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ABSTRACT 
 

TWO APPLICATIONS OF QUANTITATIVE METHODS IN EDUCATION: SAMPLING 
DESIGN EFFECTS IN LARGE-SCALE DATA AND CAUSAL INFERENCE OF CLASS-

SIZE EFFECTS 
 

By  
 

Ting Shen 
 

This dissertation is a collection of four papers in which the former two papers address the 

issues of external validity concerning incorporating complex sampling design in model analysis 

in large-scale data and the latter two papers address issues of internal validity involving 

statistical methods that facilitate causal inference of class size effects. 

Chapter 1 addressed whether, when and how to apply complex sampling weights via 

empirical, simulation and software investigations in the context of large-scale educational data 

focusing on fixed effects. The empirical evidences reveal that unweighted estimates agree with 

the weighted cases and two scaling methods make no difference. The possible difference 

between weighted single versus multi-level model may lie in the scaling procedure in the latter. 

The simulation results indicate that relative bias of the estimates in the models of unweighted 

single level, unweighted multilevel, weighted single level and weighted multi-level varies across 

different variables, but unweighted multilevel has the smallest root mean square errors 

consistently while weighted single model has the largest values for level-one variables. The 

software finding indicates that STATA and Mplus are more flexible and capable especially for 

weighted multi-level models where scaling is required. Chapter 2 investigated how to account for 

informative design arising from unequal probability of selection in multilevel modeling with a 

focus of the multilevel pseudo maximum likelihood (MPML) and the sample distribution 

approach (SDA). The Monte Carlo simulation evaluated the performance of MPML considering 



 

sampling weights and scaling. The results indicate that unscaled estimates have substantial 

positive bias for estimating cluster- and individual-level variations, thus the scaling procedure is 

essential. The SDA is conducted using empirical data, and the results are similar to the 

unweighted case which seems that the sampling design is not that informative or SDA is not 

working well in practice.   

Chapter 3 examined the long-term and causal inferences of class size effects on reading 

and mathematics achievement as well as on non-cognitive outcomes in early grades via applying 

individual fixed effects models and propensity scores methods on the data of ECLS-K 2011. 

Results indicate that attending smaller class improves reading and math achievement. In general, 

evidence of class size effects on non-cognitive outcomes is not significant. Considering potential 

measurement errors involved in non-cognitive variables, evidence of class size effects on non-

cognitive domain is less reliable. Chapter 4 applied instrumental variables (IV) methods and 

regression discontinuity designs (RDD) on TIMSS data in 2003, 2007 and 2011 to investigate 

whether class size has effects on eighth grader’s cognitive achievement and non-cognitive 

outcomes in math and four science subjects across four European countries (i.e., Hungary, 

Lithuania, Romania and Slovenia). The results of the IV analyses indicate that in Romania 

smaller class size has significant positive effects on academic scores for math, physics, chemistry 

and earth science as well as for math enjoyment in 2003. In Lithuania, class size effects on non-

cognitive skills are not consistent between IV and RDD analyses in 2007. Overall, the small 

class size benefit on achievement scores is only observed in Romania in 2003 while evidence of 

class-size effects on non-cognitive skills may lack of reliability.  
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CHAPTER 1 
INCORPORATING COMPLEX SAMPLING WEIGHTS IN 

MODEL ANALYSIS  
 

1.1 Introduction 
 

Institutions such as the National Center for Education Statistics (NCES), the International 

Association for the Evaluation of Educational Achievement (IEA) and the Organization for 

Economic Co-operation and Development (OECD) have invested tremendous resources to 

conduct large-scale surveys and collect large-scale data in the field of education. Educational 

researchers have been increasingly encouraged to utilize these high-quality data to inform 

education research, policy and practice. In the era of data-driven based research, the advantages 

of using large-scale data sets are well-recognized. For example, large-scale data sets (e.g., the 

National Assessment of Educational Progress – NAEP and the Program for International Student 

Assessment – PISA) provide reliable measures of student academic achievement which have 

been used to identify comparatively high and low achieving students and schools. Moreover, 

such data include rich information about student characteristics and family background as well as 

school characteristics and the learning environment in schools that has allowed researchers to 

investigate various important questions in educational research. Further, the complex sampling 

design employed in these surveys creates national probability samples of students that represent 

well-defined populations (e.g., 4th graders in the U.S.). This allows the projection of inference 

obtained from a sample to its national population. 

Although large-scale data sets have enormous potential to advance knowledge and guide 

research, policy and practice in education, there are some concerns and challenges that need 

special attentions (Saw & Schneider, 2015; Schneider, Carnoy, Kilpatrick, Schmidt, & Shavelson, 

2007). For instance, large-scale data sets are non-experimental data, and thus addressing the 
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issue of potential confounding or omitted variable bias to achieve high internal validity of results 

(i.e., causal inference) would require the use of special statistical methods and research designs 

(e.g., Instrumental Variables or Regression Discontinuity Design). In addition, the high external 

validity of results (i.e., generalizability) is another matter that needs to be considered. 

Generalizing estimates from a sample to a population, for instance, would require the appropriate 

use of complex sampling weights. This is an issue of great importance because inappropriate 

usage of sampling weights may result in erroneous standard errors, possibly inaccurate statistical 

inference for variables of interest, and consequently misleading evaluation and policy 

implications. Unfortunately, although the causal inferences have received great attention in the 

literature, the issue of applying sampling weights in model analyses appropriately, especially for 

multilevel models has been neglected by both large-scale survey providers and data analysts in 

education. 

Specifically, there are several literature voids concerning weighted analyses that have 

been observed in educational research, to which this study aims to address and hopefully to 

resolve to some extent. One issue is that there are many different kinds of weights variables 

provided in large-scale datasets, which often would be a source of confusion to begin with. For 

instance, the Trends in International Mathematics and Science Study (TIMSS) 2011 provides 

many sample weight variables in this cross-sectional data set, which include: (1) weighting factor 

and weights nonresponse adjustment at each of school, classroom and student levels (i.e., 

WGTFAC1, WGTADJ1, WGTFAC2, WGTADJ2, WGTFAC3 and WGTADJ3); (2) school and 

student overall weights (i.e., SCHWGT and TOTWGT); (3) senate weights (i.e., SENWGT) and 

house weights (i.e., HOUWGT); (4) replicate weights (i.e., Jackknife zone and replicate code). 

Subsequently, selecting appropriate weights in a model analysis could be quite challenging when 
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currently there is a lack of practical guidance in data user’s manual regarding how to apply these 

sampling weights appropriately from model perspective. For instance, in a single level model, it 

is unclear whether researchers should utilize the sampling weights based on the analysis unit 

level or the replicate weights to adjust standard errors as recommended by the data user’s manual. 

Furthermore, in a typical two-level model (i.e., students and schools), it is very likely that 

analysts would encounter difficulty in choosing appropriate weights among those 

aforementioned.  

Second, unlikely the unweighted analysis where computational application is pretty 

robust and consistent across different software programs, for sampling weights analysis, there is 

much variation especially for weighted multilevel models. Although statistical software is crucial 

to obtain reliable results, previous information about software applications in this respect has 

been very few plus outdated given the fast updating speed of statistical software. For example, it 

was mentioned that SAS, SPSS and R did not treat sampling weights correctly in the multilevel 

model analysis (Carle, 2009; Chantala, Blanchette, & Suchindran, 2006). However, currently, 

since the version of the SAS 13.1, the “PROC GLIMMIX” command allows users to incorporate 

sampling weights in two-level models (SAS Institute Inc., 2013). Therefore, it is not uncommon 

that educational researchers may have questions about whether their routine software programs 

support sample weighted model analysis. If not, how to choose appropriate statistical software 

and whether the results would vary when different software programs are utilized. 

Third, there is no gold standard on weighted estimation methods and it is unclear which 

weighted estimation method(s) would be preferred and under what conditions. Particularly, when 

both weighted single- and multi-level models are feasible and the research interest is purely on 

the inference of the fixed effects (i.e., regression coefficients), it is unknown which approach 
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would be preferred. In the literature, the comparison of weighted single- and multi-level model 

under complex sampling design is very rare with the exception of one recent study (Koziol, 

Bovaird, & Suarez, 2017). Therefore, investigating when and how to incorporate sampling 

weights to model analysis using large-scale educational data via appropriate software programs 

is timely and essential. 

 

1.2 Theoretical background and literature review 
 

Theoretically, there is disagreement and inconsistency about applying sampling weights 

due to two fundamentally opposite schools of thought on making inference from survey data: the 

design-based approach and the model-based approach (D. A. Binder & Roberts, 2009; D. A. 

Binder & Roberts, 2003; Little, 2004; Rao & Bellhouse, 1990; T. F. M. Smith, 1984). The 

design-based (or randomization sampling) approach is traditionally adopted to conduct 

descriptive analysis of finite population quantities and produce design-unbiased estimates of 

population values (e.g., mean, ratio, and total). The assumption of this approach is that the 

estimates for the finite population are fixed and the uncertainty comes exclusively from sampling 

error. In the estimation of sampling variance, conventional procedures include Taylor series 

linearization, balanced repeated replication (BRR), jackknife repeated replication (JRR) and 

bootstrap (Cohen, Burt, & Jones, 1986; K.  Rust, 1985; K. Rust, 2013; K. F. Rust & Rao, 1996). 

In contrast, the model-based approach is typically used to carry out analyses for statistical 

inference that produce estimates of coefficients, corresponding standard errors and confidence 

intervals for population relationships assuming data come from simple random sample (SRS). 

The emphasis has been put on specifying a correct model while ignoring sampling design or its 

effect could be controlled by including some design variables as model covariates. In theory, the 
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design-based and the model-based approaches are incompatible. However, in practice, data 

structures need to be considered in model analysis when the research interests go beyond 

knowing descriptive statistics while data come from complex sampling designs with special 

features rather than SRS. To deal with this challenge, currently, an increasing number of 

researchers have proposed and adopted a hybrid approach, which could be referred to as a 

design-model-based approach that combines these two approaches together. 

Concerning the controversy, the focally debatable question when using large-scale data is 

“whether to weight or not to weight” (Bertolet, 2008; Kish, 1992; C. Skinner, 1994; T. M. F. 

Smith, 1988; Xia & Torian, 2013). Korn & Graubard found that weighted and unweighted 

estimators can be quite different in empirical data and they stated that unweighted estimators 

from sample data can be badly biased whereas weighted estimators are approximately unbiased 

(Korn & Graubard, 1995). Lohr & Liu also recommended weighted analyses although weights 

did not make a difference in their study (Lohr & Liu, 1994). However, other researchers (e.g., 

Winship & Radbill, 1994) suggested that unweighted estimators are preferred because they are 

unbiased, consistent, and have smaller standard errors than the weighted estimates when 

sampling weights are solely a function of the independent variable included in the model  

(Winship & Radbill, 1994). Overall, there is no consensus about the application of complex 

sampling weights on statistical models, especially for multilevel models (Graubard & Korn, 1996; 

Korn & Graubard, 2003; Pfeffermann, 1993, 2011). 

The difficulty starts with the conceptual confusion of sampling weights for a couple of 

reasons. Firstly, weights have different or even opposite meanings in the design-based approach 

versus the model-based approach. Weights in the design-based approach are the inverse of the 

unequal probability of inclusion, so large weights represent a small selection probability, which 
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means we know less about these data. However, weights in the model-based approach are 

frequency weights, which have typically been used to correct for non-constant error variance in 

model analyses. Thus, large weights correspond to smaller error variances, which indicate that 

we know more about these data (e.g., weights used in meta-analysis). Secondly, weights can be 

referred to various things such as purely inverse-selection probability weights or weight 

components that include additional adjustment for non-response and post-stratification. 

Additionally, there are cluster weights (e.g., school level weights) and individual level weights 

(e.g., conditional probability weights or joint probability weights) in a two-level case (e.g., 

students nested within schools). Stapleton (2013) provided a nice summary review about 

different types of sampling weights appeared in large-scale educational data (Stapleton, 2013).  

In addition, it is unknown whether there exists one preferred weighted estimation method 

that would work for all conditions. Researchers may be indecisive about whether to choose 

weighted single level versus weighted multilevel analysis. There are several key issues to be 

consider. First, it is necessary to verify that weights are designed to be used for multi-level 

analysis. When only single-level weights are available, the recommendation is to use weighted 

single-level analysis (Asparouhov, 2006). Second, if the research objective is to examine the 

level specific effects (e.g., teacher or school effects) or to decompose the variance to estimate the 

cluster level variance (e.g., school level variability), then the use of multi-level models is more 

appropriate. Third, when both single-level and multilevel sampling weights are all available, 

which is usually the case in large-scale education datasets and also when the research interest is 

just the fixed effect (i.e., regression coefficient and its standard error), currently, it is unclear 

which approach would outperform the other and under what conditions. One literature gap is that 

relevant empirical and simulation evidence of the performance of sample weighted estimation 



 

 7 

methods under unequal probabilities of selection is very limited. To my knowledge, there is only 

one study that compared weighted single-level and multilevel models under simulation 

conditions of ICC (0.05 and 0.25) and cluster size (5 and 20). It was found that unweighted 

analyses for single and multilevel model generated similar estimates across various conditions 

while weighted single-level models had a better performance than weighted multi-level models 

when the design is informative (see Koziol et al., 2017). Nevertheless, when working with real 

large-scale education data with particular design features, it is still unknown which approach 

would have a better performance. 

From a model-based perspective in single-level models, the pseudo maximum likelihood 

(PML) has been utilized as a relatively well-established approach to deal with unequal 

probability of selection and produce consistent estimates (D. A. Binder, 1983; Krieger & 

Pfeffermann, 1992; C. J. Skinner, 1989). In multi-level models, Graubard and Korn (1996) 

proposed the weighted ANOVA estimators. However, their approach is limited to a specific 

simple model and without support of software application (Graubard & Korn, 1996; Jia, Stokes, 

Harris, & Wang, 2011; Korn & Graubard, 2003). In addition, two general methods have been 

proposed to produce possibly the least biased estimates. Rabe-Hesketh and Skrondal, and 

Asparouhov (Asparouhov, 2006; Rabe-Hesketh & Skrondal, 2006) have concurrently proposed 

the estimation method of the Multilevel Pseudo Maximum Likelihood (MPML) based on the 

PML, while Pfeffermann et al. have proposed the Probability Weighted Iterative Generalized 

Least Square (PWIGLS) method based on the iterative generalized least squares (IGLS) method 

introduced by Goldstein in 1986 (Goldstein, 1986; Pfeffermann, Skinner, Holmes, Goldstein, & 

Rasbash, 1998). Compared with PML and MPML, the IGLS algorithm involves iteration 

between estimation of fixed and random effects and in the PWIGLS the population quantities are 
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replaced by weighted sample statistics. These two general estimation methods have been adopted 

in different software packages. Particularly, MPML has been adopted in STATA, Mplus and 

SAS while PWIGLS is implemented in LISREL, HLM and MLwiN. 

In general, it is unknown which estimation method should be preferred because the 

performance is related to several factors such as design informativeness (i.e., the degree to which 

the outcome variable is related to sample selection probabilities conditioning on model 

covariates), cluster sample size, variability of sampling weights, intra-class correlation (ICC) and 

scaling methods (Asparouhov, 2006; Bertolet, 2008; Cai, 2013; Grilli & Pratesi, 2004; 

Kovačević & Rai, 2003; Pfeffermann, Skinner, et al., 1998; Rabe-Hesketh & Skrondal, 2006).  

Specifically, previous research studies have shown that first of all design informativeness 

is of the utmost importance to decide whether sampling weights should be used. An informative 

design is a prerequisite for weighted analysis to account for the difference between the sample 

distribution and the population distribution due to unequal probabilities of selection. 

With regard to the informativeness, it is a model concept (Binder et al, 2005). The term 

“informativeness” and “ignorability” have been used loosely to refer to the interaction between 

model and survey design when explaining the possible effect of ignoring the sample design 

features in model analysis on survey data, but a formal definition was not provided. Pfeffermann 

(1993) referred the sampling design is “ignorable” when data is selected from simple random 

sample and “informative” when using proportional probability of selection for the sample data. 

Binder et al (2015) mentioned that the sampling is informative when the distribution of the 

sampled unit is different from that in the population and otherwise it would be non-informative. 

In general, informativeness and ignorability have much in common. It is not uncommon that the 

design is referred to as “informative” or “non-informative which is used interchangeably with 
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“non-ignorable” or “ignorable” without clear differentiation and clarification. Nevertheless, there 

could be a slight difference in terms of meaning. Binder and Roberts (2001) indicated that non-

informative design leads to ignorability, but not vice versa. That is, being non-informative is 

sufficient for ensuring ignorablility while being ignorable cannot determine non-informativeness. 

Conceptually, informativeness is not difficult to understand. However, in practice, it is 

quite difficult to determine whether sample design is informative for a particular model analysis. 

It is even more challenging to quantify the magnitude of informativeness. Therefore, although 

design informativeness is a key factor of deciding whether to weight or not to weight, traditional 

practice still plays a dominant role in a discipline. For example, in biostatistics and public health, 

researchers use weights whereas in social sciences (e.g., econometrics) researchers do not apply 

weights in general (Bollen et al, 2016). In the literature, there are some simple diagnostic tests 

(e.g., t-test and chi-square test) which often ignore possible effects clustering and unequal 

probability of selection have been used to determine the effect of weighting. More research of 

the diagnostic tests on design informativeness is needed to provide scientific criterion about 

whether weights would be necessary for a particular model analysis.  

Second, what is also important to parameter estimation is which sampling stage is 

informative (Cai, 2013; Pfeffermann, Skinner, et al., 1998). Third, simulation studies showed 

that bias is associated with small ICC values and cluster sizes (Asparouhov, 2006; Jia et al., 

2011). Fourth, although the scaling of the lower level sampling weights has been regarded as the 

primary tool for bias reduction, there is a lack of agreement about the best scaling method 

(Pfeffermann, Skinner, et al., 1998; Stapleton, 2002). Additionally, even with rescaled weights, 

survey weighted estimators could still be grossly biased for estimating variance components 

(Korn & Graubard, 2003).  
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The literature review reveals several practical issues that need to be addressed concerning 

the incorporation of complex sampling weights in model analysis when using large-scale 

educational datasets. First, findings from previous simulation studies are likely to be inapplicable 

to real large-scale educational data because it is not uncommon that they were conducted with 

small-scale data or under extreme simulation conditions. For instance, the sampling design in 

large-scale data would have design informativeness appeared at different sampling stages rather 

than either overall informative or non-informative design appeared in past simulation studies 

(Koziol et al., 2017). In addition, large-scale data typically have decent sample sizes which may 

prevent it from suffering the possible substantial bias attributed to small sample bias. Second, to 

educational researchers who typically have interest in knowing the statistical inference of 

particular variables (e.g., teacher, classroom and school variables), it is indecisive whether to use 

weighted single level or multilevel analysis and it is unclear how software programs would 

support specific model analyses. By and large, the current literature fails to provide sufficient 

information in this respect.  

 

1.3 The present study   
 

This study aims to examine when and how to apply complex sampling weights of large-

scale educational data in single- and multi-level models via empirical and simulation 

investigation. It will shed some new light on the practical guidance concerning the incorporation 

of sampling weights in model analysis along with corresponding software usage. Specifically, 

there are three research questions:  

(Q1) When and how to apply sampling weights in single- and multi-level models using large-

scale educational data and what would be the appropriate software programs to use?   
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(Q2) What factors (e.g., informative index and design effect) might be associated with potential 

divergent results between weighted and unweighted for some variables? 

(Q3) Which statistical model (i.e., unweighted single, unweighted multi-level model, weighted 

single and weighted multiple) would have a better performance? 

  This thesis consists of two components: an empirical examination to address the research 

questions (1) and (2) and a simulation investigation for question (3). The empirical component 

will demonstrate the use of complex sampling weights via small practical examples using PISA 

U.S. data in 2012 and Early Childhood Longitudinal Study-Kindergarten Class of 2010-11 

(ECLS-K 2011). Meanwhile it explores how to conduct the analysis using various software 

programs, which include STATA 14, Mplus 7, SAS 9.4, LISREL 9.30 and HLM 7 and for each 

software, user’s manuals or online resources have been served as useful guidance (Muthén & 

Muthén, 2010; Randenbush, Bryk, Cheong, Congdon, & Toit, 2011; SAS Institute Inc., 2013; 

Scientific Software International, 2005-2012; StataCorp, 2013; Zhu, 2014). HLM instead of 

MLwiN is chosen because both are special software for multilevel modeling but HLM is widely 

used among researchers in the U.S. while MLwiN may be more popular in UK or in Europe. The 

results of different models with or without weights across varied software tools will be compared 

and divergent findings will be examined and related to possible reasons. Mimicking the real 

sampling design in ECLS-K where fixing the student-level design informativeness while varying 

that at the school level, the simulation component will focus on examining the performance of 

PML and MPML in single and multilevel models and compared with their unweighted 

counterparts to determine which method would generate the least biased estimates for the fixed 

effects.  
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The contribution of this study is two-fold. In practice, it discusses and summarizes the 

controversies and challenges of applying sampling weights in the context of analyzing large-

scale educational data, which helps to clarify whether and when it is appropriate to incorporate 

complex sampling weights. More importantly, it demonstrates how to apply complex sampling 

weights using large-scale data sets with illustrative empirical examples. Additionally, this 

research will provide an informative update about software development on sample-weighted 

model analysis. This addresses an urgent need of many educational researchers, who may want 

to be informed about the capabilities of various software programs on incorporating sampling 

weights in their practical research. In theory, the mechanism and underlying reasons for 

divergent results are unknown although it is not uncommon that weighted inference sometimes 

would differ from unweighted case. This research tries to link divergent results to some possible 

factors. Furthermore, the simulation component of this research will advance the methodological 

knowledge about the performance of the weighted estimation in single- versus multi-level 

models in the context of large-scale educational data.  

 

1.4 Data and Methods 
 

1.4.1 Empirical data and variables 

This thesis will utilize U.S. data for PISA 2012 and ECLS-K 2011. The PISA study was 

implemented by OECD to provide the assessment of academic achievement of the 15-year-old 

on mathematics, science and reading literacy. In addition, information about students learning 

environment, educational experiences and attitudes towards education has been collected. PISA 

started to collect data cycles every three years since 2000. PISA 2012 is a recent data with 

information about sixty-five countries and economies participated. In general, the sampling 
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design involves a two-stage stratified sampling design where the first-stage sampling units 

consisted of individual schools that have targeted 15-year-old students with probabilities 

proportional to size and the second-stage sampling units were students selected with equal 

probabilities within sampled schools (OECD, 2012).  

ECLS-K 2011 is the most recent longitudinal study which follows a U.S. national 

representative sample of kindergarten students of diverse socioeconomic and ethnic backgrounds 

from kindergarten through early elementary grades. ECLS-K provides information regarding 

children’s early school experience. Data have been collected to study how students’ cognitive, 

social and emotional development is related to various family, classroom and school 

environments that students have been exposed to. The ECLS-K has adopted a three-stage 

stratified sampling strategy in which 90 geographic regions serve as the primary sampling units 

(PSUs). Then, samples of public and private schools with 5-year-old children were collected 

within sampled PSUs with probabilities proportional to measures of population size at first and 

second sampling stages. Finally, students were randomly selected within sampled schools 

(Tourangeau et al., 2015).  

Table 1 below presents the variables. In PISA, the outcome is the math achievement and 

the covariates include gender, economic social and cultural status (ESCS), father full-time work 

status, school sector, and school ESCS. Final student and school weights are “W_FSTUWT” and 

“W_FSCHWT” respectively. There are 4978 students in 162 schools and the average number of 

students per school is 31 approximately. In ECLS-K, the kindergarten spring data is used in 

which the outcome measure is children’s reading gain scores and the independent variables 

include students’ gender, race, SES, school location, sector, enrollment as well as free and 

reduced lunch. The variable named W2SCH0 is the school level base weight adjusted for 
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nonresponse and the W12AC is the child base weight adjusted for nonresponse associated with 

the spring kindergarten teacher-level questionnaire and the fall kindergarten child assessment. 

The sample size is 10349 students in 678 schools, so about 15 students per school were selected 

on average. It should be noted that these commonly used variables at both the student and school 

levels are selected as illustrative examples to study the sample weights issue, so measurement 

error is ignored and missing data problem is replaced with median values for continuous 

variables and with zero for binary variables. 

 

1.4.2 Statistical models 

The single-level model for the ith student can be expressed as: 

 !" = $% + '()*+, + -"		-"~0(0, 456)                 (1.1) 

where Y is the outcome variable, COV refers to a row vector of covariates at student and school 

levels as listed in Table 1, Greek letter +, represents a column vector of covariate coefficients, e 

is the residual terms which is assumed to follow normal distribution with mean zero and constant 

variance 456.  

For simplicity, a two-level random intercept model is used to represent multilevel model 

in which individual student i in school j can be written as:  

 !"8 = $% + '()(*)9+, + :8 + ;"8; 	:8~0 0, 4=6 				;"8~0 0, 4>6 				       (1.2) 

where the variance consists of two components: the variance (	4=6)	of the school random effect u 

and the variance ( 4>6	) of the student random effect ; . Both errors u and ;  follow normal 

distributions with zero means and variances 4=6 and 4>6 respectively. Additionally, the errors at 

different levels are assumed to be independent of each other. All the other terms have been 

defined as in equation (1). 
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 Comparing equations (1) and (2), it is clear that the difference between single- and multi- 

level model lies in the residual term. Specifically, the residual term e in the single level model is 

partitioned into a cluster residual u and an individual residual ; in the multi-level model, The 

estimation of the variance component of u and the variance ratio of 4=6 over (4=6+4>6 )(i.e., ICC 

value) are of particular interest.   

 

1.4.3 Sample weighted estimation method 

Concerning the estimation methods, the basic idea of the PML method is that assuming 

observations are independent to each other the population (or census) likelihood then can be 

obtained via a multiplication of the sample weighted likelihood. Since the census likelihood 

would produce consistent and unbiased estimates, sample-weighed estimates from PML should 

also be consistent and unbiased. However, regarding the MPML method in multi-level models, 

observations are dependent within each cluster, so cluster effects have to be integrated out before 

applying the PML. Another difference from PML is that the sampling weights at the lower level 

cannot be used as is and scaling needs to be done to reduce bias. Nevertheless, like PML, MPML 

could be defined as a general estimator that can be obtained via any optimization algorithm such 

as the EM-algorithm, the accelerated EM algorithm and the Quasi-Newton algorithm. Typically, 

there are no closed form solutions for estimated parameters in MPML, so approximation 

approaches need to be adopted in which the estimation varies depending on the algorithms and 

scaling procedures implemented in different software programs.  

  Let θ1=(?, 456) and θ2=(?, 4=6, 4>6) represent parameters in single- and multi-level models 

respectively and the research interest in this study would be focused on estimating the fixed 

effects B, the regression coefficients, and the corresponding statistical inference based on the 
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estimation of error variance. The likelihood function can be expressed as in equations (3) and (4) 

below for a single-level and a multi-level model respectively. The subscript i is for individual 

unit and j is for cluster unit, which would be the default case throughout this thesis. 

@ A = B(C"" |E, ?, 456)                                                                       (1.3)  

@ A = @88 = [ B(C"8" |E, ?, :8, 4>6 G :8 4=6 H:8]8            (1.4)  

Suppose data was sampled with unequal probability at each of the two sampling stages. 

The probability of selection at the first stage is pj and the conditional probability of selection at 

the second stage is pi|j. The corresponding weights at the first and second stages are wj and wi|j 

respectively. The overall probability of sampling selection is pij , which is the multiplication of 

pi|j and pj, and the overall sampling weights are wij (=wi|j x wj), which is referred to as wi in a 

single-level case. In corporation of sample weights, the likelihood functions become: 

@ A = B(C"" |E, ?, 456)JK                 (1.5) 

@ A = [ B(C"8|L, $, :8, 4>6
6)JK|M" G :8 4=6 H:8]JM8            (1.6) 

Previous studies show that weighted multi-level procedures would produce substantial 

bias for estimating variance components especially for small cluster sample size. Therefore, 

scaling the individual-level weights is recommended as a primary tool of bias reduction, which is 

represented by NO in equation (7) below. 

@ A = [ B(C"8|L, $, :8, 4>6)PQJK|M" G :8 4=6 H:8]JM8             (1.7) 

Two scaling methods have been proposed and received much attention in the literature 

(see Pfeffermann et at, 1998). The first scaling method scales the level-1 weights to the actual 

cluster sample size (nj), which is referred to as “size” scaling. The second one scales the level-1 

weights to its effective cluster size, which is referred to as “effective” scaling. Here the name 
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follows the terms of scaling command in STATA software. They are defined as in the equations 

(8) and (9) respectively. 

NOR"S5 =
TM

JK|M
UM
KVQ

,                        (1.8)          

NOWXX5YZ"[5 =
JK|M

UM
KVQ

JK|M\
UM
KVQ

 .                     (1.9) 

The motivation of the size scaling method is to represent the number of elements in a 

cluster to reduce bias. The motivation for the effective scaling may be to control for the design 

effect, which is the ratio of the variance with the sampling design over that with simple random 

sample. Since the variance is the second moment, the weights have a square term. There is no 

consensus about which scaling method works better and under what conditions. For example, 

Pfeffermann et al (1998) tentatively recommended the size scaling in their simulation study to 

reduce bias caused by informative sampling while Stapleton (2002) found that effective scaling 

provides unbiased estimates in multilevel SEM analyses. Asparouhov (2006) pointed out that 

different scaling methods may have different effect on different estimation techniques (p442). 

Previous study also suggested there are many factors (e.g., design informativeness, type of 

outcome, sample size) would affect scaling methods results separately or jointly. In general, 

simulation work suggested that when the interest is the point estimates use size scaling whereas 

for estimating cluster variance effective scaling would be preferred (Asparouhov, 2006; Carle, 

2009). Relatively speaking, size scaling method is straightforward, so it has been used more 

often. 

With regard to the asymptotic covariance matrix, the classical sandwich form has been 

adopted in both single and multi-level models, in which the latter can be expressed as 

]^^ _O( (N6 8̀)6]8^8 ]8^a) ]^^ _O                          (1.10) 
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where ]^ and ]^^ refer to the first and second derivatives of the log-likelihood.  

 

1.4.4 Simulation setting 

To evaluate the performance of the fixed effect estimators in a two-level case, a Monte 

Carlo simulation study is conducted when mimicking the sampling design in ECLS-K 2011. 

Specifically, the ECLS-K data sampled about 18,200 kindergarteners from 970 schools and on 

average 19 students per school. The school and conditional student selection probabilities are 

about 0.02 (pj) and 0.25 (pi|j) respectively and the overall student selection rate is about 0.005 (pij) 

(Mulligan, Hastedt, & McCarroll, 2012). It should be mentioned that although the data follows a 

three-stage sample design, the first sampling stage of geographic units was ignored and only 

school and student level sampling weights were provided. Using five public large-scale data sets 

from NCES, Stapleton and Kang found that ignoring the sampling design beyond the levels in 

the model would have minor effects on inference (Stapleton & Kang, 2016). Based on real data 

sample selection rate, the simulation sets a population of 50,000 schools and 4,000,000 students.  

The finite population values !"8 are generated from the following model: 

!"8 = 1 + 0.019 ∗ B-fg]- − 0.065 ∗ klk − 0.001 ∗ m]gnn	nop- − 0.026 ∗

rsotgu-	nmℎww]	 + :8 + ;"8                    (1.11) 

where female follows a Bernoulli distribution with probability of 0.49, SES follows a normal 

distribution with mean 0.06 and variance 0.80, class size follows a normal distribution with mean 

20 and variance 16, private school follows a Bernoulli with probability of 0.16. Finally,  4=6 is 

set at 0.0625 (i.e.	4= = 0.25), and 4>6 at 0.25 (i.e.4> = 0.50), and the ICC value is 0.20, which is 

a typical school level variability for U.S. data sets. All the coefficient values are determined 

according to real estimates using the data. 
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 Following Asparouhov and Muthen (2006), the infinite target population approach was 

adopted to generate the samples (Asparouhov & Muthen, 2006). The index I equals one 

indicating that the observation is selected. The selection probability at cluster level is  

rswx8 y = 1 = O

z{5|}(O_
~M
� )

                  (1.12) 

where the value of X varies in five numbers (i.e., 1/3, 1/2, 1, 2, and 3) with the mean is all around 

0.02 while the range or variation narrows down gradually to represent the design informativeness 

decreases noted by I(1), I(2), I(3), I(4) and I(5) respectively. The selection probability at the 

individual level is 

rswx"8 y = 1 = O

O.ÄÅ{5|}(O_
ÇKM
\ )

              (1.13) 

One finite population of 40,000,000 was generated according to equation (11) with preset 

parameter values and then five samples were generated based on the selection probabilities in 

equations (12) and (13) in which the school level sampling informativeness varies. For each 

sample, four analytic models were run: (1) a single level unweighted model with cluster robust 

standard error; (2) an unweighted two-level random intercept model; (3) a weighted single level 

model with overall weights; (4) a weighted two-level random intercept model with level-specific 

weights. The simulation procedure was repeated 1000 times via the software of STATA 14.  

The quality of estimates were assessed via three criteria: (A) empirical relative bias; (B) 

empirical root mean square error (MSE) and (C) coverage rate for true parameter falls within the 

95% confidence interval with t-test based standard errors, which have been used in previous 

simulation studies (Cai, 2013; Eideh & Nathan, 2009).  

Specifically, the relative bias is defined as: 

RBias = O
à
[ O
O%%%

θä − θO%%%
äãO ]                 (1.14) 
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Where θ is the true value and θä is the estimated value in each iteration. 

The root MSE is expressed as: 

RMSE θ = [ O
O%%%

(θä−θ)6O%%%
äãO ]            (1.15) 

where θ = O
O%%%

θäO%%%
äãO  

 

1.4.5 Software programs 

Research on multilevel modeling in the context of complex sampling is quite recent, so 

its application on software programs are developing at different stages. Knowing the 

computational capability in this regard is of crucial importance because there is an increasing 

body of researchers using these analytical software programs for weighted multilevel model 

analysis, but they may not have a good understanding of the capability of their software in terms 

of incorporating sampling weights and performing weights scaling in this respect. For example, 

sampling weights used for multilevel model analysis would be different from single-level 

analysis. Particularly, analysts need to know how to construct weights scaling appropriately for 

individual level sampling weights to avoid potential estimates bias.  

