
 

 

 

 

 

DAMAGE PROGRESSION QUANTIFICATION AND DATA ROBUSTNESS 

EVALUATION IN SELF-POWERED SENSORS NETWORKS 

 

By 

 

Hassene Hasni 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A DISSERTATION 

 

Submitted to 

Michigan State University 

in partial fulfillment of the requirements 

for the degree of 

 

Civil Engineering - Doctor of Philosophy 

 

2018 

 

 

 

 

  



 

 

ABSTRACT 

 

DAMAGE PROGRESSION QUANTIFICATION AND DATA ROBUSTNESS 

EVALUATION IN SELF-POWERED SENSORS NETWORKS 

 

By 

 

Hassene Hasni 

 

This research proposes novel damage progression quantification and data robustness 

evaluation approaches, for structural health monitoring (SHM), using a new class of self-

powered piezo-floating-gate (PFG) sensors. This system relies on harvesting the mechanical 

energy from structures through the direct effect of piezoelectricity. The operating power of the 

smart sensor and the data used for damage identification is harvested directly from the sensing 

signal induced by a piezoelectric transducer under dynamic loading. 

The developed models integrate structural simulations using finite element method 

(FEM) techniques, experimental studies, and statistical and artificial intelligence (AI) methods.  

In this work, the performance of the sensing system in identifying damage is investigated for 

various damage scenarios based on numerical and experimental studies. Both steel and pavement 

structures are studied. A new surface sensing approach for detecting bottom-up cracks in asphalt 

concrete (AC) pavement is proposed.  

Two types of self-powered wireless sensors are investigated in this research. Different data 

interpretation techniques are developed for each type of sensor. The data are obtained from finite 

element simulations, or experimental measurement, and are fitted to probability distributions to 

define initial damage indicators. Sensor fusion models are developed based on the concept of 

group-effect of sensors, in order to increase the damage detection resolution of individual 

sensors. Probabilistic neural network (PNN) and support vector machine (SVM) methods are 

used to improve the accuracy of the proposed damage identification methods for the case of 



 

 

multi-class damage progression. The proposed work is divided into four main parts: (i) Damage 

identification in steel structures using data from a uniform PFG sensor, (ii) Damage detection in 

steel and pavement structures using a non-uniform PFG sensor, (iii) Damage detection and 

localization in steel frame structures using hybrid network of self-powered strain and vibration 

sensors, and, (iv) a field demonstration of the new technology on the Mackinac Bridge in 

Michigan. The cases of the U10W gusset plate of the I-35W bridge in Minneapolis, MN, a steel 

girder, a steel plate under compaction tension mode, and an AC beam under three-point bending 

configuration are investigated. A surface sensing approach to detect bottom-up cracking in AC 

pavement under dynamic moving load is also proposed. This approach is based on interpreting 

the data of a surface-mounted network of sensors. Moreover, a hybrid network of strain and 

vibration-based sensors is used to detect damage in bolted steel frames. The objective is to 

establish a local-to-global strategy for damage identification in frames. Data fusion models 

combined with AI classifiers are developed. Uncertainty analysis is performed to verify the 

performance of the sensors under different noise levels. 
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CHAPTER 1. INTRODUCTION 

The presented work in this thesis builds upon the novel idea of monitoring civil 

infrastructures using a newly developed sensor that is self-powered from the signals being sensed 

(Lajnef et al., 2013; Chakrabartty et al., 2011; Alavi et al., 2016a,b,c,d). The development of data 

interpretation models for non-uniform sensors and the deployment of the sensor in a real-field 

structure constitute the major contributions of this thesis. 

1.1. Motivation and vision  

The field of structural health monitoring (SHM) is of great interest because of its 

capabilities to provide cost effective and reliable solutions for condition assessment and damage 

detection in civil infrastructures. The objective of SHM is to provide a monitoring system that 

alerts bridge owners and engineers about potential damages and prepare maintenance plans at 

early stages.  

Over the last decades, different sensors have been developed to monitor the health status 

of structures and estimate the remaining life. Deployment of wireless sensors networks in 

structures allows the detection of changes in the structure response resulting from cracking 

events or changes in the boundary conditions of the structure. However, there are still major 

issues that need further development in order to achieve full potential of SHM. Nearly all of the 

commercial viable wireless sensors require an external power supply (either batteries or solar 

power). In addition, among the most serious challenges that hampered the practical application 

of the field of SHM for damage detection in civil infrastructures is the infeasibility of using a 

large network of sensors (such as strain gages and accelerometers) to provide a high spatial 

resolution. In fact, a high-enough spatial resolution is essential to detect small cracks that cause 
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the initiation of damage and could represent the precursors of structural failure.   

 The sensing technology presented in this work offers several novel features, which are 

not available in other classical SHM methods including:  

• Low power requirement: The sensor operates in the Nano-watts scale (80 nW power 

consumption for the latest prototype). 

• Self-powered continuous sensing: These sensors do not need an external power supply, 

and they operate using the signal being sensed. In fact, the device uses the energy 

harvested by a piezoelectric transducer for both powering and sensing damage in 

structures.      

• Possibility of deployment in dense networks: The small size of sensors and the fact that 

they do not rely on batteries offer the possibility of installing a large number of sensors 

around the damage sensitive areas.  

• Autonomous computation and non-volatile storage of sensing variables: The data could 

be stored on board the sensor and retrieved without the need of an external power to 

activate the system. 

• Wireless communication: The sensor can be integrated with radio frequency 

identification (RFID) to collect the data stored on board the device. 

In order to achieve all the described capabilities, the data is compressed on board the sensor in 

the form of a histogram of cumulative loading events. Therefore, there would be a considerable 

loss of information, which results in notable difficulties in interpreting the data generated by the 

sensor. In addition, due to manufacturing mismatches, the sensors present several behavior 

variabilities. Due to these variations, two types of analysis assumptions are referred to as uniform 

and nonuniform piezo-floating-gate (PFG) sensors. Alavi et al. (2016a,b,c,d) have developed a 



 

3 

data interpretation framework for the case of uniform sensors.  

This research proposes innovative data interpretation techniques for damage detection, 

localization and quantification in civil infrastructures using the cost effective and reliable 

technology. Advanced data interpretation techniques are developed to identify damage in 

structures based on the limited information provided by the sensor. The proposed work 

significantly contributes in the efforts to advance the self-powered sensors technology toward an 

integrated implementable in the context of future Smart Cities.   

1.2. Background and state of knowledge 

In general, the term ‘damage’ can be defined as the deviation and change of the system’s 

current and future performance with respect to an established reference. The damage can occur 

due to changes of the material’s geometrical properties or change in the boundary conditions of a 

system. It usually grows progressively in structures until it reaches the point that heavily affects 

the system functionality and performance. This is the so-called ‘failure’ (Farrar and Worden, 

2007). Structural health monitoring is the process of implementing a damage identification 

strategy for civil, mechanical, and aerospace engineering structures. Damage identification 

technologies have been drawing great research and practical interests for SHM in recent years. 

Damage identification can be categorized into five related disciplines: 

• SHM 

• Non-destructive testing and evaluation (NDT&E) 

• Condition monitoring (CM) 

• Statistical process control (SPC) 

• Damage prognosis (DP) 
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SHM is usually associated with online-global damage identification in structures. The main 

objective of SHM is to evaluate the long-term sustainability and detect potential damages at early 

stages. SHM can be categorized into questions in the following five aspects (Maia et al., 2011): 

• Detection – Do damages exist?  

• Localization – Where are the damages located in the structure? 

• Quantification – How severe are the damages effects on the sustainability of a structure? 

• Classification – What type of damages? and  

• Prediction – How long will the structure remains functional?  

To sufficiently answer these questions, a variety of sensing techniques and mechanisms has been 

developed. SHM methods are generally divided into global and local methods. Global health 

monitoring methods are used to determine whether the damage is present in the structure. They 

do not give information of the damage severity and location. Most of these global damage 

assessment methods rely on finding shifts in the resonant frequencies of a system or on detecting 

changes in the structural mode shapes. The change of the structure dynamic characteristics 

indicates that the deviation of the structure response is due to damage. However, other factors, 

such as, temperature, moisture, and other environmental conditions may affect the interpretation 

of the results. Therefore, in order for this technique to work, the effect of other factors must be 

significantly smaller than the damage effect on the structural response (Chang et al., 2003). In 

addition, due to the low sensitivity of the system’s natural frequencies, high levels of damage 

and high measurement accuracy are essential to detect the damage. 

On the other hand, non-destructive evaluation (NDE) methods are used to find the damage. 

These methods are classified as local health monitoring techniques and can be used to assess 

structural conditions without removing the individual structural components. Pressure cell, 
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deflectometer, fiber-optic sensors, strain gages, etc, are examples of commonly used devices for 

NDE.  

Many sensing techniques and mechanisms have been developed to monitor civil 

infrastructures, e.g., vibration-based sensing, vison-based sensing, sensing skin techniques, and 

various wireless sensing devices. Vibration-based damage assessment is one of the most widely 

used technique in SHM. The main classes of the vibration-based technique are the signal and 

model-based techniques. The signal-based methods are based on defining damage indices by 

comparing the response of the structure before and after damage occurrence. Model-based 

techniques require accurate computational model, which is usually achieved through model-

updating technique to improve the quality of the final model to be used for damage detection. 

This technique is computationally expensive and often includes too many parameters.  

Zou et al. showed that the vibration-based model-dependent methods provide local-global 

information about the structure health conditions and they are cost-effective (Zou et al., 2000). 

Signal-based approaches have been developed. Lee et al. developed a neural networks-based 

method to detect the damage in structures (Lee et al., 2005). In their study, they have used the 

mode shape differences or the mode shape ratios between damage states as an input for the 

neural networks (NN) to reduce the finite element (FE) modeling errors.  More recently, Li and 

Hao investigated the joint conditions of steel truss bridges using relative displacement sensors 

(Li and Hao, 2016). The authors carried out a signal processing technique to identify damages 

caused by loosening of bolts based on a time-frequency analysis.  

Vision-based sensing technology has received more attention from the SHM community. Fukuda 

et al. developed a vision-based displacement system for real-time monitoring of the dynamic 

response of large scale structures with low natural frequencies (Fukuda et al., 2010). The 
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efficacy of their method was validated on a frame model under seismic loading. Yeum and Dyke 

developed a vision-based visual inspection technique by processing and analyzing huge amount 

of collected images (Yeum and Dyke, 2015). The authors used the technique to capture and 

identify structural damages without controlling angles and positions of the cameras. Shahidi et 

al. presented two image-based compressive sensing approaches to detect and localize multiple 

structural damages (Shahidi et al., 2016). Dynamic vision sensors were also developed to detect 

damage using full-field, high spatial resolution mode shape extracted from videos of the 

operating structures (Yang et al., 2017; Roeder et al., 2017). The authors conducted spatial 

fractal dimension analysis on the full-field mode shape of damaged structures to detect damage-

induced irregularity. Arguably, vison-based sensing technology is essentially based on 

processing and analyzing huge amount of collected images captured by cameras. The issue of 

dealing with large data size is more severe when considering the number of pixels that must be 

processed and analyze, especially for the images with relatively high resolution.  

In recent years, sensing skin techniques, e.g., graphene, carbon nanotubes (CNTs), etc., have 

been deployed for damage detection. Studies indicated that these materials possess excellent 

electrical conductivity and piezoresistivity with multifunctional capability (Raghavan et al., 

2009). Loh et al. proposed a CNT polyelectrolyte skin to monitor strain and impact damage over 

spatial areas (Loh et al., 2009). Saafi used CNT sensors to detect damage progression in concrete 

structures by measuring the electrical resistance of carbon nanotubes (Saafi, 2009). Zha et al. 

developed strain sensors for damage monitoring using functionalized graphene nanoplates (Zha 

et al., 2016). 

Recent development in SHM was focused on the utilization of new sensing technologies. 

Wireless sensors are widely used as alternatives to the traditional wired sensors for SHM (Lynch 
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and Loh, 2006). Chen et al. developed a compact wireless ultrasonic device for localized damage 

detection (Chen et al., 2016). The authors proposed a signal processing procedure to find key 

indicators that can be used for crack identification. The damage identification method was 

validated for a notch and fatigue tests of a dog-bone specimen. Kurata et al. studied the 

performance of a wireless smart sensor based on the ‘Berkeley Mote’ platform (MICA and 

MICA2) (Kurata et al., 2004). The performance of their system was investigated on a two-story 

structure under an earthquake excitation. The results demonstrated that MICA2 was able to 

measure the response wirelessly with minimal data loss and detected damage. Cho et al. 

presented an approach for system identification using wireless sensors (Cho et al., 2015). The 

proposed system was evaluated on a historic swing bridge. A sensor orientation correction 

technique was introduced to improve the accuracy of the system in identifying the modal 

parameters. Lynch et al. designed a proof of concept wireless sensing unit for SHM (Lynch et al., 

2001). The prototype sensing system acquired data and transmitted directly to the base station 

over a single hop. 

While the development of wireless technology has eliminated the need of performing the 

arduous task of stringing lots of connecting cables on extended structures such as bridges, there 

is still the challenge of ensuring an adequate energy source to power the sensor network for long-

term, autonomous, and continuous monitoring. Embedment and long-term operational 

requirements preclude the use of batteries, whereas the small volume of the sensor severely 

limits the energy storage capacity of energy harvesting devices. On the other hand, the 

prohibitive cost and maintenance of solar panels seems to be another drawback of conventional 

SHM wireless sensors. A viable solution to this power dilemma is to harvest energy from the 

ambient excitations (Sirohi and Chopra, 2000; Borchani et al., 2016). In this context, 
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piezoelectric transducers are widely used to convert environmental mechanical energy into an 

electrical energy (Elvin et al., 2003; Lajnef et al., 2011). In general, piezo-based self-powering 

can be categorized as: 1) harvesting electrical energy from the signals that are different from the 

signal being monitored, or: 2) from the signal being monitored (Huang et al., 2010). Nearly all 

the existing energy harvesting studies were focused on the first approach (Alippi and Galperti, 

2008; Yen and Lang, 2006). Based on the second approach, a new class of PFG self-powered 

sensor has been recently developed and tested at Michigan State University (MSU) (Lajnef et al., 

2013; Chakrabartty et al., 2011; Alavi et al., 2016a,b,c). A prototype of the sensor is shown in 

Figure 1-1. This type of sensor uses piezoelectric transducers to empower an array of ultra-low 

power floating gate computational circuits. The PFG sensor has a series of memory cells, 

referred as memory gates or channels, that cumulatively store the duration of strain/voltage 

events when the amplitude of the input signal, coming from the piezoelectric material, exceeds 

different thresholds. In addition, the sensor acts as a non-volatile memory for data storage, which 

optimizes the need of the sensor for power. The data could be retrieved offline without the need 

to power the sensor. An RFID scanner can be used to periodically read the data stored on-board 

the sensor (Lajnef et al., 2011; Lajnef et al., 2013; Alavi et al., 2016a,b,c). 

One of the main advantages of this sensing system is the fact that it is “response-based”. All the 

effects due to variations in load location, load magnitude, traffic wander, environmental effects 

such as temperature and moisture, material aging and degradation are aggregated in the strain 

response recorded by the sensor over time. This feature makes the sensor suitable for long-term 

SHM. Most of the other existing solutions evaluate the conditions of the system at a given 

instant. These methods present only a snapshot at the time where the measurements are taken. 

Thus, the obtained results are highly influenced by the environmental conditions. Since the 



 

9 

developed PFG sensor records each and every event at all time, it will aggregate all these short-

term fluctuations. Thus, if long-term shifts are observed in the results, they are most probably 

correlated with condition degradation. Illustrative examples of the level crossing cumulative time 

counting implemented by the sensor gates can be found in (Alavi et al., 2016a,b). Despite several 

advantages offered by this self-powered sensing technology, the interpretation of the compressed 

data generated by such system is a challenging task.  

 

Figure 1-1: Prototype of the self-powered wireless sensing system. 

The information that can be extracted from the sensor gates is compressed as a function of the 

cumulative loading at each memory gate. Therefore, there is a considerable loss of information 

about the strain distribution.  

On the other hand, there are two types of PFG sensors: uniform and nonuniform PFG sensors. 

The difference between these two classes is in the form of data outputted from the sensors. The 

task of interpreting the sensor output becomes more challenging for the case of nonuniform 

distributions. Previous studies were focused on detecting damage by comparing the responses 

from a single loading cycle and did not take into account the number of cycles to failure, which 

is crucial in the case of fatigue failure (Alavi et al., 2016a,b,c,d). Moreover, the interpretation 
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and robustness of the data of nonuniform sensors are yet to be studied. Accordingly, this research 

aims to develop a robust damage detection methodology and an innovative data interpretation 

technique for both type of PFG sensors, with more focus on the nonuniform type. In addition, 

one the main goals of this research is to implement a network of PFG sensors in real-life 

structure to test their performance under real operating conditions.  

1.3. Research hypothesis and objectives 

1.3.1. Hypothesis 

The main hypothesis behind this research is that the compressed data on board the sensor 

is reliable in detecting, localizing, and quantifying damages in civil infrastructures. The detection 

accuracy can be enhanced by fusing the information from a network of PFG sensors and by using 

artificial intelligence (AI) approaches.  

1.3.2. Objectives 

The objective of this research is to develop a robust self-powered sensing mechanism to 

detect damage in civil infrastructures. The proposed SHM system uses the energy harvested by a 

piezoelectric transducer for both powering the sensor and monitoring the health status of 

structures. In other words, the operating power of the sensor is harvested directly from the signal 

being sensed.  

This work is divided into two major parts. In the first part, the performance of the sensor is 

evaluated for both the uniform and nonuniform classes of sensors. Numerical simulations are 

performed to obtain the structural response and to simulate the sensor output. Strains and 

accelerations are extracted from FE simulations to calculate the sensor output at different sensing 



 

11 

nodes. To validate the efficiency of the proposed damage detection approach, experiments are 

conducted on samples with different construction materials. Piezoelectric strain transducers and 

vibration-based harvesters are used to convert the applied mechanical energy into an electric 

signal. For each sensor type, data interpretation algorithms were proposed to characterize the 

sensor output and to identify damage. Furthermore, an algorithm is developed to detect, localize 

and quantify damage progression in structures.  

The second part is focused on the implementation of the sensor on real life structures. The case 

of the Mackinac bridge in Michigan is studied. In this work, experimental study is performed to 

select the right type of piezoelectric transducers, to study the effect temperature on the harvester, 

and to investigate the wiring effect on the sensor response. The temperature effect on the 

wireless reading is also investigated.  

1.4. Outline 

This dissertation is organized as follows: Chapter 2 deals with the development of a 

damage identification technique using the uniform class of sensors. In this chapter, the uniform 

PFG sensor data is characterized using a cumulative density function (CDF). The performance of 

the sensor is evaluated for two different structures with complex behavior. The first study is 

focused on damage quantification in gusset plates using strain-sensors to detect multi-state crack 

propagation. In this dissertation, multi-state or multi-class damage refer to damage progression in 

the studied structures. A structure similar to the U10W gusset plate of the I-35W Highway 

Bridge in Minneapolis, MN, USA, is chosen for the analysis. 3D FE models are developed to 

simulate the behavior of the structure under loading. An algorithm is proposed to localize and 

quantify the crack in the gusset plate. Thereafter, a fatigue analysis of steel bridge girder is 

studied to identify crack propagation in steel bridge girders caused by out-of-plane distortions. 
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Extensive finite element analyses are performed to obtain the structural response of the girder 

under fatigue loading. A data fusion model is proposed to increase the damage detection 

efficiency. The data fusion model incorporates the group effect of a sensors network based on the 

average and standard deviation (STD) of a group of sensors. An AI approach is used to evaluate 

the condition of the girder under different damage scenarios. Each damage state (or damage 

class) is defined based on the damage length. 

In Chapter 3, the case of nonuniform sensors is investigated for both steel and pavement 

structures. Three structures are studied: Steel plate, Asphalt concrete (AC) beam, and Pavement 

structure. For the steel plate case, a wireless sensors network (WSN) is placed on the surface of 

the plate to detected the predefined damage states. Features are extracted from the sensor output 

and fused to improve the damage detection accuracy. A support vector machine approach (SVM) 

is applied to the featured data to separate damage classes. Furthermore, an uncertainty analysis is 

carried out to verify the performance of the SHM model under different noise levels. For the 

second case study, an AC beam under three-point bending configuration is studied. FE 

simulations and experiments are conducted to verify the damage detection method. An H-shape 

packaging system is designed and tested to protect the sensor electronics embedded inside the 

asphalt. Based on the response of the nonuniform sensor, damage indicator features are defined 

to identify bottom-up cracking in AC pavements. However, a major limitation of embedding the 

sensor inside AC pavement layer is that the device could be damaged due to excessive stresses at 

the bottom of the AC layer and their replacement might be expensive. In addition, new pavement 

construction projects are negligible when compared to the extent of the exiting pavement 

network. It is thus more critical for State Highway Agencies (SHAs) to adopt monitoring 

techniques that can be adapted to existing pavements. On this basis, the third case study of 
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Chapter 3 outlines the development details of a self-powered surface sensing approach for 

pavement health monitoring. A realistic FE model is developed to obtain the behavior the 

pavement under dynamic moving load. The sensor output is generated for each predefined 

damage state. Each damage state is defined based on the reduction of the AC modulus and the 

damage height. Thereafter, a data fitting model is proposed to characterize the sensor response 

and to define surface indictors of progression of bottom-up cracking in pavements. A detailed 

sensor fusion model, feature selection algorithm, and AI approach are presented. Probabilistic 

neural network (PNN) classifier is used to identify damage classes in pavements, and noise 

verification phase is also presented to verify the robustness of the proposed method under 

different noise levels. 

The limitation of the proposed sensing mechanism presented in chapters 2 and 3 is that they are 

only useful for identifying local damage using strain-sensors. Therefore, the main goal of 

Chapter 4 is to develop a local-global damage detection method by combining strain and 

acceleration PFG sensors. A steel frame under base acceleration is studied. Local damage is 

defined by cracking the structural members of the frame and global damage is defined by 

loosening the bolts that are connecting the columns to the beams. Both numerical and theoretical 

studies are developed to calculate the sensor data. The acceleration time-history of each sensing 

node is converted into voltage using a Lead Zirconate Titanate (PZT) cantilever bimorph beam. 

The voltage harvested from the acceleration is more sensitive to global damage rather than local 

cracks. Strain Transducers are used to detect cracks in the frame. The damage location is also 

assessed using a sensor fusion model.  

Chapter 5 presents the details of a deployment study of the sensor in the Mackinac Bridge in 

Michigan. Strain-transducers are prepared for installation, and the effect of temperature and 
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season variability is also addressed in this chapter. Experiments are conducted to estimate the 

strain threshold level of different PZT transducers to activate the sensors. A detailed procedure 

of the installation of the sensors on the Mackinac Bridge is presented and the performance of the 

PFG sensor is reported in this chapter.  

Chapter 6 summarizes the performed work in this research, presents the main findings, and 

proposes future research directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

15 

CHAPTER 2. DAMAGE IDENTIFICATION AND QUANTIFICATION 

IN STRUCTURES USING UNIFORM PFG SENSORS1 

2.1. Overview 

This chapter presents damage detection and quantification approaches in civil 

engineering infrastructures using uniform strain PFG sensor. In section 2.2, the working 

principle of the uniform sensor is presented. Section 3.3 deals with the development of a data 

interpretation system for damage identification in steel structures. Two different structures with 

complex behavior are studied. The case of the U10W gusset plate of the I-35W Bridge in 

Minneapolis, MN, USA and fatigue cracking of steel bridge girders are investigated. The 

cracking of the gusset plate is numerically investigated using the extended finite element method 

(XFEM). Six damage states are defined based on the crack length. A network of sensors is 

placed at the surface of the plate to detect the damage. Features extracted from the sensors 

distributions are used to define damage indicator features. A sensor fusion scheme is developed 

to detect, localize and quantify cracks in the gusset plate. 

For the girder, extensive finite element simulations are carried out to obtain the structural 

response of an existing highway steel bridge girder (I-96/M-52) in Webberville, Michigan, USA. 

Different damage states are defined by extending the lengths of the crack at the web gap from 10 

mm to 100 mm. Damage indicator features are extracted at different data acquisition nodes based 

on the sensor output data. Subsequently, an SVM classifier is developed to fuse the clustered 

features and identify multiple damage states. 

                                                 
1 The presented results in this chapter were published in Hasni et al. (2017a,b; 2018a). 
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2.2. Working principles of the uniform PFG sensor 

It is known that piezoelectric materials can convert mechanical applied loading into an 

electrical charge, using the direct piezoelectricity effect. The open source voltage (𝑉) generated 

across the piezoelectric PZT ceramic transducer is given by the following equation (Lajnef et al., 

2011): 

𝑉 =  
𝑆 𝑌 𝑑31 ℎ

𝜀
                                                             (2-1) 

where 𝑆, 𝑌, 𝑑31, ℎ and 𝜀, are the applied strain, Young’s modulus of the piezoelectric material, 

piezoelectric constant, thickness, and the electrical permittivity, respectively. The generated 

energy 𝐸𝑛 from a piezoelectric transducer across a load resistance (𝑅) is given by the following 

equation: 

𝐸𝑛 = ∫
𝑉(𝑡)2

𝑅

𝑡𝑓
0

 𝑑𝑡                                                       (2-2) 

where 𝑡𝑓  is the loading time. In the proposed self-powered PFG sensor, the piezoelectric 

transducer converts the mechanical energy into high-energy electrons variation (hot electrons). 

Depending on the frequency and amplitude of the applied load, the kinetic energy of the 

electrons varies. If the energy of electrons exceeds the energy barrier of the silicon, which is 3.2 

eV, the electrons surpass the barrier and get injected into the floating-gate (Huang et al., 2010; 

Borchani et al., 2016;  Chakrabartty et al., 2013). Figure 2-1 illustrates the working principle of 

the PFG technology.  

For a periodic excitation of the piezoelectric transducer, more electrons are injected into the 

floating-gate. After the electrons have been injected into the floating-gate, they remain trapped 

for a long period of time due to the high oxide electrical insulation of the gate. The duration and 
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extent of the mechanical disturbance can be then evaluated by measuring the total amount of 

charge on the floating gate (Borchani et al., 2016). It has been shown that the sensor can operate 

at pico-watt (10-12 – 10-9 W) power dissipation levels (Borchani et al., 2016). 

 

Figure 2-1: Working principle of the PFG technology. 

In a recent study, the PFG sensor was used to monitor the post-operative bone healing (Borchani 

et al., 2016). Under fatigue loading, the sensor was able to record the variation of the strain 

energy during the healing process. Therefore, the PFG sensor can monitor short loading events as 

well as fatigue loading events. 

Moreover, the beauty of the floating-gate is that it acts as a non-volatile memory for data storage. 

Thus, data can be stored on-board the sensor and retrieved without a need for an external power 

source to activate the sensor (Borchani et al., 2016). Each memory gate of this technology has 

two fundamental properties: activation threshold, and injection rate. The voltage injection rate 

could be defined as the droppage of voltage in one second.  The total droppage of voltage (∆𝑉) in 
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a memory gate i can be expressed as follows: 

∆𝑉𝑖 = 𝑉0 − 𝑉𝑠𝑒𝑛𝑠𝑜𝑟
𝑖 = 𝑉𝑖𝑛𝑗𝑖  ∑ ∆𝑡𝑗

𝑖
𝑗                                             (2-3) 

where, 

𝑉0: Initial voltage of all the sensor gates, usually set to 1.2 V  

𝑉𝑠𝑒𝑛𝑠𝑜𝑟
𝑖 : Voltage across memory gate 𝑖 after applying a number of loading cycles 

𝑉𝑖𝑛𝑗𝑖: Voltage droppage rate of memory gate 𝑖 

 ∑ ∆𝑡𝑗
𝑖

𝑗 : Cumulative injection time of gate 𝑖 

∆𝑡𝑖 can be calculated based on the threshold level of each memory gate and the applied loading. 

Evidently, the sensor output is a function of the gate threshold level, the amplitude of the signal, 

the 𝑉𝑖𝑛𝑗𝑖  and 𝑉0 of each gate. According to the relationship voltage to strain for a piezoelectric 

material (Equation (2-1)), the output of the sensor could be also characterized as a function of the 

strain. The level crossing cumulative time counting implemented by the proposed uniform PFG 

sensor is schematically presented in Figure 2-2. The main information that can be extracted from 

the sensor is the cumulative duration of strain/voltage events. As it seen in this figure, the sensor 

output is presented in the form of a histogram. For uniform PFG sensors, the 𝑉𝑖𝑛𝑗𝑖 is constant for 

all the gates. Therefore, the sensor histograms are proportional to the cumulative time durations 

as shown in Figure 2-2. In this chapter, the analysis is based on the strain behavior extracted 

from the finite element models.  

Based on previous studies (Hasni et al., 2017a,b; 2018; Alavi et al., 2016a,b,c), the sensor output 

can be expressed by the following Gaussian Cumulative Density Function: 

𝐶𝐷𝐹𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑔) =  
𝛼

2
 [1 − erf (

𝑔− 𝜇

𝜎 √2
)]                                        (2-4) 
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in which µ, σ, α and g refer to the mean of the strain distribution, standard deviation with respect 

to load and frequency, the total cumulative time of the applied strain measured by the entire 

gates, and the gate number, respectively.  

 

Figure 2-2: Level crossing cumulative time counting implemented by the PFG sensor.   

For a better representation, the CDF can be transformed to a Probability Density Function (PDF) 

as follows: 

𝑃𝐷𝐹(𝑔) =  
1

𝜎 √2 𝜋
 𝑒
− 
(𝑔− 𝜇)2

2 𝜎2                                                  (2-5) 

This probability density function is characterized by two parameters, the mean and the standard 

deviation. The advantage of this fitting method is that the damage can be characterized by the 

PDF parameters. Figure 2-3 displays the transformation from CDF to PDF. 

