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ABSTRACT

OPTIMALITY AND HIERARCHICAL REPRESENTATION IN EMERGENT NEURAL
TURING MACHINES AND THEIR VISUAL NAVIGATION

By

Zejia Zheng

Traditional Turing Machines (TMs) are symbolic in the sense that representations in these TMs are

static and hand-crafted. This paper presents a new kind of TM – emergent neural Turing Machine.

By neural, we mean that the control of the TM has neurons as basic computing elements. By emer-

gent, we mean that the internal representations are formed during learning without hand-crafting.

Developmental Network-1 (DN-1) uses emergent representation to perform Turing Computation

but the internal hierarchy is handcrafted with emergent features. The major novelty of the proposed

TM (Developmental Network-2) over DN-1 is that the representational hierarchy inside DN-2 is

emergent and fluid. DN-2 grows complex hierarchies by dynamically allowing initialization of

neurons with different domains of connection. Its optimality in terms of maximum likelihood prop-

erties is established under the conditions of limited learning experience and resources. Although

DN-2 is meant for general learning tasks, we experimented with a complex task— vision-guided

navigation in simulated and natural worlds using DN-2. Real-world and simulated navigation ex-

periments showed that DN-2 successfully learned rules of navigation with image and other inputs.

The formed hierarchical representation in DN-2 focuses on important navigation features like road

edges while disregarding the distractors like shadows edges.
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CHAPTER 1

INTRODUCTION

The learning process in human children appears to be cumulative, with the task complexity pro-

gressively increasing through its exploration and interaction with the learning environment (e.g.,

supervised by a teacher or reinforced by self-exploration). The view that new knowledge must

be constructed from existing knowledge is supported by researches in the field of developmen-

tal psychology (e.g., [40], [52]). Most importantly, this scaffolding learning principle has been

demonstrated to happen across modalities, from language acquisition [2], to text understanding

[34], and to motor skill learning [45].

In this paper we investigate the basic mechanisms that allow a neural network to learn like a

child, i.e., learn incrementally from simple to complex while being task non-specific. By task-

nonspecific, we mean that the programmer does not know about the environment when program-

ming the learning agent. After birth, the agent learns to perform tasks according to its sensor and

motor experience, while developing its hierarchical internal representations without the teacher

manually selecting features. To demonstrate the power of such a computational framework (i.e.

Developmental Network-2, or DN-2), a simulated agent and a real-world application equipped with

DN-2 would learn to incrementally navigate in complex scenarios using only visual input (simu-

lated vision input for the simulated agent and stereo RGB input for the real-world application) and

GPS signals. The following conceptual steps guided us toward the targeted framework:

Concept 1: Turing Machine and Universal Turing Machine. A lot of the real-world traffic

rules can be broken down into state transitions. For example, when in the state of “moving for-

ward”, an agent should take action “stop” if the input is recognized as “obstacle”. These rules can

be formulated as a Finite Automaton: q(t)
σ(t)
−−→ q(t + 1), where q(t) is the state of the agent at

time t, and σ(t) is the input observed by the agent at time t. However, in real-world navigation

we not only act according to the input, but we are also changing the environment. E.g., we are ac-

tively changing the signal of the traffic light when we are pressing the wait button at a traffic light.
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A more subtle example is that we often associate landmarks with the concept of distance during

navigation, which is similar to hunters putting down stone piles in a forest to mark how far they

have traveled. These actions are all changing the environment and are beyond the computational

capability of a Finite Automaton (FA).

Turing machine (TM) [49, 18, 33] is a better computation model in this sense as it offers an

additional read-write head that allows the agent to alter the input tape. The input tape in our case is

the environment. Following the definition of Turing Machine, we can thus formulate a navigation

sequence as T = (Q,Σ,Γ, q0, δ), where Q is the set of states (navigation states as in “moving

forward”, “turning left”, “arriving”), Σ is the input (current input images), Γ is the tape alphabet

(all possible images), q0 is the initial state (“start navigation”), and δ is the transition function:

δ : Q× Γ→ Q× Γ× {R,L, S} (1.1)

where {R, L, S} are the head motion right, left and stationary in the context of Turing Machine,

but can be redefined and expanded to the actions taken by the agent to alter the environment. Our

DN-2 aims to incrementally learn these individual Turing Machines of single navigation segments.

Thus our DN-2 aims to behave like a universal Turing Machine (UTM) [18, 33]. The state Q

in Eq. (1.1) are reflected in the concept zones of the network in the output layer. However, the

formulation above uses symbolic representation (i.e., the states and symbols are human-defined

with clear boundaries among those symbolic states), which requires human hand-crafting and prior

knowledge about the task.

Using emergent representation (i.e., representation that emerges from the interactions between

the agent and the environment without human hand-crafting) to learn clear logic is difficult. Mar-

vin Minsky and others stated that symbolic models are logical and neat, but connectionist models

(using emergent representations) are analogical and scruffy [37]. Weng argued that DN-1, a con-

nectionist model, learns an FA error-free while using emergent representation, thus the DN family

resolves the scruffy abstraction problem and has clean logic inside. DN-2 inherits this from DN-1

[55]. Detailed correspondence between our DN-2 and a UTM is also presented in Sec. 4.4 and

Sec. 4.5.
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Concept 2: Hierarchical representation. The formulation in Eq. (1.1) requires the neural

network to learn a complete set of tape alphabet Γ, which in the context of vision-based navigation

is all possible input images. This is computationally impossible as real-world images contain

distractors of numerous shapes, colors, and scales.

Hierarchical representation is helpful in this sense as it abstracts lower level details into noise

invariant representations. The lower level representations are often formed within a local receptive

field, limiting the number of variations of appearances within that area. A higher level representa-

tion sums up the local features and produces robust high-level feature maps for decision making.

Ideally, this feature map should achieve invariance with regard to the numerous low-level distrac-

tors while saving computational resources.

Symbolic models (models that use symbolic representation. E.g., Markov models based on

FA [13, 10], graphic models [3, 20] or belief nets [16, 17]) use hierarchical representation to cut

off symbolic linking, as they cannot handle all possible linkings thus disregarding most of the

links. This hierarchy is external and can never emerge internal connections, as they rely on outside

restriction by human hand-crafting. Emergent brain-like hierarchical models for navigation are

proposed in [47, 30], but the hierarchy inside their methods is rigid (static region boundaries)

and one-directional (no top-down context for internal representations). The landmark concept

tree for navigation in [51] is only in the concept area of the neural network, while the internal

representation is still without hierarchy. In DN-2, the hierarchy is not external, but internal and

emergent. We allow all possible connections to be learned automatically because DN-2 uses natural

sensor and motor patterns as internal states. Each neuron has its competition zone. Thus the

hierarchy inside DN-2 is fluid instead of rigid hierarchy compared to other methods.

1.1 Related Work

As a brain-inspired learning framework, DN-2 touches many aspects in the field of autonomous

mental development, machine learning, and neural networks. Here we only compare DN-2 with

the researches and experiments most relevant to the scope of this paper.
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Comparison with incremental learning Kraft et. al. proposed an incremental learning sys-

tem that builds object representations and associated object-specific grasp affordances based on

exploration with no supervision[23]. Incremental learning is also investigated in error minimized

extreme learning machine (EM-ELM) [9], where the true label of the training data is always pro-

vided during learning. The difference between DN-2 learning and such systems lies in the learning

mode of DN-2: the agent updates its internal representation based on the current context in sensor

and motor, regardless of being supervised or not. This allows the teacher to partially supervise

the output layer (e.g. only supervise higher level concepts while leaving lower level concepts

emergent), and so allowing concept scaffolding.

Comparison with transfer learning Transfer learning refers to the situation where the target do-

main is different from the source domain, and the knowledge representation learned in the source

domain needs to be transferred to the target domain[39]. The experiments in this paper can be

viewed as a transfer-learning problem where the source domain is where we train the agent with

low-level representations and then apply the low-level representation to the source domain where

we train the agent to learn navigation skills. However, the DN-2 framework by itself is more flexi-

ble than transfer-learning scenarios as the DN-2 does not differentiate between different domains.

The source and target domains are implicitly defined by the teacher when teaching the network

different concepts, but the learning algorithm itself requires not such separation among domains.

Comparison with SLAM SLAM (simultaneous localization and mapping) comprises the simul-

taneous estimation of the state of a robot equipped with on-board sensors, and the construction of

a model (the map) of the environment that the sensors are perceiving [8, 5]. Because we rely on

the GPS embedded onto the smart phone and the Google map API to give general guidances of di-

rection, we do not aim to tackle the problem of localization, which is heavily investigated in many

SLAM based outdoor navigation researches (e.g., [35, 36, 5]). Compared to brain inspired SLAM

architectures such as RatSLAM, our DN-2 forms a hierarchical representation that are more similar

to the local to global hierarchies found in visual cortex [50] than to the topological representations
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found in the hippocampus [36].

Comparison with neural architectures for vision There are many neural network architectures

are also inspired by visual cortex. Convolutional Neural Networks (i.e., CNNs) [25, 26, 6] gained

state of the art performance on image recognition by stacking spatially invariant convolution oper-

ation with pooling operation. The learning mechanisms in these networks are based on stochastic

gradient descent (SGD), which requires many iterations of training to reach convergence thus is

unsuitable for incremental learning. Moreover, global tuning with stochastic gradient descent also

disrupts long-term memory, preventing the network to keep old knowledge (lower-level skills)

when learning the newer ones (higher-level skills). DN-2 uses competitive learning and hebbian

learning instead of SGD. Finally, the hierarchies in CNNs (and also HMAX, a feedforward hier-

archical neural network of alternating template matching and pooling operations to model object

recognition in visual cortex [41]) are static in the sense that the network’s structure is munually

picked and predefined by the programmer. In DN-2 neurons in different levels of hierarchy are

initialized when current match is bad, forming a fluid hierarchy based on the learning experience.

In the experiment section we present a baseline model using a CNN architecture.

Other related works The problem we are address in this paper is similar to the problem ad-

dressed by the Qualitative Learner of Actions and Perception algorithm (QLAP) [38]. QLAP,

however, assumes a perfect detection result from the environment by assuming “the agent has

trackers for a small number of moving objects (including its own body parts) within an otherwise

static environment”. This means that the hierarchy in QLAP is built in the concept area, while

DN-2 is building hierarchy of representation internally to handle real-world input with noises and

distractors.

