
ON SOME ASPECTS OF CLUSTER ALGEBRAS AND
COMBINATORIAL HOPF ALGEBRAS

By

John Machacek

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Mathematics — Doctor of Philosophy

2018



ABSTRACT

ON SOME ASPECTS OF CLUSTER ALGEBRAS AND COMBINATORIAL HOPF
ALGEBRAS

By

John Machacek

This dissertation deals with problems in cluster algebras and combinatorial Hopf algebras.

Total positivity has been closely related to cluster algebras since their inception. Postnikov’s

totally nonnegative Grassmannian is a concrete example of total positivity with rich combi-

natorics. Our first problem is the computation of Plücker coordinates inside a generalization

of the totally nonnegative Grassmannian. We provide a combinatorial formula in terms of

edge weighted directed graphs embedded on a surface. The next problem we consider is the

equality of a cluster algebra and its upper cluster algebra. Particular attention is paid to the

coefficient ring of the cluster algebra. We give a sufficient condition for the cluster algebra

and upper cluster algebra to coincide while allowing greater generality of coefficient ring

than was previous known. The final problem we consider in cluster algebras is showing that

log-canonical coordinates are as simple as possible (in a certain precise sense). Log-canonical

coordinates are a fundamental part of the Poisson geometry approach to cluster algebras put

forth by Gekhtman, Shapiro, and Vainshtein. In the theory of combinatorial Hopf algebras

we compute a formula for the antipode in a Hopf algebra on simplicial complexes. This

antipode formula generalizes Humpert and Martin’s formula for graphs. We then use the

character theory of Aguiar, Bergeron, and Sottile to realize a version of Stanley’s chromatic

symmetric function for simplicial complexes. We prove that the degree sequence of a uni-

form hypertree can be recovered from its chromatic symmetric function. We also show the

chromatic symmetric function is not a complete invariant for uniform hypertrees.
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Chapter 1

Cluster algebra overview

This document consists of work in various areas of cluster algebras and combinatorial Hopf

algebras. The overview in this chapter discusses the cluster algebra portion of this disserta-

tion. The original research contributions in the area of cluster algebra theory are contained in

Chapters 5, 6, and 7. Chapters 1–4 serve as background material putting the original results

into context. Chapter 2 reviews Postnikov’s totally nonnegative Grassmannian. Necessary

notions in the theory of cluster algebras will be defined in Chapter 3. Poisson structures

compatible with cluster algebra structures will be discussed in Chapter 4. We now explain

some of the larger context of the particular results which will appear later. This chapter will

be a general big picture overview. Any necessary definitions and precise statements will be

given later.

Fomin and Zelevinsky’s cluster algebras [FZ02] provide a framework to study a commu-

tative algebra by dividing its generators into groups called clusters. Cluster algebras have

an axiomatic definition through a process known as mutation which transforms one cluster

to another. At first glance the axioms of a cluster algebra may seem artificial, but they

are in fact natural. Cluster algebras were originally defined to study the canonical basis

in Lusztig’s theory of total positivity [Lus94, Lus98]. In addition to the original goal of

studying the canonical basis in Lusztig’s theory of total positivity and explaining relations

between generators in certain coordinate rings, cluster algebra structures have since been

1



found to naturally appear many places in algebra, geometry, and physics. A (nonexhaus-

tive) list of places where mutation and cluster algebras show up in other areas include:

Seiberg duality in quiver gauge theories [Sei95], representation theory of quivers [BM06],

Higher Teichmüller theory [FG06], Poisson geometry [GSV10], and computation of scatter-

ing amplitudes [GGS+14]. We now further expand on the aspects of cluster algebras we will

focus on.

1.1 Total positivity and scattering amplitudes

Postnikov’s totally nonnegative Grassmannian [Pos06] is a particular example of Lusztig’s

more general theory of total nonnegativity. The totally nonnegative Grassmannian comes

with a rich combinatorial structure. One aspect of this combinatorial structure is a pa-

rameterization of the totally nonnegative Grassmannian by edge weighted directed graphs

embedded on a disk. These edge weighted directed graphs give rise to another combinatorial

object, called an alternating strand diagram or Postnikov diagram, which can be used to de-

fine a cluster algebra structure on the homogenous coordinate ring of a Grassmannian [Sco06].

These graphs have also become useful in high energy physics for the computation of scat-

tering amplitudes [AHBC+16]. We will study a related construction which considers edge

weighted directed graphs embedded on an orientable surface in Chapter 5.

The main content of Chapter 5 is a proof of a conjecture, appearing the physics litera-

ture, on a combinatorial formula for minors of a matrix associated to edge weight directed

graphs embedded on an orientable surface [FGPW15]. Physicists have proposed a construc-

tion generalizing Postnikov’s parameterization of the totally nonnegative Grassmannian by

replacing the disk with any orientable surface. It is hoped this more general construction will
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further aid in the computation of scattering amplitudes. For any orientable surface we show

that the exists a combinatorial formula for Plücker coordinates which is similar to Talaska’s

formula in the case of the disk [Tal08]. Our proof makes use of Talaska’s generalization of

the Lindström-Gessel-Viennot lemma [Tal12]. We also remark that prior to the generaliza-

tion to any orientable surface in the physics literature, Postnikov’s parameterization of the

totally nonnegative Grassmannian was first generalized to edge weighted directed graphs on

the annuls in the context of Poisson geometry [GSV08].

1.2 Coordinate rings and upper cluster algebras

Cluster structures can be observed in coordinate rings of many natural algebraic varieties.

Some examples include Grassmannians [Sco06] and double Bruhat cells of complex simple Lie

groups [BFZ05]. A closely related object called the upper cluster algebra can, as it does for

Double Bruhat cells [BFZ05, Theorem 2.10], coincide with the (homogeneous) coordinate ring

of the variety. The cluster algebra is contained in the corresponding upper cluster algebra,

and in general this can be a proper containment. When we have equality of the cluster

algebra and upper cluster algebra, such coordinate rings can be approached by utilizing the

explicit combinatorial description of the generators of the cluster algebra. So, determining

when we have equality of the cluster algebra and upper cluster algebra is an important

problem in the theory.

The question of equality of the cluster algebra and upper cluster algebra is considered

in Chapter 6. An important choice in defining a cluster algebra is deciding which ground

ring to generate the cluster algebra over. When considering cluster algebra structures on

a coordinate ring, the choice of ground ring effects whether the cluster algebra structure is
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actually on the coordinate ring of the variety or instead on the coordinate ring of an open

subset. In their paper introducing upper cluster algebras Bernstein, Fomin, and Zelevinsky

showed, with a coprimeness assumption, that there is equality of the cluster algebra and

upper cluster algebra for acyclic cluster algebras [BFZ05, Corollary 1.19]. Muller has shown

that this coprimeness assumption is not need and developed the theory of locally acyclic

cluster algebras [Mul13, Mul14]. A locally acyclic cluster algebra is known to coincide with

its upper cluster algebra for a certain choice of ground ring. Showing a cluster algebra

is locally acyclic is a practical way to show it is equal to its upper cluster algebra. An

example application is Muller and Speyer’s result which states the cluster algebra structure

on the homogenous coordinate ring of the Grassmannian is locally acyclic [MS16]. This

can be used to conclude the cluster algebra coincides with the upper cluster algebra for the

coordinate ring of an open subvariety known as a postiroid variety. In Chapter 6 we address

the dependence of the choice of ground ring on deciding equality of the cluster algebra and

upper cluster algebra. A condition for when there is equality of the cluster algebra and upper

cluster algebra is given by using a variation of Muller’s theory of cluster localization for more

general ground rings. An explicit example exhibiting dependence on the ground ring is also

provided.

1.3 Cluster algebras and Poisson geometry

Gekhtman, Shapiro, and Vainshtein have created an approach to the theory of cluster al-

gebras considering certain compatible Poisson brackets [GSV10]. This approach makes use

of Poisson brackets of a certain form called log-canonical. Given a cluster algebra, the

log-canonical Poisson brackets give a “nice” coordinate system on an associated geometric
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object. In Chapter 7 we provide an answer to how nice this coordinate system is. It turns

out that, in a certain precise sense, it is the “nicest” possible coordinate system when one is

only allowed a rational change of coordinates. In light of this we can consider log-canonical

coordinates as an algebraic analog of Darboux coordinates from symplectic geometry.
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Chapter 2

The Nonnegative Grassmannian

This chapter reviews the totally nonnegative Grassmannian and Postnikov’s boundary mea-

surement parameterization of the totally nonnegative Grassmannian [Pos06] via edge weighted

directed graphs embedded on the disk.

We let Gr(k, n) denote the real Grassmannian of k-dimensional subspaces of Rn. Each

subspace V ∈ Gr(k, n) can be represented by a k× n matrix A of rank k such that the rows

of A span V . In this case we write V = [A]. The matrix A is unique up to left multiplication

of elements of the general linear group. Thus,

Gr(k, n) = GLk\{k× n matrices of rank k}

and we obtain the Plücker embedding

Gr(k, n)→ P(nk)−1

[A] 7→ (∆I(A))I

where ∆I(A) denotes the maximal minor with columns indexed by a k-element subset I of

[n]. A minor ∆I(A) is called a Plücker coordinate. The totally nonnegative Grassmannian,

denoted Gr≥0(k, n), consists of all V ∈ Gr(k, n) such that there exists A where V = [A] and

∆I(A) is nonnegative for each I. Postnikov introduced the totally nonnegative Grassmannian
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in the seminal preprint [Pos06]. There is a wealth of combinatorial objects which play on

important roles in the study of Gr≥0(k, n) including: positroids, decorated permutations,

directed networks, and more. We will be mostly interested in the boundary measurement of

directed networks. Boundary measurement will be introduced on the disk in Section 2.2 and

Chapter 5 will focus on a generalization of boundary measurement. First we will describe

positroids and certain stratifications of the Grassmannian in Section 2.1.

2.1 Positroids

Let
([n]
k

)
denote the collection of k-element subsets of [n] = {1, 2, . . . , n}. A matroid of rank k

on the set [n] is a subsetM⊆
([n]
k

)
such that for all I, J ∈M there exists i ∈ I and j ∈ J for

which (I \{i})∪{j} ∈ M. Matroids generalize the concept of linear independence in vectors

spaces. We will be particularly interested in matroids that come for linearly independence

in real vector spaces. Given a full rank k × n real matrix A we obtain a matroid of rank k

on [n] known as an R-linear matroid defined by

MA := {I : ∆I(A) 6= 0}.

Considering the columns v1, v2, . . . , vn of A as vectors in Rk, a subset I ∈MA if and only if

{vi : i ∈ I} is a basis of Rk. Given any V ∈ Gr(k, n) we defineMV :=MA if V = [A]. Note

this matroid is well-defined since A is unique up to multiplication by elements of the general

linear group, and multiplication by an invertible matrix will not change the underlying
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matroid. The Grassmannian then has the matroid stratification

Gr(k, n)
⋃
M
SM

where

SM = {V ∈ Gr(k, n) :MV =M}

are known as matroid stratum.

Example 2.1.1 (A real linear matroid). If we consider the matrix

A =

1 0 1 0

0 1 0 1


we then have

MA = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}.

A matroid M is called a positroid if M =MA for a matrix A which has ∆I(A) ≥ 0 for

all I. We then get a decomposition of the totally nonnegative Grassmannian

Gr≥0(k, n) =
⋃

positroids
M

S≥0
M

where S≥0
M = SM∩Gr≥0(k, n). The next example shows that not all matroids are positroids,

or equivalently it shows that SM ∩Gr≥0(k, n) may be empty.

Example 2.1.2 (Non-positroid). We claim the R-linear matroid from Example 2.1.1

M = {{1, 2}, {2, 3}, {3, 4}, {1, 4}}
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of rank 2 on [4] is not a positroid. IfM was a positroid, we would have to beM =MA for

A =

1 0 a 0

0 1 0 b


for a, b ∈ R with a < 0, b > 0, and ab > 0.

Each S≥0
M is homeomorphic to an open ball, and the decomposition of Gr≥0(k, n) into

the cells S≥0
M is a CW-complex [Pos06, Theorem 3.5]. Postnikov’s approach of giving of

CW-structure on Gr≥0(k, n) agrees with a more general construction of cells in theory of

total positivity given by Marsh and Rietsch [MR04].

The positroid envelope of a matroid M is denoted by E(M) and is the unique smallest

positroid containing the matroid [KLS13, Section 3]. Given a positroidM the corresponding

open positroid variety is

Π◦(M) :=
⋃
M′

E(M′)=M

SM′ .

This decomposition groups matroid strata whose matroids have the same positroid envelope.

We include this discussion of open positroid varieties because it will be relevant later when

we consider cluster algebras and upper cluster algebras as coordinate rings in Section 3.4

and Chapter 6.

2.2 Boundary measurement

Postnikov [Pos06] has shown how to construct a matrix A such that [A] = V for each

V ∈ Gr≥0(k, n). If V ∈ Gr≥0(k, n), then the matrix A is constructed by considering an edge

weighted directed graph embedded on the disk with n boundary vertices exactly k of which

9
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2 3

4
x1

x2 x3

x4

x5

x6

x7

x8

Figure 2.1: An edge weighted directed graph on the disk.

are sources. Such graphs on other surfaces will be considered in Chapter 5. We now briefly

illustrate boundary measurement on the disk with an example.

We consider a directed graph G, modulo homotopy, embedded on a disk such that G

has n vertices on the boundary of the disk which are labeled by K = {1, 2, . . . , n} in coun-

terclockwise order. Each boundary vertex is either a source or sink. An example of such a

graph can be found in Figure 2.1.

Remark 2.2.1. The directed graph in Figure 2.1 is an example of what is known as a per-

fectly orientated network. The definition of a perfectly orientated network will be given in

Chapter 5. Also, the coloring of the vertices in the Figure 2.1 will be explained in Chapter 5.

Let I ⊆ K denote the set of boundary sources. So, I = {1, 3} and K = {1, 2, 3, 4} for

the graph in Figure 2.1. The weight of a directed path is taken to be the product of the

weights of the edges in the path. Assume G has no directed cycles1. We then form the

I ×K boundary measurement matrix B(G) with entry B(G)ik given by the sum of weights

of all directed paths from i ∈ I to k ∈ K multiplied by (−1)sik where sik in the number of

1This assumption is not necessary. We make this assumption now for simplicity of presentation. Directed
cycles will be allowed in a more general treatment in Chapter 5
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element of I strictly between i and k. For the graph in Figure 2.1 we obtain the matrix

B =

1 x1x5x2 0 −x1x8x4

0 x3x6x2 1 x3x7x4

 .

The first row B records paths beginning at boundary vertex 1, while the second row of

B records paths beginning at boundary vertex 3. We consider the empty path, which has

weight equal to 1, to be the only path from a boundary source to itself. The only path from

boundary vertex 1 to 2 has weight x1x5x2 and the only path from boundary vertex 1 to 4

has weight x1x8x4. We see x1x5x2 has a positive sign in B since s12 = 0 while x1x8x4 has

a negative sign in B since s14 = 1.

The matrix B is a full rank 2 × 4 matrix, and hence represents an element of Gr(2, 4).

The Plücker coordinates (listed in lexicographic order) in this case are

(x3x6x2, 1, x3x7x4, x1x5x2, x1x2x3x4(x5x7 + x6x8), x1x8x4)

which all evaluate to nonnegative values when each xi is given a nonnegative real value. We

can observe that the inclusion of the signs (−1)
sij have, in this example, made all Plücker

coordinates subtraction-free expressions. Boundary measurement matrices will be explored

further in Chapter 5 where we study edge weighted directed graphs on surfaces other than

the disk. Our main result in Chapter 5 will be a formula for the Plücker coordinates of these

boundary measurement matrices which extends work of Talaska on the disk [Tal08].
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Chapter 3

Cluster Algebras

In this chapter we give some background information on Fomin and Zelevinsky’s cluster

algebras [FZ02] . We will begin by defining the essential notion of mutation and then proceed

to formally defining a cluster algebra. After defining a cluster algebra we will discuss the

Laurent phenomenon, the upper cluster cluster algebra, and cluster algebras of geometric

type. Once we have established these key objects in the theory of cluster algebras we will

give an example of a cluster algebra and upper cluster algebra.

3.1 Defining mutation and cluster algebras

Let P be a semifield. This means that P is a torsion free abelian group whose operation is

written multiplicatively. Additionally, P is equipped with an auxiliary addition ⊕, which

is commutative, associative, and distributive over the multiplication of P. We now want

to consider a ground ring, Z ⊆ A ⊆ ZP. This is sometimes called the coefficient ring of

the cluster algebra. Let F be a field which contains ZP. A seed of rank n in F is a triple

(x,y, B) consisting of three parts.

• The cluster x = (x1, x2, . . . , xn) is an n-tuple in F which freely generates F as a field

over the fraction field of ZP.

• The coefficients y = (y1, y2, . . . , yn) are an n-tuple in P.
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• The exchange matrix B is an integral, skew-symmetrizable n× n matrix.

For a real number x we define [x]+ := max{0, x}. A seed (x,y, B) may be mutated at

an index 1 ≤ k ≤ n, to produce a new seed (µk(x), µk(yy), µk(B)). We say that the seed

has been mutated in the direction k. Meaning that there are n different mutations that can

be applied to a given seed. The mutation is given by the following rules:

• µk(x) := (x1, x2, . . . , xk−1, x
′
kxk+1, . . . , xn), where

x′k :=
yk
∏
x

[Bjk]+
j +

∏
x

[−Bjk]+
j

(yk ⊕ 1)xk

• µk(y) := (y′1, y
′
2, . . . y

′
n), where

y′i :=


y−1
i if i = k

yiy
[Bki]+
k (yk ⊕ 1)−Bki if i 6= k

• µk(B) is defined by

µk(B)ij =


−Bij if i = k or j = k,

Bij + 1
2(|Bik|Bkj +Bik|Bkj |) otherwise

Notice that µ2
k is the identity. We say that two seeds are mutation equivalent if one can

be obtained by a sequence of mutations, up to permuting the indices of the seed.

Now that we have established the fundamental definitions of seeds and mutation we can

define a cluster algebra. Given a seed (x,y, B) we will call the union of all the seeds which

are mutation equivalent to (x,y, B) a set of cluster variables in F . The cluster algebra,
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AA(x,y, B), is the unital A-subalgebra of F generated by the cluster variables. Notice

that since we are allowed to freely mutate when generating the cluster variables, that two

mutation equivalent seeds will generate the same cluster algebra. For this reason sometimes

it is common to leave the seed out of the notation and simply refer to the algebra as AA or

just A when the choice of ground ring is clear.

3.2 The Laurent phenomenon and the upper cluster

algebra

The Laurent phenomenon [FZ02, Theorem 3.1] is a very importantly property of clus-

ter algebras. It states that if our ground ring for A is ZP, then A is a subalgebra of

A[x−1
1 , x−1

2 , . . . , x−1
n ] = ZP[x±1

1 , x±1
2 , . . . , x±1

n ].

In the initial work of Fomin and Zelevinsky they give a more generalized Laurent phe-

nomenon, and outline conditions that allow for the Laurent phenomenon to hold even if

we work over a potentially smaller ground ring A ( ZP [FZ02, Theorem 3.2]. Throughout

this dissertation, when we discuss the cluster algebra over a ground ring A, we will assume

that the Laurent phenomenon holds over A and that A contains all coefficients appearing in

exchange relations. In this case we have:

A ↪→ A[x−1
1 , x−1

2 , . . . , x−1
n ] = A[x±1

1 , x±1
2 , . . . , x±1

n ] (3.1)

and

yi
1⊕ yi

,
1

1⊕ yi
∈ A (3.2)
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for any seed (B,x,y) of the cluster algebra.

Now we will consider an algebra closely related to the A. This is the upper cluster algebra

denoted by U or by UA((B,x,y)). The upper cluster algebra is defined by

U :=
⋂
x∈A

A[x±1
1 , x±1

2 , . . . , x±1
n ].

Since we have chosen a ground ring, A, where the criteria for the Laurent phenomenon

are met, we see that injections from each seed mean that A ⊆ U . In fact there are many

occurrences where A = U which gives an alternative way of understanding the cluster algebra

A. The choice of ground ring plays a substantial role in deciding whether or not we are in

this nice situation. In Chapter 6 we will explore exactly how the choice of ground ring

impacts whether A = U .

We now provide a proposition on normality generalizing [Mul13, Proposition 2.1] to our

situation. Recall, an integral domain is called a normal domain if it is integrally closed in

its field of fractions. A semifield P is always torsion-free, and thus any Z ⊆ A ⊆ ZP is an

integral domain.

Proposition 3.2.1. If A is a normal domain, then UA is a normal domain.

Proof. Assume A is a normal domain. From the definition it follows that the intersection of

normal domains is again a normal domain. So, it suffices to show that A[x±1
1 , x±1

2 , . . . , x±1
n ]

is a normal domain for any seed (B,x,y). This is true since any polynomial ring over a

normal domain is a normal domain [Sta18, Lemma 10.36.8] and any localization of a normal

domain is a normal domain [Sta18, Lemma 10.36.5].
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3.3 Cluster algebras of geometric type

The tropical semifield Trop(z1, z2, . . . , zm) is the free abelian group generated by z1, z2, . . . , zm

with auxiliary addition given by

m∏
i=1

z
ai
i ⊕

m∏
i=1

z
bi
i =

m∏
i=1

z
min(ai,bi)
i .

