (w) model validated against whole-muscle chicken breast data. 

RMSE = 4.48 log CFU/g 
bias = -3.86 log CFU/g 

95% PI widthavg= ±2.59 log CFU/g 

% above low PI = 26% 

RMSE = 1.35 log CFU/g 
bias = 0.47 log CFU/g 

95% PI widthavg= ±0.95 log CFU/g 

% above low PI = 86% 

95% 

95% 
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Table 14 shows model predictions when all the impingement oven data were pooled 

together. As with the individual species and muscle samples, the addition of the fat and sublethal 

injury parameters (β2 and β3, represented by F and τ in model names) improved model 

performance. However, substantial differences in the performance parameters were not evident, 

meaning, as expected, that temperature is the most influential factor in determining process 

lethality. On the other hand, the fat and sublethal injury factors may influence model predictions 

significantly more in products where they appear to be more prominent, such as sublethal history 

for slow-cooking roasts, and fat content for products such as hot dogs (as reported in the next 

section). 

Table 14. OLS models validated against ALL impingement oven data. 

Data source 
for validation  Model* 

% above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) 

RMSE bias 

log (CFU/g) 

ALL 
impingement 

oven data 
 

nobs = 144 

T (g) + T (w) 77 67 1.87 2.42 -0.84 

T F (g) + T F (w) 81 66 1.85 2.30 -0.62 

T τ (g) + T τ (w) 79 68 1.87 2.38 -0.78 

T F τ (g) +  

T F τ (w) 
81 65 1.86 2.26 -0.57 

*In all cases, ground-muscle calibrated models predicted lethality for ground-muscle data and 
whole-muscle calibrated models did for whole-muscle data. In addition, models used were 
species specific, that is, turkey models predicted for turkey data, and so on. 

 

Tables 15-17 show the mixed-effects models performance when validated against whole-

muscle products and ground patties in the impingement oven. These are discussed in detail in the 

following paragraphs. 
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For the poultry products (Table 15), the models fared better when predicting lethality in 

the whole chicken breasts. For example, while the PIs for the more complex models 

encompassed high percentages (~80-100%) of data points for both ground- and whole-muscle 

products, the simpler models produced much lower numbers (~40%) against the ground turkey 

patties than against the whole-muscle chicken samples (~70%). The exception to this would be 

the low percentage (38%) obtained with the T F and T F τ models in the whole chicken breasts 

(Figure 23); however, notice here that PI width is only 0.85 log CFU/g. On the other hand, the 

RMSE and PI widths were slightly larger for the ground turkey patties, while the bias was also 

more prominent towards the fail-dangerous side. Overall, when both poultry data sets were 

pooled together (nobs=44), the most complex model (T F M τ S) performed, in a conservative 

manner, the best. 

 
Figure 23. Mixed-effects T F (w) model validated against whole-muscle chicken fillets. 

RMSE = 1.86 log CFU/g 
bias = -1.20 log CFU/g 

95% PI widthavg= ±0.85 log CFU/g 

% above low PI = 33% 
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Table 15. Mixed-effects models validated against chicken steaks and turkey patties 

(impingement cooked) (continued next page). 

Data source 
for 

validation 
Model* 

% 
above 
low PI 

% that 
fit in 
PI 

Average 
95% PI 

(+/- value) 
RMSE bias 

log (CFU/g) 

Ground 
Turkey  

+  
Whole 

Chicken 
 

nobs = 44 

T (g) 100 100 3.66 1.54 -0.38 

T F (g) 66 66 2.90 2.65 -2.14 

T F τ (g) 66 66 2.89 2.58 -2.06 

T F S (g) 100 100 4.75 1.46 -0.16 

T F τ S (g) 100 100 4.67 1.45 -0.12 

T (g) + T (w) 91 73 2.33 1.53 -0.20 

T F (g) + T F (w) 50 48 1.85 2.27 -1.64 

T F τ (g) + T F τ (w) 50 48 1.86 2.21 -1.57 

T F S (g) + T F S (w) 98 91 3.24 1.48 0.09 

T F τ S (g) +  
T F τ S (w) 

98 91 3.21 1.47 0.13 

T F M 73 45 2.09 2.28 -0.54 

T F M τ 73 45 2.04 2.25 -0.49 

T F M S 100 98 3.15 1.90 -0.58 

T F M τ S 100 98 3.14 1.88 -0.53 

Ground 
turkey 

 

nobs = 23 

fat = 1.05% 

τavg =  

8.77 K·min 

T (g) 100 100 3.70 1.70 -0.59 

T F (g) 61 61 2.76 2.58 -2.03 

T F τ (g) 61 61 2.78 2.52 -1.96 

T F S (g) 100 100 4.69 1.57 -0.28 

T F τ S (g) 100 100 4.62 1.56 -0.24 

T F M 48 48 2.76 2.69 -2.16 

T F M τ 48 48 2.68 2.62 -2.08 

T F M S 100 100 3.69 2.29 -1.52 

T F M τ S 100 100 3.72 2.24 -1.46 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 15 (cont’d). Mixed-effects models validated against chicken steaks and turkey patties 
(impingement cooked). 

Data source 
for validation  Model* 

% above 
low PI 

% that 
fit in PI 

Average 
95% PI 

(+/- value) 
RMSE bias 

log (CFU/g) 

Whole 
chicken 

 

nobs = 21 

fat = 0.33% 

τavg =  

7.92 K·min 

T (g) 100 100 3.30 1.34 -0.16 

T F (g) 71 71 3.05 2.72 -2.25 

T F τ (g) 71 71 3.02 2.65 -2.18 

T F S (g) 100 100 4.82 1.33 -0.04 

T F τ S (g) 100 100 4.73 1.32 0.01 

T (w) 81 43 0.83 1.31 0.23 

T F (w) 38 33 0.85 1.86 -1.20 

T F τ (w) 38 33 0.85 1.82 -1.14 

T F S (w) 95 81 1.66 1.36 0.50 

T F τ S (w) 95 81 1.66 1.38 0.53 

T F M 100 43 1.35 1.73 1.22 

T F M τ 100 43 1.34 1.75 1.25 

T F M S 100 95 2.56 1.36 0.45 

T F M τ S 100 95 2.51 1.37 0.48 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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For the beef samples (Table 16), all models performed relatively well, with high 

percentages of data points (>95%) above the lower fail-dangerous PI band (Figure 24), RMSEs 

ranging from ~1.2-1.9 log CFU/g, and almost all bias values on the fail-safe side. Some models 

against the whole beef samples produced negative bias values, but no larger than -0.34 log 

CFU/g. Overall, the PIs were slightly, but consistently across models, wider than in the poultry 

samples.  

 

 

Figure 24. Mixed-effects T F M ττττ S model validated against whole-muscle beef steaks. 

 

 

 

 

 

RMSE = 1.33 log CFU/g 

bias = 0.41 log CFU/g 

95% PI widthavg= ±2.76 log CFU/g 

% above low PI = 100% 



101 

 

Table 16. Mixed-effects models validated against beef steaks and patties (impingement 
cooked) (continued next page). 

Data source 
for validation  

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Ground  
+  

Whole beef 
 

nobs = 44 

T (g) 100 93 2.56 1.58 0.76 

T F (g) 100 95 2.83 1.33 0.14 

T F τ (g) 100 95 2.80 1.34 0.19 

T F S (g) 100 100 4.96 1.55 0.20 

T F τ S (g) 100 100 4.83 1.56 0.25 

T (g) + T (w) 98 82 2.11 1.59 0.81 

T F (g) + T F (w) 98 86 2.01 1.37 0.43 

T F τ (g) +  
T F τ (w) 

98 82 2.00 1.38 0.48 

T F S (g) +  
T F S (w) 

98 95 2.78 1.47 0.50 

T F τ S (g) +  
T F τ S (w) 

98 95 2.72 1.48 0.55 

T F M 100 86 2.26 1.48 0.78 

T F M τ 100 84 2.23 1.51 0.85 

T F M S 100 95 2.90 1.41 0.22 

T F M τ S 100 98 2.90 1.41 0.27 

Ground beef 
 

nobs = 19 

fat = 2.32% 

τavg =  
9.28 K·min 

T (g) 100 84 2.75 1.93 1.34 

T F (g) 100 89 2.59 1.51 0.63 

T F τ (g) 100 89 2.56 1.53 0.70 

T F S (g) 100 100 4.14 1.71 0.92 

T F τ S (g) 100 100 4.00 1.73 0.96 

T F M 100 89 2.42 1.48 0.56 

T F M τ 100 89 2.38 1.50 0.61 

T F M S 100 95 3.13 1.51 0.03 

T F M τ S 100 100 3.08 1.51 0.09 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 16 (cont’d). Mixed-effects models validated against beef steaks and patties 
(impingement cooked). 

Data source 
for validation  

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Whole beef 
 

nobs = 25 

fat = 2.68% 

τavg =  

8.18 K·min 

T (g) 100 100 3.46 1.25 0.32 

T F (g) 100 95 3.01 1.18 -0.26 

T F τ (g) 100 100 2.98 1.17 -0.20 

T F S (g) 100 100 5.59 1.42 -0.34 

T F τ S (g) 100 100 5.46 1.40 -0.29 

T (w) 96 80 1.62 1.27 0.41 

T F (w) 96 84 1.57 1.24 0.26 

T F τ (w) 96 76 1.58 1.25 0.31 

T F S (w) 96 92 1.75 1.25 0.19 

T F τ S (w) 96 92 1.74 1.26 0.23 

T F M 100 84 2.14 1.47 0.95 

T F M τ 100 80 2.11 1.51 1.03 

T F M S 100 96 2.72 1.32 0.37 

T F M τ S 100 96 2.76 1.33 0.41 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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For the pork products (Table 17), the models gave slightly better predictions for the 

ground-muscle patties in terms of the percentage of data points above the fail-dangerous PI band. 

In addition, the PI widths for the ground-muscle calibrated models (g) were slightly narrower 

than those of the whole-muscle calibrated models (w). RMSE was consistent (~1.4-1.9 log 

CFU/g) throughout all the data set, except for a few exceptions (~2.3-2.6 and ~3.1 log CFU/g). 

On the other hand, bias values were more scattered, ranging from -2.2 to 1.2 log CFU/g. 

However, when both ground- and whole-muscle samples were pooled together (nobs=56), 

RMSE, bias, and  PI width were consistent across models once more. 

 

Figure 25. Mixed-effects T F M ττττ S model validated against ground-muscle pork patties. 

RMSE = 1.42 log CFU/g 
bias = 0.36 log CFU/g 

95% PI widthavg= ±2.42 log CFU/g 

% above low PI = 100% 
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Table 17. Mixed-effects models validated against pork steaks and patties (impingement 
cooked) (continued next page). 

Data source 
for validation  

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Ground  
+  

Whole pork 
 

nobs = 56 

T (g) 93 89 3.54 1.55 0.12 

T F (g) 82 100 1.87 1.60 0.80 

T F τ (g) 100 82 1.87 1.62 0.82 

T F S (g) 100 93 3.54 1.82 0.93 

T F τ S (g) 100 93 3.66 1.71 0.84 

T (g) + T (w) 82 80 2.79 1.98 -0.72 

T F (g) + T F (w) 89 75 2.36 2.60 -0.60 

T F τ (g) +  
T F τ (w) 

88 73 2.34 2.57 -0.56 

T F S (g) +  
T F S (w) 

86 50 1.27 1.98 0.57 

T F τ S (g) +  
T F τ S (w) 

89 80 2.30 1.86 0.46 

T F M 100 88 1.98 1.54 0.70 

T F M τ 100 84 1.98 1.56 0.73 

T F M S 100 82 2.49 1.66 0.67 

T F M τ S 100 86 2.48 1.53 0.60 

Ground pork 
 

nobs = 27 

fat = 10% 

τavg =  

9.34 K·min 

T (g) 85 85 2.87 1.47 -0.13 

T F (g) 100 74 1.59 1.83 1.11 

T F τ (g) 100 74 1.59 1.85 1.14 

T F S (g) 100 89 2.43 1.85 1.16 

T F τ S (g) 100 89 2.72 1.87 1.18 

T F M 100 85 1.73 1.67 0.92 

T F M τ 100 81 1.75 1.70 0.95 

T F M S 100 89 2.43 1.40 0.32 

T F M τ S 100 93 2.42 1.42 0.36 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 17 (cont’d). Mixed-effects models validated against pork steaks and patties 
(impingement cooked). 

