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ABSTRACT

CONCAVE FILLINGS AND BRANCHED COVERS

By

Kaveh Kasebian

This dissertation contains two results. The first result involves concave symplectic struc-

tures on a neighborhood of certain plumbing of symplectic surfaces, introduced by D. Gay.

We draw the contact surgery diagram of the induced contact structure on boundary of a

concave filling, when the induced open book is planar. We show that every Brieskorn sphere

admits a concave filling in the sense of D. Gay and the induced contact structure on it is

overtwisted. We also show that in certain cases a (−1)-sphere in Gay’s plumbing can be

blown down to obtain a concave plumbing of the same type. The next result examines the

contact structure induced on the boundary of the cork W1, induced by the double branched

cover over a ribbon knot. We show this contact structure is overtwisted in a specific case.
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Chapter 1

Introduction

This Dissertation contains two results. The first result involves concave fillings of contact

3-manifolds. In [8] D. Gay introduced a procedure for handle-by-handle construction of a

concave symplectic structure on a neighborhood of a certain type of plumbing of symplectic

surfaces- called a positive plumbing- in a symplectic manifold (X,ω). His method also

specifies the induced contact structure on the boundary of this type of plumbing by its

compatible open book. We demonstrate how to draw the contact surgery diagram of these

contact structures in the case when the compatible open book is planar (by looking at the

induced open book on the Brieskorn sphere Σ(2, 3, 5) as an example). A natural question is

which 3-manifolds can be presented in this way as boundary of concave fillings. We show

that every Brieskorn manifold has a surgery diagram as a positive plumbing and therefore

its neighborhood in a symplectic manifold carries a concave structure. We show that the

contact structure induced on Brieskorn spheres by their concave fillings is always overtwisted.

We also show that in certain cases a (−1)-framed sphere in the concave filling of a contact

3-manifold can be blown down to obtain a smaller concave filling of the same contact 3-

manifold.

Any 3-manifold presented as a regular p-fold branched cover of (S3, ξst) over a transverse

knot K, can be assigned a natural contact structure induced by the cover. Our next result

involves such a contact structure on the boundary of the Akbulut cork W1, induced by
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considering the boundary as a double branched cover over a ribbon knot K and considering

a specific transverse realizations ofK obtained by braiding. We show that for certain braiding

of the ribbon knot K the induced contact structure is overtwisted. Our motivation for this

problem was to consider a naturally induced contact structure on ∂W1 and examine its

tightness. Using the right-veering criteria for monodromy of open books, we show that in a

certain case the induced contact structure is in fact overtwisted.
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Chapter 2

Background

In this chapter we review the background results that are needed for our main results.

2.1 Contact structures

For an introduction to contact structures and open books on 3-manifolds, the reader is

advised to [1].

Definition 2.1.1. Suppose Y is a (2n + 1)-dimensional manifold. A 1-form α ∈ Ω1(Y )

is called a contact form if α ∧ (dα)n is nowhere zero. A 2n-dimensional distribution ξ is

called a contact structure if it locally can be written as ξ =kerα.

We will only work with contact 3-manifolds and from now on most of our definitions and

examples involving contact manifolds will be limited to this case only.

Example 2.1.2. The standard contact structure ξst on R2n+1 with coordinates

(x1, y1, ..., xn, yn, z) is given as ker(dz + Σn
1xidyi).

Example 2.1.3. The standard contact structure ξ′st on S
3 thought of as the unit sphere

in C2 is defined as ξst = TS3∩ i(TS3). Using coordinates (r1e
iθ1 , r2e

iθ2) on C2, we can also

describe this contact structure as ker(r21dθ1 + r22dθ2).

Definition 2.1.4. Two contact 3−manifolds (Y, ξ) and (Y ′, ξ′) are called contactomor-

phic if there is a diffeomorphism f : Y → Y ′ such that f⋆(ξ) = ξ′. If ξ =kerα and ξ′ =kerα′,

this is equivalent to existence of a nowhere zero function g on Y such that f∗(α′) = gα.
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Two contact structures ξ and ξ′ on a manifold Y are said to be isotopic if there is a contac-

tomorphism h : (Y, ξ) → (Y, ξ′) which is isotopic to the identity.

Example 2.1.5. One can show that for a point p ∈ S3, (S3−{p}, ξ′st) is contactomorphic

to (R3, ξst).

Example 2.1.6. Let α′ = dz+xdy−ydx = dz+r2dθ and ξsym =kerα′. We call ξsym the

symmetric contact structure on R3 (One can see that the contact planes are symmetric with

respect to the z-axis). This contact structure is contactomorphic to the standard contact

structure ξst on R3. Refer to [1] for more details. We will come back to this contact structure

later in 2.1.9..

Definition 2.1.7. Suppose that (Y, ξ) is a given contact 3-manifold. A knot K ⊂ Y is

Legendrian if the tangent vectors TK satisfy TK ⊂ ξ. In other words α(TK) = 0 for the

contact 1−form α defining ξ. The knot K is transverse if TK is transverse to ξ along the

knot K, i.e. if α(TK) is nonzero. The contact framing of a Legendrian knot is defined by

he normal of ξ along K. Equivalently, we can take the framing obtained by pushing K off

in the direction of the vector field transverse to K which stays inside the contact planes.

This framing is called the Thurston-Bennequin framing of the Legendrian knot K denoted

by tb(K). Another invariant of a Legendrian knot, rotation number rot(K) can be defined

by trivializing ξst along K and then taking winding number of TK. For this invariant to

be well-defined we need to orient K and then the result will change sign when orientation is

reversed.

We can study Legendrian knots in standard contact R3 (or S3) via their front projection.

