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ABSTRACT

EFFICIENT PARALLELIZATION OF NON-UNIFORM FAST MULTIPOLE ALGORITHMS

By

Stephen Michael Hughey

Many applications of the N-body problem today involve distributions of bodies that are (i) very large

and (ii) highly non-uniform. A variety of fast multipole algorithms have been devised to reduce the

cost from O(N2) to O(N log N) or O(N) for oscillatory and non-oscillatory problems, respectively.

The issue of non-uniformity, however, presents significant challenges in parallelization, requiring a

much more nuanced approach. Compounding this challenge, oscillatory N-body problems arising

from wave physics (electromagnetics, acoustics, etc.) are burdened with capturing both phase and

amplitude information as opposed to just the amplitude; non-uniformity even further complicates

things. As a result, the algorithm and underlying data structures become extremely complicated,

and parallelization becomes quite difficult.

This thesis aims to develop novel parallel fast multipole methods for both oscillatory and non-

oscillatory problems that (i) are controllably accurate to arbitrary precision, (ii) are capable of

efficiently handling highly non-uniform distributions, and (iii) scale well up to extremely large

problem sizes and numbers of CPU cores. The accelerated Cartesian expansion (ACE) method and

wideband multilevel fast multipole algorithm (MLFMA) are modified to accurately and efficiently

accommodate non-uniform, and in the case of MLFMA extremely large, distributions in parallel.

Several parallel algorithms for efficiently building the distributed non-uniform tree data structures

are developed. Effective, novel algorithms are introduced to reduce load imbalances arising

from non-uniformity and certain idiosyncrasies of the parallel wideband MLFMA which hamper

scalability. The algorithms presented here meet each of the stated goals, enabling computations

involving several hundred million degrees of freedom on 2048 cores for an electromagnetics

problem and several billion particles on 16,384 cores for non-oscillatory problems.
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CHAPTER 1

INTRODUCTION

1.1 N-body problems

The N-body problem refers to a common computational pattern arising in a significant number

of fields in computational physics and related fields. Consider a collection of N particles (bodies)

located at points ri, i = 1, . . . , N and with strengths ui, i = 1, . . . , N . Broadly speaking, the N-body

problem may be defined in the following manner. Given the source strengths and locations ui, ri

and kernel function ψ encoding action at a distance, the task is to compute

Ψ(ri) =
N∑

j=1
ψ(ri − r j)u j, i = 1, . . . , N, (1.1)

where the function Ψ is referred to as the potential function associated with the kernel ψ. While

it is sometimes the case that the target locations (i.e., those points at which Ψ is evaluated) do not

coincide with the source locations, this thesis assumes the source and target locations are always

coincident. The principal bottleneck in evaluating (1.1) is the O(N2) computational complexity.

The N-body problem (1.1) appears in a number of applications too large to list here compre-

hensively; an abridged list will suffice to highlight its ubiquity. The N-body framework is used

for gravitational force calculation in galaxy formation problems in computational astrophysics,

electrostatic force calculation in molecular dynamics and physical electronics, kernel classification

methods in machine learning, integral equation solvers in electromagnetics, acoustics, elastody-

namics, fluid mechanics, and many more.

Given the importance and number of applications of this problem, it is not surprising that a

significant amount of research effort has been expended to reduce the cost of evaluating (1.1),

particularly in light of the success of the fast Fourier transforms developed in the 1960s. The

algorithms of Appel [4] and Barnes and Hut [8] reduced the cost of (1.1) for gravitational force

calculations from O(N2) → O(N log N). At the same time, Rokhlin and Greengard proposed the
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elegant Fast Multipole Method (FMM) [59, 34] for the same problem, reducing the cost to the

optimal O(N).

1.2 Fast multipole methods (FMMs)

The FMM idea quickly gained traction in the computational physics community. Its optimal

runtime, control over accuracy, and geometry adaptivity make it a highly attractive option for

large-scale simulation. The idea was soon generalized for a number of other kernels, including

Green’s functions in elastodynamics [17], Stokes flow [31], and electromagnetics [21, 67]. The

electromagnetic variant of the FMM, deemed the multilevel fast multipole algorithm (MLFMA),

is different from the other methods listed here in a very fundamental way. The electromagnetic

Green’s function imparts a notion of phase to go along with amplitude information, as opposed

to the amplitude-only FMM. Adequately resolving these oscillations requires satisfaction of a

sampling theorem over a domain proportional to the size of the computational domain. As a result,

the MLFMA’s memory requirements are significantly higher than its non-oscillatory counterparts,

and the algorithm scales as O(N log N) rather than O(N).

Historically, these methods relied on the existence of an analytic factorization of the kernel

function into a sum-product of functions that depend separately on the source and observer coordi-

nate frames; however, the FMM has also been extended to a general kernel-independent [2, 47, 30]

or almost kernel-independent [61] setting. The latter method, deemed the accelerated Cartesian

expansion (ACE) method, is almost kernel-independent because, while it requires the derivatives

of the kernel function, only one stage of the algorithm requires any information about the kernel,

and the method can be applied to any non-oscillatory kernel.

The basic mechanism of acceleration is the separation of interactions into “near” and “far” field

interactions classified by some separation criterion, and approximating the far-field interactions

using intermediate bulk interactions between clusters of particles. In other words,

Ψ(r) = ΨNF(r) + ΨFF(r), (1.2)

where the superscripts denote the near- and far-field interaction potentials. Rather than classify each
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point-to-point interaction directly by comparison of the interaction distance with some threshold,

the simulation domain is broken up into a multi-level hierarchy of boxes organized into a tree

data structure, and points are assigned to their containing box. Near- and far-field interactions are

classified on a box-by-box basis on this grid using some number of near-field buffer boxes. The

near-field interactions, i.e. those between points in neighboring boxes, are evaluated directly at

O(N) cost. Far-field interactions are typically approximated using some variant of the following:

1. For each box at the finest level of refinement, compute the multipole expansion representing

the sources inside the box;

2. For each coarser-level box, form multipole expansions by shifting and combining those from

the finer levels;

3. For each box, form local expansions of the observed field within by applying translation

operators to multipole expansions of all far-field boxes and combining the results;

4. For each finer-level box, combine local expansion with a shifted local expansion of containing

upper-level box;

5. Evaluate the field at each observation point by evaluating the local expansion within each

box at the finest level.

The FMM, ACE, and MLFMA approximations are error-controllable, meaning that arbitrarily

high accuracy can be achieved by increasing the order of approximation, at the expense of extra

computational time.

1.3 Parallelization of FMMs

While thesemethods allow the fast evaluation of large N-body sums, the size of the problems that

can be solved is limited by the computational resources of a single computer. Hence, parallelization

of these algorithms is necessary for solving truly large-scale problems. However, parallelization

is not at all straightforward. An efficient parallel algorithm relies on an equipartitioning of the
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overall workload associated with the tree structure. In the FMM for non-oscillatory kernels, most

of the work to be done lies at the finest level of refinement, or the leaf level, greatly simplifying

the problem. In this case, a simple partitioning of the boxes at this level along a locality-preserving

space-filling curve suffices to form the base of highly scalable parallel algorithms [64], though

employing an adaptive form of the FMM complicates the parallelization.

In the MLFMA, however, the necessity of capturing both phase and amplitude information,

as opposed to strictly amplitude in non-oscillatory FMMs, introduces significant challenges to

parallelization. The MLFMA can be viewed as a decomposition of the kernel into a sum of

plane waves traveling in all directions. The sampling theorem requires the number of plane

waves in the sum to be proportional to the surface area of the sphere enclosing each collection

of sources/observers, and so the information content per box increases as one ascends the tree.

Consequently, in MLFMA simulations involving electrically large objects, not only is the cost per

tree level approximately constant, but the storage and computational costs of nodes at the uppermost

levels of the tree can become prohibitive without an intelligent parallelization strategy.

Work on parallelization of the MLFMA has continued for almost two decades. The basic

technique common to the most successful approaches is that of partitioning over space and then

over the plane waves at some chosen granularity [28, 48, 50]; however, as will be discussed in a later

chapter, the necessity for accurate interpolation and downsampling in the upward and downward

tree traversal stages of the matvec, respectively, has important consequences for the partitioning

scheme. While some progress has been made toward a robust, scalable, and accurate MLFMA

for solving large-scale problems in EM, there remains plenty of work to be done. In particular,

efficient parallelization of adaptive wideband variants remains an open problem.

1.4 Thesis structure

The remainder of this thesis aims to put forth a set of algorithms advancing the state of the art

in efficient parallel, non-uniform, fast multipole-like algorithms. We will concern ourselves first

with non-oscillatory potentials. We will then turn our attention to the electromagnetic case.
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Chapter 2 describes a scalable parallel ACE algorithm for evaluating linear operators acting on

arbitrary non-oscillatory potentials. We first present an example of potentials defined in terms of

linear operators acting on a common kernel function and then provide an algorithmic prescription

for evaluating such potentials. Next, we present a suite of parallel algorithms for tree construction,

load balancing, and potential evaluation. Finally, a set of numerical experiments demonstrates

error control of the method for several kernel functions and good parallel scalability for problems

as large as 5 billion particles on 16,384 processes.

Chapter 3 focuses on the solution of EM scattering problems using the non-uniform wideband

MLFMA.We introducemethods which greatly increase the scale of EMproblems that can be solved

using the wideband MLFMA presented originally in [73]. We first present a numerical method for

breaking a significant bottleneck of the original algorithm that limited the size of problems to which

it could be applied. We then present an adaptive form of the algorithm which significantly improves

performance for multiscale geometries, i.e. those with highly non-uniform spatial distributions of

unknowns. We demonstrate the error control of these methods and performance of the parallel

algorithm on thousands of processes for several electrically-large scatterers.

Chapter 4 focuses on the parallelization details of the non-uniform wideband MLFMA used in

the previous chapter. We identify several computational bottlenecks and their causes in the original

parallel wideband MLFMA presented in [48], upon which this work is based. We then propose

and implement remedies to their resolution. We also present explicit algorithms for building the

non-uniform tree in parallel, computing interaction lists in the non-uniform tree, and load balancing

the potential evaluation stage for highly non-uniform distributions. The benefits of the proposed

methods are then proven through a series of numerical experiments.
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CHAPTER 2

PARALLEL ALGORITHM FOR FAST EVALUATION OF STOKES POTENTIALS

2.1 Introduction

A number of physical systems rely on the computation of pair potentials to analyze/understand

the relevant physics. By pair potentials, we imply the means through which two entities interact,

viz., the relevant Green’s function that depends on relative position of the two particles (and

possibly the relative times). Examples of such potentials are abundant. For instance, the Coulomb

potential is used in a number of different fields ranging from gravitational physics to electro-statics

to molecular dynamics to density functional theory and so on. Likewise, we see application of

potentials such as Lennard-Jones, Yukawa, Buckingham, and so on in molecular dynamics, lattice

potential in electronic structure calculations, Stokes potentials in low Reynolds number fluid flows,

potentials arising from the Helmholtz equation, wave equation, heat equation, diffusion equation,

Klein-Gordon equation, and more. Often, the pair potentials necessary are tensorial, obtained via

action of linear differential operators on simpler potentials. A rather simple example is the force

on a particle due to electrostatic/gravitational interactions. More generally, the pair potential can

be expressed as L∇ {ψ(r)} where L∇ {·} is a linear operator.

Evaluation of these potentials is expensive and scales as O(N2) where N is the number of

degrees of freedom. Reduction of this cost complexity, from O(N2) −→ O(Nα) with α < 2 for

evaluation of the Coulomb potential for gravitational physics was the origin of the classical N-body

problem. The earliest efforts toward its resolution can be traced back to Barnes and Hut [8], which

is the ancestor of a class of methods called tree algorithms. A slightly different approach, the

fast multipole method (FMM), introduced by Rokhlin [59], Zhao [82], and then Greengard [32],

has been celebrated as one of the top ten algorithms of the 20th century [25]. For volumetric

distributions, tree algorithms and FMM reduce the computational costs from O(N2) to O(N log N)

and O(N), respectively. Despite similarities between the two methods, there are fundamental
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differences between their asymptotic complexities; these have been elucidated in [32, 35, 61]. The

principal difference between the two is in how one traverses the tree. The bottom line, however, is

that both approaches effectively approximate the pair potential in terms of low-order polynomials

and their error bounds are well understood.

While the most extensive body of work on N-body problems has been on Coulomb potentials

[34, 35, 18, 24], there has been significant interest and effort in other areas as well. These include

Yukawa [13, 38, 72], Gauss [36, 77], radial basis functions [43, 30], lattice gas [61], Klein-Gordon

and diffusion [74], Helmholtz [21, 66], retarded [62, 72], and periodization of some of these [7,

16, 44]. In general, methods used for potentials arising from the Helmholtz and wave equations

need to be treated differently [21, 27] than the others due to the need to capture phase information

as well as amplitude. But a unifying theme to the methods developed for all other potentials is

representation of these in an observation domain in terms of low order polynomials. This can be

effected either using Taylor series (or an optimal variant in the case of FMMs) [34, 82], kernel

independent FMMs [79], or the black-box approaches [30].

A fast multipole-like algorithm that uses Cartesian tensors in an optimal manner (hence called

accelerated Cartesian expansions, or ACE) was introduced in 2007 [61] for potentials of the form

r−ν. The salient features of the ACE algorithm are (a) the ability to accelerate smooth, non-

oscillatory potentials, ψ(r), of arbitrary form and can be extended to linear operators acting on

ψ, or L∇ {ψ(r)}, with minimal change in cost; (b) exact traversal up and down the tree in that if

the multipole expansion were to be computed at a given level directly from the actual particles, it

would be identical –to machine precision– to that computed from its grand-children; (c) mapping

for traversal up the tree from level l −→ l + 1 and l + 1 −→ l + 2 differ only by a multiplicative

constant and is independent of the potential ψ(r); (d) the same is true for traversing down the

tree, as well as across if ψ(r) = |r|−ν, ∀ν ∈ R. The complexity of ACE scales as O(αNP6) (and

can be reduced trivially to O(αNP5)) where P is the order of representation and α = 1/(720s).

Here, s is the average number of particles in a leaf box and can be tuned to optimize the cost.

There also exits a specialization of ACE for r−1 using traceless Cartesian tensors that (a) can
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be mapped directly onto the classical fast multipole algorithm, and (b) has a complexity that

scales as O(βNP4) with β = 1/(2s). This drew upon the relationship between traceless Cartesian

tensors and spherical harmonics. The ACE algorithm has been extended to Yukawa, low-frequency

Helmholtz, diffusion, Klein-Gordon, dispersive and low-frequency retarded potentials (and some

of their periodic variations) [74, 6]. Given these features of ACE, in this paper we will build upon

this framework to accelerate the evaluation of non-oscillatory potentials defined by linear operators.

Since acceleration methods are commonly used for the Coulomb potential, the effort spent

on developing effective parallel algorithms has been equally impressive; see [33, 11, 63, 76, 56]

and references therein. More recently, the emergence of kernel independent FMM and potential

applications of non-oscillatory potentials to PDEs alluded to earlier in this section as well as to

machine learning [14, 10] has resulted in a body of work on parallelization that is most current

and pertinent [79, 45, 1, 47]. These methods typically employ a local essential tree (LET)

structure, which compartmentalizes communication and computation, allowing the overlapping of

communication with computations from different stages of the FMM algorithm. However, this

approach requires redundant computation and storage of remote source data. A different parallel

algorithm that uses a bottom-up partitioning of the tree based on a post-order traversal sequence

and eliminates the need for redundant computations at the higher levels of the tree has been reported

by Melapudi et al. [75, 48]. As demonstrated through the evaluation of multiple pair potentials in

a particle dynamics simulation using the ACE algorithm, the implementation by Melapudi et al.

exhibits excellent strong scaling properties.

In this paper, our goal is to develop parallel algorithms to evaluateψ(r) andL∇ {ψ(r)} efficiently.

A few examples of potentials of this form are the set of Stokes potential (Stokeslet, rotlet and

stresslet) [42], force or field calculations in electrostatics/gravitation, as well as those encountered

in low frequency electromagnetics wherein one transitions across scales (quantum to classical) [3].

Given the landscape of both fast methods and the attendant parallelization algorithms mentioned

above, it is apparent that each has its (dis)advantages. However, in keeping with our goal, ACE is

an ideal framework as will be demonstrated through both mathematical and numerical analyses. To
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this end, the main contributions of this paper are (a) development of a modified ACE framework to

enable evaluation ofL {ψ(r)} with minimal cost overhead compared to that for ψ(r), (b) an efficient

parallel implementation ofACE for highly non-uniform particle distributions, and (c) demonstration

of the efficiency and scalability of the described methods for several different potentials.

The rest of this paper is organized as follows: In the next section, we define the problem

addressed by this work and state the Stokes kernels in terms of an L∇-operation. Section 2.3

reviews the ACE algorithm and introduces the necessary modifications to effect such operators

for the Stokes potentials, and presents a complexity estimate for the modified ACE algorithm.

Section 2.4 describes our parallel algorithm in detail, including tree construction, interaction lists,

load balancing, and parallel potential evaluation. Finally, in Section 2.5, we present a number of

numerical results demonstrating the accuracy and efficiency of our algorithm.

2.2 Problem statement

Consider a collection of N sources distributed randomly in R3, described by u(r) = ∑N
j u jδ(r−

r j). The effect of these sources at a point r can be written as

Φ(r) = ψ(r)?s u(r), (2.1)

where r = |r|, and?s represents a spatial convolution. In several applications, one needs to compute

Φ(n)(r) = L∇ {ψ(|r|)} ?s u(r) (2.2)

where the superscript (n) denotes a tensor of rank n as required by the operator L∇. In the

exposition, we have restricted u(r) to a scalar source. It is, however, trivial to generalize ideas

presented here to vector sources.