Data source 
for validation  

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Whole pork 
 

nobs = 29 

fat = 1.53 % 

τavg =  

8.21 K·min 

T (g) 100 93 4.17 1.61 0.35 

T F (g) 100 90 2.12 1.35 0.50 

T F τ (g) 100 90 2.13 1.36 0.53 

T F S (g) 100 97 4.57 1.80 0.71 

T F τ S (g) 100 97 4.54 1.56 0.52 

T (w) 79 76 2.71 2.35 -1.26 

T F (w) 79 76 3.08 3.15 -2.20 

T F τ (w) 76 72 3.03 3.10 -2.13 

T F S (w) 86 76 1.92 1.87 -0.25 

T F τ S (w) 79 72 1.91 1.86 -0.21 

T F M 100 90 2.20 1.40 0.49 

T F M τ 100 86 2.19 1.41 0.52 

T F M S 100 76 2.55 1.87 1.00 

T F M τ S 100 79 2.54 1.64 0.83 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 

 

The fact that the mixed-effects models performed better with the beef and pork samples 

(especially in terms of the percentage of data points on the safe side) is a measure of the 

suitability of the calibration data for the chosen models. Just as with the OLS models, the 

addition of the sublethal injury parameter (β2, represented by τ in model names), improved 

overall, even if slightly, in some manner the models- be it by reducing RMSE, bias, PI width, or 

a combination of the three. On the other hand, the combination of ground- and whole-muscle 

data to obtain models with the M (muscle) parameter (Table 4) had mixed outcomes; it improved 
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predictions for the poultry samples, but had both positive and negative effects for the beef and 

pork products. In addition, the separation of data only by muscle type (that is, lumping all ground 

turkey, beef, and pork data in one calibration group, and their whole-muscle counterparts in 

another (Table 4) to yield the S (species) parameter, had this same effect. On the other hand, 

within the TFS models, those calibrated with ground-muscle data (T F S (g) and T F τ S (g)) had 

wider PIs (~±2.50 vs. ~±1.0 log CFU/g), but consequently were able to capture higher 

percentages of data points above the fail-dangerous PI band (~±100% vs. ~±90%). Although 

these percentage differences could be considered small, on food safety applications it is desirable 

to err on the safe side. In terms of RMSE, the ground-calibrated models fared slightly better 

(~0.2 log CFU/g) for the beef and pork samples, while the bias values were evenly fail-safe and 

fail-dangerous across all samples.  

Table 18 shows the mixed-effects models performing against all impingement oven data. 

Percentage of data points above the fail-dangerous PI band was overall satisfactory, with the two 

most complicated models (T F M S and T F M τ S) capturing 100% of them, and all capturing at 

least 79%. RMSEs were also acceptable, given the expected variability in this kind of data, and 

bias values were mostly positive, except for the first three model versions. On the other hand, PI 

width was large -bigger than what could possibly be useful for industrial applications, especially 

in the case of the last two models. 

When comparing the OLS models with the mixed-effects versions against all the 

impingement oven data pooled together (Table 14 and Table 18), it is evident each has its 

positive features and drawbacks. For example, while the OLS models placed, at most, 81% of the 

data points above the fail-dangerous PI band,  the mixed-effects models were able to capture 
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>80% of them in the same region. However, this could mostly be due to the PI widths (~2.0-2.8 

log CFU/g for mixed-effects models vs. ~1.86 log CFU/g for the OLS versions). On the other 

hand, RMSE and bias were more favorable to the mixed-effects models, with a maximum RMSE 

= 2.18 log CFU/g for the mixed-effects models and minimum RMSE=2.26 log CFU/g for OLS 

versions; and in the case of bias, all were fail-dangerous for the OLS models, while 67% of them 

were fail-safe for the mixed-effects versions. 

 

 
Table 18. Mixed-effects models validated against ALL impingement oven data. 

Data source 
for validation  

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

ALL 
impingement 

oven data 
 

nobs =144 

T (g) + T (w) 90 78 2.44 1.73 -0.09 

T F (g) + T F (w) 80 70 2.10 2.18 -0.60 

T F τ (g)  + 
T F τ (w) 

79 68 2.09 2.16 -0.55 

T F S (g) +  
T F S (w) 

93 76 2.34 1.69 0.40 

T F τ S (g) +  
T F τ S (w) 

94 88 2.70 1.64 0.39 

T F M 92 74 2.10 1.78 0.34 

T F M τ 92 72 2.07 1.78 0.39 

T F M S 100 91 2.82 1.67 0.15 

T F M τ S 100 93 2.81 1.61 0.16 

*In all cases, ground-muscle calibrated models predicted lethality for ground-muscle data and 
whole-muscle calibrated models did for whole-muscle data. In addition, models used were 
species specific, that is, turkey models predicted for turkey data, and so on. 
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4.3.4.2 Whole-muscle roasts 

Table 19 shows the OLS models predictions against the pilot-scale roasts. Because these 

are the biggest pilot-scale samples, high variability and potential fail-dangerous predictions were 

expected  (Breslin 2009).  For the turkey roasts, the ground-calibrated models did not predict 

satisfactorily; PIs were wide, RMSEs very big, and bias values extremely high on the fail-

dangerous side, as would be expected (Figure 26). On the other hand, even though the percentage 

of data points above the fail-dangerous PI band remained the same at 0%, when the whole-

muscle validated models were applied to these whole-muscle roasts, the prediction statistics were 

better: narrower PIs, lower RMSEs, and less dangerous bias values (Figure 27). This shows the 

importance of using models calibrated with products that match the characteristics of those to be 

involved in model predictions. In the case of beef and pork, the same trends were produced with 

whole-muscle calibrated models predicting better than their ground-muscle counterparts. 

However, the pork models performed significantly better, in terms of reaching 100% of data 

points above the fail-dangerous PI band compared to 62% in the case of beef. This could be 

attributed to the PI widths of pork being larger than those of beef (~2.0 CFU/g vs ~1.75 CFU/g). 

On the other hand, the RMSEs for beef were significantly smaller than those of pork (~1.0 

CFU/g vs. ~3.0 CFU/g), and bias values were also more prominent on the fail-safe side for the 

same products (~-1.6 CFU/g vs. ~0.2 CFU/g for beef and pork, respectively). 

 



109 

 

Table 19. OLS models validated against roasts. 

Data source 
for 

validation 
Model % above 

low PI 
% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Turkey roasts 
 

nobs = 9 

fat = 0.27% 

τrange =  
200 – 500 

K·min 

T (g) 0 0 2.82 12.41 -12.36 

T F (g) 0 0 2.80 12.27 -12.23 

T τ (g) 0 0 2.68 10.95 -10.89 

T F τ (g) 0 0 2.66 10.83 -10.77 

T (w) 0 0 1.11 3.44 -3.25 

T F (w) 0 0 1.10 3.39 -3.19 

T τ (w) 0 0 1.02 2.81 -2.58 

T F τ (w) 0 0 1.01 2.76 -2.53 

Beef roasts 
 

nobs = 13 

fat = 2.68% 

τrange =  
100 – 480 

K·min 

T (g) 0 0 1.63 7.57 -6.56 

T F (g) 0 0 1.59 6.94 -5.92 

T τ (g) 0 0 1.58 6.94 -5.90 

T F τ (g) 8 8 1.55 6.34 -5.30 

T (w) 46 46 1.75 2.72 -1.91 

T F (w) 62 62 1.74 2.98 -1.71 

T τ (w) 62 62 1.74 3.00 -1.69 

T F τ (w) 62 62 1.72 2.73 -1.35 

Pork roasts 
 

nobs = 20 

fat =1.53% 

τrange =  
100 – 600 

K·min 

T (g) 60 60 2.02 2.37 -1.98 

T F (g) 65 65 2.01 2.26 -1.86 

T τ (g) 65 65 2.00 1.96 -1.63 

T F τ (g) 70 70 1.99 1.86 -1.52 

T (w) 100 100 2.06 0.94 0.10 

T F (w) 100 100 2.06 0.96 0.22 

T τ (w) 100 100 2.05 0.90 0.31 

T F τ (w) 100 100 2.04 0.93 0.42 
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Figure 26. OLS T F τ (g) model validated with turkey roast data. Compare with Figure 27. 

 

 

 
Figure 27. OLS T F τ (w) model validated against turkey roast data. Notice the significantly 

better performance than its (g) counterpart (Figure 26). 

 

RMSE = 2.76 log CFU/g 
bias = -2.53 log CFU/g 

95% PI widthavg= ±1.01 log CFU/g 

% above low PI = 0% 

RMSE = 10.83 log CFU/g 
bias = -10.77 log CFU/g 

95% PI widthavg= ±2.66 log CFU/g 

% above low PI = 0% 
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Table 20 shows model predictions when the roast data for all three species were pooled 

together. As with the species-specific roasts and the impingement oven data, the addition of the 

fat and sublethal injury parameters (β3 and β2, respectively) enhanced model performance, but 

not substantially. On the other hand, while β3 had a greater effect on the impingement oven data 

predictions, β2 here has a larger impact, reducing PI width, RMSE, and bias values more 

significantly than β3. This is due to the effect the high sublethal history values of these data 

(ranging from 100 to 600 K·min) have on the model predictions (compared to ~8-9 K·min for the 

impingement oven data).  

Table 20. OLS models validation against ALL roast data. 

Data source 
for validation  Model 

% above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) 

RMSE bias 

log (CFU/g) 

ALL roast 
data 

 

nobs = 42 

T (w) 62 62 1.76 2.29 -1.24 

T F (w) 67 67 1.75 2.38 -1.11 

T τ (w) 67 67 1.73 2.20 -0.93 

T F τ (w) 67 67 1.72 2.09 -0.76 

 

Table 21 shows the mixed-effects models when validated against the roast products. 

Performance is once more negatively affected when using ground-muscle calibrated models to 

predict lethality on whole-muscle data, as expected. Just as with the impingement oven samples, 

turkey roasts were once more the most affected by this, with highly dangerous bias (> -5.0 log 

CFU/g), extremely wide PIs (> ±8.0 log CFU/g), large RMSEs (<5.50 log CFU/g), and low 

percentage of data points above the fail-dangerous PI band. It can be argued that the T F τ S (g) 

model on the turkey roasts encompassed 100% of the data points, but looking at the PI width 
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(±8.05 log CFU/g), this becomes obvious and not useful for our application. For the beef and 

pork roasts, the ground-calibrated modes fared better in terms of the percentage values (>90% 

above low PI), but most PI widths were still outside the scope of usefulness, as explained in 

section 4.2.4 (>±5.5 log CFU/g for beef, and >2.2 log CFU/g for pork, one of the few exceptions 

in Figure 28). Even though performance on pork was satisfactory in the case of the T F τ (g) 

model, the whole-muscle validated counterparts provided better predictions. Overall, the whole-

muscle validated models, those including sublethal history (τ), or those accounting for muscle 

type (M) had better predictions across the products, with the more complicated model (T F M τ 

S) performing the best conservatively. 

Table 21. Mixed-effects models validated against roasts (continued next page). 

Data source 
for 

validation 
Model % above 

low PI 
% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Turkey roasts 
 

nobs = 9 

fat = 0.27% 

τrange =  

200 – 500 
K·min 

T (g) 100 100 9.00 4.34 -4.19 

T F (g) 0 0 12.20 18.65 -18.54 

T F τ (g) 11 0 7.70 9.77 -9.57 

T F S (g) 100 100 10.64 11.53 -11.38 

T F τ S (g) 100 100 7.83 1.59 -0.92 

T (w) 0 0 0.83 3.27 -3.00 

T F (w) 0 0 0.85 18.65 -18.54 

T F τ (w) 0 0 0.85 4.83 -4.54 

T F S (w) 33 33 2.79 3.77 -3.58 

T F τ S (w) 89 89 2.10 1.37 -0.61 

T F M 78 78 3.87 3.42 -3.15 

T F M τ 89 89 2.52 1.18 -0.25 

T F M S 100 100 5.92 5.44 -5.25 

T F M τ S 100 100 3.82 1.25 -0.18 
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Table 21 (cont’d). Mixed-effects models validated against roasts. 

Data source 
for 

validation 
Model % above 

low PI 
% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Beef roasts 
 

nobs = 13 

fat = 2.68% 

τrange =  

100 – 480 
K·min 

T (g) 100 92 6.55 3.48 -2.30 

T F (g) 85 85 7.44 6.58 -5.80 

T F τ (g) 92 92 5.34 4.06 -3.00 

T F S (g) 100 100 10.08 3.92 -2.61 

T F τ S (g) 100 92 7.44 2.68 -0.68 

T (w) 57 50 2.35 3.18 -2.10 

T F (w) 54 54 2.24 3.58 -2.42 

T F τ (w) 77 54 1.89 2.42 -0.52 

T F S (w) 62 62 2.49 3.58 -2.38 

T F τ S (w) 96 92 1.74 1.26 0.23 

T F M 92 92 4.32 3.17 -2.19 

T F M τ 100 92 3.21 2.10 -0.32 

T F M S 100 100 4.70 2.85 -1.35 

T F M τ S 100 85 3.53 2.26 0.22 

Pork roasts 
 

nobs = 20 

fat = 1.53% 

τrange =  

100 – 600 
K·min 

T (g) 100 100 3.14 1.71 1.50 

T F (g) 90 90 3.12 1.91 -1.17 

T F τ (g) 100 90 2.39 0.82 0.19 

T F S (g) 100 100 4.04 1.46 1.15 

T F τ S (g) 100 100 3.18 1.97 1.82 

T (w) 100 100 2.25 0.86 0.33 

T F (w) 100 100 2.50 0.92 -0.35 

T F τ (w) 100 90 2.12 0.97 0.69 

T F S (w) 90 90 1.95 1.12 -0.50 

T F τ S (w) 100 95 1.75 0.91 0.63 

T F M 100 100 2.70 1.23 -0.28 

T F M τ 100 100 2.19 1.11 0.82 

T F M S 100 85 2.31 1.66 1.38 

T F M τ S 100 45 1.97 2.15 1.99 
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Figure 28. Mixed-effects T F ττττ S (w) model validated against pork roasts. Notice the 
favorable fitting statistics. 

 

Table 22 shows the whole-muscle-validated and those accounting for muscle type (M) 

mixed-effects models against all roast data put together. The most complicated models (lower 

down the table) fared better in terms of the percentage of data points captured above the fail-

dangerous PI band, mostly because of the low percentage values from the simpler models’ 

predictions in the turkey roasts (Table 21). On the other hand, the simpler models had narrower 

PIs, but also higher RMSE and more fail-dangerous bias values. 