A cluster algebra is said to be of geometric type if it is defined over a tropical semifield.

In this case ZP = Z[z±1
1 , z±1

2 , . . . , z±1
m ] is the Laurent polynomial ring in z1, z2, . . . , zm.

We are particularly interested in the polynomial ground ring Z[z1, z2, . . . , zm] which we

will denote by ZP+. For cluster algebras of geometric type there is a sharpening of the

Laurent phenomenon giving A ⊆ ZP+[x±1
1 , x±1

2 , . . . , x±1
n ]. This sharpening of the Laurent

phenomenon can be found in [FWZ, Theorem 3.3.6].

A quiver is a directed graph without loops or directed 2-cycles, but parallel arrows are

allowed. When (B,x,y) is a seed for a cluster algebra of geometric type and the matrix B is

skew-symmetric, we will often consider a quiver which is equivalent data to the seed (B,x,y).

The n× n skew-symmetric matrix B is considered as a signed adjacency matrix of a quiver.

That is, the quiver Q has Bji arrows i → j where negative arrows correspond to reversing

the direction. The generators z1, z2, . . . , zm of P correspond to additional vertices of Q called

frozen vertices. Non-frozen vertices are known as mutable vertices. Mutable vertices of the

quiver will be depicted as circles while frozen vertices are represented by squares. There are

no arrows between frozen vertices. Arrows between mutable and frozen vertices are obtained

by considering y. If yi = z
ai
1 z

a2
2 · · · z

am
m , then the mutable vertex i has aj arrows i→ zj . As
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1 2

z1 z2

Figure 3.1: A quiver.

4 5

1

2 3

4 5

1

2 3

Figure 3.2: A quiver on the left and the resulting quiver after mutation at 1 on the right.

an example if P = Trop(z1, z2) while our seed has y = (z1z
−1
2 , z−1

2 ) and

B =

0 −2

2 0


the corresponding quiver Q would be the quiver pictured in Figure 3.1. For a quiver Q we

define quiver mutation at a vertex k to be the following process which produces a new quiver

Q′:

• For each oriented 2-path i→ k → j add an arrow i→ j unless i and j are both frozen.

• Reverse each arrow incident to k. That is, any arrow i → k is removed and replaced

by k → i while any arrow k → i is also removed and replaced by i→ k.

• Repeatably remove any pairs of arrows i→ j, j → i forming a 2-cycle until there are

no longer any such pairs of arrows.

The process of quiver mutation exactly matches the process of seed mutation in the sense

that if Q corresponds to a seed (B,x,y) then Q′ corresponds to the seed (B′,x′,y′). An

example of quiver mutation can be found in Figure 3.2.
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Given any cluster (x1, x2, . . . , xn) we call (x1, x2, . . . , xn+m) the extended cluster where

xn+i = zi. There is then an (n+m)×n matrix B̃ called the extended exchange matrix such

that the mutation relation takes the form

xkx
′
k :=

∏
x

[B̃jk]+
j +

∏
x

[−B̃jk]+
j .

The extended cluster and extended exchange matrix will be important concepts in the com-

patible Poisson brackets which will be defined in Section 4.2.

3.4 An example cluster algebra

In this section we give an example of a cluster algebra to illustrate the definitions given in

previous sections of this chapter. The example cluster algebra considered will turn out to

be the homogeneous coordinate ring of the Grassmannian Gr(2, 4). Consider the semifield

P = Trop(∆12,∆23,∆34,∆14) and ground ring ZP+. Here ∆ij are a priori just formal

tropical variables, but we will see (as the notation suggests) they will end up having meaning

as Plücker coordinates for Gr(2, 4) where ∆{i,j} is abbreviated as ∆ij . We take the initial

seed (B,x,y) with B = [0], x = (x), y = (∆12∆34∆−1
14 ∆−1

23 ). The only other mutation

equivalent seed is (B′,x′,y′) with B′ = [0], x′ = (x′), y = (∆−1
12 ∆−1

34 ∆14∆23). The cluster

variables x and x′ satisfy the relation

xx′ = ∆12∆34 + ∆14∆23
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which is exactly the Plücker relation in Gr(2, 4) when we let x = ∆13 and x′ = ∆24. Hence,

AZP+
= Z[∆12,∆13,∆14,∆23,∆24,∆34]/(∆12∆34 −∆13∆24 + ∆14∆23)

which (after tensoring with the field) is the homogeneous coordinate ring of the Grassmannian

Gr(2, 4). In this case our upper cluster algebra is

UZP+
= Z[∆12,∆14,∆23,∆34,∆

±1
13 ] ∩ Z

[
∆12,∆14,∆23,∆34,

(
∆12∆34 + ∆14∆23

∆13

)±1
]

which satisfies AZP+
= UZP+

. If we work on the ground ring ZP instead we find that

AZP = UZP is the homogeneous coordinate ring not of Gr(2, 4) but rather of the open

positroid variety Π◦(
([4]

2

)
). Indeed we have

AZP = Z[∆±1
12 ,∆13,∆

±1
14 ,∆

±1
23 ,∆24,∆

±1
34 ]/(∆12∆34 −∆13∆24 + ∆14∆23)

and so AZP is of coordinate ring for ⋃
M
SM

where the union is taken over all matroids M with {{1, 2}, {1, 4}, {2, 3}, {3, 4}} ⊆ M. We

saw in Example 2.1.2 that {{1, 2}, {1, 4}, {2, 3}, {3, 4}} is not a positroid. It can be checked

that the smallest positroid containing {{1, 2}, {1, 4}, {2, 3}, {3, 4}} is
([4]

2

)
and hence AZP is

the coordinate ring of the open positroid variety Π◦(
([4]

2

)
).

The homogeneous coordinate ring of any Grassmannian is known to have a cluster algebra

structure [Sco06]. It is also known that coordinate rings of open positroid varieties are cluster

algebras which coincide with their upper cluster algebras [MS16]. This equality of cluster
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algebra and upper cluster algebra can be shown using the theory of locally acyclic cluster

algebras. In Section 6.1 we will further discuss locally acyclic cluster algebras.

We conclude this section by explaining how the cluster algebra structure on the homoge-

neous coordinate ring of Gr(2, 4) generalizes to Gr(2, n). The homogeneous coordinate ring

of Gr(2, n) in generated by {∆ij : 1 ≤ i < j ≤ n} subject to the 3-term Plücker relations

∆ik∆j` = ∆ij∆k` + ∆i`∆jk

for 1 ≤ i < j < k < ` ≤ n. To realize the cluster algebra structure we consider a regular

n-gon with vertices labeled by 1, 2, . . . , n in clockwise order. Clusters will correspond to

triangulations of the polygon. We can draw a quiver associated to a triangulation so that

mutable vertices are diagonals of the triangulation and frozen vertices are sides of the poly-

gon. The cluster variable corresponding to the diagonal between i and j in the triangulation

will be ∆ij . A tropical variable ∆i,i+1 corresponds to each side of the polygon (with indices

taken modulo n). In this way we will identify veritices are the quiver and edges in the trian-

gulation. Given two vertices of our quiver in the same triangle we place are arrow between

them so that each triangle is a clockwise oriented 3-cycle (with arrows omitted between

frozen vertices). In this way quiver mutation will exactly correspond to removing a diagonal

and replacing it with the (unique) another possible diagonal in the quadrilateral created.

The two quivers for Gr(2, 4) are shown in Figure 3.3 on top of the associated triangulations.
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1 2

34

1 2

34

Figure 3.3: The two seeds for the cluster algebra structure on Gr(2, 4).
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Chapter 4

Poisson geometry

In this chapter we first define Poisson algebras, Poisson manifolds, and Poisson varieties.

We then discuss an approach the studying cluster algebras using Poisson geometry where

mutation appears as birational coordinate transformations respecting a Poisson structure.

4.1 Poisson algebras and varieties

Let P be an associative algebra. A Poisson bracket on P is a skew-symmetric bilinear map

{·, ·} : P × P → P such that for any a, b, c ∈ P both the Leibnitz identity

{ab, c} = a{b, c}+ {a, c}b

and the Jacobi identity

{a, {b, c}}+ {b, {c, a}}+ {c, {a, b}} = 0

hold. A Poisson algebra is pair (P, {·, ·}) where P is an associative algebra and {·, ·} is a

Poisson bracket.

Notice that {·, ·} makes P a Lie algebra. So, we get the adjoint representation of P on

itself sending a ∈ P to ada ∈ End(P ), where ada(b) = {a, b}. Note that the Jacobi identity
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implies that ada is a Lie algebra derivation. Also observe that ada is a derivation of the

associative algebra P by the Leibniz identity. If a ∈ P ∗ is a unit, then the Leibniz identity

implies that ad
a−1 = −a−2 ada. In particular, this implies that if {a, b} = 0 for some a ∈ P ∗

and b ∈ P , then {a−1, b} = 0.

Let M be a smooth manifold, and let C∞(M) denote its algebra of smooth functions.

A Poisson structure on M is a bracket {·, ·} : C∞(M) × C∞(M) → C∞(M) such that

(C∞(M), {·, ·}) is a Poisson algebra. In this case we call (M, {·, ·}) a Poisson manifold. For

local coordinates (x1, . . . , xn) and f, g ∈ C∞(M) the Poisson bracket is given by

{f, g} =
n∑

i,j=1

∂f

∂xi

∂g

∂xj
{xi, xj}. (4.1)

and so the bracket is completely determined by the
(n

2

)
“structure functions” {xi, xj}, for

i < j. Following [GSV10], a system of coordinates (x1, . . . , xn) is called log-canonical with

respect to a Poisson bracket {·, ·} if there is a matrix of scalars Ω = (ωij) (necessarily skew-

symmetric) such that the structure functions are given by {xi, xj} = ωijxixj . We note that

this Poisson structure goes by many names in the literature. For example, it is called a

diagonal Poisson structure in [LGPV13], Poisson n-space in [Oh06], and a semi-classical

limit of quantum affine space in [GL09].

Example 4.1.1 (Standard Poisson-Lie). Consider the special linear group SLn, with coor-

dinates (matrix entries) xij . The standard Poisson-Lie structure on SLn is the quadratic

bracket given by

{xij , xk`} = c
ij
k`xi`xkj
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where the coefficients are given by

c
ij
k` =

1

2
(sign(k − i) + sign(`− j)) =



1 if k > i, ` > j

0 if k > i, ` < j

1
2 if k > i, j = ` or k = i, ` > j

For instance, when n = 2 we have

SL2 =


a b

c d

 : ad− bc = 1


with bracket relations:

{a, b} = 1
2ab {c, d} = 1

2cd

{a, c} = 1
2ac {b, d} = 1

2bd

{a, d} = bc {b, c} = 0

If we consider the Borel subgroup of upper triangular matrices in SL2

B =


α β

0 α−1


 ,

then the bracket is given by {α, β} = 1
2αβ. In particular, the standard Poisson-Lie structure

gives a log-canonical bracket on the Borel subgroup.

In general, the local structure of Poisson manifolds is described by the following theorem

of Weinstein.
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Theorem ([Wei83]). Let M be a Poisson manifold, and p ∈M . Then there exists a neigh-

borhood U containing p with coordinates (x1, y1, . . . , xr, yr, z1, . . . , zs), such that the bracket

takes the form

{xi, xj} = {yi, yj} = {xi, zj} = {yi, zj} = 0

{xi, yj} = δij

{zi, zj} = ϕij

where ϕij ∈ C∞(U) depend only on z1, . . . , zs, and ϕij(p) = 0.

Example 4.1.2. If (M2n, ω) is a symplectic manifold, then there is a standard Poisson

structure induced by ω. In this special case, Weinstein’s theorem is the classical Darboux

theorem which says that locally ω has the form

ω =
n∑
i=1

dxi ∧ dyi

The local coordinates (x1, y1, . . . , xn, yn) are commonly called canonical coordinates or Dar-

boux coordinates.

Note that on a smooth Poisson manifold with a log-canonical system of coordinates

(x1, . . . , xn) the system of coordinates (y1, . . . , yn) = (log x1, . . . , log xn), defined on the

open set where all xi are positive, are similar to a system of canonical coordinates in the

sense that the structure functions

{yi, yj} = {log xi, log xj} = ωij

are all constants. This is indeed the intuition behind the terminology log-canonical. From
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Theorem 7.1.8 it will follow that there does not exist any rational change of coordinates on

any Zariski open subset such that the structure functions are constant in the new coordinates.

Similarly, let M be an algebraic variety andO(M) its algebra of regular functions. If there

is a bracket making O(M) into a Poisson algebra, then we call (M, {·, ·}) a Poisson variety.

Suppose there is a system of coordinates (x1, . . . , xn) on some Zariski open subset of a Poisson

variety M , then the bracket is given by Equation (4.1) just as in the smooth case (see for

example [LGPV13] for details). We wish to investigate whether such a “simplification” of

the structure functions is possible (analogous to the simplification in the Darboux/Weinstein

Theorem, in the sense that all structure functions become lower degree polynomials), allowing

only birational change-of-coordinates. It is suggested/conjectured in [Van01] that there are

not canonical coordinates in general for an arbitrary Poisson variety, but that no specific

counterexample has been demonstrated. In [GL11], it was shown that affine space with a

log-canonical bracket is such a counterexample. We wish to demonstrate that this same

example has the additional property that no rational change of coordinates can make the

structure functions linear. The following example is given in [Van01] and demonstrates some

of the nuances of the problem of finding canonical coordinates on an open set of a Poisson

variety.

Example 4.1.3 ([Van01]). Consider affine space C2 with coordinates (x, y) and Poisson

bracket given by {x, y} = x. Viewing C2 as a smooth manifold, there is a system of canonical

local coordinates (log x, y) that is not algebraic. However, there is also
(

1
x ,−xy

)
which is

a system of canonical local coordinates that is algebraic. That is, a system of canonical

coordinates consisting of rational functions in x and y defined on the Zariski-open subset

{(x, y) : x 6= 0} of the variety C2. The example illustrates that there do exist Poisson varieties

which admit a rational coordinate change on an open subset which make the structure
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functions constant.

Example 4.1.4. More generally, consider C2 with coordinates (x, y) and Poisson bracket

given by {x, y} = xayb for (a, b) ∈ N × N. The case (a, b) = (1, 1) gives a system of log-

cononical coordinates. In all other instances, we can find a system of canonical coordinates

as follows:

• If a 6= 1 and b 6= 1, then {x−(a−1), y−(b−1)} = (a− 1)(b− 1) is a nonzero constant.

• If a = 1 and b 6= 1, then {x−1, xy−(b−1)} = (b − 1) is a nonzero constant. The case

a 6= 1 and b = 1 is similar using the fact that the bracket is antisymmetric.

Note that the previous example is the special case when (a, b) = (1, 0). Although the specific

example (a, b) = (1, 0) does give a birational change of coordinates, this is not in general true

for this family of examples. For instance, when either a or b is greater than 2, the inverse of

the coordinate change is not a rational function.

Thus for (a, b) 6= (1, 1) we can always find a pair of algebraically independent rational

functions in two variables such that the bracket between these two functions is a nonzero

constant. It is still unclear whether this example can be generalized to dimensions higher

than 2. It will follow from Theorem 7.1.8 that (a, b) = (1, 1) is the unique exception to the

existence of two rational functions with nonzero constant bracket between them. This begs

the following interesting, and more general, question.

Question 4.1.5. Given a Poisson bracket whose structure functions are all (homogeneous)

polynomials of a given degree, when is it possible to find a birational change of coordinates

making the structure functions (homogeneous) polynomials of a smaller degree?

We will demonstrate in Chapter 7 that the quadratic log-canonical Poisson structure has
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the property that there is no rational change of coordinates making the Poisson bracket

linear or constant.

4.2 Poisson brackets compatible with cluster algebras

In this section we will follow [GSV10] and discuss Poisson brackets compatible with cluster

algebras of geometric type. Let F be the field of rational functions in n + m independent

variables with rational coefficients. Consider a Poisson bracket {·, ·} on F . In the context

of cluster algebras and Poisson geometry we call functions f1, f2, . . . , fn+m log-canonical if

there exists ωij ∈ Z such that

{fi, fj} = ωijfifj

for all 1 ≤ i, j ≤ n + m. This is a special case of our previous definition of log-canonical

where now we want the scalars ωij to be integers.

Let A be a rank n cluster algebra of geometric type over P = Trop(z1, z2, . . . , zm). Take

F to be the ambient field of the cluster algebra. A Poisson bracket on F is called compatible

with A if every extended cluster is log-canonical. Clearly the trivial Poisson bracket with

{f, g} = 0 for all f, g ∈ A is always compatible. If the extended exchange matrix of A is full

rank, then there exist many nontrivial compatible Poisson brackets [GSV10, Theorem 4.3].

Moreover, the collection of compatible Poisson brackets forms of vector space which can be

completely described.

A cluster structure in the field of rational functions of an algebraic variety is called regular

if all cluster variables are regular functions. A main question is to construct explicitly

a compatible regular cluster structure corresponding to a given variety equipped with an

algebraic Poisson structure. For a simple complex Lie group, Belavin and Drinfled have given

28



a classification of Poisson-Lie structures coming from classical R-matrices [BD82]. The main

conjecture of Gekhtman, Shapiro, and Vainshtein on cluster algebras and Poisson geometry

states that for complex simple Lie groups the classification of regular cluster structures

parallels the Belavin-Drinfled classification [GSV12, Conjecture 3.2].

A map ϕ : M → N between two Poisson manifolds (or Poisson varieties) is called a

Poisson map if the pullback map ϕ∗ is a homomorphism of Poisson algebras. A Lie group

G is called a Poisson-Lie group if the multiplication map G × G → G is a Poisson map.

For further details, see [CP94]. The cluster structure on double Bruhat cells from [BFZ05]

is known to correspond to a cluster structure compatible with the standard Poisson-Lie

structure [GSV10, Chapter 4.3]. Other Poisson-Lie compatible cluster structures are called

exotic. Thus an important problem in cluster algebras and Poisson geometry is to find exotic

cluster structures. In Section 6.2 we will consider a particular exotic cluster structure which

provides an example of sensitivity to the A = U question on the choice of ground ring.

4.3 Poisson geometry for networks of the disk

In this section we explain the connection between the log-canonical Poisson structures which

play a role in cluster algebras and the boundary measurement map that was defined in Chap-

ter 2. We will focus our attention here to edge weighted directed graphs on the disk [GSV09].

Though we remark that Poisson structures exist for edge weighted directed graphs on the

annulus which was the context for the first generalization on the boundary measurement

map to a surface beyond the disk [GSV08]. In Chapter 5 we will consider a generalized

version of the boundary measurement valid for any orientable surface.

As in [Pos06], we will use the term directed network N = (V,E) to refer to the directed
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graph N = (V,E) along with edge weights. For any directed network N we defined its

boundary measurement matrixB(N) in Chapter 2. We will now describe a Poisson structures

on the space on edge weights and on matrices so that the map associating a collection of edge

weights to the boundary measurement matrix evaluated at those edge weights is a Poisson

map. Here we will only consider directed networks such that each internal vertex is trivalent

and neither a source nor sink, and each boundary vertex is univalent. Internal vertices are of

two possible types. Either incident on one incoming edge and two outgoing edges, or incident

on two incoming edges and one outgoing edge.

Remark 4.3.1. We can restrict to such directed networks with loss of generality. Post-

nikov [Pos06] has shown how to transform any directed network, without changing the

boundary measurement, to one of the trivalent networks we consider in this section.

Given such a trivalent directed network N to each interval vertex v we assign a 3-

dimensional space (R \ {0})3
v along with a Poisson bracket {·, ·}v. We assign coordinates

x1
v, x

2
v, x

3
v to each (R \ {0})3

v with a coordinate corresponding to each edge incident on v as

depicted in Figure 4.1. To each boundary vertex v we assign a 1-dimensional space (R\{0})v

with coordinate x1
v. We then define R to be the direct sum the spaces associated to all ver-

tices. The Poisson bracket {·, ·}R is the direct sum of brackets so that {x, y}R = 0 whenever

x and y are defined are different spaces.

We next define edge weights we = xivx
j
u where e = (u, v) with xiv and x

j
u corresponding

to the edge e in the spaces (R \ {0})3
v and (R \ {0})3

u. The space of edge weights EN is then

(R \ {0})|E| and inherits a Poisson bracket {·, ·}N from the pushfoward of the weight map

w : (R \ {0})2|E| → (R \ {0})|E|. Considering the case when the Poisson brackets {·, ·}v

only depends on the type of the vertex, there is a 2-parameter family of Poisson brackets

on the space of matrices such that the boundary measurement N → B(N) is a Poisson
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Figure 4.1: Coordinates on (R \ {0})3
v.

map [GSV10, Theorem 8.6]. Proceeding in this way Gekhtman, Shapiro, and Vainshtein are

able to use directed networks to produce Poisson structures compatible with the standard

cluster algebra structure on the Grassmannian [GSV10, Theorem 8.20]. This construction

shows a connection between various topics (cluster algebras, log-canonical Poisson brackets,

the Grassmannian, and boundary measurement) and provides a partial explanation for their

inclusion together in this dissertation. We omit further details of this compatible Poisson

structure via networks as details will not be needed in the remaining chapters.
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Chapter 5

Boundary Measurement

This chapter is based on the article [Mac18].