The specific contribution of this part is twofold. First, data analysts and practitioners may 

not be interested in the estimation quality of particular parameters, but it may be of their great 

interest to know whether their routinely used statistical program could handle sampling weights 

and scaling and also to know whether the results from their program would be different from 

other programs under the same conditions. Second, software programs are developing by leaps 

and bounds. What was known about the software application in multilevel modeling with 

sampling weights has been dated and incorrect, so providing an update would be needed. For 

instance, the scaling method has been applied differently in multilevel software programs. 
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Chantala & Suchindran (2006) summarized the software implementation of sampling weights in 

which Mplus 4.1 does not provide automatic scaling option so users have to do scaling of 

sampling weights by themselves, but it is no longer the case in Mplus 7 (Chantala & Suchindran, 

2006).  

 This analysis attempts to study different statistical programs that have been the 

conventional tools to conduct multilevel model analysis. To my knowledge, SPSS and R have 

not provided technical support for complex sampling weights yet. Specifically, the MIXED 

command in SPSS provides a residual weights option, which is similar to the weights option in 

SAS PROC MIXED command. However, this option supports frequency weights but not 

sampling weights. This creates two issues. First, level-specific sampling weights cannot be fitted 

into the command and it would be inappropriate to choose either level 2 weights or level 1 

weights. The second issue is that although sampling weights have been computed as replication 

weights (i.e., frequency weights) for the point estimates, the computation of the standard errors 

has not been adjusted. This study will focus on the following five statistical software programs 

that have been used by a large body of researchers: STATA, Mplus, HLM, SAS, and LISREL. 

 The software research component has some special features. First, this study provides 

real data analysis while some previous studies only presented the descriptive introduction of the 

software capability (West & Galecki, 2011). Second, this study provides a latest comparison 

among five software programs and six commands that have the capability of dealing with 

sampling weights in multilevel modeling, which is an improvement from previous work. For 

example Chantala & Suchindran (2006) compared the performance of four programs while Carle 

(2009) conducted analysis using three programs (Carle, 2009; Chantala & Suchindran, 2006).  

a) Stata 
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In Stata 14, two commands are available to carry out the computation. In MIXED 

command (StataCorp, 2013), sampling weights can be specified at each level and scaling options 

of individual-level weights are available by specifying “pwscale” as “size” or “effective”. For the 

MIXED commend, weighted estimation is achieved via incorporating wj and wi|j into the matrix 

using the orthogonal-triangular (QR) decomposition and then maximizing the profile log-

likelihood to obtain ML parameter estimates. Basically, the estimation is based on replicate 

clusters and individual observations, which is similar to the way of handling frequency weights 

but on a multilevel platform.  The second program is “GLLAMM” (i.e., generalized linear latent 

and mixed models), which was developed by Rabe-Hesketh and Skrondal (Rabe-Hesketh, 

Skrondal, & Pickles, 2004a, 2004b; Skrondal & Rabe-Hesketh, 2003). The computational 

technique involves adaptive quadrature which was proposed to be more reliable and efficient 

than ordinary quadrature (Rabe-Hesketh, Skrondal, & Pickles, 2002, 2005) .  

Comparing the command of MIXED and GLLAMM, the first difference is that the 

former is used only for linear models while the latter is in general used for non-linear models. 

GLLAMM could also be used for linear models when the conditional distribution is Gaussian, 

the link is identity and the marginal distribution of the random effects is Gaussian, which is the 

case in MIXED (Grilli & Pratesi, 2004). The second difference is in computation speed, that is, 

the GLLAMM is much slower than the MIXED command. The third difference is that the 

GLLAMM does not provide an automatic scaling option and users have to manually operate the 

weights scaling procedure (Rabe-Hesketh & Skrondal, 2006).  

b) Mplus 

The Mplus manual (Muthén & Muthén, 2010) provides a guidance on how to incorporate 

sampling weights and sampling scaling in a two-level model. Specifically, the individual level 
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sampling weights can be defined using “WEIGHT” and the cluster level weights using 

“BWEIGHT”, which represent the between-level sampling weights. For the individual level 

weights, there are three scaling options: “UNSCALED”, “CLUSTER” and “ECLUSTER”. The 

latter two are counterparts to “size” and “effective” scaling in STATA. The cluster level weights 

can be defined as “UNSCALED” and “SAMPLE”, but scaling is not carried out. In a three-level 

model, two upper level weights can be defined by “B2WEIGHT” and “B3WEIGHT”. However, 

it is not known how the scaling at two upper levels could be implemented. 

c) SAS 

In the SAS 13.1 user’s guide (Zhu, 2014), analysts are informed that weighted multilevel 

model for survey data can be conducted via the procedure “PROC GLIMMIX” by using the 

“OBSWEIGHT” and “WEIGHT” to represent level 1 and level 2 sampling weights respectively. 

SAS also works in the framework of MPML rather than PWIGLS and the “PROC GLIMMIX” 

procedure approximates the marginal log likelihood with an adaptive Gauss-Hermite Quadrature. 

To fit a model, the “METHOD=QUAD” and “EMPIRICAL=CLASSICAL” options need to be 

specified so that empirical (sandwich) variance estimators for the fixed effects and the variance 

components will be computed. SAS has not provided an automatic scaling option yet, so analysts 

are responsible for scaling the individual sample weights. Similar to other software, instruction 

on sampling weights in a three-level model is not available yet. 

d) HLM  

HLM user’s manual (Randenbush et al., 2011) informs the reader that design weights can 

be incorporated in HLM 7 based on the method in Pfeffermann et al. (1998), which is more 

appropriate than the method used in earlier versions of HLM. In a two-level model in school 

setting, suppose only student level or school level weights are available, HLM 7 will normalize 
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the student level or school level weights to a mean of 1. If both level weights are available, what 

HLM 7 does is to normalize the level 1 weights within level 2 units, so that the sum of the level 1 

weights within a level 2 unit will be the cluster sample size è8, which is for example the sample 

size of students within school j. With regard to the three-level model, it is unknown how the 

scaling will be implemented. 

e) LISREL 

In LISREL 9, sampling weights in either two-level or three-level models can be 

incorporated. However, the scaling option is not available as LISREL automatically applies 

cluster sampling weights for both levels only for the case of two-level model (Cai, 2013; 

Scientific Software International, 2005-2012). 

 

1.5 Results 
 

1.5.1 Research question one 

In this section, the U.S. PISA data were used. In order to compare the performance of 

sample weights analysis across these software programs, it would be helpful to examine any 

differences beforehand. Table 1.2 presents the results of unweighted analyses. The results show 

among the output generated from STATA, Mplus and SAS, it can be observed that the estimates 

of fixed effects between single and multilevel models are a little different although the statistical 

inference remains the same. Third, the results are consistent across these five software programs 

for multi-level models.  

Table 1.3 contains results of the weighted analyses. In the weighted analyses, in multi-

level models, there are various scaling options. The “mixed” command in STATA provides the 

option of “size” and “effective” scaling which are corresponding to “cluster” and “ecluster” in 



 

 25 

Mplus.  In SAS, it is user’s responsibility to do the scaling before employing the “proc glimmix” 

command. The LISREL and HLM automatically perform “size” scaling.  

The results show that first STATA, Mplus and SAS are more capable in terms of 

providing a couple of scaling methods while LISREL and HLM only allows “size” scaling. 

Second, the statistical inference remains the same between the method of MPML employed in 

STATA, Mplus and SAS and the method of PWIGLS in LISREL and HLM although the 

estimates of the coefficients and standard errors have a slight difference. Third, the two scaling 

methods generated almost identical results although they are a little different from the unscaled 

weighted estimates. Fourth, “size” scaled estimates from MPML and PWIGLS are similar by and 

large, and within each estimation method, the results are identical across different software 

programs.  

Overall, the statistical inference of weighted analyses is consistent for all the variables 

except for the variable of father’s working status in which estimates from weighted single level 

models agree with weighted unscaled multi-levels, but they are different from the estimates in 

weighted scaled models. 

It is noteworthy that sampling weights should be used for whole sample analyses, but not 

for subgroup analyses (e.g., gender and race) because the weights of subgroups no longer 

represent the observations in the population. Moreover, the scaling of the student level weights in 

multilevel models does not make sense in the subgroup analysis. However, for the purposes of 

software exploration, regardless of the inappropriateness, sample weights for subgroup analyses 

by gender and by school sector were also conducted. It was found that all the software packages 

run the analyses by selecting the target subgroup observations while deleting unused 

observations, among which STATA, Mplus and SAS still produce consistent output. LISREL 
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also produces output, but HLM failed to generate any results. Tables 1.4 and 1.5 present the 

software output by gender and school sector. 

 

1.5.2 Research question two 

In this section, ECLS-K 2011 data were used to explore how the results of statistical 

inference might be different using weighted and unweighted analyses in both single- and 

multilevel models given that the data have fixed ICC values and cluster sample sizes. An 

additional research interest is to identify factors that might be associated with producing 

divergent results for some variables but not for others. Specifically, four model analyses were 

conducted: (a) single-level unweighted model with robust standard errors; (b) unweighted 

multilevel model; (c) weighted single-level model; (d) weighted multi-level model.  

Three indices were used to determine the degree to which design informativeness might 

affect the results: (i) informative index (I) based on the rationale that mean values are very 

sensitive to informative designs (Asparouhov, 2006) (see page 446 equation 6). Specifically, the 

design informative indices of I(A), I(C) and I(B) were computed based on overall student 

weights (A) or student specific (C) and school level weights (B). For each index the numerator is 

the absolute value of the difference between weighted and unweighted means and the 

denominator is the standard error of the unweighted mean. (ii) root design effect (RDE), that is, 

the square root of the design effect, which was used to measure the ratio of the actual variance of 

an estimate with the sampling design to the variance of the estimate with SRS, so the value of 

RDE above 1 and below 1 suggest that the sampling design leads to larger or smaller standard 

error respectively (Kish, 1967; Stapleton & Kang, 2016). Here RDE(A) was computed as the 

ratio of the standard error of each covariate in a single-level weighted model over that of SRS 
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and RDE(B) was the ratio of standard error in weighted multilevel model over that in SRS. (iii) 

the correlation between the covariates and the overall student weights (A), student level specific 

weights (C) and school level specific weights (B).  

These results in Table 1.6. shows that the informative index may be linked with divergent 

results, but the indices of the design effect and the correlation do not seem to have detecting 

power. Therefore, when the informative indices are large, it is more likely to observe divergent 

results between weighted and unweighted analysis, but this is not true for all cases such as the 

variable of private school.  

 

1.5.3 Research question three 

By trying to vary the design informativeness at the school sampling stage while fixing the 

ICC value at 0.2, this simulation study evaluated the performance of an unweighted single level 

model, an unweighted multi-level model, a weighted single level model and a weighted multi-

level model in terms of the estimation on the fixed effects of four variables (i.e., female and SES 

at the student level and class size and private school at the school level). Specifically, the quality 

of the parameter estimates was assessed via the empirical relative bias, the RMSE and the 95% 

coverage rate which were presented in the Figures 1, 2 & 3.  

The figures show that first of all, the relative estimation bias varied greatly for different 

variables of interest regardless of degree of design informativeness and estimated models. In 

general, there is no clear pattern about which model should be preferred. Second, with regard to 

the RMSE, unweighted multilevel model consistently yielded smallest values with no exception. 

Weighted single level model has the largest value for student level variables. Third, in terms of 

coverage rate, all values are between 94% to 96% which are close to 95% with a slight variation.  
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To test whether design informativeness affect the fixed effects estimates, I also conducted 

a simulation which treats the selection probability at cluster level as a linear function of the 

residual rather than the exponential function that has been used. The results show that there is no 

clear pattern. This investigation illustrates the point that there is an evident gap between the 

sample selection in the simulation and in real data. In the simulation, the sample selection 

probability only depends on the relation with the residual, so it is very likely to form a trend 

pattern for the residual parameter therefore, but the selection probability does not seem to 

correlate with covariates. However, in real data, the sample selection probability is very likely to 

be related to some demographic variables such as gender, race and school geographic location 

that can be regarded as design variables for determining the way of sample selection. 

Nevertheless, it should be noted that in practice it is also difficult to include these covariates in 

the simulate setting because they may be too specific and too varying to have a general 

simulation form. 

Following Pfeffermann et al. (1998), the standard errors of the estimates were examined 

by comparing the average value of the 1000 estimated standard errors with the standard deviation 

of the 1000 point estimates for each fixed-effect coefficient. The closeness of these two indices 

indicates good quality of the standard error estimation because by definition the standard error of 

the point estimate is the standard deviation of the sampling distribution of the point estimator. 

Table 1.7 contains results which show that the estimation of the standard errors performs very 

well. It is evident that the unweighted multi-level models have the smallest standard errors for 

the point estimates across the four variables and the five informative designs. 
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1.6 Discussion 

 
Data collected via complex sampling designs typically have some special features such as 

unequal probabilities of selection, clustering, stratification and nonresponse (D. Binder & 

Roberts, 2006).  

Here is a simple example to illustrate how the unequal probability of selection at one 

sampling stage may introduce bias and how the incorporation of sampling weights might help to 

reduce the bias from a design-based perspective. Suppose the population consists of 20 students 

with ten black (60, 60, 60, 65, 65,65, 70, 70, 70, 75) and ten white students (75, 75, 75, 80, 80, 

80, 85, 85, 85, 90), and their math scores are included in the parentheses. Suppose two students 

(i.e., 1st and 6th) are selected from the first group and four students (i.e., 1st, 4th, 7th, 9th) are 

selected from the second group. Then the probability of selection is 0.20 = 2/10 for the black 

students and 0.4 = 4/10) for the white students. The corresponding weights are 5 = 1/0.2 and 2.5 

=1/0.4 respectively. As sampling weights reflect the number of units in the population given 

sample observations, here each black and white student in the sample represents five black 

students and 2.5 white students respectively in the population. Suppose the research interest is to 

estimate the average math score in the population. Below is the computation for the sample mean, 

sample weighted mean and population mean. 

Sample mean = (60+65+75+80+85+85)/6=75 

Sample weighted mean = (5*(60+65)+2.5*(75+80+85+85))/20�72 

Population mean = ((60*3+65*3+70*3+75) + (75*3+80*3+85*3+90))/20=73.5 

As black students have lower scores than white students on average, the unweighted 

descriptive statistics using the sample data would produce an upward-biased population mean 

due to the disproportional selection of more white students who have higher achievement score. 



 

 30 

However, the incorporation of sampling weights helps to reduce the upward bias. In this demo 

example with very small sample size, the result seems to have a downward bias, but with large 

sample size the weighted estimate would yield unbiased population mean.  

It is noteworthy that in design-based analysis in terms of generating finite population 

quantity, sampling weights are essential, but in model-based analysis, it is unclear whether and 

when sampling weights should be incorporated in model especially for multilevel model to take 

care of potential design effects arising from unequal probability of selection. The argument 

involves the trade-off between bias and efficiency in estimation. When the sampling design is 

informative, which means the sample distribution would be different from population, estimates 

could be substantially biased if the effect of unequal probability selection is ignored. However, 

applying sampling weights when unnecessary would create inefficient estimator with larger 

standard error.  

In single-level model, researcher can use either design-based approach or model-based 

approach to account for sampling design effects. The former includes the Tayler linearization 

(i.e., delta method), replication method (e.g., balanced repeated replication and jackknife 

repeated replication) and bootstrap. The latter conventionally uses overall sampling weights to 

compute appropriate error variance. For both approach, various software programs are available 

for implementing and generating relatively consistent results. Nevertheless, in multilevel model, 

the design-based approach is not compatible and for the model-based approach, individual-level 

sampling weights cannot be used as is. Instead, scaling procedure needs to be employed. 

However, different scaling methods may have different effects depending on the specific 

estimation technique (Asparouhov, 2006). In addition, some software programs start to apply 

different estimation techniques as well as scaling procedure but the development level varies 
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greatly. For example, SPSS and R have not supported sample weighted multilevel model yet 

while STATA allows automatic scaling options for weighted two-level model. 

It is worth noting that incorporating sampling weights itself will not account for the fact 

that the data were collected from complex sampling designs because it is extremely difficulty to 

evaluate the overall impact of the complex sampling designs on the statistical inference which 

may arise from each or combined aforementioned design features (Pfeffermann, 2011).  

Previous studies have provided some discussion about the informative probability 

sampling (D. A. Binder, Kovacevic, & Roberts, 2005; D. A. Binder & Roberts, 2001; 

Pfeffermann, Krieger, & Rinott, 1998; Sugden & Smith, 1984), which is closely related to the 

debate about whether sampling weights should be incorporated in analyses. Some researchers 

support the notion that in non-informative designs, weights are not necessary as they would 

increase the error variance. However, when the sampling design is informative, sample weights 

should be considered so that the sample distribution would resemble that in the population. 

Therefore, in the presence of some unknown informative design, incorporating sampling weights 

could at least deal with the impact arising from the unequal probability selection and could yield 

consistent estimates (Pfeffermann, 1996). In terms of the modeling framework, multilevel 

models might be preferred because they naturally match the hierarchical data structure arising 

from multi-stage sampling and take into account the clustering effect. The advantage of single 

level models is that they could flexibly adjust the standard errors due to design features either in 

the model based approach (i.e., PLM) or in the design based approach using classical survey 

variance estimators calculated typically at the PSU level. Therefore, it is unclear whether one 

should choose weighted single-level models or weighted multi-level models to conduct analyses. 

This is a practical issue that many educational researchers may feel confused about alongside 
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some other questions. For example, whether sampling weights should be incorporated in the 

model analysis and also for subgroup analysis, and how to use appropriate software programs to 

carry out specific model analysis. By and large, relevant empirical and simulation evidences are 

very scarce and practical guidance is absent in education. 

There are some findings in this study. First of all, the empirical investigation using PISA 

data shows that in general the statistical inferences of the regression coefficients are consistent 

across the conditions of unweighted vs. weighted and single vs. multi-level models. This is in 

line with previous findings that weights affect the estimates of population associations (e.g., 

coefficients) much less that of population mean values (Asparouhov, 2006; Korn & Graubard, 

1995). Korn and Graubard (1995) found that for weighted and unweighted inference to be 

different, model must be grossly mis-specified or omitted variable has strong correlation with the 

independent variable as well as with sampling weights. For the variable of father’s full-time 

working status, results revealed that the weighted single level model shares the same statistical 

inference with that of the weighted unscaled multi-level models, but is different from the 

weighted scaled multi-level model. This may indicate that the possible difference between 

weighted single level and weighted multi-level models lies in the scaling procedure in the latter.  

In addition, within the weighted multi-level models, there is no difference between the 

“size” scaling and the “effective” scaling in terms of using U.S. data in PISA and ECLS-K. This 

finding is inconsistent with previous studies. For example, Pfeffermann et al (1998) found the 

“size” scaling (i.e., referred as method 2 in their paper) works better than “effective” scaling  

(Pfeffermann, Skinner, et al., 1998) in their simulation study while Stapleton (2002) found the 

“effective” scaling produced unbiased estimates while “size” scaling had negative bias in the 
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multilevel structural equation models (Stapleton, 2002). It seems that the effect of scaling 

method may depend upon both data and statistical models. 

Second, the results of the simulation study indicate that regarding the relative bias, the 

quality of the parameter estimates generated from four statistical models (i.e., unweighted single 

level model, unweighted multi-level model, weighted single level model and weighted multilevel 

model) varies substantially across variables. Evidently, it is impossible to find one model that 

would produce the least biased estimate for all conditions. Instead, it is very likely that the 

preference of the model would vary across different covariates. Also statistical inference might 

appear divergent among these four models for different variables. Nonetheless, unweighted 

multilevel models seem to be superior to other models for having the smallest RMSE and 

standard errors.  

One interesting question is whether the informativeness of the design is linked to the 

outcome only or to the predictors included in the model also? The informativeness of a design is 

a model concept which the model typically has outcome and predictors as a set of components to 

make inference about their relationship. Therefore, it makes more sense to investigate whether 

sampling design is related to the model inference given particular outcome and predictors rather 

than discuss the design effect on one particular component.  

Take regression model as an example. Suppose the research interest is the coefficients 

from a specific model. If the observed values of the dependent variable satisfy the model 

universally regardless of which sample was actually selected, the design is non-informative as 

there is no additional information about the sample design beyond what is already specified in 

the model. For instance, suppose sample design only has one design variable such as stratum 

identifier in the case of a stratified sample, if this design variable is included in the model, this 
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informative design becomes ignorable as the inference of the predictors would not change once 

the design variable that contains all the design information is included in the model. However, 

suppose the sampling design also has the feature of clustering based on clusters of geographic 

areas. If this clustering feature was not included in the model, the regression error terms are 

correlated within these clusters. In this case, the design is still informative to the model inference 

for the predictors. To be more general, the answer varies from case to case because whether the 

informativeness of a design has an impact on the model inference depends on sample design, the 

available design information, the variables of interest and the assumed model (Binder & Roberts, 

2001).  

Third, the software investigation reveals that the method of MPML is superior to the 

method of PWIGLS because it has more flexibility and wider application in software programs. 

Among the software that use the MPML method, STATA and Mplus would be preferred to SAS 

for the advantages of scaling. This finding is in congruence with previous studies which showed 

that PML and MPML would be preferred to PWIGLS in terms of less computation intensity and 

more flexibility (Kovačević & Rai, 2003; Rabe-Hesketh & Skrondal, 2006). 

One recommendation is that sampling weights analysis only works for the whole sample 

data while for the subgroup analysis, unweighted analysis would be more appropriate. In 

addition, since the design informativeness due to complex sampling design at multiple stages is 

hard to determine and its effect on statistical inference is unknown, researchers are encouraged to 

conduct both weighted and unweighted analyses. Convergent results will gain confidence for the 

finding while divergent results would also be informative, which scientifically showing that 

inference from the sample and population are likely to be different and researchers need to be 

aware of that. Moreover, researchers are encouraged to use STATA and Mplus for conducting 
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weighted model analyses especially for multilevel models. Furthermore, when using multi-level 

models, it should be noted that the scaling of first level sampling weights would be required to 

reduce bias. Although size and effective scaling produced similar results in large-scale 

educational data used in this study, the method of size scaling may have wider use as it appeared 

in all five software programs.  

The empirical investigation in this study focused on PISA U.S. data which the basic 

sampling design is selecting schools at the first stage and then sample students within schools at 

the second stage. Therefore, findings may apply to other educational large-scale data sets that 

have design of similar sampling units at each level. For example, the High School Longitudinal 

study (HSLS) and Education Longitudinal Study (ELS) adopt a stratified two-stage sample 

design with primary sampling units defined as schools selected in the first stage and students 

then selected from the sampled schools within the second stage. In general, in terms of the 

common two-stage design, schools will be selected with probability that is proportional to 

measure of size and then students will be either randomly selected or with a certain selection rate. 

Nevertheless, findings may not work in other data sets that have different sampling 

designs. For example, Early Childhood Longitudinal Study of Kindergarten (ECLS-K) adopt 

three stage sampling design. The TIMSS and PIRLS have two-stage sampling design in which 

schools are primary sampling units but within schools, one or more intact classrooms are 

sampled. With regard to the National Assessment of Educational Progress (NAEP), it has 

national sample and also state sample. In general, the state sample has similar two-stage 

sampling design as in PISA while in the national sample it is more similar to ECLS-K in which 

beyond school level, the geographic regions are the primary sampling units.  
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One caveat is in addition to the sampling layers and units, there are other factors such as 

sample size and over sampling particular ethnic groups that might need to be considered. There 

is further investigation work that needs to be done to make a more generalizable conclusion. 

Similarly, the findings and recommendations would be limited to the simulation conditions in 

this study which mainly based on the data structure and sampling condition in the large-scale 

data of ECLS-K. Therefore, it is possible that they may not be applicable to other simulation 

conditions. 

This study has some limitations. First, as the simulation design tries to mimic the real 

large-scale data with specific sample selection rates, the design informativeness may not be 

varying sufficient enough to demonstrate alarming differences as appeared in previous 

simulation studies that used extreme conditions such as having cluster sample size less than 5 

and ICC value less than 0.05 (i.e., 0.01). In addition, it aims to mirror the real condition of large-

scale educational data, but still fails to fully capture the actual sampling selection procedures 

such as the neglected first sampling stage of geographic location, trimming of extreme large 

sampling variance and the variation of school size that occurred in real data. Second, the 

sampling weights provided in large-scale education data have already taken into account the 

adjustment for non-response and perhaps also for post-stratification. Therefore, post-

stratification and non-response adjustment might have an effect on model analysis (Long, 1995), 

which was ignored in this simulation investigation.  

The underlying causes of the divergence between unweighted and weighted estimators 

and the impact of informative design are still unclear and further investigation is needed. In 

addition, it would be interesting to focus on weighted multilevel modeling under informative 

probability sampling for estimating variance components (Asparouhov & Muthen, 2006; Jenkins, 
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2008). Moreover, extending the current research to non-linear model especially with binary 

outcome would be informative although it could be more challenging to deal with (Grilli & 

Pratesi, 2004). Moreover, longitudinal analysis with sampling weights need to be studied as it 

appears only in few studies (Stapleton, Harring, & Lee, 2016; Vieira & Skinner, 2008). Finally, 

the current literature and software application mainly works for two-level models, and future 

research may investigate the use of sampling weights in three-level models.  
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SOFTWARE SYNTAX 
 
/******************************* STATA 14 ********************************/ 
 
 
/********************* Unweighted analyses **************************/ 

• -----------------------    Single Level  ----------------------- 
reg z1 female escs fafulltime private classsize schoolESCS, cluster(SCHOOLID) 

• -----------------------    Multilevel ----------------------- 
mixed z1 female escs fafulltime private classsize schoolESCS||SCHOOLID:,var 
 
 
 
/*************** Sampling weighted analyses **************************/ 

• -----------------------    Multi-Level  ----------------------- 
svyset SCHOOLID [pweight = w_std_s] 
svy: regress z1 female escs fafulltime private classsize schoolESCS 

• -----------------------    Multilevel ----------------------- 
(1) Unscaled 

mixed z1 female escs fafulltime private classsize schoolESCS [pw=w_std] ||SCHOOLID:,pweight(w_sch) 
var 

(2) Size scaled 
mixed z1 female escs fafulltime private classsize schoolESCS [pw=w_std] ||SCHOOLID:,pweight(w_sch) 
pwscale(size) var 

(3) Effective scaled 
mixed z1 female escs fafulltime private classsize schoolESCS [pw=w_std] ||SCHOOLID:,pweight(w_sch) 
pwscale(effective) var 
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/******************************* Mplus 7.4 *****************************/ 
 
/********************* Unweighted analyses **************************/ 

• -----------------------    Single Level  ----------------------- 
data: file = sw_pisa_mplus.csv; 
variable: NAMES = SCH STI z1 fem escs fa pri cs schESCS w_s_al w1 w2 w1si w1ef; 
   usevariables = SCH z1 fem escs fa pri cs schESCS; 
   cluster = SCH; 
analysis: type = complex; 
   estimator = MLR;  
model: z1 on fem escs fa pri cs schESCS; 
output: stdyx; 

• -----------------------    Multilevel ----------------------- 
data: file = sw_pisa_mplus.csv; 
variable: NAMES = SCH STI z1 fem escs fa pri cs schESCS w_s_al w1 w2 w1si w1ef; 
   usevariables = SCH z1 fem escs fa pri cs schESCS; 
   within = fem escs fa; 
   between = pri cs schESCS; 
   cluster = SCH; 
analysis: type = twolevel; 
 algorithm=integration; 
   estimator = ML;  
model: %WITHIN% 
     z1 on fem escs fa; 
     %BETWEEN% 
     z1 on pri cs schESCS; 
output: stdyx; 
 
/*************** Sampling weighted analyses **************************/ 

• -----------------------    Single Level  ----------------------- 
data: file = sw_pisa_mplus.csv; 
variable: NAMES = SCH STI z1 fem escs fa pri cs schESCS w_s_al w1 w2 w1si w1ef; 
   usevariables = SCH z1 fem escs fa pri cs schESCS; 
   cluster = SCH; 
   weight=w_s_al; 
analysis: type = complex; 
   estimator = MLR;  
model: z1 on fem escs fa pri cs schESCS; 
output: stdyx; 

• -----------------------    Multi-level ----------------------- 
(1) Unscaled 

data: file = sw_pisa_mplus.csv; 
variable: NAMES = SCH STI z1 fem escs fa pri cs schESCS w_s_al w1 w2 w1si w1ef; 
   usevariables = SCH z1 fem escs fa pri cs schESCS; 
   within = fem escs fa; 
   between = pri cs schESCS; 
   cluster = SCH; 
   weight=w1; 
   bweight=w2; 
   wtscale=unscaled; 
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   bwtscale=unscaled; 
analysis: type = twolevel; 
 algorithm=integration; 
   estimator = MLR;  
model: %WITHIN% 
     z1 on fem escs fa; 
     %BETWEEN% 
     z1 on pri cs schESCS; 
output: stdyx; 
 

(2) Size scaled 
data: file = sw_pisa_mplus.csv; 
variable: NAMES = SCH STI z1 fem escs fa pri cs schESCS  
 w_s_al w1 w2 w1si w1ef; 
   usevariables = SCH z1 fem escs fa pri cs schESCS; 
   within = fem escs fa; 
   between = pri cs schESCS; 
   cluster = SCH; 
   weight=w1; 
   bweight=w2; 
   wtscale=cluster; 
   bwtscale=unscaled; 
analysis: type = twolevel; 
 algorithm=integration; 
   estimator = MLR;  
model: %WITHIN% 
     z1 on fem escs fa; 
     %BETWEEN% 
     z1 on pri cs schESCS; 
output: stdyx; 
 

(3) Effective scaled 
data: file = sw_pisa_mplus.csv; 
variable: NAMES = SCH STI z1 fem escs fa pri cs schESCS  
 w_s_al w1 w2 w1si w1ef; 
   usevariables = SCH z1 fem escs fa pri cs schESCS; 
   within = fem escs fa; 
   between = pri cs schESCS; 
   cluster = SCH; 
   weight=w1; 
   bweight=w2; 
   wtscale=ecluster; 
   bwtscale=unscaled; 
analysis: type = twolevel; 
 algorithm=integration; 
   estimator = MLR;  
model: %WITHIN% 
     z1 on fem escs fa; 
     %BETWEEN% 
     z1 on pri cs schESCS; 
output: stdyx 
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/****************************** SAS 9.4 *********************************/ 
 

• -----------------------    Single Level  ----------------------- 
title1 'Single level unweighted analysis'; 
    proc surveyreg data=sw_pisa; 
       cluster schid; 
       model z1= female ses fawork private clsize schses / solution; 
    run; 
 
title1 'multi-level unweighted analysis'; 
    proc mixed data=sw_pisa method=ML; 
       class schid; 
       model z1= female ses fawork private clsize schses/ solution; 
    random intercept/subject=schid; 
    run; 
 
title1 'Single level weighted analysis'; 
    proc surveyreg data=sw_pisa; 
       cluster schid; 
       model z1= female ses fawork private clsize schses/ solution; 
    weight stdw; 

run; 
 
• -----------------------    Multi-level ----------------------- 

 
title1 'multi-level weighted unscaled analysis';  
    proc glimmix data=sw_pisa method=quadrature empirical=classical; 
       class schid; 
       model z1= female ses fawork private clsize schses/ obsweight= stdl1 solution; 
    random intercept/subject=schid weight=schl2; 
    run; 
 
 
title1 'multi-level weighted size analysis';  
    proc glimmix data=sw_pisa method=quadrature empirical=classical; 
       class schid; 
       model z1= female ses fawork private clsize schses/ obsweight= stdl1size solution; 
    random intercept/subject=schid weight=schl2; 
    run; 
 
title1 'multi-level weighted effective analysis';  
    proc glimmix data=sw_pisa method=quadrature empirical=classical; 
       class schid; 
       model z1= female ses fawork private clsize schses/ obsweight= stdl1eff solution; 
    random intercept/subject=schid weight=schl2; 
    run; 
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/***************************** LISREL 9.30 *******************************/ 
/********************* Unweighted analyses **************************/ 

• -----------------------    Single Level  ----------------------- 
Not avaiable 

• -----------------------    Multilevel ----------------------- 
OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=10 OUTPUT=STANDARD ; 
 TITLE=; 
 SY='C:\Ting\D\msu_study\Dissertation\LISREL9.30\SW_SPSS.LSF'; 
 ID2=SCHOOLID; 
 RESPONSE=Z1; 
 FIXED=intcept FEMALE ESCS FAFULLTI PRIVATE CLASSSIZ SCHOOLES; 
 RANDOM1=intcept; 
 RANDOM2=intcept; 
 
 
/*************** Sampling weighted analyses **************************/ 

• -----------------------    Single Level  ----------------------- 
GlimOptions Converge=0.0001 MaxIter=100 MissingCode=-999999 Response=Ascending 
RefCatCode=-1 IterDetails=No 
            Method=Fisher; ! (Netwon-raphson) 
Title=; 
SY='C:\Ting\D\msu_study\Dissertation\LISREL9.30\SW_SPSS.LSF'; 
Distribution=NOR; 
Link=IDEN; 
Intercept=Yes; 
Scale=None; (deviance/pearson/ML) 
DepVar=Z1; 
CoVars=FEMALE ESCS FAFULLTI PRIVATE CLASSSIZ SCHOOLES; 
Cluster=SCHOOLID; 
Weight=W_STD_S; 
 
not working 
 

• -----------------------    Multilevel ----------------------- 
 

(1) Size scaled (automatic) 
OPTIONS OLS=YES CONVERGE=0.001000 MAXITER=10 OUTPUT=STANDARD ; 
 TITLE=; 
 SY='C:\Ting\D\msu_study\Dissertation\LISREL9.30\SW_SPSS.LSF'; 
 ID2=SCHOOLID; 
 WEIGHT2=W_SCH; 
 WEIGHT1=W_STD; 
 RESPONSE=Z1; 
 FIXED=intcept FEMALE ESCS FAFULLTI PRIVATE CLASSSIZ SCHOOLES; 
 RANDOM1=intcept; 
 RANDOM2=intcept; 
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FIGURES 

Figure 1.1: Relative Bias 
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Figure 1.2: Root of Mean Square Error 
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Figure 1.3: 95 % Coverage Rate 
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TABLES 
 