In what follows, we will illustrate our ideas in the context of Stokes kernels. These potentials

can be expressed as a set of linear operators acting on non-oscillatory pair potentials. Stokes

potentials arise in boundary integral formulations in fluid dynamics for low Reynolds numbers, and

are denoted by the Stokeslet S(n), rotlet Ω(n), and the stresslet σ(n) kernels which, respectively, can
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be expressed in index notation as

Si j (r) =
δi j
r
−

rir j

r3 , (2.3a)

Ωi j (r) = εi j k
rk

r3 , (2.3b)

σi j k (r) = −6
rir jrk

r5 (2.3c)

Alternatively, the above potentials can be rearranged and expressed in terms of derivatives on r

[57, 29, 42]:

Si j (r) �
(
δi j∇2 − ∂i∂j

)
ψ(r), (2.4a)

Ωi j (r) �
(
−εi j k∂k∇2

)
ψ(r), (2.4b)

σi j k (r) �
[(
δi j∂k + δ j k∂i + δki∂j

)
∇2 − 2∂i∂j∂k

]
ψ(r) (2.4c)

where ψ(r) = r , δi j is the Kronecker delta, ∇2 denotes the Laplacian, ∂i represents the derivative

along the ith direction (from the set {x, y, z}), and εi j k denotes the Levi-Civita symbol. From these

equations, one can arrive at the appropriate L∇ {·} for each of the tensors.

Assuming N particles, the cost of evaluating (2.2) scales as O(3nN2). In what follows, we

introduce modifications to the ACE algorithm which bring down the complexity of evaluating all

3n components down to O(NP6).

2.3 Generalization of ACE to L∇ {ψ(r)}

In this section, we discuss the overall computational framework, provide a brief summary of

the ACE algorithm, present the modification that permit efficient computation of L∇ {ψ(r)} using

ACE, and conclude with a computational complexity analysis.

2.3.1 Framework for fast N-body computations

To begin, let us assume that the entire computational domain Ω ∈ R3 can be embedded within a

cube. All FMM-like fast algorithms start with building an oct-tree data structure by hierarchically

partitioning the cube encompassing the entire computational domain. At each level, the cube is

10



rc
s,p

rc
o,p

rc
s

rc
o

r′

r

C2M

M2M

M2L
L2L

L2O

Figure 2.1: Illustration of the operations in the ACE algorithm and notation used in this section.

subdivided into eight equi-sized sub-cubes, and this process continues recursively until the desired

level of refinement (e.g., defined by a threshold on the number of sources/observers contained

within each sub-cube) is reached; an L-level scheme implies L − 1 recursive divisions of the

domain. At any level, the (sub)domain that is being partitioned is called the parent of all the eight

children that it is being partitioned into. At the lowest level, all sources/observers are mapped onto

the leaf boxes. Interactions between all source/observer pairs are now computed using the tree

structure. Specifically, near and far fields are identified for all boxes/subdomains at any level in the

tree according to the following criteria: Two subdomains are classified as being in the near field of

each other, if they share a common corner, edge or surface. Otherwise two subdomains are in the

far field of each other, if the distance between their centers is at least twice the side length of the

subdomain, and their parents are in the near field of each other.

Once the interaction lists are built for all levels, the computation proceeds as follows. At the leaf

levels, interactions between elements of boxes that are in the near field of each other are computed

directly, i.e., using ψ(r). Far field interactions are computed using a three stage algorithm: (i)

compute multipoles of sources that reside in each box (C2M); (ii) convert these to local expansion

at all boxes that are in its far field (M2L); (iii) from the local expansion, compute the field at each

observer (L2O). It is apparent that one can cut down computational costs by embedding this scheme

within itself. That is, if two domains interacting with each other are far away, then these clusters
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may be combined to form larger clusters that then interact with each other at a higher level and

so on. As has been shown elsewhere [34, 61], this computational strategy considerably mitigates

the overall cost. Additional theorems exist that enable (a) shifting the origins of multipoles so

that effects of small clusters can be grouped together to form larger clusters (M2M) and (b) move

the origin of local expansion so that expansions at the origin of the parent may be disaggregated

to those of its children (L2L). The overall computational scheme is illustrated in Fig. 2.1 and

proceeds as follows; (c) compute nearfield interactions at the leaf levels, and traverse the tree

(C2M−→M2M−→M2L−→L2L−→L2O) as appropriate to compute the remaining interactions.

Theorems to effect the tree traversal are summarized in the remainder of this section.

2.3.2 Brief background on ACE

To begin describing ACE, consider two boxes Ωs and Ωo that contain source and observers,

respectively, in the oct-tree decomposition of Ω, and let the parents of Ωs and Ωo be denoted using

Ω
p
s and Ωp

o. Centers of these boxes are denoted using rc
s , rc

o, rc
s,p, and rc

o,p. To set the stage for the

relevant descriptions, we start with some remarks and notations; (i) an n-th rank totally symmetric

tensor A(n) contains (n+ 1)(n+ 2)/2 independent components as opposed to 3n components; (ii) in

compressed form this tensor can be represented using A(n)(n1, n2, n3) where n = n1 + n2 + n3; (iii)

an example of such a tensor is the polyadic associated with r which is given by rr · · · rr︸   ︷︷   ︸
n times

= rn and

can be represented in compressed form as r(n) = xn1 yn2 zn3; (iv) an m-fold contractions between

two tensors A(n) and B(m) is denoted using A(n) · m · B(m) = C(n−m); and (v) a direct product

between two tensors can be written as C(n+m) = A(n)B(m).

The foundation ofACE is based on a Taylor series expansionwhich provides a natural framework

for developing addition theorems. A Taylor series expansion for ψ(|r − r′|) about the origin,

ψ(r − r′) =
∞∑

n=0

(−1)n
n!

(
r′
)n · n · ∇nψ(r), (2.5)

for |r| > |r′|, results in a series of theorems summarized next; this is provided only for completeness,

and proofs for all can be found in [61].
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Theorem 1 (Charge-to-multipole (C2M)). Assuming that k sources exist in the domain Ωs, the

potential function Φ(r) at any point r significantly away from Ωs is given by

Φ(r) =
∞∑

n=0
M(n)(rc

s) · n · ∇nψ(r)

M(n)(rc
s) =

k∑
i=1

(−1)n
n!
(ri − rc

s)nui,

(2.6)

where M(n)(rc
s) is the rank-n multipole tensor about rc

s .

Next, these multipoles can be re-expressed about rc
s,p using

Theorem 2 (Multipole-to-multipole (M2M)). The multipole expansion M(rc
s) may be re-centered

about the center rc
s,p of a domain Ωp

s ⊃ Ωs via

M(n)p (rc
s,p) =

n∑
m=0

∑
P(n,m)

m!
n!
(rc

s,p − rc
s)n−mM(m)(rc

s), (2.7)

where P(n,m) is the permutation of all partitions of n into sets of size n − m and m, and Mp(rc
s,p)

is the re-centered multipole expansion.

Next, we translate these multipoles about Ωp
s to Ωp

o.

Theorem 3 (Multipole-to-local (M2L)). Assume that a domain Ωp
o centered at rc

o,p exists at some

distance from Ωp
s , and Ω

p
o ∩ Ω

p
s = ∅. Then, given a multipole expansion M(n)p (rc

s,p) centered at

rc
s,p, the potential Φ(r) may be alternatively expressed in the form

Φ(r) =
∞∑

n=0
(r − rc

o,p)n · n · L
(n)
p (rc

o,p),

L(n)p (rc
o,p) =

1
n!

∞∑
m=n

M(m−n)
p (rc

s,p) · (m − n) · ∇mψ(|rc
o,p − rc

s,p |),
(2.8)

where Lp(rc
o,p) is referred to as the local expansion for Ω

p
o.

Next, we map the local expansions in Ωp
o to Ωo.
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Theorem 4 (Local-to-local (L2L)). Given a local expansion L(n)(rc
o,p) within the domainΩ

p
o about

the center rc
o,p, the local expansion within Ωo ⊂ Ωp

o centered at rc
o is given by

L(n)(rc
o) =

∞∑
m=n

©­­«
m

m − n

ª®®¬ L(m)(rc
o,p) · (m − n) · (rc

o − rc
o,p)m−n. (2.9)

Finally, the local expansions are mapped to observers.

Theorem 5 (Local-to-observer (L2O)). The potential at a point r ∈ Ωo can be obtained from the

local expansion within Ωo centered at rc
o via

Φ(r) =
∞∑

n=0
(r − rc

o)n · n · L(n)(rc
o). (2.10)

Given these theorems, we next specialize it to Stokes potentials.

2.3.3 Modifications for evaluating Φ(n)(r)

Thus far, we have developed a method to evaluate Φ(r). Examination of (2.2) provides a method-

ology to evaluate the Φ(n)(r) as a minor modification of that for Φ(r); given Thm. 5, it follows that

one can write

Φ(n)(r) = L∇ {ψ(r)}

=

∞∑
n=0
L∇

{
(r − rc

o)n
}
· n · L(n)(rc

o)
(2.11)

This implies that the only change (both procedurally as well as in the computational cost) arises

from a change in the L2O stage. Specifically, the Stokes potentials can be written as

Si j (r) ∗ u(r) =
∞∑

n=0

[
(δi j∇2 − ∂2

i j )(r − rc
o)n

]
· n · L(n) (2.12a)

Ωi j (r) ∗ u(r) =
∞∑

n=0

[(
−εi j k∂k∇2

)
(r − rc

o)n
]
· n · L(n) (2.12b)

(σ)i j k (r) ∗ u(r) =
∞∑

n=0

[((
δi j∂k + δ j k∂i + δki∂j

)
∇2 − 2∂3

i j k

)
(r − rc

o)n
]
· n · L(n)k . (2.12c)
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For each of the Stokes potentials, the above operation requires contracting a local expansion of rank

n with another of rank (n+2), (n+2), and (n+3) for the Stokeslet, rotlet, and stresslet, respectively.

Furthermore, examination of these equations alongside (2.12) suggests that we can precompute and

store the 6+10=16 unique second and third derivatives of the tensor (r − rc
o)n, combining them as

needed to construct each disaggregation operator (the bracketed terms in (2.12)).

Furthermore, if the source u(r) excites all three potentials, the simplemapping betweenψ(r) = r

and Stokes potentials enables significant optimization. That is, only three tree traversals are required

to construct the 19 independent components of the Stokeslet, rotlet, and stresslet collectively at the

observer. Finally, it is easily shown that the error in the evaluated potentials is commensurate with

the representation polynomial order; the error bounds for this approximation follow from what was

derived for ACE in [61].

2.3.4 Cost of evaluating L∇ {Φ}

The cost of computing the action of L∇ {Φ(r)} by taking derivatives on the disaggregation tensors

rn, n = 0, . . . , P is the same as that of simply computing Φ(r). To show this, we invoke Theorem

2.4 of [61] to give us

∇k
Φ(r) =

∞∑
n=k

n!
(n − k)!L(n) · (n − k) · (r − rc

o)n−k, k ≤ n. (2.13)

Truncating at P terms to make use of all the information contained in L and evaluating the sum

clearly requires at most the same amount of work as evaluation of (2.10) truncated at the same

number of terms P. The resulting rank-k tensor contains all derivatives of degree k, from which

the elements of L∇Φ are assembled. It follows that the cost of evaluating all components of the

tensor Φ(n) is not significantly different from evaluating Φ by itself and scales as O(NP6).

2.4 Parallel ACE algorithm

In this section, we outline our parallel algorithms for constructing, adapting, and load balancing

the tree, as well as parallel potential evaluation. While parallelization of FMMs is well-documented
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in the literature [76, 80], as we will demonstrate in Sect. 3.5, redundant M2L computations in the

commonly used locally essential tree (LET) based algorithmswould significantly hamper the scaling

of our proposed framework. For this reason, our parallel evaluation strategy differs from the usual

LET based implementations, and therefore we present our parallel implementation in detail. In the

ensuing discussion, let L denote the number of levels in the octree as determined by the parameter

d0, which represents the edge length of the smallest boxes in the tree. Level L denotes the level of

finest refinement, i.e., where boxes are of diameter d0, while level 1 denotes the root, or the box

containing the entire computational domain.

2.4.1 Construction of the distributed octree

Construction of the distributed octree starts by partitioning the input particles equally among all

processes. On each process, the equidistributed particles are first hashed into Morton keys, which

is a binary encoding of the leaf boxes according to their space-filling Morton-Z curve ordering. A

parallel bucket sort is then used to assign each process a distinct set of leaves contiguous in the

Morton-Z ordering such that each process gets a roughly equal number of particles. This initial

partitioning is performed at the finest refinement level, i.e., at level L, in preparation for the ensuing

adaptive tree coarsening and load balancing stages, and is concluded with a local postorder traversal

tree construction on each process from leaves all the way up to the root.

The above partitioning scheme necessarily incurs duplicate copies of internal tree nodes, cor-

responding to common ancestors of leaf nodes residing on different processes. Such nodes are

referred to as plural nodes. Treatment of computations associated with plural nodes is one aspect

of our parallelization scheme that differentiates it from the LET based implementations. Hence, we

provide some terminology to aid the discussion. For any plural node, the process with the highest

rank which owns a copy is designated as the resident process, and as such is deemed responsible

for all its tree-based interactions. Other processes with a copy of the plural node are called users

of the node, and are directed only to send and receive data to and from the resident process. A

plural node is referred to as a shared node on its resident process, and the users’ copies are called
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duplicate nodes. As a consequence of the postorder traversal tree construction, it can be shown

that all duplicate nodes in a process’ local subtree appear consecutively at the end of the post-order

traversal sequence. Shared nodes may appear anywhere within the post-order sequence, though

they tend to appear toward the beginning. As we will discuss, these properties allow effective

overlapping of communication and computation in the potential evaluation stage.

2.4.2 Adaptive tree

Random (or homogeneous) distributions of source or observer particles are well-represented by a

uniform tree structure. Within such distributions, the number of particles per box is approximately

constant across the entire simulation domain, facilitating the linear scaling of the ACE algorithm or

any other FMM implementation for that matter. For non-uniform distributions though, i.e., those

with subregions of relatively high particle density, the minimum box size must be decreased to

prevent near-field costs from dominating the computation. Hence, in a uniform tree framework,

the densest region of discretization dictates the leaf box size throughout the entire tree. The result

is large swaths of space with a poor work-to-particle ratio in sparsely populated regions, degrading

the cost scaling of parallel ACE computations.

To prevent such inefficiencies, we adapt the tree structure to the particle distribution so as

to restore the approximate uniformity in leaf box population throughout the tree. Adaptation of

trees for N-body simulation has been well-studied and has become a standard feature of modern

tree-based simulation methods for non-oscillatory kernels [63, 64, 68, 47]. We employ a bottom-up

scheme for both constructing and merging the tree to minimize communication costs. Our parallel

algorithm for merging the distributed octree is given in Algorithm 1. Simply put, this algorithm

starts with a uniform tree constructed according to the description in Sect 2.4.1 and merges each

set of sibling leaf boxes into their parents, if the total number of particles in these leaf boxes do

not exceed a pre-determined particle threshold M . This scheme ensures that leaf boxes in more

sparsely-populated regions contain roughly as many points as those in the dense regions, thereby

avoiding excessive tree interactions (in sparse regions) or expensive near field computations (in
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dense regions).

Algorithm 1: Parallel algorithm for merging the tree with the option to impose 2:1 balance
constraint
1: Define:
2: Tloc: local subtree (including plural nodes)
3: T `loc: local subtree at level `
4: M: maximum number of points per leaf box
5: S(b): set of siblings of a box b
6: n(b): number of points contained within the complete subtree rooted at box b
7: N(b): set of box b’s near-neighbors at the same level
8: Votes: “1”: vote to merge; “0”: indeterminate; “−1”: veto
9: Votes← 0
10: for ` = L, L − 1, . . . , 4 do
11: C ← ∅
12: for each b ∈ T `loc do
13: if Votes(b)==0 then
14: if n(P(b)) ≤ M then
15: Votes(S(b)) ← 1
16: else
17: Votes(S(b)) ← −1
18: end if
19: end if
20: if Votes(b)≤ 0 and 2:1 balance desired then
21: C ← C ∪N(P(b))
22: end if
23: end for
24: Votes(S(C))← −1 {Global step; involves communication of vetoes to resident processes of

boxes in C}
25: Synchronize votes of level ` plural nodes and their siblings; vetoes dominate
26: end for
27: Prune each b ∈ Tloc and re-assign particles accordingly

2.4.2.1 Evaluation of ACE interactions in adaptive trees

In adaptive octree algorithms, it is necessary to evaluate interactions between boxes of different

sizes. As usual, these interactions are classified into U,V,W, X-lists based on the adjacency and

relative size of source and observer box pairs [15, 32]. For the sake of completeness, these lists are

defined as follows:
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Figure 2.2: (a) Graphical illustration of the interaction lists in the adaptive tree for a leaf box b; (b)
example of non-uniform distribution with non-uniform tree in two dimensions.

• U-list: source and observer boxes are adjacent and are both leaves, i.e., they are within the

near field of each other;

• V-list: source and observer boxes are not adjacent but their parents are, i.e., they are inside

the far field of each other;

• X-list: source and observer boxes are not adjacent, but the observer box is (i) adjacent to the

parent of the source box, (ii) a leaf, and (iii) larger than the source box, corresponding to a

cross-level interaction with an observer node higher up in the octree;

• W-list: reciprocal interactions of those in the X-list, corresponding to a cross-level interaction

with an observer node lower down in the octree.

