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ABSTRACT

INTEGRATION OF TOPOLOGICAL DATA ANALYSIS AND MACHINE LEARNING FOR
SMALL MOLECULE PROPERTY PREDICTIONS

By

Kedi Wu

Accurate prediction of small molecule properties is of paramount importance to drug design and

discovery. A variety of quantitative properties of small molecules has been studied in this thesis.

These properties include solvation free energy, partition coefficient, aqueous solubility, and toxicity

endpoints.

The highlight of this thesis is to introduce an algebraic topology based method, called element

specific persistent homology (ESPH), to predict small molecule properties. Essentially ESPH

describes molecular properties in terms of multiscale and multicomponent topological invariants

and is different from conventional chemical and physical representations. Based on ESPH and its

modified version, element-specific topological descriptors (ESTDs) are constructed. The advantage

of ESTDs is that they are systematical, comprehensive, and scalable with respect to molecular size

and composition variations, and are readily suitable for machine learning methods, rendering

topological learning algorithms. Due to the inherent correlation between different small molecule

properties, multi-task frameworks are further employed to simultaneously predict related properties.

Deep neural networks, along with ensemble methods such as random forest and gradient

boosting trees, are used to develop quantitative predictive models. Physical based molecular

descriptors and auxiliary descriptors are also used in addition to ESTDs. As a result, we obtain

state-of-the-art results for various benchmark data sets of small molecule properties.

We have also developed two online servers for predicting properties of small molecules, TopP-S

and TopTox. TopP-S is a software for topological learning predictions of partition coefficient and

aqueous solubility, and TopTox is a software for computing element-specific tological descriptors

(ESTDs) for toxicity endpoint predictions. They are available at http://weilab.math.msu.

edu/TopP-S/ and http://weilab.math.msu.edu/TopTox/, respectively.
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CHAPTER 1

INTRODUCTION TO CHEMINFORMATICS

1.1 An overview of small molecule modeling

The understanding of small molecule properties is key to drug design and discovery. Proper-

ties can be physical or chemical – physical properties may include partition coefficient, aqueous

solubility, boiling points, density, etc., while chemical properties may refer to toxicity, chemical

stability or flammability. This work is mainly focused on quantitative predictions of solvation free

energy, partition coefficient, aqueous solubility, and toxicity endpoints.

Solvation process is foundamental to sophisticated processes such as protein binding, protein

DNA and RNA binding, protein-protein interaction, etc [7, 8, 9, 10]. Many studies have been

conducted in modeling and analysis of the solvation processes over past few decades [8, 11, 9, 7,

12, 13] and accurate prediction of solvation free energies is one of the most popular and challenging

topics[14] as it is intrinsically related to binding free energy.

Many approaches have been developed to predict small molecule solvation free energies. Cat-

egorically, there are physical models and knowledge-based models. The advantage of physical

models mainly lies on physical intepretability. Physical models can be further classified as explicit

and implicit models. For explict solvent models, molecular mechanics (MM) [15] and hybrid

quantum mechanics/molecular mechanics (QM/MM) are commonly used [16]. On the other hand,

implicit solvent models include the generalized Born (GB) model as well as many other variations

[17, 18, 19, 20, 21, 22] such as GBSA [23] and SM.x [24, 25]. The most popular implicit solvent

model is based on the Poisson-Boltzmann (PB) theory, which retains an atomistic description of the

solute molecule, while treating the solvent and includes possible ions and cofactors as a dielectric

continuum [26, 27, 28, 29, 30, 31]. More recently, Gaussian-based smooth dielectric functions

have also shown success for computing solvation energy of both small molecules and proteins.

[32, 33]. In classical implicit solvent models, solvation free energy is split into polar and nonpolar
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contributions, where polar and nonpolar parts are computed separately. Aforementioned models

can be used to calculate polar part. For nonpolar part, it is shown that the solvent-accessible surface

area (SASA) can be very useful [34, 35] while there are still some drawbacks [36, 37, 38, 39]. More

ecently, the coupling of polar and nonpolar components has been considered in several models

[40, 41, 42]. One representative model for this coupling is based on differential geometry theory,

variational approach and geometric measure theory. These mathematical apparatuses give rise

to an elegant dynamical coupling of polar and nonpolar solvation components [41, 43, 42, 44].

By applying constrained optimization to nonpolar parameter selections, this model provides some

of the best solvation free energy fitting and cross validation results for a large amount of solute

molecules [45].

The partition coefficient, denoted P and defined to be the ratio of concentrations of a solute in

a mixture of two immiscible solvents at equilibrium, is of great importance in pharmacology. It

measures the drug-likeness of a compound as well as its hydrophobic effect on human body. The

logarithm of this coefficient, i.e., log P, has proved to be one of the key parameters in drug design

and discovery. Optimal log P along with low molecular weight and low polar surface area plays

an important role in governing kinetic and dynamic aspects of drug action. In particular, Hansch

et al. [46] gave a detailed description of how lipophilicity impacted pharmacodynamics. This

being said, surveys show that approximately half of the drug candidates fail to reach market due to

unsatisfactory pharmacokinetic properties or toxicity [47], which indeed makes log P predictions

evenmore important. The extent of existing reliable experimental log P data is negligible compared

to tremendous compounds whose log P data are practically needed. Therefore, computational

prediction of partition coefficient is an indispensable approach inmodern drug design and discovery.

Since the pioneering work of Hansch et al. [48, 49, 50], a large variety of octanol-water partition

coefficient predictors has been developed over the past few decades. Many methods are generally

called as quantitative structure-activity relationship (QSAR) models. In general, these models

can be categorized into atom-based additive methods, fragment/compound-based methods, and

property basedmethods. One of atom-based additivemethods, which was first proposed by Crippen
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and his co-workers [51], is essentially purely additive and effectively a table look-up per atom. Later

on, XLOGP3, a refined version of atom-based additive methods, was developed [5]. This approach

considers various atom types, contributions from neighbors, as well as correction factors which help

overcome known difficulties in purely atomistic additive methods. However additivity may fail in

some cases, where unexpected contributions to log P occur, especially for complicated structures.

Fragment/compound based predictors, instead of employing information from single atom, are

built at compounds or fragments level. Compounds or fragments are then added up with correction

factors. Popular fragment methods include KOWWIN [52, 53], CLOGP [54, 55], ACD/LOGP

[56, 57], and KLOGP [58, 59]. A major challenge for fragment/compound based methods is the

optimal classification of “building blocks”. The number of fragments and corrections involved in

current methods range from hundreds to thousands, which could be even larger if remote atoms are

also taken into account. This fact may lead to technical problems in practice and may also cause

overfitting in modeling. The third category is property-based. Basically property-based methods

determine partition coefficient using properties, empirical approaches, three dimensional (3D)

structures (e.g., implicit solvent models, molecule dynamics (MD) methods), and topological or

electrostatic indices. Most of these methods are modeled using statistical tools such as associative

neural network (ALOGPS) [60, 61]. It is worthy to mention that property-based methods are

relatively computationally expensive, and depend largely on the choice of descriptors and accuracy

of computations. This to some extent results in a preference of methods in the first two categories

over those in the third.

Another closely related physical property is aqueous solubility, denoted by S, or its logarithm

value log S. In drug discovery and other related pharmaceutical fields, it is of great significance to

identify molecules with undesirable water solubility on early stages as solubility affects absorption,

distribution, metabolism, and elimination processes (ADME) [62, 63]. QSPR models, along

with atom/group additive models [64, 3, 65, 2], have been developed to predict solubility. For

example, QSPR models assume that aqueous solubility correlates with experimental properties

such as aforementioned partition coefficient and melting point [66], or molecular descriptors such
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as solvent accessible area. However, due to the difficulty of experimentally measuring solubility

for certain compounds, the experimental data can contain errors up to 1.5 log units [67, 68] and no

less than 0.6 log units [69]. Such a high variability brings challenge to solubility prediction.

Speaking of chemical properties, toxicity is among the most significant ones. Toxicity is a

measure of the degree to which a chemical can adversely affect an organism. These adverse

effects, which are called toxicity endpoints, can be either quantitatively or qualitatively measured

by their effects on given targets. Qualitative toxicity classifies chemicals into toxic and nontoxic

categories, while quantitative toxicity data set records the minimal amount of chemicals that can

reach certain lethal effects. Most toxicity tests aim to protect human from harmful effects caused

by chemical substances and are traditionally conducted in in vivo or in vitro manner. Nevertheless,

such experiments are usually very time consuming and cost intensive, and even give rise to ethical

concernswhen it comes to animal tests for chemical properties. Therefore, computer-aidedmethods,

or in silico methods, have been developed to improve prediction efficiency without sacrificing too

much of accuracy.

