
TRADE-OFFS AMONG DATA SECURITY, USABILITY AND
COMPLEXITY IN MOBILE CLOUD COMPUTING

By

Kai Zhou

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Electrical Engineering — Doctor of Philosophy

2018

ABSTRACT

TRADE-OFFS AMONG DATA SECURITY, USABILITY AND COMPLEXITY IN
MOBILE CLOUD COMPUTING

By

Kai Zhou

The proliferation of mobile cloud computing changes the way that data is utilized. Huge

volume of data is collected at the network edge, transmitted through the network, gathered

in the cloud, and utilized by various end-users. Data security, usability, and complexity

are among the most important design issues in mobile computing environment. Trade-

offs generally exist among these issues. While data encryption is a primary mechanism to

ensure data security, it will inevitably introduce some computational overhead to the data

owners. Also, data encryption will reduce data usability since typically it is hard to conduct

computations over encrypted data.

In this thesis, we focus on designing secure, efficient and versatile protocols that can

achieve trade-offs among data security, data usability, and computational complexity, fea-

turing the mobile cloud computing environment. In particular, we explore the trade-offs from

two aspects. First, we design secure computation outsourcing schemes for a wide variety of

computational problems such as general scientific computation and cryptographic compu-

tation, trying to alleviate the computational overhead at the user side while preserving the

security of the outsourced data. Our proposed scheme is cost-aware in that it provides dif-

ferent levels of security protection for the outsourced problem with different computational

overhead. Second, we design a specific encryption scheme that enables certain computations

to be conducted directly over encrypted data. In this way, data users can directly utilize

encrypted data to meet the demands of various applications without compromising data

security. More specifically, our proposed encryption scheme encrypts two vectors in such a

manner that the inner product of the vectors can be evaluated and compared to a pre-defined

threshold. We show that an encryption scheme can be utilized as an essential building block

to construct various privacy-preserving applications such as an online biometric authentica-

tion system. Our proposed schemes are highly efficient and suitable for resource-constrained

devices in the mobile cloud computing environment to greatly expand the computational

capacity and/or extend battery life.

Dedicated to my family, especially to my grandmother,
who brings me up and sets a good role model in my life.

iv

ACKNOWLEDGMENTS

I would like to take the opportunity to express my deep appreciation to my advisor, Dr. Jian

Ren, for his constant support, guidance, and encouragement throughout my Ph.D. years. He

makes great effort to help me through many difficulties in academic research and personal

development and growth. He himself sets a great example on these areas for me.

I want to thank Dr. Tongtong Li, Dr. Mi Zhang from Department of Electrical and

Computer Engineering and Dr. Richard Embody from Department of Computer Science

and Engineering for serving on my committee. I am really grateful to them for their kind

support. I would express my special thanks to Dr. Tongtong Li, who provides great guidance

in my research as well as in my life.

I am deeply indebted to my labmates, Dr. Jian Li, Dr. Di Tang, Afifi, and Ehab, for

their valuable discussions on the research issues, as well as their helpful advice on the daily

life on and off the campus. I am also grateful to all my friends who have made my life at

Michigan State University an enjoyable experience.

I would like to thank my parents for their unyielding love and continuous support through

all the ups and downs, without which nothing could ever be possible.

v

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF PROTOCOLS . xiii

Chapter 1 Introduction . 1
1.1 Backgrounds . 1
1.2 Overview . 3
1.3 Related Work . 4

1.3.1 Secure Computation Outsourcing . 4
1.3.2 Computing Over Encrypted Data . 5

1.4 Summary of Thesis Contributions . 7
1.5 Thesis Organization . 8

Chapter 2 CASO: Cost-Aware Secure Outsourcing of General Computa-
tional Problems . 9

2.1 Introduction . 9
2.2 Problem Statement . 12

2.2.1 System and Threat Model . 12
2.2.2 Design Goals . 12
2.2.3 Application Scenarios . 13

2.3 Secure Outsourcing Based on Affine Mapping 14
2.3.1 Basic Framework . 14
2.3.2 Security Characterization . 15
2.3.3 Problem Transformation . 17

2.4 Cost-Aware Design for Linear Systems . 20
2.4.1 Outsourcing Scheme . 20
2.4.2 Design Analysis . 21

2.4.2.1 K is a Diagonal Matrix (Scheme-1) 22
2.4.2.2 K is a Permutation Matrix (Scheme-2) 22
2.4.2.3 K is a Band Matrix (Scheme-3) 23
2.4.2.4 K is a sparse matrix (Scheme-4) 23

2.4.3 Security Analysis . 24
2.4.4 Trade-off between Complexity and Security 29
2.4.5 Application to Linear Programming 30

2.5 Extension to Non-linear Systems . 31
2.5.1 Outsourcing Scheme . 31
2.5.2 Complexity Analysis . 34
2.5.3 Security Analysis . 35
2.5.4 Application to Convex Optimization 36

vi

2.6 Results Verification . 37
2.6.1 System of Non-Linear Equations . 38
2.6.2 Optimization Problems . 39

2.6.2.1 Normal Case . 39
2.6.2.2 Infeasible Case . 40
2.6.2.3 Unbounded Case . 41

2.7 Evaluation . 42
2.7.1 Performance Comparison . 42

2.7.1.1 Linear Programming . 43
2.7.1.2 System of Linear Equations 45
2.7.1.3 Convex Optimization . 48
2.7.1.4 Summary . 49

2.7.2 Numeric Results . 49

Chapter 3 ExpSOS: Secure and Verifiable Outsourcing of Exponentiation
Operations for Mobile Cloud Computing 53

3.1 Introduction . 53
3.2 Secure Computation Outsourcing Model . 56

3.2.1 System Model and Threat Model . 56
3.2.2 Definition of Secure Outsourcing Scheme 57

3.3 ExpSOS: Secure Outsourcing of Exponentiation Operations 60
3.3.1 General Framework . 60
3.3.2 Secure Disguising Procedure . 61
3.3.3 Secure Outsourcing of Modular Exponentiation under HCS Model . . 62

3.3.3.1 Conceal the Base in Modular Exponentiation Outsourcing . 62
3.3.3.2 Conceal the Exponent in Modular Exponentiation Outsourcing 63
3.3.3.3 ExpSOS Protocol . 65

3.3.4 Secure Outsourcing of Scalar Multiplication under HCS Model 66
3.4 Result Verification . 69
3.5 Complexity and Security Analysis . 73

3.5.1 Security Analysis . 73
3.5.2 Complexity Analysis . 76
3.5.3 Trade-Off between Computation and Security 77

3.6 Applications . 78
3.6.1 Outsourcing Inner Product Encryption for Biometric Authentication 78
3.6.2 Outsourcing Identity Based Encryption 80

3.7 Performance Evaluation . 83
3.7.1 Performance Comparison . 83

3.7.1.1 HCS Model . 84
3.7.1.2 MM Model . 84
3.7.1.3 MS Model . 87
3.7.1.4 Performance Comparison of ExpSOS with the Existing Schemes 88

3.7.2 Numeric Results . 90

vii

Chapter 4 Secure Fine-Grained Access Control of Mobile User Data through
Untrusted Cloud . 93

4.1 Introduction . 93
4.2 System Model and Threat Model . 96

4.2.1 System Model . 96
4.2.2 Threat Model . 98

4.3 A High Level View of CP-ABE . 98
4.3.1 Bilinear Pairing . 98
4.3.2 Linear Secret Sharing Scheme . 99
4.3.3 Access Tree . 99
4.3.4 Access Control: Encoding and Decoding a Secret 100

4.3.4.1 Encoding a Secret . 101
4.3.4.2 Decoding a Secret . 102

4.4 Construction of Outsourced CP-ABE . 105
4.4.1 Exploring Linearity of Secret Sharing 105
4.4.2 System Setup . 107
4.4.3 Key Generation . 107
4.4.4 Encryption . 108
4.4.5 Decryption . 109
4.4.6 Proof of Correctness . 111

4.5 Complexity and Security Analysis . 113
4.5.1 Complexity Analysis . 113
4.5.2 Security Analysis . 115

4.5.2.1 Confidentiality . 115
4.5.2.2 Honest Access Control . 115
4.5.2.3 Collusion Tolerance . 116

4.6 Numeric Results . 116
4.7 Application Scenarios . 118

Chapter 5 PassBio: Privacy-Preserving User-Centric Biometric Authen-
tication . 122

5.1 Introduction . 122
5.2 Related Work . 126

5.2.1 Functional Encryption and Controlled Disclosure 126
5.2.2 Secure k-nn Search . 127

5.3 Problem Statement . 128
5.3.1 System model . 128
5.3.2 Threat model . 129

5.4 Proposed Threshold Predicate Encryption Scheme 131
5.4.1 Framework . 131
5.4.2 Design of TPE . 133
5.4.3 Construction of TPE . 134

5.5 Biometric Authentication Under Different Distance Metrics 135
5.5.1 Backgrounds . 135
5.5.2 Euclidean Distance . 137

viii

5.5.3 Distance in Hamming Space . 138
5.6 Security Analysis . 139

5.6.1 Encryption Security . 140
5.6.1.1 Security Against Passive Attack 140
5.6.1.2 Security Against Active Attack 141

5.6.2 Decryption Security . 143
5.6.3 The Effect of Randomness on Security 145

5.7 Other Applications of TPE . 146
5.7.1 Improved Security for Outsourced Biometric Identification 146
5.7.2 Searching Over Encrypted Data . 149

5.7.2.1 Set Intersection . 149
5.7.2.2 Weighted Sum Evaluation 150

5.8 Performance Evaluation . 151
5.8.1 Complexity Analysis . 151
5.8.2 Efficiency Improvement . 152

5.8.2.1 Dimension Reduction . 152
5.8.2.2 Online/Offline Computation 153

5.8.3 Numeric Results . 154

Chapter 6 Conclusion . 161

BIBLIOGRAPHY . 163

ix

LIST OF TABLES

Table 2.1: Summary of Key Notations . 21

Table 2.2: Complexity and security of each scheme : X denotes security can be guar-
anteed or privacy can be preserved. × denotes privacy cannot be preserved. 29

Table 2.3: Complexity for system of non-linear equations 35

Table 2.4: Performance Comparison . 49

Table 2.5: Performance Evaluation for System of Linear Equations 51

Table 2.6: Performance Evaluation for System of Non-linear Equations 52

Table 3.1: Performance Comparison . 89

Table 3.2: Numeric Results . 91

Table 4.1: Complexity Comparison . 114

Table 4.2: Security Levels of ABE . 117

x

LIST OF FIGURES

Figure 4.1: System Model of Outsourced ABE . 97

Figure 4.2: Access Tree . 100

Figure 4.3: Performance Comparison of Outsourced Encryption 119

Figure 4.4: Performance Comparison of Outsourced Decryption 120

Figure 5.1: Feature extraction of fingerprints: (i) Identify reference point; (ii) Divide
region of interest into sectors around reference point; (iii) Filter region of
interest; (iv) Extract features. 157

Figure 5.2: Performance of token generation and evaluation simulated on laptop (with
vs. without pre-computation) . 160

Figure 5.3: Performance of token generation and evaluation on mobile phone (with
vs. without pre-computation) . 160

xi

LIST OF PROTOCOLS

Protocol 1: Secure Outsourcing of Modular Exponentiation Under HCS Model . . 65

Protocol 2: Secure Point Addition and Point Doubling 68

Protocol 3: Secure Outsourcing of Scalar Multiplication Under HCS Model 68

Protocol 4: ExpSOS under MS Model . 72

Protocol 5: Outsourcing Encryption of IPE . 81

Protocol 6: Secure Outsourcing of Identity Based Encryption 82

Protocol 7: ExpSOS under MM Model . 87

Protocol 8: Threshold Predicate Encryption (TPE) Scheme 156

Protocol 9: Privacy Preserving Biometric Authentication 158

xii

Chapter 1

Introduction

1.1 Backgrounds

The proliferation of cloud computing, ubiquitous mobile computing, Internet of Things (IoT)

and big data spawns a new computational paradigm known as the mobile cloud computing.

In such an environment, huge volume of data is collected from ubiquitous mobile devices,

transmitted through the network, aggregated in cloud platforms, and utilized by end-users.

There is a trend that users’ private data is moving to the cloud, either for storage or computa-

tion. Numerous applications are merging from such a mobile cloud computing environment.

Computation outsourcing, as a service provided by cloud computing, is becoming prevalent.

In computation outsourcing, resource-constrained end-users can outsource their computa-

tional tasks to the resources abundant cloud for the computational tasks to be completed.

In this way, end-users are able to utilize cloud resources in a pay-per-use manner, mitigating

the need to invest in local infrastructures.

Along with the tremendous advantages that cloud computing furnishes, security and

privacy of the user data become great concerns. This is because once the data is outsourced

to the cloud, the end-users will totally lose control of the data. The cloud may try to extract

some valuable information from users’ outsourced data. Even if the cloud is trustworthy,

it could still become a target for adversarial attacks. Thus, it is crucial for applications

1

to provide security and privacy guarantees for end-users in the mobile cloud computing

environment.

Data security, data usability, and computational complexity are among the most impor-

tant design issues in the mobile computing environment. Often there are trade-offs among

these issues.

Trade-off between computational overhead and security : Data security is achieved by

primarily utilizing encryption schemes that will introduce extra computational overhead.

Often, the higher security guarantees we seek, the more computational power we need to

afford. In the mobile computing environment, especially for resource-constrained devices, it

is critical to achieve certain security requirements without involving too much computation.

More desirably, users can choose how much computation they are willing to devote to meet

different security standards, making encryption schemes cost-aware.

Trade-off between security and usability : Data are often gathered and stored in untrusted

cloud that may be shared by many people and used at any time. For security and privacy,

data is often encrypted, which, however, limits the usability of data. Conventional encryption

schemes provide semantic security and allow only users who have the ability to decrypt to

utilize the data. However, in many application scenarios, users do not always need to see

the data in plaintext in order to fulfill certain functionalities. Examples include statistical

aggregation, biometric identification, and information retrieval. It is desirable for certain

services to be directly conducted on the encrypted data without disclosing the original data.

Data usability may decrease as the level of security protection increases, which provides a

trade-off between security and usability.

2

1.2 Overview

To achieve the trade-offs among data security, usability, and complexity, we mainly utilize

two mechanisms: secure computation outsourcing and computing over encrypted data. In

particular, we design secure computation outsourcing schemes for various computational

problems to ensure data security while limiting local computational overhead, achieving

the trade-off between data security and computational complexity. We design some special

encryption techniques enabling the cloud to compute directly over the encrypted data. In

this way, the end-users can utilize their encrypted data in a secure manner without sacrificing

usability. An overview of our proposed schemes is presented as follows.

First, we propose secure outsourcing schemes for various computational problems. Such

problems play a fundamental role in various fields such as engineering, finance and cryp-

tography. The secure outsourcing of such problems is of much interest by itself or serves

as an important building block in high-level applications. We mainly consider the following

computational problems:

1. Scientific Computation: we target at general scientific computational problems

which cover the scope of linear and non-linear problems such as the system of equa-

tions (linear or non-linear), linear programming and convex optimization. Due to the

different natures of these problems, it is extremely challenging to design an outsourcing

scheme that is suitable for various kinds of computational problems

2. Cryptographic Computation: we aim at outsourcing exponential operations in fi-

nite groups such as modular exponentiation and scalar multiplication on elliptic curves.

Exponentiations are almost ubiquitous in public-key cryptosystems. However, due

to large integers involved, exponentiations are considered prohibitively expensive for

3

resource-constrained devices such as mobile phones.

3. Attribute Based Encryption: different from the above fundamental computational

problems, we aim at outsourcing an advanced cryptographic protocol named Attribute

Based Encryption (ABE), which plays a key role in cryptographic access control. Based

on secure outsourcing of ABE, we built up a secure fine-grained access control scheme

for mobile users’ data through the untrusted cloud.

Second, we propose an encryption scheme that enables any party to conduct specific

computations directly over encrypted data. We mainly focus on the computation of vectors

that can represent a large variety of data objects. Our proposed encryption scheme can

encrypt two vectors such that the inner product of vectors can be evaluated and compared

to a pre-defined threshold. During the computation, an adversary cannot derive any key

information about the underlying vectors. We apply such an encryption scheme in designing

a user-centric biometric authentication system.

1.3 Related Work

1.3.1 Secure Computation Outsourcing

The existing research in secure computation outsourcing has proposed secure outsourcing

schemes for various types of computational problems, such as sequence comparison [1–3],

linear algebra [4–9], and modular exponentiation [10–12]. While the problems vary, the

techniques utilized by these schemes can be divided into two categories: encryption based

schemes and disguising based schemes. Researchers from the cryptography community are

trying to develop specific encryption schemes under which computation can be carried out on

4

encrypted data. For instance, in [13] the authors proposed a fully homomorphic encryption

scheme under which an arbitrary boolean circuit can be evaluated directly over the encrypted

data. Based on this homomorphic encryption and Yao’s garbled circuit [14], the authors in

[15] designed a secure outsourcing scheme for arbitrary functions where the input and output

privacy are protected and the results can be verified in a non-interactive way. However,

the main drawback of this type of schemes is that they all require expensive encryption

operations thus making it impractical to be carried out in the cloud scenario. Researchers

in the theoretic computer science community have developed some disguising techniques to

transform various types of computational problems to disguised forms so that the private

information of the original problems can be concealed. Based on this idea, the authors

in [16] and [4] developed schemes to securely outsource some basic scientific operations

such as matrix multiplication, matrix inversion, and convolution. More recently, secure and

practical outsourcing schemes were proposed in [6] [17] for linear programming. In [18] [19],

the authors focused on outsourcing of large-scale systems of linear equations. However, the

disguising techniques discussed above are specially designed for a particular kind of scientific

computation, mostly lies in the scope of linear algebra. Thus the application of the proposed

schemes is quite limited.

1.3.2 Computing Over Encrypted Data

Computing over encrypted data enables a user to directly operate over encrypted data with-

out first decrypting. In conventional cryptosystem, the decryption process will eventually

recover the underlying plaintext m. As a result, all information of m is disclosed. Many

applications, however, require only partially disclosure of the information of m. For exam-

ple, a financial organization wants to filter out those customers whose transactions exceed

5

certain amount. For privacy concern, all the transactions of the customers are encrypted. In

this case, instead of decrypting the transactions, a more desirable approach is to determine

whether an transaction exceeds certain amount without disclosing the transaction. Such

application scenarios motivate the research of functional encryption [20–22]. In a functional

encryption scheme, a decryption key Sf is associated with a function f . Given the cipher-

text C, the decryption process will evaluate the function f(m), where m is the underlying

plaintext. Note that in this process, the plaintext m cannot be recovered. Thus, by issu-

ing different decryption keys Sfi , functional encryption can actually implement controlled

disclosure of the plaintext m.

A lot of research effort has been devoted to designing various functions fi for functional

encryption schemes. Representative works are Predicate Encryption (PE) [23,24] and Inner

Product Encryption (IPE) [25–28]. In PE, a message is modeled as a vector x and a de-

cryption key is associated with a vector y. The decryption result is meaningful (otherwise, a

random number) if and only if the inner product of x and y is equal to 0. Based on this idea,

predicates based on exact threshold, polynomial evaluation and set comparison have been

realized. In contrast, IPE schemes will recover the value of the inner product of x and y,

without revealing neither x nor y. In the context of controlled disclosure, IPE could disclose

more information of the plaintext than that of PE. This is because, with PE, one can only

determine whether the inner product of x and y is equal to a certain value or not while with

IPE, one can get the value of the inner product. From the above discussion, it becomes clear

that if the information is too less, it may not be able to fulfill the functionality of the appli-

cations, while more information may violate the user’s privacy. Therefore, it is crucial that

an encryption scheme should only reveal information necessary for the applications which is

a very interesting and challenging research task.

6

1.4 Summary of Thesis Contributions

The contributions of this thesis can be summarized as follows:

• We proposed secure outsourcing schemes for various computational problems:

– We proposed a cost-aware secure outsourcing scheme (CASO) that is generally

suitable for a wide variety of computational problems, such as system of equations,

linear programming and convex optimization.

– We proposed a secure outsourcing scheme (ExpSOS) for exponential operations in

finite groups such as modular exponentiations and scalar multiplications on elliptic

curves. Also, we showed that ExpSOS can serve as an important component in

building up secure and efficient advanced schemes such as biometric authentication

and digital signature.

– We proposed a secure outsourcing scheme for an advanced cryptographic proto-

col named Attribute Based Encryption (ABE), which plays a key role in crypto-

graphic access control. Based on secure outsourcing of ABE, we built up a secure

fine-grained access control scheme for mobile users’ data through untrusted cloud.

• We also introduce a verification process which enables the end-users to verify the

validity of the results returned from the cloud servers.

• We investigate the trade-off between the computational complexity and security such

that end-users can choose the most suitable outsourcing scheme according to their own

resource constraints and security demands.

• We investigate the trade-off between data security and usability by proposing novel

methods to directly utilize encrypted data. In particular, we propose an encryption

7

scheme that enables an untrusted party is able to directly compute over user’s en-

crypted data to extract information which is just adequate for certain applications.

We apply such an encryption scheme to a user-centric biometric authentication system

that can ensure the privacy of users’ biometric templates.

1.5 Thesis Organization

The rest of this thesis is organized as follows. The first three chapters focus on designing se-

cure outsourcing schemes for various computational problems. More specifically, in Chapter

2, we present CASO for secure outsourcing of general computational problems. In Chapter

3, we present ExpSOS for secure outsourcing of exponentiation operations. In Chapter 4,

we propose a secure outsourcing scheme of Attribute Based Encryption. In Chapter 5, we

present PassbBio, a privacy-preserving user-centric biometric authentication scheme. We

conclude in Chapter 6.

8

Chapter 2

CASO: Cost-Aware Secure

Outsourcing of General

Computational Problems

2.1 Introduction

In this chapter, we aim at developing a secure outsourcing scheme that is suitable for general

computational problems. The challenges come from various aspects. First, we target at gen-

eral computational problems which cover the scope of linear and non-linear problems such

as the system of equations (linear or non-linear), linear programming and convex optimiza-

tion. Due to the different natures of these problems, it is extremely challenging to design

an outsourcing scheme suitable for various kinds of computational problems. Second, in the

cloud scenario, the end-users are resource-constrained which means that the operations can

be implemented before and after the outsourcing are quite limited. Third, the end-users vary

from handheld mobile devices to desktop workstations in terms of resource constraints and

security requirements. Thus it is not easy to design a scheme that can meet the requirements

of various end-users. Finally, our preliminary investigation shows that a more complex pre-

processing of the problem will ensure a more secure outsourcing process. However, it also

9

creates more computational burden on the end-users. Thus there exists a trade-off between

the computational complexity that the end-users can afford and the security they can get in

return. All these concerns make it extremely hard to design a secure outsourcing scheme for

general computational problems.

To deal with the aforementioned challenges, we propose a secure outsourcing scheme

based on affine mappings. The basic idea is that before outsourcing, the independent vari-

ables of the computational problem is mapped to a new group of variables through an affine

mapping. Correspondingly, the original problem is transformed to a new form that can be

securely outsourced to the cloud. Then the cloud can generate valid results from the trans-

formed problem and return the results of the transformed problem back to the end-user. By

applying an inverse affine transformation on the results returned from the cloud, the end-user

can derive the valid results to the original problem efficiently at the local environment.

It is worth mentioning that the principles of our scheme are different from the previous

schemes such as in [18] and [19]. Given a computational problem, the previous schemes

try to extract some key parameters that can represent the problem. For example, the key

parameters of a linear programming problem are {c, A, b, D} as stated in [18]. The main

idea is to disguise these key parameters to a different form thus representing a different

computational problem. In this way, the information of the original problem is protected

from the cloud. While it is relatively easy to extract and disguise the key parameters of

a linear computational problem (e.g., linear programming and system of linear equations),

it is hard for non-linear problems. This is also the main reason that previous schemes are

mainly focused on linear computational problems. In comparison, our scheme starts from

the variables since, in essence, a computational problem is about the computation of the

variables. We try to map the group of the original variables to another group of variables

10

in such a way that the secret information is protected. In light of this, we choose the

affine mapping according to our design goals. We should notice that the effect of an affine

mapping is not only on the variables but also on the problem. Because when we map the

variables x to a new group of variables y through x = φ(y), the original problem changes as

F (x) = F (φ(y)) = (F ◦ φ)(y), which can naturally be applied to both linear and non-linear

problems. We prove that the proposed outsourcing scheme can ensure the security of the

private information of the original problem.

The contributions of this chapter can be summarized as follows:

• We propose a cost-aware secure outsourcing scheme (CASO) that is generally suitable

for a wide variety of computational problems, such as system of equations, linear

programming and convex optimization.

• We investigate the trade-off between the computational complexity and security such

that end-users can choose the most suitable outsourcing scheme according to their own

resource constraints and security demands.

• Our analysis and performance comparison demonstrate that CASO is much more effi-

cient than the existing schemes with comparable security levels.

• We also introduce a verification process which enables the end-users to verify the

validity of the results returned from the cloud servers.

11

2.2 Problem Statement

2.2.1 System and Threat Model

We consider a system consisting of two entities: the end-user and the cloud. Suppose

that an end-user wants to solve a general computational problem denoted by F (x), where

x = (x1,x2, · · · ,xn) is a group of independent variables. Note that F (x) describes a general

computational problem not necessarily restricted to a function. For example, it can be a

system of equations or an optimization problem. However, due to lack of resources, the

end-user needs to outsource the problem to the cloud which is considered to have infinite

computing resources. Before outsourcing, the end-user will transform the original problem at

the local side in order to prevent information leakage. On receiving the transformed problem,

the cloud server will carry out the computing process and return the solution to the end-

user. Then at the local side, an inverse transformation is carried out on the solution returned

from the cloud to recover the solution of the original problem. Based on the transformation

and the information returned by the cloud, the end-user is able to verify the validity of the

received solution.

2.2.2 Design Goals

Under the above system and threat model, our proposed outsourcing scheme should achieve

the following goals:

1. Soundness: Given that the cloud is trustworthy, the transformation on the prob-

lem and the inverse transformation of the returned result should guarantee that the

recovered solution is correct.

12

2. Security: When the problem is outsourced to the cloud, it should be computationally

infeasible for the cloud server to infer the direct information of the original outsourced

problem.

3. Verifiability: In case that the cloud cannot be fully trusted, the end user should have

the ability to verify the validity of the solution returned by the cloud.

4. Efficiency: The outsourcing scheme should be efficient in computation and commu-

nication. For computation, the overhead caused by the problem transformation, the

inverse transformation and the result verification should be limited to O(n2). For

communication, the overhead caused by the outsourcing process should be in the same

level as that of outsourcing the original problem.

5. Cost-Awareness: The end-users can select different outsourcing strategies according

to their own computational constraints and security demands in a cost-aware manner.

2.2.3 Application Scenarios

Our secure outsourcing scheme serves as an important building block in various high-level

applications, since we focus on general computational problems serving as the underlying

mathematical models in many practical problems. For example, consider a cloud-assisted

image reconstruction system, where some image sensors will upload compressed image sam-

ples to the cloud. The cloud will store the image samples and help to reconstruct the image.

We note that the core process in image reconstruction can be modeled as a linear program-

ming problem [29]. To preserve the privacy of the images, the sensors can transform the

image samples following the procedure in our secure outsourcing scheme. Then, the cloud

will help to solve the transformed linear programming problem and returned the disguised

13

result to the data users. At last, the data users can easily reconstruct the image based on

the returned result.

2.3 Secure Outsourcing Based on Affine Mapping

2.3.1 Basic Framework

As mentioned previously, we assume that the end user has a general computational problem

F (x) to be solved. Due to the lack of resources, the end user needs to outsource F (x) to the

cloud. We formally divide the outsourcing process into the following phases.

1. Key Generation: KeyGen(λ) → S. In this phase, the end-user generates the secret

key S based on the security parameter λ.

2. Problem Transformation: ProbTran(S,F (x))→ G(y). Based on this secret key S,

the end-user transforms F (x) to a new form G(y), where y is the new input.

3. Cloud Computation: CloudCom(G(y)) → {y∗, Φ}. On receiving the transformed

problem G(y), the cloud carries out the necessary computation and gives the solution

y∗ as well as a proof Φ of the validity of the returned solution.

4. Result Recovery and Verification: RecVeri(y∗, S, Φ) → {x∗, Λ}. By utilizing the

secret key S, the end-user recovers solution x∗ to the original problem from y∗. Based

on the proof Φ, the end-user gives the decision Λ = {Ture, False}, indicating the validity

of x∗.

14

2.3.2 Security Characterization

In this subsection, we characterize the security of a secure outsourcing scheme.

First, we characterize the information of the problem to be outsourced. For a computa-

tional problem F (x), the most sensitive information is the problem itself F (·) and the output

x∗. Depending on the types of the computational problem, some other information, such as

the zeros and poles, could also be sensitive. In light of this, we define direct information and

indirect information of a computational problem as follows.

• Direct Information: for a computational problem F (x), the direct information is

the problem itself F (·) and the output x∗;

• Indirect Information: other information besides direct information is defined as

indirect information.

Based on the above characterization of information, we define the security notions for an

outsourcing scheme.

Definition 2.1 (Security) An outsourcing scheme achieves security if for any given set of

transformed problems {G(yi)} and the solution {y∗i }, it is computationally infeasible for the

cloud to recover the direct information.

In the scenario of computation outsourcing, the cloud is able to observe the transformed

problem, which corresponds to the ciphertext in a cryptosystem. In this sense, the cloud

is able to conduct the ciphertext-only attack. In the above security definition, we define

security for direct information. To measure what indirect information the cloud can learn,

we define the notion of privacy as follows. First, we define an experiment to model the attack

by the cloud.

15

Outsourcing Experiment ExpA,out(λ):

• The adversary A outputs two computational problems F1(x) and F2(x) of the same
type.

• The challenger runs KeyGen(λ) to obtain the secret key S.

• The challenger outputs a uniform bit b ∈ 0, 1. It runs ProbTran(S,Fb(x)) to obtain the
transformed problem Gb(y).

• A outputs a bit b′.

• The output of the experiment is define as 1 if b = b′. Otherwise, the output is 0.

Definition 2.2 (Privacy) An outsourcing scheme achieves privacy for a given security pa-

rameter λ if for any probabilistic polynomial time adversary A, there exists a negligible

function negl such that

|Pr(ExpA,out(λ) = 1)− 1

2
| ≤ negl(λ).

It should be made clear that the security notions defined here are different from those

for traditional cryptosystems in that the transformation does not depend on a cryptographic

algorithm, even though we adopted the notions such as semantic security under ciphertext-

only attack in cryptography to describe the privacy of indirect information. This is because

the semantic security requires that no key information can be derived from the ciphertext,

which resembles our privacy requirement that no indirect information can be learned from

the transformed problems.

Security Requirements The basic security is the minimum security that an outsourcing

scheme should provide. That is, given the transformed problem, the cloud is unable to recover

the original problem and solution (direct information). In contrast, privacy characterizes a

stronger notion of security. Under the definition of privacy, the transformed problem should

achieve indistinguishability. In other words, based on the transformed problem, the cloud

16

should not be able to recover any meaningful information (indirect information).