These interaction lists are illustrated in Fig. 2.2a. U-list interactions are handled by directly

computing the interactions between particles contained within each box pair. TheV-list interactions

correspond to the M2L operations defined by (3). The X- and W-list interactions, however, require

special treatment. Consider the evaluation of a potential function φ with kernel ψ using ACE for

an X-list interaction between two boxes Ωo,Ωs, centered at ro, rs respectively. If the diameter of
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the sphere enclosing Ωo is greater than the diameter of that for Ωs, the local expansion about ro

formed from the source multipole expansion M(n)(rs) is not valid everywhere insideΩo. However,

M(n)(rs) can be used to construct a different representation that is valid in this region. Consequently,

the contribution φX (r) to the potential φ(r) observed at a point r within the observer box is given

by direct evaluation of the Taylor series. For the Stokes potentials, the derivative on the observer

coordinate frame in L2O moves directly onto the kernel function K . For integer derivative order d

and truncation number P, it is clear that

∇dφX (r) =
P∑

n=0
M(n)(rs) · n · ∇n+dψ(r − rs) (2.14)

yields a symmetric rank-d tensor whose entries contain the full complement of derivatives of order

d. All three Stokes potentials can be constructed using d = 2, 3 for each particle within Ωo.

TheW-list interactions have a somewhat simpler implementation. Here, themultipole expansion

of the source box Ωs is not quickly convergent anywhere within the observer box Ωo, and therefore

a local expansion must be formed about ro directly from the particles contained in Ωs. Viewing

the Taylor series from the perspective of the observer coordinate frame, the contribution φW of the

W-list sources to φ at the point r ∈ Ωo is given by

φW (r) =
P∑

n=0
(r − ro)n · n ·

ns∑
i=1
∇nψ(ro − r′i), (2.15)

where r′i is the location of the ith of ns particles in the source box. The inner summation constitutes

the local expansion about ro of the sources within Ωs. Derivatives for constructing the Stokes

potentials may then be taken in the usual manner in the L2O stage.

2.4.2.2 2:1 balance constraint

For highly non-uniform distributions, unconstrained merging of the tree results in a tree with

a matching degree of non-uniformity. While this is normally desirable from the perspective of

reducing computational costs (less tree nodes means less number of interactions overall), it has a

downside in terms of memory utilization. In a uniform tree where no X-list or W-list interactions
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exist, there can be at most 63 (total number of boxes in the neighborhood of a box) - 33 (number of

near field boxes) = 189 boxes in the far field of a box. Leveraging symmetries and scale invariance

of certain kernels can significantly reduce the number of translation operators needed for V-list

interactions. However, in regions containing sharp discontinuities in leaf box size, the number of

X- and W-list interactions can become quite large, and the number of unique translation operators

needed to perform the corresponding X- and W-list interactions can also be very large. The 2:1

balance constraint [68, 47] remedies this storage problem by disallowing adjacent leaf boxes to

differ in size by more than a factor of two, significantly reducing the number of different X and

W interactions and the memory overhead for storing their particle-specific translation operators.

Algorithm 1 for merging the tree includes the option to impose this constraint.

2.4.3 Load balancing

After the tree merging procedure under the 2:1 balance constraints is complete, each process is left

with a compressed representation of the original uniform tree. As such, the computational profile

is sufficiently different from the original tree that re-balancing the computational load on processes

is necessary. To accomplish this, we follow an empirical load balancing strategy where we estimate

the work attendant to each node in the distributed tree and aim to assign them in a load-balanced

manner.

The cost per leaf is determined as follows. As part of the initialization operations, we first time

a set of dummy operations to obtain cost estimates for each of the U,V,W , and X-list interactions.

The cost for each node in the tree is then determined by multiplying the number of each interaction

by its corresponding cost estimate, and summing these costs across all interaction types. As with

the initial partitioning, we partition the distributed tree by determining a set of separators between

contiguous chunks of leaf boxes. Therefore we account for the costs of the interior nodes by

percolating their estimated costs down to the leaf boxes and adding them to the extant cost estimate

at each leaf. A variant of Algorithm 1 from [68] is then used to determine P − 1 locations at which

to split the leaf level Morton curve for a re-balancing of the computational load. While the overall
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strategy is similar to the costzones approach of [63, 64], our strategy accounts for the work of the

entire tree instead of just the leaves. This is important for surface geometries with non-uniform

distributions, as the amount of work above the leaves is not negligible.

2.4.4 Evaluation of the potential in parallel

The parallel potential evaluation is performed in three stages: The upward pass (M2M), translation

(M2L), and the downward pass (L2L). Algorithm 2 describes the M2M (upward pass) stage of

our implementation, which essentially entails shifting the multipole data of each tree node to

the center of its parent box and aggregating the shifted multipole data from all siblings. Each

process starts processing the nodes in its local subtree from right-to-left in the post-order traversal

sequence. By choosing to go from right-to-left, we ensure that duplicate nodes are encountered

toward the beginning of the M2M stage, and shared nodes are encountered toward the end of this

stage. Using MPI’s non-blocking Ireduce collective calls, this pattern facilitates overlapping

the communication operations for plural nodes whose children, by definition, reside on different

processes with M2M computations of other nodes.

The translation stage commences on each process once the local upward pass is complete. This

stage includes three substages for computations of X , V and W lists. First, X-list interactions are

handled by sending the required multipole expansions to processes with X-list observers, where

the observed potentials are computed. Next, V-list interactions are carried out. Typically, this is

the most expensive stage of any fast multipole-like method. To hide communication overheads,

the source multipole expansions to be exchanged are divided up into packets and communicated

to processes that need this information. As each source expansion is received in full, all its V-list

interactions are computed, making good use of temporal locality. Once all source expansions in

the current packet are exhausted of work, the next packet is constructed and communicated using

non-blocking primitives to facilitate overlapping of communication and computation. This process

continues until all remote V-list interactions are completed. Local V-list interactions, i.e., those in

which both the source and observer boxes belong to the same process, are computed next. Finally,
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W-list interactions are computed by exchanging the source weights, i.e. ui in (2.6), and applying

the appropriate translation operators to form the local expansions of these sources.

To complete the evaluation, Algorithm 3 describes the L2L (downward pass) stage which

involves re-centering and adding parents’ local expansions to their childrens’. Contrary to the M2M

stage, here we employ a pre-order traversal of the local subtree so that the shared nodes are now

encountered at the beginning and the duplicates are encountered toward the end of the L2L stage.

Thisway, by usingMPI’s non-blocking IBcast primitive, we ensure that broadcast for a shared node

can be completed in the background, while L2L computations of other nodes are being performed.

Also, the result of the V-list interaction evaluations for duplicate nodes is communicated to users

during the downward pass, again using non-blocking primitives for overlapping communications

with computations.

As described above, updating multipole and local expansions for nodes that are shared between

processes are performed efficiently in our implementation using asynchronous communications.

We note that at any level, the local subtree of any process can have at most two plural nodes –

one shared, one duplicate. It follows, then, that we may create a total of 2L MPI communicators,

each with groupings of shared nodes and their users, so that we can take advantage of non-blocking

variants of MPI’s reduce and broadcast operations.

We note that our evaluation algorithm differs from that of the common LET-based implementa-

tions in that we avoid duplicating V-list interactions, which are typically the most computationally

expensive part of any fast multipole-like algorithm (see Sect 3.5). Each V-list interaction is com-

puted exactly once, and the resident process is responsible for such computations.

2.5 Results

In this section, we present an array of results demonstrating error convergence and parallel

performance of the present algorithm.
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Algorithm 2: Local multipole-to-multipole (M2M) computation with interleaved update of
plural nodes
1: Define pid as the process rank
2: Define M(b) as the multipole expansion for node b
3: Define T(b) as a temporary storage space of the same size as M(b) unique to node b; only

required for plural nodes
4: Define Reqs(·) as the array of request handles for asynchronous comms.
5: r ← 0 {r is the request counter}
6: R ← ∅ {Set of update nodes}
7: for each b ∈ Tloc in right-to-left post-order do
8: if b is a leaf then
9: Calculate M(b) from particles of b
10: else
11: for each child c of b do
12: M(b) ← M(b) + M2M(c, b)
13: end for
14: if b is a plural node then
15: r ← r + 1
16: MPI_Ireduce(M(b),T(b),Reqs(r),Root(b),MPI_SUM)
17: if pid == Root(b) then
18: R ← R ∪ b
19: end if
20: end if
21: end if
22: end for
23: MPI_Waitall(r ,Reqs(1 : r))
24: for each b ∈ R do
25: M(b) ← T(b)
26: end for

2.5.1 Error convergence

We first examine the error convergence of the ACE algorithm applied to the r−ν, Yukawa, and

Stokes potentials. The first two are computed using scalar sources, while the Stokes potentials are

calculated using vector-valued sources. The error for Stokes potentials is compared to the analytical

by taking an inner product of the tensor-valued potential with each observer’s polarization vector.

We first evaluate the r−ν and Yukawa potentials for 3.125 million points within a 0.64 m cube.

The distribution is mapped onto a tree with a leaf box diameter of d0 = 0.01 m, yielding a 7-level

tree with 12 points per box on average. A single buffer box is used for the far-field. Fig. 2.3
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Algorithm 3: Local-to-local (L2L) computation with asynchronous update of plural nodes
1: Define L(b) as the local expansion for node b
2: r ← 0
3: for each b ∈ T in pre-order do
4: if b is a leaf then
5: Calculate potentials due to L(b) for each particle in b
6: else
7: if b is a plural node then
8: r ← r + 1
9: MPI_Ibcast(L(b),Reqs(r),Root(b))
10: if b is a duplicate node then
11: MPI_Wait(Reqs(r))
12: end if
13: end if
14: for each child c of b do
15: if c is not a duplicate node then
16: L(c) ← L(c) + L2L(c, b)
17: end if
18: end for
19: end if
20: end for

shows convergence in the L2 error for the far-field with increasing expansion order P = 1, 3, . . . , 19

for both kernels. Different parameters are used to control the growth or decay of the kernels as r

increases.

We next consider the evaluation of error in Stokes potentials for a collection of points within a

cube with both uniform and non-uniform spatial distributions. Both distributions are characterized

by 3.125 million points within a 0.64 m cube. In the case of the uniform distribution, we employ

a uniform tree with increasing box size as P is increased to minimize runtime. The non-uniform

distribution is generated by generating random points within the unit cube and raising the generated

x, y, z positions to the powers of 1.2, 0.7, and 1.7, respectively, before rescaling the results to fit

into the 0.64 m cube. In this case, we use a non-uniform tree with 2:1 balance and increase the

minimum box size with P to approximately minimize runtime according to the uniform-tree cost

estimate. The error convergence with increasing P for both distributions is shown in Fig. 2.4. The

error metric used here relies on randomly sampling the analytical fields at one observer on each
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Figure 2.3: Far-field only error convergence vs. ACE expansion order for different kernel functions.

5 10 15 20

10−7

10−5

10−3

10−1

Stokeslet
Rotlet

Stresslet

Expansion order P

A
v
g.

re
la
ti
ve

er
ro
r

Uniform Non-uniform

Figure 2.4: Convergence of the Stokes potentials for uniform and non-uniform volume distributions.

process, ensuring a good spatial distribution of observers, and comparing it with the computed

potential using ACE. For each selected particle, the error in the potential relative to the analytic

solution is computed, and the average of these errors is reported.

2.5.2 Cost comparison of evaluating L∇ {ψ} vs. ψ

Next, we demonstrate the low overhead for evaluating L∇ {ψ} using our method. Consider the

evaluation of the Laplace potential and the Stokes potentials for a collection of 100,000 particles
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Table 2.1: L2O timings (in seconds) for Laplace potential (scalar) and Stokeslet (vector)

P 6 8 10 12 14 16 18
Stokeslet 0.118 0.198 0.333 0.570 0.769 1.125 1.561
Laplace 0.046 0.072 0.104 0.156 0.229 0.317 0.418
Ratio 2.57 2.75 3.20 3.65 3.36 3.55 3.73

distributed randomly inside a cube of diameter 1 m. Note, for the Stokes potentials we use vector

sources. It follows from the arguments thusfar, the principal difference in cost between evaluating

the Laplace and Stokes potentials should be a factor of three arising from the difference between

the nature of the source distributions (scalar vs. vector). For the Stokes potentials, each of the three

vector components of the local expansion must be disaggregated with the derivative operations

defined in (2.12) and assembled to form the observed field. Table 2.1 presents timings of the L2O

stage for both the Laplace and Stokes potentials for increasing values of P and the ratio of the

Stokeslet time to the Laplace time. The increase hovers around the expected factor of 3, albeit with

additional overhead for larger P which could potentially be due in part to cache effects associated

with the O(P3) arrays involved in these computations.

2.5.3 Parallel performance

Finally, we examine the performance of the algorithm in evaluating all three Stokes potentials

simultaneously at the L2O stage. These results were obtained on the Haswell partition of the

Cori supercomputer at the National Energy Research Scientific Computing Center (NERSC). This

cluster comprises 2388 compute nodes with two sockets each, populated by 16-core Intel Xeon

E5-2698 v3 “Haswell” CPUs running at 2.3 GHz and 64 GB DDR4 RAM at 2133 MHz per socket.

The algorithm was implemented in Fortran 90 using double-precision arithmetic and parallelized

strictly in distributed-memory fashion using MPI. The code was compiled using the Intel compiler

version 18 with optimization and architecture-specific instructions using the -O3 -xHost flags.

For these runs we use vector-valued sources in R3 and evaluate the far-field only, selecting P = 7

to give O(10−5) accuracy for the Stokeslet and O(10−3) accuracy for the rotlet and stresslet.

We next consider a uniform random distribution of 5 billion randomly-oriented vector sources
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Figure 2.5: Strong scaling and per-process timings for Stokes kernel evaluation on a uniformly-
distributed volume geometry with 5 billion particles.

with unit norm inside a cube of diameter 8 m. The minimum box size was set to 0.015 m, yielding

an 11-level uniform tree with 33 particles per leaf box on average. Fig. 2.5a shows the parallel

efficiency (strong scaling) of this distribution up to 16,384 processes with respect to 1024 processes.

The increase in efficiency from 2048 to 4096 processes is due to the fact that the distribution is

randomly re-generated for each run. The efficiency is over 90% for all cases. Fig. 2.5b shows the

timings for each process for the 16,384 process case. The C2M stage requires on average 0.54 s

while the L2O stage, modified for the Stokes potentials, requires 6.05 s, about an 11.2X increase.

Most of this increase is due to the calculation of the stresslet potential. The overall computational

time is dominated by theV-list calculation, taking over 45 s of the 54 s, underscoring the importance

of avoiding redundant V-list calculations related to duplicate nodes at upper levels of the tree.

We now consider uniformly and non-uniformly distributed sources on the surface of a sphere.

Both distributions comprise 1.024 billion particles. For the uniform distribution, the sphere

diameter is 2 m. A uniform tree is used with a leaf box size of 5 × 10−4 m, yielding a 13-level tree

with leaves containing 15 particles per box on average. The strong scaling and per-process timings

on 16,384 processes for the uniform distribution are shown in Fig. 2.6. A mock distribution is also

shown inset in the strong scaling plot. In this case, the efficiency is over 77%. The choppiness of
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Figure 2.6: Strong scaling and per-process timings for Stokes kernel evaluation on a uniform
spherical distribution of 1.024 billion points.
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the L2L stage timings is due to the fact that the number of particles assigned to each process is

uneven; instead, the load balancing algorithm aims to balance the overall computational load. As

the bulk of the work lies in the V-list evaluation, Fig. 2.6 suggests the algorithm does a reasonably

good job.

In the case of the non-uniform distribution, the sphere has a diameter of 8 m, and the particles

are clustered around the north and south (±z) poles (as depicted inset in Fig. 2.7a). The minimum

box size is chosen as 6.25 × 10−7 m in diameter, resulting in a 25-level tree. We set smax = 50

particles per box, resulting in about 18 particles per box on average and distributing leaves over the

bottom 16 levels of the tree. Despite the extremely non-uniform distribution of particles, the strong

scaling shown in Fig. 2.7a is still as high as 78% efficient on 16,384 processes. In addition, the

per-process timings presented in Fig. 2.7 for the far-field evaluation suggest that the load balancing

algorithm does its job reasonably well. Again, the choppiness here is due to the fact that particles

are not evenly distributed across processes, and processes with high particle counts must spend a

lot of time computing X- and W-list interactions. Those with the most particles stick out in these

plots.

2.6 Conclusion

We have presented an efficient parallel algorithm for evaluating arbitrary non-oscillatory po-

tentials and those defined in terms of gradients on a non-oscillatory potential. We demonstrated

the accuracy of the numerical method for several different potential functions and showed that

the parallel algorithm scales well for surface, volume, uniform, and non-uniform distributions of

billions of particles, achieving nearly 78% parallel efficiency on 16,384 processes.
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CHAPTER 3

PARALLEL NON-UNIFORMWIDEBAND MLFMA FORMULTISCALE
ELECTROMAGNETIC SIMULATION

3.1 Introduction

Over the past several decades, computer simulation has become an indispensable tool for design-

ing and prototyping in electromagnetic (EM) engineering. This includes designing microwave/RF

circuits and antennas, electromagnetic interference mitigation, stealth aircraft profile reduction,

THz devices, and much more. Many of these problems, however, pose significant challenges for

existing computational methods. The confluence of perpetual increase in frequencies of engineer-

ing interest, the widespread availability of quality computational resources, and the demand for

realism in computer models is driving a massive increase in the number of degrees of freedom, Ns,

required to solve these problems.

While the literature is filled with means to tackle these problems, over the years, surface integral

equations have emerged as themain tool of analysis [54, 20, 41]. Themain bottleneck to widespread

use of these methods was their computational complexity; since the 1990s, this has largely been

overcome thanks to accelerators such as the multilevel fast multipole algorithm (MLFMA) that

have reduced the computational complexity from O(N2
s ) to O(Ns log Ns) for surfaces. As a result

of these significant benefits, research into advancing nuances and application of these approaches

is extensive and perhaps too numerous to enumerate; a partial list can be found in [71, 52] and

references therein. As is evident from these citations, there is still considerable interest in exploring

and expanding the range of these techniques at either end, i.e., extending these methods to problems

with high disparity in discretization scales that are then embedded in electrically large objects. At

the same time, there has been a concerted effort to develop parallel algorithms to further exploit

the capabilities of these algorithms. Both these issues are explored in more detail next.