1.2 An overview of topological modeling and topological learning

The key to successful predictions of small molecule properties lies on accurate representation

of a given molecule. In fact, geometric representation of molecules, particularly macromolecules,

often involves too much structural details and thus may become intractable for large and complex

biomolecular data sets. On the contrary, topology offers the highest level of abstraction and

truly metric free representations of molecules, although in most cases traditional topology incurs

too much geometric reduction to be practically useful for molecules. Persistent homology bridges

classical geometry and topology, offering a multiscale representation of molecular systems [70, 71].

In doing so, it creates a family of topologies via a filtration parameter, which leads to a one-

dimensional topological invariants, i.e., barcodes of Betti numbers, and Betti-0, Betti-1 and Betti-2

numbers can be physically interpreted as the number of isolated components, circles, and cavities,

respectively. Persistent homology has been successfully applied to the modeling and prediction
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of nano particles, proteins and other biomolecules [72, 73, 74, 75, 76]. Nonetheless, it was found

that primitive persistent homology has very limited predictive power in machine learning based

classification of biomolecules [77], which motivates us to introduce a more sophisticated, element

specific persistent homology (ESPH) to retain crucial biological information during the topological

simplification of geometric complexity [78, 79, 80]. ESPH has found its success in the predictions

of protein-ligand binding affinities [79, 80] and mutation induced protein stability changes [78, 80].

Thus topological tools certainly have the potential when it comes to small molecule modeling.

1.3 An overview of QSAR and machine learning

Quantitative structure activity relationship (QSAR) approach is one of the most popular and

commonly used approaches in cheminformatics modeling. The basic QASR assumption is that

similar molecules have similar activities. Therefore by studying the relationship between chemical

structures and biological activities, it is possible to predict the activities of new molecules without

actually conducting lab experiments. There are several types of algorithms to generate QSAR

models: linear models based on linear regression and linear discriminant analysis [81]; nonlinear

models including nearest neighbor [82, 83], support vector machine [81, 84, 85] and random forest

[86]. These methods have advantages and disadvantages [87] due to their statistics natures. For

instance, linear models overlook the relatedness between different features, while nearest neighbor

method largely depends on the choice of descriptors. To overcome these difficulties, more refined

and advancedmachine learningmethods have been introduced. Multi-task learning (MTL) [88] was

proposed partially to deal with data sparsity problem, which is commonly encountered in QSAR

applications. The idea ofMTL is to learn the so-called “inductive bias” from related tasks to improve

accuracy using the same representation. In other words, MT learning aims at learning a shared and

generalized feature representation frommultiple tasks. Indeed, MT learning strategies have brought

new insights to bioinformatics since compounds from related assays may share features at various

feature levels, which is extremely helpful if data set is small. Successful applications include

splice-site and MHC-I binding prediction [89] in sequence biology, gene expression analysis, and
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system biology [90]. MTL becomes more efficient when it is incorporated with deep learning (DL)

[91, 92] strategies. Deep neural network (DNN), particularly convolutional neural network (CNN),

has emerged as a powerful paradigm to render a wide range of state-of-the-art results in signal and

information processing fields, such as speech recognition [93, 94] and natural language processing

[95, 96], as well as toxicity prediction [97, 98, 99, 100, 101] and aqueous solubility prediction

[102]. The major advancement of DNN models as compared to non-DNN models is that DNN

models consist of a larger number of layers and neurons, making it possible to extract more abstract

features.

1.4 Motivations and objectives

Wewould like to study the descriptive and predictive power of PHandESPH for smallmolecules.

The difficulty of small molecule modeling is that small molecules involve a wide range of chemical

elements and their properties are very sensitive to their chemical constitutions, symmetry and

stereochemistry. Therefore, it is not clear whether PH and ESPH are suitable descriptors for small

molecules.

The objective of this thesis is to explore the representability and predictive power of ESPH

for small molecules, using state-of-the-art machine learning and deep learning algorithms. We

focus on the analysis and prediction of several different small molecule properties, including both

physical and chemical properties. Specifically, we aim to predict partition coefficient, aqueous

solubility and four different toxicity endpoints. Due to their relevance to drug design and discovery,

relatively large data sets have been collected in the literature for these problems, which provides

a way to validate the representability of proposed topological descriptors along with machine

learning algorithms. Certainly, to overcome the difficulty of predicting datasets with small training

set for certain problems, we construct topological learning by integrating ESPH and multitask

deep learning. We show that ESPH provides a competitive description of relatively small drug-like

molecules andMT-DNN architecture is capable of promoting model performances on related tasks.
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CHAPTER 2

TOPOLOGICAL MODELING OF SMALL MOLECULES

In this chapter, we will focus on our approach to biomolecules modeling using topological tools.

First we briefly review the background of persistent homology, then we will introduce the so-called

element specific persistent homology (ESPH) and its modified version. Several concrete examples

will be given to illustrate the motivation and predictive power of ESPH. Lastly the essential idea of

element specific topological descriptors (ESTD) and how ESTDs are computed will be discussed.

2.1 Persistent homology

For atomic coordinates in a molecule, algebraic groups can be defined via simplicial complexes,

which are constructed from simplices, i.e., generalizations of the geometric notion of nodes, edges,

triangles, tetrahedrons, etc. Homology associates a sequence of algebraic objects to topological

spaces, and characterizes the topological connectivity of geometric objects in terms of topological

invariants, i.e., Betti numbers. Betti-0, Betti-1 and Betti-2, represent the number of isolated

connected components, rings and cavities respectively. A filtration parameter, such as the radius of

a ball, is used to continuously vary over an interval so as to generate a family of structures. Loosely

speaking, the corresponding family of homology groups induced by the filtration is a persistent

homology. The variation of the topological invariants, i.e., Betti numbers, gives rise to a unique

characterization of physical objects such as protein complex and small molecules.

Simplex Let u0, u1, . . . , uk be a set of points in Rd . A point x =
∑k

i=0 λiui is called an affine

combination of the ui if
∑k

i=0 λi = 1. The k + 1 points are said to be affinely independent, if and

only if ui − u0, 1 ≤ i ≤ k are linearly independent. We can find at most d linearly independent

vectors and at most d + 1 affinely independent points in Rd .

An affine combination, x =
∑k

i=0 λiui is a convex combination if λi are nonnegative. A k-

simplex, which is defined to be the convex hull (the set of convex combinations) of k + 1 affinely
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independent points, can be formally represented as

σ =

{ k∑
i=0

λiui |
∑

λi = 1, λi ≥ 0, i = 0, 1, ..., k

}
, (2.1)

where {u0, u1, ..., uk } ⊂ R
d is a set of affinely independent points. Examples of k-simplex for the

first few dimensions are shown in Figure 2.1. Essentially, a 0-simplex is a vertex, a 1-simplex is an

edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. A face τ of σ is the convex hull of

(a) 0-simplex (b) 1-simplex (c) 2-simplex (d) 3-simplex

Figure 2.1: Examples of simplex of different dimensions. (a), (b), (c) and (d) above represent
0-simplex, 1-simplex, 2-simplex, and 3-simplex, respectively.

a non-empty subset of ui and is proper if the subset does not contain all k + 1 points. Equivalently,

we can write as τ ≤ σ if τ is a face or σ, or τ < σ if τ is proper. The boundary of σ, is defined to

be the union of all proper faces of σ.

Simplicial complex A simplicial complex is a finite collection of simplices K such that σ ∈ K

and τ ≤ σ implies τ ∈ K , and σ, σ0 ∈ K implies σ ∩ σ0 is either empty or a face of both. The

dimension of K is defined to be the maximum dimension of its simplices.

Chain complex Given a simplicial complex K and a constant p as dimension, a p-chain is a

formal sum of p-simplices in K , denoted as c = aiσi. Here σi are the p-simplices and the ai are

the coefficients, mostly defined as 0 or 1 (module 2 coefficients) for computational considerations.

Specifically, p-chains can be added as polynomials. If c0 =
∑

aiσi and c1 =
∑

biσi, then

c0 + c1 =
∑
(ai + bi)σi, where the coefficients follow Z2 addition rules. The p-chains with the

previously defined addition form an Abelian group and can be written as (Cp,+). A boundary
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operator of a p-simplex σ is defined as

∂pσ =

p∑
j=0
(−1) j[u0, u1, ..., û j, ..., up], (2.2)

where [u0, u1, ..., û j, ..., up] means that vertex u j is excluded in computation. Given a p-chain

c = aiσi, we have ∂pc =
∑

ai∂pσi. Notice that ∂p maps p-chain to {p−1}-chain and that boundary

operation commutes with addition, a boundary homomorphism ∂p : σp → σp−1 can be defined.