In previous studies, it was shown that the PDF parameters changes with damage progression in 

the structure. This means that the damage can measured based on the relative variation of the 

strain distribution with respect to damage propagation in the structure. Alavi et al. (Alavi et al., 

2016c) show that the PDFs shift to the left and expand at the crack tip of a damaged steel plate.  
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                                  (a)                                                                           (b) 

Figure 2-3: Sensor output distribution (a) CDF fit, and (b) Transformed PDF. 

2.3. Health monitoring of steel structures 

As mentioned before, the objective of this section is to evaluate the performance of 

uniform PFG sensors in structures with complex geometry. Crack propagation in gusset plates 

and fatigue cracking in steel bridge girders are investigates.  

2.3.1. Crack growth detection and quantification in gusset plates 

2.3.1.1. Crack detection  

On August 1, 2007, the I-35W Highway Bridge over the Mississippi river in Minneapolis 

collapsed. This bridge was 1,907 feet long. According to the center for transportation studies 

(CTS), 111 vehicles were present on the bridge at the time of the collapse. This tragic event 

resulted on 13 deaths and 145 injuries. This failure was the focus of many studies. An 

investigation conducted by the national safety board (NTSB) concluded that the collapse was 
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mainly caused by the mechanical conditions of the U10W gusset plate at the time of the collapse. 

The CTS found that the U10W gusset plate did not have an appropriate thickness to remain in 

the elastic range under the traffic loading and the dead load of the structure. In fact, a portion of 

U10W gusset plate yielded due to the insufficiency of strength. A picture of the U10W gusset 

plate is displayed in Figure 2-4.  

In this section, a structure similar to the U10W gusset plate of the I-35W Bridge is 

studied to evaluate the performance of the PFG sensor in quantifying damages in gusset plates.     

Figure 2-5  schematically illustrates the application of the proposed approach to detect damage 

progression in a bridge. As seen, the sensors are distributed over a part of the structure. Based on 

the relative variation in the strain response which is represented by PDFs, the condition of the 

structure can be assessed. The impact of damage can be detected by tracking the shifts of PDFs 

over time, rather than measuring the damage directly. 

The material properties and dimensions of the studied gusset plate are shown in Table 2-1. A 

finite element model is built under Abaqus/CAE to predict the behavior of the structure, as 

shown in Figure 2-6. Static analysis is selected and cyclic loading is applied to the gusset plate. 

The model consists of 50000 C3D4 elements. 
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Figure 2-4: U10W gusset plate (Liao, 2009). 

 

Figure 2-5: Detection of damage progression using a self-powered wireless sensor. 

Damage is defined by introducing a crack at the middle of the plate. Six damage states are 

defined based on the crack length (a) as follows:   

• D0: a = 0 mm (Healthy plate) 
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• D1: a = 10 mm 

• D2: a = 130 mm 

• D3: a = 250 mm 

• D4: a = 370 mm 

• D5: a = 490 mm 

The direction of the propagation of the crack is estimated using the extended finite element 

method in Abaqus. This method allows modeling and the simulation of progressive 3-D arbitrary 

crack growth. Three steps are required to perform a crack propagation analysis: crack initiation, 

crack propagation and failure. No re-meshing is required during the crack propagation phase. 

However, a finer mesh should be used in the area located around the crack path. Hence, a mesh 

refinement technique is adopted around the damage zone in order to capture the high stress 

concentration at the crack tip and to ensure the convergence the numerical results. A total of 448 

data acquisition nodes are defined on the gusset plate to represent the actual strain-transducers. 

Each data acquisition node has a circular shape of 10 mm diameter. The dots in Figure 2-6 

represent the chosen data acquisition nodes. These locations refer to the location of the PFG 

sensors. 

The gusset plate is subjected to six forces as shown in Figure 2-7(a). After obtaining the 

direction of the propagated crack, the damage states are defined. For the simulations, the applied 

load magnitude was equal to 10% of the critical loading at the time of the collapse. Figure 2-7(b) 

displays the results of the numerical simulations. 
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Figure 2-6: 3D perspective of the studied gusset plate with mesh details of the propagated crack. 

Table 2-1: Material properties, loading and dimensions. 

Property Symbol Value 

Elastic Modulus (GPa) 𝐸 200 

Poisson’s Ratio 𝜈 0.3 

Material Density (kg/m3) 𝜌 7800 

Load Frequency (Hz) 𝑓 0.5 

Plate Thickness (mm) H 12.7 

Plate Length (mm) L 2540 

Plate Width (mm) b 1828 
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(a)                                                        (b) 

Figure 2-7: (a) Loading conditions and (b) deformed configuration of the gusset plate with a 

propagated crack. 

The average of the maximum principle strains at each sensor location are used in the analysis. 

The distance between two consecutive sensors is 80 mm. The sensors are placed along the 

surface of the plate (28 × 16). Strain threshold levels of a typical piezoelectric transducer are 

displayed in Table 2-2. The activation strain of the sensor is set to 30 𝜇𝜀 and the maximum 

threshold level is 150 𝜇𝜀  above which all the sensor channels records the cumulative time 

durations of the applied strain. 
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Figure 2-8: Locations of the distributed sensors and propagated crack. 

Sensor located at the intersection of row i and column j is denoted by Sij as shown in Figure 2-8. 

The initial crack (10 mm) is located at the middle of the plate.  

Following the procedure described in section 2.2, the the cumulative time is caculated and the 

data is fitted to a CDF and then tranformed to a PDF. Figure 2-9 displays the PDFs of some of 

the selected sensors. As seen in these figures, the PDFs loacted far from the damage zone are 

fairly identical (S10, S28, S42, S400, S448). In fact, the strain amplitude of these sensors is not 

affected by the damage  progression as they are located outside the stress concentration zone 

generated by the crack. Threfore, the cumulative time histograms are identical at these locations, 

which results in almost the same CDF fit. By getting closer to the damage, the PDFs change 

remarkabley with damage progression (S185, S212, S214, S239, S240, S266, S270 and S296).  

For sensors S214, S236 and S296, The PDFs shift to the left and they expand with damage 

progression. The mean of the distribution decreases and the standard deviation increases 

according to the crack growth. Conversely, as seen in Figure 2-9(o), the PDFs slightly shift to the 
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right and they shrink as the damage progresses. Other sensors, such as S212, doe not have a clear 

trend between damage states. 

Table 2-2: Preselected strain levels for the gusset plate. 

Gate Number Strain Level (𝜇𝜀) 

1 30.00 

2 43.33 

3 56.67 

4 70.00 

5 83.33 

6 96.67 

7 110.00 

8 123.33 

9 136.67 

10 150.00 
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                                  (a) S10                                                                     (b) S28 

 

         (c) S42                                                                  (d) S56 

Figure 2-9: Change of the PDFs between damage states. 
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Figure 2-9 (cont’d) 

       

                                      (e) S100                                                            (f)  S180 

                                            

(g)    S185                                                              (h)  S212 
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Figure 2-9 (cont’d) 

 

  (i) S214                                                                (j) S220 

 

   (k) S236                                                               (l) S239 
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Figure 2-9 (cont’d) 

 

                                   (m) S240                                                             (n) S266 

 

                                    (o) S270                                                              (p) S296 
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Figure 2-9 (cont’d) 

 

  (q) S321                                                              (r) S400 

 

                                                                          (p) S448 
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Therefore, depending on the location of the sensor with respect to the damage zone, the PDF 

paramters have different trends. Hence, the crack propagation can be monitored by the PFG 

sensor and the damage can be represented by the PDFs’ parameters as follows: 

𝐷𝑎𝑚𝑎𝑔𝑒 = 𝑓(𝜇𝑖𝑗, 𝜎𝑖𝑗 , 𝑋𝑖𝑗 )                                                      (2-6) 

where 𝜇𝑖𝑗 , 𝜎𝑖𝑗 are the mean and the standard deviation of the distribution of sensor Sij, and 𝑋𝑖𝑗 is 

location of the sensor. These parameters are called individual damage predictors. 

On the other hand, there are limitations of using the individual sensing predictors. As described 

above, the PDFs of sensors located far from the damage zone do not sense the crack propagation. 

Moreover, even if the sensor can detect the damage, the trends of PDF features are not clear as it 

depend on the relative location of the sensor with respect to the crack. In fact, the strain patterns 

increase around the crack tip and they decrease in the direction perpendicular to the crack 

direction (along the crack edge). As a result, the sensors that are subjected to higher strains have 

a longer duration of the applied strain, and sensors subjected to lower strains record less time 

duration. Moreover, for this type of complex strcutures, the distribution of the stress/strain 

cannot be expected. Threfore, a statistical analysis is performed to find a sound relationship 

between the PDF paramters and damage progression by combining the effect of a group of 

sensors. Different statistical indexes are performeod in the data (𝜇𝑖𝑗 , 𝜎𝑖𝑗, 𝑖 = 1: 16, 𝑗 = 1: 28). 

Among the average, standard deviation, range, minimum, maximum, skewness, and kurtosis, the 

STD is found to have a sound relationship with damage progression.  

Multiple iterations are performed to obtained the best set of sensors that has a unique trend with 

damage growth. One of the best configurations is given by the set of sensors {S214...S220 and 

S242…S248}. As seen in Figure 2-10, the standard deviation continiously increases between 
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damage states (D1-D5). Each point of the plot represents the STD of a group of sensors for a 

specfic damage state. If 𝐺 denotes the group of sensors, then each point is defined by: 

𝑦𝑘 = 𝑠𝑡𝑑(𝜇𝐺 𝑜𝑟 𝜎𝐺)                                                       (2-7)  

where k is the damage state number. This result indicates that the damage could be detected and 

classified using the standard deviation of a specific set of sensors.  

 

           (a)                                                                      (b) 

Figure 2-10: Variation of the STD of (a) μ and (b) σ for sensors S214 to S220 and S242 to S248. 

An interesting observation from Figure 2-10 is that the slope of the curve is a good indicator of 

the damage severity. As the initial crack length was only 10 mm, the STD deviation does not 

show a considerable variation between the intact and D1 damage states. As soon as the crack 

propagates, the STD increases rapidly. Both the STDs of 𝜇  and 𝜎 have the same trend. Morover, 

the STD increases almost linearly between damage states. This is because the variation of the 

crack is constant from one damage class to another (∆𝑎 = 120 mm). 
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2.3.1.2. Damage quantification 

In order to identify the crack location, a search algorithm is developed. Figure 2-11 

shows a flowchart of the crack localization algorithm. The search process is divided into two 

different steps: 

• Removing rows of sensors during iterations: A row of sensors is removed at each 

iteration, and the STD of the remaining set is calculated for each damage state. 

Thereafter, the maximum percentage variation of each damage state is calculated with 

respect to the intact plate. 

• Removing columns of sensors during iterations: The obtained set of sensors from the 

precedent iterations are used as the initial input in this step. The same procedure is then 

followed on the columns of sensors.  

The algorithm can be written as: 

Step 1: 

1. Starting with full set of sensors: 𝑆  =  𝑆0 = {𝑆1, 𝑆2, ……… , 𝑆𝑛} , 𝑛 is the total number of 

sensors that can be divided into 𝑛1  ×  𝑛2, where 𝑛1 is the number of sensor for each row 

and 𝑛2 is the number of sensors for each column. 

2. Remove the ith row of sensors: 

• 𝑆 = 𝑆 − 𝑆𝑖  

              and calculate:  

• 𝑚𝑖 = max
𝑘=1..𝑁𝐷

(𝑆𝑇𝐷(𝜇𝑆)), ND is the number of damage states 

• 𝑖 = 𝑖 + 1, 𝑖 = 1. . 𝑛1 

3. Determine the final set of sensors 𝑆ℎ based on the STD variation trends. 
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Step 2: 

1. Start from: 𝑆  =  𝑆ℎ  

2. Remove the jth column of sensors: 

• 𝑆 = 𝑆 − 𝑆𝑗,  

and calculate: 

• 𝑚𝑗 = max
𝑘=1..𝑁𝐷

(𝑆𝑇𝐷(𝜇𝑆))   

• 𝑗 = 𝑗 + 1, 𝑗 = 1. . 𝑛2 

3. The final set (𝑆𝑞) of sensors shows the damage location. 

 

Figure 2-11: Damage localization algorithm. 

Figure 2-12 displays the results of the damage localization approach. As seen in Figure 2-12(a) 

the maximum variation of the STD presents a peak after removing the first 8 rows from the 
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initial set of sensors (𝑆0). After removing 9 rows the maximum variation of the STD decreases 

and returns to the low portion of the plot. Therefore, it can be concluded that crack is located 

between rows 8 and 9. The final set of sensors for the first step is: 

𝑆ℎ = {𝑆197 . . 𝑆252}                                                         (2-8) 

Next, after applying the procedure described in step 2, the plot shown in Figure 2-12(b) is 

obtained. The final set of the procedure is: 

 𝑆𝑞 = {𝑆211, 𝑆212, 𝑆239, 𝑆240}                                                   (2-9) 

 

    (a)                                                                         (b) 

Figure 2-12: (a) Results of step 1, (a) results of step 2. 

The obtained set is located around the crack region as indicated in Figure 2-13. Up to this point, 

the PDF parameters are good predictors of damage occurrence in gusset plate structures. The 

STD of 𝜇  and 𝜎 of a group of sensors are good indicators of damage progression and damage 

severity. The crack could be localized using the proposed search algorithm. After finding crack 

location, the remaining task is to quantify the damage. Therefore, the curve describing the 
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standard deviation of each damage state (i.e. crack length) is fitted to a linear function. 

The standard deviations are calculated based on the whole network of sensors. As it is seen in 

Figure 2-14, the data is fitted to: 

          𝑦 = 0.0072 𝑥 + 67.31                                                   (2-10) 

where the obtained R-squared is about 94.1%.  

In order to verify the accuracy of the proposed approach, five new data points are tested. The 

procedure described in the first section is followed to obtain the mean and the standard deviation 

for each sensor and for each introduced damage states. 

 

Figure 2-13: Crack localization results. 

Thereafter, using Equation (2-10), the predicted crack length is calculated. Table 2-3 shows the 
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error between the true crack length and the predicted one. The maximum obtained error is 6.09 

% which is satisfactory to validate the accuracy of the method.  

 

Figure 2-14: Prediction of the crack length. 
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Table 2-3: Preselected strain levels for the gusset plate. 

Measured Crack 

Size (mm) 

Predicted Crack  

Size (mm) 

Error  

(%) 

90 86.32851 -4.08 

170 166.8994 -1.82 

210 207.193 -1.34 

410 434.9739 6.09 

450 430.0995 -4.42 

2.3.2. Detection of fatigue cracking in steel bridge girders: a support vector machine 

approach 

Multi-girder steel bridges are widely used throughout the highways in the United States. 

One of the main factors affecting the performance of these structures is the application of the 

repetitive loading over the steel-girder components. These load-carrying components deform 

under the live (traffic load) and the dead load of the structure. Typical steel girder bridge is 

composed by three main parts: girders, diaphragms, and stiffeners. The diaphragms are structural 

elements that provide resistance to the transverse traffic and wind loading. The stiffeners connect 

the girder to diaphragm. Over many years, inspections conducted on steel-girder bridges revealed 

that these structures are suffering from fatigue cracking under cyclic loading (Fisher, 1984). 

More specifically, low resistance to fatigue has been observed in structural members subjected to 

out-of-plane distortion. The phenomenon of out-of-plane distortion is impacted by a variety of 

factors such as thermal forces, traffic flow, differential deflection of the adjacent beams, etc 
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(Zhao and Roddis, 2004; Juntunen, 1998).  

Figure 2-15 displays a schematic illustration of the formation of fatigue cracks in a steel girder 

caused by out-of-plane distortion. Figure 2-15(a) displays an illustration of a steel bridge before 

deformation in a perspective view, and Figure 2-15(b) shows the side view of the bridge at the 

initial stage. Figure 2-15(c) schematically indicates the cracks caused by out-of-plane distortions. 

It can be seen that the deformations of the girder web are caused by the differential displacement 

(δ) between the two girders, which leads to the out-of-plane distortion (Δ). Such distortion 

eventually causes fatigue cracks to the girders, i.e., horseshoe and horizontal cracks. Therefore, 

fatigue cracks usually occur at the girder web gap due to out-of-plane distortion. The distortion-

induced fatigue cracks may occur as horizontal or horseshoe cracks at the top or bottom of the 

girder to stiffener connections (Figure 2-15(c)).  

More details on the forming mechanism of these cracks can be found in (Fisher and Mertz, 1985; 

Elewa, 2004). Different models have been developed to investigate the behavior of bridges 

(Dexter and Ocel, 2013), with particular focus on the retrofitting approaches to deal with this 

common type of structural damage (Elewa, 2004; Stallings et al., 1997). However, the selection 

of an appropriate repair strategy is complicated and depends on many factors. On the other hand, 

the significant cost of maintenance and retrofitting of stiffener-girder connections implies the 

necessity of detecting the damage progression at early stages to prevent severe damage to the 

bridge structures.  

This study proposes an SVM approach for the detection of fatigue cracking of steel bridges using 

the data provided by the PFG sensor. The emphasis is placed on the out-of-plane distortion-

induced fatigue cracks. 
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(a) (b) 

 

(c) 

Figure 2-15: Schematic illustration of distortion-induced fatigue cracking: (a) bridge before 

deformation in a perspective view, (b) side view of the bridge in the initial stage, and (c) 

different types of fatigue cracks caused by out-of-plane distortion (Δ). 

The entire damage detection procedure is divided into the following major phases:  

• Numerical simulation of the targeted structure; 

• Extraction of strain data and generation of the distribution histograms based on the 
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sensing mechanism of the PFG sensor; 

• Extraction of the preliminary damage indicator features; 

• Fusion of the data from a network of sensors to define more informative damage 

indicators; 

• Fatigue damage classification using an SVM approach. 

In order to calibrate the AI models, different FE simulations of steel girders with complex 

geometry components are performed and the structural response of the girder is subsequently 

obtained. The fatigue life of the girder is determined based on the J-integral concept and Paris 

Law (El Haddad et al., 1980; Pugona et al., 2006).  

Several damage states are defined by extending the crack lengths. Sensing locations are defined 

to monitor the strain changes due to damage progression. The sensing nodes are placed around 

the connection between the webs and the stiffeners to determine the optimal sensors 

configurations that maximize the detection performance of fatigue cracking. Thereafter, features 

representing the sensor output are extracted from the strain data. The obtained features are then 

fed into an SVM classifier to identify multiple damage states.  

2.3.2.1. Numerical analysis of out-of-plane distortion-induced fatigue cracking  

2.3.2.1.1. Geometry, loading and boundary conditions of the steel girder 

For the numerical simulation carried out in this study, the highway steel bridge (I-96/M-

52) in Webberville, Michigan, U.S. is selected. The steel girder under consideration is modeled 

using Abaqus Version 6.12. Figure 2-16 shows the geometry, loading and boundary conditions 

of the selected structure. Figure 2-16(a) presents the geometry of the structure. In Figure 2-16 

(a1), a 3-D model was created using SolidWorks. Figure 2-16(a2), (a3), and (a4) show the end 
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view, top view, and side view of the model respectively. It can be seen that the overall length of 

the girder is 7.62 m and the three beams are spaced by 1.93 m. The steel girders have the same 

cross section (W920 × 233) as the I-96/M-52 bridge. A web gap length of 25.4 mm is considered 

for the simulations. Figure 2-16(b) displays the boundary conditions of the model. The steel 

girders are modeled with a simply supported boundary conditions. The top flanges of the three 

beams are restrained with respect to translation in the z direction and rotation along x axis.  

The loading is applied in the form of vertical displacements to the cut edges of the lower flanges 

of the two exterior I-beams (Figure 2-16(b)). The imposed displacements are 5 mm vertical 

displacement at the left outer girder and 15 mm at the right outer girder. More details of the 

dimensions and material properties of the stiffener and diaphragm plates are listed in Table 2-4. 

A linear elastic material is selected for the analysis. 

2.3.2.1.2. Numerical model 

2.3.2.1.2.1. Shell element-based FE model  

The structure is modeled using shell elements under Abaqus. Shell elements performs 

sufficient computation efficiency since they formulate thin structures with much less elements 

than 3D solid elements. Quadrilateral shell elements with reduced integration (S4R) are used in 

this study. The total number of elements and nodes of the intact structure are 180320 and 

182050, respectively. The meshed structure is shown in Figure 2-17(a) and an isometric drawing 

of the used S4R element is shown in Figure 2-17(b). A static analysis is selected for the 

simulations and the analysis is done for small deformations. 

At the region of web gap, a finer mesh is used with an element size smaller than 2 mm such that 

the stress concentration zones can be accurately captured. The maximum stresses in the central 
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girder are located around the connection stiffener to web. As it seen in Figure 2-18, the 

maximum obtained principal strain of the intact structure is 1.103 × 10-3. 

The stiffeners and diaphragms are meshed using an element size of 25 mm × 25 mm and the 

beams are meshed using 2 mm × 2 mm element size around the stiffener to web connection. The 

rest of the central girder is meshed using 2 mm × 76 mm quadrilateral element. Different 

simulations are performed to find the optimal mesh size that guarantees the numerical 

convergence of the solution. The results of the convergence analysis are shown in Figure 2-19 

and Table 2-5. 

It should be noted that the strain values are obtained for an element of the central girder web at 

the connection stiffener-web. As mentioned above, this element presents the highest deformation 

of the central girder. Figure 2-19 shows that the element size of 2 mm × 2 mm is sufficient to 

obtain satisfactory results. In particular, the error between element sizes of 1.5 mm × 1.5 mm 

and 2 mm × 2 mm is only 0.18 % (2 µε difference). Therefore, the 2 mm S4R elements provide 

adequate accuracy of the numerical results. 
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(a) 

 

(b) 

Figure 2-16: Selected steel structure: (a) technical drawings of the structure, including (a1) a 

perspective view (a2) an end view, (a3) a top view, and (a4) a side view, and (b) assembly of the 

structure in Abaqus with loading and boundary conditions. 



 

47 

Table 2-4: Geometry and material properties of the girder. 

Material 

Geometry (mm) 

Overall Model Stiffener Diaphragm 

Beam

s 

Young’s 

Modulus  

(GPa) 

200 

Length             7620 Length          812 Length           1863 
 

W920

×223  

Spacing            1933 Width           140 Width              457 

Poison’s 

Ratio 

0.3 

Web Gap          25.4 

 

Thickness    12.7 

 

Thickness       12.7 

 

 

(a)                                                     (b) 

Figure 2-17: Mesh details: (a) Meshed structure, (b) S4R element. 
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Figure 2-18: Maximum principal strain around the area stiffener to web connection. 

 

Figure 2-19: Variation of the maximum principal strain as a function of the element size. 
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Table 2-5: Results of the numerical convergence analysis. 

Element Size  

h (mm) 

Maximum Principal  

Strain (× 10-4) 

200 1.74 

150 2.37 

100 4.34 

50 4.71 

25 5.9 

10 8.29 

5 9.19 

3 9.82 

2 11.03 

1.5 11.01 

2.3.2.1.2.2. Comparison between shell and 3D solid element-based FE model  

In order to validate the accuracy of the shell model developed in the previous, a 3-D solid 

finite element model is built and simulated using Abaqus. The FE model has the same geometry, 

loading, and boundary conditions of the shell model. The entire steel girder is meshed using 

eight-node brick elements with reduced integration (C3D8R).  

Figure 2-20 shows the assembly of the structure, the refined portion of the central girder (at 

connection stiffener to web), and the maximum principal strain at the connection between the 

stiffener and the web.  
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(a) 

 

(b) 

Figure 2-20: 3D finite element model (a) Assembly and refined mesh portion, (b) maximum  

principal strain around the connection stiffener to web. 

Different simulations are conducted to obtain the optimal element size that guarantees the 

numerical convergence. The optimum is found to be 2 mm × 2 mm × 2 mm close to the stiffener 

to web connection as shown in Figure 2-20(a). The stiffeners are meshed with an element size of 

20 mm × 20 mm × 4 mm. The element size of all the other regions varied between 50 mm and 
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150 mm. A summary of the comparison between the shell model (S4R element-based) and the 

3D solid model (C3D8R element-based) is illustrated by Table 2-6. 

The error of the maximum principal strain occurred at elements located at the connection 

stiffener to web is found to be 0.91 %. However, the computational time of the 3D solid finite 

element model is up to 20.5 times higher than the shell model. Compared to the 3D solid model, 

the shell model delivered accurate results in much less computational time, and therefore, the 

shell model is used for the rest of the simulations. 

Table 2-6: Comparison between the shell and 3D FE models. 

 

Shell 3D Solid Error (%) 

Maximum Principal 

Strain (×10-4) 

11.03 10.93 0.91 

Computational 

Time (min) 

2 41 - 

2.3.2.1.2.3. Fatigue analysis of the steel girder  

The contour integral method is used to calculate the stress intensity factor. A predefined 

crack is placed at 25.4 mm (1 inch) from the upper flange of the central girder, with an initial 

length of 10 mm. Damage states are defined by increasing the crack length from 10 mm to 100 

mm. For each damage sate, the maximum principal strains and the J-integral values are extracted 

to determine the number of cycles needed to propagate the crack and to compute the sensor 

output. The optimal element size of the damaged structure is 0.2 mm around the crack tip 

vicinity and 1.8 mm in the contact area between the stiffener and the web of the central girder. 
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Triangular elements are used to mesh the crack front. In order to perform a contour integral 

analysis under Abaqus, three different entities should be defined: the crack front, the crack tip, 

and the crack extension direction. The crack front is the forward part of the crack and it is useful 

to evaluate the first contour integral (Figure 2-21). The crack tip is a point (for 2-D parts) to be 

selected from the assembly where the crack extension direction is defined. Thereafter, the crack 

extension direction is defined by selecting the points representing the start and the end of the 

crack.       

Triangular elements of type S3 are used to mesh the crack front region and the remaining part is 

meshed using quadrilateral elements (S4R) as indicated in Figure 2-21. The triangular elements 

are recommended to mesh the crack front. However, this type of elements should not be used to 

mesh the contour integral region. Quadrilateral elements should be used instead (Abaqus, 2011).   

A finer mesh around the crack tip is used to capture the high stress field at the crack front region. 

The J-integral is calculated based on elements surrounding the crack front. More contours should 

be requested in the analysis to check the accuracy of the results. In some cases, J-integral 

estimates might vary from one contour to the other. A strong or gradual variation of these 

estimates indicates an error in the contour integral definition or the mesh is not small enough to 

accurately calculate the J-integrals (Abaqus, 2011). In linear elastic problems, the first and 

second contours are usually inaccurate. In the present study, 8 contours are requested to ensure 

the accuracy of the J-integral calculations. The percentage variation of J-integral values between 

the last two contours varied between 1 % to 3 % depending on the damage state. Therefore, the 

average of the last 2 contours are used for the analysis. In addition, the element dimensions are 

14 mm × 14 mm for the stiffeners and 18 mm × 15 mm for the diaphragms. Computational time 

took about 3 min for each case. The maximum principal strains for two typical crack lengths are 
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presented in Figure 2-22.  

Thereafter, based on the J-integral estimates, the stress intensity factor is calculated with respect 

to the crack length. Then, Paris Law is used to estimate the number of loading cycles to 

propagate the crack by ∆𝑎 based on the following equation (El Haddad et al., 1980; Pugona et 

al., 2006): 

∆𝑎

∆𝑁
= 𝑐 ∆𝐾𝑛                                                           (2-11) 

where c and n are material constants, a is the crack length, N is the number of cycles and K is the 

stress intensity factor. These parameters are taken 2.40 × 10−12 and 3.3, respectively (Schreurs, 

2012).  

 

Figure 2-21: Mesh around the crack tip. 

 



 

54 

 

                             (a)                                                                  (b) 

Figure 2-22: The FE results for (a) a=20 mm (maximum principal strain=2753 με); (b) a=70 mm 

(maximum principal strain=3192 με). 

As seen in Figure 2-23, a 100 mm crack will occur after about six million cycles. Accordingly, 

the life span of the girder is divided into 6 different stages. These periods represent the date/time 

of readings of the sensor output for the post-processing. Each stage consists of 1 million loading 

cycle.  

For the analysis, 400 sensing nodes are placed in the horizontal and vertical directions on the 

upper half of the central girder around the stiffener to web contact area (20 × 20 with 20 mm 

spacing). These nodes represent the actual piezoelectric transducers that are attached to the 

structure. The average strain of elements located inside a 10 mm diameter circle centered at the 

sensing node locations is used for the analysis. Figure 2-24 displays the locations of the 400 data 

acquisition nodes on the structure. Ten strain levels are defined for the girder as shown in Figure 

2-25. 
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Figure 2-23: Number of cycles vs. crack length. 

 

Figure 2-24: Locations of the sensing nodes. 
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Figure 2-25: Strain threshold levels. 

2.3.2.2. Information fusion  

In order to evaluate the information provided by the sensing nodes, the μ and  values for 

all of the 400 sensors for different damage scenarios are calculated. Then, a data fusion approach 

is proposed for the detection of damage progression in the girder. The basic idea is to use 

original parameters from the distribution (μ and ) and define new features that include the effect 

of sensors network. The sensor fusion process integrates and extracts useful information from 

two or more sensors. Fused multi-sensor data can offer significant advantages in comparison 

with the data from a single sensor (Hall and Llinas, 2001). On this basis, it was decided to fuse 

the information provided by a group of sensors. Even if the location of damage is not known in 

advance, the group effect can be checked to assess the damage growth. A set of features Zi are 

defined as:  
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{
  
 

  
 𝑍𝜎𝑖

𝑝 = 
𝜎𝑖
𝑝− 𝜎𝑎𝑣

𝑝

𝜎𝑆𝑇𝐷𝑝

 𝑍𝜇𝑖
𝑝 = 

𝜇𝑖
𝑝− 𝜇𝑎𝑣

𝑝

𝜇𝑆𝑇𝐷𝑝

𝑍𝜎𝜇𝑖
𝑝 = 

𝜎𝑖
𝑝− 𝜇𝑎𝑣

𝑝

𝜎𝑎𝑣𝑝

𝑍𝜇𝜎𝑖
𝑝 = 

𝜇𝑖
𝑝− 𝜇𝑎𝑣

𝑝

𝜎𝑎𝑣𝑝

                                                        (2-12) 

where, 𝜇𝑎𝑣
𝑝, 𝜇𝑆𝑇𝐷

𝑝 , 𝜎𝑎𝑣
𝑝, 𝜎𝑆𝑇𝐷

𝑝  are, respectively, the average of 𝜇 , standard deviation of 𝜇 , 

average of 𝜎 and the standard deviation of 𝜎 of all sensors for a specific damage state p. The 

subscript i is the number of the sensor (the data acquisition node). The new defined features are 

inspired from the conventional z-score function (Alavi et al, 2016a,b). It should be noted that a z-

score is a statistical measurement of a score's relationship to the mean in a group of scores. As 

indicated by the equations above, the average and standard deviation of 𝜇  and 𝜎 include the 

effect of the whole group of sensors at the sensing location i.  