5.1 Generalized boundary measurement definition

The totally nonnegative Grassmannian was defined by Postnikov [Pos06] and can be studied

using edge weighted planar graphs embedded on a disk. These edge weighted planar graphs

and the totally nonnegative Grassmannian are connected to the physics of scattering ampli-

tudes and N = 4 super Yang-Mills [AHBC+16]. In the context of physics, the edge weighted

planar graphs are usually called “on-shell diagrams.” A key element of Postnikov’s study of

the totally nonnegative Grassmannian is the boundary measurement map which produces

an element of the totally nonnegative Grassmannian for any edge weighted directed graph

embedded in the disk. Under a mild hypothesis on the graph, Talaska [Tal08] gives a formula

for the Plücker coordinates of the element of the totally nonnegative Grassmannian corre-

sponding to a given graph. In [FGM14, FGPW15] a boundary measurement map for graphs

on more general surfaces is proposed with the hopes of going beyond the “planar limit” of

N = 4 super Yang-Mills.

The definition of the boundary measurement map will be given later in this section,

and in defining the boundary measurement we must make a choice of how to represent our

directed graph in the plane. The boundary measurement map turns out to be independent
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of this choice as we will see in Section 5.2. We will show in Section 5.3 how boundary

measurement map can be obtained by signing the edges of a directed graph. This technique

of signing edges will allow us to unify two formulas of Talaska [Tal08, Tal12]. A formula

for the Plücker coordinates corresponding to the boundary measurement map is given in

Section 5.4. In Section 5.5 we will show that the signs used in Section 5.3 are unique up to

the gauge action.

5.1.1 Weighted Path Matrices

Let N = (V,E) be a directed graph with finite vertex set V and finite edge set E. This

means an edge e ∈ E is an ordered pair e = (i, j) for i, j ∈ V . If e = (i, j) then the edge e is

said to be directed from vertex i to vertex j. For each edge e ∈ E of N we associate a formal

variable xe. We will work in R[[xe : e ∈ E]] the ring of formal power series in the variables

{xe}e∈E with coefficients in R. Recall, as in [Pos06], we will use the term directed network

N = (V,E) to refer to the directed graph N = (V,E) along with edge weights {xe}e∈E .

A path is a finite sequence of edges P = (e1, e2, · · · , el) where ek = (ik−1, ik) for 1 ≤

k ≤ l. If P = (e1, e2, · · · , el) where e1 = (i0, i1) and el = (il−1, il), then P is said to be a

path from i0 to il. The path P is said to be self avoiding if ik 6= ik′ for k 6= k′. The path P

is called a cycle if i0 = il, and we say the cycle is a simple cycle when ik = ik′ if and only

if k = k′ or {k, k′} = {0, l}. We use the notation P : i  j to denote a path from i to j.

When P = (e1, e2, · · · , el) we let

wt(P ) =
l∏

i=1

xei

denote the weight of the path P .
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We order our vertex set V and consider the V × V weighted path matrix

M = M(N, {xe}e∈E)

with entries given by

Mij =
∑
P :i j

wt(P )

for all (i, j) ∈ V × V .

We let C(N) denote the set of all collections C which consist of simple cycles that are

pairwise vertex disjoint. For C ∈ C(N) we define its weight as

wt(C) =
∏
C∈C

wt(C)

and its sign as sgn(C) = (−1)|C| where |C| denotes the number of cycles in the collection

C. The empty collection ∅ is in C(N) with wt(∅) = 1 and sgn(∅) = 1. We let Sn denote

the symmetric group on [n] = {1, 2, . . . , n} and consider elements π ∈ Sn as bijections

π : [n] → [n]. For π ∈ SN and any I, J ⊆ V with I = {i1 < i2 < · · · < in} and

J = {j1 < j2 < · · · < jn} we let PI,J,π denote the set of collections P = (P1, P2, . . . , Pn)

such that Pk : ik  jπ(k) is self avoiding for each k ∈ [n], and Pk and Pk′ are vertex disjoint

whenever k 6= k′. For P ∈ PI,J,π we define its weight as

wt(P) =
∏
P∈P

wt(P )

and its sign as sgn(P) = sgn(π). Note if π(k) = k we can have Pk : ik  ik be the empty

path Pk from ik to ik consisting of no edges, and in this case wt(Pk) = 1. We then let
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1

2 3

4

e′

e′′

Figure 5.1: An example of the edge order induced by the boundary vertex order. Here we
say e′ < e′′ given the boundary vertices are ordered as usual with 1 < 2 < 3 < 4. The
direction of the edges is irrelevant for the induced edge ordering.

FI,J (N) denote the collection of flows from I to J . A flow from I to J is a pair F = (P,C)

such that P ∈ PI,J,π for some π ∈ Sn, C ∈ C(N), and all paths in P and cycles in C

are pairwise vertex disjoint. For F ∈ FI,J (N) with F = (P,C) we define its weight as

wt(F) = wt(P) wt(C) and its sign as sgn(F) = sgn(P) sgn(C).

Talaska’s formula [Tal12] states

∆I,J (M) =

∑
F∈FI,J (N) sgn(F) wt(F)∑
C∈C(N) sgn(C) wt(C)

(5.1)

where ∆I,J (M) denotes the minor of M with rows indexed by I and columns indexed by J .

Equation (5.1) generalizes the Lindström-Gessel-Viennot lemma [Lin73, GV85] which only

applies to directed networks without directed cycles. Fomin also provides of generalization

of the Lindström-Gessel-Viennot lemma which allows for directed cycles [Fom01] where the

sum is indexed by a minimal, but infinite, collection of paths.

5.1.2 Boundary Measurement Matrices

Now consider the directed network N = (V,E) embedded in a closed orientable surface with

boundary S. We call a vertex on the boundary of S a boundary vertex and an edge which is
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Figure 5.2: Smoothing a piecewise smooth curve at a vertex.

incident on a boundary vertex an external edge. We assume each boundary vertex is either a

source or sink and that edges are embedded as smooth curves. Let K ⊆ V be the collection

of boundary vertices. Let b denote the number of boundary components of S and assume

each boundary component is a smooth curve diffeomorphic to a circle. We make b− 1 cuts

between pairs of boundary components on the surface S to obtain a new surface T with a

single boundary component. The cuts are made such that each cut is a smooth curve, no

cut intersects any vertex of N , and cuts intersect edges of N transversally. The boundary

∂T is then a piecewise smooth curve homeomorphic to a single circle. We choose a piecewise

smooth parameterization φ : [0, 1] → ∂T with φ(0) = φ(1) (i.e. φ : S1 → ∂T ). Throughout

we will assume all parameterizations are piecewise smooth with nowhere zero derivative.

We order the boundary vertices so that they appear in order when traversing ∂T according

to φ. Thus we have a linear ordering of the vertices in K which we denote by < so that

K = {i1 < i1 < · · · < in} with ij = φ(tj) for 0 ≤ t1 < t2 < · · · < tn < 1. The linear

ordering of the boundary vertices induces an ordering on the set of edges incident on some

external edge as demonstrated in Figure 5.1. We also have a cyclic ordering which we denote

≺. For i, j, k ∈ K we write i ≺ j ≺ k if i < j < k, k < i < j, or j < k < i.

When S is a closed orientable surface with boundary of genus g = 0 any network embed-

ded on S can be drawn in the plane. In order to draw the directed network in the plane we

must choose a boundary component of S called external and identify this external boundary

component with a circle bounding a disk in the plane. We then draw the directed network
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inside this disk. In Section 5.2 we will show that this choice of external boundary component

does not have an impact on our results. Consider a network N on S embedded in the plane

and overlay the cuts used to construct T . We will make use of both S and T . For any path

P : i j where (i, j) ∈ I ×K we form a closed curve C(P ) in the plane as follows:

1. Traverse the path P from i to j in S.

2. Follow the boundary of T in our specified direction from j to i.

We want C(P ) to be a smooth curve. Since we have assumed that all edges and boundary

components are smooth curves the curve C(P ) will be piecewise smooth. In order to work

with a smooth curve we will approximate C(P ) by a smooth curve at cut points and around

each vertex as in Figure 5.2. We will make no distinction between C(P ) and the smooth

curve we approximate it by, and in some cases we may draw a piecewise smooth curve in place

of a smooth curve. Given any smooth closed curve in the plane define its rotation number

to be the degree of the map T ◦ ψ : S1 → S1 where ψ : S1 → C is a parameterization of C

and T : C → S1 gives the unit tangent vector of each point. The choice of which smooth

curve is used as an approximation will not effect the rotation number.

Now consider the case where S is a closed orientable surface with boundary S of genus

g > 0. Similarly to the genus zero case, we want to construct a closed curve in the plane for

each path P : i k where (i, k) ∈ I ×K. We choose generators of the first homology group

for the underlying closed surfaced without boundary. The choice of homology generators

does not affect our results as we will see in Section 5.2. The homology generators are chosen

so that they do not intersect any vertices of N and so that all intersections with edges of N

are transversal. Also, the homology generators are chosen so that they intersect transversally

with the cuts used to form T . We then consider the punctured fundamental polygon of S
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Figure 5.3: On the left we have a punctured fundamental polygon for S a torus with two
boundary components with the cut between boundary components shown as a dashed line.
On the right we have a closed curve around the boundary of T drawn inside the fundamental
domain.

which is the usual fundamental polygon of the underlying closed surface without boundary

where the sides of the polygon correspond to homology generators, but we must remove

some number of disks to create the boundary of the surface. The punctured fundamental

polygon has 4g sides with each corresponding to a homology generator, and when sides

corresponding to the same homology generator are identified we obtain the surface S. Note

no vertex appears on any side of the punctured fundamental polygon and no edge or cut ever

runs parallel to any side of the punctured fundamental polygon. The punctured fundamental

polygon represents a fundamental domain of our surface. See Figure 5.3 for an example of a

punctured fundamental polygon.

When we have a network N on S with genus g > 0 we draw N in the plane inside a

single fundamental domain of S and overlay the cuts used to construct the surface T . Given

any path P : i  j for (i, j) ∈ I ×K we form a closed curve C(P ) in the plane, similarly

to the genus zero case, by first traversing the path P from i to j and then following the

boundary of T in our specified order from j to i. However, each time the closed curve leaves

the chosen fundamental domain we connect the exit and entry points by following the sides

of the punctured fundamental polygon clockwise from the exit point to the entry point.
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Let I ⊆ K be the collection of boundary vertices which are sources. We consider the

I ×K matrix A = A(N, {xe}e∈E) with entries given by Aij = Mij for all (i, j) ∈ I ×K. So,

A is obtained from M by restricting to rows I and columns K. We also consider the I ×K

boundary measurement matrix B = B(N, {xe}e∈E) with entries given by

Bij =
∑
P :i j

(−1)
sij+rP+1

wt(P )

for all (i, j) ∈ I ×K. Here sij denotes the number of elements of I strictly between i and j

with respect to <, and rP denotes the rotation number of C(P ).

This definition of the boundary measurement matrix for any closed orientable surface with

boundary S is due to Franco, Galloni, Penante, and Wen [FGPW15]. Postnikov [Pos06] gave

the original definition on the boundary measurement matrix in the case where the surface

is a disk. The boundary measurement matrix was considered for networks on the annulus

by Gekhtman, Shapiro, and Vainshtein [GSV08] and for networks on any closed orientable

genus zero surface with boundary by Franco, Galloni, and Mariotti [FGM14].

Consider specializing the formal variables xe to real weights. Notice the boundary mea-

surement matrix is then a real |I| × |K| matrix of rank |I|. Hence, for any directed network

N and choice of real weights, the boundary measurement matrix B(N) describes an ele-

ment of the real Grassmannian Gr(|I|, |K|). This association of a directed network with real

weights to an element of the Grassmannian is the known as the boundary measurement map.

One feature of Postnikov’s boundary measurement map applied to a directed network N

embedded in the disk is that when the edge weights are positive real numbers, the boundary

measurement matrix B(N) represents an element of the totally nonnegative Grassmannian.

The totally nonnegative Grassmannian is defined to be elements of the Grassmannian such
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that all Plücker coordinates are nonnegative or nonpositive. That is, elements of the Grass-

mannian that can be represented by a matrix where each maximal minor is nonnegative.

When S is a disk it is shown in [Pos06] that the maximal minors of B(N) are subtraction-

free rational expressions in the edge weights. We call a directed network N perfectly oriented

if each boundary vertex is a univalent source or sink and each interior vertex is trivalent and

neither a source nor sink. When a network is perfectly oriented, the interior vertices are of

one of two types. We distinguish the two types of interior vertices by coloring each interior

vertex white or black. White vertices have one incoming edge and two outgoing edges, and

black vertices have two incoming edges and one outgoing edge. For an example of a perfectly

oriented network see Figure 5.6.

Remark 5.1.1. In [Pos06] it is shown how to transform any directed network N on the disk

to a perfectly oriented network N ′ so that the boundary measurement matrix B(N) is a

specialization of the boundary measurement matrix of B(N ′). All transformations needed

take place locally around a vertex, and hence will work on more general surfaces.

If N is perfectly oriented Talaska [Tal08] gives the following formula

∆I,J (B) =

∑
F∈FI,J (N) wt(F)∑
C∈C(N) wt(C)

(5.2)

where J ⊆ K with |I| = |J |. We notice Equation (5.2) is very similar to Equation (5.1) even

though they describe minors of different matrices. In Theorem 5.3.3 we will show that the

boundary measurement matrix B can be obtained from A by a simple change of variables

which explains the similarity of the formulas. This theorem will also allow us to prove the

following conjecture.

Conjecture 5.1.2 ([FGPW15]). If N = (V,E) is a perfectly oriented network embedded on
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a closed orientable surface with boundary, then for any J ⊆ K with |I| = |J |

∆I,J (B(N, {xe}e∈E)) =

∑
F∈FI,J (N) σ(F) wt(F)∑
C∈C(N) σ(C) wt(C)

for some σ : FI,J (N) ∪ C(N)→ {±1}.

Our main result is that Conjecture 5.1.2 is true. It follows from Equation (5.1) and

Theorem 5.3.3 which will be proven in the Section 5.3. Corollary 5.4.2 gives a formula for

the maximal minors of the boundary measurement matrix where we explicitly describe the

sign function σ in Conjecture 5.1.2. Recall, if we specialize are formal variables to take real

values, the boundary measurement matrix represents an element of the real Grassmannian.

In this context Conjecture 5.1.2 and Corollary 5.4.2 are formulas for the Plücker coordinates

of this element of the Grassmannian.

5.2 Boundary Measurement Independence

Given a directed network N embedded on a closed orientable surface with boundary S, we

must make some choices when computing the boundary measurement matrix B(N). The

first choice we must make is how to place the cuts on the surface S to obtain the surface T

with a single boundary component. The boundary measurement does depend on this choice.

For example, boundary measurement matrices are

B(N) =

[
1 x

]
B(N ′) =

[
1 −x

]

for the directed networks in Figure 5.4.

Another choice we must make when computing the boundary measurement is how to
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Figure 5.4: Two networks on the annulus each with a different choice of cut.

represent the closed orientable surface with boundary in the plane. For genus g = 0, we

make a choice of which boundary component corresponds to the circle bounding the disk

we draw our network inside. For genus g > 0, we choose a fundamental domain. In this

section we will show that the boundary measurement does not depend on how we represent

the surface in the plane.

Let ψ : S1 → R2 define a smooth closed curve C. When ψ(t1) = ψ(t2) for t1 6= t2 we call

ψ(t1) a self intersection point of C. If ψ(t1) is a self intersetion point of C such that there

exists a unique t2 6= t1 with ψ(t1) = ψ(t2) and {ψ′(t1), ψ′(t2)} are linearly independent, we

then call the self intersection point ψ(t1) simple. A smooth curve whose only self intersection

points are simple is called normal. The rotation number of a normal curve differs in parity

from the number of self intersections. This was proven by Whitney in [Whi37] where it

is also proven that any smooth curve can be transformed into a normal curve by small

deformations without changing the curves rotation number. When drawing closed curves

inside a fundamental domain we sometimes may not connect exit and entry points along the

sides of the punctured fundamental polygon, but rather draw some curve in the interior or

exterior of the punctured fundamental polygon which has the same rotation number as the

curve following the sides of the polygon. This will be done to simplify the drawing of the
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curve and in some cases will be necessary to transform the curve into a normal curve.

Observe for any closed curve C on a closed orientable surface with boundary S, we can

construct a closed curve in the plane in the same way we do for the closed curves which

come from paths in our oriented network. Our next lemma will consider an arbitrary closed

curve C on S. Given some representation of our surface in the plane, we will let Ĉ denote

the corresponding closed curve in the plane. Also, in the proof of the lemma we will consider

a lift C ′ of the closed curve C to the universal cover of S when the surface S has genus

g > 0. Recall that each time a closed curve C leaves the fundamental domain, we connected

the exit and entry points along the boundary of the punctured fundamental polygon when

constructing the closed curve Ĉ which lives in a single fundamental domain. When doing

this the tangent vector will make exactly one complete rotation. To account for this we

construct another curve C ′′ on the universal cover of S. The curve C ′′ agrees with the curve

C ′ except we add a loop each time it crosses a homology generator. See Figure 5.5 for an

example of C, Ĉ, C ′ and C ′′.

Lemma 5.2.1. Let C be a closed curve on a closed orientable surface with boundary S and

let Ĉ be the closed curve corresponding to C for some choice of representation of S in the

plane. The parity of the rotation number of Ĉ does not depend on the choice of representation

of S in the plane.

Proof. Recall, the parity of the rotation number of a closed curve in the plane depends only

on the number of self intersections of the curve. For the case genus g = 0, it is clear the

number of self intersections of Ĉ does not depend of the representation of S in the plane.

Now consider the case genus g > 0. We denote the rotation number of Ĉ by r. We let

C ′ be a lift of C to the universal cover of S. The universal cover is homeomorphic to R2.
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C

Ĉ

C ′

C ′′

Figure 5.5: An example of a closed curve C on the torus and the corresponding curves Ĉ,
C ′ and C ′′.
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Let h denote the number of times C intersects any homology generator. Notice the parity

of h is determined by the homology class of C, and hence the parity of h is independent of

the choice of fundamental domain used to represent S in the plane.

If C is null homologous, then C ′ is a closed curve in R2. If C is not null homologous,

then C ′ is not a closed curve in R2. However, we can still define the rotation number of

C ′ since the unit tangent vector at the starting point and ending point of C ′ will be the

same. In any case, let r′ denote the rotation number of C ′. Notice each time C intersects

any homology generator, the tangent vector to the curve Ĉ we make a complete rotation

in the clockwise direction on the portion of the curve which connects the entry and exit

points of the fundamental domain. We can modify the curve C ′ by adding a small loop in

the clockwise direction each time C ′ intersects a lift of a homology generator. We let C ′′

denote this modified curve. We can construct C ′′ such that there is then a map φ : C ′′ → Ĉ

such that T = T ◦ φ. Let r′′ denote the rotation number of C ′′ It then follows that r = r′′

and that r′′ = r′ + h. Therefore r = r′ + h, and the parity of the rotation number of Ĉ is

independent of how S is represented in the plane.

Theorem 5.2.2. The boundary measurement of a directed network N on a closed orientable

surface with boundary S is independent of how we represent S in the plane.

Proof. The only part of the boundary measurement matrix that depends on the representaion

of S in the plane is the rotation numbers rP of the closed curves C(P ) which correspond to

paths P in N . In fact, the boundary measurement matrix only depends on the parity of rP .

Therefore, the theorem then follows immediately from Lemma 5.2.1.

We have also made a choice to connect exit and entry points of a closed curve along

the sides of the punctured fundamental polygon in the clockwise direction. Observe the
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Figure 5.6: A perfectly oriented network on the disk.

proof of Lemma 5.2.1 can easily be modified if we chose to connect the exit points in the

counterclockwise direction.

5.3 Signing Perfectly Oriented Networks

In this section we prove a theorem which shows a relationship between the weighted path

matrix and the boundary measurement matrix. We show the boundary measurement matrix

is the weighted path matrix with some edge weights thought of as negative. That is, by

replacing xe with −xe for some edges in A(N, {xe}e∈E) we obtain B(N, {xe}e∈E). We first

look at an example of signing the edges of a network.