 

 

RMSE = 0.91 log CFU/g 
bias = 0.63 log CFU/g 

95% PI widthavg= ±1.75 log CFU/g 

% above low PI = 100% 
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Table 22. Mixed-effects models validated against ALL roast data. 

Data source 
for validation  

Model % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

ALL roast 
data 

 
 

nobs = 42 

T (w) 67 64 1.98 4.00 -2.28 

T F (w) 64 64 2.07 8.88 -4.89 

T F τ (w) 71 60 1.83 2.67 -1.04 

T F S (w) 69 69 2.30 2.76 -1.74 

T F τ S (w) 90 83 1.92 1.63 0.02 

T F M 93 93 3.45 2.52 -1.49 

T F M τ 98 95 2.58 1.50 0.24 

T F M S 100 93 3.82 3.19 -0.89 

T F M τ S 100 69 2.85 2.03 0.98 

 

Comparing the OLS models (Table 20) vs. the mixed-effects models (Table 22) 

performances in the all the roast data pooled together, once more the OLS models reach a plateau 

in capturing data points above the fail-dangerous PI band (~67% maximum), while model 

complexity in the mixed-effects versions allows the percentage to reach 100%. On the other 

hand, PI widths on the OLS models are more industry-useful than those yielded by the mixed-

effects models (~1.75 log CFU/g vs. 1.83-3.82 log CFU/g). Finally RMSE and bias values were 

inconsistent across all models, but overall presenting more high numbers compared to the 

impingement oven data.  

4.3.4.3 Hot dogs 

Table 23 shows the OLS models predicting lethality for the hot dog data. With these few 

validations and data sets, it is easier to see the positive effect fat and sublethal history have when 

included in the models. In the case of the turkey hot dogs, no improvement in the percentage of 
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data points above the fail-dangerous PI band was observed with the separate addition of the two 

parameters in question. However, RMSE and bias did improve. Nevertheless, when applied 

together, the percent captured increased from 33% to 58%, RMSE decreased from 3.31 to 2.19 

log CFU/g and bias decreased from -2.60 to -1.40 log CFU/g. On the other hand, for the beef hot 

dogs, fat content and sublethal injury had significant effects when considered individually by the 

model; each increased the percentage of data points above the lower PI band from 33% to 92%. 

Additionally, when acting together, the PI encompassed 100% of the data points. It can be noted 

that the fat parameter performed particularly well in these ~15% fat beef products, decreasing the 

RMSE and bias more than the sublethal injury parameter did.  

 

Table 23. OLS models validated against hot dogs. 

Data source for 
validation 

Model % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) 

RMSE bias 

log (CFU/g) 

Turkey hot dogs 

nobs = 12 

fat = 4.28% 

τrange =  

50 – 125 K·min 

T (g) 33 33 2.47 3.31 -2.60 

T F (g) 33 33 2.43 2.74 -2.02 

T τ (g) 33 33 2.43 2.63 -1.90 

T F τ (g) 58 50 2.41 2.19 -1.40 

Beef hot dogs 

nobs = 12 

fat =15.42% 

τrange =  

100 – 275 K·min 

T (g) 33 33 1.55 2.03 -1.90 

T F (g) 92 92 1.52 0.81 -0.69 

T τ (g) 92 92 1.52 0.97 -0.82 

T F τ (g) 100 100 1.52 0.40 0.07 
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Figure 29. OLS T (g) model validated against beef hot dogs. Compare with Figure 30. 

 

 

 

Figure 30. OLS T F ττττ (g) model validated against beef hot dog data. Notice the significantly 
better performance than the simpler T (g) model (Figure 29). 

RMSE = 2.03 log CFU/g 
bias = -1.90 log CFU/g 

95% PI widthavg= ±1.55 log CFU/g 

% above low PI = 33% 

RMSE = 0.40 log CFU/g 
bias = 0.07 log CFU/g 

95% PI widthavg= ±1.71 log CFU/g 

% above low PI = 100% 
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Table 24 shows the OLS models validated against both the turkey and beef hot dogs as a 

single data set. Again, the trends shown in the individual data sets are evident; fat and sublethal 

injury considerations meaningfully improved model predictions.  

 

Table 24. OLS models validated against ALL hot dog data. 

Data source 
for validation  

Model % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

ALL hot dog 
data 

 

nobs = 24 

T (g) 33 33 2.01 2.75 -2.25 

T F (g) 63 63 1.97 2.02 -1.35 

T τ (g) 63 63 2.06 1.98 -1.36 

T F τ (g) 75 75 2.03 1.69 -1.11 

 

 

Table 25 shows the different versions of the mixed-effects models validated against the 

hot dog data. Again, the models performed less satisfactorily on the turkey than on the beef 

samples, with wider PIs, and higher RMSEs and fail-dangerous bias values. However, the most 

complicated model (T F M τ S) fared sufficiently well for both cases (i.e., Figure 31), with 100% 

of the data points above the lower PI band, even though the interval was relatively wide for the 

turkey samples (±2.77 log CFU/g). 
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Table 25. Mixed-effects models validated against hot dogs. 

Data source for 
validation 

Model 
% 

above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

Turkey hot dogs 
 

nobs = 12 

fat =4.28% 

τrange =  

50 – 125 K·min 

T (g) 100 83 2.89 1.40 -0.29 

T F (g) 67 58 2.29 2.18 -1.48 

T F τ (g) 67 50 2.03 3.73 -0.94 

T F S (g) 100 83 3.25 1.34 0.29 

T F τ S (g) 100 83 2.83 2.41 0.57 

T F M 67 50 2.19 2.82 -1.50 

T F M τ 67 50 1.93 1.82 -0.96 

T F M S 100 83 2.67 3.49 -0.59 

T F M τ S 100 83 2.40 2.51 -0.18 

Beef hot dogs 
 

nobs = 12 

fat = 15.42% 

τrange =  

100 – 275 K·min 

T (g) 100 100 2.99 0.43 -0.25 

T F (g) 100 100 2.18 0.33 0.07 

T F τ (g) 100 100 1.91 1.07 0.59 

T F S (g) 100 100 1.98 1.36 1.23 

T F τ S (g) 100 100 2.59 1.57 1.48 

T F M 100 100 1.99 0.34 0.10 

T F M τ 100 100 1.82 0.78 0.65 

T F M S 100 100 1.75 1.38 0.82 

T F M τ S 100 92 1.60 1.65 1.18 
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Figure 31. Mixed-effects T F M S ττττ model validated against beef hot dogs. 

 

Table 26 shows the performance of the mixed-effects models when the turkey and beef 

hot dog data were pooled together. Here, it is more evident that the T F M τ S model gave the 

best predictions among the model versions; 100% of the data points fell above the fail-dangerous 

PI band, RMSE was 1.34 log CFU/g, bias was 0.50 log CFU/g, and the PI width was of ±2.0 log 

CFU/g, which is a fairly acceptable value, compared to the other validated products. It can be 

argued that models T F S (g) and T F τ S (g) also covered 100% of the data points in the safe 

region. However, even though their RMSE and bias values were similar, their PI widths were 

bigger (±2.62 log CFU/g and ±2.71 log CFU/g). 

 

RMSE = 1.65 log CFU/g 
bias = 1.18 log CFU/g 

95% PI widthavg= ±1.60 log CFU/g 

% above low PI = 100% 



121 

 

Table 26. Mixed-effects models validated against ALL hot dog data. 

Data source 
for validation  

Model % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (± value) RMSE bias 

log (CFU/g) 

ALL hot dog 
data 

 

nobs = 24 

T (g) 100 4 2.94 1.04 -0.27 

T F (g) 83 4 2.23 1.56 -0.71 

T F τ (g) 83 4 1.97 1.38 -0.17 

T F S (g) 100 4 2.62 1.30 0.76 

T F τ S (g) 100 4 2.71 1.48 1.02 

T F M 83 4 2.09 1.57 -0.70 

T F M τ 83 4 1.87 1.40 -0.15 

T F M S 100 4 2.21 1.27 0.12 

T F M τ S 100 4 2.00 1.34 0.50 

 

Comparing the OLS and mixed-effects models against both the turkey and beef hot dog 

data put together (Table 24 and Table 26) it is evident that the mixed-effects versions fared better 

in almost all cases. For example, percentage of data points above the fail-dangerous PI band in 

the mixed-effects models was at least 83%, compared to a maximum 75% from the OLS models. 

Additionally, PI widths were practically the same across all models, giving the mixed-effects 

versions the performance advantage. Finally, RMSEs and bias were also better for the mixed-

effects versions; with a maximum RMSE of 1.57 log CFU/g vs. a minimum of 1.69 log CFU/g 

from the OLS models, and all bias being fail-dangerous in the OLS versions vs. positive bias in 

~50% of the cases in the mixed-effects models.  
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4.3.4.4 Overall model performance on all pilot-scale data 

Table 27 shows OLS models performance against all pilot-scale data. It can be seen that 

PI width remains practically constant across models, while the percentage of data points above 

the fail-dangerous PI band increases. Although this change is not substantial (~10%), RMSE and 

bias do improve more notably: by 0.27 log CFU/g and 0.41 log CFU/g, for each parameter, 

respectively. Therefore, the statement from previous sections that a model accounting for fat 

content and sublethal history has a better overall performance is reinforced. 

 

Table 27. OLS models performance against ALL pilot-scale data. 

Data 
source for 
validation 

Model 
% 

above 
low PI 

% that 
fit in 
PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

ALL 
pilot-scale 

data 

nobs = 210 

T (g) + T (w) 69 62 1.83 2.44 -1.08 

T F (g) + T F (w) 76 66 1.85 2.28 -0.80 

T τ (g) + T τ (w) 75 67 1.83 2.31 -0.88 

T F τ (g) + T F τ (w) 78 67 1.83 2.17 -0.67 

 

 

Table 28 shows the different versions of the mixed-effects models when validated against 

all pilot-scale data put together. It can be seen that average PI widths remain relatively constant 

(although it does reach its maximum values in the most complicated models), but the percentage 

of data points above the fail-dangerous PI band increases with model complexity, reaching the 

100%. This does not necessarily mean that the model with the most parameters will always give 

the best predictions and/or is the most adequate to predict lethality in a certain process, but it 
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does show the possible positive implications of pooling data from products with differing 

characteristics and obtaining a model that could possibly account for most of the variability 

between them. 

 

Table 28. Mixed-effects models performance against ALL pilot-scale data. 

Data source 
for validation  

Model* % above 
low PI 

% that 
fit in PI 

Average 95% 
PI (+/- value) RMSE bias 

log (CFU/g) 

ALL  
pilot-scale 

data 
 

nobs =210 

T (g) + T (w) 86 77 2.40 2.32 -0.55 

T F (g) + T F (w) 77 70 2.11 4.40 -1.47 

T F τ (g)  + 
T F τ (w) 

78 67 2.02 2.20 -0.61 

T F S (g) +  
T F S (w) 

89 77 2.36 1.91 0.02 

T F τ S (g) +  
T F τ S (w) 

94 88 2.55 1.62 0.39 

T F M 91 78 2.37 1.93 -0.14 

T F M τ 92 77 2.15 1.69 0.30 

T F M S 100 91 2.95 2.03 -0.06 

T F M τ S 100 88 2.73 1.68 0.36 
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4.4 Conclusions 

This study showed possible sources and methods that can be used to develop a multi-

product, multi-factor model for Salmonella thermal inactivation in meat and poultry products. It 

provides insight on the challenges and difficulties of attempting to complete such a task with the 

existing experimental data and without making use of extremely complex statistical methods. 

Data were gathered, multiple models were developed with different techniques, and they were all 

validated against pilot-scale data to test their usefulness to industrial applications. While there 

were significant deviations between model predictions and experimental results, explaining them 

was not the purpose of this project, but rather to demonstrate the degree of the expected 

variability and the possible effects of applying the laboratory-developed models in industrial 

settings. 

There is no individual model that can be deemed the “best”, as each would be able to 

perform differently under differing processing conditions, in which case the “best” model to use 

would be the one that accounts for the parameters important to the user’s cooking process and 

product characteristics. Therefore, while this project does not completely close the gap between 

scientific work and real-life applications, it does provide new information that should be helpful 

both in directing future research in this field and in improving utilization of inactivation models 

in industry.  
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5. OVERALL CONCLUSIONS 

5.1 Sublethal injury  

• Models not accounting for bacterial sublethal injury can overestimate kill in meat 

products cooked under heat regimes where this phenomenon occurs (i.e., slow 

cooking/roasting).   

5.2 Model validation  

• The literature on thermal inactivation data and models developed in laboratory settings is 

extensive. However, almost none of these models are validated. Those that are provide 

few quantitative measures of model performance.  

• Very little work exists where thermal inactivation models are validated against pilot-scale 

data or industry-relevant conditions, and they illustrate the difficulties associated with 

this kind of work – largely scattered data and model predictions.  

• These results indicate that the existing information on thermal inactivation has limitations 

in directly helping to improve “real time” food safety. 

5.3 Use of models in industry  

• Research shows that multiple product and pathogen factors affect thermal inactivation: 

temperature, fat content, muscle structure, meat species, pH, salt %, sublethal injury, etc. 

Processors should identify which of these are truly important to their specific product and 

choose a model accordingly. 
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• When choosing a model, industry users should match, to the extent possible, the process 

to be validated and the nature of the data under which the considered models were 

obtained, especially when allowing for the use of models developed from laboratory-

based experiments.  