2.3.2.3. Damage detection using support vector machine approach 

A damage detection process can be treated as a pattern recognition problem (Alavi et al, 

2016a). The solution is to use a classifier which can classify structures either as damaged or 

healthy. To this aim, an AI-based data fusion system is proposed for damage detection (Figure 

2-26). The AI techniques are considered as alternatives to existing traditional methods for 

tackling real world problems. They determine the model structure by automatically learning from 

data. AI has different well-known branches such as artificial neural network (ANN), fuzzy 

inference system (FIS), adaptive neuro-fuzzy system (ANFIS), and support vector machines. In 

the last two decades, the AI methods have been widely used for tackling problems in civil 

engineering domains such as structural engineering, hydraulic engineering, geotechnical 

engineering, earthquake engineering, etc. In this context, some well-established studies are: 
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calculation tensile strength and yield strength of dual phase steels (Krajewski and Nowacki, 

2014), modelling true stress of dynamic strain aging regime of austenitic stainless steel (Garg et 

al., 2014), non-destructive investigation of corrosion current density in steel reinforced concrete 

(Sadowski, 2013), prediction of the capacity of CCFT short columns (Ahmadi et al., 2014), 

prediction of the pull-off adhesion of the concrete layers in floors (Sadowski and Hola, 2013; 

Sadowski, 2013), modeling of shear strength of RC deep beams (Gandomi et al., 2013), 

structural assessment and damage identification, prediction of the scour below submerged 

pipeline, and scour depth downstream of sills (Azamathulla, 2012; Azamathulla et al., 2011), 

prediction of settlement of shallow foundations (Samui, 2008), maximum dry density and 

unconfined compressive strength of cement stabilized soil (Das et al., 2011), factor of safety of 

soil nailed slopes (Garg et al., 2014), prediction of soil liquefaction susceptibility (Samui and 

Sitharam, 2011), etc.  

The proposed AI-based data fusion framework consists of the following main stages:  

• Structural simulation; 

• Information fusion in which features that are expected to characterize different properties 

of structures are extracted from a network of sensors; and  

• Fusion of the clustered features. The data fusion is performed using the AI classifier. 

Using the obtained μ and σ parameters from fitting the data to a Gaussian distribution, damage 

indicator features are obtained for a specified number of sensors. The defined features 

simultaneously fuse the information provided by array of scattered sensors. The damage 

indicator vectors are then used for the calibration of the classifier. Subsequently, a validation 

phase is performed to check the damage detection performance of the classifier.  

Among different AI techniques, SVMs have been widely used in the field of damage detection 
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and structural identification (Worden and Lane, 2001; Satpal et al., 2016). 

 

Figure 2-26: Data fusion flowchart. 

Some of the main advantages of the SVM method are as follows (Burges, 1998):  

• It has regularization parameters in order to avoid over fitting;  

• It uses the kernel trick which makes the user able to design the kernel via engineering 

approach; 

• The SVMs optimization techniques are based on a convex optimization to avoid local 

minima problems. SVM training always find a global minimum; 

• They provide an alternative solution when linear decisions hyper-plans are not sufficient 

to separate the classes by mapping the input data into a feature space resulting in a 
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nonlinear classifier. 

Other AI methods suffers from local minima, however the solution given by an SVM is always 

unique and global. Unlike ANN that they are based on empirical minimizations, the SVMs are 

less prone to overfitting because they use structural minimization.  

A general problem for classification with SVM can be represented as follows: Suppose a given 

training set  𝑆 = {(𝑥𝑖 , 𝑦𝑖), 𝑖 = 1:𝑁} where 𝑁 is the number of training samples, 𝑥𝑖 is the feature 

vector that has 𝑑 dimensions, and  𝑦𝑖 is the label of the data and it is a one dimensional value. 

The objective of this classification problem is to find a classifier 𝑔  that can classify a new 

example  (𝑥𝑛, 𝑦𝑛) . In binary classification, most of the solutions are explored by finding a 

separating hyperplane between the classes. The SVM classifier tends to maximize the margin 

between two classes by determining a minimum number of support vectors (SVs). However, the 

main issues with using a separating hyperplane are that the solution may not be extended and 

generalized to classify unseen examples, and the data could be nonlinearly separable. This 

method was originated from a binary classification. In fact, there are many hyperplanes that can 

separate the data. Many of these hyperplanes do not generalize well and they may misclassify a 

new sample. Therefore, the idea of SVM is to select the best hyperplane that maximizes the 

margin between the data of different classes (Figure 2-27).  

The separating hyperplane can be defined as follows: 

{𝑥  ∈ 𝐻,  𝑔(𝑥) = < 𝑤, 𝑥 >  + 𝑏 = 0}  𝑤 ∈ 𝐻 𝑎𝑛𝑑 𝑏 ∈  ℝ          (2-13) 

where 𝑤 is a normal vector that defines the hyperplane, 𝑏 is bias, and <. , . > is the dot product. 

In a two-classes d-dimensional problem, the separating conditions are given by:  

𝑥𝑘 ∈   𝐶1 𝑖𝑓 𝑔(𝑥𝑘)  ≥ 1                                                 (2-14) 
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𝑥𝑘 ∈   𝐶2 𝑖𝑓 𝑔(𝑥𝑘)  ≤ −1                                              (2-15) 

 

Figure 2-27: Schematic illustration of the optimal separating hyperplane and margins for SVM 

with samples from two classes. 

Both of the preceding equations can be combined into a single equation as: 

𝑦𝑘 𝑔(𝑥𝑘)  ≥ 1                                                            (2-16) 

where 𝑦𝑘 is the class label given as: 𝑦𝑘 = 1 for class 𝐶1 and 𝑦𝑘 = −1  for class 𝐶2.  The value 

𝑏

‖𝑤‖
 in Figure 2-27 determines the distance of the hyperplane from the origin. By denoting 𝑀+ 

and 𝑀− the margin widths between the separating hyperplane and the SVs, the margin 𝑀  is 

defined as (Rajasekaran and Amalraj, 2002; Saridakis et al., 2008): 

𝑀 = 𝑀+ + 𝑀− = 
|<𝑤 ,𝑥> +𝑏|

𝑥∈𝐻1

‖𝑤‖
+ 

|<𝑤 ,𝑥> +𝑏|
𝑥∈𝐻2

‖𝑤‖
= 

2

‖𝑤‖
                     (2-17) 
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Therefore, the margin width 𝑀 can be maximized by minimizing ‖𝑤‖ 2. The problem can be 

formulated as follows:   

𝑚𝑖𝑛
𝑤 ∈𝐻 𝑏∈𝑅

1

2
 ‖𝑤‖

2
       Subject to            𝑦𝑘 𝑔(𝑥𝑘)  ≥ 1                         (2-18) 

The constraint equation could be written as: 

𝑦𝑘 𝑔 (𝑥𝑘) − 1 ≥ 0                                                (2-19) 

or: 

−𝑦𝑘 (< 𝑤 , 𝑥𝑘 > +𝑏) + 1 ≤ 0                                 (2-20) 

Now, the problem is transformed into an optimization problem with a convex quadratic 

optimization function.  It is subject to a linear constraint equation that could be efficiently solved 

using Lagrangian optimization technique. The objective function to minimize becomes: 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
 ‖𝑤‖

2
− ∑ 𝛼𝑘 [𝑦𝑘(< 𝑤 , 𝑥𝑘 > +𝑏) − 1]

𝑁
𝑘=1                    (2-21) 

The preceding equation can be minimized by setting the derivatives of 𝐿 with respect to 𝑤 and 

𝑏 to zeros: 

∇𝑤 𝐿(𝑤, 𝑏, 𝛼) = 0                                              (2-22) 

𝜕𝐿(𝑤,𝑏,𝛼)

𝜕𝑏
= 0                                                   (2-23) 

which gives: 

𝑤 = ∑ 𝛼𝑘 𝑦𝑘 𝑥𝑘
𝑁
𝑘=1                                             (2-24) 
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and: 

∑ 𝛼𝑘 𝑦𝑘
𝑁
𝑘=1 = 0                                                   (2-25) 

By replacing 𝑤  into the Lagrangian and simplifying it, we obtain the following dual 

optimization problem: 

Maximize (over 𝛼): 

𝐿(𝑤, 𝑏, 𝛼) =  −
1

2
∑ 𝑦𝑖 𝑦𝑗  𝛼𝑖 𝛼𝑗 < 𝑥𝑖 , 𝑥𝑗 > +∑ 𝛼𝑖

𝑁
𝑖=1  𝑁

𝑖,𝑗=1              (2-26) 

Subject to: 

∑ 𝛼𝑖  𝑦𝑖
𝑁
𝑖=1 = 0 and 𝛼𝑖  ≥ 0 for  𝑖 = 1:𝑁                                  (2-27) 

where 𝛼𝑖 are the Lagrangian multipliers. Finally, the optimal hyperplane is then described by the 

following equation: 

𝑔(𝑥) =  ∑ 𝛼𝑘 𝑦𝑘 <
𝑁
𝑘=1 𝑥𝑘, 𝑥 >  +𝑏                                    (2-28) 

Points with 𝛼𝑖  > 0, are called SVs and lie on 𝐻1 or 𝐻2 and the classification of a new sample 

𝑥𝑛 is given by the sign 𝑔(𝑥𝑛). Up to this point, we have considered the case where the data is 

linearly separable. However, most of classification problems with real data are not linear. 

Therefore, the concept of optimal separating hyperplane is generalized to a global solution that 

minimizes a cost function and satisfies the following two criteria: 

- Maximize the margin (as in the precedent case of linearly separable data) 

- Minimize the error of misclassification  

The new cost function (ψ) is now defined as: 
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ψ(𝑤, 𝜉) =  
1

2
 ‖𝑤‖

2
+ 𝐶 ∑ 𝜉𝑘

𝑁
𝑘=1                                          (2-29) 

where 𝜉𝑘  is called the slack variable that quantifies the non-separability, and 𝐶  is the 

regularization parameter that controls the penalty factor due to misclassification (box constraint). 

The same dual problem, as for the case of separable data, represents the formulation of this case.  

Up to this point, SVM is presented for both linearly separable and linearly non-separable cases. 

In order to improve the ability of the classifier to separate classes, the method described above 

can be generalized by introducing a nonlinear discriminant function. In this context, SVM uses 

the kernel method to map the data into a higher dimensional feature space. Accordingly, the data 

is more likely to be separable following the previously described method by merely defining a 

hyperplane that is fully defined by its normal vector 𝑤 and 𝑏 value.  If 𝑑 is the dimension of the 

input data, then 𝑤  is defined in a higher dimensional space of dimension 𝑑′ (𝑑′ > 𝑑).  This 

procedure is achieved by using a map function Φ. Therefore, the inner product of the original 

space is replaced by the inner product of the transformed space as follows:  

< Φ(𝑥𝑖),Φ(𝑥𝑗) >                                                 (2-30) 

The only problem here is that the inner product of the transformed space is very costly to 

evaluate and sometimes impractical. Therefore, the kernel method provides an efficient way to 

tackle this problem by avoiding the computation of the inner product in the transformed space as 

follows: 

𝐾(𝑥𝑖, 𝑥𝑗)= < Φ(𝑥𝑖),Φ(𝑥𝑗) >                                        (2-31) 

where 𝐾 is the kernel function evaluated in the input space. The final resulting discriminant 

function is defined by: 
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𝑓(𝑥) =  ∑ 𝛼𝑖 𝐾(𝑥𝑖
𝑁
𝑖=1 , 𝑥) + 𝑏                                          (2-32) 

The decision rule is based on the sign of 𝑓(𝑥). Typical kernel functions are: 

- Polynomial: 𝐾(𝑥𝑖 , 𝑥𝑗) =  (< 𝑥𝑖, 𝑥𝑗 > + 1)
𝑑

 

- Radial basis function (RBF) (Gaussian): 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ‖𝑥𝑖 − 𝑥𝑗‖
2
) 

- Sigmoid: 𝐾(𝑥𝑖, 𝑥𝑗) = tanh(𝜂 < 𝑥𝑖 , 𝑥𝑗 > + 𝑟) 

where 𝑑  is the polynomial degree, γ, 𝜂 and 𝑟 are numbers that represent the kernel parameters. 

𝛾 =  
1

2 𝜎2
 , and 𝜎 is the width of the radial basis function. The kernel-based implementation needs 

the determination of both the kernel parameter and the regularization parameter 𝐶.  

For this study, the RBF kernel is used and the detection rate (DR) is used to evaluate the 

classifier performance as follows: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
                                (2-33) 

The total number of data points is 2400 (400 sensing nodes × 6 damage states). The labels to be 

classified are 6 damage states (D1, ..., D6) each represented the girder condition after 1 million 

cycles. The data is divided into three subsets: 70 % for training, 15% for testing, and 15 % for 

validation. The SVM algorithm is run for different sensor configurations by adding the number 

of sensors from 1 (single sensor) to 400 (the entire network). The optimal parameters 𝛿 and C are 

found through an extensive searching algorithm. Thereafter, the sensitivity of the model to 

sampling error is evaluated by repeatedly randomly partitioning the data. For each sensors 

configuration, five tests are performed to estimate the average accuracy and evaluate the 

sensitivity of the model to a particular training sample.   
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Figure 2-28 displays the results for the testing set for different sensors configurations. The black 

bars on the figure represents the sensitivity analysis results.  

 

Figure 2-28: SVM performance on the testing data. 
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Figure 2-29: Set of sensors with the highest detection rate. 

The results indicate that the new Z features have good performance for both testing and 

validation sets. Using only the individual sensing features  𝜇 and 𝜎  results in a very low 

performance (around 20% to 33%). An interesting observation from Figure 2-28 is that the curve 

presents the highest values for a number of sensors below 30. This indicates that the damage is 

located in the upper area of the web where the first 30 sensors are located. The best detection rate 

for the training, testing and validation is obtained using Sensing nodes 4 to 16 as shown in Figure 

2-29. The optimal value of the 𝛿  and C parameters are 0.9, 100, respectively. The best 

performance of the classifier is: 

• Training = 83% 

• Testing = 82% 

• Validation = 85 % 

Figure 2-30 displays the confusion matrixes for the best sensor configuration. A confusion 

matrix is a table that contains information about actual and predicted classifications. The 

confusion matrix can be used to describe the performance of the classifier (Fawcett, 2006).  
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(a) Training data                                              (b) Testing data 

 

(c) Validation data 

Figure 2-30: Confusion matrixes for the best sensor configuration. 

Each column of the matrix represents the instances in predicted class, while each row represents 

the instances in an actual class. The damage states correctly classified are found along the 

diagonal of the matrix. In other words, if 𝐶𝑀 denotes the confusion matrix, each diagonal term 

𝐶𝑀𝑖𝑖 represents the results of classification of the 𝑖𝑡ℎ class. The off-diagonal terms 𝐶𝑀𝑖𝑗(𝑖 ≠ 𝑗) 

represent the classification error (MathWorks, 2016). 
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As seen in Figure 2-30, class 2 is misclassified as class 1 in all cases. This indicates that there is 

no important variation in strain amplitude between 10 mm and 20 mm crack lengths. Therefore, 

the classifier cannot differentiate between the two classes. However, for the other damage states, 

the detection performance is satisfactory.  

2.4. Summary 

The sensor operates by harvesting the energy from the host structure. It can record the 

cumulative durations of the applied strain signal at predefined threshold levels. However, the 

sensor output is compressed into a single histogram. This makes the interpretation of the data 

very challenging. In the case of a uniform PFG sensor, the output of each sensor could be 

characterized based by fitting the cumulative loading time histogram to a CDF. 

The performance of the self-powered wireless sensor with uniform distribution was evaluated for 

two steel structures with complex geometry. FE models were developed to predict the strain 

behavior under external loadings. Thereafter, the sensor output was defined based on the strain-

time history and fitted to a CDF distribution. The first investigated case is the crack propagation 

of a gusset plate similar to the U10W plate that caused the failure if the I-35W bridge in 

Minneapolis, MN, USA. The results indicate that the damage could be detected using the initial 

damage predictors 𝜇 and 𝜎. For the case where the sensor is located near the crack tip, the PDF 

shift to the left and they expands due to damage progression. In addition, the STD of a group of 

sensors was found to be a good indicator of the crack propagation in gusset plates and of a good 

estimator of its severity. The STD of a group of sensors increases between damage states. 

Furthermore, a search algorithm was proposed to localize the crack. The results show that the 

crack can be localized using the maximum variation of the STD of all damage classes. In 

conclusion, using the information of a network of  PFG sensors, the damage can be accurately 
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detected, localized and quantified.  

In addition, the sensor detection capabilities were evaluated for the case of fatigue cracking in 

steel bridge girders. In order to evaluate the performance of the sensor, a numerical study was 

carried out on a typical girder. After obtaining the initial damage indicators, a data fusion model 

was defined based on the previously extracted features from the sensors network. The new 

features were inputted to an SVM classifier. The results indicate that the classification 

performance was increased using the data fusion model. It was observed that the SVM models 

could accurately classify most of the damage stages, specifically for cracks larger than 10 mm. 

Besides, tracking the performance of the SVM models gave an insight into the damage location.  
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CHAPTER 3. DAMAGE IDENTIFICATION IN STRUCTURES USING 

NON-UNIFORM PFG SENSORS2 

3.1. Overview 

The main goal of this chapter is to evaluate the performance of nonuniform class of self-

powered PFG sensors for the detection damage progression. The proposed approach is evaluated 

on a steel plate and pavement structures. Section 3.2. describes the working principles of this 

class of sensors. Section 3.3.1. focuses on the detection of multi-class damage in steel plates. To 

this aim, an in-plane tension test is carried out on a thin steel plate with different notch sizes. 

Several piezoelectric transducers are attached on the plate to measure the changes of charge on 

the floating-gates due to damage progression. The cumulative voltage droppage for each memory 

gate is used to extract damage indicator features. A support vector machine classification 

approach is then utilized for multi-state damage detection. The obtained trends are analyzed and 

discussed in detail. In section 3.3.2.1, an asphalt concrete slab is studied to detect bottom-up 

cracking. The damage detection approach is verified numerically and experimentally. In the third 

section of this chapter (section 3.3.2.2), a surface sensing approach is proposed to detect bottom 

cracking in pavements. Different FE models are developed to analyze the response of the 

pavement under a dynamic moving load. The damage is defined using the element weakening 

method (EWM). A data fusion method integrated with a probabilistic neural network classifier is 

used to classify different damage states based on the response of the surface mounted PFG 

sensors. 

                                                 
2 The presented results in this chapter were published in Hasni et al. (2017c,d,e,f). 
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3.2. Working mechanism of nonuniform PFG sensors 

Figure 3-1 shows the difference of outputs between the uniform and nonuniform sensors. 

As previously described in Chapter 2, each floating gate has an injection rate (𝑉𝑖𝑛𝑗 ). This 

parameter is property of the gate that controls the injection of the electrons into the gate. The 

injection rate is correlated with the voltage droppage rate (𝑉𝑖𝑛𝑗) across the gate. The rate 𝑉𝑖𝑛𝑗 is 

defined as the ratio of voltage droppage during one second of injection of electrons. Figure 

3-1(b) and 3-1(c) show an illustrative example of the voltage droppage calculation for gates with 

constant and non-constant injection rates, respectively. Note that the cumulative time at specific 

pre-defined strain/voltage thresholds is proportional to the voltage droppage across the memory 

gate.  

As seen in Figures 3-1(b) and 3-1(c), Gates 1 to 3 are recording the changes of voltage on the 

floating gates due to electron injection for a random excitation given in Figure 3-1(a). As 

discussed in Chapter 2, the output of the uniform PFG sensor can be characterized by a Gaussian 

cumulative density function. In this case, the mean of cumulative time distribution (μ) and the 

standard deviation (σ) accounting for the load and frequency variability can be considered as 

viable tools to define the sensor output data (Hasni et al., 2017a; 2017b). These parameters are 

obtained by curve fitting of the sensor output distribution collected from the entire memory cells, 

as indicated in Figure 3-1(b). As can be observed from Figure 3-1(c), analysis of the sensor 

outputs becomes more challenging for the case of nonuniform sensor, and the cumulative voltage 

droppage cannot be fitted to a Gaussian distribution. 
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Figure 3-1: Working principle of nonuniform PFG sensor. 

3.3. Evaluation of the performance of the nonuniform PFG sensor  

3.3.1. Health monitoring of steel plates 

The process of detecting damage progression using PFG sensors is divided into two 

major stages: (1) Individual sensors: This step is focused on finding a reasonable relationship 

between the activation and voltage droppage of the floating-gates of individual sensors and 

damage progression, and (2) Data fusion in a network of sensors: This stage is developed to 

analyze spatial measurements over the structural area. The goal is to extract features that 
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simultaneously fuse the information provided by multi-sensors. The fused data is then fed into an 

SVM classifier for multi-stage damage detection. 

3.3.1.1. Detection of damage progression using individual self-powered PFG sensors 

The performance of the PFG sensor is evaluated on a steel plate subjected to an in-plane 

tension. The load is applied using an MTS servo-hydraulic machine in a displacement controlled 

mode. A 16 in × 6 in × 1/32 in (406.4 mm × 152.4 mm × 0.8 mm) structural steel plate grade 

A36 is used. In order to satisfy the boundary conditions of uniaxial tension test, four thick steel 

plates 6 in × 2 in (152.4 mm × 50.8 mm) are placed in upper and bottom boundaries of the plate 

to restrain all the rotational and lateral translational degree of freedoms of the upper and lower 

edges. The upper boundary is fixed, and the lower boundary is subjected to a displacement via 

the MTS machine. A set of 20 PZT ceramic transducers are attached on the surface of the plate 

to measure the voltage induced by the loading. The type of the used PZTs is PZT-5A from 

Steiner & Martins, Inc. The properties of PZT-5A are listed in Table 3-1. 

The PZTs output voltage is read on a NI 9220 data acquisition system (with 1 GΩ impedance) in 

parallel with the sensor. In addition, strain values are also measured on NI 9236 data acquisition 

system. The corresponding strain gage factor is 1.2 and the grid resistance is 350 Ω.  

In order to attach the PZT discs to the steel plate, different adhesives are tested. Among the 

adhesives tested (e.g. HBM X-60 cement paste, J-B SteelStik Epoxy, and CC-33A adhesive), 

CC-33A epoxy is found to perform more consistently. 

Figure 3-2 illustrates a schematic representation of the experimental setup. Locations of the PZTs 

and strain gages are shown in Figure 3-3. The tests are performed at 2 Hz loading frequency for 

0.08 mm, 0.12 mm and 0.16 mm displacement amplitudes. Herein, the results for 2 Hz and 0.16 

mm displacement are presented. 
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Table 3-1: Properties of PZT-5A. 

PZT Type 

Dimensions: 

Diameter 

(𝑚𝑚) × 

 Thickness 

(𝑚𝑚)  

Elastic 

Modulus 

(𝐺𝑃𝑎) 

Capacitance 

(𝑛𝐹) 

Electrical 

Permittivity  

(× 10−9
𝐹

𝑚
)    

Piezoelectric 

Constant (𝑑31) 

 (× 10−12
𝑚

𝑉
)  

PZT-5A 

Discs 

ø12 × 0.6 76 2.9  16.38  -190 

 

Figure 3-2: A schematic representation of test setup. 
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Before starting each test, a pre-load equal to 4 kN is applied to the plate to ensure that it is seated 

on the fixture. Thereafter, a cyclic displacement is applied to the edge of the specimen. The 

number of cycles is 40 for each test. Damage is introduced at the middle of the plate as shown in 

Figure 3-2. The damage states are defined by increasing the notch size (2a) as follows:  

 

Figure 3-3: Layout of PZTs and strain gages. 

• Intact: 2a = 0 mm (Intact plate) 

• Damage 1 (D1): 2a = 10 mm  

• Damage 2 (D2): 2a = 20 mm 

• Damage 3 (D3): 2a = 30 mm  

It should be noted that the notch is considered in the horizontal direction for a better control over 
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the crack size in such uniaxial tensile loading. However, if the notch is located at other location 

and at different direction, the results will be the same using the same proposed methodology in 

this work.  

 

 

Figure 3-4: A comparison of maximum voltage and strain for 0.16 mm displacement and 2 Hz 

loading frequency. 

On the other hand, given the small size of the sensors and the fact that that they do not rely on 

batteries, large number of sensors can be installed near the damage sensitive areas allowing for 

improved resolution and detection capabilities. In addition, preliminary results from finite 

element simulations can be considered as a good option for the determination of approximate 
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sensors locations. On this basis, denser array of sensors can be considered for regions with 

maximum stress and strain concentrations. In fact, the variation of the voltage droppage from the 

sensors is more prominent at the damage vicinity. Thus, regions of the structures that are known 

to be more susceptible to damage need a denser network of sensors. This is a fundamental 

requirement for all available commercial sensors to detect damage in structures. 

Typical outputs measured by the PZTs and strain gages along (PZT 7, Gage 7) and on the top 

(PZT 4, Gage 4) of the notch are shown in Figure 3-4. Figure 3-5 presents the percentage 

variation of the strain and the voltage at locations 4 and 7 when the damage progresses. As one 

would expect, the voltage and strain measured by PZT 7 and Gage 7 continuously increase as the 

damage progresses. However, the voltage and strain have decreasing trends for the PZTs located 

perpendicular to the direction of the crack (PZT 4, Gage 4). 

The PFG sensor used in this study to monitor the damage progression has 7 floating-gates with 

different injection rates. 

 

                (a)                                                                   (b) 

Figure 3-5: Strain and voltage variation for: (a) PZT 4 and Strain Gage 4, and (b) PZT 7 and Strain 

Gage 7. 
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The channels were programmed to trigger at different voltage thresholds. The impact-ionized hot-

electron injection (IHEI) process at the floating-gate memory cell is activated only when the voltage 

is higher than the injection threshold. Therefore, once the voltage drops below the injection threshold 

of a channel, it stops recording. The higher is the generated voltage, the higher is the number of 

channels that are logging. In addition, the injection rate of each channel depends on the level of 

voltage generated by the piezoelectric transducer. The minimum voltage level that is required to 

trigger the injection in each of the channels is shown in Figure 3-6. The sensor voltage changes are 

recorded for all the PZT locations and for different damage states. In total, 560 voltage outputs are 

extracted from the sensors.  

 

Figure 3-6: The injection thresholds for the PFG sensor. 

For brevity, only results for sensing nodes located along and on the top of the notch are presented 

herein. Figures 3-7 and 3-8 show the voltage droppage across the floating-gates of the sensor at 

locations 4 and 7, respectively. As seen in these figures, the recorded droppage of the voltage highly 
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depends on the damage state. Each damage state corresponds to the strain sensed, and therefore the 

voltage amplitude generated by the PZTs. Note that, as soon as the voltage generated by a PZT 

exceeds a threshold corresponding to one of the gates, the procedure of electron injection initiates, 

and subsequently the voltage of that gate starts decreasing. Conversely, if the voltage generated by 

the PZT transducer is below the gate injection threshold, the injection stops, the channel shuts off, 

and therefore the charge on the floating-gate remains unchanged. As an example, the voltage 

amplitude of PZT 4 dropped from 9.22 to 5.49 V due to damage progression (see Figure 3-4(a)). At 

this location, the stress concentration decreases by increasing the notch size. The response of the PFG 

sensor indicates that gates 1 to 5 are only recording the cumulative voltage droppage for the intact 

and D1 modes (Figure 3-7(a)-(e)). This is because the PZT voltage values for the intact and D1 states 

are, respectively, 9.2 and 9.1 V which exceeded the threshold of all first 5 gates. On the other hand, 

the voltage is not changed at gates 6 and 7 because their activation thresholds are near 10 V. This 

voltage is greater than the maximum delivered voltage by PZT 4 for all damage states. As a result, 

the voltage at gates 6 and 7 is kept constant at its initial value (1.2 V). The damage progression 

process can be monitored using gates 1 to 5. In this case, as soon as the damage approaches the D2 

phase, the strain decreases, and the voltage amplitude drops to 7.13 V which is below the injection 

thresholds of all gates. Hence, the channels shut off.  

An inverse behavior can be observed from Figure 3-8 for PZT 7. This PZT is located along the notch 

and therefore it is experiencing higher strains as the notch size increases. As seen in Figures 3-8(a)-

(e), gates 1 to 5 have experienced a drop in the charge, as the voltage generated by PZT 7 exceeded 

their thresholds for all damage states. Gates 6 and 7 are activated only after the voltage of PZT 7 goes 

beyond 9.7 V and 10.2 V, after the intact (gate 6) and D1 (gate 7) damage states (Figures 3-8(f) and 

3-8(g)). Clearly, the gate activation can be considered as an indicator of damage occurrence.  
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Figure 3-7: Voltage changes across the floating-gates of the PFG sensor for location 4. 
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Figure 3-7 (cont’d) 

 

Another important observation from Figures 3-7 and 3-8 is that the voltage droppage rate for each 

gate is also a good indicator of damage progression. For instance, consider the response of gates 1, 6 

and 7 generated by PZT 7 for the D2 and D3 damage states (Figures 3-8(a),(f),(g)). Since the strain 

amplitude is higher for D3 than D2, the injection time is also higher, and therefore the voltage on the 

gate dropped more for D3. In addition, the difference between the slopes of the curves is controlled 

by the injection rates. In fact, the maximum difference of the slopes is obtained at gate 7 and then at 

gate 1. However, the slopes of the two damage states have close values at gate 6.   