Namely, for ξst =ker(dz + xdy) and a Legendrian knot K ⊂ (R3, ξst), we consider its

projection onto the yz-plane. Notice that the front projection has no vertical tangencies as

dz

dy
= −x ̸= ∞. For the same reason, at a crossing the strand with smaller slope is in front.
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For instance the following is the front projection of two different Legendrian unknots:

Figure 2.1: front projection of two Legendrian knots

Lemma 2.1.8. For a Legendrian knot K ∈ (R3, ξst), we have the following formula for

the Thurston-Bennequin number of K: tb(K) = w(K) − 1

2
c(K), where w(K) is the writhe

of K and c(K) is the number of cusps in the front projection of K.

Proof. We note that the vector
∂

∂z
is transverse to ξ = ker(dz+xdy) so that tb(K) is just

the linking number lk(K,K ′) where K ′ is the push-off of K in the direction of this vector.

Now for the linking number we count the number of crossings of K ′ and K with sign. It is

easy to see that a self-crossing of K will result in a crossing of K ′ and K of the same sign.

A cusp on the left will give a negative crossing of K ′ under K and a cusp on the right will

give a crossing of K ′ over K. The result follows because the number of left and right cusps

are equal.

Lemma 2.1.9. The rotation number rot(K) of a Legendrian knot K is given by the

formula: rot(K) =
1

2
(cd(K) − cu(K)), where cd and cu are the number of down and up

cusps in the projection.

Proof. The vector field
∂

∂x
gives rise to a trivialization of ξst, hence the rotation number

can be counted as the winding number with respect to this vector field. We have to count

the number of times the tangent of K passes the vector field as we traverse K. Define l±

(resp. r±) as the number of left (resp. right) cusps where the knot K is oriented upward or

downward. Then we can see that rot(K) = l− − r+. Counting with respect to − ∂

∂x
we get

rot(K) = r− − l+ and taking the average gives the result.
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For instance, for the two Legendrian knots on the left and the right in figure 2.1 we have

tb(K) = 0− 1

2
(2) = 1 and tb(K ′) = −1− 1

2
(2) = −2 respectively. Similarly for the rotation

numbers we have: rot(K) = 0 and rot(K ′) = ±1 depending on the orientation on the knot

K ′.

Definition 2.1.10. An embedded disk D ⊂ (Y, ξ) is an overtwisted disk if ∂D = K

is a Legendrian knot with tbD(K) = 0, i.e. the contact framing of K coincides with the

framing given by the disk D. A contact manifold (M, ξ) is called overtwisted if it contains

an overtwisted disk; (Y, ξ) is called tight otherwise.

According to a fundamental result of Eliashberg, overtwisted contact structures on 3-

manifolds can be classified up to homotopy of plane fields, as in the following theorem:

Theorem 2.1.11. Two overtwisted contact structures are isotopic, if and only if they

are homotopic as oriented 2-plane fields. Moreover, every homotopy class of 2-plane fields

contains an overtwisted contact structure.

Therefore, the classification of overtwisted contact structures reduces to a homotopy

theoretic problem which is not hard to solve. For more discussion on the above theorem the

reader can consult [2].

We will need to represent transverse knots as braids. Let us consider the symmetric

version of the standard contact structure (S3, ξsym) with ξsym = ker(dz + xdy − ydx).

Given a closed braid B braided about the z-axis, we can isotopy it through closed braids

so that it is far from the z-axis. As ξsym = span{x ∂
∂x

+ y
∂

∂y
, x

∂

∂z
− ∂

∂y
}, away from the

z-axis the planes that make up ξsym are almost vertical. Thus the closed braid B represents

a transverse knot. The opposite of the above theorem is also true:

Theorem 2.1.12 Any transverse knot is transversely isotopic to a closed braid.

Refer to [9] for a proof of the above theorem.
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2.2 Open book decompositions

Definition 2.2.1. Suppose there is a link L in a 3-manifold Y that the complement Y − L

fibers as π : Y − L→ S1 such that fibers are interiors of Seifert surfaces for L. Then (L, π)

is called an open book decomposition of Y . Each fiber Σ = π−1(t) is called a page and L

the binding of the open book.The monodromy of fibration π is called the monodromy of the

open book decomposition.

A theorem of Alexander states that every 3-manifold admits an open book decomposition.

Refer to [1] or [2] for a proof and further discussion.

Example 2.2.2. Consider S3 as the unit circle in C2. Define D = {(r1, θ1, r2, θ2) ∈ S3 :

r2 = 0}. The fibration π : S3 − D → S1 given by π((r1, θ1, r2, θ2)) = θ2 gives rise to an

open book on S3 with page a disk and monodromy equal to the identity.

Definition 2.2.3. Given an open book decomposition (Σ, ϕ), we attach a 1-handle to

the surface Σ connecting two points on ∂Σ to obtain a new surface Σ′. Let α be a closed

curve in Σ′ going over the new 1-handle once, as in the following figure. The new open book

(Σ′, ϕotα) is called a positive stabilization of the original open book (where tα denotes a

positive Dehn twist about α).

Figure 2.2: positive stabilization of an open book

Definition 2.2.4. An open book decomposition is said to be compatible with the contact

structure ξ on Y if ξ can be represented by a contact form α such that the binding is a

transverse link, dα is a volume form on every page and orientation of the transverse binding

7



induced by α agrees with boundary orientation of the pages.

The conditions α > 0 on the binding and dα > 0 on the pages can be thought of

strengthening of the contact condition α ∧ dα > 0 in the presence of an open book on M .

Example 2.2.5. We can see that the trivial open book for S3 in the previous example

is compatible with ξst as follows: the tangent to the binding is given by
∂

∂θ1
and the contact

form is dθ1 restricted to r2 = 0. Therefore the binding is transverse to the contact structure

ξst. The contact form restricted to a page is r21dθ1 and thus d(r21dθ1) = 2r1dr1 ∧ dθ1 is a

volume form.