• Although model complexity does not necessarily translate into better lethality 

predictions, using an overly simplified model that neglects key factors can lead to fail-

dangerous predictions, depending on product and process characteristics. 

5.4 The need for standardized testing methods 

• Gathering data from different sources to develop more comprehensive models can be 

done with mixed-effects or other statistical methods. However, due to generally 

unquantified data variability, prediction intervals will inevitably be large, decreasing 

model utility in industry.  

• The introduction of standardized microbiological and analytical methods for carrying out 

thermal inactivation studies would allow qualitative comparison of data across studies 

and the quantification of their differences. 

• While the ComBase database is a useful resource, the thermal inactivation data presented 

cannot be pooled together to develop models or statistics without expecting high 

variability due to the diverse methodologies in the original studies. 
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5.5 Future work  

5.5.1 Enhancement of the AMI lethality spreadsheet 

As mentioned in section 2.4.1.3.2, the AMI lethality spreadsheet is a tool currently used 

by meat processors to aid in determining process lethality. The results from this project could 

potentially help to enhance this tool, as several models were developed and validated against 

industry-relevant data. From what was concluded in this study, it is recommended that the model 

chosen should account for product fat content, sublethal history, muscle structure, and species, as 

their incorporation always showed prediction improvements in some way or another (RMSE, 

bias, etc.). The question then remains as to which model version, from those presented in this 

study, should be incorporated into the tool, especially in the case of the mixed-effects varieties, 

as even those considering the four aforementioned factors could have been calibrated with 

different data sets. For example, the T F M S τ model and ground-muscle-beef-specific T F τ 

model are both equally appropriate to predict lethality in ground-beef products, but the T F M S 

τ model was parameterized with both ground- and whole-muscle data, and turkey, beef, and pork 

data sets, while only ground beef data was used to calibrate the T F τ version. However each 

model yielded different fitting statistics, factors that should also be considered when determining 

which model to use. This can lead to three possible solutions: (i) allow the user to choose the 

model based on validation statistics and a comparison of the process characteristics and the 

conditions under which the calibration and/or validation data were generated, (ii) have the tool 

predict lethality and PIs with all the validated models relevant to the product, and output the 

most conservative values, or (iii) a combination of (i) and (ii), where the user can choose the 

model, but the tool will additionally output predicted values from other relevant model versions 

and allow the user to confirm or change the initial model selection. While these choices do not 
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entirely solve the issue of validating a process with 100% certainty, the tool’s outputs based on 

these recommendations could certainly be an improvement from the currently available options.  

5.5.2 Methods comparison with other research groups 

As stated throughout this project, one of the main issues when attempting to pool and 

manipulate data from different sources was that methodologies varied widely between them, 

causing high unexplained variability in the final results. Further studies, such as that carried out 

by Hildebrandt et al. (2012b) could potentially help quantify the effects of methodology 

variability and gain insight into possible ways to solve this problem for future studies.  

5.5.3 The need for standardized testing methods 

Related to the work described in the previous section, this proposed study could be the 

next step to possibly separately quantify the contributions of methodology and 

human/experimental error of data variability. A project where the importance of standardized 

testing methods is assessed can provide further insight into the problems and necessities for this, 

and hopefully lead to potential improvements across this field of research.  

5.5.4 Statistical improvements and model modifications 

While several versions of the multi-product multi-factor model were tested, there is 

definitely room for improvement to obtain a better mathematical relationship between all the 

parameters and/or variables in the exponential term in equation (7) (i.e., β2, τ, β3, F, etc) and 

process lethality. The current relationships are quite basic. For example, the way sublethal 

history (τ) is determined (equation (4)) assumes that there is a linear relationship between the 

sublethal region temperature and acquired bacterial resistance. However, taking into account the 
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biological aspect of bacterial adaptation, it is likely that the vegetative cells become more 

thermotolerant up to a certain temperature within the sublethal range and then the effect tails at 

the transition to the lethal temperature range (Diller 2006). A study analyzing this behavior could 

lead to improvement of equation (4). 

Another example is fat content; the current model version implies that the difficulty of 

achieving a certain process lethality increases exponentially (and proportionally to β3) with the 

product fat content.  However, future research should test this rigorously, or whether a different 

mathematical relationship is needed. All of these parameters could potentially be improved with 

different mathematical relationships. 
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6. APPENDICES 
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6.1 MATLAB code for sublethal injury model parameter estimation (section 3) 

%thank you to Dr. Dolan for providing the file template, modified by: Isabel Tenorio  

% units: 

% *time: minutes!!! 

% *log reductions: CFU/g or CFU/ml, (-) in model function, and (-) in 

% experimental observations (Excel file) 

% *Temperature in Excel file in Celsius!! 

 

%Column order in excel: T(C)--time(min)--Tau(sublethal injury) 

 

clear all 

nlinfitcheck = statset('nlinfit'); 

nlinfitcheck.FunValCheck='off'; 

 

global nsets nrows 

nsets=36; 

nrows=2401; 

 

%read in data 

%data format must be first column is temperature (C), second column is time (sec), 3rd column 

is Tau (sublethal injury history), 3rd dimension is set number 

%make it global so that modelTTau function can read it 

 

xTTau1=zeros(nrows,4,nsets); 

for k=1:nsets 

    xTTau1(:,:,k)=xlsread('G Turkey 2009 calibration.xlsx',k); % sheets are read in order!!!! 

end 

 

%now put them together to make replicates 

global xTTau 

xTTau=zeros(2401,4,nsets*3); 

xTTau(:,:,1:36)=xTTau1; 

xTTau(:,:,37:72)=xTTau1; 

xTTau(:,:,73:108)=xTTau1; 

 

%initial estimates 

param0=xlsread('G Turkey 2009 calibration.xlsx','beta0'); 

%experimental log reductions observed 

XYobs = xlsread('G Turkey 2009 calibration.xlsx','X and Yobs'); 

Yobs=XYobs(:,2); 

 

%X is the data set number 
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X=XYobs(:,1); 

 

%estimate the parameters 

%---only-T model 

[param,resids,J,covar,mse] = nlinfit(X,Yobs,'modelTTau',param0); 

 

%parameter 95% asymptotic confidence intervals 

ci = nlparci(param,resids,J); 

 

%final params, RMSE, and bias of fit 

finals(1:3)=param; 

finals(4)=sqrt(mse); 

finals(5)=mean(resids);  

 

% %asymptotic simultaneous CONFIDENCE intervals for Y 

% T-only model 

[ypred,delta] = nlpredci('modelTTau',X,param,resids,J,0.05,'on','curve'); 

asyCIup=ypred+delta; 

asyCIdo=ypred-delta; 

 

%asymptotic simultaneous PREDICTION intervals for Y (number 2 in ypred2 

%and such is just to differentiate from CI's parameter). 

% T-only model 

[ypred2, deltaob] = nlpredci('modelTTau',X,param,resids,J,0.05,'on','observation'); 

asyPIup=ypred+deltaob; 

asyPIdo=ypred-deltaob; 

%time=xgtT(:,2); %for plotting later 

 

 % Correlation between parameters 

 %R is the correlation matrix for the parameters, sigma is the standard error vector 

 [R,sigma]=corrcov(covar); 

RTref=R(2,1); 

  

 %Relative standard error for parameters 

 %RSE=zeros(6,9); 

 RSE(1,1)=sigma(1)/param(1,1); 

 RSE(2,1)=sigma(2)/param(2,1); 

 RSE(3,1)=sigma(3)/param(3,1); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% generic function estimating logN/No for data with T and Tau, nonisothermal 

%inputs are: parameters and data set number 

  

function result = modelTTau(params,X) 
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%params=param0; 

global xTTau nsets nrows 

  

%columns: 

%xTTau(1)= Temperature (C) 

%xTTau(2)= time(min) 

%xTTau(3)= Tau  

%xTTau(4)= total cook time (min) (value repeated through rows for MatLab to accept matrix) 

%xTTau(5) = Tref (C) (value repeated through rows also) 

  

bref=params(1); 

B1=params(2); 

B2=params(3); %Tau 

  

%Predict b first 

Tref=60; %same for all data sets 60 C 

b=zeros(nrows,1,nsets*3); 

pred=zeros(nrows,1,nsets*3); 

  

for i=1:nrows; %row is b at t=i; 

    for j=1:nsets*3; % 3rd dimension is set number (with replicates) 

        b(i,1,j)=bref*exp(-B1*((1/(xTTau(i,1,j)+273.15))-(1/(Tref+273.15)))-B2*xTTau(i,3,j)); %b at 

t=i     

    end    

end 

  

% Get log reductions 

pred(1,1,:)=0; 

for i=2:nrows;  %row is log N/No prediction at t=i; 

    for j=1:nsets*3;  % 3rd dimension is set number (with replicates) 

        pred(i,1,j)=-((b(i,1,j)+b(i-1,1,j))/2).*(xTTau(i,2,j)-xTTau(i-1,2,j))+pred(i-1,1,j); 

    end 

end 

  

%get result with total cooking time index (total cook time was different 

%for each set) 

%result has to be nsets*3 long (rows, 1 column) 

cooktimeind(X,1)=round(xTTau(1,4,X)*12)+1;  %this is for first replicate, repeat to x3 

cooktimeind=[cooktimeind;cooktimeind;cooktimeind]; 

result=zeros(nsets,1); 

for i=1:nsets; 

    result(i)=-pred(cooktimeind(i),i); 

end  
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6.2 Correlation coefficients, and standard and relative errors for path-dependent model 
parameters (section 3) 

Table 29. Correlation coefficients for path-dependent model parameters. 

Species Parameter* bref ββββ1 

Turkey 
β1 0.18 - 

β2 0.74 0.14 

Beef 
β1 0.26 - 

β2 0.77 0.24 

Pork 
β1 0.14 - 

β2 0.76 0.17 

*Parameter units: bref  = min
-1

, β1 =K, β2 = K·min 
 

 

Table 30. Standard and relative errors for path-dependent model parameters. 

Species Parameter* Estimate Standard 
error 

Relative 
error (%) 

Turkey 

bref 0.9071 0.0214 2.35 

β1 50,787 636 1.25 

β2 0.0017 0.0001 5.47 

Beef 

bref 0.9389 0.0328 3.49 

β1 44,710 878 1.96 

β2 0.0018 0.0001 7.56 

Pork 

bref 0.7040 0.0248 3.52 

β1 54,713 836 1.52 

β2 0.0016 0.0001 8.39 

*Parameter units: bref  = min
-1

, β1 =K, β2 = K·min 
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6.3 MATLAB and R programming codes for multi-product multi-factor model  
parameter estimation (section 4) 

6.3.1 MATLAB code example (OLS method) 

%thank you to Dr. Dolan for providing the file template 

%modified by: Isabel Tenorio  

 

% units: 

% *time: minutes!!! 

% *log reductions: CFU/g or CFU/ml, (-) in model function, and (-) in 

% experimental observations (Excel file) 

% *Temperature in Excel file in Celsius!! 

%Column order in excel: T(C)--time(min)--logN/N0--muscle--turkey--beef—pork,  

% (last 4 are either 0 or 1) 

 

%This program will estimate parameters and produce confidence intervals and 

%prediction intervals for a generic data set 

clear 

clear all 

nlinfitcheck = statset('nlinfit'); 

nlinfitcheck.FunValCheck='off'; 

 

%read in data 

%data format must be first column is temperature (K), second column is time 

%(sec), 3rd column is log reductions (log N/No).  

gt = xlsread('MatLab File.xls','Ground Turkey'); 

wt = xlsread('MatLab File.xls','Whole Turkey'); 

 

%initial estimates 

initialparams=xlsread('MatLab File.xls','initial parameters'); 

 

%initial estimates for T-only model 

param0gtT(1)= initialparams(1,1); %bref 

param0gtT(2)= initialparams(2,1); %B1 

param0wtT(1)= initialparams(1,4); %bref 

param0wtT(2)= initialparams(2,4); %B1 

 

%---Set up for T-only model 

%---set up independent variables, ground turkey 

xgtT(:,1)=gt(:,1); 

xgtT(:,2)=gt(:,2); 
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xgtT(:,3)=initialparams(7,1); %Tref 

%set up dependent variable, ground turkey 

YobsgtT = gt(:,3); 

%---set up independent variables, whole turkey 

xwtT(:,1)=wt(:,1); 

xwtT(:,2)=wt(:,2); 

xwtT(:,3)=initialparams(7,4); %Tref 

%set up dependent variable, whole turkey 

YobswtT = wt(:,3); 

 

%estimate the parameters 

%---only-T model 

[paramgtT,residsgtT,JgtT,covargtT,msegtT] = nlinfit(xgtT,YobsgtT,'modelT',param0gtT); 

 [paramwtT,residswtT,JwtT,covarwtT,msewtT] = nlinfit(xwtT,YobswtT,'modelT',param0wtT); 

 

%parameter 95% asymptotic confidence intervals 

cigtT = nlparci(paramgtT,residsgtT,JgtT); 

ciwtT = nlparci(paramwtT,residswtT,JwtT); 

 

%RMSE of fits 

RMSE(1,1)=sqrt(msegtT); 

RMSE(1,4)=sqrt(msewtT); 

 

%bias of fits 

bias(1,1)=mean(residsgtT); 

bias(1,4)=mean(residswtT); 

 

 %asymptotic simultaneous CONFIDENCE intervals for Y 

% T-only model 

[ypredgtT, deltagtT] = nlpredci('modelT',xgtT,paramgtT,residsgtT,JgtT,0.05,'on','curve'); 

asyCIupgtT=ypredgtT+deltagtT; 

asyCIdogtT=ypredgtT-deltagtT; 

 [ypredwtT, deltawtT] = nlpredci('modelT',xwtT,paramwtT,residswtT,JwtT,0.05,'on','curve'); 

asyCIupwtT=ypredwtT+deltawtT; 

asyCIdowtT=ypredwtT-deltawtT; 

 

%asymptotic simultaneous PREDICTION intervals for Y (number 3 in ypredgtT3 and such is just 

to differentiate from CI's parameter). 

