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ABSTRACT 
 

CONFORMATIONAL SAMPLING OF BINDING POCKET AND PREDICTING BINDING 
FREE ENERGIES 

 
By 

Nupur Bansal 

In order to correctly predict protein-ligand binding poses and free energies, it is essential 

to accurately take into account receptor flexibility. However, incorporating it into even the 

smallest region, for example, the binding site of a protein is computationally demanding. Even if 

this task can be accomplished there is a risk of running into false positives due to the enormous 

conformational space involved. So, it is the interplay between sampling and scoring. 

Nonetheless, to better mimic experiments, structure-based drug design methods need to identify 

and then incorporate the most populated receptor states in any docking and scoring campaign.  

This work addresses the development of a novel tool that has been implemented to incorporate 

receptor flexibility into the ligand-binding domain of a protein. This method enumerates 

conformational states on an energy landscape in a computationally tractable manner. The 

algorithm treats molecules at an atom pair level and uses a distance-based coordinate system, 

where each selected distance is associated with a pair-potential value selected from a look-up 

table. With a collection of conformations in hand, we then perform on-the-fly local partition 

function estimations on each of the “seed structures” using the Movable Type (MT) method to 

estimate the associated free energy changes. This strategy helps to simultaneously generate 

relevant structures with the most favorable free energies. We initially applied our side chain 

flexibility method to a set of 159 protein-ligand systems and the docking score of Glide and our 



in-house Movable Type based scoring improved over the crystal docking score. Later we applied 

it to study the active site loop transitions seen in the Streptavidin-biotin system. 
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†Adapted from Bansal, N.; Merz, K. M., Introducing receptor flexibility in protein-ligand binding associations. 
Manuscript in preparation. 
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This dissertation aims to discuss the novel in-house tools developed to incorporate receptor 

flexibility in the active site of the proteins, which we call MTFlex for including side chain 

flexibility and MTFlex-B for including both side-chains and backbone flexibility. The first chapter 

provides a brief introduction of the current methods used to introduce flexibility in the binding 

site of the protein in the protein-ligand binding mechanism. It provides a retrospective and 

prospective view of the available tools and their performances in the blind challenges hosted by 

the community. The second chapter describes the development of both MTFlex (side chain 

flexibility) and MTFlex-B (side-chains and backbone flexibility) methods and the procedure to 

calculate the free energies to predict the binding affinities and conformational free energies. The 

third chapter entails the application of MTFlex on the active site of 159 protein-ligand complexes. 

The fourth chapter presents the application of MTFlex-B on the eight residue long loop of 

Streptavidin from the streptavidin-biotin complex. Finally, the fifth chapter summarizes the 

findings of our work and discusses the future prospects. 

 
 

1.1 Overview  

In order to correctly predict protein-ligand binding poses and free energies, it is essential to 

accurately take into account receptor flexibility. However, incorporating it into even the smallest 

region, for example, the binding site of a protein, is computationally demanding. Even if this task 

can be accomplished there is a risk of running into false positives due to the enormous 

conformational space involved. This thesis addresses computational approaches that have been 

implemented to incorporate receptor flexibility into the ligand-binding domain of a protein. The 

introduction is not limited to receptor flexibility methods used in molecular docking studies. 

Prospective validation of several docking and other comprehensive tools has also been discussed 
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largely within the scope of blind challenges conducted by the D3R and CSAR organizations. 

Based on our analysis to date, we conclude that the community is moving forward by fine-tuning 

several computational approaches but that the statistical uncertainties in the sampling and scoring 

accuracy still need to be improved. 

 The plasticity of proteins is closely associated with several important molecular 

recognition processes including protein-protein and protein-ligand binding events, enzyme 

catalysis, allosteric control, and bio-molecular assembly[1]. Conformational changes linked to 

ligand binding have been characterized by the induced fit and conformational selection 

models[2]. The induced fit model states that external perturbations like ligand binding induces 

conformational changes in the receptor forcing it to the holo conformation while the 

conformational selection model proposes that the ligand selectively picks one of the 

conformations out of a pool of a pre-existing conformational ensemble[1]. Both of the theories 

are plausible for different systems and have been supported experimentally[1]. Several 

experiments suggest that both models play a significant role in the protein-ligand binding 

process[3, 4]. 

These peculiarities of the mechanistic details of protein-ligand binding, pose an 

extremely difficult yet interesting challenge for the computer-aided drug discovery (CADD) 

community. The problem is further complicated by the enormous conformational space available 

to proteins, which increases the chances of encountering false positives. Using only available 

crystal structures offers a simple solution to the problem but at the cost of adding inaccuracies in 

binding affinity prediction associated with the lack of inclusion of receptor flexibility[5]. Indeed, 

considering only the crystal structure is fundamentally incorrect as proteins are inherently 

flexible and undergo a variety of conformational changes ranging from vibrational fluctuations to 
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large-scale domain motions upon ligand binding. Some motions are so large in both the apo and 

holo states that the typical time scales used in in silico studies are too short to capture them. The 

importance of receptor flexibility in the CADD field has been emphasized multiple times[1, 6-

11]. Accurate prediction of binding free energies and binding mode prediction rely heavily on 

the accurate accounting of receptor flexibility[11]. To this end, it is crucial to incorporate both 

ligand-induced and inherent receptor flexibility when estimating protein-ligand binding 

affinities[2, 11].  

This chapter presents an overview of the computational methods available to explore 

receptor flexibility as a result of protein-ligand binding in the field of structure-based drug design 

(SBDD). There are several reviews that focus only on receptor flexibility in terms of molecular 

docking[12-18], but this introduction will cover the general methods used to model receptor 

flexibility. Our emphasis will be on methods exploring receptor flexibility in the ligand-binding 

region of proteins. As proteins undergo a variety of motions, different levels of flexibility 

modeling are required for different protein target systems. For instance, His64 in Human 

carbonic anhydrase II is the only residue found in alternate conformations on binding with three 

very similar inhibitors thereby accounting for variations in binding affinity[19].  While kinases 

exhibit flexibility in terms of loop rearrangements and large lobe motions delimiting the active 

site region[13]. To include flexibility in drug design applications simulation-based algorithms 

and docking based methods have been reported. However, these two approaches are not 

necessarily mutually exclusive. Multiple docking methods use MD or MC simulations or their 

variants to generate an ensemble of protein conformations and then perform ensemble based 

docking. Similarly, some simulation-based algorithms perform docking as the first step to obtain 

the optimum protein-ligand bound conformation and then generate a conformational ensemble. 



 5 

Although it is quite difficult to segregate the various approaches, we have tried to categorize 

methods into docking based, simulation-based or other. Methods based on docking have been 

categorized based on the level of receptor flexibility employed, which are then further parsed 

into sub-sections. A section is devoted to the assessment of prospective validation of emerging 

computational methods utilizing receptor flexibility.  

 

 

1.2 Receptor Flexibility in Docking Methods 

 
1.2.1 Implicit flexibility 

Several docking methods incorporate receptor flexibility without including it explicitly. 

One way of introducing implicit receptor flexibility in docking algorithms is by enlarging the 

binding pocket. The simplest way to accomplish this is by lowering the repulsive part of the 

potential energy function using a soft docking approach[20]. This approach qualitatively 

addresses very small conformational changes (up to 1Å) in the binding pocket region of the 

protein. Fundamentally this method works by reducing the penalty to binding afforded by the 

repulsive term in the Lennard Jones[20]. For example, Ferari et al applied this approach in their 

virtual screening study of T4 lysozyme and aldol reductase and found it afforded better 

results[21]. The advantage of this strategy is that it is computationally efficient but it can only 

include very subtle conformational changes limited to one or very few side-chains in the 

proteins.  

Several variants of the soft docking approach have been employed recently where the 

“softened” van der Waals (vdw) term is combined with structural refinement. Soft docking has 
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also been coupled with Monte Carlo minimization to include both receptor and ligand 

flexibility[22]. Mizutani et al enlarged the protein cavity by offsetting the vdw radii and then 

optimized the structure in the subsequent step[23]. There are more advanced hybrid approaches 

involving soft docking as the first step in a docking campaign and these are discussed further 

below[24, 25]. Another simple way to enlarge the binding pocket area is by mutating the amino 

acid side chains to alanine (so-called “Alanine scanning”)[26] which has the effect of enlarging 

the binding pocket. In this way the energy landscape becomes “smoother” resulting in an 

enhancement of the conformational sampling of the ligand. This approach is quite fast but has 

the drawback that it may result in false positives requiring further refinement[24]. 

 
1.2.2 Side chain and limited backbone flexibility  

The methods listed in this section handle larger conformational changes but are still 

localized, as flexibility is localized to a few select residues in the binding site of the protein. To 

obtain a sense of the scope of the problem, consider a typical ligand-binding site for a drug like 

molecule, which is generally delineated by twelve to twenty amino acid side chains thereby 

approximating to dozens of rotatable torsions. In this class of methods the side chains undergo 

rearrangement with only limited or no backbone flexibility. A number of methods have been 

devised to explore this class of partial flexibility using both induced-fit and conformational 

selection approaches. An example is illustrated in Figure 1.1 to illustrate the level of flexibility 

introduced by incorporating side chain flexibility in active site residues. The active site displayed 

belongs to PDBID: 2XDX with the bound ligand highlighted in yellow color. The flexible side-

chains (shown in pink, tan, purple, etc.) are superimposed on the crystal active site. Incorporating 

side chain flexibility is less computationally expensive and can be treated independently while 

backbone flexibility typically cannot[27]. For some target systems side chain flexibility is 
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sufficient to represent conformational changes induced by ligand binding, but for some not. To 

address this methods that incorporate full side-chain with limited backbone flexibility have been 

introduced. To reduce the computational expense of this model it is typically applied only to a 

few targeted residues in the binding pocket to explore their available conformational space. This 

category of method can be further binned into discrete (rotamer library) and continuous 

approaches to incorporate partial receptor flexibility. 

 

 
Figure 1.1 A model example to show side-chain flexibility in the active site residues of a protein 
(PDBID: 2XDX) with the ligand bound. The residues of the crystal active site are shown in ice 
blue color with the ligand highlighted in yellow background. The flexible side-chains (shown in 
pink, tan, purple, etc.) are superimposed on the crystal active site.  
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1.2.2.1 Rotamer Library exploration 
To explore side chain rotatable bonds, rotamer libraries are generated that contain 

collections of experimentally preferred rotameric states (i.e. low energy conformations) of 

amino-acid side chains. Leach developed the side chain specific rotamer library in order to 

explore the conformational space of the side-chains of the protein receptor. Given a specific 

orientation of ligand, the global energy minimum conformation of the side chain was found 

within the provided energy cutoff. He observed that most of the side-chain conformations had no 

concerted motions and were independent from each other[28, 29]. The large solution space 

offered by the flexible side-chains was explored using A* and dead-end elimination. Hartman et 

al. also explored discrete rotamer libraries for generating side-chains conformations in the 

binding site region and used a knowledge based scoring function called ROTA for scoring the 

protein-ligand interactions. They incorporated multiple side chain conformations of protein and 

investigated its effect on the docking efficiency by validating it against the screening DUD[30] 

database[31]. ROSETTADOCK uses a backbone dependent rotamer library boosted with 

additional side-chain dihedral angles χ1 and χ2 rotamers. In their iterative procedure, the side-

chain conformations are optimized via first substituting, at each position, the allowable rotamers 

and then using a quasi-Newton minimization for refinement of torsion angles. Flexibility is 

incorporated in all the amino acids up to the second shell of ligand-binding region[32].  

Schumann et al. employed rotamer libraries to generate the receptor side chain 

conformations and then used the cheapest-path algorithm to achieve a fast and thorough 

optimization of the receptor structures[33]. MedusaDock uses STROLL (stochastic rotamer 

library of ligands) and simultaneously models flexibility of both the receptor side-chains and the 
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ligand molecule[34]. The Fleksy algorithm generates side-chain conformers at selected binding 

site residues using a backbone-dependent rotamer library[35]. It employs “interaction sampling” 

to explore the ambiguous orientations of the Asn, Gln and His side chains, different tautomers of 

His, and the rotational freedom of the thiol group in Cys and the hydroxyl groups in Ser, Thr, 

Tyr. This interaction sampling approach alleviates the problem of managing protonation states 

and the handling of different side chain variations observed by the FlexE approach. GalaxyDock 

pre-defines the residues within the binding site region and accounts for their flexibility by using 

global optimization. The side-chain flexibility version1 of GalaxyDock performed better than 

RosettaLigand and SCARE when flexible residues were pre-specified[36]. GalaxyDock2 uses 

the same energy function for scoring as GalaxyDock but constructs side-chains more quickly 

using Voronoi diagrams of protein atoms[37]. Both the versions of GalaxyDock estimated the 

RMSD of the predicted ligand within 2 Å as compared to the experimental structures for ~80-

87% of the cases. This performance was comparable to several other leading docking algorithms 

such as AutoDock (versions 3 and 4), SCARE, RosettaLigand and FLIPDock[17, 36, 37]. 

 

1.2.2.2 Continuous approaches 

Rotamer libraries are simple to use and have low computational costs but their main 

drawback is that the method is discrete. The sampling is restricted and biased by the contents of 

the rotamer library itself. To address this issue methods have been developed which explore 

selected rotatable bonds beyond simply using discrete rotamer libraries. For example Specitope 

and Slide are docking tools developed in the Kuhn lab[38-40], which carry out very fast and low-

resolution docking using ligands from a large database. They use soft-docking approach to dock 

the ligand into the protein receptors. Both the receptor and ligand flexibility is incorporated 
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during the post-docking optimization step by rotating single bonds of either the ligand and the 

protein side-chain in order to resolve clashes. Rotations are incorporated using Mean-field theory 

such that there is an improvement in shape complementarity and the collisions are resolved.  

ICM (internal coordinate modeling) performs global energy optimization of active side 

chains and small molecules together using a “double energy” Monte Carlo minimization 

procedure. It is called double energy scheme as the energies calculated during local minimization 

and after minimization are both used in the Metropolis selection criteria. In this procedure, 

torsion angles of the ligand and protein side-chain within 7Å of the binding site are randomly 

changed. The receptor conformations are generated using a biased probability Monte Carlo 

procedure (BPMC)[41]. Using a continuous probability distribution function for a given 

conformational subspace (e.g., side-chain torsional angles or phi-psi), the method chooses a new 

random position completely unbiased of the previous position which is then locally minimized in 

the torsional angle space[42]. 

The mining minima method offers no limitation on the number of rotatable bonds to be 

considered as continuous degree of freedom[43]. It is computationally expensive because it 

calculates the configurational integral of the protein-ligand complex. The user defines the 

binding site region (also called “the live set”), which is considered flexible while the other part 

of receptor (“real set”) is held rigid and untreated. Initially only side-chains were made flexible, 

but in subsequent versions limited backbone flexibility was also included[44]. The energy 

optimization is carried out simultaneously for the flexible side chains and the ligand. 

Conformation search algorithm is used to search the local minima for different binding modes. 

The binding affinity predictions for 24 HIV-1 protease inhibitors and 20 inhibitors of 

phosphodiesterase 10a were successfully studied with this method[44]. Within the family of 
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continuous approaches, methods can be further categorized as on-the-fly (during the docking 

process) and ensemble based (pre-generation of conformational ensemble) methods. 

 

1.2.2.2.1. On-the-fly methods 
SCARE (SCan Alanines and Refine) is an induced fit docking protocol in which the 

algorithm scans the neighboring side-chains pairs and mutates them to Alanine to fit the 

ligand[26]. Afterwards, the pocket residues are completely optimized for side-chains with 

limited backbone flexibility. The algorithm does not rely on the knowledge of location of the 

binding pocket, geometry of binding ligand or the extent of flexible receptor regions. Induced fit 

docking (IFD) uses a softened potential to allow for modest steric clashes in the first round of 

Glide docking[45, 46] with a rigid receptor and then PRIME is used to refinement the 

protein[24].  

FlipDock searches the conformational space by using a divide and conquer approach 

combined with a very powerful genetic algorithm (GA). The conformational space of both the 

ligands and receptors is represented by using Flexibility Tree (FT) database[47].  Flexibility Tree 

(FT) is a tree-like computational data structure, which allows for the hierarchical and multi-

resolution encoding of sub-spaces of a protein’s conformational space[48]. The FT structure 

combines and nests a wide variety of motions such as shear, screw, hinge, twist, rotameric side 

chains, normal mode and essential dynamics in a straightforward manner.  

POPSS (Pose Prediction using shape similarity) method, as the name suggests uses the 

shape similarity approach to place the ligand optimally in the receptor structure. After the ligand 

is placed, side-chain repacking is performed followed by Monte Carlo minimizations to refine 

the docked complex[49]. 
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1.2.2.2.2. Ensemble Based 

FlexE docking method relies on the united protein description obtained from the 

superimposed structures of the ensemble[50]. It implies that upon superposition, similar parts of 

the structures are merged together while dissimilar parts stand out and can be treated as separate 

alternatives. The concept is quite similar to the rotamer library approach. All atoms are selected 

within 6.5 Å of any part of the ligand within the binding pocket to consider flexibility. The initial 

structures were taken from PDBs but in principle can be taken from MD simulation, rotamer 

libraries or homology modeling. The algorithm is fast as multiple receptor conformations from 

the ensemble are treated simultaneously and sometimes even new structures are formed by the 

combination of several structures. The flexibility is incorporated by selection of a combination of 

partial structures (from the provided input structures) suited best for a particular ligand based on 

the scoring function. It considers full side chain flexibility and even loop flexibility to some 

extent. Although it is an ensemble-based approach, the protein flexibility is incorporated during 

ligand placement stage and not during ligand optimization. A problem of handling different side 

chain variations and protonation states was observed in FlexE algorithm[51]. It is able to perform 

very well for the side-chain and some small variations in loops. However, any large movements 

are not predicted accurately. MTFlex algorithm introduced by our group also generates an 

ensemble of side chain conformations within the 6Å cutoff of the bound ligands on an energy 

landscape using a pair potential look up table. The best ligand mode predictions for a set of 159 

systems were ~1.31 Å deviated from the native pose as opposed to the RMSD of 2.3 Å for the 

best ligand modes docked in the native structure. Our method calculates free energies by 

utilizing a Monte Carlo integration (MCI) scheme for simulation of local partition function. It 
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was observed that apart from pose prediction, scoring also improved for ligand docked in 

flexible side-chain conformers as compared to the ligands docked in the crystal structure[52]. 

ALiBERO (Automatic Ligand-guided Backbone Ensemble Receptor Optimization) algorithm 

incorporates flexibility by generating either the best or a “team” of complimentary pockets best 

suited for the particular ligand. It takes single or multiple receptor structures as input along with 

a ligand training dataset. Receptor ensembles are created iteratively followed by the virtual 

screening and MC refinement until they converge to the fitness function. The complimentary 

pockets (either best or the team) are then selected based on the ligands provided[53]. AutoDock 

is a widely used docking algorithm that allows specifications of flexible side-chains. It was 

successfully applied to study the conformational variability in the HIV protease’s binding site by 

several side chains reorganization and a water molecule. However, the problem persists as it has 

a hardcoded limit of including flexibility in ~32 rotatable bonds which is easily surpassed when 

the side chains in the receptor are made flexible[54]. AutoDockFR (AutoDock for flexible 

Receptors) supersedes FlipDock by using a very powerful and efficient genetic algorithm along 

with the advanced motion descriptors of FT for simulating partial side chain flexibility. The 

novel genetic algorithm can allow explicit side chain flexibility for upto ~14 residues in the 

binding site region as well as very limited backbone flexibility[55]. Higher docking success rates 

were achieved by using AutoDockFR and implementing receptor flexibility in the binding site 

region of the experimentally determined apo receptor conformations. 

 

1.2.3. Large conformational changes and loop rearrangement  
MD or MC simulations provide a very detailed representation of molecular flexibility. 