The Hebbian learning mechanism used in DN framework by itself resembles the learning in

Self Organizing Maps (SOM) [22]. However, DN-2 differs from SOM in the following aspects: 1)

SOM initializes all neurons at t = 0 where DN-2 releases neurons based on goodness of match.

The initialization of neurons in DN-2 is more similar to the Growing Neural Gas algorithm (GNG)
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[12]. However, 2) SOMs and GNG do not have hierarchy of representations inside. DN-2 uses

lateral connections to form hierarchical representations. 3) SOM and GNG do not take temporal

information into account. DN-2 updates recursively thus has a temporal aspect in its internal

representation.

The experiments in this paper can be categorized as ‘topological map based outdoor navigation’

as proposed in [4], where a topological map is defined as a graph of landmark nodes associated with

specific instructions (e.g. cross road, turning, or go straight ahead). In our case, the topological

map is the instruction (e.g. turn left, turn right, move forward, or arrive) from the GPS system at

each intersection way-point, defined by the Google map API. Unlike the researches listed in [4],

where most experiments are performed on unmanned vehicles or robots with mechanical effectors,

in this paper the agent’s actions are broadcasted as audio instructions to the human user with the

user performing the actions according to the output. The developed application is intended to help

visually impaired people to walk around campus using smart phone with a pair of stereo camera

and the proposed application.

Comparison with Neural Networks doing Turing Computations Siegelmann and Sontag showed

that there is a finite recurrent neural network with the capability of Turing computation [42, 43].

However, their simulation in [43] is still symbolic, as the binary tape used in their experiments

carries hand-crafted specific meaning.

Graves et al. proposed a neural network with read-write head with external memory in [15, 14].

However, Graves et al.’s network did not deal with emergent representation and did not use firing

patterns as a stage and action. Unlike the work of Siegelmann and Sontag [42, 43], Graves et al.

[15, 14] did not prove their network’s equivalence to Turing Machine.

In contrast, Weng already proved that DN-1 could perform Turing computations in [56]. DN-2

can achieve the computation capabilities of DN-1 by using just type 101 neurons (neurons with

connections from only X , the input area, and Z, the motor area).
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Comparison with DN-1 As Weng pointed out in [56], the Developmental Network (DN) was

the first general-purpose emergent FA that:

1. uses fully emergent representations,

2. allows natural sensory firing patterns,

3. allows the motor area to have subareas where each subarea represents either an abstract con-

cept (cost, skill, means, etc.) or natural muscle actions (e.g., move forward or turn left/right)

4. learns incrementally – taking one-pair of sensory pattern and motor pattern at a time to

update the network and discarding the pair immediately after

5. realizes the maximum likelihood estimate of the network, conditioned on the limited com-

putational resources in the network and the limited learning experience in the network’s

“lifetime”.

The DN-1 framework has already had several implementations named as Where-What Net-

works (WWN) which are used to recognize and localize foreground objects directly from cluttered

scenes. WWN-1 and WWN-2 [21] recognizes two types of information for single foregrounds

over natural backgrounds: type recognition given location information and location finding given

type information. WWN-3 [31] recognizes multiple objects in natural backgrounds. WWN-4 [32]

demonstrates advantages of direct inputs from the sensory and motor sources. In WWN-5 [44],

object apparent scales are learned using the added scale motor concept zone. WWN-6 [54] uses

synapse maintenance to form dynamic receptive fields in the hidden layers incrementally with-

out handcrafting. WWN-7 [59] learns multiple scales for each foreground object using short time

video input.

However, the computation in DN-1 relies on exact matching between the store weights and the

current input pattern (from both sensor area X and the motor area Z). There is no hierarchy inside

the representation of DN-1.
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This paper presents DN-2, a novel neural network architecture based on DN-1. DN-2 extends

DN-1 by introducing the following mechanisms into the original framework:

First, lateral connections enable hierarchies of representation. To compute the internal firing

patterns Y (t) DN-1 relies only on the sensor input patternX(t−1) and motor input patternZ(t−1).

This is primitive in several ways: (1) such feature is concrete with no abstraction, and (2) such

feature does not have temporal context from the last internal state of the network. In DN-2 the

sources of input for internal area Y (t) extends to the previous internal firing pattern Y (t− 1). This

allows the network to develop a hierarchy of representations, discussed in Sec. 4.3. The learned

hierarchy of representation is thus (1) more abstract and thus more invariant to the noises in the

input and (2) more extensive in temporal dependency.

Second, multiple levels of neuron form a hierarchy in representation. There are seven types of

Y neurons in DN-2 (shown in Fig. 1.1). DN-1 only has one type of neuron (with only bottom-up

and top-down connection, a.k.a. type 101. We use three binary digits to represent whether the

neuron has connection from input, internal and output areas respectively.) There is no hierarchy of

representation in DN-1. In DN-2, type 100 and 001 neurons form the lowest level of representation,

with their attended information integrated into higher levels of neurons (e.g., 011, 110, and 111).

The lower level representation may be sensitive to local changes in the input patterns, while the

higher levels neurons (with global receptive fields) use the firing pattern from lower level neurons

to incorporate both global view and local finer details within the current input.

1.2 Optimality of DN-2

The most important theorem about DN-2 in this paper can be summarized in the following

sentence:

Under the constraint of skull-closed incremental learning and the pre-defined network hyper-

parameters, DN-2 optimizes internal parameters to generate maximum likelihood firing patterns

in network areas, conditioned on its sensory and motor experience up to the network’s last update.

The theorem is formally introduced in Sec. 3.5, separated into Lemma 1 and Theorem 1, and
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Figure 1.1: Summary of the DN-2 framework. DN-2 has seven types of internal neurons with
different types of connections. Blue lines: top-down connection from Z. Red lines: lateral
connection from Y . Green lines: bottom-up connection from X . In this paper, we show the
optimality in the learning procedure of DN-2 by proving Lemma 1 and Theorem 1, shown in this
figure. The verbal version of Theorem 1 can be found in the italic paragraph in the Introduction.
Details about the theorem is presented in Sec. 3.5.

also illustrated in Fig. 1.1. To prove this theorem, we formulated the learning problem under

Maximum Likelihood Estimation, which is attached in the Appendix.

DN-2 mitigates some of the most notorious learning problems:

Brittle symbolic modules There are no symbolic modules in DN-2. The environment has too

many rules and variances to hand-craft clean, symbolic representations without missing an aspect.

Emergent representations in DN and DN-2 are not restricted by handcrafted design, with new

representations initialized to learn the specific input if current best match is insufficient. DN-

2 is thus immune from the brittleness of the symbolic representation (if all neurons are already

initialized then the network performs maximum likelihood estimation as stated by the theorem).
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Curse of dimensionality problem DN-2 is less likely to suffer from curse of dimensionality.

Curse of dimensionality is caused by using input of high-dimensionality during learning [19]. In

the case of DN-2, this curse of dimensionality is dealt with local-to-global hierarchy developed in-

crementally according to the network’s learning experience. All receptive fields in DN-2 develop

invariance. Such invariance is developed using attention context from Z area. The group concept

neuron will only take the relevant components as input and disregard irrelevant components be-

cause when the group concept neuron fires, relevant component neurons stably fire but irrelevant

component neurons do not consistently fire. This problem is discussed again in Sec. 3.6.1.

Over-fitting problem DN-2 is less likely to over-fit. The over-fitting problem refers to the phe-

nomenon where the learning agent remembers only the training data but generalizes poorly over

new data, often due to the large number of parameters and the small number of training samples.

DN is less likely to over-fit because DN starts with no internal neurons and gradually initializes

new neurons only when the trained neurons cannot recognize the current input well. When the

input is one frame in the receptive field for each neuron, then the formed representation is optimal.

Later input frames for each neuron are taken into account through recursive average, which is opti-

mal based on maximum likelihood estimation. Neuron initialization is introduced in detail in Sec.

2.2.4. This problem is discussed again in Sec. 3.6.2.

Local minima problem DN-2 is less likely to be stuck in local minima. Typical learning agents

(e.g. agents using error back-propagation) aim to minimize a task-specific loss function, and would

thus often get stuck at local minima during optimization. As we state in Theorem 1 (and also reiter-

ate in the introduction above), DN-2 optimizes (in the sense of Maximum Likelihood Estimation)

over the entire learning experience, conditioned on incremental learning and limited resources.

The side-effect is that DN-2’s performance is now dependent on the external teaching schedule

(i.e. learning experience). This is discussed again in Sec. 3.6.3.

Please note we do not claim DN-2 completely solves these learning issues, but by conceptually

investigating the learning procedures and properties of DN-2 we believe these issues are to a large
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extent mitigated.

1.3 Discussion: Sensorimotor Recursive Experiments vs. Batched Data Clas-
sification Experiments

Should we compare DN’s performance on standard image classification datasets (e.g. NORB

[28], MNIST [27], CIFAR-10 [24] and ImageNet [7]) with other image classification networks?

Standard image classification datasets are widely used to benchmark performance for different

neural network architectures. These datasets usually contain large number of labeled images or

video sequences labeled with corresponding classification information. Batched data experiments

are not sensorimotor recursive, meaning that the motor output of the agent does not have impact

on the training or testing data.

The focus of this paper, however, is to build a neural network that uses emergent representation

and incrementally learns to behave like a Turing Machine with a read-write head. This requires

the agent to perform in a sensorimotor recursive environment. DN can of course handle image

classification tasks with proper teaching: Wagel and Weng used a variation of Where-What Net-

work for CIFAR-10 classification task and achieved an error rate of 19.8% . The same network

architecture achieved an error rate of 5.0% on Norb dataset [53]. However, a learning agent that

is task non-specific, general purpose and learns incrementally should not be unfairly compared to

agents optimized with batch data as these agents are task specific. It is like human brains cannot

be compared to an electronic calculator at the task of long number multiplication, as the calculator

is specifically designed for this task and a human brain as a general purpose would make more

mistakes and also be slower at long number multiplication.

1.4 Example: Shadows edges and road edges

In this example, we outline how DN-2 uses the learned where-what representation to form

robust representation for navigation. The following discussion corresponds to the steps illustrated

in Fig. 1.2.