 

Figure 3-8: Voltage changes across the floating-gates of the PFG sensor for location 7. 
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Figure 3-8 (cont’d) 
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3.3.1.2. Data fusion in a network of PFG sensors  

As discussed in the previous section, it is possible to detect the damage progression with 

individual PFG sensors. Although they deliver valuable quantitative information, measurements 

at a single location might not be sufficient for accurate damage detection (Alavi et al., 2016a). 

On the other hand, only a few sensors located at a specific distance from the damage zone can be 

used for precise damage detection (sensors close to the damage zone). For instance, PFG sensors 

mounted along, on the top or at the bottom of the notch are providing more useful trends for the 

studied plate structure, compared to other sensors. In addition, the situation becomes challenging 

if the damage location is unknown. Therefore, an effective sensor fusion strategy is developed to 

improve the damage detection performance through spatial measurements.  

To this aim, features that are expected to characterize different properties of the structure are 

extracted from the network of PFG sensors. The classification phase is then performed through 

feeding of the fused features into a computational intelligence (CI)-based classifier.  

In order to obtain the features, a polynomial function is fitted to the voltage droppage histograms 

at each sensing node. This is done for all damage states. The data has 7 dimensions that 

correspond to the number of the sensor gates. Thus, the following polynomial function (𝑃) with 

6 degrees and 7 coefficients is considered for the curve fitting: 

𝑃(𝑥) =  𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 + 𝑎4𝑥
4 + 𝑎5𝑥

5 + 𝑎6𝑥
6                     (3-1) 

where 𝑎0, ..., 𝑎6  are the polynomial coefficients. In order to define features that incorporate the 

group effect of the sensors network, different statistical functions are proposed as follows: 

∆𝑉𝐷𝑖𝑗
𝑝 = 

∆𝑉𝑖𝑗
𝑝

∆𝑉𝑎𝑣𝑗
𝑝                                                             (3-2) 
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∆𝑉𝑍𝑖𝑗
𝑝 = 

∆𝑉𝑖𝑗
𝑝
− ∆𝑉𝑎𝑣𝑗

𝑝

∆𝑉𝑆𝑇𝐷𝑗
𝑝                                                       (3-3) 

𝑎𝐷𝑖𝑗
𝑝 = 

|𝑎𝑖𝑗|
𝑝

𝑎𝑎𝑣𝑗
𝑝                                                                (3-4) 

𝑎𝑍𝑖𝑗
𝑝 = 

|𝑎𝑖𝑗|
𝑝
− 𝑎𝑎𝑣𝑗

𝑝

𝑎𝑆𝑇𝐷𝑗
𝑝                                                       (3-5) 

where, ∆𝑉𝑖𝑗
𝑝, ∆𝑉𝑎𝑣𝑗

𝑝 , ∆𝑉𝑆𝑇𝐷𝑗
𝑝

 are, respectively, the original drop in voltage of sensor 𝑖 at gate 𝑗 for 

damage state number 𝑝 (𝑝 = Intact, D1, D2, D3), the average of voltage droppage of all sensors 

at gate 𝑗 for damage state 𝑝, and the standard deviation of voltage droppage of all sensors at gate 

𝑗 for damage state 𝑝. |𝑎𝑖𝑗|
𝑝
,  𝑎𝑎𝑣𝑗

𝑝 , 𝑎𝑆𝑇𝐷𝑗
𝑝  are, respectively, the original polynomial coefficients (in 

absolute value) of sensor 𝑖  at gate 𝑗  for damage state 𝑝 , the average of the polynomial 

coefficients of all sensors at gate 𝑗 for damage state 𝑝, and the standard deviation of all the 

polynomial coefficients of all sensors at gate 𝑗 for damage state 𝑝. 

To visualize the damage classes, a principal component analysis (PCA) is performed. This 

method can reduce a high-dimensional space to a lower-dimensional space that optimally 

describes the highest variance of the data. Figure 3-9 represents the original voltage droppage 

data projected onto its first two principal components. The first principal component has the 

highest variance, and the second principal component has the second highest variance. The 

resulting map shows that the classes have notable overlaps. Based on a preliminary study, the 

best distinction between classes is obtained using features defined by Equation (3-5) which is in 

fact derived from the conventional z-score function.  

Thereafter, the corresponding features are later fed into the CI-based classifier. Figure 3-10 
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shows the featured data projected onto the first two principal components (Equation (3-5)). As 

seen, using these new features results in a clear distinction between damage classes.  

 

Figure 3-9: Projection of the original voltage droppage data onto the first two principal 

components. 

 

Figure 3-10: Projection of the featured data onto the first two principal components. 
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In this study, the SVM algorithm is implemented using different kernels, and the polynomial 

kernel is found to give the best performance. The performance of the developed SVM models is 

tested for different number of gates (1 to 7) to investigate the effect of the number of gates on the 

classification results. The total number of data sets for each gate is 80 (20 sensor and 4 damage 

states). For the SVM analysis, the available data sets are randomly divided into 3 groups as 

follows:  

- 70% training: 56 g-dimensional feature vector 

- 15 % testing: 12 g-dimensional feature vector 

- 15% validation: 12 g-dimensional feature vector 

where 𝑔  denotes the number of gates used in the analysis (𝑔 = 1. .7). The best models are 

chosen based on their performance on the validation data. The generalization error of the final 

models is assessed using the unseen testing data. The performance of the SVM models is 

evaluated using the detection rate metric. 

The SVM model is trained based on the experimental results of the intact and the damaged 

modes of the plate. In real structures, SVM models should be trained using data from similar 

experimental cases or based on the data provided by a calibrated FE model. More specifically, 

for the FE-based data interpretation, FE model updating (FEMU) method can be used.  FEMU is 

an inverse parameter estimation problem where the unknown mechanical or geometrical 

parameters of an a priori structural FE model are estimated based on measurement data. In other 

words, FEMU is the process of correcting an FE model so that its mechanical behavior matches 

with experimental dynamic/static responses. By calibrating the response of the FE model, a 

reliable database can be developed and used for the training of the SVM and other machine 

learning techniques. 
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The polynomial degree and the regularization parameters 𝐶 are important parameters in 

the SVM algorithm. These parameters are tuned through an optimization process. Multiple 

iterations are performed on both the polynomial degree and the constraint box 𝐶 at the same time 

in order to find the optimal values. The validation set is used to optimize the kernel and the 

regularization parameters. Figures 3-11 and 3-12 present the variation of the detection rate 

accuracy as a function of the kernel parameter and the constraint box. As can be observed from 

these figures, the best damage detection performance is obtained for a quadratic polynomial and 

for 𝐶 = 22. Figure 3-13 presents the performance of the SVM models for different number of 

gates.  

 

Figure 3-11: Optimization of the polynomial degree in the SVM algorithm. 
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Figure 3-12: Optimization of the box constraint parameter in the SVM algorithm. 

 

Figure 3-13: Damage detection performance of the SVM models for different number of gates. 

In order to visualize the detailed classification performance, the corresponding confusion 

matrixes are given in Figures 3-14 to 3-16. As it is seen in the figures, the SVM models 
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developed with data from 3 or more gates have very good performance on the training, testing 

and validation data. 

 

 

  Figure 3-14: Confusion matrixes for the training data. 
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Figure 3-14 (cont’d) 
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Figure 3-15: Confusion matrixes for the testing data. 
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Figure 3-15 (cont’d) 
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Figure 3-16: Confusion matrixes for the validation data. 
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Figure 3-16 (cont’d) 

 

3.3.1.3. Uncertainty analysis 
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𝑆𝑁𝑅 = 
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
= (

𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
)
2

                                           (3-6) 

where  
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
  is the ratio between the two amplitudes of the signal and the noise. The SVM 

algorithm is run for the featured data using 7 gates. Figure 3-17 depicts the best classification 

results for various noise levels for the training, testing and validation data. 

 

Figure 3-17: Performance of the SVM models for various noise levels. 

Comparing the results shown in Figure 3-17, it can be observed that the performance of the 

models on testing and validation is satisfactory for SNRs above 18. In other words, the 

classification accuracy remains acceptable up to 23 % of voltage noise. This result indicates that 

the proposed approach is effective in detecting and classifying different damage states in steel 

plates under high noise levels.   
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3.3.2. Pavements health monitoring 

Pavement health monitoring is an extension of the SHM concept that deals with assessing 

the structural state of pavement infrastructure systems. Distresses concentrated in asphalt 

concrete layer can lead to the failure of the pavement structure over time. The maximum tensile 

stresses are commonly developed at the bottom of the AC layer under repetitive loadings. As a 

result, cracks usually initiate at the bottom of the asphalt layer and start propagating to the 

surface of the pavement. This so called bottom-up fatigue cracking is one of the main failure 

modes in asphalt pavements. The fatigue life of pavements is mainly related to the nature and the 

amplitude of the applied loading. 

In this context, the existing health monitoring methods can generally be categorized into two 

groups: the in-situ pavement sensors and external evaluation technologies (Xue et al., 2013). 

During the past two decades, the in-situ sensing techniques have been developed as the 

alternatives to the traditional monitoring methods (Potter et al., 1969; Badr and Karlaftis, 2012; 

Badr and Karlaftis, 2013; Karlaftis and Badr, 2015). Many types of sensors are used in this 

method such as deflectometer, fiber-optic sensors, moisture sensor, pressure cell, strain gauge, 

thermocouple, etc. (Potter et al., 1969; Badr and Karlaftis, 2012; Badr and Karlaftis, 2013; 

Karlaftis and Badr, 2015; Huff et al., 2005; Malekzadeh et al., 2015). The external evaluation 

approaches are extensively used to detect surface distresses of pavement, i.e., pavement 

distresses evaluation based on image analysis (Mohajeri and Manning, 1991; Koutsopoulos and 

Downey, 1993), or pavement deformation detection by stereo-imagery (Mills and Newton, 2001; 

Plati and Loizos, 2013; Plati et al., 2014; Bagherifaez et al., 2014; Behnia et al., 2014; Xu et al., 

2015). 

In this section, a pavement health monitoring system is proposed using the nonuniform 
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class of wireless sensors. In 3.3.2.1, numerical and experimental studies are focused on the 

detection of progression of bottom-up cracking caused by excessive strains at the bottom of an 

asphalt-concrete specimen under three-point bending configuration. In section 3.3.2.2, a new 

surface sensing approach for detection of bottom-up cracks in AC pavements using the 

nonuniform class of self-powered wireless sensors is proposed. 

3.3.2.1. Damage growth detection in AC slabs 

The performance of the sensor is numerically and experimentally investigated on an 

asphalt concrete specimen. The sample is loaded under three-point bending mode. The loading 

protocol includes applying gradually increasing compressive force to the top mid-span of the 

beam. A schematic illustration of the test is shown in Figure 3-18. 

 

Figure 3-18: Schematic of the notched asphalt concrete specimen under three-point bending test. 

The analysis carried out in this study is divided into two stages. First, an FE model is developed 

to obtain the structural response of the beam under different damage scenarios. The strains are 
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extracted at the sensing node and then a MATLAB script is developed to obtain the cumulative 

loading time for each gate and for each damage state. Thereafter, the percentage of strain 

droppage for different damage states is estimated based on the sensor output data. For the second 

step, the voltage droppage and the percentage of voltage droppage are directly calculated using 

the measured sensor data. Figure 3-19 shows a flowchart of the proposed method. 

 

Figure 3-19: Flowchart of the proposed method. 

3.3.2.1.1. FE modeling and damage detection approach 

3.3.2.1.1.1. Description of the FE model 

Damage is introduced by making a notch at the middle of the bottom of the asphalt 

concrete specimen. Damage states are defined by increasing the notch size (a) as follows:  

• Intact (D0): a = 0 mm (Intact slab) 
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• Damage 1 (D1): a = 6.35 mm  

• Damage 2 (D2): a = 15.87 mm  

• Damage 3 (D3): a = 19.10 mm 

• Damage 4 (D4): a = 25.30 mm  

For the analysis, the initial strain value of each channel is set to 𝜀0 = 300 𝜇𝜀. below which the 

device does not record any information. The maximum threshold is 900 𝜇𝜀 where all the 

channels are activated. Gate injection rates and strain threshold levels are displayed in Table 3-2. 

The selection of thresholds and injection rates is based on an existing sensor and piezoelectric 

transducer. In fact, each of the sensor gates has specific voltage threshold level from which the 

gate starts recording the data.  

Table 3-2: Preselected strain levels and gate injection rates considered for the analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gate Number 

Strain Threshold  

Level (𝜇𝜀) 

Injection  

Rate (𝜇𝜀/𝑠) 

1 300 9.5 

2 400 17.11 

3 500 9 

4 600 22.5 

5 700 20.4 

6 800 30.4 

7 900 14.2 
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Therefore, depending on the type of the piezoelectric transducer, the strain thresholds can be 

determined experimentally by gradually increasing the applied strain to the piezoelectric 

transducer and recording the corresponding drop in voltage for each gate.  

Different 3D FE models are developed for each damage state to analyze the dynamic response of 

the asphalt concrete beam under a dynamic loading. ABAQUS/CAE 6.11 is used for the 

modeling and post-processing of the results. Dynamic implicit procedure is selected for the 

analysis. A displacement of 0.5 mm is applied to the upper part of the beam. The applied load 

has the following shape: 

                      𝑢𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 
𝐴

2
 [1 − cos(2 𝜋 𝑓 𝑡)]                                              (3-7) 

where f (f =2 Hz) is the frequency and A (A = 0.5 mm) is the amplitude of the applied 

displacement.  

The sample is modeled using a viscoelastic material. The expression of the stress in linear 

viscoelasticity can be expressed by a Boltzmann superposition integral as follows (Michalczyk, 

2011): 

𝜎(𝑡) =  ∫ 𝐸(𝑡 −  𝜏)
𝑑𝜀

𝑑𝜏

𝑡

0
 𝑑𝜏                                               (3-8) 

In the present study, a generalized Maxwell model is used for representing the linear-viscoelastic 

behavior of the hot mix asphalt (HMA). This model is a combination of Maxwell elements (one 

spring and one dashpot) connected in parallel with a spring as shown in Figure 3-20. 

A single element Maxwell model is composed of one spring and one dashpot mounted in series. 

Therefore, the relationship between the stress-strain is expressed as follows (Michalczyk, 2011): 

𝜀̇(𝑡) =  
𝜎̇(𝑡)

𝐸
+ 

𝜎(𝑡)

𝜂
                                                          (3-9) 
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Figure 3-20: Generalized Maxwell model consisting of n Maxwell elements connected in 

parallel. 

where E is the elastic modulus and 𝜂 is the viscosity parameter. 

If the material is subjected to a constant strain 𝜀0 , the solution of the precedent equation 

becomes: 

𝜎(𝑡) =  𝐸 𝜀0 exp (−
𝑡

𝜏
)  where  𝜏 =  

𝜂

𝐸
                                           (3-10) 

where 𝜏 represents the relaxation time. By performing a summation over the n Maxwell elements 

shown in Figure 3-20, the stress equation becomes: 

𝜎(𝑡) =  𝐸∞𝜀0 + ∑ 𝐸𝑖𝜀0
𝑛
𝑖=1 exp (−

𝑡

𝜏𝑖
) = (𝐸∞ + ∑ 𝐸𝑖 exp (−

𝑡

𝜏𝑖
)) 𝜀0

𝑛
𝑖=1            (3-11) 

Therefore, the relaxation modulus: 

𝐸(𝑡) =  
𝜎(𝑡)

𝜀0
= 𝐸∞ + ∑ 𝐸𝑖 exp (−

𝑡

𝜏𝑖
)𝑛

𝑖=1                                     (3-12) 

This expression is the Prony series representation. The equilibrium modulus is 𝐸∞  and the 

instantaneous modulus E0 is the value of  E(t) at t =0, given by: 
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𝐸0 = 𝐸∞ + ∑ 𝐸𝑖
𝑛
𝑖=1                                                             (3-13) 

By replacing the equilibrium modulus 𝐸∞ by (𝐸0 − ∑ 𝐸𝑖
𝑛
𝑖=1 ) , Equation (3-12) can be rewritten 

as: 

   𝐸(𝑡) =  𝐸0 − ∑ 𝐸𝑖  (1 −
𝑛
𝑖=1 exp (−

𝑡

𝜏𝑖
))                                                (3-14) 

Therefore, the Prony series representation is fully defined by (Ei, 𝜏𝑖 ). For the FE modeling, 

ABAQUS uses the dimensionless Prony series representation based on the shear (G) and bulk 

(K) moduli to define a viscoelastic behavior (Michalczyk, 2011): 

𝐺(𝑡) =  
𝐸(𝑡)

2 (1+𝜈)
                                                              (3-15) 

𝐾(𝑡) =  
𝐸(𝑡)

3 (1−2𝜈)
                                                             (3-16) 

If we divide both expressions by the initial values G0 and K0 respectively, we obtain:  

𝑔̅(𝑡) = 1 − ∑ 𝑔̅𝑖(1 −
𝑛
𝑖=1 exp (−

𝑡

𝜏𝑖
))                                         (3-17) 

and: 

𝑘̅(𝑡) =  1 − ∑ 𝑘̅𝑖(1 −
𝑛
𝑖=1 exp (−

𝑡

𝜏𝑖
))                                           (3-18) 

Therefore, there are three parameters required to define a viscoelastic material property in 

ABAQUS: the dimensionless shear relaxation modulus 𝑔̅𝑖  , the dimensionless bulk relaxation 

modulus 𝑘̅𝑖, and the relaxation time 𝜏𝑖. 

The relaxation modulus of the asphalt concrete material used in this study is defined by four 
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constants 𝑎𝑖 (𝑖 = 1, 2, 3, 4) as follows:  

                     𝐿𝑜𝑔(𝐸(𝑡)) =  𝑎1 + 
𝑎2

1+𝑒−𝑎3−𝑎4 log(𝑡𝑟)
                                               (3-19) 

Where 𝑡𝑟 is the reduced time, and 𝑎𝑖 are coefficients related to the type of the AC material. The 

constants 𝑎𝑖 used in this study are summarized in Table 3-3. 

Table 3-3: Constant values, ci, used in this study. 

a b c d 

0.639 3.341 0.709 -0.691 

A MATLAB code is developed to fit Equation (3-12) to the relaxation modulus given by the 

sigmoid function (Equation (3-19)) in order to obtain the Prony series coefficients. Figure 3-21 

displays the results of the Prony representation fit to the relaxation modulus. On this basis, 33 

Prony coefficients are calculated. Thereafter, the dimensionless coefficients 𝑔̅𝑖  and 𝑘̅𝑖  are 

obtained based on the Prony coefficients Ei. The instantaneous modulus is calculated based on 

the equilibrium modulus and the 33 coefficients as expressed by Equation (3-13): 

 𝐸0 = 𝐸∞ + ∑ 𝐸𝑖 = 9548 𝑀𝑃𝑎
33
𝑖=1                                                  (3-20) 

The Poisson’s ratio is equal to 0.35. The viscoelastic properties used in the FE model are 

summarized in Table A-1. The instantaneous modulus E0 is 24545 MPa.  

The asphalt concrete beam is modeled using 9615 linear hexahedral elements of type (C3D8R). 

Mesh refining technique is adopted for the meshing strategy in order to capture high stresses and 

strains concentration around the crack tip. 
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Figure 3-21: Prony series fit to the relaxation modulus of the sigmoid function. 

 

Figure 3-22: FE model mesh. 

The obtained optimal element size is about 10 mm for the intact configuration. The entire length 

of the slab is equal to 450 mm (17.71 in), the span length is 381 mm (15 in), the thickness is 127 
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mm (5 in), and the width is 152.4 mm (6 in). The rollers have a diameter of 30 mm (1.18 in) and 

are setup to be free in rotation. The point of measurement is located at 30 mm from the middle 

bottom of the specimen. The meshed model of the beam is shown in Figure 3-22.  

3.3.2.1.1.2. FE results 

Figure 3-23 displays the results of the longitudinal strains (along the slab length) for the 

five damage states (D0, D1, D2, D3, D4). As one would expect, the amplitude of the strain 

increases as the damage progresses. This is mainly due to the stress concentration around the 

notch tip. Figure 3-24 displays the sensor output histogram for the damage states. It can be seen 

that the sensor strain shows a decreasing trend between damage states for all of the sensor 

channels. However, some channels do not record any change in the strain values between 

damage states. In particular, the outputs for {D0, D1, D2} of gate 6, and {D0, D1, D2, D3} of 

gate 7 are the same. 
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                        (a) D0 (Intact)                                                      (b) D1                      

 

                        (c) D2                                                                 (d) D3 

 

(e) D4 

Figure 3-23: Strain distribution for different damage states. 
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Figure 3-24: Histograms representing the output of the sensor. 

3.3.2.1.1.3. Damage detection results based on FE model 

Figure 3-25 presents the variation of the sensor strain at each gate against the number of 

applied cycles for each damage state. Figure 3-26 displays the percentage of the sensor strain 

droppage after 50 cycles. As seen, the strain varies linearly with the number of cycles. 

Furthermore, the intact configuration has the smallest slope (in absolute value) compared to other 

damage states. The percentage of voltage droppage notably increases due to the damage 

progression. In fact, when the notch size increases, the longitudinal strain (along the slab length) 

increases as well. Thus, the cumulative time durations ∆𝑡𝑖 (𝑖 = 1. .7) measured by each gate 

increases. 
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        (a) Gate 1                                                        (b) Gate 2 

 

                                        (c) Gate 3                                                    (d) Gate 4 

Figure 3-25: Strain changes across the floating-gates of the PFG sensor. 
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Figure 3-25 (cont’d) 

 

                                           (e) Gate 5                                                  (f) Gate 6           

 

(g) Gate 7 

As seen in Figure 3-25, the recorded strain droppage of the sensor highly depends on the damage 

state. When the strain exceeds the threshold corresponding to one of the gates, the sensor strain 

starts decreasing. Conversely, if the strain value is below the gate injection threshold, the sensor 

strain does not change. As an example, the strain amplitude for all damage states is higher than 
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the activation threshold of the first five channels. Therefore, gates 1 to 5 are recording the 

cumulative strain droppage for all damage states, while gate 6 only records damage states D3 and 

D4.  

 

             (a) Gate 1                                                       (b) Gate 2 

 

                                          (c) Gate 3                                                      (d) Gate 4 

Figure 3-26: Percentage of strain droppage for different sensor gates. 
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Figure 3-26 (cont’d) 

 

             (e) Gate 5                                                       (f) Gate 6 

 

        (g) Gate 7 

This is because the maximum strain values for damage states D0, D1 and D2 did not exceed the 

strain threshold level of gate 6 and therefore, this gate remained closed. As soon as the strain 

exceeded the activation value of this gate (for damage states D3 and D4), the gate starts 

recording. 

Gate 7 merely recorded the most severe damage state, i.e. D4. As a summary, the slope 

representing the sensor strain versus the number of cycles is good damage indicator. In addition, 
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the gate number could be also used to detect severe cracks at the bottom of the pavement. In fact, 

gates 6 and 7 start recording only when the crack length reached high values.  

An interesting observation from Figure 3-26 is that the increasing trend of the strain droppage 

percentage is a good indicator of the damage severity, particularly for the activated gates.  

3.3.2.1.2. Experimental investigation 

3.3.2.1.2.1. Test setup  

The three-point bending test setup for the experimental study is shown in Figure 3-27. 

The slab is built using HMA, 4E1 mixture type. The weight of the HMA is 12.5 kg and the 

length of the slab is equal to 450 mm (17.71 in). The loading protocol consists of applying a 

gradually increasing compressive force to the top mid-span of the beam using a universal 

mechanical testing frame. In this study, a polyvinylidene fluoride (PVDF) piezoelectric film is 

used to harvest the strain energy from the host structure. In order to protect the piezoelectric film 

and the sensor electronics from possible damage during the manufacturing of the asphalt 

concrete specimen, an H-shape packaging is designed (Figure 3-28).  Conathane® TU-981 

epoxy is used for encasing the proposed H-shape packaging system. A PVDF with a size of 7.3 

cm covered by epoxy is embedded inside the asphalt layer at a distance of approximately 30 mm 

from the bottom of the layer. Figure 3-29 displays an image of the used PVDF and its 

dimensions. The PVDF dimensions and properties are summarized in Table 3-4. Before starting 

the test, a preload equal to 0.5 kN is applied to the sample to ensure it is seated on the fixture.   

A cyclic displacement loading similar to the FE study is applied to the sample. Damage is 

introduced by making a notch at the bottom of the asphalt layer. The damage states are defined 

by increasing the notch size (a) as follows: 



 

114 

• Intact (D0): Intact plate (a= 0 mm) 

• Damage 1 (D1): a = 6.35 mm (1/4 '') 

• Damage 2 (D2): a = 15.875 mm (5/8'') 

 

(a) 

                 

      (b)                                                              (c) 

Figure 3-27: (a) Three-point bending experimental setup, (b) notch at the initial stage, and (c) 

crack propagation phase. 
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After introducing the second damage phase, the displacement is increased to 2 mm to evaluate 

the behavior of the sample for higher amplitudes. After applying number of cyclic loadings, a 

crack propagation phenomenon is observed (Figure 3-27 (c)). 

 

Figure 3-28: Sensor packaging design to protect the piezoelectric and electronics. 

Table 3-4: PVDF dimensions and properties. 

PVDF  

Type 

A 

(mm) 

B  

(mm) 

C  

(mm) 

D  

(mm) 

Thickness 

 (µm) 

Capacitance 

 (nF) 

LDT2-028K  16 12 73 62 157 2.85 
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The crack propagated two times with lengths of 3.2 mm and 9.4 mm. These new damage phases 

are considered as Damages 3 and 4. Accordingly, the total of length of crack for Damages 3 and 

4 are, respectively, equal to 19.1 mm and 25.3 mm.  

• Damage 3 (D3) (propagated crack): a = 19.1 mm 

• Damage 4 (D4) (propagated crack): a = 25.3 mm 

 

Figure 3-29: LDT2-28K PVDF Sensor. 

For each of the tests, the initial voltage of the gates is set to 1.2 V. Then, the voltage is read after 

applying 50 cycles. The initial voltage value dropped after applying the cycling loading due to 

electrons injection. Therefore, after each test, the sensor is tunneled and injected to reset all gates 

to almost the same voltage.  

Based on a series of preliminary tests, the threshold voltage of Gates 1 to 7 are summarized in 

Table 3-5.  
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Table 3-5: Voltage threshold levels of each gate. 

Gate Number Voltage (V) 

1 7.6 

2 8.1 

3 8.5 

4 8.8 

5 9.0 

6 9.7 

7 10.2 

3.3.2.1.2.2. Damage detection based on experimental results  

The voltage droppage per 50 cycles with respect to different damage states for the seven 

gates is presented in Figure 3-30. The corresponding percentages of voltage droppage are shown 

in Figure 3-31. As soon as the voltage generated by the PVDF exceeds a threshold corresponding 

to one of the gates, the procedure of electrons injection initiates, and subsequently the voltage of 

that gate starts decreasing.  

It can be seen that the voltage droppage rate increases when damage progresses. This is evident 

for all the 7 gates on-board the sensor, specifically for gates 1-6. Gate 7 is activated at a higher 

voltage threshold (> 10.2 V), and therefore it started injecting after the fourth damage state. 

Apparently, the gate activation can be considered as an indicator of damage occurrence. 

The other important observation from Figure 3-31 is that the voltage droppage percentage for 

each gate is also a good indicator of damage progression. For instance, consider the response of 
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gate 1 to the voltage generated by the PVDF for D0 to D4 damage states (Figure 3-31 (a)). Since 

the voltage amplitude is higher for the D4 mode than that for the other modes, the injection time 

is higher, and therefore the voltage in the gate dropped more for this mode. The same is true for 

the D3-D2, D2-D1 and D1-D0 cases. These trends are similar to those observed from the FE 

results.   

 

        (a) Gate 1                                                        (b) Gate 2 

 

       (c) Gate 3                                                      (d) Gate 4 

Figure 3-30: Voltage changes across the floating-gates of the sensor. 
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Figure 3-30 (cont’d) 

 

         (e) Gate 5                                                        (f) Gate 6 

 

   (g) Gate 7 
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          (a) Gate 1                                                     (b) Gate 2 

 

            (c) Gate 3                                                        (d) Gate 4 

Figure 3-31: Percentage of voltage droppage for different gates. 
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Figure 3-31 (cont’d) 

 

            (e) Gate 5                                                          (f) Gate 6 

 

            (g) Gate 7 

3.3.2.2. Surface sensing of bottom-up cracking in pavements 

This section presents a self-powered surface sensing approach for detection of bottom-up 

cracking in AC pavements. The proposed method is based on the interpretation of compressed 

data stored in memory cells of a nonuniform self-powered wireless sensor. Different 3D FE 

models of an AC pavement are developed using ABAQUS to generate the sensor output data. A 
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realistic dynamic moving load is applied to the surface of the pavement via DLOAD subroutine 

developed in FORTRAN language. A network of sensing nodes is placed at the top of the AC 

layer to assess their sensitivity to the progression of bottom-up cracks. Several damage states are 

defined using the element weakening method. A linear-viscoelastic behavior is considered for 

the AC layer. In order to detect the damage progression, several damage indicators features are 

extracted from the data acquisition nodes. The damage detection accuracy is improved through a 

data fusion model that included the effect of group of sensors. The proposed fusion model is 

based on the integration of a Gaussian mixture model (GMM) for defining descriptive features, 

different feature selection algorithms, and a robust and computational intelligence approach for 

multi-class damage classification. Furthermore, an uncertainty analysis is carried out to verify 

the reliability of the proposed damage detection approach.  