Table 1.1: Variable descriptive statistics 

PISA 2012   Name Mean SD MIN Max 
Math score   PV1MATH 0.00 1.00 -3.44 3.82 
Female   ST04Q01 0.49 0.50 0 1 
Economic social and cultural status (ESCS) ESCS 0.19 0.97 -3.8 3.12 
Father work full-time ST19Q01 0.73 0.45 0 1 
Class size   CSIZE 0.09 0.28 0 1 
Private   SC01Q01 26.23 5.28 13 43 
School ESCS   ESCS (Average by school) 0.18 0.53 -1.81 1.25 
Student final weights  W_FSTUWT 710.88 293.01 134.50 2597.88 
School final weights W_FSCHWT 145.25 204.10 21.97 1942.55 
Number of students 4978         
Number of schools 162         
ECLS-K 2011   Name Mean SD MIN Max 
Reading gain score X2RTHETK2-X1RTHETK2 1.03 0.53 -3.36 3.38 
Class size   A2DENROL 20.05 4.27 9 29 
Female    X_CHSEX_R 0.49 0.50 0 1 
Race (Other minority as base) X_RACETH_R         
White   - 0.49 0.50 0 1 
Black   - 0.14 0.35 0 1 
Asian   - 0.07 0.25 0 1 
Hispanic   - 0.24 0.43 0 1 
SES   X12SESL -0.06 0.77 -2.33 2.44 
School location (Rural as base) X2LOCALE         
 City   - 0.33 0.47 0 1 
 Suburban   - 0.34 0.47 0 1 
 Town   - 0.09 0.29 0 1 
Private   X2PUBPRI 0.16 0.37 0 1 
School enrollment X2KENRLK 81.96 51.43 14 250 
Free lunch   2RFLCH2_I 44.98 31.90 0 100 
Reduced lunch X2RLCH2_I 7.77 9.07 0 100 
Student final weights (A) W12AC0 283.79 149.10 11.46 940.02 
School final weights (B) W2SCH0 79.04 46.87 4.45 372.03 
Student level specific weights (C) (A)/(B) 4.83 3.88 0.57 43.59 
Number of students 10349         
Number of schools 678         
 
 
 
 



 

 48 

 

 
Table 1.2: Unweighted estimates across five software programs in PISA U.S. 2012 
 
  STATA 14   Mplus 7   SAS 9.4   LISREL 9.30   HLM 7 
Model  Single   Multi     Single   Multi     Single   Multi     Single   Multi     Multi   
N=4978 Est   Est     Est   Est     Est   Est     Est   Est     Est   
Female -0.089 * -0.117 *   -0.089 * -0.118 *   -0.089 * -0.117 *   0.0573 * -0.117 *   -0.117 * 
SE (0.028)   (0.024)     (0.028)   (0.024)     (0.028)   (0.024)     (0.012)   (0.024)     (0.024)   
ESCS 0.248 * 0.250 *   0.248 * 0.250 *   0.248 * 0.250 *   0.229 * 0.250 *   0.250 * 
SE (0.019)   (0.015)     (0.019)   (0.015)     (0.019)   (0.015)     (0.015)   (0.015)     (0.015)   
Father work full-time 0.209 * 0.183 *   0.209 * 0.181 *   0.209 * 0.183 *   0.128 * 0.183 *   0.182 * 
SE (0.031)   (0.028)     (0.031)   (0.028)     (0.031)   (0.028)     (0.013)   (0.028)     (0.028)   
Private -0.434 * -0.396 *   -0.434 * -0.396 *   -0.434 * -0.396 *   -0.414 * -0.396 *   -0.395 * 
SE (0.114)   (0.101)     (0.114)   (0.101)     (0.114)   (0.101)     (0.017)   (0.100)     (0.102)   
Class size -0.001   -0.003     -0.001   -0.003     -0.001   -0.003     0.146   -0.003     -0.003   
SE (0.006)   (0.005)     (0.006)   (0.005)     (0.006)   (0.005)     (0.013)   (0.005)     (0.005)   
School ESCS 0.491 * 0.495 *   0.491 * 0.495 *   0.491 * 0.495 *   0.859 * 0.495 *   0.495 * 
SE (0.054)   (0.054)     (0.054)   (0.054)     (0.054)   (0.054)     (0.032)   (0.054)     (0.055)   
Note: * p<0.05;                                              
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Table 1.3: Weighted estimates across five software programs in PISA U.S. 2012 
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Table 1.4: Subgroup analyses by gender in PISA U.S. 2012 
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Table 1.5: Subgroup analyses by school sector in PISA U.S. 2012 
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Table 1.6: Empirical estimates in ECLS-K 2011 (STATA 14) 
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Table 1.7: Simulation standard deviations of point estimators 

Informativeness-> I=1 (High) I=2 I=3 I=4 I=5 (Low) 

 
SD SE SD SE SD SE SD SE SD SE 

Female                     
NWS 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 
NWM 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 0.008 0.007 
WS 0.010 0.010 0.011 0.010 0.010 0.009 0.009 0.009 0.009 0.009 
WM 0.009 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.008 
SES                     
NWS 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
NWM 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.004 0.004 
WS 0.005 0.005 0.006 0.006 0.005 0.005 0.005 0.005 0.005 0.005 
WM 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 
Class size                     
NWS 0.003 0.002 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 
NWM 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
WS 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
WM 0.003 0.003 0.003 0.003 0.002 0.002 0.002 0.002 0.002 0.002 
Private school                   
NWS 0.027 0.027 0.028 0.029 0.025 0.026 0.026 0.025 0.025 0.025 
NWM 0.023 0.024 0.023 0.024 0.023 0.024 0.025 0.024 0.025 0.024 
WS 0.025 0.025 0.025 0.026 0.024 0.025 0.026 0.025 0.025 0.025 
WM 0.027 0.028 0.029 0.030 0.025 0.026 0.025 0.025 0.025 0.024 
Note: NWS=Unweighted single level; NWM=Unweighted Multi-level; WS=Weighted single level; NWM=Weighted Multi-level.  
           SD= the standard deviation of the 1000 point estimates; SE=the mean of the estimated standard errors. 
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CHAPTER 2 
COMPLEX SAMPLING DESIGN IN MULTILEVEL MODELING 
 

2.1 Introduction 
 

In the era of evidence-based research, large-scale survey data have been increasingly 

utilized to provide solid evidence. Due to budgetary constraint and practical convenience, these 

high-quality data have been collected via complex sampling designs with some special features 

such as clustering, unequal selection of probabilities, stratification and non-response. For 

example, concerning international surveys, the basic sample design used in PISA is a stratified 

two-stage sample design that samples school at the first stage and students within schools at the 

second stage. In other international surveys such as The Trends in International Mathematics and 

Science Study (TIMSS) and the Progress in International Reading Literacy Study (PIRLS) 

classrooms may be sampled within schools (Martin & Mullis, 2012; OECD, 2012). National 

surveys such as the National Assessment of Educational Progress (NAEP), the Educational 

Longitudinal Studies (ELS), and the National Educational Longitudinal Studies (NELS) in 

general also utilize a stratified two-stage sampling design (Stapleton & Kang, 2016). However, 

the adoption of complex sampling designs may pose some challenges in statistical modeling. For 

instance, in the education context, the sampling of units at different stages produces data with 

clustering structures (e.g., students nested in classrooms or schools, etc.). This nesting structure 

violates the basic model assumption in regression models that the errors are identically and 

independently distributed (i.e., iid). This implies that running student-level regression analysis 

without adjusting the standard errors of the estimates for potential clustering effects may result in 

spurious significance due to spurious (smaller) standard errors, narrower confidence intervals 

and smaller p-values (increased likelihood of Type I error).  
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Multilevel models have been widely used in education in the past three decades to 

account for clustering (i.e., adjusting standard errors of the estimates), partition the outcome 

variance into components at various levels and estimate teacher and school effects separately 

(Lee & Fish, 2010; Lubienski & Lubienski, 2006; Palardy, 2010; Snijder & Bosker, 2012). 

Multilevel models have been used on both cross-sectional and longitudinal data where in the 

latter measurement occasions are nested within individual subjects. The basic multilevel models 

include random intercepts models; however, random slopes models have also been utilized. 

There are two general estimation methods to compute regression estimates and variances: the 

maximum likelihood (ML) and the restricted maximum likelihood (REML) (McCulloch, Searle, 

& Neuhaus, 2008; Raudenbush & Bryk, 2002). 

In addition to clustering, unequal probability of selection is another issue that needs to be 

considered as it leads to an informative design, that is, the response variable is associated with 

sample selection even after controlling for covariates in the model. A high informative design 

implies that estimates from sample data could differ from the population parameters. For 

instance, if schools are sampled with a probability that is proportional to school size, which 

means larger schools would have a higher probability of being selected, and students score 

higher in these larger schools, ignoring this proportional sample would lead to biased population 

estimates. Therefore, to incorporate an informative design, applying sampling weights is a 

convenient and simple approach that has been recommended. The present study deals with the 

two features of clustering and unequal probability of selection via incorporating sampling 

weights in multilevel models. 
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2.2 Literature background 
 

Investigating how to conduct model analysis on complex survey data has been of great 

interest in the literature (Firth & Bennett, 1998; Holt, Smith, & Winter, 1980; Konijn, 1962; 

Magee, 1998; Pfeffermann & Holmes, 1985; Pfeffermann & LaVange, 1989; Pfeffermann & 

Smith, 1985; A. Scott & Smith, 1969; Vella, 1998; Wedel, ter Hofstede, & Steenkamp, 1998; 

Wu, 2007). Different estimation methods for complex sample designs have been explored such 

as least squares, conditional empirical likelihoods, and pseudo empirical likelihoods (Chaudhuri, 

Handcock, & Rendall, 2010; Chen & Sitter, 1999; Francisco & Fuller, 1991; Fuller, 1984; Lin, 

Steel, & Chambers, 2004; Rao & Wu, 2010; A. J. Scott & Holt, 1982).  

Sampling weights is a focal point that has received considerable attention and triggered 

much discussion (Pfeffermann, 1993, 1996). Regarding the sampling weights, the first long-term 

debated question is “whether to weight or not to weight” (Bertolet, 2008; DuMouchel & Duncan, 

1983; Kish, 1992; C. Skinner, 1994; Smith, 1988). Theoretically, there are two fundamentally 

opposite schools of thought on making inferences from survey data: the design-based approach 

and the model-based approach (D. Binder & Roberts, 2006; D. A. Binder & Roberts, 2009; D. A. 

Binder & Roberts, 2003; Godambe & Thompson, 1986; Hansen, Madow, & Tepping, 1983; Rao, 

1997; Rao & Bellhouse, 1990; Rao et al., 1999; Särndal et al., 1978). The design-based (or 

randomization sampling) approach is traditionally adopted to produce design-unbiased estimates 

of population quantities such as the mean, the ratio, and the total. The assumption of this 

approach is that the estimates for the finite population are fixed, thus the uncertainty exclusively 

comes from sampling error. In contrast, the model-based approach is typically used to conduct 

analyses for statistical inference producing regression coefficients, and the corresponding 

standard errors for population relationships. The assumption of the model-based approach is 
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about stochastic processes in which the data follow random distributions, thus the model 

estimates could be projected to the population regardless of sampling designs and features if the 

model is specified correctly.  

In practice, data collection and model estimation cannot be separated. When research 

interests go beyond knowing descriptive statistics, a model-based analytic approach becomes 

essential. However, to many educational researchers it is still unclear when and how to use 

sampling weights appropriately in statistical models, especially in multilevel modeling. 

Comparatively speaking, incorporating sampling weights in single-level models has been a well-

established procedure. Conventional design-based methods include Taylor series linearization, 

balanced repeated replication (BRR), Jackknife repeated replication (JRR) and bootstrap to 

produce least-biased variance estimation (Cohen, Burt, & Jones, 1986; K. Rust, 1985, 2013; K. F. 

Rust & Rao, 1996). For example, PISA adopts BRR (OECD, 2014) and TIMSS & PIRLS use 

JRR (Foy, 2014). General software commands such as “svy” commands in STATA and 

“surveyreg” in SAS have been used for single-level population-average or marginal models 

using complex survey data. Specialized software programs also have been developed, among 

which SUDAAN and PC Carp are widely used (Cohen et al., 1986; LaVange, Steams, Lafata, 

Koch, & Shah, 1996; Rodgers-Farmer & Davis, 2001). In model-based approaches, the pseudo 

maximum likelihood (PML) estimation method has been used to produce consistent estimates 

((D. A. Binder, 1983; Gourieroux, Monfort, & Trognon, 1984; Krieger & Pfeffermann, 1992; C. 

J. Skinner, 1989). The idea of PML is to replace the population log-likelihood by a sample 

weighted likelihood and then sum across clusters assuming clusters are independent. Although 

PML is not real likelihood, it resembles a census population likelihood. Since the estimator from 

a census population likelihood is consistent, the PML estimator is also assumed to be consistent.  
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In the framework of multilevel modeling, the dependency of individual units within 

clusters gives arise to estimation difficulties and therefore the cluster level random effect needs 

to be integrated out in order to apply the idea of PML in multilevel models. Concerning the 

widely-used approach of probability weighted estimation, three techniques have been proposed 

to cope with complex sampling design: the method of moments, the maximum likelihood, and 

the least squares. Graubard and Korn proposed the weighted ANOVA estimators for one-way 

random-effects models, which is a specific approach with very limited applicability and there is 

no command available to perform this approach in any statistical software (Graubard & Korn, 

1996; Jia, Stokes, Harris, & Wang, 2011; Korn & Graubard, 2003). In addition, there are two 

general estimation methods that have been proposed. Pfeffermann et al. (1998) introduced the 

method of probability-weighted iterative generalized least squares (PWIGLS) based on the 

iterative generalized least square (IGLS) developed by Goldstein (1986) (Goldstein, 1986; 

Pfeffermann, Skinner, Holmes, Goldstein, & Rasbash, 1998). Concurrently, Rabe-Hesketh & 

Skrondal (2006) (Rabe-Hesketh & Skrondal, 2006) and Asparouhov (2006) (T. Asparouhov, 

2006) proposed the MPML estimation method. In general, MPML and PWIGLS are preferred to 

the weighted ANOVA approach because of wider applicability in software packages. 

Specifically, STATA, Mplus and SAS implement MPML, while LISREL, HLM and MLwiN 

implement PWIGLS (Chantala & Suchindran, 2006; West & Galecki, 2011). It should be noted 

all these studies used a two-level random intercept model without covariates in their simulation 

investigation. 

There is no consensus upon which estimation method works the best across different 

settings. Some prior studies compared the approaches of single-level and multilevel models on 

fixed effects (Koziol, 2016; Stapleton, 2013). Within multilevel models, through a simulation 
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investigation, Cai (2013) found that PWIGLS provided better estimates than the MPML whereas 

Asparouhov and Muthen (2007) (Tihomir Asparouhov & Muthen, 2007) found MPML worked 

better than PWIGLS. The comparison of the performance between MPML and PWIGLS is not 

straightforward. First of all, the evaluation of the performance of the two estimation methods 

depends on specific simulation scenarios such as informative designs and models (e.g., latent 

variable model or nonlinear model). Second, raw sampling weights at lower levels cannot be 

used as is and scaling procedures need to be applied. Nevertheless, the implementation of scaling 

in software programs is inconsistent. For instance, STATA provides three scaling options (i.e., 

“size”, “effective” and “gk”) and Mplus has two (i.e., “cluster” and “eclsuter”) while LISREL 

only has one scaling choice. Moreover, the scaling in STATA and Mplus applies only to the 

lower-level of sampling weights whereas in LISREL it applies at both levels. Third, the scaling 

procedure as some functions of sample size may interact with other factors (e.g., ICC) to 

influence the performance of the probability weighted estimation method, which may add 

additional complexity.  

 

2.3 Conceptual framework of sample weighted approach 
 

The diagram in Figure 2.1 depicts one conceptual framework to help decide whether and 

when to apply sampling weights in multilevel models. Firstly, the answer depends on the 

availability of level-specific weights to be applied in multilevel models. For instance, when only 

overall sampling weights have been provided in the data set, a weighted single-level modeling 

approach is recommended (T. Asparouhov, 2006). Because if sampling weights are missing at 

some levels, applying weights at one level but not all could produce more bias than unweighted 

estimates (Grilli & Pratesi, 2004). Secondly, it also depends on whether the sample design is 
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informative or non-informative. In non-informative designs, unweighted estimators would be 

preferred with the advantage of providing efficient, consistent and unbiased estimates. In 

informative designs, sampling weights should be incorporated to represent population quantities. 

Nevertheless, determining design informativeness and its degree in practice is not an easy task. 

Thirdly, the decision depends on the performance of the weighted estimation method used 

(Bertolet, 2008). Specifically, the performance of different estimation methods depends on 

several factors such as design informativeness, scaling methods, sample size, intra-class and 

correlation (ICC) (T. Asparouhov, 2006; Cai, 2013; Jia et al., 2011; Pfeffermann, Skinner, et al., 

1998). Currently, how these factors affect the performance of MPML is inconclusive and 

simulation evidence is scarce. Moreover, there is very little guidance regarding incorporating 

sampling weights into multilevel models including software application. 

The impact of the informativeness of the design on statistical inference has received 

considerable attention (D. A. Binder, Kovacevic, & Roberts, 2005; Sugden & Smith, 1984). 

Previous studies have found that whether the sampling design is informative and the stage at 

which the sampling design is informative has substantial impacts on the estimation (Cai, 2013; 

Pfeffermann, Skinner, et al., 1998). For instance, when level 2 is informative while level 1 is 

non-informative, the unweighted estimates of the intercept and the second level variance will be 

biased, but the individual level variance is unbiased. Ignoring an informative sampling design at 

the first stage will result in biased estimates on the intercept and variance of random effects 

whereas ignoring an informative sampling design at the second stage will lead to slightly 

underestimated fixed effects and residual variance at lower level. When both levels are non-

informative, estimates of involved parameters are least biased compared with informative 

designs. 
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Scaling of individual-level sampling weights is a primary tool of bias reduction, in which 

the weights at the individual level will be normalized to reflect some functions of cluster sample 

size. Two scaling methods have been proposed to provide the least biased estimates: “size” 

scaling and “effective” scaling. It is noteworthy that different scaling methods may work 

differently with different estimation techniques ((Potthoff, Woodbury, & Manton, 1992). There 

is no conclusion on which scaling method works better. For example, Pfeffermann et al. (1998) 

tentatively recommend the “size” scaling rather than the “effective” scaling whereas Stapleton 

found that the “effective” scaling method provided unbiased estimates of key parameters and 

their sampling variance while the “size” scaling produced negatively biased variance estimates 

(Stapleton, 2002). 

Sample size is another factor involved in data collection and analysis. Asparouhov (2006) 

found that the multilevel weighted estimation is approximately unbiased when the cluster sample 

size is large (i.e., 100), but when cluster sample size is small (i.e., 5), MPML may produce 

relatively small bias even if the level 1 weights are non-informative given 100 cluster units. Korn 

and Graubard (2003) mentioned that even when using rescaled weights, survey weighted 

estimators could be badly biased for estimating variance components especially with smaller 

cluster sample size.  

The ICC value is an important index in multilevel modeling, which in a two-level model 

is computed as the ratio of the second level variance over the total sampling variance. A relative 

large ICC value ensures that the cluster level variance is of great importance to include in 

multilevel model analyses. In addition, the ICC value is also informative for planning group-

randomized experiments in education (Hedges & Hedberg, 2007). Intuitively, small ICC values 
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mean that the between-school variation is less influential than the within-school variation which 

translates to a smaller clustering effect.  

  

2.4 The present study 
 

There are a couple of literature gaps regarding the multilevel pseudo-likelihood approach. 

Theoretically, although this approach has some advantages in terms of producing consistent 

estimates with computation convenience, its weakness is evident. Specifically, the main caveat is 

that it produces larger error variances than the unweighted analyses, which affects statistical 

inference. In addition, the variance estimates may be inaccurate because the distribution of the 

weighted point estimator is in general unknown.  

Practically, first of all, evidence of the performance of the two estimation techniques (i.e., 

MPML and PWIGLS) is very limited. Moreover, as the multilevel model involves scaling which 

is inconsistent across software programs, the comparison between these two methods is unclear 

and inconclusive. Relatively speaking, MPML outperforms PWIGLS in terms of computational 

simplicity (Kovačević & Rai, 2003) and software applications (Leite et al., 2015). Second, 

previous simulation studies are informative, but the findings are restricted to particular designs 

which are likely to be irrelevant and inapplicable to large-scale data in education. For example, 

Cai (2013) planned one informative sampling design in which the first-stage is non-informative 

while the second stage is informative, which is very rare. On the contrary, large-scale 

educational data sets typically would adopt unequal probability of selection at the first stage and 

that could be the driving force for the design informativeness.  

Another approach to incorporate the informative sampling design in the multilevel 

modeling is the sample distribution approach (hereafter SDA), which has been proposed in the 
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1990s. This approach has much less application in practice due to lack of software 

implementation. Currently there is no software available to implement it directly. Instead the 

numerical technique and calculation is required, which may be beyond the competence of many 

empirical researchers.  

To address the aforementioned issues, the present research consists of two investigation 

components corresponding to PML and SDA. The first investigation attempts to conduct a 

Monte Carlo simulation to examine the performance of MPML estimation method to see how the 

sampling weights, design informativeness and scaling procedure might affect its behavior. The 

quality of the parameter estimators will be discussed in terms of their relative bias, root mean 

square errors and coverage rates. The second investigation will use the exponential model to 

approximate the conditional expectation of the sampling selection and then fit a parametric 

model using ECLS-K data in 2011 via Bayesian analysis framework with a model checking 

component. The results obtained from MPML and SDA will be compared. 

This study has potential contributions as follows. Firstly, it will shed light on providing 

some guidelines regarding when and how to incorporate complex sampling weights in multilevel 

modeling in the context of large-scale educational data. One current issue is that survey 

providers recommend that sampling weights should be incorporated into analysis when using 

large-scale educational data, but the conventional design-based approach they introduced such as 

BRR and JRR is incompatible with multilevel modeling. There is a lack of guidelines in practice 

and analysts could be easily confused and make mistakes.  

Secondly, it will advance the methodology on both MPML and SDA. Regarding the 

MPML, the first study will evaluate the performance of the MPML estimation method and assess 

the effects of weighting, scaling and informative design via Monte Carlo simulation in the 
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context of large-scale educational data sets which the evidence has not been provided yet in the 

literature. With regard to the SDA, limited by the software availability, this approach has not 

been much studied yet. Therefore, exploring how to take advantage of this approach and 

compare with the sampling weights approach would be informative.  

 

2.5 Investigation component I: MPML 
 
2.5.1 Statistical model 

Following past key studies, a two-level random intercept model with covariates in which 

individual student i in school j can be written as 

 !"# = %& + ()*(,)./0 + 1# + 2"#															1~5 0, 89: 			;~5(0, 8<:)                                (A2.1) 

where !"# is the outcome,  %& represents the overall population intercept, COV refers to a row 

vector of covariates at the student (i.e., female and SES) and the school levels (i.e., class size and 

private school), Greek letter B represents a column vector of covariate coefficients for the fixed-

effect parameters, u is a second-level residual and ; is the first-level residual. Both u and 2 are 

random-effect parameters, which assume to follow normal distributions with zero means and 

variances 89:	and =<> respectively.  

Suppose ? represents all parameters to be estimated which includes B, 89: and 8<:. 

The conditional normal likelihood for student i in school j can be expressed as: 

@"#(?|B"#) =
C

:DEFG
exp	[− (MNOPMO	)G

:EFG
]                   (A2.2) 

Where B#	 is the estimated group mean for the jth school. Thus, the marginal likelihood for school 

j is   

 @# ? = @"#(?|B"#)R(1#)S1#
TO
"UC

VW
PW                        (A2.3) 
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where N is the number of observations in jth cluster in the population and R is the density 

function. 

And the overall marginal likelihood is  

@ ? = @#(?)X
#UC                       (A2.4) 

where M represents the number of clusters in the population. 

For computational convenience, the log-likelihood form (here denoted by “l”) is typically used, 

and the unknown parameters ? can be obtained via either the maximum likelihood estimation 

(MLE) or the restricted maximum likelihood (REML) estimation methods. 

The log-likelihood expression can be written as  

Y ? = YZ[	 {exp	[ YZ[@"#
TO
]UC (?|1#)]}R(1#)S_O

VW
PW

X
#UC                                       (A2.5) 

Equations (1) to (5) denote the population model and the population likelihood. In practice, only 

sample data will be available instead of population data. From a model perspective, the data are 

assumed to be random with independent distributions. However, large-scale data seldom use 

simple random sampling selection. Instead, in complex sampling designs samples are selected in 

a particular way such as an unequal probability of selection.  

Suppose the data are collected using a two-stage sampling design and the probability of 

selection at the first stage is `#  and the conditional probability of selection at the second stage is 

`"|#. The corresponding weights at the first and second stages are a#  and a"|# respectively. Then, 

the next step is to apply the level-specific sampling weights into the log-likelihood function to 

account for potential effects due to the unequal probability of selection. In a single-level model, 

PML can be expressed as 

 Y ? = a#YZ[ @#(?b
#UC ).                                                                                             (A2.6) 



 

 73 

However, in a multilevel model, PML cannot be applied directly because the individuals 

within each cluster are dependent, so the sample weighted log-likelihood cannot be summed up 

directly across clusters. Instead, integration of cluster variation needs to be done. Specifically, 

the MPML can be written as 

 Y ? = a#YZ[	 {2c`	[ a"|#YZ[@"#
]O
]UC (?|1#)]}R(1#)S_O

VW
PW

b
#UC               (A2.7) 

It is interesting that equation (7) is consistent with the Horvitz-Thompson principle (Horvitz & 

Thompson, 1952), a design-based approach, which replaces each sum over the cluster-level 

population unit j with a sample weights of  C
dO

 and each sum over the level 1 units i by the sample 

weights of  C
dN|O
	 as follows. This shows that the design-based and model-based approach are 

compatible as equations (1.7) and (1.8) show. 

  Y ? = C
dO
YZ[	 {2c`	[ C

dN|O
YZ[@"#

]O
]UC (?|1#)]}R(1#)S_O

VW
PW

b
#UC                           (A2.8) 

Previous studies have suggested that some scaling procedure is necessary for the individual-level 

sampling weights, which is referred to the eC in the equation below. 

 Y ? = a#e:YZ[	 {2c`	[ a"|#eCYZ[@"#
]O
]UC (?|1#)]}R(1#)S_O

VW
PW

b
#UC                      (A2.9) 

Although there is no theoretical result to show the gold standard scaling method, two 

scaling methods have been proposed to provide the least biased estimates (T. Asparouhov, 2006; 

Pfeffermann, Skinner, et al., 1998; Potthoff et al., 1992; Rabe-Hesketh & Skrondal, 2006; 

Stapleton, 2002). The first scaling method scales the level-1 weights to the actual cluster sample 

size (nj) and the second method scales the level-1 weights to its effective cluster size. Here they 

are referred as “size” and “effective” scaling following the name in STATA.  

   eCf"g< =
]O
hN|O

iO
Njk

                (A2.10)                  



 

 74 

  eC<ll<mn"o< =
hN|O

iO
Njk

hN|OG
iO
Njk

 .           (A2.11) 

It should be noted that when wi|j is a constant, these two scaling methods are equal.  To 

illustrate this point, I provide a simple example. Suppose 100 observations are selected from a 

total population of 1000. The probability of selection is 1/10 and the weights, wi|j, are equal to 10. 

Plugging this into equation (1.10) and (1.11) leads to the same result.  

eCmp_fn<q =
]O
hN|O

iO
Njk

= C&&
(C&VC&V⋯VC&)

= C&&
C&&∗C&

= 0.10  

eCvmp_fn<q =
a"|#

]O
"UC

a"|#:
]O
"UC

=
10 + 10 + ⋯+ 10
10: + ⋯+ 10: =

100 ∗ 10
100 ∗ 10: = 0.10 

There is a third scaling method, which is a little different from the “size” and “effective” 

scaling methods. Specifically, in the latter two methods the scaling takes place at level 1 weights 

whereas in the third scaling method the scaling takes place at level 2 weights a# as in equation 

(1.12) below. It is derived from the moments estimators of the weighted ANOVA approach and 

it is referred to as the “gk” scaling in STATA (Graubard & Korn, 1996; Korn & Graubard, 2003). 

a#∗ = a"|#
]O
"UC a#;	a"|#∗ = 1                  (A2.12) 

With regard to the computation technique, Asparouhov (2006) mentioned that MPML as 

a general estimator can be obtained via any optimization algorithm such as the EM-algorithm, 

the accelerated EM algorithm, and the Quasi-Newton algorithm. Nevertheless, there is no closed 

form solution for the MPML estimator for a random intercept model when the cluster sample 

size is unbalanced. However, assuming balanced data, the unweighted maximum likelihood 

estimators (MLE) have been provided (see McCulloch et al., 2008).  

When 89: is positive, the analytical expressions of the estimators are as follows. 

  %& = B..	, 8<: =
(MNOPMO)GNO

b(]PC)
, 89: =

(MOPM..)GO
b

− EFG

]
                          (A2.13) 
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where B.. is the grand mean, B# is the cluster mean, m is number of clusters and n is number of 

units in each cluster, which is a constant in balanced data. 

Using the Laplace approximation, a well-known method for approximating the marginal 

densities, Asparouhov (2006) derived a closed form solution for the parameters of a random 

intercept model without any covariates when cluster sample size is constant across all clusters 

(i.e., balanced design). Using consistent notation in this study, the analytical expressions for the 

unscaled case can be expressed as follows 

β& =
yz{zz
yzz

, σ}: =
yz y~|z({~zP{z)G~z

yzz (�PC)
, σÄ: =

yz({zP{..)Gz
yzz (�PC)

− ÅÇG

�
.                      (A2.14) 

The “size” scaled case as  

β& =
yz{zz
yzz

, σ}: =
�	yz y~|z({~zP{z)G~z
yzz (�PC) y~|z~

, σÄ: =
yz({zP{..)Gz
yzz (�PC)

− ÅÇG

�
,         (A2.15) 

and the “effective” scaled case as   

 β& =
yz{zz
yzz

, σ}: =
( y~|z~ )	yz y~|z({~zP{z)G~z

yzz (�PC)( y~|zG~ )
, σÄ: =

yz({zP{..)Gz
yzz (�PC)

− ÅÇG

y~|z~
G/( y~|z

G
~ )

.    (A2.16) 

With regard to the asymptotic covariance matrix, Rabe-Hesketh and Skrondal (2006) used the 

following sandwich form: ÑZÖ	 ? = ÜPCáÜPC where “I” represents the observed (pseudo) Fisher 

information at the pseudo-maximum likelihood estimates and asymptotically the J is 

λ:wä
:Y#ãä Y#ãå 		where Yã refers to the first derivative of the log-likelihoods. 

 

2.5.2 Simulation setting 

The simulation is carried out in the context of large-scale educational data which has 

special features. First, large-scale data sets have relatively large sample size from approximately 

4,000 to 20,000. For example, in PISA 2015, the average number of students per school is 33 
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across 70 countries/economies. Since the cluster sample size is greater than 20 on average, 

previous findings about estimation bias relating to small sample size such as cluster sample size 

less than 10 may not be an issue for large-scale data sets. Second, large-scale data sets in 

education typically adopt a two-stage sampling design. For example, at the first stage schools are 

selected with an unequal probability and then at the second stage classrooms or students are 

selected with either an unequal probability selection or using simple random sampling. Therefore, 

the possible informative designs would be school (informative) and classroom/student 

(informative/non-informative). The school level selection seems to be the driving force of the 

design informativeness compared with student level selection. There are also three-stage 

sampling designs. Stapleton and Kang found that ignoring the sampling design beyond the levels 

in the model would have minor effects when using five public large-scale data sets from NCES 

(Stapleton & Kang, 2016). 

This simulation investigation differs from previous studies in several ways. First, the 

simulation setup uses an informative design at the second level with some variation, while at first 

level the informative design is fixed. I intentionally omit the case where the second sampling 

stage is non-informative which is possible but is not of interest because for non-informative 

designs the sampling weights are not recommended. In addition, I fixed the ICC value at 0.20, 

which is the typical value in U.S. data. Moreover, based on PISA data which on average selects 

35 students per school, I decided to have a balanced design with the cluster sample size set at 35. 

Cai (2013) examined four informative designs: informative-informative, informative-

noninformative, noninformative-informative, and noninformative-noninformative. He simplified 

the simulation by fixing the sample size of 100 with clusters of size 50 and choosing a moderate 

ICC value as 0.33. Comparing with Cai (2013), it is pronounced that my simulation setting is 
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more realistic. For instance, it is very unlikely that large-scale surveys would employ simple 

random sampling at the first stage. Second, this study focuses on a multilevel linear model with a 

continuous outcome, which makes it different from Rabe-Hesketh & Skrondal (2006) and Grilli 

& Pratesi (2004) that examined the MPML estimation method in the context of logistic model 

and probit model respectively. Moreover, this simulation is different from the studies of 

Pfeffermann et al. (1998) and Asparouhov (2006). Pfeffermann et al. (1998) examined the 

performance of PWIGLS and their two-level model did not include any covariates. Asparouhov 

(2006) did not include covariates in the model either.  

The sampling design mimicked the PISA data, in which schools were selected with 

probabilities that are proportional to school size. Suppose the school population is M=6000 and 

m=120 schools will be sampled with selection probability of 0.02 that are proportional to school 

size, which is defined as an exponential function of normal distribution for 1# with a mean of 0 

and a variance of 89: . This means that schools with large variance are large schools with high 

selection probability. The selection probability ( `#) is then computed as pj=1/(1+exp(4-uj/x)) 

where x=(1/3, ½, 1, 2) to reflect informativeness from high to low. The weights wj are computed 

as the inverse of `#. At the second sampling stage, suppose there are 140 students in a certain 

grade and 35 students (i.e., 1/4) were randomly selected with probability of `"|#  as `"|# 

=1/(1.35+exp(1-eij/2)) and the weights are the inverse of `"|#. The individual student residual e 

was generated from a normal distribution with a mean of 0 and a variance of  8<:. The ICC is set 

as 0.20 with 89: =0.0625 and 8<:=0.25. The finite population values !"# were generated from the 

following model. The appendix 1A provides the STATA code. The !"# is the difference score in 

reading scores for each kindergartener between the spring and the fall. Female and private school 

are dummy variables with Bernoulli distributions while SES and class size follow normal 
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distributions. The “unusual” negative coefficients for the variables SES and private school show 

that students from a high SES family background or students who attend private schools have a 

smaller rate of change given their potential higher score to begin with. 

!"# = 1 + 0.019é2èêY2 − 0.065 ∗ ìîì − 0.001 ∗ ÑYêïï	ïñó2 − 0.026 ∗ `ôñÖêö2	ïÑℎZZY	 + 1# + ;"# 

(A2.17) 

Once the population is generated then sample data are selected based on pj and `"|#. The 

process was repeated 1000 times. Following Eideh and Nathan (2009) and Cai (2013), the 

quality of estimates is evaluated using three criteria: the empirical relative bias, the empirical 

root mean square error (RMSE) and the coverage rate that the true parameter falls within the 95% 

confidence interval using t-test based standard errors.  