% T-only model 

[ypredgtT3, deltaobgtT] = 

nlpredci('modelT',xgtT,paramgtT,residsgtT,JgtT,0.05,'on','observation'); 

asyPIupgtT=ypredgtT+deltaobgtT; 

asyPIdogtT=ypredgtT-deltaobgtT; 
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tgtT=xgtT(:,2); %for plotting later 

[ypredwtT3, deltaobwtT] = 

nlpredci('modelT',xwtT,paramwtT,residswtT,JwtT,0.05,'on','observation'); 

asyPIupwtT=ypredwtT+deltaobwtT; 

asyPIdowtT=ypredwtT-deltaobwtT; 

twtT=xwtT(:,2); %for plotting later 

 

 % Correlation between parameters 

 %R is the correlation matrix for the parameters, sigma is the standard error vector 

 [RgtT,sigmagtT]=corrcov(covargtT); 

 [RwtT,sigmawtT]=corrcov(covarwtT); 

 

 %Relative standard error for parameters 

 %RSE=zeros(6,9); 

 RSE(1,1)=sigmagtT(1)/finalparams(1,1); 

 RSE(2,1)=sigmagtT(2)/finalparams(2,1); 

RSE(1,4)=sigmawtT(1)/finalparams(1,4); 

 RSE(2,4)=sigmawtT(2)/finalparams(2,4); 

 

 %Add B3 to parameter matrices for TF models 

  B3s=xlsread('MatLab file.xls','B3s'); 

 paramgtTF=[paramgtT,B3s(1,:)]; 

paramwtTF=[paramwtT,B3s(1,:)]; 

 

 %Add B2 to parameter matrices for TTau models 

 B2s=xlsread('MatLab file.xls','B2s'); 

 paramgtTTau=[paramgtT,B2s(1,:)]; 

paramwtTTau=[paramwtT,B2s(1,:)]; 

  

 %parameters with B2 and B3 for TFTau models 

 paramgtTFTau=[paramgtT,B2s(1,:),B3s(1,:)]; 

 paramwtTFTau=[paramwtT,B2s(1,:),B3s(1,:)]; 

  
 

6.3.2 R code example (mixed-effects method) 

library(lme4) 

#change data file for species/muscle data desired: GT, GB, GP, WT, WB, WP 

 

dat=read.csv(file="WPmixeffdata, TFw.csv",header=F) 

#dat = read.csv("C:/USER/sb/sm.csv",header=F) 

colnames(dat)=c("Fat","Temp","Time","Y","Group") 
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dat2 = dat[dat$Time!=0, ] 

 

model = function(bref,beta1,beta3,Time,Temp,Fat){ 

  const = -bref*exp(-beta1*(1/Temp-1/333.15)-beta3*Fat)*Time 

  model = const 

  gradient <- cbind(const/bref,-const*(1/Temp-1/333.15),-const*Fat) 

  attr(model, "gradient") <- gradient 

  model 

} 

 

res = nlmer( Y ~ model(bref,beta1,beta3,Time,Temp,Fat)~(bref|Group),data=dat2, 

     start=c(bref=1.0818162302473487,beta1=43951.966921578,beta3=0.352765575011846)) 

 

res 

fixef(res) 

fitted(res) 

resid(res) 

# to get RMSE, change nobs as needed 

SSE=resid(res)*resid(res) 

SSE=sum(SSE) 

RMSE=sqrt(SSE/(105-3)) 

 

#Function Coding# with assistance from CSTAT at MSU 

pred<-function(res,n.sim,temp,time,fat,level=0.95) { 

#Retrieve the standard deviation estimate for the random effect term bref 

brefstdev<-sqrt(VarCorr(res)$Group[1,1]) 

#Retrieve the standard deviation estimate of the model error 

errstdev<-attr(VarCorr(res),"sc") 

#Retrive the fixed effect coefficient estimates 

beta1<-fixef(res)[2] 

beta3<-fixef(res)[3] 

 

#Generate n.sim random effect of bref 

bref<-rnorm(n.sim,fixef(res)[1],brefstdev) 

#Number of time lags 

n.time<-length(time) 

Y<-rep(NaN,n.sim) 

for(j in 1:n.sim) { 

 #Compute the mean of cumulative predicted log reduction value 

 cplr.mean<-0 

 b=bref[j]*exp(-beta1*(1/(temp+273.15)-1/333.15)-beta3*fat) 

     for(i in 1:(n.time-1)) { 

 cplr.mean<-cplr.mean-(b[i+1]+b[i])/2*(time[i+1]-time[i]) 
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                            } 

     #Sample a new observation Y based on mean=cplr.mean and st.dev=model's standard 

deviation 

     Y[j]<-rnorm(1,cplr.mean,errstdev) 

} 

#Obtain the simulated sample mean of new Y 

Y.mean=mean(Y) 

#Obtain the simulated sample median of new Y 

Y.median=median(Y) 

#Obtain the Predictive interval of new Y 

Y.predictive=quantile(Y,c((1-level)/2,(1+level)/2)) 

Y.output=list(Y.mean=Y.mean,Y.median=Y.median,Y.predintv=Y.predictive,n.sim=n.sim) 

return(Y.output) 

} 

fat=1.53 

validdata=read.csv(file="Tasha PR.csv",header=F) 

#To tell R how many sets you have in total in the csv file, you can use col(validdata) to tell how 

many columns in total then divide it by 2  

n.set=ncol(validdata)/2 

predInt<-matrix(NaN,n.set,2) 

for(i in 1:n.set) { 

set=na.omit(validdata[,(2*i-1):(2*i)]) 

colnames(set)=c("temp","t.min") 

predInt[i,]<-pred(res,1000,set$temp,set$t.min,fat)$Y.predintv 

} 
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6.4 Hot dog methods and data (section 4) 

6.4.1 Preparation of Salmonella  

 An 8-serovar Salmonella cocktail consisting of S. Thompson FSIS 120 (chicken isolate), 
S. Typhimurium DT 104 H3380 (human isolate), S. Hadar MF60404 (turkey isolate), S. 
Copenhagen 8457 (pork isolate), S. Montevideo FSIS 051 (beef isolate), and S. Heidelberg 
F5038BGI (human isolate), was previously obtained from V.K. Juneja (Agricultural Research 
Service, Eastern Regional Research Center, USDA-ARS, Wyndmoor, PA).  Each serovar was 
maintained separately at -80°C in vials containing tryptic soy broth (Difco Laboratories, Sparks, 
MD) with yeast extract (TSBYE) and 20% glycerol.   Cultures were grown separately in TSBYE 
at 37°C with a minimum of two consecutive 24-hour transfers prior to inoculation.    
 

6.4.2 Preparation of inoculated frankfurters 

 Emulsified beef and turkey frankfurter batter was obtained from a federally inspected 
commercial supplier. Emulsion was vacuum packaged in 1000 g packages, frozen (-10°C). 
Twenty-four hours prior to experiment, two packages of either beef or turkey batter were thawed 
in a refrigerator (4°C) until day of experiment. 
 Concentrated inoculum was prepared by combining 36 ml of each culture to yield a total 
of 288 ml. This cocktail was centrifuged (6000xg, 15 minutes) and the pellet was re-suspended 
in 14 ml of 1% sterile buffered peptone water (Difco Laboratories, Sparks, MD).  In order to 
enumerate the inoculum, a 1 ml sample was taken from the 14 ml inoculum and was serially 
diluted and plated on modified Tryptic Soy Agar (mTSA*) (Difco Laboratories, Sparks, MD) 

plates (37°C, 48 hours). Meat and 13 ml of marinade (10
9
 CFU/g) was added to a Kitchen Aid 

mixer and mixed for 180s at setting 1 and using the paddle.   

 Prior to stuffing, the inoculated emulsion (10
6 CFU/g) was vacuumed (101.325kPa of 

vacuum, 10 s) to reduce air bubbles. The emulsion was stuffed into cellulose casing using a 
hand-crank stuffer system to make three two-link hot dog chains with a mass of about 60 g 
(~15.5 cm long, 2 cm diameter) per hot dog. Frankfurters were tied in the center and on each end 
to form links. In order to place a probe in the center of each hot dog, a jig was created to insert a 
hypodermic needle (16G x 12.7cm) at a height of 1 cm into the length of the frankfurter, along 
its center axis. This needle was pushed all the way through the hot dog and out the other end; a 
wire thermocouple was inserted half-way (~7.75cm) into the length of the frankfurter, the needle 
was pulled out, and the thermocouple remained. This procedure was repeated for each of the six 
frankfurters per treatment.   
 
*mTSA recipe:  2 L deionized distilled water, 80 g TSA, 12 g yeast extract, 1g ammonium iron 
citrate, 0.6g sodiun thiosulfate. 
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6.4.3 Frankfurter cooking and survivor recovery 

 The hot dogs were cooked in a pilot scale, moist air convection oven (Cres Cor, Mentor, 
OH) using a cook schedule for low-fat frankfurters similar to that used in industry. This cycle 
increased temperature and humidity over a period of ~140 min (Table 31). A predicted lethality 
of 4 log and 6 log was calculated real-time using a data logger (Datapaq Inc., Wilmington, MA) 
with inputs of D- and z- values from previously published laboratory data (Table 30) (Breslin 
2009; Tuntivanich et al. 2008). When the frankfurter reached the end lethality, it was taken out 
of the oven and quenched in liquid nitrogen to terminate cooking. Additional experiments were 
run to end temperatures of 160°C and 165°C for beef and turkey, respectively. The goal of these 
cooks was to ensure no bacterial survival at these end temperatures, often used in industry. The 
center 5 cm of length of each hot dog was cut and cored (1.2 cm diameter), serially diluted, and 
plated on mTSA (37°C, 48 h) to enumerate survivors.  

 

Table 31. Commercial cooking schedule for frankfurters. 

Cumulative time 
(min) 

Dry bulb temperature 
(°°°°C) 

% Relative 
Humidity 

0 – 20  60 38 

20 – 35 71.1 37 

35 – 50  76.7 39 

50 – 140  82.2 79 

 

 

 

Table 32. D- and z- values from previous research  used to predict real-time lethality. 

Parameter Ground Beef Ground Turkey 

Dref (sec) 60.55 62.66 

z (°C ) 5.48 5.14 

Tref (°C ) 60 60 

 



142 

 

6.4.4 Results 

For each sample, the log reduction predicted with the D- and z- values from Table 32, 
along with the experimental lethality are presented in Table 33 and Table 34. 

  

Table 33. Predicted and experimental log reductions for turkey hot dogs. 

Sample Log reduction predicted Log reduction experimental 

A1 3.83 1.10 

A2 3.95 0.96 

A3 3.65 1.09 

A4 3.49 0.97 

A5 2.13 1.36 

A6 2.03 0.85 

B1 5.23 2.89 

B2 5.95 2.97 

B3 5.65 3.62 

B4 1.73 4.04 

B5 1.87 3.41 

B6 5.54 3.49 
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Table 34. Predicted and experimental log reductions for beef hot dogs. 

Sample Log reduction predicted Log reduction experimental 

A1 2.47 1.44 

A2 3.59 1.74 

A3 2.20 1.71 

A4 3.62 1.56 

A5 3.11 1.36 

A6 2.90 1.39 

B1 5.28 2.81 

B2 5.79 3.48 

B3 6.34 2.82 

B4 5.04 2.62 

B5 4.01 2.55 

B6 4.82 2.80 
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6.5 Standard and relative errors for the multi-product, multi-factor model parameters 
(section 4) 

6.5.1 OLS method 

Table 35 shows the standard and relative errors for the parameters obtained when doing 

the regression on the fat-relevant data (Table 6), which would then lead to the use of solely β3 in 
the multi-product multi-factor model (see section 4.2.3.1.2 for details). 

Table 35. Parameter standard and relative errors for ββββ3 estimation. 

Model Species Parameter 
bref ββββ1 ββββ3 

min
-1

 K fat %
-1

 

T (g) 

G 
turkey 

Estimate 0.461 39,231 0.030 
Std error 0.010 542 0.003 
% Rel error 2.19 1.38 8.87 

G beef 
Estimate 0.396 39,885 0.023 
Std error 0.011 509 0.002 
% Rel error 2.80 1.28 7.73 

G pork 
Estimate 0.344 39,877 0.014 
Std error 0.009 721 0.001 
% Rel error 2.62 1.81 10.93 

 

Since β2 and β3 were obtained separately, they cannot be included with the values from 

the bref and β1 regressions. β2’s errors from its corresponding estimation are in Table 30 (section 

6.2). β3’s errors are on Table 35 (above). 
 

Table 36. Parameter standard and relative errors for OLS models (continued next page). 

