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ABSTRACT

CAPTURING BLUETOOTH TRAFFIC IN THE WILD: PRACTICAL SYSTEMS AND
PRIVACY IMPLICATIONS

By

Wahhab Albazrqaoe

Bluetooth wireless technology is today present in billions of smartphones, mobile de-

vices, and portable electronics. With the prevalence of personal Bluetooth devices, a prac-

tical Bluetooth traffic sniffer is of increasing interest due to the following. First, it has been

reported that a traffic sniffer is an essential, day-to-day tool for Bluetooth engineers and

applications developers [4] [14]; and second, as the communication between Bluetooth

devices is privacy-sensitive in nature, exploring the possibility of Bluetooth traffic sniff-

ing in practical settings sheds lights into potential user privacy leakage. To date, sniffing

Bluetooth traffic has been widely considered an extremely intricate task due to wideband

spread spectrum of Bluetooth, pseudo-random frequency hopping adopted by Bluetooth

at baseband, and the interference in the open 2.4 GHz band.

This thesis addresses these challenges by introducing novel traffic sniffers that capture

Bluetooth packets in practical environments. In particular, we present the following sys-

tems. (i) BlueEar, the first practical Bluetooth traffic sniffing system only using general,

inexpensive wireless platforms. BlueEar features a novel dual-radio architecture where

two inexpensive, Bluetooth-compliant radios coordinate with each other to eavesdrop on

hopping subchannels in indiscoverable mode. Statistic models and lightweight machine

learning tools are integrated to learn the adaptive hopping behavior of the target. Our

results show that BlueEar maintains a packet capture rate higher than 90% consistently

in dynamic settings. In addition, we discuss the implications of the BlueEar approach on



Bluetooth LE sniffing and present a practical countermeasure that effectively reduces the

packet capture rate of sniffer by 70%, which can be easily implemented on the Bluetooth

master while requiring no modification to slave devices like keyboards and headsets.

And (ii) BlueFunnel, the first low-power, wideband traffic sniffer that monitors Bluetooth

spectrum in parallel and captures packet in realtime. BlueFunnel tackles the challenge

of wideband spread spectrum based on low speed, low cost ADC (2 Msamples/sec) to

subsample Bluetooth spectrum. Further, it leverages a suite of novel signal processing

algorithms to demodulate Bluetooth signal in realtime. We implement BlueFunnel pro-

totype based on USRP2 devices. Specifically, we employ two USRR2 devices, each is

equipped with SBX daughterboard, to build a customized software radio platform. The

customized SDR platform is interfaced to the controller, which implements the digital

signal processing algorithms on a personal laptop. We evaluate the system performance

based on packet capture rates in a variety of interference conditions, mainly introduce

by the 802.11-based WLANs. BlueFunnel maintains good levels of packet capture rates

in all settings. Further, we introduce two scenarios of attacks against Bluetooth, where

BlueFunnel successfully reveals sensitive information about the target link.
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Chapter 1

Introduction

Recent years have witnessed the phenomenal penetration rate of Bluetooth technology in

our daily lives. About 4 billion Bluetooth units are expected to be shipped worldwide in

2018 [15]. Due to it’s attractive features, such as low cost and low power consumption,

Bluetooth has become the de facto wireless connectivity for wireless accessories, smart

devices including smartphones, wearables including smart watches and fitness trackers,

sensor-based healthcare systems [57], consumer electronic devices, in-car telematic sys-

tems like Android Auto [18] and CarPlay [5], and many other applications.

With the widespread use of Bluetooth technology, including Bluetooth Classic and

Bluetooth Low Energy (LE)1, sniffing Bluetooth traffic becomes of increasing interest due

to the following. First, a passive Bluetooth traffic sniffer/analyzer has become one of

the essential, day-to-day tool for Bluetooth engineers and application developers, as re-

ported by [4] [14]. Second, as the communications between Bluetooth devices are privacy-

sensitive in nature, an in-depth study on Bluetooth’s resilience to traffic sniffing and po-

tential privacy leakages become imperative.

In the following, we discuss the challenges of sniffing Bluetooth traffic and introduce

our contributions to tackle the challenges.

1In this thesis, we use Bluetooth LE to refer to Bluetooth Low Energy unless otherwise specified.
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1.1 Challenges

Sniffing Bluetooth traffic has been considered an extremely intricate task due to the fol-

lowing,

(i) Wideband Spread Spectrum. Bluetooth operates in the free 2.4 GHz band and de-

fines several subchannels that spread over 80 MHz of the spectrum. Therefore,

a sniffer would need a wideband radio to monitor the entire spectrum and cap-

ture all Bluetooth packets in realtime. However, this wideband radio solution is

challenging because it requires a high-speed (about twice the spectrum, according

to Nyquist-Shannon rate) analog-to-digital-converters (ADCs) to capture Bluetooth

signal. These ADCs are costly, power hungry, and require high computational power

system to support such high sample rate.

(ii) Pseudo-random frequency hopping. As Bluetooth occupies one subchannel, that is 1-2

MHz, at a time for data exchange, a sniffer could employ a low-power, off-the-shelf

Bluetooth-compliant radio to capture data packets. At the baseband, however, Blue-

tooth adopts frequency hopping spread spectrum, which is a challenge for this kind

of sniffers. That is, frequency hopping sequence is known to legitimate Bluetooth de-

vices but not other parties. Therefore, a sniffer can listen on an arbitrary subchannel,

and capture packets that are randomly transmitted on that subchannel. However,

the number of packets captured in this way represents a tiny portion of the traffic.

Moreover, Bluetooth sessions may last for a very short period of time and involve

only tens of packets.
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(iii) Interference in the crowded 2.4 GHz band. When coexisting with other wireless de-

vices in the crawdad 2.4 GHz band, Bluetooth may experience various interference

conditions, including hidden and exposed interference, from 802.11-based WLANs

and other ambient radios. Therefore, Bluetooth adopts adaptive frequency scheme

to adapt spectrum utilization and improve performance. To tackle these challenges,

a sniffier needs to learn adaptive frequency hopping behavior, and provide some

mechanism to null the interference in the case of collision with Bluetooth packets in

realtime.

1.2 Contributions

This thesis tackles the challenges of sniffing Bluetooth traffic in practical environment.

The contributions of the thesis are summarized as follows.

1.2.1 The BlueEar Bluetooth Sniffer

We present the design, implementation, and evaluation of BlueEar – the first practical

Bluetooth traffic sniffer that consists only of inexpensive, Bluetooth-compliant radios.

BlueEar features a novel dual-radio architecture, where two radios – named as scout and

snooper – coordinate with each other on learning the hopping sequence of indiscover-

able Bluetooth, predicting adaptive hopping behavior, and handling complex interference

conditions. We implemented a prototype of BlueEar for sniffing the traffic of Bluetooth

Classic, which offers enhanced data rates and a more complex hopping protocol than

Bluetooth LE. The prototype employs two Ubertooths [31] to implement the scout and

the snooper, and interfaces them to a controller running on a Linux laptop. Extensive
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experiments results show that BlueEar can maintain a packet capture rate higher than

90% consistently in practical environments, where the target Bluetooth network exhibits

diverse hopping behaviors in the presence of interference from coexisting 802.11-based

WLANs. Further, we discuss privacy implications of BlueEar on Bluetooth system and

propose a practical countermeasure approach that effectively reduces the average packet

capture rate of a sniffer to 20%.

1.2.2 The BlueFunnel Traffic Sniffer

We introduce the design, implementation, and evaluation of BlueFunnel –a low-power,

wideband traffic sniffer that monitors Bluetooth spectrum in parallel and captures packet

in realtime. BlueFunnel leverages low speed ADC to subsample Bluetooth spectrum,

which addresses the challenge of high-speed ADC. In particular, BlueFunnel consists of

two main components, including, (i) a software defined radio (SDR), that integrates a

wideband radio, and a low-speed ADC. The ADC is used to subsample Bluetooth spec-

trum based on 2 Msamples/sec, which is below the Nyquist-Shannon rate; and (ii) a

controller, that implements digital signal processing packages, which are responsible for

detecting, demodulating, and analyzing Bluetooth packets in realtime. We implement

BlueFunnel prototype based on USRP2 devices. Specifically, we utilize two USRR2 de-

vices, each is equipped with SBX daughterboard, to build a customized software radio

platform. The customized SDR platform is interfaced to the controller, which implements

the digital signal processing algorithms on a personal laptop. We evaluate the system

performance based on packet capture rates in variety of settings. Specifically, we eval-

uated the system in a controlled setting, where we intentionally introduce 802.11-based

traffic as a form of interference on overlapped Bluetooth subchannels. We test BlueFunnel
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when there is no interference, 25% and 50% of the subchannels are interfered with 802.11-

based traffic, respectively. Moreover, we evaluate the system in an office building, where

dynamic interference conditions are introduced by enterprise 802.11-based WLANs. In

all settings, BlueFunnel maintains good levels of packet capture rates. Further, we intro-

duce two scenarios of attacks against Bluetooth, where BlueFunnel successfully reveals

sensitive information about the target link.

1.3 Organization of Thesis

The rest of this thesis is organized as follows. Chapter 2 introduces the basic charac-

teristics of Bluetooth system, and discusses the challenges of sniffing Bluetooth traffic.

Chapter 3 provides a review of related works. Chapter 4 presents BlueEar, the first prac-

tical system that consists of only inexpensive, Bluetooth-compliant off-the-shelf radios.

Chapter 5 introduces BlueFunnel, a novel low-power, wideband Bluetooth traffic sniffer.

Chapter 6 concludes this thesis and discusses future work.
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Chapter 2

Background

In this chapter, we present the background for the thesis including the basic characteristics

of Bluetooth baseband.

2.1 Bluetooth Background

In this section, we introduce a general background about Bluetooth physical layer, includ-

ing modulation scheme, frequency hopping protocol, encryption techniques adopted by

Bluetooth system, including Bluetooth Classic and Bluetooth LE.

2.1.1 Bluetooth PHY layer

Bluetooth operates in the free 2.4 GHz ISM band. Bluetooth classic defines 79 adjacent

subchannels, where each subchannel occupies 1 MHz of bandwidth, as illustrated in Fig.

2.1. On the other hand, Bluetooth LE defines 40 adjacent subchannels, where each sub-

channel occupies 2 MHz of bandwidth. Bluetooth subchannels occupy about 80 MHz of

the spectrum starting from 2402MHz up to 2480MHz.

At the baseband, Bluetooth adopts the symbol transmission rate of 1 Million Sym-

bols/sec, where each symbol is modulated based on Gaussian Frequency-Shift Keying

(GFSK) modulation scheme. The transmitted signal can be described as a cosine wave
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Figure 2.1: An illustrative figure presents Bluetooth Classic subchannels that overlap with 802.11-
based channels in the open 2.4 GHz ISM band.

[53],

x(t) = Acos(2π(fc + δ)t) (2.1)

where fc is the carrier frequency, δ is a frequency shift introduced by the GFSK mod-

ulation, and 0 < δ < 0.5 represents ’1’, while −0.5 < δ < 0 represents ’0’, as depicted in

Fig. 2.2. There is a special case for Bluetooth Classic to enhance data rates, where Differ-

ential Phase-Shift Keying (DPSK) modulation scheme is also supported. However, this

modulation is beyond the scope of this thesis and may be considered as a future work.

2.1.2 Physical Channel Access

At the baseband, Bluetooth utilizes frequency hopping spread spectrum to access subchan-

nels. That is, the carrier frequency fc is switched every a period of time. In the following,

we introduce a general description about the hopping protocols of Bluetooth Classic and

Bluetooth LE, respectively.
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Figure 2.2: Bluetooth modulated signal based on GFSK modulation scheme. The figure is
adopted from [51].

2.1.2.1 Bluetooth Classic Hopping Protocol

In Bluetooth Classic, the carrier frequency fc is switched every 625 µsec, resulting in a

maximum hopping rate of 1600 hops/sec, as depicted in Fig. 2.3. The carrier frequency

is calculated as fc = 2402+ k MHz, where k = 0, 1, 2, ..., 78 is the subchannel index. Now

the question is how to calculate k? The subchannel index is calculated in two different

ways based on the two physical channel defined by Bluetooth Classic. Specifically, there

are two types of physical channel for data communication, including,

(i) Basic channel. In each hop of the basic channel, the subchannel index is calculated

by H(A, c), where H(·) denotes the basic hop selection kernel specified by the Blue-

tooth standard [47], A is the piconet address (i.e. the MAC address of the piconet
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Figure 2.3: An illustrative example of frequency hopping channel access scheme.

master), and c is the piconet clock. In Bluetooth Classic, the piconet clock is a 27-bit

logic counter that ticks every hop. Because piconet clock wraps around every 227

ticks, the basic channel repeats itself every 134,217,728 hops, which takes approxi-

mately 24 hours. In other words, the basic channel can be characterized by a basic

hopping sequence and a hopping phase. The basic hopping sequence, which is deter-

mined by the piconet address, is composed of 227 subchannel indices {i0, ..., i227−1},

where ic =H(A, c). The hopping phase, which is determined by the piconet clock, is

the index of the current hop.

(ii) Adapted channel. Operating in the free 2.4 GHz ISM band, Bluetooth may coexist with

other wireless devices on overlapped frequencies. Therefore, Bluetooth performs

adaptive hopping where the basic channel is frequently modified to adapt spectrum

use. The adaptation is guided by a subchannel map, which classifies subchannels as

good and bad based on interference conditions. When the subchannel selected in a

hop is bad, a remap function is called to compute a pseudo-random index i based

on piconet address and clock. The bad subchannel is then replaced by the i-th good

subchannel.
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Figure 2.4: An illustrative example of adaptive frequency hopping under the effect of 802.11-
based interference in the 2.4 GHz band.