However, large domain motions occur beyond the time scales of current conventional MD 
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simulations. The flexibility of DFG loops in Kinases was implemented using mean field 

approach. DFG-in loops of various kinases were converted to type-II bound state (or DFG-out 

state) using a general deterministic modeling protocol[56]. DOLPHIN models were prepared 

from DFG-in known structures by removal of all the atoms of Phenylalanine residues on the 

DFG loop and the consecutive 4 residues following Phe. In the second step, the side-chain atoms 

of removed Phe and the backbone atoms of the other removed residues except for Gly were used 

to generate pharmacophore like field. These models represent the average physico-chemical 

profile of the loop. The density map of the DOLPHIN model was combined with the standard 

ICM receptor maps for docking.  

These models performed exceptionally well in both ligand docking and in-silico activity 

profiling when validated against a kinase-ligand benchmark database. A large set of methods has 

been developed using ensemble approach. 

 

 

1.2.3.1. Ensemble approach 
Several methods attempt to use multiple low energy loop conformations in docking. 

These methods usually dwell on the conformational selection model and aim to mimic 

conformational changes that occur in the protein region upon ligand binding[57]. The 

conformational selection model assumes the pre-existence of all the protein conformations in 

solution and states that upon ligand binding, the holo-like conformation is stabilized. The 

encoding hypothesis is an extension of the conformational selection model, which states that the 

apo form of protein encodes all the necessary fluctuations critical for the ligand bound holo 

conformation[2, 58-60]. Such methods rely on collective degrees of freedom where most atoms 
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move relative to each other. Collective degree of freedom captures only the dominant motions of 

protein derived from the native degrees of freedom[15].  

 

1.2.3.1.1. Collective degree of freedom 
Collective degrees of freedom enable modeling of huge protein motions as they capture 

conformational variations in terms of changes in all or part of native degrees of freedom. These 

methods assume that perturbations in the apo form of the protein such as ligand binding can lead 

to the holo form and all these essential protein fluctuations/perturbations are encoded in the 

collective degrees of freedom. Ikeguchi and co-workers used linear response theory where they 

modeled ligand binding as an external perturbation to the apo form of the protein. They applied 

their method to the ferric binding protein, F1-ATPase and citrate synthetase and observed that 

large-scale changes between the apo and holo forms of proteins (up to 15 Å Cα) was predicted 

on the basis of 5 collective modes[61]. However, some portions of the predicted holo structures 

differed from the experimental structure by 2-5 Å. Normal mode analysis (NMA) was used by 

Cavassato et al. on the apo form of cAMP dependent kinase to model the loop flexibility coupled 

to ligand binding[62]. Normal modes are Eigen vectors of the hessian matrix and have been 

shown to represent most motions of the protein at low frequency (< 30 cm-1)[62-66]. To increase 

the computational efficiency, the collective variables of NMA derived from an elastic network 

model (ENM) have also been used[67-69]. In ENM, protein structures are modeled as elastic 

networks in which amino acids are represented by Cα atoms and the Cα pairs are connected by 

uniform springs within a pre-defined distance cutoff[70]. The connectivity matrix of inter-

residue contacts is used to derive vibrational vectors and frequencies, which is used to assess the 

protein flexibility. Dietzan et al. investigated the applicability of Cα-ENMs normal modes for the  
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binding-pocket region in protein-small molecule docking[71]. Using low-lying normal modes 

from apo structures, they reproduced the Cα trace of holo partner proteins for the 433 apo/holo 

pairs contained in the Astex[72] data sets. They then assessed the docking capability based on 

the number of modes used to represent the holo structure. However, they found that even for 

cognate docking, the use of NMA was limited and it was difficult to find a generalized rule to 

define the number of necessary modes. An alternative approach to NMA is essential dynamics 

(ED). In ED, atomic coordinates are used to build the covariance matrix and a principal 

component analysis of this matrix yields the eigenvalues (squared magnitude) and eigenvectors 

(principal components), where the top principal component corresponds to the most significant 

conformational change. In contrast to NMA, PCA does not rest on the assumption of a harmonic 

potential[73]. Cukier et al. studied the adenylate kinase by applying PCA analysis to its apo 

structure[59]. As the substrates AMP and Mg2+-ATP bind, the LID (ligand) and AMP binding 

domains of adenylate kinase undergo huge conformational change leading to the closed form of 

the binding pocket. With the help of PCA analysis, they discerned the presence of 12 modes that 

encoded the conformational change of the LID domain upon ligand binding. However, the 

modes did not encode the motion associated with the AMP binding domain. Their study 

reinforced the encoding hypothesis as only the modes associated with the ligand-binding domain 

were encoded in the apo form.  
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Figure 1.2 The closed (left) and the open (right) state of the loop3-4 of Streptavidin monomer are 
highlighted. The effect of loop transitioning can be clearly seen on the size of the binding pocket 
and also on the preferred binding mode of Biotin.  

 

 

1.2.3.1.2. Native degree of freedom 
The loop3-4 in the streptavidin-biotin system was recently studied using MTFlex-B by 

Bansal et al.[74] The algorithm generated an ensemble of loop conformations where both apo and 

holo forms of the eight-residue loop were generated with the best loop conformation having a 

RMSD of 1.6 Å with respect to available crystal structures of the two forms. An example to 

illustrate the closed and open state of the Streptavidin loop3-4 is shown in Figure 1.2.  The 

opening and closing of the loop is highly affecting the size of binding site as shown in the 

highlighted region in Figure 1.2. It can also be seen that the preferred binding mode of Biotin is 

quite different in the open and closed states of loop reinforcing the importance of receptor 
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flexibility in docking algorithms. Wong et al also studied “latch” loops (i.e. loops covering the 

ligand in the holo state and switches to an open conformation in the unbound state)[75]. Their 

method used a combination of replica exchange molecular dynamics (REMD) simulations with 

harmonic restraints to sample the loop conformations in an unbound state, followed by clustering 

to identify conformational substates and, finally performed docking against a representative 

structure from each cluster. For loops spanning up to 15 residues, it yielded a RMSD of ~2 Å 

with respect to the known holo structures. Although harmonic restraints were applied to limit the 

sampling of the loop, the method cannot a priori determine the number of degrees of freedom 

required to capture the possible rearrangements. Bansal’s and Wong’s study both support and 

provide a computational validation of the conformational selection model.  

Flick et al implemented a multistage loop reconstruction algorithm where they predefined 

segments of backbone and changed all the dihedral angles of the backbone simultaneously. A 

global loop closure search was applied to close the loop and the resulting conformation was then 

locally minimized using a modified steepest descent algorithm. If after minimization, the loop 

was closed successfully with the gap < 0.001 nm then the resulting conformation was preserved 

in the acceptance criteria. This method was applied to study the apo-holo transitions in the ATP 

binding loop of ERK2 kinase and adenosine dependent protein kinase (PKA)[76]. Recently a 

new algorithm called ED/MD (essential dynamics/molecular dynamics) was developed for 

generating perturbed ensembles representing ligand induced binding site flexibility[77]. It is a 

hybrid method that uses collective degrees of freedom to enhance the sampling. The first thirty 

modes obtained by a PCA analysis of MD trajectories were perturbed in the ligand-binding 

domain. Perturbations were accounted by Lennard-Jones term and then ED/MD simulations[78] 
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were carried out. These ensembles led to superior docking performance when compared to single 

structure or conventionally derived MD ensembles. 

 

 

1.3 Simulation based methods 

Apart from the docking based methods, another way of introducing receptor flexibility is 

through the use of simulation-based methods. These methods are not necessarily independent of 

the docking based approach as several docking based methods use simulations to collect an 

ensemble of conformations before performing docking. Some of the methodologies using 

simulation based conformation generation methods were already covered in the ensemble based 

docking section. In this section, we will briefly go over the enhanced sampling approaches and 

the novel tools employed in pathway-based free energy methods to incorporate receptor 

flexibility. Several extant review articles discuss simulation based methods[6, 10, 11, 58, 79, 80].  

 

1.3.1 Enhanced sampling 
Short MD simulations are known to be susceptible to get trapped in the local minima on a 

free energy landscape[10, 11]. Recent advances in this area to overcome simulation length 

shortcomings come by implementation of GPU accelerated computing[81], specialized 

supercomputers such as Anton[82, 83], or using the cloud[84]. Another solution is to introduce 

bias into the potential or by using enhanced sampling methods such as metadynamics, umbrella 

sampling, temperature accelerated replica exchange, Morkov state models, and Hamiltonian 

based accelerated MD[10, 80] 
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1.3.2. Receptor flexibility in pathway free energy methods 
Pathway free energy methods (alchemical and PMF based) in combination with MD or 

MC simulations can accurately estimate free energies. Unfortunately, the procedure requires 

extensive conformational sampling and is computationally demanding. Recently, enhanced 

sampling methods have been added to standard pathway based free energy methods to facilely 

subsume conformational changes associated with ligand binding[85-89]. Mobley et al used the 

“confine-and-release” framework in conjunction with umbrella sampling methods to study the 

binding site of T4-lysozyme involving a conformational change[86]. aMD was coupled with 

thermodynamic integration simulations to improve free energy convergence[87]. Independent 

trajectory thermodynamic integration (IT-TI) was used to study the flexible loop regions of the 

H5N1 avian influenza virus neuraminidase interacting with peramivir[85]. aMD was applied on 

selective dihedrals of neuraminidase and free energy calculations were performed to obtain the 

converged free energy of binding[88]. FEP/REST was used to study the apolar cavity of T4 

lysozyme L99A and it was shown that binding free energies are sensitive to protein 

reorganization in the binding pocket region[89]. 

 

1.4 Other algorithms 

Apart from incorporating conformational sampling in docking and simulation based 

methods, there are loop prediction algorithms that are based on the conformational selection 

model. Danielson et al. used CorLps program to generate holo like protein conformations from 

the apo form of the protein in the presence of the ligand[90]. Loop prediction was performed on 

the following three systems: GART (a six residue loop segment), CYP119 (two nine residue loop 

regions), and enolase (an eleven residue loop region)[90]. The energetically favorable loop 
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conformational ensemble was generated, which was then filtered by clustering and further 

refined and the remaining top 100 poses were ranked based on the DFIRE scoring function. 

 

1.5 Binding affinity predictions in docking methods 

Once the conformational ensemble containing the most relevant structure is generated, 

the focus is shifted to how one can predict reliable binding affinities. Although great success has 

been achieved in retrospective pose prediction and virtual screening strategies, binding affinity 

predictions still pose a daunting challenge[14, 79, 91, 92].   

A wide range of scoring function strategies have implemented protein flexibility and 

achieved some level of improvement in either pose prediction or binding affinity or both[24, 32, 

36, 93-99]. Recently, Zheng et al. developed a novel tool for free energy calculations called the 

movable type (MT) sampling method. It directly calculates the Helmholtz free energy by 

estimating the local partition function using the principles of statistical mechanics. Bansal et al. 

used this approach in their MTFlex strategy for side-chain flexibility, which allowed for a better 

prediction of the binding free energy (over 159 protein-ligand systems an RMSE of ~2.72 

kcal/mol versus 3.4 kcal/mol using only the crystal structure)[52]. However, one common thread 

in all of the strategies discussed so far is that all the evaluations are performed retrospectively. 

Our tools are clearly honed and perfected to perform better when we know the answer a priori, 

but what about the cases where we don’t. The real challenge is to evaluate our methods against 

the prospective targets and this is discussed below. 
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1.6 Prospective validation of docking methods with receptor flexibility 

Retrospective assessments are important but nonetheless suffer from inherent bias. The 

knowledge of the correct answer is embedded in the construction of the problem, which often 

leads to skewing of the results. Hence, there is no substitute for making truly prospective 

predictions[100].  Prospective validations are the gold standard to accurately judge the predictive 

ability of methods, as they leave no scope for fitting of parameters and other human interventions 

or biases.  In this regard, several blind community challenges initiated by CSAR and further 

continued by the D3R organizations have been run since 2009 for the prospective assessment of 

ligand pose prediction and ranking protein-ligand binding affinities[101-105]. Grand challenges 

(GC) hosted by the D3R organization offered the community a range of prospective validations 

of docking pose prediction[103, 104]. These challenges included receptor targets with flexible 

binding pockets.  

In the 2015 GC1 challenge, HSP90 and MAP4K4 were the receptor targets chosen to 

perform docking and binding affinity prediction. All submissions that afforded good binding 

mode predictions incorporated receptor flexibility in some manner in their modeling efforts. The 

Camacho lab used Smina (default parameters) and the AutoDock Vina scoring function to dock 

into HSP90 and MAP4K4[106]. They used multiple receptor/ligand co-crystal structures as 

binding templates for performing minimization and docking from the known complex structures 

and obtained ligand RMSDs of 0.32 Å and 1.6 Å for the target systems. POPSS method, which 

incorporates 3D shape similarity and included side chain repacking and protein minimization, 

also performed well in the D3R prospective challenge with median RMSD for their top 

prediction of 0.73 Å and for 2.87Å[107] for HSP90 and MAP4K4, respectively. DockBench tool 

also performed reasonably well for both the targets. It also used existing crystal structures to 
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obtain training set to perform ensemble based docking[108]. GRIM graph matching method also 

predicted the best binding mode with reasonable accuracy by performing docking using several 

crystal protein structures with and without conserved water molecules[109]. 

The D3R evaluators established that overall the best pose-prediction methods were less 

associated with a single docking algorithm, rather with a “similarity docking” approach[104]. Its 

worth noting that several pose predictions for HSP90 were within 2 Å RMSD which was not the 

case for MAP4K4. HSP90 is a structurally well-characterized system, while MAP4K4 is less so 

allowing participants the ability to pre-evaluate the capability of their chosen approach. The 

MAP4K4 compound collection was also more challenging with ~1/3 coming from a congeneric 

series while for HSP90 the compounds were all from a congeneric series. MAP4K4 was also 

simply more challenging due to the flexibility of the classic P-loop found in kinases.  

In Grand Challenge2 as well, a rather flexible bile acid receptor target called FXR was 

used. Totrov and group predicted the lowest mean RMSD (of all the submissions) of 1.95 Å by 

using a new hybrid ligand/receptor structure-based docking method called LigBEnd[110]. The 

Cournia group used a combination of docking and physics based methods and attained the lowest 

median RMSD of 0.99 Å out of all the submissions[111]. Most of the leading docking methods 

were combined with the knowledge of existing PDB data, which made it quite difficult to discern 

the performance of individual methods. In fact, when organizers excluded the most similar 

ligands from evaluations, the performance of the known docking methods became much worse. 

Literature search for similar compounds proved to be handy except for one of the ligands 

(FXR34) despite of having a similarity coefficient of 0.83 with the available systems. It 

happened because the common available known structures for that ligand had appreciable 

different binding modes and different protein conformations, which misguided the challengers 
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relying on the known crystal structures[103]. In the first stage of both the Grand Challenges, 

there were very few methods that behaved consistently well for all the targets. This problem was 

realized in CSAR 2014 challenge as well where the major task was to find the methods that 

performed consistently well for all the three targets provided by the organizers[101]. Only 34% 

of the methods had RMSD of < 2 Å for all the provided targets. A few methods that consistently 

edged the prediction of binding mode did not do well on the predictions of binding affinity. 

Ranking of ligands based on affinity was an issue for nearly all the blind challenged conducted 

so far[101-105]. In GC1, the highest correlation of the submitted rankings with respect to the 

experimental rankings was quite poor with the values of 0.32 for HSP90 and 0.48 for 

MAP4K4[104]. The highest Kendall Tau attained for affinity ranking in GC2 was 0.45 despite of 

the knowledge of crystal structures. The only encouraging aspect observed in Kendall’s Tau 

trend for GC2 was that all the values were positive depicting the lack of randomness in the 

protocols. Nevertheless, no particular approach was observed to edge both the docking and 

scoring challenges showing that the results are statistically insignificant. Apart from these blind 

challenges, prospective testing of cross docking was performed by Jain lab on a set of 10 

pharmaceutically relevant targets using a total of 949 ligands[112]. They used a cross docking 

benchmark dataset “PINC” to follow a knowledge-guided docking protocol. Protein pocket 

similarity was used to perform ensemble docking using Surflex-Dock. Out of all the predictions, 

correct poses were identified nearly 90% of the time.  

Understanding protein-ligand binding mechanism is a challenging problem and to solve it 

using a generalized method that handles all target systems equally well has still not been 

identified. A good example illustrating the problem involves the participation of RosettaLigand 

with full ligand flexibility and receptor backbone flexibility in theSAMPL1 blind challenge. In 



 25 

this challenge participants were asked as to dock nearly 100 ligands into the JNK-3 kinase and 

urokinase-type plasminogen activator. Initially, they did not incorporate full backbone flexibility 

in their challenge submissions, but reevaluated their results retrospectively where they included 

full flexibility[113]. The addition of full backbone flexibility benefitted the JNK3 challenge 

yielding more predictions within a 2 Å RMSD of the native ligand and lowering the structural 

RMSD on average. However, implementing backbone flexibility for urokinase opened avenues 

for mistakes since the receptor does not undergo significant conformational changes upon 

binding. Overall, docking of some compounds fare better but several fared worse than the 

original submission for the urokinase challenge. The problem of structural flexibility of the 

binding pocket residues is clearly important, but there are several other issues that pose problems 

like accounting for conserved water molecules, accurate sampling of ligand conformations, 

missing residues, solvation models, scoring functions, etc. Another major bottleneck in the field 

is the lack of a plethora of high-resolution experimental protein-ligand structures. Some of the 

concerns associated with the field of binding mode prediction, affinity estimation and virtual 

screening are listed here[114] For the more precise estimate of binding affinities, it is crucial to 

consider the configurational entropy contributed by the conformational substates of proteins, but 

the conundrum is that these additional components are also adding inaccuracies into the 

calculated binding affinity. The hard part is to decipher whether the problem lies with the scoring 

functions or with the sampling strategies or both. In a nutshell, these blind challenges for protein-

ligand docking and affinity rankings are helping the community to move forward but to clearly 

pinpoint the underlying cause of the error in any particular method is still a major issue.  
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1.7 Discussion 

Receptor flexibility is one of the major challenges faced by the CADD community in 

binding mode prediction and accurate prediction of binding free energies. Recent advancements 

in the field of SBDD have accounted for receptor flexibility in the binding pocket. 

Computational methods are being continuously improved as not all methods work for all the 

protein systems. The computational approaches accounting for receptor flexibility in docking 

based, simulation based and other protein loop prediction algorithms have been discussed. As 

most of the groups validate their methodologies retrospectively, we discussed prospective 

validation of extant methods based on blind challenges hosted by CSAR and D3R. Although we 

are seeing significant improvement in retrospective evaluations, prospective validations are still 

statistically challenged.  It is difficult to a priori anticipate the level of receptor flexibility needed 

for a particular target system, however it is certain that some level of receptor motion is 

important to account for the entropy associated with the binding processes[115].  Considering the 

configurational entropy contributed by receptor conformations is extremely important for the 

accurate estimation of binding affinities, however probably adding this component is adding 

more inaccuracies in the free energy calculations. The problem remains with the scoring function 

or the sampling strategy is hard to pinpoint as of yet.  
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2.1 Abstract 

This chapter delineates the motivation and methodologies used in our study. Sampling 

and scoring are two key factors to improve the overall free energy estimated by a computational 

method. We generate conformations with the bigger purpose of improving the overall binding 

free energy estimation by our movable type free energy method. The conformers are generated 

by novel methods, which we call MTflex and MTFlex-b. The conformational ensemble is generated 

on an energy scale using pre-tabulated one-dimensional databases of distance versus energies.  

MTflex generates conformations for the side-chain only keeping the backbone rigid while MTFlex-b 

extends the concept to include both backbone and side chain flexibility. However, both the 

methods generate conformations using same mechanics. Free energies are further calculated by 

using our in-house method called Movable type free energy method 

 

2.2 Introduction 

Our unique and trivially parallel free energy estimation procedure follows a two-step 

procedure. In the first step, the significant uncorrelated configurational states are assembled on a 

molecular energy landscape using our conformation search algorithm for receptor flexibility- 

MTflex and MTFlex-b. The molecular conformations are generated at an atom-pair level using a 

distance-based coordinate system, where each selected distance is associated with the pair-

potential value selected from a pre-built look up table, which helps us to rapidly generate 

structures on an energy landscape. In this way, we obtain several uncorrelated molecular 

conformations of the ensemble on an energy surface in a rapid manner by performing smart or 

guided dihedral scans using our potentials.  
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Figure 2.1 Pictorial representation of our free energy estimation procedure. The conformations 
generated by MTFlex-B are generated on an energy surface (shown in the heat map plot on the 
left). Each “seed structure” is fed to the Movable type method (shown on the right), which 
performs the local sampling around the initial conformation as explained with the red dots on the 
right heat map plot.  