Cost-awareness The achievable privacy of an outsourcing scheme should be determined

by the needs of the end-user. That is, in some scenario, an end-user may desire to achieve

a strong notion of security; while in many other cases, the end-user may only need security

of the direct information. On the other hand, in the practical design of secure outsourc-

ing schemes, a stronger notion of security is achieved at the cost of a higher computational

complexity. A cost-aware secure outsourcing scheme should provide an end-user the flex-

ibility to select the most efficient outsourcing scheme that satisfies the end-user’s security

requirements.

2.3.3 Problem Transformation

The basic idea of problem transformation is to map the independent variables of the problem

to a new group of variables such that the original problem is transformed to a new form. To

be specific, suppose the original problem is F (x). We assume that ψ : Rn → Rn is a general

one-to-one mapping function. Let x = ψ(y), then F (x) = F (ψ(y)) = (F ◦ψ)(y) = G(y). In

this way, the original input x can be transformed to input y with the relationship determined

by the function ψ. Below, we give the equivalence definition of two computational problems.

Definition 2.3 (Equivalence) Denote a set of computational problems as Ω = {Γ | Γ :

Rn → Rn}. For any F ∈ Ω, if there exists a one-to-one mapping ψ : Rn → Rn such that

F (x) = F (ψ(y)) = (F ◦ ψ)(y) = G(y), then F is said to be equivalent to G. We denote it

as F ∼ G. The equivalent class of F is denoted as [F] = {Γ ∈ Ω | Γ ∼ F}.

Theorem 2.1 The equivalence relation defined in Definition 2.3 is well-defined.

17

Proof We only need to prove that the relation defined in Definition 2.3 is reflexive, sym-

metric and transitive. First, it is obvious that for every F ∈ Ω, if we select the one-

to-one mapping ψ to be the identity mapping, then we have F (x) = F (ψ(y)) = F (y).

Thus for every F ∈ Ω, we have F ∼ F which demonstrates the property of reflexivity.

Second, for F ,G ∈ Ω, if F ∼ G, then there exists a one-to-one mapping ψ such that

F (x) = F (ψ(y)) = (F ◦ ψ)(y) = G(y), which indicates the existence of an inverse mapping

ψ−1 such that G(y) = (F ◦ ψ)(ψ−1(x)) = F (x). Thus we have G ∼ F and the property of

symmetry holds. To prove the property of transitivity, assume that F ,G,H ∈ Ω such that

F ∼ G and G ∼ H. This means that there are two one-to-one mappings ψ and φ such that

x = ψ(y), F (x) = F (ψ(y)) = G(y) and y = φ(z), G(y) = G(φ(z)) = H(z). Therefore, we

have F (x) = F (ψ(y)) = F ((ψ◦φ)(z)) = H(z). Since ψ and φ are both one-to-one mappings,

the mapping ψ ◦ φ is also one-to-one. Thus from the definition we have F ∼ H and the

equivalence relation is transitive.

The above equivalence definition gives an insight of CASO. Based on a one-to-one map-

ping ψ, the end-user first transforms the original problem F (x) to an equivalent form G(y)

that can be securely outsourced to the cloud. Since the solutions to the two problem satisfy

x∗ = ψ(y∗), the end-user can always recover x∗ from y∗ returned by the cloud. Thus the

essence of our proposed scheme lies in finding a proper one-to-one mapping that satisfies the

various design goals.

Definition 2.4 An affine mapping ψ : Rn → Rn is defined as a mapping from x ∈ Rn to

y ∈ Rn satisfying x = Ky + r, where K ∈ Rn×n is non-singular and r ∈ Rn.

It is clear that as long as K is non-singular, the affine mapping defined above is a one-to-one

mapping. The soundness of our proposed scheme based on affine mapping is guaranteed by

18

the following theorem.

Theorem 2.2 (Soundness) Under the affine mapping, the transformed problem is equiva-

lent to the original problem. That is the end-user is guaranteed to be able to recover the valid

solution of the original problem from the solution returned by the cloud.

Proof The proof of soundness follows the definition of equivalence. The affine mapping

x = Ky + r is one-to-one as long as K is non-singular. Thus by definition, F ∼ G under

this affine mapping. Since the solutions to the two problems satisfy x∗ = Ky∗+ r, given y∗

returned by the cloud, the end-user is able to recover x∗ at the local side.

Remark Our scheme is fundamentally different from the previous schemes, such as [6]

and [18]. Given a computational problem, the previous schemes try to extract the key

parameters that can represent the problem, and then try to disguise these key parameters

to a different form thus representing a different computational problem so that the original

problem is protected from the cloud. While it is relatively easy to extract and disguise the

key parameters of a linear computational problem (e.g., linear programming and system of

linear equations), it is hard for non-linear problems, which limits the previous schemes to

only linear problems such as linear programming and systems of linear equations.

In comparison, our scheme starts from the variables since, in essence, a computational

problem is about computation of the variables. We map the group of the original variables

to another group of variables in such a way that the secret information is protected. When

we map the variables x to a new group of variables y through x = ψ(y), the original problem

becomes F (x) = F (ψ(y)) = (F ◦ ψ)(y), which can naturally be applied to both linear and

non-linear problems.

19

2.4 Cost-Aware Design for Linear Systems

In this section, we present our cost-aware secure outsourcing scheme for general computa-

tional problems. In the region of linear computation, we deploy system of linear equations

as a case study to show the principles of our design. Then we show that the proposed CASO

can be well extended to linear programming.

2.4.1 Outsourcing Scheme

In the problem transformation phase, the end-user first generates a random one-time secret

key S = {K, r}, where K ∈ Rn×n is a non-singular matrix and r ∈ Rn. Then x = Ky + r

is a one-to-one mapping from x to y. The key S will be discarded after each use. The

randomness of the key selection ensures that it is very unlikely for any key to be reused.

Suppose the computational problem is a system of linear equations Ax = b, where

x, b ∈ Rn and A is an n× n non-singular matrix. The function ProbTran(S,F (x))→ G(y)

takes the secret key S = {K, r} and the linear system as input and generates the output

as AKy = b−Ar. Denote A′ = AK and b′ = b−Ar and the system is transformed to

G(y) : A′y = b′ which can be outsourced to the cloud.

In the phase of cloud computation, the cloud solves G(y) utilizing the typical methods

and returns the solution y∗ to the end-user. Then in the result recovery phase, the end-

user recovers the solution to the original system of linear equations as x∗ = Ky∗ + r. In

the following sections, we will discuss the detailed design of our secure outsourcing scheme.

Some of the key notations are listed in Table 2.1.

20

Table 2.1: Summary of Key Notations

Symbol Interpretation

F (x) original problem on variables x

G(y) transformed problem on variables y

n number of independent variables

K, r one-time transformation key

A coefficient matrix

A′ transformed coefficient matrix

W bandwidth of a band matrix

θ
upper bound of non-zeros in each row or column

of a sparse matrix

N number of terms in a non-linear system

L number of polynomials in a non-linear system

Te user-side computational time with outsourcing

Ts user-side computational time without outsourcing

I computational gain from outsourcing

2.4.2 Design Analysis

From the above outsourcing scheme, we can see that the computational overhead for the end-

user incurs both in the problem transformation and the result recovery phase. To be more

specific, in the problem transformation phase, the end-user needs to calculate AK and Ar.

To recover the original solution x∗ from the received solution y∗, the end-user has to calculate

Ky∗. Among those operations, the matrix multiplication AK is the most computationally

21

expensive one. Thus in our discussion, we will analyze the number of multiplications M

required to compute AK. In the following analysis, we denote A = {aij |i, j = 1, 2, · · · ,n}

and K = {kij |i, j = 1, 2, · · · ,n}.

To multiply two arbitrary n × n matrices, the typical complexity is O(n3), which is

generally believed to be too high and unacceptable for mobile client computation. However,

in our design, we can actually control the complexity by selecting matrix K properly so that

the computational complexity can be effectively reduced without compromising security.

Since matrix multiplication is the most expensive part of the end-user’s processing, our goal

is to ensure that the complexity of multiplying K with an arbitrary matrix A is bounded by

O(n2), which is within the end-user’s computational constraints.

In the following sections, we provide four schemes with different types of non-singular

secret key K based on the above-described complexity constraints.

2.4.2.1 K is a Diagonal Matrix (Scheme-1)

A diagonal matrix K has the format K = {kij |kij = 0, ∀i 6= j}. Since K must be non-

singular, all the entries in the diagonal have to be non-zero numbers. When K is a diagonal

matrix, we have M = n2.

2.4.2.2 K is a Permutation Matrix (Scheme-2)

A permutation matrix K has exactly one non-zero entry in each row and each column in the

matrix. When K is a permutation matrix, we have M = n2.

22

2.4.2.3 K is a Band Matrix (Scheme-3)

Suppose the band matrix K has an upper half-bandwidth p and a lower half-bandwidth

q such that kij = 0 for i > j + p and j > i + q. The total bandwidth of K is denoted

by W = p + q + 1. When K is a band matrix, for simplicity, we assume that K has an

equal upper and lower half-bandwidth p = q = ω, then W = 2ω + 1, and the number of

multiplications M can be calculated as M = (2ω + 1)n2 − (ω2 + ω)n.

2.4.2.4 K is a sparse matrix (Scheme-4)

Suppose K is a sparse matrix. The density d is defined as the ratio of non-zero elements

in the matrix. We assume that the number of non-zero elements in each row and each

column of K is up-bounded by a constant θ. When K is a sparse matrix, it is usually

stored in a special manner such as Dictionary of Keys (DOK) [30] in computation. Thus

the complexity of matrix multiplication can be approximately measured by the number of

non-zero elements, which is dn3 in our discussion. Since we have assumed that d ≤ θ
n , the

number of multiplication becomes M = θn2.

In summary, through the above analysis, we demonstrate that for the four proposed

schemes, the complexity of multiplying K with an arbitrary matrix A is O(n2). Since

matrix multiplication is the most expensive part of the end-user’s processing, we can derive

that the overall computational complexity for the end-user is O(n2), which is within the

end-user’s computational constraints.

23

2.4.3 Security Analysis

In this section, we will analyze the security of our proposed CASO. We will focus on the

security of the coefficient matrix A of the original function F (x), the variable x in the

function F (x) and the form of the function F (x).

Theorem 2.3 CASO can ensure security of the direct information. In other words, for the

four schemes in CASO, it is computationally infeasible for the cloud to recover the original

coefficient matrix A and the output x∗ for the system of linear equations.

Proof For a system of linear equations Ax = b, the original problem is represented by the

matrix A and the vector b. The output is x∗, which is the solution of the system. Under

the affine mapping, the system of equations is transformed to A′y = b′, where A′ = AK

and b′ = b−Ar. Therefore, it is computationally infeasible for the cloud to recover A and

b from A′ and b′ since both K and r are only used once and kept secret at the local side.

Additionally, since the original solution is recovered by x∗ = Ky∗ + r, without knowing K

and r, the cloud cannot recover x∗. In this way, the output of the system is concealed. Thus,

all the four schemes are secure in outsourcing the system of linear equations.

Theorem 2.4 CASO can achieve the privacy of output x∗.

Proof From the definition of privacy, an end-user plays the role of the challenger and gen-

erates the secret key (K, r). An adversary A submits two outputs y0 and y1 to the end-

user, The end-user generates a random bit b and transforms yb to xb = Kyb + r and

sends xb back to the adversary. The task of the adversary is to output another bit b′. If

|Prob(b = b′) − 1
2 | ≤ negl(λ), the adversary A will loose the game and it is proved that

CASO can achieve the privacy of output x∗. Note that r is randomly generated. As a

24

result, regardless of the selection of K, xb = Kyb + r is random. Thus, the advantage for

the adversary to distinguish x0 and x1 is negligible. In other words, the adversary can only

generate a bit b′ such that |Prob(b = b′)− 1
2 | ≤ negl(λ).

It is worth to mention that all the four schemes in CASO can successfully conceal the zeros

and poles of the function since zeros and poles are information of the variables x.

Remark The complete privacy of the coefficient matrix A is unachievable under affine

mapping. This is because the adversary can always distinguish A′0 = A0K from A′1 = A1K.

For example, the adversary can select A0 and A1 such that one of these two matrix is

singular. Then the rank of the retuning matrix A′b would be different.

To this end, we have shown that the four schemes in CASO is able to achieve security and

the privacy of the output x∗. However, the privacy information of the coefficient matrix A

s not fully achievable. In the following analysis, we will show different protection of indirect

information provided by the four schemes in CASO.

Theorem 2.5 Suppose ψ is a rational mapping, meaning that ψ can be represented as a

quotient of two polynomial functions, G = F ◦ ψ, then we have the following results:

1. If F is a rational function, then G is rational.

2. If F is an irrational function, then G is irrational.

Proof Since ψ is a rational mapping, we assume ψ(x) =
P (x)
Q(x)

, where P (x) and Q(x) are

polynomials. When F is a rational function, suppose

F (x) =
f1(x)

f2(x)
, (2.1)

25

where f1(x) = a0 + a1x+ · · ·+ anx
n, and f2(x) = b0 + b1x+ · · ·+ bmx

m. Then

(F ◦ ψ)(x) =
f1(ψ(x))

f2(ψ(x))
. (2.2)

Without loss of generality, we assume that m > n. Then we have

(F ◦ ψ)(x) =
Qm(x) · f1(ψ(x))

Qm(x) · f2(ψ(x))
. (2.3)

It is clear that both Qm(x) ·f1(ψ(x)) and Qm(x) ·f2(ψ(x)) are polynomials. Therefore, F ◦ψ

is the quotient of two polynomials and the composition G = F ◦ ψ is a rational function.

When F is irrational, the composition G = F ◦ ψ cannot be rational. Otherwise, there

exists an inverse rational function ψ−1 such that F = G ◦ ψ−1 = F ◦ ψ ◦ ψ−1 becomes

rational. Hence, G = F ◦ ψ is irrational when F is irrational.

Since the proposed affine mapping is rational, we have the following corollary.

Corollary 2.1 Under an affine mapping ψ, the rationality of the function G is the same as

the original function F .

Theorem 2.5 and Corollary 2.1 state that the rationality of the function F cannot be changed

through composition with a rational mapping or an affine mapping ψ. That is, if the function

F is rational, after the composition G = F ◦ ψ, the transformed function G is still rational.

If F is irrational, G is still irrational. As a result, the side information that is related to the

specific form of the function F (e.g., sin(·) or log(·)) may not be fully concealed by an affine

mapping or even a rational mapping.

Now, we will analyze the indirect information that can be revealed by the coefficient ma-

trix A of the four schemes. Under an affine mapping, the coefficient matrix A is transformed

26

to A′ = AK. Thus the problem is to characterize the indirect information of A given A′.

Let aij ,a
′
ij and kij be the entries of A, A′ and K, respectively. By affine mapping, the

entries a′ij are actually linear combinations of aij and kij . In our settings, we elaborately

select some of the entries in K to be zeros to reduce the computational complexity. Thus,

in a high-level view, multiplying A with K results in the combined effect of scaling and

permuting of the columns of A. In light of this, to characterize the effect of scaling and

permuting, we introduce the ratio privacy concerning the ratio information of the entries of

A and the position privacy concerning the composition of each entry of A′ from entries of

A. In the following, we will analyze to what extent the four schemes can achieve the privacy.

For scheme-i (i = 1, 2, 3, 4), we denote the secret key utilized in the scheme as Ki.

For scheme-1, the secret key K is a diagonal matrix denoted by K1 = {kij |kij = 0, ∀i 6=

j}. The entry a′ij in A′ can be calculated as a′ij = kiiaij . By investigating A′, it is obvious

that each column in A′ is related in a simple way to that in A such that the ith column

in A′ is the multiplication of the ith column in A with kii. In this way, only based on A′,

the cloud can easily know the ratio between any two entries within the same column in A.

Moreover, it is also clear how each entry in A′ is composed.

For K2 to be a permutation matrix in scheme-2, the difference is that A′ in scheme-2 can

be regarded as the result of permuting the columns of A′ obtained from scheme-1. Thus,

although the cloud can get a knowledge of the ratio between two entries in the same column

of A, it is not sure which particular column those two entries belong to. As a result, while

scheme-2 can achieve position privacy, it may leak ratio privacy.

In scheme-3, for K3 to be a band matrix with upper half-bandwidth and lower half-

27

bandwidth both equal ω, it can be calculated that

a′ij =

j+ω∑
r=j−ω

airkrj . (2.4)

Since each entry in A′ is a linear combination of entries in A and K, the ratio information

of entries in A is concealed. However, the disadvantage is that the cloud can still learn how

a particular entry in A′ is composed. For example, suppose ω = 1, the cloud can know for

sure that a′ij = ai(j−1)k(j−1)j + aijkjj + ai(j+1)k(j+1)j . In this sense, while scheme-3 can

achieve ratio privacy, it may leak position privacy.

At last, for K4 to be a sparse matrix in scheme-4, we assume that there are exactly θ

non-zero entries in each row and column of K. Similar to scheme-3, the ratio information of

entries in A can be concealed. Moreover, since the non-zero entries are randomly positioned

in the sparse matrix K, the cloud is unable to know how each entry in A′ is composed.

Thus, scheme-4 can achieve both ratio privacy and position privacy.

In summary, we categorized the privacy of the coefficient matrix A into ratio privacy and

position privacy. Such categorization stems from the essence of matrix multiplication. In a

high-level view, multiplying A with a specially designed secret matrix K can be separated

into two critical operations: the weighted sum of the entries of A and random permutation.

The former operation preserves the ratio privacy while the latter operation preserves the

position privacy. Moreover, the number of non-zero entries in K determines to what degree

the ratio privacy is preserved. However, as long as the positions of the non-zeros entries

are random, the position privacy of A are preserved. We summarize the computational

complexity and security of CASO in Table 2.2.

28

Table 2.2: Complexity and security of each scheme : X denotes security can be guaranteed
or privacy can be preserved. × denotes privacy cannot be preserved.

Complexity Security Privacy of x Ratio Privacy of A Position Privacy of A

Scheme-1 n2 X X × ×
Scheme-2 n2 X X × X
Scheme-3 Wn2 X X X ×
Scheme-4 θn2 X X X X

2.4.4 Trade-off between Complexity and Security

From the above complexity and security analysis, we can see that there is a trade-off between

the computational complexity and security. As the simple scheme, scheme-1 is able to protect

the original coefficient matrix while exposing the ratio between any two entries in the same

column. In comparison, scheme-2 is slightly more expensive (e.g. the positions of the non-

zero entries have to be stored), but it is this cost for non-zero entries’ random positions that

makes it effective to conceal the ratio information. The complexity of scheme-3 and scheme-4

is linearly dependent on W and θ, respectively. They are more costly than scheme-1 and

scheme-2. However, the transformed matrix A′ can conceal A and K in a more complex

way since it can conceal the structure of the coefficient matrix. In summary, from scheme-1

to scheme-4, the security levels that they can provide increase at a cost of computational

power.

In the context of cloud computing, the end-users vary from mobile devices to powerful

workstations thus having different computational constraints as well as different security

demands. Thus CASO provides end-users with the flexibility to choose the outsourcing

schemes that are most suitable for them. These four schemes give cost-aware outsourcing

for end-users to address the various security demands and computational constraints.

29

2.4.5 Application to Linear Programming

In this section, we will demonstrate that our design and analysis for system of linear equations

can be well applied to many computational problems, such as linear programming. We

consider a linear programming problem denoted by

F (x) :=

minimize cTx

subject to Ax = b

Dx ≥ 0,

(2.5)

where b, c ∈ Rn, A ∈ Rm×n and D ∈ Rs×n (m, s ≤ n).

Under the affine mapping x = Ky + r, the problem is transformed to

G(y) :=

minimize cTKy + cT r

subject to AKy = b−Ar

DKy ≥ −Dr,

(2.6)

from which we can see that the original coefficient matrix can be concealed by the secret

key K and r. It is obvious that the computational bottleneck lies in the multiplication of K

with A and D. Thus the same complexity and security analysis for systems of linear equa-

tions applies for linear programming. That is the complexity of the previous four schemes

is all bounded by O(n2). In terms of security, the four schemes are all secure in protect-

ing the original coefficient matrix while providing different levels of protection of the side

information.

In the next section, we explore the differences for non-linear computation by investigating

30

system of non-linear equations and convex optimization problems.

2.5 Extension to Non-linear Systems

In this section, we aim at exploring the different design issues between linear and non-

linear computation. We consider a system of non-linear equations denoted by F (x) = 0,

where F (x) = {fi(x)|fi(x) : Rn → R, i = 1, 2, · · · ,n}. Typically, it is hard to obtain

a symbolic solution for the system. Thus the normal method is to solve the system of

equations numerically in an iterative way. The main idea is that given a solution xk in the

kth iteration, we need to solve the linear system ∂F (x)|x=xk
(xk+1 − xk) = −F (x)|x=xk

,

where ∂F (x) is the Jacob matrix of F (x). Then we can obtain the solution xk+1 in the

(k + 1)th iteration. The iteration will terminate when ‖F (x∗)‖ < ε, where ε is the error

tolerance and x∗ is the final solution. To minimize the communication overhead and the

energy consumption of the end-users, our goal is to design off-line scheme so that the end-

users are not required to interact with the cloud except the problem outsourcing and result

retrieving process. In this way, the end-users only need to focus on the high-level view of the

problem without knowing the details of problem-solving process. The detailed design and

analysis of the outsourcing scheme are presented as follows.

2.5.1 Outsourcing Scheme

Compared with the outsourcing of the system of linear equations, the main difference lies in

the problem transformation phase. First, to start the iteration at the cloud side, an initial

guess of the solution should also be outsourced. We assume that at the local side, the end-

user generates an initial solution x0. Then with the affine mapping, the outsourced initial

31

solution becomes y0 = K−1(x0 − r). We should notice that there is an inversion operation

on K which will impose more constraints on our selection of K in terms of computational

complexity. Second, after substituting x with y, the problem should be further transformed.

We use a simple example to illustrate this point. Suppose we want to solve a system of

non-linear equations

F (x) :=

sin(3x1) + 4x2

2 + x2x3 = 0

2x1 + e3x2 + 2x3
3 = 0

lg(5x1) + 1
2x2+1 + 3(x3 + 1)2 = 0.

(2.7)

We take the affine mapping x = Ky + r, where r = 0 and

K =

3 0 0

0 2 0

0 0 4

 .

Then the system is transformed to

G(y) :=

sin(9y1) + 16y2

2 + 8y2y3 = 0

6y1 + e6y2 + 128y3
3 = 0

lg(15y1) + 1
4y2+1 + 48y2

3 + 24y3 = −3.

(2.8)

It is obvious that to protect the cloud from revealing information from the transformed

system, it is sufficient to mix the coefficient of each term in the equations with the key entry.

To be specific, we assume that there are πi terms in equation fi(x) and each term is denoted

32

by f
j
i (tx), where t is the coefficient. Then each equation in the system can be written as

fi(x) =

πi∑
j=1

f
j
i (tx).

Under the affine mapping x = Ky + r, f
j
i (tx) is transformed to

gi(y) = fi(Ky + r) =

πi∑
j=1

f
j
i (t(Ky + r)).

Thus the coefficient t is concealed by K and r, which is similar to the case of the system

of linear equations. However, as illustrated in the example, the multiplication cannot be

simply carried out when f
j
i (·) is a polynomial. Thus a further transformation is needed to

mix t with K and r for polynomials.

Without loss of generality, we assume that the polynomial is denoted by tix
m
i and in the

affine mapping, K is a band matrix with bandwidth W = 3 and r = 0. Thus under the

affine mapping, the polynomial is transformed to

ti(ki−1yi−1 + kiyi + ki+1yi+1)m.

To mix the coefficient ti with the secret keys, one straightforward way is to expand the

polynomial and then multiple it with ti. However, the complexity is unacceptable for high

order polynomials. Instead, we propose that it is sufficient to split the secret keys as ks = pqs,

33

where s = i− 1, i, i+ 1 such that

ti(ki−1yi−1 + kiyi + ki+1yi+1)m

= ti(pqi−1yi−1 + pqiyi + pqi+1yi+1)m

= tip
m(qi−1yi−1 + qiyi + qi+1yi+1)m.

In this way, the coefficient ti in the original function and the secret keys ki are concealed.

2.5.2 Complexity Analysis

From the analysis above, we can see that the complexity of the problem transformation

mainly depends on two aspects. One is the specific form of the equations, that is the

number of polynomials in the equations. The other one is how x and y are related, which is

determined by the number of non-zero entries in K.

For a given system of non-linear equations, suppose that there are N terms in total in

the systems, among which L are polynomials with orders no greater than m. Assume that

the number of non-zero entries in K is up-bounded by λ (i. e. each x is substituted by at

most λ y’s). Thus for each non-polynomial term, the transformation takes λ multiplications

between the coefficient of the term and the key entries. And for a polynomial term tix
m
i , we

assume that it is replaced by

ti(k1y1 + · · ·+ kλyλ)m = ti(pq1y1 + · · ·+ pqλyλ)m

= tip
m(q1y1 + · · ·+ qλyλ)m.

Then the operations involved in the transformation include one multiplication, λ division

34

Table 2.3: Complexity for system of non-linear equations

Scheme Complexity

Diagonal matrix N + (log2m+ 1)L

Permutation matrix N + (log2m+ 1)L

Band matrix WN + (log2m+ 1)L

Sparse matrix θN + (log2m+ 1)L

and raising p to the power of m. As stated previously, we utilize the number of multiplication

as a measurement of complexity. We assume that in terms of computational complexity, one

division is equal to one multiplication and with the method of exponentiation by squaring,

the computation for mth power takes log2m multiplications. Thus, for a system of non-linear

equations with N terms among which L are polynomials, the complexity can be calculated

as

λN + (log2m+ 1)L.

It is obvious that the complexity depends on λ which is further determined by the selection

of K. We summarize the complexity of the four different types of matrices in Table 2.3. We

can see from the table that the complexities of all schemes are constrained to O(N), where

N is the number of terms in the system of non-linear equations. Notice that typically for

a system of equations, the number of terms N is in the level of n2, where n is the number

of independent variables. Thus the complexity is still bounded by O(n2), which fulfills our

design goals.

2.5.3 Security Analysis

Similar to the security analysis for linear systems, all of the proposed four schemes are

secure in protecting the coefficient matrix, the zeros, poles and optimums of the outsourced

problem. As stated in Corollary 2.1, CASO cannot conceal the specific form of the functions.

35

For instance, in the example given in Section 2.5.1, the original system of equations is

transformed to G(y) such that the coefficients in each term of the function are changed.

However, the specific forms of the function (e.g., sin(·), lg(·), etc.) remain unchanged.

For the four schemes, generally as the complexity increases, more side information can

be concealed from the cloud. Different from the linear equations, a non-linear function fi(x)

may contain some side information, such as maximum or minimum value which is important

in some applications. For instance, the plot of the function or the extreme values may expose

the distribution of the incidence of a disease among different age groups. For scheme-1 and

scheme-2, the curve of the function is just a scaled version. Though scheme-2 provides better

protection since it can conceal the independent variables. In scheme-3 and scheme-4, each

independent variables in the original problem is substituted by several new variables. Thus

the side information, such as the curve and the extreme values can be perfectly concealed.

2.5.4 Application to Convex Optimization

In this section, we show that the above schemes and analysis can also be applied to convex

optimization. Convex optimization is widely employed in various practical problems. We

consider a convex optimization problem denoted by

F (x) :=

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, · · · ,m

hj(x) = 0, j = 1, · · · , t,

(2.9)

36

where fi : Rn → R, i = 0, ...,m and hi : Rn → R, i = 1, ..., t are all convex functions. Under

the affine mapping x = Ky + r, the original problem F (x) is transformed to

G(y) :=

minimize f0(Ky + r)

subject to fi(Ky + r) ≤ 0, i = 1, · · · ,m

hj(Ky + r) = 0, j = 1, · · · , t.

(2.10)

Since the key matrix K and r are randomly generated and kept secret at the local

side, the coefficient matrix of the outsourced problem is perfectly protected. And because

the functions fi(·) and hj(·) are all non-linear functions, the security and the complexity

analysis of system of non-linear equations can be well applied in this case. Thus we conclude

that our outsourcing scheme is also applicable to convex optimization problems.

2.6 Results Verification

The general idea of our proposed verification scheme is to transform the problem with two

independent affine mappings and outsource the two transformed problems to the cloud. Then

the end-user is able to verify whether the two results returned by the cloud match with each

other. We note that such a verification scheme is different from those that require two rounds

of communications. In our scheme, the end-user does not need to wait for the result of the

first round outsourcing before sending out the second transformed problem. This is because

the results for the two transformed problems are received simultaneously. To be specific,

under the affine mappings x = K1y + r1 and x = K2z + r2, the original problem F (x) is

transformed to G(y) and H(z) which are outsourced to the cloud. Then the cloud solves

37

the two outsourced problems and returns the corresponding results y∗ and z∗. Since the

condition K1y∗ + r1 = K2z∗ + r2 holds for these two results, the end-users can utilize it as

a criterion to verify whether the returned results are valid.

2.6.1 System of Non-Linear Equations

The idea introduced above can be applied to system of equations directly. When F (x) is

a system of linear equations, it is sufficient to verify directly whether ‖Ax∗‖ < ε, where

‖ · ‖ denotes the Euclidean norm of a vector and ε is a pre-defined error tolerance. The

complexity of this verification process is O(n2).

When F (x) is a system of non-linear equations, since the end-user will have to evaluate

the non-linear functions, the computational cost for direct verification generally exceeds

O(n2). However, based on our idea of outsourcing twice, the end-user only needs to check

the condition K1y∗ + r1 = K2z∗ + r2. Since the verification process involves only linear

operations, the computational complexity is bounded by O(n2). As the system of equations

is typically solved by the iterative method, the solution is not accurate. Thus we may need

to change the equality condition to

‖(K1y∗ + r1)− (Kz∗ + r2)‖ < ε.

In the following analysis, we uniformly utilize the equality condition K1y∗+ r1 = K2z∗+ r2

as the verification criteria. When the computational problems are solved inaccurately, the

equality condition should be changed to its inequality variation.

38

2.6.2 Optimization Problems

When F (x) is an optimization problem, we utilize convex optimization as an example to

illustrate the verification process. And it can be easily applied to other optimization prob-

lems, such as linear programming. The output of a convex optimization problem can be

divided into three cases: normal, infeasible and unbounded [31, Chapter 4.1]. For the con-

vex optimization problem defined in equation (2.9), the domain D is the set for which the

objective function and the constraint functions are defined. That is

D =
m⋂
i=1

domfi ∩
t⋂
i=i

domhi.

The feasible set is E = {x ∈ D |fi(x) ≤ 0, i = 1, · · · ,m,hi(x) = 0, i = 1, · · · , t}. In the nor-

mal case, there exists an optimal point x∗ ∈ E such that f0(x∗) ≤ f0(x),∀x ∈ E . In

the infeasible case, E = ∅. In the unbounded case, there exists points xk ∈ E such that

f0(xk)→ −∞ as k →∞.

For the cloud to cheat, it must return results in the same case for the two outsourced

problems G(y) and H(z) as mentioned above. Suppose that y∗ and z∗ are the two returned

results and they belong to the same case. In the following, we will present the verification

scheme for the three different cases separately.

