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ABSTRACT

SOME CONTRIBUTIONS TO DIMENSIONALITY

REDUCTION

By

Wei Tong

Dimensionality reduction is a long standing challenging problem in the fields of statistical

learning, pattern recognition and computer vision. Numerous algorithms have been proposed

and studied in the past decades. In this dissertation we address several challenging problems

emerged in recent studies of dimensionality reduction. We first explore the dimensionality

reduction method for semi-supervised classification via the idea of mixed label propagation

in which we attempt to find the best one dimensional embedding of the data in which data

points in different classes can be well separated and the class labels are obtained by simply

thresholding the one dimensional representation. In the next, we explore the dimensionality

reduction methods for non-vector data representations. We first look into the problem in

which a datum is represented by a matrix. We give a convex formulation to the problem of

dimensionality reduction for matrices and developed an efficient approximating algorithm to

solve the associated semi-definite programming problem. In the last, we studied the problem

of dimensionality reduction with even more challenging data representation, i.e., each datum

is described as a different number of unordered vectors. We convert the problem into the

functional data dimensionality reduction and study it in the context of large scale image

retrieval.
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CHAPTER 1

Introduction

The curse of dimensionality[8] is a well known problem in the fields of machine learning

and statistical pattern recognition. It refers to the fact that, in the absence of simplified

assumption, the sample size needed to estimate a function of multiple variables to a given

degree of accuracy grows exponentially in the number of variables. In other words, when

the number of variables – the dimensionality of data – increases, the number of data points

needed to determine an accurate estimation could quickly exceed one’s processing ability.

To illustrate the challenge of handling high dimensional data, consider a face recognition

system based on grey scale images. Assume the size of each image is 256 × 256, which can

also be treated as a vector of 65536 dimension. In order to train a perceptron, a simple

linear classifier for face recognition, it requires solving an optimization problem with 65537

parameters. The size of the recognition problem will increase exponentially when considering

a multi-layer perceptron, making it impractical unless certain simplifying assumptions are

made.

The challenge of handling high dimensional data calls for the techniques of dimensionality

reduction, whose goal is to significantly reduce the number of features that are used for

data description. More specifically, suppose we have a high dimensional data set D =

{x1,x2, · · · ,xn}, where xi ∈ Rm, i = 1, · · ·n, are input patterns of m features. The

objective of dimensionality reduction is to compute n output patterns yi ∈ Rr, one for each

data point in D, that provide a ”faithful” low dimensional representation of the original data

set with r ¿ m. By faithful, we mean that the mapping from x to y preserves the geometric

relationship among data points. Namely, if two data points are close to each other in the
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original space Rm measured by the Euclidean distance, they should also be close to each

other in the mapped space Rr, and vice versa. Without loss of generality we assume, if not

specified, the input patterns are centered at the origin, i.e.,
∑n

i=1 xi = 0.

Numerous algorithms have been proposed and studied in the past decades, for example,

the classical PCA family algorithms, graph based methods and matrix factorization based

methods. However, there are two limitations of these methods. The first one is that most

of these methods are either supervised or unsupervised methods, there are few algorithms

developed for semi-supervised dimensionality reduction in which information from both la-

beled and unlabeled data can be explored. In this dissertation, we try to develop such an

algorithm for semi-supervised dimensionality reduction via the idea of mixed label propa-

gation. We approximate a data classification problem into a dimensionality reduction one

by finding the best one dimensional embedding of the data in which data points in different

classes can be well separated. We then obtain the class labels by simply thresholding the

one dimensional representation.

The second limitation of the existing dimensionality reduction methods is that each input

data must be a vector with fixed length. However, in many real applications, the natural

representation of each datum could be versatile. For example, an image is represented as

a matrix of pixels, a text document can be represented as a set of vectors with different

length. In those situations, in order to apply the dimensionality reduction methods, one has

to convert the natural representation of each datum into the vector representation and this

conversion may cause serious problems. For instance, by converting an image from the matrix

presentation into the vector representation, all the neighborhood information between pixels

are lost. This also makes the dimension of the resulting vector to the extremely high and often

leads to very high computational cost when applying dimensionality reduction methods. In

order to overcome this limitation, we study the problem of dimensionality reduction when

each datum has a non-vector representation. More specifically, We first look into the problem

in which a datum is represented by a matrix. We give a convex formulation to the problem

2



of dimensionality reduction for matrices and developed an efficient approximating algorithm

to solve the associated semi-definite programming problem. Second, we studied the problem

of dimensionality reduction with each datum is described as a different number of unordered

vectors. We convert the problem into the functional data dimensionality reduction and study

it in the context of large scale image retrieval.

The rest of the dissertation is organized as the following: in the next chapter, we give an

literature review of the methods for dimensionality reduction which have close relationship

to the problem we are going to solve in this dissertation. In the third chapter, we address the

problem of dimensionality reduction for semi-supervised learning by mixed label propagation.

In the fourth chapter, we study the problem when an input data is represented as a matrix

instead of a vector. In the fifth chapter, we address the problem of how to reduced the

dimensionality for functional data representation. The conclusion is presented in the last

chapter.
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CHAPTER 2

Literature Review of Dimensionality

Reduction

In this chapter we start our review in Section 2.1 with one of the most widely used meth-

ods for dimensionality reduction, principal component analysis (PCA), followed by metric

multidimensional scaling (MDS) and several unsupervised dimensionality reduction algo-

rithms that are closely related to PCA and MDS. Although these classical methods were

traditionally classified as a linear dimensionality reduction that transforms the input pat-

terns by a linear projection, they can be extended to nonlinear dimensionality reduction by

the introduction of kernel functions. Section 2.2 describes several graph-based methods for

dimensionality reduction. They are non-linear dimensionality reduction methods and are

particularly useful for analyzing high dimensional data that are sampled from a low dimen-

sional manifold. Although these methods are based on different geometric intuitions and use

different computational procedures, they share similar computational structures. Section 2.3

reviews dimensionality reduction methods based on matrix factorization that are not covered

in most recent surveys of dimensionality reduction [135, 19, 45, 21]. In Section 2.4 we review

both supervised and semi-supervised methods for dimensionality reduction. Lastly, in Sec-

tion 2.5, we review the functional dimensionality reduction in which the data are presented

by functions instead of vectors.
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2.1 PCA and Related Methods

Principal component analysis (PCA) and its related linear methods, such as multidimen-

sional scaling (MDS), are possibly the most widely used dimensionality reduction techniques.

These algorithms are computationally efficient and easily implemented. As a result, these

techniques have found a large number of applications as well as a number of different deriva-

tions. It is also important to note that despite the simplicity, the basic geometric intuition

of PCA and MDS has inspired many algorithms for non-linear dimensionality reduction.

2.1.1 Principle Components Analysis (PCA)

Principle Components Analysis [67, 72] is an unsupervised dimensionality reduction method.

The key idea of PCA is to identify the low dimensional representation of a high dimensional

data set that most faithfully preserves its covariance structure. PCA has been referenced

by many names in different fields. For example, in statistics and signal processing it is

also known as the Karhunen-Loève transformation, the Hotelling transformation, and the

empirical orthogonal function(EOF). Below we discuss several ways of deriving the algorithm

of PCA based on different principles.

Reconstruction with Minimum Squared Error

Given a data set D = {x1,x2, · · · ,xn}, where xi ∈ Rm, i = 1, · · ·n, PCA projects the input

data xi onto a r-dimensional subspace such that the reconstruction error is minimized. In

other words, we need to find a projection matrix P with rank r < m that minimizes the

following objective function:

min
P

n∑

i=1
‖xi − Pxi‖2 (2.1)

The optimal projection matrix can be factorized as P = UU>, where U ∈ Rm×r has

orthogonal columns. The r-dimensional representations are given as:

yi = U>xi, i = 1, · · · , n (2.2)

5



The solution to (2.1) is obtained from the eigen-decomposition of the covariance matrix

C =
∑n

i=1 xix
>
i . Let C be expressed as C =

∑m
i=1 λiuiu

>
i , where λi is the i-th largest eigen-

value of C and ui is the associated eigenvector. The optimal low dimensional representation

can be computed using the equation(2.2) with U = [u1 · · ·ur].

Finding an Informative Direction

PCA can also be derived from the point of view of finding the most informative direction

[19]. Suppose we aim to find a direction u ∈ Rm such that the projection xi ·u gives a good

one dimensional representation of the original data (i.e., the projection should lose as little

information of the original data as possible). Assume that the data in fact lie along a line

embedded in Rm, i.e., xi = µ+ θiv, where µ is the mean of the samples, v ∈ Rm is a vector

with unit length and θi ∈ R. The sample variance of the projection along v is

varv =
1

n

n∑

i=1
((xi − µ) · v)2 =

1

n

n∑

i=1
θ2
i

The variance along other unit direction v′ is

varv′ =
1

n

n∑

i=1

(
(xi − µ) · v′)2

=
1

n

n∑

i=1
θ2
i

(
v · v′)

Since
(
v · v′)2

= cos2 φ, where φ is the angle between the two directions v and v′, projected

variance is maximized if and only if v′ = v. Therefore, the most informative direction for

the projection is the one for which the projected variance is maximized.

It can be shown that the problem in (2.1) is equivalent to the following optimization

problem:

max
yi

n∑

i=1
‖yi‖2 =

1

2n
‖yi − yj‖2 (2.3)

s. t. U>U = I, yi = U>xi

which is equivalent to finding the projection for which the projected variance is maximized.
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PCA Decorrelates the Samples

If we use the full set of orthonormal eigenvectors as the basis, then in this basis the data are

represented as Y = U>X, where U is the m ×m matrix obtained in Section 2.1.1. Thus,

the sample covariance matrix in the new space CY is:

CY =
1

n

n∑

i=1
yiy

>
i

=
1

n

n∑

i=1

(
U>xi

)(
U>xi

)>

= U>CXU

= diag (λ1, · · · , λm)

which means in the new basis, the sample covariance matrix is diagonalized. This implies

the samples are uncorrelated in the space specified by matrix U . It is worth emphasizing

that the notion of correlation is basis-dependent which is to say that data can be correlated

in one basis but uncorrelated in another.

Limitation of PCA and Its Extensions

Although PCA is proved to be efficient and effective for dimensionality reduction in many

applications, it however has its own limitations.

The first limitation of PCA is that it is a linear dimensionality reduction method and only

identifies the linear subspace that best preserves the covariance structure of data. However,

in many real world applications data essentially lie in nonlinear manifold whose structure

is usually difficult to be discovered by PCA. A number of extensions have been developed

to adapt PCA for non-linear dimensionality reduction. The most widely used approach is

kernel PCA [136, 137], which extends the linear PCA by the introduction of kernel functions.

We will discuss kernel PCA in Section 2.1.5.

Another limitation of PCA is the interpretation of the principal components can be difficult

at times. Although the dimensions identified by PCA are uncorrelated variables constructed

7



as linear combination of the original variables and have some desirable properties, they do not

necessarily correspond to meaningful physical quantities. In some cases, such loss of inter-

pretability is unsatisfactory to the domain scientists. Non-negative matrix factorization [87]

was introduced to give meaningful approximation of a non-negative matrix by non-negative

low rank factorization. We will discuss this in Section 2.3.3,

The third limitation of PCA is that the identified dimensions may not be informative to

discriminate data points of different classes. This is because the objective of PCA is to find

dimensions that preserve the overall structure of data points, not to differentiate data points

of different classes. For example, given images of printed uppercase letters O and Q, PCA

might discover the gross features that characterize Os and Qs, but might ignore the tail that

distinguishes an O and a Q. Linear discriminant analysis (LDA), which will be discussed in

Section 2.4.1, addresses this shortcoming of PCA. It seeks the directions that are efficient to

distinguish between letter O and letter Q.

2.1.2 Factor Analysis

Factor analysis [51] is another popular method for dimensionality reduction. Like PCA,

factor analysis can be viewed as an attempt to approximate the covariance matrix. The

essential purpose of factor analysis is to describe, if possible, the covariance relationships

among multiple variables in terms of a few underlying, but unobservable, random quan-

tities called factors. The factor model is motivated by the assumption that variables can

be grouped by their correlations. That is, all variables within the same group are highly

correlated among themselves but have relatively small correlations with variables in a dif-

ferent group. It is conceivable that each group of variables represents a single underlying

construction, or factor, that is responsible for the observed correlations.
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The Orthogonal Factor Model

Suppose the observable random vector x, with m components/attributes, has mean µ and

covariance matrix Σ. The factor model postulates that all the attributes in x are linearly

independent given the unobservable random variables y1, · · · , yr, called common factors,

and m additional sources of variation ε1, · · · , εm, called errors or specific factors. In matrix

notation, the factor model is expressed as:

x = Wy + µ + ε (2.4)

The m×r matrix W is call the matrix of factor loadings. The motivation is that, with r < m,

the unobservable variables will offer a more parsimonious explanation of the dependencies

between the observations. Furthermore, we introduce the following assumptions about the

random vector y and ε,

E(y) = 0, Cov(y) = I (2.5)

E(ε) = 0, Cov(ε) = Ψ = diag(ψi, · · · , ψm)

and that y and ε are independent,

Cov(y, ε) = 0r×m

These assumptions and the relation in (2.4) constitute the orthogonal factor model and the

covariance structure for x can be inferred as:

Σ = Cov(x) (2.6)

= E (x− µ) (x− µ)>

= E (Wy + ε) (Wy + ε)>

= WW> + Ψ

Apparently there exist an arbitrary rotation matrix R, such that W and WR generate the

same covariance matrix Σ.
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The analysis of the factor model proceeds by imposing conditions that allow one to uniquely

estimate W and Ψ. The loading matrix is then rotated, where the rotation is determined

by some ’easy-of-interpretation’ criterion [71]. Once the loadings and the specific vari-

ances are obtained, factors are identified and estimated values for the factors themselves

are constructed. Two popular methods of parameter estimation are the Principal Compo-

nent method and Maximum Likelihood method[71].

Comparisons Between Factor Analysis and PCA

First, it’s clear that a major distinction between factor analysis and PCA is that the factor

analysis defines a specific generative model for the observed data patterns x, while PCA

does not.

Second, both factor analysis and PCA can be thought of as trying to preserve the covari-

ance matrix Σ (or correlation matrix) as well as possible. The difference between them is

that PCA concentrates on the diagonal elements, whereas in factor analysis the interest is

in the off-diagonal elements [72].

To justify this statement, we first consider PCA. The objective is to maximize
∑r

i=1 var(yi) =
∑r

i=1 λi, which accounts for as much as possible the sum of diagonal

elements of Σ. Turning now to factor analysis, consider the factor model (2.4) and the

corresponding equation (2.7) for Σ. It can be seen that since Ψ is diagonal, the common

factor term Wy in (2.4) accounts completely for the off-diagonal elements of Σ in the perfect

factor model, but there is no compulsion for the diagonal elements to be well explained by

the common factors. The elements, ψj , j = 1, · · · ,m, of Ψ will be low if all of the vari-

ables have considerable common variation, but if a variable xj is almost independent of all

other variables, then ψj = var(εj) will be almost as large as var(xj). Thus, factor analysis

concentrates on explaining only the off-diagonal elements of Σ by a small number of factors

whereas conversely PCA concentrates on the diagonal elements of Σ.

The third difference between the two techniques is the number of dimensions r that is
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sufficient to represent the data in m dimensional space [72]. In PCA, if one variable is

independent from other variables, it usually corresponds to a principal component. In PCA

it is usually necessary to include such a principal component as part of the space with

reduced dimensionality because they provide information that is not available from other

variables. In contrast, in factor analysis, an independent attribute is usually accounted for

by the noise model and therefore is not explained by the hidden factor. Thus, for most

data sets the number of factors required by factor analysis is usually no larger – and may

be strictly smaller – than the number of principal components required to account for the

variation in the data.

One more difference between PCA and factor analysis is that it usually has more impact

on factor analysis than it does on PCA [72] by varying the value of dimensionality of the

model. In particular, in PCA when r is increased from r1 to r2, an additional (r2 − r1)

principal components are extracted and included to generate the subspace of the reduced

dimensionality. In contrast, this is not true in factor analysis. When r is increased from r1

to r2, we often find that the common factors found by factor analysis could be completely

different from the factors that are identified when r = r1.

2.1.3 Probabilistic PCA

Probabilistic PCA (PPCA) was first introduced by Topping and Bishop [155, 154], where

they showed how the principal axes of a set of observed data vectors may be determined

through maximum likelihood estimation of parameters in a latent variable model closely

related to factor analysis. An EM algorithm was also introduced [155, 154] to efficiently

solve PPCA without having to compute the eigenvectors of a matrix. Although PPCA was

originally designed to interpret PCA from a viewpoint of probabilistic model, it has several

advantages when compared to the original PCA. First, the PPCA can be applied to estimate

the principal axes even when some of the elements in the data matrix are missing [155, 131].

Second, PPCA provides a natural way to construct more complex projection methods, for
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instance, by combining multiple PCA models [155].

The Probabilistic Model

In the case of isotropic noise ε ∼ N(0, σ2I), equation (2.4) implies the conditional probability

distribution of x given y is expressed as:

x|y ∼ N
(
Wy + µ, σ2I

)
(2.7)

Assuming a Gaussian prior for the latent variable y defined by

y ∼ N (0, I) , (2.8)

we can obtain the marginal distribution of x by integrating out the latent variables. The

resulting distribution for x is again Gaussian, and is expressed as:

x ∼ N (µ, C) , (2.9)

where C = WW> + σ2I.

We now try to derive the conditional distribution of the hidden factor y given x. Using

Bayes’ rule, the posterior distribution of the latent variables y given observed x is again

Gaussian:

y|x ∼ N
(
M−1W> (x− µ) , σ2M−1

)
(2.10)

where M = W>W + σ2I, and note that M is of size r × r while C is m×m

The log-likelihood of the observed data under this model is:

L =
n∑

i=1
ln (p (xi)) = −n

2

(
d ln (2π) + ln |c|+ tr

(
C−1S

))
(2.11)

where

S =
1

n

n∑

i=1
(xi − µ) (xi − µ)>

is the sample covariance matrix of the observation.
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The Maximum-likelihood Estimators

Estimates for W and σ2 may be obtained by EM algorithm [155] or may be obtained explicitly

with C which is WW> + σ2I. Given σ, the noise level, the optimal solution to the loading

matrix W that maximizes the log-likelihood L, is maximized when:

WML = Ur

(
Λr − σ2I

)1
2 R (2.12)

where the r column vectors in the m× r matrix Ur are the principal eigenvectors of S, with

corresponding eigenvalues λ1, · · · , λr in the r× r diagonal matrix Λr, and R is an arbitrary

r × r orthogonal rotation matrix.

It may also be shown that, for W = WML, the maximum-likelihood estimation for σ2 is

given by:

σ2
ML =

1

m− r

m∑

j=r+1
λj (2.13)

which is a clear interpretation as the variance ’lost’ in the projection, averaged over the lost

dimensions.

In practice, to find the most likely model given S, we would first estimate σ2 from (2.13),

and then WML from (2.12). For simplicity we would effectively ignore the rotation matrix

R, i.e. choose R = I [153]. Alternatively, an EM algorithm was also developed in [153] and

closely related works can be found in [47, 131].

Zero Noise Limit

In conventional PCA, the reduced-dimensionality transformation of a data point xi is given

by yi = U> (xi − µ) and its reconstruction by x̂i = Uyi + µ. However, in the probabilistic

framework of PPCA, the probabilistic analogue of the dimensionality reduction process of

conventional PCA would be to invert the conditional distribution p(x|y) using Bayes’ rule, to

give p(y|x). In this case, each data point xi is represented in the latent space not by a single

vector, but by the Gaussian posterior distribution defined by (2.10). As an alternative to
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the standard PCA projection, a convenient summary of this distribution and representation

of yi would be the posterior mean

〈yi|xi〉 = M−1W>
ML (xi − µ)

However, it is worth emphasizing that WML〈xi〉+µ is not the optimal linear reconstruction

of xi(in the squared reconstruction-error sense). This may be seen from the fact that for

σ2 > 0, M−1W>
ML is not an orthogonal projection of xi. If we consider the limit as σ2 → 0,

then WML = UΛ
1
2 (if we ignore the rotation matrix R) and the projection

WML〈xn〉 = WML

(
W>

MLWML

)−1
WML (xi − µ)

does become orthogonal and is equivalent to conventional PCA, but then the density model

is singular and thus undefined.

2.1.4 Metric Multidimensional Scaling

Classical Multidimensional Scaling

Classical multidimensional scaling(MDS) [28] computes the low dimensional representations

that most faithfully preserve the inner products between the high dimensional data points.

It is usually cast into the following optimization problem:

min
y

∑

ij

(x>i xj − y>i yj)
2 = ‖G−K‖F (2.14)

where‖ · ‖F represents the Frobenius norm. G and K are the Gram matrix of the inputs

and outputs respectively, with Gij = x>i xj and Kij = y>i yj .

In many applications, the relationship between two data points is usually represented by

their distance instead of their pair-wise similarity (i.e., dot product). Let Dij = ‖xi − xj‖2

and D be the matrix of squared pair-wise Euclidean distances. It is easy to derive matrix G

from matrix D as:

G = −1

2
(I − 1

n
11>)D(I − 1

n
11>)
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where 1 denotes the vector of all ones.

The solution to MDS is obtained from the eigen-decomposition of the Gram matrix G.

Suppose G =
∑n

k=1 λkvkv
>
k , where λk is the k-th largest eigenvalue of G and vk is the

corresponding eigenvector. The r dimensional outputs of MDS are given by

yi =
[√

λi(v1)i · · ·
√

λr(vr)i

]>
, i = 1, · · ·n

Relationships Between Classical scaling and PCA

Essentially, MDS and PCA produce the same outputs but in different formats. Recall that

in PCA we write the covariance matrix as C = XX> while in MDS the Gram matrix

is G = X>X, where X = [x1, · · · ,xn]. The equivalence of their outputs can be easily

established using the singular value decomposition which is:

Λpca = Λmds, V pca = XV mds

Y pca = (Λpca)
1
2Y mds

Here, V pca and V mds are eigen matrices containing eigenvectors of C and G as columns

respectively; Λpca and Λmds are diagonal matrices whose diagonal elements are the corre-

sponding eigenvalues of C and G.