The relative bias is defined as 

úùñêï = C
û
[ C
C&&&

?ü − ?C&&&
"UC ]              (A2.18) 

and the RMSE is expressed as 

ú†ìî ? = [ C
C&&&

(?ü−?):C&&&
"UC ]                    (A2.19) 

where ? = C
C&&&

?üC&&&
"UC . 

 

2.5.3 Results 

Results for simulation means  

Table 2.1 reports the point estimators produced from the simulation for four fixed effects 

concerning the variables female, SES, class size and private school. Overall the estimates cover 

the true values except for private school where the estimates seem to have some bias. Especially, 

the variables with normal distributions (i.e., SES and class size) have more robust mean values 
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than the binary variables (i.e., female and private school) across designs with different degree of 

informativeness. In addition, weighted estimates seem to be a little different from unweighted 

estimates by and large in the multilevel framework. Nevertheless, the two scaling methods have 

similar performance. 

Table 2.2 presents the point estimators produced from the simulation for the intercept and 

the variance components. With regard to the intercept %& , the overall unweighted estimates 

produced positive bias while applying the weights helped correct this bias. With regard to 89:, the 

results show that weighted but unscaled estimates have positive bias compared with unweighted 

or scaled estimates. For scaled estimates, the values fluctuate slightly around the true value 

across different informative designs. Regarding the scaling, the effective scaling produced 

slightly smaller estimates than the size scaling. Regarding 8<:, all four estimators have a slight 

negative bias. Comparatively speaking, the scaled estimates are preferred; weighted but unscaled 

estimates are the worst and the unweighted estimates lie in between. 

 

Quality of simulated point estimates 

Figures 2.2 to 2.4 along with Table 1.1 demonstrate the quality of the estimation 

concerning the fixed effects of the four variables in terms of relative bias, RMSE and 95% 

coverage rate. With regard to the relative bias, results evidently are affected by variation on 

design informativeness. In general, there is no clear pattern about which estimation type among 

the four generates the least biased estimates across variables. Regarding RMSE, the unweighted 

estimates consistently produce the lowest values compared to the three weighted counterparts, 

which have similar values. In terms of the 95% coverage rate, by and large, the performance of 
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the estimation is good and consistent across different settings. All variables have the values are 

all pretty close to 95%. 

Figures 2.5 to 2.7 along with Table 2.2 present results for the intercept and the variance 

component. With respect to the relative bias, for %&, the unweighted  estimates have substantial 

positive bias and applying sampling weights reduces this bias. Once weights are applied, scaling 

does not seem to have additional benefits for %&. For 8<:, the weighted but unscaled estimator has 

the greatest amount of negative bias and the scaling procedure helps to reduce this bias. For 89:, 

the weighted but unscaled estimator generates substantial positive bias whereas unweighted or 

scaled estimators would be preferred. It seems that size scaling slightly outperforms the effective 

scaling. Corresponding to the analytic expressions in equations (A2.13) to (A2.16), when the 

predicted  8<: has substantial negative bias, the estimator of 89: would have much positive bias. 

In terms of the RMSE, unweighted estimates have the lowest values. With regard to the 95% 

coverage rate, for %&, the unweighted estimates have low coverage rates (from 64% to 86%); for 

8<:, the weighted unscaled estimates have the lowest coverage rate (from 76% to 81%) where 

scaled estimates have coverage close to 95%; for 89:, the weighted unscaled estimates have a 

relatively low coverage rate around 90%, whereas the other three counterparts all have coverage 

rates close to 95%. 

 

Simulated standard error 

Following Pfeffermann et al. (1998), the standard errors of the estimates were examined 

by comparing the average value of the 1000 estimated standard errors with the standard deviation 

of the 1000 point estimates for seven parameters including five fixed effect parameters (i.e., the 

intercept and four regression coefficients) and two random effect parameters (i.e., variance at 
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level one and level two). The closeness of these two indices indicates the good quality of the 

standard error estimation because by definition the standard error of the point estimate is the 

standard deviation of the sampling distribution of the point estimator. Table 2.3 contains results 

which show that the estimation of the standard errors performed very well. It is evident that the 

unweighted multi-level model produced the smallest standard errors for the point estimates 

across these parameters and the four informative designs. 

  

2.6 Investigation component II: SDA 
 

2.6.1 Background 

To overcome the shortcoming of inefficiency (i.e., producing larger variance) in sample 

weighting approach, the method of SDA has been proposed. The basic idea of SDA is to extract 

a multi-level model from the sample data as a function of the corresponding population model as 

well as a sample selection probability at each level. The application and evidence of this method 

is very scarce for at least two reasons. First, there are several models (e.g., exponential and 

logistic models) that have been proposed to approximate the conditional expectations of selection 

probability at each level (Cai, 2013; Eideh & Nathan, 2009; Pfeffermann, Fernando Antonio Da 

Silva, & Pedro Luis Do Nascimento, 2006; Pfeffermann, Krieger, & Rinott, 1998). For instance, 

(Cai, 2013) used the logistic model for the conditional expectation of sampling. Pfeffermann et 

al., (1998) used polynomial and exponential models. Previous studies have indicated that SDA 

may not be that sensitive to the modeling of the conditional expectation of the inclusion 

probability, and due to simplicity and convenience, exponential models have been adopted more 

frequently (Eideh & Nathan, 2009). The notable feature of the exponential method is that the 
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joint sample likelihood could be simplified as a multivariate normal distribution with a shifted 

intercept while maintaining the same variance as in the population model.  

Second, it is difficult to approximate the joint sample likelihood function, which involves 

numerical integration. Thus, it can be computational demanding for complex statistical models. 

Currently, there is no statistical software program available to perform it directly and researchers 

have to use numerical methods. For instance, Eideh & Nathan (2009) mentioned the “nlminb” 

function in S-PLUS but coding details were not provided. Cai (2013) used the Newton algorithm 

to approximate the joint sample likelihood function. The numerical methods were used to obtain 

the point estimates and then the variance of the point estimates were estimated via conventional 

methods (e.g., delta method and bootstrapping). Pfeffermann et al. (2006) used a Bayesian 

method to fit the resulting sampling model, but they did not provide model checking details, 

which is a crucial component for Bayesian analyses because the parameters rely on the 

convergence of the Monte-Carlo Markov Chain (MCMC) to be valid.  

To summarize, the SDA is appearing as an alternative approach to overcome the 

limitations in the weighted probability approach. However, the difficulties of the estimation 

technique prevent it from moving forward and providing comparable empirical evidence. The 

study attempts to fill this gap via developing a Bayesian method to show the distribution of the 

variance of the point estimates after incorporating the design informativeness. This method 

coupled with the Bayesian framework could be a promising approach to incorporate design 

features in complicated multilevel models.  

 

2.6.2 Statistical method 

The same statistical model is used and expressed in a two-level format as follows.  
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Level 1: B"# = %&# + /0°¢£ + 2"#   i=1, 2, …,§#   2~5(0, 8<:)     

Level 2: %&# = •&& + ¶0°(ß + 1#   j=1, 2, …, m 1~5 0, 89: ,			       (B2.1) 

where in level 1, B"# represents the outcome of student i in school j, %&# is the school-level mean, 

STU stands for student level covariates including student’s gender and socioeconomic status, /0 

contains the corresponding coefficients, e is the first-level residual; in level 2  •&& is the overall 

mean, SCH stands for school-level covariates and ¶0 refers to corresponding coefficients, and u 

is the second-level residual. Both u and e are random-effect parameters assumed to follow 

normal distributions with means zero and variances 89:  and 8<:  respectively. Suppose ? 

represents all the population parameters to be estimated which include •&&, /, ¶, 89: and 8<:. 

 The sample pdf of B"#	can be expressed as a population pdf with an indictor Ü"#. Let Ü"# =1 

indicate that a level 1 unit (e.g., student) in the population is selected and included in the sample 

and Ü"#  =0 otherwise. Using Bayes theorem, the sample pdf at level 1 can be expressed in a 

general form as  

 éf B"# ®"# = éd B"# ®"#, Ü"# = 1 =
©q™´ Ü"# = 1 B"#, ®"#

©q™´ ¨NOUC|≠NO
éd B"#|®"#        (B2.2)  

where X represents covariates and the subscripts p and s stand for sample and population 

respectively. 

Similarly, level 2 sample pdf of B# can be written as  

éf B# ®# =
©q™´ Ü# = 1 B#, ®#

©q™´ ¨OUC|≠O
éd B#|®# .                 (B2.3) 

Equations (B2.2) and (B2.3) demonstrate that the sample distributions can be regarded as a 

function of the population model and the sampling design. If the design is informative which 

means that the response variable is associated with the sampling selection given all the covariates 
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in the model, the sample distribution would be different from the population distribution. 

Therefore, in general, ÆôZØ Ü# = 1 B#, ®#  is not equal to ÆôZØ Ü# = 1|®# . 

Following (Pfeffermann, Krieger, et al., 1998) ,  

ÆôZØ Ü"# = 1 B"#, ®"# = îd(∞"#|B"#, ®"#)          (B2.4) 

ÆôZØ Ü"# = 1|®"# =îd(∞"#|®"#)           (B2.5) 

where ∞"# = `ôZØ( Ü"# = 1 B"#, ±"#  which is different from ÆôZØ Ü"# = 1 B"#, ®"#  and ±"# 

denotes other design variables. 

Similarly, 

ÆôZØ Ü# = 1|B#, ®# = îd(∞#|B#, ®#)                       (B2.6) 

ÆôZØ Ü# = 1|®# = îd ∞# ®# .           (B2.7) 

Plugging equations (B2.4) - (B2.7) into equations (B2.2) - (B2.3), the final sample pdfs can be 

written as  

éf B"# ®"# =
v(DNO|MNO,≠NO)
v≤(DNO|≠NO)

éd B"#|®"#                 (B2.8) 

éf B# ®# = v≤(DO|MO,≠O)
v≤(DO|≠O)

éd B#|®#                       (B2.9) 

The exact form of the conditional expectation of the sampling probability is usually 

unknown, but it can be approximated by exponentials via the Taylor series approximation. The 

exponential model has been adopted by several studies (Eideh & Nathan, 2009; Pfeffermann, 

Krieger, et al., 1998; Pfeffermann, Moura, & Silva, 2006; Pfeffermann & Sverchkov, 2007). 

Specifically,  

îd(∞"#|B"#, ®#)=exp Ø&B"# + ùC®#              (B2.10) 

and 

îd(∞#|B#, ®#)=exp	(S&B# + ≥C®#).                      (B2.11) 
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The coefficients can be estimated using sample data via the following relationships  

(see Pfeffermann & Sverchkov, 1999): 

î(a"|#|B"#, ®"#)= 1/ îd(∞"#|B"#, ®"#) =	exp	[− Ø&B"# + ùC®"# ]                 (B2.12)    

î(a#|B#, ®#)=1/îd(∞#|B#, ®#)=exp [−(S&B# + ≥C®#)].                (B2.13) 

The appealing feature of the exponential approximation model is that the sample and population 

models both belong to the normal distribution, so the joint-sample likelihood function is 

simplified to a multivariate normal distribution with the mean shifted by a constant while the 

variance remains the same. In the specific model used in this study, the exponential 

approximation model could be written as 

îf B"# ì¥µ = B# + ùCì¥µ + Ø&8<: ; ∂êô	 B"# ì¥µ =8<:                 (B2.14) 

îf B# ì∑∏ = •&& + ≥Cì∑∏ + S&89: ; ∂êô	 B# ì∑∏ =89:.        (B2.15) 

Eideh and Nathan (2009) pointed out that when Ø&, S& = 0, the sample and populaiton 

distributions are the same and the sampling mechanism is ignorable. Based on equation (B2.14) 

and (B2.15) the value Ø& can be estimated by regressing log(a"|#) on B"#  and STU and S& by 

regressing log(a#) on B# and SCH in which the B# is unknown but can be estimated by B#, the 

group mean for each cluster. To perform frequantist analyses, I used the empirical data of ECLS-

K 2011 kindergarten year. The outcome is the difference in reading achievement scores in 

kindergarten between the spring and the fall; female, SES, class size and private school are the 

covariates/predictors. Corresponding to analysis component I, four models were employed 

(unweighted, unscaled, size-scaled and effective-scaled) and analyses were conducted in STATA 

14. Using the real data, for SDA, the approximted values were Ø& = -0.0397 and S& = 0.0281, 

which will be utilized in the Bayesian analysis with flat priors. Below I delineate the Baysian 

methods used. 
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The difference between frequentist analyses and Bayesian analyses is twofold. First, 

philosophically, frequentists treat population parameter as fixed values while Bayesian analysts 

treat them as random variables with distributions of possible values or with uncertainty around 

their true value. Practically, frequentists provide point estimates and corresponding standard 

errors as summary statistics while Bayesian analysts provide different central tendency (e.g., 

mean, median and mode) and dispersion summaries for the posterior distribution. Second, the 

prior distribution is a unique or distinctive component of the Bayesian analysis as it allows 

analysts to include their own knowledge as a quantity to the model analysis in a formal way. 

However, the prior distribution is also a controversial element as it is subjective and arbitrary 

because different people may use different priors and consequently have potentially varied 

conclusions (Gelman, J. B., Dunson, Vehtari, & Rubin, 2013). Nevertheless, using flat priors 

which would not add additional information, the posterior distribution would be dominated by 

the likelihood function. Thus the mode of the posterior distribution, which maximizes the 

likelihood function, should be equivalent to the maximum likelihood estimator in the frequentist 

inference framework assuming unimodal distribution.  

The unique tool of Bayesian analyses is the implementation of Monte Carlo Markov 

Chain (MCMC). This technique frees analysts from doing extreme complex integration that 

sometimes is impossible to obtain and instead replaces it with iterative work conducted by 

computers (Gill, 2008). For instance, obtaining the marginal posterior distribution needs to 

integrate out all the conditional parameters. The Metropolis-Hastings algorithm is a term for a 

family of Markov chain simulation methods that has been used to sample from any univariate 

distribution. The Gibbs sampler can be viewed as a special case of the Metropolis-Hastings and it 

has been used widely for multivariate distributions when practical application involves many 
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multidimensional problems. The Gibbs sampler samples from the distribution of each parameter 

in turn conditioning on the data and the current values of all the other parameters. Provided with 

a starting value, sequential samples build up a Markov Chain, until the algorithm converges to its 

stationary (equilibrium) distribution. The posterior then becomes just the joint distribution of all 

the parameters. 

In the Bayesian framework, the posterior distribution, which is proportional to the 

product of the prior distribution and the likelihood function, can be expressed as 

` ? B ∝ ` ? é(B|?),            (B2.16) 

where theta represents a vector of estimated parameters and y represents data. The likelihood 

function is the same as in the frequentist framework. As priors are assumed to be independent, 

the joint distribution ` ?  can be written as the products of all the priors as follows 

` ? = `(•&&, ù, Γ, 89:, 8<:) = ` •&& ` ùC ` ªC ` 89: `(8<:).        (B2.17) 

The likelihood term é(B|?) is a sampling distribution of the data given the parameters of ? and 

the likelihood term can also be regarded as a mathematical function that needs to be maximized 

given that particular data with the expression below 

é ? B = é(•&&, ùC, ªC, 89:, 8<:|B).         (B2.18) 

Plugging equations (B2.17) and (B2.18) into equation (B2.16), for each data point, the posterior 

distribution is 

` ? B ≈ ` •&&, ` ùC ` ªC ` 89: `(8<:)é(•&&, ùC, ªC, 89:, 8<:|B).     (B2.19) 

Then, for the whole data sets the posterior distribution is the joint distribution across clusters 

with hyper-parameters, namely 

Æ ? B = [5(?#|•&&, 89:]` •&&, 89: S(•&&, 89:b
#UC ).             (B2.20) 
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This is the joint posterior distribution containing all the parameters. For the inference of each 

specific parameter, its marginal distribution can be obtained by integrating out the effect of all 

the other auxiliary parameters. Take •&& for example, 

Æ(•&& B = é(•&&, ùC, ªC, 89:, 8<:|B)SΩkSækSEøG SEFG.             (B2.21) 

One specific merit of Bayesian analysis is that it takes into account the effects of non-focal 

parameters in making an inference, which may thus produce some extra variation than the 

frequentist analysis. However, this multiple integration is typically intractable and the solution 

relies on the MCMC. In this study the Gibbs sampler is utilized which is appropriate for 

multivariate distribution. With initial values for parameter vector ?&  =(%&&, %C&, %:&, 8:9,
& 8:<

& ) 

(where the superscript represents the number of iteration), the sampling procedure is, 

Step1: sample %&C from é(%&|%C&, %:&, 8:9,
& 8:<

&, B) 

Step2: sample %CC from é(%C|%&C, %:&, 8:9,
& 8:<

&, B) 

Step3: sample %:C from é(%:|%&C, %CC, 8:9,
& 8:<

&, B) 

Step4: sample 8:9,
C 	from é(%:|%&C, %CC, %:C	, 8:<

&, B) 

Step5: sample 8:<,
C 	from é(%:|%&C, %CC, %:C	, 8:9

C , B). 

Now the first iteration is completed and ?C =(%&C, %CC, %:C, 8:9,
C 8:<

C). Repeat step 1 to step 5 N 

number of times to obtain a chain ?(C,:,¿,…,T). In the initial iteration, the posterior distribution of 

one parameter is correlated with that of the others as it obviously depends on previously 

generated sample value. However, with a large number of iteration, independence will be 

achieved after a certain number of “Burn-in”, which is a special term refers to certain amount of 

initial iterations that will be discarded as parameters are highly correlated at that stage. 
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 In this study, the purpose is to utilize MCMC iterations to replace integration and 

resemble the likelihood function in a frequentist framework. Specifically, the flat priors for the 

random effects (i.e., 89: and 8<: ) are uniform distributions from 0 to100 and for the fixed effects 

flat normal distributions with a mean of zero and a variances of 0.001 or flat uniform distribution 

(0,1). A calculation based on the method in Raftery and Lewis’s (1992) indicates that 10,000 

iterations would be sufficient to estimates parameters in this study. Therefore, the total number 

of iteration is 105,000 with 5,000 as burn-in and thinning of 10 (i.e., instead of storing each chain, 

every 10th chain will be saved). The purpose of thinning is just to reduce computer storage by 

recording only every kth value when the chain is run normally. Thinning thus does not relate to 

improving the quality of estimates. The final MCMC of 10,000 iterations is used for the 

inference of the posterior distributions. I compared the estimates between the frequentist and 

Bayesian approaches using the empirical data. The results section illustrates the details. 

 

2.6.3 Results 

The quality of the MCMC concerning convergence is evaluated via three types of graphs: 

autocorrelation plots, density plots and trace plots illustrated in Figures 2.8, 2.9, and 2.10 

respectively. The autocorrelation graphs show that for the intercept and class size, independence 

achieved after some initial iterations while the other parameters achieve independence more 

quick. The density plots show that all parameters have good normal posterior distributions given 

the large number of iterations. The trace plots echo what the autocorrelation plots both showing 

that the intercept and class size converged less well than the other parameters. 

Table 4 reports results using the empirical data. The frequentist approach contains four 

models: unweighted, unscaled, size-weighted and effective-weighted. Comparing these results 
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with the simulation results in Table 2.2, it is evident that the unscaled estimate of the cluster 

level variance has positive bias. For the estimates of the first level variance and the intercept, the 

pattern between the simulation and the empirical analysis is not very consistent, which may 

indicate that the simulation data with simplified normal residual did not fully capture the real 

data variation which may not be normal distribution. However, the estimates of the standard 

errors follow similar patterns in both simulation and empirical analyses. In general, the 

unweighted standard error is the smallest, while the unscaled counterpart is the largest.  

When comparing results between the frequentist and Bayesian approaches, the Bayesian 

summary statistics of the posterior distributions perfectly match the unweighted estimates in 

terms of the center point estimates, the variances as well as the 95% confident intervals or high 

posterior density region (HPD) intervals which has been used more often than credible interval in 

practice (Gill, 2008). Clearly, the range of the interval for unweighted or Bayesian analysis is 

narrower than the range in the weighted analysis. That is, the standard errors are smaller as 

previous simulation results showed. 

 

2.7 Discussion 
 

Large-scale educational data typically adopt complex sampling designs with special 

features. Clustering and unequal probability of selection are two features that present a challenge 

in statistical analysis. Clustering data structures violate the statistical assumption of independent 

errors in regression model. As a result, multilevel modeling approaches have been utilized to 

incorporate clustering effects in the analysis.  

The unequal probability of selection may lead to an informative design at each sampling 

stage. If the informativeness is ignored at either level when fitting a model with sample data, the 
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estimates will be biased (Cai, 2013). In order to correct this bias, design informativenes should 

be incorporated in the model analysis.  Specifically, the use of sampling weights has been 

recommended in model analysis using a design-based approach, but the difficulty of applying the 

weights in multilevel models has been underestimated. To many data analysts, it is unclear when 

and how complex sampling weights should be used in multilevel modeling. The evidence and 

practical guidance in this area is badly needed, especially when researchers are increasingly 

relying on the large-scale data to produce scientific evidence. 

In the literature, two approaches have been proposed to incorporate informative sampling 

designs from a model-based perspective. The first approach is derived from PML in which the 

sampling weights are incorporated in the likelihood to produce unbiased and consistent estimates. 

This approach is used in single-level model. In multilevel model, two estimation techniques have 

been proposed (i.e., MPML and PWIGLS). These techniques have also been used in structural 

equation modeling (T. Asparouhov, 2005; Stapleton, 2006). Many statistical software programs 

employ these two techniques such as STATA, Mplus and LISREL. One limitation of this 

approach is that it produces asymptotic unbiased estimates, but the exact distribution of the 

weighted point estimators is generally unknown. Therefore, when the sample size is small, 

substantial bias could be observed (D. Pfeffermann et al., 2006). Moreover, the standard errors of 

estimates in weighted analyses are typically larger than those in unweighted analyses, which is a 

main disadvantage of incorporating weights in analyses (Kish, 1992). Further, it is not clear how 

to conduct weighted multilevel analysis including scaling when having an informative design for 

statistical models with more than two levels.  

This study aims to shed new light on how to incorporate informative deign in multilevel 

modeling by working on both approaches. The results indicated that in both the simulation and 
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the empirical investigation, unscaled estimates produced substantial bias for the variance 

component and the two scaling methods (size and effective) seems to perform equally well 

concerning the estimation of cluster level variance. In general, some findings in this study are 

consistent with previous studies. For example, previous studies showed that for a two-level 

random intercept linear model, when both levels have an informative design, the unweighted 

estimation produces biased estimates for all parameters involved (Cai, 2013; Pfeffermann, 

Skinner, et al., 1998). This conclusion is consistent with findings from this simulation. The 

different is that I found bias varied across variables while Cai reported that fixed effects are 

nearly unbiased or slightly biased within 10 percent of the true value. Pfeffermann et al. (1998) 

found that when an informative design exists in level 2 only, the bias of unweighted  8<: 

disappears but the unweighted estimators %& and 89: remain biased. I used an informative design 

at both levels, so the unweighted estimate of 8<: is also biased. This finding is in congruence with 

previous findings that which sampling stage is informative matters (Cai, 2013). With regard to 

the SDA, empirical results may suggest that this method fails to take into account the informative 

selection either because of the small informative value in the data or because adding error term 

does not change model estimates. Therefore, the tentative conclusion is that sample weighted 

estimation approaches (i.e., MPML and PWIGLS) would still be preferred. 

There are several limitations in this study. First, only a simple multilevel random-

intercept linear model is considered in this study. It is possible that results may vary when 

random slopes are introduced or non-linear models are used. Second, there are some practical 

procedures that have been applied on the sampling weights such as weights trimming and non-

response adjustment, which have not been considered in the simulation.  
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For future research could further evaluate the performance of MPML in other model 

settings. For example, it may be informative to extend the research to nonlinear model as discrete 

responses are often used as outcomes (Goldstein, 1991) and there is an increasing body of 

research focusing on binary and count data (Chaudhuri, Handcock, & Rendall, 2008; Natarajan, 

Lipsitz, Fitzmaurice, Moore, & Gonin, 2008; Nordberg, 1989; Rodriguez & Goldman, 1995, 

2001). Extending the research to longitudinal designs would also be interesting and needed 

(Jenkins, 2008; C. J. Skinner & de Toledo Vieira, 2007; Stapleton, Harring, & Lee, 2016; Vieira 

& Skinner, 2008).  

In addition to substantial informative design and scaling procedure, other factors such as 

sample size and ICC value could also be included in simulation setup for further research. For 

example, Pfeffermann et al. (1998) found that the sample number of level 1 units instead of the 

sample number of level 2 is the critical factor affecting the bias of unscaled estimators especially 

for small cluster sample size. Regarding the effect of ICC, literature showed that when ICC 

values increase, the bias for the unscaled estimate decreases (Asparouhov, 2006; Kovačević & 

Rai, 2003). Moreover, currently, the literature development and software applications regarding 

sampling weights and scaling options mostly deal with two-level models. For example, in Stata 

14 there is no availability for scaling procedures in models with more than two-levels. Future 

research may move forward to three-level models.  
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APPENDIX 2.1: STATA SIMULATION CODE 
/**************************************************************************/ 
local info 0.67 0.5 1 2  
forvalue i = 1/1000 { 
display "iteration `i'" 
foreach j of local info { 
display "informative `j'" 
* generate school level data 
quietly: set seed 1`i'1 
quietly: set obs 6000 
quietly: gen uj=rnormal(0,0.25) 
quietly: gen pj=1/(1+exp(4-uj/`j')) 
quietly: gen wj=1/pj 
quietly: gsample 120 [aw=pj],gen(index1) 
quietly: gen school = _n 
* school covariates 
quietly: gen clsize=rnormal(20,4) 
quietly: gen private=uniform()<=0.16 
quietly: expand 140 
quietly: sort school 
* generate student data 
quietly: gen eij=rnormal(0,0.5) 
quietly: gen pi_j=1/(1.35+exp(1-eij/2)) 
quietly: gen wi_j=1/pi_j 
quietly: gen pij=pi_j*pj 
quietly: gen wij=1/pij 
quietly: gen female=uniform()<=0.49 
quietly: gen ses=rnormal(0.06,0.9) 
* merge two level data 
quietly: gen yij=1+0.019*female-0.065*ses-0.001*clsize-0.026*private+uj+eij 
*select final sample 
keep if index==1 
quietly: gsample 4200 [aw=pi_j] 
/**************************************************************************/ 
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APPENDIX 2.2 A: EQUATION DETAILS 
 
1) In Equation (B2.2) 
éd B"# ®"#, Ü"# = 1  

=
éd B"#, ®"#, Ü"# = 1
éd ®"#, Ü"# = 1

 

=
éd Ü"# = 1 B"#, ®"# éd B"#, ®"#

éd ®"#, Ü"# = 1
 

 

=
éd Ü"# = 1 B"#, ®"# éd B"#|®"# éd ®"#

éd Ü"# = 1|®"# éd ®"#
 

 

=
éd Ü"# = 1 B"#, ®"# éd B"#|®"#

éd Ü"# = 1|®"#
 

=
ÆôZØ Ü"# = 1 B"#, ®"#
ÆôZØ Ü"# = 1|®"#

éd B"#|®"#  

 
 
2) In Equation (B2.4) 
ÆôZØ Ü"# = 1 B"#, ®"#  

= `ôZØ( Ü"# = 1|B"#, ®"#, ∞"#)éd(∞"#|B"#, ®"#)S∞"# 

= ∞"# éd(∞"#|B"#, ®"#)S∞"# 
= îd(∞"#|B"#, ®"#) 
 
 
3) In Equation (B2.5) 
ÆôZØ Ü"# = 1|®"#  
= îd ∞"# B"#, ®"# éd B"#|®"# SB"# 
=îd(∞"#|®"#) 
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APPENDIX 2.2 B: BAYESIAN CODE 
 
######################## R package: R2WinBugs   ############################### 
###### model syntax 
    model;{ 
    # likelihood 
    for(i in 1:N){ 
    y[i]~dnorm(mu[i],tau.e) 
    mu[i]<-
grand.mean[id.school[i]]+beta.female*female[i]+beta.ses*ses[i]+beta.cs*cs[i]+beta.private*private[i]-
0.0397*var.e+0.0281*var.int 
    }  
    # prior 
    for (j in 1:n.sch){ 
    grand.mean[j]~dnorm(mu.int,tau.int) 
    } 
    mu.int~dnorm(0,0.001) 
    beta.female~dunif(0,1) 
    beta.ses~dnorm(0,0.001) 
    beta.cs~dnorm(0,0.001) 
    beta.private~dunif(0,1) 
     
    sigma.e~dunif(0,100) 
    var.e<-sigma.e*sigma.e 
    tau.e<-1/var.e 
     
    sigma.int~dunif(0,100) 
    var.int<-sigma.int*sigma.int 
    tau.int<-1/var.int 

} 
 

############################################################################## 
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FIGURES 
 
Figure 2.1: A diagram for the conceptual framework 
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Figure 2.2: Relative bias for four covariates 
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Figure 2.3: RMSE for four covariates 
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Figure 2.4: 95% coverage rate for four covariates 
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Figure 2.5: Relative bias for the intercept and variance component 
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Figure 2.6: RMSE for the intercept and variance component 
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Figure 2.7: 95 % Coverage rate for the intercept and variance component 
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Figure 2.8:  Autocorrelation plots 
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Figure 2.9: Density plots 
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Figure 2.10: Trace plots 
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TABLES 
	

Table 2.1: Results for covariates 
  Info=1 (high)   Info=2   Info=3   Info=4 (low) 
Covariates Mean Rbias RMSE 95%CR   Mean Rbias RMSE 95%CR   Mean Rbias RMSE 95%CR   Mean Rbias RMSE 95%CR 
Female 0.019                                     
NW 0.021 0.082 0.017 0.953   0.020 0.053 0.017 0.950   0.020 0.034 0.018 0.947   0.019 -0.024 0.018 0.952 
NS 0.021 0.089 0.019 0.951   0.021 0.080 0.020 0.952   0.019 0.021 0.019 0.951   0.018 -0.028 0.019 0.953 
SIZE 0.021 0.091 0.019 0.952   0.020 0.077 0.020 0.951   0.019 0.020 0.019 0.951   0.019 -0.026 0.019 0.952 
EFF 0.021 0.090 0.019 0.952   0.020 0.077 0.020 0.952   0.019 0.020 0.019 0.952   0.019 -0.025 0.019 0.950 
SES -0.065                                     
NW -0.065 0.001 0.010 0.953   -0.065 0.000 0.010 0.945   -0.066 0.009 0.010 0.948   -0.065 -0.007 0.010 0.954 
NS -0.065 0.002 0.011 0.949   -0.065 0.001 0.011 0.952   -0.065 0.006 0.010 0.948   -0.064 -0.008 0.010 0.959 
SIZE -0.065 0.002 0.011 0.944   -0.065 0.001 0.011 0.954   -0.065 0.006 0.010 0.948   -0.064 -0.008 0.010 0.960 
EFF -0.065 0.002 0.011 0.945   -0.065 0.001 0.011 0.954   -0.065 0.006 0.010 0.948   -0.064 -0.008 0.010 0.960 
ClassSize -0.001                                     
NW -0.001 0.293 0.006 0.951   -0.001 0.228 0.006 0.947   -0.001 0.074 0.006 0.953   -0.001 0.137 0.006 0.949 
NS -0.001 0.340 0.007 0.946   -0.001 0.164 0.007 0.950   -0.001 0.061 0.007 0.954   -0.001 0.135 0.006 0.948 
SIZE -0.001 0.339 0.007 0.946   -0.001 0.168 0.007 0.951   -0.001 0.060 0.007 0.954   -0.001 0.136 0.006 0.949 
EFF -0.001 0.339 0.007 0.946   -0.001 0.168 0.007 0.951   -0.001 0.060 0.007 0.954   -0.001 0.136 0.006 0.949 
Private -0.026                                     
NW -0.026 0.003 0.069 0.948   -0.023 -0.104 0.069 0.953   -0.022 -0.152 0.070 0.948   -0.025 -0.038 0.069 0.955 
NS -0.022 -0.169 0.076 0.952   -0.018 -0.324 0.085 0.952   -0.019 -0.265 0.074 0.950   -0.024 -0.078 0.070 0.954 
SIZE -0.022 -0.168 0.076 0.950   -0.018 -0.325 0.085 0.953   -0.019 -0.265 0.074 0.952   -0.024 -0.078 0.070 0.955 
EFF -0.022 -0.167 0.076 0.950   -0.018 -0.325 0.085 0.953   -0.019 -0.265 0.074 0.952   -0.024 -0.078 0.070 0.955 
Note: Rbias=relative bias; RMSE=root mean square error; CR=coverage rate; NW=unweighted; NS=unscaled; SIZE=size scaling; EFF=effective scaling 
	