2.6.2.1 Normal Case

The above proposed verification scheme works well for the normal case. That is if the

equality K1y∗+r1 = K2z∗+r2 holds, the end-user can make sure that a valid result can be

recovered. This is because whatever the correct result is (normal, infeasible or unbounded),

the cloud is not able to come up with two results that satisfy the equality without actually

39

conducting the computation process. And this verification process for normal case forms the

basis for the verification for other cases.

2.6.2.2 Infeasible Case

The above verification scheme would fail if the cloud simply returns an infeasible result

for any outsourced convex optimization problem. To deal with this issue, we utilize phase

I method as described in [31, Chapter 11] to check the feasibility of the problem. For a

convex optimization problem F (x), a corresponding phase I optimization problem can be

constructed as:

FI(x) :=

minimize ρ

subject to fi(x) ≤ ρ, i = 1, · · · ,m

hj(x) = 0, j = 1, · · · , t

,

where ρ is a single variable. It is obvious that when ρ is large enough, FI(x) is always

feasible.

Suppose x∗ minimizes the objective function and ρ∗ is the corresponding minimum value.

The phase I problem is designed in such a way that when ρ∗ ≤ 0, the original problem F (x)

is feasible and F (x) is infeasible otherwise. Thus the verification scheme for the infeasible

case can be designed as follows. When the cloud indicates that the solutions to the two

outsourced problems G(y) and H(z) are infeasible, it then generates the corresponding two

phase I problems GI(y) and HI(z) and computes the optimal points y∗ and z∗ and the

minimum values ρ∗G and ρ∗H , respectively. Then at the local side, the verification is the

same as that in the normal case. That is only when ρ∗G > 0 and ρ∗H > 0 and the equality

K1y∗ + r1 = K2z∗ + r2 holds can the end-user be guaranteed to receive valid solutions.

40

2.6.2.3 Unbounded Case

In the unbounded case, the cloud indicates that the objective function f0(x) → −∞ in its

domain. We utilize duality to verify the soundness of the returned result. For a convex

optimization problem, we can construct the corresponding Lagrangian L as

L(x, u, v) = f0(x) +
m∑
i=1

uifi(x) +
t∑

j=1

vjhj(x),

where u ∈ Rm and v∈ Rt are the associated Lagrange multiplier vectors. Then based on

this Lagrangian L(x, u, v), a Lagrange dual function can be constructed as

Φ(u, v) = inf
x∈D

L(x, u, v)

= inf
x∈D

f0(x) +
m∑
i=1

uifi(x) +
t∑

j=1

vjhj(x)

 ,

where D is the domain of the optimization problem. From this definition, it is easy to prove

that ∀u � 0, we have the following inequality:

Φ(u, v) ≤ L(x∗, u, v) ≤ f0(x∗),

where f0(x∗) denotes the optimal value of the objective function. The above inequality gives

a lower bound of the objective function that depends on the selection of u and v. Thus,

among all the selections of u and v, finding the optimal lower bound is equivalent to solving

41

the following optimization problem:

maximize Φ(u, v)

subject to u � 0.

The objective function Φ(u, v) is concave since it is the point-wise infimum of a series of

affine function of (u, v). Thus the above optimization problem is also a convex optimization

problem. If the original problem is unbounded below, the convex optimization problem

described above should be infeasible since it gives a lower bound of the optimal value in the

original problem. Thus the remaining task is to verify the feasibility of the above convex

optimization problem, which has been illustrated in the infeasible case. Let the cloud solve

the phase I problems of the two Lagrange dual problems and return the optimal solutions

denoted by (ρ∗G, y∗, u∗G, v∗G) and (ρ∗H , z∗, u∗H , v∗H). At the local side, the end-user then

checks whether ρ∗G > 0 and ρ∗H > 0 and whether the equality K1y∗+ r1 = K2z∗+ r2 holds.

2.7 Evaluation

In this section, we will evaluate the performance of the proposed CASO scheme. We first

compare CASO with several existing outsourcing schemes. Then we present some numeric

results to show the efficiency of CASO.

2.7.1 Performance Comparison

The existing schemes on outsourcing of numeric computation mainly focus on some specific

problems. To the best of our knowledge, no effective outsourcing schemes have been proposed

42

for non-linear problems. In the following part, we compare the performance of our proposed

CASO scheme with three existing schemes specially designed for three types of problems in

terms of security, computational complexity and communication overhead. To measure the

communication overhead, we introduce a communication overhead index Ic which is defined

as the fraction of the communication cost of transmitting the original problem over that of

the transformed problem. Thus a larger Ic indicates better communication efficiency.

2.7.1.1 Linear Programming

In this section, we compare CASO for linear programming problems with the schemes pro-

posed in [6] and [17] in both security and complexity. We will show that while achieving

the same security level, our scheme outperforms them in terms of complexity. In addition,

our scheme also provides end-users with the flexibility to select different outsourcing options

with different complexity according to their security demands.

The general linear programming problems can be expressed as

minimize cTx

subject to Ax = b

Dx ≥ 0.

(2.11)

In [6], to transform the problem, a secret key K = {Q, M, r,λ, γ} is generated, where

Q is a randomly generated m ×m non-singular matrix, M is a randomly generated n × n

non-singular matrix, and r is an n× 1 vector. With this secret key, the original problem is

43

transformed to the following problem

minimize c′Tx

subject to A′x = b′

D′x ≥ 0,

(2.12)

where A′ = QAM, D′ = (D − λQA)M, b′ = Q(b + Ar) and c′ = γMTc. Then the

transformed problem is outsourced to the cloud which is similar as our approach.

In terms of computational complexity, the computational overhead of the outsourcing

scheme in [6], as well as our scheme, lies primarily in matrix multiplication. As stated in

their paper, the overall computational complexity of the scheme proposed in [6] is slightly

less than O(n3) depending the algorithm chosen to implement matrix multiplication. For

instance, when the Strassen algorithm is adopted, the complexity becomes O(n2.81); while

for the Coppersmith-Winograd algorithm the complexity is O(n2.376). However, by carefully

selecting the secret key K, our scheme can limit the complexity within O(n2).

In terms of communication overhead, the original problems in both schemes are trans-

formed by matrix multiplication such that the resulting matrices are still in the same scale.

As a result, the communication cost of the original and transformed problems are at the

same level. Thus we have Ic = 1 in our scheme and the scheme in [6].

In terms of security, both schemes can conceal the private information by some disguising

techniques, that is to disguise the original matrices by multiplying them with some random

matrices. As a consequence, the security they can achieve in protecting the original coefficient

matrix is at the same level. Since the types of the transformation matrices (e.g. Q, M) are

not specified, each entry in the disguised coefficient matrix A′ can be the linear combination

44

of multiple entries in A and the transformation matrices. Thus, the ratio information can be

concealed. In this sense, the security of the scheme in [6] is comparable with our scheme-4

in terms of protecting side information.

The scheme proposed in [17] can be regarded as a variation of that in [6]. The main

difference is that the authors in [17] specify the transformation matrices as sparse matrices

in order to achieve a lower computational complexity of O(n2). For example, the schemes

in [17] disguises the coefficient matrix by matrix multiplication as A′ = MAN, where M

and N are both sparse matrices. In this way, the complexity is reduced to O(n2). Actually,

this scheme can be considered as a special case of our proposed CASO where K is selected

as a sparse matrix.

2.7.1.2 System of Linear Equations

In [18], the authors investigated outsourcing of system of linear equations Ax = b based

on iterative method. First, the problem is transformed to Ay = b′, where y = x + r,

b′ = b + Ar and r is a random vector. Then the end-user solves the transformed problem

iteratively with the aid of cloud servers and an initial guess y0 from the following iteration

equation:

yk+1 = T · yk + c′, (2.13)

where A = D + R such that D is non-singular, T = −D−1 ·R and c′ = D−1 · b′. The

end-user utilizes the cloud servers to compute the most expensive part T · yk based on

homomorphic encryption to conceal the private information T. To be specific, the matrix

T is pre-computed at the local side and the encrypted version Enc(T) is outsourced to the

cloud. At each iteration, the end-user sends yk to the cloud and based on the homomorphic

45

properties of the encryption, the cloud servers compute Enc(T · yk) by

Enc(T · yk)[i] = Enc(
∑n
j=1 T[i, j] · yk,j)

=
∏n
j=1 Enc(T[i, j])

yk,j

for i = 1, · · · ,n and send Enc(T · yk) back to the end-user. On receiving Enc(T · yk), the

end-user decrypts it and get yk+1. This iteration terminates when it converges to the final

result y. At last the end-user can recover the desired solution x by x = y − r.

As stated above, the computational overhead at the local side primarily lies in the de-

cryption of T · yk in each iteration. Suppose the algorithm terminates after l rounds of

iteration, then the end-user has to perform l · n times of decryption. However, the decryp-

tion process of public-key cryptosystem is much more expensive than simple multiplication

of real numbers since it mainly consists of modular exponentiation of large numbers. For

instance, the decryption process [32] adopted in [18] has a complexity of O(n3) and a mod-

ified version can achieve a complexity of O(n2+ε). Thus, the outsourcing scheme in [18]

introduces O(n3+ε) computational overhead at the local side. In terms of communication

overhead, the outsourcing process requires the end-user to send yk and receive Enc(T · yk)

at each iteration. As a consequence, the communication overhead index Ic = 1
l is dependent

on the convergence speed. Furthermore, this iteration process requires the end-user to be

“online” for the process to continue. In comparison, our scheme can limit the computational

overhead to O(n2) with Ic = 1. Moreover, during the outsourcing process, the end-user is

“offline”, which means that after outsourcing the transformed problem, the end-user does

not need to interact with the cloud servers until the result is sent back.

The system of linear equations considered in [18] includes the coefficient matrix T and the

solution vector x. In [18], the matrix T is encrypted utilizing the Paillier cryptosystem [32]

46

as Enc(T) and the vector x is transformed to y = x + r, where r is a random vector. In

comparison, CASO disguises the coefficient matrix A and the solution vector x as A′ = AK

and x = Ky + r, respectively. In the Paillier cryptosystem, each entry of the coefficient

matrix T(i, j) is encrypted as Enc(T(i, j)) = gT(i,j)rn mod n2, where g, r,n are parameters

in the cryptosystem. There are two scenarios: (i) If r’s are the same for all entries in the

coefficient matrix, then all the identical entries in A will be encrypted to identical entries in

A′. In other words, by inspecting identical entries in A′, we can determine whether entries

in A are identical or not. However, in CASO, since an entry in A′ is the linear combination

of entries in A and K, the identical entries in A′ would not indicate that the corresponding

entries in A are identical. Thus, in this case, CASO will provide better security protection.

In this case, the end-user needs to compute n2 + 1 exponential operation. (ii) If a different

r is used for each entry of the coefficient matrix, then the end-user has to randomly select

n2 r’s, which is quite complex. Furthermore, the end-user need to compute 2 exponential

operations for each entry (g
ai,j and rn). Therefore, altogether, the end-user has to compute

2n2 exponential operations. In addition, due to security requirement, n has to be at least

1024 bits long. In this case, n2 would be 2048 bits. As an example, the size of the outsourced

coefficient matrix for 5000 variables would be around 6MB without data compression. While

in scheme-1 and scheme-2 of our proposed CASO, the transformation is applied in the column

basis. As a result, the order information of each column may be exposed. In this sense, the

scheme in [18] may provide better protection than scheme-1 and scheme-2 regarding the

coefficient matrix A . However, in scheme-3, each entry in A is transformed to

a′ij =

j+ω∑
r=j−ω

airkrj .

47

When ω > 0, since each krj in K is randomly chosen, the order information in each column

will also be concealed. Thus the scheme in [18] can provide comparable security protection

regarding the coefficient matrix A as scheme-3. In scheme-4, the entries in A′ are further

permuted. As a result, there exist no explicit relation between the entry aij in A and the

corresponding entry a′ij in A′. However, one can know for sure that the entry t′ij in Enc(T)

is encrypted from the entry tij in T. Thus scheme-4 can provide better protection of A.

In terms of the solution vector x, in [18], the solution vector x is protected by adding

a random vector r as y = x + r, while in our scheme, we conceal x by the affine mapping

x = Ky + r. Thus, CASO scheme can provide better security protection in this aspect.

2.7.1.3 Convex Optimization

In [33], the authors proposed a verification scheme for convex optimization problems. How-

ever, they did not give any outsourcing scheme. Compare to [33], in addition to result

verification, CASO also provides a secure outsourcing scheme. Even in result verification,

CASO outperforms it in terms of computational complexity.

The result verification of convex optimization is divided into three categories: normal,

infeasible and unbounded. The verification for normal case forms the basis for other two

cases. For the normal case, the basic idea in [33] is to check the Karush-Kuhn-Tucker (KKT)

optimality condition. The end-user has to evaluate the original functions as well as their

differentials based on the optimal points returned by the cloud. This verification process

is much more expensive since all the original functions are non-linear. In comparison, our

verification scheme requires only linear operations (e.g. multiplication and addition) on the

independent variables and the returned solution, therefore, it must be more efficient.

48

Table 2.4: Performance Comparison

Applicability
Computational Complexity Communication Overhead Index Ic

LE LP NLE COPT

Our Scheme
√ √ √ √

O(n2) 1

[6]
√

O(n2.376) 1

[18]
√

O(n3+ε) 1
L

[33] Only Verification Not Applicable Not Applicable

2.7.1.4 Summary

We summarize the performance comparison of CASO with some existing works in Table 2.4.

We have shown that in the case of outsourcing linear programming (LP) and system of linear

equations (LE), CASO outperforms the existing schemes in computational complexity. In

terms of security, all the schemes are secure in protecting the original coefficient matrix. That

is, given the disguised problem, input and output, it is computationally infeasible to recover

the original problem, input and output. CASO can also be applied to system of non-linear

equations (NLE) and convex optimization (COPT). This shows that CASO possesses better

applicability. Furthermore, compared to the existing works, CASO also gives end-users the

flexibility to choose the most suitable outsourcing strategy on a cost-aware basis. That is

the end user can select the secret key K for the outsourcing scheme based on its various

security demands and computational resources.

2.7.2 Numeric Results

In this section, we measure the performance of CASO utilizing MATLAB. The computation

of both the end-user and the cloud server is simulated using the same computer with an

Intel Core 2 Due CPU running at 2. 53 GHz with 4GB RAM. We take outsourcing of the

system of linear and non-linear equations as examples. In the process of outsourcing, we

49

focus on the overhead of problem transformation, result recovery and the performance gain

that they can achieve by outsourcing problems to the cloud. We denote the time for local

computation in the outsourcing process Te, the time cost without outsourcing Ts, and the

performance gain I = Ts/Te.

We first show the simulation results for outsourcing of system of linear equations Ax = b,

where A is an n×n matrix. In complexity analysis, we show that the complexities of scheme-

1 and scheme-2 are in the same level while the complexity for scheme-3 and scheme-4 are

comparable.

In scheme-3, when the bandwidth W equals 1, it is reduced to scheme-1. Thus in our

evaluation, we take scheme-3 as an example and let K be a band matrix with bandwidth

W varying from 1 to 31. To investigate the impact of problem size on our proposed scheme,

we let n vary from 1000 to 5000. The numeric results are shown in Table 2.5. First, we can

learn from the results that when the bandwidth of the banded matrix K becomes larger, the

computational overhead at local side grows and the performance gain decreases. This fact

coincides with our analysis of the trade off between complexity and security. Second, the

performance gain increases with the growth of the problem dimension n. This is because

our scheme requires the end-users to carry out simple operations such as addition and mul-

tiplication. And this feature becomes more obvious for the case of non-linear computation.

Then we show the performance of our proposed scheme for system of non-linear equations.

We assume that the non-linear system is composed of polynomials on ten variables and let the

number of independent terms N vary from 1000 to 5000. Also for the same reason, we deploy

band matrix as the key matrix and let the bandwidth W vary from 1 to 3. The simulation

result is shown in Table 2.6. For system of non-linear equations, the performance gain is

larger than its linear counterpart. This is because CASO requires only linear operations (e.g.

50

Table 2.5: Performance Evaluation for System of Linear Equations

Dimension Bandwidth Te (sec) Ts (sec) I

n = 1000

W = 1 0.0265 0.2356 8.9
W = 7 0.0265 0.2402 9.1
W = 15 0.0546 0.2356 4.3
W = 31 0.0858 0.2387 2.8

n = 2000

W = 1 0.0593 1.3962 23.6
W = 7 0.0936 1.4071 15.0
W = 15 0.1248 1.3853 11.1
W = 31 0.1950 1.3494 6.9

n = 3000

W = 1 0.1170 3.9234 33.5
W = 7 0.1856 3.9281 21.2
W = 15 0.3058 3.8844 12.7
W = 31 0.4867 3.8766 8.0

n = 4000

W = 1 0.2184 8.5832 39.3
W = 7 0.3416 8.6924 25.4
W = 15 0.7129 8.6565 12.1
W = 31 1.0171 8.6768 8.5

n = 5000

W = 1 0.3260 15.8138 48.5
W = 7 0.5288 15.9839 30.2
W = 15 1.2683 15.8793 12.5
W = 31 1.8174 15.9698 8.8

51

multiplication and addition) in the local environment. Similar to that of the system of linear

equations, the results clearly show that there exists a trade-off between the computational

complexity and security.

Table 2.6: Performance Evaluation for System of Non-linear Equations

Dimension Bandwidth Te (sec) Ts(sec) I

N = 1000

W = 1 1.6800 26.2 15.6

W = 2 2.4500 27.1 11.1

W = 3 3.0500 26.2 8.6

N = 2000

W = 1 3.1500 118.2 37.5

W = 2 5.1200 118.8 23.2

W = 3 6.3900 117.1 18.3

N = 3000

W = 1 5.1300 330.8 64.5

W = 2 7.7100 313.0 40.6

W = 3 9.7500 320.6 32.9

N = 4000

W = 1 7.1600 712.9 99.6

W = 2 12.3800 713.1 57.6

W = 3 13.9000 711.4 51.2

N = 5000

W = 1 9.3700 1187.2 126.7

W = 2 16.0000 1190.1 74.4

W = 3 20.6700 1191.1 57.6

52

Chapter 3

ExpSOS: Secure and Verifiable

Outsourcing of Exponentiation

Operations for Mobile Cloud

Computing

3.1 Introduction

The outsourcing of cryptographic computations [10, 11, 34–37] has been a popular research

topic among the community. Especially, outsourcing of the modular exponentiation has been

extensively studied due to its significance in cryptographic computations. In [10], the authors

considered outsourcing of modular exponentiation to two servers assuming that they would

not collude. The basic idea of the proposed scheme in [10] is to split the base and exponent

of the modular exponentiation into two random looking pieces and then separately outsource

them to two servers. Then the end-user can combine the results returned by the servers to

recover the desired result. Under this scheme, the end-user can check the validity of the

returned results with probability 1
2 . Following [10], the authors in [11] proposed a similar

scheme and improved the performance by reducing one query to the servers and increasing

53

the verifiability to 2
3 . In order to eliminate the assumption that the two-server would not

collude, the authors in [38] proposed a scheme to outsource modular exponentiation to one

single server. However, at the local side, the end-user still needs to carry out one modular

exponentiation uχ, where χ is a security parameter. As a result, the computational gain

is limited for the end-user. Moreover, all these three schemes rely on pre-computation of

modular exponentiations of some random integers. This will cause extra overhead to the

end-user’s limited computational power or storage space depending on the method by which

pre-computation is implemented. In our recent work [39], we proposed an efficient scheme

to securely outsource scalar multiplication on elliptic curves. However, it did not provide

algorithms for result verification.

The existing research in this area can be classified into three categories based on the

model of the cloud S: the Honest-but-Curious Single-server (HCS) model [40], the Malicious

Multiple-servers (MM) model [10, 11, 41] and Malicious Single-server (MS) model [38, 42].

In particular, in the honest but curious model, the cloud will honestly fulfill its advertised

functionality. However, S could be curious. It may try to exploit any key information from

the outsourced task, which may include the input, the output as well as the intermediate

computational results. When the outsourced data is sensitive, this could cause severe security

and privacy issues. In the malicious model, the cloud S may not carry out the desired

computation truthfully. This can happen for various reasons. A simple scenario could be

that the cloud simply returns some trivial results since the computational resource is a

commodity for the cloud server. As a result, the end-user E is unable to receive a valid

result from the cloud server S.

The models are hierarchical in the sense that a secure outsourcing scheme designed for

the single-server model can be extended to multiple-server model and a scheme for mali-

54

cious cloud can be extended to honest but curious cloud. Specifically, these models can be

organized into three layers: at the bottom layer is the HCM (Honest-but-Curious Multiple-

servers) model, in the middle are the MM and HCS and on the top is MS. A secure out-

sourcing scheme designed for a model in an upper layer is also suitable for that in a lower

layer. Thus, a secure outsourcing scheme for MS is most widely applicable and achieves the

highest security standard. In this paper, we first propose a secure outsourcing scheme for

the HCS model. Then a verification scheme is proposed for MS model.

Apparently, it is much more desirable and secure to outsource exponentiation operations

to one single server instead of multiple servers with security based on the assumption that

the servers would not collude. The secure outsourcing scheme should not impose expensive

computational overhead at local side. Otherwise, the performance gain from outsourcing

would diminish. The scheme should also provide high verifiability. Ideally, the end-user

should be able to verify the validity of the returned result with probability 1.

In this paper, we extend the notion of modular exponentiation to general exponential

operations in a finite group, including scalar multiplication on elliptic curves. In general,

each exponential operation consists of a series of basic group operations. The number of

such operations varies with the exponent. In this sense, modular exponentiation and scalar

multiplication can both be regarded as exponentiation operations. Thus, we propose a Secure

Outsourcing Scheme for general Exponential (ExpSOS) operations. The proposed ExpSOS

is based on a secure disguising procedure that maps the integers in the group RN to the

larger group RL so that the cloud will carry out the computation in RL while still keeps N

secure. From the result returned by the cloud, the end-user can recover the result back to

RN efficiently.

The main contributions of this paper can be summarized as follows:

55

• We formally define a secure outsourcing scheme and four outsourcing models. The

proposed ExpSOS is shown to be effective under all four different models.

• We develop schemes to securely outsource exponentiation operations in a general finite

group, including modular exponentiation and scalar multiplication on elliptic curves.

• We outsource exponential operations to one single untrusted server eliminating the

non-collusion assumption between multiple servers.

• Our proposed ExpSOS is efficient in that it requires only a small number of modular

multiplications at local side.

• We propose a verification scheme such that the end-user can verify the validity of the

result with probability approximately 1.

3.2 Secure Computation Outsourcing Model

3.2.1 System Model and Threat Model

In the general settings of computation outsourcing, the system consists of two entities: an

end-user E and the cloud S. The end-user E is resource-constrained. It has limited compu-

tational power and storage space. The cloud S is regarded as possessing abundant resources

and is able to carry out computational intensive operations. The cloud can be further mod-

elled as the single-server model and the multiple-server model. In the single-server model,

the cloud is viewed as one unit. In contrast, in the multiple-server model, the cloud is divided

into two or more distinct units. Each unit carries out the computational tasks independently.

While communication between different units is allowed, key information is only limited to

56

the individual unit since otherwise, security of the whole system may be in jeopardy.

In addition, the cloud S can be either honest (however, could be curious) or malicious.

Our scheme can be applied to all four threat models combined with these two assumptions.

Suppose the end-user E wishes to accomplish a computationally intensive task F (x) = ω,

where x is the input and ω is the output of the task. However, due to the limited resources,

E may not be able to finish the task using the locally available resources. The computational

task F could be outsourced to S. Unfortunately, the cloud is only a shared server and cannot

be fully trusted. Therefore, we have to make sure that it is infeasible for S to derive any key

information of both x and ω from the outsourced task.

3.2.2 Definition of Secure Outsourcing Scheme

We follow the security model defined in [10], which is also employed in following works such

as [11, 38, 41, 42]. In [10], the authors consider splitting a cryptographic algorithm Alg to

a trusted component T and an untrusted component C that T can make queries to. It

is also proposed that an adversary A consists of two parts: the adversarial environment E

that submits adversarially chosen inputs to Alg and a malicious component C ′ that operates

in place of C. Based on this model, algorithm with outsource-IO is defined in [10] as an

algorithm Alg(xhs,xhp,xhu,xap,xau) → (ys, yp, yu) that takes in five inputs and produces

three outputs, where xhs is the honest secret input which is honestly generated and is only

known to T ; xhp is the honest and protected input that is known to both T and E , but

not to C; xhu is the honest and unprotected input that is known to T , E and C; xap is the

adversarial protected input that is adversarially generated and is known to both T and E ,

but not to C; xau is the adversarial input that is known to T , E and C. ys is the secret

output that is only known to T ; yp is the protected output that is known to both T and E ,

57

but not to C; yu is the unprotected output that is known to T , E and C.

Based on this outsource-IO, the notion of outsourcing security is further defined in [10].

The security definition requires that for any adversary A = (E ,C ′), there exists a pair of

polynomial-time simulators (S1,S2) that can simulate the views of E and C ′, respectively.

Moreover, the two pairs of views are computationally indistinguishable. In the following, we

propose the formal security definition for our outsourcing model. In particular, our definition

can be considered as a tailored version of that in [10]. This is because we do not explicitly

consider an adversary environment E since there exist no adversarially generated inputs in

our settings. Accordingly, we define an algorithm with outsource-IO as follows.

Definition 3.1 (Algorithm with outsource-IO) An algorithm Alg obeys the outsource

input/output specification if it takes two inputs and produces two outputs, i.e., Alg(xp,xu)→

(yp, yu). Especially,

- xp is the protected input known only to T .

- xu is the unprotected input, which is known to T and C.

- yp is the protected output known only to T .

- yu is the unprotected output, which is known to T and C.

Definition 3.2 (Outsource-security) Let Alg be an algorithm with outsource-IO. A pair

of algorithms (T ,C) is said to be an outsource-secure implementation of Alg if:

Correctness TC is a correct implementation of Alg.

Security For any probabilistic polynomial-time adversary C ′, there exists probabilistic

expected polynomial-time simulator S such that the following pair of random variables is

computationally indistinguishable.

58

V IEWreal ∼ V IEWideal (The adversary C ′ learns nothing.)

• The view that the adversary C ′ obtains by participating in the following REAL process:

V IEWreal = {(istate,xp,xu)← I(1k);

(tstate, cstate, yp, yu)← TC
′
(xp,xu) : cstate}.

In this real process, the state variable (e.g., istate, tstate and cstate) keeps records of

the view of the corresponding party. First, the protected input xp and unprotected input

xu are picked using an honest, stateful process I to which the adversary does not have

access. Next, the algorithm TC
′

is run on the inputs (xp,xu) and produces output

(yp, yu) as well as tstate and cstate for T and C ′, respectively. The view of C ′ in the

real process is cstate.

• The IDEAL process:

V IEWideal = {(istate,xp,xu)← I(1k);

(astate, yp, yu)← Alg(xp,xu);

(sstate, cstate)← SC
′
(xu) : cstate}

In the ideal process, a simulator S is utilized to simulate the view of C ′. Note that S

is given only the unprotected input and can make queries to the adversary C ′.

Definition 3.3 (α-efficient) Suppose the running time for a task F to be processed locally

by E is t0. Under a Secure Outsourcing Scheme (SOS), the running time of local processing

for E is tp. Then the SOS is α-efficient if
t0
tp
≥ α.

59

Definition 3.4 (β-verifiable) Given the returned output Ω and the proof Φ, denote the

probability that E is able to verify the validity of the result ω as κ. Then an SOS is β-

verifiable if κ ≥ β.

From the definition above, we can see that a larger α indicates a better performance of a

secure outsourcing scheme, while a larger β means a better verifiability.

3.3 ExpSOS: Secure Outsourcing of Exponentiation Op-

erations

3.3.1 General Framework

The general framework of an SOS consists of four different functions (T , C,R,V).

1. Problem Transformation T : F (x)→ G(y). The end-user U locally transforms the

problem F (x) to a new form G(y), where y is the new input and G is the new problem

description. E then outsources G(y) to the cloud server S.

2. Cloud Computation C : G(y)→ (Ω,Φ). The cloud S solves the transformed problem

G(y) to obtain the corresponding result Ω. At the same time, S returns Φ that is a

proof of the validity of the result.

3. Result Recovery R : Ω→ ω. Based on the returned result Ω, the end-user U recovers

the result ω of the original problem F (x).

4. Result Verification V : (Ω,Φ,ω)→ Λ = True or False. Based on ω, Ω and the proof

Φ, the end-user U verifies the validity of the result.

60

3.3.2 Secure Disguising Procedure

In this paper, we assume that for the end-user, exponentiation operations are operated in the

integer ring modular N , denoted as RN . We note that N is not necessarily a prime number.

It can also be a product of large prime numbers. To outsource modular exponentiation to

the shared cloud, we first need to conceal the modular N . To achieve this, we multiply N

by a randomly selected large prime p and define L = pN . We define a secure disguising

procedure to map x ∈ RN to y ∈ RL as follows:

1. Select a random k, 1 ≤ k ≤ p− 1.

2. Compute y = x+ kN (mod L).

Without the knowledge of k, it is hard to determine which point x is mapped to. To recover

x from y, the end-user only needs to compute y = (x + kN) = x (mod N). Therefore,

regardless of which k is selected to outsource x, we will always have y = x (mod N) .

Now, we explore the properties of the computation outsource and recovery functions.

They are key to our proposed secure outsourcing scheme.

Theorem 3.1 For any x1,x2 ∈ RN and their corresponding disguised form y1 = x1 + k1N

and y2 = x2 + k2N , where k1 and k2 are randomly selected integers, 1 ≤ k1, k2 ≤ p− 1 , we

have

x1 + x2 = (y1 + y2) (mod N).

x1x2 = (y1y2) (mod N).

61

Proof We can verify that

(y1 + y2) (mod N) = ((x1 + k1N) (mod L) + (x2 + k2N) (mod L)) (mod N)

= (x1 + k1N + x2 + k2N) (mod N)

= (x1 + x2) (mod N).

Similarly, it can be verified that x1x2 = y1y2 (mod N).

Corollary 3.1 Suppose x = (x1,x2, · · · ,xn) ∈ RnN and y = (y1, y2, · · · , yn) = (x1 +

k1N ,x2 + k2N , . . . ,xn + knN) and let ϕ : Rn → R be an n-variable polynomial function

with coefficients in R, where R can be RN or RL. Then we have

ϕ(x) = ϕ(y) (mod N).

Theorem 3.1 enables us to transform the addition and multiplication in a ring RN into the

corresponding operations in another large ring RL. Since polynomial evaluation consists of

addition and multiplication, Corollary 3.1 states that we can transform polynomial evaluation

in RN into corresponding operations in RL.

3.3.3 Secure Outsourcing of Modular Exponentiation under HCS

Model

3.3.3.1 Conceal the Base in Modular Exponentiation Outsourcing

Consider modular exponentiation R = ua (mod N). We assume that N is either a large

prime or product of large prime numbers, which is the typical situation in cryptosystems.

62

Theorem 3.1 states that the result of multiplication in the ring RN can be obtained from

the multiplication in RL through the transformation function and the inverse function. If

we take x1 = x2 = u, we can get

((u+ rN) (mod L))2 = u2 (mod N).

If we repeat the multiplication in RN for a times, we have the following corollary.