The following theorem of Giroux states that open books up to positive stabilization

correspond to contact structures up to isotopy:

Theorem 2.2.6. (a) For a given open book decomposition of Y there is a compatible

contact structure ξ on Y . Contact structures compatible with a fixed open book decomposition

are isotopic.(b) For a contact structure ξ on Y there is a compatible open book decomposition

of Y . Two open book decompositions compatible with a fixed contact structure admit common

positive stabilizations.

For a complete proof of the above theorem the reader can refer to [1].

2.3 Criteria for overtwistedness

Let Σ be a compact connected oriented surface with boundary. Define the mapping class

group of Σ to be the isotopy classes of orientation-preserving self-diffeomorphisms of the

surface Σ which restrict to the identity on ∂Σ and denote it by MCG(Σ, ∂Σ). In [4],

Honda-Kazez-Matic introduced the notion of right-veering dif- feomorphisms and the monoid

V eer(Σ, ∂Σ) ⊂MCG(Σ, ∂Σ) of right-veering diffeomorphisms of Σ. We recall these notions.
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Definition 2.3.1. Let α and β be two properly embedded arcs with a common initial

point x ∈ ∂Σ. Isotope α and β fixing the endpoints so that they intersect transversely with

the least possible number of points and that they are transverse to ∂Σ. We say that ”β is

to the right of α” if α = β or the tangent vectors (β′, α′) give the orientation of Σ at x.

Definition 2.3.2. A diffeomorphism h : Σ → Σ is called right-veering if for every choice

of basepoint x ∈ ∂Σ and every choice of properly embedded arc α based at x, h(α) is to

the right of α at x. It is easy to see that for two isotopic self diffeomorphisms h1 and h2 of

Σ, h1 is right-veering if and only if h2 is right-veering. Therefore, one can talk about right

veering mapping classes. The subset of MCG(Σ, ∂Σ) consisting of right-veering elements is

denoted by V eer(Σ, ∂Σ). It follows that V eer(Σ, ∂Σ) is a monoid. In [4], it was shown that

the monoid Dehn+(Σ, ∂Σ) ⊂ MCG(Σ, ∂Σ) consisting of products of right Dehn twists is a

submonoid of V eer(Σ, ∂Σ). The main result of [4] is the following theorem:

Theorem 2.3.3. A contact structure (M, ξ) is tight if and only if all of its compatible

open book decompositions (Σ, h) have right-veering monodromy.

Therefore in order to prove a contact structure is overtwisted, we only have to find a

compatible open book for which the monodromy is not right-veering.

Another criterion is given by by Goodman in [11] to detect overtwistedness of a contact

structure. We call an open book decomposition overtwisted if the contact structure compat-

ible with this open book is overtwisted. Let α, β ⊂ Σ be properly embedded oriented arcs

which intersect transversely on an oriented surface F . The algebraic intersection number

ialg(α, β) is the oriented sum over interior intersections. The geometric intersection number

igeom(α, ϕ(α)) is the count of interior intersections regardless of sign, minimized over all

boundary fixing isotopies of α and β. The boundary intersection number i∂(α, β) is half

of the oriented sum over the boundary intersections after minimizing interior intersections

9



fixing the boundary.

Definition 2.3.4. A properly embedded arc α ⊂ Σ is called a sobering arc for a mon-

odromy ϕ, if ialg(α, ϕ(α)) + igeom(α, ϕ(α)) + i∂(α, ϕ(α)) ≤ 0, and α is not isotopic to ϕ(α).

In particular, since i∂ ≥ −1 and each positive intersection contributes twice to the sum of

intersection numbers, there can be no interior intersections with positive sign. Therefore we

can reinterpret the definition as follows: an arc α is sobering if and only if, after minimizing

geometric intersections, i∂ ≤ 0, there are no positive (internal) intersections of α with ϕ(α),

and α is not isotopic to ϕ(α).

The importance of sobering arcs is in the following theorem (refer to [11]):

Theorem 2.3.5. If there is a sobering arc α ⊂ Σ for ϕ, then the open book (Σ, ϕ) is

overtwisted.

Example 2.3.6. The open book decomposition (S3, h) induced by negative Hopf link

H− with fiber surface F−. The arc α in figure 2.3 is a sobering arc for the monodromy h

which is a left-handed Dehn twist. We observe that i∂(α, h(α)) = −1 and ialg(α, h(α)) =

igeom(α, h(α)) = 0. Therefore the induced open book is overtwisted.

α

h(α)

Figure 2.3: A sobering arc

10



2.4 Contact structure induced by the branched cover

For a transverse link L ⊂ (S3, ξst), the 3-manifold Y obtained by the p-fold branched cover

over L can be equipped with a natural contact structure ξL. Roughly speaking, this contact

structure is obtained by lifting the standard contact structure on the knot complement to its

p-fold cover and extending it to a neighborhood of the branch set L upstairs. We describe

this construction in some detail.

Let L be a transverse knot in (S3, ξst) (if L is a link we treat each component sep-

arately).Using Darboux theorem for transverse knots, a neighborhood of L embeds into

R2 × S1 via the coordinates (r, θ, z), where (r, θ) are polar coordinates on R2, z ∈ S1 and

L = r = 0 and the contact structure can be given as kernel of dz+r2dθ. In this neighborhood

the covering map p : Y → S3 is given by p((w, z)) = (wp, z)(w = reiθ). Let ξp = dz+pr2pdθ

be the kernel of the pull-back form. But this 1-form fails to be a contact form along L. To

resolve this issue, we define a new contact form by interpolating between the form dz+ r2dθ

and the pull-back form in a small tubular neighborhood of L. Let ϵ1, ϵ2 < r where r is the

radius of the neighborhood above and ϵ21 < pϵ2p. Now set ξL = dz+ f(r)dθ where f(r) = r2

for r < ϵ1 and f(r) = pr2p for r > ϵ2 and f ′(r) > 0 in between. It is clear that ξL is a

contact form. It turns out this contact structure is independent of the choices. The reader

is referred to [3] for the details.