In the context of navigation, the agent is required to pay attention to the left road edge and right

11



Figure 1.2: Demonstration of how low-level where-what representation facilitates learning
complex navigation rules. Low-level 100 Y neurons look at local input patterns. Some neurons
learn to recognize road edges (red square) at specific locations, and others learn to recognize
shadow edges (blue square). Before synaptic maintenance, the high level Y neuron of type 011
learns different firing patterns from low-level 100 Y neurons. After synapse maintenance, the
stable connections (on constant road edges) are kept while the unstable connections (on varying
shadow edges) are cut from the high-level Y neurons, forming a shadow-invariant representation
to learn the navigation rule “correct facing direction when left road edge is in the middle of the
input image”.

road edge. When making a left turn, the agent must adjust its facing direction by turning slightly

right when the left road edge is recognized in the center of the image (unless there is an obstacle at

the right-hand side). However, the recognition of road edges is often disrupted by shadows, which

are usually monotone and of various shapes.

Bottom-up feature hierarchy Low level neurons with local receptive fields would be paying at-

tention to local road edges (stable features) and shadow edges (unstable features). During learning

a higher level neuron would group these low level features together. Synapse maintenance cuts

away the unstable features, focusing the network’s attention on important stable features. See Fig.

1.2 (a).
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Figure 1.3: Demonstration of how top-down navigation context affects internal firing. In this
example, all type 100 Y neurons are learning local features (road edges and shadow edges). But
given different GPS navigation context (red letter in Z) motor, different high-level neurons (type
011) would fire. The attention of the network would thus be shifted toward the most relevant
feature based on the current navigation context.

Figure 1.4: Demonstration of bottom-up and top-down effects in internal firing combined. The
network shifts its attention according to the navigation context (red letter. The demonstrations in
this Figure are synthetic examples for the purpose of demonstration.)
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Top-down context affects firing pattern With a different firing context, different higher-level

neurons would fire. These neurons are linked with different groups of lower-level neurons, thus

focusing on different part of the same input image. See Fig. 1.2 (b).

Combined effect Combining these effects together we have a dynamic attention system that is

not only focusing on important bottom up features but also incorporating top-down navigation

contexts from the previous computation. See Fig. 1.2 (c).

This is just one example under the context of real-time navigation. We want our DN-2 to

automatically form these rules that are too numerous to hand-craft. The detailed DN-2 mechanism

to achieve this is introduced in the following section.
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CHAPTER 2

DEVELOPMENTAL NETWORK 2

2.1 Main Procedure

X is the sensory zone with input x(t) represented as a vector (e.g. input image reshaped

to a vector). Y is the hidden layer(s) inside the network with all neurons’ final response values

represented as a vector y(t). Z is the motor area with multiple concept zones. Concatenate all

responses in Z and we have z(t) .

The dimension and representation of X and Z areas are based on the sensors and effectors

specified by the programmer (or DNA). Y is skull-closed, not directly accessible from the outside.

In the scope of this paper, the teacher/programmer is required to design the teaching schedule

and the concept zones (motor areas) of the learning agent. Motor areas need to be designed to

accomplish corresponding tasks (e.g., if there is no action motor then it would be impossible for

the agent to do navigation, no matter how ‘smart’ the agent is). However, the internal representation

of the agent remains emergent and skull-closed.

1. For Y area, all Y neurons enter initialization stage (not active) with random weights and

zero firing ages. Z neurons initialize their adaptive weights to zero weights. All Z neurons

are active at birth time. Ny is the adaptive part of the hidden layer. Nz is the adaptive part

of the motor area.

2. At time t = 0, supervise initial state z. Input the first sensory input x. Internal states in Y

are all zeros as no neurons are firing. Thus y(0) = 0.

3. At time t = 1, ..., repeat the following steps:

a) Compute Y area’s response vector for all active Y neurons in parallel. Also update the
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Table 2.1: Y neuron types and perfect match value θ

Type X (Sensor) Y (Hidden) Z (Motor) θ
001 No No Yes 1
010 No Yes No 1
011 No Yes Yes 2
100 Yes No No 1
101 Yes No Yes 2
110 Yes Yes No 2
111 Yes Yes Yes 3

adaptive part of the hidden layer with the new N ′y.

(y(t), N ′y) = fy(py, Ny) (2.1)

where py denotes the tuple of (x(t − 1),y(t − 1), z(t − 1)), and fy is the response

computation, response competition, and learning function defined in Sec.2.2.2 and Sec.

2.2.3. Also, one or several Y neurons in initialization stage enters learning stage if all

current active Y neurons can not match the input vector well, defined in Sec.2.2.4.

b) Compute Z area’s response vector for all Z neurons in parallel. Update the adaptive

part of the motor layer with the new N ′z .

(z(t), N ′z) = fz(pz, Nz) (2.2)

where pz = y(t− 1).

2.2 Details of the algorithm

2.2.1 Patterning

For human brains, the early wirings between neurons are determined before birth (by genes or

DNA) [46, 11]. Inspired by this, we create several types of early Y neurons with different connec-

tion regions to simulate early connections. The seven Y neuron types are shown in Table 2.1.

Each type of neuron has a different growth rate controlled by α(t) in Eq. (2.6). Top-k compe-

titions, described in Sec. 2.2.2, are performed among each type of neurons.
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2.2.2 Response Computation and Competition

The area functions fy and fz are based on the theory of Lobe Component Analysis (LCA) [58].

Each active Y neuron calculates its preresponse. The bottom-up part of the preresponse in

neurons with bottom-up connection is calculated as follows:

r′b,i = 〈 x(t− 1)

‖x(t− 1)‖
,

wb,i

‖wb,i‖
〉 (2.3)

where wb,i is the bottom-up weight of that neuron. The brackets indicate inner product of two

unit vectors. This equation calculates the cosine similarity between the stored pattern (i.e. wb,i)

and the input vector.

Top-down response r′t,i and lateral response r′l,i are calculated in a similar way.

For neuron i, its pre-response r′i is then calculated as:

r′i = r′b,i + r′t,i + r′l,i. (2.4)

If the neuron does not have lateral connection (or bottom-up connection, or top-down connection),

then r′l,i = 0 (or r′b,i = 0, or r′t,i = 0).

To simulate inhibitions within Y , we define dynamic competition set for each neuron. A neuron

can only fire when among top-k winners in its dynamic competition. In this paper, k = 1.

In this paper, each neuron’s dynamic competition set is defined as Yi = {j|typej = typei, (rfj∩

rfi 6= ∅)||(typei 6= 100)}, where rfi is initialized according to Sec. 2.2.6.

If neuron i is the neuron with the highest response within its competition zone, it fires with

yi = 1. Otherwise, yi = 0. After all Y neurons compute their responses in parallel, we obtain y′

(the new Y response).

The Z area computes its response z′ similarly. In this paper, the Z neuron’s competition zone

is within the neuron’s concept zone (i.e. all neurons within the same concept zone compete with

each other).
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2.2.3 Hebbian Learning of excitation

If a neuron wins in the multistep lateral competition described above (meaning its firing rate is

greater than zero), its bottom-up weight (top-down weight, or lateral weight, depending on the

type of neuron) would update using the following Hebbian learning rule:

wi ← β1wi + β2rix(t− 1)

β1 and β2 determine retention and learning rate of the neuron, respectively:

β1 =
mi − 1

mi
, β2 =

1

mi
(2.5)

with β1 + β2 ≡ 1, mi is the neuron’s firing age, i.e. mi = 1 when the neuron first enters learning

stage, and increases by one every time the neuron wins competition.

2.2.4 Initialization

The random GDN initialization method is used in DN2. If the top-1 winner in Y has a pre-response

lower than almost perfect match m(t), take a neuron in initialization stage to fire with its response

equal almost perfect match. The almost perfect match m(t) is defined as follows:

m(t) = α(t)(θ − ε) (2.6)

where ε is the machine zero, θ is the perfect response value for each type defined in Table 2.1 and

α(t) is a handcrafted table to control the speed of neuronal growth. We discuss the design of α(t)

in Sec. 2.2.5.

This new neuron would thus suppress other neurons from firing, as it’s guaranteed to win in

the competition. Because its firing age is 1 at this time, its learning rate would be 1. According to

LCA it will learn the current input perfectly.

2.2.5 Controlling α(t) for multistage learning

By controlling the growth rate α(t) for each type of neuron, the DN releases the seven types of

neurons at different speeds. The growth speed is fastest when α(t) = 1, at which timem(t) = θ−ε
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(the almost perfect response for that type of neuron) according to Eq.(2.6). A small variation in

the input would make the highest response among Y neurons less than the perfect value, thus

initializing a new neuron. When α(t) = 0, no new neurons are initialized.

In the experiments we presented in in this paper, multistage learning is realized by adjusting

the teaching schedule according to the grow rate table of the network. From t = 0 to 1 hour the

growth rate of type 100 neurons is set to 0.85, while the growth rate of the other types is set to

0. Thus we train the network to recognize basic visual information like edges, corners, etc. After

t = 1 hour the growth rate of type 111 neurons is 0.8, and the growth rates of other types are 0,

then we train the network with higher level concepts with more complicated actions.

2.2.6 Receptive fields initialization

In the scope of this paper, the receptive fields for neurons of type 001, 010, 011, 101, 110, and 111

are initialized as global receptive fields. Any neuron of type 011 would have global connections to

other types of Y neurons and global connections to the Z area.

Type 100 neurons, which are used in real-world experiments to learn basic local visual features

like edges, corners, color information, etc., have local receptive fields in the bottom-up input.

Their functionality is the same as the locally-connected layer with unshared weights in the context

of Convolutional Neural Networks, with a stride of 1, a predefined filter size, and a predefined filter

number.

According to the definition of competition zone (see Sec. 2.2.2), type 100 neurons perform

local top-1 competition with each other (only compete with neurons of the same type and also

have overlapping receptive fields). Thus during network update, this type of neurons generates a

dispersed feature map.

Z neurons in this paper all start with global receptive field.
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2.2.7 Synaptic maintenance

Synaptic maintenance is conducted by each neuron after a certain number of firing. The goal of

synaptic maintenance is to dynamically fine-tune the receptive fields.