Table 2.2: Results for intercept and random effects 
  Info=1 (high)   Info=2   Info=3   Info=4 (low) 
Covariates Mean Rbias RMSE 95%CR   Mean Rbias RMSE 95%CR   Mean Rbias RMSE 95%CR   Mean Rbias RMSE 95%CR 
Intercept 1                                     
NW 1.175 0.175 0.132 0.740   1.205 0.205 0.127 0.641   1.142 0.142 0.129 0.796   1.115 0.115 0.131 0.856 
NS 1.008 0.008 0.149 0.950   1.005 0.005 0.153 0.949   1.002 0.002 0.137 0.959   1.006 0.006 0.132 0.949 
SIZE 1.008 0.008 0.149 0.949   1.005 0.005 0.153 0.953   1.002 0.002 0.137 0.960   1.006 0.006 0.132 0.949 
EFF 1.008 0.008 0.149 0.949   1.006 0.006 0.153 0.953   1.002 0.002 0.137 0.960   1.006 0.006 0.132 0.949 
Variance_a 0.0625                                     
NW 0.0620 -0.0082 0.0091 0.9560   0.0621 -0.0058 0.0092 0.9500   0.0629 0.0060 0.0093 0.9550   0.0624 -0.0016 0.0091 0.9500 
NS 0.0677 0.0832 0.0110 0.9270   0.0672 0.0746 0.0118 0.9420   0.0688 0.1007 0.0103 0.9110   0.0681 0.0899 0.0093 0.9050 
SIZE 0.0623 -0.0028 0.0110 0.9570   0.0618 -0.0113 0.0118 0.9570   0.0634 0.0141 0.0103 0.9490   0.0627 0.0036 0.0093 0.9510 
EFF 0.0621 -0.0057 0.0110 0.9580   0.0616 -0.0142 0.0118 0.9580   0.0632 0.0112 0.0103 0.9490   0.0625 0.0007 0.0093 0.9520 
Variance_e 0.250                                     
NW 0.245 -0.021 0.006 0.854   0.245 -0.021 0.006 0.864   0.244 -0.022 0.006 0.860   0.244 -0.022 0.006 0.855 
NS 0.242 -0.031 0.007 0.775   0.242 -0.030 0.007 0.805   0.242 -0.031 0.006 0.769   0.242 -0.031 0.006 0.761 
SIZE 0.247 -0.011 0.007 0.922   0.247 -0.010 0.007 0.934   0.247 -0.011 0.006 0.937   0.247 -0.011 0.006 0.936 
EFF 0.247 -0.012 0.007 0.917   0.247 -0.012 0.007 0.927   0.247 -0.012 0.006 0.930   0.247 -0.013 0.006 0.926 
Note: Rbias=relative bias; RMSE=root mean square error; CR=coverage rate; NW=unweighted; NS=unscaled; SIZE=size scaling; EFF=effective scaling 
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Table 2.3: Simulation standard deviations of point estimators 
Informativeness-> I=1 (High) I=2 I=3 I=4 (Low) 
  SD SE SD SE SD SE SD SE 
Female                 
NW 0.0172 0.0155 0.0175 0.0155 0.0181 0.0155 0.0182 0.0155 
NS 0.0191 0.0189 0.0199 0.0201 0.0192 0.0185 0.0190 0.0181 
SIZE 0.0191 0.0189 0.0199 0.0201 0.0191 0.0184 0.0189 0.0180 
EFF 0.0190 0.0189 0.0198 0.0200 0.0191 0.0184 0.0189 0.0180 
SES                 
NW 0.0098 0.0086 0.0101 0.0086 0.0097 0.0086 0.0097 0.0086 
NS 0.0108 0.0105 0.0114 0.0111 0.0102 0.0102 0.0100 0.0100 
SIZE 0.0107 0.0105 0.0114 0.0111 0.0102 0.0102 0.0100 0.0100 
EFF 0.0107 0.0105 0.0113 0.0110 0.0101 0.0102 0.0100 0.0100 
Class size                 
NW 0.0064 0.0061 0.0062 0.0061 0.0063 0.0062 0.0064 0.0061 
NS 0.0071 0.0066 0.0074 0.0070 0.0067 0.0063 0.0064 0.0062 
SIZE 0.0071 0.0066 0.0074 0.0070 0.0067 0.0063 0.0064 0.0062 
EFF 0.0071 0.0066 0.0074 0.0070 0.0067 0.0063 0.0064 0.0062 
Private                 
NW 0.0689 0.0673 0.0688 0.0675 0.0697 0.0681 0.0695 0.0677 
NS 0.0761 0.0709 0.0849 0.0747 0.0738 0.0691 0.0704 0.0667 
SIZE 0.0760 0.0709 0.0849 0.0747 0.0738 0.0691 0.0704 0.0667 
EFF 0.0760 0.0709 0.0849 0.0747 0.0738 0.0691 0.0704 0.0667 
Intercept                 
NW 0.1319 0.1257 0.1273 0.1259 0.1290 0.1262 0.1308 0.1260 
NS 0.1487 0.1360 0.1530 0.1441 0.1372 0.1303 0.1324 0.1264 
SIZE 0.1486 0.1360 0.1531 0.1441 0.1371 0.1302 0.1324 0.1264 
EFF 0.1486 0.1360 0.1531 0.1441 0.1371 0.1302 0.1324 0.1264 
Variance_a                 
NW 0.0091 0.0090 0.0092 0.0090 0.0093 0.0091 0.0091 0.0091 
NS 0.0110 0.0098 0.0118 0.0100 0.0103 0.0096 0.0093 0.0091 
SIZE 0.0110 0.0098 0.0118 0.0100 0.0103 0.0096 0.0093 0.0091 
EFF 0.0110 0.0098 0.0118 0.0100 0.0103 0.0096 0.0093 0.0090 
Variance_e                 
NW 0.0060 0.0054 0.0063 0.0054 0.0061 0.0054 0.0061 0.0054 
NS 0.0065 0.0066 0.0072 0.0069 0.0063 0.0064 0.0063 0.0062 
SIZE 0.0066 0.0067 0.0074 0.0071 0.0065 0.0065 0.0064 0.0064 
EFF 0.0066 0.0067 0.0073 0.0070 0.0064 0.0065 0.0064 0.0063 
Note: NW=unweighted; NS=unscaled; SIZE=size scaling; EFF=effective scaling 
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Table 2.4: Comparing Frequentist and Bayesian analysis using empirical data 
        Frequentist   Bayesian 
Parameters     Unweighted   Unscaled Size_Scale   Effective_Scale   Mode Mean   
Intercept   Estimate   1.048 *   1.006 * 1.063 *   1.064 *   1.050 1.050 * 
    Standard error (0.043)     (0.060)   (0.049)     (0.049)     (0.045)     
    95% Interval   [0.964, 1.132]   [0.888, 1.125] [0.967, 1.159]   [0.968, 1.160]   [0.970, 1.136]   
                                    
Female   Estimate   0.016     0.013   0.017     0.017     0.015 0.016   
    Standard error (0.009)     (0.010)   (0.010)     (0.010)     (0.009)     
    95% Interval   [-0.002, 0.034]   [-0.008, 0.033] [-0.002, 0.037]   [-0.002, 0.037]   [-0.003, 0.033]   
                                    
SES   Estimate   -0.054 *   -0.043 * -0.051 *   -0.051 *   -0.054 -0.054 * 
    Standard error (0.007)     (0.010)   (0.009)     (0.009)     (0.007)     
    95% Interval   [-0.068,-0.040]   [-0.063, -0.023] [-0.069, -0.034]   [-0.069, -0.033]   [-0.068, -0.039]   
                                    
Class size   Estimate   -0.001     0.001   -0.002     -0.002     -0.001 -0.001   
    Standard error (0.002)     (0.003)   (0.002)     (0.002)     (0.002)     
    95% Interval   [-0.005, 0.003]   [-0.005, 0.007] [-0.006, 0.003]   [-0.006, 0.003]   [-0.005, 0.003]   
                                    
Private   Estimate   -0.098 *   -0.110 * -0.120 *   -0.120 *   -0.100 -0.097 * 
    Standard error (0.029)     (0.035)   (0.032)     (0.032)     (0.029)     
    95% Interval   [-0.156,-0.041]   [-0.179, -0.041] [-0.183, -0.057]   [-0.184, -0.057]   [-0.156, -0.041]   
                                    
Variance a   Estimate   0.061 *   0.074 * 0.060 *   0.060 *   0.060 0.061 * 
    Standard error (0.004)     (0.006)   (0.005)     (0.005)     (0.004)     
    95% Interval   [0.053, 0.069]   [0.062, 0.087] [0.050, 0.071]   [0.050, 0.071]   [0.053, 0.070]   
                                    
Variance e   Estimate   0.213 *   0.203 * 0.197 *   0.197 *   0.213 0.213 * 
    Standard error (0.003)     (0.006)   (0.005)     (0.005)     (0.003)     
    95% Interval   [0.207, 0.219]   [0.191, 0.215] [0.189, 0.206]   [0.187, 0.206]   [0.207, 0.219]   
Note: * p<0.05, frequentist is 95% confidence interval while Bayesian is 95% HPD interval. 
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CHAPTER 3 
THE LONG-TERM AND CAUSAL EVIDENCE OF CLASS SIZE 

EFFECTS FROM ECLS-K 
 

 3.1 Introduction 
 

Does class size matter? Does smaller class size make a difference to improve the quality 

of public education in the U.S.? From a historical perspective, choosing an appropriate class size 

for a grade-layered education system (i.e., primary, secondary and tertiary education) has been a 

practice perhaps as early as the establishment of public education. Increasing or decreasing one 

or two student in a classroom may not matter much, but doing it in a ten-unit would make a great 

difference pertaining to classroom composition and the way of organizing students (e.g., 

grouping or tracking). Specifically, it may change pupil-teacher communication, peer interaction, 

teaching staff pattern and instruction practice  (Graue, Hatch, Rao, & Oen, 2007; Mosteller, 

Light, & Sachs, 1996). As classrooms of different size have various goals and structures, which 

will have an impact on student non-cognitive skills such as motivation and ultimately on 

academic learning and performance (Ames, 1992). Given many factors that class size is related 

to, it is not surprising that there has been considerable conversations and debates among parents, 

teachers, educational researchers and policymakers over the years about how important class size 

is in the U.S. education system (Douglass & Parkhurst, 1940; Ehrenberg, Brewer, Gamoran, & 

Willms, 2001; Finn, 2002; Hanushek, 1999, 2002; Hanushek, Mayer, & Peterson, 1999; Mishel 

& Rothstein, 2002).  

On one hand, parents and teachers are raring to support any forms of class size reduction 

based on the common-sense knowledge that smaller class size would ameliorate teaching and 

learning environments. For example, previous studies showed that reducing class size helps  
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reduce teacher’s work load and disciplinary control, allows teachers to devote more time to 

learning activities, facilitates individualized instruction and increases attention and support that 

each student would receive from his/her teacher (Blatchford, Bassett, & Brown, 2011; Blatchford, 

Russell, Bassett, Brown, & Martin, 2007; Konstantopoulos & Sun, 2014; Rice, 1999). On the 

other hand, although class size is a variable that can be manipulated easily without triggering 

significant changes in other components in education (e.g., curriculum), class size reduction 

involves hiring a great number of additional teachers, so it is an expensive initiative to 

implement from the financial perspective. Thus, opponents of small class-size policy argued that 

class size reduction is over-invested and it is a false promise (M. M. Chingos, 2011).  

When pondering over the pros and cons of reducing class size, policymakers face a 

dilemma in decision making. The evidence on the effectiveness of class size reduction has been 

increasingly relied upon to make a wise decision. However, findings of class size effects have 

been mixed and inconclusive by and large (Akerhielm, 1995; M. M Chingos, 2013; Hattie, 2005; 

Milesi & Gamoran, 2006; Rice, 1999). There are at least several factors that attribute to this 

inconsistency as follows: (1) geographical locations of sample data (i.e., country, region, district 

and school); (2) research design (i.e., correlation, quasi-experiment and experiment); (3) grade 

level (i.e., pre-kindergarten, elementary, secondary, and postsecondary school); (4) subject area 

(e.g., reading, math, science, history and art); (5) student and school characteristics. 

With regard to the geographical location, it is not uncommon that education system varies 

widely worldwide. The aspect of class size is no exception. For instance, the average class size in 

Europe and U.S. in elementary school is around 20 to 30 while in some east Asian countries (e.g., 

China and Japan) it would be around 40 to 50. Therefore, class size effects in east and west 

education are not comparable to some degree. Moreover, within a group of countries that have 
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similar average class size such as European countries, the class size effects are not consistent. 

Using large-scale data sets, some studies showed that there is no systematic pattern of class size 

effects, instead significant findings only observed for a particular country and in a particular year 

(Li & Konstantopoulos, 2016; Shen & Konstantopoulos, 2017; Wößmann, 2005; Wößmann & 

West, 2006). Therefore, it is very likely that class-size effect would be country and context 

specific. 

In terms of the research design, it is well-acknowledged that findings from correlation 

studies including numerous production function studies may have substantial bias due to the 

issue of non-random placement. For instance, affluent parents are more likely to send their high-

achieving children to schools that have resources to operate small sized classrooms. In this 

scenario, correlation of class size and students’ achievement across schools would be spuriously 

negative showing smaller classroom is associated with better achievement. On the contrary, 

school administrators may place low-achieving students in a small class as a remedial treatment 

leading to an erroneous finding of positive correlation between class size and academic scores. 

Evidently, without carefully isolating confounding factors, non-causal study of class size will 

produce more mixed findings. Therefore, scientific evidence of class size requires experimental 

or quasi-experimental designs which the latter could be achieved via applying appropriate 

statistical methods to observational data. 

Regarding grade level, past research has shown that the magnitude of class size effects 

would decrease as grade goes up. In particular, the most prominent evidence was observed in 

early grades (i.e., K-3). Moreover, class size effects vary among different subjects (e.g., reading, 

math and science). Finally, it is inconclusive whether class size would bring more benefits to 

particular types of schools and groups of students such as low achieving students and schools or 
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students with special education. Given all these aforementioned factors contributing to the 

inconsistent conclusion of class size effects, the literature review in the next section focuses 

exclusively on the experimental and quasi-experimental plus longitudinal studies of class size in 

early grades in the U.S., which the current research will build upon and contribute to.  

 

3.2 Literature review  
 

In the U.S., at an early stage, small-scale experimental and quasi-experimental designs 

have been adopted to investigate the effects of class size on student achievement. Rockoff (2009) 

summarized twenty-four small-scale field experiments that were conducted between 1920 and 

1940 involving active assignment of students and teachers to different sized classrooms, among 

which two studies demonstrated an evidence of increased achievement in smaller classes 

(Rockoff, 2009). Slavin (1989) did a “best-evidence synthesis” on ten relatively high quality 

studies of the effects of small class in elementary grades (i.e., K-6) from 1968 to 1987 which 

used either random assignment or matching. It was found that substantial reductions in class size 

does have a positive effect on student achievement and the median effect size is 0.13 standard 

deviations across eight studies (Slavin, 1989). In addition, through a meta-analytic review 

approach, these early experiment studies revealed that small class size effects have been 

observed and the effects were greater in class with 10 to 20 students versus 30 to 40 students (G. 

V. Glass, Cahen, Smith, & Filby, 1982; Gene V Glass & Smith, 1979). Furthermore, there was 

evidence showing that minority, economically disadvantaged students and low-achieving 

students get more benefits for being placed in smaller classes in early grades (Gene V Glass & 

Smith, 1979; Slavin, 1989).  
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The Student-Teacher Achievement Ratio experiment (STAR) is the sole large-scale 

randomized experiment which has been design and executed well, which measured class size 

effects to a significant scale in early grades in education (Mosteller, 1995). The Project STAR 

was carried out in the state of Tennessee from 1985 to 1989 in grades of K-3. Starting from the 

entering kindergarten in 1985, about 11,571 students and their teachers were randomly assigned 

to three class conditions in each of the 79 schools: (1) small class with an average of 15 students; 

(2) regular class with an average of 22 students; (3) regular class with a teacher aid. Thus far, the 

project STAR has produced the most pronounced evidence of class size effects in early grades.  

Taking advantage of this high quality data with high internal validity, research has 

revealed that students placed in smaller classes outperform those in larger classes on both 

cognitive achievement scores and non-cognitive outcomes (e.g., college attendance rate and 

earnings) and the effects are even long-lasting (Chetty et al., 2011; Finn, Gerber, & Boyd-

Zaharias, 2005; Konstantopoulos & Chung, 2009; Krueger & Whitmore, 2001a; Nye, Hedges, & 

Konstantopoulos, 1999; B. Nye, L. V. Hedges, & S. Konstantopoulos, 2000; Nye, Hedges, & 

Konstantopoulos, 2001). In addition, attending small class size has larger and longer effects for 

disadvantaged students such as minority students (e.g., the black) or students receiving free lunch 

at schools (Finn et al., 2005; Krueger, 1999; Krueger & Whitmore, 2001b; Nye, Hedges, & 

Konstantopoulos, 2002, 2004). However, other research found that there is no evidence 

suggesting that small-class effects is larger for low SES students (B. A. Nye, L. V. Hedges, & S. 

Konstantopoulos, 2000), or for low achieving students (Konstantopoulos, 2008; Nye et al., 2002). 

Overall, the heterogeneous class size effects on particular subgroups in the Project STAR is 

inconclusive. 
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Because of the influential findings from Project STAR, many states (e.g., California, 

Florida, Wisconsin, Indiana, Minnesota) subsequently invested tremendously to implement class 

size reduction especially in early grades (Finn & Achilles, 1999). For example, in California, 

class size was reduced from 30 to 20 in Kindergarten to 3rd grade in 1990s, but the smaller class 

size benefits have been offset by recruiting a large body of inexperienced and uncertified 

teachers and by using multi-grade classes (Jepsen & Rivkin, 2009; David Sims, 2008; D. Sims, 

2009; Stecher, Bohrnstedt, Kirst, McRobbie, & Williams, 2001). In Wisconsin, the Student 

Achievement Guarantee in Education (SAGE) program, a pilot project, was carried out in 1996-

97 which involved reducing the teacher-pupil ratio to 15 in K-3 and results showed the effect 

size is about 0.2 standard deviations in first grade, which was consistent with STAR project 

(Molnar et al., 1999). In Florida, the class size cap is reduced in every core subject in every grade, 

but the results are not desirable (M. M. Chingos, 2012). In general, the state class size reform 

was not successful and further, larger benefits of small class for disadvantaged students were not 

found neither in California nor in Florida (M. M Chingos, 2013).  

With regard to the quasi-experimental studies, the evidence has been mixed. Taking 

advantage of random variation of class size in the school-age population, Hoxby (2002) failed to 

detect class size effects in fourth and sixth grade in Connecticut schools even for schools with 

large proportions of disadvantaged or minority students. Utilizing Hoxby’s method, however, it 

was found that reducing class size increases 3rd and 5th graders’ reading and mathematics test 

scores in Minnesota (Cho, Glewwe, & Whitler, 2012). Applying student fixed effects and 

school-by-year fixed effects models on a panel data of about 200,000 students in over 3,000 

public elementary grades plus 7th grade in Texas in 1990s, Rivkin, Hanushek, and Kain (2005) 

found positive effects of smaller classes on reading and mathematics in 4th and 5th grade, but 
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little or no effects in later grades (Rivkin, Hanushek, & Kain, 2005). Using differences-in-

differences method on a panel data set of students in 127 elementary schools from grade 1 to 

grade 5 in the San Diego Unified School District, Babcock and Betts (2009) found there is 

exogenous class size effects and furthermore they found the small classes influence 

disadvantaged students via eliciting effort or engagement rather than teaching specific skills 

(Babcock & Betts, 2009). 

The literature review above reveals that overall the evidences of class size effects and the 

heterogeneity on different students and schools are inconclusive across the available small 

number of high quality studies in the past. Specifically, there are at least three literature voids 

that need to be addressed.  

First, class size studies that used data of specific state, district or school are informative, 

but relevant findings are not likely to be applied to other states, districts or schools due to the 

variation in conditions and contexts. For instance, Connecticut has relatively high-paid teachers 

who may be able to teach well regardless of class size condition. In this case, class size may be 

less important to this state than to other states (e.g., Florida). In order to provide a whole picture 

of class size effects at the national level, nationally representative samples would be preferred for 

having the advantage of external validity (i.e., generalizability). Although high-quality data 

collected by National Center for Education Statistics (NCES) are available to the public, they 

have not been fully utilized to present useful information of class size effects to researchers, 

practitioners and policymakers. 

Second, most of the evidence of class size effects heavily focused on academic 

achievement outcomes. The effects of class size on non-cognitive skills have been overlooked in 

the literature. Considering the increasing recognition of the substantial impact that these non-
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cognitive skills may play in individual’s long-term academic attainment and life success, 

scientific evidence on non-cognitive domain is badly needed.  (Dee & West, 2011) is one 

exceptional study which examined the return of class size reduction on non-cognitive outcomes 

using the 8th grade data of the National Educational Longitudinal Study of 1998 (NELS: 1988). 

However, evidence of class size effects on non-cognitive skills in early grades using national 

representative sample is still a missing piece.  

Third, empirical evidence of high-quality quasi-experimental studies is still scarce. There 

is a lack of longitudinal class size study. Additional, the heterogeneous class size effects need to 

be further examined as it is still inconclusive whether small class effects would vary across 

different gender, ethnic groups, and SES backgrounds. 

 

3.3 The present study 
 

Given that the class size reduction has been prevalently appealed in the public while the 

effectiveness has been questioned and debated continuously yet still unclear, the object of this 

study is to shed more light on the evidence of class size. It will present the causal and long-term 

effects of class size on both cognitive and non-cognitive outcomes via applying appropriate 

statistical methods on the most recent national representative data of the Early Childhood 

Longitudinal Study Class of 2011 (ECLS-K 2011).  

This research has several special features that will address the aforementioned literature 

gaps. First, the prominent evidence of class size from the data of project STAR is obsolete. As 

the current society is developing by leaps and bounds and the student population nowadays is 

also likely to be different, there is a natural call for an update of class size evidence using recent 

high quality data. The ECLS-K 2011 provides the latest large-scale data concerning children’s 
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early education and development in U.S. To my knowledge, this data that have high external 

validity has not been utilized to generate long-term or causal class size effects in U.S. so far.  

Second, appropriate statistical method is a key to generate less biased estimates of class 

size, which however has not been taken good advantage of. In the literature, pertaining to quasi-

experimental methods in statistics, it is not uncommon that instrumental variable (IV) and 

regression discontinuity design (RDD) have been used  (Akerhielm, 1995; Angrist & Lavy, 1999; 

Bonesrønning, 2003; Hoxby, 2000), other methods are of less usage. For example, one single 

study in the past evaluated propensity score matching on the data of Project STAR (Wilde & 

Hollister, 2007). This research will explore the application of the propensity scores (PS) methods 

in Kindergarten grade to facilitates causal inference based on a hypothesized binary treatment of 

small vs non-small sized class. In addition, the individual fixed effects (FE) models will be 

employed on longitudinal data from Kindergarten to 2nd grade to investigate how the change of 

class size would be associated with the change of outcome controlling some individual variation. 

The corresponding estimates of class size thus would be unaffected by time-invariant individual 

variables. Moreover, to deal with potential missing variable bias, I adopt Frank et al (2013)’s 

approach to quantify the percentage of bias that must be present to invalidate the significant 

findings.  

Third, from the content perspective, evidence of class size effects on non-cognitive 

outcomes needs to be considered in decision making of class size policy. It is well-recognized 

that smaller classroom has been hypothesized to enhance early graders’ non-cognitive skills such 

as learning behavior, motivation, interpersonal interaction and communication which 

consequently would help to increase their academic achievement. However, the examination of 



  

 129 

class size effects on cognitive outcome is dominant in the literature while its effects on non-

cognitive outcome is alarmingly rare. This study aims to fill in this literature gap. 

Fourth, heterogeneity of class size has also been a focal debate. This study will conduct 

subgroup analysis in terms of student gender, ethnicity, parents’ education, family economic 

status and school sector. For sensitivity analysis, full sample analysis will be conducted both 

with and without sampling weights to account for any potential design effects, but for subgroup 

analysis, only unweighted analysis would be appropriate.  

 

3.4 Research methods 
 
3.4.1 Data, sample and measures 

  The data of ECLS-K 2011 was collected by the National Center for Education Statistics 

(NCES). It is the most recent longitudinal study that follows a national probability sample of 

kindergarten students of diverse socioeconomic and ethnic backgrounds from kindergarten 

through early elementary grades in the U.S. ECLS-K provides information regarding children’s 

early school experience. Data have been collected to study how students’ cognitive, social and 

emotional development might be related to various family, classroom and school environments 

that students have been exposed to. Currently, kindergarten-second grade data file is available 

for public use. Although data were collected twice a year (i.e., fall and spring), in the fall of the 

first and second grades, only a third of schools were surveyed and the class size variable is not 

available for these two rounds. Therefore, four waves of data (i.e., kindergarten in fall and spring 

and spring in first and second grades) will be utilized in the fixed effects data analyses while for 

propensity score methods, data in kindergarten year will be used. 
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In terms of sampling design, the ECLS-K data has adopted a three-stage stratified 

sampling strategy in which 90 geographic regions served as the primary sampling units (PSUs) 

and then public and private schools with 5-year-old children were selected within sampled PSUs 

and finally students were selected within sampled schools (Tourangeau et al., 2015). Both the 

first and second sampling stages select sample with probabilities that are proportional to 

measures of population size. The base weights of school are the PSU weights multiplied by the 

weights of selecting school from the PSU and adjustments were made for public and private 

schools (Mulligan, Hastedt, & McCarroll, 2012). The base weights of student take into account 

the within-school student weight with non-response adjustment as well as nonresponse-adjusted 

school weights. In addition, student weights for Asian/Pacific Islander (API) students were 

calculated separately from non-API students due to oversampling. 

The set of cognitive outcomes contains the direct assessment of each child’s reading and 

math achievement in the format of Item Response Theory (IRT) scale scores, which can be 

compared with other children regardless of which specific items a child takes (Tourangeau et al., 

2015). The scores tend to be normally distributed with a metric ranging from -6 to 6. IRT has 

several advantages comparing to raw score. For instance, it allows longitudinal measurement of 

gain in achievement, adjusts guessing probability for low-ability child, and keeps track of a 

consistent pattern of right and wrong answers regardless of omitted items which raw scoring 

would treat as have been answered incorrectly (Tourangeau et al., 2015).  

In the literature, the non-cognitive outcome has been used as a catch-all term to refer to 

everything that is not captured by intelligence assessment or standardized achievement tests 

(West et al., 2016). The non-cognitive skill is regarded to be more malleable than IQ. It 

encompasses a broad range of competence, which consists of five general categories based on a 
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comprehensive framework developed by Farrington et al (2012) (Farrington et al., 2012). They 

include (1) academic behavior (i.e., going to class, doing homework, organizing materials, 

participating and studying); (2) academic perseverance (i.e., grit, tenacity, delayed gratification, 

self-discipline and self-control); (3) academic mindsets (e.g., beliefs and attitudes); (4) learning 

strategies (i.e., study skills, metacognitive strategies, self-regulated learning, time management 

and goal-setting); (5) social skills (i.e., interpersonal skills, empathy, cooperation, assertion, and 

responsibility).  

In ECLS-K data, there are two sets of ratings on children’s problem behaviors and social 

skills collected from teacher and parent. The teacher’s rating will be used as it may be more 

professional than that of parents based on their education background in general. Their rating 

should also be more objective assuming equal evaluation for each student. In the fixed effect 

analysis, the set of non-cognitive outcomes that are available in all four rounds of data are 

included: (1) self-control (4 items) -- control temper, respect others’ property, accept peers’ ideas 

and handle peer pressure; (2) interpersonal skills (5 items) -- get along with others, forms and 

maintains friendships, help other children, show sensitivity to others’ feelings and express feels, 

ideas and opinions in positive ways; (3) externalizing problem behaviors (5 items) -- argue, 

fights, get angry, act impulsively and disturb ongoing activities; (4) internalizing problem 

behaviors (4 items) -- exhibit anxiety, loneliness, low self-esteem and sadness; (5) approaches to 

learning (7 items) -- keep belongings organized; show eagerness to learn new things; work 

independently; easily adapt to changes in routine; persist in completing tasks; pays attention well; 

and follows classroom rules.  

In each variable, higher value indicates that it is more likely to observe the skill or 

behavior. The score for each of these five non-cognitive measures in the data is the mean rating 
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on the items included in the scale so they are in a continuous scale roughly. The individual item 

details are not available in the user’s manual which the information was obtained in a reference 

(Gottfried & Le, 2016). Comparing with the theoretical framework which traits seem to be more 

related to older children’s learning, the non-cognitive outcomes in the ECLS-K data may 

emphasize more on social and emotional behaviors which are more evident given the 

characteristics of this younger age.  

 In propensity score analysis, only cognitive outcomes are used to generate causal 

inference of class size effects considering possibly substantial measurement error might exist in 

measuring these non-cognitive skills. For example, parents may tend to rate higher score to their 

own child and teachers to more attractive students. Their judgements have the issue of fake 

desirability, so the results could be misleading. To examine the consistency of non-cognitive 

rating, I calculated the correlation between teachers’ and parents’ rating on individual’s self-

control, interpersonal social skills and approaches to learning. The values turn out to be very 

small, which are 0.02, 0.04 and 0.06 respectively indicating teacher’s and parent’s rating on 

these three non-cognitive skills are not very correlated.  

Besides the outcome variables, the main independent variable of interest is the teacher 

reported class size. Variable details are listed in Appendix Table. 

 

3.4.2 Fixed effects models 

The statistical method involves individual fixed-effect method, which is an econometric 

approach that has been used in analyzing the impact of time-varying variables (Wooldridge, 

2016).  Here the purpose is to control for all the time-invariant student characteristics both 

observed and non-observed, so that the class size estimates would be unbiased by these time-

invariant factors such as family background which turns out to be highly correlated with student 
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learning outcomes. It should be noted that the successful application of this method relies on 

having enough variation in variables over time, which I think is valid for the class-size variable 

and outcomes as they are all continuous variables with some reasonable changes from year to 

year.  

Although the individual fixed effect models purify the estimation of class size by getting 

rid of the impact of some important time-invariant variables, there still could be omitted variable 

bias. To deal with it, this study will quantify the percentage bias necessary to invalidate the 

inference for statistically significant results. Specifically, based on the method proposed by 

Frank et al (2013) (Frank, Maroulis, Duong, & Kelcey, 2013), the bias can be calculated using 

the formula: bias %= 1-(standard error X !"#$%$"&',)*/coefficient) (where estimates of coefficient 

and standard error are generated by software while !"#$%$"&',)* would be close to 1.96 for a two-

tailed t-test with 0.05 significance level when sample size is large as in this study). This bias 

quantification approach is superior to the statement about higher or lower statistical significance.  

According to Frank et al (2013), the median level of robustness is about 30% by rule of thumb 

for observational studies in education. 

Based on data availability, the analysis will focus on four rounds of data (i.e., fall 

kindergarten, spring kindergarten, spring 1st grade and spring 2nd grade). For longitudinal data, 

attrition over time would be an issue. For example, it is not uncommon some students may 

switch to another school across different time points. If the new school is within the same school 

district, then these observations would still be available in the sample, otherwise, these 

observations become missing data. To make it simple, this study focuses on the observations 

(total N= 18,174) that are available in the first round of data cycle while ignoring these later 

added observations (delete 9.4% - 1,710). Further, only those individuals who remain in the same 
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school all the time were considered (delete 32.5% - 5,912), otherwise it would not be able to 

control the time varying class and school effects.  Finally, only the first time kindergarteners 

were included, that is to further exclude kindergarten repeaters (delete 4.9% - 884). The final 

sample size is 9,668.  

Specifically, the statistical model of fixed effect is as follows: 

+$,% = ./ + .123$,% + 4$ + 562,+7849% + 9$,%                               (3.1)    

where +$,% is the outcome for student i in school j at time t, ./ is the intercept, CS represents the 

variable of interest class size and .1 is its coefficient, 4$ indicates individual fixed effect, 562, 

represents school location (i.e., city, stubborn, town and rural), 7849% indicates data cycles with 

t-1 values and the first wave as a reference, 9$,% is the error term. Cluster robust standard errors 

will be used to control for school clustering effect and residual heterogeneity. 

 This model analysis will be conducted for the full sample. To check the results sensitivity, 

subgroups analysis will also be performed by gender: female (49.27%, 4,763) vs male (50.54%, 

4,886); by ethnicity: White (52.28%, 5,054), Black (10.15%, 981), Hispanic (24.19%, 2,339) and 

Asian (7.77%, 751) while other minority race or race combination consisting of small number of 

observations (5.49%, 531) are omitted; and by school sector: public (89.07%, 8,611) vs private 

(10.93%, 1,057). To consider the potential influence of informative sampling design, the full 

sample analyses with sampling weights will be conducted and used as the main statistical 

inference. The longitudinal sampling weights variable is W6C6P_6T0, which is the child base 

weights adjusted for nonresponse associated with child assessment, parent and teacher data for 

fall and spring kindergarten and spring for first and second grades.  
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3.4.3 Propensity score methods 

Propensity score (PS) methods have been widely used in social sciences and education to 

facilitate causal influence on observational data. They contain a group of strategies that utilize 

PS to reduce selection bias or pre-determined differences on observed variables between/among 

treatment groups. The propensity scores are the predicted probabilities that each observation will 

be assigned to the treatment condition given a vector of observed covariates (X). The PS can be 

computed via logit or probit model. Possible variables may include: all measured baseline 

covariates, covariates that affect treatment assignment, covariates that affect outcome, and 

covariates that affect both treatment and outcome. Consensus has not been reached concerning 

which variables should be included in the PS model (Austin, 2011). Once PS has been applied, 

balance between treated and untreated groups could be achieved based on these covariates under 

the assumption that there are no unmeasured confounders. Under this condition, the 

observational data would then resemble a randomized experiment in which there is no systematic 

difference between treated and untreated groups not only on these observed variables, but also on 

other observed and unobserved variables.  

In general, there are two frameworks to estimate the treatment effect. Rubin’s the 

potential outcome framework (i.e., Rubin’s causal model) defines the average treatment effect 

(ATE) as the difference between expected value of the outcomes for all the observations in the 

treatment group and that in the control group (Rubin, 1974). That is, :[+$%] - 	:[+$"]  where 

subscript i stands for each individual, t stands for treatment and c is for control. The other 

framework is the average treatment of the treated (ATT), :[+$%|? = 1]-	:[+$"|? = 1],which is 

the difference between the expected value of the observed outcome for the treated individuals 

and that of the potential outcome for those treated individuals. Both frameworks have a 
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requirement of assumptions on the strong ignorability of treatment assignment, adequate 

common support (i.e., the overlap of PS distribution) and stable unit treatment value assumption 

(SUTVA). In general, ATT has less strict assumption requirement than ATE (Leite et al., 2015).  

There are four commonly used PS methods including matching, stratification and inverse 

probability of treatment weighting (IPTW) and PS as covariate adjustment (Austin, 2011; Guo & 

Fraser, 2015). PS matching has some subcategories: one-to-one pair matching or many-to-one 

matching, greedy or optimal matching, with or without replacement matching. The key element 

to distinguish among different PS methods is how coarse the weight is (Leite et al., 2015). For 

example, in the binary treatment case, one-to-one greedy would produce the coarsest weights in 

which (1) treated and (2) untreated but matched individuals receive weights of one and (3) 

untreated and unmatched individuals receive weights of zero. Once the particular matching 

procedure is done, a comparison between treated and untreated subjects can be made within the 

PS matched sample. The stratification method divides treated and untreated individuals into k 

strata and then there are kx2 different weights to be defined (assuming binary treatment), with 

which the treated and control groups will have similar distribution of X within each stratum after 

deleting unmatched observations. Thus, the weighted average of stratum-specific mean 

differences in the observed outcome across all k strata will be an unbiased estimate of the 

average causal effect (Rosenbaum, 1991; Rosenbaum & Rubin, 1984). The IPTW would 

generate as many weights as the number of observations and no deletion would be necessary. It 

will compare treated and untreated observations weighted by the inverse probability of treatment.  