2.1.5 Kernel PCA

In recent years, we have witnessed an explosion of work on kernel methods [138]. The

basic idea of the kernel methods is to use the “kernel trick” that map a point x in the

original r dimensional space X to a point Φ(x) in a NF -dimensional feature space F , where

Φ(x) =
(
φ1(x), φ2(x), · · · , φNF (x)

)>
. We can think of each function φi(x) as a non-linear

mapping. The central idea of the kernel trick is based on the observation that for many

algorithms, the key quantity is in the form Φ(xi)·Φ(xj). Hence, instead of explicitly defining

the mapping functions Φ(xi), we only need to define the kernel function that assesses the dot

product between Φ(xi) and Φ(xj), i.e., k(xi,xj) = Φ(xi) · Φ(xj). Kernel PCA [136, 137]
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applies the kernel idea to perform PCA in the feature space F . It is important to note

that since the projection is performed in the space NF whose dimension can be significantly

larger than m, the number of ”reduced” dimensions can actually exceed m.

Performing PCA in Dot Product Space F

Given data points x1,x2, · · · ,xn, we assume them to be in the vector space X . Kernel PCA

computes the principal components of the mapped points Φ(x1),Φ(x2), · · · ,Φ(xn) in space

F . Since F may be infinite dimensional, the PCA problem needs to be transformed into

a problem that can be solved in terms of the kernel k(·, ·). To this end, we consider the

covariance matrix in F , which is:

C =
1

n

n∑

i=1
(Φi − µ) (Φi − µ)>

where Φi = Φ(xi) and µ = 1
n

∑n
i=1 Φi. We are looking for eigenvector solutions v of

Cv = λv.

Since this can be written as

1

n

n∑

i=1
(Φi − µ) [(Φi − µ) · v] = λv

the eigenvectors v lie in the span of the Φi − µ ’s, e.g.,

v =
n∑

i=1
αi (Φi − µ) ,

for some αi. Thus, we can have m equations

(Φi − µ)>Cv = λ (Φi − µ)> v.

Now, consider the ”kernel matrix” Kij , the matrix of dot product in F : Kij = Φi ·
Φj , i, j = 1, · · · ,m. Having the ”centering matrix” H = I − 1

n11>, the above equation

becomes

KcKcα = λ̄Kcα

16



where Kc = HKH, α ∈ Rm and λ̄ = mλ.

It is also straightforward to show we only need to consider the following equation

Kcα = λ̄α

Finally, to use the eigenvectors v to compute principal components in F , we need v to be

normalized, that is v · v = 1 = λ̄α ·α, so the α must be normalized to have length 1√
λ̄
.

Thus, for a given test point Φ(x), the p-th eigenvector in feature space F is calculated by:

〈vp,Φ(x)〉 =
1√
λ̄

n∑

i=1
α

p
i (Φ (xi) ·Φ (x)) =

1√
λ̄

n∑

i=1
α

p
i k (xi,x)

A Relationship Between Kernel PCA and Metric MDS

A kernel function is stationary if k
(
xi,xj

)
depends only on the vector xi−xj . A stationary

covariance function is isotropic if k
(
xi,xj

)
depends only on the distance d2

ij =
(
xi − xj

) ·
(
xi − xj

)
, so that we can write k

(
xi,xj

)
= r

(
dij

)
. Assume that the kernel matrix is

scaled so that r(0) = 1. An example of an isotropic kernel is the RBF kernel k
(
xi,xj

)
=

e
−θ

(
xi−xj

)>(
xi−xj

)
, for some parameter θ > 0.

Consider the Euclidean distance in feature space d̃2
ij =

(
Φi −Φj

)> (
Φi −Φj

)
. With an

isotropic kernel, this can be re-expressed as d̃2
ij = 2

(
1− r

(
dij

))
. Thus, the matrix A has

the elements aij = r
(
dij

)−1 which can be written as A = K−11>. It can be easily verified

that the centering matrix H annihilate 11>, so that HAH = HKH.

We see that the configuration of points derived from performing classical scaling on K

aims to approximat the feature space distance computed as d̃ij =
√

2
(
1− r

(
dij

))
.

If non-stationary kernels (for example, k
(
xi,xj

)
=

(
1 + xi · xj

)m
with integer m) are

used,we can again show the kernel MDS procedure operations on the matrix HKH. However,

the distance d̃ij in the feature space is not a function of dij .

For a more detailed analysis, please refer to [165].
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2.2 Graph-Based Method

Graph-based methods have recently emerged as a powerful tool for analyzing high dimen-

sional data that are sampled from a low dimensional manifold and for revealing highly

nonlinear structures [135]. These methods share the similar idea of using a spare graph (for

simplicity, we assume that the graph is connected) for data representation, in which each

node represents an input pattern and an edge represents a neighborhood relation to discretely

approximate the submanifold sampled by the input patterns. From these graphs one can

then construct matrices whose spectral decompositions reveal the low dimensional structure

of the submanifold. In what follows, we review four widely used graph-based algorithms for

manifold learning: Isomap [152], locally linear embedding [130, 134], Laplacian eigenmaps

[5] and maximum variance unfolding [161, 150]

2.2.1 Isomap

The key idea behind Isomap [152] is to compute the low dimensional representation of a

high dimensional data set that most faithfully preservers the pair-wise distances between

input patterns as measured along the submanifolds from which they were sampled [135].

Isomap is built on the classical MDS but seeks to preserve the intrinsic geometry of the

data which is captured in the geodesic manifold distances between all pairs of data points.

The crux is estimating the geodesic distance between faraway points given only input-space

distance. For neighboring points, input-space distance provides a good approximation to

geodesic distance. For faraway points, geodesic distance can be approximated by adding up

a sequence of ”short hops” between neighboring points. These approximations are computed

efficiently by finding the shortest path in the graph with edges connecting neighboring points.

The algorithm has three steps. The first step is to compute the k-nearest neighbors (k is

pre-determined) of each input point and to construct a graph whose vertices represent input

data points and whose edges connect k-nearest neighbors. In the second step, the edges are
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assigned weights based on the Euclidean distances dij between all vertices along the shortest

paths through the graph. One efficient algorithm to do this is Djikstra’s method [35]. In

the third step, the pair-wise distances dij from Djikstra’s algorithm are fed as the input to

classical MDS as described in Section 2.1.4, yielding low dimensional output yi ∈ Rr for

which ‖yi−yj‖2 ≈ dij . The value of r required for a faithful low dimensional representation

can be estimated by the number of significant eigenvalues in the Gram matrix constructed

by MDS.

Some theoretical analysis of Isomap can be found in [10, 39]. In [10] the authors proved

that the two distance metrics, one along the submanifold and the other along the path of

the graph, approximate each other arbitrarily close when the density of data points tends

toward infinity. In [39] the authors further studied the conditions for the successful recovery

of co-ordinates.

Several valuable extensions of Isomap include Conformal Isomap(C-Isomap) [33], Land-

mark Isomap(L-Isomap) [33], and the incremental Isomap [85] [84]. C-Isomap is capable

of learning the structure of certain curved manifolds. This extension comes at the cost of

making a uniform sampling assumption about the data. L-Isomap tries to address the two

computational bottlenecks, the high cost in calculating the shortest-path distance matrix

and the MSD eigen-decomposition, using a relatively small number of landmark points. The

incremental Isoamp does not require all data points be available during training but gives

us a way to update the low dimensional representation of data points gradually as more and

more samples are collected. A similar extension that can handle out-of-sample data points

can be found in [9]

2.2.2 Local Linear Embedding (LLE)

LLE [130, 134] is based on computing the low dimensional representation of a high di-

mensional data set that most faithfully preserves the local linear structure of nearby input

patterns [135]. The algorithm differs significantly from Isomap in that its outputs are derived
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from the smallest eigenvectors of a sparse matrix, as opposed to the largest eigenvectors of

a (dense) Gram matrix.

The algorithm has three steps. The first step, as Isomap, is to compute the k-nearest

neighbors of each high dimensional input point xi. In LLE however, we construct a directed

graph which may or may not be symmetric. In this case, the set of edges E consists of

ordered pairs (i, j) meaning that j is a neighbor of i, and we use Ni = {j|(i, i) ∈ E} to

denote the set of neighbors of i.

The second step of the algorithm assigns weights wij to the edges in this graph by solving

the following least-squares problem:

min
wij

n∑

i

‖xi −
∑

j∈Ni

wijxj‖2

s. t. wij = 0, if j /∈ Ni

∑

i∈Ni

wij = 1, i = 1, · · · , n

Here, LLE appeals to the intuition that each input pattern and its k-nearest neighbors

can be viewed as samples from a small linear ”patch” on a low dimensional submanifold and

weights wi,j are computed by reconstructing each input point xi from its k-nearest neighbors.

The weights thus constitute a sparse matrix W which encodes local geometric properties of

the data set by specifying the relation of each input pattern xi to its k-nearest neighbors.

Note that the constrained weights that minimize these reconstruction errors obey an im-

portant symmetry: for any particular data point they are invariant to rotations, rescalings,

and translations [134]. A consequence of these symmetries is that the reconstruction weights

characterize geometric properties that do not depend on a particular frame of reference.

In the final step, LLE derives the output yi ∈ Rr that keeps the relations to its k-nearest

neighbors which is another least-square problem:
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min
yi

n∑

i

‖yi −
∑

j∈Ni

wijyi‖2 (2.15)

s.t.
∑

i

yi = 0

1

n

∑

i

yiy
>
i = I

It turns out that the solution to (2.15) can be obtained by computing the bottom

r + 1 eigenvectors of the matrix (I − W )>(I − W ). Let these normalized eigenvectors be

vn,vn−1, · · · ,vn−r, associated with the bottom eigenvalues 0 = λn < λn−1 ≤ · · · ≤ λn−r.

We discard vn = ( 1√
n
)1 associated with λn = 0, and use the next r eigenvectors to form the

outputs as:

yi = [(vn−1)i · · · (vn−r)i]
>, i = 1, · · · , n

Free Parameters in LLE

In LLE, there are two free parameters: the number of nearest neighbors k and the target

dimensionality r. The authors of [81, 80] suggested a hierarchical method for automatic

selection of an optimal k. For r, [121] suggested to choose r by the number of eigenvalues

comparable in magnitude to the smallest nonzero eigenvalue of the cost matrix (I−W )>(I−
W ). However, the authors of [134] found that in practice it is not reliable and works only for

contrived examples such as data lying on an essentially linear manifold, or data sampled in

an especially uniform way so that the lowest nonzero eigenvalues are equal or nearly equal

due to symmetry. Instead, they found it is more useful to rely on classical methods [118] for

estimating the intrinsic dimensionality r of a data set. A similar idea can also be found in

[127].
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Extensions

Some useful extensions of LLE include LLE from pair-wise distances [134], convex recon-

structions [134], out-of-sample extensions [9], and supervised LLE [32, 127, 128].

The LLE from pair-wise distance solves the problem when the user may not have access to

data in the form of high dimensional vectors xi, but only the measurements of dissimilarity

or distance between data points.

In the convex reconstructions, the author borrowed the idea from the non-negative matrix

factorization [87] and additionally constrained the weights wij to be nonnegative, thus forcing

the reconstruction of each data point to lie within the convex hull of its neighbors. Such a

constraint has both advantages and disadvantages. On one hand, it tends to increase the

robustness of linear fits to outliers. On the other hand, it can degrade the reconstruction

of data points that lie on the boundary of a manifold and outside the convex hull of their

neighbors. For such points negative weights may be helpful.

Supervised LLE [32, 127, 128] was introduced to deal with labeled data points. The

intuition is that in order to obtain disjointed embeddings for individual classes, we would

expect the local neighborhood of any sample xi in class yi ∈ {1, . . . , c} should be composed

of samples belonging to the same class. This can be achieved by artificially increasing the

pre-calculated distances between samples belonging to different classes, but leaving them

unchanged if samples are from the same class, which is:

D′ = D + α max(D)∆, α ∈ [0, 1]

where ∆ij = 1 if the data point xi and xj are in the same class, otherwise it is 0. When

α = 0, one obtains unsupervised LLE; when α = 1, the result is a fully supervised LLE. In

fact, one can further show that this supervised version of LLE behaves as a nonlinear Fisher

mapping (or linear discriminant analysis, LDA).
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2.2.3 Laplacian Eigenmaps

Laplacian Eigenmaps [4, 5] is a nonlinear dimensionality reduction method. Similar to

the other graph-based approach, LE constructs a neighborhood graph for given data that

incorporates the pairwise relationship among the data. Using the notion of graph Laplacian,

LE derives a low dimensional representation for a given data set that preserves the local

neighborhood of individual data points. The low dimensional mapping generated by LE can

also be viewed as a discrete approximation to a continuous mapping that naturally arises

from the geometry of the manifold.

Alrgorithm

Given a data set D = {x1,x2, · · · ,xn}, where xi ∈ Rm, i = 1, · · ·n, we first compute the

k-nearest neighbors of each data point xi and construct a symmetric undirected graph. In

the graph, each node corresponds to an individual data point. Two nodes are connected

by an edge if one node is a local neighbor of the other node. In the second step, we assign

positive weights Wij to the edges of the constructed graph. According to the LE algorithm,

the weight is computed by a heat kernel that is defined as follows: if nodes i and j are

connected by an edge in the graph, we compute the weight for the edge, denoted by Wij , as

Wij = exp

(
−‖xi − xj‖2

σ2

)
,

otherwise, Wij = 0 if node i and j are disconnected. In the last step of the algorithm, we

derive the low dimensional representation of the data points by computing the eigenvalues

and the eigenvectors of the following generalized eigenvector problem:

Lv = λDv

where D is a diagonal matrix with diagonal elements Dii computed as Dii =
∑

j Wij .

Matrix L = D − W is often referred to as the Laplacian matrix, and is a well known

quantity in the Graph theory for characterizing the properties of a weighted graph. Let
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0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 be the eigenvalues of the graph Laplacian L and v0, · · · ,vn−1 be

the corresponding eigenvectors. We construct the r dimensional embedding of the original

data set by using the first r+1 eigenvectors of L, i.e., v1, . . . ,vr. In particular, the embedding

vector of data point xi, denoted by yi, is computed as yi = ([v1]i, . . . , [vr]i). Note that we

did not use v0 in the construction of the low dimensional embedding since its corresponding

eigenvalue is zero.

Optimal Embeddings

As illustrated in [5], we use the following example to demostrate why the embedding gener-

ated by the Laplacian Eigenmap algorithm preserves the local neighborhood structure.

Given a data set and its weighted graph G = (V, E) constructed by the LE algorithm,

we consider the problem of mapping the weighted graph G to a line (i.e., one dimensional

embedding). We denote by y = (y1, . . . , yn)> the image of this one dimensional mapping.

The objective of this mapping is to ensure that the connected points in the graph G should

stay as close to each other as possible after the mapping. We can formulate this criterion

into the following optimization problem

min
y

∑

ij

(yi − yj)
2Wij .

Specifically, the objective function with the choice of weights Wij incurs a penalty if neigh-

boring points are mapped far apart.

It turns out that for any y, the objective 1
2

∑
ij(yi − yj)

2Wij can be further written as

y>Ly. The above problem thus can be expressed as:

min
y

y>Ly

s. t. y>Dy = 1

y>D1 = 0.

Note that we introduce two constraints into the optimization problem. The first constraint

y>Dy = 1 is introduced to remove an arbitrary scaling factor in the embedding; the second
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constraint y>D1 = 0 is introduced to eliminate the trivial solution that collapses all vertices

of G into a single number. We can also interpret the second constraint as the removal of a

translation invariance in the mapping y.

We can generalize the above discussion to the problem of embedding a graph into r-

dimensional Euclidean space. Let Y = (y1 · · ·yr) be the resulting mapping, where y(i), i.e.,

the ith row of matrix Y , is the low dimensional representation of data point xi. Similar to

the above discussion we cast it into the following optimization problem:

min
Y

∑

ij

‖y(i) − y(j)‖2wij = tr(Y >LY )

s. t. Y >DY = I.

The constraint Y >DY = I ensures that the dimensionality of the resulting subspace is r.

The solution of the above optimization problem is given by the first r+1 smallest eigenvectors

of the generalized eigenvalue problem Ly = λDy.

Laplacian Eigenmap and LLE

Laplacian eiganmap and LLE are similar in that both methods try to preserve the local

neighborhood structure and the low dimensional embeddings are derived by the smallest

eigenvectors of certain matrices. In [5], the authors analyzed the connection between the

two methods. Recall that we use the semi-definite matrix (I − W )>(I − W ) in LLE and

the Laplacian matrix L in Lalacian eigenmap. Both matrices can be treated as operators

acting in functions defined in the data points. In [5] the authors showed that under certain

conditions, the generalized eigenvector problem of LLE can be expressed as L2v = λv. Since

L2 and L share the same eigen spectrum, we have that LLE and LE share the same low

dimensional embedding.
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Extensions

Several extensions of Laplacian eigenmap have recently been developed. In [58], the author

introduced an linear version of Laplacian eigenmap called Locality Preserving Projections

(LPP), for which a linear projection y> = a>X is preferred in the third step of the Laplacian

eigenmap algorithm, where a is a transformation vector. As a result, the generalized eigen-

vector problem becomes XLX>a = λXDX>a. The key advantage of LPP in comparison

to LE is that it is computationally more efficient and can easily handle the out-of-sample

problem.

In [4, 6], the authors extended the idea of Laplacian eigenmap to semi-supervised learning,

to which they refered as manifold regularization. The central idea of manifold regularization

is that classification functions are naturally defined only on the submanifold in question

rather than the total ambient space. Using the Laplace-Beltrami operator, one produces a

basis (the Laplacian Eigenmaps) for a Hilbert space of square integrable functions on the

submanifold. To recover such a basis only unlabeled examples are required. Once such a

basis is obtained, training can be performed using the labeled data set.

2.2.4 Maximum Variance Unfolding

Maximum variance unfolding(MVU)[161, 162, 135] is also known as semi-definite embed-

ding(SDE) [159, 160, 163], which was first proposed by Weinberger and Saul in 2004. The

algorithm tries to ”unfold” the manifold by pulling the data points apart as far as possible,

while faithfully preserving the local distances and angles between nearby input data points.

The MVU Algorithm

Similar to the other graph-based approaches, the first step of MVU is to compute the k-

nearest neighbors of each input pattern. A neighborhood-indicator matrix η is defined as

ηij = 1 if and only if one input pattern is the k-nearest neighbor of another, or both input

patterns are the k-nearest neighbors of some data point. In other words, we create a fully
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connected clique of size k + 1 out of every input xi and its k nearest neighbors. In order to

preserve both the distances and angles between the k-nearest neighbors, we introduce the

following objective function to measure the quality of the embedding y = (y1, . . . , yn)

‖yi − yj‖2 = ‖xi − xj‖2. (2.16)

Note that although the objective in the above only aims to preserve the distance, it also

preserves the angle between points in the k-nearest neighbors. This is because the graph

is constructed based on the clique of the nearest neighbors. To eliminate a translational

degree of freedom in the low dimensional representation, the outputs are also constrained to

be centered on the origin leading to the following constraint

∑

i

yi = 0. (2.17)

Finally, since the algorithm attempts to “unfold” the input patterns, it aims to maximize the

variance of the mapping, i.e.,
∑n

i=1 ‖yi‖22. By putting both the objective and the constraints

together, we have the following optimization problem for MVU algorithm:

max
Y

∑

i

‖yi‖2 =
1

2n

∑

ij

‖yi − yj‖2 (2.18)

s. t.
n∑

i=1
yi = 0

‖yi − yj‖2 = ‖xi − xj‖2, for ηij = 1

The optimization problem listed above is not convex due to the non-convex constraints.

However, it can be converted into a convex optimization when using semi-definite embed-

ding [156](see Appendix C), i.e.,

max
K

Tr K (2.19)

s. t. K º 0,
∑

ij

Kij = 0

Kii + Kjj − 2Kij = ‖xi − xj‖2, for all (i, j) with ηij = 1
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where, Kij = yi · yj denotes the Gram matrix of the output. After obtaining the Gram

matrix K by solving the above optimization problem, similar to MDS, we derive the low

dimensional embedding by computing the principle eigenvectors of the Gram matrix K.

Extensions

For real-world problems, it may be desirable to relax the constraints in (2.19) such that the

local distances are preserved only to some approximation. One trick often used is to replace

the strict equalities by inequalities [162]. More specifically, we use Kii + Kjj − 2Kij ≤
‖xi−xj‖2 for all (i, j)withηij = 1 to replace the corresponding equality constraint in (2.19).

Interestingly, the dual of this relaxed SDP problem is equivalent to the problem studied by

Sun and Xiao in the calculation of the fastest mixing Markov processes on a weighted graph

[150, 167]. Additional relaxations of the SDP problem in (2.19) can be found in [162, 14].

One major concern with the MVU algorithm is that in practice it scales poorly to large

data sets because it requires solving an SDP problem over a matrix of size n× n, where n is

the number of examples. In order to address this problem, [159] suggested to approximate

the Gram matrix K by K = QLQ>, where Q is a n × k matrix that transforms Gram

matrix K of size n × n into a landmark matrix L of size k × k. This approximation allows

us to solve an SDP problem of significantly smaller size, making the MVU scale well even

to large data sets. The transformation matrix Q can be derived by solving a sparse set of

linear equations as suggested in [159]. A similar approach is proposed in [164] except that

factorized matrix Q is derived by expanding the solution of the original problem in terms of

the bottom eigenvectors of a graph Laplacian.