We can also describe the contact structure ξL on Y via open books. We represent L as a

braid of index n which intersects a generic page of the trivial open book for S3 at n points.

Then the generic page of the open book compatible with ξL will be a surface which is the

p-fold cover of the disk branched over n points. To determine the monodromy, we need to

determine how the half-twist generators of the braid L lift to the branched cover. For details

11



of this construction we refer the reader to [3]. We only describe the monodromy of this open

book.

If L has a (transverse) braid representation as σ = σi1 ...σik ∈ Bn so that σij are some

standard generators of the braid group Bn, then the contact manifold (Y, ξL) is compatible

with an open book (Σ, ϕ). Here Σ is the Seifert surface for the (n, p)-torus link. The lift σ̂i

of σi ∈ Bn is ti1...t
i
p−1, which t

i
j is a Dehn twist about the curve αij as in the figure below

(for n = p = 4). The monodromy of the open book is ϕ = (t
ik
1 ...t

ik
p−1)...(t

i1
1 ...t

i1
p−1).

α11

α21

α31

α12

α22

α32

α13

α23

α33

Figure 2.4: Seifert surface of a (4, 4)-torus link

2.5 Homotopy invariants of contact structures

A contact structure ξ regarded as an oriented 2-plane field on a 3-manifold Y induces a

spinc structure which we denote by tξ. Let p : π0(Ξ(Y )) → spinc(Y ) be the map associating

tξ to ξ. We briefly review the classification of oriented 2-plane fields on Y . By trivializing

TY and considering the oriented normal of a plane field, we associate a map Y → S2 to

ξ. For the case of Y = S3 the oriented 2-plane fields are in one-to-one correspondence with

elements of [S3, S2] = π3(S
2) = Z. By the Pontryagin-Thom construction, the space [Y, S2]
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can be identified with framed cobordism classes of framed 1-manifolds in Y . Homotopies

outside a disk (in other words spinc structures) can be parametrized by 1-manifolds in Y

up to cobordism which corresponds to elements of H1(Y ;Z). Note there is a [S3, S2] = Z

action on the fiber p−1(t) for a spinc structure t, by twisting by n the given framing of the

framed link corresponding to the oriented 2-plane field. We can also see this action from

a different point of view. Consider oriented 2-plane fields (or the corresponding orthogonal

vector fields) inducing a specified spinc structure t to be identical outside a disk in Y . Then

Z acts on p−1(t) by connect summing (Y, v) (v is a nonzero vector field on Y ) with (S3, w),

where w is a nonzero vector field on S3.

By pulling back the generator of H2(S2;Z) by the map fξ : Y → S2 associated to

ξ ∈ Ξ(Y ) we get a second cohomology class Γξ ∈ H2(Y ;Z). This shows there is also a

H2(Y ;Z)-action on spinc(Y ). Now regarding ξ as a complex line bundle we have c1(ξ) =

f∗ξ (c1(TS
2)) which show that c1(ξ) = 2Γξ. Therefore as long as H2(Y,Z) has no 2-torsion,

c1(ξ) determines the spinc structure tξ of ξ.

Therefore the homotopy type of a 2-plane field is determined by the induced spinc struc-

ture and the framing of the corresponding 1-manifold in Y . This latter invariant is generally

hard to work with except in the case of torsion c1(tξ). In this case the set of framings can

be lifted to Q and is calculated as d3(ξ) =
1

4
(c21(X, J)− 3σ(X)− 2χ(X)), where (X, J) is an

almost complex manifold such that ∂X = Y and ξ is homotopic to the oriented 2-plane field

of complex tangencies along ∂X. σ(X) and χ(X) are signature and Euler characteristic of

the manifold X respectively. The rational number d3 is called the 3-dimensional invariant

of ξ.

For more discussion and proofs of the above results the reader can refer to [2], chapter 6.

Now we show how to calculate the homotopy invariants from a contact surgery diagram
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for a contact 3-manifold.

Definition 2.5.1. Let K be a Legendrian knot in a contact manifold (Y, ξ). By a

contact r-surgery on (Y, ξ) along K we mean an r-surgery on K such that the framing is

measured with respect to the contact framing. It can be shown that the surgered manifold

Yr(K) also admits a contact structure naturally. Refer to [2], section 11.2. for more details.

We will only deal with (±1)-contact surgery on Legendrian knots (i.e. the topological

framing of the surgery is tb(K) ± 1). According to the following theorem, every contact

manifold admits a contact surgery diagram in (S3, ξst):

Theorem 2.5.2. For any closed contact manifold (Y, ξ) there is a Legendrian link L =

L+ ∪ L− in (S3, ξst) such that contact surgery on L± with framing (±1) with respect to the

contact framings provides (Y, ξ).

Refer to [5] for a proof of this theorem.