Corollary 3.2 For u, a, r ∈ RN , we have

((u+ rN) (mod L))a = ua (mod N).

Corollary 3.2 gives us a way to conceal the base when outsourcing modular exponentiation.

That is, we can first transform the original base u to U = (u+ rN) (mod L), where r ∈ RN

is a random integer. Then the cloud can compute Ua (mod L) based on which the original

result can be recovered by computing Ua (mod N) = ua (mod N).

3.3.3.2 Conceal the Exponent in Modular Exponentiation Outsourcing

The remaining task is to conceal the exponent a. We have the following theorem.

Theorem 3.2 For N = p1p2 · · · pm, where p1, p2, · · · , pm are distinct prime numbers, we

have

ua+kϕ(N) = ua (mod N),

where k is a random integer and ϕ(·) is the Euler’s totient function.

Proof We first prove that u1+kϕ(N) = u (mod N). For each prime factor pi of N , i =

1, 2, · · · ,m. There are two possible cases:

63

• Case 1: gcd(u, pi) 6= 1, that is u and pi are not relatively prime. Since pi is prime, we

have pi | u. Thus

u1+kϕ(N) − u = 0 (mod pi),

which means that pi | (u1+kϕ(N) − u).

• Case 2: gcd(u, pi) = 1, that is u and pi are relatively prime. Then, by the Euler’s

Theorem, we have uϕ(pi) = 1 (mod pi). From the multiplicative property of the Euler’s

totient function, we have ϕ(N) = ϕ(p1)ϕ(p2) · · ·ϕ(pm). Let θ(pi) = ϕ(N)/ϕ(pi).

Then,

u1+kϕ(N) (mod pi)

= u · ukϕ(p1)ϕ(p2)···ϕ(pm) (mod pi)

= u · (uϕ(pi))kθ(pi) (mod pi)

= u · (1)kθ(pi) (mod pi)

= u (mod pi).

That is (u1+kϕ(N) − u) = 0 (mod pi).

Therefore, in both cases, we have proved that pi | (u1+kϕ(N)−u). Since pi is arbitrarily

selected and p1, p2, · · · , pm are distinct primes, we have

N | (u1+kϕ(N) − u).

Hence, u1+kϕ(N) = u (mod N). Multiplying both sides of the equation by ua−1, we

can obtain

ua+kϕ(N) = ua (mod N).

64

In Theorem 3.2, we do not require u and N to be co-prime as required in the Euler’s theorem.

Instead, we assume that N is the product of distinct prime numbers. For instance, in RSA,

the modulus N = pq is the product of two distinct prime numbers.

Theorem 3.2 introduces a way to conceal the exponent a. That is, by transforming the

original exponent a to A = a+ kϕ(N), where k is a random integer, we can conceal a due to

the randomness of k. Now, based on Theorem 3.1 and Theorem 3.2, we can construct our

secure outsourcing scheme for modular exponentiation. In the secure outsourcing scheme, we

utilize a function C(U ,A,L) to denote the computation of a modular exponentiation for the

cloud as C(U ,A,L) = UA (mod L). The result recovery function is R(R,N) = R (mod N).

3.3.3.3 ExpSOS Protocol

The secure outsourcing scheme for modular exponentiation under HCS model is given in

Protocol 1.

Protocol 1 Secure Outsourcing of Modular Exponentiation Under HCS Model

Input: N ,u, a ∈ RN .
Output: R = ua (mod N).

Key Generation KeyGen(1λ,N)→ (p,L):

1: E generates a large prime p and calculates L← pN .
2: The public key is Kp = {L}, and the private key is Ks = {p,N}.

Problem Transformation T (a,u)→ (A,U):

1: E selects random integers r, k ∈ RN as the temporary key.
2: E calculates A← a+ kϕ(N), U ← (u+ rN) (mod L).
3: E outsources (U ,A,L) to the cloud.

Cloud Computation C(A,U ,L)→ R1:

1: S computes R1 ← C(U ,A,L) = UA (mod L).
2: S returns R1 to E.

Result Recovery R(R1,N)→ R:

1: E recovers the result as R← R(R1,N) = R1 (mod N).

The soundness of the outsourcing scheme is guaranteed by the following theorem:

65

Theorem 3.3 The secure outsourcing scheme for modular exponentiation is sound. That is

R = R1 = ua (mod N).

The proof of Theorem 5.1 is straightforward based on Theorem 3.1 and Theorem 3.2. Specif-

ically, by transforming the original problem of modular exponentiation to a disguised form,

our proposed ExpSOS under HCS model is sound.

3.3.4 Secure Outsourcing of Scalar Multiplication under HCS Model

In this section, we consider secure outsourcing of scalar multiplication sP on an elliptic curve

E(Fp) described by the following short Weierstrass equation:

E : y2 = x3 + bx+ c, (3.1)

where the coefficients b, c and the coordinates of the points are all in a finite field Fp.

Furthermore, for cryptographic applications, we usually work with points in a set of m-

torsion points E(Fp)[m] defined as E(Fp)[m] = {P ∈ E(Fp) : [m]P = O}, where O is the

point at infinity. Thus, we assume P ∈ E(Fp)[m] and s ∈ Zm.

Secure outsourcing of scalar multiplication relies on two basic operations, point addition

and point doubling. They play a similar role as modular multiplication in the outsourcing

of modular exponentiation. Specifically, the “double-and-add” algorithm to calculate scalar

multiplication on elliptic curves consists of a series of point addition and point doubling.

Thus intuitively, we can regard secure outsourcing of point addition and point doubling as

two building blocks to implement scalar multiplication.

We utilize projective coordinate to represent a point P = (x, y, z) corresponding to the

point Q =
(x
z , yz

)
in the affine coordinates. As a result, the computation of point addition

66

and point doubling consists of only modular addition and multiplication. Specifically, given

two points P = (x1, y1, z1) and Q = (x2,y2, z2) such that P 6= ±Q, the point addition

P +Q = (x3, y3, z3) can be calculated as follows:

x3 = στ , y3 = ρ(σ2x1z2 − τ)− σ3y1z2, z3 = σ3z1z2,

where

ρ = y2z1 − y1z2,σ = x2z1 − x1z2,

τ = ρ2z1z2 − σ3 − 2σ2x1z2.

The point doubling 2P = (x4, y4, z4) can be calculated as follows:

x4 = 2σµ, y4 = ρ(4τ − µ)− 8y2
1σ

2, z4 = 8σ3,

where

ρ = bz2
1 + 3x2

1,σ = y1z1, τ = x1y1σ,µ = ρ2 − 8τ .

In projective coordinates, one point addition and doubling take 14 multiplications and 12

multiplications, respectively.

Corollary 3.1 states that by mapping the variables of a polynomial from a finite field to

variables in a ring, we can evaluate the polynomial in the ring and recover the result in the

finite field. This gives us the insight of our proposed scheme since essentially, point addition

and point doubling are both the process of evaluating polynomials on the coordinates of the

points. Thus, we can construct the secure computation scheme for point addition and point

doubling as in Protocol 2.

Theorem 3.4 The proposed secure point addition and point doubling protocol is sound.

67

Protocol 2 Secure Point Addition and Point Doubling

Input: E = {b, c, p} and P = (x1, y1, z1), Q = (x2, y2, z2).
Output: point R = P +Q = (x3, y3, z3).

1: Select a large prime q and compute N = pq.
2: For a coordinate xi, select a random integer ki and compute x′i = (xi + kip) (mod N).
3: Transform the points P ,Q and the elliptic curve E to P ′ = (x′1, y′1, z′1), Q′ = (x′2, y′2, z′2)

and E′ = {b′, c′,N} respectively as described in Step 2.
4: Outsource P ′,Q′ and E′ to the cloud.
5: Cloud computes R′ = P ′ +Q′ following the point doubling or point addition prodecure.
6: On receiving R′ = (x′3, y′3, z′3), recover R as R = (x′3, y′3, z′3) = (x3, y3, z3) (mod p).

The proof of Theorem 3.4 is straightforward from the Corollary 3.1.

The above theorem enables us to conceal the points as well as the parameters of the

elliptic curve from the cloud. To outsource scalar multiplication sP , the remaining part is

to conceal the multiplier s. We utilize the property of the order m of the torsion group that

is rmP = O, for an arbitrary point P ∈ E[m](Fp) and any integer r. As a result, we can

conceal s by adding it to a multiple of m as s′ = s+ rm, where r is a random integer. Now,

we can summarize the secure outsourcing scheme of scalar multiplication as in Protocol 3.

Protocol 3 Secure Outsourcing of Scalar Multiplication Under HCS Model

Input: E = {b, c, p},P = (x1, y1, z1), s,m
Output: point R = sP .

Key Generation KeyGen(1λ, p)→ N :

1: End-user selects a large prime q and compute N ← pq.

Problem Transformation T (P ,E)→ (P ′,E′):
1: End-user generates random integers k1, k2, k3, k4, k6, r.
2: Computes x′1 ← (x1 + k1p) (mod N), y′1 ← (y1 + k2p) (mod N), z′1 ← (z1 + k3p)

(mod N), b′ ← (b+ k4p) (mod N), c′ ← (c+ k6p) (mod N), s′ ← s+ rm.
3: End-user outsources P ′ = (x′1, y′1, z′1), E′ = {b′, c′,N} and s′.

Cloud Computation C(s′,P ′)→ R′:
1: The cloud computes R′ ← s′P ′ = (x′3, y′3, z′3) utilizing the double-and-add algorithm.

Result Recovery R(R′, p)→ R:

1: The end-user recovers the result R as R← R′ = (x′3, y′3, z′3) (mod p).

68

Theorem 3.5 The secure outsourcing scheme for scalar multiplication is sound in Fq. That

is R = sP .

Proof From Theorem 3.4, we know that the secure computation scheme for point addition

and point doubling is sound. Since the double-and-add algorithm to compute scalar mul-

tiplication consists of a series of point addition and point doubling, we have R = s′P =

(s+ rm)P = sP + rmP = sP +O = sP .

In the next section, we propose a verification scheme to ensure that ExpSOS is secure

under the MS model.

3.4 Result Verification

In this section, we first analyze the necessary properties of a result verification scheme

through some counter examples. We then propose a result verification scheme for outsourcing

of modular exponentiation under MS model. We show that the verification scheme can also

be applied to the outsourcing of scalar multiplication.

For the HCS model discussed in the previous section, we assume that the cloud will

honestly conduct its advertised functionality. That is, to compute the function C(U ,A,L)

and return the correct result UA (mod L). However, in the MS model, the cloud may

manipulate the result in order to save computational resources. Thus, to verify the soundness

of the result returned by the cloud is a critical issue.

A natural way to verify the result, as utilized in many previous works [10, 11, 34], is

to outsource the problem multiple times and verify whether the returned results satisfy

certain criteria. However, this methodology may cause potential security problems if it is

not carefully designed. This is because outsourcing multiple times essentially gives more

69

information about the original problem to the cloud, which may increase the probability for

the cloud to recover the original problem. Moreover, the cloud may manipulate the results

in order to satisfy the criteria, thus passing the verification. Therefore, we believe that an

effective verification scheme should at least have the following two properties:

• Security: The verification process should not reveal any key information about the

original problem to the cloud.

• Anti-manipulation: It is infeasible for the cloud to manipulate the result and pass

the verification process.

We utilize two counter-examples in verifying modular exponentiation to illustrate the sig-

nificance of the above properties and emphasize the key issues in designing a verification

scheme.

Example 3.1 Transform the exponent a to A1 = a + k1ϕ(N) and A2 = a + k2ϕ(N). The

cloud returns results R1 = UA1 (mod L) and R2 = UA2 (mod L). The end-user checks

whether the condition R1 = R2 (mod N) holds.

Unfortunately, the above example violates the security property. When the cloud pos-

sesses A1 and A2, it can calculate A1 − A2 = (k1 − k2)ϕ(N), which is a multiple of the

Euler’s totient function ϕ(N). In this case, the cloud can factorize (k1 − k2)ϕ(N) based on

which, the cloud may be able to check the primality of N . Since N is a product of large

primes, the consequence is that the cloud can limit the valid value of N to a short list.

This means that the cloud can derive some key information from the outsourced problem

thus making outsourcing insecure. Similarly, some variances of this type of method (e.g.,

A1 = a + k1ϕ(N) and A2 = ca + k2ϕ(N), where c is a known constant) may also have

security problems.

70

Example 3.2 Transform the exponent a to A1 = a + k1ϕ(N) and A2 = a + t + k2ϕ(N),

where t is a relatively small integer, which makes computing ut (mod N) within the end-

user’s computational ability. The cloud returns results R1 = UA1 (mod L) and R2 = UA2

(mod L). The end-user checks whether the condition (R1 · ut) = R2 (mod N) holds.

Due to the randomness of t, the cloud is not able to obtain a multiple of ϕ(N). However,

from the equality condition (R1 · ut) = R2 (mod N), we have UA1 · ut = UA2 (mod N),

which is equivalent to

ut = UA2−A1 (mod N).

In this case, the cloud can manipulate the two integers A′1 and A′2. As long as A′2−A
′
1 =

A2 − A1, the results will pass the verification but the recovered result R = UA
′
1 (mod N)

is incorrect. This means that the cloud can manipulate a false result while passing the

verification process.

From the above two counter examples, we can see that security and anti-manipulation

are two critical issues in result verification schemes. In the following Protocol 4, we propose

a verification scheme for modular exponentiation.

Now, we utilize an example to illustrate our proposed ExpSOS under MS model.

Example 3.3 Suppose the end-user U wants to calculate ua (mod N), where N = 431 is a

prime, u = 189 and a = 346. E can outsource ua (mod N) as follow:

1. Key Generation: E select a prime number p = 397 and calculate L = pN = 171107.

Then E selects random integers r = 146, k1 = 332, k2 = 68 and t1 = 4, t2 = 12 with

t1, t2 < b = 16.

2. Problem Transformation: E calculates A1 = a + k1ϕ(N) = 143106, A2 = t1a + t2 +

71

Protocol 4 ExpSOS under MS Model

Input: N ,u, a ∈ RN .
Output: R0 = ua (mod N), Λ = True or False.

Key Generation KeyGen(1λ,N)→ (p,L):

1: E generates a large prime p and calculate L← pN .
2: The public key is Kp = {L}, and the private key is Ks = {p,N}.

Problem Transformation T (a,u)→ (A1,A2,U):

1: E selects random integers r, k1, k2, t1, t2 as the ephemeral key with the constraint that
t1, t2 ≤ b.

2: E calculates A1 ← a+ k1ϕ(N), A2 ← t1a+ t2 + k2ϕ(N) and U ← (u+ rN) (mod L).
3: E outsources (U ,A1,A2,L) to the cloud.

Cloud Computation C(A1,A2,U ,L):

1: S computes R1 ← UA1 (mod L) and R2 ← UA2 (mod L).
2: S returns R1 and R2 to E.

Result Verification V(R1,R2)→ Λ:

1: E checks whether (R1)t1 · ut2 = R2 (mod N).
2: If the equality holds, set Λ← True. Otherwise, set Λ← False.

Result Recovery R(R1,N)→ R0:

1: E recovers the result as R0 ← R(R1,N) = R1 (mod N).

k2ϕ(N) = 30636 and U = (u+rN) = 63115 (mod L). E then queries C(U ,A1,L) and

C(U ,A2,L) to the cloud S.

3. Cloud computation: S computes R1 = UA1 (mod L) = 63115143106 (mod 171107) =

81281, R2 = UA2 (mod L) = 6311530636 (mod 171107) = 55473 and returns R1 and

R2 to E.

4. Result Verification: E calculates R
t1
1 · u

t2 (mod N) = (1904 · 18912) (mod 431) = 305

and R2 (mod N) = 55473 (mod 431) = 305 that satisfy R
t1
1 · u

t2 = R2 (mod N).

Thus the returned results are correct.

5. Result Recovery: E recovers the result as R = R1 (mod N) = 81281 (mod 431) = 190

that is equal to ua = 190 (mod N).

72

In Protocol 4, the two outsourced exponential operations are related through an affine func-

tion. As a result, the cloud is unable to derive a multiple of ϕ(N) only based on A1 and A2.

Moreover, the cloud cannot manipulate the results to create a verifiable equality.

This verification scheme can also be applied to the outsourcing of scalar multiplications.

The base point P can be transformed to P ′ as described in Protocol 3. The exponent s can

be transformed to s1 = s + r1m and s2 = t1s + t2 + r2m, where r1, r2, t1, t2 are random

integers and t1, t2 ≤ b. Then the end-user can check the condition Q2 = t1Q1 + t2P , where

Q1 = s1P
′ and Q2 = s2P

′.

3.5 Complexity and Security Analysis

In this section, we analyze the security and the computational complexity of ExpSOS. We

utilize the secure outsourcing of modular exponentiation as a representative to perform the

analysis. The analysis of outsourcing scalar multiplication can be conducted in a similar way.

We show that ExpSOS is secure under both HCS and MS model. Specifically, under the HCS

model, the ExpSOS is 1
2 log2 a-efficient. Under the MS model, the ExpSOS is 1

2 logb a-efficient

and (1− 1
2b)-verifiable, where a is the exponent and b is the security parameter.

3.5.1 Security Analysis

In ExpSOS, we conceal the base u through the expansion function (u + rN) (mod L) and

the exponent a is mapped to a + kϕ(N). In our analysis, we show that given the public

information {L,U ,A1,A2}, the cloud cannot derive any key information about the input

{u, a,N} and the output R = ua (mod N).

Theorem 3.6 Under the MS model, ExpSOS is an outsource-secure implementation of mod-

73

ular exponentiation, where the inputs (u, a,N) are protected.

Proof The correctness of ExpSOS is guaranteed by Theorem 5.1. In the following, we prove

the security of ExpSOS.

In our setting, the protected input is xp = (u, a,N) and the unprotected input is set to

be xu = L. The protected output is yp = R = ua (mod N) while the unprotected output

is empty. In the ideal process, the simulator S acts in the following manner. Whenever

receives the input, S ignores it. Then, it makes queries (U∗,A∗1) and (U∗,A∗2) to malicious

C ′. Then S saves both its state and C ′’s state. We note that in the real process, the inputs

are computationally disguised in a random manner by the end-user before querying to C ′.

In the ideal process, the simulator S always creates random and independent queries to

C ′. In this sense, the inputs to C ′ are computationally indistinguishable. Thus, we have

V IEWreal ∼ V IEWideal.

We show that the proposed verification scheme has the security and effectiveness prop-

erties as described previously. The verifiability is based on the likelihood of finding two

integers R1 and R2 so that R
t1
1 · u

t2 = R2 (mod N) holds true.

Lamma 3.1 Given (A1,A2,U ,L), an adversary can generate R1 and R2 with probability

1/b such that R
t1
1 · u

t2 = R2 (mod N)

Proof Given A1 and A2, an adversary can always select B1 = A1 + θ1 and B2 = A2 + θ2.

74

Then,

UB2−t1B1 (mod N)

= UA2+θ2−t1A1−t1θ1 (mod N)

= ut1a+t2+k2ϕ(N)+θ2−t1a−t1k1ϕ(N)−t1θ1 (mod N)

= ut2 · uθ2−t1θ1 (mod N).

It is obvious that as long as θ2−t1θ1 = 0, the equality will hold. If the value of t1 is correctly

guessed, an adversary can select θ1 and θ2 such that θ2 − t1θ1 = 0. Since the probability to

correctly guess t1 is 1/b, an adversary can manipulate the result with probability 1/b.

Theorem 3.7 Under MS model, the ExpSOS is (1− 1
2b)-verifiable.

This theorem indicates that if the cloud wants to manipulate the result, it has to guess the

random integers, the probability to succeed is only 1/b. In fact, if we outsource C(U ,A1,L)

and C(U ,A2,L) in a random order, we can further reduce the probability for the cloud to

guess the correct randoms to 1/2b. According to Definition 3.4, ExpSOS is at least (1−1/2b)-

verifiable.

The upper bound b is a security parameter that measures the confidence of the end-user

about the returned result. In practical computation outsourcing systems, the cloud would

be severely punished if cloud manipulation is detected. Therefore, the benefit for the cloud

to cheat would be hardly justifiable in this setting.

75

3.5.2 Complexity Analysis

We utilize outsourcing of modular exponentiation as a representative to analysis complexity.

The analysis can be applied to scalar multiplication similarly. The essence of ExpSOS

is to limit the number of modular multiplications for the end-user to compute modular

exponentiation with the aid of the cloud. In our analysis, we utilize the number of modular

multiplications, denoted as π, as a measurement. To calculate ua (mod N), the number of

multiplications is π = 3
2 la, where la is the bit length of a [43]. Therefore, in calculating the

modular exponentiation ua (mod N), la ≈ log2 a and π ≈ 3
2 log2 a.

In ExpSOS, under the HCS model, to calculate U ,A and L, the end-user needs 3 multi-

plications. We notice that when the end-user knows the factors of N , it is computationally

easy to calculate ϕ(N). For example, when N is a prime, ϕ(N) = N − 1. Moreover, the

calculation of ϕ(N) is a one-time process. The computational overhead for calculating ϕ(N)

is negligible especially when the end-user outsources modular exponentiation multiple times.

Thus, under HCS model, we have πHCS = 3. Hence, the computational gain from outsourc-

ing is αHCS = π/πHCS = 1
2 log2 a. From Definition 3.3, ExpSOS is 1

2 log2 a-efficient under

the HCS model.

Under the MS model, the calculation of L,U ,A1,A2 will take 4 multiplications. In the

verification scheme, the end-user has to calculate R
t1
1 (mod N) and ut2 (mod N). Thus,

πMS = 4 + 3
2 log2 t1 + 3

2 log2 t2 + 1. Since t1 and t2 are upper-bounded by b, we have

76

log2 t1 + log2 t2 ≤ 2 log2 b. Hence the computational gain from outsourcing is

α =
π

πMS

=
3
2 log2 a

5 + 3
2 log2 t1 + 3

2 log2 t2

≥
3
2 log2 a

5 + 3 log2 b

≈ 1

2
logb a.

Thus under the MS model, ExpSOS is at least 1
2 logb a-efficient.

3.5.3 Trade-Off between Computation and Security

The above security and complexity analysis reveal the trade-off between computational over-

head and security. In the MS model, ExpSOS is at least 1
2 logb a-efficient and (1 − 1/2b)-

verifiable. Both measurements relate to the same parameter b. On one hand, b is the upper

bound of the computational overhead that the end-user can tolerate. On the other hand,

b reveals the confidence of the end-user about the returned result which is also regarded

as the security level of the result. When b increases, the end-user has to carry out more

computation. However, the probability that the end-user can verify the validity of the result

also increases.

Thus, the proposed ExpSOS is cost-aware in the sense that it enables the end-user to have

the flexibility to choose the most suitable outsourcing scheme according to its computational

constraint and security demand. This is important especially when the end-users vary in

computational power and security demands. It also makes ExpSOS widely applicable.

77

3.6 Applications

The proposed ExpSOS is able to conceal the base, the exponent and the module of the

modular exponentiation ua (mod N). It can also be used to conceal the base point P and

multiplier s of the scalar multiplication sP . With this feature, the parameters (private or

public) within the cryptosystem are totally concealed from the outside, especially the cloud.

Thus, the cryptosystem is isolated from the outsourced system. In this sense, ExpSOS can be

regarded as a black box that takes as input {u, a,N , b} and creates the output ua (mod N)

as ExpSOS(u, a,N , b)→ ua (mod N), where b is security parameter selected by the end-user.

The end-user will have a performance gain of at least 1
2 logb a and can verify the validity of

the result with probability 1− 1
2b .

In this section, we will explore efficient outsourcing of exponential operations in some

typical cryptographic protocols to the cloud.

3.6.1 Outsourcing Inner Product Encryption for Biometric Au-

thentication

A practical Inner Product Encryption (IPE) scheme was recently introduced in [44]. In IPE,

given the master secret key msk, the encryption function Encrypt(msk, y) encrypts a vector

y as

cty = (C1,C2) = (g
β
2 , g

β·y·B?
2),

where g2 is a generator of the underlying bilinear group G2, B← GLn(Zq) is a randomly gen-

erated matrix and B∗ = det(B)·(B−1)T . Similarly, a key generation function KeyGen(msk, x)

will generate a key skx associated with a vector x. Given skx, cty and the decryption key,

78

the decryption process will produce the inner product z = x · y. If x and y are binary

vectors, the inner product z is actually the Hamming distance between x and y. Thus, IPE

provides a way to evaluate the distance between two vectors from the ciphertext domain.

Due to this feature, IPE is a promising technique to protect biometric templates in biometric

authentication systems [44].

In biometric authentication systems, each user is identified by some biometric template

(e.g., iris) represented by a vector x. During enrollment, an authority encrypts such template

x as skx and stores it in a database together with the user’s identity as a record 〈ID, skx〉.

When another user with template y wants to authenticate himself, the authority encrypts

the template as cty and sends it to the database server. The decryption obtains the inner

product z = x · y, which is generally the hamming distance. If z is within a pre-defined

threshold, the user is authenticated. In the following, we show that our ExpSOS scheme can

be well applied to biometric authentication system to outsource the encryption process.

Normally, the KeyGen and Encrypt functions are executed in a resource-constrained device

such as a scanner to collect and encrypt users’ biometric data. In the following, we take the

Encrypt function as an example to illustrate the outsourcing procedure, which can also be

applied to the function KeyGen. Note that bilinear operation is typically implemented based

on elliptic curves. Thus the underlying group G1 and G2 are sets of points on elliptic curves.

The exponentiations are actually scalar multiplications of the base point g2. As a result, we

can utilize Protocol 3 as the basic scheme to outsource Encrypt. To simplify notations, we

use a function T (P ,E) → P ′ to represent the process in Protocol 3 to transform a point

P = (x1, y1, z1) to its disguised form P ′ = (x′1, y′1, z′1). Similarly, a function T −1(P ′) → P

will recover P from P ′. Let m be the order of group G2. The main computation involved

in Encrypt are exponentiations of the same base point g2. Let β · y ·B∗ = (β1, β2, · · · , βn).

79

We can transform g2 to its disguised form G2 according to Protocol 3. For each βi, we

transform βi to β′i = βi + kim, where ki is a randomly generated integer. Then, G2 and β′i

are outsourced to the cloud for computation. The result can be easily recovered by applying

the function T −1. For result verification, we can jointly verify the exponentiations since

they share the same base. To be specific, we can randomly select a set I ⊂ {1, 2, · · · ,n} and

calculate
∑
j∈I βj . Then a new exponent for verification is computed as δ = t1

∑
j∈I βj+ t2.

The result verification is done by locally calculating exponentiations with small exponents

t1 and t2. The protocol to outsource Encrypt is presented in Protocol 5. It is obvious that

in the original Encrypt function, the major computation burden lies in the computation of

(n + 1) exponentiations, where n is the length of the vector. However, with ExpSOS, the

end-user only needs to transform each entry in the vector as well as the base to the disguised

form. The transformation for each entry only takes one multiplication. In result verification,

the end-user only needs to conduct two exponentiations with small exponents and limited

number of multiplications. In this sense, ExpSOS can achieve significant performance gain

for the end-user.

3.6.2 Outsourcing Identity Based Encryption

Identity Based Encryption (IBE) system is proposed to alleviate the process of public key

certification in traditional public key cryptosystems. In IBE system, a user can utilize his

identity such as his email address as the public key. Then a trusted authority will generate

and distribute private key to the message receiver. The idea of IBE was initialized by Shamir

in [45]. A practical IBE system was proposed in [46] based on bilinear pairing on elliptic

curves.

In an implementation of IBE system [35, Chapter 5], the public parameters are an elliptic

80

Protocol 5 Outsourcing Encryption of IPE

Input: E,B = (β, β1, β2, · · · , βn), g2

Output: c = g
β
2 , ci = g

βi
2 ,C = (c, c1, . . . , cn), Λ = True or False.

Key Generation KenGen(1λ,m)→ L:

1: E generates a large prime p and calculate L = pm.
2: The public key is Kp = {L}, and the private key is Ks = {p,m}.

Problem Transformation T (g2,B,E)→ G2:

1: E calls function T in Protocol 3 to transform point g2 to G2.
2: E selects random integers t1, t2, k and (k1, k2, · · · , kn) as the ephemeral key with the

constraint that t1, t2 ≤ b.
3: E calculates β′ = β + km and β′i = βi + kim for i = 1, 2, · · · ,n.
4: E randomly selects a set I ⊂ {1, 2, · · · ,n} and calculate δ = t1

∑
j∈I βj + t2.

5: E outsources (G2, δ,B′ = (β′, β′1, β′2, · · · , β′n)) to the cloud.

Cloud Computation C(G2, δ,B′)→ C:

1: S computes C ′ = (c′r = Gδ2, c′ = G
β′
2 , c′1 = G

β′1
2 , . . . , c′n = G

β′n
2).

2: S returns C to E.

Result Verification V(C)→ Λ:

1: E checks T −1(c′r) = (
∏
j∈I c

′
j)
t1 · gt22 .

2: If the equality holds, set Λ← True. Otherwise, set Λ← False.

Result Recovery R(C ′)→ C:

1: E recovers the result as C = (c = T −1(c′), c1 = T −1(c′i), . . . , cn = T −1(c′n)).

curve E(Fp)[m] and a base point P ∈ E(Fp)[m]. Also, the trusted authority will publish

his own public key PT ∈ E(Fp)[m]. The parameters are known to the authenticated users

in the system. We assume that a user Alice uses the hash of her own identity to generate

the public key which is a point on the elliptic curve, that is PA ∈ E(Fp)[m]. For any other

user Bob who desires to send a message M to Alice, he will conduct the following encryption

process:

1. Bob selects a random integer r ∈ Zm;

2. Bob computes C1 = rP ;

3. Bob computes C2 = M ⊕ H(e(PA,PT))r;

81

4. Bob sets the ciphertext as C = (C1,C2).

In the above encryption algorithm, e(PA,PT) denotes the pairing between public points

PA and PT and H(·) is a hash function. We note that both the input and output of the

pairing e(PA,PT) are public. Thus, the end-user Bob can obtain the pairing result denoted

as g = e(PA,PT). At the end, we can see that the computational burden for Bob lies in the

scalar multiplication rP and the modular exponentiation gr (mod p). We summarize the

outsourcing of IBE as in Protocol 6.

Protocol 6 Secure Outsourcing of Identity Based Encryption

Input: E,P = (x, y, z), r, g = e(PA,PT)
Output: C1 = rP , C2 = H(g)r

Key Generation KeyGen(1λ, p)→ L:

1: Bob selects a large prime q and calculates L← pq.

Problem Transformation T (p, r,L,P)→ (E′, r1, r2,P ′, H(g),L):

1: Bob generates temporary key k1, k2, k3, k4, k5, t1, t2 with t1, t2 < b.
2: Bob calculates r1 ← (r+ k1p) (mod L), r2 ← (t1r+ t2 + k2p) (mod L), x′ ← (x+ k3p)

(mod L), y′ ← (y + k4p) (mod L), z′ ← (z + k5p) (mod L). Bob sets P ′ ← (x′, y′, z′).
3: Bob outsources (E′, r1, r2,P ′,H(g),L) to the cloud, where E′ is the transformed elliptic

curve defined in Protocol 3 and H(g) is the hash value of g.