Fig. 2.4 shows an illustrative example of adaptive frequency hopping, where Blue-

tooth avoids interfered subchannels (gray). Although adaptive hopping is the de facto

scheme used by off-the-shelf Bluetooth devices, the Bluetooth standard does not specify

the implementation of subchannel classification, resulting in different adaptive hopping

behaviors across devices manufactured by different vendors.

2.1.2.2 Bluetooth LE Hopping Protocol

Bluetooth LE defines two types of physical channel, namely (i) advertisement, and (ii) con-

nection. For advertisement, there are three subchannels, namely 37, 38, and 39, where

Bluetooth LE operates in a connectionless mode. That is, Bluetooth LE utilizes the adver-

tisement subchannels to broadcast information for other Bluetooth LE devices. Further,

the three subchannels may be used to initiate connections. For connection state, Bluetooth

LE utilizes the remaining 37 subchannels to establish data connections between Bluetooth

LE devices. The connection state of Bluetooth LE is defined based on connection events,

where an event represents a short session to exchange data packets. For each event, Blue-

tooth LE switches to a new subchannel.
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Similar to Bluetooth Classic, Bluetooth LE defines a basic and adaptive hopping schemes.

For the basic channel hopping, the carrier frequency fc is calculated as fc = 2402 + 2k

MHz, where k = 0, 1, 2, ..., 39 is the subchannel index. The index is calculated based on

K(ci, inc), where K(.) is the hop selection kernel, and ci is the index of current subchannel.

The subchannel index ci is initialized to zero for the first connection event. Therefore,

the hopping sequence repeats whenever the index becomes ci = 0 [46]. During pairing

phase (i.e. connection establishment), the master defines connection configuration pa-

rameters. This includes (i) connection interval –a multiple of 1.25ms ranging from 7.5ms

to 4.0s that defines the event lifetime; (ii) transmission window size –a multiple of 1.25ms

that defines the size of transmit window, i.e. packet size; and (iii) hop increment inc –a

random value ranges from 5 to 16.

The adaptive channel is defined based on a subchannel map that classifies the connec-

tion subchannels into good and bad. When a bad subchannel is selected by the selection

kernel K(c, inc), a remapping procedure is invoked to calculate a remapped index. The mas-

ter maintains the subchannel map and it notifies slave(s) about any updates [46].

2.1.3 Bluetooth Network

Bluetooth networks employ a master-slave structure called a piconet. The device that has

the least computation and power constraints is usually selected as the master to manage

communication. Other devices are slaves. Bluetooth piconets use the MAC address of the

master device as the piconet address. All devices from the same piconet are synchronized

to the piconet clock – a clock signal generated by the master.

Indiscoverable mode. When establishing the piconet, Bluetooth devices authenticate

each other through a pairing process. To enhance privacy, Bluetooth piconets can be put
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in indiscoverable mode to hide key technical parameters from unpaired devices. These

parameters – including piconet address, piconet clock, and subchannel map – determines

hopping behavior. Although recent study has demonstrated the possibility of extract-

ing piconet address from packet preambles [49], a Bluetooth packet sniffer cannot hop

following the target unless it acquires all hidden parameters.

2.1.4 Encryption

2.1.4.1 Bluetooth LE Encryption

To preserve user’s privacy, Bluetooth LE employs AES encryption –a popular symmetric-

key encryption algorithm. This means the piconet master and slave(s) must share the

same encryption key, that is known as Long Term Key (LTK), to establish encryption

session. Key distribution mechanism of Bluetooth LE is different from that adopted by

Bluetooth Classic; this is because of computational and storage limitations of low power

Bluetooth LE slaves. Unlike Bluetooth Classic, which employs Secure Simple Pairing

(SSP) for key agreement, a Bluetooth LE master generates and distributes LTK as en-

crypted message, based on a temporary key aka Short Term Key (STK), to other slaves.

Now to decrypt the LTK, all piconet participants needs to regenerate the STK. Bluetooth

LE slaves base on some seeds and random numbers provided by the master device. Un-

fortunately, these seeds are sent over the air as plaintext. As a result, an eavesdropper,

who can capture pairing phase of Bluetooth LE, may be able to determine LTK and, hence,

compromise Bluetooth LE privacy [6] [7] [8] [12] [36] [43] [45].
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2.1.4.2 Bluetooth Classic

As communication of Bluetooth devices is privacy-sensitive in nature, Bluetooth Classic

employs E0 –a symmetric-key stream cipher algorithm– to encrypt user’s data. Unfortu-

nately, recent studies have revealed many critical flaws of this encryption scheme [55] [56]

[13] [38]. In particular, it is shown that Bluetooth is subject to several practical attacks that

can circumvent, compromise, or even crack the link-layer encryption, leading to potential

user privacy breach [13] [56].
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Chapter 3

Review of Related Work

Despite the well-documented flaws of Bluetooth encryption, sniffing Bluetooth traffic has

been widely considered an extremely intricate task. This mainly due to wideband spread

spectrum, pseudo-random frequency hopping employed by Bluetooth at baseband, and

presence of interference in the open 2.4 GHz band, which is mainly introduced by 802.11-

based WLANs. In this chapter, we review related work from the literature, which includes

Bluetooth sniffers, cryptanalysis of Bluetooth encryption, and potential privacy leakage

in the light of successful traffic sniffing.

3.1 Sniffing on Bluetooth Traffic

In this section, we review Bluetooth traffic sniffers, highlight their drawbacks, and com-

pare our practical systems, namely BlueEar and BlueFunnel, that significantly address

the challenges and improve traffic sniffing performance. Bluetooth traffic sniffers can be

categorized into two main classes including:

3.1.1 Narrowband sniffers

To sniff on Bluetooth traffic, narrowband sniffers employ Bluetooth-compliant radios to

capture Bluetooth traffic. Fig. 3.1 presents samples of narrowband Bluetooth sniffers.
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(a) Ubertooth one. (b) Texas Ins. CC2540 Dongle. (c) Bluefruit Bluetooth LE Sniffer.

Figure 3.1: Narrowband sniffers utilize Bluetooth-compliant radios to capture Bluetooth packets.
This figure presents three samples including (a) Ubertooth one, (b) Texas Instrument CC2540 USB
Dongle Bluetooth LE sniffer, and (c) Bluefruit Bluetooth LE sniffer.

There exist several proprietary and open source systems for sniffing Bluetooth traffic. For

example, the firmware of a few Bluetooth chipsets allow the radio to report packet-level

diagnosis by working in sniffing mode [1] [24] [33]. However, the sniffing device must

pair with the target, which makes it incapable of passive sniffing.

Recently, several proprietary low-cost Bluetooth packet sniffers [23] [44] [2] [34] have

been proposed based on inexpensive, Bluetooth compliant Bluetooth platform. Similarly,

low cost, open source sniffers [31] [44] have been developed based on Ubertooth [31]

– an open-source Bluetooth development platform. In [50], a traffic sniffer is devel-

oped based on GNURadio/USRP platform. However, existing low-cost sniffers, includ-

ing Ubertooth-based one, are exclusively designed for sniffing Bluetooth traffic in basic

hopping mode. In the crowded 2.4 GHz band, Bluetooth rarely hops in basic hopping

mode because of the interference from coexisting wireless devices, especially the preva-

lent 802.11 based WLANs [17] [28] [54] [20]. As a result, existing low-cost sniffers suffer

prohibitively poor sniffing performance in practice due to the misprediction of adaptive

hopping behavior, as well as excessive packet corruptions caused by interference.
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(a) Sodora wideband Sniffer. (b) Bluetooth Explorer.

Figure 3.2: Wideband sniffers utilize specialized wideband radios to monitor Bluetooth spectrum
in parallel. This figure presents two samples including (a) Frontline Sodora wideband sniffer, and
(b) Ellisys Bluetooth Explorer.

Compared with existing Ubertooth-based systems, BlueEar is designed for sniffing

Bluetooth traffic in practical environments where both the sniffer and the target may suf-

fer from intensive interference from coexisting wireless devices. To achieve this goal, we

address the key challenges posed by the indiscoverable mode of Bluetooth, the vendor-

dependent adaptive hopping behavior, and the difficulties in maintaining consistent sniff-

ing performance in the crowded 2.4 GHz band. In addition, we identify various critical

issues in Ubertooth firmware that significantly degrade its performance during frequency

hopping, and present solutions to address these flaws. We note that although our proto-

type is developed based on Ubertooth, the design of BlueEar is platform-independent

and can be easily ported to other systems.

3.1.2 Wideband sniffers

Wideband traffic sniffers employ a wideband radios to monitor the entire Bluetooth spec-

trum at the same time. Fig. 3.2 shows examples of wideband Bluetooth sniffers. There

are a few proprietary Bluetooth sniffers designed for testing and protocol analysis [27]
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[14]. These sniffers utilize specialized radios to monitor all subchannels in parallel which

makes them extremely costly and power hungry. For instance, protocol analyzers man-

ufactured by Teledyne [27] cost $10k to $25K per unit. Moreover, these sniffers require

explicit pairing with the target Bluetooth, which makes it impossible to sniff on Bluetooth

traffic passively.

In comparison with the above systems, BlueFunnel is designed as a passive traffic snif-

fer that is based on wideband, low-power, inexpensive devices along with a suit of digital

signal processing methods to capture Bluetooth traffic in the wild. Moreover, BlueFunnel

incurs no delay and no packet loss as it requires no statistical learning phase.

3.2 Cracking Bluetooth Encryption

Bluetooth Classic employs E0 – a two-level stream cipher based on 128-bit link key – to

encrypt packet payloads. The link key is established through pairing, where Bluetooth

devices authenticate each other using a secret PIN. In the literature, studies have revealed

many critical flaws of this encryption scheme [55] [56] [13] [38] [37] [40] [11].

In particular, several studies on E0 cryptanalysis have shown that the 128-bit link key

of E0 is considerably weaker than what is originally intended [55] [56] [37]. The encryp-

tion key can be cracked with 227 online operations and 221.1 offline operations instead of

2128. Specifically, given the headers of 222.7 Bluetooth packets, the attack takes a few sec-

onds to restore the target encryption key. Such attack is implemented on a single core PC

and requires 4 MB RAM of memory. Furthermore, the effective security of the link key

will further degrade when a packet sniffer is employed by the attacker.
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3.3 Potential Privacy Leakage

In the light of successful traffic sniffing, we explore potential privacy leakages of Blue-

tooth system, including,

(i) Cracking Bluetooth encryption. Bluetooth classic employs E0 – a two-level stream cipher

based on 128-bit link key – to encrypt packet payloads. Recent studies on E0 cryptanal-

ysis shows that the 128-bit link key of E0 is considerably weaker than what is originally

intended [55] [56] [37]. The encryption key can be cracked with 227 online operations and

221.1 offline operations instead of 2128. Specifically, given the headers of 222.7 Bluetooth

packets, the attack takes a few seconds to restore the target encryption key. Therefore, the

effective security of the link key will further degrade when a packet sniffer is employed

by the attacker. Moreover, due to computation and power constraints, many Bluetooth

peripherals including most Bluetooth mice manufactured by major vendors, like Log-

itech [29], do not support encryption, leading to user privacy breach.

(ii) Privacy leakage based on traffic patterns. Without the pain of cracking Bluetooth encryp-

tion, previous studies demonstrate the possibility of Bluetooth privacy breach by observ-

ing traffic patterns. For instance, the traffic pattern of popular fitness trackers is found to

be strongly correlated with the user’s activity, making it possible to track user gait and

identity. As a result, a passive traffic sniffer can uncover important private information

about the user, even without decrypting packet payloads [13].

(iii) Leakage of encryption key. Bluetooth LE employs AES-CCM block cipher –a popular

symmetric-key encryption algorithm– to decrypt packets payload. To establish an en-

crypted session, the piconet master shares a Long Term Key (LTK) with slave(s). The

key distribution mechanism of Bluetooth LE is different from that adopted by Bluetooth
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Classic, due to computational and storage limitations of low power slaves. In practice,

the master generates and distributes LTK as encrypted messages to other slaves. The

master encrypts LTK based on a temporary key that is known as Short Term Key (STK).

Unfortunately, Bluetooth LE sends STK over the air as plain text. Therefore, a success-

ful eavesdropping on Bluetooth LE pairing phase could potentially lead to determining

LTK; and, hence, compromise Bluetooth LE privacy [8] [12] [36]. Furthermore, a study on

privacy of ZigBee network [43] demonstrates the feasibility of circumventing AES-CCM

encryption without the need to know link encryption key. Although, the study considers

ZigBee encryption, the proposed methods can also be applied to Bluetooth LE as both

ZigBee and Bluetooth LE employ the AES-CCM block cipher.
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Chapter 4

BlueEar: A Practical Bluetooth Traffic

Sniffing System Based on Bluetooth

Compliant Radios

4.1 Introduction

In this chapter, we explore the feasibility and privacy implications of sniffing Bluetooth

traffic in practical environments. Unlike prior Bluetooth traffic sniffers that rely on spe-

cialized power-hungry wideband radios, our sniffing system consists of only commodity

Bluetooth-compliant radios. Our major contribution is two-fold.