A neuron i’s synaptic weight vector and input are denoted as vi = (vi1, vi2, ...vid) and pi =

(pi1, pi2, ..., pid) respectively. vij , j-th component of vi, is the weight value between neuron j and

neuron i. pij , j-th component of pi, is the input from neuron j to i(j = 1, 2, ..., d). We use amnesic

average of l1-norm deviation of match between vij and pij to measure expected uncertainty for

each synapse. Suppose that σij(ni) is the deviation at neuron’s firing age ni. The expression is as

follows:

σij(ni) =


ε if ∆n ≤ n0

β1(∆nij)σij(ni − 1)

+β2(∆nij)|vij − pij | otherwise

(2.7)

σij(ni) = β1(∆nij)σij(ni−1) + β2(∆nij)|xij − wij | (2.8)

where ε is the machine zeros, ∆nij = ni − nij is the number of firings this synapse advanced,

β2(∆nij) is the learning rate dependent on the firing age (counts) of this synapse, and β1(∆nij)

is the retention rate, β1(∆nij) + β2(∆nij) ≡ 1. These are similar to the β1 and β2 defined in Eq.

(2.5), while the difference is using synapse age instead of neuron age. n0 is the waiting latency

(e.g. n0 = 20). The expected synaptic deviation among all the synapses of a neuron is defined by:

σ̄i(ni) =
1

d

d∑
j=1

σij(ni). (2.9)

We define the relative ratio:

rij(ni) =
σij(ni)

σ̄i(ni)
. (2.10)

and introduce a smooth synaptogenic factor f(r) defined as:

f(r) =


1 if r < βs(t)

βb(t)−r
βb(t)−βs(t)

if βs(t) ≤ r ≤ βb(t)

0 otherwise

(2.11)
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where βs(t) and βb(t) are parameters (can be updated with step through time) to control the number

of synapse with active connection (f(r) > 0). In this paper we set βs(t) = 0.8, and βb = 1.5.

Meaning that the synapses deviating more than 1.5 times the average of the deviation would be

cut, and the synapses deviating less than 0.8 times the average of the deviation would be intact.

Then trim the weight vector vi = (vi1, vi2, ..., vid) to be

vij ← f(rij)vij (2.12)

j = 1, 2, ..., d. Similarly, trim the input vector pi = (pi1, pi2, ..., pid).

In short, synaptic maintenance cuts the connections where the weight’s deviation is too large

(i.e. more than βb times the average deviation among the neuron’s connections). Only the stable

connections are kept after synaptic maintenance.
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CHAPTER 3

MAXIMUM LIKELIHOOD ESTIMATION IN DN-2

3.1 Review of the three theorems in DN-1

In order the understand the property of DN-2, we need to look back at the three important

properties of DN-1 proved in [56]:

1. With enough neurons, DN-1 incrementally learns any FA error-free by observing the transi-

tions in the target FA only once with two updates of the network, supervised by inputs from

X and Z.

2. When frozen, DN-1 generates responses in Z with maximum likelihood estimation, condi-

tioned on the last state of the network.

3. With limited resources, DN “thinks” (i.e., learns and generalizes) recursively and optimally

in the sense of maximum likelihood.

The proof in [56] is under two assumptions, which are no longer satisfied in the context of

DN-2:

1. Only type 101 Y neurons. DN-1 only uses Y neurons with bottom-up and top-down con-

nections. However, DN-2 now has seven types of neurons, as shown in Fig. 1.1.

2. Global top-1 competition among Y neurons. Only one Y neuron in DN-1 is firing at any

given time, thus learning the exact X pattern with a specific Z pattern associated to this Y

neuron. However, DN-2 has several Y neurons firing at any given time.

Thus the assumptions for DN-1 optimality is no longer available, requiring a new way to prove

the optimality of learning in DN-2.
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3.2 Definition of DN-2

A DN-2 network at time t can be defined as:

N(t) = {θ(t), D(t),Γ} (3.1)

Where Γ denotes the hand-picked hyper parameters for the network, D(t) denotes the long-term

statistics inside the network. Parameters in D(t) are not used for optimization. θ(t) contains the

weights that are actually being optimized at time t.

Γ = {G, k, lin, lout, ny, nz}

D(t) = {{g|g ∈ Y, Z}, {ḡ(t)|g ∈ Y, Z}, a(t), L(t)}

θ(t) = {W (t)}

G is the growth rate table. k is the top-k parameter for competition. lin is the limit of con-

nections to a specific neuron. lout is the limit of connections from a neuron to other neurons.

ny is the maximum number of neurons in Y zone. nz is the maximum number of neurons in Z

zone. g is the set of neurons in Y and Z area. ḡ(t) is the inhibition field of the specific neuron

at time t. L(t) = {L(g, t)|g ∈ Y, Z} is the set of receptive field (line subspace) for each neu-

ron at time t. a(t) = {a(g, t)|g ∈ Y, Z} is the set of connection ages for each neuron at time t.

W (t) = {W (g, t)|g ∈ Y, Z} is the of weights for each neuron at time t.

3.3 Conditions on DN-2 learning

During learning, DN-2 is constrained by the following conditions, denoted as C = {Ci, i =

1, 2, 3}

C1: Incremental learning. This means the network never stores training data, learns on-line, and

has no pre-programmed priors about the task at the birth time.

C2: Skull-closed learning. Human teachers can only supervise the motor and input areas of the

network once it begins learning.
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C3: Limited resources. The hand-picked hyper-parameter Γ (which limits the number of neurons

used by the network) remains unchanged during learning.

3.4 Lemma 1: DN-2 optimizes its weight under maximum likelihood for
each update, conditioned on C.

Lemma 1 Define p(t+ 1) = {x(t),y(t), z(t)} (p is thus a set of all responses in the three zones).

At time t+1, DN incrementally adapts its parameter θ as the Maximum Likelihood (ML) estimator

for input in Y and Z, based on its learning experience with limited resources Γ :

θ(t+ 1) = max
θ

f{p(t+ 1)|N(t),C}, t ≥ 0 (3.2)

The probability density f{p(t+1)|N(t)} is the probability density of the new observation p(t+1),

conditioned on the last status of the network N(t), based on the network’s learning experience.

Proof for Lemma 1 is attached in the appendix.

Lemma 1 states each time DN-2 is providing the best estimate. Inside the ‘skull’ neurons’

weights are updated optimally based on C. But the external environment providing the optimal

teaching schedule is not guaranteed.

The following theorem is proposed by using Lemma 1 recursively:

3.5 Theorem: DN-2 learns optimally under maximum likelihood from its
incremental learning experience, conditioned on C.

Theorem 1 Define Xt
t0

= {x(t0),x(t0 + 1), ...x(t− 1)}, Zt00 = {z(t0), z(t0 + 1), ...z(t− 1)}. At

time t+ 1 DN-2 adapts its parameter as the ML estimator for the current p(t+ 1) = {x(t), z(t)},

conditioned on the sensory experience Xt and Zt with limited resources Γ:

θ(t+ 1) = max
θ

f ′{p(t+ 1)|Xt
0, Z

t
0,C}, t ≥ 0 (3.3)

The probability density f ′{p(t + 1)|Xt
0, Z

t
0,Γ} is the probability density of the new observation

p(t+ 1), conditioned on the entire sensory experience and the pre-defined hyper-parameters.
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Proof for theorem 1 is attached in the Appendix.

This theorem is important as it shows that a DN-2 equipped agent behaves in a maximal like-

lihood fashion while learning incrementally and immediately without the need to store batch data

or iterate through training data for multiple times.

3.6 Discussion

Having introduced the algorithm in detail, we can discuss more about the properties listed in

the Introduction in depth.

3.6.1 On curse of dimensionality

As shown in Sec. 2.2.4, DN is less likely to suffer from curse of dimensionality for two reasons:

1) local receptive fields of type 100 neurons is of lower dimension even though the input maybe of

higher dimension, and 2) synapse maintenance cuts away unstable connections, therefore keeping

the receptive field focusing on important features.

3.6.2 On over-fitting

DN is less likely to over-fit because DN starts with no internal neurons and gradually initializes

new neurons by comparing the current best match with the almost perfect match m(t). If large

numbers of training samples cluster around similar samples (e.g., training navigation along the

same route repeatedly), best match value would constantly be high, and so DN will simply retrain

several of the neurons representing these samples instead of tuning the network globally to fit

these training samples, avoiding over-fitting the entire network on these samples. Uncommon but

important samples will not be ignored by DN-2 as their goodness of match would be low and new

neurons would be assigned to remember these samples. In summary, the model’s capacity will be

determined by the diversity of training.
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3.6.3 On local minima

DN is task non-specific, not needing to design a handcrafted loss function, and learning incremen-

tally. In DN, only the winner neurons fire and update their weights with the Hebbian learning

rule. Such an incremental computation of local average of many vectors does not suffer from the

well-known local-minima problem since it converts a highly nonlinear global optimization prob-

lem into a composition of many local linear problems (the incremental update of local weight is a

local linear problem), which does not have local minima. Unfortunately, there is still a local min-

ima problem in the external teaching. For example, if the teacher teaches a complex task first and

then a simple task, the learner does not have the skills from the simple task to learn the complex

task. But this “local minima” problem is outside the network. The network itself is still internally

optimal.
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CHAPTER 4

EMERGENT TURING MACHINE AND HIERARCHICAL REPRESENTATION IN DN2

4.1 The Challenges

In navigation, skills are the navigation movements learned in different sections of the environ-

ment. For example, one of the skills can be “turn slightly left when seeing an obstacle”. During

real-time training, the agent learns different skills during several training sessions, each with a dif-

ferent context (e.g., in a simulation there was a concept zone with individual neurons corresponding

to each skill; in the real-world environment the starting and ending point would be different for

each training session. ). Individual navigation skills can be viewed as separated transition entries

inside the transition table of the Finite Automata that navigates in the desired environment. The

challenges are:

1. Going beyond static hierarchy. In other hierarchical neural networks (e.g. Convolutional

Neural Nets) the hierarchies are static with pre-defined layers and connection patterns. DN-

1 has several areas simulating the visual pathways inside human brain (e.g. the PP, IT and

L4 areas in [31]). Static hierarchy is rigid and non-developmental. Hand-crafting region

boundaries before training results in suboptimal resource distribution. In DN-2 we have

emergent hierarchy which means that we have dynamic boundaries and dynamic number

of regions, controlled by the learning experience and growth rate of the network. DN-2

initializes new neurons when needed, forming a fluid hierarchy among regions.