3.3.2.2.1. Finite element modeling of pavement structure subjected to a moving load 

ABAQUS software is employed to simulate the response of the pavement under a 

moving load. In the FE analysis, the stress/strain response is sensitive to element type, size, and 

boundary conditions. In this study, 3D FE models are developed as they are more appropriate 

compared to 2D axisymmetric model. In fact, a 3D model allows simulating the contact stresses 

between the tire footprint and the pavement surface.  The pavement model is meshed using two 

different types of elements: eight-node linear brick elements with reduced integration (C3D8R) 

and eight node linear infinite elements (CIN3D8). The standard finite elements are used to model 

the region of interest and the infinite elements are deployed in the far field region. This type of 

elements allows providing silent boundaries to the FE model in the dynamic analysis and reduces 

the number of elements at far field (ABAQUS, 2010). These elements have a special shape 

function to vanish the displacement field when the coordinates approach infinity. Such boundary 
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type can minimize the reflection of the shear and dilatational waves back into the FE mesh (Al-

Qadi et al., 2010; Wang, 2011). In a dynamic analysis, the infinite elements introduce additional 

normal and shear tractions on the FE boundary using a viscos damping boundary. The introduced 

normal and shear stresses are proportional to the velocity components as follows (Wang, 2011): 

𝜎 =  𝜌 𝑐𝑝𝑢̇                                                            (3-21) 

𝜏 =  𝜌 𝑐𝑠𝑣̇                                                            (3-22) 

where 𝜌, 𝜎, 𝜏, 𝑐𝑝, 𝑐𝑠, 𝑢̇ and 𝑣̇ are the material density, normal stress along the interface between 

the FE/infinite elements, shear stress along the interface FE/infinite elements, longitudinal wave 

velocity, shear wave velocity, normal velocity and tangential velocity, respectively. The wave 

velocities are given by the following expressions (Wang, 2011): 

 𝑐𝑝 = √
(1−𝜈)𝐸

(1−2𝜈)(1+𝜈)𝜌
                                                        (3-23) 

 𝑐𝑠 = √
𝐸

2(1+𝜈)𝜌
                                                            (3-24) 

where E and 𝜈 are the Young modulus and Poisson’s ratio, respectively. In this study, the length 

of the pavement section is 7 meters in the longitudinal direction (parallel to the traffic direction) 

and 6 meters in the transverse direction (perpendicular to the traffic direction). The pavement 

thickness is 6.3 meter. The pavement is composed of three layers: AC, base and subgrade. The 

thickness of the AC, base and subgrade layers are 100 mm, 200 mm and 6000 mm, respectively. 

Large model dimensions are used to reduce the edge effect and to achieve a full passage of the 

tire on the pavement section. Figure 3-32 displays the pavement model as well as the meshed 

cross section of the AC layer. According to a study conducted by Duncan et al., the location of 
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the infinite elements should be at least 12 times the radius of the loading area (R) in the 

horizontal direction (Duncan, 1968). In this study, the infinite domain is located at approximately 

16R from the initial and final locations of the load center in the longitudinal direction, and 17R 

in the transverse direction. The total number of elements is 393,796, from which 363,440 

elements are C3D8R and 30,356 elements are CIN3D8. Figure 3-33 displays the structure of 

CIN3D8. A fine mesh is used around the loading path and a coarse mesh far away from the load. 

Different simulations are conducted to study the effect of the element dimensions on the 

pavement response. It is found that an element with dimensions of 20 mm × 20 mm could 

accurately capture the stress/strain response under the wheel footprint. 

 

                                         (a)                                                               (b) 

Figure 3-32: (a) The 3D FE model of the pavement structure, (b) Meshed cross section of the AC 

layer. 

The element thickness is chosen to be 10 mm for the AC layer, 20 mm for the base, and from 20 

mm to 500 mm for the subgrade. Furthermore, in a dynamic analysis, it is recommended that the 

maximum element size should not exceed 1/12 the minimum length of the elastic waves 
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propagating inside the structure (Wang, 2011).  

The natural frequency of a typical flexible pavement, the vehicle loading frequency, and the 

stress wave velocity are around 6-14 Hz, 0.1-25 Hz and 100 m/s to 600 m/s, respectively (Wang, 

2011). Accordingly, the defined element size is small enough to satisfy the minimum element 

size requirement.   

 

Figure 3-33: Structure of CIN3D8 element. 

3.3.2.2.1.1. Dynamic analysis 

For a pavement analysis, the loading can be modeled as static, quasi-static, or dynamic 

loading. If the loading is stationary, a static analysis is suitable for the analysis. A quasi-static 

approach is a sequence of static loads that are moving from one position to another at each time 

step. Static and quasi-static analyses do not include the effect of inertia forces. However, a 

dynamic analysis is more appropriate if the load is moving with a certain speed in which the 

loading changes in time and location. Therefore, this type of analysis is used for this study. The 

moving load problem can be treated as structural dynamic problem as it considers slower load 
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changes than wave propagation problems. The response in a wave propagation problem is rich in 

high frequency mode shapes. The analysis time is also in the order of the wave travel time across 

the structure. Therefore, a very short time step is required for this type of analysis. In structural 

dynamic problems, the response is dominated by low modes and the effect of high modes is 

insignificant (Chopra, 2001; Bathe, 1996). If the time required for the stress waves to propagate 

through the whole structure does not exceed a small portion of the load rise duration, the 

problem can be assumed to be a structural dynamic problem. As the vehicle speed is much 

smaller than the stress wave speed (100 m/s to 600 m/s), the problem is treated as a structural 

dynamic problem in this study. The equation of motion of a multi-degree of freedom system is as 

given below: 

𝑀 𝑢̈ + 𝐶 𝑢̇ + 𝐾 𝑢 = 𝐹                                                     (3-25) 

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, u is the 

displacement vector and F is the external force vector. The first term of the equation 𝑀 𝑢̈ 

represents the inertia forces and (𝐶 𝑢̇ + 𝐾 𝑢) represents the internal forces.  

There are two ways to solve this type of nonlinear equations; an implicit direct integration or an 

explicit direct integration method. The implicit procedure is more suitable for structural dynamic 

problems and usually provides good numerical stability. For the method, the displacements at 

two consecutive times are calculated by solving a set of nonlinear equations simultaneously.  

In a dynamic analysis, the selection of the time increment is very important. According to Bathe, 

the time increment ∆𝑡 should be less than or equal to  
1

20 𝑓𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡
 (Bathe, 1996): 

∆𝑡 ≤  
1

20 𝑓𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡
                                                              (3-26) 
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where 𝑓𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 is dominant frequency of the response of the structure or of the loading. Herein, 

the time increment is taken 0.001 s which satisfies the time increment requirement as the highest 

loading frequency is usually lower than 10 Hz.  

3.3.2.2.1.2. Material characterization  

Each layer of the modeled pavement has unique material properties. The HMA layer has 

viscoelastic properties while an elastic behavior is considered for the base and subgrade layers. 

The HMA modulus is time (frequency) and temperature dependent. In fact, the state of the stress 

in the AC layer does not only depend on the current strain but on the entire strain history. Table 

A-1 presents the values used for the definition of the viscoelastic material property of the AC 

layer. The Poisson’s ratio is equal to 0.35.  For the AC layer, there is no need to define an 

additional structural damping because it behaves as a viscoelastic material. However, the base 

and the subgrade are elastic materials, and therefore, it is important to add an additional damping 

to include the effect of energy absorption when the wave propagates through the soil. Therefore, 

a 5 % damping ratio is defined for both the base and the subgrade layers. Table 3-6 presents the 

material properties of the three pavement layers. 

Table 3-6: Material properties. 

Layer Modulus (MPa) Poisson’s Ratio Density (Kg/m3) Damping (%) 

HMA 9548 0.35 2325 - 

Base 193 0.3 2000 5 

Subgrade 43 0.4 1500 5 
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3.3.2.2.1.3. Loading 

Tire-pavement interaction is a complex phenomenon due to the tire footprint, non-

uniform contact area, and shear stress components (Siddharthan et al., 1998). A tire footprint 

consists of many small surfaces contacting the pavement separated by ribs that may not make 

contact with pavement and thus may not contribute to the loading. Defining a tire footprint that 

simulates a real tire-pavement interaction is possible using the FE modeling. Tielking and 

Roberts used the ILLIPAVE finite element pavement program to model non-uniform contact 

pressures of a tire moving on an asphalt pavement section (Tielking and Roberts, 1987). Their 

tire contact pressure model considered normal pressure, transverse shear pressure, and 

longitudinal shear pressure. Their results showed that non-uniform tire contact pressure induced 

greater tensile strain at the bottom of the asphalt layer compared to uniform contact pressure. 

However, simplifying the tire contact pressure area can affect the pavement strain response since 

the distribution of the stress field in the contact zone is not uniform (Tielking and Roberts, 1987; 

Wang and Machemehl, 2006; Yue and Svec, 1995). Tire pressure and load intensity affect 

contact stress distribution (Tielking and Roberts, 1987; Alkasawneh et al., 2008; Mun et al., 

2006; Weissman, 1999; Perret and Dumont, 2004). In the multilayered elastic theory, the shape 

of the tire footprint is assumed to have a circular shape as it conserves the property of an 

axisymmetric problem. Wang and Machemehl showed that the assumption of a uniform circular 

tire-pavement pressure area can underestimate the compressive strains at the top of the subgrade 

and overestimate the tensile strains at the bottom of the AC layer (Wang and Machemehl, 2006). 

In most of the 3D FE modeling of pavements, the contact area between the tire and the pavement 

surface is approximated to a rectangle with two semi-circles as shown in Figure 3-34. Previous 

study shows that the shape of the contact area of a truck tire is closer to be rectangular than 
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circular (Weissman, 1999). 

        

Figure 3-34: Tire contact area. 

In this study, the contact area is assumed to be rectangular. The obtained contact area is 

transformed to a simple rectangle with the same width 0.6 L. The area of the contact zone shown 

in Figure 3-34 is equal to: 

 𝐴𝑐 = 0.4 𝐿 × 0.6 𝐿 + 2 × (
𝜋 (0.3 𝐿)2

2
) = 0.5227 𝐿2                             (3-27) 

Therefore, if a denotes the length of the equivalent rectangle, the equivalent area (Figure 3-35) 

is: 

 𝐴𝑐 = 𝑎 × 0.6 𝐿 =  0.5227 𝐿
2                                            (3-28) 

which gives: 𝑎 =  
0.5227 𝐿2

0.6 𝐿
= 0.8712 𝐿 

The area of the contact area used in this study is Ac = 0.0260 m2. Therefore L is given by: 

𝐿 =  √
𝐴𝑐

0.5227 
= √

0.0260

0.5227 
 = 0.2230 𝑚                                      (3-29) 
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Figure 3-35: Approximated rectangular loading. 

Thus, the dimensions of the rectangle are:  0.8712 L = 0.1943 m and 0.6 L = 0.1338 m. 

The loading of the pavement occurred at the center strip of the section. Figure 3-36 highlights the 

loaded strip. In order to simulate the movement of the load at the desired speed, a user defined 

DLOAD subroutine is developed using FORTRAN. In fact, regular loading functions in 

ABAQUS do not allow varying the location of the applied load as a function of time. In order to 

overcome this limitation, different approaches are proposed. The load and its amplitude can be 

shifted over the loading path at each step until a single wheel pass is completed (Alavi et al., 

2016c; Al-Qadi and Wang, 2009). This approach is time consuming as it needs the definition of 

the footprint areas for each step. However, the DLOAD subroutine can be used to define the 

variation of the distributed load magnitude as function of the position, time, element number, and 

load integration point number (ABAQUS, 2010). 

The script specifies the center of the rectangular loading area and its dimensions, the initial and 

final position of the truck, the truck speed and the tire pressure. A highway speed of 67 mph (30 

m/s) is inputted to the FORTRAN code and a tire pressure of 862 kPa is applied. The location of 

the center of the contact area is calculated by the DLOAD subroutine in each time step as 

follows: 
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  𝑥 = 𝑣𝑥  ×  𝑡 + 𝑥0                                                    (3-30) 

       𝑦 = 𝑣𝑦  ×  𝑡 + 𝑦0                                                    (3-31) 

where 𝑣𝑥, 𝑣𝑦, 𝑥0 and 𝑦0 are the speed in x direction, the speed in the y direction, the x-coordinate 

of the initial location of the tire center, and the y-coordinate of the initial location of the tire 

center. The vehicle speed is kept constant. 

 

Figure 3-36: Loaded strip of the AC pavement section. 

In this work, the loading is assumed to follow the x-axis, therefore, 𝑣𝑦 is set to zero. The chosen 

length of the loading path is 3 m. As the selected time step of the dynamic analysis is 0.001 

second, the tire progresses by:  

                          ∆𝑥𝑡𝑖𝑚𝑒−𝑠𝑡𝑒𝑝 = 𝑣 ∆𝑡 = 30 × 0.001 = 0.03 𝑚 = 30 𝑚𝑚                             (3-32) 

The size of the element around the loading path is 20 mm × 20 mm, therefore, only one element 
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(in the longitudinal direction) is loaded in each time step. 

3.3.2.2.1.4. Crack modeling 

Many recent studies on fatigue of flexible pavements have been conducted using the FE 

softwares such as ABAQUS and FEP++ (Huang et al., 2010; Mun et al., 2006; Sarkar, 2016; 

Shafabakhsh et al., 2015; Dave and Buttlar, 2010). These programs allow the user to define 

various complex parameters such as the viscoelastic properties of asphalt. A limitation of using 

FE programs for the asphalt pavement analysis pertains to the definition of highly complex 

scenarios such as fatigue cracking. Fatigue cracking can begin as either bottom-up crack, top-

down crack, or combination of the two. After repeated loading of the asphalt pavement, crack 

propagation and additional crack growth further weaken the pavement. These cracks that begin at 

one end can either continue growing through the thickness of the pavement or coalesce with a 

different crack growing in another direction. Modeling of fatigue cracking inadequately can 

result in overestimation of fatigue life (Mun et al., 2006). Major factors affecting fatigue 

cracking are asphalt properties, asphalt thickness, and tire pressure among others. Generally, top-

down cracking increases in thicker asphalt, stiffer asphalt, less stiff base and/or subgrade, and 

under non-uniform loading (Mun et al., 2006).  

ABAQUS allows the user to define certain properties by a user subroutine (ABAQUS, 2010). 

Detailed crack modeling is typically defined using a user subroutine in order to realize more 

realistic results due to limitations in the basic modeling methods. Cracks defined in ABAQUS 

using basic modeling for asphalt pavement yield to inaccurate results due to over simplification 

of the crack. Modeling crack in ABAQUS can be done using XFEM. The major limitation that 

deter XFEM usage in the fatigue cracking of pavements is that the method is only viable in static 

cases. Creating a user subroutine to accurately model fatigue cracking in asphalt has yet to be 
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accomplished. Song et al. have developed a user subroutine of a cohesive fracture model that 

successfully replicated cracking in asphalt concrete (Song et al., 2006). Dave and Buttlar have 

successfully modeled thermal reflective cracking using a user-defined bilinear cohesive crack 

model (Dave and Buttlar, 2010). A crack can also be introduced using element weakening 

method. Mishnaevsky Jr. has used this method to simulate the reduced properties resulting from 

cracking of particle reinforced composites (Mishnaevsky Jr., 2004).  

In this section, the EWM is also used to introduce the damage to the pavement. Different 

scenarios are defined based on both the weakening state of elements defining the damage zone 

and the damage height. On this basis, the element elastic modulus is reduced to a certain value in 

order to define a damage state. 

A total of 13 damage states are studied which include 4 different cases of modulus reduction, 

each having three varying damage zone heights. A damage having a rectangular prismatic shape 

of 120 mm × 120 mm × damage height is created at the bottom center of the HMA layer. The 

modulus of this volume is reduced to 30%, 50%, 70%, and 90% from the instantaneous modulus 

of the HMA layer. The damage zone heights are 20 mm, 40 mm and 60 mm. The defined 

damage states are given in Table 3-7. Figure 3-37 shows the damage location, cross section, and 

the measurement locations. 
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Table 3-7: Damage scenarios. 

Damage  

State 

Damage Height  

(mm) 

Reduction in AC 

Modulus (%) 

Intact 0 0 

D20W30 20 30 

D20W50 20 50 

D20W70 20 70 

D20W90 20 90 

D40W30 40 30 

D40W50 40 50 

D40W70 40 70 

D40W90 40 90 

D60W30 60 30 

D60W50 60 50 

D60W70 60 70 

D60W90 60 90 
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                                       (a)                                                         (b) 

Figure 3-37: (a) Cross section of the damage (b) Crack zone and measurement location. 

3.3.2.2.2. Sensors location 

Figure 3-38 shows the location of the data acquisition nodes on the surface of the AC 

layer. A network of 32 elements is selected as the sensing nodes. The network is divided into 4 

sets. Each set contains 8 sensing nodes. 

In each set, the first sensor is located at y = 0, and the distance between two consecutive 

elements is 200 mm.  The transversal distance between two sets is 60 mm. Therefore, the offset 

of the sets from the center of the pavement (y = 0) is considered as follows: 

• Set 1: y = 0 

• Set 2: y = 60 mm 

• Set 3: y = 120 mm 
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• Set 4: y = 180 mm 

The longitudinal, transverse and principal strains (𝜀1,𝜀2,𝜀3) for each of the predefined damage 

cases are subsequently extracted.  

 

Figure 3-38: Sensors locations. 

3.3.2.2.3. FE results 

Figure 3-39 shows the time history of the first principal strains (in absolute value) for 

different sensors and for the intact, D20W90, D40W90 and D60W90 damage states. As can be 

seen, for sensor S1, which is located above the damage zone, the amplitude of the strain 

increases with damage growth. The difference of the amplitudes between the Intact and the 

D60W90 damage state is 111.7 𝜇𝜀.  

Figure 3-40 displays the results for sensor S2. Evidently, the difference between the maximum 

principle strains is being reduced comparing to sensor S1 as the sensor is located at a 200 mm 



 

137 

offset from S1 (along the x-axis). 

Figure 3-41 displays the results for sensor S17 which is located at x = 0 and at y = 120 mm. As 

seen can be seen in the figure, the amplitude of the strain is changing between damage states, but 

it does not have an increasing trend comparing to sensors S1 and S2.  However, for sensor S18, 

which has a 120 mm offset from the x-axis and 200 mm offset from the y-axis, the strain 

amplitude continuously increases as the damage progresses (Figure 3-42). Based on the results, it 

can be concluded that the amplitude of the strains is affected by the damage progression as well 

as the location of the sensor with respect to the damage.  

 

Figure 3-39: Strain history of sensor S1 for different damage states. 
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Figure 3-40: Strain history of sensor S2 for different damage states. 

 

Figure 3-41: Strain history of sensor S17 for different damage states. 
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Figure 3-42: Zooming around the peak values of sensor S18.  

Figure 3-43 presents the variation of the maximum first principal strain (in absolute 

value) with respect to the percentage of modulus reduction for different damage heights (hd). As 

seen in these figures, the amplitude of the strain depends on the offset of the sensor with respect 

to the damage zone. In fact, for a fixed reduction in the asphalt modulus, the strain amplitude 

increases for sensors S1 and S2 but the behavior changes when the sensor is located at a certain 

offset from the damage center. Furthermore, as it is illustrated by sensor S17, and for a fixed 

damage height, the strain increases with the percentage of modulus reduction for the case of 20 

mm but it has a decreasing trend for the two other damage lengths (40 mm and 60 mm). 

However, when the sensors are located along the wheel path, a unique trend is observed. In this 

case, the amplitude of the first principal strain increases with the damage height and the 

percentage of modulus reduction.  
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                               (a) Sensor S1                                                   (b) Sensor S2 

 

      (c) Sensor S17 

Figure 3-43: Variation of the Maximum principal strain with the damage state. 

3.3.2.2.4. Proposed damage detection approach  

The damage detection approach proposed in this work is divided into three stages. The 

first step is focused on generating and characterizing the sensor output based on the time history 

of the first principal strains obtained in the previous section. Thereafter, a feature transformation 

method is applied to the original set of data to find a sound relationship between the damage 
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progression and the data of the network of sensors. Finally, a PNN classifier is integrated to 

classify the pre-defined damage classes. 

For the analysis, the initial strain value in each memory is set to 500 𝜇𝜀. The gate injection rates 

as well as the strain threshold levels are displayed in Table 3-8. The selection of the thresholds 

and number of gates is based on the injection rates of an existing sensor. The activation strain of 

the sensor is 80 𝜇𝜀 below which the device does not record any information. The maximum 

threshold is 200 𝜇𝜀.   

Figure 3-44 presents the variation of the sensor strain at each gate versus the number of applied 

cycles for the intact pavement and for one damage scenario. For brevity, only the results 

pertaining to the intact and D60W90 modes are compared for sensor S1. As it is seen in Figure 

3-44, the strain varies linearly as a function of the number of cycles. In addition, the slopes of the 

curves corresponding to the damaged pavement are higher (in absolute value) than the intact 

configuration. This can be explained by the fact that the amplitude of strain continuously 

increases at location of sensor S1 with respect to the damage progression. In addition, the 

cumulative time intersection increases with an increase in the strain amplitude. 

In this study, a GMM is proposed to fit the cumulative droppage of the strain at the 

sensing nodes. GMMs are very powerful tools to adequately describe many types of data. In fact, 

certain models exhibit multimodalities that are poorly described by a single Gaussian 

distribution. In the case of different injection rates, the output histogram is expected to have 

different rate of strain variation between the gates resulting in multiple maxima. Therefore, a 

multi-modal Gaussian mixture (GM) model can be a good fit to the data. The PDF of a GM 

distribution is given by the following expression: 

𝑝(𝑥) =  ∑
𝑐𝑘

√2 𝜋 𝜎𝑘
2

𝑀
𝑘=1 exp [−

1

2
(
𝑥− 𝜇𝑘

𝜎𝑘
)
2

]                                       (3-33) 
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where 𝜇𝑘, 𝜎𝑘 (𝑘 = 1. .𝑀) are mixture component parameters and 𝑐𝑘 are the mixture weights. The 

mixture weights of the PDF should satisfy the following condition: 

∑ 𝑐𝑘
𝑀
𝑘=1 = 1                                                                  (3-34) 

For the analysis, the strain droppage histogram is fitted by a bimodal GMM as follows: 

∆𝜀(𝑔) = (∑ ∆𝜀𝑖
7
𝑖=1 ) ∑

𝛼𝑘

√2 𝜋 𝜎𝑘
2

2
𝑘=1 exp [−

1

2
(
𝑔− 𝜇𝑘

𝜎𝑘
)
2

]                                 (3-35) 

where g is the gate number, (𝜇𝑘, 𝜎𝑘) are the mixture components parameters, 𝛼𝑘 is a parameter, 

and ∆𝜀𝑖 is the cumulative droppage in strain at gate number i.  

Table 3-8: Preselected strain levels and gate injection rates considered for the analysis. 

 

 

 

 

 

 

 

 

 

Gate Number 

Strain Threshold  

Level  (𝜇𝜀) 

Injection  

Rates (𝜇𝜀/𝑠) 

1 80 0.001000 

2 100 0.005710 

3 120  0.023162 

4 140 0.027822 

5 160 0.006562 

6 180 0.005989 

7 200 0.032792 
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                                                   (a)                                                      (b) 

 

                                                      (c)                                                 (d) 

 

                                                   (e)                                                       (f) 

Figure 3-44: Strain change across sensor S1 gates. 
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Figure 3-44 (cont’d) 

 

           (g) 

Equation (3-35) has 6 parameters to estimate:  𝜇𝑘 ,  𝜎𝑘, 𝛼𝑘 , k=1,2. These parameters can be 

obtained based on the 7 values of each gate of the sensor.  Figure 3-45 displays the obtained 

GMM fit to the data of sensor S1. 

One million traffic cycles are applied to the pavement in order to get a significant 

droppage in the sensor output data. It is important to mention that the injection rates can be 

modified using an additional resistance in parallel with the internal resistance of the sensor. 

Therefore, for a fatigue analysis, the impedance of the sensor should be increased in order to 

lower the injection rates of the gates.  

As seen in Figure 3-45, the output histogram presents 2 peaks corresponding to the first two 

maximum strain drops. It is important to mention that the maximum values do not only depend 

on the injection rates, but they are also related to the threshold levels, the number of cycles, and 

the strain rate variations. Figure 3-46 displays the results of the GMM fit for different sensors. 

The GMM curves are plotted for the intact configuration and for D60W90 damage state.  
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Based on the results, the GM distribution deviates from one damage states to another. According 

to the section 3.3.2.2.3, the amplitude of the strain changes with damage. As a result, the 

cumulative time intersection changes as well and affects the variation of the strain at the sensor 

level. 

 

Figure 3-45: GMM fit to the sensor data. 

For sensor S1, the mean (𝜇1) of the first components of the GM shifts to the left (decreases) and 

the second mean 𝜇2 shifts to the right (increases). In addition, the standard deviations 𝜎1 and 𝜎2 

increase with damage progression as the distribution expands. Furthermore, when the sensor is 

located far from the damage zone, the variation of the GMM parameters becomes less significant 

as indicated by sensors S2 and S3.  

An interesting observation from the output of sensor S9, located at 60 mm offset from the x-axis, 

is that 𝜎2 shows a significant variation between the intact and the damaged configurations. At the 
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location of sensor S9, the maximum strain obtained by the FE model is below 180 𝜇𝜀 for the 

intact configuration. Therefore, gates 6 and 7 are still inactive and they did not record any data.   

 

        (a)                                                                   (b) 

 

(b) (d) 

Figure 3-46: GMM distributions for different sensors. 
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Figure 3-46 (cont’d) 

 

(e) 

When the damage reaches the D60W90 damage state, the maximum strain increased to 210.94𝜇𝜀 

which is above the maximum threshold level of all the gates. Thus, all the gates become active. 

When the output of sensor S9 is fitted by the GMM, the intact configuration presents a very 

small  𝜎2 and a mean 𝜇2 below 6 in order to satisfy the zero strain droppage condition described 

before. Thereafter, when all the gates become active for the highest damage state (D60W90), the 

standard deviation of the second mixture component increased to 1.34 which is more than 16 

times higher than 𝜎2  of the intact configuration. This considerably affects the width of the 

distribution.   
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structure. Thus, the damage could be defined as function of these parameters as follows: 

𝐷𝑎𝑚𝑎𝑔𝑒 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝜇1, 𝜎1, 𝜇2, 𝜎2)                                           (3-36) 

However, the changes of the GM parameters are not always consistent. For example, for sensor 

S1, the first components (𝜇1, 𝜎1) decrease and the second components (𝜇2, 𝜎2) increase when 

damage progresses from the intact to D60W90 mode. For sensor S17, 𝜇1 and 𝜇2 increase, and 𝜎1 

and 𝜎2 decrease. Thus, it can be concluded that 𝜇1, 𝜎1, 𝜇2 and 𝜎2 are good damage indicators but 

cannot be individually used for classifying damage states. To deal with this issue, a pattern 

recognition approach is developed to precisely detect and classify the damage phase.  

3.3.2.2.5. Damage classification 

3.3.2.2.5.1. Probabilistic neural network 

Computational intelligence includes a set of nature-inspired approaches that can 

determine the model structure by automatically learning from data (Hasni et al., 2017a). CI 

provides alternative solutions to overcome the limitations of the traditional mathematical 

modeling. These limitations might be associated with the uncertainties during the process, the 

complexity, or the stochastic nature of the process. The CI techniques such as artificial neural 

network, support vector machines, fuzzy inference system, etc have been widely used for 

behavioral characterization and health monitoring of pavements and infrastructure systems 

(Szewczyk and Hajela, 1994; Wu et al., 1992; Chassiakos and Caughey, 1993; Elkordy et al., 

1993; Zhao et al., 1998). Major drawbacks of the widely-used ANNs are its ‘black box’ nature, 

the proneness to overfitting, and the time-consuming iterative procedure required during training 

of the network to obtain the optimal learning parameters (Yan and Miyamoto, 2003). To 
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overcome such limitations, PNN has been proposed by Specht (Specht, 1990). One advantage of 

PNNs is that it does not have a separate training phase which makes the execution faster than the 

conventional neural networks. PNN is a supervised neural network that is closely related to the 

standard Bayes classification rule and Parzen non-parametric PDF estimation technique. It is 

commonly used for pattern classification and recognition problems (Yan and Miyamoto, 2003; 

Goh, 2002; Adeli and Panakka, 2009). The Bayes formula can be expressed as follows:  

)(

)()|(
)|(

xp

Pxp
xP

jj

j


                                                  (3-37) 

where 𝑃(𝜔𝑗|𝑥) is the posterior probability, 𝑃(𝜔𝑗) is the prior probability and 𝑃(𝑥|𝜔𝑗) is the 

likelihood of 𝜔𝑗 with respect to x. The Bayes decision rule is based on the maximization of the 

posterior probability. As the evidence 𝑝(𝑥) is independent of the class label, then the decision 

rule can be determined by estimating the likelihood probability for each class and the priors. 

The prior probability 𝑃(𝜔𝑗) highly depends on the specific task and should be decided by the 

physical knowledge of the problem. Thus, the only remaining unknown in the Bayes formula is 

the likelihood. This class conditional probability could be estimated using the non-parametric 

density estimation scheme using the Parzen window approach. More details about PNN can be 

found in (Duda et al., 2000; Mao et al., 2000).  

Assuming we have N training samples, {x1,…,xN},divided into c classes, each of them has d 

dimension, and the h is the length of side of hypercube in the Parzen window approach. The 

estimation of density at a point x in the d dimensional space is: 

𝑝(𝒙) =  
1

𝑁
 ∑

1

ℎ𝑑
𝑘 (

𝒙 − 𝒙𝑛

ℎ
)𝑁

𝑛=1                                                    (3-38) 
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In Equation (3-38), 𝑘 (
𝐱 − 𝐱𝑛

ℎ
) is the kernel function that is used to count the number of patterns 

located inside the hypercube of volume 𝑉 =  ℎ𝑑. Similarly, the value of a probability density 

function of class 𝜔𝑗 is given by: 

𝑃𝑗(𝒙) =  
1

𝑁𝑗
∑

1

ℎ𝑑
 𝑘 (

𝒙 − 𝒙𝑛
𝑗

ℎ
)

𝑁𝑗
𝑛=1                                                (3-39) 

When a Gaussian as kernel function is used, the final estimation becomes: 

𝑃𝑗(𝒙) =  
1

𝑁𝑗
∑

1

𝜎𝑑
1

(2𝜋)
𝑑
2

exp (−
𝑁𝑗
𝑛=1

1

2

‖𝒙 − 𝒙𝑛
𝑗
‖
2

𝜎2
)                                    (3-40) 

The precedent expression can be written as follows: 

𝑃𝑗(𝒙) =  
1

𝑁𝑗(2𝜋)
𝑑
2𝜎𝑑
∑ exp (−
𝑁𝑗
𝑛=1

‖𝒙 − 𝒙𝑛
𝑗
‖
2

2 𝜎2
)                                         (3-41) 

where 𝑁𝑗 is the number of training patterns of class 𝜔𝑗, 𝜎 is called the smoothing parameter that 

describes the spread of the Gaussian window function and 𝒙𝑛
𝑗
 is the nth pattern belonging to class 

𝜔𝑗 . The feature vectors  𝒙𝑛
𝑗

 represent the center of the Gaussian window. The smoothing 

parameter 𝜎 needs to be determined experimentally.  