The literature is rich with efforts to bridge the length scale between the Helmholtz regime and

31



the low-frequency or Laplace regime. The principal challenge is the low-frequency breakdown of

the classic MLFMA. The earliest work on this problem was done by Greengard [35, 37]. Soon

after, Zhao and Chew [83] introduced a modification of the original addition theorem to stabilize

the MLFMA at low frequencies. Since these, other methods have emerged, including [19, 26, 12,

5, 69]. Another method introduced in 2007 is based on accelerated Cartesian expansions [61, 73]

blends seamlessly and intuitively with the MLFMA, and is error-controllable to arbitrary accuracy

with no bound on the discretization density.

It is apparent that to extend the reach of fast multipole methods, development of parallel

algorithms is a necessity [70]. The earliest efforts were based on extending methods developed for

the Laplace (electrostatic) fast multipole method (FMM) to MLFMA with little success. Recent

effort focused on building an algorithm based on hierarchical partitioning (HiP-MLFMA) [28] and

more recently, its blockwise variant [51]. This approach works by partitioning in space at lower

levels and directions at higher levels; the blockwise scheme optimizes the manner in which the

directions are partitioned. In these methods, one uses a number of processors that is either a power

of 2 (for hierarchical partitioning) or a power of 4 (for blockwise hierarchical partitioning).

Another algorithm [48] that has also shown excellent scalability and timings takes a different

approach; using post-order traversal, the resulting self-similarity of the tree as well as direction

partitioning yields an algorithm that scales very well [48]. The salient features of this algorithm are

(i) wideband MLFMA for analysis from low to high frequencies, (ii) global (exact) interpolation

and anterpolation, (iii) demonstrated error control (L2 error norm against analytical data), and (iv)

adaptive direction partitioning that is dictated by the number of duplicate nodes; for the purposes

of this discussion it will be referred to as AP-MLFMA, for “adaptive partitioning”. It was shown

that the matrix vector product (matvec) times of AP-MLFMA are highly competitive with others.

To a large extent, both methods assume a uniform tree.

Despite this progress, several open problems remain, particularly for wideband and multiscale

MLFMA systems. These can be summarized as accuracy in deep non-uniform trees and their

relative trade-offs in developing a efficient parallel algorithms. To wit, both HiP- and AP-MLFMA
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offer a solution to a portion of the problem. The former relies on local inter/anterpolation, which

has linear asymptotic complexity but requires significant oversampling, resulting in an increase in

cost. It is also inaccurate, as one needs a filter at the anterpolation stage [27, 62, 19].

On the positive side, HiP-MLFMA is easier to parallelize. The AP-MLFMA uses global

(exact) inter/anterpolations so the accuracy can be well controlled, and the sampling is optimal

and predetermined. However, developing parallel algorithms for this approach is a challenge; in

addition, memory costs required to store matrices for inter/anter-polation on each node limit the

height of the tree. Both HiP- andAP-MLFMAdo not include non-uniform trees within their parallel

frameworks. Algorithms that address both wideband and multiscale nature of the problems implies

that one needs both the capability of handling low frequencies as well as adaptive non-uniform

trees [73, 15, 19]; while such algorithms exist in serial, the literature on parallelization is extremely

sparse with each [48, 9] addressing a portion of the problem.

The principal contribution of this chapter is to address these extant deficiencies; our objective

is to provide a parallel computational framework for computing fields arising from realistic distri-

butions with the following properties: (a) it is a methodology whose accuracy can be controlled

to desired precision, (b) it includes transitions to low frequencies and non-uniform distributions,

(c) the sampling of the spectrum is optimal and overcomes memory bottlenecks associated with

inter/anterpolations, and (d) it is efficient in terms of scalability and execution times. We present

a number of results to demonstrate the accuracy of the numerical methods and the performance of

the parallel algorithms presented here. The methodology extensively extends the work [73, 48] on

ACE-AP-MLFMA.

The rest of the chapter is organized as follows: Section 3.2 lays out the EM scattering problem

to be solved. In Section 3.3, we review the wideband MLFMA, establish the need for filters for

anterpolation, develop transitions between spherical harmonics and Fourier series for interpola-

tion/anterpolation, non-uniform trees for multiscale features, and an interpolationmethod for saving

memory. Section 3.4 outlines the parallel algorithm, and finally, Section 3.5 demonstrates the error

control and performance of the serial and parallel algorithms.
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3.2 Problem Statement

Consider an object residing in a region D ∈ R3 bounded by the surface ∂D, the perfectly-

conducting portion of which is denoted by S. Let
{
Ei(r),Hi(r)

}
denote electric and magnetic fields

that are incident on this object, µ and ε denote the magnetic permeability and electric permittivity

of the medium, respectively, and k = ω
√
µε denote the wavenumber for frequency ω. The intrinsic

impedance of the medium is denoted by η =
√
µ/ε. The field scattered by the object may be

obtained using a combined field integral equation (CFIE) formulated in terms of the unknown

electric surface current density J(r) on S. For r ∈ S,

αn̂ × n̂ × Ei(r) + (1 − α)n̂ ×Hi(r)

= −αL{J}(r) + (1 − α)K{J}(r)
(3.1)

L{J}(r) � n̂ × n̂ ×
∫

S
G

(
r − r′

)
· J(r′) dS′ (3.2)

K{J}(r) � n̂ × 1
j kη
∇ ×

∫
S

G
(
r − r′

)
· J(r′) dS′ (3.3)

G
(
r − r′

)
� − j kη

[
I +
∇∇
k2

]
g(r − r′) (3.4)

where

g(r − r′) � e− j k |r−r′|

4π |r − r′| , (3.5)

is the scalar Helmholtz Green’s function and n̂ � n̂(r) denotes the unit normal to S at the point r.

Solving for J via the method of moments (MoM) involves the discretization of (3.1), typically by

expansion and testing with the classic RWG basis functions [58] defined on a triangular mesh. To

do so, we expand the unknown surface current as

J(r) =
Ns∑

n=1
Infn(r), (3.6)

where fn(r) denotes the RWG function associated with the nth edge, and Ns is the total number

of edges in the mesh. The Ns × Ns matrix equation resulting from the MoM procedure may be

expressed as

ZI = V, (3.7)
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where I =
{
I1, . . . , INs

}T is the vector of unknown coefficients, and the elements of the matrix Z

and vector V are given by

Zmn = αZE
mn + (1 − α)ZH

mn (3.8)

ZE
mn = − 〈fm(r),L{fn}(r)〉

=

〈
fm(r), j kη

∫
S
g(r − r′)fn(r′)dS′

〉
−

〈
∇ · fm(r),

jη
k

∫
S
g(r − r′)∇′ · fn(r′)dS′

〉 (3.9)

ZH
mn = 〈fm(r),K{fn}(r)〉

=

〈
fm(r) × n̂,

∫
S
∇g(r − r′) × fn(r′)dS′

〉 (3.10)

Vm =
〈
fm(r), αn̂ × n̂ × Ei(r) + (1 − α)n̂ ×Hi(r)

〉
, (3.11)

where 〈·, ·〉 denotes the usual inner product. Here, the EFIE is represented in mixed-potential form.

Solutions to this equation are typically effected using an iterative solver, for instance, the

Generalized Minimal Residual (GMRES) method. Coupling this equation with a accelerator

amortizes the cost of the matrix vector product; the most popular of the accelerators being the

multilevel fast multipole method (MLFMA) [67]. Next we discuss challenges and their resolution

when these methods are applied for multiscale analysis.

3.3 Challenges and remedies for parallel multiscale analysis

All acceleration methods for accelerating the solution of (3.7) rely on the fact that the matrix Z

may be partitioned into a matrix ZNF of near interactions and a matrix ZFF of far interactions, or

Z = ZNF + ZFF . (3.12)

This partitioning is founded on the notion that matvecs with ZFF can be computed in O(Ns log Ns)

time, and thosewith ZNF can be computed inO(Ns) time. Developing criteria for such a partitioning

for multiscale problems poses challenges from both a computational as well as parallelization

perspectives. These challenges arise from the non-uniformity of discretization and their distribution.

To set the stage, assume that the spatial distribution of unknowns can be mapped onto a uniform
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octree data structure. The root of the tree contains all unknowns, and the leaves of the tree

correspond to clusters of unknowns, serving as the interface between the tree and the unknowns.

The matvec with ZFF is effected by using appropriate operators to traverse up, down and across

the tree. Assume that the minimum size of a leaf is around 0.2λ. In a multiscale scenario a leaf

box may contain too many unknowns, thus dramatically increasing computational costs of near-

field interactions and overwhelming the cost complexity of the MLFMA. This can be overcome

using a judicious choice of representations for the Green’s function that enable a low-frequency

decomposition, as in [37, 19, 12]; here we employ the accelerated Cartesian expansion (ACE)

method [61, 73]. Enabling this results in a tree that could potentially have MLFMA leaves that

are then roots of subtrees that extend downwards. From a computational perspective one needs

to develop operators to efficiently transfer information between nodes (both at the same level and

between levels).

Another bottleneck is accurate traversal up and down the tree. As will be shown later, a provably

accurate approach is to use a global representation of radiated field or use a local bandlimited

representation [46, 49]. For the latter, the price that one pays is the oversampling required for

the same accuracy. However, the downside of using global sampling is the challenges it poses in

terms of memory requirements for storing interpolation coefficients at higher levels in the tree as

well as parallelization. As a result, an efficient strategy for deep trees would use a spherical filter

that uses spherical sampling up to a certain level, switches to a FFT-based filter using uniform

sampling [60] to save on memory, and then a local bandlimited filter with linear complexity to

leverage parallelism. This concept is illustrated in Fig. 3.1. While we leave the discussion of local

bandlimited interpolation and modification of parallel algorithms to a subsequent paper, we shall

extensively discuss spherical, uniform sampling and transitions between the two, and parallelization

strategies that one can employ. In what follows, wewill explore each of these issues in greater detail.

Note, the exposition will focus on evaluation of the scalar Green’s function; changes necessary to

effect these operations for the dyadic Green’s function are well known and only those subtleties that

are not well known are elaborated upon.
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Figure 3.1: Illustration of the target computational strategy for representing interactions in a gen-
eral multiscale geometry. Each T represents operations performed with the subscripted method,
e.g. ACE, spherical and uniform interpolation/anterpolation, and local band-limited interpola-
tion/anterpolation.

3.3.1 Non-uniform trees

MLFMA relies on construction of oct-trees to partition near and far interactions. Here we briefly

discuss creating such list for non-uniform distributions. Consider a box b at any level in the tree;

we denote its parent by P(b) and its grandparent by P2(b) and so on up the tree. Boxes that share a

spatial locations (vertex, edge or face) with b are identified as being in its near field. If two boxes

are of the same size (and share a spatial location), they belong to the U-list. Likewise if two boxes

are of the same size, do not share a spatial location, and their parents are in the near field of each

other, they are in each other’s farfield orV-list. To handle non-uniform distributions, we develop an

adaptive tree [15] starting with a uniform tree representation where all leaf boxes reside precisely

at the same level, merging siblings subject to the rule that their parent does not contain more than

some specified smax DoF.

An important consequence of adaptive methods is the introduction of far-field interactions

between boxes at different levels of the tree or cross-level interactions. These interactions, deemed

the X- and W-lists, are discovered during the construction of the near and far interaction lists in the
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followingmanner. Consider a box b. To construct its interaction lists, we generate all hypothetically

interacting boxes with b at the same level according to the scheme described earlier, and we perform

a top-down search of the octree to locate each such hypothetical box h. If h itself is found in the

tree, it is obviously added to the appropriate U- or V-list. If the search for h dead-ends on an

ancestor Pn(h) that is not a leaf, the interaction pair (b, h) is discarded; however, if Pn(h) is a leaf

and it satisfies the conditions of the present interaction list, we retain (b, Pn(h)) in the X-list and its

reciprocal interaction pair (Pn(h), b) in the W-list.

The computational procedure is as follows:

• Construct the non-uniform tree and delineate near and far field interactions

• Precompute and store near field interactions

• For any matvec,

– Compute contributions due to the near-field

– Compute contributions due to the far-field:

∗ For all leaves, compute charge to multipole (C2M);

∗ Construct multipole information for all boxes from those of their children (M2M).

This operation is level dependent, and one needs the following operators: MACE −→

MACE , MACE −→Msph, Msph −→Msph, Msph −→Muni and Muni −→Muni;

∗ Translate from multipole to local expansion (M2L). For non-uniform trees, this

would involve constructing operators for both in- and across-level translations;

∗ Construct local expansions for all boxes from those of its parent (L2L). This is a

conceptual inverse of the multipole operation and one needs to develop identical

operators to traverse down the tree;

∗ From local expansions at leaves, construct far field information at all observers

(L2O);

– Sum the contributions of near- and far-fields.
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3.3.2 Low-frequency analysis

Over distances or length scales which are small relative to a wavelength (< 0.25λ or so), the

oscillatory behavior of g over larger distances gives way to quasi-static behavior which can be

accurately modeled using localized Taylor series expansions. This is the foundation of the ACE

method [61, 73] for the low-frequency Helmholtz problem.

Consider the evaluation of the potential Ψ(r) due to a source distribution u(r)

Ψ(r) =
Ns∑

n=1
ung(r − r′n). (3.13)

To compute the potential potentials between regions that are sufficiently separated, ACE [61, 73]

dictates that the potential due to s′ sources with location and strength {rm, um}, m = 1, . . . , s′

within the region Ωs centered at rc
s can be written as

Ψ
FF(r) =

∞∑
n=0

M(n)(rc
s) · n · ∇(n)g(r − rc

s), (3.14)

where ·n· denotes an n-fold tensor contraction, M(n) is the multipole tensor representing the sources

within Ωs and the tensor ∇(n)g(r − rc
s) is an n-fold tensor operand on the Green’s function. Details

for these expression, as well as aggregation operators MACE −→MACE and MACE −→Msph and

their counterparts for disaggregation are available in [73]. Operators addressing translations across

levels are presented later in this section.

3.3.3 MLFMA

The derivation of FMM and its multilevel variant are well known [21, 67, 66, 22, 60]. Given the

wealth of papers in this area over the past few decades, it seems somewhat presumptuous to contend

that there is significant new information to be added to the literature. The purpose of this section

is somewhat different. In keeping with our goal to have a methodology with controllable accuracy,

we will describe methods that permit both better understanding and error control. We start with a

2-level description of MLFMA that is based on the integral representation of the Green’s function

g(X + d) ≈ − j k
(4π)2

∫
S2

e− jk·(ds+do)T(k,X)d2 k̂, (3.15)
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Figure 3.2: Graphical illustration of the addition theorem and some notation.

where the translation operator T is given by

T(k,X) �
∞∑

n=0
(− j)n(2n + 1)h(2)n (k X)Pn

(
k̂ · X̂

)
, (3.16)

with k = k k̂. Here, S2 denotes the unit sphere, parametrized by (θ, φ) ∈ [0, π] × [0, 2π]. We note

that k = k (θ, φ), and use these notations interchangeably. Fig. 3.2 illustrates the decomposition

of |r − r′| into |X + d(1)|, where d(l) denotes the sum of particle-to-center vectors at level l with

l = 1 being leaf level. We denote the centers of boxes containing r′ and r as rc
s(1) and rc

o(1),

respectively. It follows that d = r − rc
o(1) + rc

s(1) − r′. The rules to evaluate the spectral integral

are well-understood and in place [27, 66, 60, 19, 73]. The far-field part of the potential (3.13) is

evaluated using

Ψ
FF(r) ≈ − j k

(4π)2

∫
S2

e− jk·doU1 (θ, φ) d2 k̂, (3.17)

where the local expansion U1 of the observer box is

U1 (θ, φ) � T(k,X)V1(k), (3.18)

and V1 denotes the multipole expansion of the source box

V1 (θ, φ) =
s′∑

i=1
uie
− jk·(rc

s−r′i). (3.19)
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Inwhat follows, we discuss the intimate connection between integration, interpolation (Vl+1 (θ, φ) −→

Vl (θ, φ)) and anterpolation (Ul+1 (θ, φ) −→ Ul (θ, φ)).

3.3.3.1 Inter/anterpolation and spectral integration

Let us revisit (3.15). It is well known that the plane wave expansion gives us

e− jk·(ds(1)+do(1)) ≈ S(kd, θ, φ)

=

Nh(1)∑
n=0

n∑
m=−n

anmYnm (θ, φ)
(3.20)

where d = |d(1)| = |ds(1) + do(1)|, and anm are known coefficients of the normalized spherical

harmonics, Ynm (θ, φ), used to represent the plane wave. Assuming that T(k,X) can be written as

T(k,X) = ∑∞
n=0

∑n
m=−n bnm(k |X|)Y∗nm (θ, φ), it follows that the (3.20) filters the above representa-

tion via (3.15), i.e., ∫
S2

S(kd, θ, φ)T(k,X)d2 k̂

=

∫
S2

d2 k̂

Nh(1)∑
n=0

n∑
m=−n

anmYnm (θ, φ)


×
[ ∞∑
n=0

n∑
m=−n

bnmY∗nm (θ, φ)
]

=

∫
S2

d2 k̂ S(kd, θ, φ) ·

��∞Nh(1)∑

n=0

n∑
m=−n

bnmY∗nm (θ, φ)


(3.21)

The filter due to S(kd, θ, φ) follows from the fact that, if higher order terms (n > Nh(1)) are

present, they integrate to zero analytically. In other words, S(kd, θ, φ) effectively band-limits the

spectrum of the incoming wave. As a result, the integration rules (and number of harmonics of the

translation operator) are chosen to exactly integrate polynomials of order 2Nh(1) present in (3.15).