 
 

The generated pool of molecular conformations served as the “seed structures”, which 

were fed to the MT free energy method for extrapolation of the local partition function and 

plotting the complete energy landscape. Figure 2.1 shows the pictorial representation of our free 

energy simulation procedure.  

 

Free energy extrapolation using Movable 
type method for each conformation

Conformational ensemble

Single crystal structure

Energy guided database for 
conformation generation
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2.3 Conformation generation  

Our conformation generation strategy is analogous to 3-D printing. In three-dimensional 

space, any coordinate system requires three variables to locate a particle in the domain of 

definition e.g. x, y, z in the Cartesian coordinate system and r, θ, φ in the spherical coordinate 

system. Locating one particle requires three distance variables associated with three reference 

points. A coordinate translation from the Cartesian coordinate system is shown in equation 2.1, 

with the particle coordinate (x, y, z) translated to (d1, d2, d3) using three reference points (x1, y1, 

z1), (x2, y2, z2) and (x3, y3, z3). 

       (2.1) 

The reference points, like the origin in the Cartesian coordinate system, can be randomly defined 

within the domain of definition. Nonetheless, due to the association of our pair potentials to the 

distances, the reference points used herein are defined as atoms with known locations. 

In each step a new atom is added to the growing molecular ensemble based on the solution of 

equation 4 using three different reference atoms (see Figure 2.2). Every selected distance is 

associated with a pair potential value chosen from a pair potential lookup table indexed with the 

atom pair type at discretized distances. Theoretically, the selection of the distances (d1, d2, d3) 

could be random once it satisfies the solution of equation 2.1. However, random selection yields 

too many unfavorable structures appearing in the final molecular ensemble collection, which 

suggests the importance of using the pair potentials (as Boltzmann weighted factors – See the 

upper-right of Figure 2.2) as a reference for the selection of appropriate distances. Moreover, any 

three atoms with known locations in the growing molecular ensemble can be selected as the 

d1 = (x − x1)
2 + (y− y1)

2 + (z− z1)
2

d2 = (x − x2)
2 + (y− y2)

2 + (z− z2)
2

d3 = (x − x3)
2 + (y− y3)

2 + (z− z3)
2
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reference points during each step of the construction, resulting in a much larger sample size 

during the computation. Briefly, for each of the distances (d1, d2, d3) between the new atom and 

the reference atoms, a sampling or “blurring” range is set around the selected distance to create a 

vector of energies as a function of r, which is the candidate pool for future structure sampling. 

The vector of one-dimensional energies (atom pairwise energy component to the molecular 

ensemble) is then expanded into a matrix with a user defined size, by randomly “scrambling” the 

order of the original energy vectors repeatedly and then “tiling” these disordered vectors into a 

fix-sized matrix. The numerical integral is performed by point-wise multiplication through all the 

three one-dimensional energy matrices according to the three reference atoms (equations 2.2 to 

2.4). 
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/ZA = /Z1 i /Z2 i /Z3            (2.4) 
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The random disordered permutations to each one-dimensional energy matrix is meant to 

maximize the variety of energy combinations at different distances, and the fixed-size matrix 

multiplication is to maintain a computationally tractable sampling size. As shown in equation 

2.2, the row number m of the matrices is defined as the least multiplier of all the atom pairwise 

vector sizes in the molecular system under study in order to identically size all atom pairwise 

energy vectors with different sampling or “blurring” ranges for different pair potentials, while 

the column number n is a user defined number defining the sampling size to satisfy a convergent 

ensemble through the different pair potentials. Hence, the matrix ZA in equation 2.4 after the 

assembly through the 3 pair-potential matrices includes m×n possibilities to locate the new atom 

for each distance set (d1, d2, d3) that have been selected. This candidate pool selection for just 

one single atom would be a burden for the construction of a molecular structure due to the 

exponential increase in the sampling size with the number of atoms. To address this, the 

selection of each distance set (d1, d2, d3) is constrained within a limited range according to the 

pair potential significance (see upper-right of Figure 2.2).   

The method used herein is analogous to the conformational search algorithm for small 

molecules recently developed by our group.[99] Bonds and angles are restricted to their well-

depth location due to their extremely narrow energy ranges. Distances for torsions and non-bond 

contacts are chosen at their most favorable regions to give precedence to the most relevant 

contacts. For instance when coming to a step involving the addition of a new hydrogen bond 

donor/acceptor to the growing ensemble, other than considering all possible torsion distributions 

of this atom, a 3 Å vicinity is searched for new locations to satisfy any potential hydrogen bond 

contacts. Atoms forming a disulphide bond are not allowed to move during the side chain 

generation. The generated poses are accepted only if they don’t clash with the rest of the 



 44 

structure. A geometric cutoff of 2.8 Å is set as the collision criteria for the non-bonded heavy 

atoms. This procedure narrows down our conformational search while sampling in the 

appropriate regime. An example illustrating the parallel printing scheme of our method is shown 

in the left-hand side of Figure 2.2. 
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Figure 2.2. An example illustrating the parallel printing scheme used to construct alanine. The 
printing starts from three atoms with known locations. In each step a new atom is added to the 
system fixed by three distances constrained by the pair potentials from the lookup table. Bonds 
and angles are fixed to their minimum well depths due to their extremely narrow distribution 
ranges. Distances for the torsion angles and non-bonded interactions (not used in the alanine 
example) are selected based on a range of points around the energy minima (only minima are 
selected in this figure for simplicity).  
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2.4 Side chain flexibility  

The construction of side chain conformers for one residue was independent of the other 

residues of the binding pocket; i.e. the three reference points to locate a particle were taken from 

the same residue. In this way, the first side chain atom to be rotated for each residue was Cγ, 

where backbone amide N, Cα and Cβ served as the three reference atoms. Because the exploration 

of side chain conformations was done per residue steric clashes for each residue were checked 

after looping over all residues with respect to all other residues of the binding pocket and the 

remaining residues in the protein. Following this strategy, conformers were generated for 17 out 

of a total of 20 amino acids (Gly, Pro and Ala were skipped). Though conceptually similar, 

MTflex differs from the rotamer library based methods in that new atoms are not built according 

to a structural database but on a local free-energy landscape defined by the potential utilized. 

 

 

2.5 Loop flexibility 

Conformational space available to loop grows exponentially with the loop length, so we 

generated the loop from both N and C termini separately. This loop buildup procedure bears 

similarity to Jacobson et al strategy [1], where loop was generated from both ends and closed in 

the middle. Our loop building strategy is different in a way that backbone and side-chain atoms 

for each residue were constructed altogether. This helped us in eliminating those backbone 

positions immediately, which couldn’t fit side chain atoms. Several restraints were also applied 

during structural sampling. The entire loop was generated in the presence of the rest of the 

protein structure so the Vander Waal collision restraints served as the primary source of 

screening. A geometric restraint of 2.8 Å was used for the non-bonded heavy atoms and 2.3 Å 
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for the hydrogen bond forming atoms. Steric clashes within the generated loop structure were 

also identified using the same geometric restraint. The atoms forming a disulphide bond were 

also kept intact during the side chain formation of the generated loop structure. Chirality at α-

carbon position was considered for all the amino acids for the backbone generation. β-carbon 

chirality was considered for isoleucine and threonine for the generation of side chains 

conformers. Ring planarity of aromatic amino acids was also enforced. The sampling size was 

kept at a manageable level in this way. The loop closure of the generated loop fragments was 

obtained using the following procedure. The N-termini loop fragments were generated from 1 to 

ith loop residues, where the ith residue corresponds to one of the middle residues of the loop. 

Similarly, the C-termini loop fragments were generated from M to (i+1)th residues, where M is 

the last residue of the loop. See Figure 2.3 for reference. Both ends were tried to meet by finding 

the pair from either end falling in the optimum bond distance for the carbonyl carbon of the ith 

residue and backbone Nitrogen of (i+1)th residue. The optimum distance was chosen from our 

pre-built look up table of distance versus energies.  Apart from the bond distance restraint, the 

geometric criterion for checking Van der Waals collisions between the connecting residues was 

also imposed. In this way, the loop fragments, which were unable to close or had steric clashes, 

were pruned from the ensemble on the fly. 
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Figure 2.3 Pictorial representation of our loop closure strategy. Loop fragments are generated 
from both N and C terminals individually. The individual loop fragments are then combined 
from both ends to form complete loops. 
 
 
 
 

 2.6. Free energy estimation 

The Movable Type (MT) method numerically simulates local partition functions utilizing 

a Monte Carlo integration (MCI) scheme, given an initial structure, from a canonical ensemble. 

The MCI method is a widely used numerical approach for free energy calculation.[2, 3] By 

simulating the integral of the canonical partition function instead of generating enthalpy and 

entropy values separately, the MCI method allows for the avoidance of expensive and poorly 

converging entropy calculations.  
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The development of the MT algorithm is inspired by the idea of the MCI approach 

expressed in equation 2.5, where the Helmholtz free energy is simulated using the average of the 

sampled energy states multiplied by the actual sampling volume. The distinctive feature of the 
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MT method is that it numerically simulates the average of the local partition function given a 

defined sampling volume centered around an initial structure, instead of searching among actual 

physical structures within that defined volume. In our first MT algorithm publication, a matrix-

based random sampling strategy combining every atom pairwise potential against each target 

molecular system was introduced, in which all pairwise potentials are regarded as orthogonal and 

a total random combination among the atom pairwise distances were performed within a small 

range of sampling (±0.5 Å for every atom pairwise distances). The generated hyper-dimensional 

energy states were associated with pre-modeled structural weighting factors and averaged over 

their sampling magnitude CN, where C is the defined sampling range and N is the pairwise 

contact number. This approach is to simulate the average of the actual physical energy states 

using the more easily constructed virtual states.  

Given an N-particle physical space, a quantitative description of the ensemble volume is 

written as: 

V = ! dτ1D∫∫ !dτ N          (2.6) 

where, τ1 to τN are the coordinates of all the particles and D is the domain of definition for all of 

the particle coordinates. The ensemble volume is under exponential growth as the number of 

dimensions increases. The MT algorithm uses a distance-based coordinate system in order to 

better estimate the ensemble volume, and importantly, this approach is well suited to the MT 

method, where each distance is associated with a pair potential value chosen from a pre-built 

lookup table allowing us to simultaneously generate the structures and energies for a given 

system. [4] 

The feature of our method that sets it apart from other traditional methods is that it 

simultaneously generates the structure and its local free energy by simulating the partition 
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function within a defined ensemble volume by multiplying the pair potential matrices as 

summarized in equations 2.2-2.4 through all atom pairwise potentials in the molecular system. 

Atom pairwise energies stored in the final partition function matrix (ZM) represent the virtual 

hyper-dimensional energy states given the defined sampling range regarding each generated 

conformation. The free energy is then calculated using the ensemble volume and ZM. 

/ZM = /Z1 i /Z2 i /Z3 i!i /Zn          (2.7) 

( )ln lnE MA RT V e RT V
m n

β τ− Ζ/⎡ ⎤⎡ ⎤= − = − ⎢ ⎥⎣ ⎦ ×⎣ ⎦
       (2.8) 

where, β is the Boltzmann constant, E(τ) is the molecular energy as a function of geometric 

variable τ, m and n represent the number of rows and columns of the Z-matrix. For further 

detailed explanation of the free energy calculation and the solvation model, please see Zheng et 

al. and Pan et al.[6, 7, 8] 

 

 

2.7. Solvation free energy 

Solvation free energy is calculated using the implicit solvation model KECSA-Movable 

Type Implicit Solvation Model (KMTISM).[5] KMTISM is a semi-continuum solvation model, 

which places water molecules around the solute as isotropic rigid balls with the van der Waals 

radii of 1.6 Å. The water molecules are placed in incremented isometric layers of 0.005 Å up to 8 

Å from the solute’s van der Waals surface. The solvation free energy change for the protein-

ligand binding process is separated into two components, representing the translation of the 

solutes and water molecules during the binding process. During the protein-ligand binding in 

solution, the ligand replaces a number of water molecules in the protein-binding site, with 
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respect to the volume occupied by the ligand. At the same time, these water molecules lost upon 

ligand binding are transferred into bulk. Figure 2.4 highlights the pictorial representation of the 

change in solvation free energy during the protein-ligand binding process.  

 

 

Figure 2.4 Illustration of the solvation free energy change during protein-ligand binding. The red 
arrow shows the desolvation and placement of the ligand into the protein-binding site. This 
process replaces water molecules bound in the protein-binding site that are displaced by the 
ligand volume. The green arrow shows the dissociation and solvation of these water molecules 
during the binding procedure.  

 
 

Given these two simultaneous processes, the solvation free energy change is calculated 

using the following equation: 

         (2.9) 

 

where,  

ΔGsol = ΔGsol
PL+ΔGsol

water
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(2.10)
 

 represents the solvation free energy change with respect to the solute-solvent interactions, 

and: 

   (2.11) 

 

represents the solvation free energy change with respect to removing water molecules 

at the binding site and placing them into solvent. ,  and  are interaction potential 

energies for the protein-ligand complex, protein and ligand in contact with solvent respectively; 

and  are interaction potential energies for the water molecules being replaced 

representing their contacts with solvent and with the protein receptor, respectively. Boltzmann 

factors for all the sampled states are summed to simulate the corresponding partition functions. 

Free energy changes are then calculated using the logarithms of the summed Boltzmann factors 

using the mechanics described above for the free energy calculation.   
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CHAPTER 3 
 

Incorporation of Side Chain Flexibility into Protein Binding Pockets 
using MTflex 

 

 
 
 

 
 
 
 
 
 

 

 

 

 

 

 

 
† Reprinted (adapted) with permission from Bansal, N.; Zheng, Z.; Merz, K. M., Incorporation of side chain 
flexibility into protein binding pockets using MTflex. Bioorgan Med Chem 2016, 24, 4978-4987. 
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3.1 Abstract 

The plasticity of active sites plays a significant role in drug recognition and binding, but 

the accurate incorporation of “receptor flexibility” remains a significant computational 

challenge. Many approaches have been put forward to address receptor flexibility in docking 

studies by generating relevant ensembles on the energy surface, but, herein, we describe a 

method (Movable Type with flexibility (MTflex)) that generates ensembles on the more relevant 

free energy surface in a computationally tractable manner. This novel approach enumerates 

conformational states based on side chain flexibility and then estimates their relative free 

energies using the MT methodology. The resultant conformational states can then be used in 

subsequent docking and scoring exercises. In particular, we demonstrate that using the MTflex 

ensembles improves MT’s ability to predict binding free energies over docking only to the 

crystal structure.  

 

3.2 Introduction 

Gaining a deep understanding of the interactions involved in the protein-ligand binding 

process has been of great interest for many decades because of its importance in a wide range of 

biochemical processes occurring inside living organisms. To explain this process several theories 

have been put forward of which the most widely accepted ones include: lock and key[1], induced 

fit[2], and the conformational selection[3] model. The former dates back to 1854, when Emil 

Fischer first proposed the lock and key model where the active site was viewed as structurally 

immutable. His theory remained popular until experiments reported changes in the receptor 

structure upon ligand binding.[4-8] From these observations, Koshland proposed the induced fit 

model while Nussinov proposed the conformational selection model, which incorporated 
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receptor flexibility. The induced fit model proposed that ligand binding induced conformational 

changes in the receptor; the conformational selection model assumes that the protein has an 

ensemble of states and that the ligand selectively picks one of these.[9, 10] Altogether 

experimental and theoretical considerations have modified our perception of how a ligand 

recognizes a biological receptor.  

Today, proteins are considered as inherently flexible that possess a range of intrinsic 

motions.[5] The inherent flexibility of proteins is attributed to the numerous non-covalent 

interactions that exist in their native states. They possess a variety of motions, which range from 

vibrational fluctuations up to large backbone rearrangements, which taken altogether generate a 

conformational ensemble for a given protein system.[5, 11-15] After much debate, it has been 

posited that proteins exist in multiple conformations in solution while available crystal structures 

represent just one member of the entire conformational ensemble. [5, 9, 11, 16-18] 

Computational chemists have expended enormous intellectual capital to capture the 

plasticity of proteins.[19, 20] The conformational space spanned by proteins can be quite 

substantial making addressing this issue a highly challenging problem.[21-25] Even in the face 

of these challenges, numerous methods have been developed to account for protein flexibility in 

protein-ligand binding studies using simulations or docking methodologies.[26] Soft-receptor 

docking methods represent some of the first attempts to address this issue. These methods 

enumerated a very limited or localized flexibility by softening the van der Waals potentials, 

which allow for small steric clashes between the protein and ligand molecule.[27, 28] Rotamer 

library exploration is another way to approach partial flexibility by including side chain motions 

on the basis of allowable states of the rotatable bonds of select active site residues.[29-32] 

Ensemble docking is another class of docking methods that employs multiple receptor 
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conformations to account for protein flexibility prior to docking. These multiple conformations 

are generated by either computer simulations based on Monte Carlo, conventional or accelerated 

molecular dynamics[33-36], Normal Mode Analysis[37-40], homology models[41], or by 

collecting experimental structures using NMR or X-Ray[42-44]. Few of the known docking 

algorithms that use ensemble based docking are Autodock[45, 46], ITScore[47, 48], 

IFREDA[49], MedusaDock[50], RosettaBackrub[51], FlexE[52], BP-Dock[53] and MDock[44]. 

Induced fit docking (IFD) is another major category of docking algorithms that account for a 

certain degree of receptor flexibility. Few examples of docking algorithms that use IFD are 

Autodock Vina[54], Autodock4[45, 55], GOLD[56, 57], GLIDE[58], RosettaLigand[59, 60], 

ICM[39, 49], FLIPDock[61, 62], DOCK6.0[63], SLIDE[64-66], ReFlexin[67], GalaxyDock[68], 

FITTED[69-71], PC-RELAX[72, 73], Flesky[74], FiberDock[75], hinge belt docking 

algorithms[76-79] and Adaptive BP-Dock.[80] Other methods include introducing flexibility in 

the receptor structures using hybrid methods like the linear interaction energy (LIE)[81, 82], 

Relaxed complex scheme (RCS)[83, 84], dynamic pharmacophore modeling[85, 86] and single 

step perturbation.[87-89] An extensive overview of all receptor flexibility methods and docking 

software packages is provided in recent reviews.[26, 90-94] One drawback of docking methods 

is the difficulty of obtaining a converged partition function within a limited structural ensemble. 

Monte Carlo and molecular dynamics simulations (and their variations, e.g., Markov Chain 

Monte Carlo, replica exchange, etc.) can delineate more of the relevant ensemble, but in general, 

at an increased computational cost.  

Recently we have described a novel free energy calculation method called the Movable 

Type (MT) method.[95] Using its mechanics of parallel conformation generation, we have 

developed MTflex and an associated program for fast protein conformation generation and energy 
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sampling. The present manuscript introduces a method to sample the side chain conformations 

within a protein active site via the MTflex methodology generating an ensemble of structures that 

can be subsequently used in ensemble docking studies.  

 

 
 

3.3 Results and Discussion 

In the current study, we applied the MTflex method to side-chain conformational ensemble 

generation against holo protein crystal structures, which was then followed by docking and 

scoring to the resultant structure. In particular, we explored the following: (1) side chain 

flexibility and protein free energy variations with fixed backbone conformations in the binding 

pocket area; (2) binding mode predictions and binding free energy predictions using protein 

structures with different side chain conformations. The validation benchmark set involved 159 

protein-ligand crystal structures from the PDBbind v2014 core database after excluding proteins 

having metal ions in the binding pockets area.[96, 97] The core dataset consists of high-

resolution structures with a wide distribution of pKd values.   