The BlueEar system. We present the design, implementation, and evaluation of BlueEar

– the first practical Bluetooth traffic sniffer that consists only of inexpensive, Bluetooth-

compliant radios. BlueEar features a novel dual-radio architecture, where two radios –

named as scout and snooper – coordinate with each other on learning the hopping sequence

of indiscoverable Bluetooth, predicting adaptive hopping behavior, and handling com-

plex interference conditions. Specifically, the scout hops over all Bluetooth subchannels

to survey interference conditions and monitors the target’s packet transmissions. By fus-

ing these measurements, BlueEar uses a probabilistic clock matching algorithm to deter-
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mine the basic hopping sequence, and then integrates statistical models and a lightweight

machine learning algorithm to predict the adaptive hopping behavior, which allows the

snooper to hop following the target. To maintain reliable sniffing performance in complex

interference conditions, the scout runs a selective jamming algorithm, which manipulates

the hopping of the target to mitigate the impacts of interference. We have implemented

a prototype of BlueEar for sniffing the traffic of Bluetooth Classic, which offers enhanced

data rates and a more complex hopping protocol than Bluetooth LE. Our prototype can

be expended to sniff on Bluetooth LE traffic. The prototype employs two Ubertooths [31]

to implement the scout and the snooper, and interfaces them to a controller running on

a Linux laptop. We identify critical issues in Ubertooth firmware that severely degrades

its performance during frequency hopping, and present novel solutions to address these

flaws. Extensive experiments results show that BlueEar can maintain a packet capture

rate higher than 90% consistently in practical environments, where the target Bluetooth

network exhibits diverse hopping behaviors in the presence of interference from coexist-

ing 802.11 based WLANs.

Privacy implications. We discuss the implication of the BlueEar system on Bluetooth

privacy. Moreover, we evaluate the performance of BlueEar when eavesdropping on au-

dio traffic, which is known to be extremely sensitive to packet loss. We show that the

packet capture rate achieved by BlueEar translates to a high audio quality with a mean

opinion score (MOS) of 3.5, which is translated into F̀air’ and G̀ood’ from the listener’s

perspective. Furthermore, we present a practical countermeasure, that can be easily im-

plemented in the user-space driver of the Bluetooth master device, while requiring no

modification to existing slave devices like keyboards and headsets. The countermeasure
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effectively reduces the packet capture rate of the sniffer to 20%, and degrades the MOS of

eavesdropped audio to 1.5, which is between B̀ad’ and P̀oor’.

The rest of the chapter is organized as follows. We present system overview and ar-

chitecture in section 4.2. In section 4.3, we discuss BlueEar system design in detail. Eval-

uation of BlueEar system performance is presented in section 4.5. We discuss the impacts

of BlueEar on privacy breach for Bluetooth system, including Bluetooth LE, in section 4.6.

Section 4.7 concludes the chapter.

4.2 BlueEar Overview

4.2.1 Objectives and Challenges

We study Bluetooth privacy by exploring the feasibility of sniffing Bluetooth traffic in

practical environments. To this end, BlueEar is designed as a passive traffic sniffer that

leverages general, inexpensive wireless platform to capture Bluetooth packets without

pairing with the target piconet. To achieve this goal, we tackle the following challenges.

(i) Secret hopping phase. In indiscoverable mode, the piconet clock that indicates the

hopping phase is hidden from BlueEar. In adaptive hopping mode, determining the

hopping phase is particularly challenging because the basic hopping sequence of the

target is subject to frequent modifications.

(ii) Vendor-dependent adaptive hopping. The adaptive hopping of Bluetooth is guided by

a subchannel map, which classifies subchannels as good and bad based on dynamic

interference conditions. However, the Bluetooth standard does not specify the im-

plementation of subchannel classification, resulting in vendor-dependent implemen-
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tation, where Bluetooth chipsets manufactured by different vendors may hop over

different subchannels even in the same spectrum context.

(iii) Interference in the crowded 2.4 GHz band. When coexisting with other wireless de-

vices, BlueEar may experience hidden and exposed interference. When an RF signal

that interferes with the target is too weak to be measured at BlueEar, the spectrum

contexts observed by BlueEar and the target may differ, making it difficult to pre-

dict adaptive hopping behavior. When an RF source interferes with the target but

BlueEar, significant degradation of sniffing performance may occur. While autho-

rized devices can maintain packet reception performance by coordinating their hop-

ping, designed as a passive sniffer, BlueEar cannot coordinate with the target, which

may lead to substantial packet corruptions.

4.2.2 System Architecture

Instead of using specialized radio to monitor all subchannels in parallel, BlueEar tackles

the above challenges based on a simple dual-radio architecture that consists of two inex-

pensive, Bluetooth-compliant radios. The two radios – named as scout and snooper – are

interfaced to a controller, which employs a suite of novel algorithms to coordinate the

two radios, gluing them as a powerful passive traffic sniffer. Fig. 4.1 illustrates the ar-

chitecture of BlueEar. Specifically, the working flow of BlueEar can be divided into the

following steps.

(i) Traffic filtering. When multiple piconets coexist in the same environment, BlueEar

separates their traffic based on the piconet address of captured packets. Specifi-

cally, the preamble of each Bluetooth packet carries a synchronization word, which
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Figure 4.1: The dual-radio architecture of BlueEar. Components in the gray area comprise a
standard-compliant hop selection kernel.

is derived from the piconet address using an encoding function specified by the stan-

dard [47]. BlueEar employs the brute force algorithm proposed in [49] to extract pi-

conet address from the synchronization word, and then filters out the packets whose

piconet address mismatches the target piconet address specified by the BlueEar user.

(ii) Basic channel acquisition. To acquire the basic channel of the target piconet, the scout

listens on an arbitrary subchannel to monitor the target’s packet transmissions. Af-

ter extracting piconet address from packet preamble, BlueEar derives the entire ba-

sic hopping sequence, and then reverses the piconet clock using an interference re-

silient, probabilistic clock matching algorithm. Specifically, the receiving times of

captured packets are compared with the basic hopping sequence at different hop-
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ping phases, until a correct phase is found. The acquired piconet address and clock

are then fed to a standard-compliant basic hop selection kernel to compute the basic

channel.

(iii) Adapted channel acquisition. To acquire the adapted channel, BlueEar needs to predict

how the target reacts in dynamic spectrum context. To this end, the scout hops over

all subchannels on the acquired basic channel to survey interference conditions, and

monitors packet transmissions to infer the target’s subchannel utilization. By fus-

ing these measurements, BlueEar trains a subchannel classifier at run-time, which

accurately derives the target’s subchannel map despite vendor-dependent adaptive

hopping behavior and the possible disparity between the spectrum contexts of the

scout and the target. The subchannel map is then fed to a standard-compliant adap-

tive hop selection kernel for computing the adapted channel.

(iv) Interference avoidance. The snooper hops following the target on the adapted chan-

nel to sniff traffic. BlueEar handles complex interference in the crowded 2.4 GHz

band using a selective jamming algorithm. Specifically, a loss detector is employed

to monitor the sniffing performance of all subchannels. When substantial packet cor-

ruptions are detected on a subchannel i, the scout deliberately generates interference

on iwhile the target visits i during hopping. Because of adaptive hopping, the target

will be driven away from lossy subchannels where BlueEar observes poor sniffing

performance. The objective is to manipulate the target’s hopping to enforce implicit

coordination.
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4.3 Design of BlueEar

In this section, we present the design of key BlueEar components in detail.

4.3.1 Clock Acquisition

In the following, we define some terminology and present key concepts of clock acquisi-

tion.

Definition 1 Basic hopping sequence β = (i0, .., ic, .., iN) is an n-tuple of integers i ∈

{0, .., 78} that represents subchannel index, c refers to the piconet clock, i.e. hopping phase,

and N = 227 − 1.

Definition 2 Observed hopping pattern P = {p0,p1, ..,pn} is a set of captured packets,

where a packet is identified based on system time-stamp at reception time.

Next, we introduce our basic idea of reversing the piconet clock, which involves three

fundamental algorithms, including, first reversing the piconet clock when the target hops

in the basic mode; second, we present a probabilistic matching approach to determine

the piconet clock in the presence of interference. And finally, we introduce a maximum-

likelihood (ML) based algorithm, which accelerates clock acquisition and significantly

reduces clock acquisition delay.

4.3.1.1 Brute Force Clock Acquisition

Because the entire hopping sequence β is known after the piconet address is extracted

from packet preamble [49], it is possible to reverse the piconet clock c through a simple

brute force search, which compares an observed hopping pattern with the entire hopping

sequence at all phases to search for a match. Fig. 4.2 shows an illustrative example.
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Figure 4.2: An illustrative example of brute force search for clock acquisition.

At the beginning, the scout listens on a single subchannel to monitor the target’s packet

transmissions. As shown in Fig. 4.2, the scout listens on subchannel 2 where three packets

are captured, which defines P. The receiving times of these packets compose a hopping

pattern that describes how the target visits the monitored subchannel. As shown in Fig.

4.2(c) and (d), BlueEar then compares the observed hopping pattern with the entire basic

hopping sequence at all phases. A match is found at clock 34.

Before capturing a sufficient number of packets, the observed hopping pattern may

happen to match the basic hopping sequence at multiple clock values, resulting in clock

ambiguity. Because the basic hopping sequence is pseudo-random, probability that an

observed hopping pattern that comprises n packets matches the basic hopping sequence

at an arbitrary clock can be computed as 1
79n . Therefore, clock ambiguity decreases as the

number of captured packets increases.
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Figure 4.3: The effect of subchannel remapping on brute force search based on the same example
shown in Fig. 4.2.

4.3.1.2 Probabilistic Clock Matching (PCM)

In the crowded 2.4 GHz band, Bluetooth devices rarely hop in the basic mode because

of the impacts of interference from coexisting wireless devices [17] [28] [54] [20]. To

adapt spectrum use, Bluetooth modifies the basic channel by remapping bad subchan-

nels subjected to interference with pseudo-randomly selected good subchannels. Since

the adapted channel may differ from the basic channel in various phases, the hopping

pattern observed by the scout may mismatch the basic hopping sequence even at the

correct clock. Fig. 4.3 illustrates the impact of subchannel remapping using the same ex-

ample shown in Fig. 4.2. As illustrated in the figure, brute force search may fail to find a

perfect match due to the packet transmitted on the remapped subchannel.

To acquire the piconet clock c in the presence of interference, BlueEar leverages the
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following key observation. When comparing an observed hopping pattern P with the

basic hopping sequence β at the correct clock, the ratio of mismatches should equal the

ratio of remapped subchannels. As required by FCC, Bluetooth Classic must use at least

20 subchannels for frequency hopping [47]. Therefore, the ratio of remapped subchannels

is at most 5979 . Hence, if the ratio of mismatches at a clock c is significantly larger than 59
79 ,

then c is likely an incorrect clock.

Driven by the above observation, BlueEar employs a probabilistic clock matching

(PCM) algorithm for clock acquisition. Instead of seeking a perfectly matched clock,

BlueEar determines the correct clock by eliminating incorrect clocks based on the number

of mismatches. A clock is identified as incorrect if the 95% confidence interval of its mis-

match ratio exceeds 59
79 . Specifically, let β be the basic hopping sequence, P = {p0, ..,pn}

be a set of observed packets, and C = {c0, c1, ..cj} and D = {d0,d1, ..dj} be the sets of clock

candidates and the corresponding mismatches numbers, respectively. When comparing

P with β, the PCM algorithm returns C and D, where di is the number of mismatches at

clock candidate ci. If ci is the correct clock, the ratio of mismatches µ = di
n , n = |P|, should

be close to the ratio of unused subchannels. Based on the central limit theory, the distri-

bution of
√
n(din − µ) should approach normality when n is reasonably large. The 95%

confidence interval of µ can be estimated as din ± 2
σ√
n

, where σ2 is the variance. Therefore,

clock ci is determined as incorrect if din − 2 σ√
n
≥ 59

79 . When a new packet is captured, the

algorithm updates the mismatch ratios for remaining clock candidates.

4.3.1.3 Accelerating Clock Acquisition

The PCM algorithm acquires the correct clock by gradually eliminating incorrect candi-

dates; this may incur some time delay while waiting for new packets to be captured. To
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reduce clock acquisition delay, BlueEar resorts to estimate the piconet clock. That is, given

a set of observed packets P, the ML algorithm derives several subsets P1, ..,Pz ⊂ P, and in-

vokes the PCM algorithm to obtain corresponding sets of clock candidates C1, ..,Cz. From

the later sets, the algorithm finds probability distribution of candidates and identifies a

candidate that maximizes the distribution function. In particular, the algorithm proceeds

with the following steps.

Step 1: Input: P = {p0, ..,pn} and C = {c0, .., cj}, and b < n

Step 2: Define a counter a = 1,

Step 3: Find the subset Pa ⊂ P, Pa = {pa, ..,pb}

Step 4: Invoke the PCM algorithm with Pa and obtains Ca

Step 5: Subtract q from all elements inCa. Intuitively, if cwas the piconet clock at the time

of transmitting p0, then c+ qmust be the piconet clock at the time of transmitting

pa, where q is the number of clock ticks between p0 and pa.

Step 6: Finds C← C∪Ca

Step 7: Increments a and b, while b < n, goto Step 3

BlueEar evaluates optimality of the ML estimator based on some loss function L, which

we define as follows: L(ci) = di, where ci is an approximation for the piconet clock c, and

di is the number of mismatches at clock ci as defined earlier. According to the PCM algo-

rithm, a clock candidate ci, that is aligned with high mismatches di, is most likely to be

eliminated from C as sufficient number of packets are overheard. Based on this observa-

tion, the ML estimator cwinner is considered if it is aligned with the minimum mismatches

number dm; otherwise, the ML algorithm waits for new packets to be captured.
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Figure 4.4: Estimation of a piconet clock based on the ML algorithm and loss function L(ci) = di.

Fig. 4.4 shows an example of ML algorithm, where the algorithm successfully identi-

fies the piconet clock based on a set of 20 observed packets. In this figure, it is clear that

the winner candidate aligns with the minimum value of the loss function L.

4.3.2 Subchannel Classification

The adaptive hopping of Bluetooth is guided by a subchannel map that classifies subchan-

nels as good and bad based on dynamic interference conditions. To acquire the adapted

channel, BlueEar employs a subchannel classifier, which infers how the target classifies

subchannels. The subchannel classifier must meet the following requirements.