As mentioned before, the PNN structure is a direct implementation of the PDF estimator 

(Equation (3-41)) and the Bayesian decision rule. A typical PNN with 4-layers architecture is 

shown in Figure 3-47. The network is constructed by the following layers: input layer, pattern 

layer, summation layer, and output layer. The input layer consists of d input units, which 

corresponds to the d features. Each input unit is connected to each of the N pattern units  

(Alavi et al., 2016a). The number of nodes in the pattern layer is equal to the total number of 
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training vectors. Each pattern unit k computes the inner product of its weight vector and the 

normalized pattern vector x as follows: 

𝑛𝑒𝑡𝑘 = 𝒘𝑘
𝑡  𝒙                                                            (3-42) 

Thereafter, each pattern unit emits a nonlinear transfer function: 

exp (
𝑛𝑒𝑡𝑘 − 1

𝜎2
) = exp (

𝒘𝑘
𝑡  𝒙 − 1

𝜎2
)                                              (3-43) 

On the other hand, the desired Gaussian window function is: 

𝑘 (
𝒙 −  𝒘𝑘

ℎ
) ∝  exp (−

(𝒙 − 𝒘𝑘)
𝑡(𝒙 − 𝒘𝑘)

2𝜎2 
) =  𝑒𝑥𝑝 (

2𝒙𝑡𝒘𝑘 − 𝒙
𝑡𝒙 − 𝒘𝑘

𝑡𝒘𝑘

2𝜎2
)                       (3-44) 

By taking into account the normalization of x and 𝒘𝒌, Equation (3-44) can be expressed as 

follows: 

𝑘 (
𝒙 −  𝒘𝑘

ℎ
) ∝  𝑒𝑥𝑝 (

𝒙𝑡𝒘𝑘 − 1

𝜎2
) =  𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛                     (3-45)   

The precedent equation explains the choice of the nonlinear transfer function employed by the 

pattern units.  

Each neuron in the summation layer will sum these functions corresponding to a single 

population. As a result, the output of the summation layer has the same form as the Parzen 

window estimate of the distribution. The output of the summation layer is: 

𝐶𝑗(𝒙) =  ∑ exp (
𝒙𝑡𝒘𝑗𝑘 − 1

𝜎2
)

𝑁𝑗
𝑘=1                                               (3-46) 

Thereafter, if the prior probabilities are the same, and the cost functions of making an incorrect 

decision are the same for all classes, the decision layer classifies according the Bayes decision 
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rule as follows: 

𝐶(𝒙) =  𝑎𝑟𝑔𝑚𝑎𝑥
𝑗=1..𝑐

𝑃𝑗(𝒙)                                            (3-47) 

 

Figure 3-47: A typical architecture of PNN. 

The training of PNN is fast, and it guarantees the convergence to an optimal classifier as the size 

of training samples increases. In addition, PNN does not have local minima problems. However, 

one major challenge is to find the optimal smoothing parameter 𝜎. A very small 𝜎 can produce 

many empty hypercubes and may result in problems of overfitting. On the other hand, if the 

window width is too large, the PNN classifier may under-fit the data as it cannot present some 

important local variations. Therefore, the accuracy of the PNN classifier highly dependents on 

the choice of the smoothing parameter (Alavi et al., 2016a). 

As mentioned before, 32 sensors are defined on the surface of the pavement. However, only 15 
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sensors are considered in this analysis for the following two reasons:  

- The maximum strain at the 180 mm offset set of sensors is below the minimum threshold of 

the sensor.  

- The difference on the peak strain values for last 3 sensors of each set between any two 

damage states is very low. 

Therefore, only sensors S1, S2, S3, S4, S5, S9, S10, S11, S12, S13, S17, S18, S19, S20, and S21 

are used. In addition, the damage states are divided into 4 classes as follows: 

• 𝜔1: Intact structure 

• 𝜔2: D20W30, D20W50, D20W70, D20W90 

• 𝜔3: D40W30, D40W50, D40W70, D40W90 

• 𝜔4: D60W30, D60W50, D60W70, D60W90 

Each sensor represents a pattern for the classifier, and therefore, the total number of data points 

is: 15 × 13 = 195. The performance of the developed models is measured using the DR.  

3.3.2.2.5.2. Performance of the initial features 

Initial feature vectors are defined based on the GMM parameters (𝜇1, 𝜎1, 𝜇2, 𝜎2).  These 

parameters are used to characterize the initial input vector  𝑥 as follows: 

 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4]
t                                                      (3-48) 

where:    

{

𝑥1 = 𝜇1
𝑥2 = 𝜎1

2

𝑥3 = 𝜇2
𝑥4 = 𝜎2

2

                                                           (3-49) 
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As indicated by Equation (3-48), the initial problem has 4 dimensions. Thus, 195 4-dimenstional 

patterns are used for the classification. The total number of data is divided into 3 sets:  

- 70 % training = 137 input vector 

- 15 % validation = 29 input vector 

- 15 % testing = 29 input vector 

As one would expect, these 4 initial features provided very low accuracy on the validation and 

testing data. The maximum detection rates for the validation and testing data are 27.58% and 

13.79%, respectively. Figure 3-48 displays the results of the classification in the validation set as 

a function of the PNN smoothing parameter (𝜎). Multiple iterations are performed by varying the 

smoothing parameter in order to find the optimal value that gives the best accuracy on the 

validation set. The best configuration is then applied to the unseen testing data. As seen in Figure 

3-48, the best detection rate is obtained when the optimal smoothing parameter is between 1 and 

10. Hence, the optimal value of 𝜎 is equal to 1. 

Thereafter, PCA is performed on the initial set of patterns in order to visualize the data along its 

first two principal components. Figure 3-49 displays the original input data (x) projected on the 

two first principal components. The obtained eigenvalues of the covariance matrix are: 𝜆1 =

152.49, 𝜆2 = 1.61, 𝜆3 = 0.02, 𝜆4 = 1.57 × 10
−4. Hence, the first two components represent 

99.99 % of the data. The detection accuracy using the reduced feature vector: 𝑥′ = [𝑥1 𝑥2]
𝑡 is 

increased from 13.79 % to 34.48 % for the testing data. Furthermore, as seen in Figure 3-49, the 

defined 4 damage classes overlap intensively which results in a low detection accuracy. 
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Figure 3-48: Accuracy versus smoothing parameter for the validation set. 

 

Figure 3-49: Projection of the featured data onto the first two principal components. 
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3.3.2.2.5.3. Sensor fusion model 

Feature Transformation 

According to the preliminary results, the initial input feature vector 𝑥 does did not contain 

enough information to separate classes. Hence, a new strategy is defined to improve the damage 

detection performance. On its basis, it is decided to fuse both the information provided by one 

sensor and all the information supplied by the other sensors. Figure 3-50 summarizes the 

proposed method for the data fusion model. The proposed feature transformation 𝜑  could be 

written as follows: 

𝜑: ℝ4
𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
→                   ℝ10 

𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4]
𝜑
→ 𝑦 = [𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10]                      (3-50) 

 

Figure 3-50: Data fusion model. 

 

Data Fusion Model 

Feature Transformation Function: 

𝜑 

𝑦1 =  𝜑 (𝑥1) 

𝑥1 𝑥2 𝑥𝑁  

𝑦2 =  𝜑 (𝑥2) 𝑦𝑁 =  𝜑 (𝑥𝑁) 
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The new set of input parameters are introduced to the formulation of the damage state as follows: 

𝑦 =

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑦1 =

𝑥1−𝑥1ave

𝑥1STD

𝑦2 =
𝑥2−𝑥2ave

𝑥2STD

𝑦3 =
𝑥3−𝑥3ave

𝑥3STD

𝑦4 =
𝑥4−𝑥4ave

𝑥4STD

𝑦5 =
𝑥1−𝑥1STD

𝑥1ave

𝑦6 =
𝑥2−𝑥2STD

𝑥2ave

𝑦7 =
𝑥3−𝑥3STD

𝑥3ave

𝑦8 =
𝑥4−𝑥4STD

𝑥4ave

𝑦9 =
(𝑥1+𝑥3)−(𝑥2ave+𝑥4ave) 

𝑥1ave+𝑥3ave

𝑦10 =
(𝑥2+𝑥4)−(𝑥1ave+𝑥3ave) 

𝑥2ave+𝑥4ave

                                               (3-51) 

where, 

- 𝑥𝑖: The ith feature of the initial feature vector, 

- 𝑥𝑖ave: The average of 𝑥𝑖 for all patterns corresponding to a specific damage state, 

- 𝑥𝑖STD: The standard deviation of 𝑥𝑖 for all patterns corresponding to a specific damage 

state. 

The new defined features yi  (i=1..10) are derived from the conventional z-score functions. In 

fact, features  𝑦1 to  𝑦4  are the z-score functions and features 𝑦5 to  𝑦10  are functions that are 

inspired by the form of the conventional z-score function. All the yi (i=1..10) are based on the 

average and the standard deviation of all patterns for a specific damage state.  

Feature Selection 

The new features are expected to increase the ‘distance’ between classes especially 
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between two consecutive damage states. The word distance here refers to Euclidian distance 

between two features in the d-dimensional space belonging to two different classes. Furthermore, 

by increasing the dimensionality of the problem from 4 to 10, the accuracy is more likely to 

increase. However, increasing the number of features may also lead on the curse of 

dimensionality. Therefore, different feature selection methods are used to tackle this problem. In 

this study, sequential forward selection (SFS), sequential backward selection (SBS), and 

exhaustive search (brute-force search) algorithms are used to select the best set of features 

(Zongker and Jain, 1996; MathWorks, 2016; Aha and Bankert, 1996; Weston et al., 2000).  

SFS 

SFS sequentially adds the best feature 𝑦+ that maximizes the objective function 𝐽(𝑍𝑘 +

𝑦+). The SFS algorithm works as follows (MathWroks, 2016):  

1. Start with the empty set Z0 = {∅} 

 2. Select the next best feature: 𝑦+ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑦∉𝑍𝑘

(𝐽(𝑍𝑘 + 𝑦))  

3. Update Zk+1= Zk + y+; 𝑘 = 𝑘 + 1  

Go to 2 

Table 3-9 displays the sets selected by the SFS algorithm and their performances at each step. 

The best accuracy on the training, validation, and testing data is obtained using feature vectors Z8 

or Z9 selected as follows:  

𝑍8 = {𝑦9, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7}                                        (3-52) 

𝑍9 = {𝑦9, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8}                                  (3-53) 

The detection rate accuracy using feature vectors Z8 or Z9 are 100%, 96.55%, and 93.10% for the 
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training, validation, and testing data, respectively. The optimal smoothing parameter is 

calculated at each iteration of the algorithm.  

SBS 

This method sequentially removes the worst feature 𝑦−that least reduces the objective 

function 𝐽(𝑍𝑘 − 𝑦
−). The SBS algorithm works as follows (MathWorks): 

1. Start with the full set 𝑍0 = 𝑦 , 

2. Remove the worst feature: 𝑦− = argmax
𝑦∈𝑍𝑘

(𝐽(𝑍𝑘 − 𝑦)) 

3. Update Zk+1 = Zk − y −; 𝑘 = 𝑘 + 1.  

Go to 2 

Table 3-10 displays the sets selected by the SBS algorithm at each step. The best accuracy on the 

training, validation, and testing data is obtained using feature vectors Z1, Z2 or Z3, where: 

𝑍1 = {𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10}                                    (3-54) 

𝑍2 = {𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10}                                         (3-55) 

𝑍3 = {𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9}                                                (3-56) 

The best detection accuracy is 100%, 96.55%, and 93.10% for the training, validation, and 

testing sets, respectively. Multiple iterations are performed at each step to find the optimal 

smoothing parameter. The optimal set extracted by the SBS algorithm is  𝑍3  which has 7 

dimensions.  
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Table 3-9: Features selected by SFS and their corresponding detection rates. 

Set 

Number 

Features Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

1 {𝑦9} 94.89 89.65 89.65 

2 {𝑦9, 𝑦1} 100 89.65 93.10 

3 {𝑦9, 𝑦1, 𝑦2} 100 79.31 93.10 

4 {𝑦9, 𝑦1, 𝑦2, 𝑦3} 100 79.31 93.10 

5 {𝑦9, 𝑦1, 𝑦2, 𝑦3, 𝑦4} 100 79.31 93.10 

6 {𝑦9, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦4} 100 82.75 93.10 

7 {𝑦9, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦4, 𝑦5} 100 82.75 93.10 

8 {𝑦9, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7} 100 96.55 93.10 

9 {𝑦9, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8} 100 96.55 93.10 

10 {𝑦9, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦10} 100 96.55 89.65 
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Table 3-10: Features selected by SBS and their corresponding detection rates. 

Set 

Number 

Features Training 

Accuracy 

(%) 

Validation 

Accuracy 

(%) 

Testing 

Accuracy 

(%) 

1 {𝑦1,𝑦2, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10} 100 96.55 89.65 

2 {𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10} 100 96.55 93.10 

3 {𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9, 𝑦10} 100 96.55 93.10 

4 {𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9} 100 96.55 93.10 

5 {𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9} 100 96.55 89.65 

6 {𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑦9} 100 96.55 86.20 

7 {𝑦6, 𝑦7, 𝑦8, 𝑦9} 100 96.55 86.20 

8 {𝑦7, 𝑦8, 𝑦9} 100 96.55 86.20 

9 {𝑦8, 𝑦9} 98.54 93.10 86.20 

10 {𝑦9} 94.89 89.65 89.65 

Exhaustive search 

The main limitation of SFS pertains to the fact that it is unable to remove feature that 

become obsolete after the addition of other features. Similarly, SBS cannot reevaluate the 

usefulness of a removed feature on the selected set. Both algorithms are suboptimal. Therefore, 

an exhaustive search algorithm is performed. It is decided to select the best 3 features that give 

the best classification accuracy. As the problem has 10 dimensions, the algorithm performed 

𝐶10
3 = 120 iterations to find the best set of 3 features. One the best obtained sets that gives the 
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best accuracy is: 

𝑆𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = {𝑦4, 𝑦7, 𝑦9}                                            (3-57) 

 

(a)  Training data                                       (b) Validation data 

 

(c)  Testing data 

Figure 3-51: Confusion matrixes for the best features selected by the exhaustive search method. 

The detection rate for the training, validation, and testing data is equal to 100%, 96.55%, and 

93.10%, respectively. Figure 3-51 displays the confusion matrixes. As observed from the 
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matrixes, only 2 patterns are misclassified in the testing set and 1 pattern in the validation set. 

The obtained optimal smoothing parameter is 0.01 (Figure 3-52). 

 

Figure 3-52: Accuracy versus smoothing parameter for the validation set using the exhaustive 

search method. 

The new set of features based on the data fusion model has enhanced the performance of the 

detection rate from 13.79 % to 93.1 % on the testing set. Figure 3-53 shows the distribution of 

the data using the optimal set of features. As seen in this figure, the classes are more separable 

compared to the initial input data. 

In order to evaluate the sensitivity of the model to sampling error, the PNN classifier is run for 5 

different random selections of the training, validation, and testing sets. Table 3-11 presents the 

results. The obtained average error in classification for the unseen data is 4.83 %. 
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Figure 3-53: Distribution of the optimal set patterns. 

Table 3-11: Model sensitivity to sampling error. 

 

Test 1 Test 2 Test 3 Test 4 Test 5 Average 

Training 100 100 100 100 100 100 

Testing 93.1 96.55 100 89.65 96.55 95.17 

Validation 93.1 93.1 96.55 96.55 96.55 95.17 

3.3.2.2.3.4. Uncertainty analysis 

In this study, the sensor data is simulated using the strain history provided by the FE 

analysis of the pavement under different damage scenarios. However, different sources of 

uncertainties can contribute to an error between the FE modeling and the real structural behavior 

(Haukaas and Gardoni, 2011). On this basis, an uncertainty analysis can enhance the reliability 
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of the proposed damage detection approach. To this aim, the input data is polluted using a 

Gaussian noise with 5 different levels: 10%, 20%, 30%, 40%, and 50%. The best set of 

predictors Soptimal is used in the noise pollution verification phase. Thereafter, the PNN algorithm 

is run for all the noise levels. For each case, the optimal smoothing parameter is calculated. 

Table 3-12 presents the results of the uncertainty analysis. Figure 3-54 displays the detection rate 

accuracy as a function of the noise level using the optimal smoothing parameter. As seen in 

Table 3-12 and Figure 3-54, the performance of the models remains satisfactory up to a 30% 

noise level. The detection rates for a noise level below or equal to 30 % are above 82 % for the 

training, validation, and testing sets.  

Table 3-12: The damage detection performance for various noise levels using the optimal set of 

features. 

   Damage Detection Performance (%)  

Noise Level Optimal Smoothing  

Parameter 

 

Training Validation Testing 

 

10% 1E-2  100 96.55 89.65 
 

20% 1E-2  100 82.75 86.20  

30% 1E-2  100 86.20 86.20  

40% 1E-1  87.59 72.41 75.86  

50% 1E-2  100 72.41 75.86  
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                             (a) Training data                                            (a) Validation data 

 

       (c) Testing data 

Figure 3-54: Damage detection accuracy for different noise levels. 

3.4. Summary 

This chapter presented a novel self-sensing mechanism for detecting damage in steel and 

pavement structures using the nonuniform class of PFG sensors.  

The first section was focused on the damage growth detection in steel plates. Before the 

0 10 20 30 40 50
70

80

90

100

110

Noise Level (%)

 D
R

 (
%

)

 

 

Training

0 10 20 30 40 50
70

75

80

85

90

95

100

Noise Level (%)

D
R

 (
%

)

 

 

Validation

0 10 20 30 40 50
70

75

80

85

90

95

100

Noise Level (%)

D
R

 (
%

)

 

 

Testing



 

167 

application of loading, piezoelectric transducers were attached to the plate to convert the strain 

energy to an electrical charge. Damage states were introduced at the middle of the plate by 

increasing the notch size. The concentration of the trapped electrons at the sensor gates was used 

as an indicator of damage progression. First, an attempt was made to find a reasonable 

relationship between the activation and voltage droppage of floating-gates of individual PFG 

sensors, and damage progression. The next stage was focused on processing spatial 

measurements using features that simultaneously fuse the information provided by a network of 

PFG sensors. The fused data was then fed into an SVM classifier for multi-stage damage 

detection. It was found that the structural damage could be monitored through the monitoring of 

the activation and voltage droppage of floating-gates of only few sensors at specific locations. 

On the other hand, the data fusion phase with SVM provides acceptable detection performance 

over the structural area. The best results were obtained using the featured data from 3-7 floating-

gates. Based on an uncertainty analysis, the performance of the SVM models remained 

satisfactory even as the noise level is significantly increased.  

The second part of this chapter focused on pavement health monitoring. First, a series of 

experiments and numerical simulations were conducted under a three-point bending 

configuration on the asphalt concrete specimen to analyze the sensor performance for detecting 

bottom-up crack in AC pavements. An H-shaped epoxy packaging was used to protect the PVDF 

film and the sensor electronics. Damage classes were defined based on the notch length defined 

at the bottom of the specimen. Based on the results, the strain amplitude changed with increasing 

the notch size. Consequently, the measured voltage from the piezoelectric transducer increased 

as well. The other important observation was that the slope (in absolute value) of the curves 

representing the sensor strain/voltage versus the number of applied cycles increased as damage 
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progresses. More, the gate number and activation threshold can be considered as good indicators 

of damage occurrence, and the slope representing the percentage of voltage/strain droppage was 

found to be a good indicator of damage severity.  

Most of the available sensing technologies for pavements rely on embedding the sensor inside 

the AC layer. In section 3.3.2.2., an innovative approach for detecting bottom-up cracking in 

pavement using the surface data was proposed. This technique allows for the sensors to be placed 

on the surface of the structures, which is a significant improvement over existing method that can 

help in reducing the cost of sensor installation and replacement, and can be applied for existing 

pavements. The FE results show that the strain amplitude changes as a function of the damage 

state. In addition, the locations of sensors with respect to the damage control the change in the 

strain amplitude. The sensor output was calculated based on the FE strain history. Based on the 

results, it was found that the damage could be detected through the strain droppage of the sensor 

gates. However, only the sensors at a specific location with respect to the damage location were 

sensitive to the damage progression. To tackle this problem, two different stages were considered 

for the performance verification of the proposed approach. At the first stage, the sensor 

histogram was fitted to a bi-modal GM model in order to define initial damage indicators. The 

results show that the bi-modal GM parameters are good damage indicators only at specific 

locations. Thus, a data fusion model was proposed by defining new descriptive features from the 

GMM parameters. These new predictors contained the information supplied by all the sensors at 

each specific sensing location. Thereafter, different feature extraction methods (SFS, SBS, Brute 

force) were used to check the curse of dimensionality and to select the optimal set of sensors that 

give the best accuracy. A PNN classification scheme was used to classify the predefined damage 

stages. The results showed that the optimal set of features provided satisfactory detection rate 
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accuracy (100% on the training data, 96.6% on the validation data, and 93.1% on the testing 

data). Finally, an uncertainty analysis was carried out to evaluate the performance of the 

proposed surface sensing approach under different noise levels and to take into account the errors 

of the numerical modeling. A Gaussian noise with different levels was applied to the data. The 

detection performance remained satisfactory up to 30% noise level. 
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CHAPTER 4. LOCAL-GLOABAL DAMAGE IDENTIFICATION 

APPROACH USING HYBRID NETWORK OF STRAN AND 

ACCELERATION PFG SENSORS 3 

4.1. Overview 

This chapter presents a novel approach to detect damage in steel frames using hybrid 

network of piezoelectric strain and vibration PFG sensors. A numerical study is conducted on a 

steel frame with bolted connections to verify the accuracy of the proposed method. The damage 

is introduced to the structure by loosening the bolts and by cracking structural members. The 

frame is subjected to a cyclic loading and the bolts are pre-tensioned before applying the external 

loads. Two types of piezoelectric transducers are used to transfer the mechanical energy into and 

electrical energy that can be used to empower the sensor and asses the health state of the 

structure. Circular PZTs are used as strain sensors, and bimorph PZT cantilever plates as 

vibration sensors.  The strain and acceleration time histories are obtained from the FE models, 

and an analytical model is developed to obtain the voltage delivered by the PZTs. Thereafter, the 

sensor output histograms are calculated using the cumulative time durations of the voltage at a 

specific threshold level. Each sensor distribution is fitted to a GMM to define initial damage 

indicator features. Moreover, a sensor fusion model is proposed to improve the accuracy of the 

damage detection system.  

 

  

                                                 
3 The results presented in this chapter were published in Hasni et al. (2018b). 



 

171 

4.2. Sensing mechanism 

The sensing mechanism consists of two main components: a piezoelectric transducer unit 

and a sensor unit (Figure 4-1).  

 

Figure 4-1: Sensing mechanism. 

Vibration-based piezoelectric harvester converts ambient acceleration into electrical power. As 

mentioned in the previous chapters, the strain transducer is used to convert the strain energy into 

an electrical power. Many techniques and mechanisms have been presented to increase the 

efficiency of energy conversion. A post-buckling cell is developed as a triggering mechanism to 

optimally convert ambient displacement/strain into electrical power. The piezoelectric harvester 

is attached to a bilaterally constrained beam in the post-buckling system and, thus, electrical 

power can be generated by the release of the strain energy stored in the beam through its 

buckling mode transitions (Chen et al., 2012; Jiao et al., 2012; Jiao et al., 2016). Connecting to 

the power reservoir on the interface board, the electrical energy is used to empower the wireless 
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sensor.  

The damage detection mechanism presented in this study can be divided into the following 

phases:  

• FE model of steel frames under different damage scenarios; 

• Extraction of strain and acceleration data from the FE model under cyclic loads;  

• Estimation of the voltage output generated by the PZT harvesters from the accelerations 

and strains; 

• Generation of the sensor output histograms for each sensor; 

• Extraction of the features from the sensor distribution in order to define preliminary 

damage indicators; and  

• Fusion of data from a network of the wireless sensors to identify a parameter that has a 

unique relationship with the damage progression in the structure. 

4.3. Numerical simulation of steel frames with bolted connections 

4.3.1. Finite element description of the model 

The steel frame under consideration is modeled using ABAQUS Version 6.12. Figure 4-2 

presents the meshed steel frame with bolts in details. It can be seen that the frame is fixed on a 

shaking table. More details about the dimensions, material properties, and loading conditions are 

listed in Table 4-1. In Table 4-1, l, w, h, and t denote the length, width, height, and thickness, 

respectively. A cyclic loading is imposed to the shaking table as follows: 

𝑢𝑡𝑎𝑏𝑙𝑒 = 𝐴 cos(2 𝜋 𝑓 𝑡)                                                         (4-1) 

where A and f represent the amplitude and frequency of the input displacement, respectively. In 
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this study, the displacement amplitude is 10 mm and the frequency is 10 Hz. Different three-

dimensional FE models are developed to analyze the dynamic response of the frame under 

different damage scenarios. 

The damage is defined based on two different mechanisms: Bolt/torque loosening, and cracking 

of the frame columns. The numerical modeling of bolted connections is formulated in terms of 

the following five aspects:  

• Contact between the bolts and frame (𝐶𝑏𝑓); 

• Contact between the nuts and bolt-shank (𝐶𝑛𝑏); 

• Contact between the nuts and frame (𝐶𝑛𝑓); 

• Contact between the beams and columns (𝐶𝑏𝑐); 

• Friction between the bolt-shank and the nut (𝐹𝑐𝑠); and  

• Bolts pre-tension (𝑃𝑏).  

 

Figure 4-2: Mesh details of the steel frame. 
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In order to effectively take into account the Rayleigh damping in the FE model, material 

nonlinearity is addressed using a direct integration method. The damping ratio 𝜉 is defined as a 

function of the system natural frequencies as: 

𝜉(𝜔) =  
𝛼

2 𝜔
+ 

𝛽 𝜔

2
                                                               (4-2) 

where 𝛼 and 𝛽 refer to the Rayleigh damping coefficients, and 𝜔 is a natural frequency of the 

system. For two natural frequencies 𝜔1 and 𝜔2, the damping coefficients in Equation (4-2) can 

be written as: 

𝜆𝑡 = Ω−1𝜉𝑡                                                                 (4-3) 

where 

{
 
 

 
 
𝜆 = (𝛼 𝛽)        

Ω =  [

1

2 𝜔1

 𝜔1

2

1

2 𝜔2

 𝜔2

2

]

𝜉 =  (𝜉1 𝜉2)     

                                                              (4-4) 

The first three modes are selected to calculate the damping ratio because they participate by 

more than 95 % of the effective mass. An iterative procedure is followed to obtain the optimal 

Rayleigh coefficients (Spears and Jensen, 2012). The obtained coefficients are: α = 0.0406  and 

β = 0.0032. 

Bolt pretension is defined by applying a torque T to the bolts. The applied torque is converted 

into axial compressive load P as: 

𝑃 =  
𝑇

𝐾 𝐷
                                                                   (4-5) 
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where D is the nominal diameter of the bolts, and K is the nut factor related to friction. The 

preload can be expressed as a function of the percentage of the bolt yield strength as follows: 

𝑃 = 𝑛 𝜎𝑠𝑦 𝐴𝑏                                                               (4-6) 

Table 4-1: Geometry, material properties and loading conditions of the steel frame. 

where n, 𝜎𝑠𝑦 and 𝐴𝑏 represent the percentage bolt’s yield strength, bolt yield strength, and cross-

section area, respectively. Five levels of bolts pretension are considered:  n = 0%, 10%, 25%, 

50%, and 75%. Substituting Equation (4-6) into Equation (4-5), we obtain: 

𝑇 =  𝑛 𝜎𝑠𝑦 𝐴𝑏 𝐾 𝐷                                                            (4-7)  

Table 4-2 displays the parameters and bolts pretensions results. Grade 8 bolts are used for the 

connections. The analysis procedure is divided into three different steps: 

Geometry (mm) Material Property Cyclic Loading 

Overall 

Beam  

(L-

section) 

Column 

Density 

(g/cm3) 

Young’s 

Modulus 

(GPa) 

Poisson’s 

Ratio 

f  

(Hz) 

A 

(mm)   
 

l 

 

w      h w           t  w    t  

800 800 1100 50      6 55 10 7.6 200 0.3 10 10 
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• Initial step: Defining boundary conditions. In this step, all the degree of freedoms (DOFs) of 

the shaking table are fixed; 

• Step 1: Defining contacts and bolt preload. During this step, the bolt is restrained against 

displacements and rotations to prevent numerical singularities that can occur due to rigid 

body motion;  

• Step 2: Fixing the bolt length and applying external load. 

Bolt pre-tension force could be directly defined by splitting the bolt-shank into two parts and 

apply the desired force to the pre-tension surface. The fastener axis should be selected to define 

the direction of the pre-tensioning. Furthermore, the element size for the frame (beams and 

columns) should be smaller than the element size of the bolt-head and nut. Figure 4-3 displays 

the results of the numerical simulations of the bolt.  

The FE model consists of a total of 15696 C3D8R elements and 34108 nodes. The approximate 

element size is 10 mm. The computational time took 3 hours and 42 minutes for the intact 

configuration. As mentioned before, the damage is introduced by loosening/removing the bolts 

and by introducing a crack to the columns of the frame. The two front bolts of the second floor 

are chosen to define the first class of damage as follows: 

• Healthy: n = 75 % (see Table 4-2). This case represents the healthy structure (no bolt 

loosening/removing, and no cracks); 

• D1bo: One bolt is removed from the second floor; 

• D2bo: Two front bolts were removed from the second floor; 

• T10:  n = 10% (see Table 4-2); 

• T25: n = 25% (see Table 4-2); and  

• T50: n = 50% (see Table 4-2). 