 

3.3.1. Generation of the protein side chain conformations and the relative free 
energies using MTflex 

The binding pocket’s residues were identified as those lying in a 6-Å vicinity of the co-

crystal native ligands. All the heavy atoms in a residue were used to identify a binding pocket. If 

a residue had one or more than one heavy atoms (be it a side chain or backbone atom) within 6 Å 

of the native ligand, then the entire residue was considered to be a part of the binding pocket. 

Isoleucine and threonine are chiral at the β-carbon position, which is the first heavy atom of the 
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side chains of all amino acids except Glycine. Chirality was considered for these two amino 

acids for the generation of side chains conformers using MTflex. Ring planarity of aromatic 

amino acids was also enforced. Disulphide bonds were also kept intact. Steric clashes within the 

generated binding pocket and with the rest of the protein were avoided by the use of a geometric 

restraint of 2.3 Å for the non-bonded heavy atoms with the capacity to form hydrogen bonds and 

2.8 Å for the non-bonded non-hydrogen heavy atoms. The MTflex conformations were generated 

in-vacuo (no explicit or implicit water model). 

The MTflex code was written using MATLAB R2015a software.[98] The code was run 

using a single CPU processor on the Intel14 cluster provided by the High Performance Computer 

Center (HPCC) facility at MSU. Each node consists of two 2.5 GHz 10-core Intel Xeon Ivy 

Bridge E5-2670v2 processors and 512 GB memory per node. The performance of the code 

varied based on several factors including the- i) type of residue, ii) number of residues in the 

binding pocket, and iii) the crowding of the binding pocket. We did an averaging of the 

computation time required to generate MTflex conformers for the 17 amino acids (excluding Gly, 

Pro and Ala) over 159 systems. Table 3.2 lists the average CPU time (in seconds) required to 

generate the MTflex conformers for each amino acids. Currently, we are in the process of 

transitioning the code to C++ to facilitate distribution and to improve the computational 

performance. 

The application of MTflex with this criteria and restraints generated a varied number of 

conformers for each system depending on the nature of the binding pocket. The magnitude of the 

number of conformations varies from ~10 conformations for the crowded and compact binding 

pockets to thousands of poses. In total, we generated 38397 conformers for 159 systems. After 

generation of the conformers, we used a RMSD criterion of 0.5 Å to select the final set of 



 61 

receptor conformations. The first conformation was always selected. For the remaining 

conformations, their RMSDs were compared to all the preceding selected conformations. If a 

conformation’s RMSD was <= 0.5 Å with respect to any of the already selected conformations, it 

was rejected otherwise it was accepted.  The list containing the numbers of MTflex conformers 

retained for each system is provided in Table 3.3 of the supporting information. 

The RMSDs (Å) of the MTflex generated conformers were calculated with respect to the 

crystal structure for all systems. RMSDs were obtained by an in-house code to make sure that 

MTflex conformers were orientated for the best fit to the crystal structure. The code was written 

using MATLAB R2015a. [98] The details of the algorithm are provided in Section 3.5.1 of the 

supporting information. The top panel of Figure 3.1 shows the deviation of the MTflex conformers 

from each crystal structure in the validation set. It is clear that more conformations were 

generated for more flexible binding pockets (RMSD distribution range as the gap between the 

green line and the blue line shown in Figure 3.1). The distribution of the lowest RMSD 

conformers (the blue line in top panel of Figure 3.1) is from 0.05 Å to 1.15 Å representing how 

MTflex reproduces structures relative to the crystal structures in the validation set.  
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Figure 3.1 The top panel represents the minimum, maximum and RMSD range of MTflex 
conformers generated for all 159 systems. Dark blue curve denotes the lowest RMSD, Green 
curve denotes the highest RMSD conformer and black stripes represent the RMSD ranges of 
MTflex conformers for all 159 systems. The lower panel represents the percentage (%) of native 
contacts in MTflex conformers with respect to the crystal-binding pocket. Dark blue curve shows 
the maximum %, Green curve symbolizes the minimum % and black stripes represent the range 
of native contacts in MTflex conformers. 
 
 
 

In general, binding pockets do not afford much space to work with in terms of reorienting 

the side chains. Indeed, any large-scale movement of a side chain would be rejected because of 
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van der Waals collisions with the rest of the protein. All of the systems studied had their lowest 

RMSDs less than 1.15 Å with the minimum value being ~0.05 Å.  

However, for some systems the side chain RMSDs were higher with the maximum as 

high as 4.91Å. On closer examination, we observed that the source of the large RMSD values 

was the rotation of aromatic side chains in the receptor’s binding pocket. RMSD is a good 

criterion to measure the deviation from a native structure, but we realized that they were biased 

somewhat due to the rotation of aromatic side chain in the binding pocket. Hence, in order to 

further understand the overall mobility of the binding pocket, we also calculated the percentage 

of native contacts in MTflex conformers with respect to the binding pocket of the crystal structure 

(refer to the lower panel of Figure 3.1). The percentage of native contacts reflects the number of 

native contacts retained in the MTflex conformers over the total number of contacts present in the 

crystal protein structure. The number of native contacts was calculated with a distance cutoff of 

6.0 Å using the CPPTRAJ utility of Amber tools (2015).[99] It can be seen from the lower panel 

of Figure 3.1 that the maximum percentage of native contacts for all 159 systems of the 

validation dataset is within 92.6-99.6%, while the minimum percentage is as low as 76.7%. 

Given the fixed backbone structures, the gap between the minimum and the maximum 

percentage of native contacts indicates the magnitude of flexibility of the side chains in the 

binding pockets according to the MTflex method. 

Shown in Figure 3.2, two protein structures, with PDBIDs 3UEU and 1R5Y, were 

selected from the validation dataset as examples to illustrate the positioning of the side chains 

produced by the MTflex method. These two structures had the largest gaps in the percentage of 

native contacts (according to the distances between the blue and green lines in Figure 3.1), while 

at the same time the MTflex generated conformations covered the native structures for the two 
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proteins (lowest 0.50 Å RMSD and 0.17 Å RMSD and maximum native contacts of 97% for 

3UEU and 99% for 1R5Y, respectively). The largest deviations for these two proteins have 

RMSDs of 2.8Å for 3UEU and 3.51Å for 1R5Y, with the corresponding percentage of native 

contacts being 76.7% for 3UEU and 79.4% for 1R5Y. Table S2 lists the minimum and maximum 

RMSDs for each system along with the PDBID of each system. 

 

 
Figure 3.2 It shows the side chain of binding pocket region of PDB ID 3UEU (left) and 1R5Y 
(right). The crystal-binding pocket represented in pink licorice conformation is superimposed 
with the MTflex conformer with the maximum percentage of native contacts (tan) and MTflex 
conformer with minimum percentage of native contacts (cyan color). 
 
 

The highest and lowest free energy differences among the protein conformations were 

obtained determined and the top panel of Figure 3.3 illustrates the range of free energies obtained 

for MTflex binding pocket conformations relative to the holo crystal conformation. The blue 

curve represents the free energy difference between the most “relaxed” (lowest free energy) 

MTflex binding pocket conformation and the holo crystal conformation and the red curve between 

the highest free energy and the crystal structure for all 159 systems in the validation dataset. 

Approximately, 68.5% of the systems in the validation dataset a MTflex generated conformation 

gave a free energy lower than the crystal structure, while for 31.5% of the systems all MTflex 

generated conformations had higher free energies than the crystal structure. To dig into this 
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more, we lumped the 68.5% into Region 1 and the rest in Region 2. We estimated the net 

difference in free energies between the highest free energy and the lowest free energy MTflex 

conformation for each system of the validation dataset and observed that the average difference 

of free energies for all the systems in Region 1 is 4.31 kcal/mol and for Region 2 is 3.9 kcal/mol. 

We also calculated the minimum and maximum RMSDs (Å) of the MTflex conformations for 

each system (plotted in the lower panel of Figure 3.3) and found out that the net RMSD 

difference between the minimum and maximum RMSD conformations in Region 1 is 2.21 Å 

while in Region 2 is 1.99 Å. The narrower range of free energy and the constricted RMSD 

difference between minimum and maximum RMSD conformations in Region 2 suggests 

conformational sampling is restricted in Region 2. The restricted conformational sampling 

suggests two possible scenarios-a) the crystal-binding pockets in Region 2 are not flexible in 

nature or, b) partial relaxation of the crystal binding pocket with only side chain flexibility is not 

sufficient for the systems in Region 2. Alternatively, issues with our statistical energy function 

can give the observed behavior. Because there are no hard and fast rules governing whether or 

not pocket sampling across a series of proteins should yield a certain percentage of lower or 

higher free energies conformations for a given pocket we cannot fully assess the performance of 

our approach.  
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Figure 3.3 The upper panel represents the relative free energy (kcal/mol) between the lowest 
free energy MTflex conformer and the crystal structure (blue curve) and the highest free energy 
MTflex conformer and crystal structure (red curve) for all 159 systems in the validation dataset. 
The lower panel represents the corresponding RMSDs (Å) of the minimum RMSD MTflex 
conformer (purple) superimposed with the maximum RMSD MTflex conformer (green).  

 
 

3.3.2. Ligand docking and scoring 
  After generating the MTflex conformers, the next task was to dock the ligands into their 

respective binding pocket. Ligands were docked exhaustively into all of the receptor poses 
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generated by MTflex for each of the 159 systems using GLIDE version 6.1 in the Schrodinger 

2013-3 suite.[100-102] The Protein Preparation wizard utility, accessible from the Maestro 

interface of the Schrodinger 2013-3 suite was used to process the receptor structures.[100, 103] 

Protonation was performed at a pH-7.0.[104, 105] The hydrogen atom positions were optimized 

using the OPLS 2005 force field. The optimization was done in the absence of ligand.[106, 107] 

Crystal waters, if present, were removed from the receptor structures. Minimization was done 

only on the hydrogen atoms and the heavy atoms were kept fixed. Docking was done using the 

standard precision (SP) methodology of Glide version 6.1. The identical procedure was followed 

to dock ligands into the crystal structure for the purpose of comparison. The top five scored 

docked ligand poses were retained. In the current study, the Glide SP method was applied to 

ensure that a certain number of binding modes were been generated to cover as broad a range as 

possible of the conformational space for the following free energy simulations. 

  We obtained the ligand heavy atom RMSD (Å) after docking the native ligand into the 

binding pocket from the crystal structure and also into the MTflex binding pocket(s) for all 159 

systems. These RMSDs were calculated with respect to the native ligand geometry in the crystal 

structure. The ligand heavy atom RMSD values were obtained from the Glide report generated 

after docking the ligands into the respective binding pockets. Figure 3.4 gives a detailed pictorial 

analysis of the comparison of ligand RMSD (Å) between the ligand docked into the crystal 

structure and the ligand docked into the MTflex generated binding pockets for all 159 systems. 

Ligand RMSDs reduced for ~ 78% of the systems after docking the native ligands into the MTflex 

binding pockets as compared to the docked poses in the crystal structure binding pocket. The 

average RMSD of ligands over 159 systems docked into the MTflex binding pocket was reduced 

to around 1.31 Å as opposed to the ligands docked into the crystal binding pockets with the 
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average being around ~2.11 Å. The reduction in average RMSD (Å) of the ligands supports the 

notion that inclusion of receptor flexibility is important in computer aided drug design 

campaigns.  

 
Figure 3.4 Ligand RMSD (Å) for all 159 systems after docking the native ligand into the crystal 
receptor’s binding pocket (red) and into the MTflex  binding pocket (green). Lowest RMSD 
Conformations are used for comparison in both the datasets. The blue, yellow and the black 
columns represent the PDBIDs: 2R23, 3PXF and 1U33, which will be discussed in text.  

 
 
  A table containing the RMSD values (Å) of the minimum RMSD docked ligand 

conformers in both the MTflex and binding pockets from the crystal structure for all 159 systems 

is provided in supporting information as Table 3.4. It can be seen from Figure 3.4 that for some 

of the systems, the RMSD difference is quite large (~7-8 Å) and two such cases are highlighted 

in Figure 3.4 in blue (PDBID 2R23) and black (PDBID 1U33). These two PDBIDs were picked 

to show the contradictory affect of docking ligand in the MTflex binding pocket.  
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  Figure 3.5 shows the superimposed images of the ligand in the crystal structure (orange), 

lowest RMSD docked ligand pose into the crystal structure binding pocket (blue) and the lowest 

RMSD docked ligand pose in the MTflex binding pocket (green) for both PDBIDs. For PDBID 

2R23 (left), the ligand docked in crystal structure is quite far apart from the ligand position in the 

crystal structure with an RMSD of ~7.3 Å. However, the ligand docked in the MTflex binding 

pocket is nearly coincident with the ligand in the crystal structure with a RMSD of 0.83 Å. The 

situation is reversed for PDBID 1U33 (right side of Figure 3.5), where the lowest RMSD crystal 

structure docked ligand pose is well aligned to the ligand in the crystal structure with a RMSD of 

0.54 Å while the lowest RMSD MTflex docked ligand pose is 8.20 Å. 

 

 
Figure 3.5 It shows the crystal complex ligand (orange), lowest RMSD docked ligand pose in 
the crystal binding pocket (blue) and the lowest RMSD docked ligand pose in the MTflex binding 
pocket (green) superimposed onto each other for PDB IDs: 2R23 and 1U33 (from left to right). 
The background represents the binding pocket area of the respective protein. 

 
 
  We visualized the 2-D ligand interaction diagram (LID) in Maestro to look for the 

protein-ligand interactions in the crystal structure, ligand docked into the crystal structure and the 

ligand docked into MTflex derived binding pocket for both PDBIDs. LIDs are shown in Figure 3.9 

for PDBID: 2R23 (top panel) and 1U33 (lower panel).  In both the panels, the left image displays 
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the protein ligand interactions found in the crystal structure, the center image is for the ligand 

docked into the crystal structure and the right image is for the ligand docked into the MTflex 

derived binding pocket. We can establish from the LIDs that Glide is looking for a maximum 

number of contacts between the binding site residues and ligands in order to find an optimized 

position for the bound ligand. The number of contacts between the protein from the crystal 

structure and the docked ligand for PDB ID 2R23 (see top panel) are far more than the number of 

contacts found in the crystal structure. We anticipate that this is why the ligand docked in the 

protein from the crystal structure has a large RMSD from the position of the ligand found in the 

crystal structure. However, the side chains of the Arginine (Arg) residue (Resid 30) and 

Asparagine (Asn) (Resid 52 of chain D) are rotated in the MTflex binding pocket (refer to the left 

panel of Figure 3.10) yielding a net RMSD of 1.86 Å for the MTflex binding pocket with respect 

to the pocket found in the crystal structure. These rotations have established a new H-bond 

between the side chain of the Asn and the ligand and have restored the original salt bridge 

between the Arg and the ligand, keeping the position of the docked ligand nearly the same as 

found for the ligand in the crystal complex. For PDBID 1U33 (lower panel), Glide identifies 

very similar interactions between the docked ligand and crystal protein as that of the crystal 

complex, thereby finding the optimized position of the docked ligand almost overlapping with 

the ligand in crystal complex with the RMSD of 0.54 Å. But in the MTflex binding pocket, even 

for the lowest RMSD MTflex conformer (0.33 Å), the side chain of the Glutamate (Glu) residue 

(Resid 233) is tilted slightly such that it is blocking the position of the native ligand pose found 

in the crystal structure (see the right panel of Figure 3.10). Due to the slight change of the Glu 

residue coupled with few other side chain rotations, the docked position of the ligand for the 

MTflex binding pocket is far from that found for the ligand in the crystal structure. 



 71 

  For further comparison, we correlated the Glide scores of the docked crystal and MTflex 

ligands with the experimental binding affinities (pKd/pKi). To be consistent with the energy unit 

used by Glide, we converted experimental pKd/pKi values to ΔG in kcal/mole. We compared 

Glide’s score for the best docking solution for both cases across all 159 systems. Correlation of 

Glide’s score for the top docking solution in the crystal structure generated a Pearson’s R of 0.39 

and a Spearman’s rank correlation coefficient (Spearman’s rho) of 0.43 while the correlation of 

Glide’s top docking score across all MTflex conformations generated a Pearson’s R of 0.47 and a 

Spearman’s rho of 0.50. The Root mean square error (RMSE) (kcal/mol) reduced from 3.21 to 

2.70 kcal/mol and the Mean unassigned error (MUE) (kcal/mol) from 2.34 to 2.17. The table 

listing all the statistical parameters for the best solution using Glide’s score is provided in Table 

3.5 of the supporting information. The correlation between Glide’s top docking score for the 

crystal receptor and for the MTflex conformers generated a Spearman’s Rho of 0.82 and Pearson’s 

R of 0.86. Overall, the Glide score for docking the ligand into MTflex binding pocket improved in 

terms of both error and correlation when compared to docking the ligand into the crystal 

structure. By this analysis, it was observed that MTflex generated multiple conformers serve as 

better input than a single crystal structure “seed” on which ligand scoring and docking is 

performed.  

  We also re-ranked Glide’s docking solutions based on the relative free energy scale 

obtained for the MTflex conformations in the ligand-unbound states. After re-ranking, we 

obtained the correlation between the Glide’s score for the lowest free energy MTflex conformer 

(in the ligand-unbound state) and the experimental binding affinities (the statistical parameters 

are present in Table 3.5). The correlation was quite poor with Pearson’s R and Spearman Rho 

values of 0.37 and 0.38, respectively. The free energy errors were also higher with a RMSE of 
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3.17 kcal/mol and MUE of 2.43 kcal/mol. All the statistical parameters for correlation were poor 

as compared to the Glide’s best score for crystal and MTflex docking, which is understandable 

because the ranking of conformations on the free energy scale can be entirely different before 

and after ligand binding. A ligand does not necessarily have the strongest affinity towards the 

lowest free energy receptor conformation. It can bind with more affinity to a higher free energy 

conformation on a free energy scale and change the overall ranking of the conformations in the 

bound state as compared to the ligand unbound state. Figure 3.6 shows the relative free energy 

between the MTflex lowest free energy conformation in the ligand bound state and the MTflex 

lowest free energy conformations in the ligand-unbound state for all 159 systems of the 

validation dataset. The MTflex lowest free energy conformation in the ligand-unbound state is the 

reference state (0 kcal/mol) for all systems. Based on our analysis, we found that only for ~31% 

of the systems, the MTflex lowest free energy conformer in the ligand bound state was also the 

lowest free energy MTflex conformer in the unbound state. However, no particular trend was 

observed. To give a pictorial overview of the free energy scales, we include Figure 3.11 in 

supporting information. It shows the position of the MTflex lowest free energy conformation in 

the ligand bound state on the MTflex free energy scale generated for four random systems from 

our validation dataset (PDBIDs: 10gs, 2fvd, 2qbr and 2zjw). It can be also be seen from Figure 

3.11 that the position of the lowest free energy conformation in the ligand bound state (marked 

as a red square) is different for each of the systems and does not show any particular preference 

to a particular rank on the free energy scale. 
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Figure 3.6 The position of the MTflex lowest free energy conformation in the ligand bound state 
on the free energy scale obtained for the MTflex conformations in the ligand-unbound state is 
shown. The lowest free energy MTflex conformation in the unbound state is used as reference (set 
to 0 kcal/mol). 
 
 
 

3.3.3. Multi seed versus rigid receptor free energy calculations 
 

Using the MT method, we calculated the binding affinity (ΔG in kcal/mole) of all the 

protein-ligand complexes obtained after docking ligands into the MTflex generated binding 

pockets and also into the crystal structure pockets. We also calculated the binding affinity of the 

crystal protein-ligand complex for the entire validation dataset and incorporated it as one of the 

conformers of the MTflex ensemble. For the sake of simplicity, we will denote the experimental 

protein-ligand complex as PCLC, the crystal protein-docked ligand complex as PCLD and the 

MTflex protein docked ligand complex as PMTLD.  