Recall that two oriented 2-plane fields ξ1 and ξ2 on a 3-manifold M are homotopic

if and only if their induced spinc structures tξi and 3-dimensional invariants d3(ξi) are

equal. When c1(tξ) is torsion, the d3 invariant can be lifted to Q and can be computed

as d3(ξi) =
1
4(c

2
1(Xi, Ji)− 3σ(Xi)− 2χ(Xi)), where (Xi, Ji) are almost complex 4-manifolds

with ∂Xi =M such that 2-plane fields of complex tangencies of Ji are homotopic to ξi along

∂Xi. Now we explain how to obtain the almost complex manifold X. Suppose L = L+∪L−

is the surgery diagram for (M, ξ) and let X ′ be the 4-manifold defined by the diagram. X ′

admits an achiral Lefschetz fibration (refer to [2], section 10.2. for the proof). We consider

the 2-plane field of tangents to the fibers away from the critical points. By taking orthogonal

complement with respect to some metric, we can define an almost complex structure J on

X ′ − C by counterclockwise 90 degree rotation on these planes. This complex structure

extends to critical points corresponding to (−1) surgeries and can be extended to points

14



corresponding to (+1)-surgeries by connect-summing with CP 2. For more details refer to

[2]. Therefore X = X ′#qCP 2 (q is the number of components of L+) with extended almost

complex structure is our choice of (X, J) for (M, ξ).

Theorem 2.5.3. The first Chern class c1(X, J) ∈ H2(X;Z) of the almost complex

structure discussed above evaluates on the surgery curve K as a homology class as it rotation

number: c1(K) = rot(K).

Refer to [2], chapter 11 for a proof of the above theorem.

Theorem 2.5.4. Suppose that the contact 3-manifold (Y, ξ) is given by contact (±1)-

surgery along the link L = L+ ∪ L− ⊂ (S3, ξst). Let X1 denote the 4-manifold defined by

the diagram and suppose c ∈ H2(X;Z) is given by c([ΣK ]) = rot(K) on [ΣK ] ∈ H2(X1;Z),

where ΣK is the surface corresponding to the surgery curve K ⊂ L. If the restriction c|∂X1
to

the boundary is torsion and L+ has q components then: d3(ξ) =
1
4(c

2−3σ(X1)−2χ(X1))+q.

Proof. The formula is a direct result of the above discussion and noting that χ(X1) =

χ(X1−{x1, ..., xq}) for the critical points {x1, ..., xq} of the achiral Lefschetz fibration X1 →

D2 which lie on the incorrectly oriented charts.

2.6 Concave fillings of contact manifolds

Definition 2.6.1. A vector field V on a symplectic manifold (W,ω) is a symplectic dilation

or a Liouville vector field if LV ω = 0. We say that a compact symplectic manifold (W,ω) is

a convex filling of closed contact manifold (M, ξ) if ∂W =M as oriented manifolds and there

exists a Liouville vector field V defined in a neighborhood of M , pointing out of W along

M and satisfying ξ = ker(ιV ω|M). In this case (M, ξ) is said to be the convex boundary of

(W,ω). On the other hand if V points into W alongM , then we say that (W,ω) is a concave
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filling of (M, ξ).

We have the following important fact about concave fillings:

Theorem 2.6.2. Every contact manifold admits a concave filling.

Refer to [6] for a proof of this theorem.

Definition 2.6.3. Let the symplectic manifold (X,ω) be the convex filling of the con-

tact manifold (Y, ξ). By a convex-to-concave 2-handle H we mean a 2-handle attached

symplectically to ∂X = Y (i.e. the symplectic structure on X extends to X ′ = X ∪ H)

along a transverse knot K in (Y, ξ) so that X ′ is the concave filling of the new boundary

∂X ′ = ∂(X ∪H).

The existence of convex-to-concave 2-handles was proved in [7]. More specifically, they

show that if K is a transverse boundary component of an open book for (Y, ξ) as convex

boundary of (X,ω), then a 2-handle attached along K with a framing greater than the page

framing of K (the framing induced on K as boundary of page of the open book), is in fact a

convex-to-concave 2-handle. We will discuss these 2-handles in the next section to describe

concave fillings constructed in [8] for specific plumbed 3-manifolds.

2.6.1 Concave filling of positive plumbings

We briefly review the construction in [8] of the concave fillings for specific class of plumbed

3-manifolds.

Definition 2.6.1.1. Suppose (X,ω) is a symplectic 4manifold. By a symplectic con-

figuration in a symplectic 4-manifold we mean a union C = S1 ∪ ...Sn of closed symplectic

surfaces embedded in (X,ω) such that all intersections between surfaces are ω-orthogonal.

A symplectic configuration graph is a labeled graph G with no edges from a vertex to itself

and with each vertex vi labeled with a tuple (gi,mi), where gi is the genus of the symplectic
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surface Si associated to the vertex vi and mi is the self-intersection of the surface Si. A

symplectic configuration graph is called positive if mi+ di > 0, where di is the degree of the

vertex vi. An example is given by the graph on the top of figure 2.6.

The goal of the next theorem is to explicitly construct a symplectic structure ω(G)

on a neighborhood N(G) of a positive symplectic configuration graph handle-by-handle.

Then by the sympelectic neighborhood theorem, it follows that there is a neighborhood of

any positive symplectic configuration (ν(C), ω) in a symplectic manifold (X,ω) which is

symplectomorphic to (N(G), ω(G)). Moreover, the open book compatible with the contact

structure on the boundary induced by the concave filling will be determined.

Theorem 2.6.1.2. Let C = S1 ∪ ...Sn ⊂ (X,ω) be a positive configuration of symplectic

surfaces. Then there is a sympelectomorphism f : (ν(C), ω) → (N(G), ω(G)), where G is

the configuration graph associated to C and (N(G), ω(G)) is constructed as in the proof of

the theorem.