If polynomials of order higher than 2Nh(1) were present, then, while they should theoretically

integrate to zero. But they would not do so numerically if the integration rule is not chosen

appropriately.
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Given the bandwidth of S(kd, θ, φ), the number of quadrature points/samples required to com-

pletely represent S(kd, θ, φ), i.e, obtain all coefficients anm, is (Nh(1)+1)×(2Nh(1)+1). To evaluate

the integral (3.15) numerically, one should be able to recover bnm from samples ofT(k,X), and vice-

versa. An integration rule to be used can be defined using Nh(1) = dχskD(1)e, Nθ(1) = Nh(1)+ 1,

and Nφ(1) = 2Nh(1) + 1, where D(1) is the diameter of a sphere that encloses the leaf box, and χs

is an oversampling factor.

In a multilevel scenario, the same logic holds at every level. That is, both the contributions from

that level and those from its parents should be representable in terms of spherical harmonics up to

a chosen order. This implies that one needs to develop an anterpolation operator to effect a filter of

the incoming spectra to enable a transition from parent to child, or in terms of representation, reduce

the maximum degree of spherical harmonics used from Nh(i + 1) −→ Nh(i). To control errors

arising from this transition, it necessary to understand the spectral properties of the anterpolation

operator used; local algebraic inter/anter-polation operators does not accomplish the necessary

filtering, and errors due to lack of filtering is exacerbated in deep trees. As a result, we will

use bandlimited anterpolants. As discussed in Section 3.4, using such global operations poses

bottlenecks in parallelization.

Thus far, we have established the need for filters to perform interpolation on outgoing expansions

(Vl (θ, φ)) and more importantly, anterpolation on incoming expansions Ul (θ, φ). In order to treat

both expeditiously, we denote both using Λl (θ, φ). The two variations that we have used are

spherical and Fourier transforms. Spherical filters as used in [40, 62] result in optimal sampling of

the far field data. An alternative approach is to use Fourier transforms in both angular directions

[60], requiring uniformly-spaced samples. Obviously, the tradeoff is O(Nh(l)3) memory required

to effect the Legendre transforms vs. doubling of the sample count required for the latter. The

approach we espouse is to choose a transition level at which the representation switches from

spherical to uniform sampling.
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Spherical filters Spherical filters are based on projecting an incoming or outgoing field pattern

Λl onto spherical harmonics as

Λl (θ, φ) =
Nh(l)∑
n=0

n∑
m=−n

λl,nmYnm (θ, φ) (3.22)

and then performing the various down- and up-sampling operations. We shall not delve into details,

as these are well known and obtainable from references [40].

Fourier filters The concept of using Fourier transforms was first introduced into the FMM

literature by Sarvas [60]. The key to this approach was the realization that the angular domain

of the associated Legendre function can be extended from [0, π] → [0, 2π] [78]. To summarize,

Λl (θ, φ) can be extended to the entire sphere as

Λ̃l (θ, φ) =


Λ (θ, φ) (θ, φ) ∈ [0, π] × [0, 2π]

Λ(2π − θ, φ + π) (θ, φ) ∈ [π, 2π] × [0, π]

Λ(2π − θ, φ − π) (θ, φ) ∈ [π, 2π]2

(3.23)

If the spectrum of Λl (θ, φ) is bandlimited to Nh(l) harmonics, then it can be written as

Λ̃l (θ, φ) =
Nh(l)∑

n=−Nh(l)

Nh(l)∑
m=−Nh(l)

λ̃l,nme− jnθe− jmφ (3.24)

It follows that one needs to sample at (2Nh(l)+ 1) × (2Nh(l)+ 1) uniformly on the sphere to recover

the coefficients λ̃l,nm. Using the above representation we can write (3.17) as

Ψ
FF(r) ≈ − j k

32π2

∫ 2π

0
dθ |sin θ |

∫ 2π

0
dφe− jk·do(1)Λ̃1 (θ, φ) (3.25)

In the above expression, |sin θ | is not bandlimited. But as discussed earlier, Λ̃ filters |sin θ | such

that one can represent it in terms of a finite Fourier series. Specifically,

|sin θ | ≈ s̃(θ) =
Nh(1)∑

n=−Nh(1)
sne− jnθ (3.26)

As a result, it follows that the highest order of harmonics in the θ is 2Nh(1), and the integration

rules must be designed such that one can evaluate (3.25) using (4Nh(1) + 1) × (2Nh(1) + 1). This
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is done using uniform sampling in both θ and φ directions. Further, we note that as is the usual

practice, we can embed |sin θ | within the translation operator. As a result, one needs to evaluate an

integral of the form

Ψ
FF(r) ≈ − j k

32π2

∫ 2π

0
dθ

∫ 2π

0
dφe− jk·do(1)Υ̃1 (θ, φ) (3.27)

where Υ̃1 (θ, φ) = s̃(θ)T(k,X). As before, these ideas can be trivially extended to a multilevel

setting.

Spherical to uniform and vice-versa Both spherical and uniform interpolation have their draw-

backs in terms of costs. Transitioning from one method to the other yields a computationally

efficient scheme. To facilitate this, in what follows we present the means to do so. Consider the

transition from spherical to uniform. The procedure is straightforward, i.e.

Λl (θ, φ)
sph
−−−→ λl,nm

uni−−−→ Λ̃l+1 (θ, φ) , (3.28)

where the stacked symbols indicate the sampling regimes and embed a shift operation for upward

traversal. The above equation indicates that one traverses from the spherical samples of Λl (θ, φ)

to coefficients λl,nm and then using these to construct the requisite samples at uniform points in the

[0, 2π] × [0, 2π] grid, and then shift these from the center of the child box to that of its parent. Note

that one can exploit symmetry to store field samples only in the [0, π] × [0, 2π] grid by using an

even number of samples in φ.

Next, to effect the transition from uniform to non-uniform sampling we consider (3.27):

Ψ
FF(r) ≈ − j k

32π2

∫ 2π

0
dθ

∫ 2π

0
dφe− jk·do(1)Υ̃1 (θ, φ)

= − j k
(4π)2

∫ π

0
sin θdθ

∫ 2π

0
dφe− jk·do(1) Υ̃1 (θ, φ)

sin θ

(3.29)

As is evident from the above expression, the integration has been reduced back to the unit sphere.

However, the integration is challenging as Υ̃1 (θ, φ) /sin θ is not bandlimited in terms of spherical

harmonics. To effect the integral, we have to resort to the notion that the the effective bandwidth
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of e− jk·do filters the rest of the integrand. That is,

1
sin θ
Υ̃1 (θ, φ) =

Nh(1)∑
n=0

n∑
m=−n

υ1,nmYnm (θ, φ) (3.30)

To obtain υ1,nm we evaluate

υ1,nm =

∫ π

0
dθ

∫ 2π

0
dφΥ̃1 (θ, φ)Y∗nm (θ, φ) (3.31)

The above equation can be evaluated exactly by defining an extended spherical harmonic as

Ŷnm (θ, φ) =


Ynm (θ, φ) (θ, φ) ∈ [0, π] × [0, 2π]

Ynm(2π − θ, φ + π) (θ, φ) ∈ [π, 2π] × [0, π]

Ynm(2π − θ, φ − π) (θ, φ) ∈ [π, 2π]2

(3.32)

The periodic extension of the normalized spherical harmonics can be represented in terms of a

Fourier series, and as a result, the integral

υ1,nm =
1
2

∫ 2π

0
dθ

∫ 2π

0
dφΥ̃1 (θ, φ) Ŷ∗nm (θ, φ) (3.33)

can evaluated exactly using uniform samples of Υ̃1 (θ, φ) that are available to us with a trapezoid

rule in both dimensions.

3.3.3.2 Subtleties for vector fields

The algorithm of this chapter uses four trees; one each for component of the magnetic vector

potential and one for the scalar potential. This is the point form of MLFMA that addresses

integration issues [23]. Alternatively, one can develop MLFMA with either two or three trees. The

two tree version is the usual dyadic MLFMA and requires either vector spherical harmonics [62] or

the Fourier method modified to account for the anti-symmetry of the transverse fields [53], whereas

the three tree version requires mapping onto the three components of electric fields, Ex, Ey, Ez, and

employing the scalar filters espoused here. Multiplication of fields of the form (3.22) by the dyad

θ̂ θ̂ + φ̂φ̂ increases the polynomial order by two, requiring a commensurate increase in the size of

the integration rule.
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3.3.4 Cross-level interactions

Next, non-uniform tree introduces the notion of cross-level interactions. Addition theorems used

derive either MLFMA of ACE are invalid for these interactions. To circumvent this issue, we

subsume either do or ds, depending on the interaction, into the translation heading X. If the source

boxΩs is smaller than the observer boxΩo, i.e. |Ωs | < |Ωo |, the source multipole expansion is valid

everywhere within Ωo, meaning X ← X + do. The source multipole expansion is consequently

translated from its expansion center rc
s directly to each particle within Ωo. Such interactions are

tabulated in the X-list. Conversely, if |Ωs | > |Ωo |, we take X← X + ds, translating each particle

within Ωs to the center rc
o of Ωo, adding to the local expansion. These interactions are tabulated

in the W-list. Both of these forms of the addition theorem are always valid for well-separated

interactions. The essential criterion is that the two boxes are separated by at least one box of the

same size as the smaller interacting box.

The interaction “type” is determined by the field representation (ACE or MLFMA) of the

smaller of the two boxes. Consider evaluation of (3.13) between source and observation points in

Ωs and Ωo, respectively. Let M(n) be the ACE multipole tensor representing the sources within Ωs

centered at rc
s . Then we may write

Ψ(r) =


∑∞

n=0 M(n) · n · ∇ng(r − rc
s), |Ωo | > |Ωs |∑∞

n=0(r − rc
o)n · n · L(n), |Ωo | < |Ωs |

(3.34)

where

L(n) =
N∑

i=1

ui
n!
∇ng(rc

o − ri). (3.35)

In the MLFMA, we have

Ψ(r) =


∫
S2 T(k, r − rc

s)V(k, rc
s)d2 k̂, |Ωo | > |Ωs |∫

S2 e− jk·(r−rc
o)U(k, rc

o)d2 k̂, |Ωo | < |Ωs |
(3.36)
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where V(k, rc
s) is the source multipole expansion, and

U(k, rc
o) =

N∑
i=1

uiT(k, rc
o − ri) (3.37)

represents the local expansion within Ωo of the sources. As with the interaction type, the band

limit for the translation operator T is determined by the smaller of the two boxes.

It should be noted that theACE translation operator is valid only over electrically-small distances

[73], so care should be taken to ensure that translations from a box at the coarsest ACE level to

points within MLFMA boxes fall within this radius. For this purpose, 2:1 balancing of the octree

[68] at this level suffices. We also note that the minimum translation distance for X- and W-list

interactions falls from 2D(l) to 1.5D(l) if all particles exist inside the interacting boxes, limiting

the range of the MLFMA truncation parameter Nh for such interactions.

3.3.5 Interpolation of MLFMA translation operators

To reduce the storage overhead associatedwith translation operators, interpolation in k̂ ·X̂ is typically

used [65]. However, this scheme is untenable for large numbers of X- and W-list interactions, as it

requires the number of unique translation distances to be small. To ameliorate this cost, we can also

interpolate in the argument of the spherical Hankel function to further reduce the storage without

significantly reducing the accuracy of the MLFMA. Using the well-known series representation

h(2)n (z) =
e− j z

z

n∑
k=0

(− j)k−n−1(n + k)!
2k k!(n − k)!

z−k

=
e− j z

z
h̃(2)n (z)

(3.38)

It is well known that we may pull out a phase-magnitude term independent of n, obtaining h(2)n (z) =

(e− j z/z)h̃(2)n (z). It is then common to all elements of the series T , and we may implicitly define a

smoother, phase- and amplitude-compensated translation operator T̃ :

T(k,X) = e− j k X

k X
T̃(k,X). (3.39)
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We employ the Lagrange interpolating polynomials `n(x) of order p. For a given level, let

k Xmin, k Xmax denote the minimum and maximum translation distances, respectively. The in-

terpolation nodes are chosen to give a high density near k Xmin and a lower density near k Xmax

because i) the function to be interpolated has O((k X)−K ) behavior, and ii) this is typically good

practice for polynomial interpolation. The nodes are chosen as follows. Let a = k Xmin − ∆1 and

b = k Xmax + ∆2 be the beginning and end of the sampling interval respectively, where ∆1,∆2 are

small extensions of the interval, and J be the number of k X values to interpolate over. Then, for

j = 1, . . . , J, we let

x j = a + (b − a)
[
1 − cos

(
( j − 1)π
2(J − 1)

)]
(3.40)

denote the jth interpolation node. Let p denote the order of interpolation polynomials used. The

interval extensions are chosen as

∆1 = p (k Xmax − k Xmin)
[
1 − cos

(
π

2(J − 1)

)]
∆2 = p (k Xmax − k Xmin) cos

(
(J − 2)π
2(J − 1)

) (3.41)

so that the extensions are the size of only p subintervals at the beginning and end. This prevents

extension of the interpolation interval into the explosion zone of the spherical Hankel functions.

We store samples of the compensated translator T̃ for level l in a matrix Tl defined as

[Tl]mn � T̃
(
cos βm,

xn
k

)
, (3.42)

where {βm} is a set of uniformly-spaced samples on
[
−q∆β, π + q∆β

]
, with interpolation order q

and spacing ∆β. Then, for each translation distance k X in the interaction list at level l, we pre-

compute the interpolation weights {w j = ` j(k X)}, j = 0, . . . , p for reconstructing the compensated

translator T̃ from the columns of Tl as

T̃(cos βm, k X) ≈
p∑

j=0
w j [Tl]m(Q+ j) , (3.43)

where Q is the index of the first-occurring sample xQ used in the interpolation, determined by

binary search. During the evaluation phase, (3.43) is evaluated to obtain the samples for the
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Table 3.1: Comparison of L2 relative error data for translation operator interpolation with and
without compensation

Sampling εmax εmin εavg k X/D(l) at εmax
Uniform 7.38e-3 0 1.43e-3 1.81411
Cosine 2.35e-3 2.39e-7 4.16e-4 3.52377

Uniform+comp. 3.28e-3 0 5.59e-4 1.81411
Cosine+comp. 2.05e-4 1.10e-7 7.50e-5 2.3004

interpolation in k̂ · X̂ . The result of this interpolation is then multiplied by the phase-magnitude

factor e− j k X/k X to complete the process. The complexity is therefore increased only by a constant

factor of (p + 1) ∼ O(1). Table 3.1 summarizes the reconstruction error over a range of translation

distances normalized by box size using 2Nh(l) samples and p = 3. The average error is reduced

by a factor of two when switching from uniform sampling to cosine sampling, and another factor

of two is gained by phase-amplitude compensation. The maximum error at any point within the

interval is reduced significantly by the approach described here.

3.4 Summary of parallel wideband MLFMA algorithm

In this section, we provide a brief outline of the parallel ACE-AP-MLFMA algorithm used

to obtain the numerical results presented in the next section (more details will be provided in a

subsequent publication). The parallel algorithm we use is based on that presented in [48] with a

number of important improvements. We would like to point out that this algorithm is effectively

a bottom-up tree construction/partitioning algorithm, and compared to the top-down hierarchical

partitioning schemes used in [28, 50], gives us important advantages in terms of data partitioning

and load balancing as discussed below.

3.4.1 Tree construction

Our bottom-up tree construction starts by assigning points to leaf boxes according to a prescribed

leaf level box size (essentially creating a uniform tree to begin with). Using a parallel bucket-

sort algorithm, these leaf boxes are then partitioned into contiguous chunks with the objective

49



of balancing the number of points assigned to different processes. After this initial partitioning,

each process constructs the upper levels of its own tree based on its leaf boxes. This scheme will

obviously result in sparsely populated leaf nodes given the non-uniform particle distributions in our

target problems. Therefore, starting at the leaf level and working up the tree, each process merges

its sparsely populated tree nodes. To be precise, if the total number of particles owned by the

children of an internal tree node is below a predetermined threshold smax , then those leaf nodes are

merged at the parent node, making the parent a new leaf node. Since the octree is distributed across

processes, such merge operations are performed recursively at the higher levels in coordination

with neighboring processes. Interaction lists are subsequently computed on the merged tree.

3.4.2 Load balancing

Even distribution of the computational work is crucial to achieve scaling to a large number of

processes. Two major issues make load balancing for the MLFMA algorithm challenging: i)

Electrically large objects result in deep trees that contain a significant amount of work across a

small number of high level tree nodes, and ii) the non-uniform octree structure which is a natural

consequence of the non-uniform point distribution has a work profile with high variability.

We address the first issue by inheriting the adaptive direction partitioning idea, first presented

in [48]. Note that the bottom-up partitioning approach described above results in overlapped

tree regions between processes, i.e., internal tree nodes at process boundaries may appear in the

partial trees of multiple processes. We call such nodes as duplicate nodes, and to balance the

load in deep trees, we distribute the multipole expansion data for these nodes as well as the

computations (inter/anterpolations, translations) associated with them evenly across all duplicating

processes. As will be discussed in our subsequent paper, the present work significantly improves

the implementation of the basic direction partitioning idea by leveraging better parallelism, non-

blocking collective communication primitives, and an efficient distributed execution schedule.