• Accuracy. When a subchannel is misclassified, the snooper may hop to a wrong

subchannel different from the one used by the target. Poor subchannel classification

accuracy may result in substantial packet misses.

• Responsiveness. In dynamic spectrum contexts, the subchannel classifier must be

responsive to the change of interference conditions.

In the following, we present two complementary subchannel classification algorithms,

and discuss their advantages and limitations in achieving the above goals. We then dis-
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cuss how BlueEar integrates the two algorithms for subchannel classification.

4.3.2.1 Packet-based Classifier

Design. As Bluetooth only transmits on good subchannels, it is possible to infer the status

of a subchannel based on its packet rate, which indicates how frequently the target trans-

mits on a subchannel. To measure packet rates, the scout hops over all 79 subchannels

on the acquired basic channel to monitor the target’s packet transmissions. For each sub-

channel i, BlueEar computes its packet rate as ri =
qi
vi

, where qi is the number of packets

received on i, and vi is the number of times the scout visits i. When a subchannel is clas-

sified as bad by the target, the packet rate measured by the scout will be substantially

lower than that of good subchannels.

A key challenge to achieve accurate packet-based classification is that packet rates dif-

fer significantly across different applications (e.g., data transfer, audio, and keystroking,

etc.), and may vary with time depending on the traffic dynamics in the target piconet. To

address this challenge, we leverage the fact that, as required by FCC, Bluetooth Classic

uses at least 20 subchannels for frequency hopping [47]. As a result, the 20 subchannels

that have the highest packet rates can be used as a reference to estimate the current packet

rate of the target piconet. Driven by this observation, the packet-based classifier identifies

bad subchannels using the following algorithm.

• Step 1: Initially, the 20 subchannels that have the highest packet rates are classified

as good. LetRg = {ri1 , ..., ri20} be the set of their packet rates.

• Step 2: In remaining unclassified subchannels, the classifier searches for the one with

the highest packet rate. Denote this subchannel as i, and its packet rate as ri.
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Figure 4.5: Running examples of packet-based subchannel classification for data and voice traffic
under in different spectrum contexts. The packet-based classifier calculates a probability score
based on Eq. (4.1) to determine subchannel status. A subchannel is classified as bad if the proba-
bility score is below the pre-defined threshold.

• Step 3: The packet-based classifier determines whether subchannel i is bad by check-

ing if ri is an outlier of Rg. If ri is an outlier, i and all remaining subchannels of

even lower packet rates are classified as bad. Otherwise, i is classified as good and

its packet rate ri is inserted to Rg. The algorithm then goes back to step 2 until a

bad subchannel is identified.

We determine if ri =
qi
ni

is an outlier of Rg as follows. Let rg be the average packet

rate ofRg. Assuming subchannel i is good, probability that the target transmits less than

qi packets after vi visits can be computed as,

ρi =

qi∑
n=0

(
vi
n

)
(1− rg)

vi−nrng (4.1)

We identify outliers under a given confidence level, denoted as θ. Subchannel i is classi-

fied as bad if ρi ≤ 1− θ.

Fig. 4.5 gives two examples of packet-based subchannel classification for data and au-

dio traffic in different spectrum contexts. The upper figure shows the packet rates mea-

sured on 79 subchannels. Low packet rates are observed on bad subchannels subjected
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Figure 4.6: Probability densities of interference power measured on clean and dirty subchannels.

to interference. The bottom figure shows the probability scores ρi for each subchannel

i calculated using Eq. (4.1). As shown in the figure, the packet-based classifier reliably

identifies bad subchannels despite the significant variation of packet rates across different

applications.

Discussion. By classifying subchannels based on packet rates, packet-based classifier

offers two advantages: (i) it works efficiently across different Bluetooth devices despite

vendor-dependent subchannel classification methods, (ii) the classification is not affected

by the disparity between the spectrum contexts of the target and BlueEar. However,

packet-based classifier is less responsive in dynamic spectrum context because a subchan-

nel cannot be classified as good or bad before overhearing a sufficient number of packets.

As a result, packet-based classifier may perform poorly when subchannel status changes

fast with time-varying interference.

4.3.2.2 Spectrum Sensing-based Classifier

Design. Since Bluetooth piconet classifies subchannel based on interference conditions,

subchannel i is likely bad if strong interference is measured on i. Driven by this obser-

vation, spectrum sensing-based classifier infers subchannel status based on interference
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measurements. When hopping on the basic channel, the scout measures interference

power on each subchannel. The interference condition on a given subchannel is char-

acterized using the probability density of interference power. Fig. 4.6 illustrates two

examples measured by the scout on clean and dirty subchannels. On both subchannels,

the environment noise floor is found at -95 dBm. An interference source whose signal

power ranges from -45 dBm and -40 dBm can be observed in Fig. 4.6b. The interference

source is active in about 15% of time.

Based on interference measurement, the spectrum sensing based classifier employs an

SVM to determine subchannel status. The SVM takes as input a feature vector obtained by

discretizing the probability density of interference power based onXi = {x−100,i, x−99,i..., x−20,i},

where xs,i is the probability of observing an interfering signal power of s dBm on sub-

channel i. Xi characterizes interference condition between -100 dBm and -20 dBm, which

is sufficient to capture the activities of all interfering sources in practice.

Discussion. Although spectrum sensing-based classifier is responsive to time-varying

interference conditions, achieving satisfactory accuracy is difficult because (i) depending

on the location of interference source, the spectrum measured by the scout may differ

from the one observed by the target; (ii) the subchannel classification method adopted by

the target is vendor-dependent and may differ across different devices. To address these

limitations, the spectrum sensing-based classifier must be trained at run-time.

4.3.2.3 Hybrid Classifier

For accurate and responsive classification of subchannel status, BlueEar employs a hybrid

classifier that combines the complementary packet- and spectrum sensing-based classi-

fiers. At run-time, the hybrid classifier uses packet-based classification results to train a
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Figure 4.7: Time-domain illustration of run-time training of the spectrum sensing-based classifier.

spectrum sensing-based classifier, which learns the vendor-dependent subchannel clas-

sification method of the target. After training, BlueEar fuses the outputs of packet- and

spectrum sensing-based classifiers to infer subchannel status.

To train the spectrum sensing-based classifier, BlueEar labels interference conditions

measured by the scout using the outputs of packet-based classification. Note that packet-

based classifier infers subchannel status based on packet rates derived from the history of

overheard packets, therefore its result may lag behind the true subchannel status. To com-

pensate this delay, BlueEar composes training cases by labeling Xf using packet-based

classification results obtained at a later time point. Fig. 4.7 illustrates this training proce-

dure in time-domain.

For subchannel classification, the hybrid classifier fuses the outputs of packet- and

spectrum sensing-based classifier based on the responsiveness and confidence of results.

The soft-output of SVM is utilized to characterize the confidence of classification. The

soft-output of SVM is a log-likelihood ratio computed as λi = log ρi
1−ρi

, where ρi is the

probability that i is good, and |λi| indicates confidence. Because spectrum sensing-based
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classifier is more responsive to dynamic spectrum context, the hybrid classifier adopts

the output of SVM as the final classification result if its confidence |λi| is higher than a

predefined threshold. Otherwise, the output of packet-based classifier is adopted.

4.3.3 Selective Jamming

In the crowded 2.4 GHz frequency band, BlueEar is subjected to the interference of coex-

isting wireless devices, especially the prevalent 802.11 based WLANs. Unlike authorized

Bluetooth devices that can handle such interference by coordinating their hopping, de-

signed as a passive packet sniffer, BlueEar cannot coordinate with the target, which may

result in poor sniffing performance. BlueEar mitigates the impacts of such interference

using a selective jamming algorithm. In the following, we present the algorithm design

in detail, and then discuss the impact of jamming on 802.11 devices.

When the interference causes substantial packet corruptions on a subchannel i, the

scout deliberately generates interference on iwhile the target visits i. Because of adaptive

hopping, the target will be driven away from subchannels i, resulting in implicit coordi-

nation. To this end, BlueEar employs a loss detector to identify subchannels subjected to

hidden interference. Whenever the scout overhears a packet, it checks packet integrity

using CRC, and then sends the result to the loss detector. For each subchannel, the loss

detector employs a moving window to compute the ratio of corrupted packets. The scout

is commanded to jam a subchannel if the packet corruption ratio is higher than a prede-

fined threshold. To effectively drive the target, a class one Bluetooth radio capable of high

power transmission is employed to implement the scout.

Discussion. Despite deliberately generating interference in the 2.4 GHz band, the impacts

of selective jamming on 802.11 devices is very limited because of two reasons. First, there
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are considerably low chances for collisions between 802.11-based frames and selective

jamming frames. As explained earlier, selective jamming is equivalent to Bluetooth class

1 transmission, and hence, probability of collision with 802.11-based WLANs is equiv-

alent to that of Bluetooth. A previous study [48] highlights that in worst case scenario,

where the three 802.11 non-overlapped channels are consistently occupied, the proba-

bility of collision with Bluetooth is less than 0.2. However, this probability significantly

reduces if we consider the following factors: (i) the scenario of occupying the three 802.11

non-overlapped channels is rare; (ii) the study [48] considers a low data rate (5.5Mbps)

for 802.11 link. With adoption of OFDM higher data rates, frame-in-air-time becomes

shorter than that of 5.5Mbps rate. Accordingly, abundant white space between 802.11

transmissions is expected. A recent study [20] confirms this and shows that 802.11 traffic

is highly bursty and frames are clustered together with short intervals of time (typically

less than 1ms), while periods between clusters are significantly longer; (iii) life time of a

jamming session is 2 sec in average, where our experiments show that Bluetooth reacts

to interference within 4 sec at most; and finally (iv) BlueEar only jams in the presence of

hidden interference, which is a special scenario for BlueEar. Second, assuming the case of

collision with 802.11-based frame, a previous study [10] shows that 802.11-based WLANs

is robust against narrow band (the scout occupies 1MHz vs. 20MHz for 802.11), short-

lived interference. Therefore, we conclude that selective jamming has very limited effect

on 802.11-based WLANs.
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Figure 4.8: BlueEar prototype that consists of two Ubertooths [31].

4.4 Implementation

In this section, we present the implementation of BlueEar in detail. As shown in Fig.

4.8, we employ two Ubertooths [31] to implement the scout and the snooper, and then

interface them to a controller running on a Linux laptop. Computation intensive tasks

like clock acquisition and subchannel classification are implemented on the laptop. Time-

sensitive components like basic and adaptive hop selection are implemented by extending

the firmware of Ubertooth. In addition, we identify critical issues in Ubertooth firmware

that severely degrade its performance during frequency hopping, and present novel so-

lutions to address these flaws. We note that although our current prototype is built based

on Ubertooth, the design of BlueEar is platform-independent and can be easily ported to

other systems.
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4.4.1 Ubertooth-End Implementation

Ubertooth is an open source 2.4 GHz wireless development board that costs around $80

per unit [31]. Each Ubertooth is equipped with an LPC17xx microcontroller, and a low-

power Bluetooth-compliant CC2400 transceiver connected to a 4-inch 2.2 dBi antenna.

Ubertooth is capable of transmitting at 22 dBm, which assures the effectiveness of selec-

tive jamming.

The original firmware of Ubertooth is implemented in 823 lines of C code, which im-

plements DMA management, basic hop selection, and carrier sense, etc. Data in DMA

buffer is framed into USB packets and forwarded to the host. However, the original

firmware lacks support for adaptive hop selection and run-time clock synchronization. In

addition, we find that the firmware is poorly optimized for real-time frequency hopping.

In particular, because of resource contention among multiple tasks, subchannel switching

may be improperly delayed (e.g., by USB packet streaming, which typically takes around

50µs according to our measurements). Such delay will break the hop synchronization be-

tween BlueEar and the target. We extend the firmware of Ubertooth using 400 lines of C

code, which implement the following functions.

(i) Run-time clock synchronization. To hop following the basic and the adapted chan-

nel of the target, the scout and the snooper must synchronize their native clocks

with the target’s piconet clock, i.e. their clocks must have the same value and tick

at the same time. Run-time clock synchronization is imperative because the clocks

of the scout, the snooper, and the target may have clock skews [19], which make

them run at different rates, accumulating a drift that breaks hop synchronization.

The extended firmware accomplishes clock synchronization as follows. After clock
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acquisition, the firmware receives a piconet clock value from the clock acquisition

component. The clock value is used as the initial value of a native clock, which is ob-

tained by programming a 10MHz timer provided by LPC17xx into a 27-bit counter

that ticks every hop. To assure that the native clock and the piconet clock tick at

the same time, the extended firmware leverages the fact that Bluetooth packets are

always transmitted immediately after clock ticks. Therefore, the receiving times of

overheard packets can be utilized as a clock reference to correct clock drift. To avoid

packet miss caused by remaining clock drift, the native clocks of the scout and the

snooper are programmed to tick 1 µs earlier than the target.

(ii) Adaptive hop selection. The firmware of the snooper implements a standard-compliant

adaptive hop selection kernel. The kernel takes three inputs, including the inferred

subchannel map, the piconet address obtained from the controller, and the value of

the native clock. The inferred subchannel map is updated every second.

(iii) Task scheduler. To assure real-time hopping performance, the extended firmware

schedules tasks based on their time sensitivities. Hop selection and subchannel

switching are given the highest priority to assure the right hop synchronization.

USB packet streaming and carrier sense are given the second and lowest priority,

respectively. Tasks are executed in the interval between subchannel switching in the

order of their priorities.