 

177 

Table 4-2: Parameters and bolts pretension values. 

Parameters Bolts Pretension 

 
n (%) 

𝑛 𝜎𝑠𝑦  

(𝑀𝑃𝑎) 

Preload  

P (N) 

Torque  

T (N∙mm) 

Nominal Diameter D (mm) 6 

0 0 0 0 

10 89.63 2534 3041.11 

Nut Factor K 0.2 

25 224.08 6336 7602.77 

50 448.16 12671 15205.54 

Yield Strength (MPa) 896 75 672.23 19007 22808.31 

 

Figure 4-3: Bolt displacement response of the steel frame. 
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The second type of damage is defined by introducing a crack to the middle of the two front 

columns of the frame. The crack length is 30 mm. This damage state is referred as ‘CR’. 

4.3.2. FE results 

4.3.2.1. Bolt loosening effect on the mechanical response of the frame 

The sensing locations are defined by selecting the middle node from the beams of each 

floor, as indicated in Figure 4-4. Figure 4-5 displays the results of the numerical analysis for the 

Healthy, D1bo, and D2bo damage states for each floor level. It is seen that the acceleration 

amplitude is considerably changed between damage states. The first floor is insufficient in 

sensing any changes as it is directly attached to the shaking table, and the bolts connecting the 

first floor to the columns are completely fastened (100 % of the full torque).   

 

Figure 4-4: Sensing locations. 

For the second floor, the maximum peak acceleration is recorded at the healthy state. Removing 
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one bolt results in decreasing the peak acceleration. Same conclusion is obtained when taking 

into account the minimum peak acceleration, i.e., removing both bolts, as seen in Figure 4-5(b). 

Conversely, at sensing nodes 3 and 4, the peak acceleration keeps increasing when introducing 

damage to the structure (removing the bolts).  

 

                                   (a)                                                                    (b) 

 

                                   (c)                                                                   (d) 

Figure 4-5: (a) 1st floor displacement vs. time, (b) 2nd floor acceleration vs. time, (c) 3rd floor 

acceleration vs. time, and (d) 4th floor acceleration vs. time. 
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Table 4-3 presents the peak acceleration for the three studied damage states in each floor. The 

variation percentages of the acceleration between the Healthy and D2bo damage states are, 64.96 

% for the second floor, 303.74 % for the third floor, and 546.16 % for the fourth floor. Figure 4-6 

displays the variation percentages of the peak acceleration for all floor levels. As indicated by the 

figure, the highest floor level is the best indicator of damage occurrence in the structure caused 

by removing the bolts. For damage states T10, T25, and T50, the acceleration response of the 

frame is first extracted at the sensing locations shown in Figure 4-4. The results indicate that at 

these locations, the variation of the peak acceleration is very small. Therefore, a closer node 

located at about 56 mm from the center of the connection bolt-beam is used. Figure 4-7 displays 

the results of loosening both bolts for damage states T10, T25, and T50. Table 4-4 shows the 

maximum  detected difference in the acceleration due to torque loosensing.  

Figure 4-8 displays the variation percentage of the acceleration between damage states. A pre-

tensioning force of  50 % of the yield strength can result in decreasing the acceleration by about 

27 % near the bolt area. In addition, below 50 % of the full torque, the acceleration is changed by 

nearly 23 % between damage states. 

Table 4-3: Variation of the peak acceleration between damage states. 

 Peak Acceleration (g) 

Floor Number Healthy D1bo D2bo 

Floor 2 0.35205 0.24304 0.12336 

Floor 3 0.2365 0.55178 0.95484 

Floor 4 0.14701 0.50842 0.94989 
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Figure 4-6: Percentage variations of the peak acceleration between damage states. 

 

Figure 4-7: Variation of the acceleration at a node located close to the bolt connection of the 

second floor as a function time for different torque levels. 
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Table 4-4: Peak acceleration for different torque levels. 

Damage Growth 

Difference in Peak Acceleration 

(g) 

Healthy– T50 0.0726 

T50 – T25 0.0455 

T25 – T10 0.0505 

 

Figure 4-8: Percentage variation of the acceleration vs damage growth. 

The strain time history is also extracted from the FE results. Figure 4-9 displays the strain time 

history for all the 4 floors and for the healthy, D1bo, and D2bo damage states. As seen in the 

figures, the maximum strain shows a variation between damage states, especially for the 3rd and 

4th floors. The strain amplitude is increased when removing the bolts from the structure. 

Comparing with the variation on the third and fourth floors, the variation caused by the strain 

changes between damage states on the second floor is relatively trivial. Besides, the maximum 
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percentage of strain variation is detected at the fourth floor between the intact and the D2bo 

damage state (160 %). 

 

    (a)                                                                         (b) 

  

         (c)                                                                         (d) 

Figure 4-9: Variation of the strain between damage states, (a) first floor, (b) second floor, (c) 

third floor and (d) fourth floor. 
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Figure 4-10: Percentage variation of the peak strain between damage states. 

Moreover, 546 % variation is sensed by the acceleration on the fourth floor between the healthy 

and D2bo damage states. Figure 4-10 displays the percentage variation of the maximum strain 

between damage states. For damage classes T10, T25, and T50, an insignificant variation of the 

strain is observed. Therefore, it is concluded that loosening of bolts is more sensitive to the 

acceleration than the strain. 

4.3.2.2. Crack effect on the frame response 

The objective of this section is to determine whether if the strain or the acceleration is 

more sensitive to damage of type cracks. The crack is introduced to the structure at both front 

columns as indicated in  

Figure 4-11. The strain is measured at the same sensing locations given in Figure 4-4. 

The analysis is first run for the CR damage state without loosening or removing the bolts. 

Thereafter, the results are compared between the acceleration and the strain to study the effect of 
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cracking on the frame behavior.  

Figure 4-12 displays the relative changes of strain and acceleration between the healthy and the 

cracked frame (CR), and between the Healthy and D1bo damage states. Each bin of the 

presented histograms is calculated based on the local maxima of the time history curves of the 

strain and the acceleration. According to Figure 4-12(a), the maximum percentage variation of 

the strain is 111 %  (peak number 3) when introducing a crack to the columns. However, 

removing one of the bolts leads to a maximum variation of 80.2 % in the strain (peak number 2). 

Therefore, cracking results in more important variation to the strain amplitude comparing with 

removing one bolt from the frame. On the other hand, the variation of the peak accelerations 

(Figure 4-12 (b)) caused by removing bolts is always higher than that due to cracking (61.8 % at 

peak number 6 vs. 49.2 % at peak number 4).  

 

Figure 4-11: Crack location. 

Finally, it can be concluded that the acceleration is more sensitive to bolt loosening/removing, 

while the strain is more sensitive to cracking. Therefore, the rest of the study mainly focuses on 

using acceleration to detect bolt loosening damages, and using strain to detect damage of type 
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cracks based on PFG sensor data. Accordingly, two types of piezoelectric transducers, i.e., 

vibration-based energy harvester and strain transducer, are used to harvest the vibration and 

strain energy from the frame. The former generates the electrical charge based on the 

acceleration sensed at the location shown in Figure 4-4. However, the latter generates the 

electrical energy based on the strain amplitude. 

 

       (a)                                                                           (b) 

Figure 4-12: Variation of (a) strain and (b) acceleration behavior due to cracking and bolt 

loosening. 

4.4. Energy harvesting from the frame structure 

This section focuses on estimating the energy than can be harvested from the strain and 

acceleration signals. A circular PZT strain transducer and a bimorph cantilever PZT beam are, 

respectively, considered to convert the strain and acceleration energy into electrical signals. This 

outputted electrical energy from the PZT is used to empower the wireless sensor and detect 

damage progression in the structure. Referring to section 4.3.2., the FE results showed that the 
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strain is more sensitive to local damage (i.e. cracking) and the acceleration is more sensitive to 

global damage (i.e., loosening/removing of bolts). Hence, for remaining part of this chapter, the 

strain transducers are used to detect damage of type cracks while the cantilever PZT beams are 

used to detect bolt loosening related damages. 

A schematic description of the cantilever piezoelectric beam used in this study is shown in 

Figure 4-13.  

 

Figure 4-13: Schematic description of the cantilever piezoelectric beam. 

The coupled electro-mechanical system of equations is given by (Sodano et al., 2004): 

(𝑀𝑠 + 𝑀𝑝 +𝑀𝑡) 𝑟̈(𝑡) + 𝐶 𝑟̇(𝑡) + (𝐾𝑠 + 𝐾𝑝) 𝑟(𝑡) −  Θ 𝑣(𝑡) = −𝑀𝑒 𝑎(𝑡)                        (4-8) 

Θ𝑇 𝑟(𝑡) + 𝐶𝑝 𝑣(𝑡) = 𝑞(𝑡)                                                   (4-9) 

where: 

{
 
 

 
 
𝑀𝑠 = ∫𝜌𝑠 𝜙

𝑇(𝑥) 𝜙(𝑥)𝑑𝑉𝑠                                               

𝑀𝑝 = ∫𝜌𝑝 𝜙
𝑇(𝑥) 𝜙(𝑥) 𝑑𝑉𝑝                                               

𝑀𝑡 = 𝜙
𝑇(𝐿) 𝜙(𝐿) 𝑀𝑡𝑖𝑝                                                       

𝑀𝑒 = ∫𝜌𝑠  𝜙(𝑥) 𝑑𝑉𝑠 + ∫𝜌𝑝 𝜙(𝑥) 𝑑𝑉𝑝 + 𝑀𝑡𝑖𝑝  𝜙(𝐿)  

             (4-10) 
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{
𝐾𝑠 = ∫𝑦

2 𝜙𝑇(𝑥)′′ 𝑐𝑠 𝜙(𝑥)
′′ 𝑑𝑉𝑠

𝐾𝑝 = ∫𝑦
2 𝜙𝑇(𝑥)′′ 𝑐𝑝 𝜙(𝑥)

′′ 𝑑𝑉𝑝
                                         (4-11) 

Θ =  − ∫ 𝑦  𝜙𝑇(𝑥)′′ 𝑒𝑇 𝜓(𝑦) 𝑑𝑉𝑝                                            (4-12) 

𝐶𝑝 = ∫𝜓
𝑇(𝑦) 𝜀𝑆 𝜓(𝑦) 𝑑𝑉𝑝                                                   (4-13) 

𝑀𝑠, 𝑀𝑝, 𝑀𝑡, and 𝑀𝑝 are the mass matrices of the system. 𝐾𝑠 and 𝐾𝑝 are the stiffness matrices, 

and Θ  and 𝐶𝑝  represent the electromechanical coupling matrix and the capacitance matrix, 

respectively. The subscripts s and p stand for the substrate and the PZT layers respectively. The 

terms 𝑒  and 𝜀, are the PZT coupling coefficient and the dielectric constant, respectively. The 

matrix C designates the amount of the mechanical damping added to the model. The voltage and 

charge outputs are noted as 𝑣(𝑡)  and 𝑞(𝑡) , respectively, and 𝑎(𝑡)  represents the input 

acceleration. The obtained electro-mechanical system of equation is based on three major 

assumptions:   

• The first assumption states that the displacement 𝑢(𝑥, 𝑡) of the beam is assumed to be written 

as a summation of the beam modes and the temporal coordinates as follows (Rayleigh-Ritz 

procedure): 

𝑢(𝑥, 𝑡) =  ∑  𝜙𝑖(𝑥) 𝑟𝑖(𝑡) =  𝜙
𝑛
𝑘=1 (𝑥) 𝑟(𝑡)                              (4-14) 

where 𝜙𝑖 is the assumed mode shape of the structure that satisfies the boundary conditions, and 

𝑟𝑖 is the temporal coordinate of the displacement. The assumed shape function in this study has 

the following form (Elvin et al., 2006): 

𝜙(𝑥) = 1 − cos (
𝜋𝑥

2𝐿
)                                                (4-15) 
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• The second assumption is based on the Euler-Bernoulli beam theory. Accordingly, the strain 

(S) can be written as follows: 

𝑆 =  −𝑦 
𝜕2𝑢(𝑥,𝑡)

𝜕𝑥
                                                    (4-16) 

• The electrical potential is assumed to be constant through the thickness of PZT layers. The 

electrical potential is given by the following equation: 

𝐸(𝑦, 𝑡) = 𝜓(𝑦)𝑣(𝑡) =

{
 
 

 
 −

𝑣

𝑡𝑝
       if    

𝑡

2
<  𝑦 <

𝑡

2
+ 𝑡𝑝                 

 0           if  −
𝑡

2
<  𝑦 <

𝑡

2
                        

𝑣

𝑡𝑝
         if −

𝑡

2
− 𝑡𝑝 < 𝑦 <  −

𝑡

2
           

          (4-17) 

In order to incorporate the energy dissipation into the governing equation of the system, 

resistive element between the PZT electrodes can be expressed as: 

𝑣(𝑡) =  − 𝑅 
𝑑𝑞

𝑑𝑡
                                                 (4-18) 

Thereafter, by deriving over time Equation (4-9), the final system can be expressed as a 

function of voltage and the temporal coordinate of the displacement as: 

(𝑀𝑠 + 𝑀𝑝 +𝑀𝑡) 𝑟̈(𝑡) + 𝐶 𝑟̇(𝑡) + (𝐾𝑠 + 𝐾𝑝) 𝑟(𝑡) −  Θ 𝑣(𝑡) = −𝑀𝑒 𝑎(𝑡)                   (4-19) 

Θ𝑇 𝑟̇(𝑡) + 𝐶𝑝 𝑣̇(𝑡) =  − 
𝑣(𝑡)

𝑅
                                        (4-20) 

Giving the acceleration time history, the coupled system of equations could be easily solved for 

𝑟(𝑡) and 𝑣(𝑡). As mentioned before, the obtained acceleration from the numerical simulation is 

used as an input acceleration a(t) for the cantilever beam. In fact, the PZT beams are attached to 

the frame at the sensing locations shown in Figure 4-4.  
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Table 4-5 shows the properties of the considered commercial piezoelectric ceramic bimorph by 

Steiner & Martins, Inc, (# SMBA4510T05M). A MATLAB code is developed to solve the 

electro-mechanical system of equations. A tip mass of 8.5 g is attached to the end of the 

cantilever beam to shift-back the resonant frequency to the low-frequency range and increase the 

voltage output of piezo. Multiple iterations are performed to find the optimal tip mass that gives 

above the minimum voltage threshold of the sensor. 

The sensor resistance (R= 50 mΩ) is used as a source of energy dissipation in Equation (4-18). 

The capacitance of the strain transducer might be expressed as (Sirohi and Chopra, 2000): 

𝐶𝑝 = 
𝜀  𝐴𝑝

𝑡𝑝
                                                              (4-21) 

where 𝐴𝑝 and 𝑡𝑝 are the cross-section area and thickness of the piezo, respectively. 

The strain transducer has a dimeter of 10 mm and thickness of 0.25 mm. Note that only the 

voltage outputs corresponding to the Healthy, D1bo, and D2bo damage states are displayed in 

Figure 4-14. The strain transducer results are displayed in Figure 4-15.  
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Table 4-5: Properties of the bimorph PZT beam. 

Property Value 

Elastic Modulus of PZT 𝑐𝑝(𝐺𝑃𝑎) 72 

Elastic Modulus of Substrate 𝑐𝑠 (𝐺𝑃𝑎) 11 

Density of PZT 𝜌𝑝 (
𝐾𝑔

𝑚3
) 7800 

Density of Substrate 𝜌𝑠 (
𝐾𝑔

𝑚3
) 8900 

Electrical Permittivity 𝜀 (
𝐹

𝑚
) 3500 𝜀0 

Piezoelectric Constant 𝑑31  (× 10
−12 𝑚

𝑉
) -270 

Beam Length L (mm) 40 

Beam Width b (mm) 10 

PZT Thickness 𝑡𝑝 (mm) 0.1 

Substrate Thickness t (mm) 0.2 
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Figure 4-14: Voltage outputted by the bimorph PZT beam on the second floor. 

 

Figure 4-15: Voltage outputted by the strain transducer disc on the third floor. 
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4.5. Damage detection results 

4.5.1. Bolt loosening detection results 

After obtaining the voltage time history at the sensing locations from the accelerations 

and strains, the voltage droppage at the sensor gates is calculated. The sensor voltage thresholds 

of each gate are presented in Table 4-6. The minimum voltage required to activate the sensor is 

7.60 V, and hence, voltages smaller than that cannot be recorded. 

The sensor output histograms for the Healthy, D1bo, and D2bo damage states at each floor level 

are displayed in Figure 4-16. As seen in the figure, the recorded voltage droppage highly 

depends on the damage state. Each damage state corresponds to the sensed acceleration and 

therefore, is correlated to the voltage amplitude generated by the PZT beams. When the 

outputted voltage amplitude from the PZTs exceeds the threshold level of a specific gate j, the 

procedure of electrons injection initiates. Subsequently, the voltage droppage increases at all 

gates from 1 to j. In other words, if the voltage is higher than the threshold of gate j and lower 

than the threshold of gate j+1, only gates 1 to j start recording the droppage of voltage.  

Referring to Figure 4-14, the maximum voltage for healthy state is 12 V which is above the 

maximum voltage threshold of the sensor. As a result, all channels (gates) of the sensor for the 

undamaged structure are recording the drop of voltage. Thereafter, when removing one bolt from 

the structure, the maximum voltage obtained by the cantilever piezo beam drops to 7.66 V, 

which can only activate the first channel of the sensor. Hence, the second histogram of Figure 

4-16(a) presents only one bin at channel 1. 
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                         (a)                                              (b)                                               (c) 

Figure 4-16: Sensor output histogram for different damage states for: (a) Second floor, (b) Third 

floor, (c) Fourth floor. 

In addition, the maximum voltage obtained after removing both bolts from the second floor is 

5.32 V, which is below the sensor minimum voltage threshold. Therefore, all the sensor gates 

remain closed and do not recorded the voltage droppage. For the third floor, the sensor is 

recording for all damage states as the minimum outputted voltage was 10.48 V.  
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By comparing Figure 4-16(a) to Figure 4-16(c), an inverse behavior can be observed. According 

to the numerical results, the acceleration on the fourth floor is increased with the damage 

progression. As a result, the generated voltage amplitude is enlarged. The maximum obtained 

voltage is 8.87 V for the intact structure, which is increased to above 10.45 V after removing the 

bolts. Therefore, gates 3 to 7 start recording for the D1bo and D2bo damage states. Although the 

output of the sensor changes with damage progression, there is a considerable loss of 

information.  

Table 4-6: Voltage threshold levels of each gate. 

Gate 

Number 

Voltage Threshold 

(V) 

1 7.60 

2 8.20 

3 8.92 

4 9.21 

5 9.69 

6 10 

7 10.45 

In fact, the sensor output histograms took different shapes depending on the damage states as 

well as the floor number, which makes the data interpretation more complicated in the case of a 

network of sensors. It is worth to mention that the injection rates and the number of cycles also 

affect the shape of these histograms. Therefore, it is of importance to extract valuable and 
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reliable information from the sensor distribution. In this work, a GMM is used to fit the 

cumulative droppage of voltage at the sensing nodes. Figure 4-17 displays the obtained GMM fit 

to the data at the sensor located on the third floor for the healthy structure. The results of the 

GMM fitting to the data at all sensors locations and for all damage states are displayed in Figure 

4-18. As it is seen in Figure 4-18, the GMM parameters deviate between damages states. At the 

second floor (Figure 4-18(a)), the sensor histogram has only 1 active gate for the D1bo damage 

state. Therefore, the sensor output is fitted to a unimodal Gaussian distribution. Moreover, the 

histograms are fitted to bimodal distribution, as the entire channels of the sensors located on the 

third floor are active for all damage classes (Figure 4-18(b)). In Figure 4-18(c), the D1bo and 

D2bo damage states are fitted to a bimodal Gaussian distribution. However, the healthy state is 

fitted to a unimodal distribution. Depending on the number of active gates, the GMM fit changes 

between sensors locations and damage states, and hence, the GMM parameters vary as well. On 

the second floor, and for the D2bo damage class, the sensor does not record any information as 

the voltage amplitude is below the activation threshold the sensor.  

As seen in Figure 4-18, the shape of the GMM plots change with damage progression in the 

structure. This indicates that the damage progression due to bolt loosening can be monitored by 

the GMM parameters even far from the damage zone. An interesting observation from Figure 

4-18(a) is that all the parameters of the distribution are decreased with damage growth. However, 

on the third floor (Figure 4-18(b)), the first set of GMM parameters (𝜇1, 𝜎1) decreases and the 

second set (𝜇2 , 𝜎2)  increases with damage evolution. On the fourth floor, all the damage 

predictors increase with respect to damage progression.   
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Figure 4-17: The GMM fit to the sensor data on the third floor for the intact structure. 

The results of this phase show that the GMM parameters seem to be good indicators of structural 

damage occurrence. However, after preliminary analyses, it is found that these damage indicators 

tend not to have sound relationship with the progression of damage. In fact, the variations of 

these parameters highly depend on the relative locations between the sensors and damage. 

Moreover, only sensor 2 located on the second floor (the location of the loosened bolts) has the 

most prominent variation of the GMM parameters, especially between the D1bo and D2bo 

damage states. The rest of sensors do not have good resolution in detecting the damage transition 

between the D1bo and D2bo damage classes. Although the sensors provide valuable information 

about the damage, the measurement at a single location could not be sufficient to accurately 

detect and classify damage states. To overcome this limitation, it is tried to fuse the data from 

multi-sensors based on the ‘group effect of sensors’ concept. The proposed sensor fusion model 

aims to improve the detection accuracy of the proposed approach by obtaining a reasonable trend 



 

198 

describing the transition from one damage state to another.  

 

                                             (a)                                                                    (b) 

 

       (c) 

Figure 4-18: GMM fit to the sensor data at all sensing locations and for the Healthy, D1bo and 

D2bo damage states at (a) second floor, (b) third floor, and (c) fourth floor. 
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                         (a)                                 (b)                                    (c)                                    (c) 

Figure 4-19: STDs of sensor groups: I (𝜇1), II (𝜇2), and III (𝜎2
2) with respect to the scenarios of 

(a) sensing nodes 2 and 3 (G1) (b) sensing nodes 3 and 4 (G2), (c) sensing nodes 2 and 4 (G3), 

and (d) sensing nodes 2, 3 and 4 (G4). 

Based on a preliminary analysis, the average, range, minimum, maximum, skewness, and 

kurtosis of the GMM parameters do not have sound relationships with the damage progression. 

Only the standard deviation (STD) gives a unique relationship with damage progression. The 
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results of the data fusion model for the bolt loosening scenarios are displayed in Figure 4-19. 

As seen in Figure 4-19, the STD of the group of sensors has a unique trend between damage 

states. The STD of 𝜎1
2 is not presented because it does not have a specific trend with damage 

progression. An interesting observation from Figure 4-19(b) is that the STD decreases from one 

damage state to the other. For this scenario, sensor 2 (the location of damage) is not included in 

the analysis. However, by including sensor 2, the STD is increased between damage states. 

Hence, the sign of the slope of STD is changed only after including the sensor located on the 

damaged floor. This means that the damage due to bolt loosening can be localized based on the 

sign of the STD curves.  

4.5.2. Crack detection results 

Figure 4-20 displays the sensor output histograms based on the voltage harvested from 

the strain transducers. The results are compared between the healthy and the cracked structure. 

Figure 4-21 presents the GMM fit to the sensor data. According to Figure 4-21, the GMM 

parameters are changed when the frame is cracked. In Figure 4-21(a), the first mean and variance 

of the distribution are increased with crack propagation, however the second mean and variance 

are decreased, and the distribution is reduced to unimodal Gaussian model. For the third floor, 

the GMM parameters 𝜇1, 𝜇2, 𝜎1
2 are increased and 𝜎2

2 is decreased. This means that the GMM 

distributions are shifted to the right, the first GMM component is expanded, and the second 

component is shrunk with damage occurrence. In Figure 4-21(c), the first mixture component is 

slightly expanded and shifted to the left, and the second is shrunk and shifted to the left for CR 

damage state. 

The GMM parameters change is primarily due to the cracking of the frame columns. However, 

they do not have a sound relationship with damage progression. The same sensor fusion model 
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presented in section 4.5.1 is used. Only the standard deviations of two means 𝜇1  and 𝜇2  for 

different set of sensors are presented because they have a unique trend with damage. Figure 4-22 

displays the results of the data fusion model applied to 𝜇1 and 𝜇2 for each set of sensors. For all 

of the plots, the STDs of the considered group of sensors are increased with damage. Hence the 

STD of  𝜇1 and 𝜇2 can accurately detect cracking in steel frames based on the data provided by 

the sensor. 

 

         (a)                                            (b)                                              (c) 

Figure 4-20: Sensor output histogram of different damage states for: (a) Second floor, (b) Third 

floor, and (c) Fourth floor. 
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(a)                                                (b) 

 

(c) 

Figure 4-21: GMM fit to the sensor data at all sensing locations and for the Healthy and CR 

damage states at (a) second floor, (b) third floor, and (c) fourth floor. 
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(a)                                         (b) 

Figure 4-22: STDS of sensor groups: I (1), II (G2), III (G3), and IV (G4) for (a) μ1 and (b) μ2. 
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4.6. Summary 

This chapter presented a procedure of detecting local-global damage in steel frames based 

on the interpretation of the data of the PFG sensor. The damage identification mechanism was 

composed by a hybrid network of vibration- and strain-based sensors. Numerical simulations 

were performed to obtain the mechanical response of the bolted frame under different damage 

scenarios. Damages were defined based on loosening/removing the bolts and by introducing a 

crack to the structure. Seven damage classes were considered in the analysis and four sensing 

locations were used to extract the data. The numerical results indicate that acceleration response 

of the frame is more sensitive to loosening the bolts. However, damages of type cracks are better 

sensed by the strain as they are local events rather than global.  

Circular PZT strain transducers and cantilever bimorph PZT beams were used to harvest the 

mechanical energy. A theoretical model was developed to estimate the electrical charge output 

from both types of PZT transducers. Thereafter, the sensor output histograms were calculated 

from the voltage generated by the PZTs and fitted to a bimodal Gaussian distribution. The results 

showed that the parameters of the Gaussian mixture model are good predictors of damage 

occurrence in the structure. A sensor fusion model was developed to find a sound relationship 

between the Gaussian mixture distribution parameters and damage progression. The results 

indicate that standard deviation of 𝜇1 , 𝜎1
2 , and 𝜎2

2 of all the sensors combination used in the 

model is good predictor of bolt loosening from the structure and the damage can also be 

localized based on the sign of the slope of the STD curves. Moreover, The STD of 𝜇1 and 𝜇2 is 

good indicator of crack occurrence in the steel frame. As a summary, the PFG sensor is capable 

in detecting and localizing the change in boundary in steel frames and in sensing cracking of its 

structural members using a hybrid network of self-powered wireless PFG sensors. 
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CHAPTER 5. FIELD DEPLOYMENT OF THE SELF-POWERED PFG 

SENSOR: THE MACKINAC BRIDGE CASE STUDY 

5.1. Overview 

The Mackinac Bridge in Michigan, one of the longest suspensions in the world, is taken 

as a case study for evaluating the performance of the PFG sensing mechanism under real 

operating conditions. In this chapter, we also verify the benefits of battery-powered wireless 

transmission in acquiring data without the need for taking the structure out of service. First, an 

experimental study is developed to correlate the strain to the sensor threshold voltage levels 

according to traffic loading experienced by the bridge. The effect of temperature variation in 

wireless communication system is also investigated in this study. The preparation and the 

installation processes are presented in detail. The data acquired from the sensing system is used 

to evaluate the health status of the bridge. Results indicate that the sensor can operate under real 

field conditions and the data outputted is useful for monitoring the Bridge status over time. 

Moreover, the operational life of the wireless transmission can last for more than 20 years. 
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5.2. Experimental study of strain-sensors 

5.2.1. Preliminary testing of the transducers 

The objective of this section is to identify the type/dimensions of the piezoelectric 

transducers that will be used to harvest the micro-strain energy from the Mackinac Bridge. In 

fact, and as stated before, each gate of the sensor has a specific voltage threshold level from 

which it starts recording. Therefore, depending on the type of the piezo, the strain amplitude can 

be correlated to the voltage thresholds at the sensor level. To this aim, three different 

piezoelectric ceramic discs are chosen for the testing, and a strain gage is placed at the middle of 

the specimen to measure the strain. The experimental setup is shown in Figure 5-1. All used 

PZTs are from STEMINC Inc company. The material properties are given in Table A-2. As 

shown in Figure 5-1, a four-point bending test is performed. The transducers are attached to the 

bottom of the aluminum beam. The specimen dimensions are 457.2 mm × 50.8 mm × 12.7 mm 

(18 in × 2 in × ½ in). In a four-point bending test, the strain is assumed to be constant between 

the load application points. The strain amplitude is given as:  

𝜀𝑠𝑢𝑟𝑓 = 
3 𝐹 A

𝐸 𝑏 ℎ2
                                                           (5-1) 

where F, A, b, h and E are the applied force, the coordinate of the first inner clamp with respect 

to the first outer clamp, the width, the thickness, and elastic modulus of the beam, respectively.  

The outputted voltage from PZTs are read on the NI 9220 and the strain from NI 9236. The CC-

33A epoxy is used to attach both transducers and strain gages. Figure 5-2 illustrates a schematic 

representation of the experimental setup. As seen in the figure, each PZT is connected to the 

NI9220 in parallel with the sensor that has 50 MΩ impedance. 
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                                      (a)                                                                   (b) 

Figure 5-1: Piezo discs mounted on the aluminum beam. 

 

Figure 5-2: Test setup. 
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The load is applied using an MTS servo-hydraulic machine in a displacement-controlled mode. 