Connecting to the Other Methods

It is evident that the objective function of MVU is closely connected to PCA in that both

methods are related to the maximization of data variance. MVU is also closely related to

MDS since both methods aim to keep the pair-wise distance between nearby data points.
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Isomap can be interpreted as an approximation to the MVU problem. Since the Euclidean

distance between any two points on a manifold is always smaller than their geodesic distance,

the Euclidean distance provides an upper bound for the corresponding geodesic distance. In

addition, maximizing the variance is equivalent to maximizing the total pair-wise Euclidean

distance in the embedding space. Therefore, in this sense Isomap attempts to maximize

the variance by directly using the geodesic distances. This interpretation becomes accurate

in the limit with increasing sampling density (n → ∞), if the sub-manifold is isometric

to a convex subset of the Euclidean space. In particular, this condition guarantees the

asymptotic convergence of Isomap algorithm [10, 39]. In this case, the pair-wise geodesic

distances become feasible to the MVU problem, and the solution to MVU approaches its

upper bound obtained by Isomap, thus MVU converges to the same limit as Isomap. If the

above condition is not satisfied, then Isomap and MVU could behave quite differently [160].

More general conditions for the asymptotic convergence of MVU remains an open question.

For the connections between MVU LLE and Laplacian eigenmaps, [167] gives detailed

discussions in which the authors showed the dual problem of MVU is closely connected to

LLE and Laplacian eigenmaps.

2.2.5 From the Kernel Point of View

All of the algorithms presented in this section can be viewed as instances of kernel PCA

[56, 135], with the kernel matrices that are derived from sparse weighted graphs rather than

a pre-defined kernel function. Often, these kernels are described as data-dependent kernels

because they are derived from graphs that encode the neighborhood relations of the input

patterns in the training set.

The foundation of Isomap algorithm is MDS. As pointed out in Section 2.1.5, the Gram

matrix constructed in MDS from these geodesic distances can be viewed as a kernel matrix

so as to Isomap. For finite data sets however, this matrix in Isomap is not guaranteed to be

positive semi-definite. It should therefore be projected onto the cone of positive semi-definite
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matrices before it is used as a kernel matrix in other settings.

The graph Laplacian in the Laplacian eigenmap arises in the description of diffusion on the

graph and can be related to Green’s function and heat kernels [78]. The smallest eigenvectors

of Laplacian L are equal to the top eigenvectors of the pseudo-inverse of the Laplacian, L†,

which can further be viewed as a (centered) kernel matrix for kernel PCA. Moreover, viewing

the elements L
†
ij as inner products, the squared distances defined by L

†
ii+L

†
jj−L

†
ij−L

†
ji are

in fact proportional to the round-trip commute times of the continuous-time Markov chain

with transition rate matrix L. The commute times are nonnegative, symmetric, and satisfy

the triangle inequality thus, Laplacian eigenmaps can be alternately viewed as MDS on the

metric induced by these graph commute times.

The matrix diagonalized by LLE can also be interpreted as an operator on graphs whose

pseudo-inverse corresponds to a kernel matrix. The operator does not generate a simple

diffusive process, but in certain cases it acts similarly to the square of the graph Laplacian

[56].

For MVU, if we treat the Gram matrix K in MVU as a kernel matrix, then the whole

procedure of MVU can be thought as applying the kernel PCA on the learned kernel K.

However, the kernel matrix K in MVU is interested in a very different aspect which is, in

kernel PCA, the input data are typically mapped from the low dimensional space to a much

higher dimensional feature space, while in MVU it is opposite, the kernel matrix K is used

to map the inputs into a lower dimensional space. Another useful point is that in MVU, the

kernel is learned without supervised information.

Summary

In this section we presented several graph-based algorithms for dimensionality reduction.

Comparing to the linear methods, such as PCA and MDS presented in the previous section,

the graph-based methods belong to the category of non-linear dimensionality reduction.

Furthermore, Isomap can be viewed as a “global” method since it attempts to preserve all
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geodesic distance; by contrast, LLE, Laplacian Eigenmap and MVU are “local” methods

since only local neighbor structures are preserved through the mapping. Although these

methods start from quite different geometrical consideration, they all look similar under the

hood and some strong connections have been found among those methods.

In terms of scalability, LLE and Laplacian eigenmap are efficient and can scale to modestly

large data sets (i.e., n < 10000), provided that one uses special-purpose eigensolvers that

are optimized for sparse matrices. MVU is the most inefficient among all the graph-based

approaches due to the expense of solving semi-definite programs over n× n matrices.

In summary, research on graph-based methods for dimensionality reduction continues at

a rapid pace. Motivation for ongoing work include the handling of manifolds with more

complex geometries, the need for robustness to noise and outliers, and the scalability to

large data sets.
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2.3 Matrix Factorization

2.3.1 Low Rank Approximation

The task of dimensionality reduction can also be viewed naturally from the point of matrix

factorization. Consider the data set is organized in the observed matrix X ∈ Rm×n, where

the columns of X are data vectors xi. Our goal is to approximate X by a product of two

matrices UV >, where U ∈ Rm×r and V ∈ Rn×r. For each data vector xi, we have xi ∼ Uv>i ,

where vi is the ith column of matrix V , implying that each data vector is approximated by

a linear combination of column vectors in matrix U and the combination coefficients are

given by matrix V . Geometrically speaking, each data vector xi ∈ Rm is approximated by

its projection in a r-dimensional subspace that is spanned by column vectors of U . For the

convenience of discussion we denote Y = UV > as the approximate matrix. Evidently the

rank of Y is at most r.

The most common, and in many ways the simplest, method to measure how well the model

Y “approximate” the data X, is the sum squared error or Frobenius distance between X

and Y :

‖X − Y ‖2F =
m∑

i=1

n∑

j=1
(Xij − Yij)

2

Minimizing the Frobenius distance can also be seen as the maximum likelihood estimation

in the presence of the additive i.i.d. Gaussian noise with a fixed variance in terms of a

probabilistic model. In particular, we assume that the observed matrix X is generated by

the following stochastic process

X = Y + Z,

where Y is a rank r matrix and each element in Z is independent and follows a Gaussian

distribution with zero mean and constant variance σ2. Then, the log-likelihood of Y given
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the observed matrix X is

log Pr(Y |X) = −mn

2
ln(2πσ2)−

∑

ij

(Xij − Yij)
2

2σ2

= − 1

2σ2‖X − Y ‖F + const

As indicated by the above equation, finding Y by maximizing the likelihood is equivalent

to minimizing the Frobenius distance between X and Y . It is worth pointing out that

besides Frobenius distance, there are other approaches for measuring the discrepancy between

data matrix X and the underlying model Y , such as matrix Bregman divergence [2]. More

information can be found in [148].

In some applications, besides the rank constraint, additional constraints of factorized ma-

trices are introduced to ensure the appropriateness of the resulting embedding. The most

well known one is non-negative matrix factorization [87], which will be introduced in Sec-

tion 2.3.3

2.3.2 Singular Value Decomposition

Singular value decomposition (SVD) is one of the most widely used low rank approximation

techniques in dimensionality reduction. PCA, introduced in the Section 2.1, can be viewed

as a special case of SVD.

Let X be an m× n matrix with rank k. We can write X as

X = UΣV >,

where

• Σ =

(
D 0

0 0

)
is a matrix of size m × n, where D = diag(σ1, . . . , σk) is a diagonal

matrix whose diagonal entries are the first k singular values of X;

• U is an orthogonal matrix of size m×m, and V is an orthogonal matrix of size n× n.

The columns of U are eigenvectors of XX> and are called left singular vectors of X,

the columns of V are eigenvectors of X>X and are called right singular vectors of X.
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Note that since only D (i.e., a matrix of size k × k) in Σ is nonzero, it is sufficient to

compute the first k column vectors of matrices U and V in order to reconstruct the original

data matrix X, i.e.,

X = Um×kΣk×kV >k×n = Um×kDV >k×n

In the context of dimensionality reduction, we often need to solve the problem of approx-

imating a matrix X of rank k with another matrix Y which has a lower rank r(i.e., r < k).

For example, when the approximation is based on the minimization of the Frobenius norm

of the difference between X and Y under the constraint that the rank of Y is r, the solution

is given by the SVD of X, i.e., Y = Um×rdiag(σ1, . . . , σr)V
>
n×r.

2.3.3 Non-negative Matrix Factorization

Directly applying SVD will result in factorized matrices that have both positive and negative

elements which often contradict the physical meaning of the result. For example, if the data

matrix X is used to represent the intensities of pixels in a gray-scale image, it is difficult to

interpret the reconstructed matrix Y for a gray-scale image that has negative elements. In

this case it is more appealing to find the reduced rank nonnegative factors to approximate

a given nonnegative data matrix. This approach is often referred to as nonnegative matrix

factorization (NMF) [87].

Definitions

Given a m × n data matrix X with Xij ≥ 0 and a pre-determined positive integer r ¿
min(m,n), NMF finds two non-negative matrices U ∈ Rm×r and V ∈ Rn×r, such that

X ≈ UV >

A common way to find U and V is to minimize the Euclidean distance between X and UV >:

min
U,V

f(U, V ) =
1

2

m∑

i=1

n∑

j=1

(
Xij − (UV >)ij

)2
=

1

2
‖X − UV >‖2F (2.20)

s. t. Uia ≥ 0, Vjb ≥ 0,∀i, a, b, j.
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Besides the Frobenius norm, [88] provided an information theoretic formulation based

on the Kullback-Leibler divergence of X from UV >, leading to the following optimization

problem:

min
U,V

f(U, V ) =
m∑

i=1

n∑

j=1

(
Xij log

Xij

(UV >)ij
−Xij + (UV >)ij

)
(2.21)

s. t. Uia ≥ 0, Vjb ≥ 0,∀i, a, b, j.

Other alternative objective functions that measure the divergence between X and its recon-

struction UV > can be found in [27, 157, 54, 34]. It is worth pointing out that in [37], the

non-negative constraints of U and V are relaxed by only requiring V to be non-negative

extending the application of NMF methods.

Algorithms

In most cases NMF algorithms can be classified into three general categories[11]: multi-

plicative update algorithms, gradient descent algorithms, and alternating least squares algo-

rithms. [26] recently created a library (NMFLAB) of MATLAB routines that include most

of the existing algorithms for NMF algorithms. Below we briefly review algorithms of these

three categories.

Multiplicative update algorithms The Multiplicative update algorithm was first pre-

sented in [87]. It employs the following equations for updating the solution for U and V

V >bj ← V >bj

(
U>X

)
bj(

U>UV >
)
bj

Uia ← Uia
(XV )ia

(UV >V )ia
(2.22)

Usually, a very small number such as 10−9 is added to both of the denominators in (2.22) to

avoid division by zero. In [88], Lee and Seung claimed that the above algorithm converges

to a local minimum which was later shown to be incorrect[91, 43, 50, 24]! To understand

why the updating equation in (2.22) may not lead to local optimal, we consider the Karush-
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Kuhn-Tucker (KKT) conditions for solution U and V :

U ≥ 0

V ≥ 0

(UV > −X)V ≥ 0

U>(UV > −X) ≥ 0

(UV > −X)V • U = 0

U>(UV > −X) • V > = 0,

where • represents the element-wise product between two matrices. It’s easy to show that if

the optimal point(U∗, V ∗) does not have any elements equal to 0, then it converges to a local

minimum. However, if certain elements in U∗ or V ∗ become zero after several iterations,

for instance if V ∗ij is zero, one has to show ∂f
∂V (U∗, V ∗) ≥ 0 in order to ensure the local

optimality of the solution. It is not evident that the multiplicative update rules in (2.22)

are able to deliver this guarantee. Because of this issue, the local optimality of the solution

found by the multiplicative method is not always guaranteed. In [90], the authors propose

an improved version of the Lee and Seung algorithm that is guaranteed to converge to a

stationary point, although it requires slightly more work per iteration than the original Lee

and Seung algorithm.

Despite the convergency problem, the Lee and Seung multiplicative update algorithm has

become a common approach for solving NMF. Another shortcoming of the Lee and Seung

algorithm is that it is notoriously slow to converge. Several modification have been proposed

to address this problem [50, 34, 90].

Gradient descent algorithms The Gradient descent algorithms use the following equa-

tions for updating U and V

V >bj ← V >bj − εV
∂f

∂V >bj
Uia ← Uia − εU

∂f

∂Uia
(2.23)

where εU and εV are the step sizes. In fact, the multiplicative update algorithms can also be

considered as a gradient based method [24, 88]. The trick to making these algorithms efficient
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comes with choosing appropriate values for the step sizes εU and εV . Various algorithms

have been proposed that use different strategies for choosing the step size parameters εU and

εV . For instance, some algorithms initially set these step size values to 1, then multiply them

by one-half at each subsequent iteration [63]. Despite the simplicity, these algorithms suffer

from the problem that they do not guarantee the elements of the updated matrices U and

V to be non-negative. A common practice employed by many gradient descent algorithms

is a projection step that projects the obtained solution to the non-negative orthant [140, 63,

24, 116]. Without a careful choice of εU and εV , it is difficult to analyze the convergence of

the gradient descent methods.

Alternating least squares algorithms As suggested by the name, this method solves

the optimization problem in (2.20) by optimizing variables alternately. Particularly, in each

iteration of the algorithm, with one of the two variables (i.e., U and V ) fixed, we optimize the

other variable by solving a least square problem. Alternating least square algorithms were

first used in [114]. This algorithm exploits the fact that while the optimization problem in

(2.20) is not convex in both U and V , it is however convex in either U or V . Thus, given one

matrix fixed, the other matrix can be found efficiently by a simple least square computation.

The basic idea of alternating least squares algorithms is summarized as follows.

• Initialize U as a random dense matrix

• for i = 1 to max iter

1. Solve for V > in matrix equation U>UV > = U>X

2. Set all negative elements in V > to 0

3. Solve for U in matrix equation V >V U> = V >X>

4. Set all negative elements in U to 0

In the above procedure, the nonnegativity is ensured by using the simplest projection

step which sets all negative elements resulting from the least squares computation to 0.
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This simple projection step often results in a sparse solution for U and V . Moreover, it

allows additional flexibility during the iteration that is not available in other algorithms as

pointed out in [11]. For instance, one drawback of the multiplicative algorithms is that once

an element in U or V becomes 0, it will remain as 0 forever. This locking of 0 elements is

restrictive, meaning that once the algorithm starts heading down toward a fixed point, even if

it is a poor fixed point, it must continue in that vein. The alternating least squares algorithms

are more flexible since it allows the iterative process to escape from a poor path. Another

appealing feature of alternating least squares algorithm is if the algorithm is implemented

appropriately, they can be much faster than the other two types of algorithms. A discussion

of the convergency of the alternating least squares algorithms can be found in [11].

2.3.4 Maximum Margin Matrix Factorization

The idea of Maximum Margin Matrix Factorization (MMMF) [148, 149, 125] arises from the

study of collaborative filtering [17], in which the goal is to complete the missing elements

in the user-item rating matrix. Unlike the matrix factorization methods discussed in the

previous sections where the focus is to approximate an existing data matrix by a matrix

with a lower rank, MMMF searches for the optimal factorized matrices that minimizes the

trace norm of the approximate matrix. More specifically, given the factorization X = UV >,

MMMF aims to find matrices U and V with the least norms. The idea of minimizing the

norms of the factorized matrices arises by viewing matrix factorization as a problem of

feature extraction. Unlike the formulation of matrix factorization presented in the previous

sections that often result in a non-convex optimization problem, MMMF can be cast into a

convex optimization, making it computationally more desirable.

Collaborative Filtering and Matrix Factorization

The objective of collaborative filtering is to predict the utility of items for a given user based

on a database of user votes from a sample or population of other users [17]. Collaborative
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filtering can be formalized as a matrix completion problem: Let Y be the user-item rating

matrix, with each row corresponding to an user, each column corresponding to an item, and

every element Yi,j representing the rating of user i for item j. Since each user only provides

ratings for a subset of items, or in other words, only a part of the matrix is observed, the

objective of predicting users’ ratings for the remaining items can be naturally viewed as the

completion of the matrix Y .

It is straightforward to extend the idea of low-rank matrix factorization for collaborative

prediction [62, 100]. Given a partially observed matrix Y , we aim to find the matrices (U, V )

that minimizes the discrepancy between the observed entries YS and the corresponding

entries in X = UV >. With the estimated U and V , we can reconstruct the entire matrix Y ,

leading to the prediction of missing ratings in Y .

Matrix Factorization and Linear Prediction

In order to motivate the formulation for maximum margin matrix factorization, below we

try to link the problem of matrix factorization and linear prediction. Suppose one of the

factor matrices, say U , is fixed and only the other factor matrix V > needs to be learned.

Then, fitting each column of the target matrix Y by UV >, is a separate linear prediction

problem; e.g., each row of U is a ”feature vector”; and each column of V > is a linear predictor

that predicts the entries in the corresponding column of Y based on the ”features” in U .

According to the maximum margin principle [18], the optimal V is found by minimizing the

reconstruction error as well as the square of Frobenius norm of U . It is the similarity between

matrix factorization and linear prediction that leads to the maximum margin principle for

matrix factorization.

In collaborative prediction, both U and V are unknown and need to be estimated. This

can be thought of learning both the feature vectors (i.e., U) and the linear predictor (i.e.,

V ) for Y simultaneously. Although a natural approach is to solve this problem by some

alternating method, below we will review the maximum margin matrix factorization method
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that allows us to determine both U and V at the same time.

Maximum-margin Low Trace Norm Matrix Factorization

The trace norm ‖X‖tr is defined as the sum of the singular values of X [148] (See Appendix D

for details), which can also be written as:

‖X‖tr = min
X=UV>

‖U‖F ‖V ‖F = min
X=UV>

1

2

(
‖U‖2F + ‖V ‖2F

)

It is important to note that the trace norm ‖X‖tr is a convex function of X. This fact is the

key for casting the maximum margin matrix factorization problem into a convex optimization

problem.

To simplify presentation, we focus on the problem with binary labels, i.e., every observed

elements in Y is either +1 or −1. In the hard-margin matrix factorization framework, we

seek the completed matrix X that (1) provides a good approximation for all the observed

elements in Y , and (2) has the least trace norm. We can cast the above requirements into

the following optimization problem:

min
X

‖X‖tr (2.24)

s. t. YiaXia ≤ 1, for all ia ∈ S

where S includes the indices of all the observed elements in Y . Similarly, the soft-margin

matrix factorization, where we minimize a trade-off between the trace norm and its hinge-loss

relative to YS , is expressed as follows:

min
X

‖X‖tr + c
∑

ia∈S

max(0, 1− YiaXia) (2.25)

It is worth emphasizing that there is an inverse dependence between the norm and the

margin: fixing the margin and minimizing the trace norm is equivalent to fixing the trace

norm and maximizing the margin.

The geometric interpretation of the maximum matrix factorization can be seen clearly

from constraining all rows of U and V to have small L2 norm. More clearly, instead of
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constraining the norm of rows in U and V on average, we replace the trace norm with

‖X‖max = min
X=UV>

(
max

i
‖Ui‖2

)(
max

a
‖Va‖2

)

where Ui and Va are row vectors of U and V . Then the hard-margin low-max-norm prediction

corresponds to mapping the users and items to points and hyper planes in a high-dimensional

unit sphere such that each users hyperplane separates his positive and negative items with

a large-margin (the margin being the inverse of the max norm).

The soft-margin matrix factorization (2.25) can be further formulated as a semi-definite

optimization problem [148, 156] as:

min
1

2
(trA + trB) + c

∑

ia∈S

ξia (2.26)

s. t.

(
A X

X> B

)
≥ 0, YiaXia ≥ 1− ξia, ξia ≥ 0, ∀ia ∈ S

By introducing a dual variable Qia for each constraint on Xia, the dual of (2.26)[148]is

given as:

max
∑

ia∈S

Qia (2.27)

s. t.

(
I (−Q⊗ Y )

(−Q⊗ Y )> I

)
≥ 0, 0 ≤ Qia ≤ c

where Q ⊗ Y denotes the sparse matrix with (Q ⊗ Y )ia = QiaYia for ia ∈ S and zeros

elsewhere. Since the prime problem is strictly feasible, the duality gap between the prime

problem and the dual problem is zero. Hence, both the prime problem and the dual formu-

lation give the same solution. Note that unlike typical prime and dual problems, in SDP,

recovering the optimal solution to the prime problem directly from a dual optimal solution

is in fact non-trivial. However, at least for the hard-margin problem this is possible to derive

the solution for the prime problem from the solution to the dual problem by exploring the

complementary slackness conditions[148].
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2.4 Supervised and Semi-Supervised Dimensionality

Reduction

All the dimensionality reduction methods discussed in the previous sections are unsupervised,

i.e., no supervision information is provided other than the input patterns of data points. The

methods reviewed in this section belong to the category of supervised and semi-supervised

dimensionality reduction. These algorithms are inspired by the fact that in many cases

additional information, such as class labels and pairwise constraints, is provided besides

the input patterns of data. The objective of supervised and semi-supervised dimensionality

reduction is to exploit the supervisory information in order to either guide or regulate the

search of the space with reduced dimensions. In this section, we will review several the most

representative methods to illustrate the general idea of the supervised and semi-supervised

dimensionality reduction. It is worth pointing out that the methods reviewed in this section

have a very close relationship to the methods developed in this thesis, and therefore they serve

as a good starting point for the remaining chapters. Finally, it is also worth emphasizing, the

supervised and semi-supervised dimensionality reduction is closely related to distance metric

learning and kernel learning. We refer the audience to [169, 177] for more information.

2.4.1 Linear Discriminate Analysis

As discussed in Section 2.1.1, although PCA finds components that are representative for

a given dataset, these components however may not be useful for distinguishing data from

different classes. Unlike PCA, Linear Discriminate Analysis (LDA) [44] aims to identify the

low dimensional space that has the maximum class discrimination. It achieves this goal by

projecting data onto a low dimensional space in which the separation of data points from dif-

ferent classes is maximized while the dispersion of data from the same class is simultaneously

minimized.
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Assume the data set D is grouped as:

D = {X1, X2, . . . , Xk}

where k is the number of classes and Xi ∈ Rm×ni is the data matrix of the ith class. ni is

the number of data points of the ith class and
∑k

i=1 ni = n.