Cloud Computation C(E′, r1, r2,P ′,H(g),L)→ (Q1,Q2,R1,R2):

1: S calculates Q1 ← r1P
′, Q2 ← r2P

′, R1 ← H(g)r1 and R2 ← H(g)r2 .
2: S returns the results (Q1,Q2,R1,R2) to Bob.

Result Verification V(t1, t2,H(g), p,Q1,Q2,R1,R2)→ Λ:

1: Bob verifies the results by checking R
t1
1 · H(g)t2 = R2 (mod p) and t1Q1 + t2P = Q2

(mod p), where the modular is applied coordinate-wise.

Result Recovery R(Q2,M ,R2, p)→ (C1,C2):

1: Bob recovers the results C1 ← Q2 (mod p) and C2 ←M ⊕R2 (mod p).

From the above two applications, we can summarize some techniques in designing secure

outsourcing scheme utilizing the outsourcing of exponential operation as a building block.

• It is more efficient and secure to share some common parameters in different subroutines

of the outsourcing process. In this way, we can not only reduce the computational

82

overhead, but alos expose less information to the cloud.

• When outsourcing modular exponentiation with the same base, the computational

overhead can be reduced by jointly verifying the result. This is demonstrated in the

outsourcing of IPE.

• When making multiple queries to the cloud, the end-user can randomize the order of

queries to increase verifiability.

3.7 Performance Evaluation

To the best of our knowledge, previous research on secure outsourcing of cryptographic

computations mainly focuses on modular exponentiation. In this section, we first compare

ExpSOS with three existing works on secure outsourcing of modular exponentiation. Then

we give some numerical results to show the efficiency of ExpSOS.

3.7.1 Performance Comparison

Secure outsourcing of cryptographic computations, especially modular exponentiation, has

been a popular research topic [10, 11, 38, 40–42, 47–51]. For instance, the authors in [51]

proposed a secure outsourcing scheme for modular exponentiation with variable-exponent

fixed base and fixed-exponent variable-base under single untrusted server model. However,

the base is known to the server. In [10], the authors considered outsourcing variable-base

variable-exponent modular exponentiation to two untrusted servers. Following this work,

the authors in [11] improved the scheme in [10] in both efficiency and verifiability. Then,

the authors in [38] made further improvement by reducing the two-server model to one

83

single untrusted server model. The existing research in this area can be classified into three

categories based on the supporting models, i.e, HCS model ([40]), MM model ([10,11,41])

and MS model ([38, 42]). In the following, we compare our ExpSOS with the six typical

schemes in these three categories.

3.7.1.1 HCS Model

The most representative example in this category is the scheme introduced in [40]. It con-

siders outsourcing ua to a single honest-but-curious server, where u ∈ G and a ∈ Zp. It does

not provide the ability to verify the result. The outsourcing process includes three steps.

First, the end-user utilizes a Rand function to generate two pairs (k1, gk1) and (k2, gk2),

where k1 and k2 are selected randomly. The base u is disguised as v = u · gk1 and the

exponent a is divided into two parts (a0, a1) such that a = a1 · T + a0, where T = d√pe.

In the second step the end-user makes two queries to the server as S(v,T) = vT → h and

S(g,−ak1− k2 (mod p)) = g−ak1−k2 → h2. The end-user then utilizes Protocol 1 in [40] to

calculate h1 = va0 · ha1 . In the third step the result is recovered as h1h2g
k2 = ua.

It is clear that the computational bottleneck lies in the computation of h1 = va0 · ha1 ,

where the bit length of a0 and a1 can be half of that of a. Analysis shows that it takes l

multiplications to determine h1, where l is the maximum of log a0 and log a1. In addition,

the scheme in [40] also requires the end-user to call Rand function twice and then conduct

Euclidean division to obtain a0 and a1.

3.7.1.2 MM Model

The most representative examples for MM model include [10, 11, 41]. MM model considers

outsourcing modular exponentiation to two untrusted servers S1 and S2 and it is assumed

84

that the two-server do not collude which corresponds to our MM model. In these schemes, a

subroutine Rand is utilized to generate random modular exponentiation pairs. Specifically,

on input a base g ∈ Z∗p, the subroutine Rand will generate random pairs in the form of (θ, gθ

mod p), where θ is a random number in Z∗p. Then the end-user can make queries to Rand

and each query will return a random pair to the end-user. Typically, the subroutine Rand

is implemented via two different methods. One method is that a table of random pairs is

pre-computed from a trusted server and stored at the end-user. Whenever the end-user needs

to make a query to Rand, it just randomly draws a pair from the table. The critical problem

with this method is that it will take a lot of storage space from the end-user. Specifically,

a random pair will take 2` space, where ` is the bit length of p. In addition, to make the

generation of the pairs look random, the table size should be large. As a result, the storage

overhead becomes unacceptable for the resource-constrained end-users. The other method

is to utilize some pre-processing techniques such as the BPV generator [49] and the EBPV

generator [50]. To generate one random pair, the EBPV generator takes O(log2 `a) modular

multiplications, where `a is the bit length of the exponent.

The scheme proposed in [10] can be briefly summarized as follows. First, the end-user runs

Rand 6 times to obtain random pairs (α, gα), (β, gβ), (t1, gt1), (t2, gt2), (r1, gr1), (r2, gr2).

Then uα can be written as

ua = vbfa−b
(
v

f

)
a−b

(u
v

)
d
(u
v

)
a−d,

where v = gα, b = β
α , f and d are random integers. The end-user then makes queries in

random order to the cloud server S1 to derive Q1
1 =

(u
v

)
d,Q2

1 = fa−b,Q3
1 = (gr1)

t1
r1 ,Q4

1 =

(gr2)
t2
r2 . Similarly, the end-user makes queries to the second cloud server S2 to derive

85

Q1
2 =

(u
v

)
a−d,Q2

2 =
(
v
f

)
a−b,Q3

2 = (gr1)
t1
r1 ,Q4

2 = (gr2)
t2
r2 . The result can be recovered

as ua = gβ · Q1
1 · Q

2
1 · Q

1
2 · Q

2
2. The result verification is carried out by checking whether

Q3
1 = Q3

2 = gt1 and Q4
1 = Q4

2 = gt2 . We note that the end-user needs to make queries to

each server S1 and S2 for four times, among which the first two are computation queries

and the other two are test queries. Since the test queries and the computation queries

are independent, the servers can potentially compute the test queries honestly but cheat in

the computation queries. The authors address this problem by sending out the queries in

random order. The verifiability of this scheme is 1
2 . In the outsourcing process, E has to

run the subroutine Rand 6 times, make 9 modular multiplications (MMul) and 5 modular

inversions (MInv), where Rand has a complexity of O(log2 n) MMul and n is the bit length

of the exponent.

Based on [10], the authors in [11] made some improvement by reducing the computational

overhead to 5 Rand, 7 MMul and 3 MInv and the queries to the two servers are reduced to 6

times in total. Moreover, the verifiability is improved to 2
3 .

Unlike [10, 11], the scheme in [41] utilized the Chinese Remainder Theorem to disguise

the secret values. To be specific, the group Zp is extended to Zn, where n = pr1r2 and r1

and r2 are large primes. Together with some randomly generated values, the secret values

u and a are transformed to the corresponding elements in Zn. The scheme also employs

the function Rand to generate random exponentiation pairs (ti, g
ti). Result verification

is achieved by comparing the returned results from two independent servers. Compared

with [10, 11], the advantage of the scheme is that it can achieve checkability 1 for every

query result. Complexity analysis shows that to outsource one modular exponentiation, the

end-user has to carry out 7 multiplications in addition to executing the Rand function 4

86

times.

Protocol 7 ExpSOS under MM Model

Input: N ,u, a ∈ RN .
Output: R0 = ua (mod N), Λ = {True, False}.
Key Generation(1λ, p)→ L:

1: E generates a large prime number p and calculate L← pN . The public key is Kp = {L}
and the private key is Ks = {p,N}.

2: E selects random integers r, k ∈ ZN as the temporary key.

Problem Transformation T (a,u,L)→ (A,U):

1: E calculates A← a+ kϕ(N) and U ← (u+ rN) (mod L).
2: E then outsources {U ,A,L} to both cloud servers S1 and S2.

Cloud Computation C(A,U ,L)→ (R1,R2):

1: S1 computes R1 ← UA (mod L) and S2 computes R2 ← UA (mod L).
2: The results R1 and R2 are returned to E.

Result Verification V(R1,R2,N)→ Λ:

1: E checks whether R1 = R2 (mod N). Set Λ← True if the equality holds; otherwise set
Λ← False.

Result Recovery R(R1,N)→ R:

1: E recovers the result as R← R1 (mod N).

3.7.1.3 MS Model

The most representative examples for MS model include [38,42]. MS model employs only one

single server. The scheme in [38] can be summarized as follows. First, the end-user runs Rand

7 times to obtain random pairs (α1, gα1), (α2, gα2), (α3, gα3), (α4, gα4), (t1, gt1), (t2, gt2),

(t3, gt3). Then it calculates c = (a − bχ) (mod p), ω = u/µ1,h = u/µ3, and θ = (α1b −

α2)χ+ (α3c−α4) (mod p), where χ, b are randomly selected and µi = gαi , for i = 1, 2, 3, 4.

The end-user then queries to a single cloud server S to compute Q(i) for i = 1, 2, 3, 4,

where Q(1) =
(
gt1
) θ
t1 ,Q(2) =

(
gt2
) t3−θ

t2 ,Q(3) = ωb,Q(4) = hc. The result is recovered as

ua = (µ2 ·Q(3))χ ·Q(1) · µ4 ·Q(4). The result verification is carried out by checking whether

Q(1) ·Q(2) = gt3 is true. Similarly, the queries can be divided into test queries and compu-

tation queries. As a result, the cloud can compute honestly on the test queries and cheat on

87

the computation queries. Thus, due to the random order of the queries, the verifiability of

this scheme is 1
2 . We note that in the result recovery process, the end-user has to compute

an exponentiation (µ2 ·ωb)χ which takes 3
2 logχ multiplications. The whole scheme will take

7 Rand, 12 + 3
2 logχ MMul, 4 MInv and make 4 queries to the cloud server. In comparison,

ExpSOS can avoid inversion and only needs (5 + 3 log b) MMul, where b is a small integer.

The scheme in [42] also investigates secure outsourcing of modular exponentiation with

variable base and variable exponent to a single untrusted server. The main drawback of [42] is

its large number of queries (l+k+2) made to the server, which introduces high computational

and communication overhead. In fact, the scheme in [42] first utilizes a sub-protocol SubAlg

to outsource exponentiations with a fixed base. To support the case of variable bases,

the base is split into multiple sets of different sizes. The scheme in [42] also employs the

Rand five times to generate exponentiation pairs (ti, g
ti). Similar to our work, in the result

verification phase, [42] also needs to conduct an exponentiation with a small exponent to

achieve a checkability of 1
c(c−1)

. In addition, the end-user has to conduct l+ k+ 8 log c+ 38

multiplications and 1 inversion operation. As shown in an example given in [42], when

l = k = 29 and c = 4, the number of multiplications reaches 100 and the end-user needs to

make 60 queries to the server. Also, as pointed out in [2], one modular inversion is about

100 times slower than a modular multiplication. This further increases the complexity of the

scheme in [42].

3.7.1.4 Performance Comparison of ExpSOS with the Existing Schemes

In comparison, ExpSOS under MM model can be modified as in Protocol 7. Since the cloud

servers S1 and S2 do not collude, the only way to make the equality condition satisfied is

that S1 and S2 both compute honestly. Thus the verifiability is 1. Moreover, in this process,

88

Table 3.1: Performance Comparison

Scheme Model Pre-Processing Multiplication Inversion Comm. Cost Verifiability

[40] HCS 2 Rand 2 O(Rand) + l(1 + o(1)) 0 6` Not Applicable
[10]

MM
6 Rand 6 O(Rand) + 9 5 24` 1/2

[11] 5 Rand 5 O(Rand) + 7 3 18` 2/3
[41] 4 Rand 4 O(Rand) + 7 0 26` 1

[38]
MS

7 Rand 7 O(Rand) + 3
2 logχ+ 12 4 12` 1/2

[42] 5 Rand 5 O(Rand) + l + k + 8 log c+ 38 1 3(l + k + 2)` 1− 1/c(c− 1)

ExpSOS
HCS Not Required 3 0 6` Not Applicable
MM Not Required 3 0 12` 1
MS Not Required 5 + 3 log b 0 10` 1− 1/2b ≈ 1

we successfully avoid inversion that is considered much more expensive than multiplication

in field operations. The total computational overhead is only 3 MMul.

To measure the communication overhead, we utilize the total length of bits to be trans-

mitted between the end-user and cloud server in order to outsource one exponentiation. Let

` be the bit length of N . Without loss of generality, we assume that it takes ` bits to transmit

one element in ZN . In our scheme, the elements in ZN is transformed to elements in ZL,

where L = pN . Since p is comparable to the divisors of N , the bit length of L is at most

2`. Thus, we can assume that it takes 2` bits to transmit one element in ZL (worse case).

Following this analysis, the communication cost for each scheme is given in Table 3.1. It

shows that our scheme can achieve the highest communication efficiency.

In terms of security, we have shown that ExpSOS can successfully conceal the base,

exponent and the modulus of the modular exponentiation. It is computationally infeasible

for the cloud to derive any key information from the disguised problem. In comparison, all the

above three schemes [10, 11, 38] can only conceal the exponent and base while the modulus

is exposed to the cloud. Thus ExpSOS can provide much-improved security. Moreover,

the three schemes in [10], [11] and [38] achieve verifiability of 1
2 , 2

3 and 1
2 respectively. In

comparison, the verifiability of ExpSOS is 1 − 1
2b that is close to 1. This means that the

end-user is more confident about the results returned by the cloud. Furthermore, the security

89

of the schemes in [10] and [11] relies on the assumption that the two cloud servers will not

collude. The scheme [38] and the proposed ExpSOS are applicable to one single untrusted

server hence eliminating the non-collusion assumption.

The comparison of ExpSOS and the schemes in [10,11,38] is summarized in Table 3.1. We

can see that the proposed ExpSOS outperforms other schemes in both computational com-

plexity and security. ExpSOS also makes the least queries to the cloud that will introduce

the least communication overhead. Moreover, ExpSOS is cost-aware in computational over-

head and security such that the end-users can select the most suitable outsourcing scheme

according to their own constraints and demands. Also, ExpSOS can be modified such that

it is applicable to HCS, MM and MS model.

3.7.2 Numeric Results

In this section, we compare the performance of ExpSOS for modular exponentiation with

the schemes in [11, 38] through simulation in mobile phones. The computation of both the

end-user and the cloud server is simulated in the same phone Samsung GT-I9100 with An-

droid 4.1.2 operating system. The CPU is Dual-core 1.2 GHz Cortex-A9 with 1 GB RAM.

In the outsourcing process, we focus on the computational gain, denoted as τ , of the out-

sourcing. We measure the local processing time (t0) to compute the modular exponentiation

ua (mod N) without outsourcing and the local processing time (ts) with outsourcing which

includes the problem transformation, result recovery, and result verification. To measure the

performance of ExpSOS under different levels of complexity, we let the size of the ring lN

vary from 128 bits to 1024 bits. Also, to show the cost-awareness of ExpSOS, we let the size

of the security parameter lb vary from 4 bits to 16 bits. The processing time is averaged

over 1000 independent rounds. The numeric result is shown in Table 3.2 where each number

90

Table 3.2: Numeric Results

lN (bits)

ExpSOS (lb (bits))
[11] [38]

4 8 12 16

t0 (ms) ts (ms) τ ts (ms) τ ts (ms) τ ts (ms) τ ts (ms) τ ts (ms) τ

128 1358 87 15.6 216 6.3 321 4.2 397 3.4 171 7.9 827 1.6

256 2554 89 28.6 244 10.5 346 7.4 459 5.6 172 14.9 917 2.8

384 4095 127 32.3 249 16.5 358 11.4 463 8.8 180 22.8 1004 4.1

512 7837 134 58.6 281 27.9 399 19.6 496 15.8 242 32.4 1097 7.1

640 10991 146 75.0 288 38.2 423 26.0 627 17.5 268 40.9 1269 8.7

768 11427 148 77.2 295 38.7 433 26.4 642 17.8 273 42.0 1377 8.3

896 17445 158 110.2 317 54.9 451 38.7 680 25.6 346 50.4 1467 11.9

1024 20235 174 116.2 329 61.5 504 40.1 739 27.4 355 57 1569 12.9

stands for the average processing time for 100 rounds. We can see that when the size of

the ring lN increases, the performance gain τ also increases for the same security parame-

ter b. This means that when the original problem is more complex, ExpSOS would have a

better performance. The reason is that the complexity of modular exponentiation depends

on the number of multiplications that is positively correlated to the logarithm of the size

of the ring lN . However, in ExpSOS the local processing takes almost the same number of

multiplications for a fixed security parameter b. We can also see that there exists a trade-off

between security and computational overhead. When b increases, the computational over-

head increases accordingly. Since the verifiability is 1− 1
2b , a bigger b means better security

guarantees.

The numeric results also demonstrate the high efficiency of ExpSOS compared to the

schemes in [11, 38], which coincides with our theoretical analysis. We note that to achieve

the same checkability, the schemes in [11,38] should be compared with ExpSOS with lb = 4.

In the simulation, the implementation of the Rand function is rather simplified and it only

requires the end-user to conduct an average of 5 multiplications. From the simulation, we

can see that the performance of the scheme in [38] is dominated by the computation of (·)χ,

where χ has 64 bits as recommended in [38]. Our high efficiency comes from the fact that

91

the required number of multiplications is much less and we do not need the end-user to call

the Rand function and compute modular inversion.

92

Chapter 4

Secure Fine-Grained Access Control

of Mobile User Data through

Untrusted Cloud

4.1 Introduction

With the fast development of cloud computing, there is a trend for mobile users to upload

and share their data through the cloud platform for unrestricted access regardless of the

time and location. A typical scenario would be the Personal Healthcare System [52], where

patients upload their personal health records to a public cloud that are accessible to the

authorized physicians. In these scenarios, data owners are concerned about the security and

privacy of their own data. On one hand, the untrusted cloud should be prevented from

knowing the content of data. On the other hand, data owners should control who can access

the data.

Attribute Based Encryption (ABE) cryptosystem turns out to be a promising candidate

to address the above issue. As a generalization of Identity Based Encryption (IBE) [46,53],

ABE can be categorized into two types: Key-Policy ABE (KP-ABE) and Ciphertext-Policy

ABE (CP-ABE) [54–56] depending on where the policy is specified. A typical CP-ABE

93

system consists of message senders, message receivers and an Attribute Authority (AA) that

is responsible for generating secret keys. Each user (sender or receiver) is tagged with a

set of attributes (e.g., {Student, ECE, Enrolled}). In message encryption, the sender can

specify an access policy (e.g., {Professor ∧ (ECE ∨ CSE)}) associated with the ciphertext.

As a result, only those receivers whose attributes (e.g., {Professor, ECE}) satisfy the policy

can decrypt the message. In contrast, KP-ABE tags ciphertext with sets of attributes and

associates policies with decryption keys. The fact that CP-ABE enables fine-grained access

control of encrypted data makes it suitable for various cloud based applications.

However, one concern in ABE is its relatively high computational complexity in encryp-

tion and decryption. For instance, message encryption will take two modular exponentiations

for each attribute in the policy [55]. And a message receiver will conduct two pairing op-

erations in bilinear groups for each attribute in decryption. As a result, the number of

modular exponentiations and pairing operations involved in the encryption and decryption

process is linear to the number of attributes in the access policy. The high computational

overhead of ABE seems to be prohibitive for resource constrained mobile devices. In some

recent research [57, 58], the performance of ABE has been measured on mobile phones. It

is shown that, at a security level of 128 bits1, the average execution time for encryption

with 10 attributes on android smartphones is around 10 seconds. Although it is feasible to

implement ABE on mobile devices, it is highly inefficient in terms of execution time and

energy consumption.

To address this problem, some researchers [60] propose an online/offline computation

scheme where the message is pre-encrypted without specifying a policy during the offline

phase. Then based on the pre-computed results, mobile users can encrypt messages offline

1The description of different security levels can be found in [59]

94

by a specified policy with relatively low computational overhead. Some other research works

focus on secure outsourcing of ABE systems [61–63]. However, they either focus on a specific

access structure [62] or rely on a rather strong security assumption of cloud [63].

In this paper, we propose to outsource the whole access control functionality to the cloud.

This is achieved based on a key observation that the message encryption part and access

control part are highly detached in ABE. To be specific, the ciphertext of ABE can be

roughly divided into a payload section and a control section. The payload section is simply

message encryption Enc(m, s) using a secret key s. The control section is a linear secret

sharing scheme that shares the secret key s to certain parties (i.e., attributes). Roughly

speaking, in the decryption process, a receiver with certain attribute set that satisfies the

policy can recover the secret key s. Thus the receiver can further decrypt the message m.

In our proposed scheme, we let the cloud generate the control section of the ciphertext

and a mobile user only needs to conduct message encryption. However, it is not a trivial

task. First, to share the secret key s, the cloud has to know the secret beforehand. In this

case, the cloud can easily decrypt the payload section. Second, when the cloud is fully in

charge of the access control, how to enforce the cloud to deny invalid access is a critical

problem. Because in some situations, the cloud may be compromised by malicious users or

the cloud may actively collude with data users. We address these problems by exploring the

linear property of secret sharing schemes. Basically, the mobile users encrypt message with

a secret s1 while the cloud distributes a different secret s2 through a secret sharing scheme.

The control section in the ciphertext and the decryption algorithm are then modified in such

a way that only valid users can recover the secret s1.

In summary, our proposed scheme enables mobile users to conduct only normal encryption

and specify an access control policy on the ciphertext. The access control is then honestly

95

fulfilled by the cloud. Moreover, the cloud will conduct partial decryption based on which

the data users can recover the message through normal decryption. In this way, attribute

based encryption becomes transparent to mobile users and cloud can provide access control

of encrypted data as a service.

4.2 System Model and Threat Model

4.2.1 System Model

We consider a file sharing system consisting of four parties: an Attribute Authority (AA),

data owners, data users (who could be data users simultaneously) and the cloud. The AA is

responsible for setting up the system, authenticating users’ attributes and generating secret

keys when users request keys with their attributes. Data owners desire to upload their data

either for storage or sharing. They also want to specify access policies on the encrypted data

in order to control who can access the data. Data users that are tagged with attributes want

to decrypt the data they can access by requesting secret keys from the AA. The cloud will

provide storage service as well as access control service. It will generate control section for

data owners’ uploaded data and help to partially decrypt the data when requested by data

users. The system model is shown in Fig. 4.1.

Our proposed outsourced system can be modeled as the following functions.

1. Setup(λ)→ {PK, MSK}: the AA generates public parameter PK and master secret key

MSK using a security parameter λ. The public parameter PK is known to all the users

as well as the cloud.

2. KeyGen(PK,S) → SK: when a data user with a set of attributes S requests his secret

96

Figure 4.1: System Model of Outsourced ABE

key, the AA first authenticates that all the attributes in S are valid. Then AA generates

and distributes the secret key SK associated with S to the data user through a secure

channel. We note that the secret key SK is composed of SKL and SKS , where SKL is

kept secret by data user and SKS is prepared for the cloud for partial decryption.

3. EncL(m, PK) → {CT1, T, aux}: a data owner encrypts the message m to produce the

ciphertext CT1 and specifies an access policy T. Meanwhile, some auxiliary information

is produced for further encryption. {CT1, T, aux} is outsourced to the cloud.

4. EncS(PK, T, aux) → CT2: the cloud enforce the access policy T to produce partial

ciphertext CT2 based on the auxiliary information aux. The ciphertext is formed as

CT = {CT1, CT2} that is stored in the cloud.

5. DecS(CT, SKS) → CTS : when a data user requests to access data CT, he sends the

secret key SKS to the cloud. The cloud decrypts the ciphertext CT to obtain partially

decrypted ciphertext CTS , which is then transmitted to the data user.

6. DecL(CTS , SKL)→ m: the data user decrypts the ciphertext CTS to obtain the mes-

sage m using his secret key SKL.

97

4.2.2 Threat Model

In the system, we assume that AA is fully trusted as is the case in typical ABE systems. We

consider a malicious cloud model. On one hand, the cloud is curious in learning the message

stored in cloud storage. On the other hand, the cloud can be compromised by malicious

users. Invalid users without proper attribute sets may collude with the cloud in order to

obtain the access right. The three functional modules (encryption, storage and decryption)

are logically considered to be implemented in one single cloud environment. In this case,

the cloud will have knowledge of the ciphertext CT as well as the secret key SKS . We note

that one highlight of our scheme is that we do not impose the strong assumption as in most

related works that the cloud is only curious-but-honest. Later, we show that our scheme

supports public auditing of all the operations conducted by the cloud. As a result, the cloud

is enforced to honestly conduct the required operations.

4.3 A High Level View of CP-ABE

In this section, we introduce some necessary preliminaries of CP-ABE. We utilize the scheme

in [55] as the underlying CP-ABE scheme for its highly expressive access structure. We

emphasize on the realization of access control in ABE and model it as the process of encoding

and decoding a secret.

4.3.1 Bilinear Pairing

A bilinear pairing is a mapping function e : G1 × G1 → G2, where G1 and G2 are two

multiplicative cyclic groups with prime order p. Let g be the generator of G1. The bilinear

pairing e has the following properties:

98

1. The pairing e is bilinear. That is, ∀g1, g2 ∈ G0, a1, a2 ∈ Zp, e(g
a1
1 , g

a2
2) = e(g1, g2)a1a2 .

2. The pairing e is non-degenerate. That is e(g, g) 6= 1.

3. The paring e and the group operation in G1 are both efficiently computable.

4.3.2 Linear Secret Sharing Scheme

A secret sharing scheme is a method for a secret holder to distribute a secret to different

parties and only under certain criteria can the parties reconstruct the secret. A secret sharing

scheme is linear in that the mapping between a secret and the secret shares are realized by

linear functions [64].

A typical construction of linear secret sharing scheme is Shamir’s (t−n)-threshold secret

sharing scheme [65]. In his construction, the secret and secret shares are all elements in a

finite field Fq. To share a secret s, the secret holder chooses a polynomial f(x) of degree

(t−1) over Fq. The coefficients c1, c2, · · · , ct−1 are randomly chosen from Fq and the constant

term is set to be s. A secret share is a point (ai, f(ai)) on the polynomial, where ai ∈ Fq is

randomly generated. The basic idea is that for a polynomial of degree (t − 1), if t or more

points on the polynomial are given, one can fully reconstruct the polynomial (coefficients)

using polynomial interpolation. Suppose there are a total of n secret shares distributed to

n parties. If there are t or more parties collude with each other, they can reconstruct the

secret. Thus, this scheme is called the (t− n)-threshold secret sharing scheme.

4.3.3 Access Tree

In ABE schemes, a data owner needs to describe an access policy on encrypted data. An

access tree is a kind of access structure that describing access policies. In the tree T, a

99

Figure 4.2: Access Tree

leaf node x stands for an attribute and we let Ax denote its attribute. A non-leaf node y

represents a (ty − ny)-threshold gate, where 1 ≤ ty ≤ ny is its threshold value and ny is

the number of its children. Especially, when ty = 1 node y represents an OR(∨) gate and

when ty = ny it represents an AND(∧) gate. We denote the parent node of y as p(y). The

children of y are indexed from 1 to ny and for a specific child x of y, a function ρ(x) returns

the index of x.

Let TR denote a tree rooted at node R. For a set of attributes S and a leaf node x, we

say set S satisfies Tx if and only if Ax ∈ S and it is written as Tx(S) = 1. Then TR(S)

can be calculated in a recursive way. We utilize Fig. 4.2 as an example to illustrate the

access tree. In Fig. 4.2, there are 6 attributes {A,B,C,D,E,F} in the access tree. The

non-leaf node y represents a (2 − 3)-threshold gate. Thus the access tree describe a policy

2-out-of-(A,B,C) ∧ D ∧ (E ∨ F). An attribute set S1 = {A,B,D,F} will satisfy this

policy while a set S2 = {A,B,C,D} will not.

4.3.4 Access Control: Encoding and Decoding a Secret

As stated previously, the ciphertext of ABE is divided into a payload section and a control

section that are denoted as CTe and CTc , respectively. The data owner encrypts a message

100

m by some normal encryption algorithm to obtain

CTe = Enc(m, s),

where s is the secret key. The control section can be modeled as the ciphertext of the access

tree T encrypted with the secret key s, which is denoted as

CTc = Encode(s, T).

In decryption, given a secret key SK, a user can decode the secret key as

s = Decode(CTc, SK).

Then from s, the user can decrypt the message as

m = Dec(CTe, s).

Now, we illustrate the encoding and decoding process in detail.

4.3.4.1 Encoding a Secret

The basic idea of encoding a secret according to an access tree T is to share the secret to

each leaf node of the tree. Then, the secret share distributed to a leaf node is disguised by

the attribute of the leaf node. Since each non-leaf node is a (t−n)-threshold gate, the secret

is shared from the root of the node using (t− n)-threshold secret sharing schemes.

To be specific, given an access tree T, each node y (including the leaf node) is associated

101

with a randomly generated polynomial fy of degree dy = ty − 1. These polynomials are

generated in a recursive manner starting from the root node R. First, for root R, the

constant term of fR is set to be the secret key s, that is fR(0) = s. Then another dy points

are chosen to fully define the polynomial fR. For each child x, set fx(0) = fp(x)(ρ(x)) and

another dx points are randomly chosen to define polynomial fx. In the end, for each leaf

node l, we will obtain an associated secret share fl(0).

The next step is to disguise the secret share with the attribute for each leaf node l ∈ L,

where L denotes the set of all leaf nodes. Especially, ∀l ∈ L, compute a pair of ciphertext

CT = (Cl1 = gfl(0),Cl2 = h(Al)
fl(0)), where g is a public parameter and h(·) is a hash

function that maps an arbitrary attribute to an element in G1. In summary, the secret

encoding process can be modeled as a function

Encode(s, T) = CT

= {(Cl1 = gfl(0),Cl2 = h(Al)
fl(0)),∀l ∈ L}.

4.3.4.2 Decoding a Secret

The task of decoding is to reconstruct the secret key s encoded to the access tree T based on

user’s secret key SK. In ABE system, the secret key of each user is issued by the AA based

on the user’s attribute set. For a user with attribute set S, the secret key is

SK = {(Dj1 = gr · h(j)
rj ,Dj2 = g

rj),∀j ∈ S},

where r, rj ∈ Zp are random numbers.

The decoding process is a recursive algorithm consisting of decoding each node in T.

102

Intuitively, the secret reconstruction starts from the leaf nodes and goes towards the root.

Let

Decode(CTc, SK,S,x)→ cx

be a function to decode a node x. When x is a leaf node, if Ax ∈ S, we can compute

cx =
e(DAx1,Cx1)

e(DAx2,Cx2)

=
e(gr · h(Ax)

rAx , gfx(0))

e(g
rAx ,h(Ax)fx(0))

=
e(g, g)rfx(0) · e(h(Ax), g)

rAxfx(0)

e(h(Ax), g)
rAxfx(0)

= e(g, g)rfx(0).

If Ax /∈ S, set cx =⊥.