4.4.2 Controller Implementation

The controller implements compute intensive tasks, including packet decoding, clock ac-

quisition, subchannel classification, and jamming subchannel selection. In addition, it in-
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teracts with the scout and the snooper via high-speed USB. These tasks are implemented

as multiple processes, which share a 3 KB of memory for coordination and parameter

exchange. For packet-based subchannel classification, the controller implements the al-

gorithm described in Section V-B1 in 53 lines of C code. A confidence level of 99% is used

to assure accurate identification of bad subchannels. The spectrum sensing-based clas-

sifier is implemented based on SVMlight, which is an open-source computation-efficient

SVM library [25]. The spectrum sensing-based classifier takes about 51.2 KB of memory at

run-time. To compensate the delay of packet-based classification when training the SVM

(as explained in Section V-B2 and Fig. 4.7), the controller uses packet-based classification

results obtained in t+ 4s to label the signal features measured at t. This choice is moti-

vated by our empirical measurements, which show that most Bluetooth devices update

subchannel map every 4s. The hybrid classifier chooses the result of SVM as output if the

confidence of SVM is higher than 90%. Otherwise the output of packet-based classifier

is adopted. The controller is responsible for decoding the raw bit stream received from

Ubertooth. Packet integrity is examined by checking the received CRC. A subchannel is

jammed if the ratio of corrupted packets is higher than 10%.

4.5 BlueEar Performance

In this section, we present a thorough evaluation of BlueEar performance. In the fol-

lowing, we first introduce our experimental methodology, and then discuss experiment

results in detail.
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4.5.1 Experimental Methodology

We study BlueEar performance when sniffing data transfer and audio streaming, which

are representative Bluetooth traffics that have distinct packet rates. Data traffic is gen-

erated by transferring data files between two laptops equipped with Broadcom dongles.

Audio traffic is generated by playing an audio file on a laptop equipped with CSR dongle,

and a Samsung Bluetooth headset is set as the audio sink. We conduct experiments in an

office building under the interference of a large-scale 802.11-based WLANs, as well as in

various controlled settings to benchmark BlueEar performance under specific interference

patterns. We evaluate the synchronization delay, the subchannel classification accuracy,

and the packet capture rate of BlueEar. The synchronization delay is measured as the

time needed to determine the correct piconet clock. To measure subchannel classification

accuracy and packet capture rate, we log the groundtruth subchannel map and packet

rates at the piconet master using a script written based on hcitool. The host of BlueEar

is connected with the piconet master via an Ethernet link. The instantaneous readings of

groundtruth subchannel map and packet rates are transferred to the BlueEar host using

UDP. We compare BlueEar with a set of baselines. First, we compare the hybrid subchan-

nel classifier proposed in Section V-B3 with pure packet-, and spectrum sensing-based

classifiers (abbreviated as P̀kt’ and S̀S’ in figures). The SVM of pure spectrum sensing-

based classifier is trained offline in a controlled setting consisting of an 802.11 access point

(AP) and a Broadcom piconet. During training, we tune the power and temporal pattern

of 802.11 transmissions to introduce different interference conditions, which enables ex-

tensive profiling of the adaptive hopping behavior of the Broadcom device. We then use

the trained classifier to predict the subchannel maps in data and audio tests, where the
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Figure 4.9: Clock acquisition delay when sniffing data and audio traffics in different spectrum
contexts (characterized by the percentage of bad subchannels at the target piconet).

piconets are formed using different Bluetooth devices. Second, to evaluate the gain of

selective jamming, we compare BlueEar with a baseline where the selective jamming is

disabled. Third, we compare the packet capture rate of BlueEar with that of an existing

Ubertooth-based sniffer [31], which operates in the basic hopping mode, and is oblivious

to the adaptive hopping behavior and the impacts of interference.

4.5.2 Synchronization Delay

We first evaluate the delay incurred when synchronizing BlueEar with the target piconet.

The dominant component of this delay is introduced by clock acquisition, during which

the scout listens on a single subchannel until it captures enough packets to reverse the

piconet clock. In the following, we evaluate clock acquisition delay, first based on the
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PCM algorithm, and then based on ML algorithm.

4.5.2.1 Delay based on PCM algorithm

We benchmark clock acquisition delay in different spectrum contexts where the target ex-

hibits diverse hopping behaviors. Our experiments are conducted in a controlled setting

where three 802.11 access points (APs) are deployed around the target. Each AP occupies

one of the three non-overlapping 20 MHz channels. When all APs are active, they create

a crowded spectrum where about 75% subchannels of the target piconet are bad.

Fig. 4.9 shows the probability of successfully determining the piconet clock, based on

the PCM algorithm, as the listening time of the scout increases. We observe that clock

acquisition delay when sniffing audio traffic is higher than that when sniffing data traf-

fic. This is mainly because of the lower packet rate of audio traffic. Interestingly, the

delay substantially reduces when the spectrum becomes more crowded. This is because,

when more subchannels are occupied by 802.11 APs, the target piconet has to use fewer

subchannels for packet transmissions, resulting in an increased packet rate on the sub-

channel monitored by the scout. Specifically, when 75% of subchannels are occupied by

802.11 APs, the clock acquisition delay is less than 10s in both data and audio tests. The

result implies that Bluetooth traffic sniffers can substantially reduce its synchronization

delay using deliberately planned interference.

4.5.2.2 Delay based on ML algorithm

Now we evaluate the ML algorithm performance. We consider clock acquisition delay as

an evaluation metric. We compare the ML algorithm performance with that of the PCM

algorithm when acts alone.
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Figure 4.10: Clock acquisition delay based on the ML algorithm, which is evaluated in different
spectrum contexts (characterized by the percentage of bad subchannels at the target piconet).

Fig. 4.10 shows the probability of successfully estimating the piconet clock as the

listening time increases. To compare, we observe that the ML algorithm outperforms the

PCM algorithm, as in Fig. 4.9. The ML algorithm significantly reduces clock acquisition

delay to less than 4s. Similar to the PCM algorithm, we observe that clock acquisition

delay when sniffing on audio traffic is higher than that when sniffing on data traffic. In

contrast, the ML algorithm requires more time to estimate the piconet clock when more

subchannels are occupied by 802.11 traffic, which in turn maximizes number of remapped

packets. Specifically, when a set of observed packets P starts with a remapped packet,

there is a low chance that the true clock is presented in the set of candidates C, i.e. all

candidates are false. Alternatively, when P starts with a packet that belongs to the basic

hopping sequence, the true clock must appear inC. As a result, the ML algorithm requires
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Figure 4.11: Subchannel classification accuracy in fast varying spectrum context.

more packets, i.e. more listening time, if the number of remapped packets is increased.

Based on this finding, the design of a countermeasure should consider increasing number

of remapped packets in Bluetooth traffic to prevent passive attacker, like BlueEar, from

sniffing on Bluetooth link.

4.5.3 Fast Varying Spectrum Context

We now evaluate BlueEar in dynamic spectrum contexts where the subchannel map of

the target is modified frequently. The transmission of AP is turned on/off every a couple

of seconds to create a fast varying spectrum context, which causes the target to modify its

subchannel map every update period.

Fig. 4.11 evaluates subchannel classification accuracy based on false positive (FP) and

false negative (FN) rates. As expected, the packet-based classifier performs the worst

because of its poor responsiveness. In comparison, the spectrum sensing-based classi-

fier offers better performance when sniffing data traffic, but fails to maintain its accuracy

when sniffing audio. This is because the spectrum sensing-based classifier is trained of-

fline against Broadcom devices, and it fails to predict the adaptive hopping of the CSR

devices used in the audio test. We also observe that the hybrid classifier performs best
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Figure 4.12: Packet capture rate in fast varying spectrum context.
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Figure 4.13: The gain of selective jamming under hidden interference.

among the three classifiers. In particular, the FP and FN rates are lower than 8% in both

data and audio tests. Fig. 4.12 further compares the packet capture rates when BlueEar

uses the three classifiers to predict adaptive hopping. Similar with the results shown in

Fig. 4.11, the hybrid classifier is able to maintain the best packet capture rate, which is

higher than 90% in both data and audio tests.

4.5.4 Hidden and Exposed Interference

We now evaluate the packet capture rate of BlueEar in the presence of hidden and ex-

posed interference. Fig. 4.13 evaluates the gain of selective jamming in the presence of

hidden interference, where an RF signal does not interfere with the target, but collide with
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Figure 4.14: Packet capture rates in crowded spectrum characterized by the percentage of bad
subchannels at the target piconet.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

C
D

F

Pkt capture rate

Hybrid
Pkt
SS

(a) Data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.6  0.7  0.8  0.9  1

C
D

F

Pkt capture rate
(b) Audio.

Figure 4.15: Packet capture rates under exposed interference condition.

captured packets at BlueEar. The experiments are conducted in a controlled setting where

an 802.11 device generates hidden interference starting from the 100-th second. When se-

lective jamming is enabled, BlueEar is able to maintain high packet capture rates, despite

a short period of performance drop before the target piconet reacts to the generated inter-

ference. In comparison, when selective jamming is disabled, BlueEar suffers substantial

performance degradation, where the packet capture rate is reduced to about 60% from

higher than 95%.

We further evaluate BlueEar in the presence of exposed interference, where an RF

signal interferes the target, but is too weak to be measurable at the scout. Exposed in-
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Figure 4.16: Subchannel classification accuracy in crowded spectrum characterized by the per-
centage of bad subchannels at the target piconet.

terference results in significant disparity between the spectrum contexts at BlueEar and

the target. We conduct experiments in a controlled setting where an 802.11 device is de-

ployed to generate exposed interference. During our experiment, the 802.11 device keeps

active, and interferes with 20 of 79 subchannels of the target piconet. Fig. 4.14 compares

the subchannel classification accuracy of the hybrid, the packet-based, and the spectrum

sensing-based classifiers. Different from what we observed in Fig. 4.11, the spectrum

sensing-based classifier suffers high FP in both tests. This is because spectrum sensing-

based classifier relies on the interference measurements of the scout to identify bad sub-

channels, which works poorly when the interference signal cannot be detected by the

scout. In comparison, hybrid and packet-based classifiers are able to maintain extremely

low FP and FN rates and high packet sniffing performance, as shown in Fig. 4.15.
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Figure 4.17: Subchannel classification accuracy under exposed interference condition.
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Figure 4.18: Packet capture rates under the ambient interference: (a) different locations in an
office building (interference of a large-scale 802.11-based WLANs); (b) different distances.

4.5.5 Crowded Spectrum

We then evaluate the misclassification rate of the hybrid classifier in spectrum contexts

with different levels of crowdedness. The FPs, FNs, and overall misclassification rates are

shown in Fig. 4.16. We observe that the hybrid classifier maintains high accuracy despite

the increasingly crowded spectrum. In particular, when 50% of subchannels are bad, the

overall misclassification rate is below 8% in both data and audio tests. Fig. 4.17 shows the

packet capture rates measured in the same experiment. As shown in the figure, BlueEar

captures more than 90% packets in both data and audio tests.
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4.5.6 Ambient Interference

We further evaluates the performance of BlueEar in an office building under the ambient

interference from a large-scale 802.11-based WLANs. Fig. 4.18(a) shows the packet cap-

ture rates measured at four randomly selected locations, where BlueEar is deployed at

10m away from the target piconet. In all of the four locations, the number of active 802.11

APs is higher than 20 during our experiments. We compare BlueEar with an existing

Ubertooth-based sniffer [31] that hops following the basic channel of the target. Because

the basic hopping sniffer is oblivious to the adaptive hopping behavior, it suffers 50%

to 25% packet misses. In comparison, BlueEar is able to maintain a packet capture rate

higher than 95% at all of the four locations.

Fig. 4.18(b) evaluates the packet capture rate at site D when BlueEar is deployed at

different distances from the target. The disparity in spectrum contexts is expected to in-

crease as BlueEar moves away from the target. However, thanks to the high-performance

subchannel classifier, BlueEar is able to capture more than 85% packets even when it is

27m away from the target.

4.6 Implications of BlueEar

In this section, we discuss the privacy implications of BlueEar in detail.

4.6.1 Implications on Bluetooth LE Privacy

Although the current prototype of BlueEar is developed for sniffing classic Bluetooth, its

methodology has significant implications on the privacy of Bluetooth LE. In the following,

we first briefly introduce the hopping protocol of Bluetooth LE, and elaborate on the
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impacts of BlueEar on Bluetooth LE privacy breach. The hopping protocol of Bluetooth

LE defines a physical channel, that hops over 37 data subchannels in the open 2.4 GHz

spectrum starting from 2.402 to 2.48 GHz. All subchannels are equally spaced with 2

MHz of bandwidth. The connection state of Bluetooth LE can be characterized as a set

of connection events. During the initialization of a connection, the master defines (i)

connection interval –a multiple of 1.25ms ranging from 7.5ms to 4.0s that defines the

event lifetime; (ii) transmission window size –a multiple of 1.25ms that defines the size

of transmit window, i.e. packet size; and (iii) hop increment inc –a random value ranges

from 5 to 16. The basic channel hopping is characterized by K(c, inc), where K(.) is the

hop selection kernel, and c is the index of current subchannel. At the first connection

event, the first subchannel is defined to be zero [47], the channel sequence repeats itself

whenever subchannel zero is visited. Similar with Bluetooth classic, Bluetooth LE adopts

adaptive hopping mode, where the basic channel is modified to adapt spectrum use in the

presence of ambient interference. The adaptive channel is defined by a subchannel map

that classifies the data subchannels into good and bad. If the basic kernel K(c, inc) selects

a bad subchannel, a remapping procedure is invoked to calculate a remapped subchannel

index. The master maintains the subchannel map and it notifies slave(s) about any updates

[47].