In LDA three matrices are defined as follows which are: within-class, between-class, and

total scatter matrices:

Sw =
1

n

k∑

i=1

∑

x∈Xi

(x− ci)(x− ci)
> (2.28)

Sb =
1

n

k∑

i=1
ni(ci − c)(ci − c)> (2.29)

St =
1

n

n∑

i=1
(xi − c)(xi − c)> (2.30)

where ci is the sample mean of the ith class and c is the mean of the whole data set. It can

be shown that the three matrices satisfy the following relationship:

St = Sw + Sb

It is evident that the trace of Sw, denoted by tr(Sw), measures the overall distance between

each data point and its class center (mean). Similarly, the trace of Sb, denoted by tr(Sb),

measures the separation between each class center and the center of all data points. In

the low dimensional space where each data point is transformed by a projection matrix

G ∈ Rm×(k−1), the three scatter matrices become:

SL
w = G>SwG, SL

b = G>SbG, SL
t = G>StG

In order to ensure that in the space of reduced dimensions (a) all the classes are well separated

and (b) the data points in the same class are close to each other, LDA cast the dimensionality

reduction problem into the following optimization problem:

max
G

tr
(
G>SbG

)

tr
(
G>SwG

) (2.31)

s.t. G>G = I
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The solution of LDA comes from the result of the generalized eigenvalue problem:

S−1
w Sbvi = λivi (2.32)

and the eigenvectors corresponding to the k − 1 largest eigenvalues form the columns of the

projection matrix G.

Extensions of LDA One well know problem in LDA is the so called singularity or under-

sampled problem. It arises when the number of data points is smaller than the dimensional-

ity, leading to singular scatter matrices singular and consequentially a ill defined eigenvalue

problem in (2.32).

Many attempts have been made to deal with the singularity problem. One category of ap-

proaches is to reduce the dimensionality before LDA is applied. PCA+LDA [3, 173, 101] is a

representative approach in this category. It first applies PCA to the given data set to identify

a space of p dimension in which all the scatter matrices are nonsingular. It then applied the

standard LDA to data patterns in the reduced space. The parameter p is usually estimated

by cross validation. Another popular method to deal with the singularity of scatter matrices

is regularization, which is known as RLDA [55]. In RLDA, a small positive value is added to

the diagonal elements of the scatter matrices, which makes them to be positive definite thus

nonsingular [49]. Other methods, such as null space LDA (NLDA) [23], orthogonal LDA

(OLDA) [171], and uncorrelated LDA (ULDA) [171], have also been proposed and applied

successfully to resolve the singularity issue in different domains. An unified framework is

presented in [69] that unifies these variants of LDA methods.

2.4.2 Semi-Supervised LLE and ISOMAP

Semi-supervised LLE [170] and ISOMAP [170] can be viewed as a natural extension of their

unsupervised versions which were reviewed in the Section 2.2. In semi-supervised settings,

the prior information of the exact mapping of certain data points is known and is used to

guide the procedure of dimensionality reduction. Without loss of generality, we assume that
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for nl data points, we know their low dimensional representation. By rearranging the data

matrix D, we can partition D into two parts as D = {Xl, Xu}, where Xl represents the

data points for which we know their low dimensional representation and Xu are other data

points. Accordingly, we can partition the low dimensional representation Y into two parts

as Y = {Yl, Yu}, where Yl is given and Yu needs to be computed.

Semi-Supervised LLE From (2.15), the objective of LLE is to minimize
∑n

i ‖yi −
∑

j∈Ni
wijyi‖2 which is equivalent to minimize tr(Y MY >), where M = (I −W )>(I −W ).

The M matrix can also be partitioned in a similar way as:

M =

(
Mll Mlu

M>
lu Muu

)

Replacing Y and M with a partitioned version, the objective function in LLE can be

rewritten as :

min
Yu

tr

((
Yl Yu

) (
Mll Mlu

M>
lu Muu

)(
Y >l
Y >u

))
(2.33)

which is equivalent to

min
Yu

tr
(
YuMuuY >u + 2YlMluY >u

)
(2.34)

The solution to the above objective function can be computed by solving a linear system

of equations as:

MuuY >u = MluY >l (2.35)

Semi-supervised ISOMAP For the semi-supervise version of ISOMAP [170], we first

restate the ISOMAP problem as:

max
Y

tr
(
Y AY >

)
(2.36)

s.t. Y Y > = I

where A is the matrix as:

A = −1

2
(I − 1

n
11>)>∆(I − 1

n
11>)
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in which, ∆ is the matrix of squared geodesic distances.

Let A = QΛQ> is the eigen decomposition of A. Λ = diag(λ1, λ2, . . . , λn) is a diagonal

matrix where λi is the eigenvalue with λ1 ≥ λ2 ≥ . . . ≥ λn. Matrix Q consists of Q =

[q1, . . . ,qn] and qi is the eigenvector corresponding to λi. Define matrix M as:

M = λ1I − A−
r∑

i=2
(λ1 − λi)qiq

>
i − λ111>/n (2.37)

It can be shown that matrix M has r + 1 zero eigenvalues and the null space is given by

span([q1,q2, . . . ,qr,1]). Therefore, (2.36) can be rewritten as:

min
Y

tr
(
Y MY >

)
(2.38)

s. t. Y Y > = I,
n∑

i=0
yi = 0

Using the same idea of partitioning as semi-supervised LLE, we can incorporate the su-

pervised information into the optimization problem in (2.38). As a result, this yields the

same format as (2.33), except the matrix M is replaced by (2.37).

2.5 Functional Data Dimensionality Reduction

The functional data dimensionality reduction [74] is inspired by the Functional Data Analysis

(FDA) [123]. The FDA approach is based on the assumption that multivariate data are

discrete samples of some underlying functions and further analysis is carried out with the

functional representations instead of the original data. The advantage is that, provided that

the data is smooth enough, the functional representation will be of smaller dimension. One

typical approach to obtain the functional representation is to construct a finite dimensional

function space and then represent the data as the linear combination of a set of basis functions

which span that space. The dimension of the functional representation of the data thus

becomes the dimension of the combination weighting vectors which could be lower than

the original data dimension if only a limited number of basis functions are used. However,
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the choice of basis is not trivial because in many real-world applications the basis has a

severe impact on the overall performance, therefore it is often desirable to construct problem

specific basis functions to get good representation with a small number of basis functions

while maintaining most of the original information. The shortcoming of the functional data

dimensionality reduction is that it is more restricted because one has to assume that the

multidimensional data can be represented in functional form.

The central idea of functional data analysis[123] is to treat high dimensional data as

continuous functions. In general, the functions lie in a space with infinite dimensions and

in order to make the computation tractable, the functions are usually approximated with

finite dimensional representations. More specifically, it assumes that for each datum xi =

[x1
i , x

2
i , . . . , x

m
i ]>, there exists a function fi(z) belonging to certain function space L such

that xh
i = fi(zh)+εhi for all h = 1, . . . , m, where εhi is the noise and the argument zh where the

observation are made are problem specific. The idea is to estimate the underlying function

fi based on the available data and conduct further analysis with the function representation

instead of the original discrete data.

In general, the function space where fi is defined is of infinite dimensions making it very

difficult to work with the function fi directly. In practice, it is very often to approximate fi

with a finite dimensional representation wi which is defined in some r dimensional subspace

A ⊂ L. Since the goal of this whole procedure is to reduce the dimensionality, a natural

requirement is that the dimension of the subspace r is less than the original data dimension

which is m.

The subspace is defined by a set of basis functions ψj(z), j = 1, . . . , r which span

A. Given the basis, any function fi in A can be represented by the weight vector

wi = [w1
i , w

2
i , . . . , w

r
i ]
>:

fi(z) = w>
i ψ(z), (2.39)

where ψ(z) = [ψ1(z), ψ2(z), . . . , ψr(z)]>. One typical approach to obtain the weights is to
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minimize the square fitting error:

min
wi

m∑

l=1

(
w>

i ψ(zl)− xl
i

)2
. (2.40)

In order to obtain more stable models, regularization is often applied to (2.40), for example,

a penalty term λ‖wi‖2 can be added to (2.40) where λ is introduced to balance between the

regularization and the regression error.

In general, orthogonal basis, such as Fourier basis or wavelets are often used, however,

there are no free parameters and thus the basis cannot be optimized for a specific task.

It is sometimes appealing to use non-orthogonal functions as basis so that a small number

of weights are needed for representing the data. For instance, we can use Gaussian basis

functions:

ψj(z) = exp

(
−‖z − rj‖2

σ2
j

)
, j = 1, . . . , m (2.41)

where rj is the location and σj is the width of the function. Clearly, these functions are

not orthonormal. The basis is differentiable respect to the parameters rj and σj , thus it can

be optimized for an accurate fitting using standard gradient-based optimization algorithms.

For example, if we choose the Gaussian basis functions and minimize the square fitting error

of all the functions from i = 1, . . . , n as:

min
n∑

i=1
(Ψwi − xi)

> (Ψwi − xi) (2.42)

=
n∑

i=1

(
w>

i Ψ>Ψwi − 2x>i Ψwi + x>i xi

)
,

where the columns of Ψ are Ψj = [ψj(z1), ψj(z2), . . . , ψj(zm)]> and it’s derivative with

respect to rj and σj are:

Ψ
(r)
j =

[
z1 − rj

σ2
j

ψj(z1), . . . ,
zm − rj

σ2
j

ψj(zm)

]>
(2.43)

Ψ
(σ)
j =

[
(z1 − rj)

2

σ3
j

ψj(z1), . . . ,
(zm − rj)

2

σ3
j

ψj(zm)

]>
(2.44)
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With this notation, it is easy to derive:

∂
(
x>i Ψwi

)

∂rj
= x>i Ψ

(r)
j w

j
i (2.45)

∂
(
w>

i Ψ>Ψwi

)

∂rj
= 2w>

i Ψ>Ψ
(r)
j w

j
i (2.46)

and finally we can get:

∂

∂rj
=

n∑

i=1
(Ψwi − xi)

>Ψ
(r)
j w

j
i (2.47)

Similarly, we can derive:

∂

∂σj
=

n∑

i=1
(Ψwi − xi)

>Ψ
(σ)
j w

j
i (2.48)

After the gradient is computed, we can obtain the optimal ri and σj using standard

unconstrained non-linear optimization.
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2.6 Summary

Dimensionality reduction is a board area and our review is far from complete. Here, we

only focus on the methods of dimensionality reduction that are most widely used. There are

many other well known algorithms for dimensionality reduction that are not included in the

disscussion, such as Projection Pursuit [73], Principal Curve [57], Topologically Continuous

Surfaces [21], Neural Network [68], and Independent Component Analysis [65]. For reviews

of these methods please refer to [45] [21].

Recent studies have revealed interesting connection between dimensionality reduction and

data clustering. For example, studies have shown that PCA is closely related to K-means[34],

and non-negative matrix factorization is closely related to spectral clustering [35]. Also, stud-

ies [4] have shown that Laplacian eigenmaps [4] and spectral clustering [142], although not

mathematically equivalent, share very similar ideas and only differ in the last one step: the

last step of clustering thresholds the elements yi in order to to divide the data points into

two disjointed sets, while in dimensionality reduction the obtained matrix Y becomes the

reduced representation of the original data patterns. In [36] the authors further formu-

late the problem of multi-way spectral clustering into the dimensionality reduction problem

of finding the best one dimensional embedding, thus bridging gap between clustering and

dimensionality reduction.

Although many methods have been proposed and successfully applied to real-world prob-

lems in reducing dimensionality, several open problems need further study. For example,

most non-linear methods are not applicable for very large scale data sets (n > 100, 000).

Another issue is that the ”target” dimension r often needs to be predetermined. However,

determining the right target dimension is, sometimes, an even more difficult problem than

dimensionality reduction itself.
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CHAPTER 3

Semi-Supervised Learning by Mixed

Label Propagation

In this chapter, we aim to explore the dimensionality reduction method for semi-supervised

classification via the idea of mixed label propagation. In particular, our work is inspired

by [36] where a clustering problem is approximated by a low dimension embedding problem.

We extend this idea by approximating a data classification problem into a dimensionality

reduction problem: we attempt to find the best one dimensional embedding of the data in

which data points in different classes can be well separated, and the class labels obtained

by simply thresholding the one dimensional representation. We furthermore extend LDA, a

supervised dimensionality reduction method, to the semi-supervised learning setting. In this

chapter, we first briefly review the existing work on graph-based semi-supervised learning,

which is closely related to our work. We then present the proposed framework of mixed label

propagation that essentially extend dimensionality reduction methods to semi-supervised

classification.

3.1 Graph-Based Semi-Supervised Learning

Recent studies have shown a promising performance of graph-based approaches for semi-

supervised learning [1, 7, 25, 59, 70, 174, 175, 176]. The key idea behind most graph-

based approaches is to explore the pair-wise similarity between examples in determining

the class labels for unlabeled examples. In particular, the class assignments of unlabeled

examples need to be consistent with both the example similarity and the class labels of
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training examples. Graph-based approaches can often be interpreted as propagating the

label information of the training examples to the unlabeled examples through the pair-wise

similarity between examples. This process is sometimes referred to as label propagation [175].

One key component to most graph-based approaches is how to measure the inconsistency

between the class assignments and the example similarity. For instance, in the harmonic

function approach the inconsistency between the class assignment y = (y1, y2, . . . , yn) and

similarity Sij ≥ 0 is measured by the energy function:

E(S,y) =
n∑

i,j=1
Si,j

(
yi − yj

)2
= y>Ly (3.1)

where L is the Laplacian matrix and is defined as L = D − S. Here, D =

diag(D1, D2, . . . , Dn) is a diagonal matrix with its diagonal elements defined as Di =
∑n

j=1 Si,j . Note that (3.1) is almost the same as the objective function of Laplacian Eigen-

map in Section 2.2.3. The only difference is, here the variable y is class labels, while in 2.2.3

it is the low dimensional representation of data.

Given the class labels ŷl = (ŷ1, ŷ2, . . . , ŷnl
) for the first nl examples, the optimal class

assignment y is found by minimizing the above energy function, i.e.,

min
y

E(S,y) (3.2)

s. t. yl = ŷl

where yl stands for the first nl elements of y. The optimal class labels assigned to the

unlabeled examples, denoted by yu, are computed as:

yu = −[Lu,u]−1Lu,lŷl (3.3)

where the super indices u and l stand for the parts of the Lapacian matrix that are related

to the labeled and the unlabeled examples, respectively. Similar strategy is also employed

for semi-supervised dimensionality reduction reviewed in section 2.4.2

It is important to note that the pair-wise similarity Sij in the above energy function must

be non-negative. This is because E(S,y) could become negatively unbounded when certain
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pair-wise similarity Si,j is negative, which implies the optimal solution to (3.3) does not

exist.

3.2 Mixed Label Propagation

Despite the success, most graph-based approaches are limited to exploring positive similarity,

which can be interpreted as the confidence of assigning two different examples to the same

class. In many cases we may run into dissimilarity or negative similarity that expresses the

confidence of assigning two examples to different classes. For instance, if we measure the

similarity between two examples by their correlation coefficient, we could have both positive

and negative similarity. One application of negative similarity is collaborative filtering [17],

in which a negative similarity between two users indicates that the two users share different

interests and therefore tend to give opposite ratings for the same items. Another application

of negative similarity is semi-supervised data clustering, in which one has side information

of must-link pairs and must-not-link pairs. One way to explore the side information is to

associate every must-link pair with a positive similarity, and every must-not-link pair with

a negative similarity [82].

It is important to note that most existing graph-based approaches are unapplicable to

negative similarity because the dissimilar relations are non-transitive and therefore cannot

be propagated directly. This can also be understood from the viewpoint of optimization.

The energy function, i.e., the objective function employed by most graph-based approaches

to measure the inconsistency between the class assignments and the example similarity, could

be negatively unbounded when similarity is negative, thus no optimal solution can be found

to minimize the objective function. To address this problem we propose a new framework of

label propagation for semi-supervised learning, termed as mixed label propagation, which

can effectively explore both negative and positive similarity simultaneously. Mixed label

propagation measures two quantities: the inconsistency between the class assignments and
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the positive similarity, and the consistency between the class assignments and the negative

similarity. The optimal class assignments are found by minimizing the ratio between the

inconsistency and the consistency.

3.2.1 The Framework of Mixed Label Propagation

To incorporate negative similarity into the framework of label propagation, we consider

constructing two energy functions: the energy function E+ that measures the inconsistency

between the class assignments and the positive similarity, and the energy function E− that

measures the consistency between the class assignments and the negative similarity. In

order to minimize the inconsistency E+ and maximize the consistency E− simultaneously,

we follow the idea of Linear Discriminative Analysis (LDA) [44] by minimizing the ratio

between E+ and E−. More specifically, given the pair-wise similarity S, we construct the

positive similarity matrix S+ and the negative similarity matrix S− as follows:

[S+]i,j =

{
Si,j Si,j > 0

0 otherwise

[S−]i,j =

{
|Si,j | Si,j < 0

0 otherwise

Evidently, we have S = S+ − S−. We then construct two energy functions E+(S+,y)

and E−(S−,y) based on the two similarity matrices S+ and S− using Eqn. (3.1). Finally,

given the class labels ŷl ∈ {−1, +1}nl for the first nl training examples, the optimal class

assignment y is determined by minimizing the ratio between E+ and E−, i.e.,

min
y∈Rn

E+(S+,y)

E−(S−,y)
=

y>L+y

y>L−y
(3.4)

s. t. yi = ŷi, i = 1, 2, . . . , nl

where L+ and L− are graph Laplacians for similarity matrices S+ and S−, respectively. Note

that without the linear constraints yi = ŷi, i = 1, 2, . . . , n, the above optimization problem

is identical to the optimization problem in LDA [44]. Hence, the optimal solution y to (3.4)

is the minimum eigenvector of matrix L
†
−L+ where † stands for the pseudo inverse. The
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challenges of solving the optimization problem in (3.4) arises from the linear constraints. In

the next subsection we present an efficient algorithm to solve this optimization problem.

3.2.2 An Efficient Algorithm for Mixed Label Propagation

For the convenience of presentation we rewrite class assignments y as y = (yl,yu), where yl

represents the class labels of the first nl examples and yu represents the labels for the next

nu = n− nl examples. According to the constraints in (3.4), we have yl = ŷl.

To solve the problem in (3.4), we first follow the idea of LDA by converting the problem

of optimizing a ratio into a constrained optimization problem, i.e.,

min
β∈R,yu∈Rnu

y>L+y (3.5)

s. t. y>L−y ≥ 1, β ≥ 0

where

y>L+y = (βŷ>l ,y>u )

(
L

l,l
+ L

l,u
+

L
u,l
+ L

u,u
+

)(
βŷl

yu

)

y>L−y = (βŷ>l ,y>u )

(
L

l,l
− L

l,u
−

L
u,l
− L

u,u
−

)(
βŷl

yu

)

Note that in (3.5) we introduce a scaling factor β for ŷl. This is because we introduce the

constraint y>L−y ≥ 1, and therefore have to convert yl = ŷl to yl ∝ ŷl. β is introduced to

account for the scaling factor between yl and ŷl.

We take the alternating optimization strategy to solve (3.5). More specifically, we first

optimize yu by fixing β and then optimize β by fixing yu. However, the problem in (3.5)

is a non-convex programming problem for both β and yu because of the non-convex con-

straint y>L−y ≥ 1. To resolve this problem we resort to the following theorem of the

alternative [15]:

Theorem 3.1. The implication

x>F1x + 2g>1 x + h1 ≤ 0 =⇒ x>F2x + 2g>2 x + h2 ≤ 0,
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where Fi is symmetric n× n matrix, holds if and only if there exists λ ≥ 0 such that

(
F2 g2
g>2 h2

)
º λ

(
F1 g1
g>1 h1

)

Optimize y with fixed β Using the above theorem, to compute the optimal yu with

fixed β, we turn the problem in (3.5) into its dual form, i.e.,

max
λ

λa22 − β2a21a
−1
11 a12 (3.6)

s. t. λ ≥ 0

a11 = L
u,u
+ − λL

u,u
− , a12 =

(
L

u,l
+ − λL

u,l
−

)
ŷl

a21 = ŷ>l
(
L

l,u
+ − λL

l,u
−

)
, a22 = 1− β2ŷ>l L

l,l
− ŷl

Given the solution for λ, we can compute the solution for yu using the Karush-Kuhn-Tucker

(KKT) conditions [15], i.e.,

yu = −β
(
L

u,u
+ − λL

u,u
−

)−1
(
L

u,l
+ − λL

u,l
−

)
yl (3.7)

It is interesting to note that the above solution for yu is equivalent to the solution by the

harmonic function (in Eqn. (3.3)) if we use L = L+ − λL− as the graph Laplacian matrix.

Thus, the parameter λ weighs the importance between the two energy functions E+ and E−.

The advantage of the proposed approach is that it automatically determines λ by making

the optimal tradeoff between the inconsistency measure E+ and the consistency measure

E−. This is particularly important for semi-supervised learning when the number of labeled

examples is limited and is insufficient to determine λ by cross validation. We will also show

in our empirical study that the value of λ varies significantly from one case to another, and

therefore it is suboptimal to replace λ with a fixed constant. The problem in (3.6) can be

further turned into a Semi-Definite Programming (SDP) [156](See Appendix C) problem as
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follows:

max
λ,γ

γ (3.8)

s. t.

(
a11 a12
a21 (λa22 − γ) /β2

)
º 0, λ ≥ 0

a11 = L
u,u
+ − λL

u,u
− , a12 =

(
L

u,l
+ − λL

u,l
−

)
ŷl

a21 = ŷ>l
(
L

l,u
+ −λL

l,u
−

)
, a22 = 1− β2ŷ>l L

l,l
− ŷl

In (3.8) we introduce the slack variable γ ≤ λa22−β2a21a
−1
11 a12, which can be further turned

into a Linear Matrix Inequality (LMI)

(
a11 a12
a21 (λa22 − γ) /β2

)
º 0

using the Schur complement [15](see Appendix B). Since the problem in (3.8) belongs to

the family of semi-definitive programming, it can be solved effectively using the standard

packages such as SeDuMi1.