2. Emergent Turing Machine (ETM) from the fluid hierarchy. Our network uses emergent

representation to function as a Turing Machine. Based on the lower-level concepts (e.g.

where and what), higher-level concepts (e.g. skills and actions) are invariant to the changes

in input image (e.g. appearance variances and shadows) as long as the lower-level concepts

abstract correctly. The firing pattern in Z is thus supported by the fluid hierarchy of internal
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Table 4.1: Multiple types of neurons learning FA transition

Zone \ Time t t+ 0.33 t+ 0.66 t+ 1
Z (Motor) z(t) z(t) z(t) z(t+ 1)

Y
011 * *

y011(t) =
{−, y100(t), z(t)} y011(t)

100 *
y100(t) =
{x(t),−,−} y100(t) y100(t)

X (Input) x(t) x(t) x(t) *

representation so that invariance emerges from multi-stage learning.

4.2 Emergent FA learning in DN-2

In order the understand the property of DN-2, we need to look back at the three important

properties of DN-1 proved in [56]:

1. With enough neurons, DN-1 learns any FA incrementally error-free by observing the transi-

tions in the target FA for only once with two updates of the network, with supervision in X

and Z.

2. When frozen, DN-1 generates responses in Z with maximum likelihood estimation, condi-

tioned on the last state of the network.

3. Under limited resources, DN “thinks” (i.e., learns and generalizes) recursively and optimally

in the sense of maximum likelihood.

The proof of these properties relies on two steps: 1) exact matching between the current input

(x(t), z(t)) and the stored patterns (top-down and bottom-up weights) in the firing Y neuron, and

2) the firing Y neuron corresponds to an output state z(t + 1). With enough resources, a single

Y neuron corresponds to a single entry in the FA’s transition table {x(t), z(t)} → z(t + 1). With

limited resources, the Y neurons are doing tessellation in the {X,Z} space, and optimality (in the

sense of maximum likelihood) comes from the tessellation.

DN-2 extends DN-1 by introducing lateral connections among neurons and multiple types of

neurons. In the above proof of DN-1, we observe that the 1-to-1 correspondence between Y
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neuron and the transition state can be relaxed, we only need to guarantee that each transition state

is uniquely represented by the firing Y neuron that are connected to Z area. The output in Z can be

connected to this firing Y neuron in the same way as in DN-1. There are multiple ways to represent

(x(t), z(t)) uniquely in the Y area in DN-2, with the help of multiple types of Y neurons:

1. Type 101 neurons. With only type 101 neurons, DN-2 is down-graded to DN-1, and DN-1’s

properties still hold in this situation.

2. Type 100 + type 011 neurons. The network needs to update twice to fire a type 011 neuron

that corresponds to this transition, as illustrated in Table 4.1. Assuming top-1 competition in

different types of neurons (i.e. only one neuron firing) and the network can always initialize

new neurons when matching is not perfect, then the higher-level 011 neuron would always

be able to learn the transition after two updates.

3. Type 110 + type 001 neurons. Similar argument as the type 100 + type 011 situation.

4. Type 111 neurons. With only type 111 neurons, DN-2 is performing tessellation in the

{X, Y, Z} space. The 111 neurons are memorizing transition {x(t),y(t), z(t)} → z(t+ 1),

which is a superset of the transitions in the FA defined in DN-1.

Thus, the error-free learning of FA in DN-1 still holds with multiple types of neurons DN-2.

The optimality in the sense of maximum-likelihood under the condition of limited resources is a

natural result of tessellation, thus can be adapted from the proof in [56] with little modification.

4.3 Hierarchical representation in DN-2

We will use type 100 neurons (lower level representation, local receptive field) and type 111

neurons (higher level representation, global receptive field) as an example. Other types follow

similar discussion. We present a simplified case of learning specific groups of features F = {fi|i =

1, 2, ...,m} across all possible locations L = {Lj |j = 1, 2, ..., l} inside the input. Z motor thus

has a location concept and a type concept.
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During stage 1 the network is developing representation in type 100 neurons (no other types of

neurons have been initialized, controlled by α(t)), with each neuron learning a specific feature fi

at location lj . Depending on the number of lower-level features presented in the input image, one

or several low-level neurons learning specific features at specific locations {fi, lj} would be firing

at any given time.

During stage 2 (t = t2, where t2 is the starting time of stage 2), α(t) for type 100 neurons de-

creases, meaning that few new lower-level neurons are initialized. Also α(t) for type 111 neurons

increases, meaning that the network is now growing higher-level neurons. As a specific group of fi

is presented, one or more 100 neurons would fire, forming a lower-level firing pattern y100(t). At

time t+ 1, a higher level type 011 neuron y111 would fire and learn this lower level firing pattern,

thus forming a hierarchy of representation, denoted as y100(t)→ y111(t+ 1).

Multi-stage learning allows coarse-to-fine integration of representation. DN-1 has only global

matching of representation using type 101 neurons. Under limited resources, each neuron in DN-1

are averaging over multiple input globally where detailed local features are blurred and neglected.

Synaptic maintenance resolves this issue to some extent by shaping the receptive field gradually

but this process requires extensive training. In DN-2, finer, detailed representation from local

receptive fields of type 100 neurons supports firing in the coarser, higher level firing among type

111 neurons.

4.4 Universal Turing Machine and Developmental Network

4.4.1 Definition of UTM

A Universal Turing machine (UTM) simulates the behavior of any TM, given the TM and the input

is encoded onto the input tape of the UTM. Formally, a UTM receives an input string in the form

of e(T )e(x) on the input tape, where e is the encoding function, T is the targeted TM and x is the

input. It simulates the computation of T on data x, and output e(z), where z is the output of T on

data x. The UTM does not really know the meaning of z [33].
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4.4.2 Differences between UTM and DN-2

The encoding function under the UTM framework is hand-crafted. There are many possible ways

to build such an encoding function, which is designed to represent the symbolic transition table.

DN-2 does not have this encoding function because it does not use symbolic representation. DN-

2 uses natural input as patterns in X . It also uses emergent state as patterns in Z. The actual

encoding is the transformation from the {X,Z} patterns to the neuronal weights in the network.

This transformation is not hand-crafted encoding, but rather the result of competition based on the

biologically inspired mechanisms of DN such as Hebbian Learning in Lobe Component Analysis

and dynamic inhibition regions.

For a UTM, the input tape contains both the TM part e(T ) and input part e(x). In DN-2, there is

no fixed or static division between rules T and data x. Earlier sensorimotor experiences fromX and

Z tend to be considered as data x for the agent to recognize and extract rules. Later sensorimotor

experiences enable the learning agent to get rules very quickly with very few examples because

the rules are in abstract forms in such experiences. In other words, X and Z experience contains

both the instruction and data.

To summarize in computational terms, UTM performs using an encoding function. It searches

current input e(x) in e(T ), and produces corresponding state e(q) and movement e(z). DN per-

forms using emergent patterns in X, Y and Z. It searches the entire learning experience embedded

in all weights of the network. After competition, the corresponding states and movement emerge

in Z.

4.5 Autonomous navigation needs Emergent Turing Machine

Here we apply our DN-2 theory to a real-world scenario: autonomous navigation. Autonomous

navigation requires general-purpose learning like DN-2 instead of hand-craft rules and feature

detectors for the following two reasons:

1. Dynamic environment. In a real-world setting, we cannot anticipate the kind of landmarks,

concepts, and context needed for an unknown driving environment.
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2. Complex traffic rules. The sheer number of rules for a navigation FA is too large to enumer-

ate. These rules also interact with each other and the interaction is impossible to hand-craft.

In DN-2, the interactions among different rules are handled by lateral connections connections.

The representation is emergent from the context. Concepts and contexts are generated ‘on de-

mand‘. I.e., if the agent is familiar with the current navigation setting (internal firing value close

to perfect), no new context would be created. If not, new context would be created on the fly that

make up of this lacking.

In a navigation setting, we have the X inputs as the sensor inputs (e.g. GPS input, vision input

from cameras, or LIDAR input from the laser sensors).

The low level Z skills correspond to recognition results (recognized type information and lo-

cation information) at a given location. High-level Z concepts correspond to the actions taken

in different driving settings (e.g., turn slightly right when an obstacle is detected on the left-hand

side).

Using this framework, DN-2 learns multiple Z concepts using different levels of reasoning:

“what” action to take at a specific location (“where”) and “which” recognized object is most rele-

vant to the current situation.

Unlike a TM where the internal states must be human-defined and their transition rules must

be hand-crafted, DN-2 uses emergent representation internally to learn clear logic with optimality.

In the following section we present three experiments of DN-2:

1. Simulated navigation with maze environment. This experiment is similar to the simulation

in [48] but we are training the agent with hierarchical concepts and simulated visual inputs.

The DN-2 agent in this simulation is equipped with three sensory areas (X areas) and six

concept areas (Z areas). It is taught to recognize object types and locations as its lowest

level of concept. Based on the recognition results the agent is then taught different skills

(small navigation segments) with the action motor supervised and the recognition motors

unsupervised. The agent is then taught about the two major routes from start to finish, with
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only the highest level of concept “route” supervised. The agent needs to chain different

lower-level skills together with no supervision from the teacher.

2. Batch vision data learning. We compare the performance of standard Convolutional Neu-

ral Network (AlexNet with 20 convolution kernels of size 5 + 2 by 2 max pooling + 50

convolution kernels of size 5 + 2 by 2 max pooling + 500 neuron fc layer + fc layer to out-

put [25, 60]), DN-1 and DN-2 using the same dataset. Although data is collected in batch

mode and the benchmark CNN is trained with iterations, we train the DNs with incremental

on-line learning set up. The CNN iterated through the dataset for 500 iterations to reach

convergence, while the DN networks only viewed the dataset twice with better performance.

This experiment demonstrated the capability of DN-2 and also helped us to find desirable

hyper-parameters.

3. Real-world navigation with stereo RGB images. We put the DN-2 agent with the hyper-

parameters in the previous experiment into a real-world scenario. The agent is taught to

recognize objects at different locations and then learn to navigate in different sections. The

testing route is now disjoint from the training routes, and the agent needs to learn to gener-

alize what it learned in these novel settings.
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CHAPTER 5

SIMULATION WITH MAZE ENVIRONMENT

The navigation agent and a sample of the simulated environment are presented in Fig. 5.1. This

simulation helps us to verify our argument that DN-2 learns the navigation FA perfectly with

enough resources. The video demonstrating the training and testing process can be found at https:

//youtu.be/CbhS1qvWZn0.