Let N be the network in Figure 5.6. Here the boundary vertices are labeled to respect

the usual ordering of the natural numbers so that 1 < 2 < 3 < 4. The weighted path matrix
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and boundary measurement matrix for N are

A =


1

x1x5x2

1− x5x6x7x8
0

x1x5x6x7x4

1− x5x6x7x8

0
x3x7x8x5x2

1− x5x6x7x8
1

x3x7x4

1− x5x6x7x8



B =


1

x1x5x2

1 + x5x6x7x8
0
−x1x5x6x7x4

1 + x5x6x7x8

0
x3x7x8x5x2

1 + x5x6x7x8
1

x3x7x4

1 + x5x6x7x8


respectively. Notice that B can be obtained from A by replacing x6 with −x6. Theorem 5.3.3

shows that when N is perfectly oriented B can always be obtained from A by a change a

variable which gives each edge of N a sign. However, there is not a unique way to obtained

B from A. For example, replacing x2 and x5 with −x2 and −x5 respectively is another

possibility. Theorem 5.5.1 characterizes all possible ways to sign the edges of N .

Before stating the main theorem of this section we prove two lemmas which will be

needed.

Lemma 5.3.1. Let N be a directed network embedded on a closed surface with boundary

S and let T be the surface obtained after making cuts. If rT is the rotation number of the

closed curve which following the boundary of T in a chosen fundamental domain, then rT ≡ 1

(mod 2).

Proof. For genus g = 0 it is clear that rT ≡ 1 (mod 2). For genus g > 0 we can choose

homology generators so that they do not intersect the boundary of T . In this case it is

again clear the rT ≡ 1 (mod 2). The general case for genus g > 0 then follows from

Lemma 5.2.1.

For any path P : i j we can form the closed curve C ′(P ) by traversing the path P from
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i to j and then following the boundary of T from j to i opposite to our choosen direction.

We let r′P denote the rotation number of C ′(P ). Our next lemma shows that we can use r′P

in place of rP and the boundary measurement matrix will not change.

Lemma 5.3.2. Let N be a directed network embedded on a closed surface S with boundary

and P is a path in N , then r′P ≡ rP (mod 2).

Proof. Let P : i  j be a path from i to j in N . We claim rP − r′P = rT ± 1. To see

this draw C(P ) and C ′(P ) together in the same fundamental domain. We then reverse the

direction of C ′(P ) and observe that we traverse the boundary of T once and also traverse

the path P once from i to j as well as once in reverse from j to i. Hence we can compute

rP − r′P by considering the rotation number of the closed curve obtained by first traversing

P , then traversing the boundary of T , and finally traversing the path P in reverse. Thus

rP − r′P = rT ± 1 and it follows by Lemma 5.3.1 that r′P ≡ rP (mod 2).

So, Lemma 5.3.2 shows that the direction in which we parameterize the boundary of S

does not affect the boundary measurement. We now state and prove our theorem on signing

edges.

Theorem 5.3.3. If N = (V,E) is a perfectly oriented network embedded on a closed ori-

entable surface with boundary, then there exists a collection {εe}e∈E ∈ {±1}E such that

B(N, {xe}e∈E) = A(N, {εexe}e∈E).

Proof. Let N be a perfectly oriented network with vertex set V and edge set E. To show

B(N, {xe}) = A(N, {εexe}) it suffices to show that the path P : i j for any (i, j) ∈ I ×K
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has the following property:

wt(P )|{εexe}e∈E = (−1)
sij+rP+1

wt(P ) (�)

When this is true for a choice of signs {εe}e∈E we will say the path P has property (�). We

assume the network has at least one boundary source, or else the in no boundary measure-

ment matrix.

Recall that K denotes the set of boundary vertices of N and we have an ordering of

the boundary vertices. We fix the following notation, if j ∈ K is a boundary vertex we let

ej denote the unique external edge which is incident on j and write εj for εej . It can so

happen that ej1 = ej2 for j1 6= j2, in this case we will consider distinct signs εj1 and εj2

on half edges with the sign on the edge being the product εj1εj2 . We induct on the number

of interior vertices. If there are no interior vertices, then the result is true since each path

consists of a single edge.

For the inductive step we chose any boundary source i0 and construct a network Ñ with

one fewer interior vertex. The edge set of Ñ will be denoted Ẽ. We will inductively chose

signs {ε̃e}e∈Ẽ so that each path in Ñ has property (�) and show how to modify these signs

to give a collection {εe}e∈E so that each path in the N has property (�). Recall that for two

boundary vertices i and j of N we let sij denote the number of boundary sources strictly

between them in N . For two boundary vertices i and j of Ñ we let s̃ij denote the number

of boundary sources strictly between them in Ñ . The inductive step falls into one of three

cases depending on the boundary source i0 and its unique neighboring vertex.

If i0 is adjacent to a white vertex with outgoing edges e′ and e′′ we then remove the white

vertex and split i0 into two boundary sources i′0 < i′′0 as shown in Figure 5.7. Choose signs
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i0
wi0

we′

we′′

N

i′0

i′′0

we′

we′′

Ñ

Figure 5.7: Splitting a white vertex

{ε̃e} for the edges of Ñ by induction so that all paths in Ñ have property (�). We define the

signs {εe} as follows

εj = ε̃j for j ∈ K with j < i0

εe′ = ε̃e′

εi0 = +1

εe′′ = −ε̃e′′

εj = −ε̃j for j ∈ K with j > i0

εe = ε̃e otherwise

and now verify the collection of signs {εe} are valid.

Consider a path P : i j in N with i 6= i0. The path P corresponds to a path P̃ : i j

in Ñ with rP = r
P̃

. If i, j < i0, then sij = s̃ij and P has property (�) since the modification

does not introduce any sign change to P . If i < i0 < j or j < i0 < i, then sij = s̃ij − 1 and

P has property (�) since the modification introduces one sign change to P . If i, j > i0, then

sij = s̃ij and P has property (�) since the modification introduces two sign changes to P .

Next consider a path P : i0  j in N . The path P corresponds either to a path

P̃ ′ : i′0  j or P̃ ′′ : i′′0  j. First consider the case P corresponds to P̃ ′. If j < i0, then

sij = s̃ij and P has property (�) since the modification does not introduce any sign change to
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N

i′0
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we′
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Ñ

Figure 5.8: Splitting a black vertex in the case that i′0 is a sink and i′′0 is a source

P . If i0 < j, then sij = s̃ij−1 and P has property (�) since the modification introduces one

sign change to P . Next consider the case P corresponds to P̃ ′′. If j < i0, then sij = s̃ij − 1

and P has property (�) since the modification introduces one sign change to P . If i0 < j,

then sij = s̃ij and P has property (�) since the modification introduces two sign changes to

P . Therefore the signs {εe} are valid in this case.

If i0 is adjacent to a black vertex we then remove the black vertex and split i0 into two

boundary vertices i′0 < i′′0 one of which will be a sink and the other of which will be a source.

We now consider the case where i′0 is a sink and i′′0 is a source as shown in Figure 5.8. Choose

signs {ε̃e} for the edges of Ñ by induction so that all paths in Ñ have property (�). We

define the signs {εe} as follows

εe′ = −ε̃e′

εi0 = +1

εe = ε̃e, otherwise

and now verify the collection of signs {εe} as defined satisfy our rule.

Consider a path P : i  j in N with i 6= i0. If P does not use the edge e′, then P

corresponds to a path P̃ : i → j in Ñ with rP = r
P̃

and sij = s̃ij . If this is the case, then

it is clear P has property (�). Otherwise P traverses the edge e′ some number of times.
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Let l + 1 be the number of times P traverses e′ for l ≥ 0. The path P corresponds to the

concatenation of paths P̃ ′ : i  i′0, P̃k : i′′0  i′0 for 1 ≤ k ≤ l, and P̃ ′′ : i′′0  j. Now the

sign of the product of the weights of these paths in Ñ is

(−1)
s̃
ii′0

+r
P̃ ′+1

(−1)

∑l
k=1(r

P̃k
+1)

(−1)
s̃
i′′0j

+r
P̃ ′′+1

since s̃i′0i
′′
0

= 0. The sign of the path P in N will be

(−1)
s̃
ii′0

+r
P̃ ′+1

(−1)

∑l
k=1(r

P̃k
+1)

(−1)
s̃
i′′0j

+r
P̃ ′′+1

(−1)l+1

since we pick up an addition factor of −1 each time we traverse e′. Simplifying the sign of

P is

(−1)
s̃
ii′0

+s̃
i′′0j

+1+r
P̃ ′+

∑l
k=1 rP̃k

+r
P̃ ′′ .

We observe that

sij = s̃ii′0
+ s̃i′′0j

+ 1 if i ≺ i0 ≺ j

sij = s̃ii′0
+ s̃i′′0j

if j ≺ i0 ≺ i,

and so the sign of P is

(−1)
sij+r

P̃ ′+
∑l
k=1 rP̃k

+r
P̃ ′′ if i ≺ i0 ≺ j

(−1)
sij+1+r

P̃ ′+
∑l
k=1 rP̃k

+r
P̃ ′′ if j ≺ i0 ≺ i.

Finally we observe that

rP + 1 ≡ r
P̃ ′ +

∑l
k=1 rP̃k

+ r
P̃ ′′ (mod 2) if i ≺ i0 ≺ j

rP ≡ r
P̃ ′ +

∑l
k=1 rP̃k

+ r
P̃ ′′ (mod 2) if j ≺ i0 ≺ i

and it follows that P has property (�). See Figure 5.9 for the case of the disk. More generally

when the surface is not the disk the boundary will still be a circle and Lemma 5.3.1 shows
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i

i′0

i′′0

j

P̃ ′

P̃ ′′

Ñ

i ≺ i0 ≺ j

i

i0

j

P

N

j

i′0

i′′0

i

P̃ ′

P̃ ′′

Ñ

j ≺ i0 ≺ i

j

i0

i

P

N

Figure 5.9: Closing paths in Ñ . The case i ≺ i0 ≺ j is shown on the right while the case
j ≺ i0 ≺ i is shown on the left.

that the rotation number of traversing the boundary will always be odd, and hence can be

thought of as shown in Figure 5.9.

Now consider a path P : i0  j in N . If P does not use the edge e′, then P corresponds

to a path P̃ : i′′0 → j in Ñ with rP = r
P̃

and sij = s̃i′′0j
. If this is the case, then it is clear

P has property (�). Otherwise P traverses the edge e′ some number of times. Let l be the

number of times P traverses e′ for l > 0. In this case P corresponds to the concatenation

of paths P̃k : i′′0  i′0 for 1 ≤ k ≤ l, and P̃ ′′ : i′′0  j. Now the sign of the product of the

53



weights of these paths in Ñ is

(−1)

∑l
k=1(r

P̃k
+1)

(−1)
s̃
i′′0j

+r
P̃ ′′+1

since s̃i′0i
′′
0

= 0. The sign of the path P in N will be

(−1)

∑l
k=1(r

P̃k
+1)

(−1)
s̃
i′′0j

+r
P̃ ′′+1

(−1)l

since we pick up an addition factor of −1 each time we traverse e′. Simplifying, the sign of

P is

(−1)
sij+

∑l
k=1 rP̃k

+r
P̃ ′′+1

since sij = s̃i′′0j
. The equality

rP =
l∑

k=1

r
P̃k

+ r
P̃ ′′

implies that P has property (�).

The final case is again i0 is adjacent to a black vertex, and we remove the black vertex

and split i0 into two boundary vertices i′0 < i′′0 . This time we consider the case where i′0 is

a source and i′′0 is a sink as shown in Figure 5.10. This case will be identical to the previous

case of splitting a black vertex, after applying Lemma 5.3.2 and forming closed curves in the

opposite direction, with the subcases i ≺ i0 ≺ j and j ≺ i0 ≺ i reversed.

Theorem 5.3.3 need not be true when N is not a perfectly oriented network. See Fig-

ure 5.11 for an example of a network for which Theorem 5.3.3 does not hold. The boundary
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Figure 5.10: Splitting a black vertex in the case that i′0 is a source and i′′0 is a sink

1

2 3

4

x1

x2 x3

x4

Figure 5.11: A network which is not perfectly oriented

measurement matrix for the network in Figure 5.11 is

B =

1 x1x2 0 −x1x4

0 x2x3 1 x3x4

 .

The matrix B cannot be obtained from the weighted path matrix for this example. Notice

the second column of B would require x1 and x3 receive the same sign, while the fourth

column of B would require x1 and x3 receive opposite signs. However, as mentioned in

Remark 5.1.1 the network in Figure 5.11 can be transformed to a perfectly oriented network.

In this case it turns out the perfectly oriented network we get after the transformation is

the network in Figure 5.6 for which we have already seen how to sign the edges. We include

Algorithm 1 for finding a signing of edges as in Theorem 5.3.3. Algorithm 1 makes use of
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helper functions given in Algorithm 2 This recursive algorithm exactly corresponds to the

induction used in the proof.

Algorithm 1 Signing edges of a perfectly oriented network

Require: A perfectly oriented network N = (V,E).
function FindSigns(N)

if int(V ) = ∅ then
for e = (i, j) ∈ E do

εe = (−1)
sij+re+1

return {εe}e∈E
else

Choose boundary source i0 ∈ I adjacent to some interior vertex.
Let e0 = (i0, v0) be the unique edge incident on i0.
Let e′ and e′′ be to two edges different from e0 incident on v0 with e′ < e′′.
Ñ ← Split(N, i0, v0, e0, e

′, e′′)
{ε̃e}e∈E(Ñ)

← FindSigns(Ñ)

return ModifySigns(N, i0, v0, e0, e
′, e′′, {ε̃e}e∈E(Ñ)

)

5.4 A Formula for Plücker Coordinates

Notice that from Theorem 5.3.3 it follows that Conjecture 5.1.2 is true. We now want to

give an explicit formula for the minors of the boundary measurement matrix. In order to do

this we must first review some concepts and results that can be found in [Pos06] and [Tal08].

Take I, J ⊆ [n] with |I| = |J |. Let π : I → J be a bijection with π(i) = i for all i ∈ I ∩ J .

A pair (i1, i2) ∈ I × I where i1 < i2 is called a crossing of π if the following condition holds

(i1 − π(i2))(π(i2)− π(i1))(π(i1)− i2))(i2 − i1) < 0

This condition is equivalent to the chord for i1 to π(i1) crossing the chord from i2 to π(i2)

when the elements of [n] are placed in cyclic order on the boundary of a disk. Thinking of I

as a collection of boundary sources and J as a collection of boundary vertices, the condition
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Algorithm 2 Helper functions for signing edges of a perfectly oriented network

function Split(N ,i0,v0,e0,e′,e′′)
Ṽ ← (V \ {i0, v0}) ∪ {i′0, i′′0}
K̃ = (K \ {i0}) ∪ {i′0, i′′0}
Order K̃ by i1 < i′0 < i′′0 < i2 for all i1, i2 ∈ K such that i1 < i0 < i2
if e′ = (v0, x) then ẽ′ ← (i′0, x)

if e′ = (x, v0) then ẽ′ ← (x, i′0)

if e′′ = (v0, x) then ẽ′′ ← (i′′0 , x)

if e′′ = (x, v0) then ẽ′′ ← (x, i′′0)

Ẽ ← (E \ {e0, e
′, e′′}) ∪ {ẽ′, ẽ′′}

Ñ ← (Ṽ , Ẽ)
return Ñ

function ModifySigns(N, i0, v0, e0, e
′, e′′, {ε̃e}e∈E(Ñ)

)

if ẽ′ = (v0, x) and ẽ′′ = (v0, y) then
εi0 ← +1
εe′ ← ε̃ẽ′
εe′′ ← ε̃ẽ′′
for j ∈ K with j < i0 do

εj ← ε̃j

for j ∈ K with j > i0 do
εj ← −ε̃j

for All other edges e ∈ E do
εe ← ε̃e

if ẽ′ = (x, v0) and ẽ′′ = (v0, y) then
εi0 ← +1
εe′ ← −ε̃ẽ′
εe′′ ← ε̃ẽ′′
for All other edges e ∈ E do

εe ← ε̃e
if ẽ′ = (v0, x) and ẽ′′ = (y, v0) then

εi0 ← +1
εe′ ← ε̃ẽ′
εe′′ ← −ε̃ẽ′′
for All other edges e ∈ E do

εe ← ε̃e
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i1

i2 π(i1)

π(i2) i1

i2

π(i1)

π(i2)

Figure 5.12: Crossings on the disk and the annulus. Here boundary vertices are ordered
i1 < i2 < π(i1) < π(i2).

of being a crossing means that a path P1 : i π(i1) must intersect any path P2 : i2  π(i2)

in any network embedded on a disk. However, when our surface is not a disk it can happen

that (i1, i2) is a crossing of π but paths P1 : i π(i1) and P2 : i2  π(i2) do not intersect.

See Figure 5.12 for a pictorial representation of a crossing on the disk and an example of

paths of the annulus which come from a crossing but do not intersect. We let xing(π) denote

the number of crossings of π.

If |I| = |J | = k then a bijection π : I → J determines a unique permutation π ∈ Sk by

standardizing I and J . We let inv(π) denote the number of inversion of π when view as an

element of Sk. We let si,j denote the number of elements of I strictly between i and j.

Lemma 5.4.1 ([Tal08]). If I, J ⊂ [n] with |I| = |J | and π : I → J is a bijection such that

π(i) = i for all i ∈ I ∩ J , then

(−1)xing(π) = (−1)inv(π)
∏
i∈I

(−1)
si,π(i) .

Proof. This is shown during the proof of [Tal08, Proposition 2.12].

We now give our formula for the Plücker coordinates of the boundary measurement map.
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Corollary 5.4.2. If N = (V,E) is a perfectly oriented network embedded on a closed ori-

entable surface with boundary, then for any J ⊆ K with |I| = |J |

∆I,J (B(N, {xe}e∈E)) =

∑
F∈FI,J (N)(−1)c(F) wt(F)∑

C∈C(N) wt(C)

where c(F) = xing(π) +
∑
P∈P(rP + 1) if F = (P,C).

Proof. We first take {εe}e∈E such that B(N, {xe}e∈E) = A(N, {εexe}e∈E) which necessarily

exists by Theorem 5.3.3. Using Equation (5.1) we obtain

∆I,J (B(N, {xe}e∈E)) =

∑
F∈FI,J (N) sgn(F)

(∏
e∈F εe

)
wt(F)∑

C∈C(N) sgn(C)
(∏

e∈C εe
)

wt(C)
.

Since traversing a cycle in a perfectly oriented network will always change the rotation

number by exactly one, it follows that
∏
e∈C εe = (−1)|C| for any C ∈ C(N). Also, sgn(C) =

(−1)|C| for any C ∈ C(N) and thus

sgn(C)

∏
e∈C

εe

 = 1

and the denominator in the corollary is correct.

It remains to show the numerator in the corollary is correct. That is we must show

sgn(F)
(∏

e∈F εe
)

= (−1)xing(π)+
∑
P∈P(rP+1) for any F ∈ FI,J (N). Take F = (P,C) ∈
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FI,J (N) and let π : I → J be the bijection determined by P, then

sgn(F)

∏
e∈F

εe

 = sgn(P) sgn(C)

∏
e∈P

εe

∏
e∈C

εe


= sgn(π)

∏
e∈P

εe


= (−1)inv(π)

∏
i∈I

(−1)
si,π(i)

∏
P∈P

(−1)rP+1


= (−1)xing(π)+

∑
P∈P(rP+1)

where we have made use of Lemma 5.4.1.

In the case our surface S is a disk it is easy to see that the formula in Corollary 5.4.2

contains no negative terms. On the disk for any flow F = (P,C) we must have xing(π) = 0

and rP = ±1 for all P ∈ P. Thus, c(F) is even for any flow F in the disk. Hence we

recover Equation (5.2). For more general surfaces we no longer have positivity, for example

see Figure 5.4.

5.5 The Gauge Action and Uniqueness of Signs

Given a directed network N = (V,E) embedded on a surface the gauge group G = G(N) :=

(R∗)int(V ) where int(V ) = V \ K denotes the set of interior vertices of N and R∗ denotes

the nonzero real numbers. We also define the weight space X = X (N) to be the set of all

collections {aexe}e∈E where ae ∈ R∗. Notice here to each edge e ∈ E we associate a nonzero

real number ae and a formal variable xe. An element of the gauge group g = (gv)v∈int(V ) ∈ G
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acts on an element of the weight space X = {aexe}e∈E ∈ X as follows

g ·X = {(g · ae)xe}e∈E

where if e = (i, j) then g · ae = g−1
j aegi (with the convention that gi = 1 if i ∈ K is a

boundary vertex). It follows that

A(N,X) = A(N, g ·X)

for all g ∈ G and X ∈ X . When X, Y ∈ X (N) are such that Y = g ·X for some g ∈ G(N)

we call X and Y gauge equivalent.

Algorithm 3 Finding Gauge Transformation

Require: A directed network N = (V,E) embedded on a closed orientable surface with
boundary such that each vertex is contained in some path between boundary vertices and
X, Y ∈ X (N) are such that A(N,X) = A(N, Y ).
function FindGauge(X,Y )

Let X = {aexe}e∈E and Y = {bexe}e∈E
g ← (1)v∈int(V )

O ← int(V )
C ← V \ int(V )
while O 6= ∅ do

Choose (u, v) ∈ E such that (u, v) ∈ C × O
gv ←

g·a(u,v)
b(u,v)

C ← C ∪ {v}
O ← O \ {v}

return g . g returned will be such that g ·X = Y

Theorem 5.5.1. Let N = (V,E) be a directed network embedded on a closed orientable

surface with boundary such that every vertex in contained in some path between boundary

vertices, then A(N,X) = A(N, Y ) for X, Y ∈ X (N) if and only if X and Y are gauge

equivalent.
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Proof. Our proof will show that Algorithm 3 returns g ∈ G(N) such that g · X = Y . Let

X = {aexe}e∈E and Y = {bexe}e∈E . First note that Algorithm 3 will always terminate

since each vertex of N is contained in some path between boundary vertices and C initially

consists of all the boundary vertices. Furthermore, when the algorithm terminates C = V .