Optimize β with fixed y Similarly, using the theorem 1 we have the following optimiza-

tion problem for finding optimal β with fixed yu

max
λ,γ

γ (3.9)

s. t. λ ≥ 0,

(
b11 b12
b21 b22

)
º 0

b11 = ŷ>l L
l,l
+ ŷl − λŷ>l L

l,l
− ŷl

b12 = b21 = ŷ>l L
l,u
+ yu − λŷ>l L

l,u
− yu

b22 = −λ
(
y>u L

u,u
− yu − 1

)
− γ

The corresponding solution for β is

β = − ŷ>l L
l,u
+ yu − λŷ>l L

l,u
− yu

ŷ>l L
l,l
+ ŷl − λŷ>l L

l,l
− ŷl

(3.10)

1http://sedumi.mcmaster.ca/
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In summary, we start with a large value for β, then find the optimal yu by solving the

problem in (3.8) with a fixed β, and find the optimal β by solving the problem in (3.9) with

a fixed yu. We alternate these two steps iteratively until the solution converges to the local

maximum.

3.2.3 Application to Collaborative Filtering

In order to verify the efficacy of the proposed algorithms for semi-supervised learning, we

apply it to collaborative filtering. We emphasize that we choose collaborative filtering for

the test bed because we are able to compute both similarity and dissimilarity in the task

of collaborative filtering, a key requirement for the proposed method. As discussed in Sec-

tion 2.3.4, the goal of collaborative filtering is to predict the utility of items to a user based on

ratings by other users [126]. This method differs from the traditional feature based approach

where predictions are made based on the features of data. For example, in a collaborative

filtering movie recommendation system2, features of the movies (e.g., genre, year, actors,

external reviews) and the users (e.g., age, gender, explicitly specified preferences) are not

used by the system. Inputs to the system are user ratings on movies they have already

seen. When making predictions of user ratings on movies they have not yet seen, the system

assume that users ”collaborate” by sharing their ratings, e.g., to predict the ratings of a

movie by user u, most collaborative filtering algorithms first identify a subset of users who

share similar interests to u, and then combine the ratings of these similar users as the rat-

ings by u. The most well known algorithms for collaborative filtering include the Pearson

correlation coefficient [126], personality diagnosis [117], matrix factorization [147], graphical

models [17, 61], and ordinal regression [25].

In order to apply the proposed approach to collaborative filtering, the key is to estimate the

matrix S for user similarity. To this end, we employ the Pearson correlation coefficient [126]

to estimate user similarity. It measures the linear correlation between the ratings of two

2http://movielens.org/
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Given 10 Rated Items

Kc = 1 Kc = 5

MLP 0.8318 ± 2.7E-04 0.7368 ± 1.2E-04

LP 0.8184 ± 8.6E-04 0.7316 ± 1.3E-04

Pearson 0.7766 ± 6.8E-04 0.6749 ± 4.0E-04

MMMF 0.7827 ± 9.2E-05 0.6974 ± 3.6E-05

Given 15 Rated Items

Kc = 1 Kc = 5

MLP 0.8599 ± 3.4E-04 0.7704 ± 1.2E-04

LP 0.8526 ± 5.3E-04 0.7689 ± 1.4E-04

Pearson 0.8170 ± 1.0E-03 0.7222 ± 3.8E-04

MMMF 0.8189 ± 2.0E-04 0.7221 ± 8.4E-05

Table 3.1. Average precision for the Mixed Label Propagation (MLP), Label Propagation

(LP), Pearson Correlation Coefficient (Pearson) and Maximum-Margin Matrix Factoriza-

tion(MMMF) using 10 training users.

users. More specifically, given two users ui and uj , let Oi,j denote the set of items that are

rated by both users. The similarity between ui and uj is measured as:

Si,j =

∑|Oi,j |
k=1 (ri(k)− r̄i)(rj(k)− r̄j)√

∑|Oi,j |
k=1 (ri(k)− r̄i)2

√
∑|Oi,j |

k=1 (rj(k)− r̄j)2

where ri(k) stands for the rating of the kth item by user ui, and r̄i is the average rating of

user ui. Since the Pearson correlation coefficient can be both negative and positive, we can

apply the proposed method to collaborative filtering.

3.3 Experiments

We evaluated the effectiveness of the proposed mixed label propagation approach by the task

of collaborative filtering and used a subset of the MovieLens database (http://movielens.

umn.edu/login) as the test bed. In particular, we selected the 100 most popular movies and

randomly selected 200 users who had provided at least 25 ratings for the 100 selected movies.
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Given 10 Rated Items

Kc = 1 Kc = 5

MLP 0.8325 ± 3.7E-04 0.7449 ± 1.3E-04

LP 0.8228 ± 1.3E-04 0.7408 ± 4.7E-05

Pearson 0.7998 ± 3.5E-04 0.6938 ± 3.4E-04

MMMF 0.7946 ± 1.5E-04 0.7036 ± 1.2E-04

Given 15 Rated Items

Kc = 1 Kc = 5

MLP 0.8661 ± 8.8E-05 0.7732 ± 5.2E-05

LP 0.8592 ± 4.7E-04 0.7727 ± 1.4E-04

Pearson 0.8177 ± 3.3E-04 0.7291 ± 1.9E-04

MMMF 0.8128 ± 2.3E-05 0.7219 ± 1.5E-04

Table 3.2. Average precision for the Mixed Label Propagation (MLP), Label Propagation

(LP), Pearson Correlation Coefficient (Pearson) and Maximum-Margin Matrix Factoriza-

tion(MMMF) using 20 training users.

In contrast to the binary label requirement in (3.4), the labels here were the ratings ranging

from 1 to 5, and the mixed label propagation algorithm was applied to each movie separately

to predict the ratings by all users. To acquire a full spectrum of the performance, we varied

the number of training users and the number of movies whose ratings were provided by the

test users. More specifically, 10 and 20 users were used as the training users. For each test

user, 10 and 15 movies were randomly selected and their ratings by the test user were given.

Each experiment was conducted ten times, and the results averaged over ten trials were

reported in our study.

Three baseline models were used in our study: the Pearson correlation coefficient method

(Pearson) [126], the Maximum-Margin Matrix Factorization method (MMMF) [124], and the

Label Propagation method (LP) [176] that is based on the harmonic function and only uses

the positive similarity. By comparing to the Pearson correlation method and the maximum-

margin matrix factorization method, we are able to observe if the proposed method is effective

for collaborative filtering. By comparing to the label propagation method, we are able to
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observe if the proposed method is effective in exploiting the negative similarity. For the

maximum margin matrix factorization method, we used coding from the website http://

people.csail.mit.edu/nati/mmmf/code.html and used a maximum norm with C = 0.001

for all the experiments following the suggestion in [147].

To examine the quality of different collaborative filtering algorithms, we focused on evalu-

ating how well each method was able to rank items for users. For each user we ranked items

in the descending order of their estimated ratings. We then evaluated the ranked items by

comparing to the items ranked by the true ratings. More specifically, for a test user u, we

used le = (i1, i2, . . . , im) to denote the list of items ordered by the estimated ratings, and ru
i

to denote the true rating of the ith item by user u. Then, the quality of the ranked items

was evaluated by the following two metrics:

• Average Precision [46] (AP). To measure the average precision, we assume that the first

k items with the highest ratings by user u, denoted by Mu(k), are the “good” items

for user u. Then, the average precision for user u at the cutoff rank Kc is computed

as:

APu(Kc) =
1

Kc

Kc∑

k=1

|Mu(k) ∩ {i1, · · · , ik}|
k

(3.11)

where | · | outputs the length of the set.

• Average Rating (AR). This computes the average rating of the first Kr ranked items in

the list le. More specifically, the average rating for user u at the rank Kr is computed

as follows

ARu(Kr) =
1

Kr

Kr∑

k=1

ru
ik

(3.12)

Finally, we averaged both metrics over all test users, and reported the average precision at a

different cutoff rank Kc and the average rating at a different ranking position Kr. Note that

we did not use the Mean Average Error (MAE) [17] because MAE requires an additional

step to calibrate scores into rating, and therefore does not directly reflect the quality of

collaborative filtering algorithms.
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3.3.1 Experiment (I): Effectiveness of Mixed Label Propagation

The average precision of the four methods for 10 and 20 training users are reported in Ta-

ble 3.1 and 3.2, respectively. Figure 3.1 and 3.2 show the average ratings of the four methods

for 10 and 20 training users, respectively. First, we observe that for all of the four methods,

both the average precision and the average rating are improved with the larger number of

training users and given more rated items. This is consistent with our expectation: the more

the training examples, the better the performance. Second, according to the average preci-

sion metric, we observe that compared to other methods the Pearson correlation coefficient

method achieves almost the worst performance. It is also surprising to observe that the max-

imum margin matrix factorization (i.e., MMMF) does not improve the prediction accuracy in

comparison to the Pearson correlation coefficient. We believe that this may be attributed to

the small number of training users in our study while most of the previous studies of MMMF

focused on large numbers of training users. Third, the label propagation method based on

the harmonic function performs better than both the Pearson correlation coefficient method

and the maximum-margin matrix factorization method according to the average precision

metric. Finally, according to both metrics, the mixed label propagation method outperforms

the other three methods considerably in all experiments and the improvements are statistical

significant under the student-t test with 95% confidence interval.

3.3.2 Experiment (II): Empirical Values for λ

As described before, the solution for yu in Eqn. (3.7) is essentially equivalent to the solution

by the harmonic function (in Eqn. (3.3)) if we use L = L+ − λL− as the graph Laplacian

matrix. Since we have to solve the mixed label propagation problem for each movie, we

compute a different λ for each movie. Figure 3.3 shows the λs that were computed for the

100 movies with 20 training users and 10 given ratings. We clearly see the large variance

in λ across different movies. For some movies the optimal λ can be as high as 0.3. For

other movies the optimal λ can be as low as 10−4. Given the empirical values of λ shown
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in Figure 3.3, it is unlikely to find a fixed λ that can fit in well with all movies. This is also

confirmed by our empirical study with fixed λ.

3.4 Discussion

A closely related work [48] was published almost the same time as our mixed label propaga-

tion, here we refer it to the mixed-graph method. In the mixed-graph method, the authors

try to incorporate both similarity and dissimilarity into semi-supervised classification prob-

lems. More specifically, they define a mixed graph of n nodes by two n × n matrices S

and W . The matrix S specifies the edge type: Sij = 1 if there is a similarity between ith

node and jth node; Sij = −1 if there is a dissimilarity edge. Non-negative weights wij ≥ 0

represent the weights of the edge between ith node and jth node regardless of its type.

In the next step, they define matrix M as an analog of the graph Laplacian L as:

M = L + (11> − S) •W

where • stands for the elementwise product. Like the Laplacian matrix, M is also positive

semi-definite. If the graph has no dissimilarity edges, M degenerates to L.

The M matrix is then used in the framework of manifold regularization [7], in which the

discriminant function is obtained by solving:

min
f∈H

l∑

i=1
c (yi, f(xi)) + λ1‖f‖2H + λ2f

>M f (3.13)

where H is the Reproducing Kernel Hilbert Space of a kernel K, c() is an arbitrary loss

function, e.g., the hinge loss for Support Vector Machine (SVM) [18], or squared loss for

Regularized Least Squares classifiers (RLS) [41], and f is the vector of discriminant function

values on the n points. The first two terms are the same as in supervised learning, while

the third term is the additional regularization term for the mixed-graph semi-supervised

learning.

63



Comparing to our mixed label propagation, instead of constructing energy functions as-

sociated with similarity and dissimilarity separately, the mixed-graph method tries to find a

unified way to express both similarity and dissimilarity, thus resulting a mixed version of the

standard Laplacian matrix which is the M matrix. This, however, brings both advantages

and disadvantages. First, the positive side is that the M matrix is still positive semi-definite

and this makes the optimization problem of (3.13) to be convex. The negative side is that

the importance between the similarity and dissimilarity cannot be balanced automatically.

One has to resort to other techniques, such as cross validation, to decide how important the

dissimilarity is before the construction of matrix M . This can be seen clearly from the ex-

periment part of the mixed-graph method in which the weights of dissimilarity are manually

varied to exam the importance of dissimilarity. Our method, however, has the benefit of

automatically deciding the importance between similarity and dissimilarity. As we discussed

when explaining (3.7), our method essentially uses L = L+ − λL−, and can automatically

determine λ by making the optimal tradeoff between the inconsistency measure E+ and the

consistency measure E−.

3.5 Summary

In this chapter, we proposed a mixed label propagation framework for semi-supervised learn-

ing. Unlike the existing graph-based approaches that are only applicable to the positive

similarity of examples, our framework is able to explore both positive and negative similar-

ity simultaneously. The key idea behind the proposed framework is very similar to LDA,

which is to minimize the inconsistency between the class assignments and the positive sim-

ilarity of examples, and maximize the consistency between the class assignments and the

negative similarity of examples. We presented an efficient learning algorithm for the mixed

label propagation that is based on the alternative optimization strategy and semi-definitive

programming. Our empirical study with collaborative filtering showed that the proposed
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algorithm is effective in exploring negative similarity and outperforms both the label prop-

agation approach and state-of-the-art approaches for collaborative filtering.
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(a) 10 given rated items

(b) 15 given rated items

Figure 3.1. The Average rating of the Mixed Label Propagation (MLP), Label Propagation

(LP), Pearson Correlation Coefficient (Pearson) and Maximum-Margin Matrix Factoriza-

tion(MMMF) using 10 training users.
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(a) 10 given rated items

(b) 15 given rated items

Figure 3.2. The Average rating of the Mixed Label Propagation (MLP), Label Propagation

(LP), Pearson Correlation Coefficient (Pearson) and Maximum-Margin Matrix Factoriza-

tion(MMMF) using 20 training users.

67



Figure 3.3. The λs computed for the 100 movies with 20 training users and 10 given ratings.
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CHAPTER 4

Second-Order PCA-Style

Dimensionality Reduction Algorithm

by Semi-Definite Programming

PCA is one of the most widely used methods for dimensionality reduction. However, when

handling very high dimensional data, such as images, PCA could be computationally ex-

pensive since it requires compute principle eigenvectors of a very large matrix. Recently,

researchers proposed the Second-Order PCA-Style (SOPCA) algorithms [168, 172, 38, 20,

12, 95] that aim to alleviate the high computational cost of PCA. Unlike PCA that represents

each object, such as an image, by a vector, these methods represent each datum by a matrix,

a natural representation for images, which is the key for reducing the computational cost.

Despite the success, almost all SOPCA methods require solving a non-convex optimization

problem and as a result, are only able to identify the local optimal solution either by an

alternative method or by an approximate approach. In this chapter we aim to alleviate this

problem by presenting a convex optimization framework for SOPCA.

4.1 Second-Order PCA-Style Algorithms

PCA, or more general PCA-style methods, are based on the vector space model in which each

datum is a vector and the collection of data is a matrix. There are two primary drawbacks

when applying the vector space model to image data analysis. First, by converting each
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image into a vector, the spatial relationship between neighboring pixels is completely lost

leading to algorithms that are unable to fully utilize the spatial correlation of pixels. Second,

due to the large number of pixels, each image has to be represented by a vector in a very

high dimensional space. As a result, running PCA-style algorithms against images could be

expensive both computationally and space wise due to the time and space complexities of

singular value decomposition (SVD) for large matrices.

Early work aimed to reduce the computational complexity of PCA by incremental algo-

rithms, such as [16, 53]. More recently, researchers have proposed the second-order PCA-style

(SOPCA) algorithms [168, 172, 38, 20, 12, 95] to alleviate the computational complexity of

PCA for images. These algorithms represent an image by a matrix, and directly conduct

dimensionality reduction over a collection of matrices. By avoiding vector representation of

images, these algorithms are able to achieve substantially better computational efficiency

than PCA-style algorithms for image data analysis. Both theoretical and experimental

results have shown that these methods have substantially lower computational cost than

classical PCA-style algorithms when applied to high dimensional data.

One of the most representative works of SOPCA is the Generalized Low Rank Approxima-

tions of Matrices (GLRAM) [172]. It reduces the dimensionality of a matrix by multiplying it

with left and right projection matrices. More specifically, we denote M = (M1,M2, . . . , Mn)

as the collection of matrices for dimensionality reduction, where each Mi ∈ Rp×q. The goal

is to identify two matrices L ∈ Rp×k1 and R ∈ Rq×k2 such that each matrix Mi can be well

approximated by LAiR
>, where Ai ∈ Rk1×k2 . Often in practice, we set k1 = k2 = k, where

k is the target dimension to be reduced. The L and R matrices are obtained by solving the

following optimization problem:

min
L,R,Ai

n∑

i=1
‖Mi − LAiR

>‖2F (4.1)

s. t. L>L = R>R = Ik.

It is well known that (4.1) is a non-convex optimization problem, and usually an iterative
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procedure is employed to obtain the local optimal solution. More specifically, an initial L is

obtained first, for example, an identity matrix. Then, the columns of the projection matrix

R are computed from the eigenvectors corresponding to the k largest eigenvalues of the

matrix
∑n

i=1 M>
i LL>Mi. With the computed R, we can then update L by computing the

eigenvectors of the matrix
∑n

i=1 MiR
>RM>

i and form the matrix L using the eigenvectors

corresponding to the k largest eigenvalues. The procedure is repeated until convergence.

Inspired by GLRAM, [38] extends the traditional Singular Value Decomposition (SVD)

to the 2-D form. In 2-D SVD, the row-row and column-column covariance matrices are first

computed as follows:

F =
n∑

i=1
(Mi − M̄)(Mi − M̄)>

G =
n∑

i=1
(Mi − M̄)>(Mi − M̄),

where M̄ =
∑n

i=1 Mi/n is the mean of all matrices. The left and right projection matrices

are then computed from the leading eigenvectors of F and G. It can be shown that the 2-D

PCA [168] is a special case of 2-D SVD.

Similar to 2-D SVD, Tensor-PCA [20] views each image as a point in a tensor space and

tries to find the optimal tensor subspace such that in that subspace, the variance of the

projected data is maximized. The optimization problem of Tensor-PCA, like GLRAM, is

non-convex. In [20] the authors present an approximate algorithm that indeed gives the

same solution as 2-D SVD [66].

In [12] the authors extend Probabilistic PCA [13], a probabilistic interpretation of PCA

reviewed in Section 2.1.3, to matrix and tensor dimensionality reduction. The authors present

a family of probabilistic models, termed Probabilistic Higher-Order PCA, that explicitly

specify the generative process for higher-order objects such as matrices. Studies in [77, 95]

also consider the extension of second-order PCA to high-order tensor objects.
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4.2 A Convex Formulation for SOPCA

The primary difficulty with identifying the left and right projection matrices L and R in

GLRAM arises from their dependency, namely, the solution of L depends on the solution of

R and vice versa. The key observation motivating this work is that if we can factorize each

matrix Mi in advance into a product of left matrix Ui and right matrix Vi, then the left and

right projection matrices L and R could be roughly computed by examining the eigenvectors

of the sum of the left and right matrices. Based on this motivation, we introduce a Semi-

definite Programming (SDP) [156] formulation for SOPCA, which is a convex optimization

problem and is guaranteed to find the global optimal solution.

4.2.1 Low Norm Approximation of a Single Matrix

The key question now is how to determine the appropriate factorization for Mi. In order to

motivate the right formulation, we first consider the case with a single matrix X. Assume

X = UΣV > is the singular value decomposition of X. According to the definition of the trace

norm of a matrix [136](See Appendix D), the optimal solution to the following optimization

problem:

min
Ũ ,Ṽ

tr(Ũ Ũ>) + tr(Ṽ Ṽ >) (4.2)

s. t. X = Ũ Ṽ >

satisfies the condition:

Ũ Ũ> = UΣU>

Ṽ Ṽ > = V ΣV >

This provides us with a good staring point for the factorization of a matrix X. In the

next step, we extend (4.2) from extracting all singular vectors to only the singular vectors

corresponding to the k largest singular values, which is summarized in the following theorem:
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Theorem 4.1. The optimal value to the following optimization problem

min
P∈Sp

+
Q∈Sq

+

Sk(P ) + Sk(Q) (4.3)

s. t.

(
P X

X> Q

)
º 0

is 2
∑k

i=1 σi, where Sk(·) is the sum of the k largest singular value of a matrix, and σi, i =

1, . . . , k are the largest k singular values of X. The first k eigenvectors P and Q are the first

k left and right singular vectors of matrix X.

Proof. First, we could write Sk(P ) as an optimization problem [158], i.e.,

Sk(P ) = max
ZP∈Sp

+

{tr(ZP P ) : 0 ¹ ZP ¹ Ip, tr(ZP ) = k}

For the convenience of presentation, we denote

∆p(k) = {Z ∈ S
p
+ : 0 ¹ Z ¹ Ip, tr(Z) = k},

and therefore represent Sk(P ) as

Sk(P ) = max
ZP∈∆p(k)

tr(ZP P ).

Using the above notations, the problem in (4.3) can be transferred into a min-max optimiza-

tion problem, which is:

min
P∈Rp

+
Q∈Rq

+

max
ZP∈∆p(k)
ZQ∈∆q(k)

tr(ZP P ) + tr(ZQQ) (4.4)

s. t.

(
P X

X> Q

)
º 0

Using the Von Newmann’s lemma [111], we could switch minimization and maximization.
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Furthermore, by constructing the dual problem for P and Q, we have (4.4) rewritten as:

max
ZP ,ZQ,ZX

tr(Z>XX + ZXX>)

s. t.