We calculated binding affinities of <PCLD> (average over all the docked solutions of the 

crystal protein docked ligand complex) and <PMTLD>  (average over all the docked solutions of 
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each MTflex conformer) for each of the 159 systems from the validation dataset and correlated 

them with the experimental ΔG values. The binding affinity prediction for <PCLD> yielded a 

Pearson’s R of 0.58 and Spearman’s Rho of 0.60. The correlation of the average binding affinity 

for PMTLD including the full range (<PMTLD>) showed an improvement over the crystal structure 

docked structures in all statistical parameters including Pearson’s R, Spearman’s Rho, RMSE 

and MUE (see Table 3.1). The correlation coefficient, Pearson’s R showed a modest 

improvement with a value of 0.65 and Spearman’s Rho with a value of 0.69. The errors 

decreased with the RMSE dropping from 3.37 to 2.83 kcal/mol and the MUE went from 2.74 to 

2.27 kcal/mol. The RMSE and MUE drops are significant observations because they affirm the 

relevance of our sampling space. Figure 3.7 shows the superposition of the binding affinities 

(kcal/mol) of <PCLD> and <PMTLD> along with the experimental binding affinities for all 159 

systems in the validation set. We observed that for approximately 63.3% of the validation 

dataset, the binding affinities of the <PCLD> complexes lie within ±3 kcal/mol of the 

experimental binding affinities while the percentage increases to 75.4% for the <PMTLD> 

complexes. The overall improvement in <PMTLD> binding affinity prediction over the <PCLD> 

complex highlights the significance of using a multi-seed strategy over single receptor structures 

in MT based binding affinity prediction.  
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Figure 3.7 It shows the absolute binding affinities (kcal/mol) of <PCLD> and <PMTLD> 
superimposed with the experimental binding affinity (kcal/mol). ± 3kcal/mol error window is 
extended for the experimental binding affinities. 
 
 

As already described in the method section, our method is based on a Monte Carlo 

integration. The accuracy of any MCI approach relies on the selection of the structural ensemble. 

The improvement of the <PMTLD> binding affinity prediction validates that our sampling set does 

possess some of the key states of the conformational ensemble beyond the crystal structure. 

Nonetheless, some less significant conformations are also generated and the overall calculation 

would benefit from their elimination. The goal here was to find a converged ensemble out of the 

larger pool of conformers generated by MTflex. To prune out the high-energy conformers and/or 

the very low populated states from our sampling space, we calculated the free energy difference 

(ΔΔGbind) between all the docked solutions of each MTflex conformer in the PMTLD complexes 
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(PMTLD-All) and the PCLC for each system using equation 3.1, where n refers to the number of 

complexes in PMTLD-All for each system in the validation dataset. 

ΔΔGn
bind = ΔGn

PMTLD - ΔGPCLC         (3.1) 

The free energy difference provided us with a scale to rank our conformations from the 

lowest to highest binding affinities with respect to the crystal structure. The crystal protein ligand 

complex was incorporated into the PMTLD-All ensemble as one of the conformers. The free energy 

scale for all the 159 systems of the validation dataset is represented in Figure 3.8. The lowest 

free energy MT protein ligand complex (PMTLD-Lowest) for each system is highlighted by the 

orange curve. Based on the free energy scale, approximately 70.4% of the systems in the 

validation dataset have lower free energy PMTLD-Lowest conformations (lower free energy binding 

modes) than the crystal complex. The observed free energy differences are not remarkable owing 

to the fact that we only introduced side chain flexibility. However, we hypothesize that if we add 

backbone flexibility on top of side chain flexibility, we would likely span a broader free energy 

range. We compared the binding affinity of the lowest free energy MT protein ligand complex 

(PMTLD-Lowest) by correlating it with the experimental binding affinity (kcal/mol). The correlation 

parameter for PMTLD-Lowest showed a slight improvement over the prediction for the <PCLD> 

complex with the Pearson’s R incrementing from 0.58 to 0.64 and Spearman’s Rho from 0.60 to 

0.68. The errors were reduced substantially with the RMSE reducing from 3.37 to 2.72 kcal/mol 

and the MUE dropping from 2.74 to 2.14 kcal/mol. In comparison to the <PMTLD>, the 

correlation trends for PMTLD-Lowest did not show any improvement but both the RMSE and MUE 

(kcal/mol) reduced. 
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Figure 3.8 Free energy scale of PMTLD complex for all 159 systems in the validation dataset. 
Approximately ~70.4% of the systems have lower free energy than the crystal complex. 

 
 

Based on the free energy difference scale, we also selected several subsets of the 

conformations and correlated them with the experimental binding affinities. The subsets were 

formed by collecting PL complexes starting from the lowest up to a selected free energy 

difference endpoint from the crystal structure. We calculated the average binding affinity for all 

of the subsets and referred to them as PMTLD-set 1 to set 5, where PMTLD-set1 represents ΔG’s up 

to 1 kcal/mole higher in free energy than the free energy of the crystal structure, set 2 denotes 

ΔG’s up to 2 kcal/mole higher in free energy and so on. The selection of set 1 to set 5 is a 

qualitative approach to explore how the ensemble affects the computed results. In terms of 

correlation, PMTLD set 1-5 generated nearly identical trends with the Pearson’s R correlation 

coefficient being ~0.65 and the Spearman’s Rho being ~0.69. The errors increased slightly on 
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going from PMTLD set 1-5 as more noise was added to the ensemble. The errors had small 

differences between set 1 and 2 and between set 3,4 and 5, so we have only shown PMTLD set 2 

and set 4 in Table 3.1 to give a general sense of the outcome. It can be seen from Table 3.1 that 

the lowest free energy MT complex (PMTLD-Lowest) gives the lowest RMSE and MUE (kcal/mol) 

from the experimental binding affinities. After that there is a slight increase in both RMSE and 

MUE as the cut off is increased for all of the PMTLD ensembles. For the PMTLD set 1-5, the error 

reduction is better in comparison to the binding affinity prediction found for <PMTLD> (including 

the full range). Since, it is an ensemble-based study, error reductions are a more accurate 

measure to assess the precision of any method rather than the correlation coefficients.  

Table 3.1 Statistical data for the ΔG’S evaluated using the crystal protein docked ligand 
complex, MTflex lowest free energy complex, MTflex with conformations selected up to 2 
kcal/mol and 4 kcal/mol higher in binding affinity than the crystal structure and MTflex average 
(including the full range) relative to the experimental binding affinity. 

 Pearson’s R Spearman’s 
rho 

RMSE 
(kcal/mol) 

MUE 
(kcal/mol) 

<PCLD> 0.58 0.60 3.37 2.74 
PMTLD-Lowest 0.64 0.68 2.72 2.14 
PMTLD-set2 0.65 0.69 2.75 2.21 
PMTLD-set4 0.64 0.69 2.77 2.23 
< PMTLD > 0.65 0.69 2.83 2.27 

 

The results for PMTLD ensembles are certainly far better both in terms of error and 

correlation than single docking into a receptor site (PCLD). Overall, the statistical comparison of 

the PMTLD-Lowest and PMTLD sets with the experimental binding affinity enhanced the 

improvement over the <PMTLD> results (including the full range) indicating that by eliminating 

the low probability conformations we can improve the accuracy of the modeling. This analysis 

further strengthens our hypothesis that with MTflex, we can obtain better binding modes, which 

are difficult to attain with single receptor docking. 
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An ensemble of conformations can be easily generated with the major sampling methods 

available, but the problem lies in the identification of the conformations that have the lowest free 

energy and, hence, contribute the most to the ensemble. With MTflex, the identification of the 

lowest free energy conformations becomes feasible. The improved correlation and reduced 

RMSE (kcal/mole) after elimination of the higher energy conformations further illustrates the 

importance of generating relevant conformations. It also nicely demonstrates the significance of 

incorporating receptor flexibility yielding multiple seed structures that can be used in MT 

scoring. Moreover this multi-seed strategy shows significant improvement over traditional 

rigid/crystal structure docking. 

 

3.4 Conclusions  

Proteins undergo a wide variety of motions ranging from ultrafast vibrations to long-

range backbone motions. All these motions help in generating multiple conformations of the 

protein, thus giving an ensemble of structures. Consideration of all the relevant receptor poses is 

extremely important in the field of structure based drug design to garner a detailed picture of the 

binding pocket and its interactions with guest molecules. MTflex, unlike other sampling 

methods[15, 19, 20, 27, 28, 30-33, 36, 45, 58-60, 67, 84, 108], generate conformations on a free 

energy surface and as we show these structures seem to impart  relevance to binding free energy 

prediction. We calculate the Boltzmann factor contribution of each torsional interaction, which 

allows us to create the ensemble on a free energy surface. Thus, along with the crystal structure, 

we can include several relevant (i.e., low free energy) receptor poses as the starting point or seed 

for calculating protein-ligand binding free energies.  

By using MTflex generated multiple conformers, we have shown that Glide generates 
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better binding modes (lower RMSD conformers with respect to the ligand in crystal complex) 

and improved correlation with experimental binding affinities by using MTflex generated multiple 

conformers rather than a single crystal structure “seed”. Apart from Glide scoring, we also used 

our MT scoring method and validated that scoring results improve via the inclusion of the MTflex 

generated ensemble. Overall, via side chain conformational sampling, we have shown that 

docking with multiple receptor poses or seeds gives better correlation with the experimental data 

than docking with a single structure. This viewpoint is consistent with the consensus docking 

viewpoint, but with one scoring function generating multiple samples. [109]  

The two major motions that occur in the protein ligand binding process are side chain and 

backbone movements. Herein, we have only incorporated side-chain flexibility via generation of 

conformations on the free energy surface. The addition of backbone flexibility should also 

improve the quality of our computed free energies of binding, but offer computational 

complexities beyond side chain sampling.  
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3.6 Supplementary information 

Table 3.2 Average CPU time (in seconds) to generate MTflex conformers for each Amino acid  
Amino acid (3 letter code) CPU time (seconds) 

Ile 2.11 
Leu 30.83 
Val 3.40 
Phe 222.24 
Trp 223.55 
Tyr 217.52 
Asp 37.80 
Glu 1008.62 
Gln 784.53 
Arg 5449.91 
His 5.36 
Lys 2649.07 
Ser 1.00 
Thr 2.67 
Cys 4.52 
Met 1140.16 
Asn 165.75 

 

 

Table 3.3 Minimum and Maximum RMSDs of MTflex conformers along with the number of 
conformers retained for all 159 systems of the validation dataset. 

PDBID Minimum 
RMSD (Å) 

Maximum 
RMSD (Å) 

Number of 
MTflex 

conformers 
retained  

10gs 0.49 3.41 255 
1a30 0.20 2.47 10 
1bcu 0.47 4.91 4 
1e66 0.29 1.27 3 
1f8b 1.07 2.88 10 
1f8c 1.15 2.67 14 
1f8d 1.15 2.63 15 
1gpk 0.68 2.15 4 
1h23 0.80 2.87 19 
1hnn 0.43 2.94 18 
1igj 0.79 3.29 4 
1jyq 0.56 3.26 40 
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Table 3.3 (cont’d) 
1kel 0.43 1.97 2 
1lbk 0.43 2.95 19 
1lol 0.47 2.97 15 
1loq 0.71 2.46 35 
1lor 0.23 2.54 31 

1mq6 0.79 3.34 36 
1n1m 0.56 2.04 7 
1n2v 0.14 3.69 20 
1nvq 0.40 2.42 12 
1o3f 0.29 2.76 6 
1o5b 0.25 2.30 20 
1oyt 0.16 2.32 15 
1p1q 0.87 2.29 4 
1q8t 0.51 2.77 4 
1q8u 0.67 3.36 18 
1qi0 0.36 2.47 22 
1r5y 0.17 3.51 22 
1sqa 0.63 2.34 6 
1u1b 0.34 2.04 14 
1u33 0.33 1.80 8 
1uto 0.39 2.70 7 
1vso 0.95 1.87 4 
1w3k 0.34 2.32 12 
1w3l 0.35 2.17 7 
1w4o 0.40 2.77 49 
1xd0 0.35 2.64 33 
1yc1 0.14 2.84 13 
1z95 0.40 2.39 40 
1zea 0.43 2.37 2 
2brb 1.10 2.28 528 
2cbj 0.54 4.14 116 
2cet 0.35 2.22 14 
2d3u 0.34 3.70 30 
2fvd 0.60 2.61 81 
2g70 0.63 2.30 12 
2gss 0.34 3.23 53 
2hb1 0.39 2.74 17 
2iwx 0.29 3.02 20 
2j62 0.45 2.95 34 
2j78 0.45 2.26 3 
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Table 3.3 (cont’d) 
2jdm 0.98 2.30 4 
2jdu 0.24 2.37 12 
2jdy 0.05 2.54 16 
2obf 0.46 2.74 37 
2ole 0.62 2.96 59 
2p4y 0.96 2.09 6 
2pcp 0.58 1.82 20 
2pq9 0.44 2.03 3 
2qbp 0.24 2.73 23 
2qbr 0.38 3.49 148 
2qft 0.50 2.55 12 
2qmj 0.36 1.69 39 
2r23 0.83 2.05 19 
2v00 0.19 2.58 12 
2vl4 0.19 1.96 18 
2vo5 0.21 1.78 8 
2vot 0.12 1.94 29 
2vvn 0.38 2.01 12 
2vw5 0.44 2.80 8 
2w66 0.23 2.80 18 
2wbg 0.52 1.65 3 
2wca 0.20 2.82 4 
2wtv 0.61 2.95 12 
2x00 0.44 3.57 61 
2x0y 0.34 3.02 20 
2xb8 1.06 2.94 10 
2xbv 0.43 2.31 4 
2xdl 0.52 2.76 18 
2xnb 0.75 2.98 17 
2xys 0.32 2.48 17 
2y5h 0.30 2.90 11 
2yfe 0.46 3.20 15 
2yge 0.36 2.61 7 
2yki 0.12 2.37 5 
2ymd 0.38 2.44 4 
2zjw 0.63 3.37 80 
2zwz 0.46 1.78 4 
2zx6 0.63 2.22 2 
2zxd 0.48 2.22 24 
3acw 0.25 2.29 6 
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Table 3.3 (cont’d) 
3ag9 0.73 2.76 14 
3ao4 0.64 2.80 13 
3b68 0.44 2.17 10 
3bfu 0.47 2.98 18 
3bpc 1.09 1.43 4 
3cft 0.20 3.71 176 
3cj2 0.44 3.44 35 
3coy 0.40 2.90 29 
3cyx 0.58 2.48 8 
3dxg 0.29 2.51 35 
3e93 0.15 2.25 11 
3ebp 0.74 2.99 5 
3f3a 0.22 1.79 2 
3f3c 0.16 1.23 2 
3f3e 0.24 1.34 3 
3fk1 0.69 2.80 18 
3fv1 0.64 2.30 3 
3g0w 0.46 2.53 8 
3g2n 0.50 2.63 20 
3g2z 0.47 1.80 4 
3gbb 0.69 2.99 5 
3gcs 0.45 2.58 11 
3ge7 0.56 2.82 16 
3gnw 0.32 2.83 14 
3gy4 0.43 3.00 14 
3huc 0.51 3.66 32 
3imc 0.66 3.90 47 
3ivg 0.51 3.18 125 
3jvs 0.48 3.33 53 
3k5v 0.49 2.41 7 
3kgp 0.14 3.52 7 
3l4u 0.85 1.83 6 
3l4w 0.42 1.29 14 
3l7b 0.54 2.62 59 
3mss 0.34 2.67 14 
3myg 0.57 3.19 21 
3n7a 0.33 2.83 12 
3n86 0.92 3.12 7 
3nox 0.80 2.27 26 
3nq3 0.76 2.37 10 
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Table 3.3 (cont’d) 
3ov1 0.46 2.60 12 
3owj 0.80 2.57 24 
3pe2 0.47 2.29 34 

3pww 0.56 1.93 3 
3pxf 0.68 2.88 60 
3s8o 0.38 2.57 7 
3su2 0.17 2.71 25 
3su3 0.46 2.84 23 
3su5 0.71 2.93 16 
3u9q 0.80 2.85 10 
3udh 0.52 2.64 8 
3ueu 0.49 2.80 66 
3uex 0.39 2.29 5 
3uo4 0.41 3.47 47 
3uri 0.31 2.31 9 
3utu 0.30 3.26 24 
3zso 0.26 2.90 10 
3zsx 0.31 2.43 21 
4de1 0.54 1.98 4 
4de2 0.54 2.61 4 
4des 0.47 2.45 12 
4dew 0.14 2.50 17 
4djr 0.71 1.95 6 
4djv 0.35 2.78 6 
4g8m 0.33 2.59 11 
4gid 0.23 2.38 7 
4gqq 0.63 3.35 28 

 
 
 

Table 3.4 Minimum RMSDs of the docked ligand conformers in both the crystal and MTflex 
binding pockets of all 159 systems of the validation dataset. 

PDBID Crystal ligand 
RMSD (Å) 

MTflex RMSD 
(Å) 

10gs 0.84 0.67 
1a30 2.90 1.63 
1bcu 0.34 0.25 
1e66 0.49 0.40 
1f8b 0.33 0.86 
1f8c 0.25 1.28 
1f8d 0.58 0.93 
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Table 3.4 (cont’d) 
1gpk 0.39 0.30 
1h23 5.49 2.05 
1hnn 1.04 0.46 
1igj 0.92 1.11 
1jyq 9.91 1.73 
1kel 1.18 1.16 
1lbk 0.53 0.51 
1lol 2.70 1.08 
1loq 0.83 0.49 
1lor 0.19 0.34 

1mq6 0.50 1.05 
1n1m 0.56 0.49 
1n2v 2.00 0.82 
1nvq 0.25 0.25 
1o3f 1.21 0.65 
1o5b 1.02 0.46 
1oyt 0.69 0.47 
1p1q 0.81 0.41 
1q8t 0.99 0.99 
1q8u 0.54 0.54 
1qi0 5.88 4.19 
1r5y 5.00 0.34 
1sqa 0.59 0.56 
1u1b 8.94 4.03 
1u33 0.54 8.20 
1uto 1.26 0.65 
1vso 3.93 1.52 
1w3k 0.25 0.20 
1w3l 0.16 0.29 
1w4o 7.67 0.87 
1xd0 8.65 7.63 
1yc1 0.40 0.36 
1z95 0.38 0.38 
1zea 12.78 8.56 
2brb 0.59 0.49 
2cbj 1.67 1.09 
2cet 0.51 0.48 
2d3u 0.47 0.47 
2fvd 0.36 0.30 
2g70 0.42 1.02 
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Table 3.4 (cont’d) 
2gss 3.05 1.72 
2hb1 1.10 0.92 
2iwx 0.19 0.18 
2j62 0.29 0.29 
2j78 0.63 0.38 
2jdm 3.07 1.53 
2jdu 0.29 0.67 
2jdy 0.33 0.83 
2obf 1.09 1.00 
2ole 2.46 1.94 
2p4y 0.79 0.69 
2pcp 0.51 0.40 
2pq9 0.63 0.99 
2qbp 1.95 1.12 
2qbr 0.98 0.76 
2qft 1.32 1.18 
2qmj 5.44 0.83 
2r23 7.32 0.83 
2v00 1.50 0.62 
2vl4 0.50 0.26 
2vo5 0.48 0.40 
2vot 1.70 0.49 
2vvn 0.26 0.26 
2vw5 0.39 0.48 
2w66 0.28 0.32 
2wbg 2.38 2.35 
2wca 5.16 2.97 
2wtv 0.84 0.67 
2x00 0.49 0.49 
2x0y 0.29 0.31 
2xb8 0.39 1.08 
2xbv 0.32 0.24 
2xdl 5.24 1.17 
2xnb 0.83 0.56 
2xys 0.33 0.41 
2y5h 0.33 0.33 
2yfe 0.61 0.61 
2yge 0.67 0.76 
2yki 1.92 1.29 
2ymd 0.44 0.29 