Also, observe that if v ∈ C ∩ int(V ) at some stage of the algorithm there is a directed path

from some boundary vertex to the vertex v passing through only vertices in C. Lastly, we

note that at a given stage of the algorithm gv = 1 whenever v 6∈ C. It suffices to show that

at each step of Algorithm 3 we have the following property:

g · ae = be for all e ∈ C × C (?)

Initially C consists of only the boundary vertices and g = (1)v∈int(V ). At this stage we

have g · ae = ae for all e ∈ E, and ae = be whenever e ∈ C × C by the assumption that

A(N,X) = A(N, Y ). So, initially we have property (?).

We now consider extending the set of vertices C. Suppose we are at some stage of the

algorithm where g · ae = be for all e ∈ C × C. Consider (u, v) ∈ C × O and let C′ = C ∪ {v}

and g′ be such that g′v = g · a(u,v)/b(u,v) and g′x = gx for x 6= v. Now we must show for

all e ∈ C′ × C′ that g′ · ae = be. We need only consider edges e ∈ C′ × C′ incident on v as
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g′ · ae = g · ae = be for e ∈ C′ × C′ with e not incident on v. First we compute

g′ · a(u,v) = (g′v)
−1a(u,v)g

′
u

=
b(u,v)a(u,v)g

′
u

g · a(u,v)

=
b(u,v)(g · a(u,v))

g · a(u,v)

= b(u,v)

and conclude g′ · a(u,v) = b(u,v).

Consider (w, v) ∈ E such that w ∈ C. We can find paths Pu : iu  u and Pw : iw  w

passing through only vertices of C for iu, iw ∈ I. Choose some path P : v  j for j ∈ K so

we get paths P1 = Pu(u, v)P : iu  j and P2 = Pw(w, v)P : iw  j. It then follows that

∏
e∈P1

ae =
∏
e∈P1

be
∏
e∈P2

ae =
∏
e∈P2

be

and so also

∏
e∈P1

g′ · ae =
∏
e∈P1

be
∏
e∈P2

g′ · ae =
∏
e∈P2

be.

Considering ratios we see

(∏
e∈Pu g

′ · ae
)

(g′ · a(u,v))
(∏

e∈P g
′ · ae

)(∏
e∈Pw g

′ · ae
)

(g′ · a(w,v))
(∏

e∈P g′ · ae
) =

(∏
e∈Pu be

)
(b(u,v))

(∏
e∈P be

)(∏
e∈Pw be

)
(b(w,v))

(∏
e∈P be

)
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and recalling g′ · ae = be for e ∈ Pu ∪ Pw ⊆ C we can conclude g′ · a(w,v) = b(w,v) as desired.

Consider (v, w) ∈ E such that w ∈ C. We can find paths Pu : iu  u and Pw : iw  w

passing through only vertices of C for iu, iw ∈ I. Choose some path P : w  j for j ∈ K so

we get paths P1 = Pu(u, v)(v, w)P : iu  j and P2 = PwP : iw  j. It then follows that

∏
e∈P1

ae =
∏
e∈P1

be
∏
e∈P2

ae =
∏
e∈P2

be

and so also

∏
e∈P1

g′ · ae =
∏
e∈P1

be
∏
e∈P2

g′ · ae =
∏
e∈P2

be.

Considering ratios we see

(∏
e∈Pu g

′ · ae
)

(g′ · a(u,v))(g
′ · a(v,w))

(∏
e∈P g

′ · ae
)(∏

e∈Pw g
′ · ae

) (∏
e∈P g′ · ae

)
=

(∏
e∈Pu be

)
(b(u,v))(b(v,w))

(∏
e∈P be

)(∏
e∈Pw be

) (∏
e∈P be

)
and recalling g′ · ae = be for e ∈ Pu ∪ Pw ⊆ C and we can conclude g′ · a(w,v) = b(w,v)

as desired. Therefore property (?) extends at each step of Algorithm 3 and the theorem is

proven.

Theorem 5.5.1 has the following corollary which says that the choice of signs guaranteed

by Theorem 5.3.3 is unique up to gauge transformation provided each vertex is contained in

some path between boundary vertices.
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Corollary 5.5.2. If N = (V,E) is a directed network embedded on a closed orientable surface

with boundary such that every vertex in contained in some path between boundary vertices

and there exists a collections {εe}e∈E , {ε′e}e∈E ∈ {±1}E such that

B(N, {xe}e∈E) = A(N, {εexe}e∈E) and B(N, {xe}e∈E) = A(N, {ε′exe}e∈E)

then {εe}e∈E and {ε′e}e∈E are gauge equivalent.
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Chapter 6

Upper cluster algebras and ground

rings

This chapter is based on the preprint [BMS18] which is joint work with Eric Bucher and

Michael Shapiro.

6.1 Locally isolated and Locally acyclic cluster alge-

bras

We first review Muller’s notion of locally acyclic cluster algebras [Mul13]. This section closely

follows [Mul14] while describing some changes needed to adapt the theory of locally acyclic

cluster algebras for ground rings other than ZP. Let (B,x,y) be a seed of rank n and A

be a ground ring satisfying (3.1) and (3.2). Denote the corresponding cluster algebra by

A = AA(B,x,y) and upper cluster algebra by U = UA(B,x,y).

The freezing of A at xn ∈ x is the cluster algebra A† = AA†(B
†,x†,y†) defined as follows

• The new semifield is P† = P× Z with xn as the generator of the free abelian group Z.

The auxiliary addition is extended as

(p1x
a
n)⊕ (p2x

b
n) = (p1 ⊕ p2)x

min(a,b)
n .
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• The new ground ring A† ⊆ ZP† is A† = A[x±1
n ].

• The new ambient field is F† = Q(P†, x1, x2, . . . , xn−1) and x† = (x1, x2, . . . , xn−1).

• The new coeffients are y† = (y
†
1, y
†
2, . . . , y

†
n−1) where y

†
i = yix

Bni
n .

• The new exchange matrix B† is obtained from B by deleting the nth row and column.

In this setting the upper cluster algebra corresponding to A† will be denoted U†. Notice

in a cluster algebra arising from a quiver that a freezing exactly corresponds to replacing

the mutable vertex labeled by xn with a frozen vertex. By considering a permutation of

indices we can freeze at any xi ∈ x. We can freeze at some subset of cluster variables by

iteratively freezing at individual cluster variables. This process is independent of the order

of freezing. A freezing A† of A at {xi1 , xi2 , . . . , xim} ∈ x is called a cluster localization if

A† = A[(xi1xi2 · · ·xim)−1]. A cover of A is a collection {Ai}i∈I of cluster localizations such

that for any prime ideal P ⊆ A there exists i ∈ I where AiP ( Ai. Lemma 6.1.1 below is

not exactly [Mul14, Lemma 1], but follows immediately and will be all that is used for our

purposes.

Lemma 6.1.1 ([Mul14, Lemma 1]). If A† is a freezing of a cluster algebra A at cluster

variables {xi1 , xi2 , . . . , xim} and A† = U†, then A† = A[(xi1 , xi2 , . . . , xim)−1] is a cluster

localization.

The seed (B,x,y) is called isolated if B is the zero matrix. A cluster algebra defined by

an isolated seed is also referred to as isolated. In terms of quivers, isolated means that there

are no arrows between mutable vertices. The seed (B,x,y) is said to be acyclic if there are

not i1, i2, . . . , i` ∈ {1, 2, . . . , n} with Bij+1ij
> 0 for 1 ≤ j < ` and i1 = i`. A cluster algebra

defined by an acyclic seed is called an acyclic cluster algebra. A locally isolated, respectively
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locally acyclic, cluster algebra is a cluster algebra for which there exists a cover by isolated,

respectively acyclic, cluster algebras.

In [Mul14] the only ground ring considered is ZP; however, proofs of the following results

go through without change for more general ground rings.

Lemma 6.1.2 ([Mul14, Lemma 2]). Let {Ai}i∈I be a cover of A. If Ai = Ui for all i ∈ I,

then A = U .

Proposition 6.1.3 ([Mul14, Proposition 3]). Let A be an isolated cluster algebra. Then

A = U .

This immediately gives the following result.

Theorem 6.1.1. If A is a locally isolated cluster algebra, then A = U .

The definition of a locally isolated cluster algebra and Theorem 6.1.1 are not explicitly

stated in [Mul14]. This is because over the ground ring ZP being locally isolated is equivalent

to being locally acyclic as every acyclic cluster algebra over ZP admits a cover by isolated

cluster algebras [Mul14, Proposition 4]. The equivalence is not true over other ground rings.

In Section 6.2 we give an example of a cluster algebra of geometric type which is locally

acyclic over ZP, but for which the cluster algebra and upper cluster algebra do not coincide

over a different natural choice of ground ring. We show this example cluster algebra is locally

acyclic by using Muller’s Banff algorithm [Mul13, Theorem 5.5]. A pair of vertices (i1, i2) in

a quiver Q is called a covering pair if (i1, i2) is an arrow of Q that is not contained in any

bi-infinite path of mutable vertices. The notion of covering pair is needed to run the Banff

algorithm. The (reduced) Banff algorithm can be found as Algorithm 4. The reduced version

of the algorithm deletes vertices rather then freezes them. This makes for a simpler check
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that a cluster algebra is locally acyclic, but has the down side that it is does not compute

the actual cover.

Algorithm 4 The (reduced) Banff algorithm to determine if a quiver is locally acyclic.

Require: A (mutable part of a) quiver Q0
function Banff(Q0)

A← ∅
B← {Q0}
while B 6= ∅ do

Remove a quiver Q from B
if Q is mutation equivalent to an acyclic quiver then

A← A ∪ {Q}
else if Q is mutation equivalent to a quiver Q′ with a covering pair (i1, i2) then

Let Qj be the quiver obtained from Q′ by freezing (deleting) ij for j = 1, 2
B← B ∪ {Q1, Q2}

else
The algorithm fails

return A . A returned will be a finite set of acyclic quivers

In the remainder of this section we analyze the proof of [Mul14, Proposition 4] consider

conditions which imply a cluster algebra is locally isolated. This allows the application of

Theorem 6.1.1 to conclude the cluster algebra is equal to its upper cluster algebra. An index

i ∈ {1, 2, . . . , n} is a source in the seed (B,x,y) if Bki ≥ 0 for all 1 ≤ k ≤ n. In this case

mutation in the direction i gives

xix
′
i =

yi
yi ⊕ 1

∏
Bki>0

x
Bki
k +

1

yi ⊕ 1
. (6.1)

A key step in showing an acyclic cluster algebra over ZP is covered by isolated cluster algebras

is as follows1. Let i be a non-isolated source choose j with Bji > 0, then after multiplying

1The argument that follows is the “source version” and a corresponding “sink version” holds with corre-
sponding modification. The “sink version” is used in [Mul14].
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by yi ⊕ 1 and rearranging (6.1) we obtain

((yi ⊕ 1)x′i)xi −

yi ∏
Bki>0
k 6=j

x
Bki
k

x
Bji
j = 1. (6.2)

It is implied by (6.2) that 1 ∈ Axi + Axj and it follows that {A[x−1
i ],A[x−1

j ]} cover A

provided these are cluster localizations. Here we see that do not necessarily need to be

working over ZP. The essential fact is that 1 ∈ Axi + Axj . This leads to the following

definition. Call the seed (B,x,y) a source freezing seed with respect to a ground ring A if

yi ⊕ 1 ∈ A for all 1 ≤ i ≤ n.

Lemma 6.1.4. Let (B,x,y) be a source freezing seed with respect to A. If i is a source and

Bji > 0, then {A[x−1
i ],A[x−1

j ]} cover A provided they are cluster localizations.

Proof. In the case (B,x,y) a source freezing seed with respect to A, i is a source, and Bji > 0

we have that 1 ∈ Axi+Axj by (6.2). Given any prime A-ideal P we must have either xi 6∈ P

or xj 6∈ P since P 6= A is a proper ideal. If xi 6∈ P , then A[x−1
i ]P ( A[x−1

i ]. If xj 6∈ P ,

then A[x−1
j ]P ( A[x−1

j ]. Thus if A[x−1
i ] and A[x−1

j ] are cluster localization they form a

cover.

Lemma 6.1.5. Let (B,x,y) be a source freezing seed, and let (B†,x†,y†) the freezing at xi

for any 1 ≤ i ≤ n. The seed (B†,x†,y†) is a source freezing seed with respect to A† = A[x±1
i ].

Proof. Since (B,x,y) is a source freezing seed, 1 ⊕ yj ∈ A for each 1 ≤ j ≤ n. We must
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show that 1⊕ y†j ∈ A† for each 1 ≤ j ≤ n where y
†
j = yjx

Bij
i . We compute

1⊕ y†j = 1⊕ yjx
Bij
i

= (1⊕ yj)x
min(0,Bij)

i ∈ A† = A[x±1
i ],

and the lemma is proven.

Theorem 6.1.2. If A = AA(B,x,y) where (B,x,y) is an acyclic source freezing seed with

respect to A, then A = U .

Proof. Assume (B,x,y) is an acyclic source freezing on rank n. We will induct on the rank.

If n ≤ 1, we are done by Proposition 6.1.3 since B must be isolated. Now we may assume

the seed in non-isolated, otherwise we are done by Proposition 6.1.3. Since the seed in non-

isolated and acyclic there must be a non-isolated source. We choose a non-isolated source

i and then pick j with Bji > 0. Freezing at xi, the seed (B†,x†,y†) is an acyclic source

freezing seed with respect to A† by Lemma 6.1.5, and hence A† = U† by induction since A†

is of rank n−1. Similarly freezing at xj , the seed (B††,x††,y††) is an acyclic source freezing

seed with respect to A†† by Lemma 6.1.5 and A†† = U†† also. Now A† and A†† both must

be cluster localizations by Lemma 6.1.1. Thus Lemma 6.1.4 says that {A†,A††} is a cover

of A. We conclude A = U using Lemma 6.1.2.

Theorem 6.1.2 can be used to produce example of geometric type with A = U over the

polynomial ground ring ZP+. Call a quiver a source freezing quiver if all arrows involving

frozen vertices are directed from a mutable vertex to a frozen vertex. An acyclic source

freezing quiver is pictured in Figure 6.1. Combining Theorem 6.1.2 with the sharpening of

the Laurent phenomenon [FWZ, Theorem 3.3.6] for cluster algebras of geometric type we
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Figure 6.1: An acyclic source freezing quiver

obtain the following corollary since any source freezing quiver defines a source freezing seed

with respect to ZP+.

Corollary 6.1.6. If Q is an acyclic source freezing quiver defining a cluster algebra A, then

A = U over the ground ring ZP+.

6.2 The Cremmer-Gervais example

In this section we consider an exotic cluster structure constructed by Gekhtman, Shapiro, and

Vainshtein known as the Cremmer-Gervais cluster structure on SLn [GSV14, GSV17]. This

cluster structure extends to a cluster structure on the set of n× n matrices denoted Matn.

We let AA(CG, n) and UA(CG, n) denote the cluster algebra and upper cluster algebra over

the ground ring A coming from the Cremmer-Gervais cluster structure on Matn. The quiver

Q(CG, n) defines this cluster algebra. Figure 6.2 shows the quiver Q(CG, 3). It is know

that for any n the upper cluster algebra UZP+
(CG, n) is naturally isomorphic to the ring of

regular functions on Matn [GSV17, Theorem 3.1]. The following result shows the sensitivity

of the A = U question on the ground ring

Proposition 6.2.1. We have equality AZP(CG, 3) = UZP(CG, 3) over ZP but strict con-

tainment AZP(CG, 3) ( UZP(CG, 3) over ZP+.

Proof. The equality AZP(CG, 3) = UZP(CG, 3) follows from the fact that AZP(CG, 3) is a

locally acyclic cluster algebra over ZP. This can be checked by applying the Banff algorithm.
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Figure 6.2: The quiver Q(CG, 3).

A visual representation of the reduced Banff algorithm is applied to Q(CG, 3) is shown in

Figure 6.3. In Figure 6.3 mutation equivalence is denoted by ⇔ and covering pairs used

are displayed in thick red. The strict containment AZP(CG, 3) ( UZP(CG, 3) is [GSV14,

Theorem 4.1].

6.3 Relationship with reddening

A maximal green sequence or reddening sequence is a special sequence of mutations whose

existence gives rise to additional properties of the underlying cluster algebra. These se-

quences of mutations were introduced by Keller to study quantum dilogarithm identities

and Donaldson-Thomas invariants [Kel11]. It has been observed in the literature that the

existence of a maximal green sequence or reddening sequence seems to coincide with equality

of the cluster algebra and upper cluster algebra [CLS15]. We will exhibit a maximal green

sequence for Q(CG, 3) in this section.

The existence of such a sequence depends only on the mutable part of a quiver. Given a

mutable quiver Q, the framed quiver Q̂ is obtain by adding a new frozen vertex i′ for each

(mutable) vertex i along with an arrow i → i′. A example of a framed quiver is given in

Figure 6.4. A mutable vertex i is called green if all arrows involving i and a frozen vertex

j′ are directed i→ j. Otherwise the vertex i is called red. All mutable vertices of a framed

quiver start as green. A maximal green sequence is a sequence of mutations starting with
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⇔

Acyclic

⇔

Acyclic

⇔

Acyclic

Figure 6.3: The reduced Banff algorithm applied to the quiver Q(CG, 3).

1

23

1′

2′3′

Figure 6.4: A framed quiver.
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Figure 6.5: A maximal green sequence.

4

3 6

1 2 5

Figure 6.6: The mutable part of the quiver Q(CG, 3).

Q̂ such that each mutation occurs at a green vertex and all mutable vertices are red after

applying the sequence of mutations.

The quiver with vertices {1, 2} and arrow set {1 → 2} has exactly 2 maximal green

sequences which are mutations at (1, 2) and (2, 1, 2). The maximal green sequence (2, 1, 2)

is illustrated in Figure 6.5.

The quiver Q(CG, 3) provides an interesting case regarding the connection between

maximal green sequences and the upper cluster algebra. The mutable part of the quiver

Q(CG, 3) with vertices labeled is shown in Figure 6.6. With this labeling of vertices it

can be checked that (2, 3, 4, 1, 5, 1, 2, 6, 3) is a maximal green sequence. Hence, we see the

relationship of reddening sequences and equality of the cluster algebra and upper cluster

algebra is again sensitive to the choice of ground ring since AZP+
(CG, 3) 6= UZP+

(CG, 3)

but AZP(CG, 3) = UZP(CG, 3). The maximal green sequence exhibited for Q(CG, 3) can be

found using a new technique called component preserving mutations. The idea of component

preserving mutations along with further examples will be given in [BMR+].
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Chapter 7

Log-Canonical Coordinates

This chapter is based on the article [MO17] which is joint work with Nicholas Ovenhouse.

We will be interested in Poisson algebras of rational functions. Let K be a field and Ω = (ωij)

a skew-symmetric matrix. Consider the algebra RΩ = K(x1, . . . , xn) of rational functions

in n variables with a Poisson bracket in which the functions x1, . . . , xn form a system of

log-canonical coordinates:

{xi, xj} = ωijxixj

Here we wish to show that the bracket {·, ·} has the simplest expression in the coordinates

x1, · · · , xn. In particular, we want to show that no rational change of coordinates can make

the structure functions constant or linear (homogeneous or non-homogeneously linear). We

wish to investigate the following conjecture of Michael Shapiro.

Conjecture 7.0.1. If f1, · · · , fn ∈ RΩ are rational functions such that

{fi, fj} =
n∑
k=1

ckijfk + dij

with ckij , dij ∈ K for 1 ≤ i, j, k ≤ n, then {fi, fj} = 0 for 1 ≤ i, j ≤ n.

We prove this conjecture in Theorem 7.2.4. Note that the conjecture implies that for any

log-canonical Poisson structure on affine space, the answer to Question 4.1.5 is “no.” That

is, there is no system of coordinates whose structure functions are polynomials of degree less
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than two.

7.1 Nonexistence of Constant Bracket

We have discovered that some of the results of this section have already appeared in [GL11].