The load balancing issue associated with non-uniform trees is addressed using an empirical cost

evaluation technique. Specifically, each process computes the interaction lists for non-duplicate

50



nodes within its own partial tree and evaluates how much time it takes to perform a sample set

of kernel operations (inter/anterpolations and translations) on the given hardware. It then assigns

a computational load to each tree node, starting from the highest level by taking into account

the empirical kernel costs and the number of interactions each tree node has. These costs are

then percolated all the way down to the leaf nodes. Finally, the non-uniform MLFMA tree is

repartitioned such that the empirical costs of the contiguous chunks of leaf nodes assigned to each

process is evenly distributed.

3.4.3 Parallel evaluation

Evaluation of thematvec consists of 3 main phases: i) M2M, upward traversal of the tree to compute

the multipole data for each tree node, ii) M2L, lateral translation of multipole data to effect far-field

interactions, and iii) L2L, downward traversal of the tree to disaggregate local expansions to the

leaf nodes and evaluate fields at observers.

Parallelism is applied in three different forms in the M2M phase. Each process first performs

the serial computations for their own unique interior nodes, which are nodes that strictly belong to a

single process. Secondly, plural nodes in the ACE and spherically sampled levels are handled using

coarse-grained parallelism, where all processes sharing a plural node compute the interpolations for

the children they own sequentially and reduce or reduce-scatter, for ACE andMLFMA respectively,

the results among all sharing processes using non-blocking MPI collectives. As the third form of

parallelism, duplicate nodes above the spherical-to-uniform transition level are interpolated using

a fine-grained parallel version of the FFT-based interpolation algorithm. The partial multipole data

for each duplicate node in this category is shifted, summed, and partitioned over the duplicating

processes in parallel.

Translations in the M2L phase follow a similar strategy as above, where all processes begin

with sequentially computing translations within their own trees, then exchange multipole data with

neighboring processes and process them as they arrive – effectively overlapping computation and

communication. Due to the presence of cross-level interactions in non-uniform trees, these com-
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putations are organized into three subphases where X-list translations are performed by evaluating

the spectral integral at each basis function in the first subphase, V-list translations are computed in

the second subphase, and W-list translation contributions to the local expansions are computed in

the third subphase. We note that one important shortcoming of the present parallel M2L imple-

mentation is that all translation data for duplicate nodes need to be communicated to the resident

process, i.e., the designated receiving process for each duplicate node, which then applies them one

by one – this can potentially create performance bottlenecks for high level nodes in deep trees.

Finally, the L2L phase is performed by essentially mimicking M2M in reverse order. As an

artifact of the limited parallelization of duplicate nodes mentioned above, L2L phase starts with

broadcasting the local expansions of duplicate nodes from the resident process to the duplicating

processes. After this initial communication, anterpolation and disaggregation of the duplicate

nodes above the spherical-to-uniform transition level are performed in distributed fashion. Once

all parallel anterpolations are completed, all processes can independently perform the sequential

L2L operations for their internal nodes.

3.5 Numerical Results

3.5.1 Accuracy analysis

In this section, we demonstrate the controllable accuracy of each interpolation/anterpolationmethod

discussed in this paper, namely spherical, uniform, and hybrid. We also discuss trade-offs between

these methods in terms of memory and run time. The examples in this subsection were run using a

single core on a desktop computer with an Intel Xeon E5-2630 CPU with clock speed of 2.3 GHz

and 64 GB RAM. All computations use double precision arithmetic, and FFTW 3.3.5 is used for

performing FFTs in the interpolation and anterpolation stages.

3.5.1.1 Hybrid sampling MLFMA error control

To illustrate the accuracy of the proposed hybrid sampling and interpolation/anterpolation method,

we consider a uniformly random distribution of 256,000 randomly-oriented dipoles of unit strength
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Figure 3.3: Error convergence (left) and matvec timings (right) vs. oversampling parameter χ for
each sampling/interpolation method in the 8λ cube geometry.

within an 8λ × 8λ × 8λ cubical domain. The box size is chosen to be 0.25λ, resulting in a 6-level

uniform octree. Neither ACE nor interpolation of the MLFMA translation operator is used in this

experiment. For the upper levels of the tree, a cap was enforced on the bandwidth to prevent

numerical breakdown of the translation operator. Using three buffer boxes, we study the error

convergence of the far-field contributions for each of the spherical, uniform, and hybrid methods

outlined in the previous section. For the hybrid scheme, the transition was chosen so that only the

bottom two levels use the spherical scheme. This data is shown in Fig. 3.3a. As the oversampling

parameter χ is increased, each method converges in a nearly identical manner, demonstrating that

the hybrid method introduces no error. Fig. 3.3b shows the time taken per matvec for each method.

The hybrid scheme only adds a few seconds to the baseline time taken by the purely spherical

scheme, while the uniform-only scheme takes roughly twice as long on average, as expected. For

contrast, direct evaluation of the far-field matvec takes 5128.029 s on the same machine.

3.5.1.2 Trade-offs for hybrid sampling

We have already seen the effect of purely uniform sampling on runtime due to the doubled sampling

rate throughout the tree. The results for the hybrid sampling scheme suggest that the extra cost of

fully-uniform sampling comes principally from performing M2L operations while oversampling at
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Figure 3.4: Error convergence vs oversampling parameter χ for (a) uniform tree ACE-MLFMA for
64,000 dipoles in a flattened box, and (b) non-uniform tree cone-sphere. The number next to each
data point indicates the order P of ACE expansions used. Note that the example in (a) uses three
buffer boxes for the far-field, while that in (b) uses only one.

the finest levels of the tree where most boxes exist, as expected. Conversely, the optimal sampling

rate for the spherical scheme gives the best run-time, but at the expense of precomputing and storing

samples of associated Legendre functions Pm
n to perform interpolation and anterpolation via the

spherical harmonics transform. To study the trade-offs, we examine the case of 256,000 dipoles

distributed on a 256λ × 256λ square in the x − y plane. Using leaf-level boxes of diameter λ/4, the

uniform tree is 11 levels deep, and a one-buffer box rule is used. The oversampling rate is fixed at

χ = 1.0.

We examine memory consumption and matvec time for different values of the finest spherical

sampling level Lsu. Table 3.2 shows the memory required for storing Pm
n samples, multipole and

local expansions, and M2L operators, and the serial matvec time vs. Lsu.

While this data is collected using a serial kernel, we must emphasize that in a parallel setting the

multipole and local data, which consume the majority of the overall memory, is distributed across

processes in a largely non-redundant fashion, while the Pm
n storage is duplicated on every process.

M2L operators must also be stored local to each process, though it is not identical on each process.

In contemporary HPC environments, the maximum amount of RAM per core is typically around 4

GB, underscoring the importance of finding an acceptable balance between memory consumption
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Table 3.2: Memory consumption and timings for different hybrid sampling transitions

Lsu 3 4 5 6 7
Uni. levels 0 1 2 3 4
Sph. levels 9 8 7 6 5
Pm

n (GB) 6.0 2.0 0.3 0.04 0.005
Multipole (GB) 13.1 14.5 15.9 17.4 18.8
M2L (GB) 0.8 1.4 1.5 1.6 1.6

Matvec time (s) 730 957 1364 1377 1589

and runtime to make most efficient use of computational resources.

3.5.1.3 Uniform-tree wideband MLFMA error control

We now examine the error in the hybrid-sampling MLFMA with ACE, using a uniform tree. We

consider the case of 64,000 dipoles distributed non-uniformly within an 8λ × 8λ × 1/16λ box. The

point locations were generated using (x, y, z) = (8r1.5
1 , 8r1.5

2 , r3/16), where r1, r2, r3 are random

numbers on [0, 1]. The smallest box was chosen as λ/16, yielding an 8-level tree with 2 levels

of ACE, 2 levels of spherical MLFMA, and 2 levels of uniform MLFMA. Fig. 3.4a shows error

convergence of the far-field as both χ, P are increased, demonstrating fine-grained control over

accuracy over both the low- and mid-frequency regimes.

3.5.1.4 Non-uniform-tree wideband MLFMA error control

We now examine the error convergence for the non-uniform wideband ACE-MLFMA applied to a

multiscale object and compare with the uniform-tree algorithm. Consider a “cone-sphere” surface

geometry comprising a long cone terminated on its wide end by a hemispherical surface. The cone

portion is 36.33λ long, and the spherical portion has a radius of 4.49λ. The mesh contains 47,367

triangles, and we placed 6 randomly oriented dipoles within each triangle, totaling 284,202 dipoles.

The smallest box size is chosen to be λ/128, and the tree is merged using smax = 30, yielding a

14-level tree with 5 levels of ACE, 3 levels of spherical MLFMA, and 4 levels of uniformMLFMA.

Table 3.3 summarizes some of the stark differences between the uniform and non-uniform trees.
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Table 3.3: Comparison of uniform and non-uniform trees for the conesphere geometry

Uniform Non-uniform
Nodes 1058881 29562

Leaf level 14 8-14
Dipoles/box 1 12
Inter. lists 1149.16 s 25.05 s

Notably, the pre-computation time required for computing interaction lists decreases by a factor of

over 45 as a consequence of the 97% reduction in overall tree nodes. Fig. 3.4b shows convergence

in the relative L2 error of the far-field using the non-uniform tree with a single buffer box rule.

3.5.2 Parallel CFIE solver evaluation

In this section, the kernel evaluation is wrapped in a parallel MoM solver for the CFIE (3.1), and

we present results demonstrating its capabilities, all with α = 0.5. Parallel GMRES is used as the

iterative solver. We note that our use of a four-tree mixed-potential MLFMA as opposed to a two-

or three-tree dyadic MLFMA directly results in an increase in runtime.

3.5.2.1 Uniform trees

First, we consider the evaluation of the radar cross section (RCS) of two electrically-large conducting

spheres of diameter 256λ and 512λ, discretized with 84,934,656 and 339,738,624 unknowns,

respectively. A 7-point integration rule within each patch was used for both source and testing

far-field integrals. In each case, the leaf-level box is chosen as 0.25λ, resulting in 11- and 12-level

trees. The bottom six levels employ spherical sampling before transitioning to uniform sampling,

and χ = 1.0. The incident plane wave is polarized along the x̂ direction and traveling in the

+z direction. Parallel GMRES with tolerance 10−3 and a restart value of 30 is used to solve the

resulting matrix system. Both systems converged within two outer iterations. For the 256λ case,

the solve took 31 minutes using 2048 processes, requiring 27.8 seconds per matvec. The 512λ

solve on 2048 processes took 8.5 hours, requiring 5 minutes 44 seconds per matvec; in this case

we had to resort to Lagrange interpolation of translation operators to alleviate memory bottlenecks
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Figure 3.5: Comparison of bistatic RCS calculated by parallel MLFMA vs. analytical for a sphere
of diameter 256λ within ±5o of the main lobe.

associated with storing them directly at the uppermost levels. This resulted in approximately 76%

of the matvec time being spent in V-list evaluation as opposed to 36% in the 256λ case, hence the

increase in runtime being larger than the increase in unknown count. The calculated RCS of the

spheres are shown in Figs. 3.5 and 3.6 along with the analytical Mie series solution, with which

the agreement is very good.

3.5.2.2 Non-uniform trees

Finally, we consider evaluation of RCS from geometries with non-uniform distributions using non-

uniform trees. In these cases, the far-field integration rule is set to one point per patch to ease

memory demands for storing X and W list operators. First, we demonstrate scattering from a small

20λ diameter sphere with a λ/10 discretization everywhere except for the θ = 0 pole, where a

much finer discretization is used, using 2,053,947 unknowns overall. Using a minimum box size of

1.95 × 10−3λ and smax = 35 results in a 15-level tree with 12 unknowns per leaf box on average.

The simulation parameters for MLFMA and ACE were χ = 1.5 and P = 4. Using 28 processes and

GMRES tolerance of 10−3, the solution took 38 minutes at about 15 s per matvec. The calculated
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Figure 3.6: Comparison of bistatic RCS calculated by parallel MLFMA vs. analytical for a sphere
of diameter 512λ within ±2o of the main lobe.
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Figure 3.7: Comparison of bistatic RCS calculated by parallel MLFMA vs. analytical for the 20λ
sphere with densely discretized pole.

RCS is shown in Fig. 3.7 and compared with the Mie series solution, with which it shows excellent

agreement.

Next, we consider electrically-large objects with sharp corners or other features with regions

of high density of unknowns. Our first example is an arrowhead-shaped geometry measuring

470λ × 154λ × 79λ, discretized using 77,257,728 unknowns. A 14-level non-uniform tree is used
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Figure 3.8: RCS calculated with parallel MLFMA for 470λ arrowhead geometry.
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Figure 3.9: Memory utilization histograms for (a) 470λ arrowhead and (b) 755λ airplane geometry.

with minimum leaf box size of 0.0574λ and smax = 35, resulting in 10 unknowns per leaf, on

average. The RCS is shown in Fig. 3.8, along with an illustration of the geometry. The incident

electric field is given by Ei = x̂e j kz. Solution with tolerance 5 × 10−3 took 19.3 minutes on 2048

processes, at 23.6 s per matvec. A histogram of peak memory utilization on each process is shown

in Fig. 3.9.

Our last example concerns scattering from the 755λ airplane geometry depicted inset in Fig.

3.10. A λ/10 discretization of the surface yields 285,425,664 unknowns. The incident field is
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Figure 3.10: RCS calculated with parallel MLFMA for 755λ airplane geometry.

given as Ei = x̂e− j kz. Using a minimum leaf size of 0.0231λ, the non-uniform tree spans 16

levels and is merged with smax = 35, increasing the average number of unknowns per box from

1 to 18 and distributing leaves across the bottom four tree levels. ACE (P = 3) is used for boxes

smaller than λ/4, and uniform MLFMA is used at the three uppermost levels. The densest box at

the finest level contains 40 unknowns. Using GMRES with a tolerance of 5× 10−3, the solution on

2048 processes took 3.17 hours, using 1 minute 8 seconds per matvec. Memory utilization for this

computation is depicted in Fig. 3.9. The RCS in the φ = 0o, 90o cuts is shown in Fig. 3.10.

3.6 Conclusion

We have presented an extremely wide-band parallel MLFMAwith fine-grained control over the

error in field evaluation and methods for reducing both storage and computational cost while sacri-

ficing nothing in terms of accuracy. We introduced rigorous operators for computing interactions

at any level on a non-uniform octree which is adapted in parallel to fit to the geometry. We also in-

troduced a rigorous transition from spherical harmonics-based to Fourier-based inter/anterpolation

of multipole expansions to optimize storage and solution time. An array of numerical examples

demonstrate the accuracy and efficiency of the algorithm, and several scattering examples demon-
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strated the ability of the solver to accurately solve problems on large, complicated objects with

non-uniform spatial distributions of unknowns.

61



CHAPTER 4

PARALLELIZATION TECHNIQUES FOR THE NON-UNIFORMWIDEBAND MLFMA

4.1 Introduction

In this chapter, we detail an efficient parallelization strategy for the non-uniform wideband

MLFMA presented in the previous chapter. The algorithm is based on that presented in [48], which

we will show suffers from several serious computational bottlenecks when applied to progressively

larger problems. This work clearly identifies the bottlenecks and their causes, and offers algorithmic

remedies for overcoming them.

4.2 Problem Statement

Consider a collection of N point sources un ∈ C located at points rn ∈ R3, n = 1, . . . , N . The

Helmholtz potential Φ(r) at some observation point r is then given by

Φ(r) �
N∑

n=1
g(r − rn)un, (4.1)

where the Green’s function g for the Helmholtz equation is given by

g(r) = e−ik |r|

4π |r| , (4.2)

where k = 2π/λ denotes the wavenumber in rad/m and λ denotes the wavelength in meters. Sums

of the form (4.1) often arise in the discretization of integral equations in electromagnetics and

acoustics. Typically, the evaluation of Φ(rm),m = 1, . . . , N is required, taking the form of a

classical N-body problem with kernel g. As such, the O(N2) cost of direct (exact) evaluation of

these sums becomes prohibitively expensive for large N . Instead, one often employs the multilevel

fast multipole algorithm (MLFMA) [66] to approximate these quantities in O(N log N) time with

the ability to control the accuracy of the approximation to arbitrary precision.

Similar in structure to the fast multipole method for the Laplace potential [34], the MLFMA

employs a hierarchical tree data structure for rapidly computing interactions between clusters of

62



particles via alternate representations called multipole and local expansions. First, the computa-

tional domain is recursively subdivided into cubes (boxes) and each particle is mapped to the box

in which it resides. The hierarchy of this recursive subdivision procedure is modeled as a tree (see

Fig. 4.1), specifically an octree in which each subdivision results in the creation of eight boxes of

half the diameter. The evaluation of (4.1) using the MLFMA is broken up into several stages of

computation:

1. Particle-to-particle (P2P): For each pair of spatially adjacent leaf (childless) boxes, evaluate

interactions between all contained particles.

2. Charge-to-multipole (C2M): Multipole expansions are created for each leaf box from their

constituent particles.

3. Multipole-to-multipole (M2M): Multipole expansions of non-leaf boxes are created by

combining multipole expansions of their children.

4. Multipole-to-local (M2L): The local expansion for each box is created by converting mul-

tipole expansions of boxes in the far field (defined momentarily) into local expansions and

summing the results. The far field of a box b is defined as the set of children of b’s parent’s

adjacent neighbors which are not adjacent to b.

5. Local-to-local (L2L): The local expansion of each box b is updated with information from

its ancestors in a top-down manner so that the influence of all particles in non-adjacent boxes

is present in the final local expansion of b.

6. Local-to-observer (L2O): For each box, the local expansion is used to calculate the potential

at the location of each particle in that box.

Large values of N are most often encountered in problems that are either densely discretized to

capture fine geometric features or electrically-large, i.e. the principal dimension of the geometry

is hundreds or thousands of wavelengths long. Multiscale problems, i.e. problems featuring both

of these characteristics, are very difficult to solve and require a robust computational approach for
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the efficient evaluation of (4.1). The key to such an approach is to understand the behavior of the

kernel g over a hierarchy of length scales, and to then design seamless transitions between methods

exploiting this behavior in each regime. Realistic problems in modern computer-aided design

and analysis are indeed multiscale, requiring discretizations with N in the millions to potentially

billions. In such large problems, operations on the octree at the coarsest levels can become very

expensive, underscoring the need for an efficient parallel algorithm.