When x is a non-leaf node, denote its children as a set Scx. For each child z ∈ Scx, the

decoding result is cz. If the number of children whose decoding result cz 6=⊥ is smaller than

the threshold value tx, it means that the threshold gate associated with x is not satisfied.

Then we set cx =⊥. Otherwise, we can form a valid set Svx of size tx where each children

node z ∈ Svx has a valid decoding result cz. Let Ivx = {ρ(z)|z ∈ Svx} be the index set for

the corresponding nodes in Svx. For index i ∈ Ivx, denote the Lagrange coefficient be

Li(u) =
∏

j∈Ivx,j 6=i

u− i
j − i

.

103

Then we can compute the decoding of node x as

cx =
∏

z∈Svx
c
Li(0)
z

=
∏

z∈Svx
e(g, g)rfz(0)Li(0).

Since in encoding, the secret associated with node z is set as fz(0) = fp(z)(ρ(z)) = fx(i), cx

can be further written as

cx =
∏

z∈Svx
e(g, g)rfx(i)Li(0)

= e(g, g)
r
∑
i∈Ivx fx(i)Li(0)

.

From the Lagrange interpolation, we have

fx(0) =
∑
i∈Ivs

fx(i)Li(0).

Thus, we have

cx = e(g, g)rfx(0).

By repeating this decoding process, we can obtain

cR = e(g, g)rs.

We note that the secret decoding will not give the secret key s in clear form. Instead, the

decoding result is a disguised form e(g, g)rs that is further used in message decryption. In

104

summary, the decoding process can be modeled as a function

Decode(CTc, SK, T,S) = e(g, g)rs.

4.4 Construction of Outsourced CP-ABE

In this section, we introduce the detailed construction of the outsourced CP-ABE system.

We first present some intuitive ideas.

4.4.1 Exploring Linearity of Secret Sharing

In ABE system, the message m is encrypted as CTe = Enc(m, s) with a secret key s. The

secret key s is then encoded as CTc = Encode(s, T). From the above analysis of encoding

process, we can see that most of the computational burden lies in encoding. This motivates

us to outsource the whole encoding portion to the cloud. However, if the cloud is in charge of

encoding, it will inevitably learn the secret key s thus decryption the message. Moreover, the

decoding process will produce the decoded secret as e(g, g)rs. In an effective access control

system, only the valid users can successfully decode the secret. Thus, it is crucial to prevent

a compromised cloud and a malicious user to learn the decoding result e(g, g)rs. These are

the two critical issues in our design.

We address the above issues by exploring the linearity of secret sharing. Basically, the

secret encoding process is a series of (t − n)-threshold secret sharing schemes according to

the access tree T. In a secret sharing scheme, suppose the polynomial is

f(x) = s+ c1x+ c2x
2 + · · ·+ cdx

d.

105

Then a secret share is (i, f(i)). If we change all the secret shares to (i, f(i) + δ) with δ being

a constant, then after the Lagrange interpolation, the recovered polynomial becomes

g(x) = (s+ δ) + c1x+ c2x
2 + · · ·+ cdx

d.

That is, the shared secret changes from s to s + δ. We define this linear relation between

secret the secret shares as the linearity of secret sharing schemes.

The above analysis gives some insight of our proposed scheme. In ABE, the secret is

encoded as

CTc = {(Cl1 = gfl(0),Cl2 = h(Al)
fl(0)),∀l ∈ L}.

Similarly, we can modify each pair of ciphertext (Cl1,Cl2) as (C ′l1 = gfl(0)+δ,C ′l2 = h(Al)
fl(0)+δ).

Then the decoding process will reconstruct the secret as e(g, g)r(s+δ). However, this modifi-

cation requires data owners to calculate gδ and h(Al)
δ for each leaf node l in the access tree

T. The computational overhead is still too expensive for mobile users. Instead, we propose

to only modify the first part of the ciphertext pair. That is, set (C ′l1 = gfl(0)+δ,C ′l2 = Cl2 =

h(Al)
fl(0)). We further re-design the decoding process such that the recovered secret would

be e(g, g)r(s+δ). The details will be provided in the construction of our outsourced ABE

system.

In summary, the data owner will encryption the message as

CTe = Enc(m, s+ δ).

106

The cloud will encode the secret key s (known to the cloud) according to an access tree T as

CTc = Encode(s, T).

On requesting, the cloud will decode CTc to reconstruct the secret in the form of e(g, g)r(s+δ).

Based on the decoding result, the data user can decrypt the message m.

4.4.2 System Setup

The attribute authority executes Setup(λ)→ {PK, MSK}.

1. AA generates a bilinear mapping e : G1 × G1 → G2, where G1 is a group of prime

order p with generator g.

2. AA chooses two random exponents α, β ∈ Zp and calculates h = gβ and e(g, g)α. The

public key is published as

PK = {e, g,h = gβ , e(g, g)α}.

3. AA sets the master key as

MSK = {β,α}.

4.4.3 Key Generation

When a user with attribute set S requests his secret key, the attribute authority executes

KeyGen(PK,S)→ SK and delivers the secret key SK to that user.

107

1. AA chooses random integers r, z ∈ Zp and computes

SKS = {D1 = g(α+r)/z,

(Dj1 = gr · h(j)
rj ,Dj2 = h(j)

rj/β ,

Dj3 = g
rj),∀j ∈ S}.

2. AA computes SKL = { zβ}.

3. AA sets SK = {SKL, SKS}. We note that SKS is for the cloud to partially decrypt the

ciphertext and SKL is for the user to fully recover the plaintext.

4.4.4 Encryption

The encryption process consists of two phases: local side encryption EncL(m, PK)→ {CT1, T, aux}

and cloud side encryption EncS(PK, T, aux)→ CT2.

EncL(m, PK)→ {CT1, T, aux}

1. Data owner chooses random integers s1, s2 ∈ Zp and computes

C1 = m · e(g, g)α(s1+s2),C2 = hs1 ,C3 = gs1 .

2. Data owner sets aux = {s2,C2,C3} and CT1 = C1.

3. Data owner specifies an access policy T and uploads {CT1, T, aux} to the cloud.

108

EncS(PK, T, aux)→ CT2

1. Given the secret s2 and access tree T, the cloud follows the encoding process introduced

in Section 4.3.4.1. The secret s2 is encoded as

Encode(s2, T) = CTc

= {(Cl1 = gfl(0),Cl2 = h(Al)
fl(0)),∀l ∈ L}.

2. The cloud computes C4 = C2 · hs2 = hs1+s2 and ∀l ∈ L,

(C ′l1 = Cl1 · C3 = gfl(0)+s1 ,Cl2 = h(Al)
fl(0)).

3. The cloud sets

CT2 = {C4, (C ′l1,Cl2),∀l ∈ L}.

4. The whole ciphertext is CT = {T, CT1, CT2}, which is stored in the cloud storage.

4.4.5 Decryption

The decryption process consists of two phases: cloud side decryption DecS(T,S, CT, SKS)→

CTS and local side decryption DecL(CTS , SKL)→ m.

DecS(T,S, CT, SKS)→ CTS

1. When a data user wants to access encrypted data, he first sends part of his secret key

SKS to the cloud.

109

2. The cloud decodes the ciphertext as Decode(T, CT, SKS) → m1. If the attribute

set S associated with SKS satisfies the access tree T, the decoding result is m1 =

e(g, g)r(s1+s2). Otherwise, m1 =⊥ indicating that the data user does not have the

right to access the encrypted data. The correctness of this decoding algorithm is given

in Section 4.4.6.

3. The cloud computes

m2 = e(D1,C4)

= e(g(α+r)/z,hs1+s2)

= e(g, g)(s1+s2)(α+r)β/z.

4. The cloud sets CTS = {m1,m2}, which is then delivered to the data user.

DecL(CTS , SKL)→ m

1. The data user decrypts the message as

C1 ·m2

m
SKL
1

=
m · e(g, g)α(s1+s2)e(g, g)r(s1+s2)

(e(g, g)(s1+s2)(a+r)β/z)z/β

=
m · e(g, g)α(s1+s2)e(g, g)r(s1+s2)

e(g, g)(s1+s2)(a+r)

= m.

110

4.4.6 Proof of Correctness

In this section, we prove that given an attribute set S that satisfies the access tree T, the

decoding process will decode the ciphertext as m1 = e(g, g)r(s1+s2).

The decoding Decode(·) is a recursive algorithm by decoding each node in T. Let

Decode(T,S, CT, SKS ,x)→ mx be a function to decode a node x in T.

When x is a leaf node, the attribute associated with x is Ax. If Ax ∈ S, we can compute

mx =
e(DAx1,Cx1)

e(DAx3,Cx2) · e(DAx2,C2)

=
e(gr · h(Ax)

rAx , gfx(0)+s1)

e(g
rAx ,h(Ax)fx(0)) · e(h(Ax)

rAx/β ,hs1)

=
e(g, g)r(fx(0)+s1) · e(h(Ax), g)

rAx(fx(0)+s1)

e(g,h(Ax))
rAxfx(0) · e(g,h(Ax))

s1rAx

= e(g, g)r(fx(0)+s1).

If Ax /∈ S, set mx =⊥.

When x is a non-leaf node, denote its children as a set Scx. For each child z ∈ Scx, the

decoding result is mz. If the number of children whose decoding result mz 6=⊥ is smaller

than the threshold value tx, it means the threshold gate associated with x is not satisfied.

Then we set mx =⊥. Otherwise, we can form a valid set Svx of size tx where each children

node z ∈ Svx has a valid decoding result mz. Let Ivx = {ρ(z)|z ∈ Svx} be the index set for

the corresponding nodes in Svx. For index i ∈ Ivx, denote the Lagrange coefficient as

Li(z) =
∏

j∈Ivx,j 6=i

u− i
j − i

.

111

Then we can compute the decoding of node x as

mx =
∏

z∈Svx
m
Li(0)
z

=
∏

z∈Svx
(e(g, g)r(fy(0)+s1))Li(0).

Since in encoding, the secret associated with node z is set as fz(0) = fp(z)(ρ(z)) = fx(i),

mx can be further written as

mx =
∏

z∈Svx
(e(g, g)r(fx(i)+s1))Li(0)

= e(g, g)
r(
∑
i∈Ivx fx(i)Li(0)+s1

∑
i∈Ivx Li(0))

= e(g, g)r(fx(0)+s1).

The second equality comes from polynomial interpolation and the fact that the sum of

Lagrange coefficients equals to 1. When the root of the tree is decoded, we can get

m1 = mR = e(g, g)r(fR(0)+s1) = e(g, g)r(s1+s2).

Thus we have proved that

Decode(T,S, CT, SKS) = m1 = e(g, g)r(s1+s2)

if and only if the attribute set S satisfies T. Otherwise, m1 =⊥.

112

4.5 Complexity and Security Analysis

4.5.1 Complexity Analysis

The encryption and decryption process in ABE system contains mainly two computationally

expensive operations: modular exponentiation (Exp) and bilinear pairing (Pair). Thus we

utilize the number of Exp and Pair as measurements to evaluate the performance of our

scheme.

In ABE system [55], the complexity of encryption and decryption is determined by the

access policy. Suppose there are n attributes involved in the access tree T. For each attribute,

the computation of the control section CTc takes 2 Exp. To compute the encryption section

CTe in the ciphertext, the user has to conduct 2 Exp. Thus the complexity of encryption can

be measured as (2 + 2n) Exp. To decode a leaf node, the user needs to conduct 2 Pair. The

complexity of decoding the tree T is also determined by the threshold gates in the non-leaf

nodes. To decode a threshold gate with threshold value t, the user needs to first select t

valid children to decode and calculate t Exp. Denote the sum of the threshold values of all

the non-leaf nodes as K. The whole decryption process takes (2 + 2K) Pair and K Exp.

In comparison, at local encryption EncL(m, PK)→ {CT1, T, aux}, the data user needs to

conduct 3 Exp. For cloud side encryption EncS(PK, T, aux)→ CT2, it takes (1 + 2n) Exp for

the cloud. In decryption, DecS(T,S, CT, SKS) → CTS takes the cloud (1 + 3K) Pair and

K Exp. The message decryption DecL(CTS , SKL)→ m takes the user 1 Exp. We note that

in the above analysis, the do not count in the complexity to share the secret according the

access tree in the original ABE scheme. In our scheme, the user only needs to specify the

access policy and the cloud will conduct the secret sharing.

In terms of communication, in the original ABE, the data owner has to compute the

113

Table 4.1: Complexity Comparison

Encryption Decryption
Communication Overhead

User Cloud User Cloud

Original ABE [55] (2 + 2n) Exp − (2 + 2K) Pair + K Exp − 2Len2 + (2 + 4n)Len1 + 2LenT

Outsourced ABE 3 Exp (1 + 2n) Exp 1 Exp (1 + 3K) Pair + K Exp 2Len1 + 3Len2 + LenT

encryption section CTe and the control section CTc first and upload them to the cloud

together with an access policy T. We denote the size of an element in group G1 and G2

as Len1 and Len2, respectively. The access policy T is simply a string and denote its size

as LenT. Thus the size of the total ciphertext is 1Len2 + (1 + 2n)Len1 + LenT. When a

data user wants to access the encrypted data, he has to download the ciphertext from the

cloud storage. Thus, the total communication overhead for encryption and decryption is

2Len2 + (2 + 4n)Len1 + 2LenT.

In comparison, in our proposed outsourcing scheme, a data owner only needs to calculate

and upload the encryption section CTe and specify an access tree T. Thus the communication

overhead for encryption is 2Len1 + Len2 + LenT . A data owner needs to download the

partially decrypted message CTS with size 2Len2. Thus the total communication overhead

is 2Len1 + 3Len2 + LenT .

The computational and communication complexity of the original ABE scheme and our

outsourced ABE scheme is summarized in Table 4.1. From the table, we can see that in

general, our scheme introduce O(n) performance gain for mobile users in both encryption

and decryption. In total, the user and cloud together will do more computation. However,

the increase of computation on cloud side which should be insignificant for the cloud.

114

4.5.2 Security Analysis

In this section, we analyze the security of our proposed scheme mainly from three aspects.

That is (i) confidentiality of the encrypted file; (ii) honest access control and (iii) collusion

tolerance. In our analysis, we let a single cloud server provide the partial encryption and

decryption service, which is quite a strong adversary model. As a result, the cloud can hold

the partial encryption and decryption key at the same time. We also assume that the cloud

can be compromised. For example, malicious users can collude with the cloud in order to

gain illegal access to certain files.

4.5.2.1 Confidentiality

Confidentiality is the most basic security requirement for ABE systems. It requires that the

cloud cannot learn the encrypted message. In our scheme, the message m is encrypted as

C1 = m · e(g, g)α(s1+s2), where s2 is known to the cloud while s1 is kept secret by the user.

Thus the only way for the cloud to recover message m is to obtain the secret s1. For each

encryption, the user will generate a different secret s1 independently. As a result, the cloud

can only try to learn s1 from the partial encryption key gs1 . However, given gs1 , finding

the discrete logarithm s1 is computationally infeasible. Thus, we conclude that our scheme

is secure in protecting the confidentiality of the message.

4.5.2.2 Honest Access Control

Besides confidentiality, the users are also concerned whether the cloud can honestly complete

access control. One key feature of our scheme is that all the computations conducted by the

cloud is not “security-sensitive”. That is the input and output of the algorithms implemented

at the cloud side can be publicly known and will not degrade the security. This feature

115

enables the possibility of public audition. A trusted third party can always repeat the

computations conducted by the cloud. As a result, it decreases the chance for the cloud to

successfully cheat in computation.

On the other hand, access control is marked as a service provided by the cloud. Since the

access structure is embedded in ciphertext, a user thus can decide whether he is qualified

to decrypt even before decryption. If a qualified user cannot decrypt the ciphertext, he can

report an error thus degrading the quality of service.

4.5.2.3 Collusion Tolerance

Honest access control enables users to access files as long as their attributes satisfy the policy.

A secure access control scheme should also prevent users whose attributes do not satisfy the

policy from accessing the files. In some situations, malicious users may collude with the

cloud in order to gain illegal access. In this case, a malicious user will give his user secret

key SKL = z
β to the cloud. We note that successfully decoding of access tree will produce

e(g, g)r(s1+s2). Similar to the previous analysis, it is computationally infeasible for the cloud

to derive (s1 + s2) since s2 is kept secret by the data owners. As a consequence, the only

way to derive e(g, g)r(s1+s2) is through decoding of access tree with valid set of attributes.

4.6 Numeric Results

In this section, we present some experiment results to demonstrate the efficiency of our

proposed scheme. The experiment is conducted in an Android phone Samsung GT-I9100

with Android 4.1.2 operating system (we note that it is a relatively old android phone). The

CPU is Dual-core 1.2 GHz Cortex-A9 with 1 GB RAM.

116

We implement our outsourced ABE based on Java Pairing-Based Cryptography Library

(JPBC) [66]. We compare the average CPU time for both encryption and decryption of our

proposed scheme with that of the benchmark implemented in [66]. In the implementation,

each attribute policy is a string where attribute names are connected by “t-of-n” gates.

For example, a policy “A B 1-of-2 C D 2-of-3” means at least 2 of {A∨B,C,D} should

be satisfied. To measure the average performance of decryption, we utilize a simple access

policy in the testing. We let all the leaf nodes be connected by a single root node and set

the root as a (n2 − n)-threshold gate. We let the message m be a single element in G1. In

practice, this m can be the symmetric encryption key for a group of files. Any data user

who can recover the key m can access those files.

In our experiments, we utilize three different security levels as shown in Table 4.2. And

we let the number of attributes vary from 1 to 30.

Table 4.2: Security Levels of ABE

Security level bits L1(80) L2(112) L3(128)

Bit length of r 160 224 256

Bit length of q 512 1024 1536

The experiment results are shown in Fig. 4.3 and Fig. 4.4. In the figures, “ enc” and

“ dec” stands for encryption and decryption, respectively. “ sos” indicates secure outsourcing.

L1,L2,L3 represents three different security levels. “ gain” means the performance gain of

outsourcing in terms of execution time. We can see that the encryption and decryption

time for the original ABE are both approximately linear to the number of attributes. In

comparison, the time for encryption and decryption at the local side almost remains constant

117

regardless of the number of attributes. For instance, for the most secure level L3, encrypting

a message on mobile phone takes around 2 seconds and decryption takes around 0.2 seconds.

In comparison, at level L3, encryption in the original ABE will take more than 100 seconds

for 15 attributes and decryption will take around 28 seconds. Generally, encryption is more

time consuming than decryption under the access policy specified in the experiment.

From the theoretical analysis in Table 4.1, we can see that at the local side, both the

data owner and the data user need to do a constant number of Exp. While in the original

ABE, the computational overhead of encryption and decryption are linear to the number of

attributes n or the sum of the threshold K. Thus the experiment results are consistent with

the theoretical analysis.

4.7 Application Scenarios

In this section, we introduce some application scenarios where our proposed scheme can be

utilized.

From a theoretic point of view, we introduce a systematic way to securely outsource

ABE. We modeled ABE as two highly detached functionalities: encryption and encoding.

We further point out that encoding is a series of cascaded linear secret sharing schemes.

Thus, we propose to utilize the linearity of secret sharing schemes to modify the secret

shares in such a way that users can control the secret to be shared. Currently, most ABE

systems utilize linear secret sharing schemes to construct the expressive access structure.

For instance, the access tree structure as discussed in this paper and the monotone span

programs [67] utilized in [56]. We believe that our proposed scheme can be applied in such

kind of ABE systems utilizing linear system sharing schemes.

118

0 5 10 15 20 25 30
0

50

100

150

200

250

Number of attributes

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)&

 G
a
in

 (
×
 1

)

abe−enc−sos−L1

abe−enc−sos−L2

abe−enc−sos−L3

abe−enc−L1

abe−enc−L2

abe−enc−L3

gain−enc−L1

gain−enc−L2

gain−enc−L3

Figure 4.3: Performance Comparison of Outsourced Encryption

119

0 5 10 15 20 25 30

0

10

20

30

40

50

60

Number of attributes

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

&
 G

a
in

 (
×
 1

0
)

abe−dec−sos−L1

abe−dec−sos−L2

abe−dec−sos−L3

abe−dec−L1

abe−dec−L2

abe−dec−L3

gain−dec−L1

gain−dec−L2

gain−dec−L3

Figure 4.4: Performance Comparison of Outsourced Decryption

120

In practice, out scheme is suitable for the scenarios where mobile users need to store and

share their private data in a fine-grained manner. More and more applications rely on mobile

devices to collet sensitive data and upload the data to a sharing environment such as cloud.

Then qualified users can utilized the data under the control of the data owner. For instance,

in mobile healthcare system, wearable devices can sense and collect user’s health related data

that may be private. In this case, data owner can encrypt the data using efficient symmetric

encryption schemes. A symmetric key may be related to a group of data files. The secret

keys then can be encrypted using our proposed scheme. The whole encryption files are then

uploaded to the cloud. The data owner can specify policies on the encrypted files controlling

who can access the data. For example, he can specify that only his family or physicians in

certain departments of certain hospitals can access the data. Compare to the traditional

public key cryptosystems, the data owner can encrypt the data to a class of users he may

not know in advance instead of a certain person he already knows. Moreover, data users do

not have to request keys from the data owners. This enables the data owners to manage

data off-line.

121

Chapter 5

PassBio: Privacy-Preserving

User-Centric Biometric

Authentication

5.1 Introduction

Biometric authentication has been incredibly useful in services such as access control to

authenticate individuals based on their biometric traits. Unlike passwords or identity docu-

ments used in conventional authentication systems, biometric traits, such as fingerprint, iris

and behavioral characteristics are physically linked to an individual that cannot be easily

manipulated. Also due to such a strong connection, security and privacy of the biometric

templates used in the authentication process is a critical issue [68–70].

Existing biometric authentication systems generally employ a two-phase mechanism [70].

In a registration phase, an end-user submits her biometric template to the service provider

who will store the template along with the end-user’s ID in a central database. In a query

phase, the end-user requesting access to certain services will submit a fresh template to the

service provider for authentication. Based on the end-user’s ID, the service provider will

retrieve the enrolled template for comparison. Only if the two templates are close enough

122

under certain distance metric, the end-user is successfully authenticated.

The above biometric authentication model can be regarded as server-centric. That is, the

service provider will receive end-users’ biometric templates in plaintext and is fully respon-

sible for the security of the templates. Such an approach has several inherent deficiencies.

First, the end-users have to fully trust the service provider to properly handle their tem-

plates; otherwise the security and privacy of the templates are at risk. For example, different

service providers may crosscheck their databases to discover possible duplications, meaning

that the same end-user may get enrolled in different services. As a consequence, the privacy

of the end-user is violated. Second, unlike password, biometric templates are inherently

noisy. As a result, the fresh template to be authenticated is not necessarily the same as

the registered template. Such a property prevents the service provider from keeping the

templates encrypted during the whole authentication process. At some point, the templates

have to be recovered in plaintext for distance computation and comparison. This renders

the adversaries with the opportunity to spy the registered or freshly submitted templates.

To address the above issues, we propose a user-centric model for biometric authentica-

tion. In terms of security, such a user-centric model has several unique features, compared

to the server-centric model. First, biometric templates are encrypted at user side and then

transmitted to the server. The service provider is only able to see encrypted versions of the

registered templates and query templates. Second, the secret keys and the templates are

generated and processed locally thus never leaving the local environment. Third, computa-

tions involved in authentication are all carried out on ciphertext, meaning that no templates

are exposed in plaintext during the authentication. These features can effectively reduce the

possibility for the server as well as outside adversaries to learn any key information of the

biometric templates.

123

To meet the demands of the proposed user-centric model, the underlying encryption

scheme should be efficient and expose as little information as possible. Since the key man-

agement and encryption are carried out at the user side, the encryption scheme should

be computationally efficient. Some existing encryption schemes relying on heavy crypto-

graphic operations such as Predicate Encryption (PE) [23, 24], Inner Product Encryption

(IPE) [25–28] and Homomorphic Encryption (HE) [71, 72] may not be practical in such a

scenario. Also, the encryption scheme should support certain kinds of computation on en-

crypted data. For example, given two encrypted vector, the server should be able to decide

whether the two vectors are close enough (e.g., within a certain threshold) under some dis-

tance metric. The encryption scheme should expose as little template information as possi-

ble for security and privacy. Although some distance preserving transformation schemes [73]

have been proposed for private nearest neighbor search on encrypted data, these schemes

will inevitably expose the distance information between the registered and query template,

which makes them vulnerable to security attacks [73].

In this paper, we propose a new primitive named Threshold Predicate Encryption (TPE).

TPE encrypts two vectors x and y respectively as Cx and Cy. Unlike traditional cryptosys-

tems, the decryption of TPE will only reveal whether the inner product of x and y is within

a threshold θ or not, instead of the plaintext. Therefore, no more information about the

vectors and the inner product are exposed. TPE is fundamentally different from the previous

schemes such as IPE [27] and PE [23]. IPE reveals the inner product of x and y thus the

distance between the registered template and the query template, which makes the scheme

vulnerable to security attacks [73]. PE can only reveal whether the inner product equals

to a threshold or not. It is not flexible enough for biometric authentication since generally

we want to know whether the distance between the two templates is within a threshold. In

124

comparison, our proposed TPE provides an excellent trade-off between information leakage

and flexibility, which makes is uniquely suitable for biometric authentication.

TPE enables a compute-then-compare computational model over encrypted data. In

this model, given ciphertexts, any party is able to compute the distance between the un-

derlying plaintexts and then compare the distance with a threshold. The output is an

indicator showing whether the distance is within the threshold or not. We show that such a

computational model captures the essence of various applications such as privacy-preserving

biometric identification and searching over encrypted data. TPE based schemes are able to

fulfill the requirements of such applications while ensuring the security and privacy of the

data.

The main contributions of this paper are summarized as follows:

• We propose a user-centric biometric authentication scheme enabling end-users to utilize

their biometric templates for authentication while preserving template privacy.

• We propose a new primitive named TPE that can encrypt two vector x and y in such

a manner that the decryption result only reveals whether the inner product of x and

y is within a threshold or not.

• The proposed TPE enables a compute-then-compare computational model over en-

crypted data. We show that such a computational model can be applied to many

privacy-preserving applications such as biometric identification and searching over en-

crypted data.

125

5.2 Related Work

The proposed TPE scheme can be regarded as an instance of functional encryption. That

is, given the decryption key, the decryption process actually produces a function of the

underlying plaintext, instead of the plaintext itself. From an application point of view,

biometric authentication and identification is closely related to finding the nearest neighbor

of a given point (i.e., nn or k-nn search). Thus, in this section, we review some related works

concerning these two topics.

5.2.1 Functional Encryption and Controlled Disclosure

In conventional cryptosystem, the decryption process will eventually recover the underlying

plaintext m. As a result, all information of m is disclosed. Many applications, however,

require only partially disclosure of the information of m. For example, a financial organi-

zation wants to filter out those customers whose transactions exceed certain amount. For

privacy concern, all the transactions of the customers are encrypted. In this case, instead of

decrypting the transactions, a more desirable approach is to determine whether an transac-

tion exceeds certain amount without disclosing the transaction. Such application scenarios

motivate the research of functional encryption [20–22]. In a functional encryption scheme, a

decryption key Sf is associated with a function f . Given the ciphertext C, the decryption

process will evaluate the function f(m), where m is the underlying plaintext. Note that in

this process, the plaintext m cannot be recovered. Thus, by issuing different decryption keys

Sfi , functional encryption can actually implement controlled disclosure of the plaintext m.

Much research effort has been devoted to designing various functions fi for functional

encryption schemes. Representative works are Predicate Encryption (PE) [23,24] and Inner

126

Product Encryption (IPE) [25–28]. In PE, a message is modeled as a vector x and a de-

cryption key is associated with a vector y. The decryption result is meaningful (otherwise, a

random number) if and only if the inner product of x and y is equal to 0. Based on this basic

implementation, different predicates are realized such as exact threshold, polynomial evalu-

ation and set comparison. In contract, IPE schemes will recover the value of inner product

of x and y, without revealing neither x nor y. In the context of controlled disclosure, IPE

discloses more information of the plaintext than PE. This is because with PE, one can only

decide whether the inner product of x and y is equal to a certain value or not while with

IPE, one can know the value of the inner product. In comparison, with TPE, what we seek

is to control the amount of information to be disclosed between those of PE and IPE. As

a result, TPE can efficiently fulfill the task of biometric authentication while exposing less

information about the templates.

5.2.2 Secure k-nn Search

The problem of secure k-nn search can be described as finding the k nearest neighbors (k-nn)

of a given query point among a set of encrypted points. The schemes [73–77] for secure k-nn

search mainly differ in the attack models they considered and the security levels they can

provide. For instance, the scheme in [76] focused on search efficiency at the cost of partial

privacy leakage. Both [73] and [77] considered a stronger known-plaintext attack model. The

basic ideas of these two schemes are quite similar. Given two encrypted points in the data

set and one encrypted query, the comparison process in the schemes is able to determine

which point is closer to the query point. Repeating this comparison process will finally reveal

which point in the data set the nearest neighbor to the query point.

Our proposed TPE scheme utilizes similar techniques as that in [77]. However, the

127

computational models as well as the security requirements are fundamentally different. In

the biometric identification scheme in [77], given a query template, the server is able to

identify the closest template in the database, which is returned to the end-user. After

decryption of the returned template, the end-user is able to calculate the distance and

determine whether the distance is within a threshold. We note that such a computational

model cannot be easily applied to biometric authentication. This is because in biometric

authentication, it is the server that compares the distance with a threshold while the server

is not allowed to decrypt the templates thus calculating the distance. Moreover, secure k-nn

based approaches will inherently expose more information than needed. From k-nn search,

a sever can learn the relative distances between a query template and all the templates

in the database. Such information is more than needed for biometric authentication and

identification, where ideally, the server only needs to know whether the distance exceeds a

pre-defined threshold.

5.3 Problem Statement

5.3.1 System model

We consider an online biometric authentication system consisting of two parties: an online

service provider and a set of end-users. The service provider provides certain online services

such as storage to its authenticated end-users. We assume that every end-user possesses a

device such as a mobile phone that is able to collect the her biometric traits and transform

the traits to biometric templates at the local side. Without loss of generality, we assume

that each biometric template is represented by an n-dimensional vector T = (t1, t2, . . . , tn)

of real numbers.

128

The biometric authentication process consists of two phases. In the registration phase,

an end-user Ui will register with her biometric template Ti = (ti1, ti2, . . . , tin) along with

a unique identifier IDi. We note that the template Ti is sent to the service provider in

encrypted form denoted as Enc(Ti) and IDi can be any pseudorandom string that uniquely

identifies Ui within the system. The tuple 〈Enc(Ti), IDi〉 for the end-user Ui is then stored

at the server side by the service provider. In the query phase, when the end-user Ui desires

to authenticate herself to the service provider, Ui will locally generate a fresh biometric

template T′i and send the tuple 〈Enc(T′i), IDi〉 to the service provider, where Enc(T′i) is the

encrypted form of T′i. On receiving the query, the service provider will retrieve the record

〈Enc(Ti), IDi〉 through searching IDi in the server. Then distance between Ti and T′i are

computed based on Enc(Ti) and Enc(T′i). If the distance is within a certain threshold θ,

then the service provider will view the end-user Ui as a valid user. We also note that during

the query phase, the service provider is only able to derive whether the distance between Ti

and T′i is within the threshold θ, instead of the exact distance between them.