However, we include this section for completeness. The results in this section will be built

upon to prove our main theorem. Given some n×n skew-symmetric matrix Ω = (ωij), recall

that RΩ = K(x1, · · · , xn) is the algebra of rational functions in n variables with the Poisson

bracket given by

{xi, xj} = ωijxixj

for 1 ≤ i, j ≤ n. For I = (i1, . . . , in) ∈ Zn, the corresponding Laurent monomial is written

xI = x
i1
1 · · · x

in
n . For I = (i1, . . . , in) and J = (j1, . . . , jn) in Zn, let AIJ be the 2-by-n matrix

whose rows are I and J . Let ∆ij(A
I
J ) be the 2-by-2 minor of AIJ with columns indexed by i

and j. Also define MI
J to be the weighted sum of the ∆ij(A

I
J ) given by the following formula

MI
J :=

∑
k<`

ωk`∆k`(A
I
J ) =

∑
k<`

ωk`

∣∣∣∣∣∣∣
ik i`

jk j`

∣∣∣∣∣∣∣ =
∑
k<`

ωk`(ikj` − i`jk).

Note that if e1, . . . , en is a basis for Zn, with e1, . . . , en the dual basis, we can define the

two-form

ω =
∑
k<`

ωk` e
k ∧ e`,

and then MI
J = ω(I, J). In particular, the expression MI

J is Z-bilinear and skew-symmetric

with respect to I and J . We now compute an explicit formula for the bracket of two Laurent

polynomials.
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Lemma 7.1.1. If I, J ∈ Zn, then

{xI ,xJ} = MI
J xI+J .

Proof. Let I = (i1, . . . , in) and J = (j1, . . . , jn). For 1 ≤ k ≤ n let

Ik = (i1, . . . , ik−1, 0, ik+1, . . . , in)

and

Jk = (j1, . . . , jk−1, 0, jk+1, . . . , jn).

By using Equation 4.1, we find

{xI ,xJ} =
∑

1≤k,`≤n

∂xI

∂xk

∂xJ

∂x`
{xk, x`}

=
∑

1≤k,`≤n
ik j` xIk+J`{xk, x`}

=
∑

1≤k,`≤n
ik j` xIk+J`ωk`xk x`

=
∑

1≤k,`≤n
ωk`ik j` xI+J

=
∑

1≤k<`≤n
ωk`(ikj` − i`jk)xI+J

= MI
JxI+J
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In order to prove our first theorem we want to work with iterated Laurent series. We

will give a brief overview of the theory of iterated Laurent series which will be needed for

our purpose. For a more in depth treatment of iterated Laurent series we refer the reader

to [Xin04]. For us a formal Laurent series in variables x1, . . . , xn over K will mean any

formal sum

f =
∑
I∈Zn

αIx
I

with αI ∈ K for all I ∈ Zn. For any I ∈ Zn let [xI ]f denote the coefficient of xI in f . In

particular, [1]f denotes the constant term of f . Also, we let supp(f) denote the set I ∈ Zn

such that [xI ]f 6= 0. The set of formal Laurent series is a K-vector space, but it is not a

K-algebra as we cannot multiply any two formal Laurent series in general.

However, certain subsets of the set of formal Laurent series form a K-algebra. Define

K〈〈x〉〉 := K((x)) to be the field of Laurent series in a single variable. That is, K((x)) consists

of formal Laurent series
∑
i∈Z aix

i containing only finitely many negative exponents. Now

define

K〈〈x1, · · · , xi+1〉〉 := K〈〈x1, · · · , xi〉〉((xi+1))

iteratively. We then let L = K〈〈x1, · · · , xn〉〉 be the field of iterated Laurent series in

n variables. We have the following immediate corollary of Lemma 7.1.1 which holds for

Laurent polynomials. In the remainder of this section we will show that this corollary can

be extended to hold for any iterated Laurent series.

Corollary 7.1.2. Let f, g ∈ K[x±1 , . . . , x
±
n ] be Laurent polynomials, with I = supp(f) and
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J = supp(g). Then their bracket is given by

{f, g} =
∑

(I,J)∈I×J
αIβJM

I
JxI+J .

Remark 7.1.3. Note that we have the inclusion K[x1, . . . , xn] ↪→ L. Since L is a field and

RΩ is the field of fractions of K[x1, . . . , xn], we also have the inclusion RΩ ↪→ L. Hence, RΩ

is a K-subalgebra of L.

Remark 7.1.4. Notice the order in which we adjoin our variables is relevant. For instance,

consider the rational function 1
x+y . As an element of K〈〈x, y〉〉, it can be written as

1

x+ y
=
∑
n≥0

(−1)nx−(n+1)yn

However, since there is no lower bound on the powers of x, this does not give an element of

K〈〈y, x〉〉. Instead, to represent it as an element in the latter field, we must write

1

x+ y
=
∑
n≥0

(−1)nxny−(n+1).

Remark 7.1.5. Any iterated Laurent series f ∈ L can be expressed as a formal Laurent series.

That is, we can write

f =
∑

I∈supp(f)

αIx
I .
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Given f, g ∈ L where

f =
∑

I∈supp(f)

αIx
I g =

∑
J∈supp(g)

βJxJ

their product is

fg =
∑

(I,J)∈supp(f)×supp(g)

αIβJxI+J .

This product fg is also an iterated Laurent series, since L is a field. In particular this means

fg is a formal Laurent series with the property that for any K ∈ Zn, the set

{(I, J) ∈ supp(f)× supp(g) : I + J = K}

is finite. In fact, we have the following result, which will be useful later1:

Proposition 7.1.6 ([Xin04, Proposition 2-2.1]). Let f be a formal Laurent series. Then

f ∈ L if and only if supp(f) is well-ordered with respect to the reverse lexicographic ordering.

Lemma 7.1.7. The Poisson bracket on RΩ extends uniquely to a Poisson bracket on L.

Proof. Note that by bilinearity, any Poisson bracket on L is determined by the brackets of

all Laurent monomials. Thus by Lemma 7.1.1, any bracket extending the one on RΩ must

be given by the same formula on monomials. We claim that the same formula in Corollary

7.1.2 gives the bracket on L. It suffices to show that for f, g ∈ L that {f, g} ∈ L. That is

we must show that given f, g ∈ L, the formula from Corollary 7.1.2 yields an element of L.

1We have chosen to use the iterated Laurent construction, and hence must show the well-ordered support
property in Proposition 7.1.6. Alternatively, we could have started from the well-ordered support property
and shown that we obtain a ring structure. A formal series with well-order support are sometimes called a
Hahn series or a Mal’cev-Neumann series and exponents can be taken from any ordered abelian group.
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Let f, g ∈ L, and again use the notation I = supp(f) and J = supp(g). Note that since

fg ∈ L, then supp(fg) is well-ordered by Proposition 7.1.6. The formula from Corollary 7.1.2

also implies that supp({f, g}) ⊆ supp(f) + supp(g), where “+” is used to denote Minkowski

addition:

supp(f) + supp(g) = {I + J | I ∈ supp(f), J ∈ supp(g)}.

Being a subset of a well-ordered set, we see that supp({f, g}) is itself well-ordered. Hence,

{f, g} ∈ L by Proposition 7.1.6.

The remaining results in this section are restatements of the indicated results from [GL11].

The next theorem is a simple but powerful observation which is an essential ingredient to

our proof of Conjecture 7.0.1.

Theorem 7.1.8 ([GL11, Proposition 5.2 (a)]). If f, g ∈ L, then [1]{f, g} = 0.

Proof. As usual, let I and J be the supports of f and g, and let

f =
∑
I∈I

αIx
I g =

∑
J∈J

βJxJ

be expressions for f and g as formal Laurent series. Computing using Corollary 7.1.2 we see

that

{f, g} =
∑

(I,J)∈I×J
αIβJM

I
JxI+J

and so

[1]{f, g} =
∑

(I,J)∈I×I
I+J=0

αIβJM
I
J .
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However, if I + J = 0, then J = −I and MI
J = 0. Here we have used that MI

J is skew-

symmetric with respect to I and J .

Corollary 7.1.9 ([GL11, Corollary 5.3]). If f1, · · · , fn ∈ RΩ are rational functions such

that {fi, fj} = cij with cij ∈ K for 1 ≤ i, j ≤ n, then cij = 0 for 1 ≤ i, j ≤ n.

Proof. By Lemma 7.1.7, RΩ is a Poisson subalgebra of L. The corollary then follows imme-

diately from Theorem 7.1.8.

7.2 Nonexistence of Linear Bracket

As in the previous section, we consider the Poisson algebra of rational functions RΩ, in n

variables, with bracket given by

{xi, xj} = ωijxixj

for some skew-symmetric matrix Ω = (ωij) with coefficients in K. It is the goal of this

section to prove the aforementioned Conjecture 7.0.1, which states that there is no rational

change of coordinates making the bracket linear. That is, if there are rational functions

f1, . . . , fn such that {fi, fj} =
∑n
k=1 c

k
ijfk + dij for constants ckij , dij ∈ K, then in fact all

the coefficients ckij and dij must be zero.

We now prove a lemma which will be used later.

Lemma 7.2.1. There do not exist linearly independent f, g ∈ RΩ such that {f, g} = af+bg

for a, b ∈ K with a and b not both zero.

Proof. Assume there do exist linearly independent rational functions f and g so that {f, g} =

af+bg for some a, b ∈ K. Then the linear span of f and g is a two-dimensional Lie subalgebra

of RΩ. Up to isomorphism, there is a unique two-dimensional non-abelian Lie algebra, with
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the bracket given by {f, g} = f . Explicitly, the isomorphism is given by f 7→ f + b
ag,

g 7→ 1
ag (assuming a 6= 0). So, we may assume without loss of generality that a = 1 and

b = 0, thus {f, g} = f . But then we have that 1
f {f, g} = 1. Note that since adf = {f, ·}

is a derivation, we have 1
f {f, g} =

{
f, gf

}
. This in turn implies that {f, gf } = 1. But this

directly contradicts Corollary 7.1.9, which says that the bracket of any two rational functions

cannot be a nonzero constant.

A useful consequence of this lemma is that the adjoint maps adf can have no non-zero

eigenvalues.

Corollary 7.2.2. If f, g ∈ RΩ with g 6= 0 and {f, g} = λg for some λ ∈ K, then λ = 0.

The next result says that the adjoint maps adf cannot be nonzero and nilpotent.

Lemma 7.2.3. If f, g ∈ RΩ and {f, g} 6= 0, then {f, {f, g}} 6= 0.

Proof. Take f, g ∈ RΩ and assume that {f, g} 6= 0 but {f, {f, g}} = 0. Then we know that{
f, 1
{f,g}

}
= 0. Computing, we see that

{
f,

g

{f, g}

}
= g

{
f,

1

{f, g}

}
+

1

{f, g}{f, g} = 1

which is a contradiction to Corollary 7.1.9.

We are now ready to prove the main result.

Theorem 7.2.4. If f1, · · · , fn ∈ RΩ are rational functions such that

{fi, fj} =
n∑
k=1

ckijfk + dij

with ckij , dij ∈ K for 1 ≤ i, j, k ≤ n, then {fi, fj} = 0 for 1 ≤ i, j ≤ n.
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Proof. Assume first that K = K is algebraically closed. Let f1, . . . , fn ∈ RΩ be rational

functions such that {fi, fj} =
∑n
k=1 c

k
ijfk + dij for some ckij , dij ∈ K. This means that

1, f1, . . . , fn generate a finite dimensional Lie algebra inside RΩ. Let F ≤ RΩ denote this

finite dimensional Lie algebra generated by 1, f1, . . . , fn. For any f ∈ F we have the linear

map adf : F → F , and by Corollary 7.2.2 all eigenvalues of adf are zero. It follows, since

K is algebraically closed, that adf is nilpotent. However, Lemma 7.2.3 implies that if adf is

nilpotent we must have adf = 0. The theorem then follows.

In the case that K is not algebraically closed, consider RΩ := K⊗KRΩ = K(x1, . . . , xn).

The relations {fi, fj} =
∑n
k=1 c

k
ijfk + dij still hold. Thus 1, f1, . . . , fn will generate some

finite dimensional Lie algebra inside RΩ, and we can complete the argument just as in the

algebraically closed case.

Remark 7.2.5. Given a Poisson algebra P , the quadratic Poisson Gel’fand-Kirillov problem

is to determine if the field of fractions of P is isomorphic to RΩ for some Ω. This problem

was first defined in [GL11] and further studied in [LL16]. In this section, we have shown a

number of properties of the Poisson algebra RΩ. Hence, any Poisson algebra isomorphic to

RΩ must also have these properties, and the results in this section can be viewed as necessary

conditions for a Poisson algebra to be a solution to the quadratic Poisson Gelfand-Kirillov

problem.

7.3 Generalizations

The results of the previous section are not specific to only the Poisson algebra RΩ. Let P

be a Poisson algebra P with the following two properties:

• P is a field.
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• For any a, b ∈ P we have {a, b} = 0 whenever {a, b} ∈ K.

Call such an algebra a nonconstant Poisson field (since there are no elements with {f, g} =

1). Then versions of the results in the previous section hold for P since the proofs only use

the conditions above. In particular we will have a version of Theorem 7.2.4 which says that

P can have no finite dimensional non-abelian Lie subalgebra. Before proving this theorem,

let us collect some of the essential parts of the proofs from the previous section into a useful

general lemma:

Lemma 7.3.1. Let P be a Poisson K-algebra which is a field. Then the following are

equivalent:

(a) There exist f, g ∈ P such that {f, g} = 1.

(b) There exist f, g ∈ P such that {f, g} = g.

(c) There exist f, g ∈ P with {f, g} 6= 0 but {f, {f, g}} = 0.

Proof. (b)⇒ (a): Follows from proof which is identical to the proof of Lemma 7.2.1.

(c)⇒ (a): Follows from proof which is identical to the proof of Lemma 7.2.3

(a)⇒ (c): If {f, g} = 1, then {f, {f, g}} = {f, 1} = 0.

(a)⇒ (b): Suppose that {f, g} = 1, and define x = fg and y = g. Then

{x, y} = {fg, g} = {f, g}g = g = y.

Analogous to the above definition, define a nonlinear Poisson field as a Poisson field P

which has no finite-dimensional nonabelian Lie subalgebras. This means there are no finite
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collections f1, . . . , fk ∈ P and constants c`ij such that {fi, fj} =
∑
` c
`
ijf`. The next result

says that for a Poisson field, being nonconstant is a sufficient condition to being nonlinear.

Theorem 7.3.2. Any nonconstant Poisson field is also nonlinear.

Proof. We assume that we are working over an algebraically closed field, if not we can modify

just as in the proof of Theorem 7.2.4. Suppose that there exist some f1, . . . , fk ∈ P for some

k > 1 and constants c`ij so that

{fi, fj} =
∑
`

c`ijf`

Then f1, . . . , fk generate a finite-dimensional Lie subalgebra F ≤ P . Each map adfi is an

endomorphism of F . Note that adfi cannot have any nonzero eigenvalues. If it did, there

would be some g ∈ F and λ 6= 0 so that {fi, g} = λg. Then for f̃i = 1
λfi, we have {f̃i, g} = g.

By the previous theorem, there must also exist some u, v ∈ P so that {u, v} = 1. But this

contradicts the assumption on P . So in fact adfi can have only zero eigenvalues, and hence

must be nilpotent. Again, by the previous theorem, if adfi is nonzero and nilpotent, then

there would exist u, v ∈ P with {u, v} = 1. So it must be that adfi = 0, and thus F is an

abelian Lie algebra.

In the spirit of Question 4.1.5, let us call a system of coordinates (homogeneous) alge-

braically reduced if all structure functions are (homogeneous) polynomials of a given degree,

and there does not exist any rational change of coordinates making the structure functions

(homogeneous) polynomials of a smaller degree. In Theorem 7.2.4 we provided an answer

to Question 4.1.5 for any log-canonical system of coordinates and showed that they are

algebraically reduced. It is natural to look for other (homogeneous) algebraically reduced

coordinate systems.
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Let us now consider systems of coordinates for which all structure functions are mono-

mials. In dimension 2 with coordinates (x, y) so that {x, y} = xayb we have seen that such

a monomial system of coordinates is algebraically reduced if and only if (a, b) = (0, 0) or

(a, b) = (1, 1). In dimension 3 with coordinates (x, y, z) and bracket relations

{x, y} = Axa1ya2za3

{x, z} = Bxb1yb2zb3

{y, z} = Cxc1yc2zc3

we can extend by skew-symmetry, but must also ensure the Jacobi identity holds. Computing

we obtain

{x, {y, z}}+ {y, {z, x}}+ {z, {x, y}} = (b1 − a1)ABxa1+b1−1ya2+b2za3+b3

+ (c2 − a2)ACxa1+c1ya2+c2−1za3+c3

+ (c3 − b3)BCxb1+c1yb2+c2zb3+c3−1.

If a1 = b1, a2 = c2, and b3 = c3 the Jacobi identity will hold. In that case the bracket

relations are

{x, y} = A(xa1ya2zb3)za3−b3

{x, z} = B(xa1ya2zb3)yb2−a2

{y, z} = C(xa1ya2zb3)xc1−a1

Consider the simplest example of the case above, where (a1, a2, b3) = (0, 0, 0). One such
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example is the bracket on K(x, y, z) given by

{x, y} = az2 {x, z} = by2 {y, z} = cx2

for some a, b, c ∈ K∗. This bracket gives a candidate for another homogeneous quadratic

algebraically reduced system of coordinates which differs from the log-canonical case. By the

above discussion, it would suffice to show that this bracket makes K(x, y, z) a nonconstant

Poisson field. However, unlike the log-canonical case, this bracket can produce non-zero

constant terms, as exhibited by the following examples:

{
x,

y

z2

}
= a− 2b

(y
z

)3

{x
z
,
y

z

}
= a− b

(y
z

)3
+ c
(x
z

)3

As such, the arguments used previously do not apply, since everything followed from Theorem

7.1.8, which said that the constant term of {f, g} (viewed as a Laurent series) is always zero.

However, it is possible that this bracket makes K(x, y, z) a nonconstant Poisson field, despite

the fact that Theorem 7.1.8 does not hold. It seems to be an interesting problem to find

other algebraically reduced brackets on K(x1, . . . , xn).
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Chapter 8

Combinatorial Hopf Algebras

This chapter considers combinatorial Hopf algebras as defined by Aguiar, Bergeron, and Sot-

tile [ABS06]. A particular Hopf algebra of simplicial complexes will be studied in Chapter 9.

Hopf algebras in combinatorics predate the 2006 Aguiar, Bergeron, and Sottile definition.

In 1979 Joni and Rota [JR79] showed that Hopf algebra structures can be a valuable tool

in studying the assembly and disassembly of many combinatorial objects. A key addition to

the study of Hopf algebras in combinatorics made by Aguiar, Bergeron, and Sottile was a

map called a character. The character allows one to associate a (quasi)symmetric function

to each combinatorial object underlying the Hopf algebra. We will study (a generalization

of) the symmetric function the arises from the Hopf algebra in Chapter 9.

8.1 Hopf algebras

We now define (combinatorial) Hopf algebras. Let H be a vector space over a field K. We

will assume that char(K) = 0. Let Id be the identity map on H. We call H an associative

K-algebra with unit 1 when H is equipped with a K-linear map m : H ⊗ H → H and an
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element 1 ∈ H satisfying

m ◦ (m⊗ Id) = m ◦ (Id⊗m);

m ◦ (Id⊗ u) = m ◦ (u⊗ Id) = Id.

Here, u stands for the K-linear map K→ H defined by t 7→ t · 1.

A coassociative K-coalgebra with counit ε is a K-vector space D over K equipped with a

coproduct ∆ : D → D ⊗D and a counit ε : D → K. Both ∆ and ε must be K-linear maps.

The coproduct is coassociative so that (∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆ and must be compatible

with ε so that

(ε⊗ Id) ◦∆ = (Id⊗ ε) ◦∆ = Id.

If an algebra (H,m, u) is also equipped with a coalgebra structure given by ∆ and ε, then

we say that H is a bialgebra provided ∆ and ε are algebra homomorphisms.

The maps m and ∆ can be applied iteratively as follows. Letting H⊗k = H ⊗ · · · ⊗ H

denote the k-fold tensor, define the iterated product map m(k−1) : H⊗k → H inductively

by setting m(−1) = u, m(0) = Id and for k ≥ 1 let m(k) = m ◦ (Id⊗m(k−1)). Similarly, the

iterated coproduct map ∆(k−1) : H → H⊗k is given inductively by ∆(k) = (Id⊗∆(k−1))◦∆,

where ∆(−1) = ε and ∆(0) =Id.

Definition 8.1.1. A Hopf algebra H is a K-bialgebra together with a K-linear map S : H →

H called the antipode. This map must satisfy the following

m ◦ (S ⊗ Id) ◦∆ = m ◦ (Id⊗ S) ◦∆ = u ◦ ε.

Example 8.1.2 (Group Hopf algebra). If G is a group, then the group algebra KG is Hopf

91



algebra with

∆(g) = g ⊗ g

ε(g) = 1

S(g) = g−1

for all g ∈ G.

Example 8.1.3 (Polynomial Hopf algebra). The polynomial ring K[x] is a Hopf algebra

with

∆(x) = 1⊗ x+ x⊗ 1

ε(x) = 0

S(x) = −x.