4.2.1 Summary of non-uniform wideband MLFMA

In this section, we briefly summarize at a high level the non-uniform wideband MLFMA presented

in the previous chapter. To begin, we assume that there exists an octree structure with L levels

enveloping the computational domain. Level 1 refers to the root of the octree, i.e. the box containing

the entire computational domain, and level L is the level of finest refinement. The box diameter

at level l is denoted D(l), and D(L) is specified (in units of wavelengths) as an input parameter to

the algorithm. The root box diameter is 2L−1D(L). The octree is non-uniform, i.e. leaf (childless)

nodes may exist at any level of the tree, and each leaf contains approximately the same number of

particles per box up to a maximum of smax .

4.2.1.1 Low-frequency regime

At small length scales relative to a wavelength, e.g. k |r| < π/2 or |r| < λ/4, the Helmholtz kernel

g does not exhibit oscillatory behavior and is instead quite smooth. Away from the singularity, g

is well-approximated over electrically short distances by a low-order polynomial expansion. The

accelerated Cartesian expansion (ACE) method exploits this fact to evaluate the potential in these

regimes in O(N) time. Within a domain Ωo sufficiently far from a cluster of sources Ωs, the

potential Φ due to the sources within Ωs is represented using an order-P Taylor series about the

center of Ωo. As length scales increase, the ability to accurately compute the potential via ACE

diminishes and one must transition to MLFMA, as defined in [73].
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4.2.1.2 High-frequency regime

For boxes of diameter larger than λ/4 the usual MLFMA is employed. Multipole and local

expansions are functions defined on the unit sphere (θ, φ) ∈ [0, π]× [0, 2π] and sampled at locations

(θi, φ j), i = 1, . . . , Nθ, j = 1, . . . , Nφ. The sampling rates for a given box at some level l are

governed by its bandwidth K(l), defined by K(l) = bχ
√

3kD(l)c + 1, where χ ≥ 1.0 is a parameter

that to a large extent controls the accuracy of the MLFMA.

The MLFMA requires interpolation and anterpolation (decimation) of the sampled multipole

and local expansions in the M2M and L2L stages, respectively. Three approaches to this task

dominate theMLFMA landscape: i) spherical harmonics transforms, ii) fast Fourier transforms, and

iii) local interpolation. Methods i) and ii) are exact and thus preferable tomethod iii), which requires

significant oversampling and a properly band-limited interpolation function to achieve relative

accuracy beyond a digit or two. The downside to the exact methods is their higher computational

complexity; spherical harmonics and Fourier transforms require O(K(l)3) and O(K(l)2 log K(l))

operations whereas local interpolation is O(K(l)2), albeit with a large constant proportional to the

square of the one-dimensional oversampling rate.

The method based on spherical harmonics transforms, while computationally expensive as

K →∞, facilitates optimal (minimal) sampling rates on the unit sphere, or Nθ(l) = K(l)+1, Nφ(l) =

2K(l) + 1, and is used for several levels immediately above the ACE regime. Samples in θ are

located at Gauss-Legendre nodes, and samples in φ are uniformly spaced. While the optimal

sampling rate helps to minimize costs associated with M2L, the O(K(l)3) storage and complexity

become untenable in the upper reaches of the tree. Instead, above some level lT , a switch is made

to the Fourier-based method which has no memory overhead [60, 39]. For these boxes, the samples

are spaced uniformly in both variables, and Nθ(l) = 2K(l) + 1, Nφ(l) = 2K(l) + 2. The storage

and M2L cost are doubled per node in this regime, so one should seek a value of lT with the best

trade-off between memory and computational time.
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4.2.1.3 Interactions in the adaptive algorithm

Using a non-uniform tree complicates matters somewhat. Using the classic FMM terminology [34],

the list of box pairs involved in P2P calculations is called theU-list, and the list of box pairs involved

in M2L calculations is called the V-list. In the adaptive algorithm, there are two more lists which

tabulate interactions between boxes of different size. The X-list tabulates interactions wherein the

source box is smaller than the observer box, and theW-list is its transpose. Interactions in the X-list

are carried out by directly computing the potential due to particles in the source box at each particle

location in the observer box using the source box’s multipole expansion; W-list interactions involve

computing local expansions directly from particles in the source box. Obviously, observer boxes

in the X-list (sources in the W-list) must be leaf boxes.

4.3 Parallelization of the MLFMA

4.3.1 Tree construction and setup

Let Np denote the number of processes used in the computation. We begin by distributing the N

particles evenly across all processes and determining the diameter D0 of the cube bounding the

entire computational domain. The number of levels in the tree with finest box diameter D(L) is then

calculated as the smallest integer L such that L ≥ log2(D0/D(L))+1. Once the number of levels is

known, every particle is assigned a Morton key [76]. A parallel bucket sort on the Morton keys is

then used to approximately evenly distribute particles across processes at the granularity of leaves.

This is done by selecting Np − 1 Morton keys, or “splitters”, which chop the Morton Z-curve into

Np contiguous segments. Leaves are uniquely assigned to processes using these splitters. On each

process, all ancestor keys of the leaves up to the root are determined, and the leaves and ancestors

are stored in post-order, comprising the local subtree.

The distributed tree resulting from this bottom-up partitioning scheme generally reflects the

geometry’s inherent work distribution and provides the flexibility of modifying the partitioning if

the workload is imbalanced. As will be discussed, this is often the case for multiscale geometries,
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Figure 4.1: Illustration of distributed tree.

wherein the density of particles (and consequently the workload) varies significantly throughout

the computational domain. This stands in contrast to the top-down partitioning scheme employed

in the hierarchical partitioning (HiP) versions of the MLFMA [28, 51]. While the workload is

balanced by design at the uppermost levels of the tree, the distribution of nodes at the lower levels

is inherited from this rigid distribution of large nodes. As a result, the HiP methods perform well

for relatively uniform particle distributions, but they may produce highly skewed trees and work

distributions when applied to multiscale geometries.

4.3.2 Plural nodes

Once consequence of this partitioning strategy is the appearance of plural nodes, i.e. nodes which

appear in the local subtrees of multiple processes. For a plural node b, the process with the highest

rank is called the resident process and as such is designated the receiver for V-list operations, and

consequently the root for broadcast operations prior to the L2L stage. The resident process’ copy of

b is called a shared node. The processes which own copies of b but are not the resident process are

called users of b (denoted by the set U(b)), and their copies are called duplicate nodes. Within the

local subtree of any process, its duplicate nodes are guaranteed to appear consecutively at the end

of the post-order sequence, while shared nodes may in general appear anywhere in the sequence

(except within a duplicate node chain) but tend to appear toward the beginning. As discussed later,

these properties are helpful for overlapping communication with computation.
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Tomitigate the duplication of such nodes and their data, some distribution of thework associated

with the node should be undertaken. In the low-frequency/ACE regime, the workload associated

with a single plural node is considered negligible; however, in the upper-mid and high frequency

regimes the workload may be substantial. The adaptive direction partitioning scheme for plural

nodes was introduced in [48] to balance communication load in V-list evaluation for plural nodes

in the MLFMA regime. Multipole expansions of plural nodes are sent to their resident processes,

where they are summed and equidistributed back to all owners. This method was shown via

numerical experiments to improve the load balance of the potential evaluation.

4.3.3 Adaptive tree

In the case of a spatially non-uniform distribution of particles it is computationally advantageous

to prune regions of the tree where the number of particles per box is close to 1, as discussed in

previous chapters. This process is called merging the tree. To begin, the number of particles

contained within each non-leaf node in the local subtree is calculated in level-by-level fashion. At

this stage, the plural nodes contain only the local particles counts, so a parallel sum is required to

account for the particles contained within remote descendants.

The tree is then merged from the bottom up, level by level, using a voting mechanism. All

tree nodes start out with an indeterminate vote. A maximum number smax of particles per box is

chosen. For each node at level L, the number of particles contained within the node is compared to

smax . If this number exceeds smax , the node’s vote is changed to ‘veto’ the merge, and its siblings

follow suit. This vetoing influence is called preclusion. Otherwise, the box’s vote is changed to

‘merge’ unless it has been precluded. As a result, all siblings must share the same vote. Here,

the votes of duplicate nodes and siblings straddling process boundaries are synchronized across

processes, with vetoes taking precedence. Moving to the next coarsest level L − 1, this process is

repeated level by level until level 3 is reached, where merging cannot take place. The result of this

process is a pruned version of the distributed tree where leaves (childless boxes) can exist at any

level and contain approximately smax particles each.

68



4.3.4 Interaction lists

Once the tree is fully formed, the U,V,W, X-lists [32, 15] may be determined. First, define the

neighbors of a box b as those boxes at the same level as b which share a face, edge, or vertex with

b. For each node b in the local subtree, two sets of Morton keys are formed: i) the near-field,

consisting of all possible neighbors (33 = 27 in total) of b, and ii) the far-field, comprising all

children of the neighbors of b’s parent which are not neighbors of b (63 − 33 = 189 in total). The

different lists are computed as follows.

1. U-list. For each local node b, the keys in b’s near-field are sent along with the Morton key

representing b to their resident processes, as determined by the splitters. For each received

key r generated by b, a top-down search of the local subtree is performed. If r is found, the

interaction (b, r) is added to theU-list. If the search dead-ends on an ancestor Ar of r , and Ar

is a leaf, then (b, Ar ) is added to theU-list, and a flag is placed on this interaction. Otherwise,

the interaction is discarded. For each flagged interaction, the reciprocal is added by sending

the keys Ar, b to the resident process for b and adding (Ar, b) to its U-list. A return-to-sender

approach suffices here, since leaves cannot be plural nodes.

2. V,W, X-lists. In the same manner as the near-field, far-field keys are exchanged and sought

using top-down search. Consider the potential interaction (b, r). If r is found, then (b, r)

is added to the V-list of r’s resident process. If an ancestor Ar of r is found and it is both

a leaf and not adjacent to b, then (b, Ar ) is added to the X-list. Otherwise, the interaction

is discarded. The W-list is determined by transposing the X-list, though a simple return-to-

sender approach is not sufficient for this purpose. In W-list interactions, the node Ar serves

as the source and b is the observer, so the interaction (Ar, b) must be sent to the resident

process for b, which in general may not be the originator of the interaction (b, Ar ).
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4.3.5 Evaluation of the potential

Here, we describe the non-uniform version of the widebandMLFMA presented in [48] and identify

several performance issues in the original implementation which will be addressed in the following

sections. The parallel evaluation of (4.1) using the non-uniform wideband MLFMA comprises

three stages: i) an upward pass through the tree, ii) translation of multipole expansions into local

expansions, and iii) a downward pass of the tree to compute the potential at each observer.

First, we discuss the upward pass. On each process, the local subtree is traversed in post-order

as multipole expansions are created via either C2M or M2M operations as described above. All

operations are performed serially. When this is done, the multipole expansions of plural nodes in

any local subtree are incomplete, as they are missing contributions from particles owned by remote

processes. For plural ACE nodes, user processes send their multipole expansions to their resident

processes, which sum the expansions and take full computational responsibility for their shared

nodes until the L2L stage. For plural MLFMA nodes, resident processes similarly aggregate and

sum multipole expansions from their users, but the results are distributed over all owning processes

according to the adaptive direction partitioning scheme. This is referred to as the multipole update

phase.

Next, we consider the translation (M2L) stage. A round-robin communication scheme uses

packets of fixed size to exchange segments of multipole expansions from source processes to

observer processes, where this data is used to carry out V- and X-list interactions and is then

overwritten with the next segment, until all interactions are exhausted. Interactions where both

source and observer boxes exist in a single process’ local subtree are then carried out serially.

Communication is overlapped with computation by making use of asynchronous MPI primitives.

Next, particle strengths un are exchanged from sources to observers for the evaluation of W-list

interactions.

The final stage is the downward pass. Because resident processes act as a “magnet” for all

V,W-list interactions (all X-list observer boxes are leaves and thus cannot be plural nodes), only the

resident process of a plural node possesses its complete local expansion. The complete expansions
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are first sent to all users in what is called the local update phase, and the remaining work of the

downward pass is then completely serial. The local subtree is traversed top-down in reverse post-

order, updating local expansions via the L2L operations discussed above. Finally, the complete

local expansions at leaf boxes are used to compute the potential observed at each particle via the

L2O operation.

4.3.6 Bottlenecks

While the uniform version of this algorithm exhibited good performance for problems ofmodest size

in [48], there are several performance bottlenecks which must be overcome if similar performance

metrics are to be obtained for larger problems on larger clusters. First, themultipole and local update

phases employ simple point-to-point communication, requiring communication proportional to

Nuser NθNφ, where Nuser is the number of users. Since each of Nuser, Nθ, Nφ at the uppermost levels

of the tree grow with problem size and increasing process count, this cost can become prohibitive.

As a remedy, we propose the use of MPI primitives which implement these communication patterns

muchmore efficiently using tree-like algorithms. This topic is addressed in detail in the next section.

The second bottleneck arises in the serial portions of the upward and downward passes. Espe-

cially for electrically-large particle distributions, plural nodes at the uppermost levels of the tree

contain a significant amount of data. Not only is the redundant serial computation of M2M and

L2L operations for these nodes unnecessary, it also results in significant load imbalances caused

by the fact that resident processes for these nodes typically have an additional node at the same

level. These additional expensive calculations impede the progress of processes depending on these

results. We discuss in the next section a method for parallelizing the redundant M2M and L2L

operations to largely eliminate this bottleneck.

Finally, multiscale geometries often result in an imbalanced workload distribution. The initial

distribution aims only to apportion approximately the same number of particles on each process, not

accounting for the density of the distribution or the actual work to be done; as a result, processes

that own regions of dense discretization have fewer nodes, and thus less work to be done, than
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other processes. To alleviate this problem, an algorithm to approximately balance the workload is

proposed in a later section.

4.4 Overcoming bottlenecks associated with plural nodes

4.4.1 Scheduling computations and communications for plural nodes

In order to make use of efficient MPI collective communication operations for plural nodes, it

is necessary to create local communicators. It can be shown that at any level, the local subtree

of any process has at most one duplicate node and at most one shared node. Therefore, on any

process only two communicators are required per level. The use of blocking MPI calls used for

communication in the algorithm described in the following section, however, requires a consistent

execution schedule that is free of deadlocks. It suffices to determine such a schedule for each level

independently.

An algorithm for scheduling a single level is presented in Algorithm 4, with an illustrative

example in Table 4.1. We begin by assigning shared nodes into communication slot 1 and duplicate

nodes into communication slot 2. The communication slot of a node b is given by A(b). On

process i, the shared node is denoted si and the duplicate node di. From the initial configuration,

we proceed backward from the end of the process list and for each process in sequence, impose the

communication slot of the current shared node upon its users, swapping slots where necessary. By

the definition of resident process, each such imposition only affects processes of lower rank than

the present process, so at step i the schedule is finalized for all processes of rank j ≥ i. Once the

schedule is determined for each level, one MPI communicator is created for each communication

slot using MPI_Comm_split for a total of 2L communicators, well beneath the limits imposed by

standard MPI implementations.

4.4.2 Parallelization of Fourier-based interpolation/anterpolation operators

While the adaptive direction partitioning scheme helps to balance the load within the V,W, X-

list evaluations, interpolation and anterpolation operations in the M2M and L2L stages for plural
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Algorithm 4: SchedulePluralNodes: Scheduling algorithm for communication and computa-
tion involving plural nodes
1: for i ← Np − 1, . . . , 0 do
2: if i == rank then
3: for k ∈ U(si) do
4: Send(A(si),k)
5: end for
6: else if rank ∈ U(si) then
7: Recv(a,i)
8: A(drank) ← a
9: A(srank) ← (amod 2) + 1
10: end if
11: end for

Table 4.1: Tabular illustration of Algorithm 4. Each row from top to bottom represents a step.
Tildes denote the shared nodes on their resident processors. Boldface denotes that a node has been
scheduled.

P0 P1 P2 P3 P4 P5 P6
(·, a) (ã, b) (·, b) (b̃, c) (c̃, d) (·, d) (d̃, ·)
(·, a) (ã, b) (·, b) (b̃, c) (d, c̃) (d, ·) (d̃, ·)
(·, a) (ã, b) (·, b) (b̃, c) (d, c̃) (d, ·) (d̃, ·)
(·, a) (b, ã) (b, ·) (b̃, c) (d, c̃) (d, ·) (d̃, ·)
(·, a) (b, ã) (b, ·) (b̃, c) (d, c̃) (d, ·) (d̃, ·)

nodes present perhaps an even greater computational bottleneck at scale. For a fixed problem size,

the number of plural nodes is proportional to the number of processes used in the computation.

Attendant to this increase is an increase in duplicated work, particularly at the uppermost levels of

the tree where i) the amount of work per node is the highest and ii) nodes are duplicated on the

greatest number of processes. Consider the following. If a node b at level ` is a plural node which

exists on nb processes, then its parent P(b) and all its ancestors up to the root must also be plural

nodes existing on n ≥ nb processes. It follows, then, that the serial operation P(b) ← P(b) + SIb

is performed independently on each process its own part bi, where b = b1 + . . . + bnb. As

a consequence, the runtime for M2M and L2L is bounded from below by the time required to

perform a serial interpolation or anterpolation operation between the two coarsest levels of the tree,

independent of the number of processes used.