(
ZP ZX

Z>X ZQ

)
º 0

0 ¹ ZP ¹ Ip, tr(ZP ) = k

0 ¹ ZQ ¹ Iq, tr(ZQ) = k

We write X in its singular value decomposition, i.e., X = UΣV >, and the objective function

becomes 2tr
(
(U>ZXV + V >Z>XU)Σ

)
. We furthermore replace the LMI constraint as

(
U> − V >

) (
ZP ZX

Z>X ZQ

)(
U

−V

)
º 0

which leads to the following LMI constraint

U>ZP U + V >ZQV − V >Z>XU − U>ZXV º 0

Define

A = U>ZP U, B = V >ZQV, C = V >Z>XU + U>ZXV

we finally simplify the original problem as:

max
A,B,C

tr(CΣ)

s. t. C ¹ A + B

0 ¹ A,B ¹ Im

tr(A) = tr(B) = k

Evidently, the optimal solution for C is 2Ik, when A and B are Im(k), where Im(k) is a

m×m diagonal matrix with first k diagonal elements being one, and zeros for the remaining

diagonal elements. Note that since we enlarged the solution space by relaxing the LMI

constraint, what we obtained here is the upper bound of the optimal value of problem (4.3).

However, the solutions to C, A and B are exactly in the original space, therefore, the optimal

74



value of problem (4.3) can reach its upper bound which is twice the sum of the first k singular

values of X. Since A and B are Im(k), we have ZP and ZQ as constructed by the top k

column vectors of U and V , i.e., the first k left and right singular vectors of X.

4.2.2 Low Norm Approximation for Multiple Matrices

The result in Theorem 5.2 indicates an alternative way of extracting the top singular vectors

from a given matrix. In order to extract the optimal projection matrices from a collection

of matrices, it is natural to extend (4.3) to multiple matrices. In particular, we propose the

following optimization formulation for SOPCA.

min
Pi∈Sp

+
Qi∈Sq

+

Sk

(
n∑

i=1
Pi

)
+ Sk

(
n∑

i=1
Qi

)
(4.5)

s. t.

(
Pi Mi

M>
i Qi

)
º 0, i = 1, 2, . . . , n

where Pi and Qi represent a particular factorization of matrix Mi.

To facilitate our analysis, the following theorem presents an alternative form of GLRAM

in (4.1).

Theorem 4.2. The optimal solution to (4.1) is equivalent to the following optimization

problem

max
ZP∈Sp

+
ZQ∈Sq

+

n∑

i=1
tr(M>

i ZP MiZQ) (4.6)

s. t. 0 ¹ ZP ¹ Ip, tr(ZP ) = k

0 ¹ ZQ ¹ Iq, tr(ZQ) = k

Proof. As already shown in [172], GLRAM in (4.1) is equivalent to

max
L∈Rp×k

R∈Rq×k

n∑

i=1
tr(M>

i LL>MiRR>)

s. t. L>L = R>R = Ik
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By defining ZP = LL> and ZQ = RR>, we have the problem in (4.6).

The following theorem reveals the relationship between GLRAM in (4.6) and the proposed

formulation in (4.5)

Theorem 4.3. Let the optimal value of (4.5) be denoted by f1, and the optimal value of

(4.6) be denoted by f2. We have the following relationship between f1 and f2,

f2 ≤
1

2
f2
1 (4.7)

Proof. Let Ui and Vi be a factorization of matrix Mi, i.e., Mi = UiV
>
i . We can rewrite the

objective function as
n∑

i=1
tr(U>i ZP UiV

>
i ZQVi)

Note that both U>i ZP Ui and V >i ZQVi are positive semi-definite matrices and the above

function is upper bounded as:

n∑

i=1
tr(U>i ZP UiV

>
i ZQVi)

≤
n∑

i=1

√
tr(U>i ZP UiU

>
i ZP Ui)tr(V

>
i ZQViV

>
i ZQVi)

≤ 1

2

n∑

i=1
tr(U>i ZP UiU

>
i ZP Ui) + tr(V >i ZQViV

>
i ZQVi)

≤ 1

2

n∑

i=1
[tr(U>i ZP Ui)]

2 + [tr(V >i ZQVi)]
2

≤ 1

2

(
n∑

i=1
tr(U>i ZP Ui) + tr(V >i ZQVi)

)2

The first step of the above derivation follows the Cauchy’s inequality. We define Pi = UiU
>
i
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and Qi = ViV
>
i , and have the above inequality simplified as

n∑

i=1
tr(U>i ZP UiV

>
i ZQVi)

≤ 1

2

(
tr

(
ZP

[
n∑

i=1
Pi

])
+ tr

(
ZQ

[
n∑

i=1
Qi

]))2

≤ 1

2

(
Sk

(
n∑

i=1
Pi

)
+ Sk

(
n∑

i=1
Qi

))2

Finally, using the property derived in [136], i.e.,

P = UU>, Q = V V >, X = UV > ⇐⇒
(

P X

X> Q

)
º 0,

we have the result in the theorem.

As revealed by Theorem 4.3, the optimal value of (4.5) provides an upper bound for the

optimal value of (4.6), which to some degree justifies the usage of (4.5) for finding the optimal

projection for matrices.

4.2.3 An SDP Formulation for SOPCA

Solving the optimization problem in (4.5) is difficult due to function Sk(·). The theorem

below shows an SDP formulation that is equivalent to (4.5).

Theorem 4.4. The problem in (4.5) is equivalent to the following optimization problem:

max
Tp∈Sp

+
TQ∈Sq

+
Zi∈Rp×q

n∑

i=1
tr(Z>i Mi) (4.8)

s. t.

(
TP Zi

Z>i TQ

)
º 0, i = 1, 2, . . . , n

TP ¹ I, TQ ¹ I

tr(TP ) ≤ k, tr(TQ) ≤ k
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Proof. Similar to the analysis of Theorem 5.2, we first rewrite Sk (
∑n

i=1 Pi) as

Sk

(
n∑

i=1
Pi

)
= max

TP∈∆p(k)
tr

(
TP

[
n∑

i=1
Pi

])

where ∆p(k) = {T ∈ Rp
+ : 0 ¹ T ¹ Ip, tr(T ) = k}. Hence, the optimization problem in (4.5)

becomes

min
Pi∈Sp

+
Qi∈Sq

+

max
TP∈∆p(k)
TQ∈∆q(k)

tr

(
n∑

i=1
PiTP

)
+ tr

(
n∑

i=1
QiTQ

)

s. t.

(
Pi Mi

M>
i Qi

)
º 0, i = 1, . . . , n

Since the above problem is a convex-concave optimization problem, we could switch mini-

mization with maximization. In the next step, we will turn the minimization over Pi and Qi

into a maximization problem by deriving its dual form. In particular, we aim to derive the

dual form for the following minimization problem

min
Pi,Qi

tr

(
n∑

i=1
PiTP

)
+ tr

(
n∑

i=1
QiTQ

)

s. t.

(
Pi Mi

M>
i Qi

)
º 0, i = 1, . . . , n

To this end, we construct the Lagrangian function L

L = tr

(
n∑

i=1
PiTP

)
+ tr

(
n∑

i=1
QiTQ

)

−
n∑

i=1

(
tr(PiAi) + tr(QiBi) + 2tr(ZiM

>
i )

)

where (
Ai Zi

Z>i Bi

)
º 0

is the Lagrangian multiplier introduced for each LMI constraint. By setting the derivative of

L with respect to Pi and Qi to be zero, we have TP = Ai and TQ = Bi. Hence, the resulting
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dual problem becomes

max
Zi

n∑

i=1
tr(ZiM

>
i )

s. t.

(
TP Zi

Z>i TQ

)
º 0, i = 1, . . . , n

Combining the above maximization problem with the maximization over TP and TQ, we

have the theorem result.

The formulation in (4.8) reveals an interesting aspect of the new formulation for SOPCA

that is summarized by the following theorem.

Theorem 4.5. The problem in (4.8) is equivalent to the following optimization problem if

rank(TP ) = rank(TQ) = k

max
A∈Rp×k

B∈Rq×k

n∑

i=1
‖A>MiB‖tr (4.9)

s. t. A>A = B>B = Ik

where TP = AA> and TQ = BB>.

Proof. First, since rank(TP ) = rank(TQ) = k, we could rewrite TP and TQ as

TP =
k∑

i=1
λP

i aia
>
i = AΣP A>

TQ =
k∑

i=1
λ

Q
i bib

>
i = BΣQB>

where A = (a1, . . . , ak) and B = (b1, . . . ,bk) are eigenvectors of TP and TQ, and {λP
i }ki=1

and {λQ
i }ki=1 are the eigenvalues of TP and TQ, respectively. Since 0 ¹ TP , TQ ¹ I, we have

0 ≤ λP
i , λ

Q
i ≤ 1. Since the objective is to maximize tr(Z>i Mi), and a larger TP and TQ will

lead to a larger Zi, we therefore have λP
i = λ

Q
i = 1, i = 1, . . . k. Thus, TP and TQ can be

simplified as TP = AA> and TQ = BB>. Due to the LMI constraint, we have Zi written as
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Zi = AWiB
> where Wi ∈ Rk×k. Using Wi, we rewrite the LMI constraint as

(
Ik Wi

W>
i Ik

)
º 0

The above constraint is also equivalent to WiW
>
i ¹ Ik. Hence, we could write Wi in its

singular value decomposition form, i.e.,

Wi =
k∑

l=1

γi
lu

i
lv

i
l
>

where 0 ≤ γi
l ≤ 1 due to WiW

>
i ¹ Ik. As a result, tr(Z>i Mi) is upper bounded by

tr(Z>i Mi) = tr(WiA
>MiB) ≤ ‖A>MiB‖tr

where the equality is taken when ui
l and vi

l are singular value decomposition of A>MiB.

We thus could replace the problem in (4.8) with the one that involves A and B, which leads

to the theorem result.

Using the above theorem result, it is easy to identify the relationship between (4.9) and

(4.6). To make the comparison more obvious, we rewrite ‖A>MiB‖tr as

‖A>MiB‖tr = tr

(√
A>MiBB>M>

i A

)

By letting ZP = AA> and ZQ = BB>, we have the following relationship [136]:

(
tr(M>

i ZP MiZQ)
)1

2 ≤ ‖A>MiB‖tr

r
1
2

(
tr(M>

i ZP MiZQ)
)1

2 ≥ ‖A>MiB‖tr,

where r is the rank of A>MiB, which clearly reveals the relationship between (4.6) and

(4.9).

4.3 The Algorithm

Optimization problem involved in (4.8) is convex, thus the global optimal exists. We can

resort to the standard SDP solving packages to solve (4.8). Directly solving (4.8) for large-
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Dataset Size Dim # of classes

USPS 4000 16 ×16=256 10

ORL 400 112×92=10304 40

AR 1638 400×350=140000 126

Table 4.1. Statistics of data sets

size data sets however, could be computationally expensive. Below, we give an alternative

algorithm that obtains an approximate solution to (4.8).

Note that in (4.9), the trace norm
∑n

i=1 ‖A>MiB‖tr can be expressed as
∑n

i=1 tr

(√
A>MB

i [MB
i ]>A

)
, where MB

i = MiB. Using the following inequality:

A>(MB
i [MB

i ]>)A

= A>(MB
i [MB

i ]>)
1
2 (MB

i [MB
i ]>)

1
2A

º
[
A>(MB

i [MB
i ]>)

1
2A

] [
A>(MB

i [MB
i ]>)

1
2A

]
,

we have the following inequality holds:

tr

(√
A>(MB

i [MB
i ]>)A

)
≥ tr

(
A>

√
MB

i [MB
i ]>A

)

Following the above inequality, we relax the problem in (4.9) as follows:

max
A∈Rp×k

n∑

i=1
tr

(
A>

√
MB

i [MB
i ]>A

)
(4.10)

s. t. A>A = Ik

Clearly, the solution to (4.10) is the top k eigenvectors of
∑n

i=1

√
MB

i [MB
i ]>. Similarly,

B can be computed from the top eigenvectors of matrix
∑n

i=1

√
MA

i [MA
i ]>, where MA

i =

M>
i A. Algorithm 1 summarizes the iterative algorithm.

4.4 Experiments

We evaluated the efficacy of the proposed method by using a task of image classification,

and compared it to GLRAM and 2-D SVD, two state-of-the-art algorithms for SOPCA.
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Algorithm 1 Second-Order PCA-Style Algorithm by Semi-Definite Programming

1: INPUT: a collection of matrices {Mi}ni=1, target dimension k

2: OUTPUT: left and right projection matrices A, B, and low dimensional representation

{Di}ni=1
3: Obtain an initial A0 and set i = 0

4: while not converge do

5: i = i + 1

6: compute MR =
∑n

j=1

√
M>

j Ai−1A
>
i−1Mj

7: compute the top k eigenvectors {ul}kl=1 of MR

8: set Bi = [u1, · · · ,uk]

9: compute ML =
∑n

j=1

√
MjBiB

>
i M>

j

10: compute the top k eigenvectors {vl}kl=1 of ML

11: set Ai = [v1, · · · ,vk]

12: end while

13: set A = Ai and B = Bi

14: for i = 1 to n do

15: Di = A>MiB

16: end for

More specifically, we represented each image using a matrix, and applied the algorithms

to the training images to compute the left and right projection matrices L, R. Then the

low dimensional representation Ai was computed for each test matrix Xi (i.e., image) as

Ai = L>XiR. Finally, we predicted class labels of test images using the 1-Nearest neighbor

classifier in which the distance between two images, Xa and Xb, was computed by the

Frobenius norm ‖Aa − Ab‖F , where Aa and Ab were the reduced representations of Xa

and Xb. A 10-fold cross validation was used in the experiments, and the classification

accuracy averaged over ten runs was reported. It is worthy to note that the purpose of

designing this experiment is simply to demonstrate the advantages of the proposed convex

formulation comparing to the non-convex formulations of GLRAM and 2-D SVD, better

classification results can be achieved if more sophisticated processing procedure and state-

of-the-art classifiers are applied.

Three image data sets were employed as the testing bed including ORL [133], AR [102],

and USPS [64]. For ORL and USPS date sets, we used their original image size. For AR
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data set, each image was cropped from row 100 to 500 and column 200 to 550 which was the

same as [172]. The details of these data sets are summarized in Table 5.1.

As we design, we can see the difficulty of the task increases by two fold from the USPS

data set to the AR data set. First, the dimensionality of the data in these data sets increases

dramatically. For USPS, it is only 256, however in AR, it is 140, 000, more than 500 times

higher than USPS. By switching to different data sets, we gradually vary the difficulty for

dimensionality reduction, which can give us a clear picture about how these algorithms

perform. Second, the ORL and AR data sets consist of human faces images which makes

them a more challenging task for dimensionality reduction than the USPS digit images.

Moreover, some faces in the AR data set vary with different facial expressions, illumination

conditions, and occlusions (sun glasses and scarf). Combining high dimensionality and the

large variance of face images, the AR data set is the most difficult one of the three data sets.

Table 4.2 shows the classification errors of the three algorithms with different k (i.e., the

target dimension). First, we observe that all three methods have similar performance level

on the USPS data set. We believe this may be due to the low dimensionality of the data

points in USPS. Each image in USPS is only 16 ∗ 16 = 256 dimensional. As a result, even

a very low dimensional representation is sufficient for capturing most of the information in

the original data. In addition, the large number of samples in USPS make it an even easier

task for dimensionality reduction. Second, for the ORL data set, all of the three methods

still perform similarly except for k = 2, where the proposed algorithm yields a significantly

better performance than the two baseline algorithms. Finally, for AR data set, the proposed

method outperforms the two baseline methods significantly for almost all ks. We also observe

that 2-D SVD performs significantly worse than the other two algorithms. In summary, we

can conclude that the proposed algorithm is more effective than the two state-of-the-art

algorithms for SOPCA, especially when the target dimension is very low.
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4.5 Summary

In this chapter, we proposed aa convex formulation for the SOPCA problem. This contrasts

to most existing algorithms for SOPCA which require solving non-convex optimization prob-

lems. We showed that the proposed formulation could be converted into a Semi-definite

Programming Problem, we also presented an approximate algorithm to efficiently solve the

related SDP problem and evaluated the proposed algorithm by image classification. Our

experimental study shows the performance of the proposed algorithm is better than or com-

parable to GLRAM and 2-D SVD, two state-of-the-art algorithms for SOPCA.
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USPS data set
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Proposed 0.3553 0.0995 0.0485 0.0385 0.0375 0.0377 0.0398 0.0405 0.0428
0.0001 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

GLRAM 0.3565 0.0978 0.0505 0.0385 0.0375 0.0380 0.0403 0.0408 0.0423

0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

2-D SVD 0.3553 0.1108 0.0573 0.0428 0.0413 0.0380 0.0400 0.0408 0.0425
0.0004 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

ORL data set
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Proposed 0.1725 0.0550 0.0275 0.0150 0.0200 0.0150 0.0150 0.0200 0.0175

0.0019 0.0012 0.0008 0.0007 0.0008 0.0004 0.0006 0.0005 0.0003

GLRAM 0.3000 0.0425 0.0275 0.0175 0.0175 0.0175 0.0150 0.0200 0.0175

0.0036 0.0014 0.0008 0.0004 0.0006 0.0007 0.0006 0.0005 0.0003

2-D SVD 0.2225 0.0400 0.0300 0.0250 0.0200 0.0150 0.0150 0.0200 0.0200
0.0041 0.0016 0.0007 0.0007 0.0005 0.0006 0.0006 0.0005 0.0005

AR data set
k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

Proposed 0.6590 0.4385 0.3128 0.4667 0.3974 0.3744 0.3333 0.3179 0.3077

0.0023 0.0095 0.0036 0.0031 0.0033 0.0034 0.0052 0.0049 0.0044

GLRAM 0.6797 0.6154 0.5128 0.4974 0.4538 0.4026 0.3667 0.3308 0.3154
0.0041 0.0084 0.0044 0.0043 0.0038 0.0044 0.0034 0.0037 0.0030

2-D SVD 0.9282 0.9128 0.8718 0.8359 0.0877 0.8385 0.8231 0.8231 0.8256
0.0018 0.0023 0.0037 0.0063 0.0054 0.0045 0.0065 0.0018 0.0028

Table 4.2. The classification errors of 1-NN classifier using the proposed dimensionality

reduction algorithm for SOPCA, GLRAM and 2-D SVD. For each method, the first line

is the mean error rates of the ten-fold cross validation and the second line is the standard

deviations of the error rates. k represents the target dimension. The best performance of

each case is highlighted by the bold font.
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CHAPTER 5

Dimensionality Reduction for

Functional Data Representation and

Its Application to Large-Scale Image

Retrieval by Local Features

In the previous chapter, we extended the data representation from vectors to matrices. In this

chapter, we will study the problem of dimensionality reduction with even more challenging

data representation, i.e., each datum is described as a different number of unordered vectors,

which sometimes is referred to as the bag-of-features model. One way to deal with the

bag-of-features representation is to associate with each datum a function from which the

set of vectors are generated. The challenge of using functions to represent data is that the

similarity between two data points is evaluated by the similarity between the associated

functions, which is usually computationally expensive. It is therefore important to identify a

low dimensional representation for those functions to speed up the computation of similarity

between two functions and to facilitate the search of nearby neighbors, leading to the research

of functional data dimensionality reduction. We study the problem of representing functions

in a low dimensional space in the context of content-based image retrieval (CBIR) with

images represented by the bag-of-features. In this chapter, we first briefly review the content-

based image retrieval, and present how the problem of image matching can be cast into

the problem of matching two different density functions. We then describe our approach
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of functional data dimensionality reduction, which embeds each density function in a low

dimensional space.

5.1 Content-Based Image Retrieval with Local Image

Features

Content-based image retrieval (CBIR) is a long standing challenging problem in computer

vision and multimedia. The earliest use of the term content-based image retrieval in the

literature seems to have been by [60], to describe his experiments into automatic retrieval of

images from a database by color and shape feature. The term has since been widely used to

describe the process of retrieving desired images from a large collection on the basis of features

that can be automatically extracted from the images themselves [40]. In the early ages, global

features such as color [139, 109, 108], texture [22, 151, 92, 97, 96] and shape [112, 103] were

widely used to represent images for CBIR. Recent studies [119, 145, 113, 89, 141, 75] have

shown that local image features (e.g. SIFT descriptor [94]), often referred to as keypoints,

are effective for identifying images with similar visual content. The key idea is to represent

each image by a set of “interesting” patches extracted from the image. By representing every

image patch with a high dimensional feature vector, each image is essentially represented by

a bag of feature vectors, which is often referred to as the bag-of-features representation [29].

In the bag-of-features representation, the number of keypoints usually varies from image

to image and the order among the keypoints is usually ignored in representing the visual

content of images although they may be important. Given the bag-of-features representation,

the similarity between two images are measured based on the“overlap” between the two

sets of keypoints associated with the images. The challenge of applying the bag-of-features

representation to image retrieval is how to efficiently measure the similarity between two

unordered set of vectors with different number of vectors in each set.

A straightforward method to compute the similarity between two sets of keypoints is the
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best partial matching which finds the best mapping between the keypoints in the two images

that has the overall shortest distance [94, 104]. The main shortcoming of the optimal partial

matching is its high computational cost since we need to compute the distance between

every possible pair of keypoints of the two images. Several methods have been proposed

to improve the computational efficiency of the optimal partial matching [146, 52, 79, 106].

The central ideal of these methods is that instead of using the bag-of-features representation

directly, they manage to convert the bag-of-features into certain consistent form and then

standard techniques for similarity measurement can be easily applied. For example, in [146]

and [52], the keypoints are quantized into “visual words” or “multi-resolution bins” resulting

a histogram or multi-resolution histogram representation of the images. These methods,

however, suffer from the information loss during the quantization procedure [120] which often

leads to suboptimal results. One possible approach to alleviate the problem mentioned above

is to assume that the observed feature vectors are sampled from an unknown distribution.