Model Species Parameter 
bref ββββ1 

min
-1

 K 

T (g) 

G 
turkey 

Estimate 1.11 52,269 
Std error 0.038 1,673 
% Rel error 3.43 3.20 

G beef 
Estimate 0.83 44,242 
Std error 0.016 800 
% Rel error 1.98 1.81 

G pork 
Estimate 0.63 41,750 
Std error 0.020 1,206 
% Rel error 3.20 2.89 



145 

 

Table 36 (cont’d). Parameter standard and relative errors for OLS models. 

Model Species Parameter 
bref ββββ1 

min
-1

 K 

T (w) 

W 
turkey 

Estimate 0.37 48,589 
Std error 0.014 1,696 
% Rel error 3.78 3.49 

W beef 
Estimate 0.44 44,799 
Std error 0.011 859 
% Rel error 2.44 1.92 

W pork 
Estimate 0.45 47,164 
Std error 0.016 1,337 
% Rel error 3.54 2.84 

 

 

6.5.2 Mixed-effects method 

Table 37 shows the parameter standard and relative errors for the mixed-effects models. 

Notice that because β2 was estimated from a different regression (section 4.2.3.1.2), its errors 

cannot be presented in the same table. However, β2’s errors from its corresponding estimation 
are in Table 30 (section 6.2). 

Table 37. Parameter standard and relative errors for mixed-effects models (continued next 
page). 

Model Species Parameter 
bref ββββ1 ββββ3 ββββ4 ββββ5 ββββ6    ββββ7    

min
-1

 K fat % 
-1

 • • • • 

T (g) 

G 
turkey 

Estimate 0.672 50,750 - - - - - 
Std error 0.052 4,131 - - - - - 
% Rel error 7.74 8.14 - - - - - 

G beef 
Estimate 0.555 44,710 - - - - - 
Std error 0.034 2,260 - - - - - 
% Rel error 6.13 5.05 - - - - - 

G pork 
Estimate 0.430 53,950 - - - - - 
Std error 0.042 2,591 - - - - - 
% Rel error 9.77 4.80 - - - - - 
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Table 37 (cont’d). Parameter standard and relative errors for mixed-effects models 
(continued next page). 

Model Species Parameter 
bref ββββ1 ββββ3 ββββ4 ββββ5 ββββ6    ββββ7    

min
-1

 K fat % 
-1

 • • • • 

T (w) 

W 
turkey 

Estimate 0.593 50,750 - - - - - 
Std error 0.024 1,761 - - - - - 
% Rel error 4.05 3.47 - - - - - 

W beef 
Estimate 0.538 44,710 - - - - - 
Std error 0.020 1,500 - - - - - 
% Rel error 3.72 3.35 - - - - - 

W pork 
Estimate 0.654 53,950 - - - - - 
Std error 0.045 2,637 - - - - - 
% Rel error 6.88 4.89 - - - - - 

T F 
(g) 

G 
turkey 

Estimate 1.582 36,470 0.2094 - - - - 
Std error 0.089 1,944 0.007 - - - - 
% Rel error 5.63 5.33 3.34 - - - - 

G beef 
Estimate 0.949 36,320 0.0627 - - - - 
Std error 0.057 1,833 0.004 - - - - 
% Rel error 6.01 5.05 6.38 - - - - 

G pork 
Estimate 0.742 35,940 0.0635 - - - - 
Std error 0.045 1,713 0.004 - - - - 
% Rel error 6.06 4.77 6.30 - - - - 

T F 
(w) 

W 
turkey 

Estimate 1.363 44,710 0.897 - - - - 
Std error 0.133 1,658 0.098 - - - - 
% Rel error 9.76 3.71 10.93 - - - - 

W beef 
Estimate 0.796 44,710 0.128 - - - - 
Std error 0.092 1,424 0.037 - - - - 
% Rel error 11.56 3.18 28.91 - - - - 

W pork 
Estimate 1.045 53,950 0.188 - - - - 
Std error 0.311 3,076 0.121 - - - - 
% Rel error 29.76 5.70 64.36 - - - - 

T F S 
(g) 

G 
turkey, 
beef, 
pork 

Estimate 1.534 49,800 0.065 - 0.832 0.776 1.089 
Std error 0.172 1,778 0.004 - 0.087 0.100 0.106 

% Rel error 11.21 3.57 6.15 - 10.46 12.89 9.73 

T F S 
(w) 

W 
turkey, 
beef, 
pork 

Estimate 5.200 45,690 0.127 - 2.145 1.881 1.791 
Std error 0.877 1,166 0.046 - 0.190 0.211 0.200 

% Rel error 16.87 2.55 36.22 - 8.86 11.22 11.17 
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Table 37 (cont’d). Parameter standard and relative errors for mixed-effects models. 

Model Species Parameter 
bref ββββ1 ββββ3 ββββ4 ββββ5 ββββ6    ββββ7    

min
-1

 K fat % 
-1

 • • • • 

T F M 

G + W 
turkey 

Estimate 0.516 36,860 0.210 -1.140 - - - 
Std error 0.034 1,723 0.008 0.075 - - - 
% Rel error 6.59 4.67 3.81 -6.58 - - - 

G + W 
beef 

Estimate 0.612 37,490 0.062 -0.453 - - - 
Std error 0.034 1,433 0.004 0.071 - - - 
% Rel error 5.56 3.82 6.45 -15.67 - - - 

G + W 
pork 

Estimate 0.674 40,300 0.066 -1.355 - - - 
Std error 0.044 1,575 0.004 0.083 - - - 
% Rel error 6.53 3.91 6.06 -6.13 - - - 

T F M 
S 

G + W 
turkey, 
beef, 
pork 

Estimate 1.094 49,410 0.062 -0.506 0.652 0.651 0.855 
Std error 0.064 1,160 0.003 0.062 0.085 0.074 0.073 

% Rel error 5.85 2.35 4.84 -12.25 13.04 11.37 8.54 

 

 

6.6 Correlation coefficients for multi-product multi-factor model p arameters (section 4) 

6.6.1 OLS models 

Table 38. Parameter correlation coefficients for ββββ3 estimation. 

Model Species Parameter* bref ββββ1 

T (g) 

G turkey β1 -0.042 - 

β3 0.848 -0.046 

G beef β1 0.0005 - 

β3 0.922 -0.0002 

G pork β1 -0.061 - 

β3 0.825 -0.073 

*Parameter units: bref = min
-1

, β1 =K, β3 = fat %
-1
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Table 39. Correlation coefficients for OLS models parameters. 

Model Species Parameter bref 

T (g) 

G turkey β1 2.84e-06 

G beef β1 5.47e-06 

G pork β1 1.41e-05 

T (w) 

W turkey β1 -6.77e-06 

W beef β1 -1.33e-05 

W pork β1 -1.61e-05 

*Parameter units: bref = min
-1

, β1 =K 
 

 

6.6.2 Mixed-effects models 

Table 40 shows the parameter correlation coefficients for the mixed-effects models. 

Notice that because β2 was estimated from a different regression (section 4.2.3.1.2), its 
correlation with the other parameters cannot be presented in the same table. Table 29 (section 

6.2) shows the correlation of β2 with the parameters from its original estimation. 

Table 40. Correlation coefficients for mixed-effects models parameters (continued next 
page). 

Model Species Parameter 
bref ββββ1 ββββ3 ββββ4 ββββ5 ββββ6    

min
-1

 K fat % 
-1

 • • • 

T (g) 

G turkey β1 0.065 - - - - - 

G beef β1 0.058 - - - - - 

G pork β1 0.185 - - - - - 

T (w) 

W turkey β1 0.318 - - - - - 

W beef β1 -0.011 - - - - - 

W pork β1 0.251 - - - - - 

G pork 
β1 0.063 - - - - - 

β3 0.669 0.295 - - - - 
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Table 40 (cont’d). Correlation coefficients for mixed-effects models parameters (continued 
next page). 

Model Species Parameter 
bref ββββ1 ββββ3 ββββ4 ββββ5 ββββ6    

min
-1

 K fat % 
-1

 • • • 

T F 
(g) 

G turkey 
β1 0.003 - - - - - 

β3 0.658 0.331 - - - - 

G beef 
β1 -0.194 - - - - - 

β3 0.689 -0.248 - - - - 

T F 
(w) 

W turkey 
β1 ~ 0 - - - - - 

β3 1.000 ~ 0 - - - - 

W beef 
β1 -0.067 - - - - - 

β3 0.955 -0.062 - - - - 

W pork 
β1 -0.451 - - - - - 

β3 0.973 -0.515 - - - - 

T F S 
(g) 

G turkey, 
beef, pork 

β1 -0.362 - - - - - 

β3 -0.004 -0.062 - - - - 

β5 0.614 -0.245 -0.092 - - - 

β6 0.668 -0.395 -0.490 - 0.460 - 

β7 0.624 -0.331 -0.411 - 0.424 0.644 

T F S 
(w) 

W turkey, 
beef, pork 

β1 0.032 - - - - - 

β3 0.072 -0.050 - - - - 

β5 0.846 -0.032 -0.176 - - - 

β6 0.739 0.059 -0.596 - 0.779 - 

β7 0.783 0.031 -0.571 - 0.801 0.952 

T F M 

G + W 
turkey 

β1 0.116 - - - - - 

β3 0.111 0.267 - - - - 

β4 0.669 0.079 -0.477 - - - 

G + W 
beef 

β1 -0.113 - - - - - 

β3 0.152 -0.232 - - - - 

β4 0.589 0.059 -0.515 - - - 

G + W 
pork 

β1 -0.038 - - - - - 

β3 0.094 0.252 - - - - 

β4 0.626 -0.142 -0.519 - - - 
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Table 40 (cont’d). Correlation coefficients for mixed-effects models parameters. 

Model Species Parameter 
bref ββββ1 ββββ3 ββββ4 ββββ5 ββββ6    

min
-1

 K fat % 
-1

 • • • 

T F M 
S 

G + W 
turkey, 
beef, pork 

β1 -0.306 - - - - - 

β3 0.053 -0.103 - - - - 

β4 0.013 -0.020 -0.389 - - - 

β5 0.495 -0.169 0.209 -0.610 - - 

β6 0.627 -0.273 -0.138 -0.449 0.621 - 

β7 0.611 -0.259 -0.085 -0.372 0.559 0.683 
 

 

6.7 OLS method prediction interval calculations (section 4) 

6.7.1 Ellipse, bootstrapping, and Monte Carlo (PI methods) contours for each calibration 
product 

As described in section 4.2.3.1.3, contours were developed for each calibration data set 
with the PI methods to determine the best approach for calculating PIs. The contours for the 
ground turkey data set are shown in the main text (section 4.3.2, Figure 10). 

 
 

Figure 32. PI methods parameter contours for whole turkey calibration set. 
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Figure 33. PI methods parameter contours for ground beef calibration set. 

 

 

 
 

Figure 34. PI methods parameter contours for whole beef calibration set. 
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Figure 35. PI methods parameter contours for ground pork calibration set. 

 

 

Figure 36. PI methods parameter contours for whole pork calibration set. 
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6.7.2  Prediction intervals for each PI method and each calibration product. 

Just as shown for the ground turkey data set in section 4.3.2 (Figure 11 and Figure 12), 
the following plots represent the PIs generated for the rest of the data sets. 

 

 
Figure 37. PIs with all methods for whole turkey calibration data set. 

 

 
Figure 38. Zoom-in section from Figure 37. 
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Figure 39. PIs with all methods for ground beef calibration data set. 

 

 
Figure 40. Zoom-in section from Figure 39. 
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Figure 41. PIs with all methods for whole beef calibration data set. 

 

 
Figure 42. Zoom-in section from Figure 41. 
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Figure 43. PIs with all methods for ground pork calibration data set. 

 

 
Figure 44. Zoom-in section from Figure 43. 
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Figure 45. PIs with all methods for whole pork calibration data set. 

 

 
Figure 46. Zoom-in section from Figure 45. 
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6.8 Random effects variance for the mixed-effects models (section 4) 

 

Table 41. Random effects variance for mixed-effects models. 

Model Species 
Random effect 

variance 

T (g) 

G turkey 0.13198 

G beef 0.08530 

G pork 0.078252 

T (w) 

W turkey 0 

W beef 0.0074619 

W pork 0.023054 

T F (g) 

G turkey 0.19477 

G beef 0.12499 

G pork 0.047815 

T F (w) 

W turkey 4.9773e-14 

W beef 0.012638 

W pork 0.058894 

T F S (g) G turkey, beef, pork 1.36663 

T F S (w) W turkey, beef, pork 0.64025 

T F M 

G + W turkey 0.018597 

G + W beef 0.040271 

G + W pork 0.039966 

T F M S G + W turkey, beef, pork 0.20553 
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6.9 Validation against pilot-scale data (section 4) 

6.9.1 Minimum and maximum errors for each model 

6.9.1.1 Impingement oven data 

Table 42. OLS models prediction errors chicken fillets and turkey patties (impingement 
cooked). 

Data source for 
validation 

Model* 
Max error Min error 

log (CFU/g) 

Ground turkey +  
Whole chicken 

 

nobs = 44 

T (g) -0.12 -9.50 

T F (g) 0.05 -9.15 

T τ (g) -0.04 -9.29 

T F τ (g) 0.13 -8.95 

T (g) + T (w) 2.20 -9.50 

T F (g) + T F (w) 2.23 -9.15 

T τ (g) + T τ (w) 2.23 -9.29 

T F τ (g) + T F τ (w) 2.25 -8.95 

Ground turkey 
 

nobs = 23 

fat = 1.05% 

τavg =  
8.77 K·min  

T (g) -0.12 -9.50 

T F (g) 0.05 -9.15 

T τ (g) -0.04 -9.29 

T F τ (g) 0.13 -8.95 

Whole chicken 
 

nobs = 21 

fat = 0.33% 

τavg =  
7.92 K·min 

T (g) -0.61 -8.72 

T F (g) -0.57 -8.62 

T τ (g) -0.55 -8.59 

T F τ (g) -0.51 -8.50 

T (w) 2.20 -2.89 

T F (w) 2.23 -2.86 

T τ (w) 2.23 -2.85 

T F τ (w) 2.25 -2.81 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 43. OLS models prediction errors on beef steaks and patties (impingement cooked). 