The chain complex can be further defined using such boundary homomorphism as following:

· · · −−−−→ Cp+1
∂p+1
−−−−→ Cp

∂p
−−−−→ Cp−1

∂p−1
−−−−→ · · ·

∂1
−−−−→ C0

∂0
−−−−→ 0. (2.3)

Cycles and boundaries A p-cycle is defined to be a p-chain c with empty boundary (∂pc = 0),

and the group of p-cycles of K is denoted as Zp = Zp(K). In other words, Zp is the kernel of the

p-th boundary homomorphism, Zp = ker ∂p. A p-boundary is a p-chain, say c, such that there

exists d ∈ Cp+1 and ∂pd = c, and the group of p-boundaries is written as Bp = Bp(K). Similarly,

we can rewrite Bp as Bp = im∂p+1 since the group of p-boundaries is the image of the (p + 1)-st

boundary homomorphism.

Homology groups The fundamental lemma of homology says that the composition operator

∂p ◦ ∂p+1 is a zero map [103]. With this lemma, we conclude that im∂p+1 is a subgroup of ker ∂p.

Then the p-th homology group of simplicial complex is defined as the p-th cycle group modulo the

p-th boundary group,

Hp = Zp/Bp (2.4)

and the p-th Betti number is the rank of this group, βp = rankHp. Geometrically, Betti numbers

can be used to describe the connectivity of given simplicial complexes. Intuitively, β0, β1 and β2

are numbers of connected components, tunnels, and cavities, respectively, for the first few Betti

numbers.
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Filtration and persistence A filtration of a simplicial complex K is a nested sequence of sub-

complexes of K .

� = K0 ⊆ K1 ⊆ ... ⊆ Kn = K . (2.5)

For each i ≤ j, there exists an inclusionmap from Ki to K j and therefore an induced homomorphism

f i, j
p : Hp(Ki) → Hp(K j) for each dimension p. The filtration defined in Equation (2.5) thus

corresponds to a sequence of homology groups connected by homomorphisms.

0 = Hp(K0) → Hp(K1) → · · · → Hp(Kn) = Hp(K) (2.6)

for each dimension p. The p-th persistent homology groups are defined as the images of the

homomorphisms induced by inclusion,

Hi, j
p = im f i, j

p (2.7)

where 0 ≤ i ≤ j ≤ n. In other words, Hi, j
p contains the homology classes of Ki that are still alive

at K j for given dimension p and each pair i, j. We can reformulate the p-th persistent homology

group as

Hi, j
p = Zp(Ki)/

(
Bp(K j) ∩ Zp(Ki)

)
. (2.8)

The corresponding p-th persistent Betti numbers are the ranks of these groups, βi, j
p = rankHi, j

p .

The birth, death and persistence of a Betti number carry important chemical and/or biological

information, which is the basics of the present method.

2.2 Persistent homology for characterizing molecules

As introduced before, persistent homology indeed reveals long lasting properties of a given

object and offers a practical method for computing topological invariants of a space, which captures

the underlying features of the object directly from discrete point cloud data. An intuitive way to

construct simplicial complex from point cloud data is to adopt Euclidean distance, or to useVietoris-

Rips complex with Euclidean distance. Vietoris-Rips complex is defined to be a simplicial complex

whose k-simplices correspond to unordered (k + 1)-tuples of points which are pairwise within

distance ε .
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However, a particular radius ε is not sufficient since it is difficult to see if a hole is essential.

Therefore, it is necessary to increase radius ε systematically, and see how the homology groups

and Betti-numbers evolve. The persistence [103, 71] of each Betti number over the filtration

can be recorded in barcodes [104, 105]. The persistence of topological invariants observed from

barcodes offers an important characterization of small molecular structures. For instance, given

the 3D coordinates of a small molecule, a short-lived Betti-0 bar may be the consequence of a

strong covalent bond while a long-lived Betti-0 bar can indicate a weak covalent bond. Similarly,

a long-lived Betti-1 bar may represent a chemical ring.

Such observations motivate us to design persistent homology based topological descriptors

(TDs). However, it is important to note that the filtration radius is not a chemical bond and

topological connectivity is not a physical relationship. In other words, persistent homology offers

a representation of molecules that is entirely different from classical theories of chemical and/or

physical bonds. Such a representation is systematical and comprehensive, and thus is able to unveil

structure-activity relationships when it is coupled with advanced machine learning algorithms.

An example of PH Figure 2.2 is a detailed example of how persistent homology can be applied

to a simple molecule – cyclohexane. An all-element representation of cyclohexane is given in Fig

2.2a, where carbon atoms are in green and hydrogen atoms are in white. As we can see from its

barcodes in Fig. 2.2c, there are 18 Betti-0 bars that correspond to 18 atoms at the very beginning,

12 of which disappear when the filtration value increases to 1.08Å. It indicates that each carbon

atom has merged with its closest 2 hydrogen atoms as the filtration value becomes larger than the

length of C-H bond and these three atoms are regarded as one single connected component. When

the filtration value further increases to 1.44Å, a Betti-1 bar emerges which means that a hexagonal

carbon ring is captured and there is only one connected component left. As the filtration value

eventually exceeds the radius of the hexagon, the ring structure disappears and the Betti-1 bar dies.

The longest Betti-0 bar corresponds to the existence of the connected component. When only

carbon atoms are selected, it is relatively straightforward to interpret the barcode plot. The cutoff
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where 5 Betti-0 bars disappear corresponds to the C-C bond length and the Betti-1 bar represents

the existence of the hexagonal carbon ring.

(a) Cyclohexane (b) Cyclohexane with only carbon atoms

(c) Barcodes of cyclohexane (d) Barcodes of cyclohexane with only carbon atoms

Figure 2.2: Different representations of cyclohexane and their persistent homology barcode plots.
In subfigure(a) and (b), complete cyclohexane and cyclohexane with only carbon atoms being
selected, respectively. In subfigure (c) and (d), from top to bottom, the results are for Betti-0 and
Betti-1, respectively.

2.3 Element specific persistent homology (ESPH)

2.3.1 Limitations of persistent homology

Persistent homology, as discussed before, is efficient at characterizing covalent bonding or chemical

structures of higher dimensions. Nevertheless, such information is not sufficient under most

circumstances, especially for small molecules. For instance, it is not possible to distinguish a

carbon-nitrogen ring from a all-carbon ring as primitive persistent homology can only capture the
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persistence of a Betti-1 bar whereas there is no indication whether a nitrogen atom exists. Figure 2.3

shows why primitive persistent homology has limitations when dealing with some small molecules

of similar structures.

(a) Benzene (b) Pyridine

(c) Barcodes of benzene (d) Barcodes of pyridine

Figure 2.3: Benzene, pyridine and their persistent homology barcode plots. In subfigure(a) and (b),
benzene and pyridine are shown with hydrogen atoms being neglected, respectively. In subfigure
(c) and (d), from top to bottom, the results are for Betti-0 and Betti-1, respectively, for benzene and
pyrdine.

As shown in Fig 2.3a and Fig 2.3b, both benzene and pyridine have a hexagonal ring except

that pyridine has a nitrogen atom. From primitive persistent homology point of view, there is no

difference between these two molecules except a slight difference between the lengths of Betti bars

– the Betti-1 bar of benzene has length 1.08 Åwhile pyridine’s Betti-1 bar has length 0.96 Å– which

is caused by the fact that the carbon-carbon bond is generally longer than carbon-nitrogen bond.

However, Fig 2.3c and Fig 2.3d follow a very similar pattern. Both barcodes contain 6 Betti-0

bars and 1 Betti-1 bar, and it is nearly impossible for us to distinguish these two molecules purely
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from barcodes calculated from their structures. Therefore it is necessary for us to introduce the

idea of ESPH, where persistent homology is computed based on different combinations of specific

element types.

2.3.2 An introduction to ESPH

An example of ESPH representation Figure 2.4 depicts how ESPH modeling can be applied to

small molecules. In the following case, indazole (PubChem id: 9221) is chosen. For simplicity,

hydrogen atoms are neglected. Apparently there are two chemical rings within the indazole

molecule - one hexagonal carbon ring and one pentagonal carbon-nitrogen ring.