This assumption leads to a natural representation that represents each image by a density

function of keypoints [79, 106, 83, 30]. The similarity between two images is then computed

by the distance between two density functions derived from the observed keypionts. More

specifically, let G = {I1, . . . , IC} be the collection of C images, and each image Ii be

represented by a set of ni keypoints {xi
1, . . . ,x

i
ni
}, where each key point xi ∈ Rd is a d

dimensional vector. We assume that the keypoints of image Ii are randomly sampled from

an unknown distribution p(x|Ii). Furthermore, we can assume the distribution of p(x|Ii)

has a parametric form, for example, Gaussian Mixture Model (GMM) [106]. The parameter

of the model can be estimated by maximizing the log likelihood of the observed keypoints

of the image. After obtaining the generative models p(x|Ii) of the images, the similarity

between images Ii and Ij is computed as the model distance between p(x|Ii) and p(x|Ij).

One of the most widely used methods is the Kullback-Leibler divergence [106]:

D(p(x|Ii), p(x|Ij)) =

∫
p(x|Ii) log

p(x|Ii)

p(x|Ij)
dx (5.1)

The disadvantage of fitting keypoints by a parametric model is that the resulting model
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could be significantly constrained by the family of parametric models, and consequently leads

to a suboptimal performance for image retrieval. Besides the parametric models, we can also

use nonparametric methods, for instance, kernel density estimation [115] to estimate the

underlying density function p(x|I), i.e.,

p(x|I) =
1

n

n∑

i=1
κ(x,xi) (5.2)

where κ(·, ·) : Rd×Rd 7→ R+ is the kernel density function that is normalized as
∫

dzκ(x, z) =

1. Given the density function in (5.2), we follow the work of statistical language models [122]

for document retrieval, and measure the similarity of I to the query imageQ by the logarithm

of the query likelihood p(Q|I), i.e.,

log p(Q|I) =
m∑

i=1
log p(qi|I) =

m∑

i=1
log


 1

n

n∑

j=1
κ(xj ,qi)




Although the idea of modeling a bag-of-features by a density function and model query-

to-image similarity by a log-likelihood have been studied by multiple authors (e.g., [166,

76, 86, 107, 79]), there are one computational challenge that makes this approach difficult

to scale to image retrieval problems with large databases, i.e., an naive implementation of

this approach requires a linear scan of the entire database before finding the images with the

largest similarity. In this chapter, we will address this challenge by developing dimensionality

reduction methods for functional data representation.

5.2 Dimensionality for Functional Data Representa-

tion

In order to make an efficient similarity measurement between functions, we consider an

alternative approach of estimating the density function for image I. We assume that for

any image I in the gallery G, its density function p(x|I) is expressed as a weighted mixture
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models:

p(x|I) =
N∑

i=1
αiκ(x, ci) (5.3)

where ci ∈ Rd, i = 1, . . . , N is a collection of N points (centers) that are randomly selected

from all the keypoints observed in G and α = (α1, . . . , αN ) is a probability distribution used

to combine different kernel functions.

The choice of randomly selected centers, although may seem to be naive at the first glance,

is in fact strongly supported by the consistency results of kernel density estimation [115]. In

particular, the kernel density function constructed by randomly selected centers is almost

“optimal” when the number of centers is very large. The number of centers N is usually

chosen to be very large, in order to cover the diverse visual content of images.

It is important to note that unlike (5.2), the weights α in (5.3) are unknown and need

to be determined for each image. As will be shown later, with an appropriate choice of

kernel function κ(·, ·), the resulting weights α will be sparse with most of the elements being

zero. This is ensured by the fact that in a high dimensional space, almost any two randomly

selected data points are far away from each other. It is the sparsity of α that makes it

possible to efficiently compute the similarity between functions and identify images that are

visually similar to the query without having to scan the entire image database.

In order to use the density function in (5.3), we need to efficiently estimate the combination

weights α. By assuming keypoints x1, . . . ,xn are randomly sampled from p(x|I), our first

attempt is to estimate α by a maximum likelihood estimation, i.e.,

α = arg max
α∈∆

L(I, α) =
n∑

i=1
log




N∑

j=1
αjκ(xi, cj)


 (5.4)

where ∆ = {α ∈ [0, 1]C :
∑C

i=1 αi = 1} defines a simplex of probability distributions. It is

easy to verify that the problem in (5.4) is convex and has a global optimal solution.

Although we can directly apply the standard optimization approaches to find the optimal

solution α for (5.4), it is in general computationally expensive because
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• We have to solve (5.4) for every image. Even if the optimization algorithm is efficient

and can solve the problem within one second, for a database with a million of images,

it will take more than 277 hours to complete the computation.

• The number of weights α to be determined is very large. To achieve the desired

performance of image retrieval, we often need a very large number of centers, for

example one million. As a result, it requires solving an optimization problem with

million variables even for a single optimization problem in (5.4).

In order to address the computational challenge, we choose the following local kernel function

for this study

κ(x, c) ∝ I(|x− c|2 ≤ ρ) (5.5)

where I(z) is an indicator function that outputs 1 if z is true and zero otherwise. The

parameter ρ > 0 is a predefined constant that defines the locality of the kernel function and

its value is determined empirically. The proposition below shows the sparsity of the solution

α for (5.4).

Proposition 1. Given the local kernel function defined in (5.5), for the optimal solution α

to (5.4), we have αj = 0 for center cj if max
1≤i≤n

|cj − xi|2 > ρ

Proposition 1 follows directly from the fact that κ(cj ,xi) = 0, i = 1, . . . , n if

max1≤i≤n |cj − xi|2 > ρ. As implied by Proposition 1, αj will be nonzero only if the

center cj is within a distance ρ of some keypoints. By setting ρ to a small value, we will

only have a small number of non-zero αj . We can quickly identify the subset of centers with

non-zero αj by an efficient range search, for example using k-d tree [93]. In our study, this

step reduces the number of variables from 1 million to about 1, 000.

Although Proposition 1 allows us to reduce the number of variables dramatically, we still

have to find a way to solve (5.4) efficiently. To this end, we resort to the bound optimization

strategy that leads to a simple iterative algorithm for optimizing (5.4): we denote by α′ the

current solution and by α the updated solution for (5.4). It is straightforward to show that
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{L(I, α)− L(I, α′)} is bounded as follows

L(I, α)− L(I, α′) =
n∑

i=1
log

∑N
j=1 αjκ(xi, cj)∑N
j=1 α′jκ(xi, cj)

≥
n∑

i=1

N∑

j=1

α′jκ(xi, cj)∑N
l=1 α′jκ(xi, cl)

log
αj

α′j
(5.6)

By maximizing the lower bound in (5.6), we have the following updating rule for α

αj =
1

Z

n∑

i=1

α′jκ(xi, cj)∑N
l=1 α′lκ(xi, cl)

(5.7)

where Z is the normalization factor ensuring
∑N

j=1 αj = 1. Note that α obtained by

iteratively running the updating equation in (5.7) is indeed globally optimal because the

optimization problem in (5.4) is convex.

We can further simplify the computation of α as: we first initialize αj = 1/N, i = 1, . . . , N ,

and then obtain the solution α by only running the iteration once, i.e.,

αj =
1

n

n∑

i=1

κ(xi, cj)∑N
l=1 κ(xi, cl)

(5.8)

We emphasize that although the solution in (5.8) is approximated in only one update, it

is however the exact optimal solution when the keypoints {xi}Ni=1 are far apart from each

other, as shown by the following theorem.

Theorem 5.1. Let the kernel function be (5.5). Assume that all the keypoints x1, . . . ,xn

are separated by at least 2ρ. The solution α in (5.8) optimizes the problem in (5.4).

Proof. When any two keypoints xi and xj are separated by at least 2ρ, we have

κ(xi, ck)κ(xj , ck) = 0 for any center ck. This implies that no key point could make contri-

bution to the estimation of weight αk simultaneously for two different centers in 5.7 . As a

92



result, the expression in 5.7 could be rewritten as

αj =
1

Z

n∑

i=1
I(|xi − cj | ≤ ρ)

α′j∑N
l=1 α′lκ(xi, cl)

=
1

Z

n∑

i=1
I(|xi − cj | ≤ ρ)

α′j
α′jκ(xi, cj)

=
1

Z

n∑

i=1
I(|xi − cj | ≤ ρ)

As a result, the updating equation will give the fixed solution, which is the global optimal

solution.

In algorithm 2, we summarize the procedure of computing αi for each image Ii in the

image collection. The key step of computing each αi is how to efficiently compute the value

of kernel function in (5.5). In the algorithm, we resort to the k-d tree based range search to

achieve the goal. More specifically, we first build a k-d tree for all the key points of images in

the collection. For each center, we then search the keypints which are within the distance ρ

of that center using the k-d tree. For all the keypoints that are within the distance ρ of that

center, their values to the kernel function (5.5) for this center is 1 and for other keypoints the

value is 0. After we conduct the range search for every centers, we obtain the value of (5.5)

for every pair of keypoints and centers for all the image in the collection which can be used

directly for computing αi for each image.

Regularization Although the sparse solution resulting from the local kernel is computa-

tionally efficient, the sparse solution may lead to a poor estimation of query-likelihood, as

demonstrated in the study of statistical language model [99]. To address this challenge, we

introduce αg = (α
g
1, . . . , α

g
N ), a global set of weights used for kernel density function. αg

plays the same role as the background langauge model in statistical language models [99].

We defer the discussion of how to compute αg to the end of this section. Given the global

set of weights αg, we introduce KL(αg‖α), the Kullback-Leibler divergence [106] between
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Algorithm 2 Compute weight vector αi of each image Ii in the image collection

1: INPUT:

• Image collection G = {I1, . . . , IC} with each image Ii represented by a set of

keypoints

• Number of random centers N

• Distance threshold ρ

2: Randomly select N keypoints as the centers z1, . . . , zN from X that consists of all the

keypoints detected from images in G
3: Construct a randomized k-d tree T for all the keypoints in X

4: for l = 1 to N do

5: Using k-d tree T , search keypoints which are within the distance ρ of the center zl.

6: For all the returned keypoints, set their values of the kernel function (5.5) to be 1. For

all other keypoints, set the value to be 0.

7: end for

8: for i = 1 to C do

9: Compute each element in the weight vector αi of image Ii using (5.8)

10: end for

αg and α, as a regularizer in (5.4), i.e.,

α = arg max
α∈∆

L(I, α)− λKL(αg‖α) (5.9)

where λ > 0 is introduced to weight the importance of the regularizer. As indicated in (5.9),

by introducing the KL divergence as the regularizer, we prefer the solution α that is similar

to αg. Note that (5.9) is equivalent to the MAP estimation of α by introducing a Dirichlet

prior Dir(α) ∝ ∏N
i=1[αi]

βi , where βi = λα
g
i . Similar to the bound optimization strategy

used for solving (5.4), we have the following approximate solution for (5.9)

αj =
1

n + λ

(
λα

g
j +

n∑

i=1

κ(xi, cj)∑N
l=1 κ(xi, cj)

)
(5.10)

It is important to note that, according to (5.10), the solution for α is no longer sparse if αg

is not sparse, which could potentially lead to a high computational cost in image matching.

We will discuss a method in the next section that explicitly addresses this computational

challenge.
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The remaining question is how to estimate αg, the global set of weights. To this end, we

search for the weight αg that can explain all the keypoints observed in all the images of

gallery G, i.e.,

αg = arg max
αg∈∆

C∑

i=1
L(Ii, α

g) (5.11)

Although we can employ the same bound optimization strategy to estimate αg, we de-

scribe below a simple approach that directly utilizes the solution α for individual images

to construct αg. We denote by αi = (αi
1, . . . , α

i
N ) the optimal solution that is obtained

by maximizing the log-likelihood L(Ii, α
i) of the keypoints observed in image Ii. Given αi

that maximizes L(Ii, α
i), we have

L(Ii, α
g) ≈ L(Ii, α

i) +
1

2
(αg−αi)>∇2L(Ii, α

i)(αg−αi) (5.12)

S Hessian matrix ∇2L(Ii, α) is computed as ∇2L(Ii, α) = −∑ni
k=1 uk

i [uk
i ]>, where uk

i ∈
RN is a vector defined as [uk

i ]j = κ(xi
k, cj)/(

∑N
l=1 αjκ(xi

k, cj)). The lemma below allows

us to bound the Hessian matrix ∇2L(Ii, α
i).

Lemma 1. NI º −∇2L(Ii, α
i).

Proof. To bound the maximum eigenvalue −∇2L(Ii, α
i), we consider the quantity

γ>∇2L(Ii, α
i)γ with |γ|2 = 1.

γ>∇2L(Ii, α
i)γ =

ni∑

k=1

[
∑N

j=1 γjκ(xi
k, cj)]

2

[
∑N

j=1 αjκ(xi
k, cj)]2

≤
( ni∑

k=1

∑N
j=1 |γj |κ(xi

k, cj)∑N
j=1 αjκ(xi

k, cj)

)2

Define ηj = |γj |/(
∑N

j=1 |γj |) and η = (η1, . . . , ηN ). Define t =
∑N

j=1 |γj |. We have

γ>∇2L(Ii, α
i)γ ≤ t2

( ni∑

k=1

∑N
j=1 ηjκ(xi

k, cj)∑N
j=1 αjκ(xi

k, cj)

)

Since αi maximizes L(Ii, α), we have

(η −αi)>∇L(Ii, α) ≤ 0,
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which implies
ni∑

k=1

∑N
j=1 ηjκ(xi

k, cj)∑N
j=1 αjκ(xi

k, cj)
≤ 1

Since t ≤ √
N , we have ∇2L(Ii, α

i) º −NI.

Using the result in Lemma 5.1, the objective function in (5.11) can be approximated as

C∑

i=1
L(Ii, α

g) ≈
C∑

i=1
L(Ii, α

i)− N

2

C∑

i=1
|αi −αg|22 (5.13)

The global weights αg maximizing (5.13) is αg= 1
C

∑C
i=1 αi which shows that αg can be

computed as an average of {αi}Ci=1 that are optimized for individual images.

5.3 Efficient Image Search

Given the kernel density function p(x|Ii) for each image in gallery G and a query Q, the next

question is how to efficiently identify the subset of images that are likely to be visually similar

to the query Q and furthermore rank those images in the descending order of their similarity.

Following the framework of statistical language models for text retrieval, we estimate the

similarity by the likelihood of generating the keypoints {qi}mi=1 observed in the query Q,

i.e.,

log p(Q|Ii) =
m∑

k=1

log




N∑

j=1
αi

jκ(qk, cj)


 (5.14)

where αi = (αi
1, . . . , α

i
N ) are the weights for constructing the kernel density function for

image Ii. Clearly, a naive implementation will require a linear scan of all the images in the

database before the subset of similar ones is found. To achieve the efficient image retrieval,

we need to exploit the sparse structure of α in (5.10). We define

α̂i
j =

1

ni

ni∑

k=1

κ(xi
k, cj)∑N

l=1 κ(xi
k, cl)

(5.15)
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We then write αi
j as

αi
j =

λ

ni + λ
α

g
j +

ni

ni + λ
α̂i

j (5.16)

Note that although α̂i
j is sparse, αi

j is not. Our goal is to effectively explore the sparsity of

α̂i
j for efficient image retrieval. Using the expression in (5.16), we have log p(Q|Ii) expressed

as

log p(Q|Ii) =
m∑

j=1
log




N∑

l=1

(
λ

ni + λ
α

g
l +

ni

ni + λ
α̂i

l

)
κ(xj , cl)


 (5.17)

=
m∑

j=1
log

(
1 +

ni

λ

∑N
l=1 α̂i

lκ(xj , cl)∑N
l=1 α

g
l κ(xj , cl)

)
+ sQ

where

sQ =
m∑

j=1
log

(
λ

ni + λ

)
+

m∑

j=1
log




N∑

l=1

α
g
l κ(xj , cl)


 (5.18)

Note that (i) the second term of sQ is independent of the individual images for the same

query, and (ii) log p(Q|Ii) ≥ sQ for any image Ii. Given the above facts, our goal is to

efficiently find the subset of images whose query log-likelihood is strictly larger than sQ, i.e.,

log p(Q|Ii) > sQ. To this end, we consider the following procedure:

• Finding the relevant centers CQ for a given query Q. Given a query image Q with

keypoints q1, . . . ,qm, we first identify the subset of centers, denoted by CQ, that are

within distance ρ of the keypoints in Q, i.e., CQ =
{
cj : ∃qk ∈ Q s. t. |qk − cj |2 ≤ ρ

}
.

• Finding the candidates of similar images using the relevant centers. Given the relevant

centers in CQ, we find the subset of images that have at least one non-zero α̂i
j for the

centers in CQ, i.e.,

RQ =




Ii ∈ G :

∑

cj∈CQ
α̂i

j > 0





(5.19)

Theorem 5.2 shows that all the images with query log-likelihood larger than sQ belong to

RQ.
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Theorem 5.2. Let SQ denote the set of images with query log-likelihood larger than sQ, i.e.,

SQ = {Ii ∈ G : log p(Q|Ii) > sQ}. We have SQ = RQ.

It is easy to verify the above theorem. In order to efficiently construct RQ (or SQ) for a

given query Q, we exploit the technique of invert indexing [99]: we preprocess the images to

obtain a list for each cj , denoted Vj , that includes all the images Ii with α̂i
j > 0. Clearly,

we have

RQ =
⋃

cj∈CQ
Vj (5.20)

Algorithm 3 summarizes the procedure of efficient image retrieval.

5.4 Comparing to The-State-Of-The-Art Methods

Bag-of-words model [146] is one the most successful and widely used methods for large scale

image retrieval. Motivated by the success in text information retrieval [132], the bag-of-words

model first quantizes image features to a vocabulary of “visual words”, and represents each

image by the counts of visual words or a histogram. Standard text retrieval techniques can

then be applied to identify the images that share similar visual content as the query image.

The quantization is typically achieved by grouping all the keypoints into a specified number of

clusters using a clustering algorithm. A number of studies have shown promising performance

of the bag-of-words approach for image/object retrieval [119, 145, 113, 89, 143, 141, 75]

To better understand the proposed method in (5.3), we compare it to the bag-of-words

model. More specifically, we can view each random center ci as a different visual word and

each α as a histogram vector. One computational advantage of the proposed method is

that, while the bag-of-words model requires clustering all the keypoints into a large number

of clusters, the proposed method only needs to randomly select a number of points from the

date which is computationally efficient. Although recent progress on approximate nearest

neighbor search [93, 31, 89, 144, 110] has made it feasible to group billions of keypoints into
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Algorithm 3 Efficient image retrieval algorithm
1: INPUT:

• A query image Q with keypoints q1, . . . ,qm

• Inverted indices Vj , j = 1, . . . , N

• Number of images to be retrieved, k

2: OUTPUT:

• k images sorted descendingly by their similarity to the query image

3: Construct CQ of the query Q as

CQ =
{
cj : ∃qk ∈ Q s. t. |qk − cj |2 ≤ ρ

}

4: Construct candidate image set RQ of query Q as

RQ =
⋃

cj∈CQ
Vj

5: for every image Ii in RQ do

6: Compute the likelihood log p(Q|Ii) using (5.17)

7: end for

8: Sort images in RQ based on their likelihood log p(Q|Ii)

9: Return the first k images in RQ

millions of clusters, the computational cost is still very high. We will see this clearly later

in our empirical study.

Second, in the bag-of-words model, we need to map each keypoint to the closest visual

word(s). Since the computational cost of this procedure is linear in the number of keypoints,

it is time consuming when the number of keypoints is very large; The proposed method,

however, only needs to conduct a range search for every randomly selected centers which

is in general significantly smaller than the number of key points, for example, one million

centers v.s. on billion keypoints. This computational saving makes the proposed method

more suitable for large image databases than the bag-of-words model.
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Third, in the bag-of-words model, the radius of clusters (i.e., the maximum distance be-

tween the keypoints in a cluster and its center) could vary significantly from cluster to

cluster. As a result, for cluster with large radius, two keypoints can be mapped to the same

visual word even if they differ significantly in visual features, leading to an inconsistent cri-

terion for keypoints quantization and potentially suboptimal performance in retrieval; On

the contrary, the proposed method uses a range search for each center which ensures that

only “similar” keypoints, which are within the distance of r to the center, will contribute to

the corresponding element in the weight α of that center.

Lastly, a keypoint is ignored by the proposed method if its distances to all the centers are

larger than the threshold. The underlying rationale is that if a keypoint is far away from

all centers, it is very likely to be an outlier and therefore should be ignored; While in the

bag-of-words model, every keypoint must be mapped to a cluster center even if the keypoint

is far away from all the cluster centers. We will see this advantage of the proposed method

clearly demonstrated in the experiments.

5.5 Experiments

5.5.1 Datasets

To evaluate the proposed method for large-scale image search, we conduct experiments on

three benchmark data sets: (1) tattoo image dataset (tattoo) with about 100, 000 images.

(2) Oxford building dataset with 5, 000 images (Oxford5K) [119] and (3) Oxford building

dataset plus one million Flickr images (Oxford5K+Flickr1M). Table 5.1 shows the details

of the three datasets.

Tattoo image dataset (tattoo) Tattoos have been commonly used in forensics and law

enforcement agencies to assist in human identification. The tattoo image database used in our

study consist of 101, 745 images, among which 61, 745 are tattoo images and the remaining
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Data set # images # features Size of descriptors

tattoo 101,745 10,843,145 3.4GB

Oxford5K 5,062 14,972,956 4.7GB

Oxford5K+Flickr1M 1,002,805 823,297,045 252.7GB

Table 5.1. Statistics of the datasets

40, 000 images are randomly selected from the ESP dataset1. The purpose of adding images

from the ESP dataset is to verify the capacity of the algorithms in distinguishing tattoo

images from the other images. On average, about 100 Harris-Laplacian interesting points

are detected for each image, and each key point is described by a 128-dimensional SIFT

descriptor.

Oxford building dataset (Oxford5K) The Oxford building dataset consists of 5, 062

images. Although it is a small data set, we use it for evaluating the proposed algorithm

for image retrieval mainly because it is one of the widely used benchmark datasets. When

detecting keypoints for each image, we use both Harris-Laplacian and Hessian-Affine inter-

esting point detectors and each key point is described by a 128-dimensional SIFT descriptor.