In the class size context, due to the sorting issue, children attending small-sized 

classrooms are likely to be different from their counterparts who are placed in relatively large-

sized classrooms on many factors (e.g., family background and achievement level). Examining 
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the true impact of small class size would be challenging given these potential pre-existing 

differences between those individuals in different treatment groups. In this analysis part, PS 

method will be used to reduce the bias. The treatment of small class size is a binary variable in 

which the value would be one if the actual class size is at or below 20 students and zero 

otherwise. The rationale of using 20 as a cut-off point is based on the class size literature and 

convention in the early grades in the U.S. From the literature perspective, for instance, after 

review work of Glass and Smith (1979), Educational Research Service indicated that 

achievement benefits from small class do not become noticeable unless the class size is fewer 

than 20 students (Educational Research Service, 1980). In practice, for example, in California’s 

class size reduction reform in k-3 in 1996, the class size cap is 20 students. 

This study will mainly utilize the IPTW approach to yield the ATT estimate considering 

the sampling weights issue as well as comparing the relative strength and weakness of the other 

three approaches. First, previous studies suggested that the method of including PS directly as a 

model covariate is not highly recommended because it  requires assumptions about relationship 

between the covariate and the outcome within each treatment group (Hong, 2010b, 2012b). 

Second, the PS matching is an enormous popular method, but there is a debate about whether this 

method fulfills the goal of preprocessing satisfactory data for causal inference. Some researchers 

regard PS matching as a good approaches (Austin, 2011; Rosenbaum & Rubin, 1985). However, 

King & Nielson (2016) argued that although there is nothing wrong with matching, PS based 

matching should not be used as it increases imbalance and bias (King & Nielsen, 2016).  

Third, the PS stratification approach is a favorable choice often with 5 strata to 

successfully remove about 90% bias (Cochran, 1968).  Nevertheless, this approach involves 

deletion of all unmatched observations which in a sense may lose many sample cases. 



  

 138 

Considering the compatibility with sampling weights, the IPTW approach seems to be more 

satisfactory. Computationally, the IPTW can be treated as sampling weights, which create a 

balance between treated and untreated groups and it achieves high internal validity (i.e., causal 

inference). The application of sampling weights component enables the sample distribution 

resembles that in the population to achieve external validity (i.e., generalizability). It should be 

noted that other three approaches could also be implemented via software (Ho, Imai, King, & 

Stuart, 2011). 

The analytical procedures are as follows. First, the outcomes of all cognitive and non-

cognitive variables are computed as gain scores by subtracting the fall scores from the spring 

scores. The purpose is to reduce variation and create a value-added setting. Second, PS is 

computed based on selected covariates. The logit model will regress the binary small class 

variable on about forty covariates. The baseline of covariates in fall include child demographic 

information (i.e., gender, age, race and home language), parent and family background (e.g., 

parent’s age, race, education and occupation, and the number of people in household), pre-

kindergarten care, teacher quality (e.g., teacher’s education and teaching years) and school 

characteristics (e.g., school sector and location). Covariates missing values are replaced with 

median values for continuous variables and zero for binary variables and missing dummy flags 

are created and included in the model to control for any missing data effect.  

Third, based on the generated PS, weights will be computed using the formula below for 

the treated and untreated individuals (Hong, 2010a, 2012a; Leite et al., 2015). 

							7$ = 1	AB	? = 1; 	7$ =
D(FGH1|I)

D(FGH/|I)
	AB	? = 0              (3.2) 

Fourth, the linear regression will regress each of the outcomes on the small class 

treatment variable in the following model using PS as weights. 
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 +$ = ./ + .123$ + 9$                       (3.3) 

Robust standard errors will be used to control for heterogeneity. It needs to mention that 

since the PS weights reconstruct the distribution of the observations, so it does not make sense to 

control for the school clustering anymore, which in fact does not have an influence once the PS 

weights apply. Finally, covariates balance between two treatment groups will be checked before 

and after applying the PS weights for a diagnosis. For sensitivity analysis, results from the PS 

method will be compared with that of no PS weight or plus sampling weights. The used sample 

weight is W12AC0 which is a child base weight adjusting for nonresponse associated with spring 

kindergarten teacher-level questionnaire and the fall kindergarten child assessment. The main 

reason to choose this sampling weight variable is that the main variable of interest (i.e., class size) 

comes from spring teacher-level questionnaire also since gain score is the outcome, the 

children’s assessment in fall kindergarten is also relevant. 

In addition to full sample analysis, the same analysis steps will be repeated for subgroup 

samples concerning parents’ education, family poverty level and school sector without sampling 

weights. The dummy variable of parents’ education of Bachelor’s degree is created based on two 

original variables about first and second parent’s education. That is the value is one if at least one 

parent has a bachelor and above degree and zero otherwise. The family poverty level is also a 

binary variable, in which one stands for at or above 200 percent of poverty threshold and zero is 

for below 200 percent of poverty threshold. The school sector is private versus public schools. 

Possible bias will be quantified using the same method as in the fixed effect analysis.  
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3.5 Results 
 
3.5.1 Fixed effects results 

Table 3.1.1 reports unweighted descriptive statistics of the variables of interest in the 

fixed effects models. The mean of the IRT scores represents the average children’s reading and 

mathematics ability. It shows that the first wave has lower mean score than the following three 

waves of scores that remain stable. The values of self-control, interpersonal skills, and 

approaches to learning are relatively high with an approximate mean at 3 in a scale from 1 to 4 

and the sample has relatively lower values (i.e., <2) on externalizing and internalizing behavior 

problems. The average class size is round 20 in Kindergarten and about 21 in first- and second- 

grade. The school location is in city or suburban on average. 

The results for the FE models with full sample are presented in Table 3.1.2 in which the % 

bias is reported below in the parentheses following the coefficients. It shows that the coefficients 

of class size are negative and significant for both reading and mathematics achievement at the 

level of 0.05 (the same significance level hereafter). This indicates that one unit decreases in the 

class size, each child’s ability scores increase in reading by 0.005 (29.45%) and in mathematics 

by 0.004 (17.82%) for unweighted analyses.  The weighted counterparts are a little bit larger and 

need more cases to invalidate the inference, that are 0.008 (63.22%) and 0.005 (41.83%) for 

reading and mathematics respectively. It is evidence that the weighted and unweighted estimates 

are consistent and the evidence is robust in terms of the threshold bar of 30% in social science. 

Obviously, small class size benefits on both cognitive measures are observed. Nonetheless, there 

is no evidence of class size effects on the six non-cognitive outcomes.  

Table 3.1.3 to Table 3.1.5 report the results for sub-groups analyses by gender, race and 

school type. Table 3.1.3 represents the results by gender, which shows children in smaller 



  

 141 

classrooms have better performance on reading achievement for both boys and girls, while 

regarding mathematics achievement, the benefit of having smaller class size is only observed for 

girls but not for boys. In addition, class size effects on non-cognitive outcomes are not 

significant. 

Table 3.1.4 shows the results by race (i.e., white, black, Hispanic and Asian). Overall, the 

results for the White are consistent to that in the full sample analysis. With regard to the Hispanic 

children, increasing class size has negative effect on interpersonal skills with the coefficient of 

0.007 (9.55%). This result may suggest that smaller classroom may help Hispanic children 

increase interpersonal communication skill. 

Table 3.1.5 presents the results by school type (i.e., public and private school). In general, 

results show that small class size has significant positive effect on both reading (0.004) and 

mathematics (0.004) for public school, but only on reading (0.009) for private schools. There is 

no significant finding on non-cognitive outcomes.  

 

3.5.2 Propensity score estimates 

With regard to the sample size, there are more children in non-small classrooms (i.e.., 

8,514 students) than in small classrooms (i.e., 5,766 students). Children in smaller classrooms 

have slightly higher reading and math scores and lower behavior in approaches to learning.  

It needs to mention that here the class size is a dummy class size variable with one 

indicating small class size, which thus the results would have opposite coefficient sign to be 

congruent with the FE analyses of continuous class size variable. The estimates of the propensity 

score analysis are present in Table 3.2.1. For the full sample weighted analysis, the coefficients 

of class size treatment variable are 0.049 and 0.043 for reading and math score respectively both 
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of which are statistically significant at the 0.05 level. For subgroup analysis, results show that 

children whose parent has lower education are likely to get benefits from being placed in small-

sized classroom on both reading (0.065) and math (0.053). In public school, reducing class size 

increases children’s reading score (0.054). In general, the evidence in public school is more 

robust (19.13%). 

Table 3.2.2 reports balance check using p-values of t-tests for full sample concerning 

covariates including both observed student, teacher and school variables and corresponding 

missing flags. When p-value is less than 0.05, it indicates that individuals in small class is 

significantly different from those in large class on that particular covariate. Before applying PS 

weights, there are considerable differences between treatment groups on many covariates for 

each of the three subgroup analyses while after applying the PS weights, balance has been 

improved. The analysis was repeated to check the balance for sampling weighted models. When 

the balance test failed for a few variables, they were included as covariates to be further 

controlled for in the final model when estimating treatment effect. Table 3.2.3 contains similar 

test results for subgroup analysis by family poverty level, parent education level and school 

sector. Propensity score matching successfully reduced systematic difference between treatment 

groups especially when family is in low poverty level, when parent has lower education level and 

in public schools. It is interesting to find that in private school, covariates difference between 

treatment groups was not observed, which homogeneous class size condition may be more 

homogeneous there. 
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3.6 Discussion 
 

The idea of having small classes as a strategy to improve the quality of public education 

especially in early grades (e.g., K-3) is enormously popular in U.S. In response to the popular 

appeal, over the past four decades, billions of dollars have been spent to enact class size 

reduction (CSR) initiatives across the nation in more than twenty states (e.g., large-scale CRS 

programs in Californian and Florida) (M. M. Chingos, 2011). However, with the exception of the 

extensive evidence from Project STAR dated back to the 1980s, currently there is surprisingly 

few high-quality studies to provide updated rigorous evidence of class size effects in U.S.  

This study sheds new light on the long-term as well as causal inference of class size 

effects on early children’s academic outcomes and non-cognitive skills by employing individual 

fixed effects model and propensity scores methods. To account for possible missing variable 

issue, the quantification of potential bias needed to invalidate the inference is computed for 

significant results. Considering potential design effect, both sample weighted and unweighted 

analyses have been performed. In addition, subgroup analyses are also conducted. 

  The results indicate that PS methods generate larger estimates than the FE approach. It 

could imply that causal method plus gain score yields similar results as were observed in 

previous experiment studies where the evidence of class size effects is more pronounced. 

Another possible explanation is that class size benefit may be stronger in Kindergarten than in 

the following two years. 

The results of long-term class size effects from FE methods indicate reducing class size is 

associated with an increase in children’s reading and mathematics ability scores over time. It 

should be noted that the reading and math are standardized scale scores, so the coefficient 

estimates are in standard unit. The finding is stronger for reading (0.05-0.08 standard deviations 
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of the ability distribution / per 10 students reduction) compared with mathematics (0.04-0.05 /per 

10 students). Also the evidence on mathematics ability scores differs by gender and by school 

sector. In terms of the race, small class benefits on cognitive outcomes are only observed for the 

White children. Nevertheless, decreasing class size may increase Hispanic children’s 

interpersonal communication skills. The causal inference of class size effects from PS method 

revealed that small class increases children’s performance on reading (0.49/per 10 students) and 

mathematics (0.43/per 10 students).  

Overall, this research shows that class size does matter and it increases student academic 

achievement in early grades. The finding of cognitive outcomes is robust and in line with 

previous literature. For example, findings from FE analyses (i.e., magnitude of class size effects 

ranging from 0.04-0.08 in 10 units of students for mathematics and reading) are in congruence 

with quasi-experimental studies. For example, Cho et al (2012) found that a decrease of ten 

student in elementary grades in Minnesota would increase reading and mathematics test scores 

by 0.04-0.05 standard deviations (Cho et al., 2012). Rivkin et al (2005) found the estimated 

effects were between 0.08-0.11 standard deviations per 10-student decrease for 4th and 5th grade, 

0.03 standard deviations for 5rd grade reading and 0.04 standard deviations for 6th grade 

mathematics. However, the magnitude of causal class size effects from PS analyses in 

Kindergarten in this study ranges from 0.43 to 0.49 for decreasing 10 students, which is larger 

than Krueger (1999)’s finding in the STAR experiment where dropping eight students in 

kindergarten classrooms would increase children’s math and reading tests by 0.2 standard 

deviation on math and reading, which equals to 0.25 standard deviations every 10 students 

(Krueger, 1999). In addition, in this study, there is little evidence showing minority students get 
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more benefits for being placed in small-sized classes on academic achievement which is also 

different to the some previous finding in Project STAR (Finn & Achilles, 1990). 

In terms of the class size effects on non-cognitive outcomes, FE models produced the 

evidence that assuming a linear relationship between class size and non-cognitive outcomes, 

reducing every ten students in kindergarten class may help to improve Hispanic children’s 

interpersonal skills by 0.07 standard deviations but the evidence is weak. This positive finding is 

congruent with Dee and West (2011)’s findings in 8th grade where smaller classes have two-year 

persisting effects on school engagement with effect size ranging from 0.05 to 0.09 and the return 

of class size reduction in 8th grade on non-cognitive skills is about 0.05 overall and 0.08 in urban 

school.  

In summary, large-scale CSR may fail cost-benefit test in the state level from the 

economic perspective (Yeh, 2009). Nevertheless, it should be emphasized that the cost of class-

size reduction can be easily measured at a fixed time point, but the short and long-term small 

class benefits on non-cognitive skills are still unknown, which nonetheless needs to be taken into 

account when making a policy decision on class size issue. There was evidence showing that 

small class size benefits in early childhood education faded on the test scores, but re-emerged in 

adulthood and the suggestive explanation is because of non-cognitive skills such as efforts, 

initiatives, and lack of disruptive behavior which are highly correlated with earnings even 

controlling on test scores (Chetty et al., 2011).  It is noteworthy that these non-cognitive skills 

can never be easily acquired by young children in large classes as they could be in small classes 

(Douglass & Parkhurst, 1940). Also early intervention matters to foster human capital and to 

change the current phenomenon in American society where the issue is that the very young 

children are under-invested while low-skilled old adults are over-invested (Heckman, 2000).  
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With the increasing recognition of the importance of non-cognitive skills in fulfilling 

academic attainment, excelling in the labor-market performance and achieving life success 

(Heckman, Stixrud, & Urzua, 2006; Kautz et al., 2014; Lindqvist & Vestman, 2011), there is a 

rush to embrace this missing piece in education. However, as the survey responses tend to be 

influenced by the social context, the findings from current available but flawed measures of non-

cognitive skills could be misleading. In order to capitalize the potential values of these non-

cognitive skills, knowing how to reliably measure these traits is the key. Therefore, future 

research on the effectiveness of class size reduction on cultivating non-cognitive skills calls for 

an improvement on measuring each specific non-cognitive category, which would then be the 

foundation for generating scientific evidence in this domain. For instance, in addition to parent 

and teacher rating, observational measures using expert rating on video-recording may be 

valuable and informative.  
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APPENDIX 3:   
Variable List Scale Kindergarten Fall Kindergarten Spring 1st Grade Spring 2nd Grade Spring 
Outcomes           
Reading IRT scale scores Continuous X1RTHETK2 X2RTHETK2 X4RTHETK2 X6RTHETK2 
Mathematics IRT scale scores Continuous X1MTHETK2 X2MTHETK2 X4MTHETK2 X6MTHETK2 
Self-control - teacher Continuous X1TCHCON X2TCHCON X4TCHCON X6TCHCON 
Interpersonal skill - teacher Continuous X1TCHPER X2TCHPER X4TCHPER X6TCHPER 
Externalizing  problems - teacher Continuous X1TCHEXT X2TCHEXT X4TCHEXT X6TCHEXT 
Internalizing problems - teacher Continuous X1TCHINT X2TCHINT X4TCHINT X6TCHINT 
Approaches to learning - teacher Continuous X1TCHAPP X2TCHAPP X4TCHAPP X6TCHAPP 
Attention focus - teacher Continuous X1ATTNFS X2ATTNFS X4ATTNFS NA 
Inhibitory control - teacher Continuous X1INBCNT X2NBCNT X4INBCNT NA 
Self-control - parent Continuous X1PRNCON  X2PRNCON  X4PRNCON  NA 
Social interaction - parent Continuous X1PRNSOC X2PRNSOC X4PRNSOC NA 
Impulsive/overactive - parent Continuous X1PRNIMP X2PRNIMP X4PRNIMP NA 
Sad/lonely - parent Continuous X1PRNSAD X2PRNSAD X4PRNSAD NA 
Approaches to learning - parent Continuous X1PRNAPP X2PRNAPP X4PRNAPP NA 
Covariates           
Class size (main predictor) Continuous A1DTOTAG A2DENROL A4DENROL A6DENROL 
Child gender (1=male)* Binary X_CHSEX_R        
Child assessment age in month * Continuous X1KAGE_R       
Child race (1=white) * Binary X_WHITE_R       
Child home language (1=English)* Binary X12LANGST       
Parent one age * Continuous X1PAR1AGE       
Parent one race (1=white) * Binary X1PAR1RAC        
Parent one education (1=bachelor and beyond) * Binary X12PAR1ED_I        
Parent one employment (1=more than 35 hours per week) * Binary X1PAR1EMP        
Parent one occupation prestige * Binary X1PAR1SCR_I        
Mother marriage status  at birth (1=married) * Binary X12MOMAR       
Total number of people in household * Continuous X1HTOTAL        
Number of siblings in household  Continuous X1NUMSIB        
Primary type of care (1=parental care) * Binary X1PRIMNW        
Hours spent in non-parental care now * Continuous X1HRSNOW        
Teacher highest education (1=master's degree and beyond)* Binary A1HGHSTD        
Number of years taught at this school Continuous A1YRSCH        
Number of years been school teacher* Continuous A1YRSTCH        
Taken exam for national board (1=take and passed) * Binary A1NATEXM       
School type (1=private school) Binary X1PUBPRI        
School location (1=City;2=Suburb;3=Town;4=Rural) Categorical X1LOCALE       
School district composite poverty level Continuous X_DISTPOV       
Sixteen aggregated  school variables indicated with * Continuous As above       
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TABLES 
Table 3.1.1: Descriptive Statistics for fixed effects analysis 

 
 
 
 Table 3.1.2: Fixed effect model for class size in full sample (cluster robust SE) 
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Table 3.1.3: Fixed effect model for class size by gender (cluster robust SE)   
Outcome   Male   Female   
    Est sig SE N % Est sig SE N % 
Cognitive Reading -0.0045 * 0.0020 15,515 12.7 -0.0050 * 0.0020 15,229 21.6 
  Mathematics -0.0031   0.0019 15,485   -0.0042 * 0.0017 15,212 20.66 
Non-cognitive Self-control -0.0005   0.0027 15,054   0.0025   0.0021 14,769   
  Interpersonal skill -0.0030   0.0029 15,082   0.0004   0.0023 14,916   
  Externalizing behavior 0.0000   0.0022 15,366   -0.0023   0.0017 15,062   
  Internalizing behavior -0.0017   0.0018 15,250   -0.0010   0.0017 15,000   
  Approaches to learning 0.0006   0.0027 15,476   0.0011   0.0022 15,176   
Note: * p<0.05;W=sample weighted analysis; % indicates the percentage of bias to invalidate the results 
 
Table 3.1.4: Fixed effect model for class size by race (cluster robust SE) 

 
 
Table 3.1.5: Fixed effect model for class size by school sector (cluster robust SE)   
Outcome   Public   Private   
    Est sig SE N % Est sig SE N % 
Cognitive Reading -0.0038 * 0.0018 27,239 8 -0.0085 * 0.0035 3,565 19.32 
  Mathematics -0.0039 * 0.0017 27,194 14.52 -0.0026   0.0030 3,563   
Non-cognitive Self-control -0.0003   0.0023 26,454   0.0073   0.0047 3,419   
  Interpersonal skill -0.0028   0.0024 26,631   0.0059   0.0055 3,417   
  Externalizing behavior -0.0011   0.0018 27,027   -0.0007   0.0041 3,454   
  Internalizing behavior -0.0012   0.0015 26,845   -0.0015   0.0030 3,457   
  Approaches to learning -0.0008   0.0023 27,209   0.0078   0.0051 3,498   
Note: * p<0.05; W=sample weighted analysis; % indicates the percentage of bias to invalidate the results 
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Table 3.2 1:  The estimates of class size using propensity score methods 
   
  Reading     Math   
  Est Sig SE N %   Est Sig SE N % 
Full sample                       
PS weights 0.039 + 0.020 13986     0.033 + 0.019 13905   
PS weights + sampling weights 0.049 * 0.024 13116 5.36   0.043 * 0.020 13041 9.11 
Subgroup sample                       
(1) Family poverty level                       
High                       
PS weights 0.022   0.023 5528     0.021   0.022 5509   
Low                       
PS weights 0.055 + 0.029 5192     0.043   0.028 5161   
(2) Parent education                       
High                       
PS weights 0.029   0.020 8494     0.028   0.020 8443   
Low                       
PS weights 0.065 * 0.030 5492 9.23   0.053 * 0.027 5462 1.67 
(3) School sector                       
Private school                       
PS weights -0.020   0.049 2013     -0.079   0.041 2001   
Public school                       
PS weights 0.054 * 0.022 12745 19.13   0.025   0.021 12713   
Note: * p<0.05 + p<0.1  (School cluster robust standard error was used for all models)   
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Table 3.2.2: Covariates balance check (full sample) in propensity score analysis 
  Full sample 
  No Sampling Weights +sampling weights 
Covariates Before match After match After match 
Male child 0.18 0.35 0.55 
Child age 0.01 0.03 0.02 
Child race white 0.01 0.18 0.95 
Speak English at home 0.00 0.61 0.42 
Parent one age 0.40 0.02 0.04 
Parent one race (white) 0.01 0.14 0.95 
Parent one bachelor degree and beyond 0.59 0.00 0.00 
Parent one work full-time 0.00 0.22 0.38 
Parent one job prestige 0.06 0.00 0.00 
Mother marriage at child birth 0.59 0.04 0.06 
Total number of people at home 0.03 0.45 0.52 
Number of siblings 0.82 0.70 0.58 
parental primary care 0.79 0.84 0.89 
Hours spent for nonparental care 0.01 0.27 0.37 
Teacher degree in master and above 0.01 0.40 0.58 
Teaching years in this school 0.13 0.20 0.88 
Years of being a school teachers 0.18 0.17 0.67 
Passed exam in national board 0.32 0.44 0.54 
City 0.00 0.96 0.31 
Suburban 0.26 0.31 0.22 
Town 0.60 0.96 0.72 
School district composite poverty level 0.05 0.82 0.78 
Proportion of male students in school 0.32 0.47 0.26 
Child average age in school 0.01 0.02 0.01 
Proportion of white children in school 0.00 0.13 0.82 
Proportion of native speakers in school 0.00 0.23 0.88 
Parent one average age in school 0.29 0.00 0.00 
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Table 3.2.2. cont’d    
Proportion of white parents in school 0.01 0.11 0.89 
Proportion of parents with bachelor degree in school 0.52 0.00 0.00 
Proportion of parents work full-time in school 0.00 0.08 0.17 
Parent one job prestige average in school 0.12 0.00 0.00 
Proportion of mother who married at child birth in school 0.71 0.05 0.05 
Average number of family in school 0.03 0.25 0.37 
Proportion of parental care in school 0.68 1.00 0.55 
Average number of hours for non-parental care in school 0.00 0.30 0.35 
Proportion of teachers with master's degrees 0.00 0.38 0.71 
Average year of being teachers in school 0.28 0.08 0.32 
Proportion of people passed board exam in school 0.43 0.60 0.90 
Child age - missing flag 0.00 0.01 0.34 
Speak English at home - missing flag 0.03 0.94 0.97 
Parent one race (white) - missing flag 0.04 0.22 0.61 
Parent one work full-time - missing flag 0.03 0.19 0.67 
Parent one job prestige - missing flag 0.00 0.07 0.62 
Mother marriage at child birth  - missing flag 0.03 0.90 0.88 
Total number of people at home - missing flag 0.02 0.20 0.66 
parental primary care - missing flag 0.02 0.16 0.62 
Hours spent for nonparental care - missing flag 0.02 0.15 0.60 
Teacher degree in master and above - missing flag 0.00 0.57 0.00 
Passed exam in national board - missing flag 0.00 0.65 0.01 
School location - missing flag 0.83 0.47 0.70 
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Table 3.2.3: Covariates balance check (subgroup sample) 
 
  Family poverty level   Parent education   School sector 
  High Low   High Low   Private Public 
Covariates Before match After match Before match After match   Before match After match Before match After match   Before match After match Before match After match 
Male child 0.58 0.33 0.31 0.76   0.56 0.75 0.20 0.29   0.14 0.88 0.36 0.53 
Child age 0.63 0.02 0.00 0.45   0.19 0.01 0.00 0.32   0.33 0.81 0.00 0.62 
Child race white 0.02 0.57 0.00 0.82   0.17 0.10 0.00 0.84   0.58 0.79 0.06 1.00 
Speak English at home 0.00 0.31 0.00 0.92   0.00 0.35 0.00 0.92   0.92 0.47 0.00 0.70 
Parent one age 0.24 0.00 0.56 0.74   0.76 0.01 0.61 0.52   0.47 0.70 0.00 0.59 
Parent one race (white) 0.07 0.35 0.00 0.71   0.18 0.02 0.00 0.79   0.37 0.62 0.13 0.69 
Parent one bachelor+ 0.13 0.00 0.17 0.03   0.69 0.00 NA NA   0.77 0.99 0.00 0.71 
Parent one work full-time 0.00 0.89 0.01 0.38   0.00 0.06 0.01 0.49   0.23 0.24 0.00 0.45 
Parent one job prestige 0.01 0.01 0.07 0.11   0.03 0.00 0.03 0.31   0.17 0.84 0.43 0.74 
Mother marriage at child birth 0.43 0.09 0.38 0.20   0.82 0.00 0.12 0.80   0.57 0.77 0.09 0.74 
Total number of people at home 0.03 0.82 0.02 0.67   0.00 0.82 0.27 0.56   0.70 0.57 0.11 0.99 
Number of siblings 0.20 0.65 0.62 0.74   0.36 0.75 0.95 0.71   0.20 0.34 1.00 0.80 
parental primary care 0.99 0.31 0.19 0.54   0.81 0.26 0.09 0.66   0.69 0.43 0.92 0.56 
Hours of nonparental care 0.00 0.78 0.92 0.54   0.01 0.87 0.29 0.27   0.36 0.99 0.00 0.90 
Teacher degree in master+ 0.00 0.15 0.04 0.82   0.02 0.18 0.01 0.76   0.97 0.79 0.03 0.94 
Teaching years in this school 0.49 0.33 0.11 0.33   0.29 0.13 0.06 0.44   0.86 0.61 0.17 0.59 
Years of being a school teachers 0.27 0.09 0.28 0.27   0.21 0.07 0.22 0.28   0.61 0.92 0.55 0.68 
Passed exam in national board 0.93 0.74 0.14 0.39   0.77 0.60 0.10 0.48   0.33 0.98 0.08 0.79 
City 0.04 0.57 0.00 1.00   0.00 0.92 0.00 0.72   0.36 0.70 0.00 0.86 
Suburban 0.09 0.51 0.38 0.51   0.49 0.37 0.15 0.58   0.94 0.79 0.09 0.78 
Town 0.43 0.89 0.52 0.87   0.34 0.92 0.81 0.98   0.14 0.82 0.79 0.81 
School district composite poverty 0.00 0.96 0.62 0.90   0.05 0.99 0.23 0.60   0.12 0.86 0.05 0.60 
Proportion of male students in school 0.12 0.63 0.91 0.54   0.20 0.50 0.75 0.52   0.29 0.74 0.56 0.46 
Child average age in school 0.31 0.01 0.00 0.11   0.28 0.01 0.00 0.12   0.59 0.73 0.00 0.65 
Proportion of white children in school 0.05 0.20 0.00 0.50   0.05 0.11 0.00 0.47   0.90 0.52 0.04 0.90 
Proportion of native speakers in school 0.01 0.08 0.00 0.52   0.00 0.18 0.00 0.39   0.66 0.99 0.00 0.97 
Parent one average age in school 0.18 0.00 0.29 0.20   0.76 0.00 0.08 0.27   0.35 0.63 0.00 0.56 
Propotion of white parents in school 0.14 0.10 0.00 0.55   0.10 0.09 0.00 0.40   0.71 0.69 0.12 0.97 
Proportion of parents with bachelor+in school 0.15 0.00 0.62 0.08   0.95 0.00 0.20 0.13   0.23 0.15 0.00 0.66 
Proportion of parents work full-time in school 0.00 0.03 0.00 0.21   0.00 0.02 0.00 0.27   0.17 0.47 0.01 0.82 
Parent one job prestige average in school 0.12 0.00 0.06 0.06   0.09 0.00 0.13 0.02   0.63 0.99 0.24 0.85 
Proportion of mother marrital status in school 0.25 0.00 0.13 0.60   0.91 0.01 0.28 0.49   0.81 0.62 0.11 0.64 
Average number of family in school 0.17 0.12 0.04 0.67   0.01 0.13 0.11 0.63   0.44 0.63 0.12 0.94 
Proportion of parental care in school 0.95 0.60 0.39 0.52   0.98 0.78 0.41 0.92   0.28 0.97 0.68 0.62 
Average number of non-parental care in school 0.00 0.33 0.12 0.50   0.00 0.35 0.01 0.49   0.88 0.91 0.00 0.72 
Proportion of teachers with master's degrees 0.01 0.11 0.01 0.99   0.01 0.15 0.00 0.82   0.71 0.93 0.01 0.98 
Average year of being teachers in school 0.26 0.01 0.37 0.18   0.34 0.04 0.27 0.16   0.57 0.96 0.80 0.51 
Proportion of teacher passed exam in school 0.98 0.84 0.31 0.69   0.84 0.81 0.17 0.75   0.54 0.00 0.18 0.94 
Child age - missing flag 0.00 0.02 0.03 0.54   0.00 0.02 0.01 0.21   0.91 0.83 0.00 0.00 
Speak English at home - missing flag 0.91 0.42 0.21 0.85   0.12 0.28 0.35 0.96   0.70 0.59 0.07 0.91 
Parent one race (white) - missing flag 0.59 0.12 0.16 0.75   0.20 0.04 0.12 0.51   0.51 0.65 0.19 0.28 
Parent one work full-time - missing flag 0.31 0.10 0.10 0.95   0.12 0.03 0.15 0.49   0.39 0.44 0.17 0.28 
Parent one job prestige - missing flag 0.00 0.45 0.03 0.31   0.00 0.19 0.02 0.15   1.00 0.89 0.03 0.35 
Mother marital status - missing flag 0.97 0.70 0.16 0.92   0.14 0.21 0.65 0.61   0.93 0.82 0.09 0.79 
Total number of people at home - missing flag 0.38 0.08 0.12 0.73   0.11 0.05 0.14 0.52   0.61 0.64 0.15 0.23 
parental primary care - missing flag 0.22 0.08 0.06 0.78   0.10 0.04 0.17 0.46   0.55 0.59 0.16 0.28 
Hours spent for nonparental care - missing flag 0.20 0.08 0.05 0.75   0.08 0.04 0.18 0.41   0.49 0.60 0.15 0.29 
Teacher degree in master + - missing flag 0.00 0.95 0.00 0.42   0.00 0.53 0.00 0.83   0.12 0.67 0.00 0.92 
Teacher passed exam - missing flag 0.00 0.98 0.00 0.98   0.00 0.96 0.00 0.99   0.35 0.91 0.00 0.96 
School location - missing flag 0.64 0.50 0.73 0.51   0.60 0.56 0.62 0.41   0.52 0.47 0.58 0.79 
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CHAPTER 4 
THE CAUSAL CLASS-SIZE EFFECTS IN SECONDARY 

EDUCATION: EVIDENCE FROM TIMSS 
 
  

4.1 Introduction 
 

The class size effects have been of intense debate worldwide. The research interest on 

class size has never faded for a couple of reasons. First of all, small class size represents good 

education quality in school to some extent. It determines the optimal number of students in a 

classroom. Subsequently, increasing or decreasing class size could change member composition 

and unique characteristics of the classroom entity. The common-sense knowledge indicates that 

smaller class size would facilitate a much better educational environment. It is thus not 

surprising that the broad public are enthusiastically in favor of smaller-sized class especially in 

U.S. Second, class size is closely related to teacher labor force and resource allocation. In 

addition, it is the single factor that could be easily manipulated via administration procedure 

without disturbing the whole educational system. Therefore, education policymakers may 

particularly interest in knowing the return of class size reduction or the optimal class size for a 

particular level of schooling. 

Previous correlational studies of class size have shown that overall class size is not 

significant, but there are significant positive or negative findings of class size effects. This 

inconsistency partially arises from non-random selection process involving student and teacher 

characteristics. For example, low-achieving students may be assigned to smaller classroom as a 

remedy to increase their academic achievement. Similarly, high effective teacher is likely to be 

assigned to teach larger classroom. In either case, there is spurious positive estimates of class 

size variable indicating larger class size produces better educational outcome. On the contrary, 
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parents may send high-achievement students to smaller classroom which thus generates spurious 

negative correlation between class size and achievement. Due to this sorting or selection possibly 

occurred in classroom, there could be substantial bias in correlational studies of class size effects 

along with corresponding meta-analysis studies. Therefore, scientific evidence of class size 

effects requires causal inference that may generate from either experimental design or quasi-

experimental design. Nevertheless, it is not uncommon that randomized trial is not feasible to 

implement ethically and practically. More often, quasi-experimental approach via statistical 

methods such as instrumental variable (IV) and regression discontinuity design (RRD) have been 

adopted to produce causal evidence of class size effects. However, evidence of causal class size 

is sparse and the context of having small class size benefits is still unclear.  

 

4.2 Literature 
 

In general, educational system varies considerably across different regions and countries. 

The factor of class size is no exception (Biggs, 1998; Cheung & Chan, 2008). For instance, 

eastern and western countries have different average class size (i.e., 40 vs. 20 respectively in 

elementary schools overall) as well as class-size policy. For example, East Asia countries (e.g., 

Hong Kong and Singapore) with the exception of Japan have adopted small class teaching (SCT) 

while the U.S. and European countries implemented class size reduction (CSR)(Blatchford, Chan, 

Galton, Lai, & Lee, 2016).  