(a) C representation of indazole (b) C-N representation of indazole

(c) Barcodes of the C representation (d) Barcodes of the C-N representation

Figure 2.4: Indazole and its persistent homology barcodes. In subfigure(a) and (b), indazole is
shown with carbon and carbon-nitrogen atoms selected, respectively. In subfigure (c) and (d), from
top to bottom, the results are for Betti-0 and Betti-1, respectively

Mathematically if we ignore element types, there are two 1-simplices (loops) for indazole.

We have to notice, however, that the properties of these two rings are dramatically different and
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they have to be handled very carefully. Thus if only carbon atoms are selected, we can observe 7

Betti-0 bars and 1 Betti-1 bar, which correspond to 7 carbon atoms and the hexagonal carbon ring,

respectively. While carbon and nitrogen atoms are selected, there are 9 Betti-0 bars, 1 short Betti-1

bar and 1 longer Betti-0 bar. By comparing these two barcodes, we may conclude the following:

• The difference between number of Betti-0 bars represents the number of nitrogen atoms (2

nitrogen atoms).

• There exists a carbon-nitrogen ring, and its size is smaller than the previous carbon ring.

Notice that the carbon-nitrogen ring is not captured when only carbon atoms are selected,

and its Betti-1 bar is shorter than the other Betti-1 bar that corresponds to the carbon ring.

If we further consider the length of Betti-0 and Betti-1 bars, it is possible for us to find out the

length of chemical bonds. For example, in Fig 2.4a, the length of the 6 shorter Betti-0 bars is 1.32

Å and it indicates that the carbon-carbon bond has length 1.32 Å for this particular molecule,

while generally the length of carbon-carbon bonds falls within the range 1.20 Å– 1.54 Å [106].

Thus it is reasonable to apply ESPH to a wider range of applications, especially when bond lengths

and number of Betti bars are taken into account.

2.4 Modified ESPH for characterizing intra-molecular interactions

Another important component of ESPH is the filtration matrix that defines the distance in

persistent homology analysis. Traditionally, the distance between atom i at (xi, yi, zi) and atom j at

(x j, y j, z j) is defined to be the Euclidean distance between them:

di, j =
√
(xi − x j)2 + (yi − y j)2 + (zi − z j)2. (2.9)

Indeed, by using Euclidean distance defined in Eq. 2.9, persistent homology is able to capture

the information such as covalent bonds between different atom types easily. However, it does

not necessarily reflect intramolecular interactions such as hydrogen bonding and van der Waals

interaction, which is not ideal for the purpose of small molecule modeling. In other words,

the Betti-0 bar between two atoms with certain hydrogen bonding or van der Waals cannot be
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captured since there already exists shorter Betti-0 bar between them (essentially covalent bonds).

To circumvent such deficiencies, we redefine the distance between atom i and atom j to be:

Mi, j =


di, j, if di, j ≥ ri + r j + |∆d |

d∞, otherwise,
(2.10)

where ri and r j are the atomic radius of atom i and j, respectively. Here ∆d is the bond length

deviation in the data set and d∞ is a large number which is set to be greater than the maximal

filtration value. Since the distance between two atoms with covalent bonds can never exceed the

preset maximum filtration value, we are able to use such modified ESPH to capture important

intramolecular interactions, since covalent bonds can never be built.
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CHAPTER 3

MACHINE LEARNING METHODS AND ALGORITHMS

In this chapter, we will give an overview of machine learning algorithms and multi-task deep

learning architectures used in this study.

3.1 An overview of machine learning algorithms

The concept of machine learning was first proposed by Arthur Samuel [107]. Machine learning

algorithms can learn from and make predictions on given data, and have the potential to overcome

complicated computational problems when explicit solutions are difficult to determine.

Basically speaking, machine learning algorithms can be classified into three different categories

– supervised learning, unsupervised learning and reinforcement learning. The features of each

category can be summarized below:

• Supervised learning: Each sample data in training set consists of a target value (categorical

for classification and continuous for regression) and a given set of (independent) descriptors.

The purpose of supervised learning is to learn a function that map inputs to desired outputs.

The training process continues until the model reaches a predefined level of accuracy on the

training data.

• Unsupervised learning: The difference between unsupervised learning and supervised learn-

ing is that there is no target value for each training sample and there is no evaluation of

the accuracy of output. The purpose of unsupervised learning is to perform clustering for

population in different groups.

• Reinforcement learning: Reinforcement learning is trained to make specific decisions and

is typically formulated as Markov decision process. During learning process, correct in-

put/output pairs are never presented, nor sub-optimal actions are explicitly corrected. The

machine is exposed to an environment where it trains itself continually using trial and error,
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and eventually finds a balance between exploration (of uncharted territory) and exploitation

(of current knowledge) [108].

In this thesis, small molecule properties to be predicted are all quantitative, therefore wewill employ

supervised learning algorithms to perform training and testing. More precisely, ensemble methods

and supervised deep neural networks will be discussed in the next sections.

3.2 Ensemble methods

In this section, we will first review decision tree induction. Then we will also introduce several

ensemble methods that are essentially based on decision tree algorithms, including both random

forests and gradient boosting decision tree algorithms.

3.2.1 Decision tree induction

3.2.1.1 Basics of decision tree induction

For a decision tree model, there are three types of nodes: root node, internal nodes, and terminal

nodes. The model solves problem by answering a series of questions at each node and returns a

conclusion when a terminal node is reached.

Hunt’s algorithm Hunt’s algorithm [109] is the basis of many existing decision tree induction

algorithms, where a decision tree is grown in a recursive fashion by partitioning the training records

into successive subsets. A general procedure for Hunt’s algorithm is described below:

1. If Dt contains records that belong the same class yt , then t is a leaf node labeled as yt

2. If Dt contains records that belong to more than one class, an attribute test condition is used

to split records into smaller subset. The procedure continues until all the records in the subset

belong to the same class.
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Attribute test condition As mentioned in previous paragraph, there are different attribute test

conditions depending on attribute types. For instance, binary attributes output two potential

outcomes, while continuous attributes use comparison test to express the test condition. Thus it is

of great significance to select proper measures to evaluate different splits at each node.

Measures for selecting best split The measures for selecting the best split are based on the

degree of impurity of the child nodes. Generally for classification tasks, some typical measures

include:

Entropy(t) = −
c−1∑
i=0

p(i |t) log2 p(i |t) (3.1)

Gini(t) = 1 −
c−1∑
i=0
[p(i |t)]2 (3.2)

Information Gain(t) = Entropy(t) − weighted entropy of t′s child nodes (3.3)

where t is a node of the decision tree, c is the number of classes, p(i |t) is the probability, and

weighted entropy of all child nodes of node t can be calculated as the weighted average of child

node entropies where the weight of each child node is the number of records at that child node

divided by the number of records at the parent node c. To select the best split, impurity measures

for each candidate split are calculated and the best split can be chosen from all candidates.

For regression tasks, variance reduction can be used to split nodes. A commonly used measure

for variance reduction is analogous to information gain for classification in Eq. 3.3, and can be

written as:

Variance Reduction(t) = Variance(t) − weighted variance of t′s child nodes (3.4)

The weight is calculated in the same way as that of information gain.

Pruning of decision tree Decision trees, however, are often susceptible to overfitting, in the sense

that trained decision trees are so closely fit to training data that models can result in substantial
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errors for unseen data as training data usually has some degree of error or random noise within it.

Pruning is a strategy to reduce the size of decision tree.

One way to perform pruning is to apply early stopping rule during tree-training process.

Specifically, the node stops expanding to child nodes when the observed gain in impurity measure

falls below a predefined threshold, which helps to avoid constructing overly complicated subtrees

that may cause overfitting issues [109]. However, the threshold is difficult to determine [109].

The other strategy is to perform post-training pruning. This can be done by replacing a subtree

with 1) a new child node whose class is determined by majority class of records associated with

the subtree, or 2) the most frequently used branch of the subtree. The pruning process stops until

no further improvement can be observed.

3.2.2 Random forest

Random forest is an ensemble machine learning algorithm that can be used for regression and

classification. It learns training data by constructing a multitude of decision trees, and returns

prediction by averaging the outputs of individual trees (regression) or by taking the majority vote

of individual trees (classification). Typically random forest does not overfit the training data and

it is capable of reducing variance while maintaining the same level of bias [110] when compared

with traditional decision tree models.