For each test, a cyclic displacement is applied. The number of cycles is initially set to 50 and 

gradually increased until the first gate of the sensor starts recording the voltage droppage. The 

procedure of increasing the number of cycles is repeated until all the gates record the voltage 

variations due to electrons injection. The load input frequency is set to 2 Hz. Figure 5-3 and 

Tables 5-1 to 5-3 present the results of the testing for each PZT. The binary values ‘0’ and ‘1’ 

denote the activation status of the sensor. As shown in Figure 5-3, PZTs 1 and 3 have almost the 

same voltage output. However, PZT 2 delivers higher voltage for the same strain value. In fact, 

PZTs 1 and 3 cover the range strains from 75 𝜇𝜀 to 220 𝜇𝜀 and PZT1 records from 50 𝜇𝜀 to 100 

𝜇𝜀. Therefore, combining PZT1 and PZT2 (or PZT3), the sensors start recording from 50 𝜇𝜀 up 

to 220+ 𝜇𝜀. 

 

Figure 5-3: Sensor voltage vs strain. 
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Table 5-1: Sensor voltage for PZT1. 

PZT1 

Strain (𝜇𝜀)  Sensor Voltage (V) Activation 

67 6.94 0 

83 7.84 1 

100 8.85 1 

111 9.32 1 

139 9.82 1 

166 10 1 

177 10.07 1 

193 10.19 1 

Table 5-2: Sensor voltage for PZT2. 

PZT2 

Strain (𝜇𝜀)  Sensor Voltage (V) Activation 

28 5.87 0 

40 7 0 

45 7.8 1 

56 8.95 1 

67 9.66 1 
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Table 5-2 (cont’d) 

78 10 1 

84 10.08 1 

90 10.25 1 

Table 5-3: Sensor voltage for PZT3. 

PZT3 

Strain (𝜇𝜀)  Sensor Voltage (V) Activation 

56 6.33 0 

67 6.89 0 

83 7.81 1 

100 8.69 1 

112 9.1 1 

123 9.53 1 

139 9.73 1 

155 9.9 1 

166 9.97 1 

192 10.18 1 
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5.2.2. Analysis at low frequencies 

Bridge vibration frequencies are usually lower than 1Hz. Therefore, the sensor is tested at 

low frequencies. Figures below show the results for 0.4 Hz and 0.5 Hz. The corresponding 

values are presented in Tables 5-4 and 5-5. As seen in Figure 5-4, the voltage slightly increases 

with increasing the input frequency. For both frequencies, the strain threshold to activate the first 

gate of the sensor is around 70 𝜇𝜀.  

 

Figure 5-4: Sensor voltage vs strain for 0.4 and 0.5 Hz. 
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Table 5-4: Sensor voltage for PZT2 at 0.4 Hz. 

Frequency = 0.4 Hz 

Strain (𝜇𝜀)  Sensor Voltage (V) Activation 

62 6.67 0 

73 7.38 1 

80 7.83 1 

89 8.31 1 

101 8.84 1 

121 9.6 1 

Table 5-5: Sensor voltage for PZT2 at 0.5 Hz. 

Frequency = 0.5 Hz 

Strain (𝜇𝜀)  Sensor Voltage (V) Activation 

50 5 0 

60 6.73 0 

73 7.68 1 

80 8.64 1 

87 9.33 1 

99 

119 

9.67 

9.89 

1 

1 
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5.2.3. Analysis at low temperatures 

The effect of low temperature on the transducer response is studied. It is known that 

piezoelectric materials are highly sensitive to temperature. After preliminary tests, it was found 

that the output sensor voltage dramatically decreases with decreasing the temperature. Therefore, 

a rubberized coating ‘Flex Seal’ is used to protect the piezo from harsh environmental 

conditions. This product can be also used to seal against water, air, moisture, and helps to 

prevent corrosion related damage. The same previously performed 4-point bending test in the 

precedent sections is also used to compare the output of the protected transducers, before and 

after the decreasing the temperature.  

 

Figure 5-5: Sensor voltage vs strain at 20 ºC and -20 ºC. 

Figure 5-5 and Tables 5-6 and 5-7 display the results at 0.5 Hz input frequency and at +20 °C 
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and -20 °C. The tests are performed for all used PZTs (PZT1, PZT2 and PZT3); however, only 

results pertaining to PZT2 are presented for reason of brevity.  

Table 5-6: Sensor voltage for PZT2 at 20 ºC. 

Before cooling (20 ºC) 

Strain (𝜇𝜀)  Sensor Voltage (V) Activation 

51 7.37 1 

62 8.5 1 

73 9.38 1 

83 9.8 1 

94 10.05 1 

Table 5-7: Sensor voltage for PZT2 at -20 ºC. 

After cooling (-20 ºC) 

Strain (𝜇𝜀)  Sensor Voltage (V) Activation 

50 7.04 0 

62 7.75 1 

72 8.67 1 

82 9.42 1 

92 

103 

9.77 

9.91 

1 

1 
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5.2.4. Wiring effect on the sensor response 

In this section, the effect of the wires connecting the sensors to the transducers is studied. 

Two types of material are used to protect the sensor wires as shown in Figure 5-6. It should be 

noted that the wiring might affect the capacitance and the electrical resistance of the piezoelectric 

transducer. The shape of the sensor on Figures 5-6(a) and 5-6(b) is meant only to differentiate 

between the wires and not the sensors. Both wires are sourced from General Cable, manufacturer 

part numbers C8101.41.03 and C0744A.41.10, and have 100% shield coverage along the length 

of the cable. The wire in Figure 5-6(a) contains two 18 AWG stranded copper conductors with 

0.0160” of Fluorinated Ethylene-Propylene jacket insulation rated for -40 °C to 150 °C, the 

nominal capacitance per foot between conductors is 51.0 pF and from conductor to shield is 95.0 

pF. Figure 5-6(b) has eight conductors of 24 AWG stranded copper and 0.0320” of poly-vinyl 

chloride jacket insulation rated for -20 °C to 80 °C, with 30.0 pF capacitance between conductors 

and 55.0 to the shield. The red cable was originally chosen for its robust weather rating, and 

ability to isolate the connections to the sensors without worry of crosstalk. The higher 

capacitance of the thicker conductor could increase the required driving capabilities of the piezo 

and potentially reduce the sensor sensitivity to external stimuli. For this reason, the lower 

capacitance grey wire is also considered.  

The tests are performed at low input frequencies and at room temperature. The number of cycles 

is incrementally increased to find the strain and voltage thresholds. Tables 5-8 to 5-9 show the 

testing results for PZTs 2 and 3. Results of PZT1 are not presented because they are almost same 

as PZT3.  

According to the results, the strain and voltage threshold levels for both cabling types are very 

close for PZTs 2 and 3. The maximum obtained difference is 6 micro-strain and 0.18 V, which 
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means that both cables give similar outputs.   

  

                                      (a)                                              (b) 

Figure 5-6: Sensor wiring, (a) 1st model, (b) 2nd model. 

Table 5-8: Sensor voltage threshold vs strain threshold for sensor 1 (1st model). 

Sensor 1, PZT2 

Channel Strain Threshold (𝜇𝜀) Voltage Threshold (V) 

Ch1 43 7.71 

Ch2 49 8.42 

Ch3 51 8.81 

Ch4 60 9.45 

Ch5 

Ch6 

Ch7 

65 

84 

123 

9.74 

10.11 

10.45+ 

 



 

217 

Table 5-8 (cont’d) 

Sensor 1, PZT3 

Ch1 77 7.69 

Ch2 85 8.2 

Ch3 96 8.92 

Ch4 102 9.21 

Ch5 

Ch6 

Ch7 

124 

152 

242 

9.69 

10 

10.45 

Table 5-9: Sensor voltage threshold vs strain threshold for sensor 2 (2nd model). 

Sensor 2, PZT2 

Channel Strain Threshold (𝜇𝜀) Voltage Threshold (V) 

Ch1 43 7.81 

Ch2 48 8.56 

Ch3 52 8.87 

Ch4 56 9.39 

Ch5 

Ch6 

Ch7 

62 

79 

141 

9.66 

10.06 

10.45+ 
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Table 5-9 (cont’d) 

 

Sensor 2, PZT3 

Ch1 74 7.64 

Ch2 84 8.36 

Ch3 90 8.74 

Ch4 103 9.32 

Ch5 

Ch6 

Ch7 

120 

153 

267 

9.69 

10.03 

10.45 

5.3. Preliminary testing of the sensor: Mackinac Bridge 

The Mackinac Bridge is the gateway to north connecting the upper and the lower 

peninsulas of Michigan, USA. This suspension Bridge is considered as one of the greatest 

engineering structures in the world. The total length of the structure is 26,372 ft (3,038 m), the 

width is 68.6 ft (20.9 m), and the maximum height, located at the central tower is 552 ft (168 m). 

Figure 5-7 displays an image of the Mackinac Bridge. The installation procedure is divided into 

two major steps. In the first step, a preliminary prototype is designed and installed in the bridge 

to study the effect of the environmental conditions on the sensor boxes and on the piezoelectric 

transducers. In addition, the results of this phase are also used to select the right dimensions of 

the piezoelectric transducers that will used for the final sensing system. Figure 5-8 displays the 

PFG sensor board details, and Figure 5-9 shows the used preliminary sensors box. Each box 

contains 3 sensors connected to 3 transducers. Each of the sensor boards utilizes a Texas 
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Instruments (TI) CC1310 Radio Frequency (RF) microcontroller (MCU) as the main commercial 

off-the-shelf component to enable wireless communications (Aono et al., 2018). In addition to 

enabling wireless communication in the 915 MHz, Industrial, Scientific, and Medical radio band 

(ISM band), the MCU has firmware-programmable general-purpose input/output pins (GPIO) 

that are utilized for interfacing with the three sensors in each box (Aono et al., 2018). Commands 

are sent to the sensors by simply raising certain pins high (e.g. to cycle through the sensor’s 

channels, a GPIO needs to give a rising edge to a pre-determined pin, there is no SPI or 

communication protocol implemented on this version of the sensor). By sending wireless 

commands encoded per TI specifications, the MCU will negotiate with the sensors to retrieve 

their data and reply with its own wireless packet containing all of the sensor data at that time 

instance, as well as the responding box ID. By leveraging the expertise of commercial vendors, 

we can achieve wireless communication with sensitivities below -110 dBm and average active 

current consumption of 12 mA; furthermore, the wireless technology can be swapped out as 

project requirements change. In this version, we opted for the 915 MHz RF MCU to enable long-

range communications, estimates using data from TI suggest that a 10 dBm transmission power 

could yield a range of approximately 1 km using the low efficiency PCB antenna (Aono et al., 

2018). Each sensor board also has a sleep timer that will force all components into an ultra-low 

power mode consuming less than 50 nA from the batteries. This sleep timer is implemented with 

a TI TPL5111 that has been hardwired to go to sleep for five minutes (300 s) before waking up 

the MCU and related subsystems (Aono et al., 2018). Upon wakeup, there will be up to six 

seconds spent to search for nearby wireless nodes (225 μA average current), if there is no 

pending command the system will go back to sleep (Aono et al., 2018). Otherwise the MCU will 

collect the sensor data and reply in less than 15 seconds with average current consumption 
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around 2.5 mA (Aono et al., 2018). 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝐶𝑜𝑚𝑚𝑎𝑛𝑑) =
𝐼𝑜𝑛𝑡𝑜𝑛+𝐼𝑠𝑒𝑎𝑟𝑐ℎ𝑡𝑠𝑒𝑎𝑟𝑐ℎ+𝐼𝑜𝑓𝑓𝑡𝑜𝑓𝑓

𝑡𝑜𝑛+𝑡𝑠𝑒𝑎𝑟𝑐ℎ+𝑡𝑜𝑓𝑓
=
2.5𝑚∙13.5+225𝜇∙6+50𝑛∙300

10+6+300
<

110𝜇𝐴                                                              (5-2)                         

𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 (𝑁𝑜 𝐶𝑜𝑚𝑚𝑎𝑛𝑑) =
𝐼𝑠𝑒𝑎𝑟𝑐ℎ𝑡𝑠𝑒𝑎𝑟𝑐ℎ+𝐼𝑜𝑓𝑓𝑡𝑜𝑓𝑓

𝑡𝑠𝑒𝑎𝑟𝑐ℎ+𝑡𝑜𝑓𝑓
=
225𝜇∙6+50𝑛∙300

6+300
< 5𝜇𝐴      (5-3) 

Assuming commands are sent only 1% of the time (this is in the range of two or three per day), a 

first-order estimate that includes an 85% derating factor, but that neglects battery self-discharge, 

temperature degradation, etc., will show that a single ½ AA Lithium-Thionyl Chloride (Li-

SOCl2) battery with 900 mAh would last (Aono et al., 2018): 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐿𝑖𝑓𝑒 = 900
𝑚𝐴ℎ

0.99∙5 𝜇+0.01∙110𝜇
∙ 0.85 ∙ (

1 𝑦𝑒𝑎𝑟

8760 ℎ𝑜𝑢𝑟
) ≈ 20 𝑦𝑒𝑎𝑟𝑠          (5-4) 

The failure mode for this preliminary test deployment was in the attempt to pass three wires 

through a single cable gland, this created a small void in the weatherproof seal that did not 

present itself during short-term laboratory submersion tests. After being exposed to the elements 

for months, enough moisture worked its way through the opening to wreak havoc on the internals 

of the box. The PCB had weatherproofing protection independent of the box in the form of a 

conformal coating of silicone on all conductive surfaces. Figure 5-9 demonstrates that there was 

little direct impact to the PCB top surface. The majority of the damage came from the moisture 

pooling on the bottom of the box and causing a short between the batteries that were mounted 

under the PCB. This ultimately caused the batteries to fail and leak the brown/orange substance 

in the figure. 
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Figure 5-7: Photo of the Mackinac Bridge (Mackinac Bridge Authority, 2018). 

 

Figure 5-8: PFG board (Aono et al., 2018). 
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Figure 5-9: Preliminary sensor box. 

In order to extract the data from the installed boxes, a TI Launchpad from commercial retail is 

used. The launchpad uses the same 915 MHz ISM band RF for communication. The reader is 

connected to a computer through a USB cable to send signals to the box. The firmware on the 

reader will continuously sample all sensors in a round robin fashion and log any responses to a 

database. Although there is a five-minute latency designed into the sensor boxes for purposes of 

extending battery life, the actual data transmission takes on the order of tens of milliseconds and 

is capable of being done from a moving vehicle (verified at Mackinac Bridge speed limit of 45 

mph or 72 km/h). 

Figures 5-10 and 5-11 display the output results of the sensors for November (installation time) 

and September readings. Table 5-10 presents the average readings for each channel, and Figure 

5-12 shows the variation of the sensors output over time. In Figure 5-12, the averaged readings 

of each channel are plotted against the reading period. 

A Gaussian mixture model is used to fit the sensor data. Figure 5-13 presents the results of the 

GMM fitting to the sensor data. 
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   (a) Ch1                                                 (b)  Ch2 

 

    (c) Ch3                                                  (d) Ch4 

 

                                         (e) Ch5                                                  (f) Ch6 

Figure 5-10: September Readings. 
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Figure 5-10 (cont’d) 

 

(g) Ch7 

 

                                           (a) Ch1                                                 (b)  Ch2 

Figure 5-11: November Readings. 
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Figure 5-11 (cont’d) 

 

 (c) Ch3                                                   (d) Ch4 
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As seen from the figures, the sensors outputs are fitted to a bi-modal Gaussian model that has 

four parameters representing the means and the standard deviations of the distribution 

components. According to chapters 3 and 4, these parameters will be used to assess the health 

status of the bridge over time. 

Table 5-10: Average readings values. 

 

September November 

 

Sensor 1 Sensor 2 Sensor 3 Sensor 1 Sensor 2 Sensor 3 

Ch1 5472.511 5315.14 5200.709 1528.788 - 1009.389 

Ch2 5465.402 5342.908 5202.56 1890.772 - 1045.498 

Ch3 5471.044 5351 5204.524 1968.606 - 1033.826 

Ch4 5476.541 5334.718 5203.892 1539.786 - 1034.031 

Ch5 5484.831 5258.539 5200.626 1593.481 - 1048.181 

Ch6 5440.522 5324.939 5202.664 1594.032 - 1034.053 

Ch7 5470.905 5422.212 5201.321 1513.435 - 1036.512 
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(a) 

 

(b) 

Figure 5-12: Readings of: (a) Sensors 1, (b) Sensor 3. 
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            (a)                                                                         (b) 

Figure 5-13: GMM fit to: (a) Sensor 1, (b) Sensor 3 data. 

5.4. Final sensing system deployed in the Mackinac Bridge 

Taking into account the lessons learned from the preliminary deployment, a new box is 

developed, as shown in Figure 5-14. To combat the issue of moisture, a single cable with six 

conductors (General Cables, C3029.41.86 with 24 AWG conductors, a fluoropolymer jacket 

rated for -40°C to 150°C, 13.0 pF per foot between conductors and 23.0 pF to the shield.) is 

passed through a smaller cable gland. The battery connection is also moved off the floor of the 

box via a socket, and all components and connections have received a layer of conformal 

coating. The weatherproofing of this box is confirmed in one-week submersion test in the lab, 

with occasional agitation to the setup. 

Beyond the mechanical changes for improving the weatherproofing, the major changes include 

the addition of the sleep timer, a more power efficient power converter between the batteries and 

MCU, and an embedded PCB antenna to reduce cost and save size. 

Four sensing boxes are installed in different locations. Figure 5-15 shows a picture of the 
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installation. Some of the sensors are placed near the damage sensitive areas to detect possible 

cracking events. The same procedure of the previously installed boxes is followed to install the 

new boxes. After gluing the strain transducers to the structure and connecting each piezo to the 

corresponding box, the data is read, and the initial values of each gate are recorded. Thereafter, 

five readings are effectuated as follows: June 6, Aug 2, Sep 3 (1 day before the Labor Day walk), 

Sep 5 (The day after the Labor Day walk), and Sep 14. 

 

Figure 5-14: New box. 

 

Figure 5-15: Sensor installation. 
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(a) Box 12 

 

Figure 5-16: Readings. 
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Figure 5-16 (cont’d) 

 

(b) Box 14 (no sensor installed in S1 slot) 

 

(c) Box 16 
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Figure 5-16 (cont’d) 

 

 

(d) Box 11 

The sensors utilized in this system have a limitation in their robustness against temperature since 

a simple PTAT current generates the biases for the internal analog-to-digital converter (ADC) 

that translates the stored charge on the floating-gates into a form that the MCU can understand 

(Ueno, 2010). So long as this limitation is characterized, the effects can be calibrated out of the 

readings (as we have done in Figure 5-16). The temperature characteristics of the ADC are 

measured in a thermal chamber and are presented in Figure 5-17. When collecting the data from 

the wireless sensor systems, the ambient temperature at the Mackinac Bridge were also recorded 

and used in conjunction with the calibration curve of Figure 5-17 to normalize all outputs to their 
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equivalent frequency at 20 °C. In interpreting the data presented, it is also imperative to note that 

the ADC output is not monotonic, rather it follows a distribution demonstrated in Figure 5-18. In 

the initialized state, the buffered output voltage from the floating gate is near the supply rail at 

1.8 V and subsequently has a low frequency output. As excitations get cumulatively logged onto 

the sensor, the negative charge buildup on the floating gate will cause a drop in buffered voltage. 

This drop in the voltage is reflected by an increase in frequency output from the ADC. This is the 

primary range of operation for our sensor, and the output duty cycle is approximately 3%, until 

the voltages begin to creep below the saturation region of the CMOS transistors, there is then an 

inversion in the trajectory of frequency. That is, as more excitations are logged, the frequency no 

longer increases, but will begin to decrease. We can still discern the floating gate voltage since 

the duty cycle of the ADC output indicates whether it is operating below the saturation region or 

not. After the inversion, further charge buildup will increase the duty cycle until it saturates at 

100% near 0 V. 
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Figure 5-17: Analog-to-digital converter output as a function of temperature (nominally ~1 kHz 

at 20 °C) (Aono et al., 2018). 

 

Figure 5-18: Results showing ADC output as function of voltage (i.e. floating gate charge) 

(Aono et al., 2018). 
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5.5. Summary 

This chapter presented a deployment study of the PFG sensor in real-life structure. The 

sensing system incorporated piezoelectric harvesters, sensors unit, and a wireless reader for the 

communication of the data to a central computer. The network of sensors was deployed in the 

Mackinac Bridge in Michigan. The results showed the ability of the system in capturing data and 

transmit it via wireless communication device. The effect of temperature was also studied, and 

the measurement validated the expected trends from the sensor. Detection and logging of a major 

event (the Labor Day walk) that stressed the bridge was demonstrated using the proposed 

system. 
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CHAPTER 6. CONCLUSIONS 

6.1.   Research contributions  

The research presented in this dissertation has led to the development of a robust damage 

quantification approach in civil infrastructures using an ultra-low power sensing technology.  

In this work, the performances of the uniform and nonuniform sensors were evaluated on several 

structures. Identification of damage on steel and pavement structures were studied. The analysis 

was based on the integration of finite element methods and artificial intelligence approaches.  

New damage indicators were proposed for both type of sensors. In addition, an innovative 

surface sensing approach for detection of bottom-up cracking in pavements was developed. Data 

fusion models were proposed to increase the damage detection capabilities of sensors especially 

for multi-stage damage growth. The results show that the damage could be detected, localized, 

and quantified using the developed data interpretation system in this research. More, this 

research proposed a novel local-global damage detection system using a hybrid network of 

heterogeneous PFG sensors (strain and acceleration sensors).  

The most important contribution of this work is that the technology was deployed in real life 

structure. A calibration process was performed, and a network of sensors were installed in the 

Mackinac Bridge in Michigan. On the other hand, this work has led to the development of a 

damage sensing mechanism that can be deployed in the next generation of smart cities.  

6.2. Conducted work 

The presented work is established through the integration of FE, AI, and statistical 

approaches to interpret the sensor data and identify damage in civil infrastructures. The 
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performance of the proposed models was investigated experimentally, numerically, and 

theoretically. Two types of sensors were investigated: uniform and nonuniform PFG sensors. 

Different damage characterization strategies were proposed for each type.  For the first class of 

sensors, a gusset plate similar to the U10W plate of the I-35W Bridge, Minneapolis, MN, USA, 

was studied. An FE model that incorporated the geometrical complexities was developed to 

obtain the response of the plate under loading. Using the damage predictors, μ and σ, damage 

localization and quantification algorithms were proposed. For the second case study, a fatigue 

analysis of a steel bridge girder was studied. In this case, a network of strain sensors was placed 

around the connection stiffener to web to detect crack propagation caused by the out-of-plane 

displacement at the connection. The damage detection process was divided into three phases: 

First, the data was collected from the FE simulations, and features were extracted to define 

individual damage indicators (PDF parameters μ and σ). Thereafter, a data fusion model was 

defined based on the previously extracted features and the ‘sensors group effect’ concept. 

Finally, the new features were inputted to SVM classifiers to identify damage states. 

The following conclusions can be inferred from the studied cases: 

• The mean μ and the standard deviation σ of the distributions are good indicators of damage 

occurrence in the structure.  

• The PDF parameters for sensors located around the damage zone are more sensitive to crack 

propagation.   

• PDFs shifts to the left and they expand with damage evolution for sensors located near the 

stress concentration zone generated by the crack. 

• In general, for structures with high geometrical and loading complexities, the initial damage 

indicators (μ and σ) do not have a sound relationship with damage progression in structures. 
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• For the studied gusset plate, the STD of μ and σ of a group of sensors increases with damage 

progression. Moreover, this function gives an idea about the damage severity.  

• Cracks in gusset plates could be localized using the proposed algorithm. 

• A new equation is proposed to predict the crack length based on the data provided by the 

sensors. The results indicated that the proposed equation is accurate in predicting different 

crack lengths in gusset plates. 

• The proposed sensor fusion model for the bridge case has increased the damage detection 

accuracy by improving the individual sensor resolution using the concept of ‘group effect of 

sensors’. 

• SVM models can accurately classify most of the damage stages for steel bridge girders, 

specifically for cracks larger than 10 mm.  

• Tracking the performance of the SVM models gives an insight into the damage location.  

For the case of nonuniform PFG sensors, three structures were studied: Steel plate, AC beam, 

and an AC pavement. The data of nonuniform sensor is fully controlled by the injection rates. 

Therefore, a new data interpretation system was developed for this class of sensors. For the plate, 

piezoelectric transducers were mounted on the specimen for both empowering the sensor and 

monitoring the damage progression. The changes of charge on the floating-gates of the sensor 

due to electron injection were considered as initial damage indicator parameters. Data fusion 

model and an SVM classification scheme were developed to classify the predefined damage 

states. Moreover, an uncertainty analysis was performed to through the contamination of the 

initial input data with different noise levels.  

For the AC beam, different 3D FE models were developed using ABAQUS to generate the 

sensor output data for different damage states. Thereafter, laboratory tests were carried out to 
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validate the performance of the proposed damage detection approach. PVDF piezoelectric film 

was used to harvest the strain energy from the host structure and empower the sensor. In order to 

protect the embedded sensor, an H-shape packaging system was designed and tested. 

For the third case study, a new surface sensing approach was developed to detect bottom-up 

cracking in pavements. The following conclusions can be inferred from the studied cases: 

• Structural damage can be monitored through the monitoring of the activation and voltage 

droppage of the floating-gates of only few sensors at specific locations.  

• The data fusion model with SVM provides acceptable detection performance over the 

structural area. The best results were obtained using featured data from 3 to 7 floating-

gates.  

• The detection rate accuracy of crack growth in steel plates remains satisfactory under 

high noise level. 

• The percentage of voltage/strain droppage can be considered as good predictor of damage 

progression, and the gate number and activation are good indicators of damage severity. 

• The bi-modal GM parameters are good damage indicators.  

• The proposed optimal set of predictors provided satisfactory detection rate accuracy 

(100% on the training data, 96.6% on the validation data and 93.1% on the testing data). 

The presented local-global damage detection system in steel frames was based on the 

interpretation of the data of the strain and acceleration sensors. The damage identification 

mechanism was composed by a hybrid network of vibration- and strain-based sensors. The 

following conclusion could be inferred: 

• The standard deviation of 𝜇1 , 𝜎1
2 , and 𝜎2

2 of a group of sensors is a good predictor of 

bolt loosening/removing. 
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•  The damage could be localized based on the sign of the STD curves.  

• Crack in steel frames could be monitored through the STD of 𝜇1 and 𝜇2 . 

In Chapter 5, a network of PFG sensors was prepared for field testing. A series of experimental 

tests were performed to obtain the gates threshold levels for different piezoelectric transducers. 

The effect of temperature on the harvester response was studied. Finally, the prototype was 

deployed in the Mackinac Bridge in Michigan for testing. The following conclusions could be 

deduced: 

• Rubber coating helps in protecting the piezoelectric transducers from harsh 

environmental conditions. 

• The self-powered sensing mechanism is able to operate under low/high temperature 

conditions and the outputted data is robust.    

• The PFG-based sensing system is able to capture data and transmit it wirelessly.  

6.3. Future research 

Although the work presented in this thesis provided a robust damage progression 

quantification in civil infrastructures, there are still some challenges to be investigated in future 

research: 

• More comprehensive approach may need to be further developed for optimal sensor 

placement (OSP) using robust optimization algorithms.  

• Corrosion related damage should be investigated in depth in future study. 

• Future research may also focus on detecting damage for the case where the target classes 

are unknown. To this aim, unsupervised learning algorithms such as self-organizing map 

(SOM) seem to be the most efficient tool.  
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• Verification of the hybrid network of sensors in identifying local-global damage in real-

life structure. 

• Development of a FEMU system using the sensor data to identify damage in large scale 

structures and to develop a reliable data base for training AI models. 
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APPENDIX 
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Appendix A 

Table A-1: Prony series coefficients. 

𝒈
𝒊
 𝒌𝒊 𝝉𝒊 

6.6622E-05 6.6622E-05 1.00E-13 

0.00012834 0.00012834 6.49E-13 

0.00024903 0.00024903 4.22E-12 

0.00048324 0.00048324 2.74E-11 

0.00093704 0.00093704 1.78E-10 

0.00181707 0.00181707 1.15E-09 

0.00351793 0.00351793 7.50E-09 

0.00680272 0.00680272 4.87E-08 

0.01309445 0.01309445 3.16E-07 

0.02504117 0.02504117 2.05E-06 

0.04711772 0.04711772 1.33E-05 

0.08602016 0.08602016 8.66E-05 

0.14652054 0.14652054 0.000562 

0.21559013 0.21559013 0.003652 

0.23267158 0.23267158 0.023714 

0.1499758 0.1499758 0.153993 

0.0529047 0.0529047 1 

0.01273171 0.01273171 6.493816 

0.00289254 0.00289254 42.16965 

0.00077742 0.00077742 273.842 

0.00025633 0.00025633 1778.279 

0.0001018 0.0001018 11547.82 

4.4828E-05 4.4828E-05 74989.42 

2.1436E-05 2.1436E-05 486967.5 

1.0515E-05 1.0515E-05 3162278 

5.3281E-06 5.3281E-06 20535250 

2.6994E-06 2.6994E-06 1.33E+08 

1.3899E-06 1.3899E-06 8.66E+08 

7.0905E-07 7.0905E-07 5.62E+09 

3.7066E-07 3.7066E-07 3.65E+10 

1.8002E-07 1.8002E-07 2.37E+11 

1.1627E-07 1.1627E-07 1.54E+12 

2.2759E-08 2.2759E-08 1E+13 

 

 

 



 

244 

Table A-2: Piezoelectric properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Property Unit Symbol Value 

Electromechanical 

Coupling 

Coefficient 

---- 

Kp 

Kt 

K31 

0.58 

0.45 

0.34 

Frequency 

Constant 
Hz-m 

Np 

Nt 

N31 

2200 

2070 

1680 

Piezoelectric 

Constant 

×10-12m/v 
d33 

d31 

320 

-140 

×10-3Vm/N g33 

g31 

25 

-11.0 

Elastic 

Constant 
×1010N/m2 

Y33 

Y11 

7.3 

8.6 

Mechanical 

Quality Factor 
----- Qm 1800 

Dielectric 

Constant 
@1KHz eT33/e 0 1400 

Dissipation Factor %@1KHz tan δ 0.4 

Curie 

Temperature 
°C Tc 320 

Density g/cm3 r 7.9 
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