5.1 The environment and the teacher FA

The environment is a block-based maze with different types of blocks: open, wall, obstacle,

traffic light, and destination. Each block, except for the traffic light, can be only of one type, with

a size of 50 pixels in height and 50 pixels in width. Traffic lights are small objects on top of a wall

block with 20 pixels in width and 20 pixels in height. Open blocks are transparent. Wall blocks

are red. Obstacle is blue. Destination is dark green. Traffic light has two colors, purple(stop) and

light green(pass).

The interface shows the maze environment from a top-down viewing angle with all the blocks

plotted in 2D. The vision sensor of the agent gives it a 43 by 30 image, as shown in Fig. 5.1. The

walls are 30 pixels tall, while the obstacles are of 15 pixels tall and occupy the bottom half of the

image. The traffic lights are 15 pixels tall and occupy the top half of the image.

The teacher FA follows the hand-crafted rules listed below:

1. Follow GPS direction when there is no obstacle or traffic light within the range of agent’s

vision input.

2. If there is an obstacle seen by the agent and the obstacle is less than 20 pixels away (or, wider

than 8 pixels in the vision image of the agent), the agent should turn and move toward the

open block to avoid hitting the obstacle.

3. If there is a purple traffic light seen by the agent, the agent should stop and wait.
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4. If there is a light green traffic light seen by the agent, the agent follows the other rules.

5. When stepping from a block to its adjacent block, the agent should put down a marker to

keep track of distance.

6. After the agent reaches the destination, it should go back to the starting point.

5.2 The agent

The agent is of size 20 by 20 pixels and moves continuously inside the simulated environment.

The network inside the agent has three X areas:

Xvision: The agent has vision of 210 degrees ranging 75 pixels. This 210 degrees view gives

the agent a 2D RGB image of 43 by 20 pixels.

Xgps: The agent is also equipped with a simulated GPS to find the correct turn at each cross-

road. GPS is shown as a black arrow in the GUI. GPS cannot sense the presence of obstacles

thus the agent cannot follow the GPS signals blindly. There are three input neurons in this area,

corresponding to left, forward, and right.

Xmark: The agent is equipped with a marking sensor (a single neuron) which would be firing

with value one if the agent senses its previously put down marker.

The agent also has 7 Z areas:

Zwhere: Lowest level of concept. There are 43 neurons in this area corresponding to the 43

possible different locations in the input image.

Zwhat: Lowest level of concept. There are four types of objects the agent needs to recognize:

open, obstacle, traffic light (stop), traffic light (go).

Zscale: Lowest level of concept. The agent is trained to recognize objects at different scales

(from a scale of 1 pixel wide to scale of 21 pixels wide).

Zaction: Mid-level concept. There are four neurons in this area: forward, left, right and stop.

Each forward movement advances the agent’s position toward its heading position by 1 pixel. Each

left/right turn increases/decreases the agent’s heading by 10 degrees.
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Figure 5.1: Simulated maze environment and the agent design. (a) and (b): simulated
environment and corresponding GUI. The environment is 450 pixels by 450 pixels, with the maze
no larger than nine by nine blocks. The agent is 20 pixels by 20 pixels, moving continuously in
the maze environment. (1) wall blocks are red blocks in the GUI. (2) obstacle blocks are blue
blocks in the GUI. (3) destination blocks are green block in the GUI. (4) reward/punishment
blocks are yellow blocks in the GUI. (5) The agent’s route is presented in the GUI. Black routes
are skills already learned or going back routes. Red routes are novel skills to be learned. (6)
Agent in the environment. Discussed in detail in subfigure (c). (7) and (8) Information panel for
training and testing. (9) Traffic light block with two states. In (a) these traffic lights are at ‘go’
state, and in (b) these traffic lights are at ‘stop’ state. (10) 2D vision image is seen by the agent.
(c) agent representation in GUI. (11) GPS signal from the environment. GPS indicates where the
destination is in the simulated environment. But GPS is not aware of the obstacles in the
environment thus the agent needs to learn skill “avoid obstacle”. (12) Vision sensor of the agent.
Here to simplify things we show seven vision lines out of the 43 vision lines forming a
210-degree vision ranging 75 pixels around the agent.

Zskill: Higher level concept. There are eight neurons in this area corresponding to 8 different

scenarios that are essential for navigation in the simulated environment.

Zroute: Highest level concept. There are two ways to reach the same destination in the final

test. Thus this area has three neurons: route 1, route 2, and go back.

Zmark: There are two neurons in this area, corresponding to putting down marker or not putting

down marker. This motor can be viewed as the write head of our ETM, and the marker would be

sensed by Xmark in the following iterations of navigation in the same environment.

We allocated 1300 Y neurons inside the agent. We organized the lessons such that at only

type 101 neurons are released when learning where-what and basic skills. Type 011 neurons are

released when learning individual routes.
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Algorithm 1: Environment for teaching individual skills

initialize agent DN2; initialize environment;
for zskill← 1 to skill num do

for i← 1 to epoch num do
Initialize random maze with crucial blocks;
// Agent moves to the destination block;
while Agent is not at destination do

Get supervised action zaction from teacher;
Get current X input x (for all X areas);
Supervise agent with x and zaction, zskill (other concepts are zeros vectors);
Update agent’s DN2;
Agent moves according to supervision;

end
// Agent goes back to initial position ;
while Agent is not at initial position do

Get supervised action zaction from teacher;
Get current X input x (for all X areas);
zskill ← go back Supervise agent with x and zaction, zskill (other concepts are
zeros vectors);
Update agent’s DN2;
Agent moves according to supervision;

end
end

end

5.2.1 Stage 1: Learning concept where, what and scale

We randomly generate mazes and put the agent into random locations of the maze. At each time

the teacher supervises the where, what and scale motors according to the current object in the input

image. We trained the agent for 1000 images with where what information. At this stage only type

101 neurons are used.

5.3 Stage 2: Skills, route, and distance

5.3.1 Teaching skills

At this stage, we train the agent seven basic skills to navigate in the maze environment. These skills

are presented in Fig. 5.2. Note that the presented mazes are only one instance among numerous
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Algorithm 2: Environment for teaching route concept
for zroute← 1 to route num do

Initialize maze with specific route;
while Agent is not at destination do

Get current X input x (for all X areas);
Get current zmark from environment;
Supervise agent with x, zroute and zmark (other concepts are emergent from previous
update);
Update agent’s DN2, record emergent skill and action;
agent moves according to emergent action;

end
// Agent goes back to initial position;
while Agent is not at initial position do

Get supervised action zaction from teacher;
Get current X input x (for all X areas);
zskill ← go back;
zroute ← go back;
Supervise agent with x, zaction, zskill, and zroute ;
Update agent’s DN2;
agent moves according to supervision;

end
end

randomly generated maze environment with key blocks unchanged. Thus the learned skills are

environment invariant when learning takes enough iterations.

When teaching skills, we are supervising Zaction and Zskill during each network update. The

lower-level concepts (where, what and scale) are emergent, based on the learning results of the

previous stage. The higher level concepts are all zero vectors and no connection is learned in the

irrelevant concept zones. Teacher’s behavior follows Algorithm 1.

After the agent reaches the destination, the teacher leads the agent to move back to the starting

position. This is to simulate the continuous context of the agent inside the simulation with no

sudden change of the external environment.
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Figure 5.2: Skills and routes taught to the navigation agent in the simulation experiment. Skill 1:
move forward when the next block is open. Skill 2: avoid obstacle and correct facing direction.
Skill 3: turn left on the corner with GPS indicates left and avoid the obstacle. Skill 4: move
through the narrow path. Skill 5: turn right when GPS indicates right. Skill 6: turn left when GPS
indicates left. Skill 7: turn left and then turn right to reach the destination. During teaching, traffic
lights would be placed along the route as shown in Fig. 5.1, the agent needs to learn to follow the
rules of the traffic light as well. Although the agent has 43 vision lines as shown in Fig. 5.1, we
show only 7 of these for clarity. A full video of training and testing is available at
https://youtu.be/CbhS1qvWZn0.

5.3.2 Teaching route concept

After each skill is learned for enough iterations, we teach the agent two ways to navigate to the

entrance at the lower right corner of a specific environment. The teacher’s behavior is presented in

detail in Algorithm 2.

At this stage the Zaction and Zskill are emergent (emerged from the computation of the agent).

The teacher only supervises Zroute and the write head Zmark of the network.
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5.3.3 Evaluation of performance

Performance of the simulated agent is evaluated at two stages:

1. Skill chaining with higher level concept supervised. When learning Zroute, the lower-level

motors are emergent. The agent needs to successfully chain these skills together. We evaluate

the success rate of skill chaining under such situation and report it in Sec. 5.4.1.

2. Navigation with higher level concept unsupervised. The agent only relies on the GPS and vi-

sion input, with all Z motors emergent. We evaluate the success rate of navigation (reaching

the final destination) under such situation and report it in Sec. 5.4.1.

5.4 Experiment results and analysis

5.4.1 Skilling learning and chaining

We initialized 15 DN-2 agents in parallel to learn the lower-level skills first according to Algorithm

1. Then after these basic skills are mastered by the agent, the teacher leaves the lower-level skills

emergent while supervised the higher level concept zones according to Algorithm 2. At this stage,

the agent needs to chain different lower-level skills together, with the navigation context different

from the context during the previous stage. As shown in Table 5.1, all of the 15 DN-2 agents

successfully chained these lower level skills together when training higher-level skills.