The hopping protocol of Bluetooth LE is different from that of Bluetooth Classic in

two aspects. First, basic channel sequence of Bluetooth LE is characterized by a random

value of the hop increment inc. In contrast, basic channel sequence of Bluetooth Classic

is characterized by the piconet address. The second difference between Bluetooth LE and

Bluetooth Classic is hopping phase, which is not defined in Bluetooth LE hopping pro-

tocol. Unlike the basic channel sequence of Bluetooth Classic, which repeats itself every
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about 23 hours, Bluetooth LE basic sequence repeats itself whenever subchannel zero is

visited. Due to power constraints, the hopping protocol of Bluetooth LE is much simpler

than that of Bluetooth Classic, making Bluetooth LE basic sequence easier to compromise.

As Bluetooth LE becomes pervasive, the privacy leakage of Bluetooth LE devices is

becoming an increasing concern. Although BlueEar is designed for Bluetooth Classic, it

has significant impacts on the privacy leakage of Bluetooth LE devices, which calls for

further research to further investigate and enhance the privacy of Bluetooth LE. In par-

ticular, the key components of BlueEar system, including subchannel classification and

selective jamming, are independent of the hopping protocol. These techniques can be

directly ported to Bluetooth LE as well as other adaptive hopping systems without mod-

ifications. Unfortunately, the clock acquisition component, the hop selection subsystem,

and the packet decoder of our prototype are specifically engineered for Bluetooth classic,

which make the current version of BlueEar incompatible with Bluetooth LE.

4.6.2 Impacts on Privacy Breach

Previous research has shown the possibilities of cracking Bluetooth encryption and com-

promising user privacy [55] [56] [13] [38] [37] [40] [11]. A prerequisite of these attacks is

to passively sniff Bluetooth traffic. Existing attacks [38] [13] employ prohibitively expen-

sive commodity sniffers, which limits their widespread distribution. The BlueEar system

we demonstrated in this paper may unleash such attacks, making them a real issue for

off-the-shelf Bluetooth devices.

To further understand the impacts of BlueEar on privacy leakage, we conduct the

following two experiments.
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Figure 4.19: Seriousness of privacy leakage evaluated: (a) standard; and (b) countermeasure.

4.6.2.1 Eavesdropping on Data Traffic

We study the impacts of BlueEar when successfully eavesdropping on a Bluetooth data

link. To quantify such privacy leakage, we adopt the seriousness of privacy leakage model.

The model, which is proposed by [9], states,

S(P,L) = Σwi.pi.li (4.2)

where pi ∈ P = {p0,p1, ..,n} is a privacy unit, wi is the weight of pi, and li ∈ L = {0, 1},

li = 1 when pi is leaked, and 0 otherwise . As data packet carries potential sensitive

information, rather than other packets, we define the components of privacy unit based

on data packets and assign their weights as: data packet (weight=95%), and other types

of packets (weight=5%).

Fig. 4.19(a) quantifies seriousness of privacy leakage, where S is calculated every 2

seconds based on number of packets captured by BlueEar. As shown in the figure, the

seriousness of privacy based successful sniffing on Bluetooth data traffic is very high,

where the average is about 90%.
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Figure 4.20: Audio quality observed by BlueEar (without countermeasure).

4.6.2.2 Eavesdropping on Audio Traffic

We study impacts of BlueEar when eavesdropping on audio traffic, like eavesdropping

on a speech conversation, which is known to be challenging because audio streams are

extremely sensitive to packet loss. The experiment proceeds as follows. (i) We generate

audio traffic over a Bluetooth link and deployed BlueEar to sniff on traffic; (ii) as BlueEar

collects real-time trace, it reports packet loss rates every 2 seconds and logs locations of

missing packets; and (iii) we simulate the audio packet stream on a PC and replayed each

missing packets with it’s preceding one.

We quantify the quality of the simulated audio stream, which should be equivalent to

the quality of the eavesdropped audio, based on peak signal to noise ratio (PSNR) and

mean opinion scores (MOS). To obtain the later, we map PSNR values into MOS, which

is categorized as five voice qualities including, excellent, good, fair, poor, and bad as

proposed in [32]. Fig. 4.20(a) evaluates audio quality based on PSNR, that is calculated

every 2 seconds, and MOS. We observe that BlueEar maintains high audio quality, where

average PSNR is 35 and MOS scores are higher than fair in 81% of the time.
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Figure 4.21: Audio quality as the target implements countermeasure.

4.6.3 Practical Countermeasure

To counteract sniffing systems, like BlueEar, we propose a practical countermeasure ap-

proach. We implement the proposed countermeasure as a user-space script on Bluetooth

master and it requires no modifications to existing slaves. The key idea of the approach is

to frequently flip status of randomly selected subchannels (good becomes bad, and vice

versa). Such random flipping interferes the subchannel classifier, making it hard for the

sniffer to learn the adaptive hopping sequence. Thus, the sniffer experiences poor data

quality. To evaluate the effectiveness of the countermeasure, we run the following exper-

iment. The countermeasure randomly selects n− 20 subchannels to be flipped, where n

is the total number of good subchannels; this complies with the FCC rule, that requires at

least 20 subchannels to be used by Bluetooth. We wrote a user-space script that updates

the subchannel map is every 200ms. The script interacts with BlueZ –the open source

Bluetooth stack. We deploy BlueEar to eavesdrop on a data and audio traffic as in section

4.6.2.

Fig. 4.22 shows significant drop in packet capture rates due to the countermeasure.

Fig. 4.21(a) evaluates PSNR, where the average drops to 15. Further MOS scores drop to
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Figure 4.22: BlueEar pkt capture rates: standard and countermeasure.

poor in 95% of the time, as shown in Fig. 4.21(b). This confirms that the sniffer experience

poor audio quality due to high packet loss rate, which is mainly caused by the coun-

termeasure. Similarly, Fig. 4.19(b) evaluates seriousness of eavesdropped data packets,

where average seriousness drops to 40% in 95% of the time.

4.7 Summary of Chapter

This chapter presents BlueEar, the first Bluetooth packet sniffer that only uses off-the-

shelf, Bluetooth-compliant radios. BlueEar features a dual-radio architecture, where two

radios are coordinated by a suite of novel algorithms to eavesdrop on an indiscoverable

Bluetooth device, relieving the need of expensive specialized radios adopted by commod-

ity sniffers. Extensive experiments show that BlueEar can maintain a high packet capture

rate higher than 90% in dynamic settings. We discuss the privacy implications of BlueEar,

and propose a practical countermeasure that can reduce the packet capture rate of the

sniffer to 20%.
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Chapter 5

BlueFunnel: Enabling Low-Power,

Wideband Sniffing of Bluetooth Traffic

5.1 Introduction

Existing Bluetooth traffic sniffers can be divided into two categories, which suffer differ-

ent technical limitations. Traditional wideband sniffers monitor all Bluetooth subchan-

nels in parallel by sampling the entire 2.4 GHz band using a high-speed ADC, which

is extremely power-hungry and expensive. Low-power sniffers use cheap, Bluetooth-

compliant radios to hop following the target, which however requires knowing the pseudo-

random hopping sequence. The BlueEar system we introduced in chapter 4 can passively

crack the hopping sequence, but relies on a long training process that requires seconds

of traffic monitoring. Unfortunately, except for a few applications like audio streaming,

Bluetooth traffics are typically short-lived in nature. For example, during mobile pay-

ments, low-duty cycled sensing, device pairing and key establishment, one traffic session

contains only a couple to tens of packets lasting at most tens of milliseconds, which effec-

tively prevents a sniffer from learning the hopping sequence.

In this chapter, we present BlueFunnel – a low-power wideband sniffer that addresses

the limitations of prior systems. Unlike traditional wideband sniffers, BlueFunnel enables
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parallel monitoring of Bluetooth subchannels without using a high-speed ADC. Unlike

prior low-power sniffers, BlueFunnel can decode Bluetooth packets without knowing the

hopping sequence of the target. The technical approach of BlueFunnel is to first subsam-

ple the wideband spectrum using a low-speed ADC, and then decode Bluetooth signals

using novel signal processing algorithms. By achieving this, BlueFunnel is of great im-

portance to understanding and diagnosing Bluetooth networks and applications in the

wild. In addition, by enabling practical sniffing of the pairing and key establishment pro-

cess, BlueFunnel has important implications to the security and privacy of a wide range

of Bluetooth applications.

We implement a prototype of BlueFunnel based on USRP platform [41]. Because com-

modity USRPs do not support sub-sampling, we emulate sub-sampling by first using the

high-speed ADC of USRP to sample the 2.4 GHz band at full speed, and then down-

sample the signals at a low rate before decoding using BlueFunnel. The signal processing

of BlueFunnel is implemented as a software deployed on a host of the USRP.

We evaluate the system performance based on packet capture rates in a variety of

settings. Our goal is to understand the performance of BlueFunnel in real wireless envi-

ronments in the presence of ambient interference on the system performance, which may

pollute the sub-sampled signal. Experiment results show that BlueFunnel can maintain

good levels of packet capture rates in all settings.

We further explore the security and privacy implications of BlueFunnel by studying

two eavesdropping-based attacks. In the first attack, we deploy BlueFunnel to sniff on the

pairing phase of a Bluetooth Low Energy link, and shows that BlueFunnel successfully

reveals EDIV, SKDm, and IVm that are used to establish the Short Term key (STK). In the

second attack, we utilize BlueFunnel to sniff on Bluetooth mouse traffic. Our experiment
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shows that BlueFunnel can reveal the mouse coordinates with high accuracy.

The rest of this chapter is organized as follows. Section 5.2 provides an overview for

BlueFunnel sniffer, and system architecture. In section 5.3, we introduce the design details

of BlueFunnel system. We present implementation details of a prototype of BlueFunnel

in section 5.4. Section 5.5 evaluates the system performance. In section 5.6, we discuss

possible attack scenarios based on BlueFunnel packet sniffer. Section 5.7 concludes the

chapter.

5.2 BlueFunnel Design

5.2.1 Objectives and Challenges

We introduce BlueFunnel –a low-power, wideband Bluetooth traffic sniffer that leverages

off-the-shelf devices to capture Bluetooth packets in the wild. Designed as a passive traffic

sniffer, BlueFunnel employs a simple RF circuit along with a suit of novel digital signal

processing algorithms to demodulate Bluetooth signal without the need of pairing or

explicit coordination with the target Bluetooth network. To achieve these goals, we tackle

the following challenges.

(i) Wideband spectrum sampling. Bluetooth operates in the free 2.4 GHz band and de-

fines several subchannels that spread over 80 MHz of the spectrum. Therefore,

a sniffer would need a wideband radio to monitor the entire spectrum and cap-

ture all Bluetooth packets in realtime. However, this wideband radio solution is

challenging because it requires a high-speed (about twice the spectrum, according

to Nyquist-Shannon rate) analog-to-digital-converters (ADCs) to capture Bluetooth
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signal. These ADCs are costly, power hungry, and require high computational power

system to support such high sample rate.

(ii) Pseudo-random frequency hopping. As Bluetooth occupies one subchannel, that is 1-2

MHz, at a time for data exchange, a sniffer could employ a low-power, off-the-shelf

Bluetooth-compliant radio to capture data packets. At the baseband, however, Blue-

tooth adopts frequency hopping spread spectrum, which is a challenge for this kind

of sniffers. That is, frequency hopping sequence is known to legitimate Bluetooth de-

vices but not other parties. Therefore, a sniffer can listen on an arbitrary subchannel,

and capture packets that are randomly transmitted on that subchannel. However,

the number of packets captured in this way represents a tiny portion of the traffic.

Moreover, Bluetooth sessions may last for a very short period of time and involve

only tens of packets.

(iii) Interference in the crowded 2.4 GHz band. When coexisting with other wireless de-

vices in the crawdad 2.4 GHz band, Bluetooth may experience various interference

conditions, including hidden and exposed interference, from 802.11-based WLANs

and other ambient radios. Therefore, Bluetooth adopts adaptive frequency scheme

to adapt spectrum utilization and improve performance. To tackle these challenges,

a sniffier needs to learn adaptive frequency hopping behavior, and provide some

mechanism to null the interference in the case of collision with Bluetooth packets in

realtime.
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Figure 5.1: BlueFunnel system architecture.

5.2.2 System architecture

To tackle the above challenges, BlueFunnel leverages a low-power, wideband, customized

software defined radio (SDR) platform to subsample Bluetooth spectrum in realtime. The

SDR is interfaced to a controller which implements novel signal processing algorithms

to detect, demodulate, and analyze Bluetooth packets in realtime. Fig. 5.1 illustrates the

architecture of BlueFunnel. In particular, the working flow of BlueFunnel system can be

divided into the following steps.

5.2.2.1 Analog filtering and down conversion

The SDR platform incorporates two main components, namely a wideband RF-Front-end

circuit, and a low speed ADC. The RF-front-end circuit down converts a received 2.4 GHz

signal to an intermediate frequency (IF) that ranges from 0-80 MHz, as depicted in Fig.

5.2. Further, it filters out undesired frequency components that are out of the 2.4 GHz

ranges. The ADC subsamples the received signal based on 2 Msamples/sec, which is less

than Nyquist-Shannon rate (i.e. 2 × 80 MHz). The resulting complex samples are then
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Figure 5.2: Frequency down conversion of Bluetooth signal.

forwarded to the host computer over a serial bus or Gigabit Ethernet connection.

5.2.2.2 Packet detection and demodulation.

On the host computer, the controller processes a received digital signal based on the fol-

lowing stages.

(i) Packet detection. To reduce complexity of system computations and power consump-

tion, BlueFunnel implements a packet detector, that notifies the system only when a

new packet is arrived. The detector is based on measuring the amplitude of received

digital signals to indicate packets transmissions. In particular, BlueFunnel measures

strong change in the amplitude of received signal. This is because a sharp change in

the signal amplitude is highly correlated with packets transmissions. Fig.5.3 shows

a realtime received signal.