Proof. We only give a sketch here. For more details the reader can refer to [8]. We

explain our construction by looking at the example in figure 2.5. We begin with disks and

positive Hopf links as pages of open books for different copies of (S3, ξst) ⊂ (B4, ωst). The

disks are used in order to construct individual surfaces upon them and the Hopf links to

construct plumbing of the surfaces. Then we attach (4-dimensional) 1-handles with feet on

boundary of these disks or Hopf links to different copies of (S3, ξst) which contain them,

as in the bottom of figure 2.5. Then in the same manner we attach extra 1-handles if

necessary to raise the genus of the surfaces. These 1-handles are attached to the right

hand side of disks. To this end each surface has one boundary component. To increase

the number of boundary components if necessary, we attached more 1-handles to the left

of the disks. We note that up until this point, we have constructed a convex neighborhood
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of the surfaces (by attaching 1-handles). Before attaching 1-handles to the left, we have

an open book for (S3, ξst) corresponding to each vertex with pf(K) = cf(K) − di. After

attaching 2g 1-handles to to the right, still the we have pf(K) = cf(K)−di. After attaching

mi + di − 1 1-handles on the lower left, the surface inside will have one more component

for each handle attached, which satisfy: pf(K) = cf(K). Now attach 2-handles to each

binding component with framing pf(K) + 1. This step will turn convex filling to concave

ones. We will have closed surfaces so that the self-intersection of each component Fi is

ΣK∈∂Fi(pf(K)+1)−cf(K) = (mi+di−1)(1)+(1−di) = mi. This finishes the construction

of the concave filling. By the symplectic neighborhood theorem, a neighborhood of a positive

configuration in a symplectic manifold should be symplectomorphic to (N(G), ω(G)).

For more details of the proof refer to [8].

(0, 1) (1, 0) (0, 0)

Figure 2.5: construction of concave filling
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2.7 Corks

Definition 2.7.1. A cork is a pair (W, f), whereW is a compact contractible Stein manifold

and f : ∂W → ∂W is an involution which extends to a self-homeomorphism of W but it

does not extend to a self-diffeomorphism of W . We say that W is a cork of X if W ⊂ X

and cutting W out of X and re-gluing it by f produces an exotic copy X ′ of X (a smooth

manifold homeomorphic but not diffeomorphic to X). This means that we have the following

decomposition: X = Y ∪id W and X = Y ∪f W , where Y = X − int(W ).

It can be shown that any exotic copyX ′ of a closed simply-connected 4-manifoldX differs

from its original copy by a cork (refer to [12], chapter 10 for more information). Figure 2.6

shows a family of corks Wn, where the involution f is defined as the zero and dot exchange

on their underlying symmetric links. For instance, W1 is a cork of E(2)#CP̄ 2 (refer to [12]

and references therein for further discussion). We will encounter the cork W1 in section

where we look at a specific contact structure on its boundary.

n+ 1n

0

f

Figure 2.6: The family of corks Wn
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Chapter 3

Main results

3.1 Concave fillings

We recall the definition of a positive plumbing from last chapter. Consider a plumbing of

closed symplectic surfaces P = S1∪ ...Sn in a symplectic manifold (X,ω). To this Plumbing

we associate a plumbing graph consisting of a vertex for each symplectic surface and an

edge between two vertices if the two symplectic surfaces are plumbed together. Let mi be

the self-intersection and di the degree of the vertex vi. This plumbing is called positive if

mi + di > 0 for each vertex vi. In [8] it was proved that such a plumbing of symplectic

surfaces has a neighborhood that is a concave filling of its boundary and the induced contact

structure on the boundary is compatible with an open book as follows: the generic page is a

surface obtained by connect-summing the surfaces Si as in the plumbing configuration and

there are mi + di boundary components for each surface Si. The monodromy consists of

one positive Dehn twist about each boundary curve and one negative Dehn twist about each

neck of the connect-sum.

We demonstrate this with an example. Look the plumbing graph of symplectic surfaces

in figure 3.1, where (gi,mi) for each vertex vi means the surface Si has genus gi and self-

intersection equal to mi. Then induced contact structure on its boundary is compatible with

the following open book with monodromy ϕ = ΠδiΠσ
−1
j where δi are Dehn twists about blue
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curves (about boundary components) and σj are Dehn twists about the red curves (about

the neck) as in the figure 3.1.

(0, 1) (1, 0) (0, 0)

Figure 3.1: a concave plumbing graph and its corresponding open book

In this section we show that in some cases a (−1)-framed symplectic sphere in a positive

plumbing can be blown down to obtain another positive plumbing with the same induced

contact structure on the boundary. We then present an algorithm to construct a positive

concave filling for each Brieskorn manifold (but the concave filling we obtain is not unique).

Then we look at an example Σ(2, 3, 5) and draw the contact surgery diagram for the contact

structure induced by this concave filling. We compute homotopy invariants of this contact

structure and compare them to those of the standard Milnor fillable one. We then show that

any concave filling of a Brieskorn manifold constructed by the above algorithm, induces an

overtwisted contact structure on it.

Theorem 3.1.1. Suppose we have a positive cofiguration of symplectic surfaces as in

figure 3.2. By blowing down the middle (−1)-sphere, we obtain another positive configuration

with the same contact boundary (i.e. both configurations are concave fillings of the same

contact 3-manifold).
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(m, g) (−1, 0) (n, g′)

Figure 3.2: A special positive plumbing graph

Proof. According to the lantern relation, we have tatbtctd = tαtβtγ as in figure 3.3 below:

a

b
c d

α

β

γ

Figure 3.3: the lantern relation

Now we consider a 4-holed sphere as figure 3.4 below. This type of picture of a 4-holed

sphere will be useful for our argument. From the lantern relation we obtain the relation

tatbt
−1
α = t−1

c t−1
d tβtγ . The left and right pictures in figure 3.4 correspond to the curves

involved in left and right hand sides of this relation. By destabilizing the monodromy

(removing a positive Hopf band) we obtain the last picture in the figure:

a b

α

c dβ

γ

a b
β

Figure 3.4: removing a positive Hopf band

Now we prove the theorem by considering a specific example as in the figure 3.5 where

m = 2, n = 1 and g = g′ = 0, but our argument applies to the general case as well.
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The induced open book on the boundary has a page as in the top picture in the figure

3.5 and the monodromy is ϕ = tδ1tδ2tδ3t
−1
σ1
tδ4t

−1
σ2
tδ5tδ6 . Now if we trace the pictures in the

figure backwards, we conclude that this open book is equivalent to the bottom picture as

the page and monodromy ϕ′ = tδ1tδ2tδ3tδ4t
−1
σ1
tδ5tδ6tδ7 .