8.2 Combinatorial Hopf algebras

We say that a bialgebra H is graded if it is decomposed into a direct sum

H =
⊕
n≥0

Hn

where m(Hi ⊗ Hj) ⊆ Hi+j , u(K) ⊆ H0, ∆(Hn) ⊆ ⊕n
i=0Hi ⊗ Hn−i, and ε(Hn) = 0 for

n ≥ 1. We call H connected if H0
∼= K. For each n ≥ 0 we refer to elements in Hn as

homogeneous elements of degree n.

Any graded and connected K-bialgebra is a Hopf algebra since the antipode can be
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defined recursively. In many instances computing the antipode of a given Hopf algebra

is a very difficult problem. However, we will provide an explicit cancellation-free formula

for the antipode in the Hopf algebra of finite simplicial complexes in Chapter 9. We will

compute the antipode using Takeuchi’s formula for the antipode in a graded connected Hopf

algebra [Tak71]. This formula states

S =
∑
k≥0

(−1)kmk−1π⊗k∆k−1 (8.1)

where π : H → H is the projection given by linearly extending

π|Hn =


0 n = 0

Id n > 0.

.

A combinatorial Hopf algebra is a pair (H, ζ) where H is a graded connected Hopf algebra

and ζ : H → K is a algebra morphism called a character. Given combinatorial Hopf algebras

(H, ζ) and (H′, ζ ′) a map φ : H → H′ is a combinatorial Hopf algebra morphism if φ is a Hopf

algebra morphism and ζ = ζ ′ ◦ φ. In the category of combinatorial Hopf algebras the Hopf

algebra of quasisymmetric functions with a canonical character is a terminal object [ABS06,

Theorem 4.1]. The Hopf algebra of symmetric functions with a canonical character is a termi-

nal object in the catergory of cocommutative combinatorial Hopf algebas [ABS06, Theorem

4.3]. This gives one explanation for the ubiquity of symmetric functions and quasisymmetric

functions.
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The Hopf algebra of quasisymmetric functions QSym is graded as

QSym =
⊕
n≥0

QSymn

where QSymn is spanned linearly over K by {Mα}α�n. Here Mα is the formal power series

is countable many variables x1, x2, . . . defined by

Mα :=
∑

i1<i2<···<il
x
α1
i1
x
α2
i2
· · ·xαlil

where α = (α1, . . . , αl) is a composition of n. The basis given by {Mα} is known as the

monomial basis of QSym. We have M() = 1, which spans QSym0, where () is the composi-

tion of 0 with no parts. The Hopf algebra of symmetric functions Sym =
⊕

n≥0 Symn is the

Hopf subalgebra of QSym where Symn is spanned by the monomial symmetric functions

mλ =
∑
α

Mα

where λ is a integer partition and the sum ranges are all integer compositions which are

rearrangements of λ. The algebra structure on QSym and Sym is given by the usual mul-

tiplication of formal power series. Further discussion the Hopf algebra structure is omitted

because will not be needed for our purposes. We will only be concerned with the canonical

morphism which exists from any combinatorial Hopf algebra to QSym.
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Example 8.2.1. As an example we consider to two monomial quasisymmetric functions

M(1,2) = x1x
2
2 + x1x

2
3 + x2x

2
3 + · · ·

M(2,1) = x2
1x2 + x2

1x3 + x2
2x3 + · · ·

and the monomial symmetric function

m(2,1) = x1x
2
2 + x2

1x2 + x1x
2
3 + x2

1x3 + x2x
2
3 + x2

2x3 + · · ·

which satisfy m(2,1) = M(1,2) +M(2,1).

Let the map ζQ : QSym→ K be defined as ζQ(f) = f(1, 0, 0, . . . ) for a quasisymmetric

function f(x1, x2, x3, . . . ). Given that ζQ is an evaluation map, it is also an algebra map

and hence a character of QSym. This endows QSym with a combinatorial Hopf algebra

structure. Moreover, Theorem 4.1 of [ABS06] states that given a combinatorial Hopf algebra

(H, ζ) there is a unique combinatorial Hopf algebra homomorphism

Ψζ : H → QSym

given by

Ψζ(h) =
∑

α=(α1,...,α`)�n

ζα(h)Mα (8.2)

for h homogeneous of degree n, where ζα is the composition of functions

H ∆(`−1)
−−−−−→ H⊗` −→ Hα1 ⊗Hα2 ⊗ · · · ⊗Hα`

ζ⊗`−−−→ K.

95



Here the unlabeled map is the canonical projection and α = (α1, α2, . . . , α`). It is straight

forward to see that if H is cocommutative, then Ψζ is a map Ψζ : H → Sym.
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Chapter 9

Simplicial Complexes

In this chapter we define a cocommutative Hopf algebra structure on simplicial complexes.

By this we mean that we define a Hopf algebra whose basis is indexed by isomorphism classes

of simplicial complexes. We then see are certain choices of character the morphism induced

to Sym gives rise the symmetric functions related to coloring. Results in this chapter are

also present in the article [BHM16] with is joint work with Carolina Benedetti and Joshua

Hallam.

9.1 The Hopf algebra structure

A finite (abstract) simplicial complex, Γ, is a nonempty collection of subsets of some finite set

V such that {v} ∈ Γ for all v ∈ V, and X ∈ Γ implies Y ∈ Γ for all Y ⊆ X. By convention

all our simplicial complexes contain the empty set. We denote by ∅ the simplicial complex

with empty vertex set. So ∅ is the unique simplicial complex whose vertex set is empty and

whose only face is the empty set. The elements of Γ are called faces and the maximal (with

respect to inclusion) faces are called facets. Notice that the facets completely determine the

simplicial complex. If X is a face of Γ then the dimension of X is dimX = |X| − 1. A face

of dimension s is called an s-simplex. The faces of dimension 0 are called vertices of Γ and

the set of vertices will be denoted V (Γ) where we identify {v} with v. For instance, if Γ has

facets {1, 2, 3} and {3, 4} then V (Γ) = {1, 2, 3, 4}. The dimension of Γ, written as dim Γ, is
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Figure 9.1: A simplicial complex Γ and its 1-skeleton Γ(1).

the maximum of the dimensions of its facets.

If Γ and Θ are simplicial complexes with vertex sets V1 and V2, the disjoint union of

Γ and Θ is the simplicial complex Γ ] Θ with vertex set V1 ] V2 and faces X such that

X ∈ Γ or X ∈ Θ. If k is a nonnegative integer, the k-skeleton of Γ is the collection of

faces of Γ with dimension no greater than k. We will denote the k-skeleton of Γ by Γ(k).

For example, if Γ has facets {1, 2, 3} and {3, 4}, then Γ(1) is the simplicial complex with

facets {1, 2}, {1, 3}, {2, 3} and {3, 4}. Figure 9.1 provides a pictorial representation of this

example. Notice that a simple graph gives rise to a simplicial complex of dimension 1 or

less. Conversely, a simplicial complex of dimension 1 or less can be thought of as a simple

graph.

Let Γ and V (Γ) be defined as above. Given T ⊆ V (Γ), define the induced simplicial

complex of Γ on T , denoted by ΓT , to be the simplicial complex with faces {X ∩T | X ∈ Γ}.

So if we return to our example with Γ having facets {1, 2, 3}, {3, 4} and if T = {1, 3, 4}, then

ΓT has facets {1, 3} and {3, 4}.

Now we define a Hopf algebra structure on simplicial complexes. Let A =
⊕

n≥0An

where An is the free K-vector space on the set of isomorphism classes of simplicial complexes

on n vertices. Given a simplicial complex, Γ, we will denote its isomorphism class by [Γ].

Define the product m : A⊗A → A by

m ([Γ]⊗ [Θ]) = [Γ ]Θ].
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Notice that with this multiplication, the unit u : K→ A is given by

u(1) = [∅].

The coproduct ∆ : A → A⊗A, is given by

∆([Γ]) =
∑

T⊆V (Γ)

[ΓT ]⊗ [ΓV (Γ)\T ].

Additionally, define the counit of A by

ε([Γ]) = δ[Γ],[∅]

where δ[Γ],[∅] is the Kronecker delta.

It follows that A is a graded, connected K-bialgebra and hence a Hopf algebra. Also, it

is not hard to see that A is commutative and cocommutative. From now on, we will drop

the brackets from the notation [Γ], keeping in mind that we are considering isomorphism

classes of simplicial complexes.

9.2 A cancellation-free formula for the antipode

Before stating the main result in this section, we review some basic concepts from graph

theory. Suppose G = (V,E) is a graph. A subset U of V is called stable if there is no edge

between any pair of vertices in U . A flat, F , of G is a collection of edges such that in the

graph with vertex set V and edge set F , each connected component is an induced subgraph

of G. If F is a flat then we will denote the subgraph of G with vertex set V and edge set
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F by GV,F and its number of connected components by c(F ). The set of flats of a graph

G will be denoted by F(G). We denote by G/F the graph obtained from G by contracting

the edges in F . Recall that an orientation of a graph is called acyclic if it does not contain

any directed cycles. The number of acyclic orientations of a graph G will be denoted by

a(G). Given an orientation O of G, a vertex v ∈ V is called a source of O if for every edge

{v, u} ∈ E, {v, u} is oriented away from v.

Let Γ be a simplicial complex. Any face X of Γ gives rise to a simplicial complex, namely,

the simplicial complex formed by all the subsets of X. Given a flat F in Γ(1) define ΓV,F to

be the subcomplex of Γ, with vertex set V = V (Γ), whose faces are given by

{X ∈ Γ : X(1) ⊆ (Γ(1))V,F }.

For example, if we again take Γ to have facets {1, 2, 3}, {3, 4} and let F = {{1, 2}, {1, 3}, {2, 3}}

then ΓV,F is the simplicial complex with facets {1, 2, 3}, {4}.

Theorem 9.2.1. Let Γ ∈ An be a simplicial complex where n ≥ 1. Then

S(Γ) =
∑

F∈F(Γ(1))

(−1)c(F )a(Γ(1)/F )ΓV,F

where the sum runs over all flats of the 1-skeleton of Γ.

Proof. The strategy to show this result is to define, for every acyclic orientation of each

of the graphs Γ(1)/F , a sign-reversing involution with a unique fixed point. We will only

illustrate the proof when F is the empty flat. Namely, we will show in this case that the

coefficient of ΓV,F equals a(Γ(1)). At the end of the proof, we will explain how to extend

this proof when F 6= ∅.
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Denote by O(Γ(1)) the set of acyclic orientations of the graph Γ(1) and identify the vertex

set V of Γ with [n] := {1, 2, . . . , n}. Using Takeuchi’s formula for the antipode in a Hopf

algebra (see [Tak71]), given Γ ∈ An we obtain

S(Γ) =
∑

(V1,...,V`)|=[n]

(−1)` ΓV1
] · · · ] ΓV`

(9.1)

summing over all ordered set partitions (V1, . . . , V`) of [n] where all of the Vi are nonempty.

Notice that Takeuchi’s formula does not provide a cancellation-free expression for the an-

tipode in general.

A term in (9.1) can be thought as the union of simplicial subcomplexes of Γ such that

Γ
(1)
Vi

is an induced subgraph of Γ(1). In particular, notice that when (V1, . . . , V`) is such

that dim(ΓVi) = 0 for each i, then ΓV1
] · · · ] ΓV`

is (isomorphic to) the zero-dimensional

subcomplex of Γ on the set [n] denoted by Γ[n],∅. Note that different ordered set partitions

(V1, . . . , V`) |= [n] may contribute to the coefficient of Γ[n],∅ in (9.1).

Let A∅ = {(V1, . . . , V`) |= [n] | ΓV1
] · · · ] ΓV`

= Γ[n],∅} and define the function

ρ : A∅ → O(Γ(1))

that assigns to (V1, . . . , V`) ∈ A∅ an orientation in O(Γ(1)) to each edge {i, j} in Γ(1) as

follows:

i→ j if i ∈ Vr, j ∈ Vs and r < s.

Now, given σ = (V1, . . . , V`) define the sign of σ to be sign(σ) = (−1)`. Let O ∈ O(Γ(1)).

We will think of O not just as an acyclic orientation but also as the directed graph it induces

on the vertex set [n]. Such O gives rise to a canonical ordered set partition of [n] in the
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following manner. Let v1 be the biggest source of O1 = O, then let v2 be the biggest source

of O2 = O1 − {v1}, and in general let vk+1 be the biggest source of Ok+1 = Ok − {vk} for

k = 0, . . . , n−1. Then we obtain the ordered set partition πO = ({v1}, . . . , {vn}) |= [n] such

that vi is the largest source in Oi. Since ρ(πO) = O, ρ is a surjection.

For fixed O ∈ O(Γ(1)) define a sign reversing involution ιO on the set ρ−1(O) in the

following way. Set ιO(πO) = πO. For σ = (V1, . . . , V`) ∈ ρ−1(O) such that σ 6= πO let i be

the smallest index such that Vi 6= {vi}, where ({v1}, . . . , {vn}) = πO as above. The choice

of i implies that vi ∈ Vi ∪ · · · ∪ V`. Let Vj be the block in σ containing vi. If |Vj | > 1 define

ιO(σ) = (V1, . . . , Vj−1, Vj − {vi}, {vi}, Vj+1, . . . , V`)

Otherwise, if |Vj | = 1 define

ιO(σ) = (V1, . . . , Vj−2, Vj−1 ∪ Vj , Vj+1, . . . , V`).

In the latter case, since vi is the largest source in Oi, the vertices in Vj−1 are vertices

in Oi as well and hence, Vj−1 ∪ Vj is a stable set of vertices. Notice that in both cases,

sign(ιO(σ)) = −sign(σ). Moreover, ιO(ιO(σ)) = σ and πO is the unique fixed point of ιO.

We conclude that for each acyclic orientation O, the involution ιO has a unique fixed point.

Hence the coefficient of Γ[n],∅ in (9.1) is (−1)na(Γ(1)).

The proof for the coefficient of ΓV,F when F 6= ∅ can be done using the same argument

as above with slight modifications. Namely, each connected component of ΓV,F can be

identified with a single vertex and a similar sign reversing involution can be defined for the

graph Γ(1)/F whose vertex set has cardinality c(F ).
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Remark 9.2.2. Obtaining a cancellation-free a formula is, in general, a difficult problem when

studying Hopf algebras arising in combinatorics. Theorem 9.2.1 fits into a family of results

on antipode formulas for graphs and various generalizations of graphs. In [HM12, Theorem

3.1] Humpert and Martin, the authors provide a cancellation-free formula for the antipode

of graphs using induction. On the other hand, in [BS17, Theorem 7.1] Benedetti and Sagan

make use of sign-reversing involutions on combinatorial objects to obtain cancellation-free

formulas for antipodes of several Hopf algebras including the graph Hopf algebra. Our proof

makes use of a sign-reversing involution for graphs generalized to simplicial complexes.

Aguiar and Ardila [AA17] have also recovered the antipode formula for both graphs and

simplicial complexes using a Hopf monoids of generalized permutahedra [AA17]. In the

context the similarity of the formula and proofs is explained by the fact that the generalized

permutahedra associated to a simplicial complex and its 1-skeleton have the same normal fan.

Benedetti and Bergeron [BB16] have given a simplified, but not cancellation-free, formula

for the antipode of hypergraphs. The fact the formula is not cancellation-free has since

been explained by Benedetti, Bergeron, and Machacek in [BBM17] where it is shown that

the coefficients in the antipode formula of a hypergraph are Euler characteristics of certain

polyhedral complexes.

Let us return to our previous example with Γ generated by the facets {1, 2, 3} and {3, 4}.

Using the information in Table 9.1 we obtain the expression in Figure 9.2. Looking at the

expression for the antipode in this example, we see that if we add all the coefficients together

we obtain 1. It turns out that the sum of the coefficients of the antipode of a simplicial

complex is always (−1)n where n is the number of vertices of the simplicial complex. We

will derive this fact using characters and quasisymmetric functions in the next section (see

Corollary 10.2.2).
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F ∈ F(Γ(1)) (−1)c(F ) a(Γ(1)/F )

∅ (−1)4 12

{1, 2} (−1)3 4

{1, 3} (−1)3 4

{2, 3} (−1)3 4

{3, 4} (−1)3 6

{1, 2}, {3, 4} (−1)2 2

{1, 3}, {3, 4} (−1)2 2

{2, 3}, {3, 4} (−1)2 2

{1, 2}, {1, 3}, {2, 3} (−1)2 2

{1, 2}, {1, 3}, {2, 3}, {3, 4} (−1)1 1

Table 9.1: Information to compute the antipode of Γ.

S = 12 - 18 +2 +4 + 2 -

Figure 9.2: Antipode of an element in A4.

Now, note that once we have computed S(Γ), we can easily find the antipode of the

simplicial complex Γ(1) by just taking the 1-skeleton of each of the terms in the sum for the

antipode. So we immediately get that

S(Γ(1)) = 12K4 − 18(K2 ]K2) + 2(K2 ]K2) + 4(P3 ]K1) + 2(K3 ]K1)− Γ(1).

where Kn is the complete graph on n vertices, Kn is the complement of the complete graph

on n vertices, and Pn is the path on n vertices.

More generally, let A(k) be the K-linear span of isomorphism classes of simplicial com-

plexes of dimension at most k. That is, complexes Γ ∈ A such that Γ(k) = Γ. For each
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k ≥ 0, we define the map

φk : A → A(k)

Γ 7→ Γ(k)

which takes the k-skeleton of a simplicial complex. We extend this map linearly to all of A.

Proposition 9.2.3. For any nonnegative integer k, A(k) is a Hopf subalgebra of A and the

map φk : A → A(k) is a Hopf algebra homomorphism.

Proof. Let Γ and Θ be simplicial complexes. Since dim Γ ] Θ = max{dim Γ, dim Θ} and

dim ΓT ≤ dim Γ for any T ⊆ V (Γ) it follows that A(k) is a Hopf subalgebra. Observe that

(Γ]Θ)(k) = {X : X ∈ Γ]Θ, |X| ≤ k+1} = {X ∈ Γ : |X| ≤ k+1}∪{X ∈ Θ : |X| ≤ k+1}.

Therefore (Γ ]Θ)(k) = Γ(k) ]Θ(k) and φk is an algebra homomorphism. Next, since

(ΓT )(k) = {X ∈ Γ : X ⊆ T, |X| ≤ k + 1} = (Γ(k))T

we have ∑
T⊆V (Γ)

(ΓT )(k) ⊗ (ΓV (Γ)−T )(k) =
∑

T⊆V (Γ)

(Γ(k))T ⊗ (Γ(k))V (Γ)−T

and so φk is also a coalgebra homomorphism. We conclude that φk is a Hopf algebra

homomorphism.

Using Proposition 9.2.3 along with the fact that for any Hopf algebra homomorphism

β : H1 → H2 one has β(SH1
(h)) = SH2

(β(h)) for all h ∈ H1 (see [GR, Proposition 1.46])
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we can conclude that S◦φk = φk◦S. This means that once we know S(Γ) for some simplicial

complex Γ we can find S(Γ(k)) for any k.
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Chapter 10

The chromatic symmetric function

Now that we have endowed A with a Hopf algebra structure, we will proceed to define a

family of characters on A. This will give rise to a family of combinatorial Hopf algebras.

The morphism to the Hopf algebra of symmetric functions will map each simplicial complex

to a generalized of Stanley’s chromatic symmetric function [Sta95].

For each s > 0, define the map ζs : A → K by

ζs(Γ) =


1 dim Γ < s,

0 dim Γ ≥ s,

and extend linearly to A. Each map ζs is multiplicative, i.e. ζs(Γ ] Θ) = ζs(Γ)ζs(Θ).

Thus, for each s the pair (A, ζs) is a combinatorial Hopf algebra. Moreover, since A is

cocommutative, equation (8.2) implies that Ψζ is actually a symmetric function.

10.1 Coloring in simplicial complexes

Let P denote the set of positive integers and let G be a graph with vertex set V . A coloring

of G is a map f : V → P . We refer to f(u) as the color of u. A proper coloring of V is a

coloring such that f(u) 6= f(v) whenever uv is an edge of G. Given a simplicial complex Γ
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Figure 10.1: A 2-coloring of Γ in (a) and a 3-coloring of Γ in (b).

and s ∈ N, define an s-simplicial coloring1 to be a coloring of V (Γ) such that there is no

monochromatic face of dimension s. Notice that any 1-simplicial coloring of Γ is simply a

proper coloring of its 1-skeleton Γ(1). In Figure 10.1 we use our earlier example and depict

two colorings of Γ using the colors {x, y, z} ⊆ P .

Given a graph G, the number of proper colorings f : V (G) → {1, 2, . . . , t} is the well-

known chromatic polynomial, χ(G; t). For a simplicial complex Γ the number of s-simplicial

colorings f : V (Γ)→ {1, 2, . . . , t} is called the s-chromatic polynomial, χs(Γ; t), and defined

in [Nor12, MN16]. Although it is not obvious that χs(Γ; t) is a polynomial, we will see that

this is the case once we realize it as an evaluation of a certain symmetric function.