(ii) Clock synchronization. Designed as a passive traffic sniffer, BlueFunnel cannot coor-

dinate with the transmitter for clock synchronization at run time. Therefore, Blue-

Funnel implements a clock synchronization package in order to keep synchronized

with Bluetooth signal. The task of this package is to recover samples from a received

signal with the same frequency and phase as those used by the transmitter. This

is essential task when BlueFunnel wants to extract symbols from an asynchronous
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Figure 5.3: Bluetooth real-time complex signal.

digital signal. It allows BlueFunnel to synchronize sampling times with centers of

ones and zeros present in the signal.

(iii) Bluetooth demodulation. As BlueFunnel subsamples Bluetooth spectrum based on 2

Msamples/sec ADC, which is less than the Nyquist-Shannon rate, a regular Blue-

tooth demodulator may no be able to demodulate a received signal. Therefore, Blue-

Funnel implements a novel algorithm to demodulate Bluetooth signal under these

circumstances.

5.3 Design

In this section, we present the design of BlueFunnel sniffer in details.

5.3.1 Bluetooth Demodulator

As Bluetooth adopts the symbol rate of 1 MSymbols/sec at baseband, BlueFunnel lever-

ages only a simple ADC with a sampling rate of 2 Msamples/sec, to demodulate Blue-

tooth signals without the pain of learning the target’s frequency hopping or adoption of
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Figure 5.4: An illustrative example where the center frequency of Bluetooth transmitter and Blue-
Funnel are matched.

a high speed ADCs. This low sampling rate enables a low power, low computation com-

plexity, and inexpensive system. Before diving into the design details of the demodulator,

we assume here that Bluetooth signal is received with no interference. In the following,

we first discuss demodulating Bluetooth Low Energy (BLE) signals and then consider the

case of demodulating Bluetooth Classic signals.

5.3.1.1 Demodulating Bluetooth LE signal

To start with, BlueFunnel listens on a Bluetooth LE subchannel a, where fa is the center

frequency of the subchannel. Therefore, BlueFunnel can directly demodulates a Bluetooth

LE signal y[n] that is transmitted on fa, as illustrated in Fig. 5.4.

Now we assume that y[n] is transmitted on some other frequency fb, where a 6= b. In

this case, the received y[n] experiences a frequency shift. Fig. 5.5 shows an illustrative

example of Bluetooth LE signal that experiences a spectrum shift. The frequency shift

can be expressed as δ2 = fa − fb, where we use δ2 to denote a shift in the Bluetooth LE

spectrum. To understand the effect of this frequency shift on the received time-domain

signal y[n], we leverage the frequency-shift property of Fourier transform, which is a
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Figure 5.5: An illustrative example where the center frequency of Bluetooth LE transmitter and
BlueFunnel are not matched.

fundamental mathematical tool relating frequency and time domains. The property states

that a shift δ2 in the spectrum of a signal y[n] corresponds to multiplication of the signal

y[n] by a factor ej
2π
N δ2n [26]. This is mathematically expressed as,

F−1{X(f− δ2)} = y[n]e
j2πN δ2n (5.1)

where N = 2 Msamples/sec is the sampling rate of y[n], n = 0, 1, 2, ...,N is a sample

index, and δ2 MHz is the amount of shift in the spectrum. To calculate δ2, we leverage

the following observation. Bluetooth specifications [46] states that Bluetooth LE adjacent

subchannels are spaced with 2 MHz of spectrum. Specifically, a subchannel frequency

is calculated as fBLE = 2402+ 2k MHz, where k = 0, 1, 2, ..., 39, as depicted in Fig. 5.5.

Based on this observation, we conclude that δ2 is basically a multiple of 2kMHz. That is,

δ2 = fa − fb = m× 2k MHz, where m is an integer. Hence, we analyze the exponential

term in Eq. (5.1) as follows,

e
j 2π

2×106
(δ2×106)n = ejπδ2n (5.2)
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This can be further simplified based on Euler’s formula, which relates the complex

exponential function and trigonometric functions, as follows,

ejπδ2n = cos(πδ2n) + jsin(πδ2n) (5.3)

Given that δ2 = m× 2k is always an even integer, the imaginary component cancels

because sin(πδ2n) = 0, and the real component becomes cos(πδ2n) = (−1)δ2n = 1,

according to the trigonometric functions facts. Therefore, the exponential term ej
2π
N δ2n is,

in fact, a sequence of ones [30], and hence, it has no effect on the received Bluetooth LE

signal y[n]. The same argument holds for −δ2 because the cosine is an even function, i.e.

cos(−πδ2n) = cos(πδ2n).

To conclude, BlueFunnel can directly demodulate received Bluetooth LE signals re-

gardless of their transmission subchannels. In practice, BlueFunnel listens on the center

of Bluetooth LE spectrum, i.e. subchannel 39 or 40, which guarantees that transmitted

signals on other subchannels are shifted by δ2 = m× 2kMHz.

5.3.1.2 Demodulating Bluetooth Classic signals

Similar to the case of Bluetooth LE, BlueFunnel initially listens on subchannel a, where

fa is the center frequency of the subchannel, as shown in Fig. 5.4. Therefore, BlueFunnel

can directly demodulate Bluetooth Classic signals y[n] that are transmitted on fa.

However, y[n] could be transmitted on some other subchannel b, where fa 6= fb, as

depicted in Fig. 5.6. In this case, received signal y[n] experiences spectrum shift and

demodulating y[n] is challenging because of the following. Unlike the case of Bluetooth

LE, Bluetooth Classic signal y[n] could be multiplied by some values rather than a se-
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Figure 5.6: An illustrative example where the center frequency of Bluetooth Classic transmitter
and BlueFunnel are not matched.

quence of ones. Specifically, Bluetooth Classic subchannels are spaced with 1 MHz of

spectrum [46], where a subchannel frequency is calculated as fClassic = 2402+ k MHz,

k = 0, 1, 2, ..., 78, as depicted in Fig. 5.6. We denote a shift in Bluetooth Classic spectrum

as δ1 to distinguish from the case of Bluetooth LE. Therefore, the spectrum shift can be

calculated as δ1 = fa − fb = m× k MHz, where m is an integer. We also re-write Euler’s

formula for Bluetooth Classic as follows,

ejπδ1n = cos(πδ1n) + jsin(πδ1n) (5.4)

Because δ1 could be an even or odd integer, the product of δ1 × n could be an odd or

even integer accordingly. In any way, the imaginary component cancels as sin(πδ1n) = 0,

and the real component cos(πδ1n) = (−1)δ1n = ±1. This holds all the time according to

the trigonometric functions facts.

Now we examine the two possibilities of the real component. First, when δ1 is an

even integer, (δ1 × n) is always an even integer. This leads to cos(πδ1n) = 1, meaning

that the exponential term is basically a sequence of ones, and it has no effect on y[n].

In this case, BlueFunnel can directly demodulate y[n] just like the case of Bluetooth LE.
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Second, when δ1 is an odd integer, δ1 × n is a sequence of even, odd integers as n =

0, 1, ..,N. Thus, the exponential term is basically a sequence of {+1,−1,+1,−1, ...}, which

multiplies y[n]. In this case, BlueFunnel cannot directly demodulate y[n]. To null the

effect of the exponential term, BlueFunnel simply multiplies y[n] by the same sequence

of {+1,−1,+1,−1, ...}.

However, the key question is how to know whether δ1 is an odd or even integer for a

given signal y[n]? To answer this question, BlueFunnel relies on some features of Blue-

tooth Classic packets and conduct some statistics to infer the answer. Specifically, a Blue-

tooth Classic packet starts with an access code followed by a packet header. The header

is protected by 1/3 FEC error correction code. Given that the packet header is a string of

18 bits, the protected header is a string of 54 bits (i.e. 18× 3) [46]. So it is common to see

bit patterns of three ones, like ’111’, or three zeros in a row when demodulating packet

header. These bit patterns, which are mandatory introduced by FEC, is a good indicator

that a received signal y[n] does not suffer from a shift.

To conclude, BlueFunnel infers whether δ1 is odd or even based on the following steps.

(i) Given a received signal y[n], BlueFunnel shifts the signal based on multiplying it’s

symbols by {+1,−1,+1,−1} (in fact, processing header bits is good enough here) to get

y′[n]. (ii) BlueFunnel demodulates headers of y[n] and y′[n] and looks for specific bit

patterns, like three zeros in a row ’000’, or three ones in a row, that are introduced by 1/3

FEC error correction code. And (iii) once BlueFunnel identifies the shifted version of y[n],

that is either y[n] or y′[n], it can demodulate the received signal.

Moreover, the access code is a string of 72 bits, and is fixed for a given Bluetooth

Classic piconet. This means all the piconet packets start with the same access code. Blue-

Funnel leverages this property as follows. BlueFunnel saves access codes and headers
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of y[n] and y′[n] in a data base to identify shifted signals in future. That is, BlueFunnel

compares incoming signals against access codes and headers of y[n] and y′[n] to identify

shifted version of later received signals y[n].

It is also worth to mention that this algorithm requires light-weight computations.

This is because the processes of this algorithm, including shifting header of a signal, de-

modulation, comparing and saving signal header, does not require significant computa-

tions as the total number of bits in the access code and packet header is 72+ 54 = 126.

5.4 Implementation

In this section, we present implementation of BlueFunnel prototype in details.

To build a prototype for BlueFunnel, we opt to use off-the-shelf Universal Software

Radio Peripheral (USRP), namely USRP2 [22], along with SBX daughterboard [16], which

covers variety of bands including the 2.4 GHz ISM band. Due to the hardware limi-

tations imposed by USRP2/SBX configuration, including the limitation of RF-front-end

bandwidth, we have to use two USRP2 devices to observe the entire Bluetooth spectrum.

In particular, the highest possible bandwidth supported by USRP2/SBX configuration

is 50 MHz. Therefore, we built a customized software defined radio (SDR) based on two

USRP2 devices to observe 100 MHz of the free 2.4 GHz spectrum, starting from 2400 MHz

up to 2500 MHz. Each USRP2 is equipped with SBX daughterboard and two 2.4 GHz 3dBi

antennas. The customized SDR is shown in Fig. 5.7(a).

Another limitation imposed by USRP2/SBX configuration is the difficulty of tuning

the ADC sampling rate. However, this customized SDR provides BlueFunnel with the

highest possible sampling rate, which is about 100 Msamples/sec. To mimic a low-speed
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(a) Software Defined Radio (SDR). (b) Linux-Based Lenovo T530 laptop.

Figure 5.7: A prototype of BlueFunnel sniffer, where we built a customized Software Defined Ra-
dio (SDR) platform based on two USRP2 devices as shown in (a). The software components,
including packet header detector and Bluetooth signal demodulator, are implemented on the
Linux-based Lenovo T530 laptop as shown in (b). The USRP2 devices are synchronized via a
MIMO-Cable and each USRP2 is connected to the host (Lenovo laptop) via Gigabit Ethernet cable.

ADC, we implement a digital down converter on the host, which basically decimates the

complex samples stream and makes the sample rate as 2 MSymbols/ses. Base on this

simple trick, the customized SDR meets the BlueFunnel required sampling rate.

For the purpose of clock synchronization, we utilize a MIMO-Cable [42], which acts

to synchronize the ADCs on both USRP2 devices to the same clock tick. Each USRP2 is

interfaced to a Linux-based laptop via Gigabit Ethernet cable. We configure each USRP2

to provide complex real-time samples, where the resolution of a complex sample is 16

bits; that is, 8 bits are assigned for the real part and the other 8 bits are assigned for the

imaginary part. The center frequency of the first USRP2 is set to 2420 MHz, while the

center frequency for the second USRP2 device is set to 2460 MHz.

For the host computer, we utilizes a Linux-based Lenovo T530 laptop (Processor Corei7

2.4 GHz third generation, RAM 16 GB, Hard drive SSD 250 GB) as shown in Fig. 5.7(b).
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We implement the software components for BlueFunnel, including packet header detec-

tor and Bluetooth signal demodulator, on the Linux-based laptop with 530 lines of C/C++

code. For better computational efficiency in real-time, BlueFunnel components are imple-

mented as threats. BlueFunnel components are interfaced to UHD [21] – the celebrated

driver for USRP hardware devices. As the software components need to interact with the

UHD driver in real-time, we opt to use shared memory technique to provide an interface

for such high speed, real-time interaction. In particular, the shared memory is used to

pass data between UHD and BlueFunnel. We write a C/C++, Linux-based shared mem-

ory package that supports interaction between BlueFunnel and UHD driver. Accordingly,

we modified the UHD driver so that it supports the shared memory interfaced.

5.5 System Performance

In this section, we evaluate BlueFunnel performance.

5.5.1 Experimental Methodology

The testbed for our experiment consists of the following.

(i) Bluetooth Classic testbed, which includes two wireless headsets, 37 USB adapters, and

built-in Bluetooth interfaces in four laptops, eight smartphones, and five tablets. We also

employs two Linux-Based Asus netbooks, to which we connect Bluetooth USB adapters

and establish a link.

(ii) For Bluetooth Low Energy (BLE), we employ the following devices as piconet master:

nRF52840 development kit (DK) [35], two Bluetooth dual-mode USB adapters, and three

smartphones, including two Moto G and LG Stylo3+. For the piconet slave, we utilizes

73



 0

 0.2

 0.4

 0.6

 0.8

 1

20 40 60 80

C
D

F

Pkt capture rate (%)

0%
20%
50%

Figure 5.8: Packet capture rate achieved by BlueFunnel under various interference conditions in
a controlled setting.

BlueFruit LE [2], and Bluetooth LE nRF51 USB Dongle [34]. We also employ Linux-based

Lenovo T530, Windows-based Lenovo T430, and two Linux-based Asus netbooks. These

laptops are used to connect and operate the above Bluetooth LE devices.