In the U.S., the public has enthusiastic appealed for small sized class. Tremendous 

resources have been invested to implement class size reduction in many states. There has been 

relentless debate and research about class size effectiveness. The most pronounced evidence of 

class size effects comes from the data of “Student Teacher Achievement Ratio” (STAR). The 
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project STAR is a large-scale field experiment that was carried out in Tennessee U.S. in 1985-

1986, in which students and teachers were randomly assigned to either smaller class (15 students 

on average) or regular class (23 students on average). Findings from project STAR have 

suggested that students in smaller classes have significantly higher achievement than students in 

larger classes and the effects are even long-lasting (Chetty et al., 2011; Finn, Gerber, & Boyd-

Zaharias, 2005a; B. Nye, Hedges, & Konstantopoulos, 1999; Barbara Nye, Hedges, & 

Konstantopoulos, 2000, 2001).  

Regarding other studies, applying IV method on the National Education Longitudinal 

Study of 1988 (NELS:88), Akerhielm found that investing in smaller class size contributes to 

higher achievement in eighth grade (Akerhielm, 1995). Using the same data set, Dee and West 

found that smaller classes are associate with more school engagement and the effect persisted 

two years later (Dee & West, 2011). Nevertheless, the evidence of class size effects in U.S. is 

inconsistent. For instance, Hoxby (2000) relied upon the random variation of class size due to 

natural variation in birth and found there is no class size effect in fourth and sixth grades (Hoxby, 

2000). However, other researchers applied the same method to compute class size effects in 

Minnesota and positive effects of smaller classes on student achievement was detected (Cho, 

Glewwe, & Whitler, 2012).  

With regard to international studies, one study is noteworthy. Angrist and Lavy’s (1999) 

introduced an instrument variable of class size based on the maximum class size rule of 40 in 

Israel elementary school. They found a significant and positive effect of small classes on fifth 

grade reading and mathematics scores while in fourth grade the evidence was significant in 

reading, but not in mathematics (J. D. Angrist & Lavy, 1999). This IV method has been adopted 

by a few researchers around the world.  
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In Europe, Bonesrønning investigated class size effects using a maximum class-size rule 

of 30 students per classroom in Norway and results revealed significant but rather small benefit 

of class size effects in lower secondary schools (i.e., eighth through tenth grades) (Bonesrønning, 

2003). Likewise, Browning and Heinesen (2007) used Danish administrative panel data and 

found small class slightly enhances years of education and upper secondary education 

completion for eighth graders (Browning & Heinesen, 2007). Using RD and controlling for 

lagged achievement and school fixed effects, Krassel & Heinesen found significant positive 

effects of reducing class size on achievement in secondary school in Denmark (Krassel & 

Heinesen, 2014). Taking advantage of a longitudinal data from Sweden in primary school, 

Fredriksson, Öckert and Oosterbeek found smaller class size has positive effects on completed 

education in age 10 to 13 and on wages and earnings at age 27 to 42 (Fredriksson, Öckert, & 

Oosterbeek, 2013).  

In addition, there are some other causal methods that have been employed in class size 

study. Using a seasonal feature of school system between summer and school-year learning and 

difference-in-difference (DD) models, Lindahl (2005) found smaller classes result in higher test 

scores in Sweden (Lindahl, 2005). Utilizing within-school variation over time in the size of 

subject-specific classes, there was substantial positive effects of class size reduction on French 

examination in Denmark (Heinesen, 2010). Although the maximum rule does not work, using the 

variation of total grade enrollment, Gary-Bobo and Mahjoub (2013) found small significant 

negative effects of larger class size on grade promotion in French junior high school (Gary-Bobo 

& Mahjoub, 2013). Relying on random assignment of students to teaching classes, De Giorgi, 

Pellizzari and Woolston (2012) found that reducing class size results in positive outcome on 

academic and labor market performance for college students (De Giorgi, Pellizzari, & Woolston, 
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2012). One study eliminates unobserved family effects by using variation of class size between 

siblings. It revealed that reducing class size has statistically and economically significant effects 

on increasing mean length of education for about 8 days in post-compulsory schooling in 

Denmark (Bingley, Myrup Jensen, & Walker, 2005). 

Outside Europe, in Japan, based on the maximum class size rule of 40, Akabayashi & 

Nakamura (2014) found reducing class size has significant positive impact on language test score 

in 6th grade via value-added model (Akabayashi & Nakamura, 2014). Urquiola (2006) studied 

third-grade students in Bolivia and found significant class size effects on test scores, with effect 

sizes as large as 0.30 standard deviations (Urquiola, 2006).  

However, using multiple country data in large-scale international studies such as the 

Trends in International Mathematics and Science Study (TIMSS) and the Progress in 

International Reading Literacy Study (PIRLS), findings have revealed that overall there is no 

systematic and significant class size effects on students’ cognitive skills (Konstantopoulos & 

Shen, 2016; Konstantopoulos & Traynor, 2014; Li & Konstantopoulos, 2016; Shen & 

Konstantopoulos, 2017). For example, Wößmann and West explored class size effects in 15 

European countries using data from TIMSS 1995 for eighth grade students (Wößmann & West, 

2006). They found only two statistically significant relationships between class size and student 

achievement: a marginally significant effect in Norway and a highly significant effect in Iceland. 

Leuven et al (2005) found the class-size effect on student achievement at the end of lower-

secondary school is equal to zero in Norway (Leuven, Oosterbeek, & Rønning, 2008). Also there 

is even perverse evidence of smaller class size in Bangladesh (Asadullah, 2005).  

There are several literature voids that have been observed. First, even considering causal 

inference of class size effects, findings are still inconclusive. Clearly, there is a lack of 
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consistency regarding whether class size reduction has any significant effect on scholastic 

achievement. Possible explanation is that class size effects vary with specific context (Wößmann 

& West, 2006), which the implication is that class size research has to be conducted for separate 

countries or group of similar countries and also for separate education level (e.g., primary, 

secondary, or tertiary) (Leuven et al., 2008). Moreover, examining class size effects for separate 

subjects would be helpful because the content and cognitive domains among different disciplines 

such as science (e.g., chemistry and biology) become distinct when going beyond elementary 

level. The heterogeneity of class size effects across subjects is evident. For example, through 

random assignment of teachers to classes of different size, it was found that larger class has 

significant and sizable negative effect on student performance in mathematics but not in 

language skills involving freshmen in a public University in Italy (De Paola, Ponzo, & Scoppa, 

2013). Second, evidences of class size have been focused exclusively on scholastic achievement 

whilst effects on non-cognitive skills (e.g., engagement and attentiveness) has been a missing 

piece in the literature although these non-cognitive skills have been proposed to be crucial to 

later success in school and in life. They are also likely to be more malleable to intervention than 

intelligence traits once developed beyond early childhood (Dee & West, 2011; West et al., 2016). 

Third, overall, many previous studies used data of relatively small-sized sample rather than 

nationally representative sample which sets a limitation for generalizing findings to a national 

level.  

4.3 The present study 
 

The purpose of this study is to shed more light on the causal evidence of class size effects 

on both cognitive and non-cognitive outcomes in eighth grade using national probability samples 

in four European countries that have participated in TIMSS 2003, 2007 and 2011. Research has 
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revealed that the cognitive and non-cognitive outcomes of learning a particular subject are 

strongly interrelated. For example, motivational beliefs (e.g., self-concept) and enjoyment of 

particular science subject have substantial positive predictive effects on students’ cognitive 

learning, engagement and achievement of that subject (Areepattamannil, Freeman, & Klinger, 

2011). The self-concept or self-belief refers to students’ self-perceived judgement on a subject 

(Marsh, Trautwein, Ludtke, Koller, & Baumert, 2005). This study includes four self-belief 

variables ranking the degree of learning a subject well, learning it quickly, whether the subject is 

hard or whether it is a weakness. 

This study has several specific features that are worth emphasizing. First, through 

employing appropriate statistical method on large-scale data in multiple countries across years, 

findings in this study have high internal and external validity. Specifically, the application of 

Instrumental variable (IV) method and regression discontinuity design (RDD) allows us to 

generate causal inference of class size effects across four countries, which fulfill the high internal 

validity. In addition, utilizing sampling weights allows the estimates form the sample to be 

projected to a particular national population which thus has merit in generalizability.  

Second, the recognition of the predictive power of non-cognitive skills over future 

academic and life outcomes has escalated. Small classroom has been hypothesized to improve 

non-cognitive development such as learning motivation and school engagement. Thus it would 

be especially meaningful to empirically investigate the potential contributions of class size on 

developing malleable non-cognitive skills. Nevertheless evidence of the return of class size on 

non-cognitive outcome is overall extremely rare expect one study (Dee & West, 2011). 

Therefore, providing evidence of class size effects on non-cognitive outcomes is badly needed to 

contribute to the debate on the effectiveness of class size reduction.  
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Third, this study focused on eighth grade because for self-report non-cognitive outcomes, 

it is very likely that eighth graders would provide more accurate response than the 4th graders. 

More importantly, I choose to focus on math and specific sciences including physics, biology, 

chemistry and science in secondary education because being well-versed in science, technology, 

engineering and math (STEM) is an educational imperative in a technological society. Especially, 

in today’s education, school faces the challenge of declined interest and enrollment in STEM 

major in high school and university especially in the U.S. Findings of this research would 

contribute to knowing whether class size reduction has positive effect on improving high-school 

students’ non-cognitive skills and academic achievement on math and sciences. To my 

knowledge, the causal inference of class size effects on specific science subjects in secondary 

education pertaining to both cognitive and non-cognitive outcomes have not been examined 

before although previous studies used the same TIMSS data.  

 

4.4 Methods 
 
4.4.1 Data 

 TIMSS is the largest international study that has been used to monitor 4th and 8th grader’s 

mathematics and science achievement over time across approximately fifty countries or 

economies around the world.  High quality assessment data have been provided via IRT model 

that are equated across participating countries and also over time for each participated country. 

In addition, it provides rich survey questions about the students’ family and school learning 

environment in the questionnaires for students, parents, teachers and principals.  

 Data were collected every four years since 1995. This study used data in 2003, 2007 

and 2011 to investigate whether the findings would be consistent for a particular country across 
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time. The latest round data in 2015 was not considered because the variable of 8th enrollment 

variable is not available for public data file, which however is an essential ingredient to employ 

the statistical methods. TIMSS data before 2000 (i.e., 1995 and 1999) were not included either 

because the collected variables then are quite different from surveyed variables after year 2000. 

The TIMSS sampling design is a two-stage stratified cluster sampling where schools are sampled 

with probability that is proportional to school size and then one or more intact classroom are 

selected. In the data user’s manual, the sampling weights include the overall student-level 

weights (i.e., TOTWGT) are recommended to be used to generate population estimates.  

 

4.4.2 Country Selection 

Because I targeted at causal inference of class size effects, selected country has to meet 

two criteria. First, the country should have maximum class size rules to be able to apply the 

methods of IV and RDD and also the rules should be followed relatively well in order to ensure 

that the estimates would be valid to some extent. Second, the country should participate in all 

three waves to examine whether the class size effects in a country would be consistent. 

Originally, there are seven European countries that data in all three years, but three were 

eliminated in which Norway and Sweden do not have national maximum class size rules 

(Eurydice, 2012) (page 153) while in Italy there is an official rule but it was not followed at all as 

the empirical data displayed.  

I thus selected the following four countries that are listed in an alphabetical order with the 

maximum class size rules included in the parentheses: Hungary (30), Lithuania (30), Romania 

(30) and Slovenia (28) (Eurydice, 2005, 2009, 2012). It should be noted that although these four 

countries have maximum class size rules in elementary grade, in secondary education, rules are 
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available in 2011 only. To my knowledge, the rules of the maximum class size do not change 

much based on previous study (Shen & Konstantopoulos, 2017) and the conjecture is also 

supported by the empirical graphs presented in the result part.  

In terms of education system, Hungary has a standardized education system governed by 

the Ministry of Education for providing free education in public schools (Hörner, Döbert, Kopp, 

& Mitter, 2007). The National Core Curriculum is responsible for prescribing unified content of 

public educational requirements up to tenth grade. The lower secondary education lasts from 

grade 5 to grade 8.  Lithuania also has a centralized education system under the governance of 

the Ministry of Education and Science, but schools have some flexibility to make modification as 

needed. The lower secondary education lasts six years from grade 5 to grade 10. Romania’s 

education is similar to Lithuania. In Slovenia, the lower secondary education is from grade 5 to 

grade 8, which is regulated by the Council of Experts for General. It is worth noting that these 

four countries in Central and Eastern Europe have gone through a reform of decentralization 

transition moving from communism-featured education towards education system similar to 

Western European countries. According to the transitional development, Hungary and Slovenia 

belong to the more advanced group whilst Lithuania and Romania are the less advanced group 

(Ammermüller, Heijke, & Wößmann, 2005).   

 

4.4.3 Variables 

 The main cognitive variables are the achievement scores in mathematics, physics, 

biology, chemistry and earth science in the format of five plausible values (PV) derived from 

multiple imputation (MI) method to produce reliable and consistent estimates of test scores. It is 

because each individual student only responses to a proportion of the item pool, so the 
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uncertainty needs to be taken care of via the five PVs. The non-cognitive outcomes are based on 

questions that ask students to indicate their level of engagement and self-evaluation of learning 

five subjects. In each subject, five variables are selected which are available across three rounds 

of data: (1) learning the subject well; (2) learning the subject quick; (3) enjoy learning the subject; 

(4) the subject is hard; (5) the subject is one’s weakness. Each of the five non-cognitive items has 

a 1-4 Likert-type format (i.e., 1=strongly agree; 2=agree; 3=disagree; and 4=strongly disagree). 

The first three items were reverse coded so in all five variables, large value would represent 

better learning outcomes on a particular subject. For convenience, these five non-cognitive 

variables will be referred to as “well”, “quick”, “enjoy”, “hard” and “weak” hereafter. 

 The main independent variable is teacher reported 8th grade class size in the classroom of 

each particular subject (i.e., math, physics, biology, chemistry and earth science). The other 

covariates include: students’ gender, age and a composite variable of home items, teachers’ 

gender, education and experience, and 8th grade enrolment and percentage of economically 

disadvantaged students in schools. It needs to note that the teacher variables including class size 

variable come from teacher questionnaire corresponding to each of the five academic subjects. 

The Appendix provides the list of variables used in this study including coding details. 

  

4.5 Statistical Analysis 
 

 I analyzed data of these four countries in TIMSS 2003, 2007, and 2011 via the IV 

method applied in full sample and RD sample. 

4.5.1 IV 

The IV method involves finding a valid instrumental variable and then applying the 

estimation of two stage least squares (TSLS) (Joshua D. Angrist & Imbens, 1995). In the 
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example of class study, at the first stage regression, class size is regressed on the instrumental 

variable of class size plus all the covariates and in the second stage regression, the fitted value 

from the first regression will be used as the predictor for the outcome variables controlling the 

same covariates that have been use in the first stage. The basic idea of IV method is that the 

fitted value from the first regression represents the pure class size variable that is uncorrelated 

from the deleted error term in the first regression that represents the unobserved confounding 

variables or sorting process. Therefore, the estimated coefficient of the fitted value of class size 

variable represents the causal effect.  

The assumption of the IV method is that the instrumental variable should be valid in 

terms of meeting two requirements: (1) having high correlation with the actual class size variable 

which the rule of thumb is F-test of the instrument in the first-stage regression should be larger 

than 10 (Stock, Wright, & Yogo, 2002); (2) having little or no relationship with the outcome 

variable. In that way, the fitted value of class size represents an exogenous variable indicating 

that the change of the outcome is only due to change of the class size variable. However, if the 

instrumental variable is weak, the estimates could be worse than the OLS estimates.  

 The equations (4.1 to 4.3) below describe the computation details. First I followed 

Angrist and Lavy (1999) by creating the Instrument Variable, which is the average class size in 

8th grade in each school j as 

       !"#8% =
'()*++,-(./0

123
4567889:5;<0=>

6?8: @A
            (4.1) 

where ACS8 is the average class size in 8th grade in the school j, Enrollment8 is the student 

enrollment in 8th grade, rule is the maximum class size rule in each country in each year and INT 

stands for the function of generating the next smaller integer.  
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 In the first stage regression, the teacher reported class size is regressed on the computed 

class size (i.e., the instrument) along with other covariates. Specifically, for student i in school j 

the model is 

      "BCDD#EFGH% = IJ + IA!"#8% + LMNOPQR + MSTOPQU + LSTPQV + WH%      (4.2) 

where ClassSize is the teacher reported class size, ACS8 is the average class size computed in 

each school (i.e., IV), STD includes student variables (i.e., gender, age, items at home), TCH 

represents teacher variables including teacher’s gender, education degrees and experience in 

years, SCH includes the percent of economically disadvantaged students and grade enrollment 

with 3rd polynomial function (i.e., linear, quadratic and cubic terms) to capture any possible non-

linear relationship. The regression estimates are captured by the Xs. 

 Next, I computed the predicted or fitted values from equation (4.2) that is known.  

Meanwhile, I deleted the part of class size that is unknown (the error), which could incorporate 

selection bias. The fitted values represent now the new error-proof class size variable 

(represented as FV below) that incorporates known variables such as the computed average class 

size based on rules about maximum class size, and other measured student, teacher/classroom or 

school variables. The regression model at the second stage is 

    YH% = ZJ + ZA[\H% + LMNOP]R + MSTOP^U + LSTP]V + GH%          (4.3) 

where YH%	represents the outcome, FV is the modified class size variable and  Z is the coefficient 

of interest (i.e., the association between class size and achievement). All other terms have been 

defined previously. The residual term e includes a student and a school component, namely G = 

(student, school) and the variance of the school component captures the clustering effect due to 

complicated sampling in TIMSS. To account for the missing data effect, covariates with missing 

values were imputed with median values for the continuous variables and zero for the binary 
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variables. Most covariates have missing rates less than 5%. For example, the average missing 

rate for the class size variable is 3.5% across all data sets.  Given the low missing rate of the 

main predictor and also with the purpose to make the analysis comparable among different 

countries and outcomes and also between full sample and RD sample, missing flags will not be 

included in the model.  

 In the full sample analysis, there are 58 data sets instead of 60 (i.e., four countries x 

three years x five subjects) because Slovenia does not have data on earth science in 2003 and 

2007. For each dataset, there are one cognitive outcomes in the format of five plausible values 

and five non-cognitive outcomes. The weighted estimates and standard errors (SEs) for each PV 

will be computed and then combined across five PVs using multiple imputation formulae 

(Schafer, 1999). The weighted analysis would produce the main results to report as it represents 

the inference in a national population. Nevertheless, unweighted estimates will also be computed 

serving the purposes of sensitivity checking and also to be compared with findings in RD which 

is unweighted. I use the command ivregress in STATA to conduct the analyses. 

 

4.5.2 RD 

 In addition to creating the instrument variable of predicted class size, the maximum 

class size rules give rise to a (fuzzy) RD design with an up-and-down or discontinuity pattern as 

school enrollment increases. For example, in this study, except in Slovenia, the maximum class 

size rule is 30. Once the enrollment passes cut-off points (e.g., 30, 60 and 90) for example by one 

unit, one more class will be added according the class size cap, so the average class sizes on the 

right side of the cut-off points become much smaller as 15.5, 20.3 and 22.7 in the first three 

segments while the counterparts in the left side are 29, 29.5 and 29.7. The main idea of RDD is 



  

 177 

that the data around the cut-off points of multiples of the rule would resemble a local treatment 

effect of a randomized experiment when certain assumptions are met.  

 In a RDD, typically there is a running variable (Z) that determines the treatment status 

(T). Based on the magnitude of compliance, there are two types of design in general: sharp RD 

and fuzzy RD (G. W. Imbens & Lemieux, 2008). If Z fully captures the variation of T, it is a 

sharp RDD. Under this scenario, the estimates of T would be unbiased given Z is also included 

in the regression model. When Z cannot fully determine the T, this is a fuzzy RDD and the 

estimate of T could have bias even controlling Z in the model. Nevertheless, the IV method that 

is similar to “intention-to-treat analysis” could be embedded in the framework of RDD to get rid 

of some bias (Joshua D Angrist, Imbens, & Rubin, 1996). For RDD analysis, choosing an 

appropriate bandwidth is of great importance to balance the trade-off between bias and precision 

(G. Imbens & Kalyanaraman, 2012). On one hand, the narrower the bandwidth is the more 

accurate the estimates could be but there may not be sufficient sample to perform powerful 

statistical analysis. On the other hand, having wider bandwidth would have sufficient sample size 

but it is less accurate as it may not resemble local treatment any more. In the literature, one 

approach (i.e., optimal bandwidth) as well as corresponding software program in R or STATA 

have been developed to address this issue (Calonico, Cattaneo, Farrell, & Titiunik, 2017; 

Calonico, Cattaneo, & Titiunik, 2014a, 2014b, 2015). 

 In order to ensure a valid RD, it would be necessary to check that there is no 

discontinuity pattern in the running variable plus no other school resources would exhibit the 

same discontinuous pattern (Lee & Lemieux, 2010). Moreover, predetermined covariates should 

be balanced across observations just above and below the thresholds, so any jump or change in 
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the outcome would be due to the discontinuity in the class size change, which consequently 

becomes a causal inference of class size.  

 In the specific class size setting, the running variable is grade enrollment and the binary 

treatment is small vs large class size. The RDD of class size has several special characteristics. 

First, as some schools may not follow the maximum rule, it is a fuzzy RDD in which IV method 

could be employed. Second, it has multiple cutoffs with disproportional number of observations 

located around each cut-off point. The first and second segments may have more observations 

than other segments, but it is also possible that observations spread evenly across different 

segments. It is not uncommon to normalize the running variable, combine observations and 

produce an overall treatment effect across all cut-off points. In this study, the enrollment variable 

will be centered around each cut-off point, but it will not be standardized in order to maintain 

original segment variation. Third, the treatment status is unknown on the surface but could be 

generated with appropriate choice of bandwidth across different segments. Because of the 

limitation on creating treatment variable, optimal bandwidth does not work.  

 The statistical models are similar to the equations (4.2) and (4.3) in full sample IV 

analysis with the same covariates including the linear, quadratic and cubic terms of enrollment. 

Comparing with the IV analysis of full sample, the only difference is using RD sample with a 

dummy instrument of class size representing small class treatment instead of using the 

continuous predicted average class size as IV. It should be noted that reverse coding the dummy 

instrument yields the same results although the correlation between the dummy instrument of 

class size and teacher reported class size would have opposite sign. Using the RD graph of 4th 

polynomial, it was found that 4th power may overcorrect non-linearity.  Therefore, I used cubic 

function as in the IV full sample analysis, which should appropriately capture possible non-
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linearity across segments in general and thus the segment dummy variable was not included. The 

RD data generating details are explained in the result part.  

 

4.6 Results 
 

1) Descriptive 

 The sample size of data per county, per year and per subject is presented in Table 4.1. 

Lithuania and Slovenia have the smallest and largest number of schools, which is 141 and 186 

respectively in 2011. The number of class ranges from 155 in Hungary in 2003 to 266 in 

Romania in 2007. The number of teacher varied among five subjects in addition to the variation 

in country and year. By and large, the number of teachers in specific sciences (i.e., physics, 

biology, chemistry and earth science) is similar, but is different from that in math. The smallest 

and largest number of students are 3301 in Hungary in 2003 and 5523 in Romania in 2011 

respectively. On average, there are 4277 students, 190 teachers, 231 classrooms and 151 schools 

across countries, years and subjects.  

 Table 4.2 provides descriptive statistics on the outcome variables and class size. To be 

concise, the minimum and maximum values are not reported but will be briefly mentioned. With 

regard to the cognitive outcomes of achievement scores, comparing among countries, in general, 

Hungary has the highest average scores in each subjects, followed by Lithuania and Slovenia 

while Romania the lowest. The mean of the non-cognitive outcomes ranges between 2 and 3 and 

have a variation of 0.7 to 1 overall within the scale range of 1 to 4. The average class size across 

subjects in 2003 is about 23 in Hungary, 26 in Lithuania, 24 in Romania and 21 in Slovenia. In 

2007, the numbers of average class size are 24 in Hungary, 26 in Lithuania, 22 in Romania and 

Slovenia. In 2011, numbers are similar as 23, 25, 24 and 22 in Hungary, Lithuania, Romania and 
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Slovenia respectively. The smallest average class size is about 15 in math class in Slovenia in 

2011 and the largest one is about 27 in Lithuania in 2003 for Chemistry and Earth Science 

classes. 

 

2) IV results 

 The model estimates of class size variable are rounded in two decimal places. The 

significant results at the level of 0.05 are reported first by year and then by country. Table 4.3 

presents estimates in weighted analysis and negative sign means as class size unit increases the 

outcome decreases. In 2003, in Romania, there are some statistically significant negative 

estimates in academic achievement: math (-5.60), physics (-5.41), chemistry (-5.09), and earth 

science (-8.75). In 2007, in Romania, the non-cognitive variable of math enjoy has the significant 

estimate (-0.05). In Lithuania, the significant positive estimates were found in the variables of 

“biology well” (0.02), “biology quick” (0.03) and “biology weak” (0.03) and one significant 

negative estimate in “earth science quick” (-0.03). In 2011, in Lithuania, there are three 

significant negative estimates in “biology enjoy” (-0.03), “chemistry well” (-0.03) and 

“chemistry enjoy” (-0.04).  

 The unweighted estimates are included in Table 4.4, in which the significant results are 

reported as follows. In 2003, the significant estimate is in math score (-7.35) and chemistry score 

(-8.11) in Romania only. In 2007, significant results were found just in Lithuania: “biology quick” 

(0.03); “biology weak” (0.03); and “earth science quick” (-0.03). In 2011, three countries have 

significant estimates. In Lithuania, they are in “physics hard” (0.04), “biology enjoy” (-0.04) and 

“chemistry enjoy (-0.03). In Romania, “chemistry well” is significant (-0.05). In Slovenia, there 

are two significant positive estimates in earth science: “enjoy” (0.03) and “hard” (0.03). 
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 To examine the strength of the instrumental variable of class size, the F-test values in 

the first-stage IV analysis are reported in Table 4.5. It needs to mention that for each subject, the 

results are pretty similar between each of the five plausible values and each of the five non-

cognitive variables, so Table 4.5 only provides the analysis using the first plausible value in each 

subject. Concerning the aforementioned significant estimates, the F-test values are all above 10 

except the earth science in Romania in 2003 with a value of 9.6 which is also close to 10. 

Therefore, the IV does not have the problem of weak instrument and the findings in full sample 

are all reliable. In addition, correlations between teacher reported class size in each subject and 

the predicted average class size based on maximum class size rules are above 0.5 overall, which 

further confirms that the class size instrument is valid and results are reliable. 

 

3) RD data and results 

 The RD data were constructed according to the cut-off points based on maximum class 

size rule as well as the number of observations around each cut-off points, which vary by country 

and year. As the sample size in Table 4.1 and descriptive statistics in Table 4.2 show that there is 

very small variation regarding teacher variables including the class size variable among the data 

of the five subjects. To save text space, I used math data to demonstration RD data generating 

process as graphs and figures are similar across subjects. Figure 4.1 visually displays the 

discontinuity pattern using math data in four countries across three years. Specifically, the dots 

represent reported average class size in each school and the straight line is the computed average 

class size using maximum class size rules. How the dots align with the line indicates the degree 

of compliance with the class size cap regulation. Comparatively speaking, Lithuania and 

Romania follow rules better than Hungary and Slovenia.  
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 In Figure 4.2 the histograms show the distributions of 8th grade enrollment and 

demonstrate the number of observations around each cut-off point in each country per year. For 

example, in Hungary 2011, most observations locate in schools that have grade enrollment less 

than 100, so the corresponding RD data would have three segments. Overall, there are 

observations spread around each cut-off points in each subgraph instead of having observations 

clustered on the left side of the discontinuity points. This suggests that it is unlikely that schools 

or parents manipulated school grade enrollment and class size.  

 Table 4.6 lists the RD sample details concerning the number of segments, bandwidth, 

sample size and a dummy treatment of class size. For instance, in Hungary, based on the 

information in Figure 4.1 and 4.2, I chose three segments and computed the largest possible 

bandwidth is 6 which allows to create a dummy instrument of class size treatment without 

overlapping. The segments thus are [25, 36], [55,66] and [85,96] and the cut-off points are 30, 60 

and 90. On the left side of the cut-off points, the predicted average class size would be [25, 30], 

[27.5,30] and [28.3, 30] while on the right side it would be [15.5, 18], [20.3, 22] and [22.7, 24]. 

Across three segment, the predicted class size on the left side is [25, 30] and on the right side is 

[22.7, 24]. Therefore, the treatment variable of class size, a dummy instrument, can be created 

which treat=1 if ACS8<24.5 and zero otherwise. The “ACS8’ represents the continuous 

instrument of class size based on the maximum class size rule that has been used in full sample 

analysis. Similarly, other bandwidth of 5, 4 and 3 can be chosen. The same procedure employs in 

other three countries. Across all four countries, the largest bandwidth was selected as long as the 

treatment variable of class size can be defined without overlapping between the left and right 

side of the cut-off points. The lowest bandwidth is 3, which followed Angrist and Lavy (1999).  
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 In Figure 4.3, the RD plot considered the 4th power of polynomial function using the 

widest bandwidth data per country and per year. The enrollment was centered around each cut-

off point. Observations are combined across segments. 

 Table 4.7 reports the RD results in 2003. It shows that the estimates are sensitive to the 

choice of bandwidth. In Lithuania with bandwidth of 3, in physics, significant estimates are 

“physics score” (2.29), “physics well” (-0.12), “physics quick” (-0.07), “physics enjoy” (-0.13) 

and “physics hard” (-0.07); in biology, including “biology well” (0.08), “biology quick” (0.11), 

“biology enjoy” (0.15), “biology hard” (0.05) and “biology weak” (0.12); in Chemistry for 

chemistry score (10.09) and in earth score (10.85).  

 Table 4.8 reports the RD results in 2007. In Lithuania, across the bandwidth of 4 and 3, 

consistent significant estimates are in earth: “earth well” (-0.08 and -0.14), “earth hard” (-0.07 

and -0.09) and “earth weak” (-0.11 and -0.13). Other significant results were found with 

bandwidth 3: “physics enjoy” (0.06), “biology well” (-0.03), “biology quick” (-0.05), “earth 

quick” (-0.14) and “earth enjoy” (-0.15). In Romania, with the bandwidth 4, significant 

estimates are “chemistry weak” (0.06), “earth quick” (0.11) and “earth hard” (0.10); with 

bandwidth 3, “chemistry quick” (0.07) and “earth score” (7.92). 

 Table 4.9 reports the RD results in 2011. The significant estimates are as follows: in 

Hungary with bandwidth 5 and 4, “math enjoy” (-0.06); in Lithuania with bandwidth 3, “earth 

score” (8.45), “earth well” (0.05), “earth hard” (0.11) and “earth weak” (0.10); in Romania with 

bandwidth 3, “earth score” (12.53). 

 Like the full sample analysis, I checked the strength of the dummy instrument by 

examining the F-test value in IV first stage (>=10) and absolute value of correlation between real 

class size and the dummy instrument (>0.4) and the indexes were provided in Table 4.10.  It was 
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found that for the aforementioned significant findings in Table 4.7 to 4.9, significant estimates 

from valid instrument are highlighted with bolded format.  

 In addition, as endogenous sorting around discontinuity points may violate statistical 

assumptions of RD design, I checked the balance of covariates in the RD sample in 2007 where 

valid results were detected. Table 4.11 reports t-test results for the average differences of 

covariates between the groups on the right- and the left-side of the cut-off points in 2007. It is 

clear that covariate balance was achieved as there is no significant test difference in Lithuania 

with both bandwidth 4 and 3 in 2007. Since randomized control trial supposed to be balanced not 

only on the observed covariates but also on unobserved covariates, it may be helpful to check the 

balance of missing dummy flags in the RD analysis. However, given the low missing rate in the 

full sample and a further reduction of sample size in RD sample, overall it is not feasible to do 

the check. 

 

4) Result summary and bias quantification 

 Although valid IV assumes to provide unbiased estimates, there still could be 

uncontrolled missing variable bias. To deal with it, this study further quantifies the percentage 

bias necessary to invalidate the inference for these statistically significant results. The formula is 

bias %= 1-(standard error X tabcdcaef,hi/coefficient) (where estimates of coefficient and standard 

error are generated by software while tabcdcaef,hi would be close to 1.96 for a two-tailed t-test with 

0.05 significance level when sample size is large) based on the method proposed by Frank et al 

(2013) (Frank, Maroulis, Duong, & Kelcey, 2013). This statistical method is superior to the 

statement about higher or lower statistical significance. According to Frank et al (2013), the 

median level of robustness is about 30% by rule of thumb for observational education studies. 
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 Table 4.12 further summarizes previous valid statistically significant estimates as well 

as the bias quantification. To make the results comparable between the test score and the non-

cognitive outcomes which have different measurement scale, I computed effect size as the 

estimate over the standard deviation of the dependent variable indicating the change of the 

outcome in standard deviation unit corresponds to one unit change in class size. It should be 

emphasized that unweighted standard deviation of the dependent variable was used for the 

weighted full sample estimates. It is because in single-level model analysis, the overall sampling 

weights were used to adjust for the standard errors which would not bring much change to the 

coefficient estimation. This usage of sampling weights in the overall regression model is 

different from weighted descriptive statistics such as computing weighted mean value. 

 I intend to report only the findings from the weighted full sample analysis and the 

unweighted RD analysis while findings from the unweighted full-sample analysis would be a 

reference. The bias quantification is included in parentheses alongside effect size plus the sign of 

coefficient in which negative sign indicates that smaller class generates positive outcome and 

positive sign means larger class size is preferred.  

 The results from weighted full sample analysis indicate that there are significant class 

size evidences in Romania and Lithuania. In Romania in 2003, increasing class size decreases 

students’ academic scores in math (-0.06, 25%), physics (-0.07, 12%), chemistry (-0.05, 2%)and 

earth science (-0.09, 17%). Meanwhile larger class also decreases student’s math learning 

enjoyment (-0.05, 8%) in 2007. In Lithuania in 2007, findings diverge. In 2007, it was found that 

larger class size increases student’s non-cognitive functions in biology: well (0.03, 15%), quick 

(0.04, 32%), weak (0.04, 29%), but in earth science, in smaller class students learn quick (-0.03, 
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16%). In 2011, students in smaller-sized classroom are more likely to enjoy learning biology (-

0.03, 20%), chemistry leaning well (-0.03, 30%) and enjoyment (-0.03, 30%).  