5.3.2 Threat model

We assume the end-users are fully trusted in the registration phase. That is, they will

honestly generate their own biometric templates and register at the service provider using

the encrypted templates. In the query phase, we assume the encryption and decryption

algorithms are publicly known. However, the secret keys are generated and kept secret at

the local side throughout the whole authentication process. We do allow the adversaries

to submit their own biometric templates through the local device. In this case, the local

device acts as an oracle to encrypt templates and submit the encrypted templates to the

service provider. The service provider can be honest-but-curious or malicious. In the former

129

case, the service provider will honestly follow the protocol but will try to obtain any useful

information of end-users’ biometric templates based only on the encrypted templates. In

the latter case, the adversaries may collude with the service provider such as sharing with

the service provider the invalid templates that are submitted through the local devices. In

summary, depending on the different capabilities of the service provider and the adversaries,

we propose two attack models as follows.

1. Passive Attack: the service provider is able to know the registered record 〈Enc(Ti), IDi〉

for end-user Ui and observe a series of m submitted queries Enc(T
j
i), j = 1, 2, . . . ,m.

However, the service provider does not know the underlying templates T
j
i in plaintext.

Such an attack model is also known as the Ciphertext-Only-Attack in cryptography.

2. Active Attack: besides the registered record 〈Enc(Ti), IDi〉 for end-user Ui, the service

provider is able to observe a series of m submitted queries Enc(T
j
i) as well as the

corresponding plaintext T
j
i , j = 1, 2, . . . ,m. Such an attack model corresponds to the

Chosen-Plaintext-Attack in cryptography. In practice, an adversary may submit her

own templates through the local device. The service provider can then collude with

the adversary to obtain the queries in plaintext as well as the encrypted queries.

Informally, the security requirement of biometric authentication is that the service provider

is unable to learn any information about the templates than allowed through the authen-

tication process. In particular, it should be possible for the service provider to determine

whether the distance between two templates is within a threshold or not;but infeasible to

derive any key information about the registered template as well as the query templates. We

will formally define the security against both attacks in Section 5.6.

130

5.4 Proposed Threshold Predicate Encryption Scheme

A user-centric privacy-preserving biometric authentication scheme requires that an end-user

is able to encrypt her registered biometric template as well as the freshly generated query

templates. For the service provider, given two encrypted templates, it should be able to

determine the distance between the two templates and compare the distance with a threshold.

In this section, we introduce Threshold Predicate Encryption (TPE) that can fulfill the

functionalities required by such a biometric authentication system.

5.4.1 Framework

Our proposed privacy-preserving biometric authentication scheme is based on the new prim-

itive named Threshold Predicate Encryption (TPE). Generally speaking, TPE can be re-

garded as an instance of functional encryption [20,21], where decryption will output a func-

tion of the plaintext instead of the plaintext itself. The framework of functional encryption

can be briefly summarized as follows. A plaintext vector x is encrypted as Cx and a secret

key associated with a vector y is generated as Sy. Given Cx and Sy, the decryption will give

the value of f(x, y), where f is a pre-defined function. Two notable instances of functional

encryption are Inner Product Encryption (IPE) [27] and Predicate Encryption (PE) [23].

The function f in IPE is the inner product. That is, the decryption of IPE will give the in-

ner product of x and y. In comparison, PE will produce a meaningful decryption result (e.g.,

a flag number 0) if and only if the inner product of x and y is 0. Otherwise, the decryption

result is just some random number. An important predicate is that the inner product of x

and y equals 0. Based on this, an extension of PE can implement exact threshold predicate

encryption, meaning that the decryption result is meaningful only if the inner product of x

131

and y is equal to a pre-defined threshold θ.

At the high-level view, functional encryption aims at revealing only limited information

about the plaintext. As introduced above, IPE reveals the inner product of the plaintext

and a vector. PE reveals whether the inner product is equal to 0 (or a threshold) or not.

In application scenarios like biometric authentication, the amount of information revealed

by IPE and PE are both inappropriate. As shown in our latter analysis, the inner product

of x and y can be modeled as the distance between the registered template and the query

template. As a result, IPE will give the exact distance between the two templates, which

exposes too much information. With PE, one can decide whether the distance of the two

templates is equal to a certain threshold, which is not sufficient for authentication purpose.

What we need is an functional encryption scheme that can determine whether the distance

between the two templates is within a threshold or not. Specifically, a TPE is composed of

five algorithms:

• TPE.Setup()→ param: the set up algorithm generates system parameters param.

• TPE.KeyGen(λ)→ sk: on input of a security parameter λ, the key generation algorithm

will generate a secret key sk.

• TPE.Enc(sk, x)→ Cx: given a vector x and the secret key sk, the encryption algorithm

will encrypt x as ciphertext Cx.

• TPE.TokenGen(sk, y)→ Ty: given a vector y and the secret key sk, the token genera-

tion algorithm will generate a token Ty for y.

• TPE.Dec(Cx,Ty) → Λ = {0, 1}: given the ciphertext Cx and the token Ty, the de-

132

cryption algorithm will output a result Λ satisfying

Λ =

1, x ◦ y ≤ θ

0, otherwise,

where x ◦ y is the inner product of x and y.

5.4.2 Design of TPE

While our proposed TPE scheme utilizes some similar techniques as the biometric identifi-

cation scheme in [77], the settings of biometric authentication are fundamentally different.

In particular, our proposed TPE is designed to address the following challenges.

Challenge 1 The system and threat model of outsourced biometric identification and bio-

metric authentication are different. In biometric identification, the database owner possesses

the encryption and decryption keys. The aim of the server is to identify the template clos-

est to the query template. Then the database owner will retrieve the template, decrypt it

and compare the distance to a threshold. However, in our scenario, the server does not

possess the decryption key thus is unable to decrypt the encrypted template and calculate

the distance. What we need is an encryption scheme that can directly determine whether

the distance between the query template and the registered template is within the threshold

based only on ciphertexts.

Challenge 2 The computation involved in biometric identification and authentication are

different. In biometric identification, the sever needs to compute and compare the distances

between a query template and all the templates in the database. However, in biometric

133

authentication, we need to compute the distance and compare it with a threshold.

Challenge 3 The decryption process in [77] will output a randomized distance between a

query template and registered template. From this randomized distance, it is not easy to

directly compare it with a threshold without first recovering the actual distance.

To address the above challenges, we first embed the threshold into the registered tem-

plates. To enhance security, we pad the templates with one-time randomness in a special

manner and make random permutation to both the query template and registered tem-

plate. After all these transformations, the decryption process can derive dist(x, y)−θ, where

dist(x, y) denotes the distance between a registered template x and a query template y.

However, if we output this value directly, it is inevitable that the exact value of dist(x, y)

will be exposed. Therefore, we introduce more one-time randomness into the encrypted

templates. As a result, the decryption result becomes αβ(dist(x, y) − θ), where α and β

are positive one-time random numbers associated with x and y, respectively. This design

reveals only adequate information to determine whether the distance between is within the

threshold and at the same time conceals the exact value of the distance.

5.4.3 Construction of TPE

Follow the aforementioned design of our threshold predicate encryption scheme, we give a

detailed implementation in Protocol 8.

Now, we prove the correctness of the proposed TPE scheme. For a square matrix Y , the

trace Tr(Y) is defined as the sum of the diagonal entries of Y . Given an invertible matrix

M1 of the same size, the transformation M1YM
−1
1 is called similarity transformation of Y .

We have the following lemma from linear algebra.

134

Lamma 5.1 The trace of a square matrix remains unchanged under similarity transforma-

tion. That is, Tr(Y) = Tr(M1YM
−1
1).

Based on Lemma 5.1, we have the following theorem.

Theorem 5.1 For the proposed TPE scheme in Protocol 1, Λ← TPE.Dec(Cx,Ty) equals 1

if and only if x ◦ y ≤ θ, where x ◦ y denotes the inner product of x and y.

Proof Following the procedure in Protocol 8, the vector x is transformed to Cx = M1SxXM2.

The vector y is transformed to Ty = M−1
2 Y SyM

−1
1 . Then we have CxTy = M1SxXY SyM

−1
1 .

From Lemma 5.1, we have I = Tr(CxTy) = Tr(SxXY Sy). Since Sx and Sy are selected as

lower triangular matrices, where all the diagonal entries are set to 1, the diagonal entries of

SxX and Y Sy are all the same as those of X and Y . Thus we have I = Tr(XY). Since X

and Y are diagonal matrices, I = x′′ ◦ y′′ = x′ ◦ y′ = αβ(x ◦ y − θ). Since α and β are

positive, we have Λ = 1 (i.e., I ≤ 0) if and only if x ◦ y ≤ θ.

5.5 Biometric Authentication Under Different Distance

Metrics

In this section, we will first introduce some necessary background on biometric authentica-

tion. Then, we show how to construct privacy-preserving biometric authentication systems

utilizing our proposed TPE scheme under different distance metrics.

5.5.1 Backgrounds

The first critical step in biometric authentication is to efficiently transform biometric traits

into templates that are easy for computation. Such a process is often called feature extraction.

135

The extracted features are often represented as feature vectors. Depending on the biometric

traits, the process as well as the result of feature extraction could differ. For example, a

fingerprint can be transformed to a FingerCode [78–80] that is a vector of integers with

dimension 640. An Iris image is often represented as a binary string of 2048 bits. In the

following, we briefly review the feature extraction process of fingerprints. The details can be

found in [79,80].

As illustrated in Fig. 5.11, given an image of a fingerprint, the first step is to identify

a reference point. Then the region of interest around the reference point is divided into

5 bands and 16 sectors. Those sectors are further normalized and filtered by 8 different

Gabor filters. At last, the features are extracted from each filtered image. The final result

is a 640-dimensional vector (FingerCode) representing each fingerprint image, where each

entry in the vector is an 8-bit integer. An import feature of the FingerCode is that it is

translation invariant, meaning that translation of the fingerprint image would not result in

much difference in the FingerCode. However, FingerCode is not rotation invariant. As a

result, rotation of images will often cause different FingerCodes. To resolve this issue, a user

is often associated with several (for example, 5) FingerCodes captured from rotated images

in the database. In the following discussion, we assume that at the local side, there exists a

sensor that can capture the end-user’s biometric trait and transform it to a multi-dimensional

vector.

In a user-centric biometric authentication system, an end-user will send her encrypted

biometric template to the service provider in the registration phase. In the query phase,

the end-user will encrypt a freshly generated template and send it to the service provider

for authentication usage. Thus, a critical issue is to decide whether two templates are

1This figure is partially obtained from [80].

136

close enough. These problem is reduced to measuring the distance of two vectors in a

metric space and compare the distance to a certain threshold. Such a compute-then-compare

computational model on encrypted data is well suited for our proposed TPE scheme.

Furthermore, different biometric templates often rely on different similarity measure-

ments. For example, in Iris recognition, the templates are represented by binary vectors

and the similarity is generally measured by Hamming distance. For fingerprint, the Eu-

clidean distance is normally utilized to measure the similarity. Our proposed TPE scheme

is highly flexible in that it can be applied to measuring similarity based on different dis-

tance metrics. As a result, TPE can be utilized as the critical component to build different

privacy-preserving biometric authentication systems. In the rest of this section, we will illus-

trate how to utilize TPE to construct a biometric authentication scheme based on Euclidean

distance, Hamming distance and so on.

5.5.2 Euclidean Distance

Euclidean distance is often used to measure the similarity between vectors of non-binary

entries. A FingerCode representing a fingerprint is an n-dimensional vector, where each

entry is an l-bit integer. Typically, n = 640 and l = 8. We denote a registered FingerCode

as x = (x1,x2, . . . ,xn) and a query FingerCode as y = (y1, y2, . . . , yn). Let dE(x, y) be the

Euclidean distance between x and y. Then we have

d2
E(x, y) =

n∑
i=1

x2
i +

n∑
i=1

y2
i − 2x ◦ y,

where x◦y is the inner product of x and y. Let θ be a pre-defined threshold. Our goal is to ex-

tend x and y to vectors x′ and y′ respectively such that the relation d2
E(x, y) < θ2 can be de-

137

termined through computing x′◦y′. In light of this, we let x′ = (2x1, 2x2, . . . , 2xn,−
n∑
i=1

x2
i , 1, θ2)

and y′ = (y1, y2, . . . , yn, 1,−
n∑
i=1

y2
i , 1). Then we have

x′ ◦ y′ = 2x ◦ y + θ2 −
n∑
i=1

x2
i −

n∑
i=1

y2
i

= θ2 − d2
E(x, y).

To secure the biometric templates, we further add different randomnesses (i.e., α, β, rx and

ry) to the extended vectors as shown in Protocol 9. The rest of the encryption procedures

is then the same as those in TPE.Enc and TPE.TokenGen.

As presented in Protocol 9, during the registration phase, an end-user encrypts his tem-

plate x as Cx and registers Cx along with her identity at the service provider. During the

query phase, the end-user encrypts a freshly generated template y as Ty and sends Ty to

the service provider. Then the service provider runs TPE.Dec with inputs Cx and Ty and

outputs an authentication result. The correctness of this scheme is guaranteed by Theorem

5.1, with slight adaption to Euclidean distance. That is Λ = Authenticated if and only if

dE(x, y) ≤ θ.

5.5.3 Distance in Hamming Space

From the construction of Euclidean distance, we know that the critical part in computing the

distance through inner product lies in proper design of the extended vectors. Thus, in the

following, we will focus on how to design the vectors in order to compute different distances.

Hamming distance is a popular metric to measure the similarity of binary template such

as Iris. Now, we assume the registered template and query template are x = (x1,x2, . . . ,xn)

138

and y = (y1, y2, . . . , yn) respectively, where xi and yi are 0 or 1. To calculate the Hamming

distance dH(x, y) between x and y, we first map the 0’s in x and y to −1 and map 1’s to 1.

Then we have

2dH(x, y) = n− x ◦ y.

The condition dH(x, y)− θ ≤ 0 is equivalent to x ◦ y + 2θ− n ≥ 0. Thus, we need to design

vectors x′ and y′ such that x ◦ y + 2θ − n can be represented as x′ ◦ y′. In light of this, we

let x′ = (βx1, βx2, . . . , βxn, β(2θ−n), rx, 0) and y′ = (αy1,αy2, . . . ,αyn,α, 0, ry). Then the

rest of the authentication process is similarly as in Protocol 9.

In fact, the Hamming distance between two binary vectors is just one specific distance

metric. There are many other different metrics such as Minkowski distance, Sokal & Mich-

ener similarity and Sokal & Sneath-II [81] introduced for different applications. Using our

proposed TPE scheme, we are able to evaluate such metrics and compare them to a pre-

defined threshold. The critical part is to properly design the vectors x′ and y′ given two

binary vectors x and y.

5.6 Security Analysis

In this section, we analyze the security of PassBio under both passive attack and active

attack as defined in Section 5.3. PassBio is designed so that the service provider is unable

to learn any critical information about the registered and query templates other than what

is already revealed by the decryption process, given an encrypted registered template and a

sequence of encrypted query templates.

Since PassBio is based on our proposed TPE, we will focus on the security analysis of

TPE in the following discussion. An important difference between TPE and some traditional

139

symmetric encryption schemes is that it is the service provider (could be malicious) that

carries out the decryption process. And the decryption process will reveal whether the

inner product is within a threshold or not. Therefore, in the security analysis of TPE, it is

necessary to analyze the security of both the encryption and decryption process, which will

be discussed separately in the following sections.

5.6.1 Encryption Security

We first give a sketch of encryption security analysis. We will first utilize two experiments

to model the ability of the adversary in passive attack and active attack, respectively. Then,

we define the security of TPE under both passive and active attacks. At last, we prove the

security of TPE under active attack since it implies the security under passive attack.

5.6.1.1 Security Against Passive Attack

In our scenario, the passive attack corresponds to the ciphertext-only-attack [82], where an

adversary A observes a sequence of ciphertext. We define an experiment Passivemult
A,TPE(λ) to

simulate passive attacks, where the superscript mult denotes that the adversary A is able to

submit multiply messages instead of one single message.

Based on Passivemult
A,TPE(λ), we now define the security of TPE under passive attack.

Definition 5.1 The proposed TPE scheme is secure against passive attack if for all polynomial-

time adversary A, there is a negligible function negl such that the probability

|Pr(Passivemult
A,TPE(λ) = 1)− 1

2
| ≤ negl(λ).

Remark In the above security definition, we only use the token generation function TPE.TokenGen

140

as a representative. This is because the operations involved in TPE.Enc and TPE.TokenGen

are almost the same. The security analysis for TPE.Token applies for TPE.Enc. However,

in our security proof, we will show that both TPE.Enc and TPE.TokenGen meet the security

requirement.

Based on Definition 1, we have the following theorem.

Theorem 5.2 The proposed TPE scheme is secure against passive attack.

We will omit the proof of Theorem 5.2. Instead, we will prove security against active attack

since it implies the security under passive attack.

5.6.1.2 Security Against Active Attack

Under the active attack, the service provider is able to observe a sequence of pairs of query

templates as well as their encrypted version. This can happen when, for example, some

adversaries submit their templates and collude with the service provider. This attack sce-

nario corresponds to the Chosen-Plaintext-Attack (CPA) in cryptography. Accordingly, an

encryption scheme has CPA-security if it is secure against CPA. To prove that TPE has

CPA-security, we model the active attack using and experiment ActiveA,TPE(λ). We define

CPA-security for TPE as follows.

Definition 5.2 The proposed TPE is secure against active attack if for all polynomial-time

adversary A, there is a negligible function negl such that the probability

|Pr(ActiveA,TPE(λ) = 1)− 1

2
| ≤ negl(λ).

Remark Different from the passive attack experiment, the adversary will continually have

141

oracle access to the token generation function. This models the situation where the adversary

is able to observe multiple pairs of messages and their ciphertexts.

Remark Unlike the passive attack experiment where the adversary submits multiple pairs

of messages, we only discuss the situation where the adversary submits one pair of messages

(m0,m1) to the challenger. This is because it is proved in [82] that any private-key encryption

scheme that is CPA-secure is also CPA-secure for multiple encryptions. As a result, it is

sufficient to prove that TPE is CPA-secure for one single encryption.

Theorem 5.3 The proposed TPE is secure against active attack.

Proof We need to prove that the adversary A cannot distinguish TPE.TokenGen(sk,m0)

and TPE.TokenGen(sk,m1), even given the oracle access to TPE.TokenGen(sk, ·).

Consider the encryption of message m0. Suppose m0 = (m0,1,m0,2, . . . ,m0,n) is an n-

dimensional vector. Follow the procedure in TPE.TokenGen, the vector m0 is first extended

to a vector m′0 = (αm0,1,αm0,2, . . . ,αm0,n,α, 0, r0), where α and r0 are random numbers.

The vector m′0 is then permuted as m′′0 , which is then extended to an (n + 3) × (n + 3)

diagonal matrix Y0. Then, the ciphertext for m0 is c0 = M−1
2 Y0S0M

−1
1 , where S0 is a

random lower triangular matrix. We note that the product of Y0 and S0 will produce a

lower triangular matrix denoted as G0, with m′0 as the diagonal. Now we focus on the

product c0 = M−1
2 G0M

−1
1 .

Denote the entries in M−1
2 and M−1

1 as aij and bij , respectively, where i, j = 1, 2, . . . ,n+

3. For matrix G0, denote its non-zero entries in the lower triangular part as sij , where i > j

and i, j = 1, 2, . . . ,n+ 3. Then, by law of matrix multiplication, each entry cij in c0 can be

142

written in the form of

cij =
∑

[f1
ij(aij , bij)mi + f2

ij(aij , bij)α

+f3
ij(aij , bij)r0 + f4

ij(aij , bij , sij)], (5.1)

where f tij , t = 1, 2, 3, 4 are polynomials. Equation (5.1) is obtained by summing up each

terms of mi, α and r0, respectively.

Now, observe Equation (5.1) in the context of the experiment ActiveA,TPE(λ). We know

that aij and bij are fixed. a, r and sij are one-time random numbers. mi are chosen and can

be controlled by the adversary A. In step 4) of experiment ActiveA,TPE(λ), the adversary

A can select different mi each time and observe the value of cij since A continuously has

oracle access to TPE.TokenGen(ski, ·). However, since a, r and sij are one-time random

numbers, the polynomials f2
ij(aij , bij)α, f3

ij(aij , bij)r and f4
ij(aij , bij , sij) all looks random

to A. As a result, the summation cij looks random to A. This means that, for any message

m chosen by A and its corresponding ciphertext, A cannot distinguish which message is

actually encrypted. Thus, the adversary A can only output b′ by randomly guessing. Thus

we have

|Pr(ActiveA,TPE(λ) = 1)− 1

2
| ≤ negl(λ).

5.6.2 Decryption Security

The decryption function TPE.Dec outputs an intermediate result denoted as R = CxTy and

a final result I = Tr(R). In the following security analysis, we discuss what information can

be learned by the service provider from R and I.

143

As in Protocol 8, R = M1SxXY SyM
−1
1 , where Sx and Sy are random matrices. Recall

the proof for Theorem 5.3, where c0 = M−1
2 G0M

−1
1 . Since matrix G0 and XY follow the

same construction, it is obvious that the transformation R = M1SxXY SyM
−1
1 also has

CPA-security. In other words, the transformation is semantically secure, meaning that the

adversary is not able to derive any key information of X and Y from R.

Now, for the final result I = αβ(x ◦ y − θ), we define a decryption oracle O as follows.

Theorem 5.4 The oracle O does not have CPA-security.

Proof We provide a proof sketch since the CPA-security proof process follows that for

Theorem 5.3.

An adversary A is able to continuously have access to O. A will submit yi at her own

choice and observe the output γi. Since α and β are positive, it is possible that there exists

y1 and y2 such that γ1 > 0 while γ2 < 0. This means that, in an experiment defined

for CPA-security, the adversary A is able to distinguish two ciphertext for two submitted

messages. By definition, the oracle O does not have CPA-security.

Theorem 5.4 states that the final result I actually reveals some information about x and

y. This result is expected in our design since we want to determine if the inner product

of x and y is within a threshold θ or not from the final result I. However, we note that

in our proposed TPE, every vector y is associated with a one-time independent random

number α and every vector x is associated with a one-time random number β. As a result,

in the active attack, what an adversary can observe through decryption is a series of results

Ii = αiβ(x ◦ yi − θ). Since αi are selected independently, the final results Ii only reveals

whether αiβ(x ◦ y − θ) is positive or not. No more key information can be derive from Ii.

144

5.6.3 The Effect of Randomness on Security

Besides the randomly generated long-time keys (i.e., M1, M2 and π), we also introduce

different one-time randomness in the encryption scheme. At the high-level view, the one-

time randomness provides TPE with CPA-security similar to that of the one-time pad. From

a cryptographic point of view, the one-time pad encryption scheme provides perfect security.

However, it is not practical since the one-time secret key has the same length as the message

itself. The most notable difference between TPE and the traditional encryption schemes is

that TPE actually does not decrypt the message. Instead, TPE evaluate a function of the

ciphertext in order to obtain the function value of the plaintext. As a result, TPE does not

require the one-time randomness in the decryption process. In this sense, TPE can achieve

the security comparable to the one-time pad while avoiding the impractical key management

requirement.

It is important to understand the effect of different randomness on security. We briefly

categorize the one-time randomness utilized by TPE into three types.

• Type I: result-disguising randomness. When extending the vectors in both TPE.Enc

and TPE.TokenGen, we use random β and α respectively to multiply with each entry

of x and y. Since α and β will remain in the decryption result, we name it as result-

disguising randomness.

• Type II: vector-extension randomness. In both TPE.Enc and TPE.TokenGen, we extend

the vector and pad it with a random r.

• Type III: matrix-multiplication randomness. In both TPE.Enc and TPE.TokenGen, we

multiply the extended matrices (X and Y) with random matrices (Sx and Sy).

145

These one-time randomnesses together ensure the CPA-security of the encryption process of

TPE as analyzed in Section 5.6.1. The main function of decryption is to evaluate the trace

of the matrix. We note that the trace function will cancel Type II and Type III randomness.

However, Type I randomness will remain in the decryption result. This is important since it

will only reveal partial information of the plaintext, which is just adequate for the purpose

of biometric authentication. We will further demonstrate the effect of Type I randomness in

Section 5.7.1.

5.7 Other Applications of TPE

Our proposed threshold predicate encryption scheme enables a compute-then-compare com-

putational model over encryption data. That is, given two encrypted vector x and y, an

untrusted party is able to determine whether the inner product of x and y is greater than

or within a threshold θ. No other key information about the value of x, y or x ◦ y is ex-

posed. Previously, we also showed that utilizing the inner product of x and y, we are able

to compute many distance and similarity metrics. Such properties of TPE are critical for

many applications that require data security and privacy.

5.7.1 Improved Security for Outsourced Biometric Identification

Outsourcing of different computational problems to the cloud while preserving the security

and privacy of the outsourced problem has becoming a new trend. Many previous works have

considered secure outsourcing of different problems [8,77,83–86]. In [77], a secure outsourcing

scheme is proposed for biometric identification. The system models of outsourced biomet-

ric identification and biometric authentication are fundamentally different. In outsourced

146

biometric identification, a data owner possesses a database of users’ biometric templates.

The goal of biometric identification is that given a query template, the data owner needs to

identify a user to whom the query template belongs to.

To protect the security and privacy of biometric templates, [77] proposed an outsourcing

scheme where the database owner will first encrypt the templates and then outsource the

encrypted data to the cloud. Specifically, the data owner encrypts a biometric template x

as Cx using a symmetric key sk. For a given query template z, it is also encrypted as Cz

using the same key sk. The scheme is designed in such a manner that given two encrypted

templates Cx and Cy and a query template Cz, the cloud is able to determine which template

(x or y) is closer to z, without learning any key information about x, z and y. By repeating

this process, the cloud is able to identify the template x that is closest to z. Then the

encrypted version Cx is returned to the data owner, who can decrypt Cx to obtain x and

calculate the actual distance between x and z. Thus, the data owner can finally decide

whether x and y are close enough such that they belong to the same person.

There are mainly two security and privacy issues regarding the above scheme. First, the

registration phase is vulnerable to the registration attack [87], since an adversary (i.e., the

cloud) is able to inject known templates into the database. During decryption, the cloud is

able to derive the following equation (i.e., Equation (3) in [87]):

bci =
(Tr(Y

′
i B
′
c)− Tr(X ′iB

′
c))− (yi(n+1) − xi(n+1))

yii − xii
,

where bci is the i-th entry in a submitted query template bc. Since Tr(Y
′
i B
′
c) and Tr(X ′iB

′
c)

are computable and x and y are selected by the cloud, the cloud is able to recover bci.

Repeating such attack will finally recover the whole query template bc as demonstrated

147

in [87].

Second, from the decryption result, the cloud is able to learn more information than

needed. In particular, the cloud is able to determine which one of any two encrypted template

is closer to the query template. By repeating this process, the cloud can actually rank all

the templates by their distances to the query template. This unnecessarily reveals more

information than what is needed in biometric identification.

We now show that our proposed TPE scheme can address these two issues. The security

vulnerability of the scheme in [77] was caused due to lacking of Type I randomness as defined

in Section 5.6.3. The trace function Tr(·) will cancel the Type III randomness, resulting in

Equation (3) in [87].

Our proposed TPE scheme can be directly utilized in outsourced biometric identifi-

cation. In the encryption part, each registered template x is encrypted with TPE.Enc.

A query template z is encrypted with TPE.TokenGen. The decryption process will give

αzβx(dist2(x, z)−θ2), where αz and βx are one-time random numbers associated with z and

x respectively. As a result, Equation (3) in [87] is replaced by

bci =
(Tr(PB

′
c)− Tr(QB

′
c))− (pn+1 − qn+1)

αcβx(pn − qn)
.

Note that αc is a one-time random number associated with a query bc and βx is a one-time

random number associated with x. Thus, although the adversary is able to insert known

templates into the database, it cannot derive bci due to the one-time randomness. In other

words, the outsourced biometric identification scheme based on TPE is able to defend against

registration attack.

For the second privacy issue, the decryption result αzβx(dist2(x, z)− θ) will only reveal

148

whether the distance between the query z and the registered template x is within a threshold

or not. Since βx is a one-time randomness associated with each registered template x, the

relative distance information is concealed. As a result, the cloud is not able to rank all the

registered templates according to the distance to the query template.

5.7.2 Searching Over Encrypted Data

With the development of cloud computing and storage, there is a clear motivation for search-

ing over encrypted data [88–91]. For example, a medical institution may store its medical

data in the cloud. To ensure security of the data, the institution chooses to encrypt all the

data before outsourcing. Meanwhile, the institution wishes to maintain the searching ability

over the encrypted data in order to retrieve the desired data files. The proposed TPE is a

promising solution for searching over encrypted data. In the following, we discuss how to

utilize TPE to implement different searching functionalities.

5.7.2.1 Set Intersection

We assume that a file Fi is indexed by a set of keywords Si. The files and their associated

keyword sets are encrypted and outsourced to the cloud. A search query consists of a set

of keywords Sj . Given the search query, the cloud will return the file Fi if the overlap of

keyword sets Si and Sj exceeds a certain threshold θ. That is |Si ∩ Sj | > θ.

The above set intersection search function can be implemented through TPE as follows.

Suppose the universe of keywords is the set S with size n. Fix the order of the keywords

within S. Then, an index Si can be formulated as an n-dimensional binary vector xi, where

xti = 1 means that the t-th keyword in S appears in Si. The vector xi for file Fi is encrypted

using TPE.Enc. Each file is then encrypted using standard symmetric encryption schemes

149

such as AES. The encrypted files and index are outsourced to the cloud. For a search query

Sj , a vector xj can be formulated in a similar manner. Then a search token can be generated

using TPE.TokenGen. With this formulation, it is obvious that |Si ∩ Sj | = xi ◦ xj , where

xi ◦ xj denotes the inner product of xi and xj . With TPE, the cloud is able to identify the

files whose associated indices satisfy xi ◦ xj > θ while not learning any useful information

about the indices.

5.7.2.2 Weighted Sum Evaluation

For many numeric data, it is significant to evaluate the weighted sum of the data record

with different weights. For example, the grades of each subject for a student form a vector

Gi. An evaluator wants to evaluate the performance of the students via some criteria. Each

criterion can be formulated as the weighed sum of the grades. The different weights reflects

different emphasis on the subjects.

We assume that an administrator possess the grades for all the students. For privacy

issues, all the grades are encrypted using TPE.Enc and stored in an external server. An

evaluator desires to identify those students whose performance meets certain standard. In

this scenario, the evaluator can submit a vector of weights Wj to the administrator, who will

then generate a search token for the evaluator through TPE.TokenGen. The evaluator can

submit the token generated for Wj to the sever and search over the encrypted grades. The

server is then able to identify the students whose grades satisfy Gi ◦Wj > θ.

150

5.8 Performance Evaluation

In this section, we evaluate the performance of PassBio. First, we give detailed analysis

of both computational and communication complexity. Then, some numeric results are

presented for the proposed TPE through simulation.