3.2.2.1 Bootstrap aggregating

Random forest takes advantage of the bootstrap aggregating techniques when building individual

tree learners. Given a training set {(xi, yi)}
n
i=1 and the number of trees N , a bootstrap aggregating

process is to repeatedly select a random sample S( j) with replacement from the training set and

fit each sample with individual tree f j ( j = 1, . . . , N). Eventually for regression problems, the

prediction f̂ for any unknown data x′ shall be given by:

f̂ =
1
N

N∑
j=1

f j(x
′) (3.5)
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For classification problems, the predicted class f̂ is the class that the majority of trees vote for.

3.2.2.2 Feature bagging

Random forest algorithm differs from the aforementioned bootstrap aggregating technique except

that a random feature subset is used for tree splitting in random forest, or in other words, feature

bagging is used to determine best splits.

3.2.3 Gradient boosting decision tree

3.2.3.1 Gradient boosting algorithm

Gradient boosting algorithm was first observed by Leo Breiman [111], and was subsequently

developed by Friedman [112]. Gradient boosting algorithm can also be viewed as a iterative

functional gradient descent algorithm [113, 114]. The idea of this algorithm is to iteratively find a

series of weighted weak learners and eventually form a strong learner which can be expressed as

the summation of weak learners.

3.2.3.2 Gradient tree boosting

Gradient tree boosting is a combination of aforementioned gradient boosting and decision trees of

fixed size. Specifically decision trees are used as base learners to fit pseudo-residuals hm(x) at each

iteration step m.

3.3 Multi-task learning and deep neural network

3.3.1 Single-task deep neural network (ST-DNN)

A neural network acts as a transformation that maps an input feature vector to an output vector. It

essentiallymodels theway a biological brain solves problemswith numerous neuron units connected

by axons. A typical shallow neural network consists of a few layers with neurons and uses back

propogation to update weights on each layer. However, it is not able to construct hierarchical
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features and thus falls short in revealing more abstract properties, which makes it difficult to model

complex non linear relationships.

A single-task deep learning algorithm, compared to shallow networks, has a wider and deeper

architecture – it consists of more layers and more neurons in each layer and reveals the facets of

input features at different levels. Single-task deep learning algorithm is defined for each individual

prediction task and only learns data from the specific task. A representation of such single task

deep neural network (ST-DNN) can be found in Figure 3.1, where n represents the number of layers

of a given ST-DNN, ki and Nki (i = 1, . . . , n) is the number of neurons and node of i-th hidden

layer, respectively.

Generally speaking, the objective of such a ST-DNN is to minimize a given loss function, which

is essentially based on problems that one is trying to solve – such a loss function can be defined as

cross-entropy loss function for a multi-class classification problem, or mean squared error function

for a regression problem.

Raw data Input vector
of equal length

...
...

...
... Predictions

N1

Nk1

N1

Nk2

N1

Nkn−1

N1

Nkn

Datasets Input Dense Dense Dense Dense Output
layer layer 1 layer 2 layer n-1 layer n layer

Figure 3.1: An illustration of ST-DNN architecture.

3.3.1.1 Multi-task deep neural network

Multi-task learning is a machine learning technique which has shown success in various fields. The

main advantage of MT learning is to learn multiple tasks simultaneously and exploit commonalities

as well as differences across different tasks. Another advantage of MT learning is that a small data
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set with incomplete statistical distribution to establish an accurate predictive model can often be

significantly benefited from relatively large data sets with more complete statistical distributions.

Suppose we have a total ofT tasks and the training data for the t-th task are denoted as (xt
i, y

t
i )

Nt
i=1,

where t = 1, . . . ,T , i = 1, . . . , Nt , Nt is the number of samples of the t-th tasks, with xt
i and yt

i being

the topological descriptor vector that consists of ESTDs and the target value of the i-th molecule

in t-th task, respectively. The goal of MTL is to minimize the following loss function for all tasks

simultaneously:

argmin
Nt∑
i=1

L(yt
i , f t(xt

i ; {W
t, bt})) (3.6)

where f t is a functional of the topological descriptor vector xt
i parametrized by a weight vector Wt

and bias term bt , and L is the loss function. A typical cost function for quantitative regression is

the mean squared error, thus the loss of the t-th task can be defined as:

Loss of Task t =
1
2

Nt∑
i=1

L(xt
i, y

t
i ) =

1
2

Nt∑
i=1
(yt

i − f t(xt
i ; {W

t, bt})2 (3.7)

To avoid overfitting problem, it is usually beneficial to customize above loss function (3.7) by

adding a regularization term on weight vectors, giving us an improved loss function for t-th task:

Loss of Task t =
1
2

Nt∑
i=1
(yt

i − f t(xt
i ; {W

t, bt})2 + β | |Wt | |22 (3.8)

where | | · | | denotes the L2 norm and β represents a penalty constant.

The goal of topology based MTL is to learn different small molecule properties jointly, and to

potentially improve the overall performances of multiple models simultaneously. More concretely,

it is reasonable to assume that different small molecules comprise distinct physical/chemical fea-

tures, while descriptors such as the occurrence of certain chemical structure, can result in similar

physical/chemical properties. A simple representation ofmultitask deep neural network (MT-DNN)

for our study is shown in Figure 3.2, where ki (i = 1, . . . , n) represents the number of neurons on

the i-th hidden layer, Nki are neurons on i-th layer, and Prd1, . . . , Prdt represent predicted values

for t different tasks.
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Figure 3.2: An illustration of MT-DNN architecture.

3.3.1.2 Network parameters and training

The hyperparameters tuning of DNN is known to be very complicated. In order to come up with

a reasonable set of hyperparameters, we perform a grid search of each hyperparameter within a

wide range. Hyperparameters in Table 3.1 are chosen so that we can have a reasonable training

speed and accuracy. It turns out that adding dropout or L2 decay does not necessarily increase

the accuracy and as a consequence we omit these two techniques. The underlying reason may be

that the ensemble results of different DNN models is essentially capable of reducing bias from

individual predictions. A list of hyperparameters used to train all models can be found in Table 3.1

Table 3.1: Proposed hyperparameters for MT-DNN

Number of epochs 1000
Number of hidden layers 7

Number of neurons on each layer 1000 for first 3 layers, and 100 for the next 4 layers
Optimizer ADAM

Learning rate 0.001

In each training epoch, molecules in each training set are randomly shuffled and then divided

into mini-batches of size 200, which are then used to update parameters. When all mini-batches are

traversed, an training “epoch" is done. All the training processes were done using Keras wrapper

[115] with Theano (v0.8.2) [116] as the backend. All training were run on Nvidia Tesla K80 GPU

and the approximate training time for a total of 1000 epochs is about 80 minutes.
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3.4 Pipelines for predicting properties of small molecules using MT-DNN

In this section, we provide graphical pipelines for predicting properties of small molecules to

help readers understand how our MT-DNN architecture works along with ESPH. In Fig. 3.3, a gen-

eral procedure for predicting log P and log S simultaneously is presented. Given any molecule, we

use ESPH to extract information such as intra-molecular interactions and geometrical connections

from the molecule and construct ESTDs accordingly. Notice that the numbers of ESTDs for each

molecule are the same, thus they can be directly fed into a MT-DNN architecture, where joint tasks

can be learned and predicted simultaneously.

Figure 3.3: Graphical pipeline for simultaneous prediction of partition coefficient and aqueous
solubility
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3.5 Ranking, query construction and prediction using nearest neighbors

The algorithms in this section are specifically used for solvation free energy, as a continuation

work of Ref [4]. A generally procedure for solvation free energy prediction can be summarized

below:

1. Molecules in training set are divided into different queries based on element types, and

molecules are ranked within each query.

2. Given any molecule in test set, first determine the query that the molecule belongs to, then

use trained models to determine the order of the molecule within that specific query.

3. Finally, a predefined number of nearest neighbors (molecules) based on the ranking are

selected and used for solvation free energy prediction of the target molecule.

3.5.1 Ranking algorithms

The essentially idea of ranking algorithms is to train a list of data points with some partial orders

(either numerical or ordinal scores) so that the learners are able to predict the order of an unseen

item with respect to the training data. Apparently if we use solvation free energy as a numerical

score for each small molecule, the ranking algorithm can be directly applied to solvation free energy

prediction. In this study, GBDT is used to rank a list of molecules.

3.5.2 Query construction

Query construction is an essential step for accurate prediction of solvation free energy. We follow

the same principle in Ref [117]. Basically, seven groups of molecules are constructed according

to element types: i) H, C; ii) H, C, O; iii) H, C, N/H, C, N, O; iv) H, C, Cl; v) H, C, O, Cl; vi)

H, S; and vii) anything else, respectively. Detailed information of different queries can be found in

Appendix.
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3.5.3 Prediction using nearest neighbors

After a given molecule is fed into trained models and the order of the molecule within the query is

returned, we select a number of nearest neighbors to predict its solvation free energy. Let m be the

number of nearest neighbors. The purpose of local linear regression is to determine a weight vector

w := (w1, . . . ,wn)
T and bias b, such that the training error on nearest neighbors can be minimized.