2 −1 1

3 2

δ1 δ2 δ3 δ4 δ5 δ6

σ1 σ2

δ1 δ2 δ3 δ4 δ5 δ6 δ7
σ1

Figure 3.5: Blowing down and the corresponding open books

It is easy to see that this new open book corresponds to the concave plumbing graph

below, which proves the theorem in our special case. The general case is similar.

Next we show that all Brieskorn manifolds are boundary of positive concave plumbings.

Lemma 3.1.2. Each Brieskorn manifold Σ(p, q, r) admits a positive concave plumbing.

Proof. We know that a Brieskorn manifold Σ(p, q, r) is a Seifert fibered space with three

singular fibers and the base a genus zero surface (refer to [13], theorem 2.1. for a proof).

Thus it has a plumbing diagram as in figure 3.6. If for the central vertex mi < −2 or if there

is a middle vertex with mi < −1 or an end vertex with mi < 0, we blow up a +1-sphere

between this vertex and a vertex next to it. This will increase increase self-intersection of the

two old vertices by one and the new +1-sphere already satisfies the condition mi+di > 0 (in

this case 1 + 2 > 0). It is easy to check that after a finite steps this will give us a plumbing

graph as desired. We demonstrate this with and example.

Example 3.1.3. Σ(2, 3, 5) has the following surgery description: 15b1 + 10b2 + 6b3 = 1
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Figure 3.6: plumbing diagram of a Brieskorn manifold

with b1 = −1, b2 = 1 and b3 = 1 (refer to [14], theorem 6.7. for obtaining surgery diagram

of a Brieskron manifold).

We apply the above algorithm to find a concave plumbing graph from this surgery dia-

gram. The result is shown in figure 3.7.

−2 0 5

3

0 1 2 1 5

3
Figure 3.7: A positive plumbing graph for Σ(2, 3, 5)

According to [8] the concave plumbing graph on the right induces the following open book

on its boundary. The red curves correspond to negative Dehn twists and the blue curves to

positive Dehn twists. In order to be able to realize the surgery curves as Legendrian curves

we present this surface as in figure 3.8.

Figure 3.8: the open book on Σ(2, 3, 5)

We notice that the first five Dehn twists from the top can be removed. The first two
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Figure 3.9: A Legendrian diagram for Σ(2, 3, 5)

since they are positive and negative twists about the same curve and the next three positive

twists since they correspond to positive stabilizations. Then the surgery diagram of the

contact structure compatible with this open book will be given as in figure 3.9. Since we

perform negative Dehn twists about all the red curves, the framing on each surgery curve is

a (+1)-contact framing:

Now we calculate the homotopy invariants of the this contact structure ξ. Since Y =

Σ(2, 3, 5) is a homology sphere, the first obstruction d2(ξ) ∈ H2(Y ;Z) = 0. Now recall that

the next obstruction is d3(ξ) =
1

4
(c2 − 3σ(X) − 2χ(X)) + q, where X is the handlebody

obtained by attaching 2−handles to D4 along the surgery curves, q is the number of +1-

surgery curves, c ∈ H2(X;Z) is given by c([Σi]) = rot(ki) on [Σi] ∈ H2(X;Z) where Σi is

the Seifert surface corresponding to a component ki of the diagram. Finally σ(X) and χ(X)

are the signature and Euler characteristic of X.

The linking matrix is as follows:
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−17 −14 −6 −4

−14 −13 −6 −4

−6 −6 −5 0

−4 −4 0 −3


We compute σ(X) = −2 and χ(X) = 5. Now we look at the long exact sequence of the

pair (X, ∂X): 0 → H2(∂X;Z) → H2(X;Z) →ϕ1 H2(X, ∂X;Z) →ϕ2 H1(∂X;Z) → 0.

The maps ϕ1 and ϕ2 are calculated as follows: ϕ1([Σi]) = Σlk(ki, kj)[Nj ] and ϕ2([Ni]) =

[µi] (Ni is a disc bounding the meridian µi). Now PD(c) = Σrot(ki)[Ni] = 17[N1]+13[N2]+

5[N3]+3[N4]. We find the solution to ϕ1(C) = PD(c) as C = 17[Σ1]−47[Σ2]+37[Σ3]+41[Σ4]

(for negative choice of rotation numbers). Thus c2 = C2 = 14 and d3(ξ) =
1

4
(14− 3(−2)−

2.5) + 4 =
13

2
.

We can compare the result to homotopy invariants of the standard contact structure ξst

on Σ(2, 3, 5) induced by its Milnor fiber −E8. Let the complex polynomial F : C3 → C be

given by F (x, y, z) = x2 + y3 + z5 and U be a connected open subset of C3 containing the

origin. If w0 ∈ F (U) is a regular value, then the compact smooth manifold with boundary

F−1(w0) ∩ B6 is the Milnor fiber Φ = Φ(2, 3, 5) of the Brieskorn manifold Σ(2, 3, 5). It

can be shown that Φ has a plumbing description as in figure 3.10 called the −E8 plumbing

(refer to [12], chapter 12 for further discussion). As the Milnor fiber Φ is the pre-image

of a regular value under F , its normal bundle νΦ is trivial, as is TC3|Φ. Since νΦ :=

TC3|Φ
TΦ

, we conclude the tangent bundle TΦ is trivial and therefore c1(Φ) = c1(ξst) = 0.