Since the algorithms perform similarly with keypoints detected by the two methods, we

only report the results based on the Harris-Laplacian detector. On average, about 3, 000

keypoints are detected for each image.

Oxford building dataset plus one million Flickr images (Oxford5K+Flickr1M)

In this dataset, we first crawled Flickr.com to find about one million images of medium

resolution and then added them into the Oxford building dataset. The same procedure is

applied to extract keypoints from the crawled Flickr images.

1http://www.gwap.com/gwap/gamesPreview/espgame/
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5.5.2 Implementation and Baselines

For the implementation of the proposed method, the kernel function (5.5) is used. The

centers for the kernel are randomly selected from the datasets. We employ the FLANN

library 2 to perform the efficient range search.

We select the bag-of-words model (BoW) [119] as our baseline which is a popular method

for large scale image retrieval. It constructs the visual vocabulary by a hierarchical k-means

algorithm that deploys FLANN library for efficient nearest neighbor search. We set the

branching factor of hierarchical k-means to be 10 based on our experience. A forest of 8

randomized k-d trees is used in all experiments. We initialize cluster centers by randomly

selecting a number of keypoints in the dataset. For the bag-of-words model, a state-of-the-art

text retrieval method, Okapi BM25 [129] is used to compute the similarity between a query

image and gallery images based on their bag-of-words representations. The inverted indices

for both Okapi BM25 and the proposed retrieval model are stored in memory to make the

retrieval procedure efficient.

5.5.3 Evaluation

In order to exam the efficiency of the proposed method, we measure the time spent on

preprocessing as well as retrieval stage of the retrieval systems. For the proposed method,

the preprocessing stage consists of three steps, i.e., randomly selecting a number of centers,

identifying keypionts within the predefined range of the selected centers and computing

weights α of every image; For the baseline method, it consists of two steps, constructing

visual vocabulary by clustering and mapping keypoints to visual words. For retrieval time,

we report the averaged retrieving time of one query for the two methods. We emphasize

that besides the retrieval time, the preprocessing time is also very important for an image

retrieval system when it comes to a large collection of millions of images and the image

collection is updated frequently. Take Flickr.com as an example, which is one of the most

2http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
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popular online photo sharing web sites, there are about 900,000 new images uploaded every

day [98]. These images must be preprocessed in time in order to be used for retrieval, which

requires the preprocessing of an algorithm be very efficient.

To evaluate the retrieval accuracy of the proposed method, we use two different metrics

for the datasets. For tattoo image dataset, the retrieval accuracy is evaluated based on

whether a system could retrieve images that share the tattoo symbol as in the query image.

We adapt the evaluation metric termed Cumulative Matching Characteristics (CMC) score

[105]in this study. For a given rank position k, its CMC score is computed as the percentage

of queries whose matched images are found in the first k retrieved images. The CMC score

is similar to recall, a common metric used in Information Retrieval. We use CMC score on

the tattoo database because it is the most widely used evaluation metric in face recognition

and forensic analysis.

For the Oxford building dataset and the Oxford building plus Flickr dataset, we follow [119]

and evaluate the retrieval performance by Average Precision (AP) which is computed as the

area under the precision-recall curve. In particular, an average precision score is computed

for each of the 5 queries from a landmark specified in the Oxford building dataset, and these

results are averaged to obtain the mean Average Precision (mAP) for each landmark.

5.5.4 Results on The Tattoo Image Dataset

We select 995 images as queries, and manually identify the gallery images that have the same

tattoo symbols as the query images. We randomly select 100 images among the 995 query

images and use them to train the optimal values for both λ and ρ. The learned parameter λ

and ρ are used for the consequential experiments. The remaining images are used for testing.

We first show the retrieval results of both the proposed method and the bag-of-words

method with the parameters tuned to achieve the best performance, and then show the

sensitive of the proposed algorithm to the choice of parameters. Figure 5.1 give the retrieval

performance of the two methods in CMC curves for the first 100 retrieved images. It is
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Preprocessing Time Retrieval Time

Proposed 1.0h 0.02s

BoW 8.8h 0.009s

Table 5.2. The preprocessing and retrieval time of the two methods on tattoo dataset.

clear that the proposed algorithm significantly outperforms the bag-of-words model based

approach.

The efficiency of the two methods are listed in the Table 5.2. For the preprocessing time,

the proposed methods is about 8 times more efficient that the baseline methods; For the

retrieval time, the proposed method is significantly slower than that of the bag-of-words

model method. After carefully checking the implementation, we found that the difference in

retrieval time is because the logarithm function used by the proposed method (5.17) takes

a significantly longer time to compute than the simple addition and multiplication used by

the BM25 model. In a real retrieval system, however, this disadvantage can be overcome

by some engineering tricks. For example, a logarithm look up table can be built in advance

and computing the logarithm of a value can be simplified as checking the lookup table. In

fact, this trick is commonly used in the implementation of an automatic speech recognition

system.

5.5.5 Parameter λ

Figure 5.2 shows the CMC curves of the proposed method with λ varied from 0.01 n̄ to 100

n̄, where n̄ is the average number of keypoints in an image. In this experiment, we set the

number of random centers to be one million, and ρ to be 0.6 d̄, where d̄ is the average distance

between any two keypoints which is estimated from 1,000 randomly sampled keypoints from

the collection. This result shows the performance of the proposed method is overall not

sensitive to the choice of λ.
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5.5.6 Parameter ρ

Figure 5.3 shows the CMC curves of the proposed method with ρ varied from 0.3 d̄ to 1.1 d̄.

In this experiment, we again fixed the number of centers to be one million. From the figure we

observe that with the exception of the smallest radius ρ (i.e., r = 0.3d̄), the retrieval system

achieves similar performance for different values of ρ. This indicates that the proposed

algorithm is in general insensitive to the choice of ρ as long as ρ is large enough compared

to the average inter-points distance between keypoints. This result can be understood by

the fact that in a high dimensional space, most data points are far from each other and as

a result, unless we dramatically change the radius ρ, we do not expect the points within a

distance ρ of the centers to change significantly.

5.5.7 Number of Random Centers

Figure 5.4 shows the performance of the proposed method with different number of randomly

selected centers. The λ and ρ are selected to maximize the performance for the given number

of centers. We clearly observe a significant increase in the retrieval accuracy when the number

of centers is increased from 10K to 1M. This is not surprising because a large number of

random centers usually results in a better discrimination between different SIFT keypoints

and consequently leads to an improvement in the detection of similar images. A similar

observation is also found when we run our retrieval system using the bag-of-words model

approach which is consistent with the observation in [119].

5.5.8 Results on Oxford Building and Oxford Building + Flickr

Datasets

Based to the observation from the experiments of tattoo image retrieval and the similar

observation in [119], we use one million cluster/random centers in this experiment. The

parameters of the proposed methods are set as the following based on our experiments done
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Proposed BoW

Oxford5K 0.561 0.521

Oxford5K+Flickr1M 0.472 0.330

Table 5.3. mAP results of the proposed method and BoW method for Oxford5K building

data set and Oxford5K+Flickr1M data set.

with tattoo images. We set ρ = 0.6d̄, where d̄ is the average inter-points distance that was

estimated based on 1000 randomly sampled pairs. We set the parameter λ = 10n̄ where n̄

is the average number of key point in an image.

The mAP results of the proposed method and BoW method are listed in Table 5.3. In

Figure 5.5, we show two examples of the queries and the retrieved images. Note that for the

Oxford5K+Flickr1M dataset, we follow the experimental protocol in [119] by only using the

cluster/random centers that are obtained from the images in the Oxford5K dataset. The

results clearly show that the proposed method outperforms the bag-of-words model.

As expected the performance of the proposed method drops slightly when the 1M Flickr

images are added to the Oxford5K dataset. In contrast, the bag-of-words based method

suffers from a significant loss in the performance when we include one million images into

the Oxford5K data set. We believe this difference in the performance is due to the fact that

the visual content of the 1 million Flickr images is significantly different from that of the

Oxford 5K images, i.e., the keypoints extracted from the Flickr images are generally far away

from those in the Oxford5K images. As discussed before, the proposed method is robust to

the outlying keypoints which makes it less sensitive to the inclusion of the Flickr1M dataset

than the bag-of-words model. To verify this, we measure the distance between keypoints and

centers for both Oxford5k data set and Oxford5k+Flickr1M data set. We find that for the

Oxford building images, there are ∼ 8% keypoints that are separated from any of the centers

by a distance larger than ρ = 0.6d̄. This percentage is increased to ∼ 24% for the Flickr

images, indicating that a large portion of keypoints from the Flickr images are significantly

different from the keypoints from the Oxford building images.
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Proposed BoW

preprocessing retrieval preprocessing retrieval

Oxford5K 1.09h 0.8s 11.4h 0.08s

Oxford5K+Flickr1M 95h 1.3s 685h 0.9s

Table 5.4. Preprocessing and retrieval times of the two methods with one million clus-

ter/random centers.

The preprocessing and retrieval times of the two algorithms are shown in Table 5.4. For

preprocessing, we split the the Oxford5K+Flickr1M dataset into 82 subsets and each subset

contains about 10,000,000 keypoints. These 82 subsets are processed separately on multiple

machines, and are aggregated later to obtain the final result of key point quantization. The

preprocessing time for 5K+1M dataset is estimated by the average processing time of each

of the 82 subsets. It shows clearly that, for both the datasets, the proposed method is

significantly more efficient, e.g. 10 times faster, in preprocessing time than the bag-of-words

method. Combining the results of preprocessing time from the previous experiment on the

tattoo image dataset, it is clear that the proposed method is significant more efficient than

the BoW method in terms of preprocessing time, which makes it more applicable to large

scale image retrieval.

For the retrieval time, we first compare the proposed algorithm to a naive retrieval method

using 5.14 in which a linear scan of the whole database is required. On average, it takes

more than 1100 seconds to retrieve a query for the naive retrieval method while the proposed

efficient retrieval method only takes 0.8 second for one query. When comparing to the the

BoW method, we observe that the proposed method is still significantly slower than the

BoW model, due to the reason mentioned earlier.
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5.6 Summary

In this chapter, we study the problem of dimensionality reduction with extending the data

representation from a single vector to a set of unordered vectors. By describing each datum

with a function which is estimated from its associated vectors, the task of dimensionality

reduction becomes how to make an appropriate representation of each function to facilitate

the computation of similarity between two data points and furthermore speedup the nearest

neighbor search for a very large database. We study the problem in the context of large

scale image retrieval with each image is represented by its local features. There are two

main challenges in designing efficient search algorithms: one is how to efficiently estimate

the density function for each image from its local features; the other is how to efficiently

identify a subset of candidate images using the derived function representation of images.

We have developed a statistical modeling approach and an efficient learning and retrieval

algorithm for the two challenges. Our empirical results on three large-scale image retrieval

tasks show that, comparing to the popular bag-of-words method, the proposed method is

significantly more effective and more efficient in indexing images. The only disadvantage of

the proposed method is it takes a longer time to retrieve images than the BoW model due

to the high cost in computing the logarithm function.
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Figure 5.1. The CMC scores for tattoo image retrieval with one million cluster/random

centers. For interpretation of the references to color in this and all other figures, the reader

is referred to the electronic version of this dissertation.
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Figure 5.2. Results of the proposed method for tattoo image retrieval with different value of

λ base on 1 million random centers with ρ = 0.6d̄
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Figure 5.4. Results of the proposed method for tattoo image retrieval with different number

of centers.
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Figure 5.5. Examples of two queries (the first column) and the first six retrieved images.

The first two rows give the retrieved results for the Oxford5K building database, and the

next two rows give the retrieved results for Oxford5K+Flickr1M database. The correctly

retrieved results are outlined in green and while irrelevant images are marked by the red

color.
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CHAPTER 6

Conclusion

People have been working on the problem of dimensionality reduction for more than a century

and numerous algorithms have been proposed and studied. Recent research on dimensionality

reduction has been fueled by the fast-paced development of statistical analysis, machine

learning, as well as by the advances in convex optimization and the constant growth in sheer

processing power. This dissertation continues along this line of research, and offers several

novel contributions to the field:

• Mixed label propagation for semi-supervised learning Unlike the existing

graph-based approaches that are only applicable to the positive similarity of exam-

ples, our framework is able to explore both positive and negative similarities simulta-

neously. The challenge of incorporating negative similarities comes from the fact that

the negative similarity is non-transitive, and therefore cannot be propagated directly.

In addition, objective functions employed by most graph-based approaches could be

unbounded below when the similarity is negative, and therefore no optimal solutions

can be found by minimizing the objective function. The key idea behind the pro-

posed framework is to explore LDA, which is to minimize the inconsistency between

the class assignments and the positive similarity of examples, and maximize the con-

sistency between the class assignments and the negative similarity of examples. We

present an efficient learning algorithm for the mixed label propagation that is based on

the alternating optimization strategy and semi-definitive programming. Our empirical

study with collaborative filtering shows that the proposed algorithm is effective in ex-

ploring negative similarities and outperforms both the label propagation approach and
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state-of-the-art approaches for collaborative filtering

• An semi-definite formulation for the second-order PCA-style algorithms

Most existing algorithms for second-order PCA-style algorithms require solving non-

convex optimization problems, often leading to suboptimal performance. The key

challenge in solving the optimization problem arises from the fact that they require

identifying both the left and right projection matrices simultaneously that are depen-

dent on each other. In our method, we try to avoid this difficulty by first factorizing

each matrix into left and right parts, then extracting the left and right projection

matrices from the sum of the left and right parts of all matrices. We begin with factor-

izing a single matrix which leads to the trace norm of a matrix. We then generalize it

to the case of multiple matrices by extracting the largest common singular vectors of

multiple matrices, and finally present a semi-definite programming formulation. The

relationship between the proposed SDP formulation and that of GLRAM is also stud-

ied. Finally, we present an approximate algorithm to efficiently solve the related SDP

problem and evaluate the proposed algorithm by image classification. Our experi-

mental study shows that the performance of the proposed algorithm is better than or

comparable to the state-of-the-art algorithms for SOPCA.

• Dimensionality reduction for functional data representation and its appli-

cation to large-scale image retrieval by local features Since the number of local

features used to represent each image is varied from one image to another, it is in

general difficult to represent all the images in a vector space. One way to deal with

the bag-of-features representation is to associate with each image a function which is

estimated from its local features. The challenge of using functions to represent data

is its high computational cost in estimating the similarity between functions. In this

dissertation, we study the problem of conducting dimensionality reduction for the func-

tion representation of data. More specifically, we would like to find the appropriate
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representation of the functions that could leads to efficient search of similar images

for very large image databases. We have developed a statistical modeling approach

and an efficient retrieval algorithm for the challenges which can efficiently estimate

the functions of each image with its local features and further utilize the derived func-

tions to efficiently identify a subset of candidate images which are visually similar to a

given query. Our empirical studies on large-scale image retrieval tasks show that, the

proposed methods is robust to the choice of the parameters and is significantly more

effective and more efficient in indexing images comparing to the popular bag-of-words

method.

Finally, besides the success of the studies conducted in this dissertation, there are a number

of challenging problems that deserve further investigation in the future. For example, both

of the mixed label propagation and the proposed convex formulation of SOPCA need to

solve SDP problems which are computationally expensive. We may utilize some special

structures of the involved SDP problems so that problem-specific SDP solvers might be built

to solve the prolbems more efficiently. For the functional data dimensionality reduction,

besides the simple basis function used in the proposed methods, we may be able to make a

more intelligent choice of the basis functions so that the overall performance can be further

improved.
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APPENDIX A

Notation

Some specific sets

R Real numbers

Rn Real n-vectors

Rm×n Real m× n matrices

R+,R++ Nonnegative, positive real numbers

Rn
+,Rn

++ Nonnegative, positive real n-vectors

Sn Symmetric n× n matrices

Sn
+,Sn

++ Symmetric positive semi-definite, positive definite, n× n matrices

Vectors and matrices

1 Vector with all components one

I Identity matrix

X> Transpose of matrix X

tr(X) Trace of matrix X

X† Moore-Penrose or pesudo-inverse of matrix X

rank(X) Rank of matrix X

Norms and distances

‖ · ‖ A norm

‖x‖2 Euclidean (of l2-) norm of vector x

‖X‖F Frobenius norm of matrix X

‖X‖tr Trace norm of matrix X

Generalized inequalities

x ¹ y Componentwise inequality between vectors x and y

x ≺ y Strick componentwise inequality between vectors x and y

X ¹ Y Matrix inequality between matrices X and Y

X ≺ Y Strict matrix inequality between matrices X and Y
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APPENDIX B

Schur Complement

Consider a matrix X ∈ Sn partitioned as:

X =

(
A B

B> C

)

where A ∈ Sk. If detA 6= 0, then matrix

S = C −B>A−1B

is called the Schur complement of A in X.
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APPENDIX C

Semi-Definite Programming

Semi-definite programming is a linear programming over the cone of semi-definite matrices.

In comparison to standard linear programming, the variable of vector x ∈ Rn
+ is replaced by

a variable of matrix X ∈ Sn
+.

Given m matrices A1, . . . , Am, where each matrix Ai ∈ Sn, we define:

AX =




tr(A1X)
...

tr(AmX)




With this notation, the standard formulation of a semi-definite programming problem is

defined as:

min
X∈Sn

+
tr(CX) (C.1)

s. t. AX = b

X º 0

Similarly, if we define:

A>y =
m∑

i=1
yiAi

the corresponding dual problem of the semi-definite programming problem in (C.1) is given

as:

max
y∈Rm

Z∈Sn
+

b>y (C.2)

s. t. A>y + Z = C

Z º 0
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In (C.1) and (C.2), the inequality X º 0 and Z º 0 are often called linear matrix inequality

(LMI).

121



APPENDIX D

Trace Norm And Ky Fan k-Norm

The trace norm of a matrix X is defined as the sum of all singular values of X. It can also

be defined as an optimization problem over all possible factorizations of matrix X, as shown

in the following definition:

Definition 1. The trace norm ‖X‖tr of a matrix is given by any of the three quantities:

1. minU,V

{
‖U‖F ‖V ‖F : X = UV >

}

2. minU,V

{
1
2(‖U‖2F + ‖V ‖2F ) : X = UV >

}

3. The sum of the singular values of X

Furthermore, If X = UΣV > is the singular value decomposition of X, then the matrices

U
√

Σ and V
√

Σ minimize the first two quantities.

A very important property of trace norm is that it is the convex envelope of the function

φ(X) = rank(X), on C = {X ∈ Rm×n|‖X‖ ≤ 1} [42, 136]. Because of this property, trace

norm is often used as the convex surrogate for the rank function in rank minimization [42].

Minimizing the trace norm can be converted to an SDP problem by the following lemma [42]:

Lemma 2. For X ∈ Rp×q and t ∈ R, we have ‖X‖tr ≤ t if and only if there exist matrices

P ∈ Rp×p and Q ∈ Rq×q such that:

(
P X

X> Q

)
º 0, tr(P ) + tr(Q) ≤ 2t
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Using the above lemma, minimizing the trace norm of X is equivalent to the following

problem:

min
P∈Rp×p

Q∈Rq×q

tr(P ) + tr(Q) (D.1)

s. t.

(
P X

X> Q

)
º 0

It is straightforward to show that an optimal solution to (D.1) is P = UΣU> and Q =

V ΣV >, where U and V are derived from the singular value decomposition of X, i.e., X =

UΣV >.

The Ky Fan k-norm Sk(X) generalizes the concept of trace norm by computing the sum

of the k largest singular values of matrix X. When X is a symmetric positive semi-definite

matrix, Sk(X) becomes the sum of the k largest eigenvalues of X.
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reduction of manifolds. Technical Report TR-110, Max Planck Institute for Biological

Cybernetics, 2003.

[57] T. J. Hastie and W. Stuetzle. Principal curves. Journal of the American Statistical

Association, 84:502–516, 1989.

[58] X. He and P. Niyogi. Locality preserving projections. In Neural Information Processing

Systems 16 (NIPS’2003), 2003.

[59] M. Herbster, M. Pontil, and L. Wainer. Online learning over graphs. In ICML ’05,

2005.

[60] K Hirata and T Kato. Query by visual example - content-based image retrieval. In

Third International Conference on Extending Database Technology, 1992.

[61] T. Hofmann. Gaussian latent semantic models for collaborative filtering. In SIGIR’03,

2003.

[62] T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf.

Syst., 22(1):89–115, 2004.

[63] P. Hoyer. Non-negative matrix factorization with sparseness constraints. J. of Machine

Learning Research, 5:1457–1469, 2004.

[64] J. J. Hull. A database for handwritten text recognition research. IEEE Trans. Pattern

Anal. Mach. Intell., 16(5):550–554, 1994.

[65] Aapo Hyvärinen. Independent component analysis. Neural Computing Surveys, 2,

2001.

[66] K. Inoue and K. Urahama. Equivalence of non-iterative algorithms for simultaneous

low rank approximations of matrices. In CVPR ’06, pages 154–159, 2006.

[67] J.E. Jackson. A Users Guide to Principal Components. New York: John Wiley and

Sons, 1991.

[68] A K Jain, J Mao, and K Mohiuddin. Artificial neural networks: A tutorial. Computer,

(29), 1996.

[69] Shuiwang Ji and Jieping Ye. Generalized linear discriminant analysis: A unified frame-

work and efficient model selection. Neural Networks, IEEE Transactions on, 19:1768–

1782, 2008.

[70] T. Joachims. Transductive learning via spectral graph partitioning. In ICML’03, 2003.

129



[71] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analy-

sis(5th Edition). Pearson Education, 2001.

[72] I.T. Jolliffe. Principal Component Analysis, Second Edition. Springer-Verlag, 2002.

[73] M. C. Jones and R. Sibson. What is projection pursuit? Journal of the Royal Statistical

Society, 19:1–18, 1987.
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