Mathematically, the problem can be formulated in matrix multiplication form:

©«

∆G1

∆G2
...

∆Gm

ª®®®®®®®®¬
=

©«

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

...

xm1 xm2 · · · xmn

ª®®®®®®®®¬

©«

w1

w2
...

wn

ª®®®®®®®®¬
+

©«

b

b
...

b

ª®®®®®®®®¬
. (3.9)

or equivalently

∆G = Xw + b1, (3.10)

where ∆G = (∆G1,∆G2, · · · ,∆Gm)
T are experimental solvation free energy for m nearest neigh-

bors, w = (w1,w2, · · · ,wn)
T , 1 is a column unit vector of length m, and matrix X contain descriptor

vector for these m nearest neighbors and is written as:

X =

©«

x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
...

...

xm1 xm2 · · · xmn

ª®®®®®®®®¬
.

Since m is relatively small comparing to n, such local linear model is likely to overfit. Thus a

L2 penalty term can be added to training error, and thus Eq. (3.10) can be viewed as the following

optimization problem

arg min
w,b

(
| |∆G − Xw − b1| |22 + λ | |w| |

2
2

)
(3.11)

where λ is the regularization parameter, which is set to 1000 in this work, | | ∗ | |2 denotes the L2

norm of the quantity ∗.
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Let ∂F
∂w = 0, a direct computation returns:

w =
(
XTX + λI

)−1 (
XT
∆G − XT (b1)

)
, (3.12)

where I is m × m identity matrix.

Similarly, if we relax b1 to arbitrary vector b = (b1, b2, · · · , bm)
T and let ∂F

∂b = 0, we have

b = ∆G − Xw. (3.13)

Thus the unbiased estimation of b can be written as

b =

∑m
i=1(∆G − Xw)i

m
, (3.14)

where (∆G − Xw)i is the ith component of the vector ∆G − Xw.

With Eq. 3.12 and Eq. 3.14, we may solve the optimization problem 3.11 in an iterative manner.

The iteration continues until the solution converges.

Let x′ = (x′1, . . . , x′n) be the descriptor vector of the target molecule and ∆Ĝ be its predicted

solvation free energy, we can now compute the solvation free energy of target molecule as below

in Eq. 3.15, using w and b calculated from previous steps.

∆Ĝ = x′w + b (3.15)
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CHAPTER 4

DATA SETS, PREPROCESSING AND DESCRIPTORS

In this chapter, we first introduce the data sets used to train and test quantitative models. Second,

detailed descriptions of data preprocessing techniques for small molecules are discussed. Finally,

we propose a variety of molecular descriptors, including element specific topological descriptors

(ESTDs), physical descriptors and auxiliary descriptors. A detailed description of how they are

calculated will also be provided.

4.1 Data sets

4.1.1 Solvation free energy

In an earlier work [4], a data set that contains a total of 668 molecules was proposed and it is the

largest for solavtion free energies to the best of our knowledge. The data set contains both mono-

functional group and polyfunctional group molecules. Experimental solvation free energies are

collected from the literature [118, 119, 120]. All the structures of this dataset are downloaded from

the PubChem project (https://pubchem.ncbi.nlm.nih.gov/). More detailed description of

the dataset can be found in our earlier work [4].

SAMPL (Statistical Assessment of theModeling of Proteins and Ligands) is a set of community-

wide blind challenges aimed to advance computational techniques as standard predictive tools in

rational drug design [121, 122, 123, 124, 125]. One major subject of SAMPL challenge for bind

prediction is to predict solvation free energy for small molecules. In order to check how our models

perform comparing to others’, we make sure that all molecules of SAMPL0, SAMPL1, SAMPL2,

SAMPL3 and SAMPL4, except for 5-iodouracil in SAMPL2, are properly processed and predicted.

By excluding the SAMPLx molecules from the training set, we can use the remaining molecules

from the 668 training set to independently predict the solvation free energy for SAMPLxmolecules.

Moreover, we are also interested in knowing how our descriptors and algorithms can be extended
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to other datasets. An external dataset [1] is used for validation purpose. Wang et al. [1] first

introduced this dataset to evaluated their weighted solvent accessible surface areas based models.

In Model III, the authors further divided 387 molecules (which exclude ions) into a training set

(293) and a test set (94). In our study, a slightly smaller training set of 289 molecules is used

because 4 molecules in the training set have ambiguous chemical names in the PubChem database,

while all molecules in the test set are included in our prediction which enables us to compare to

theirs on equal footing.

It should be noted that there exist discrepancies in experimental solvation free energies for some

molecules in Ref [1] and the 668 set [4]. When such discrepancies occur, the experimental values

reported by Wang et al [1] are used for training and testing in the above comparison. It should be

noted that most experimental value differences are within a very small range. Only 23 differences

are greater than 0.2 kcal/mol and 5 out of these 23 molecules are in the test set. These 5 compounds

and their experimental values corresponding to Table 3 of Wang et al [1] are listed in Table 4.1.

Additionally, 4 molecules listed in the training set of Ref. [1] are excluded in our training due to

their absence of structures in PubChem. These 4 molecules have compound ID of 363, 364, 385

and 388 in Table 3 of Ref. [1].

Table 4.1: Molecules in the test sets with large discrepancies in their experimental solvation free
energies. Here “ID” refers to the ID of Table 3 of Ref. [1]

ID Exp1 [1] Exp2 [4]
46 0.29 0.01
67 -3.15 -3.4
97 -0.78 -1.73
103 -0.64 -1.4
352 -4.71 -5.22

Moreover, we have also noticed that there are 11 duplicates in the training set and the test set of

Ref. [1]. Their compound IDs and duplicated IDs (Dup-IDs) in the Table 3 of Ref. [1] are listed in

Table 4.2. Molecules that are in the test set are marked with a superscript “b” to be consistent with

the notation of Ref. [1]. Finally, we provide information about all datasets used for solvation free

energy prediction in Table 4.3
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Table 4.2: Duplicated molecules in Ref. [1]

ID Dup-ID ID Dup-ID
104b 119 333b 335
334b 336 384b 389
161b 202 82b 84
140b 142 184b 194
97b 116 58b 59
196b 203

Table 4.3: Statistics of solvation free energy data sets. The numbers within parenthesis represent
the actual numbers of molecules used in this study.

Number of molecules Number of molecules
SAMPL0 set 17 Wang’s[1] train set 293 (289)
SAMPL1 set 63 Wang’s[1] test set 94
SAMPL2 set 30 (20)
SAMPL3 set 36
SAMPL4 set 47

4.1.2 Partition coefficient and aqueous solubility

The primary work of this thesis is to explore the proposed topology based multi-task methods for

learning related tasks. Thus data sets can naturally be divided into two parts – one for partition

coefficient prediction and the other for aqueous solubility prediction.

Partition coefficient data sets The training set used for partition coefficient prediction was

originally compiled by Cheng et al. [5] and consists of 8199 compounds, which is based on

Hansch et al.’s compilation [126]. These compounds are considered to have reliable experimental

log P values by Hansch (marked with * or checkmark). In addition, three sets were chosen as

test sets. The first test set, which is completely independent from the training set, contains 406

small-molecule organic drugs approved by the Food and Drug Administration (FDA) of the United

States and represents a variety of organic compounds of pharmaceutical interests. This set was also

compiled by Cheng et al. [5]. The remaining two test sets, Star set and Non-star set, were publicly

available and originated from a monograph of Avdeef [127]. Star set comprises 223 compounds

that are part of BioByte Star set and have been widely used to develop log P prediction method.
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The Non-star set contains 43 compounds that represent relatively new chemical structures and

properties. The compound list and corresponding partition coefficient is available for download

at http://ochem.eu/article/17434. We also made an attempt to expand our training set

by searching the NIH database as other software packages use a large number of molecules for

supervised learning. In this way, more than 3000 additional molecules were added to the training

set.

Aqueous solubility data sets In order to develop and validate prediction models for aqueous

solubility, several well-defined aqueous solubility datasets were used. Firstly, a diverse data set of

1708molecules proposed byWang et al. [128]was used to verify the predictive power of descriptors.