 88 

Table 3.4 (cont’d) 
2zjw 3.72 0.86 
2zwz 0.26 0.59 
2zx6 2.03 1.88 
2zxd 0.27 0.35 
3acw 0.35 0.64 
3ag9 14.84 9.92 
3ao4 0.34 0.31 
3b68 0.93 0.93 
3bfu 1.04 0.83 
3bpc 11.59 3.41 
3cft 0.56 0.49 
3cj2 0.40 0.36 
3coy 2.77 0.61 
3cyx 5.47 0.56 
3dxg 6.12 2.20 
3e93 0.60 0.59 
3ebp 0.34 4.88 
3f3a 0.87 0.58 
3f3c 0.41 0.92 
3f3e 0.71 0.42 
3fk1 3.47 1.43 
3fv1 0.76 0.75 
3g0w 0.20 0.45 
3g2n 0.74 0.63 
3g2z 3.60 3.45 
3gbb 1.10 0.61 
3gcs 0.24 0.43 
3ge7 0.37 1.98 
3gnw 0.34 0.24 
3gy4 0.23 0.68 
3huc 0.51 0.64 
3imc 0.34 0.26 
3ivg 5.96 1.13 
3jvs 2.01 0.66 
3k5v 2.48 1.99 
3kgp 0.94 0.92 
3l4u 1.73 1.33 
3l4w 1.80 2.20 
3l7b 0.51 0.44 
3mss 2.49 2.26 
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Table 3.4 (cont’d) 
3myg 1.78 1.72 
3n7a 0.24 0.66 
3n86 0.72 0.87 
3nox 0.75 0.75 
3nq3 3.05 2.73 
3ov1 0.79 1.24 
3owj 5.22 0.49 
3pe2 0.25 0.37 

3pww 10.70 9.21 
3pxf 9.15 0.90 
3s8o 0.90 0.73 
3su2 0.28 0.28 
3su3 0.36 0.36 
3su5 0.33 0.33 
3u9q 1.27 0.62 
3udh 0.59 0.32 
3ueu 2.90 1.17 
3uex 1.43 1.58 
3uo4 0.71 0.69 
3uri 12.42 10.22 
3utu 2.11 0.52 
3zso 0.80 0.69 
3zsx 4.39 1.30 
4de1 0.65 0.97 
4de2 1.30 0.68 
4des 2.42 0.43 
4dew 6.78 2.18 
4djr 10.67 4.86 
4djv 0.29 0.28 
4g8m 1.29 0.98 
4gid 12.12 9.97 
4gqq 0.34 0.96 
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Figure 3.9 Ligand Interaction diagrams of PDBIDs: 2R23 (top panel) and 1U33 (lower panel).  
Crystal complex is shown on the left side, crystal protein docked ligand (center) and the MTflex 
protein docked ligand in right. 
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Figure 3.10 The superposition of MTflex generated binding pocket (Red) with the crystal binding 
pocket (coloured) along with the native ligand (orange) for PDBIDs 2R23 (left) and 1U33(right). 
For PDBID 2R23, Arg30 and Asn52 of chain D interact with the native ligand restoring the 
position of docked ligand in the MTflex binding pocket. For PDBID 1U33, the side chain of 
GLU233 in the MTflex binding pocket clashes with an atom of native ligand. 
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Figure 3.11 A plot showing the position of MTflex lowest free energy conformation in ligand 
bound state (marked in red square) on the free energy scale generated by MTflex conformers in 
ligand-unbound state for four systems from our validation dataset. PDBIDs of the systems are: 
10gs, 2fvd, 1qbr and 2zjw. 
 
 
 
 
Table 3.5 Correlation of Glide’s best score (top docking solution) for crystal protein, Glide’s 
best score for MTflex conformers across whole conformations and Glide’s score for the lowest 
free energy MTflex conformation in the ligand-unbound state to the experimental binding 
affinities. 

 Spearman’s 
Rho 

Pearson’s 
R 

RMSE 
(kcal/mol) 

MUE 
(kcal/mol) 

Glide’s best score- Crystal 0.43 0.39 3.21 2.34 
Glide’s best score-MTflex 0.50 0.47 2.71 2.17 

Glide’s score-MTflex lowest 
free energy 0.38 0.37 3.17 2.43 
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3.6.1 RMSD in-house code 
 

For calculating RMSDs of the MTflex conformers from the crystal structure, we wanted to do best 

fitting of the structures by aligning them and minimizing the rotations. We were especially 

concerned about the two aromatic amino acids - Phenylalanine and Tyrosine, which have 

benzene and 4-hydroxy benzene as the side chain and have an axis of symmetry.  

 

 
Figure 3.12 Side chain rotation of Phenylalanine residue. 

 
 

If these residues undergo a 180° rotation around Cβ atom, the net RMSD of the side chain would 

be zero. Please see the attached figure 3.12 for Phenylalanine. Similar situation would happen for 

Tyrosine. Our in-house code incorporated a feature, which would swap Cδ1’ with Cδ2’ and Cε1’ 

with Cε2’, if the Euclidean distance between Cδ1 and Cδ1’ is greater than Cδ1 with Cδ2’. Another 

feature of our code is that it includes only those heavy atoms of side chains in doing averaging, 

which deviates from their position in the crystal structure. The code was written as a simple 

script in MATLAB software. 
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Algorithm:  
 If  

||Cδ1 - Cδ1’||  > ||Cδ1 - Cδ2’||   
then,  

Cδ1’
(new) = Cδ2’ and Cδ2’

(new) = Cδ1’  
Cε1’

(new)  = Cε2’ and Cε2’ 
(new) = Cε1’ 

elseif  
||Cδ1 - Cδ1’||  <= ||Cδ1 - Cδ2’||   

then, 
Cδ1’

(new) = Cδ1’ and Cδ2’
(new) = Cδ2’  

Cε1’
(new)  = Cε1’ and Cε2’ 

(new) = Cε2’ 
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4.1 Abstract 

Obtaining a detailed description of how active site flap motion affects substrate or ligand 

binding will advance structure-based drug design (SBDD) efforts on systems including the 

kinases, HSP90, HIV protease, ureases, etc. Through this understanding we will be able to 

design better inhibitors and better proteins that have desired functions. Herein we address this 

issue by generating the relevant configurational states of a protein flap on the molecular energy 

landscape using an approach we call MTFlex-b and then following this with a procedure to estimate 

the free energy associated with the motion of the flap region. To illustrate our overall workflow, 

we explored the free energy changes in the Streptavidin/Biotin system upon introducing 

conformational flexibility in loop3-4 in the Biotin un-bound (apo) and bound (holo) state. The free 

energy surfaces were created using the Movable Type free energy method and for further 

validation we compared them to potential of mean force (PMF) generated free energy surfaces 

using MD simulations employing the FF99SBILDN and FF14SB force fields. We also estimated 

the free energy thermodynamic cycle using an ensemble of closed-like and open-like end states 

for the ligand unbound and bound states and estimated the binding free energy to be ~ –16.2 

kcal/mol (experimental -18.3 kcal/mol). The good agreement between MTFlex-b in combination 

with the MT method with experiment and MD simulations supports the effectiveness of our 

strategy in obtaining unique insights into the motions in proteins that can then be used in a range 

of biological and biomedical applications. 
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4.2 Introduction 

The rapid and chemically accurate estimation of the free energy change involved when a 

ligand binds to a biochemical system is the Holy Grail of structure based drug design[1-3]. 

Several free energy methods ranging from end-point approach to pathway based free energy 

calculation have been explored computationally. The so-called end-point methods used to 

estimate free energies (e.g., docking, MMPBSA and MMGBSA) are computationally 

inexpensive but they typically rely on a single static structure and often ignore receptor 

flexibility[4, 5]. Pathway free energy methods require extensive sampling to estimate the free 

energies. The pathway free energy methods can be broadly categorized into alchemical and 

potential of mean force approaches. Alchemical free energy methods use an “alchemical” 

pathway of non-physical intermediate states to build a thermodynamic cycle and compute the 

free energy differences between the end states[6-8]. Free energy perturbation[9] (FEP) and 

thermodynamic integration[10] (TI) are two of the most commonly used alchemical free energy 

methods. Another pathway method to estimate free energies is the Potential of mean force (PMF) 

approach[11-13]. Umbrella sampling coupled with the WHAM (weighted histogram analysis 

method) analysis is one of the most commonly used PMF approaches[14]. The major bottleneck 

of the PMF approach is the computational cost associated with the conformational sampling. 

Moreover, the pathway free energy methods, in contrast to end-points methods, are 

computationally intensive and are limited by simulation timescales. Finally, all methods are 

affected by the accuracy of the underlying force field and improvements in these remain an 

active area of research[6, 15-17]. 
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Conformational sampling of the relevant receptor “states” and ligand poses is essential in 

order to advance the field of structure based drug design (SBDD). Conformational flexibility is 

pivotal to several important molecular recognition processes including protein-protein and 

protein-ligand binding events, enzyme catalysis, allosteric control, and biomolecular 

assembly[18-20]. In many protein structures the conformational flexibility is often attributed to 

the loop regions, which serve as the “connecting segments” between two defined secondary 

structures or different domains[20-23]. But, loops are not mere connectors. They participate in 

crucial functions, including ligand binding events[24-26], enzyme catalysis[27] and molecular 

recognition processes[28-30]. Often, crystal structures of proteins are reported with loops 

missing because their conformational flexibility makes it difficult to resolve them in X-ray 

crystallographic experiments[31]. In many instances, these missing loops mediate the biological 

function of a protein; hence, computational chemists have developed a range of loop modeling 

algorithms to address this issue[32-92]. Sampling methods based on MC and MD simulations 

have been used extensively[79, 93-99]. Several, inverse kinematic methods with Monte Carlo 

sampling scheme have been developed to simulate loop flexibility and domain motion. These 

methods explore the entire torsional space (ϕ, ψ, ω) by designing Monte Carlo moves and select 

or reject a move based on a metropolis algorithm. The conformational energy in these methods is 

usually explored using force fields based methods[100-104]. Rosetta also uses Metropolis Monte 

Carlo sampling of ϕ and ψ for local refinement of protein structures. It models large-scale 

backbone conformational changes by exchanging the backbone conformations of peptide 

fragments collected from homologous sequences in the PDB and a backbone dependent rotamer 

library for inclusion of side chain flexibility. The Rosetta suite uses an all atom energy function, 

which calculates the weighted sum of energy terms in Rosetta Energy units. The scoring function 
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is a combination of physics based and statistical terms[105]. Conceptually, our approach is 

similar to using rotamer library based methods but our atoms are added not in terms of structural 

database rather on a local energy landscape defined by the potential. Moreover, unlike other 

methods, we report free energies rather than energies. Detailed discussions of loop modeling 

methods and algorithms can be found in the extant literature[106-109].   

A combination of both flexibility and rigidity are crucial for the protein function[110]. 

Flexibility of an amino acid is usually defined by its atomic temperature factors of B-factor[111]. 

Highly flexible regions are generally characterized by more hydrophilic residues and are 

enriched with higher charged residues while the less flexible regions tend to be high in 

hydrophobic residues and have a reduced number of charged residues[112]. Recently, a H192P 

point mutation on one of the cofactor binding loops in E.coli Thermus thermophilus improved 

the stability of the protein by two-fold at elevated temperature compared to wild type at 60º 

C[113]. Surface loops are known to undergo functionally relevant conformational changes. 

Experiments have shown that often these conformational changes are related to external 

perturbations including ligand binding[114]. These conformations pre-exist but the relative 

population shifts upon the binding event[115-117]. This leads to discrete open or closed states or 

multiple different states in the protein separated by an energy barrier. They may have a relatively 

low free energy barrier, which favors fast interconversion between different states or they may 

have a relatively high barrier, thereby, making the interconversion relatively slow[118].  If the 

barrier height is too high, it becomes more computationally challenging for sampling methods to 

capture the entire conformational space spanned by the loop requiring the use of biasing 

methods.  
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The accuracy of free energy calculations in part depends on the extent and accuracy of 

the conformational sampling of the relevant chemical space. With the continued advancement in 

computational hardware and software, molecular dynamics (MD) simulations have reached the 

millisecond milestone, but a sufficient number of uncorrelated configurations is still not 

guaranteed[3]. Monte Carlo sampling, on the other hand, does not suffer from the problem of 

uncorrelated configurations, however, convergence is still an issue. Moreover, the computational 

cost associated with “sufficient” conformational sampling with both of these methods is a major 

bottleneck for proteins due to their size and the number of degrees of freedom[3].  Apart from 

the computational challenges faced when sampling relevant conformational space, the accuracy 

of current force fields can be a concern as well[99]. 

In this spirit, we introduce a new procedure to estimate the free energies in biochemical 

systems via extrapolation of the local partition function for a set of pre-generated conformational 

ensembles. The conformational ensemble of the targeted flexible region of the protein is 

generated via a sampling method we call MTFlex-b, which treats the molecule at an atom pair level 

and utilizes atom pairwise one-dimensional knowledge based potentials to enumerate the 

molecular conformations on an energy surface. The free energies are then estimated by 

extrapolating the local partition function of the generated “seed structures” from the 

conformational ensemble using the MT method[119].  

We have applied our method to study the free energy changes observed in Streptavidin by 

accommodating conformational flexibility in the loop3-4 region (in the streptavidin monomer) in 

the Biotin bound (holo) and un-bound (apo) states. This loop is highly mobile and undergoes an 

open to closed transition upon biotin binding[120-123]. Currently, we have incorporated 

flexibility into the loop region only, but the workflow is straightforward and can be applied to 
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larger regions of a given protein as needed. Using MTFlex-b, we obtained 21,295 unique backbone 

conformations of the eight-residue long loop3-4 where we observe examples of closed-like, open-

like and several intermediate loop conformations. The lowest Cα RMSD conformations 

generated by MTFlex-b (with respect to the closed and open crystal structures) were similar to their 

corresponding crystal conformations with Cα RMSDs of ~1.6 Å. Using an ensemble of closed-

like and open-like MTFlex-b generated conformations as end states in the ligand unbound and 

bound states, we obtained a free energy thermodynamic cycle that gives us detailed insights into 

biotin binding and the role flap motion plays in binding. We further explored the energy 

landscape by generating a free energy surface (FES) using the MT method and further validated 

it by generating a PMF via umbrella sampling followed by analysis by WHAM using force field 

based MD simulation methodologies.  

The conformational search was run from both loop ends in two separate jobs each using a 

single CPU on the Laconia cluster available at the High Performance Computer Center (HPCC) 

facility at MSU. Conformation generation using this code base took ~7days to generate over 11 

million different conformations of the eight residue long loop of Streptavidin. The free energy 

calculations using the MT method took ~20 minutes per seed using a MATLAB code on a single 

CPU. Since the conformations were pre-generated, the free energy calculations were run in a 

trivially parallel fashion using the HPCC facility at MSU.    

     

4.3 Results and Discussion: Streptavidin-biotin 

The streptavidin-biotin complex is biotechnologically an interesting protein-ligand 

system with one of the most remarkable binding affinities known[122-125]. Streptavidin is a 

homo tetramer with an eight-residue loop between β–strand 3 and strand 4 (also known as loop3-
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4) in all four monomers. This loop3-4 region is flexible and is known to undergo a transition from 

an open to closed state upon biotin binding[121, 124, 126]. The closed and open states of the 

streptavidin monomer with biotin bound in the binding pocket are shown in Figure 4.1. The 

backbone RMSD (Å) between the closed and open states of loop3-4 is ~ 8.6 Å. The motion of the 

loop can be characterized by the distance between the C-alpha carbon of residue 49 (roughly the 

mid-point of loop3-4) in the closed and open state, which is 12.7Å. This loop is highly mobile and 

its interaction with biotin has been extensively explored in several experimental and 

computational studies[123, 124, 126-129].  Recently, the conformational dynamics of loop3-4 

was studied by Song et al using MD simulations and enhanced sampling methods[129]. Using 

accelerated MD, they were able to study the transition of loop3-4 between the open and closed 

states in the presence of biotin in the monomer of streptavidin but conventional MD was not able 

to observe the loop transition at the timescales employed. Because they studied the monomer the 

binding pocket was incomplete due to absence of an important hydrophobic/p-stacking 

interaction contributed by TRP120 from an adjacent monomer. This residue is important in 

stabilizing the streptavidin-biotin complex and how its neglect affects the outcome of the study 

of Song et al was not addressed[124, 130, 131]. To the best of our knowledge, no other loop 

modeling algorithm or sampling strategy has elucidated the loop3-4 transitions of streptavidin. 

This motivated us to apply our method to study the free energy changes associated with the loop 

motion in streptavidin in the presence and absence of biotin by generating multiple loop3-4 

conformational states. 
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Figure 4.1 Cartoon representation of crystal Streptavidin monomer in holo (Biotin bound - in 
licorice) and apo states is superimposed on top of each other. The closed state of the loop3-4 
(Residues 45 to 52) pertaining to the holo conformation is highlighted in mauve color while the 
open loop is shown in blue color. The distance between the Cα of Residue 49 of the closed and 
open state is approx. 12.67Å. 

 
 

The conformational ensemble for loop3-4 was generated for a monomer (chain A) of the 

streptavidin holo structure (PDBID 1mk5) in the context of the tetramer. We preferred to use the 

holo conformation to the apo since biotin is present in the binding pocket, which helped us to 

calculate the protein-ligand binding affinities directly without having to resort to molecular 

docking and introduce additional errors into the free energy calculations pertaining to closed like 

conformations. Moreover, the crystal structures for the apo and holo conformations of the 

streptavidin protein are quite similar, except for the loop3-4 region (the monomer structures are 

shown in Figure 4.1). Excluding the loop3-4 region, the heavy atom RMSD (Å) between the 
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experimental apo and holo structures of streptavidin is ~1 Å with a backbone RMSD of less than 

0.6 Å. The initial loop structure from the crystal structure isn’t relevant when using MTFlex-b, 

because of the nature of its conformation generation strategy. Only, the environment surrounding 

the loop residues is important since it defines van der Waals collisions and determines other 

important interactions (see chapter 2 for details). The rest of the protein including monomers B, 

C and D and rest of chain A (excluding the loop3-4 region) were kept rigid. The biotin ligands in 

all the sub-units of streptavidin were also kept fixed. Biotin and the rest of the protein (the 

tetramer excluding the loop region of chain A) were kept rigid in order to check for van der 

Waals collisions. The presence of biotin added an additional layer of steric clashes, which were 

also identified during loop generation using the geometric restraint of 2.8 Å for the non-bonded 

heavy atoms and 2.3 Å for non-bonded hydrogen atoms. The total number of backbone and side-

chain conformations generated using MTFlex-b for loop3-4 of streptavidin, in the presence of biotin, 

was ~11 million conformations, for a total of 21,295 unique backbone loop conformations (see 

Table 4.2). The conformation generation calculations required ~7 days using our in-house 

MATLAB script. CPPTRAJ[132] and VMD[133] software were employed for analysis and 

visualization of the structures.  

 

4.3.1 RMSD 
The structural Cα RMSD (Å) of the MTFlex-b generated loop conformations was calculated with 

respect to the closed loop conformation from streptavidin (chain A from PDB ID 1mk5) using 

CPPTRAJ, a utility program in the AMBER suite[132]. The MTFlex-b loop conformation 

structurally closest to the closed state of the loop from streptavidin (closed-like conformation) 

had a Cα RMSD of 1.63 Å and the open-like conformation (structurally most similar to the open 
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loop in the crystal structure) had a Cα RMSD of 1.61 Å. Figure 4.2 highlights the closed-like and 

open-like (lowest RMSD (Å)) loop conformations superimposed with the closed and open states 

of loop3-4 from the crystal structures. 

 
Figure 4.2 The left box displays the closed (biotin-bound) and open states of streptavidin 
superimposed on top of each other with the loop3-4 highlighted in mauve for the closed and blue 
for the open conformation. The center image shows the lowest RMSD (Å) loop conformation 
(shown in green) generated by MTFlex-b superimposed on the holo crystal structure (closed loop), 
and the right image shows the lowest RMSD MTFlex-b conformation superimposed on the apo 
crystal conformation (open loop). 
 

Using our conformation sampling strategy, we were able to map both the closed and open 

loop conformations from the available crystal structures.  