5.4.2 GPS blurring and noisy inputs

The next experiment we did is to blur the GPS input and the sensor inputs at the same time by

different degrees, shown in Table 5.1. As learning route-1 (5 subtasks) is a more difficult task

compared to learning route-2 (3 subtasks), more agents failed at learning route-1 when the GPS is

blurred. Nevertheless, all agents succeeded in learning both routes when the noise level is relatively

low (less than five percent).
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Table 5.1: Experiment result

noise level 0% 5% 10% 20%
route 1 chaining 15/15 15/15 10/15 2/15
route 1 GPS blurring 15/15 15/15 6/15 0/15
route 2 chaining 15/15 15/15 15/15 15/15
route 2 GPS blurring 15/15 15/15 14/15 13/15
total 60/60 60/60 55/60 32/60
success rate 100% 100% 91.67% 53.33%

5.5 Discussion

The video recording the entire training and testing scenario can be found at https://youtu.be/

CbhS1qvWZn0. The network successfully learned the navigation rules listed in Sec. 5.1 with

100% accuracy when noise in input or GPS signals is small. The result verifies our claims with

enough resources, DN-2 learns the FA error-free using emergent representation.
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CHAPTER 6

REAL-WORLD EXPERIMENTS AND RESULTS

6.1 Batched vision data learning

AIML 2016 contest [1] provided batch data of three modalities (vision, audition, and text) for

on-line learning agents to test their learning capability with limited resources. In this paper, we use

AIML vision data to validate our design and select hyperparameters for our real-world navigation

application. This dataset contains around 4,109 images collected using a mobile device and the

onboard camera. Each image (gray scaled image, rescaled to 38 by 38 pixels) is labeled with

detailed information about the desired action, the corresponding GPS signal, the most prominent

landmark and the landmark’s location. Sample images from this dataset are presented in Fig. 6.2.

The baseline model (implemented with Convolutional Neural Network, i.e., an AlexNet with

fully-connected layer concatenated with GPS information) achieved an error action rate of 24.70%,

with around 500 epochs of iteration through the training data [60] Best performing model of the

contest achieved an error rate of 26.40% at the first epoch of training with 1500 globally connected

neurons in Y area. With multiple views and additional resources (comparison in Table 6.1) a DN-1

Figure 6.1: Real-world experiment flow chart. The lower level Y neurons (type 100) detect local
features in the input image. The higher level Y neurons are more robust against changes in local
variances, while forming a temporal context for navigation.
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Figure 6.2: Sample data from the AIML 2016 navigation dataset. All images are labeled with four
Z motor concepts: action, gps, attention and type. Data is collected around university campus
using an HTC One M8 android device.
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Figure 6.3: AIML 2016 vision performance comparison among different network configurations.
The X axis is the number of high level neurons in DN-2 (i.e. type 101, type 011 and type 111).
The Y axis is the error action rate with four fold cross validation on the AIML testing data. Each
configuration is labeled with (receptive size in type 100 neurons, number of type 100 neurons at
each pixel location and the type of high level neurons used). DN-2 with local 100 neurons and
500 high level 111 neurons offers the best performance with reasonable computational resource
requirements.
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Table 6.1: DN-2 performance compared to benchmarks on AIML 2016

CNN DN 1 Best AIML DN DN 2

# of
neurons

100
46,986

0 0 4900
101 3,900 1,500 0
111 0 0 500

best performance 24.70% 22.80% 26.50% 20.75%

implementation achieved an error rate of 22.80% [60].

As discussed in previous sections, DN-1 does not have a hierarchy in Y (spatially or tem-

porally) thus have limited power of representation. We conducted experiments with DN-2 with

different types and numbers of high level Y neurons, see Fig. 6.3. To make a fair comparison and

simulate incremental learning scenario, all networks (except for Convolutional Neural Net) went

through the following training and testing processes:

1. Training low-level representations with where-what information. If we are training a DN-2

network then we first release the type 100 neurons to form low-level representations like

edges and gradients. With DN-1 there is no type 100 neuron thus this step is skipped.

2. Training higher level representations with navigation action, GPS information, and where-

what recognition results. With a DN-2 network type 111 (or 011, 010, etc.) neurons are

released according to the previously decided growth rate table m(t). At this stage, higher

level representation is formed based on the lower level representation at stage 1.

3. Testing action accuracy with network frozen. The network is no longer updating at this

stage. We test the performance of the network by recording the accuracy of its generated

action given each image.

We experimented several different network configuration with four-fold cross-validation. The

final result is presented in Fig. 6.3 and Table 6.1. The best network, with type 100 and 1500 type

111 neurons, achieved an error rate of 20.01% after viewing the training data for only once, which

is more accurate than the CNN and DN-1 benchmark.
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Figure 6.4: Real-time experiment setup. 1. Stereo USB camera connected to the mobile device.
The cameras are streaming a 480 by 640 stereo RGB image pair in real-time. 2. Oneplus 5 phone
running DN-2 equipped navigation application in CPU and GPU mode. 3. Moga pro controller
for motor supervision and testing result recording. 4. The navigation application interface for
training and testing.

6.2 Real-world navigation: incremental training and testing

Guided by the batch experiment results, we developed an android application for real-time

pedestrian navigation using DN-2.

The general setup for the navigation application is presented in Fig. 6.4. The application is run-

ning on an OnePlus5 android phone connected to a stereo camera (two USB webcams mounted on

top of a helmet). The four motors, shown in Fig. 6.1, can all be supervised via the Moga Pro Blue-

tooth controller during training. The controller is also used to record the network’s performance

during testing.

The network is trained around the campus of the university to learn the task of autonomous

navigation on the sidewalk. Fig. 6.8 provides an illustration of the extensiveness of training and

testing. The inputs to the DN were from the same mobile phone that performs computation, in-

cluding the stereo image from a separate camera and the GPS signals from the Google Directions
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interface. The outputs of the system include heading direction or stop, the location of the attention,

and the type of the object at the attended location (which detects a landmark), and the scale of

attention.

The wide variety of real-world visual scenes implied by the extensive routes in Fig. 6.8 pre-

sented great and rich challenges to this camera-only system without using any laser device. DN-2

uses multiple types of neurons to form robust representations about the road edges and obstacles

as discussed in Sec.1.1.

6.2.1 Training and testing

We set the growth hormone of DN-2 to use only two types of neurons: type 100 for low-level

image feature extraction and type 111 for robust high-level representations, according to the result

in our batch experiment.

Testing is performed with the network frozen (weights not updating but the neurons are still

generating responses). As shown in Fig. 6.8 the testing routes are novel settings to the learned

network, but with similar obstacles, roads, and bushes compared to the training settings.

Performance of the network is summarized in Table .1. Performance of the network is evaluated

using two different metrics: different from user’s intention (diff) and absolution errors (error). The

difference is that in a ‘diff’ situation the network still can recover from the movement in subsequent

frames (e.g., zig-zagging instead of going straight forward), while the absolute errors are defined as

the situations where the network gets stuck into an unrecoverable action (e.g., stop and not moving

or bump into obstacles).

According to Table .2, the most errors we got are from untrained obstacles (e.g., bicycles in the

middle of the lane, or pedestrians on skateboards). This can be resolved by more extensive training

and a larger network.
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Figure 6.5: Bottom-up weights learned by type 100 neurons. Each 100 neuron focuses on a 5 by 5
region on the input image as shown in Fig. 6.1, and conduct local dynamic top-k competition. As
the neurons take stereo RGB inputs, we show only the weights corresponding to the left camera.
Each small square is the 5x5 rgb weight corresponding to a specific neuron. The weight values
are normalized within range 0 and 1. These bottom-up weights are projected to image space in
Fig. 6.6 and Fig. 6.7.

6.2.2 Visualization: Bottom-up weights of type 100 neurons

Fig. 6.5 shows part of the bottom-up weights of the type 100 neurons in the trained network.

As shown in the figure, the lower-level neurons pick up basic features such as edges and color

gradients in the image. After dynamic top-k competition, the firing neurons among these low-level

neurons focuses on the most prominent features locally, which can be either road edges (important

features) or shadow edges (distractors). The firing pattern in those lower-level neurons is fed into

type 111 neurons (higher-level of representation), which use synaptic maintenance to cut away the

unstable connections with distractors, forming a more robust representation.
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Figure 6.6: Projected lateral weights for type 111 neurons with no synaptic maintenance. Type
111 neurons with low firing ages forms evenly distributed attention due to the local competition
zones of lower level 100 neurons.

6.2.3 Visualization: Lateral weights from type 100 neurons to type 111 neurons

Fig. 6.6 and Fig. 6.7 show the projected lateral weights of high level 111 neurons in the trained

network. Each sub-figure shows the Y to the Y connection of a 111 neuron, with the connected

100 neurons’ bottom-up weights projected into the image space. Each subfigure is equivalent to

showing only the red receptive fields for type 111 neurons in Fig. 6.1.

111 neurons in Fig. 6.6 have lateral connections evenly distributed among lower level 100

neurons, as they have not entered the synaptic maintenance stage due to their low firing ages.

Lateral weights of 111 neurons that have entered synaptic maintenance stage are shown in Fig.

6.7. Synaptic maintenance cuts away the unstable connections with high variances. As shown in

the visualization, these neurons focus their attention on road edges and become invariant to the

changes in monotone shadows.

This visualization proves that using multiple types of neurons combined with lateral connec-

tions, we can form robust hierarchies of representation with the internal features.
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Figure 6.7: Projected lateral weights for type 111 neurons with synaptic maintenance. After
synaptic maintenance the high-level neurons focuses attention on consistent road edges and
become invariant to the changes in the highly variant shadow shapes. The connections from type
100 neurons to type 111 neurons shifts towards these consistent features, while the highly
unstable connections are cut from the range of connection.

training 100 Y neurons
training 111 Y neurons
real-time testing

sunny weather

cloudy weather

cloudy weather

sunny weather

sunny weather

sunny weather

sunny weather

sunny weather

cloudy weather

Figure 6.8: Training and testing routes around the university during different times of day and
with different natural lighting conditions. Disjoint testing sessions were conducted along paths
that the machine has not learned.
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CHAPTER 7

CONCLUSION

In this paper, we established that DN-2 is an emergent Turing Machine that learns the rules of

a navigation TM with hierarchical representation. DN-2 uses multiple types of neurons to form

hierarchical representation internally. Compared to FA based methods with no hierarchy in rep-

resentation, this framework forms robust representations of important features while disregarding

distractors in inputs. Experimental results demonstrated that DN-2 learns navigation rules with

satisfactory performance.
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Table A.1: Real-time training and testing detail

Training

Date Time Detail
# of
samples

8/5/2017
14:30 -
15:30 Training type 100 3051

8/6/2017
14:15-
15:30 Training type 111

Neuron num: 500
1492

8/7/2017
14:00-
15:45 940

Right: 214, SLRight: 338, Forward: 1182,
SLLeft: 352, Left: 210, Stop: 136

Testing
Total Segment: 18, Total Steps: 1155
Diff count: 62 (5.36%) Error Count: 9 (0.78%)
Right: 92, SLRight: 163, SLLeft: 156, Left: 97,
Forward: 560, Stop: 87

Video recordings of the experiment can be found on our youtube video list https://www.youtube.

com/playlist?list=PLVs0MJh9CrcFZqYxCJ9pM6zRQU90kCxj9.