5.8.1 Complexity Analysis

As shown in Protocol 9, at local side an end-user needs to run the TPE.KeyGen, TPE.Enc

and TPE.TokenGen algorithms. The service provider needs to run the TPE.Dec algorithm

for every query. It is obvious that the computational bottleneck of these algorithms lies in

matrix multiplication or matrix inversion. Thus, in the following analysis, we will focus on

matrix multiplication and inversion. Without loss of generality, we assume that the matrices

involved in the computation all have the same dimension n× n.

For the function TPE.KeyGen, two random matrices are generated and two matrix inver-

sions need to be calculated. Note that the setup phase is generally a one-time process. That

is, TPE.KeyGen needs to be executed by the end-user only once. The function TPE.Enc and

TPE.TokenGen will both take 3 matrix multiplications. As a result, they have a complexity

of O(n3), without optimization for matrix multiplication.

In the function TPE.Dec, the trace of CxTy needs to be computed. There is no need

to calculate the matrix multiplication before evaluating the trace. Only computing of the

diagonal entries is needed. Thus, TPE.Dec has a complexity of O(n2).

In terms of communication overhead, assume all the matrix or vector has the same size

l. In the registration phase, the end-user needs to submit the encrypted template Cx to the

service provider. Thus the communication overhead for registration is n2l. Similarly, the

151

communication overhead for the query phase is also n2l.

5.8.2 Efficiency Improvement

The above complexity analysis shows that the computational bottleneck of both TPE.Enc and

TPE.TokenGen lie in matrix multiplication. For resource-constrained devices such as mobile

phones, the computation of matrix multiplication with high dimensions is still expensive, if

not impossible. In the following, we will introduce two typical techniques that can reduce

the computational overhead for mobile devices.

5.8.2.1 Dimension Reduction

The complexity of normal matrix multiplication is O(n3), where n is the dimension of the

matrices. Thus, a straight forward way to reduce the complexity is to reduce the dimension

of the matrices. For applications such as biometric authentication and identification, it

is critical to preserve the identification accuracy while reducing the dimension. Several

works [92–94] have been devoted to reducing the sizes of biometric templates. In [92],

two techniques are introduced to decimate the FingerCode representation. The tesselation

reduction approach reduces the dimension of FingerCode from the feature generation phase,

which is illustrated in Section 5.5.1. Specifically, given a fingerprint image, this approach

will reduce the number of sectors of the tessellation. The other approach is to directly apply

some general dimension reduction methods such as PCA to the obtained FingerCodes. In

this way, the most compact representation of FingerCode is found for a specific dataset.

We note that the above two approaches will both degrade the identification accuracy,

however, to a satisfying level. In the experiments [92], the length of FingerCode vary from

640 to 8 in the tesselation approach. For PCA approach, the dimension of FingerCode varies

152

from 64 to 4. Generally speaking, the shorter the FingerCode is, the worse the accuracy

would be. However, the experimental result demonstrated that FingerCode of dimensions 96

(from tesselation reduction) and 8 (from PCA) can achieve a satisfactory accuracy compared

to that of the original 640. We also note that the approaches in [92] quantized each entry

in FingerCode resulting a reduced accuracy. However, our proposed TPE scheme can be

directly utilized to real numbers. Thus, TPE is applicable to the non-quantized case in [92],

which has a higher accuracy.

5.8.2.2 Online/Offline Computation

The idea of online/offline computation [60, 95, 96] is to divide a computational expensive

process into an online phase and an offline phase. During the offline phase, some pre-

computation is done without given the input. During the online phase, given the input,

it is relatively easy to padding the offline computation result in order to generate the final

result. Typically, the offline computation is carried out when the mobile devices are idle or

getting charged. Thus, such an approach can reduce the overall responding time and battery

consumption.

Our proposed TPE scheme can utilize such approach to reduce the online computational

overhead. For example, in the query phase, an end-user needs to compute M−1
2 Y SyM

−1
1

given a transformed template Y . Then during the offline phase, the end-user can generate the

random matrix Sy and compute SyM
−1
1 . The computation results can be stored for later

usage. When a fresh template Y is generated, the end-user can compute M−1
2 Y SyM

−1
1

during the online phase. This approach can reduce half of the computational overhead,

which is critical for resource-constrained devices.

153

5.8.3 Numeric Results

In this section, we measure the performance of our proposed TPE scheme through simulation.

Since the functions TPE.Setup and TPE.KeyGen are both one-time processes during the

registration phase, we mainly focus on the execution time of TPE.TokenGen.

Since PassBio is a user-centric biometric authentication scheme, we measure the perfor-

mance on both mobile phone and personal laptop. In the simulation, we utilize a mobile

phone with Android 6.0 operating system, 2.5 GHz Cortex-A72 CPU and 4 GB RAM. We

also utilize a personal laptop with macOS 10, 1.6 GHz Intel Core i5 and 4 GB RAM. The

java library UJMP [97] and C++ library Armadillo are utilized for the simulation in the

mobile phone and personal computer, respectively. We note that the performance relies on

the selection of software packages. Our selection does not guarantee the best performance.

Through complexity analysis, we know that the most important parameter affecting the

performance is the dimension n of the vector. For the simulation on the mobile phone and

laptop, we let n vary from 10 to 300 and from 100 to 2000, respectively. Due to the dimension

reduction techniques introduced in Section 5.8.2.1, the dimension n = 300 is sufficient for

most of the biometric templates. We also utilize the online/offline computation mechanism

introduced in Section 5.8.2.2 to reduce to online computational overhead.

The numeric result on the laptop is shown in Fig. 5.2. The token generation time for mod-

erate size template (n is around 200) is just around one millisecond with pre-computation.

For high-dimensional template with n = 2000, the token generation time is less than 1 sec-

ond with pre-computation. The numeric result on the mobile phone is shown in Fig. 5.3.

The simulation results show that it is efficient to generate tokens for templates with mod-

erate size. For example, when n = 100, the generation time is approximately 50 ms. When

154

n = 300, the generation time is around 900 ms. It can be observed in both figures that

the online/offline mechanism can effectively reduce the online computational overhead. By

pre-computation during the offline phase, the online computation time is reduced to about

half of the whole processing time.

155

Protocol 8 Threshold Predicate Encryption (TPE) Scheme

Input: x = {x1, . . . ,xn}, y = {y1, . . . , yn}, θ.
Output: Λ = {0, 1}.
TPE.Setup()→ param:

1: set param = {n, θ}.
TPE.KeyGen(λ)→ sk:

1: Randomly generate two non-singular (n+3)×(n+3) matrices M1 and M2 and calculate
their inversions M−1

1 and M−1
2 .

2: Choose a random permutation π : Rn+3 → Rn+3

3: Set sk = {M1,M2,M−1
1 ,M−1

2 , π}.
TPE.Enc(sk, x)→ Cx:

1: Generate two random number β and rx.
2: Extend the vector x to an (n+3)-dimensional vector x′ = (βx1, βx2, . . . , βxn,−βθ, rx, 0).
3: Permute x′ to obtain x′′ = π(x′).
4: Transform x′′ to a diagonal matrices X with diag(X) = x′′.
5: Generate a random (n + 3) × (n + 3) lower triangular matrices Sx with the diagonal

entries fixed as 1.
6: Compute Cx = M1SxXM2.

TPE.TokenGen(sk, y)→ Ty:

1: Generate two random numbers α and ry.
2: Extend y to an (n+ 3)-dimensional vector y′ = (αy1,αy2, . . . ,αyn,α, 0, ry).
3: Permute y′ to obtain y′′ = π(y′).
4: Transform y′′ to a diagonal matrix Y with y′′ being the diagonal.
5: Generate a random (n+3)× (n+3) lower triangular matrix Sy with the diagonal entries

fixed as 1.
6: Compute Ty = M−1

2 Y SyM
−1
1 .

TPE.Dec(Cx,Ty)→ Λ = {0, 1}:
1: Compute I = Tr(CxTy), where Tr(·) denotes the trace of a matrix.
2: Set Λ = 1 if I ≤ 0; otherwise set Λ = 0.

156

Reference point

Sectors division

Filtering Features

Figure 5.1: Feature extraction of fingerprints: (i) Identify reference point; (ii) Divide region
of interest into sectors around reference point; (iii) Filter region of interest; (iv) Extract
features.

157

Protocol 9 Privacy Preserving Biometric Authentication

Input: x = {x1, . . . ,xn}, y = {y1, . . . , yn}, θ.
Output: Λ = {Denied, Authenticated}.
Setup (End-user U):

1: Set the public parameters as param = {n, θ}.
2: Randomly generate two matrices M1 and M2 with dimension (n + 5) × (n + 5) and a

permutation π : Rn+5 → Rn+5.
3: Set secret key sk = {M1,M2,M−1

1 ,M−1
2 , π}.

Registration (End-user U):

1: Generate random numbers β and rx. Eextend x to an (n + 5)-dimensional vector x′ =

(2βx1, 2βx2, . . . , 2βxn,−β
n∑
i=1

x2
i , β, βθ2, rx, 0).

2: Permute x′ to obtain x′′ = π(x′).
3: Transform x′′ to a diagonal matrices X with x′′ being the diagonal.
4: Generate a random (n+5)× (n+5) lower triangular matrix Sx with the diagonal entries

fixed as 1. Compute Cx = M1SxXM2.
5: Register the record 〈IDU ,Cx〉 to the service provider SP , where IDU is the identity of

end-user U .

Query (End-user U):

1: Generate random numbers α and ry.

2: Extend y to an (n+5)-dimensional vector y′ = (αy1,αy2, . . . ,αyn,α,−α
n∑
i=1

y2
i ,α, 0, ry).

3: Permute y′ to obtain y′′ = π(y′).
4: Transform y′′ to a diagonal matrix Y with diagonal being y′′.
5: Generate a random (n+5)× (n+5) lower triangular matrix Sy with the diagonal entries

fixed as 1. Compute Ty = M−1
2 Y SyM

−1
1

6: Send the query 〈IDU ,Ty〉 to SP .

Authentication (Service Provider SP):

1: On receiving a query from the end-user U , retrieve the registered record according to
IDU .

2: Compute I = Tr(CxTy).
3: Set Λ = Authenticated if I ≥ 0; otherwise set Λ = Denied.

158

Passive attack experiment Passivemult
A,TPE(λ):

1: Given a security parameter λ, the adversary A outputs two sequences of messages M0 =
(m0,1,m0,2, . . . ,m0,t) and M1 = (m1,1,m1,2, . . . ,m1,t), where the length of each message
|m0,i| = |m1,i|, i = 1, 2, . . . , t.

2: The challenger C runs TPE.KeyGen(λ) to generate the secret key sk.
3: C chooses a uniform bit b ∈ {0, 1} and computes the ciphertext ci =

TPE.TokenGen(mb,i, sk). The sequence C = (c1, c2, . . . , ct) is returned to A.

4: The adversary A outputs a bit b′.
5: The output of the experiment is 1 if b = b′, and 0 otherwise.

Active attack experiment ActiveA,TPE(λ):

1: The function TPE.KeyGen(λ) generates a secret key sk.
2: The adversary A is given oracle access to the function TPE.TokenGen(sk, ·) and outputs

two messages m0 and m1 of the same length to the challenger C.
3: The challenger C chooses a uniform bit b ∈ {0, 1}, then computes c =

TPE.TokenGen(sk,mb) and returns to A.
4: A continues to have oracle access to TPE.TokenGen(sk, ·) and outputs a bit b′. Note

however, A cannot use TPE.TokenGen(sk, ·) to generate tokens for messages somehow
related to m0 and m1.

5: The output of the experiment is 1 if b = b′, and 0 otherwise.

Decryption Oracle O:

1: The oracle O fixes a vector x and a number θ.
2: For any submitted vector y, O generates two positive random numbers α and β and

output γ = αβ(x ◦ y − θ).

159

200 400 600 800 1000 1200 1400 1600 1800 2000

Vector length

0

200

400

600

800

1000

1200

Ex
ec

ut
io

n
tim

e
(m

s)

TokenGen
TokenGen with pre-computation
Evaluation

Figure 5.2: Performance of token generation and evaluation simulated on laptop (with vs.
without pre-computation)

0 50 100 150 200 250 300

Vector length

0

500

1000

1500

2000

2500

Ex
ec

ut
io

n
tim

e
(m

s)

without pre-computation
with pre-computation

Figure 5.3: Performance of token generation and evaluation on mobile phone (with vs.
without pre-computation)

160

Chapter 6

Conclusion

In this thesis, we aim at designing secure protocols to achieve a trade-off among data secu-

rity, usability, and complexity in mobile cloud computing environment. Especially, we design

secure computation outsourcing schemes for various computational problems to ensure data

security while limiting local computational overhead, achieving the trade-off between data

security and computational complexity. We design some special encryption techniques en-

abling the cloud to compute directly over the encrypted data, achieving the trade-off between

data security and data usability.

More specifically, first, we designed CASO to securely outsource general scientific com-

putational problems which cover the scope of linear and non-linear problems such as the

system of equations (linear or non-linear), linear programming and convex optimization.

Second, we proposed ExpSOS to securely outsource exponential operations such as modular

exponentiations and scalar multiplications, based on which we utilize ExpSOS to securely

outsource advanced cryptographic protocol such as predicate encryption and identity based

encryption. Third, we focused on outsourcing a specific protocol named Attribute Based

Encryption which is widely adopted in fine-grained access control mechanisms. All the

above-proposed outsourcing schemes can provide significant performance gain for the end-

users. Besides security, we also provide end-users with the ability to verify the returned

results with probability close to 1. We also analyzed the trade-off between security and ef-

161

ficiency and provided cost-aware outsourcing schemes. At last, we developed novel methods

to directly utilize encrypted data. The proposed data encryption scheme serves as an essen-

tial building block to construct a privacy-preserving user-centric biometric authentication

scheme.

162

BIBLIOGRAPHY

163

BIBLIOGRAPHY

[1] M. J. Atallah and J. Li, “Secure outsourcing of sequence comparisons,” International
Journal of Information Security, vol. 4, no. 4, pp. 277–287, 2005.

[2] M. Blanton, M. J. Atallah, K. B. Frikken, and Q. Malluhi, “Secure and efficient out-
sourcing of sequence comparisons,” in Computer Security–ESORICS 2012. Springer,
2012, pp. 505–522.

[3] M. Blanton and M. Aliasgari, “Secure outsourcing of dna searching via finite automata,”
in Data and Applications Security and Privacy XXIV. Springer, 2010, pp. 49–64.

[4] M. J. Atallah and K. B. Frikken, “Securely outsourcing linear algebra computations,”
in Proceedings of the 5th ACM Symposium on Information, Computer and Communi-
cations Security. ACM, 2010, pp. 48–59.

[5] D. Benjamin and M. J. Atallah, “Private and cheating-free outsourcing of algebraic
computations,” in Privacy, Security and Trust, 2008. PST’08. Sixth Annual Conference
on. IEEE, 2008, pp. 240–245.

[6] C. Wang, K. Ren, and J. Wang, “Secure and practical outsourcing of linear programming
in cloud computing,” in INFOCOM, 2011 Proceedings IEEE. IEEE, 2011, pp. 820–828.

[7] Y. N. Seitkulov, “New methods of secure outsourcing of scientific computations,” The
Journal of Supercomputing, vol. 65, no. 1, pp. 469–482, 2013.

[8] K. Zhou and J. Ren, “Linsos: Secure outsourcing of linear computations based on affine
mapping,” in 2016 IEEE International Conference on Communications (ICC). IEEE,
2016, pp. 1–5.

[9] ——, “Caso: Cost-aware secure outsourcing of general computational problems,” arXiv
preprint arXiv:1511.02375, 2015.

[10] S. Hohenberger and A. Lysyanskaya, “How to securely outsource cryptographic compu-
tations,” in Theory of Cryptography. Springer, 2005, pp. 264–282.

[11] X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou, “New algorithms for secure outsourcing
of modular exponentiations,” in Computer Security–ESORICS 2012. Springer, 2012,
pp. 541–556.

[12] K. Zhou, M. Afifi, and J. Ren, “Expsos: Secure and verifiable outsourcing of expo-
nentiation operations for mobile cloud computing,” arXiv preprint arXiv:1602.08472,
2016.

164

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices.” in STOC, vol. 9, 2009,
pp. 169–178.

[14] A. C. Yao, “Protocols for secure computations,” in 2013 IEEE 54th Annual Symposium
on Foundations of Computer Science. IEEE, 1982, pp. 160–164.

[15] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing: Outsourc-
ing computation to untrusted workers,” in Advances in Cryptology–CRYPTO 2010.
Springer, 2010, pp. 465–482.

[16] M. J. Atallah, K. Pantazopoulos, J. R. Rice, and E. E. Spafford, “Secure outsourcing
of scientific computations,” Advances in Computers, vol. 54, pp. 215–272, 2002.

[17] H. Nie, X. Chen, J. Li, J. Liu, and W. Lou, “Efficient and verifiable algorithm for secure
outsourcing of large-scale linear programming,” in Advanced Information Networking
and Applications (AINA), 2014 IEEE 28th International Conference on. IEEE, 2014,
pp. 591–596.

[18] C. Wang, K. Ren, J. Wang, and K. M. R. Urs, “Harnessing the cloud for securely solving
large-scale systems of linear equations,” in Distributed Computing Systems (ICDCS),
2011 31st International Conference on. IEEE, 2011, pp. 549–558.

[19] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and D. Wong, “New algorithms for se-
cure outsourcing of large-scale systems of linear equations,” Information Forensics and
Security, IEEE Transactions on, vol. 10, no. 1, pp. 69–78, 2015.

[20] A. B. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product en-
cryption.” in Eurocrypt, vol. 6110. Springer, 2010, pp. 62–91.

[21] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions and challenges,”
Theory of Cryptography, pp. 253–273, 2011.

[22] S. Goldwasser, S. D. Gordon, V. Goyal, A. Jain, J. Katz, F.-H. Liu, A. Sahai, E. Shi, and
H.-S. Zhou, “Multi-input functional encryption,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer, 2014, pp. 578–602.

[23] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products,” in Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. Springer, 2008, pp. 146–162.

[24] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption systems.” in TCC,
vol. 5444. Springer, 2009, pp. 457–473.

165

[25] A. Bishop, A. Jain, and L. Kowalczyk, “Function-hiding inner product encryption,” in
International Conference on the Theory and Application of Cryptology and Information
Security. Springer, 2015, pp. 470–491.

[26] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval, “Simple functional encryption
schemes for inner products,” in IACR International Workshop on Public Key Cryptog-
raphy. Springer, 2015, pp. 733–751.

[27] S. Kim, K. Lewi, A. Mandal, H. W. Montgomery, A. Roy, and D. J. Wu, “Function-
hiding inner product encryption is practical.” IACR Cryptology ePrint Archive, vol.
2016, p. 440, 2016.

[28] P. Datta, R. Dutta, and S. Mukhopadhyay, “Functional encryption for inner product
with full function privacy,” in Public-Key Cryptography–PKC 2016. Springer, 2016,
pp. 164–195.

[29] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE transactions on
information theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[30] S. Pissanetzky, Sparse matrix technology. Academic Press, 1984.

[31] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2009.

[32] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”
in Advances in cryptology-EUROCRYPT. Springer, 1999, pp. 223–238.

[33] Z. Xu, C. Wang, Q. Wang, K. Ren, and L. Wang, “Proof-carrying cloud computation:
The case of convex optimization,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013,
pp. 610–614.

[34] X. Chen, W. Susilo, J. Li, D. S. Wong, J. Ma, S. Tang, and Q. Tang, “Efficient al-
gorithms for secure outsourcing of bilinear pairings,” Theoretical Computer Science,
2014.

[35] J. Hoffstein, J. C. Pipher, J. H. Silverman, and J. H. Silverman, An introduction to
mathematical cryptography. Springer, 2008.

[36] J. Li, J. Li, X. Chen, C. Jia, and W. Lou, “Identity-based encryption with outsourced
revocation in cloud computing,” Ieee Transactions on computers, vol. 64, no. 2, pp.
425–437, 2015.

[37] B. Qin, R. H. Deng, S. Liu, and S. Ma, “Attribute-based encryption with efficient
verifiable outsourced decryption,” IEEE Transactions on Information Forensics and
Security, vol. 10, no. 7, pp. 1384–1393, 2015.

166

[38] Y. Wang, Q. Wu, D. S. Wong, B. Qin, S. S. Chow, Z. Liu, and X. Tan, “Securely out-
sourcing exponentiations with single untrusted program for cloud storage,” in Computer
Security-ESORICS 2014. Springer, 2014, pp. 326–343.

[39] K. Zhou and J. Ren, “Secure outsourcing of scalar multiplication on elliptic curves,” in
2016 IEEE International Conference on Communications (ICC). IEEE, 2016, pp. 1–5.

[40] C. Chevalier, F. Laguillaumie, and D. Vergnaud, “Privately outsourcing exponentiation
to a single server: Cryptanalysis and optimal constructions,” in ESORICS, 2016.

[41] L. Kuppusamy and J. Rangasamy, “Crt-based outsourcing algorithms for modular ex-
ponentiations,” in Progress in Cryptology–INDOCRYPT 2016: 17th International Con-
ference on Cryptology in India, Kolkata, India, December 11-14, 2016, Proceedings 17.
Springer, 2016, pp. 81–98.

[42] M. S. Kiraz and O. Uzunkol, “Efficient and verifiable algorithms for secure outsourcing
of cryptographic computations,” International Journal of Information Security, pp. 1–
19, 2014.

[43] L. Zhong, “Modular exponentiation algorithm analysis for energy consumption and
performance,” Citeseer, Tech. Rep., 2000.

[44] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu, “Function-hiding
inner product encryption is practical,” Cryptology ePrint Archive, Report 2016/440,
2016. http://eprint. iacr. org, Tech. Rep.

[45] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Advances in cryp-
tology. Springer, 1985, pp. 47–53.

[46] D. Boneh and M. Franklin, “Identity-based encryption from the weil pairing,” in Ad-
vances in Cryptology CRYPTO 2001. Springer, 2001, pp. 213–229.

[47] T. Matsumoto, K. Kato, and H. Imai, “Speeding up secret computations with insecure
auxiliary devices,” in Advances in Cryptology–CRYPTO’88. Springer, 1990, pp. 497–
506.

[48] P. de Rooij, “On schnorr’s preprocessing for digital signature schemes,” Journal of
Cryptology, vol. 10, no. 1, pp. 1–16, 1997.

[49] V. Boyko, M. Peinado, and R. Venkatesan, “Speeding up discrete log and factoring based
schemes via precomputations,” in Advances in Cryptology–EUROCRYPT’98. Springer,
1998, pp. 221–235.

167

[50] P. Q. Nguyen, I. E. Shparlinski, and J. Stern, “Distribution of modular sums and
the security of the server aided exponentiation,” in Cryptography and Computational
Number Theory. Springer, 2001, pp. 331–342.

[51] M. Van Dijk, D. Clarke, B. Gassend, G. E. Suh, and S. Devadas, “Speeding up exponen-
tiation using an untrusted computational resource,” Designs, Codes and Cryptography,
vol. 39, no. 2, pp. 253–273, 2006.

[52] M. Li, S. Yu, Y. Zheng, K. Ren, and W. Lou, “Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption,” Parallel and Dis-
tributed Systems, IEEE Transactions on, vol. 24, no. 1, pp. 131–143, 2013.

[53] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in Advances in Cryptology–
EUROCRYPT 2005. Springer, 2005, pp. 457–473.

[54] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-
grained access control of encrypted data,” in Proceedings of the 13th ACM conference
on Computer and communications security. Acm, 2006, pp. 89–98.

[55] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based encryp-
tion,” in Security and Privacy, 2007. SP’07. IEEE Symposium on. IEEE, 2007, pp.
321–334.

[56] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization,” in Public Key Cryptography–PKC 2011. Springer, 2011,
pp. 53–70.

[57] M. Ambrosin, M. Conti, and T. Dargahi, “On the feasibility of attribute-based encryp-
tion on smartphone devices,” in Proceedings of the 2015 Workshop on IoT challenges
in Mobile and Industrial Systems. ACM, 2015, pp. 49–54.

[58] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance evaluation of attribute-
based encryption: Toward data privacy in the iot,” in Communications (ICC), 2014
IEEE International Conference on. IEEE, 2014, pp. 725–730.

[59] M. Brown, D. Hankerson, J. López, and A. Menezes, Software implementation of the
NIST elliptic curves over prime fields. Springer, 2001.

[60] S. Hohenberger and B. Waters, “Online/offline attribute-based encryption,” in Public-
Key Cryptography–PKC 2014. Springer, 2014, pp. 293–310.

[61] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryption of abe cipher-
texts.” in USENIX Security Symposium, no. 3, 2011.

168

[62] J. Li, X. Chen, J. Li, C. Jia, J. Ma, and W. Lou, “Fine-grained access control sys-
tem based on outsourced attribute-based encryption,” in Computer Security–ESORICS
2013. Springer, 2013, pp. 592–609.

[63] J. Li, C. Jia, J. Li, and X. Chen, “Outsourcing encryption of attribute-based encryption
with mapreduce,” in Information and Communications Security. Springer, 2012, pp.
191–201.

[64] A. Beimel, “Secret-sharing schemes: a survey,” in Coding and cryptology. Springer,
2011, pp. 11–46.

[65] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp.
612–613, 1979.

[66] A. De Caro and V. Iovino, “jpbc: Java pairing based cryptography,” in Proceedings of
the 16th IEEE Symposium on Computers and Communications, ISCC 2011. Kerkyra,
Corfu, Greece, June 28 - July 1: IEEE, 2011, pp. 850–855. [Online]. Available:
\url{http://gas.dia.unisa.it/projects/jpbc/}

[67] E. F. Brickell, “Some ideal secret sharing schemes,” in Advances in Cryptology EURO-
CRYPT 89. Springer, 1989, pp. 468–475.

[68] A. K. Jain and K. Nandakumar, “Biometric authentication: System security and user
privacy.” IEEE Computer, vol. 45, no. 11, pp. 87–92, 2012.

[69] A. K. Jain, K. Nandakumar, and A. Ross, “50 years of biometric research: Accomplish-
ments, challenges, and opportunities,” Pattern Recognition Letters, vol. 79, pp. 80–105,
2016.

[70] S. Rane, Y. Wang, S. C. Draper, and P. Ishwar, “Secure biometrics: concepts, authenti-
cation architectures, and challenges,” IEEE Signal Processing Magazine, vol. 30, no. 5,
pp. 51–64, 2013.

[71] N. P. Smart and F. Vercauteren, “Fully homomorphic encryption with relatively small
key and ciphertext sizes.” in Public Key Cryptography, vol. 6056. Springer, 2010, pp.
420–443.

[72] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can homomorphic encryption be prac-
tical?” in Proceedings of the 3rd ACM workshop on Cloud computing security workshop.
ACM, 2011, pp. 113–124.

[73] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn computation on
encrypted databases,” in Proceedings of the 2009 ACM SIGMOD International Confer-
ence on Management of data. ACM, 2009, pp. 139–152.

169

[74] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest neighbor query over
encrypted data in outsourced environments,” in Data Engineering (ICDE), 2014 IEEE
30th International Conference on. IEEE, 2014, pp. 664–675.

[75] S. Choi, G. Ghinita, H.-S. Lim, and E. Bertino, “Secure knn query processing in un-
trusted cloud environments,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 11, pp. 2818–2831, 2014.

[76] B. Wang, Y. Hou, and M. Li, “Practical and secure nearest neighbor search on en-
crypted large-scale data,” in Computer Communications, IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on. IEEE, 2016, pp. 1–9.

[77] Q. Wang, S. Hu, K. Ren, M. He, M. Du, and Z. Wang, “Cloudbi: Practical privacy-
preserving outsourcing of biometric identification in the cloud,” in European Symposium
on Research in Computer Security. Springer, 2015, pp. 186–205.

[78] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “Fingercode: a filterbank for
fingerprint representation and matching,” in Computer Vision and Pattern Recognition,
1999. IEEE Computer Society Conference on., vol. 2. IEEE, 1999, pp. 187–193.

[79] ——, “Filterbank-based fingerprint matching,” IEEE transactions on Image Processing,
vol. 9, no. 5, pp. 846–859, 2000.

[80] A. K. Jain, S. Prabhakar, and L. Hong, “A multichannel approach to fingerprint classifi-
cation,” IEEE transactions on pattern analysis and machine intelligence, vol. 21, no. 4,
pp. 348–359, 1999.

[81] S.-S. Choi, S.-H. Cha, and C. C. Tappert, “A survey of binary similarity and distance
measures,” Journal of Systemics, Cybernetics and Informatics, vol. 8, no. 1, pp. 43–48,
2010.

[82] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press, 2014.

[83] K. Zhou and J. Ren, “Secure fine-grained access control of mobile user data through
untrusted cloud,” in Computer Communication and Networks (ICCCN), 2016 25th In-
ternational Conference on. IEEE, 2016, pp. 1–9.

[84] K. Zhou, M. Afifi, and J. Ren, “Expsos: Secure and verifiable outsourcing of expo-
nentiation operations for mobile cloud computing,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 11, pp. 2518–2531, 2017.

[85] K. Zhou and J. Ren, “Secure fine-grained access control of mobile user data through
untrusted cloud,” in Computer Communication and Networks (ICCCN), 2016 25th In-
ternational Conference on. IEEE, 2016, pp. 1–9.

170

[86] J. Yuan and S. Yu, “Efficient privacy-preserving biometric identification in cloud com-
puting,” in INFOCOM, 2013 Proceedings IEEE. IEEE, 2013, pp. 2652–2660.

[87] C. Hahn and J. Hur, “Poster: Towards privacy-preserving biometric identification in
cloud computing,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2016, pp. 1826–1828.

[88] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted
data,” in Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium
on. IEEE, 2000, pp. 44–55.

[89] E. Shi, J. Bethencourt, T. H. Chan, D. Song, and A. Perrig, “Multi-dimensional range
query over encrypted data,” in Security and Privacy, 2007. SP’07. IEEE Symposium
on. IEEE, 2007, pp. 350–364.

[90] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted data,”
Theory of cryptography, pp. 535–554, 2007.

[91] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing analytical queries
over encrypted data,” in Proceedings of the VLDB Endowment, vol. 6, no. 5. VLDB
Endowment, 2013, pp. 289–300.

[92] T. Bianchi, S. Turchi, A. Piva, R. D. Labati, V. Piuri, and F. Scotti, “Implement-
ing fingercode-based identity matching in the encrypted domain,” in Biometric Mea-
surements and Systems for Security and Medical Applications (BIOMS), 2010 IEEE
Workshop on. IEEE, 2010, pp. 15–21.

[93] N. Kambhatla and T. K. Leen, “Dimension reduction by local principal component
analysis,” Dimension, vol. 9, no. 7, 2006.

[94] T. Mandal, Q. J. Wu, and Y. Yuan, “Curvelet based face recognition via dimension
reduction,” Signal Processing, vol. 89, no. 12, pp. 2345–2353, 2009.

[95] S. S. Chow, J. K. Liu, and J. Zhou, “Identity-based online/offline key encapsulation
and encryption,” in Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security. ACM, 2011, pp. 52–60.

[96] J. K. Liu and J. Zhou, “An efficient identity-based online/offline encryption scheme.”
in ACNS, vol. 5536. Springer, 2009, pp. 156–167.

[97] “Universal java matrix package,” https://ujmp.org/.

171