Apart from the closed-like and open-like conformations, we obtained quite a few 

intermediate loop conformations generated by MTFlex-b. Figure 4.3 shows the Cα RMSD (Å) of 

all the generated MTFlex-b loop conformations with respect to the experimentally observed closed 

loop of streptavidin. The generated MTFlex-b loop conformers were arranged in an increasing 

order of structural RMSD (Å) with respect to the closed state of loop3-4 from the streptavidin 

crystal structure. As can be seen from Figure 4.3, the MTFlex-b loop conformations traverse a 
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RMSD range of ~ 10 Å from the closed state covering all the major conformations including the 

closed, open and several intermediate states. Examples of conformational states explored by 

MTFlex-b are shown in Figure 4.3 in green. The experimental closed and open states of the loop 

are superimposed on the generated loop conformation in Figure 4.3 for comparison.  

 
Figure 4.3 The Cα RMSD (Å) of the MTFlex-b loop conformations with respect to the closed state 
of loop3-4 in streptavidin. The x-axis represents the total number of generated backbone loop 
conformations. For the sake of structural comparison, crystal-closed (pink) and open (blue) states 
of the loop are superimposed on the generated MTFlex-b loop conformation (green).  
 

 

4.3.2 MT Free Energy Surface and MD Potential of Mean Force Studies 
Two-dimensional relative free energy surfaces were assembled using MT in order to 

assess the free energy differences between the different loop states. The closed to open transition 
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of the loop was characterized by the separation between Cα atoms of residues Gly48 and Ile30 

(X-axis), and Asn49 and Leu109 (Y-axis). The positions of the residues chosen for the reaction 

coordinates are shown in Figure 4.9. For the free energy surface (FES) construction, the entire 

reaction pathway was divided into a number of windows with a grid size of 0.5 Å. The MTFlex-b 

generated conformations were arranged in windows based on the two reaction coordinates. Our 

docking protocol[119] was applied to obtain the optimized ligand position for each protein 

conformation in all the windows. The crystal closed and open states of the loop were also 

included in the FES construction. The free energies were calculated in the holo (ligand bound) 

and the apo (free) states in the aqueous phase for each of the windows in a parallel fashion using 

the MT method with a sampling range of ±0.25 Å. Please note that the closed and open states of 

loop3-4 in the ligand bound and free states were considered only for one of the monomers 

(monomer A) while the remaining three monomers were always considered in the native closed 

state with biotin bound in the binding pocket.  

Figure 4.4 highlights the free energy profile for the apo and holo conformations obtained 

using this procedure. The entire FES construction has been subdivided into open (O, closed (C 

and intermediate (I regions. These regions are pinpointed on the 2-D heat map plot as well. For 

the apo state (shown in the left image of Figure 4.4), it can be seen that the free energy gradually 

increases on going from the open to the closed state of the loop with the closed state being higher 

in energy than the rest of the conformations. The open state of the loop is estimated to be around 

10.5 kcal/mol more stable than the closed state. For the apo state FES, we also identified a region 

where the free energy was ~3 kcal/mol lower than the open state (shown on the upper right part 

of the apo FES in Figure 4.4). On visualization, we found that this region has conformations 

quite similar to the crystal open loop with Cα RMSDs of ~3.2 Å. The structure corresponding to 
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the local minima of the closed apo state had a  ~2.5 Å RMSD from the closed loop seen in the 

crystal structure. The free energy difference between the local minimums in the apo state 

predicted via MT-FES is 9.1 kcal/mol. The loop conformations are shown on the apo FES in 

Figure 4.4. For the holo FES, the closed state of the loop is clearly the lowest free energy region 

on the entire landscape. It is approximately 12.0 kcal/mol lower in free energy than the open 

state of the loop. In the holo state, MT is again identifying a local minima for the open state of 

the loop, which is around ~0.7 kcal/mol lower in free energy and has a 2.5 Å RMSD from the 

open loop seen in the crystal structure which gives a free energy difference between the open and 

the closed state of  -11.3 kcal/mol.  The local minimums for the open state observed in both the 

apo and the holo states are almost similar with a backbone RMSD of 1.07Å. The superimposed 

open loop conformations predicted by MT in the apo and the holo states are shown in Figure S3. 

 
Figure 4.4 Relative free energy (kcal/mol) heat map for apo (left) and holo (right) streptavidin 
obtained using the Cα distance between ASN49/LEU109 and GLY48/ILE30 as reaction 
coordinate. 

 
 

We also performed two 90 ns MD simulations starting from the experimental open and 
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closed state and overlaid the simulation results onto the MT generated FES using the same set of 

reaction coordinates (shown in Figure 4.5). The MD simulations details are described in Section 

4.6.1 of the supporting information. In order to make a robust comparison, MD simulations were 

carried out using the ff99SBILDN[134] and ff14SB[135] force fields. Figure 4.5 highlights the 

MD snapshots generated by FF14SB simulations superimposed on the FES generated using MT. 

From the apo MT FES superimposed with the MD snapshots in Figure 4.5, we observe that the 

MD generated data points are most densely populated in the open region of the PMF with a 

horizontal spreading across the surface covering the low energy region observed by MT in the 

apo state. This shows that the MD simulation samples similar regions as predicted by the MT 

FES. For holo, MD generated data points are highly concentrated in the closed region of the 

FES, which is also identified as the lowest free energy point by MT in the ligand bound case. 

Similar trends are observed in the case of MD snapshots generated by FF99SBILDN simulations 

for both the apo and holo simulations as shown in Figure 4.11. Both the force fields behaved 

similarly and populated nearly the same regions in both the apo and holo simulations. 

Comparison between the two force fields is shown in Figure 4.12, which shows the 

superimposed MD snapshots obtained by both force fields for both the apo and holo simulations. 

As can be seen from the figure, the regions sampled by the two force fields are nearly on top of 

each other with small differences in the case of the apo simulation, highlighting the similarity of 

the two force fields in terms of their structural preferences. 
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Figure 4.5 Relative free energy (kcal/mol) heat map of apo (left) and holo (right) streptavidin 
obtained using the Cα distance between Asn49/Leu109 and Gly48/Ile30 superimposed with the 
MD snapshots generated using FF14SB force fields. MD snapshots are highlighted in black color 
as scattered points in both the left and right figures with the rest of the PMF slightly faded in the 
background. 
 
 

Further validation of the MT FES was performed using umbrella sampling (US) coupled 

with the weighted histogram analysis method (WHAM)[136, 137] in order to study the free 

energy change upon loop transitions in both the apo and the holo systems. The PMF simulations 

were also carried out using both the FF99SBILDN and FF14SB force fields. Both the PMF 

simulations ran in parallel and took roughly 10 days each to finish using a single K80 GPU 

processor in the MSU HPCC facility. The PMF simulations were initiated from the closed state 

to obtain the holo PMF and from the open state for the apo MD PMF. Initially, a diagonal scan 

was performed along the chosen set of reaction coordinates used to study the transition between 

the open and the closed states of the loop. After that, a detailed scan was performed successively 

in both the X and Y directions using every conformation generated from the diagonal scan. This 
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scanning strategy was adopted from our previous work on metallochaperones[138]. The 

procedure to generate the MD-PMF along with the necessary MD parameters and related details 

are provided in the 4.6.1 and 4.6.2 sections of the supporting information.  

The PMF study shows significant differences between the two force fields. Figure 4.6 

shows the MD-PMF obtained using the FF14SB force field for both the apo and holo 

simulations. The apo MD-PMF shows a free energy difference of 10.5 kcal/mol between the 

crystal open and crystal-closed state with the open state seen crystallographically as the global 

minimum. A local minimum was observed near the crystal-closed state (structure highlighted in 

the left image in Figure 4.6). The structural RMSD (Å) between the local minimum is ~2.85 Å 

from the crystal-closed state. This RMSD analysis only considers the loop region, but there was 

a large change in the orientation of the loop relative to the rest of the protein (see Figure 4.13). 

So, when the RMSD calculation is carried out via alignment on the entire protein, the loop 

backbone RMSD is estimated to be ~3.8 Å. The local minimum observed for the open state was 

quite similar to the experimental open state structure with a backbone RMSD of 0.41 Å. The free 

energy difference between the local minima in the apo state is roughly 9.4 kcal/mol. The free 

energy difference obtained from the MT-FES surface between the local minima of the closed and 

open states in the apo state is quite close (~9.1 kcal/mol). The holo MD-PMF (right image in 

Figure 4.6) estimates a free energy difference of 16 kcal/mol between the crystal closed and open 

state. A local minimum was identified here as well near the crystal open state. The backbone 

RMSD (Å) of the local minimum from the crystal structure of the open state is ~1.85Å. The total 

RMSD including the change in orientation was ~4.7 Å (structures shown in Figure 4.14). The 

local minimum observed for the closed state is almost same as the crystal closed state with the 

backbone loop RMSD of 0.67 Å. The free energy difference between the local minima in the 
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holo state is 11.7 kcal/mol. This free energy difference is quite similar to the free energy 

difference of 11.0 kcal/mol obtained from the MT-FES between the local minima and the 

experimental closed state. Since the free energy differences for the predicted minima were so 

similar between MT-FES and MD FF14SB PMF methodologies, we were also interested in 

comparing the structural differences between these two methods. Figure 4.15 highlights the 

superimposed structures obtained for the apo open, apo closed and holo open states predicted 

from the MT FES and the MD PMF (FF14SB) methods. The structures for the apo closed state 

have a Cα RMSD of 2.64 Å for the loop region. For the apo open state, the structure predicted by 

MT is curled inwards towards the protein relative to the MD FF14SB with a resultant Cα RMSD 

of 3.85 Å. The structure of the holo open state for MT is also curled inwards and is significantly 

different from the FF14SB structure with a RMSD of 5.90Å. MT-FES and FF14SB holo closed 

state is essentially identical to the experimental structure (see Figure 4.6 for details). Table 4.5 

and 4.6 in the supporting information show the comparison of the phi-psi main chain dihedral 

between the crystal structure (closed and open state) with the dihedrals of the local minima 

obtained by MTFlex-b and from the MD FF14SB PMF simulations. 
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Figure 4.6 Relative free energy (kcal/mol) heat map for apo (left) and holo (right) streptavidin 
obtained by using umbrella sampling with the FF14SB force fields using the Cα distances 
between Asn49/Leu109 (y-axis) and Gly48/Ile30 (x-axis) as the two reaction coordinates.  

 
 

From the holo MD FF14SB PMF plot in Figure 4.6 (right panel), a transition state can be 

clearly seen between the open and closed loop state. We further analyzed the structural and free 

energy differences between the transition state and the closed and open loop state to obtain some 

pathway details. Figure 4.7 schematically shows the one-dimensional relative free energy 

differences obtained using the open minima, closed minima and the transition state as observed 

in the FF14SB PMF simulations for the holo case. Residues forming hydrogen bond are 

highlighted in yellow color and residues forming vander Waal interactions are shown in green 

color in the figure 4.7.  
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Figure 4.7 Computed changes in the relative free energy on going from the closed to the open 
holo state. The closed loop is the global minima in the holo state and the open loop is ~11 
kcal/mol higher in free energy. The observed transition state barrier is ~17.5 kcal/mol on going 
from the closed to open loop. 

 
 

In the holo state, the closed loop is the global minima and is favored because of numerous 

non-covalent interactions between biotin and streptavidin. The ureido oxygen of biotin has a 

hydrogen bond (H-bond) with the side chains of Ser27, Asn23 and Tyr43. The side chains of 

Ser45 and Asp128 form H-bonds with the hydrogen atoms attached to the two ureido nitrogen 

atoms. The sulfur from biotin also forms a H-bond with the side chain of Thr90. The carboxylate 

end of biotin forms H-bonds with the amide backbone of Asn49 and the side chain of Ser88. 

Stabilization by van der Waals interaction come from Trp70, Trp92, Trp105 and Trp120 

(provided by the adjacent monomer). Apart from these Trp residues, three residues from the 

loop, Val47, Gly48 and Ala50 also provide hydrophobic interactions. Table 4.3 summarizes all 

the residues involved in H-bond and van der waal interactions with biotin.  
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The activation barrier observed by FF14SB MD PMF simulations in the holo state is ~17.5 

kcal/mol. In the transition state, the loop (highlighted in purple ribbon in Figure 4.19) has 

partially opened up causing changes in the interactions present. Due to the extra space provided 

by partial loop opening, the carboxylate end of biotin has straightened up instead of being curled 

inwards while the H-bond between Asn49 and biotin is absent. The comparison of biotin’s 

position in closed and transition state is shown in the left image of Figure 4.19. The carboxylate 

of biotin is slightly straightened and pushed out forming two H-bonds with the side chains of 

Arg84 (red in Figure 4.19). The first half of the loop is still folded in, but the side-chain of Ser45 

has rotated breaking the H-bond with the ureido nitrogen of biotin. The H-bond between Asp128 

and the other ureido nitrogen is also broken mainly due to the rotation of the side chain of 

Asp128. However, the H-bonds between the ureido oxygen and Tyr43 and Ser27 remain intact. 

The distance between Trp120 (from the adjacent monomer) and the ureido ring of biotin has also 

increased reducing the magnitude of the hydrophobic interaction. From the left image of Figure 

4.19, Trp120 in the closed loop state (purple) is much closer to the biotin ring relative to its 

position in the transition state (black). As the loop opens up completely, the H-bond between 

biotin and loop residues Ser-45 and Asn49 remain severed. The carboxylate end of biotin is still 

forming 2 H-bonds with the side-chains of Arg84. The hydrophobic interactions between Trp120 

and the ureido ring are lost as can be seen from the right image of Figure 4.19. The side-chain of 

Tyr43 moves closer to the ureido nitrogen thus forming a H-bond between O -Tyr and the H-

ureido nitrogen along with the ureido oxygen. The hydrogen bond between Asp128 and the 

ureido nitrogens is re-established. The open loop is further stabilized by several intermolecular 

interactions with the protein itself. There is a H-bond observed between the side chain of Ser45 
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and backbone of Ser52, the backbones of Ser45 and Gly48, the backbone of Ser52 and the side 

chain of Asn81 and the side chains of Ser52 and Asn81. 

The MD PMF obtained using the FF99SBILDN force fields is shown in Figure 4.16. In the 

apo PMF simulations by, the local minimum observed for the open state has an RMSD of 0.79 Å 

from experiment (shown in the left image in Figure 4.16). The local minimum for the closed 

state has a backbone RMSD of 2.36 Å with respect to experiment when the loops are aligned to 

each other. When the alignment is over the entire protein, the loop backbone RMSD is 4.64 Å 

(highlighted in Figure 4.17). The free energy difference between the crystal open and closed loop 

in the apo state is ~15 kcal/mol while the free energy difference between the observed minima is 

14.6 kcal/mol. The holo state (right image in Figure 4.16) obtained using FF99SBILDN predicts 

a free energy difference of ~22 kcal/mol between the crystal open and closed states. The local 

minimum observed for the closed state is quite close to the crystal-closed state with a RMSD of 

0.54 Å. The minimum in the case of holo PMF simulations has a backbone RMSD of 2.12 Å 

when aligned to the loop seen in the crystal structure and 2.78 Å when aligned to the entire 

protein (shown in Figure 4.18). The free energy difference observed between the two minima in 

the holo system is 21.3 kcal/mol. 

With these PMFs in hand the free energy of binding in the open and closed states (exp = -

18.26 kcal/mol) can be extrapolated from the free energy differences observed in the apo and 

holo states (via construction of a thermodynamic cycle). Using this approach, the free energy 

differences between open and closed loop states predicted using the FF99SBILDN force field 

are: free energy of binding to the closed state is -33.3 kcal/mol and to the open state is +3.7 

kcal/mol. The former represents a significant overestimation of the experimental binding affinity, 

while the latter is an underestimation. The free energy differences observed using the FF14SB 
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force field are in better accord with experiment and with the free energy differences observed 

using MT FES. The free energy differences generated via different methodologies are 

summarized in Table 4.1. 

Table 4.1 Summary of free energy differences (in kcal/mol) between open and closed states of 
the loop in apo and holo states obtained with MT-free energy surface (MT-FES), MT-
thermodynamic cycle (MT-TC), and MD using FF99SBILDN and FF14SB force fields. The 
differences are reported for the crystal open and loop position and minima obtained by the MT 
and MD methods. 
ΔG (kcal/mol) MT-FES MT-TC MD-FF14SB MD-FF99SBILDN 

ΔGO–>C
Apo-crystal 10.5 10.4 10.5 15 

ΔGO–>C
Holo-crystal –12.0 –12.0 –16 –22 

ΔGO–>C
Apo-minima 9.1 9.0 9.4 14.6 

ΔGO–>C
Holo-minima –11.3 –11.3 –11.7 -21.3 

 

The observed free energy differences between the closed and open states obtained by 

MD-FF99SBILDN, MD-FF14SB and MT are largely different due to the different energy 

functions employed by the methods. Sampling effects, etc., also play a role, but the energy 

functions used are almost certainly the largest source of variance. Overall, the free energy trends 

are qualitatively similar in both (MT and MD) methods with the closed state being the lowest in 

free energy in the holo state and the least stable in the apo state. We performed a more detailed 

analysis of our free energy calculations to figure out the reason of stability of open loop in the 

apo state and stability of closed loop in holo state. Table 4.4 highlights the individual 

components of free energy differences for both the apo and holo states. It can be seen from the 

table that for the apo state, the net free energy change in the gas phase favors the closed loop 

over the open loop by 1.2 kcal/mol but the solvation free energy change is highly favorable for 

the open state (-11.6 kcal/mol) as compared to the closed state favoring the open state when the 
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ligand is not bound in the solution phase. So, based on our results we observe that the loop 

prefers the open state to closed state by 10.4 kcal/mol mainly due to a favorable solvation free 

energy in the open state.  

In the holo state as well, the solvation free energy is highly favorable for the open loop 

when compared to the closed loop but the streptavidin-biotin interactions are much stronger for 

the closed loop (~24 kcal/mol) making the closed loop more favorable in the holo state by ~12 

kcal/mol.  

The free energy differences observed between PMF obtained using FF14SB and MT-FES 

method are comparable in both the apo and holo states. In the apo state, both FF14SB and MT-

FES estimate a free energy difference of 10.5 kcal/mol between the closed and open state seen 

experimentally. For the holo case, the free energy difference between the experimentally 

observed open and closed states is 16 kcal/mol for the former and ~12 kcal/mol for the latter. 

But, the free energy differences between the local minimums obtained via MT-FES and FF14SB 

PMF are quite similar (see Table 4.1). The fact that MT gives comparable free energy 

differences demonstrates its relevance as a relatively efficient technique for estimating free 

energies. 

 

4.3.3 Thermodynamic free energy cycle 
The binding free energy of the streptavidin-biotin system in the aqueous phase was 

estimated using a thermodynamic cycle linking the open and the closed states of the loop3-4 of 

streptavidin protein in the holo (ligand bound) and the apo (free) states as the end states (see 

Figure 4.8). The end states were represented by selecting an ensemble of closed-like and open-

like conformations from the MT-FES windows containing the experimental closed and open 
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state of the loop. The free energies for each of the MTFlex-b conformations in the selected 

ensembles were calculated in the holo (ligand bound) and the apo (free) states using the MT 

method in the aqueous phase as described in the Methods section.  

The free energies of the end states (open apo, open holo, closed apo and closed holo) for 

the thermodynamic cycle were estimated by taking the lowest free energy conformation for each 

of the end states individually. From the thermodynamic cycle (Figure 4.8a), it can be seen that 

the open loop in the apo state is ~10.4 kcal/mol more stable than the closed loop. The trend is in 

modest agreement with the Song et al MD study, which estimated the stability of open loop to be 

~5 kcal/mol more stable than the closed loop in the apo state[129]. In the holo state, the closed 

loop is estimated to be more stable (as expected) than the open state (by 12 kcal/mol). The free 

energy differences between the open and closed states are consistent with those estimated by the 

MT-FES method (see Table 4.1 for a summary).  A slight difference in the relative free energy 

differences exist because the apo state in the TC accounts for the free energy contributions from 

the free states of both protein and ligand while in MT-FES, the apo state FES correspond to only 

the free state of the protein.  