Data source 
for validation 

Model* Max error Min error 

 log (CFU/g) 

Ground +  
Whole beef 

 

nobs = 44 

T (g) 2.76 -5.45 

T F (g) 2.96 -5.05 

T τ (g) 2.84 -5.39 

T F τ (g) 3.03 -4.99 

T (g) + T (w) 2.76 -3.39 

T F (g) + T F (w) 2.96 -3.13 

T τ (g) + T τ (w) 2.84 -3.29 

T F τ (g) + T F τ (w) 3.03 -3.03 

Ground beef 
 

nobs = 19 

fat = 2.32% 

τavg =  
9.28 K·min 

T (g) 2.76 -3.39 

T F (g) 2.96 -3.13 

T τ (g) 2.84 -3.29 

T F τ (g) 3.03 -3.03 

Whole beef 
 

nobs = 25 

fat = 2.68% 

τavg =  
8.18 K·min 

T (g) 0.87 -5.45 

T F (g) 1.10 -5.05 

T τ (g) 0.95 -5.39 

T F τ (g) 1.17 -4.99 

T (w) 2.47 -2.68 

T F (w) 2.60 -2.43 

T τ (w) 2.51 -2.64 

T F τ (w) 2.65 -2.40 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 44. OLS models prediction errors on pork steaks and patties (impingement cooked). 

Data source 
for validation 

Model* Max error Min error 

 log (CFU/g) 

Ground +  
Whole pork 

 

nobs = 56 

T (g) 2.91 -6.12 

T F (g) 2.42 -5.01 

T τ (g) 2.02 -6.00 

T F τ (g) 2.52 -4.91 

T (g) + T (w) 2.69 -6.12 

T F (g) + T F (w) 2.77 -5.01 

T τ (g) + T τ (w) 2.72 -6.00 

T F τ (g) + T F τ (w) 2.77 -4.91 

Ground pork 

nobs = 27 

fat = 10% 

τavg =  
9.34 K·min 

T (g) 1.61 -6.12 

T F (g) 2.42 -5.01 

T τ (g) 1.73 -6.00 

T F τ (g) 2.52 -4.91 

Whole pork 
 

nobs = 29 

fat = 1.53% 

τ avg =  

8.21 K·min 

T (g) 2.91 -3.66 

T F (g) 2.05 -4.78 

T τ (g) 2.02 -4.85 

T F τ (g) 2.09 -4.71 

T (w) 2.69 -3.97 

T F (w) 2.77 -3.77 

T τ (w) 2.72 -3.91 

T F τ (w) 2.77 -3.78 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 45. OLS models prediction errors on ALL impingement oven data. 

Data source 
for validation Model* 

Max error Min error 

log (CFU/g) 

ALL 
impingement 

oven data 
 

nobs = 144 

T (g) + T (w) 2.76 -9.50 

T F (g) + T F (w) 2.96 -9.15 

T τ (g) + T τ (w) 2.84 -9.29 

T F τ (g) + T F τ (w) 3.03 -8.95 

*In all cases, ground-muscle calibrated models predicted lethality for ground-muscle data and 
whole-muscle calibrated models did for whole-muscle data. In addition, models used were 
species specific, that is, turkey models predicted for turkey data, and so on. 

 

 

Table 46. Mixed-effects models prediction errors on chicken steaks and turkey patties 
(impingement cooked) (continued next page). 

Data source for 
validation Model* 

Max error Min error 

log (CFU/g) 

Ground Turkey  
+  

Whole Chicken 
 

nobs = 44 

T (g) 2.73 -3.75 

T F (g) 1.52 -5.55 

T F τ (g) 1.58 -5.46 

T F S (g) 2.97 -3.58 

T F τ S (g) 3.00 -3.52 

T (g) + T (w) 2.73 -3.62 

T F (g) + T F (w) 1.52 -5.03 

T F τ (g) + T F τ (w) 1.58 -5.46 

T F S (g) + T F S (w) 2.97 -3.09 

T F τ S (g) + T F τ S (w) 3.00 -3.00 

T F M 3.05 -5.22 

T F M τ 3.07 -5.09 

T F M S 2.21 -5.04 

T F M τ S 2.24 -4.91 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 46 (cont’d). Mixed-effects models prediction errors on chicken steaks and turkey 
patties (impingement cooked). 

Data source for 
validation Model* 

Max error Min error 

log (CFU/g) 

Ground turkey 
 

nobs = 23 

fat = 1.05% 

τavg = 8.77 K·min 

T (g) 2.73 -3.62 

T F (g) 1.52 -5.03 

T F τ (g) 1.58 -4.90 

T F S (g) 2.97 -3.09 

T F τ S (g) 3.00 -3.00 

T F M 1.42 -5.22 

T F M τ 1.48 -5.09 

T F M S 1.98 -5.04 

T F M τ S 2.03 -4.91 

Whole chicken 
 

nobs = 21 

fat = 0.33% 

τavg = 7.92 K·min 

T (g) 1.79 -3.75 

T F (g) 0.02 -5.55 

T F τ (g) 0.07 -5.46 

T F S (g) 1.84 -3.58 

T F τ S (g) 1.87 -3.52 

T (w) 2.05 -3.22 

T F (w) 0.97 -4.81 

T F τ (w) 1.01 -4.73 

T F S (w) 2.29 -2.70 

T F τ S (w) 2.32 -2.66 

T F M 3.05 -1.50 

T F M τ 3.07 -1.47 

T F M S 2.21 -2.90 

T F M τ S 2.24 -2.86 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 47. Mixed-effects models prediction errors on beef steaks and patties (impingement 
cooked) (continued next page). 

Data source for 
validation Model* 

Max error Min error 

log (CFU/g) 

Ground  
+  

Whole beef 
 

nobs = 44 

T (g) 4.24 -2.80 

T F (g) 3.49 -3.14 

T F τ (g) 3.56 -3.10 

T F S (g) 3.82 -4.02 

T F τ S (g) 3.88 -3.97 

T (g) + T (w) 4.24 -2.67 

T F (g) + T F (w) 3.49 -2.88 

T F τ (g) + T F τ (w) 3.56 -2.84 

T F S (g) + T F S (w) 3.82 -3.03 

T F τ S (g) + T F τ S (w) 3.88 -2.99 

T F M 3.41 -2.08 

T F M τ 3.47 -2.01 

T F M S 2.91 -3.65 

T F M τ S 2.98 -3.54 

Ground beef 
 

nobs = 19 

fat = 2.32% 

τavg =  
9.28 K·min 

T (g) 4.24 -1.40 

T F (g) 3.49 -1.91 

T F τ (g) 3.56 -1.84 

T F S (g) 3.82 -2.30 

T F τ S (g) 3.88 -2.22 

T F M 3.41 -2.08 

T F M τ 3.47 -2.01 

T F M S 2.91 -3.65 

T F M τ S 2.98 -3.54 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 47 (cont’d). Mixed-effects models prediction errors on beef steaks and patties 
(impingement cooked). 

Data source for 
validation Model* 

Max error Min error 

log (CFU/g) 

 
Whole beef 

 

nobs = 25 

fat = 2.68% 

τavg =  

8.18 K·min 

T (g) 2.39 -2.80 

T F (g) 1.61 -3.14 

T F τ (g) 1.67 -3.10 

T F S (g) 2.07 -4.02 

T F τ S (g) 2.12 -3.97 

T (w) 2.47 -2.67 

T F (w) 2.35 -2.88 

T F τ (w) 2.40 -2.84 

T F S (w) 2.33 -3.03 

T F τ S (w) 2.37 -2.99 

T F M 2.70 -1.64 

T F M τ 2.74 -1.61 

T F M S 2.58 -2.95 

T F M τ S 2.62 -2.90 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 48. Mixed-effects models prediction errors on pork steaks and patties (impingement 
cooked) (continued next page). 

Data source for 
validation Model* 

Max error Min error 

log (CFU/g) 

Ground  
+  

Whole pork 
 

nobs = 56 

T (g) 4.08 -4.68 

T F (g) 5.51 -1.65 

T F τ (g) 5.56 -1.61 

T F S (g) 5.59 -1.75 

T F τ S (g) 5.64 -1.76 

T (g) + T (w) 3.73 -4.68 

T F (g) + T F (w) 5.51 -5.82 

T F τ (g) + T F τ (w) 5.56 -5.75 

T F S (g) + T F S (w) 5.59 -3.04 

T F τ S (g) + T F τ S (w) 5.64 -2.97 

T F M 5.23 -1.70 

T F M τ 5.28 -1.66 

T F M S 4.50 -3.09 

T F M τ S 4.44 -3.01 

Ground pork 
 

nobs = 27 

fat = 10% 

τavg =  

9.34 K·min 

T (g) 3.73 -4.68 

T F (g) 5.51 -0.66 

T F τ (g) 5.56 -0.66 

T F S (g) 5.59 -1.18 

T F τ S (g) 5.64 -1.13 

T F M 5.23 -1.07 

T F M τ 5.28 -1.02 

T F M S 4.37 -3.09 

T F M τ S 4.44 -3.01 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 48 (cont’d). Mixed-effects models prediction errors on pork steaks and patties 
(impingement cooked). 

Data source for 
validation Model* 

Max error Min error 

log (CFU/g) 

 
Whole pork 

 

nobs = 29 

fat = 1.53 % 

τavg =  

8.21 K·min 

T (g) 4.08 -2.06 

T F (g) 3.90 -1.65 

T F τ (g) 3.92 -1.61 

T F S (g) 4.41 -1.75 

T F τ S (g) 4.12 -1.76 

T (w) 3.08 -4.44 

T F (w) 2.50 -5.82 

T F τ (w) 2.54 -5.75 

T F S (w) 3.97 -3.04 

T F τ S (w) 4.00 -2.97 

T F M 3.95 -1.70 

T F M τ 3.98 -1.66 

T F M S 4.50 -1.36 

T F M τ S 4.32 -1.37 

*where (g)+(w) models appear, ground-muscle calibrated models predicted lethality for ground-
muscle data and whole-muscle calibrated models did for whole-muscle data. 
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Table 49. Mixed-effects models prediction errors on ALL impingement oven data. 

Data source for 
validation Model* 

Max error Min error 

log (CFU/g) 

ALL 
impingement 

oven data 
 

nobs =144 

T (g) + T (w) 4.24 -4.68 

T F (g) + T F (w) 5.51 -5.68 

T F τ (g)  + T F τ (w) 5.56 -5.75 

T F S (g) + T F S (w) 6.03 -3.09 

T F τ S (g) + T F τ S (w) 5.64 -3.00 

T F M 5.23 -5.22 

T F M τ 5.28 -5.09 

T F M S 4.50 -5.04 

T F M τ S 4.44 -4.91 

*In all cases, ground-muscle calibrated models predicted lethality for ground-muscle data and 
whole-muscle calibrated models did for whole-muscle data. In addition, models used were 
species specific, that is, turkey models predicted for turkey data, and so on. 
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6.9.1.2 Big roasts 

 

Table 50. OLS models prediction errors on roasts. 

Data source for 
validation Model 

Max error Min error 

log (CFU/g) 

Turkey roasts 
 

nobs = 9 

fat = 0.27% 

τrange =  
200 – 500 K·min 

T (g) -10.96 -14.32 

T F (g) -10.83 -14.19 

T τ (g) -9.08 -13.16 

T F τ (g) -8.96 -13.04 

T (w) -2.06 -5.30 

T F (w) -2.00 -5.25 

T τ (w) -1.21 -4.79 

T F τ (w) -1.16 -4.74 

Beef roasts 
 

nobs = 13 

fat = 2.68% 

τrange =  
100 – 480 K·min 

T (g) -2.23 -15.19 

T F (g) -1.75 -14.14 

T τ (g) -1.78 -13.87 

T F τ (g) -1.33 -12.90 

T (w) 1.15 -6.12 

T F (w) 1.45 -7.14 

T τ (w) 1.43 -6.98 

T F τ (w) 1.69 -6.41 

Pork roasts 
 

nobs = 20 

fat =1.53% 

τrange =  
100 – 600 K·min 

T (g) -0.11 -4.64 

T F (g) -0.01 -4.50 

T τ (g) 0.03 -3.80 

T F τ (g) 0.14 -3.68 

T (w) 1.60 -1.77 

T F (w) 1.71 -1.65 

T τ (w) 1.70 -1.30 

T F τ (w) 1.81 -1.16 
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Table 51. Mixed-effects models prediction errors on roasts (continued next page). 