By looking at the plumbing −E8, we conclude that χ(Φ) = 9 and σ(Φ) = −8. Thus

d3(ξst) =
1

4
(0− 2.9− 3(−8)) =

3

2
. Therefore we conclude that these two contact structures

are not homotopic.
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−2 −2 −2 −2 −2 −2 −2

−2

Figure 3.10: The −E8 plumbing

In fact we can prove that the contact structure induced by the concave filling is over-

twisted. (The contact structure induced by −E8 is tight since −E8 is a Stein filling of the

Poincare sphere.)

As mentioned above, there are many positive concave plumbings that fill a fixed Brieskorn

sphere. We prove that the contact structure induced on a Brieskorn sphere, by a positive

concave plumbing according to the above algorithm, is always overtwisted (i.e. it does not

matter which plumbing we choose). We prove this by using the sobering arc technique which

was mentioned in section 2.3..

Theorem 3.1.4. A positive concave plumbing constructed by the above algorithm, always

induces an overtwisted contact structure on a Brieskorn sphere.

Proof. We first construct a concave filling of Brieskorn sphere as in lemma 3.2. We then

construct the open book as described at the beginning of this section. We modify the open

book using the move in figure 3.5. We start with one of the end vertices v1 and remove

all but one of the original boundary components corresponding to this vertex. Again we

demonstrate with an example. We can use a similar argument for a general graph. Suppose

one branch of the plumbing ends with vertices as follows:

2 1

Figure 3.11: A branch in the plumbing

Then the corresponding open book has one end as below and we apply the move in

figure 3.4 to remove its boundary components one by one:
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(a)

(b)

(c)

(d)

Figure 3.12: modifying the open book

The grey curves on each surface mean that there will be a negative Dehn twist about the

curve in the next picture. Look at figure 3.12 (c). We observe that the negative and positive

Dehn twists about the first boundary component from right cancel each other. Thus we get

figure 3.12 (d) where there is no Dehn twist about this component. In the same figure we

have sketched an arc α from this boundary component to another one, together with its

image under the monodromy. We can check that the arc α is a sobering arc: All the interior

intersections are negative and and the boundary intersection is equal to zero. Therefore the

contact structure compatible with this open book is overtwisted.

3.2 A contact structure on the boundary of the cork

The cork W1 can be seen as double branched cover over a ribbon disk (refer to [12], chapter

11 for further discussion). Its boundary M = ∂W1 is the double branched cover over the

ribbon knot K as shown in figure 3.13.

In this section we examine boundary of the cork as the contact manifold (M, ξ) that arises

as the double branched cover over K realized as a transverse knot in (S3; ξst). We construct

the open book compatible with this contact structure using the techniques discussed in
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section 2.4 and we use the right-veering criterion to prove that it is overtwisted.

0

2 : 1

branched cover

Figure 3.13: Cork as branched cover over a ribbon disk

Theorem 3.2.1. The ribbon knot K has the following presentation as a braid in B4:

σ = σ−1
3 σ2σ

−2
1 σ−1

2 σ3σ1σ
−1
2 σ−1

1 σ2σ3σ
−1
2 σ23σ

−1
2

Let (∂W1, ξ) be boundary of the cork equipped with the contact structure ξ induced by the

double branched cover over the transverse knot K corresponding to the braid σ. Then ξ is

overtwisted.

Proof. Using the techniques discussed in section 2.4. we construct an open book com-

patible with the contact structure ξ. Then using the right-veering criterion, we prove that

this contact structure in overtwisted. Recall from section 2.4. the contact structure ξ is

supported by an open book (Σ, ϕ) such that a generic page Σ is equal to the Seifert surface

of a (2, 4)-torus link (p = 2 and n = 4 n this case) which is a twice-punctured torus, and its

monodromy is given as below:

ϕ = t−1
b t2ct

−1
b tctbt

−1
a t−1

b tatct
−1
b t−2

a tbt
−1
c

Refer to figure 3.14 for the surface Σ and the curves a, b and c on it. For our convenience

we rewrite this monodromy as follows:

ϕ = (t−1
c t−1

b tc)tc(t
−1
b tctb)(t

−1
a t−1

b ta)tc(t
−1
b t−2

a tb)

= t−1

t−1
c (b)

tctt−1
b

(c)
t−1

t−1
a (b)

tct
−2

t−1
b

(a)
= tctt−1

b
(c)
t−1

t−1
a (b)

tct
−2

t−1
b

(a)
t−1

t−1
c (b)
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a

b

c

α

ψ(α)

Figure 3.14: α and ψ(α)

Now if ϕ ∈ V eer(Σ, ∂Σ), composing it with t
t−1
c (b)

t2
t−1
b

(a)
would give us another right-

veering diffeomorphism (since V eer(Σ, ∂Σ) is a monoid according to the previous section).

We show that ψ = ϕot
t−1
c (b)

t2
t−1
b

(a)
= tctt−1

b
(c)
t−1

t−1
a (b)

tc is not right-veering. Therefore ϕ

cannot be right-veering either and (M, ξ) is overtwisted. Figure below shows an arc α and

its image ψ(α) on the surface Σ. It is clear that ψ is not right-veering for this arc. Therefore

the result follows.

Remark 3.2.2. It might be possible to check directly that ϕ is not right-veering, by

examining its effect on some arc in Σ. But since ϕ contains a lot of words, we decided to

proceed as above as a shortcut.
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