Apart from the relative stability of the open and closed loops in the ligand un-bound and 

bound states; we can also estimate the free energy change upon ligand binding. The free energy 

change upon biotin binding to the open loop state is estimated to be –4.2 kcal/mol (as shown in 

Figure 4.8a). A study by Chu et al in 1998 estimated that the binding affinity of Streptavidin-

Biotin was –10 kcal/mol after deleting loop3-4 via circular permutation[120].  Based on this 

analysis, we are underestimating the binding affinity of biotin in the open loop state and 

overestimating the free energy change upon loop ordering in the ligand bound state (by ~6 

kcal/mol). The red and the blue arrows shown in Figure 4.8a represent the two paths that can be 
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taken to estimate the free energy of binding. The estimated binding free energy of biotin taking 

either path is ~ –16.2 kcal/mol. Our prediction for binding free energy change is in reasonable 

accord with the experimental binding affinity of –18.3 kcal/mol[139, 140].  

 

ΔGbinding = ΔGO–>C
unbound  + ΔGC

bind  = ΔGO
bind + ΔGO–>C

bound       (4.1) 
   
ΔGbinding = –16.2 kcal/mol 

 

The high binding affinity of biotin to streptavidin is attributed to three major factors: 

extensive hydrogen bond network of streptavidin with the ureido and carboxylate groups of 

biotin, hydrophobic interactions between several residues and biotin and the closure of the loop3-

4 over the Biotin binding site[123, 127, 141, 142]. Out of all the hydrophobic interactions, 

Trp120 from an adjacent monomer (highlighted in Figure 4.8) forms a key hydrophobic 

interaction with biotin bound (Trp120-biotin interactions are formed between monomers A and 

D, and, B and C). Its importance in the binding free energy calculations has been shown 

previously [124, 130, 131]. Hence, reinforcing our use of the tetrameric structure in our 

calculations.  



 131 

 
Figure 4.8 a) Detailed representation of thermodynamic free energy cycle for binding in solution 
phase for the streptavidin-biotin system. b) The net free energy change upon biotin binding and 
loop closure in the solution phase. 
 
 
 

4.4 Conclusions 

Rapidly obtaining accurate free energies remains a daunting problem, which if solved 

will have a major impact on structure based drug design[1-3]. Despite the many attempts to 

address this issue, we still need fast and accurate methods to obtain free energies for biochemical 
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processes[6, 7]. To a large extent, the current state of affairs is rooted in our use of compute 

intensive conformational sampling strategies. The conformational sampling issue is especially 

notable for large biomolecules like proteins[82, 84, 114]. Often, proteins possess a highly 

flexible loop or intrinsically disordered region (IDR)[143-145], which may undergo 

conformational changes of functional relevance. Therefore estimation of the energetic cost of 

loop motions in molecular recognition processes is of great import. To fully understand the free 

energy changes induced due to loop conformational changes, it is important to model the 

equilibrium flexibility of a protein loop, which remains a computationally intensive problem 

using our current sampling and free energy protocols. 

To address this ongoing challenge, we introduce a novel approach for relatively fast and 

accurate estimation of free energies. The significant configurational states of the protein are 

sampled by using MTFlex-b, which uses 1-D atom pairwise databases to generate molecular 

conformations. Each of the generated molecular conformations serves as the “seed structure” for 

the MT method, which estimates the free energies by performing local partition function 

estimations. Using the parallel mechanics of the MT method, this strategy provides us with a 

trade off between sampling speed and accuracy.  

This procedure was applied to study the free energy changes associated with the 

movement of the loop3-4 region within streptavidin in both the free and bound states. The large 

conformational ensemble of the loop3-4 region generated by MTFlex-b contained both closed-like 

and open-like loop conformations with a best structural RMSD of ~1.6 Å with respect to 

experiment. We generated the MT FES and found that the closed state of the loop is more stable 

in the holo state with the open loop being least stable. Similarly, in the apo state, the trend is 

reversed and the closed loop is found to be least stable. We also carried out MD PMF 
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simulations using umbrella sampling and obtained similar trends for both the apo and holo PMFs 

using the FF99SBILDN and FF14SB force fields relative to the MT FES. Even though the MT 

FES is less continuous than the MD PMF the trend in free energy is similar in both the MT and 

MD PMF plots. In particular, the free energy differences predicted by the FF14SB PMF 

simulations and MT-FES method were in good accord, while FF99SBILDN provide less 

internally consist free energy results. Clearly, the reparameterization carried out by the 

Simmerling group (creating FF14SB) has made significant improvements to the modeling of the 

processes highlighted herein[135]. To summarize, the free energy difference observed by MD-

FF14SB between closed and open state in the apo state is 10.5 kcal/mol, which is exactly the 

same as the free energy difference estimated by MT FES. In the holo state, the free energy 

difference between the experimental closed and open states differ by ~4kcal/mol between the 

estimates provided by MD FF14SB and MT FES. But, the free energy differences between the 

minima estimated by the two methods are quite comparable at ~11kcal/mol. Our free energy 

components estimate that solvation is playing a key role in the stability of the open loop in the 

apo state. In the holo state as well, solvation is significantly favoring the open loop, but the 

contacts between Streptavidin and Biotin are stabilizing the closed loop much more favorably 

making it ~12 kcal/mol more stable than the open loop.  

Using a free energy thermodynamic cycle, we observed that the relative stability of the 

open loop in the apo state is -10.4 kcal/mol with respect to the closed state, while in the holo 

state; the closed loop conformation was estimated to be -12 kcal/mol more stable than the open 

loop. The binding free energy change was also obtained and was estimated to be –16.2 kcal/mol, 

which is in reasonable agreement with the experimental binding affinity of –18.3 kcal/mol.  

Give the success of the MT based approach, we can envision this method being applied to 
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other examples of free energy changes accompanied by the conformational mobility of loops in 

other protein systems including. As the size of the loops increases the complexity and the 

computational expense for the conformational search would concomitantly increase. However, 

with advancement in GPU and CPU processors and parallel computation coupled with enhanced 

software abilities, all of these problems are addressable using our approach.  
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4.6 Supporting information 

Table 4.2 The total number of backbone loop conformations and the (backbone + sidechain) 
conformations generated by MTFlex-b in the presence of Biotin bound in the active site of crystal 
streptavidin monomer. 

 Number of conformations 
in the presence of Biotin 

Backbone conformations 21,295 

Backbone and side chain 
conformations 

11546486 
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Figure 4.9 Cartoon representation of Streptavidin crystal monomer (Chain A) with the loop3-4 in 
the closed conformation. The reaction coordinates are distances between Cα atoms of Resid30 
and 48, and between Resid109 and 49.  
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Figure 4.10 Superimposed conformations of open minima observed in MT-apo state (shown in 
tan color) and MT-holo state (highlighted in green color). The observed Cα RMSD is ~1.07 Å. 
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Figure 4.11 Relative free energy (kcal/mol) heat map of apo (left) and holo (right) streptavidin 
obtained using the Cα distance between Asn49/Leu109 and Gly48/Ile30 superimposed with the 
MD snapshots generated using FF99SBILDN force fields. MD snapshots are highlighted in 
black color as scattered points in both the left and right figures with the rest of the PMF slightly 
faded in the background. 
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Figure 4.12 Superimposed MD snapshots generated using FF99SBILDN (shown as black 
scattered points) and FF14SB (pink scattered points) force fields obtained using the Cα distance 
between Asn49/Leu109 and Gly48/Ile30 
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Figure 4.13 The crystal-closed state (shown in pink) superimposed with the apo-closed minima 
obtained by MD-FF14SB force field (highlighted in aqua color). The left panel shows the 
alignment based on only the loop region while the right panel shows the alignment based on the 
entire protein monomer. 
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Figure 4.14 The crystal open state (shown in brown) superimposed with the holo-open minima 
obtained by MD-FF14SB force field (highlighted in green color). The upper panel shows the 
alignment based on only the loop region while the lower panel shows the alignment based on the 
entire protein monomer. 
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Figure 4.15 The superimposed minima conformations predicted by MT (green) and MD-
FF14SB (mauve) methods for apo open minima, apo closed minima and holo open minima 
(from left to right). 

 
 
 
 

 
Figure 4.16 Relative free energy (kcal/mol) heat map for apo (left) and holo (right) streptavidin 
obtained by using umbrella sampling with FF99SBILDN force fields using the Cα distances 
between ASN49/LEU109 and GLY48/ILE30 as the two reaction coordinates. 
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Figure 4.17 The crystal-closed state (shown in blue) superimposed with the apo-closed minima 
obtained by MD-FF99SBILDN force field (highlighted in yellow color). The left panel shows 
the alignment based on only the loop region while the right panel shows the alignment based on 
the entire protein monomer. 
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Figure 4.18 The crystal-open state (shown in blue) superimposed with the holo-open minima 
obtained by MD-FF99SBILDN force field (highlighted in yellow and cyan color). The left panel 
shows the alignment based on only the loop region while the right panel shows the alignment 
based on the entire protein monomer. 

 
 
 

Table 4.3 List of the residues involved in forming hydrogen bond and vander waal interactions 
with Biotin. The residues color-coded in red are part of the loop3-4.  

 Hydrogen-bond interactions Vander-waal interactions 

Loop 
state 

Ureido 
oxygens 

Ureido 
Nitrogens 

Biotin 
Sulfur 

Carboxylate 
end Trp120 

Other 
hydrophobic 
interactions 

Closed 
Ser27, 
Asn23 

and Tyr43 

Ser45 and 
Asp128 Thr90 

Amide 
backbone of 
Asn49 and 

side chain of 
Ser88 

Yes 

Trp70, Trp92, 
Trp105, 

Ala46, Val47, 
Gly48, Ala50 

Transition Ser27 and 
Tyr43 - Thr90 2 H-bonds 

with Arg84 Partial Trp70, Trp92, 
Trp105, Ala46 

Open Ser27 and 
Tyr43 

Tyr43 and 
Asp128 Thr90 2 H-bonds 

with Arg84 Lost Trp70, Trp92, 
Trp105 
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Figure 4.19 The active site of streptavidin with Biotin shown for the closed loop (left) and open 
loop (right) states superimposed with the structure of the active site at the transition state (shown 
in black in both plots). Residues forming hydrogen bonds are highlighted in orange, residues 
forming van der Waals interactions are shown in green, Trp120 from sub-unit D is shown in 
purple and Arg84 in red.   

 
 
 

Table 4.4 The free energy difference between open and closed loop state with the free energy 
components in the form of the change in the protein torsion free energy, the change in the protein 
non-covalent interactions, the free energy change in the protein-ligand interactions, they change 
in the solvation free energy, the net free energy change in gas phase and in solution phase. All 
free energy values are in kcal/mol.  

 ΔΔGTorsion-

protein 

ΔΔGIntra-

protein (Non-

covalent) 

ΔΔGInter-

ProteinLigand 
ΔΔGsolvation 

Net change 
ΔΔG (Gas 

phase)  

Net change 
ΔΔG (Solution 

phase) 

Apo 
state 1.8 -0.6 0 -11.6 1.2  -10.4 

Holo 
state -1.0 2.1 23.3 -12.4 24.4 12.0 
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Table 4.5 Comparison of main chain phi-psi dihedrals of all the loop residues of the 
experimental closed structure with the closed minima structures obtained using MTFlex-b and 
from the FF14SB MD simulations. The differences are shown as positive or negative from a 
reference value of 0º. 

  MTFlex-b 
close minima 

FF14SB close 
minima 

Res 45 phi +1.37 +15.15 
 psi +10.26 +13.97 

Res 46 phi +71.55 +10.61 
 psi +33.87 +1.11 

Res 47 phi +70.34 +3.27 
 psi +21.30 +5.24 

Res 48 phi –160.41 +14.43 
 psi –32.50 +4.26 

Res 49 phi –115.34 +20.67 
 psi –137.97 +89.59 

Res 50 phi +59.84 +89.75 
 psi +17.29 +1.26 

Res 51 phi +2.30 +5.73 
 psi +31.30 +13.13 

Res 52 phi +22.10 +5.77 
 psi –52.41 –33.37 
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Table 4.6 Comparison of main chain phi-psi dihedrals of all the loop residues of the 
experimental open structure with the open minima structures obtained using MTFlex-b and from 
the FF14SB MD simulations. The differences are shown as positive or negative from a reference 
value of 0º. 

  MTFlex-b 
open minima 

FF14SB open 
minima 

Res 45 phi +35.33 +21.01 

 psi –93.95 +19.33 

Res 46 phi +30.28 +12.37 

 psi –44.62 +31.99 

Res 47 phi +18.29 +11.61 

 psi +23.13 +9.44 

Res 48 phi –75.16 +16.22 

 psi +95.92 +20.37 

Res 49 phi -57.22 +3.69 

 psi +34.18 +3.91 

Res 50 phi –94.64 +2.36 

 psi +123.47 +8.79 

Res 51 phi +14.86 +15.11 

 psi +44.38 +26.04 

Res 52 phi +38.06 +11.49 

 psi +28.54 +8.39 
 
 
 
 
 
 



 147 

4.6.1 MD-PMF methodology 
 

Starting from the holo crystal closed structure and apo crystal open state, we performed 

PMF simulations that transited to the open or closed state through a series of windows where the 

two “reaction coordinate” distances increased/decreased by the window size successively[138]. 

The window size for the X and Y coordinate was chosen to be 0.32 Å and 0.46 Å, respectively. 

There were a total of 32 windows in this diagonal scan. For each window, 1ns equilibration and 

2ns sampling was performed, and the data points were stored every 200fs. The starting structure 

of each window came from the final sampling snapshot of the previous window. After that, the 

last snapshot of each of the 32 diagonal windows was used as starting structure to sample along 

the X-axis while maintaining the Y coordinate distance. Again, data points were collected every 

200fs and total sampling was 2ns for each window, with the starting structure coming from the 

final sampling snapshot from the previous window. This time, there were total 32 parallel runs 

and for each run there were 34 successive windows along the X-axis. The force constant for both 

“reaction coordinate” was 60 kcal/(mol*Å2) for all the US windows. The two-dimensional 

WHAM was utilized to obtain the free energy profile[137].  

 

4.6.2 MD simulation details 
The simulations were performed using the FF99Sbildn[134] and FF14SB[135] force 

fields of the AMBER14 software package[146]. Each protein structure was solvated in a 

periodically replicated octahedral box using the TIP3P water model. SHAKE was used to 

constrain bonds with hydrogen atoms and a time step of 2fs was used during all the MD runs. 

The Particle mesh Ewald method[147-149] was used to treat long-range electrostatic interactions 

and a cutoff of 12.0 Å was used for the non-bonded interactions.[150] The counter-ions were 
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added to neutralize the system and the parameters for the ions were taken from IOD parameter 

set[151]. The parameters for Biotin were obtained using the GAFF force field[152]. HF/6-31G* 

level theory was used to optimize the Biotin structure and charges were fitted by using RESP 

fitting at MP2/6-31G* level[153]. 
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The objective of this dissertation is to contribute to the field of structure based drug 

design by introduction of a novel conformational sampling method for receptors in the binding 

pocket region. Proteins are inherently plastic and undergo a variety of motions that range from 

ultrafast vibrations to long-range backbone motions. In order to better understand the protein-

ligand binding interactions, it is crucial to capture the flexibility of proteins in our current 

existing computational models. However, incorporating it into even the smallest region, for 

example, the binding site of a protein, is computationally demanding. Even if this task can be 

accomplished there is a risk of running into false positives due to the enormous conformational 

space involved.  Crystal structure represents only one of the conformations from the ensemble 

and can be hardly considered as a good substitute for an entire conformational space available to 

proteins.  

The first chapter of this thesis addresses computational approaches that have been 

implemented to incorporate receptor flexibility into the ligand-binding domain of a protein. The 

introduction is not limited to receptor flexibility methods used in molecular docking studies. 

Prospective validation of several docking and other comprehensive tools has also been discussed 

largely within the scope of blind challenges conducted by the D3R and CSAR organizations. 

Based on our analysis to date, we conclude that the community is moving forward by fine-tuning 

several computational approaches but that the statistical uncertainties in the sampling and scoring 

accuracy still remain significant. 

In this regard, we have developed a method that can introduce receptor flexibility in the 

binding pocket region of the protein in a novel fashion. Chapter 2 entails the algorithm and the 

method development section. The algorithm is quite simple and can be succinctly described here. 

We treat a molecule at an atom pair level and use a distance based coordinate system. Each 
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selected distance is associated with pair potential look up tables for each atom pairwise 

interaction. These look up tables help us in generating structures on an energy scale in a very 

efficient manner. There are two main motions that occur in the protein-ligand binding motions-

side chains and backbone motions. We included receptor flexibility in terms of both. Once the 

conformational ensemble is generated on an energy scale, the free energies are calculated by 

using Movable Type free energy method[1]. 

We initially applied this strategy to treat receptor flexibility in terms of side chains, 

which we are calling MTflex[2]. MTflex was successfully applied on a set of 159 protein-ligand 

systems derived from core PDBBINDv2014 dataset after excluding proteins with metal ions in 

the binding pocket area[3, 4]. This application is discussed in details in Chapter 3 of this 

dissertation. The conformational states generated by MTflex were employed in subsequent 

docking and scoring exercise. We performed Glide docking on the generated conformational 

ensemble and also on the crystal structure. It was observed that Glide docking generated better 

binding modes in terms of both structural RMSDs (Å) and scores when docking was performed 

by using MTflex generated conformations as compared to docking in crystal structure. Apart from 

Glide scoring, we also used our in-house Movable type free energy method and validated that the 

binding affinity showed better correlation with respect to experimental results when we 

employed MTflex generated ensemble as compared to the score of using crystal docked structures. 

Overall, we showed that by including side chain flexible multiple receptor structures, docking 

and binding affinity measures improve as compared to including only single structure. 

After including side chain receptor flexibility, we next applied our method to include 

backbone flexibility as well. The extension to include backbone flexibility was quite 

straightforward, yet computationally expensive. We are calling this strategy, MTFlex-b. To take 
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care of the computational expense, we used Jacobsen’s strategy of generating loops from both 

the terminals and meeting in the middle[5].  We successfully applied our strategy to study the 

loop3-4 of the Streptavidin-Biotin system. This highly mobile, eight residue long loop undergoes 

upon to close transition in going from Biotin un-bound (apo) to bound (holo) state[6-9]. It has 

been discussed in Chapter 4 of this thesis. We generated a huge conformational ensemble of the 

loop3-4 region using MTFlex-b with over ~11 million conformations. The ensemble contained both 

closed-like and open-like loop conformations with a best structural RMSD of ~1.6 Å with 

respect to experiment. We obtained a free energy surface (MT-FES) for both the apo and holo 

states and observed that the open loop is ~10.5 kcal/mol more stable in the apo state. In the holo 

state, the trend was reversed and it was observed that the closed loop is ~12 kcal/mol more stable 

than the open loop. We observed that the stability of the open loop in the apo state is attributed to 

solvation free energy, while in the holo state, the protein-ligand contacts are much more 

favorable towards the closed state, thereby compensating for the solvation free energy. We 

validated our MT-FES by performing MD-PMF simulations using FF99SBILDN and FF14SB 

force fields. A good correlation between MT-FES and MD-PMF using FF14SB simulations was 

observed. We also generated a thermodynamic free energy cycle and obtained a binding free 

energy change of –16.2 kcal/mol, which is in reasonable agreement with the experimental 

binding affinity of –18.3 kcal/mol.  With the help of fast and efficient thermodynamic cycle and 

free energy surfaces, we hope that we are introducing a tool that will hugely impact the field of 

structure based drug design.  

The ultimate goal of our study is to not only generate a conformational ensemble but to 

employ it in understanding the deeper knowledge of protein-ligand interactions. We hope to 

expand our ability to accurately predict free energies, which will hugely impact the growth of 
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structure based drug design[10-12]. This understanding of side chain and flap motions will help 

us in understanding its affects on substrate or ligand binding, which will help in the advancement 

of structure-based drug design efforts. This strategy can be extended to systems like Kinases, 

ureases, HSP90, HIV protease, etc. This understanding will help the community in designing 

better inhibitors that have desired functions. 
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