 Previous study indicates that schools and households may manipulate class size due to 

liberalized education market and violate the validity of RD estimates (Urquiola & Verhoogen, 

2009). I checked the validity of RD via both visual graphs and statistic tests. The findings from 

RD analysis seem to resemble randomized experiment and thus have high internal validity. 

Results showed that in Lithuania in 2007 reducing class size significantly leads to more positive 

non-cognitive outcomes in biology well (0.04, 5%) and quick (0.06, 7%) and in earth science 

well (0.19, 67%), quick (0.16, 65%), enjoy (0.16, 80%), hard (0.10, 44%) and weak (0.15, 72%). 

The evidence in Lithuania in 2007 concerning some non-cognitive outcomes however is 

contradictory to the findings in IV.  

   

4.7 Discussion 
 

 Over the past three decades, there is a large body of research examining the effects of 

class size particularly on student’s academic performance, which have undergone continued 

debate. The U.S. singles out in providing the most pronounced evidence of small class size 

benefits in the early grades (Finn, 2002; Finn & Achilles, 1990, 1999; Finn, Gerber, & Boyd-

Zaharias, 2005b; Krueger, 1999), which provided impetus for turning public’s passion and 

appeal for small class size into the implementation of class size reduction in more than twenty 

states (Dee & West, 2011).   

 However, in general, evidences of large-scale data have shown that decreasing class 

size has little or no effect on lifting students’ academic achievement. Consequently, some 

researchers argued that class size is not important on improving student academic achievement 
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and class size reduction failed in the cost-benefits tests, so investment on reducing class size is 

not worthwhile (Chingos, 2013). What has been missing in evaluating the class size effectiveness 

is the class size effects on non-cognitive skills. Small class size has been proposed to increase 

achievement by providing a better educational environment where it is more likely to reduce 

class disciplinary management, increase interaction and individualized teacher support such as 

the amount of individual attention pupil received, and promote students’ engagement in learning 

(Blatchford, Bassett, & Brown, 2011; Blatchford, Moriarty, Edmonds, & Martin, 2002; Galton & 

Pell, 2012; Hargreaves, Galton, & Pell, 1998). In fact, the attention has been extensively placed 

on students’ cognitive achievement, the non-cognitive variables are treated as mediating factors 

rather than outcomes. Although non-cognitive abilities have played a vital role on individuals’ 

long-term academic, economic and life success, it is more difficult to measure precisely and the 

direct potential substantial benefits on non-cognitive development arising from being placed in a 

small-sized class has been underappreciated to a great extent. 

 I address this important literature void by investigating the class size effects on the non-

cognitive outcomes of five subjects (i.e., math, physics, biology, chemistry and earth science) 

alongside cognitive outcomes in eighth grade across four European countries (i.e., Hungary, 

Lithuania, Romania and Slovenia) using TIMSS data in 2003, 2007 and 2011. The causal 

inference was facilitated by employing valid IV method based on the maximum class size rules 

in each country across the years using full sample and RD sample.  

 Full sample analyses have revealed that in Romania small class size boosts the 

enjoyment of learning math in 8th grade with effect size of 0.047 and raises academic 

achievement in math, physics, chemistry and earth science with effect sizes ranging from 0.054 

to 0.093. The finding of significant class size effects in Romania is in line with previous studies 
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(Li & Konstantopoulos, 2016; Shen & Konstantopoulos, 2017). Studies in the literature indicated 

that reducing class size (or student-teacher ratio) is one of the most effect way to improve student 

academic performance in secondary education in Romania (Kallai & Maniu, 2004).  

 In Lithuania, findings are not very consistent between two years. In 2011, reducing 

class size helps enhance the learning of biology and chemistry. However, in 2007, results have 

been mixed. The weighted full sample analysis shows that in larger class, students are more 

likely to report learning biology well, quickly and biology is less likely to be a weakness while 

the RD sample analysis demonstrates that students in smaller class is more likely to report 

learning biology well and quickly. Nevertheless, regard the subject of earth science, the finding 

is consistent which the small class has positive effect in learning the subject quickly from both 

the weighted full sample (0.033) and RD sample (0.155). Additionally, small class also has 

positive effect on learning earth science well (0.192), enjoy it (0.156) and it is less likely to feel 

earth science is hard (0.097) and a weakness (0.150). It is unclear whether the discrepancy is due 

to the effect of sampling weights, the methods between IV and RDD or because of the 

measurement error involved in self-report responses. 

 One interesting finding is that the analysis in RDD yields much stronger evidence than 

that in the full sample, which may imply the RDD is more compelling as it is closer to 

randomized experiment compared with other quasi-experiment approach (e.g., IV and DD) (Lee 

& Lemieux, 2010). Another interesting finding is that the class size effects were found in 

Romania and Lithuania but not in Hungary and Slovenia in which the former two countries have 

slower educational development than the latter two. This is perhaps due to the fact that class size 

effects are more likely to be detected in resource-limited countries with lower quality teachers, 

which was suggested by some previous studies (Altinok & Kingdon, 2012; Shen & 
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Konstantopoulos, 2017). More research is needed to verify whether it would be the case that 

low-quality teachers rely more on smaller class to promote effective teaching while high-quality 

teacher may deliver effective instruction regardless of the size of class. Another piece of 

information is that holding teacher’s quality constant, class size effective would be more 

pronounced for low achieving students in low achieving classes (Bressoux, Kramarz, & Prost, 

2009) or countries such as Colombia (Breton, 2014). 

 This study has several limitations. One limitation is that the measurement of the non-

cognitive outcomes is much less precise than that of the standardized test scores in TIMSS. It is 

acknowledged that self-report response may threaten the measurement validity (Donaldson & 

Grant-Vallone, 2002). For instance, people may tend to report a better image than they actually 

are due to social desirability (van de Mortel, 2008). It is also possible that students may over or 

under estimates their subject learning ability and self-concept. A second possible limitation is 

about when enrollment information was collected. Angrist and Lavy (1999) pointed out that the 

grade enrollment information at the beginning of the school year may accurately predict average 

class size, but TIMSS data collect the assessment as well as school enrollment approaching the 

end of a school year, thus might introduce some bias. Third, I acknowledge that there might be 

potential heterogeneous effects across different segments which has not been investigated in this 

study given the great amount of RD analysis that would be involved. However, it would 

recommend to address the estimates of RDD with multiple cutoffs appropriately if the 

heterogeneity of effect would be the research interest  (Cattaneo, Keele, Titiunik, & Vazquez-

Bare, 2016). 

 To facilitate wise decision making pertaining to the policy of class size reduction, there 

is an urgent need for more studies of class size effectiveness on specific non-cognitive skills on 
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more specific aspects because non-cognitive outcome is a catch-all term that encompass all the 

aspects that have not been covered by standardized tests for measuring intelligence ability. More 

importantly, it would be imperative to provide more reliable measures on non-cognitive skills. 

For example, in addition to self-report, objective ratings on these traits by teachers or other 

experts based on daily behavior log or classroom video-recording might be useful. 

 For future research, when measurement on non-cognitive skills are valid, it would be 

interesting to explore whether the effect would be more salient in secondary education than in 

elementary education or vice versa. Moreover, longitudinal studies of class size would be 

informative as previous studies have showed that class size effect may be accumulative. 

Furthermore, with more waves of data, it would be interesting to model the trends of class size 

effects. 
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APPENDIX 4: Variables list in TIMSS 8th Grade 
TIMSS Variables Descriptions 2003 2007 2011 
Outcomes         
Math scores A set of five overall math score plausible values BSMMAT01-05 BSMMAT01-05 BSMMAT01-05 
Do well in math Usually do well in math (1 to 4 scale reverse coded) BSBMTWEL BS4MAWEL BSBM16A 
Learn quickly in math Learn quickly in math (1 to 4 scale reverse coded) BSBMTQKY BS4MAQKY BSBM16D 
Enjoy learning math I enjoy learning math (1 to 4 scale reverse coded) BSBMTENJ BS4MAENJ BSBM14A 
Math more difficult Math is more difficult for you than for your classmates BSBMTCLM BS4MACLM BSBM16B 
Math is not a strength Math is not one of your strength BSBMTSTR BS4MASTR BSBM16C 
Physics scores A set of five overall physics score plausible values BSSPHY01-05 BSSPHY01-05 BSSPHY01-05 
Do well in Physics Usually do well in Physics BSBPTWEL BS4PAWEL BSBP32A 
Learn quickly in Physics Learn quickly in Physics BSBPTQKY BS4PAQKY BSBP32D 
Enjoy learning Physics I enjoy learning Physics BSBPTENJ BS4PAENJ BSBP30A 
Physics more difficult Physics is more difficult for you than for your classmates BSBPTCLM BS4PACLM BSBP32B 
Physics is not a strength Physics is not one of your strength BSBPTSTR BS4PASTR BSBP32C 
Biology scores A set of five overall Biology score plausible values BSSLIS01-05 BSSBIO01-05 BSSBIO01-05 
Do well in Biology Usually do well in Biology BSBBTWEL BS4BAWEL BSBB20A 
Learn quickly in Biology Learn quickly in Biology BSBBTQKY BS4BAQKY BSBB20D 
Enjoy learning Biology I enjoy learning Biology BSBBTENJ BS4BAENJ BSBB18A 

Biology more difficult Biology is more difficult for you than for your classmates BSBBTCLM BS4BACLM BSBB20B 
Biology is not a strength Biology is not one of your strength BSBBTSTR BS4BASTR BSBB20C 
Chemistry scores A set of five overall Chemistry score plausible values BSSCHE01-05 BSSCHE01-05 BSSCHE01-05 
Do well in Chemistry Usually do well in Chemistry BSBCTWEL BS4CAWEL BSBC28A 
Learn quickly in Chemistry Learn quickly in Chemistry BSBCTQKY BS4CAQKY BSBC28D 
Enjoy learning Chemistry I enjoy learning Chemistry BSBCTENJ BS4CAENJ BSBC26A 
Chemistry more difficult Chemistry is more difficult for you than for your classmates BSBCTCLM BS4CACLM BSBC28B 
Chemistry is not a strength Chemistry is not one of your strength BSBCTSTR BS4CASTR BSBC28C 
Earth Science scores A set of five overall Earth Science score plausible values BSSEAS01-05 BSSEAR01-05 BSSEAR01-05 
Do well in Earth Science Usually do well in Earth Science BSBETWEL BS4EAWEL BSBE24A 
Learn quickly in Earth Science Learn quickly in Earth Science BSBETQKY BS4EAQKY BSBE24D 
Enjoy learning Earth Science I enjoy learning Earth Science BSBETENJ BS4EAENJ BSBE22A 
Earth Science more difficult Earth Science is more difficult for you than for your classmates BSBETCLM BS4EACLM BSBE24B 
Earth Science is not a strength Earth Science is not one of your strength BSBETSTR BS4EASTR BSBE24C 
Student Variables         
Female Dummy (1=female student) ITSEX ITSEX ITSEX 
Age Student age BSDAGE BSDAGE BSDAGE 
Home items Sum of possession items at home BSBGPS01-16 BS4GTH01-09 BSBG05A-K 
Classroom/Teacher Variables         
Math class Size Number of students in the math classroom BTBMSTUD BT4MSTUD BTBG12 
Science class Size Number of students in each science classroom BTBSSTUD BT4SSTUD BTBG12 
Male teacher Dummy variable for male teacher in classroom BTBGSEX  BT4GSEX  BTBG02 
Teacher education Dummy variable of math teacher education (1= master degree and above) BTBGFEDC BT4GFEDC BTBG04 
Teacher experience Math teachers teaching experience BTBGTAUT BT4GTAUT BTBG01 
School Characteristics         
Grade enrollment 8th grade enrollment BCBGEENR BC4GEENR BCBG02 
economically disadvantaged (ED percent) The percentage of students coming from economically disadvantaged homes four categories BCBGSBED BC4GSBED  BCBG03A 
Total Weight Total weight at student level TOTWGT TOTWGT TOTWGT 



  

 193 

 
 
 FIGURES 
Figure 4.1: Class size by enrollment. 
 

 
 
Note: Reported and computed average class size in mathematics by 8th grade enrollment in four countries across three years. 

0
10

20
30

40
C

la
ss

 S
iz

e

0 30 60 90 120 150
Grade 8 Enrollment 

Hungary math 2003 Rule=30

0
10

20
30

40
C

la
ss

 S
iz

e

0 30 60 90 120 150
Grade 8 Enrollment 

Hungary math 2007 Rule=30

0
10

20
30

40
C

la
ss

 S
iz

e

0 30 60 90 120 150
Grade 8 Enrollment 

Hungary math 2011 Rule=30

0
10

20
30

40
C

la
ss

 S
iz

e

0 30 60 90 120 150 180 210
Grade 8 Enrollment 

Lithuania math 2003 Rule=30
0

10
20

30
40

C
la

ss
 S

iz
e

0 30 60 90 120 150 180 210
Grade 8 Enrollment 

Lithuania math 2007 Rule=30

0
10

20
30

40
C

la
ss

 S
iz

e

0 30 60 90 120 150 180 210
Grade 8 Enrollment 

Lithuania math 2011 Rule=30

0
10

20
30

40
C

la
ss

 S
iz

e

0 30 60 90 120 150 180 210 240 270
Grade 8 Enrollment 

Romania math 2003 Rule=30

0
10

20
30

40
C

la
ss

 S
iz

e

0 30 60 90 120 150 180 210
Grade 8 Enrollment 

Romania math 2007 Rule=30

0
10

20
30

40
C

la
ss

 S
iz

e

0 30 60 90 120 150 180 210
Grade 8 Enrollment 

Romania math 2011 Rule=30

0
10

20
30

40
C

la
ss

 S
iz

e

0 28 56 84 112 140 168
Grade 8 Enrollment 

Slovenia math 2003 Rule=28

0
10

20
30

40
C

la
ss

 S
iz

e

0 28 56 84 112
Grade 8 Enrollment 

Slovenia math 2007 Rule=28
0

10
20

30
40

C
la

ss
 S

iz
e

0 28 56 84 112
Grade 8 Enrollment 

Slovenia math 2011 Rule=28



  

 194 

Note: The dots represent reported average class size in each school and the straight line is the computed average class size using 
maximum class size rules. 
Figure 4.2: Histograms of 8th grade enrollment across four countries and three years. 
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Figure 4.3: RD plot. 
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Note: The 4th polynomial using the widest bandwidth per country and per year.  
The enrollment was centered around each cut-off point. Observations are combined across segments. 
 
TABLES 
 
Table 4.1: Fall sample size in 2003, 2007 and 2011 

 
                        

  2003   2007   2011 
  Math Phy Bio Che Earth   Math Phy Bio Che Earth   Math Phy Bio Che Earth 
Hungry                                   
Student 3302 3301 3301 3301 3256    4111 4111 4059 4111 4109   5178 5178 5178 5156 5178 
Teacher 198 158 158 156 154   263 172 179 165 183   242 168 171 157 172 
Class 155 155 155 155 153   246 246 244 246 246   251 251 251 250 251 
School 155 155 155 155 153   144 144 143 144 144   146 146 146 146 146 
Lithuania                                   
Student 4964 4883 4689 4714 4943   3991 3991 3991 3991 3991   4747 4747 4747 4747 4743 
Teacher 214 166 146 158 171   209 152 160 157 163   222 163 160 160 165 
Class 258 254 242 240 257   258 258 258 258 258   258 258 258 258 257 
School 143 141 133 129 142   142 142 142 142 142   141 141 141 141 141 
Romania                                   
Student 4104 4104 4023 4080 4104   4198 4196 4166 4168 4189   5523 5523 5483 5523 5492 
Teacher 178 179 175 180 178   236 189 179 170 188   221 172 176 170 172 
Class 178 178 174 177 178   266 266 264 265 266   248 248 246 248 247 
School 148 148 146 147 148   149 149 149 149 149   147 147 147 147 147 
Slovenia                                   
Student 3578 3578 3578 3578 -   4043 4025 4043 4043 -   4415 4415 441 4413 4414 
Teacher 228 176 176 176 -   459 170 172 157 -   478 194 201 193 196 
Class 176 176 176 176 -   260 259 260 260 -   225 225 225 225 225 
School 174 174 174 174 -   148 148 148 148 -   186 186 186 186 186 
Note: Phy=Physics; Bio=Biology/Life science; Che=Chemistry; Earth= Earth science             
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Table 4.2: Unweighted descriptive statistics 
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Table 4.3: Weighted estimates using IV method in full sample 
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Table 4.4: Unweighted estimates using IV method in full sample 
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Table 4.5: IV first stage F-test values and class size correlation in full sample 
 

  
         Weighted Hun   Ltu   Rom   Svn     Unweighted Hun   Ltu   Rom   Svn   

  1st stage Corr  1st stage Corr  1st stage Corr  1st stage Corr      1st stage Corr  1st stage Corr  1st stage Corr  1st stage Corr  
2003                   2003                 

Math 2.3 0.4 30.9 0.8 21.8 0.6 20.3 0.5   Math 2.4 0.3 25.8 0.7 8.7 0.5 17.8 0.4 
Physics 3.0 0.5 21.9 0.7 12.4 0.6 32.5 0.6   Physics 2.3 0.4 20.0 0.6 5.3 0.5 48.6 0.6 
Biology 3.2 0.4 11.4 0.7 12.8 0.6 26.5 0.6   Biology 2.8 0.4 10.8 0.6 6.1 0.5 22.3 0.5 
Chemistry 1.4 0.4 22.0 0.6 27.5 0.7 25.9 0.6   Chemistry 0.5 0.3 20.4 0.5 9.4 0.5 21.6 0.5 
Earth Science 2.9 0.4 14.7 0.7 9.6 0.6 - -   Earth Science 2.2 0.3 13.8 0.6 2.9 0.5 - - 

2007                   2007                 
Math 3.5 0.4 76.3 0.8 20.8 0.7 25.7 0.4   Math 1.2 0.3 37.2 0.7 16.5 0.6 23.9 0.3 
Physics 16.1 0.6 35.7 0.7 6.4 0.6 27.4 0.6   Physics 8.9 0.4 25.2 0.6 7.0 0.6 26.3 0.5 
Biology 13.5 0.5 38.1 0.7 5.9 0.6 48.0 0.6   Biology 4.2 0.4 30.4 0.6 5.0 0.5 32.3 0.5 
Chemistry 11.0 0.6 27.2 0.7 7.5 0.6 14.7 0.4   Chemistry 5.4 0.4 24.6 0.6 8.2 0.5 7.5 0.3 
Earth Science 9.8 0.6 42.6 0.8 3.8 0.6 - -   Earth Science 2.6 0.4 32.2 0.7 3.4 0.4 - - 

2011                   2011                 
Math 5.5 0.5 31.8 0.8 6.8 0.5 5.5 0.2   Math 6.9 0.4 20.8 0.7 10.3 0.5 5.4 0.2 
Physics 8.8 0.5 26.8 0.8 10.0 0.5 27.1 0.6   Physics 9.4 0.4 16.9 0.6 16.0 0.5 43.5 0.6 
Biology 4.4 0.5 36.8 0.8 9.3 0.5 21.1 0.5   Biology 4.8 0.4 19.9 0.7 12.4 0.5 29.1 0.5 
Chemistry 4.5 0.5 40.5 0.8 9.0 0.6 25.2 0.7   Chemistry 5.7 0.4 21.4 0.7 16.1 0.5 41.8 0.7 
Earth Science 3.1 0.4 28.7 0.8 7.6 0.5 30.5 0.7   Earth Science 4.5 0.4 21.6 0.7 7.9 0.4 42.5 0.7 
Note: corr=correlation between teacher reported class size and predicted average class size based on maximum class size rule 
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Table 4.6: RD data details 
 Country 2003   2007   2011 
    Enrollment Grade 8 Average class size   Enrollment Grade 8 Average class size   Enrollment Grade 8 Average class size 
Hungary                               
Segments Three Left Right Left Right   Left Right Left Right   Left Right Left Right 
Segment1   [25, 30] [31, 36] [25,30] [15.5,18]   [25, 30] [31, 36] [25,30] [15.5,18]   [25, 30] [31, 36] [25,30] [15.5,18] 
Segment2   [55,60] [61, 66] [27.5,30] [20.3,22]   [55,60] [61, 66] [27.5,30] [20.3,22]   [55,60] [61, 66] [27.5,30] [20.3,22] 
Segment3   [85,90] [91,96] [28.3,30] [22.7,24]   [85,90] [91,96] [28.3,30] [22.7,24]   [85,90] [91,96] [28.3,30] [22.7,24] 
Bandwidth 6     Left Right       Left Right       Left Right 
Sample size (N)       511 600       983 503       687 804 
Small class treatment   Treat=1 (acs8<24.5) [25,30] [15.5,24]   Treat=1 (acs8<24.5) [25,30] [15.5,24]   Treat=1 (acs8<24.5) [25,30] [15.5,24] 
Bandwidth 5     Left Right       Left Right       Left Right 
sample size (N)       337 566       844 399       525 720 
Small class treatment   Treat=1 (acs8<24.5) [26,30] [15.5,23.8]   Treat=1 (acs8<24.5) [26,30] [15.5,23.8]   Treat=1 (acs8<24.5) [26,30] [15.5,23.8] 
Bandwidth 4     Left Right       Left Right       Left Right 
Sample size (N)       337 498       347 349       450 478 
Small class treatment   Treat=1 (acs8<24.5) [27,30] [15.5,23.5]   Treat=1 (acs8<24.5) [27,30] [15.5,23.5]   Treat=1 (acs8<24.5) [27,30] [15.5,23.5] 
Bandwidth 3     Left Right       Left Right       Left Right 
Sample size (N)       248 417       289 277       282 323 
Small class treatment   Treat=1 (acs8<24.5) [28,30] (15.5,23.3]   Treat=1 (acs8<24.5) [28,30] (15.5,23.3]   Treat=1 (acs8<24.5) [28,30] (15.5,23.3] 
Lithuania       Average class size       Average class size       Average class size 
Segments Six 6[30-180]       6[30-180]       6[30-180]     
Bandwidth 4     Left Right       Left Right       Left Right 
Sample size (N)       464 746       480 497       764 681 
Small class treatment   Treat=1 (acs8<27) [27,30] [15.5,26.3]   Treat=1 (acs8<27) [27,30] [15.5,26.3]   Treat=1 (acs8<27) [27,30] [15.5,26.3] 
Bandwidth 3     Left Right       Left Right       Left Right 
Sample size (N)       291 513       345 429       428 417 
Small class treatment   Treat=1 (acs8<27) [28,30] [15.5,26.1]   Treat=1 (acs8<27) [28,30] [15.5,26.1]   Treat=1 (acs8<27) [28,30] [15.5,26.1] 
Romania       Average class size       Average class size       Average class size 
Segments Seven 7[30-210]       Four 4[30-120]       Five 5[30-150]     
Bandwidth 4     Left Right       Left Right       Left Right 
Sample size (N)       361 1006       385 501       743 624 
Small class treatment   Treat=1 (acs8<27) [27,30] [15.5,26.8]   Treat=1 (acs8<26) [27,30] [15.5,24.8]   Treat=1 (acs8<26) [27,30] [15.5,25.7] 
Bandwidth 3     Left Right       Left Right       Left Right 
Sample size (N)       225 679       308 494       689 434 
Small class treatment   Treat=1 (acs8<27) [28,30] [15.5,26.6]   Treat=1 (acs8<26) [28,30] [15.5,24.6]   Treat=1 (acs8<26) [28,30] [15.5,25.5] 
Slovenia       Average class size       Average class size       Average class size 
Segments Four 4[28-112]       Three 3[28-84]       Three 3[28-84]     
Bandwidth 5     Left Right       Left Right       Left Right 
Sample size (N)       369 925       884 539       827 564 
Small class treatment   Treat=1 (acs8<24) [24,28] [14.5,23.4]   Treat=1 (acs8<24) [24,28] [14.5,22.5]   Treat=1 (acs8<24) [24,28] [14.5,22.5] 
Bandwidth 4     Left Right       Left Right       Left Right 
Sample size (N)       227 874       761 454       660 451 
Small class treatment   Treat=1 (acs8<24) [25,28] [14.5,23.2]   Treat=1 (acs8<24) [25,28] [14.5,22]   Treat=1 (acs8<24) [25,28] [14.5,22] 
Bandwidth 3     Left Right       Left Right       Left Right 
Sample size (N)       151 399       274 356       512 259 
Small class treatment   Treat=1 (acs8<24) [26,28] [14.5,23]   Treat=1 (acs8<24) [26,28] [14.5,21.6]   Treat=1 (acs8<24) [26,28] [14.5,21.6] 
Note: acs8=predicted average class size based on maximum class size rule (the instrument of class size used in the full sample analysis). 
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Table 4.7: RD results in 2003 
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Table 4.8: RD results in 2007 
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 Table 4.9: RD results in 2011 
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Table 4.10: IV first stage F-test values and correlation of class size in RD sample 
   
RD 2003   2007   2011   
  Math Physics Biology Chemistry Earth   Math Physics Biology Chemistry Earth   Math Physics Biology Chemistry Earth   
Hungary                                     
Bandwidth 6                                     
1st Stage 0.2 1.1 0.2 0.1 0.7   0.0 0.7 0.9 0.3 0.1   0.5 1.2 0.0 0.3 0.3   
Correlation 0.0 0.0 0.0 0.1 0.0   0.0 -0.1 -0.1 -0.1 0.0   -0.2 -0.2 -0.1 -0.1 -0.1   
Bandwidth 5                                     
1st Stage 0.0 1.4 1.0 0.3 1.3   0.5 0.0 1.0 0.0 0.3   0.2 1.6 0.1 0.5 0.2   
Correlation 0.0 -0.1 -0.1 0.0 -0.1   0.2 0.0 0.0 0.0 0.1   -0.2 -0.2 -0.2 -0.2 -0.2   
Bandwidth 4                                     
1st Stage 0.0 1.1 1.2 0.1 1.2   1.1 0.2 0.1 0.0 1.8   5.7 0.0 0.1 1.2 0.0   
Correlation 0.0 -0.1 -0.1 0.0 0.0   0.2 0.0 0.0 0.0 0.1   -0.4 -0.2 -0.2 -0.2 -0.2   
Bandwidth 3                                     
1st Stage 0.6 1.5 1.8 0.1 0.0   0.7 0.0 0.1 1.4 4.3   13.6 3.2 1.1 1.1 0.3   
Correlation 0.0 -0.1 -0.1 0.0 0.0   0.2 0.0 -0.1 0.1 0.1   -0.5 -0.2 -0.4 -0.3 -0.4   
Lithuania                                     
Bandwidth 4                                     
1st Stage 0.4 0.3 0.6 0.8 0.8   12.0 8.9 23.5 7.3 12.4   9.2 9.2 7.1 6.8 15.2   
Correlation -0.1 0.0 -0.1 -0.1 0.0   -0.5 -0.5 -0.5 -0.5 -0.5   -0.4 -0.4 -0.4 -0.4 -0.4   
Bandwidth 3                                     
1st Stage 0.6 0.5 0.1 0.5 1.0   8.2 5.9 13.3 10.0 9.4   7.5 3.7 4.8 9.9 8.0   
Correlation -0.2 -0.1 -0.2 -0.1 -0.1   -0.5 -0.5 -0.5 -0.5 -0.5   -0.3 -0.3 -0.3 -0.3 -0.3   
Romania                                     
Bandwidth 4                                     
1st Stage 0.3 0.0 0.2 0.0 0.1   11.4 4.4 0.1 6.2 11.4   0.3 1.9 0.6 0.6 0.1   
Correlation 0.1 0.0 0.0 0.0 0.2   -0.3 -0.3 -0.1 -0.2 -0.2   -0.1 -0.2 0.0 -0.1 0.1   
Bandwidth 3                                     
1st Stage 3.1 0.1 0.0 0.0 0.9   16.3 5.1 0.6 9.3 15.0   0.1 0.9 0.1 0.2 0.4   
Correlation 0.1 0.0 0.0 0.0 0.2   -0.3 -0.3 -0.1 -0.3 -0.2   0.0 -0.1 0.1 0.0 0.1   
Slovenia                                     
Bandwidth 5                                     
1st Stage 7.8 25.6 31.3 25.6 -   10.9 23.6 26.5 11.3 -   4.9 40.6 12.3 40.0 24.5   
Correlation -0.3 -0.5 -0.5 -0.5 -   -0.2 -0.5 -0.5 -0.4 -   -0.2 -0.6 -0.4 -0.5 -0.5   
Bandwidth 4                                     
1st Stage 13.5 23.6 18.2 16.4 -   13.0 15.5 14.8 8.7 -   4.5 23.0 18.6 23.3 14.6   
Correlation -0.4 -0.5 -0.4 -0.4 -   -0.3 -0.5 -0.5 -0.3 -   -0.2 -0.5 -0.4 -0.5 -0.5   
Bandwidth 3                                     
1st Stage 5.4 21.3 5.2 3.5 -   5.5 0.5 0.9 0.0 -   12.8 25.4 20.9 19.5 10.9   
Correlation -0.4 -0.6 -0.4 -0.4 -   -0.3 -0.4 -0.4 -0.2 -   -0.3 -0.5 -0.4 -0.4 -0.5   
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Table 4.11: T-test values that check local balance of covariates in 2007 
   Hungary   Lithuania   Romania   Slovenia 
Bandwidth 6   5   4   3     4   3     4   3     5   4   3   
  Est Sig Est Sig Est Sig Est Sig   Est Sig Est Sig   Est Sig Est Sig   Est Sig Est Sig Est Sig 
Math 20.4   36.6   31.0   2.0     -13.3   3.1     -13.6   0.6     9.5   7.4   6.5   
Female 0.1   0.1 * 0.0   0.0     0.0   0.0     0.0   0.0     0.0   0.0   0.0   
Age 0.0   0.0   0.0   0.0     0.0   0.0     -0.1 * -0.1     0.0   0.0   -0.1   
Home items 0.2   0.3   0.5   0.2     0.1   0.3     -0.3   0.0     0.2 * 0.2   0.1   
Male teacher 0.2 * 0.2   0.3 * 0.2     -0.1   0.0     -0.1   -0.1     0.0   -0.1   0.0   
Teacher education -   -   -   -     0.0   0.0     0.0   0.0     0.0   0.0   0.0   
Teacher experience 1.0   1.4   -0.4   -0.8     1.6   -1.8     -1.4   -4.0     0.7   0.4   -0.3   
ED percent -0.7   -0.8   -0.7   -0.6     0.7   -0.1     0.6   0.2     -0.6   -0.6   -1.0   
Physics 13.3   25.8   23.4   -0.1     -11.0   2.5     -20.7   -7.3     10.7   8.4   5.3   
Female 0.1   0.1 * 0.0   0.0     0.0   0.0     0.0   0.0     0.0   0.0   0.0   
Age 0.0   0.0   0.0   0.0     0.0   0.0     -0.1 * -0.1     0.0   0.0   -0.1   
Home items 0.2   0.3   0.5   0.2     0.1   0.3     -0.3   0.0     0.2 * 0.2   0.1 * 
Male teacher 0.1   0.1   0.1   0.1     -0.1   -0.2     -0.1   -0.1     0.1   0.1   0.3   
Teacher education -   -   -   -     0.2   0.2     0.0   -0.1     0.0   0.0   0.1   
Teacher experience -2.6   -2.7   -1.0   -1.6     3.9   3.6     -1.9   -0.5     1.2   0.0   5.0   
ED percent -0.7   -0.8   -0.7   -0.6     0.7   -0.1     0.6   0.2     -0.6   -0.6   -1.0   
Biology 12.0   24.1   20.9   -0.7     -10.0   6.8     -19.4   -5.0     13.5 * 12.5   16.1   
Female 0.1   0.1 * 0.0   0.0     0.0   0.0     0.0   0.0     0.0   0.0   0.0   
Age 0.0   0.0   0.0   0.0     0.0   0.0     -0.1 * -0.1     0.0   0.0   -0.1   
Home items 0.2   0.3   0.5   0.2     0.1   0.3     -0.3   0.0     0.2 * 0.2   0.1 * 
Male teacher 0.2 * 0.3 * 0.2   0.3     0.1   0.0     -0.1   -0.1     -0.1   -0.1   -   
Teacher education -   -   -   -     -0.2   -0.2     0.0   0.0     -   -   -   
Teacher experience 1.5   0.6   -0.4   2.1     -5.9   -4.3     12.6 * 14.0 *   -0.1   2.0   2.7   
ED percent -0.7   -0.8   -0.7   -0.6     0.7   -0.1     0.6   0.2     -0.6   -0.6   -1.0   
Chemistry 11.9   27.1   20.5   -6.5     -10.9   1.5     -20.0   -5.5     13.1   9.1   7.2   
Female 0.1   0.1 * 0.0   0.0     0.0   0.0     0.0   0.0     0.0   0.0   0.0   
Age 0.0   0.0   0.0   0.0     0.0   0.0     -0.1 * -0.1     0.0   0.0   -0.1   
Home items 0.2   0.3   0.5   0.2     0.1   0.3     -0.3   0.0     0.2 * 0.2   0.1 * 
Male teacher 0.2   0.2   0.1   -0.1     -0.2   -0.2     0.2   0.2     0.0   0.0   -   
Teacher education -   -   -   -     -0.2   -0.1     0.1   0.1     0.1   0.1   0.1   
Teacher experience -5.2   -4.8   -1.7   -2.4     -4.0   -3.4     6.3   6.9     -1.0   2.0   5.4   
ED percent -0.7   -0.8   -0.7   -0.6     0.7   -0.1     0.6   0.2     -0.6   -0.6   -1.0   
Earth Science 13.9   26.1   24.8   2.0     -7.6   7.8     -20.0   -3.7     - - - - -   
Female 0.1   0.1 * 0.0   0.0     0.0   0.0     0.0   0.0     - - - - -   
Age 0.0   0.0   0.0   0.0     0.0   0.0     -0.1 * -0.1     - - - - -   
Home items 0.2   0.3   0.5   0.2     0.1   0.3     -0.3   0.0     - - - - -   
Male teacher 0.0   -0.2   -0.2   -0.2     0.0   0.0     0.2   0.1     - - - - -   
Teacher education -   -   -   -     0.2   0.2     0.0   -0.1     - - - - -   
Teacher experience -4.3   -4.1   -6.6   -0.2     2.6   -3.9     2.6   3.5     - - - - -   
ED percent -0.7   -0.8   -0.7   -0.6     0.7   -0.1     0.6   0.2     - - - - -   
Note: * p<0.05                                                   
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Table 4.12: Class size result summary of statistical significant estimates 
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