Obviously, this represents an enormous bottleneck to scalability. To break it, we parallelize
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plural-to-plural Fourier interpolation and anterpolation operations over the processes which possess

a copy of the child. In large-scale computations, the size of the nodes in the high-frequency regime

dominate the rest, so we allow duplicate work to be done in the mid-frequency regime as it does

not make an appreciable difference in comparison. During the upward pass, plural-to-plural M2M

operations are deferred until after the rest of the M2M operations are complete. The parallel M2M

operations are then performed level by level, beginning with the finest level and ascending the tree,

according to the schedule outlined in the previous subsection. At the outset of the L2L stage, the

parallel plural-to-plural L2L operations are carried out according to the same schedule from top to

bottom, after which the serial L2L work is executed.

Multipole and local expansions are arranged in the form of a 2-D array with the most rapidly

varying (row) index representing samples in φ and the other representing samples in θ. In the

M2M stage, partial multipole expansions of plural nodes are evenly distributed across processes

at the granularity of columns via a reduce-scatter operation. The parallel interpolation operation

illustrated in Fig. 4.2 proceeds as follows: first, Fourier interpolation of the column (φ-varying)

data is performed locally on each process via FFT, zero-padding, and inverse FFT (4.2b); this data

is then folded according to the spherical symmetry condition described in [60] and transposed

across the processes for contiguous access in the following step (4.2c); next, Fourier interpolation

is performed on each column (θ-varying) of the folded and transposed data (4.2d). Finally, the data

is unfolded back to the original unit sphere, shifted to the parent box, and distributed according to

the adaptive direction partition scheme. The L2L stage proceeds in largely the same fashion, with

the exception that the initial data distribution is achieved using a broadcast operation so that L2L

operations from plural nodes to interior nodes can be performed serially.

4.5 Load balancing

4.5.1 MLFMA vs. static FMM

Load balancing for the MLFMA is significantly more complicated than for static FMMs. Broadly

speaking, load balancing the FMM for the Laplace kernel is simple in that work is concentrated
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Figure 4.2: Graphical illustration of the transposition and folding operation within the parallel FFT
interpolation of radiation pattern a to A for Nθ = 3, Nφ = 4, Mθ = 5, Mφ = 6.

at the leaves as work per level falls off rapidly above the leaf level. Sufficient load balance can be

achieved by considering the work model for the leaves only. Obviously, the problem is complicated

by non-uniform distributions of particles, but the fact remains that the work per node is constant no

matter the level.

In the adaptive wideband MLFMA, the work associated with each node depends on the level

and regime. In the low-frequency regime, the work per node is constant irrespective of level, as

in the static FMM. Here, V-list and M2M/L2L operations dominate the cost. In the mid- and

high-frequency regimes, the work for a node at level l is proportional to (K(l))3 or (K(l))2 log K(l),

respectively. In these regimes,M2MandL2L dominate the complexity estimate. Consequently, and

especially for surface distributions, the work per level is constant and must therefore be accounted

for in the work profile used for load balancing.

4.5.2 Parallel load balancing strategy for adaptive wideband MLFMA

Whether or not the adaptive tree is employed, the basic strategy of equipartitioning the particles

over processes fails to give good load balance for spatially non-uniform distributions. A more
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effective re-partitioning of the tree to balance the computational load is then in order. If a new,

more optimal set of splitters is determined, the original partitioning algorithm can re-partition the

tree using these splitters.

The splitters are determined as follows. A cost model is established based on timings of dummy

M2M, L2L, and U,V,W, X-list operations. For each node in the tree, each of these operations is

counted, multiplied by the appropriate cost, and summed to obtain an intrinsic node cost. Next, the

costs for plural nodes are summed in parallel to obtain a consistent account across resident and user

processes. Then, for each node b, the number of leaf nodes contained within the subtree rooted at b

is determined and synchronized in the same fashion as the particle count in the merging algorithm

described above. This is denoted by Nl(b).

Now, the cost per leaf is determined. First, define the partial percolated cost (PPC) of a node

as a bucket for the cost of its ancestors scaled by the number of leaves beneath them, and initialize

this to zero. Starting at the root node and progressing downward level by level, for each node b,

the intrinsic cost for b is divided by Nl(b) and added to the PPC of each of its children, along with

b’s PPC. This process goes on until the leaf level, where the cost for each is computed by the sum

its intrinsic and partial percolated costs. This procedure is perhaps best explained via illustration,

as in the exemplary Fig. 4.3. The purpose of the PPC scheme is to evenly distribute the cost of

upper-level nodes to children in a manner that i) is not influenced by the initial partitioning, and ii)

does not overwhelm the costs of lower-level nodes.

Lastly, a parallel prefix sum of the leaf costs in the Morton sequence is computed, and the total

leaf-level costC is broadcast from the highest-rank process. Denoting the number of processes used

by Np, splitters are determined to be the Np−1 leaf keys closest to each ofmC/Np,m = 1, . . . , Np−1.

All splitter keys are then shifted back to their leftmost descendants at level L for use in re-

partitioning. The greatest limitation of the proposed algorithm in terms of load balancing ability

is that the existence of plural nodes renders the true load balancing problem non-linear, as the

associated costs are a function of the splitter locations. Ideally, this problem could be addressed

via an iterative balancing and cost re-evaluation procedure, but in this context doing so would be

76



48 0

26 16 11 16

9 29 7 29 8 27

+

+

Leaf cost = 38 36 35

0.3̄
0.3̄

0.5

0.5

1.0

Figure 4.3: Illustration of the cost-percolation algorithm. Each pair of boxes represents a node in
the tree; the number in the left box is the intrinsic cost, while the number in the right box is the
partial percolated cost of all ancestors.

prohibitively expensive. Because the interaction list communication graph depends on the tree

partitioning, it would need to be re-computed after each iteration to calculate the load.

4.6 Results

In this section, we present the results of numerical experiments demonstrating the gains in

performance resulting from the parallelization techniques described in the previous sections. All

results presented here were obtained on a cluster comprising nodes with two sockets each, populated

by Intel Xeon E5-2698 v3 ("Haswell") processors with a clock speed of 2.3 GHz. Each node has

32 cores and 128 GB 2133MHz DDR4 RAM. The code is implemented in Fortran 90 using only

MPI parallelization and compiled with Intel compilers. The FFTW library is used for all FFTs.

We will first examine the performance gains in the M2M and L2L stages from parallelizing

the Fourier interpolation/anterpolation operators for plural nodes. We first consider a sphere of

diameter 320λ discretized using 241,920,000 dipoles on the surface. The leaf box is chosen as

d0 = 0.2λ, yielding a 12-level tree. The transition level is chosen such that the finest five levels of

computation use spherical sampling and the top five levels use uniform.

Timings for M2M and L2L for different numbers of processes Np up to 2048 are given in

Table 4.2. As with the grid geometry, performance gains using PFFT become increasingly evident
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with increasing Np, culminating in speedups of over 3× on 2048 processes. The scalability of

the traversal operations thus improves dramatically. A more intimate perspective is offered by

Figs. 4.4-4.5, which present per-process timings for M2M and L2L in both the original and PFFT-

augmented algorithms. Unlike the grid geometry, a sphere does not conform directly to the octree

structure so imbalances in these operations are to be expected. This is evident from the timings

shown in Fig. 4.5a), which shows timings of individual components of M2M and L2L for the

original algorithm. Here, a large amount of time is spent waiting in M2M at an MPI_Waitall

as other processes finish their portion of the serial interpolations. L2L also suffers from a load

imbalance resulting from uneven distribution of high-level serial anterpolations. These effects are

highlighted by the extreme imbalance of composite serial interpolation and anterpolation (int/ant)

timings. Parallelization of these operations, as shown in Fig. 4.5b), significantly reduces both the

computation and wait times. The serial interpolation and anterpolation are reduced to about one

second overall in the worst case, and the overall distribution is much more balanced. The difference

in the shapes of the M2M and L2L timings is due to the fact that M2M has a synchronization

barrier at the end, while L2L does not. We next consider a 512λ × 512λ grid of particles in the

z = 0 plane with a grid spacing of λ/32 with 268,435,456 points. The box size is chosen to be

0.25λ, resulting in a 12-level tree with 10 levels of computation. For the hybrid implementation,

we empirically set the bottom 6 levels of the tree to employ the spherical scheme, while the top 4

levels of computation employ the uniform scheme. The oversampling parameter χ is chosen to be

1.

The regularity of the grid geometry helps to highlight load imbalances inherent to the original

algorithm and to illustrate the benefits of the PFFT algorithm. A study of the timings for M2M

and L2L for both the original and PFFT schemes is shown in Table 4.3. We observe bigger gains

in performance relative to the original scheme as the number of processes Np increases. This is

due to the increasing number of plural nodes to be parallelized. PFFT also facilitates significant

improvements in the M2M and L2L parallel efficiency (strong scaling), defined as

Eff.
[
Nq

]
(%) �

NpTNp

NqTNq
× 100%, (4.3)
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Table 4.2: Comparison of original algorithm with PFFT for 320λ diameter sphere geometry.

Orig (s) PFFT (s) Speedups Orig Eff. (%) PFFT Eff. (%)
Np M2M L2L M2M L2L M2M L2L M2M L2L M2M L2L
32 78.6 62.6 73.9 71.9 1.06 0.87 100 100 100 100
64 43.7 34.4 41.3 38.5 1.06 0.89 89.9 91.0 89.5 93.4
128 28.9 22.0 26.2 20.0 1.10 1.10 68.0 71.1 70.5 89.9
256 16.7 12.4 13.9 10.5 1.20 1.18 58.8 63.1 66.5 85.6
512 12.5 9.16 9.08 6.87 1.38 1.33 39.4 42.7 50.9 65.4

1024 18.6 14.7 6.38 4.78 2.92 3.08 13.2 13.3 36.2 47.0
2048 12.7 9.22 3.80 2.97 3.34 3.10 9.67 10.6 30.4 37.8

where Np,TNp are the reference process count and computation time, and Nq,TNq are the process

count and computation time for which the efficiency is being calculated. We now consider the case

of a 1024λ × 1024λ grid lying in the z = 0 plane with a regular spacing between points of λ/32

in each dimension. The total number of particles in this geometry is 1,073,741,824. The leaf box

size is chosen as λ/4, resulting in a 13-level tree (with 11 levels of computation). The finest six

levels of the tree employ spherical interpolation/anterpolation and the coarsest five levels employ

uniform interpolation/anterpolation.

Figure 4.6 provides a comparison of tree traversal timings for 2048 processes both with and

without the PFFT scheme. Specific timings for the run without the PFFT scheme are shown in

Figure 4.7a), while those for the run with the PFFT scheme are given in Figure 4.7b). As with the

previous grid example, the apparently well-balanced load in M2M for the former case is shown to

be misleading, as most processes spend approximately 23 seconds in M2M waiting for nodes with

larger than average amounts of serial interpolations to finish their serial computations. The load

imbalance is also clear in the timings for L2L, which lacks an explicit synchronization step at the

end.

The PFFT scheme, in contrast, results in much better load balance in bothM2M and L2L stages,

along with reduced run-times due to the parallelization of some previously serial computations.

The time spent in M2M is reduced from 46.2 seconds for the original algorithm to 7.65 seconds

with the PFFT scheme, a speedup of over 6×. Similarly, the maximum time spent in L2L decreases

from 35.0 seconds to 5.44 seconds for a speedup of 4.6×.
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Figure 4.4: Timing comparison of M2M and L2L operations for 320λ diameter sphere on 2048
cores with and without PFFT.
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Figure 4.5: Timing breakdown for M2M/L2L with and without PFFT for the 320λ sphere.
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Figure 4.6: Timing comparison of M2M and L2L operations for 1024λ diameter grid on 2048
cores with and without PFFT.
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Figure 4.7: Timing breakdown for M2M/L2L with and without PFFT for the 1024λ grid.
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Table 4.3: Comparison of PFFT with original algorithm for 512λ grid geometry.

Orig (s) PFFT (s) Speedups Orig Eff. (%) PFFT Eff. (%)
Np M2M L2L M2M L2L M2M L2L M2M L2L M2M L2L
32 45.4 38.0 44.5 37.4 1.02 1.02 100 100 100 100
64 25.8 21.2 24.9 20.3 1.04 1.04 88.0 89.6 89.4 92.1

128 18.5 14.3 12.9 10.5 1.43 1.36 61.4 66.4 86.2 89.0
256 13.5 9.9 7.4 5.7 1.82 1.74 42.0 48.0 75.2 82.0
512 12.1 8.5 4.4 3.4 2.75 2.5 23.5 27.9 63.2 68.8

1024 11.4 7.7 3.0 2.3 3.80 3.35 12.4 15.4 46.4 50.8
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Figure 4.8: Per-process timings for far-field matvec stages for the airplane geometry (a) with
uniform vs. non-uniform tree and (b) with and without load balancing (LB) for non-uniform tree
on 1024 processes.

Finally, we examine the effects of merging the tree for non-uniform distributions and load

balancing. We consider a geometry containing 175,764,666 points on the surface of an aircraft

which fits into a bounding box of dimensions 693.5λ × 200.2λ × 754.8λ. The minimum leaf box

diameter was set to λ/32 resulting in a 16-level tree, and the densest box contains 56 points. The

four coarsest levels of computation use uniform sampling, and the remaining seven MLFMA levels

use spherical sampling. ACE is used for boxes of diameter smaller than λ/4. The non-uniform tree

is merged with smax = 40, resulting in leaves containing 20 points on average distributed over the

bottom five levels of the tree, and an almost twenty-fold reduction in leaf boxes. For accuracy on

the order of 10−3, we set χ = 1.0, P = 3 [73]. This supposition is backed up by randomly selecting
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Figure 4.9: Parallel efficiency of the complete matvec for the 286M-point arrow geometry with
reference to 256 processes. Colorization of geometry solely to illustrate depth.

a point on each process to ensure good spatial distribution, computing the exact observed field, and

comparing with the computed value; the average relative error at these observers is 3.98 × 10−3.

With this setup, we examine the trade-offs for non-uniform trees vs. uniform trees and the

beneficial effects of load balancing for parallel matvecs. Fig. 4.8a shows the time taken per process

for the far-field matvec using 1024 processes using a uniform tree and a non-uniform tree. The time

drops from 61 seconds on average for the uniform tree to 38 seconds for the non-uniform tree. Load

balancing is employed in both instances. Much of the speedup is achieved in the translation stages.

The flatness of portions of the M2L timings for the uniform tree are caused by synchronization

barriers. Fig. 4.8b details the effectiveness of load balancing, showing per-process timings for the

tree traversal (M2M+L2L) and translation (V,W, X−lists) both with and without load balancing

with exactly the same parameters. Without load balancing, the translation stage alone takes ten

seconds longer than the entire matvec with load balancing.

Next, we consider a collection of 286,312,650 points distributed uniformly on a surface geometry

with an arrow-like shape, yielding high variation in point density over the surface. The bounding

box for the arrow measures 234.9λ × 77λ × 39.32λ, and we choose the minimum box size to be

λ/64, resulting in a 15-level tree. As always, ACE is used for boxes smaller than λ/4. The three

coarsest MLFMA levels of computation employ uniform sampling, while the rest employ spherical
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sampling. The tree is merged using smax = 25, resulting in 9 points per leaf box on average.

The parallel efficiency of the completematvec (both near- and far-field together) is given in Fig.

4.9 with reference to 256 processes. Memory limitations prevented us from running the code under

the same memory-per-core conditions beneath 256 processes. Up to 1,024 processes the matvec

exhibits good scaling, but drops precipitously for 2,048 processes. This appears to be associated

with synchronization steps within the parallel interpolation/anterpolations.

4.7 Conclusion

In this work, we have proposed and demonstrated several remedies to fundamental bottlenecks

in the parallel wideband MLFMA of [48] updated with the adaptive version of the same algorithm

presented in [39]. We provided a parallel algorithmic prescription for constructing non-uniform

trees and interaction lists and for load balancing these trees. Our methods enable significant

improvements in runtime and scalability for problems up to 1024 wavelengths in diameter.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

The works presented in this thesis demonstrably advance the state of the art in parallelization

of the ACE and MLFMA. These developments facilitate efficient simulations involving highly

non-uniform distributions of particles.

A novel parallel non-uniform ACE algorithm for evaluating linear operators acting on arbitrary

non-oscillatory potentials was shown to be scalable up to 16,384 processes with little loss in

performance for even highly non-uniform surface distributions of billions of particles with up to 25

levels in the octree. The error convergence of this method was demonstrated for several different

kernel functions. While good results were obtained, further investigation of reducing the cost

of translation (M2M, M2L, L2L) from O(P6) should be pursued. These operators each possess

a quasi-convolutional structure which may potentially be exploited to reduce the complexity to

something like O(P3 log P), as can be done for actual convolutions using fast Fourier transforms.

The solution to this problem could significantly boost the appeal of this algorithm.

The bulk of this thesis deals with the non-uniform wideband MLFMA and its parallelization.

The contributions presented accomplish several important goals: i) a key computational and

memory bottleneck is broken, greatly increasing the maximum problem size; ii) a controllably-

accurate, provably convergent, adaptive form of the algorithm is introduced, improving the runtime

for multiscale distributions; iii) an efficient parallel algorithm from tree construction to potential

evaluation is detailed, breaking two other important computational bottlenecks; and iv) a novel load

balancing mechanism for multiscale distributions is presented. There are, however, still many open

topics for research. First, investigating flexible direction partitioning schemes (i.e. not based on

powers of 2 or 4 as in [28, 50]) and bandlimited local interpolation methods could facilitate analysis

of extremely electrically large geometries. To that same end, development of error-controllable

“windowed” translation operators in the high-frequency regime may significantly reduce both

computation and communication for very large problems. Finally, extending the PEC algorithm
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to formulations for penetrable objects such as JMCFIE [55] or PMCHWT [81] will require the

development of a novel load balancing mechanism, as variations in subdomain size and material

properties lead to severe inefficiencies when each subdomain is processed one at a time.
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