5.5.2 Evaluation

We evaluate BlueFunnel performance based on packet capture rate in a controlled envi-

ronment. We also evaluate the system performance based on packet capture rate in a prac-

tical environment, where various interference patterns introduced by enterprise 802.11-

based WLANs radios. We opt to conduct this experiment in the engineering building at

Michigan State University.

5.5.2.1 Packet Capture Rate in Controlled Settings

In this experiment, we evaluate the system performance under the following conditions:

(i) 802.11-based traffic interferes with 50% of Bluetooth subchannels; (ii) 802.11-based traf-

fic interferes with 25% of Bluetooth subchannels; and (iii) No Bluetooth subchannel is in-

terfered by 802.11-based traffic. The experiment setup consists of three Linux-based Asus
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Figure 5.9: Packet capture rate achieved by BlueFunnel at different from the target.

netbooks, Bluetooth Classic USB adapter and Moto G smartphone. We utilizes two of the

netbooks to generate 802.11-based traffic. We write a user-space script, which interacts

with an open source 802.11 Linux driver, namely . The script configures the 802.11 WLAN

adapter on the netbook to be in monitor mode and injects 802.11-based packets [52].

Fig. 5.8 evaluates system performance in terms of packet capture rates under three

interference conditions. As shown in the figure, the system performance is the highest

when no interference is introduced by 802.11-based WLANs. However, the packet cap-

ture rates degraded as the number of interfered subchannel is increased. Specifically, the

system experience the worst performance when 50% of Bluetooth subchannels are in-

terfered by 802.11-based traffic. This due to significant packets collisions, i.e. between

802.11-based packet and Bluetooth Classic packets, on the overlapped subchannels.

5.5.2.2 Packet Capture Rate in Practical Environment

In this experiment, we evaluate the system performance in a practical environment, which

an office building. In this setting, different interference patterns are introduced by enter-

prise 802.11-based WLANs radios. We evaluate packet capture rate as: (i) BlueFunnel

is placed at different distances from the target; and (ii) BlueFunnel captures Bluetooth

packets at different sites in the building.
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Figure 5.10: Packet capture rate achieved by BlueFunnel at different locations in office Building.

Fig. 5.9 compares the system performance in terms of packet capture rates, where

BlueFunnel is placed at different distances from the target Bluetooth link. As shown in

the figure, the system presents high performance when the target is less than 21 meters

away. The packet capture rate starts to degrade as BlueFunnel moves away from the

target. This mainly because signal attenuation, which degrades the signal-to-noise-ratio

(SNR) at BlueFunnel receiver.

Fig. 5.10 compares the system performance at different sites in the building, where

different interference conditions are expected. As shown in the figure, the packet capture

rates vary from one site to other. This is because the system experiences various interfer-

ence conditions, that is mainly introduced by 802.11-based WLANs, at different sites of

the building.

5.6 Attack Scenarios

In this section, we introduce two scenarios of possible attacks against Bluetooth. As proof

of the concept, we implement these attacks based on BlueFunnel traffic sniffer. As we dis-

cussed in chapter 3, there are several cryptanalysis attacks against Bluetooth encryption,

including Bluetooth Classic and Bluetooth LE. A prerequisite for these kinds of attacks is

a Bluetooth traffic sniffer, such as BlueFunnel. As a proof-of-concept, we present in this
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%%%%%%%%%%%%%%%%%%%%%%%%% pkt0 (adv)
time   8924, snr=35.7, BTLE index=37, AA=8e89bed6, 
PDUType=0, TxAdd=1, RxAdd=0, Length=22
  AdvA=2f388ab4ecc2

  (char) AdvData= . . . . . N o r d i c _ U A R T
  (byte) AdvData=0201050c094e6f726469635f55415254
%%%%%%%%%%%%%%%%%%%%%%%%% pkt1 (adv)
time   8926, snr=35.2, BTLE index=38, AA=8e89bed6, 
PDUType=5, TxAdd=1, RxAdd=1, Length=34
  InitA=cc75a19cfa71
  AdvA=2f388ab4ecc2
  AA=295bd110, CRCInit=0178de, WinSize=2, WinOffset=4
  Interval=39, Latency=0, Timeout=2000, 
  ChannelMap=1fffffffff, HopInc=15, SCA=5
%%%%%%%%%%%%%%%%%%%%%%%%% pkt2 (Ctrldata)
time   9016, snr=39.5, BTLE index=08, AA=295bd110, 
PDUType=5, TxAdd=1, RxAdd=1, Length=34
  EDIV = 0x5b0a
  SKDm = 0x87609adb102d09ba
  IVm = 0xdb239031
%%%%%%%%%%%%%%%%%%%%%%%%% pkt3 (data)

Figure 5.11: Bluetooth LE encryption establishment parameters (marked with red).

section two scenarios to show that a successful traffic sniffing, based on a traffic sniffer

like BlueFunnel, may compromise Bluetooth privacy. In particular, we implement one at-

tack against Bluetooth Classic, where BlueFunnel reveals (x,y) coordinates out of capture

packets. We also implement another attack against a Bluetooth LE target. In this case,

BlueFunnel listens on the pairing phase of Bluetooth LE and reveals sensitive parameters

that are used to generate link encryption key.

5.6.1 Sniffing on Pairing Phase of Bluetooth LE

The importance of sniffing on Bluetooth LE pairing phase is of increasing interest be-

cause of the following. First, Blueooth LE engineers and applications developers need

to examine Bluetooth LE link establishment, and hence, monitoring these early stages of

handshaking including pairing phase, is important. Second, the pairing phase involves

the exchange of sensitive parameters between Bluetooth LE piconet participants in early

stages of link establishment. These parameters, including encryption keys, frequency
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hopping parameters, are if privacy concern with respect to Bluetooth LE users. However,

the pairing phase is a short-lived session that may involve a few tens of Bluetooth LE

packets. In this experiments, we deploy BlueFunnel to eavesdrop on pairing phase of a

Bluetooth LE link. We show that BlueFunnel can successfully sniffing on Bluetooth LE

paring and reveal Short Terms Key (STK), which and be used by an attacker to determine

LTK of the Bluetooth LE victim. In particular, at the pairing phase, Bluetooth LE shares

some random seeds that are used to generate STK [46]. As proof-of-concept application,

we leverage our design to show that BlueFunnel can reveal STK seeds, which paves the

way to compromise Bluetooth LE privacy.

The experimental setup. The testbed setup of this experiment consists of nRF52 board [35],

that plays the role of Bluetooth LE master, and LG Stylo 3+ smartphone (Bluetooth LE

slave). We deploy BlueFunnel system to sniff on pairing phase of Bluetooth LE. We run

this experiment as follows. First, we run BlueFunnel to sniff on Bluetooth LE traffic.

Second, we established Bluetooth LE link between LG Stylo 3+ smartphone and the nRF52

board.

As shown in Fig. 5.11, BlueFunnel reveals sensitive link parameters, including EDIV,

SKDm, and IVm. These parameters are used as seeds by Bluetooth LE piconet participant

to establish STK, which can be used by an attacker to reveal long term encryption key [36]

[3].

5.6.2 Sniffing on Bluetooth Mouse Traffic

A recent research [39] reported that mouse movement data leakage is extremely privacy

sensitive and may lead to reveal sensitive data like users passwords. In this scenario of

attack, we target Bluetooth Classic link. That is, as proof-of-concept, we utilizes BlueFun-
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Figure 5.12: Mouse coordinates obtained from captured Bluetooth packets.

nel to sniff on Bluetooth mouse traffic and reveal the mouse coordinates. We opt to es-

tablish unencrypted Bluetooth Classic link with the mouse to facilitate extraction of data

from packet payload. Although, the cryptanalysis of Bluetooth Classic cipher is stud-

ied [55] [56] in the literature, implementing cryptanalysis attack against captured packets

is beyond the scope of this thesis.

The experiment setup. The setup of this experiment consists of an HP Bluetooth Mouse

X4000B that is paired with a Linux-based Notebook. The Notebook is equipped with

a USB Bluetooth adapter. To collect groundtruth coordinates of the mouse pointer, we

wrote a python-based script, that runs in Linux user-space, to report the mouse coordi-

nates, i.e. (x,y) pairs, in real-time. Finally, we deploy BlueFunnel to sniff on Bluetooth

traffic. The mouse generates traffic as the user moves the mouse pointer.

Fig. 5.12 shows the revealed (x,y) coordinates out of captured packets. The figure

compares the captured coordinates by BlueFunnel sniffer (in blue) against groundtruth

(x,y) coordinates (in red), that are collected on the Linux-based laptop. The plot shows

that the collected mouse trace experience some error points, which do not match with

groundtruth trace; this is because BlueFunnel may experience some bit-level errors spe-

cially when demodulating Bluetooth signal in the presence of interference.
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5.7 Summary of Chapter

In this chapter, we introduce BlueFunnel –a low-power, wideband Bluetooth traffic sniffer

that monitors Bluetooth spectrum in realtime. BlueFunnel features a low-power software

defined radio architecture, which integrates a low speed ADC, and suite of novel digi-

tal signal processing algorithms. We present a prototype implementation for BlueFunnel

system that is based on USRP2 devices and SBX daughterboard. We evaluate the sys-

tem performance in a controlled and practical environment, to understand the impacts of

802.11-based interference. The experiments show that the systems maintains good level

of packet capture rates. Further, we discuss two scenarios of attacks based on a wideband

traffic sniffer, like BlueFunnel system. The first scenario considers sniffing on Bluetooth

LE pairing phase, where BlueFunnel successfully reveals sensitive security information

including link encryption primitives. The second scenario employs BlueFunnel to eaves-

drop on data traffic transmitted by Bluetooth mouse to a personal computer, where Blue-

Funnel successfully extracts the mouse coordinates from captured packets.
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Chapter 6

Conclusion and Future Work

This thesis tackles the challenges of sniffing Bluetooth traffic, including wideband spread

spectrum, pseudo-random frequency hopping adopted by Bluetooth at baseband, and

the interference in the open 2.4 GHz band. Specifically, we introduce practical systems

for sniffing Bluetooth traffic in the wild. In this chapter, we summarize the contributions

of this thesis, and then present future work.

6.1 Contributions

The main contributions of this thesis are summarized as follows.

(i) BlueEar Sniffer We present the design, implementation, and evaluation of BlueEar –

the first practical Bluetooth traffic sniffer that consists only of inexpensive, Bluetooth-

compliant radios. BlueEar features a novel dual-radio architecture, where two radios

– named as scout and snooper – coordinate with each other on learning the hopping

sequence of indiscoverable Bluetooth, predicting adaptive hopping behavior, and

handling complex interference conditions. We implemented a prototype of BlueEar

for sniffing the traffic of Bluetooth Classic, which offers enhanced data rates and

a more complex hopping protocol than Bluetooth LE. The prototype employs two

Ubertooth devices to implement the scout and the snooper, and interfaces them to
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a controller running on a Linux laptop. Extensive experiments results show that

BlueEar can maintain a packet capture rate higher than 90% consistently in practical

environments, where the target Bluetooth network exhibits diverse hopping behav-

iors in the presence of interference from coexisting 802.11 based WLANs. Further,

we discuss privacy implications of BlueEar on Bluetooth system and propose a prac-

tical countermeasure approach that effectively reduces the average packet capture

rate of a sniffer to 20%.

(ii) BlueFunnel Sniffer We introduce the design, implementation, and evaluation of Blue-

Funnel –a low-power, wideband traffic sniffer that monitors Bluetooth spectrum in

parallel and captures packet in realtime. BlueFunnel leverages low speed ADC to

subsample Bluetooth spectrum to address the challenge of high-speed ADC. In par-

ticular, BlueFunnel consists of two main components, including, (i) a software de-

fined radio (SDR), that integrates a wideband radio, and a low-speed ADC, which

subsamples Bluetooth spectrum based on 2 Msamples/sec, which is below the Nyquist-

Shannon rate; and (ii) a controller, that implements digital signal processing pack-

ages, which are responsible for detecting, demodulating, and analyzing Bluetooth

packets in realtime. We implement BlueFunnel prototype based on USRP2 devices.

Specifically, we employ two USRR2 devices, each is equipped with SBX daughter-

board, to build a customized software radio platform. The customized SDR plat-

form is interfaced to the controller, which implements the digital signal processing

algorithms on a personal laptop. We evaluate the system performance based on

packet capture rates in variety of settings. Specifically, we evaluated the system in a

controlled setting, where we intentionally introduce 802.11-based traffic as a form
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of interference on overlapped Bluetooth subchannels. We test BlueFunnel when

there is no interference, 25% and 50% of the subchannels are interfered with 802.11-

based traffic, respectively. Moreover, we evaluate the system in an office building,

where dynamic interference conditions are introduced by an enterprise 802.11-based

WLAN. In all settings, BlueFunnel maintains good levels of packet capture rates.

Further, we introduce two scenarios of attacks against Bluetooth, where BlueFunnel

successfully reveals sensitive information about the target link.

6.2 Future work, and Conclusion

In this section, we present some future work for BlueFunnel system. This includes,

(i) Interference cancellation. In practical environment, BlueFunnel is expected to experi-

ence interference introduced by ambient radios, specially the prevalent 802.11-based

WLANs. Therefore, the next step is to connect a small group of SDRs and synchro-

nized such devices to performance interference nulling and enable demodulation of

Bluetooth signal in the presence of interference.

(ii) Aliasing and multiple packet reception. As BlueFunnel subsamples of the wideband

spread spectrum in time-domain, it causes aliasing in frequency domain. Therefore,

Bluetooth packets from multiple piconets could collide at BlueFunnel’s antenna. We

design an algorithm to resolve collision and enable multiple Bluetooth reception by

BlueFunnel.

(iii) Demodulating enhance data rate packets. To enhance BlueFunnel, we plan to introduce

some algorithms to demodulate enhanced data rates packets, which are modulated

83



based on Differential Phase-shift Keying scheme.
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