Stanley provided a generalization (see [Sta95]) of the chromatic polynomial of a graph G

by defining

ψ(G;x1, x2, . . . ) =
∑
f

∏
i≥1

x
|f−1(i)|
i

where the sum is over proper colorings f : V → P. This formal power series is known as

Stanley’s chromatic symmetric function. For a simplicial complex Γ we define the s-chromatic

symmetric function as

ψs(Γ;x1, x2, . . . ) =
∑
f

∏
i≥1

x
|f−1(i)|
i

where now the sum is over s-simplicial colorings f : V → P and V = V (Γ). Notice that when

1In [DMN] the authors use the term (P, s)-coloring for an s-simplicial coloring which uses some palette
of colors P ⊆ P. To avoid confusion with terminology in graphs, we have adopted the term s-simplicial
coloring.
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s = 1 we obtain Stanley’s chromatic symmetric function. Given f(x1, x2, . . . ) ∈ QSym its

principal specialization at t is defined by ps1(f)(t) = f(1, . . . , 1, 0, 0, . . . ) where t ∈ P and

only the first t variables are specialized to 1. It turns out that ps1(f)(t) gives rise to a

unique polynomial in t (see [GR, Proposition 7.7]). The s-chromatic polynomial χs(Γ; t)

is the polynomial determined ps1(ψs(Γ))(t). We now show how the s-chromatic symmetric

function arises from the CHA (A, ζs).

Theorem 10.1.1. Fix s and consider the combinatorial Hopf algebra (A, ζs). If Γ is a

simplicial complex, then Ψζs(Γ) = ψs(Γ;x1, x2, . . . ).

Proof. Consider the formula in equation (8.2). Given a simplicial complex Γ ∈ An and a

composition α = (α1, α2, . . . , α`) � n, we get that the coefficient of Mα is the number of

ordered set partitions V1 ] V2 ] · · · ] V` of V (Γ) such that |Vi| = αi and dim ΓVi < s for

each i. In an s-simplicial coloring, every element of a subset T of V (Γ) can be assigned the

same color if and only if dim ΓT < s. Thus the coefficient of Mα counts s-simplicial colorings

using only colors {j1 < j2 < · · · < j`} ⊆ P where |f−1(ji)| = αi for each i. The result

follows.

We discuss now the expansion of the symmetric function Ψζs(Γ;x1, x2, . . . ) in terms of

the power sum basis. The power sum symmetric function of degree n, denoted by pn, in the

variables x1, x2, . . . is given by pn =
∑
i≥1 x

n
i and for λ = (λ1, . . . , λ`) an integer partition

define

pλ := pλ1
· · · pλ` .

Take a simplicial complex Γ and let V = V (Γ). For any s > 0, we denote the collection

of s-simplices of Γ by Fs(Γ). Given any A ⊆ Fs(Γ) we let ΓV,A be the simplicial complex

on the vertex set V generated by A. That is, the faces of ΓV,A of dimension greater than
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0 are subsets X ⊆ V such that X ⊆ Y for some Y ∈ A. For A ⊆ Fs(Γ) we define an

integer partition λ(A) which has length the number of connected components of (ΓV,A)(1)

and whose parts are given by the number of vertices in each connected component. The

s-chromatic symmetric function has the following expansion in the power sum basis

Ψζs(Γ) =
∑

A⊆Fs(Γ)

(−1)|A|pλ(A) (10.1)

which can be proven analogously to [Sta95, Theorem 2.5].

Let Γ denote the (n − 1)-simplex, i.e., the simplicial complex on [n] whose only facet is

the set [n] itself. We now look at the monomial and Schur expansions of Ψζs(Γ). We have

Ψζs(Γ) =
∑
µ`n
µ1≤s

(
n

µ1, · · · , µ`

)
mµ

where, for every s ≥ 1, the sum is over partitions µ = (µ1, · · · , µ`) of n such that µ1 ≤ s.

In the above case when s = n we get

Ψζn(Γ) =
∑
λ`n

fλsλ

where fλ is the number of standard Young tableaux of shape λ. This follows since

∑
µ`n

(
n

µ1, · · · , µ`

)
mµ = (m(1))

n = (s(1))
n =

∑
λ`n

fλsλ.
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Moreover, since m(n) = pn =
∑n
i=0(−1)is

(n−i,1i) we conclude that the symmetric function

Ψζn−1
(Γ) =

∑
λ`n

fλsλ −m(n)

is Schur positive as well. Unfortunately, the functions Ψζs(Γ) are not always Schur positive.

An instance of this is when n = 4 and s = 2. In this case,

Ψζs(Γ) = 6m(2,2) + 12m(2,1,1) + 24m(1,1,1,1)

= 6s(2,2) + 6s(2,1,1) − 6s(1,1,1,1).

It would be interesting to determine other families of simplicial complexes that give Schur

positivity of the functions Ψζs for different values of s.

10.2 Acyclic orientations and evaluations

In this section, we use our antipode formula along with the characters defined above to

interpret certain evaluations of the s-chromatic polynomial. Given any character ζ : A → K,

the following identity holds (see [ABS06, Section 1])

ζ−1 = ζ ◦ S

where S is the antipode in A and ζ−1 is the inverse of ζ under convolution. In other words,

ζ−1ζ = u ◦ ε where ζ−1ζ = m ◦ (ζ−1 ⊗ ζ) ◦∆.
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Now, since ps1(ψs(Γ))(t) = χs(Γ; t), using [GR, Proposition 7.7 (iii)] yields

ζs ◦ S(Γ) = ζ−1
s (Γ) = ps1(ψs(Γ))(−1) = χs(Γ;−1). (10.2)

This allows us to prove the following theorem.

Theorem 10.2.1. Let Γ ∈ An be a simplicial complex and let s be a positive integer. Then

χs(Γ;−1) =
∑

F∈F(Γ(1))
dim ΓV,F<s

(−1)c(F )a(Γ(1)/F ).

Proof. Using equation (10.2), the fact that ζ−1
s = ζs ◦ S, and our antipode formula in

Theorem 9.2.1 yields

χs(Γ;−1) = ζs(S(Γ))

=
∑

F∈F(Γ(1))

(−1)c(F )a(Γ(1)/F )ζs(ΓV,F )

=
∑

F∈F(Γ(1))
dim ΓV,F<s

(−1)c(F )a(Γ(1)/F )

and so the result is proven.

This result shows that like the chromatic polynomial for graphs, the evaluation at t = −1

of the s-chromatic polynomial for simplicial complexes has a combinatorial interpretation in

terms of counting acyclic orientations. If we s = 1 in Theorem 10.2.1, we recover Stanley’s

classical result [Sta73] that χ1(Γ;−1) = (−1)na(Γ(1)). In [HM12, Example 3.3] the authors
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preform a similar calculation with characters for the Hopf algebra of graphs. In addition to

this result, we also get the following corollary.

Corollary 10.2.2. Let Γ be a simplicial complex on n vertices, then we have the following

(−1)n =
∑

F∈F(Γ(1))

(−1)c(F )a(Γ(1)/F ). (10.3)

Proof. If we take s > dim Γ, then χs(Γ; t) = tn since there is no restriction on coloring.

So, χs(Γ;−1) = (−1)n. Meanwhile, the sum in Theorem 10.2.1 runs over all F ∈ F(Γ(1))

because the condition dim ΓV,F < s is always satisfied.

10.3 The f-vector

Given a simplicial complex Γ, the f -vector of Γ is defined to be (f0, f1, . . . ) where fs is the

number of s-simplices in Γ. For example, if Γ is the simplicial complex generated by the

facets {1, 2, 3} and {3, 4}, then Γ has f -vector (4, 4, 1, 0, 0, . . . ). In this section we show how

to obtain the f -vector of a simplicial complex from the symmetric functions {Ψζs}s>0.

Let [pλ]Ψζs(Γ) denote the coefficient of pλ in the power sum expansion of Ψζs(Γ). If Γ

is a simplicial complex on n vertices and A ⊆ Fs(Γ), then λ(A) = (s + 1, 1n−s−1) if only

if A consists of a single s-simplex. By considering equation (10.1) we obtain the following

proposition.

Proposition 10.3.1. If Γ is a simplicial complex with |V (Γ)| = n and s > 0, then

fs = −[p
(s+1,1n−s−1)

]Ψζs(Γ).
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Figure 10.2: Z (left) has 2-simplicies 123, 124, 134, 234 and Y (right) has 2-simplices
123, 124, 134, 235.

Given a simplicial complex Γ, denote its sth homology group by Hs(Γ) for each s ≥ 0.

The sth Betti number is denoted βs(Γ) and defined to be the rank of Hs(Γ). One useful

fact about homology groups is that if dim Γ = k, then Hs(Γ) = 0 for s > k. In particular,

this means βs(Γ) = 0 for s > k. Hence, Proposition 10.3.1 allows us to recover the Euler

characteristic χΓ of Γ, since χΓ =
∑
s≥0(−1)sfs =

∑
s≥0(−1)sβs where βs = βs(Γ).

Since we can determine the f -vector from the s-chromatic symmetric functions, it is

natural to wonder if we can also determine the Betti numbers. If Γ is a graph, i.e. if

dim(Γ) = 1, then β0 equals the number of its connected components. This number can

also be recovered by means of the chromatic polynomial of Γ. Thus, in this case we recover

the sequence of Betti numbers (β0, β1, 0, 0, ...). However, for higher dimensional simplicial

complexes this is not always the case as we see in the next example.

Example 10.3.2. We now consider two simplicial complexes Γ and Θ such that Ψζs(Γ) =

Ψζs(Θ) for all s > 0, but Γ and Θ have different Betti numbers. We set Γ = X ] Y and

Θ = Z ]W where X, Y , Z, and W are given in Table 10.1. The simplicial complexes Y

and Z are shown Figure 10.2.
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Vertices Facets
X 1, 2, 3, 4 12, 13, 14, 23, 24, 34
Y 1, 2, 3, 4, 5 123, 124, 134, 235, 45
Z 1, 2, 3, 4 123, 124, 134, 234
W 1, 2, 3, 4, 5 12, 13, 14, 23, 24, 25, 34, 35, 45

Table 10.1: Vertices and facets of the complexes X, Y, Z, and W.

Since Γ(1) = Θ(1), it follows Ψζ1
(Γ) = Ψζ1

(Θ). Also,

Ψζ2
(Γ) = (p

(14)
)(p

(15)
− 4p

(3,12)
+ 3p(4,1)) = p

(19)
− 4p

(3,16)
+ 3p

(4,15)

Ψζ2
(Θ) = (p

(14)
− 4p(3,1) + 3p(4))(p(15)

) = p
(19)
− 4p

(3,16)
+ 3p

(4,15)

and Γ and Θ have the same 2-chromatic symmetric function.

Since Γ and Θ are both 2-dimensional simplicial complexes, we conclude Ψζs(Γ) =

Ψζs(Θ) for all s > 0. However, the Betti numbers of Γ and Θ are not the same since

β2(Θ) = 1 while β2(Γ) = 0.

10.4 Hypertrees

In this final section of this chapter we turn our attention to the chromatic symmetric function

of hypertres. Results in this section can also be found in the article [Mac17]. A hypergraph

H is a pair H = (V,E) where E a collection of nonempty subsets of V . We call the elements

of V vertices and elements of of E hyperedges. If for each e ∈ E we have that |e| = s,

then we call H an s-uniform hypergraph. A map f : V → P is a proper coloring of H if it

produces no monochromatic hyperedge.

We observe that coloring in simplicial complexes can be thought of as coloring in uniform
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hypergraphs and conversely. Given a simplicial complex Γ and a nonnegative integer s we

get an (s+ 1)-uniform hypergraph H(s)(Γ) = (V (Γ), E(s)(Γ)) with edge set defined by

E(s)(Γ) := {A ∈ Γ : |A| = s+ 1}.

Lemma 10.4.1. A map f is an s-simplicial coloring of a simplicial complex Γ if and only

if f is a proper coloring of H(s)(Γ).

Next we show that coloring in a uniform hypergraph can be thought of as an instance of

coloring in a simplicial complex. Given any H = (V,E) we get a simplicial complex Γ(H)

on the vertex set V defined by

Γ(H) = {A : A ⊆ e ∈ E} ∪ {{v} : v ∈ V }.

Lemma 10.4.2. A map f is a proper coloring of an (s + 1)-uniform hypergraph H if and

only if f is an s-simplicial coloring of Γ(H).

It is an open problem, first considered in [Sta95], to determine if the chromatic symmet-

ric function distinguishes trees up to isomorphism. For some partial results on this problem

see [MMW08, APZ14]. Russel has verified that the chromatic symmetric function distin-

guishes trees on 25 or fewer vertices up to isomorphism [Rus12]. We will investigate the

analogous question for uniform hypertrees.

Throughout the remainder of this section section let H = (V,E) be a hypergraph on n

vertices. Let E be a set of subsets of V and assume that |e| > 1 for all e ∈ E. A walk of
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length ` > 0 between v1 ∈ V and v` ∈ V is a sequence

(v1, e1, v2, e2, . . . , v`, e`, v`+1)

such that ei ∈ E with vi, vi+1 ∈ ei for all i. If all the vertices and hyperedges are distinct,

then the walk is called a path. In the case all vertices and hyperedges are distinct with the

exception that v1 = v`+1 we call the walk a cycle. The hypergraph H is connected if for

any v, v′ ∈ V there exists a path between v and v′. A hypertree is a connected hypergraph

with no cycles. We call H a linear hypergraph if |e1 ∩ e2| ≤ 1 for all e1, e1 ∈ E such that

e1 6= e2. Notice a hypertree is necessarily linear, otherwise for distinct hyperedges e1, e2 ∈ E

and distinct vertices v1, v2 ∈ e1 ∩ e2 there is a cycle a length 2

(v1, e1, v2, e2, v1).

For H let (ai)
n
i=2 be the sequence defined by

ai := |{e ∈ E : |e| = i}|

which records the number of hyperedges of each size in the hypergraph. The hyperedge

magnitude of H is defined to be the sum

n∑
i=2

(i− 1)ai.

In [GK05] is it shown that a connected hypergraph on n vertices is a hypertree if and only

if the hyperedge magnitude is n− 1. We give the following lemma which extends this result
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and is a generalization of the corresponding well known fact for trees.

Lemma 10.4.3. Let H = (V,E) be a hypergraph on n vertices, and consider the following

conditions:

(i) H is connected.

(ii) H is acyclic.

(iii) H has hyperedge magnitude equal n− 1.

Any two of the above conditions together imply the third. Hence, to show that a hypergraph

H is a hypertree is suffices to prove that any two of the above conditions hold for H.

Proof. From [GK05] we already know that (i) and (ii) together imply (iii), and also that

(i) and (iii) together imply (ii). It remains to show that (ii) and (iii) together imply (i).

Assume that H = (V,E) is a acylic hypergraph on n vertices with hyperedge magintude

equal n − 1. We order the hyperedges E = {e1, e2, . . . , em} and let Hi = (V,Ei) for where

Ei = {e1, e2, . . . , ei} for 1 ≤ i ≤ m. Also let H0 = (V, ∅) Notice Hi will be an acyclic

hypergraph for 1 ≤ i ≤ m. Since each hypergraph is acyclic it follows that if Hi has c

connected components, then Hi+1 has c− |ei+1|+ 1 connected components. Now H0 has n

connected components and so it follows that H = Hm has c connected components where

c = n−
m∑
i=1

(|ei| − 1) = n− (n− 1) = 1.

Here we have used the assumption that H has edge magintude n − 1. Therefore we have

shown H is connected and completed the proof.

If G is a graph on n vertices, then G is a tree if and only if χG(t) = t(t− 1)n−1. There is

a similar result for s-uniform hypertrees when we restrict to linear hypergraphs. It is proven
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in [B L07, Theorem 5] that if H is a linear hypergraph on n vertices, then H is an s-uniform

hypertree with m hyperedges if and only if χH(t) = t(ts−1−1)m. Here we observe some sim-

ilar behavior between trees and uniform hypertrees when we restrict to linear hypergraphs.

In what follows we will show some of the results on the chromatic symmetric which can be

proven from trees can also be proven for uniform hypertrees. However, we will also exhibit

two 3-uniform hypertrees which are not isomorphic yet have the same chromatic symmetric

function.

Given any set partition π = B1/B2/ · · · /B` of [n] we let type π be the integer partition

of n given by the sizes of the blocks in π. Given A ⊆ E we let λ(A) = typeπ(A). The

chromatic symmetric function XH of a hypergraph H has the expansion

XH :=
∑
A⊆E

(−1)|A|pλ(A)

which we will take as a definition. Of course the chromatic symmetric function can also

be defined in the monomial basis as a sum of proper coloring, but we will only need the

chromatic symmetric of a hypertree in the powersum basis. Let cλ(H) denote the coefficient

of pλ is the powersum expansion of XH so that

XH =
∑
λ

cλ(H)pλ,

and let ci(H) = c(i,1,1,...,1)(H). Notice that XH is homogeneous of degree |V | and when H

is s-uniform −cs(H) = |E|. Thus, we can always recover the number of vertices from XH ,

and we can recover the number of hyperedges in the case of uniform hypergraphs.

Now assume that H is s-uniform and acyclic. For every A ⊆ E the hypergraph (V,A)
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has n − (s − 1)|A| connected components. For any integer partition λ we let lenλ denote

the length of the partition. Thus for s-uniform acyclic hypergraphs

lenλ(A) = n− (s− 1)|A|

for any A ⊆ E. It then follows

cλ = (−1)
n−k
s−1 |{A ⊆ E : λ(A) = λ}|

for λ ` n with lenλ = k. This implies the relation

(−1)
n−k
s−1

∑
λ`n

lenλ=k

cλ(H) =

(
m
n−k
s−1

)

where m = |E|.

For a vertex v ∈ V , the degree of v in H is deg v := |{e ∈ E : v ∈ e}|. The degree

sequence of H is the collection of the degrees of all vertices of H arranged in weakly decreasing

order. Our next result shows that the chromatic symmetric function of a uniform hypertree

determines its degree sequence. In [MMW08, Corollary 5] it was shown that the chromatic

symmetric function determines the degree sequence of a tree.

Proposition 10.4.4. If H is a uniform hypertree, then the degree sequence of H can be

determined from XH .

Proof. Let H = (V,E) be an s-uniform hypertree on n vertices. Thus H must have m = n−1
s−1

hyperedges. Let XH =
∑
cλpλ and let Di denote the number of vertices of a degree i in

H. It suffices to show that we can determine the numbers Di for 1 ≤ i ≤ m. Since H is a
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hypertree and hence connected, we must have D0 = 0. For any λ ` n let 1(λ) denote the

number of parts of size 1 in λ. Recall that if A ⊆ E, then lenλ(A) = n − (s − 1)|A|. Any

1 in the partition λ(A) must come from a vertex of degree at most m − |A|. Now for any

integer 0 ≤ i ≤ m let us consider partitions λ with lenλ = ki where ki = n− (s− 1)(m− i).

Exactly the vertices of H of degree at most i will contribute to the sum

(−1)m−i
∑
λ`n

lenλ=ki

cλ · 1(λ).

Note that a vertex of degree j will contribute to the sum exactly
(m−j
i−j
)

times. It follows

that

(−1)m−i
∑
λ`n

lenλ=ki

cλ · 1(λ) =
i∑

j=1

(
m− j
i− j

)
Dj .

This gives a triangular system that we can solve for each Di. Therefore XH determines the

degree sequence of a hypertree H.

We conclude this section by showing that the chromatic symmetric function is not a

complete invariant among uniform hypertrees. We give two pairs on 3-uniform hypertrees

on 21 vertices which are not isomorphic, but have the same chromatic symmetric function.

These hypertrees were found by using nauty [MP14] to enumerate all 3-uniform hypertrees

up to isomorphism and then using SageMath [Dev16] to compute the chromatic symmetric

functions. The computation indicates that the examples are minimal. That is, there does

not exist a pair of hypertrees on fewer than 21 vertices which are not isomorphic but have

the same chromatic symmetric function. Let H1 = (V,E1), H2 = (V,E2), H3 = (V,E3),
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and H4 = (V,E4) where V = {0, 1, . . . , 20} and

E1 = {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {0, 7, 8}, {2, 9, 10}, {1, 11, 12}, {9, 13, 14},

{16, 3, 15}, {17, 18, 7}, {19, 20, 13}}

E2 = {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {0, 7, 8}, {2, 9, 10}, {1, 11, 12}, {9, 13, 14},

{16, 3, 15}, {17, 18, 5}, {19, 20, 15}}

E3 = {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {0, 7, 8}, {5, 9, 10}, {5, 11, 12}, {0, 13, 14},

{16, 2, 15}, {1, 17, 18}, {19, 20, 15}}

E4 = {{0, 1, 2}, {0, 3, 4}, {1, 5, 6}, {0, 7, 8}, {2, 9, 10}, {1, 11, 12}, {0, 13, 14},

{16, 9, 15}, {17, 18, 9}, {3, 19, 20}}.

One can check that H1, H2, H3, and H4 are all 3-uniform hypertrees on 21 vertices and

that XH1
= XH2

and XH3
= XH4

However, H1 is not isomorphic to H2 and H3 is not

isomorphic to H4. The hypertrees H1 and H2 are shown in Figure 10.3.
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Figure 10.3: The hypertree H1 above and the hypertree H2 below which are not isomorhpic
but have the same chromatic symmetric function.
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