Data source for 
validation Model 

Max error Min error 

log (CFU/g) 

Turkey roasts 
 

nobs = 9 

fat = 0.27% 

τrange =  

200 – 500 K·min 

T (g) -2.97 -6.28 

T F (g) -15.90 -22.66 

T F τ (g) -6.51 -12.02 

T F S (g) -9.06 -15.21 

T F τ S (g) 1.03 -3.54 

T (w) -1.78 -5.21 

T F (w) -15.90 -22.66 

T F τ (w) -1.98 -7.22 

T F S (w) -2.39 -5.72 

T F τ S (w) 1.26 -3.13 

T F M -1.58 -5.93 

T F M τ 1.45 -2.62 

T F M S -3.56 -8.17 

T F M τ S 1.64 -2.75 

Beef roasts 
 

nobs = 13 

fat = 2.68% 

τrange =  

100 – 480 K·min 

T (g) 1.00 -8.13 

T F (g) -1.97 -13.48 

T F τ (g) 0.89 -8.32 

T F S (g) 0.92 -8.81 

T F τ S (g) 3.33 -5.21 

T (w) -1.97 -13.47 

T F (w) 0.91 -8.32 

T F τ (w) 3.08 -4.62 

T F S (w) 0.97 -8.29 

T F τ S (w) 3.15 -4.60 

T F M 0.89 -7.68 

T F M τ 2.66 -4.21 

T F M S 1.83 -6.67 

T F M τ S 3.65 -3.72 
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Table 51 (cont’d). Mixed-effects models prediction errors on roasts. 

Data source for 
validation Model 

Max error Min error 

log (CFU/g) 

Pork roasts 
 

nobs = 20 

fat = 1.53% 

τrange =  

100 – 600 K·min 

T (g) 2.96 -0.02 

T F (g) 0.88 -4.47 

T F τ (g) 1.46 -1.21 

T F S (g) 2.58 -0.56 

T F τ S (g) 3.27 0.71 

T (w) 1.81 -1.02 

T F (w) 1.14 -1.77 

T F τ (w) 1.46 -1.21 

T F S (w) 1.09 -2.53 

T F τ S (w) 2.02 -0.48 

T F M 1.47 -2.84 

T F M τ 2.15 -0.42 

T F M S 2.81 -0.36 

T F M τ S 3.44 0.82 

 

 

 

Table 52. OLS models prediction errors on ALL roast data. 

Data source for 
validation 

Model 
Max error Min error 

log (CFU/g) 

ALL roast data 
 

nobs = 42 

T (w) 1.60 -6.12 

T F (w) 1.71 -7.14 

T τ (w) 1.70 -6.98 

T F τ (w) 1.81 -6.41 
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Table 53. Mixed-effects models prediction errors on ALL roast data. 

Data source for 
validation Model 

Max error Min error 

log (CFU/g) 

ALL roast data 
 
 

nobs = 42 

T (w) 1.81 -13.48 

T F (w) 1.14 -22.66 

T F τ (w) 3.08 -7.22 

T F S (w) 1.09 -8.29 

T F τ S (w) 3.15 -4.60 

T F M 1.47 -7.68 

T F M τ 2.66 -4.21 

T F M S 2.81 -8.17 

T F M τ S 3.65 -3.72 

 

 
 

6.9.1.3 Hot dogs 

Table 54. OLS models prediction errors on hot dogs. 

Data source for 
validation Model 

Max error Min error 

log (CFU/g) 

Turkey hot dogs 

nobs = 12 

fat = 4.28% 

τrange =  

50 – 125 K·min 

T (g) 1.88 -4.85 

T F (g) 2.14 -3.90 

T τ (g) 2.22 -3.61 

T F τ (g) 2.44 -3.06 

Beef hot dogs 

nobs = 12 

fat =15.42% 

τrange =  

100 – 275 K·min 

T (g) -0.49 -3.50 

T F (g) 0.16 -1.64 

T τ (g) 0.35 -1.80 

T F τ (g) 0.75 -0.46 
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Table 55. OLS models predictions errors on ALL hot dog data. 

Data source 
for validation  Model 

Max error Min error 

log (CFU/g) 

ALL hot dog 
data 

 

nobs = 24 

T (g) 1.88 -4.85 

T F (g) 2.14 -3.90 

T τ (g) 2.22 -3.61 

T F τ (g) 2.44 -3.06 

 

 

Table 56. Mixed-effects models prediction errors on hot dogs. 

Data source for 
validation 

Model Max error Min error 

 log (CFU/g) 

Turkey hot dogs 
 

nobs = 12 

fat =4.28% 

τrange =  

50 – 125 K·min 

T (g) 2.90 -1.68 

T F (g) 2.17 -3.05 

T F τ (g) 5.92 -2.67 

T F S (g) 3.16 -1.19 

T F τ S (g) 5.04 -0.89 

T F M 6.13 -3.06 

T F M τ 2.47 -2.68 

T F M S 5.82 -2.00 

T F M τ S 5.23 -1.73 

Beef hot dogs 
 

nobs = 12 

fat = 15.42% 

τrange =  

100 – 275 K·min 

T (g) 0.41 -0.96 

T F (g) 0.63 -0.37 

T F τ (g) 2.72 -0.04 

T F S (g) 2.07 -1.01 

T F τ S (g) 3.81 0.77 

T F M 3.72 -0.33 

T F M τ 3.07 0.0 

T F M S 2.83 0.35 

T F M τ S 2.33 0.52 
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Table 57. Mixed-effects models prediction errors on ALL hot dog data. 

Data source 
for validation  

Model Max error Min error 

 log (CFU/g) 

ALL hot dog 
data 

 

nobs = 24 

T (g) 2.90 -1.68 

T F (g) 2.17 -3.05 

T F τ (g) 2.47 -2.67 

T F S (g) 3.16 -1.08 

T F τ S (g) 3.30 -0.89 

T F M 2.17 -3.06 

T F M τ 2.47 -2.68 

T F M S 2.76 -2.00 

T F M τ S 2.96 -1.73 

 

6.9.1.4 Overall model performance on pilot-scale data 

 

Table 58. OLS models prediction errors on ALL pilot-scale data. 

Data source 
for validation  

Model 
Max error Min error 

log (CFU/g) 

ALL  
pilot-scale 

data 
 

nobs = 210 

T (g) + T (w) 2.76 -9.50 

T F (g) + T F (w) 2.96 -9.15 

T τ (g) + T τ (w) 2.84 -9.29 

T F τ (g) + T F τ (w) 3.03 -8.95 
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Table 59. Mixed-effects models prediction errors on ALL pilot-scale data. 

Data source for 
validation Model 

Max error Min error 

log (CFU/g) 

ALL  
pilot-scale data 

 

nobs = 210 

T (g) + T (w) 4.24 -13.48 

T F (g) + T F (w) 5.51 -22.66 

T F τ (g)  + T F τ (w) 5.56  -7.22 

T F S (g) + T F S (w) 6.03 -8.29 

T F τ S (g) + T F τ S (w) 5.64 -4.60 

T F M 5.23 -7.68 

T F M τ 5.28 -5.09 

T F M S 4.50 -8.17 

T F M τ S 4.44 -4.91 

 

6.9.2  Plots showing model predictions and PIs for representative data sets and models 

Given the large number of validated models and data sets, this project produced ~320 
plots (one for each validation). However, it was decided to present the plots of only a 
representative data set across all models, in addition to any other that may have shown special 
features.   

6.9.2.1 OLS models 

To show the effect of the addition of the fat and sublethal injury parameters (β3 and β2, 
represented by F and τ in model names) and the importance of using whole-muscle calibrated 
models (represented by (w)) to predict lethality in whole-muscle data (instead of ground-muscle 
calibrated models, represented by (g)), the impingement-cooked whole-muscle pork steaks were 

chosen. Notice the slight improvement created by the addition of β2 and β3, but the significant 
difference caused by the use of the whole-muscle-calibrated models (w) instead of the ground-
muscle-calibrated versions (g). 
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Figure 47. OLS T (g) model validated with whole-muscle pork steaks. 

 

 
Figure 48. OLS T F (g) model validated against whole-muscle pork steaks.  

 

Figure 49. OLS T ττττ (g) model validated against whole-muscle pork steaks. 

95% PI widthavg= ±2.12 log CFU/g 

RMSE = 1.95 log CFU/g 

bias = -0.82 log CFU/g 

% above low PI = 83% 

95% PI widthavg= ±2.04 log CFU/g 

RMSE = 1.92 log CFU/g 

bias = -0.78 log CFU/g 

% above low PI = 69% 

95% PI widthavg= ±2.05 log CFU/g 

RMSE = 1.94 log CFU/g 

bias = -0.82 log CFU/g 

% above low PI = 69% 
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Figure 50. OLS T F ττττ (g) model validated against whole-muscle pork steaks.  

 

 
Figure 51. OLS T (w) model validated against whole-muscle pork steaks. 

 
Figure 52. OLS T F (w) model validated against whole-muscle pork steaks. 

95% PI widthavg= ±2.04 log CFU/g 

RMSE = 1.89 log CFU/g 

bias = -0.72 log CFU/g 

% above low PI = 69% 

95% PI widthavg= ±2.12 log CFU/g 

RMSE = 1.71 log CFU/g 

bias = -0.04 log CFU/g 

% above low PI = 93% 

95% PI widthavg= ±2.11 log CFU/g 

RMSE = 1.69 log CFU/g 

bias = 0.08 log CFU/g 

% above low PI = 93% 
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Figure 53. OLS T ττττ (w) model validated against whole-muscle pork steaks. 

 

 

 
Figure 54. OLS T F t (w) model validated against whole-muscle pork steaks. 

 

6.9.2.2 Mixed-effects models 

For the mixed-effect models, the impingement-cooked whole-muscle chicken breast 
samples were chosen because of the significant changes noted with the addition of parameters 
and with the use of the ground-muscle-calibrated model (represented by (g)) versus the whole-
muscle-calibrated versions (represented by (w)). 

 

95% PI widthavg= ±2.11 log CFU/g 

RMSE = 1.71 log CFU/g 

bias = 0.00 log CFU/g 

% above low PI = 93% 

95% PI widthavg= ±2.11 log CFU/g 

RMSE = 1.69 log CFU/g 

bias = 0.08 log CFU/g 

% above low PI = 93% 
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Figure 55. Mixed-effects T (g) model validated against whole-muscle chicken breasts. 

 

 
Figure 56. Mixed-effects T F (g) model validated against whole-muscle chicken breasts. 

 

Figure 57. Mixed-effects T F ττττ (g) model validated against whole-muscle chicken steaks. 

95% PI widthavg= ±3.30 log CFU/g 

RMSE = 1.34 log CFU/g 

bias = -0.16 log CFU/g 

% above low PI = 100% 

95% PI widthavg= ±3.05 log CFU/g 

RMSE = 2.72 log CFU/g 

bias = -2.25 log CFU/g 

% above low PI = 71% 

95% PI widthavg= ±3.02 log CFU/g 

RMSE = 2.65 log CFU/g 

bias = -2.18 log CFU/g 

% above low PI = 71% 
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Figure 58. Mixed-effects T F S (g) model validated against whole-muscle chicken breasts. 

 
 

 

Figure 59. Mixed-effects T F S ττττ (g) model validated against whole-muscle chicken breasts. 

 
Figure 60. Mixed-effects T (w) model validated against whole-muscle chicken breasts. 

95% PI widthavg= ±4.82 log CFU/g 

RMSE = 1.33 log CFU/g 

bias = -0.04 log CFU/g 

% above low PI = 100% 

95% PI widthavg= ±4.73 log CFU/g 

RMSE = 1.32 log CFU/g 

bias = 0.01 log CFU/g 

% above low PI = 100% 

95% PI widthavg= ±0.83 log CFU/g 

RMSE = 1.31 log CFU/g 

bias = 0.23 log CFU/g 

% above low PI = 81% 
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Figure 61. Mixed-effects T F (w) model validated against whole-muscle chicken breasts. 

 

 

Figure 62. Mixed-effects T F ττττ (w) model validated against whole-muscle chicken breasts. 

 

Figure 63. Mixed-effects T F S (w) model validated against whole-muscle chicken breasts. 

95% PI widthavg= ±0.85 log CFU/g 

RMSE = 1.86 log CFU/g 

bias = -1.20 log CFU/g 

% above low PI = 38% 

95% PI widthavg= ±0.85 log CFU/g 

RMSE = 1.82 log CFU/g 

bias = -1.14 log CFU/g 

% above low PI = 38% 

95% PI widthavg= ±1.66 log CFU/g 

RMSE = 1.36 log CFU/g 

bias = 0.50 log CFU/g 

% above low PI = 95% 
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Figure 64. Mixed-effects T F S ττττ (w) model validated against whole-muscle chicken breasts. 

   

 
Figure 65. Mixed-effects T F M model validated against whole-muscle chicken breasts. 

  

 

Figure 66. Mixed-effects T F M ττττ model validated against whole-muscle chicken breasts. 

 

95% PI widthavg= ±1.66 log CFU/g 

RMSE = 1.38 log CFU/g 

bias = 0.53 log CFU/g 

% above low PI = 95% 

95% PI widthavg= ±1.35 log CFU/g 

RMSE = 1.73 log CFU/g 

bias = 1.22 log CFU/g 

% above low PI = 100% 

95% PI widthavg= ±1.34 log CFU/g 

RMSE = 1.75 log CFU/g 

bias = 1.25 log CFU/g 

% above low PI = 100% 
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Figure 67. Mixed-effects T F M S model validated against whole-muscle chicken breasts. 

 

 

 

Figure 68. Mixed-effects T F M S ττττ model validated against whole-muscle chicken breasts. 

 

 

 

 

 

 

95% PI widthavg= ±2.56 log CFU/g 

RMSE = 1.36 log CFU/g 

bias = 0.45 log CFU/g 

% above low PI = 100% 
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