A.1 Proof of Lemma 1

Proof. The proof is broken down into two steps. Step 1 demonstrates the firing pattern in each

zone is actually a binary ML estimator of the current input conditioned on N(t). Step 2 shows

after learning the weights are then incrementally updated according to ML estimation.

Step 1, case 1 (new neuron enters learning stage at time t + 1): When a new neuron g enters

learning stage for the first time, it memorizes the input vector p(t+ 1) perfectly (explained in Sec.

2.2.4). This neuron also suppresses other neurons inside its ḡ from firing (via competition as the

neuron’s firing value is perfect), thus becoming the ML estimator of the current input p(t+ 1).

As is stated in Sec. 2.2.4, a new neuron would be initialized when the current match is bad.

The current match would be bad for two reasons: 1) the current input is a novel input. In this case

the new neuron would not affect learning of the previous neurons as no active neurons have learned

this input yet. This new neuron is the only neuron that has learned the current input thus is the ML

estimator of the current input. 2) the current input has already been learned by an active neuron j
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Table A.2: Real-time testing results
Section Total Diff Error L SL F SR R Stop Descriptions Detail

1 50 4 0 7 6 27 10
F->SL->F->
L ->SR->L->F

rain stain, rocks,
facing direction correction

2 50 3 0 8 21 5 11 5
F->R->SL->R
->F->SR->F->Stop

rain stain, overturn,
facing direction correction

3 59 1 0 8 41 3 7
F->SR->F->R
->SL->R->F

rocks, overturn,
facing direction correction

4 60 3 0 10 11 18 5 8 8
F->L->SR->L
->F->R->SL
->R->F->Stop

rain stain, overturn,
facing direction correction

5 107 4 0 17 62 13 10 5
F->SR->SL->SR
->R->SL->R->F
->Stop

shadows, dirt road, protruding trees,
overturn, facing direction correction

6 104 6 3 27 13 35 22 7
F->SL->SR->SL
->L->SR->L->SL
->SR->F->Stop

shadows, protruding trees, overturn,
facing direction correction, error at overturn

7 73 5 2 7 40 9 13 4
F->R->SR->F->
SL(Error)->F->Stop

noval obstacle, shadows, bushes,
overturn, error at untrained obstacle

8 75 4 2 12 14 29 8 7 5
F->SL(Error)->F->
L->F->SL->R->F->Stop

shadows, facing direction correction,
overturn

9 56 3 2 11 26 7 6 6 F->SR->L->F->Stop facing direction correction, shadows

10 55 2 0 7 33 12 3
F->SR->SL->F->
SL->Stop untrained obstacle, shadows, bushes

11 55 0 0 9 27 13 6
F->SL->F->SL->
F->R->F->Stop

facing direction correction, untrained
obstacle

12 66 7 0 13 7 25 13 8
F->SR->L->F->
SL->F->Stop facing direction correction, bushes, shadows

13 71 5 0 11 12 23 8 10 7
F->SR->F->SL->
L->SR->L->F->
R->SL->R->F->Stop

facing direction correction, overturn,
rocks on the side of rode, untrained obstacles,
bushes

14 53 2 0 10 26 14 3

F->SR->F->SL->F
->SR->F->SL->SR
->F->SL->F->SR->
SL->SR->F->Stop

winding road, constant facing direction correction

15 41 3 0 6 5 20 6 4
F->SR->SL->F->SR
->L->F->Stop

winding road, bushes,
facing direction correction, overturn

16 59 8 0 7 34 11 7
F->SR->F->SL->SR
->R->SL->F->Stop

shadows, uphill, facing direction correction,
overturn

17 70 0 0 11 41 6 7 5
F->SR->F->SL->F
->SR->F->R->F->Stop untrained obstacles, bushes, winding road

18 51 2 0 4 32 11 4
F->SR->F->SR->F
->SL->F untrained obstacles, bushes, winding road

Total 1155 62 9 97 156 560 163 92 87

(current best match). This rarely happens as

m(t) > rj = 〈 Σxi
||Σxi||

,
p

||p||
〉

≥ 1

n
Σ〈 xi
||xi||

,
p

||p||
〉 (1)

where p = p(t) is the current input, m(t) is the current almost perfect match, xi are the inputs that

are learned by neuron j, and rj is the response of neuron j. This means at least one input should

be greatly different than p (their similarity measure much less than m(t)), but it still got picked up

by the neuron in previous learning. We rarely observe this during learning.
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Step 1, case 2 (no new neurons are added at time t + 1): For each neuron g ∈ Y, Z, consider

its inhibition zone at time t: ḡ(t). c(g, t) is the number of neurons in its inhibition zone ḡ(t). The

normalized weights of these c neurons can be denoted as (w1,w2, ...,wc(g,t)).

Then we can define c(g, t) Voronoi regions Rj , j = 1, 2, ..., c(g, t) in L(g, t) (receptive field of

g at time t, which is a linear subspace of X × Y ×Z), where each Rj contains all p ∈ L(g, t) that

are closer to wj than to other wi:

Rj = {p|j = arg max
1≤i≤c

wi · p}, j = 1, 2, ..., c

Given observation p(t+ 1), the conditional probability density h(p(t+ 1)|L(g, t),W (g, t)) is

zero if p(t+ 1) falls out of the Voronoi region of neuron g:

f{p(t+ 1)|L(g, t),W (g, t)} =


fi{p(t+ 1)|L(g, t),W (g, t)},

if p(t+ 1) ∈ Ri;

0, otherwise

(2)

where fi{p(t + 1)|L(g),W (g)} is the probability density within Ri. Note that the distribution of

fi{p(t+ 1)|L(g),W (g)} within Ri is irrelevant as long as it integrates to 1.

Given p(t + 1), the ML estimator for the binary vector y(t) (also z(t)) needs to maximize

f{p(t+ 1)|N(t)}, which is equivalent to finding the set of firing neurons n(t+ 1):

n(t+ 1) = {arg max
g∈Y,Z

f{p(t+ 1)|N(t)}}

= {g|g = arg max
g∈Y,Z

f{p(t+ 1)|L(g, t),W (g, t)}

= {g|g = arg max
j∈ḡ(t)

w(j) · p(t+ 1)} (3)

since finding the ML estimator in Eq. 2 is equivalent to finding the Voronoi region where p(t)

belongs. This is exactly what the Y area does, supposing k = 1 for top-k competition for each

neuron’s competition zone.

Step 2: Here we demonstrate the statistical efficiency of the LCA learning rule of W (g), where

g ∈ n(t) (meaning that g is among the firing neurons at time t).
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Eq. (11) in [58] shows the candid version of LCA is actually an incremental estimation of the

average of the inputs that trigger firing in that specific neuron:

w(g, t+ 1) =
a(g, t)− 1

a(g, t)
w(g, t) +

1

a(g, t)
p(t+ 1)

=
1

a(g, t)
Σ
a(g,t)
i=1 p(ti) (4)

where w(g, t) is the weight vector w(g) at time t. a(g, t) is the age of neuron g at time t. ti, i =

1, 2, ..., a(g, t) are the times where neuron g wins dynamic top-k competition and fires.

Following the proof of optimality in LCA [58], statistical estimation theory reveals for many

distributions (e.g., Gaussian and exponential distributions), the sample mean is the most efficient

estimator of the population mean. This follows directly from Th. 4.1, p.429-430 in [29], which

states that under some regularity conditions satisfied by many distributions (such as Gaussian and

exponential distributions), the maximum likelihood estimator (MLE) θ̂ of the parameter vector θ

is asymptotically efficient, in the sense that its asymptotic covariance matrix is the Cramer-Rao

information bound (the lower bound) for all unbiased estimators via convergence in probability to

a normal distribution:
√
n(θ̂ − θ)

p−→ N{0, I(θ)−1} (5)

in which the Fisher information matrix I(θ) is the covariance matrix of the score vector:

{(∂f(x,θ))/(∂θ1), ..., (∂f(x,θ))/(∂θk)} (6)

f(x,θ) is the probability density of random vector x if the true parameter value is θ. The matrix

I(θ)−1 is called information bound since under some regularity constraints, any unbiased estimator

θ̃ of the parameter vector θ satisfies cov(θ̃ − θ) ≥ I(θ)−1/n (see, e.g., [29], p. 428 or [57], p.

203-204]).

Thus, as Weng et al. showed in [58], the LCA algorithms learns the optimal weights in the

sense of maximum likelihood estimation.

Combining step 1 and step 2 we would have:

θ(t+ 1) = max
θ

(t)f{p(t)|N(t− 1)} (7)
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Please note that Lemma 1 applies to not only Y neurons, but also Z neurons as well. Z neurons

act the same as Y neurons with a fixed range of lateral inhibition area to form different concept

zones. Lemma 1 applies to any neuron that learns with regard to its inhibition zone and updates its

weights using LCA learning rules.

A.2 Proof of Theorem 1

Proof. Intuitively, although f ′{p(t + 1)|Xt
0, Z

t
0,Γ} is in a different format compared to the

f{p(t + 1)|N(t)} in Lemma 1, the two probability functions are the same as N(t) is determined

by Xt, Zt and Γ. As there is no random weight initialization in DN-2, two DN-2 equipped learn-

ing agents would be exactly identical given the same hyper-parameter Γ and learning experience

Xt, Zt. To formally prove this we are going to recursively use the conclusion of Lemma 1.

At t+ 1, we can reuse Eq. (7) from Lemma 1.

θ(t+ 1) = max
θ(t)

f{p(t+ 1)|N(t)}

= max
θ(t)

f{p(t+ 1)|L(N(t− 1),x(t), z(t),Γ)}

= max
θ(t)

f1{p(t+ 1)|N(t− 1),Xt
t, Z

t
t,Γ}

= max
θ(t)

f2{p(t+ 1)|N(t− 2),Xt
t−1, Z

t
t−1,Γ}

= ...

= max
θ(t)

f t{p(t+ 1)|N(0),Xt
0, Z

t
0,Γ}

= max
θ(t)

f ′{p(t+ 1)|Xt
0, Z

t
0,Γ} (8)

where L is the learning function of the network, and f i is the probability density function of the

current input p, conditioned on the network i time steps ago and the learning experience from t− i

to t.
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