Both leave-one-out and 10-fold cross-validation were carried out on this set. Furthermore, we also

tested our models on a relatively small set with independent test sets [3]. As Hou [3] suggested, we

also removed some molecules from the training set to ensure that training set and test set have no

overlapping molecules.

In addition, two more widely used, publicly available solubility data sets are also used to train

and evaluate our models. The first set is the ‘small’ Delaney data set [129] that contains 1144

molecules and their measured aqueous solubility (log mol/L at 25 degree Celcius. The second

set was originally built by Huuksonen [130] from AQUASOL database [131] and PHYSPROP

database [132]. It consists of 1026 organic molecules with their aqueous solubility in log mol/L at

20-25 degree Celcius.

A summary of data sets used for the proposed models is given in Table 4.4.

Table 4.4: Summary of log P and log S data sets used

logP data Number of molecules logS data Number of molecules
logP train set 8199 logS train set 1 [128] 1708
FDA test set 406 logS train set 2 [3] 1290 (1207 for test set 2)
Star test set 223 logS test set 1 [3] 21

Nonstar test set 43 logS test set 2 [3] 120
Huuskonen logS set 1033 (1030)

Small delaney logS set 1144 (1135)
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4.1.3 Quantitative toxicity endpoints

Four different quantitative toxicity datasets, anmely, 96 hour fathead minnow LC50 data set (LC50

set), 48 hour Daphnia magna LC50 data set (LC50-DM set), 40 hour Tetrahymena pyriformis

IGC50 data set (IGC50 set), and oral rat LD50 data set (LD50 set), are studied in this work. Among

them, LC50 set reports at the concentration of test chemicals in water in mg/L that causes 50%

of fathead minnow to die after 96 hours. Similarly, LC50-DM set records the concentration of

test chemicals in water in mg/L that causes 50% Daphnia maga to die after 48 hours. Both sets

were originally downloadable from the ECOTOX aquatic toxicity database via web site http:

//cfpub.epa.gov/ecotox/ and were preprocessed using filter criterion including media type,

test location, etc [133]. The third set, IGC50 set, measures the 50% growth inhibitory concentration

of Tetrahymena pyriformis organism after 40 hours. It was obtained from Schultz and coworkers

[134, 135]. The endpoint LD50 represents the amount of chemicals that can kill half of rates when

orally ingested. The LD50 was constructed from ChemIDplus databse (http://chem.sis.nlm.

nih.gov/chemidplus/chemidheavy.jsp) and then filtered according to several criteria [133].

The data sets used in this work are identical to those that were preprocessed and used to develop

theToxicityEstimationSoftwareTool (T.E.S.T.) athttps://www.epa.gov/chemical-research/

toxicity-estimation-software-tool-test [133]. TEST was developed to estimate chemi-

cal toxicity using various QSAR methodologies and is very convenient to use as it does not require

any external programs. It follows the general QSAR workflow — it first calculates 797 2D molec-

ular descriptors and then predicts the toxicity of a given target by utilizing these precalculated

molecular descriptors.

All molecular structures and their toxicity endpoints are available on the T.E.S.T. website

(https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test)

. It should be noted that we are particularly interested in predicting quantitative toxicity endpoints

so other data sets that contain qualitative endpoints or physical properties were not used. Moreover,

different toxicity endpoints have different units. The units of LC50, LC50-DM, IGC50 endpoints

are − log10(Tmol/L), where T represents corresponding endpoint. For LD50 set, the units are
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− log10(LD50 mol/kg). Although the units are not exactly the same, it should be pointed out that no

additional attempt was made to rescale the values since endpoints are of the same magnitude order.

These four data sets also differ in their sizes, ranging from hundreds to thousands, which essentially

challenges the robustness of our methods. A detailed statistics of our datasets is presented in Table

4.5.

Table 4.5: Statistics of quantitative toxicity data sets

Total # of mols Train set size Test set size Max value Min value
LC50 set 823 659 164 9.261 0.037
LC50-DM set 353 283 70 10.064 0.117
IGC50 set 1792 1434 358 6.36 0.334
LD50 set 7413 (7403) 5931 (5924) 1482 (1479) 7.201 0.291

4.2 Data Preprocessing

A major step to successful small molecule modeling is to properly preprocess input data. All

small molecules are available in Tripos Mol2, SDF (Structure-Data File) or SMILES (Simplified

Molecular Input Line Entry Specification) format. Essentially these formats contain chemical

structure information, and conversions can be done between different formats.

In order to consistently get well prepared structures for descriptor generations, LigPrep utility in

Schrödinger suites (https://www.schrodinger.com/) are used to get optimized 3D structures,

which are readily suitable for ESTD and auxiliary physical descriptors computations. Additionally,

SMILES files are also essential for preparing auxiliary molecular descriptors by ChemoPy[136].

4.3 Molecular Descriptors

In this section, we will introduce molecular descriptors used in this work. These molecular

descriptors can be divided into several categories: element specific topological descriptors (ESTDs),

physical model based descriptors, and auxiliary molecular descriptors calculated by ChemoPy

[136]. The motivation and details of our molecular descriptors construction process will also be

presented.
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4.3.1 Element specific topological descriptors

Element specific networks The key to accurate prediction is to engineer ESTDs from corre-

sponding element specific networks (ESNs) based on which persistent homology is computed. It is

therefore necessary to choose different element combinations in order to characterize the properties

of a given molecule.

Filtration matrix The essential idea of element specific persistent homology (ESPH) and its

modified version have been discussed in Section 2.3 and 2.4. Throughout this study, the definition

of distance between atom i and atom j will be consistent with Eq. (2.10). The underlying reason

has already been discussed in Section 2.4. Simply speaking, for small molecules, intramolecular

effects such as van der Waals interaction play a much more significant role than covalent bonding

effects. This is essentially different from large biomolecules such as proteins.

Topological dimension We also need to consider the dimensions of topological invariants. For

large molecules such as proteins, it is important to compute the persistent homology of first three

dimensions (Betti-0, Betti-1 and Betti-2). The underlying reason is that proteins generally consists

of thousands of atoms, and Betti-1 and Betti-2 bars usually contain very rich geometric information

such as internal loops and cavities. However, small molecules are geometrically simple and their

barcodes of high dimensions are usually very sparse. Additionally, small molecules are chemically

complex due to their involvement of many element types and oxidation states. As such, high

dimensional barcodes of element specific networks carry little information. Therefore, we only

consider Betti-0 bars for small molecule modeling.

4.3.1.1 ESNs for partition coefficient and aqueous solubility prediction

Inspired by classic atom-additive models for partition coefficient prediction, we utilize a total of 61

basic element types calculated by antechamber [137, 138] using general amber force field (GAFF)
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[137]. Atoms of given atom type and their appropriate combinations are selected to construct

Vietoris-Rips complex and ESTDs are subsequently calculated.

Table 4.6: ESNs for partition coefficient and aqueous solubility prediction

Network type Element specific networks
Single-element {ai}, where ai ∈ A, A = {GAFF61}

Two-element {bi, b j }, where bi, b j ∈ B, i, j ∈ {1 . . . 3}, and i < j.
Here B={C, N, O}.

Remark For two-element type ESNs, we choose C, N, O for two considerations. The first reason

is that rare elements are already included in single element group. The second reason is based

on a statistical point of view. Specifically, we perform statistical analysis of the dataset and the

occurrences of different element types are shown in Table 4.7.

Table 4.7: Statistics of element occurrences for partition coefficient training set

C 8198 S 1360
H 8172 F 672
O 6612 Br 308
N 6212 P 188
Cl 1361 I 115

4.3.1.2 ESNs for toxicity endpoint prediction

The ESTD construction for toxicity endpoint prediction is very similar. It may not make sense if

we continue to use atom types generated by GAFF force field. Instead, we focus on intra-molecular

interactions on a wider range of element types. It is reasonable to assume that rare elements (such

as Br or I) are more capable of indicating a higher level of toxicity as compared to more frequently

appeared elements (such as C or N). Thus these elements are considered when calculating ESTDs.

Different combinations of ESNs are tested, and we propose the following ESTDs for toxicity

endpoint prediction, although our search may not be exhaustive. A list of ESNs used can be found

in Table 4.8.
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Table 4.8: ESNs for toxicity endpoint prediction

Network type Element specific networks
Single-element {ai}, where ai ∈ A, A={H, C, N, O}

Two-element {bi, c j }, where bi ∈ B, c j ∈ C, i ∈ {1 . . . 3}, j ∈ {1 . . . 9}, and i < j.
Here B={C, N, O} and C={C, N, O, F, P, S, Cl, Br, I}.

4.3.1.3 A general workflow for computing ESTDs from ESNs

A general workflow process for computing ESTDs from ESNs can be summarized as follows.

1. Given an ESN, 3D coordinates of atoms in the ESN are selected, and their Vietoris-Rips

complexes are constructed. Note that distance defined in Eq. (2.10) is used for persistent

homology barcodes generation in this study.

2. The maximum filtration size is set to a large number (12 Å for small molecules). After

barcodes are obtained, barcodes are divided into several subintervals so that intra-molecular

interactions of different strengths can be captured. For instance, ESTDs can be calculated

based on the barcodes of the first 10 small subintervals Inti = [0.5i, 0.5(i + 1)], i = 0, . . . , 9.

• Within each Inti, search Betti-0 bars whose birth time falls within this interval and

Betti-0 bars that dies within Inti, respectively, and denote these two sets of Betti-0 bars

as Sbirthi and Sdeathi .

• Count the number of Betti-0 bars within Sbirthi and Sdeathi , and these two counts yield

2 ESTDs for the interval Inti.

3. In addition to interval-wise descriptors, we also consider global ESTDs for the entire barcodes.

All Betti-0 bars’ birth times and death times are collected and added into Sbirth and Sdeath,

respectively. Themaximum,minimum,mean and sumof each set of values are then computed

as ESTDs. This step gives 8 more ESTDs.
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4.3.1.4 The essence of ESTDs

To summarize, we would like to emphasize the essential ideas of our choice of ESTDs. In Step 2 of

the ESTD generation process in Section 4.3.1.3, we collect all birth and death time of Betti-0 bars in

order to capture intra-molecular effects such as hydrogen bonding and van der Waals interactions.

These intra-molecular interactions are captured by eliminating the topological connectivity of

covalent bonds. For instance, the birth position can signal the formation of hydrogen bonding,

and the death position represents the disappearance of such effects, which in turn reflects the

strength of these effects. In step 3 of the above process, we consider all potential element-specific

intra-molecular effects together and use statistics of these effects as global descriptors for a given

molecule. This would help us to better characterize small molecules.

4.3.1.5 ESTDs for partition coefficient and aqueous solubility prediction

Notice that the first 10 subintervals with length 0.5 Å of Betti-0 barcodes are used for ESTD

computation. Mathematically, these subintervals can be denoted as Inti = [0.5i, 0.5(i + 1)], i =

0, . . . , 9. We further denote sets that contain all birth or death values of Betti-0 bars as Sbirth and

Sdeath, respectively. The word “Statistics” in Table 4.9 refer to maximum, minimum, mean and sum

of values in Sbirth and Sdeath. As Table 4.9 suggests, we have 1 ESTDs from each single-element

Table 4.9: ESTDs for partition coefficient and aqueous solubility prediction

Element specific networks ESTDs
{ai}, where ai ∈ {GAFF61} Counts of Betti-0 bars for each of the 61 atom types

{bi, b j }, where bi, b j ∈ {C, N, O},
1. Counts of Betti-0 bars with birth or death values

falling within each Inti, i = 0, . . . , 9.

and bi , b j .
2. Statistics of birth or death values for all Betti-0 bars

(consider all birth and death values, i.e., Sbirth and Sdeath)

ESN (count of Betti-0 bars). Meanwhile, 28 ESTDs are also generated for each two-element ESN.

Specifically, we have 2 ESTDs (birth and death count) for each Inti, and 4 global ESTDs for Sbirth

and Sdeath. Thus in total we have 145 (61 + 28*3) ESTDs for each molecule.
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Remark To see how different bin sizes affect prediction accuracy, we also choose a slightly larger

interval size to evaluate ESTDs’ predictive power. Simply put, an interval size of 1 Å is used to

construct ESTDs, which results in 5 subintervals. We also want to include the effects of Betti-1

bars. Such construction results in 121 ESTDs (61 + 2*2*5*3) for each molecule as we consider

both birth and death values of barcodes with 3 ESNs, 5 subintervals and 2 different topological

dimensions. It turns out this set of ESTDs perform very well for some specific aqueous solubility

datasets (Small Delaney set and Huuskonen set).

4.3.1.6 ESTDs for toxicity endpoint prediction

ESTDs for toxicity endpoint prediction are constructed in a very similar way. The only difference

is that for single-element ESN, we no longer consider GAFF atom types. Instead, we calculate

the same set of ESTDs in the way discussed in section 4.3.1.5, which results in 28 ESTDs for

each ESN. For two-element type, we also consider more combinations comparing to solubility

prediction. The reason is that it is necessary to include more element types as they have yet been

included in single-element. Since we have 25 ESNs in table 4.8, we have a total of 700 (25*28)

ESTDs for each molecule.

4.3.2 Physical model based descriptors

In addition to ESTDs discussed above, we are also interested in constructing a set of microscopic

features based on physical models to describe molecular toxicity. This set of features should

be convenient to use in different machine learning approaches, including deep learning and non

deep learning, and single-task and multi-task ones. To make our feature generation feasible and

robust to all compounds, we consider three types of basic physical information, i.e., atomic charges

computed from quantum mechanics or molecular force fields, atomic surface areas calculated for

solvent excluded surface definition, and atomic electrostatic solvation free energies estimated from

the Poisson model. Optimized 3D structure obtained from section 4.2 are used to compute atomic

properties, which can be summarized in several steps:
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1. ChargeOptimized 3D structures are fed in antechamber [138], using parametrization: AM1-

BCC charge, Amber mbondi2 radii and general Amber force field (GAFF) [137]. This step

leads to pqr files with corresponding charge assignments.

2. Surface ESES online server at http://weilab.math.msu.edu/ESES/ [139] is used to

compute atomic surface area of each molecule, using pqr files from the previous step. This

step also results in molecular solvent excluded surface information.

3. EnergyMIBPB online server at http://weilab.math.msu.edu/MIBPB/ [140] is used to

calculate the atomic electrostatic solvation free energy of each molecule, using surface and

pqr files from previous steps.

Specifically, physical descriptors come from Step 1, Step 2 and Step 3 above. To make our method

scalable and applicable to all kinds of molecules, wemanually construct element-specific molecular

descriptors so that it does not depend on atomic positions or the number of atoms. The essential

idea of such construction is to derive atomic properties of the each element type, which is very

similar to the idea of ESPH.

We consider 10 different commonly occurring element types, i.e., H, C, N, O, F, P, S, Cl, Br,

and I and three different types of descriptors – charge, surface area and electrostatic solvation free

energies. Given an element type and a descriptor type, we compute the statistics of the quantities

obtained from the aforementioned physical model calculation, i.e., summation, maximum, min-

imum, mean and variance, giving rise to 5 physical descriptors. To capture absolute strengths

of each element descriptor, we further generate 5 more physical descriptors after taking absolute

values of the same quantities. Consequently, we have a total of 10 physical descriptors for each

given element type and descriptor type. Thus 300 (10 descriptor × 10 element types × 3 descriptor

type) molecular descriptors can be generated at element type level.

Additionally when all atoms are included for computation, 10 more physical descriptors can be

constructed in a similar way (5 statistical quantities of original values, and another 5 for absolute

values) for each element descriptor type (charge, surface area and electrostatic solvation free
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energies). This step yields another 30 molecular descriptors. As a result, we organize all of the

above information into a 1D descriptor vector with 330 components, which can be directly fed into

machine learning algorithms.

4.3.3 Auxiliary molecular descriptors for partition coefficient and aqueous solubility pre-
diction

ChemoPy[136] is a popular software for computing 2D and 3D molecular descriptors. How-

ever, preliminary results have shown that 3D descriptors by ChemoPy do not perform well for

our prediction tasks due to inaccurate generation of 3D structures. Thus in this study, we only

incorporate 2D molecule ChemoPy descriptors on top of our self-designed molecular descriptors.

ChemoPy descriptors can be categorized as following - 30 molecular constitutional descriptors,

35 topological descriptors, 44 molecular connectivity indices, 7 Kappa shape descriptors, 64

Burden descriptors, 245 E-state indices, 21 Basak information indices, 96 autocorrelation de-

scriptors, 6 molecular property descriptors, 25 charge descriptors, and 60 MOE-type descrip-

tors. A more detailed description of descriptor and ChemoPy software is available on line

at https://code.google.com/archive/p/pychem/downloads. Also notice that ChemoPy

software only requires 2D SMILES as input.

Specifically for partition coefficient and aqueous solubility prediction, we also combine these

features with ESTDs to create ESTD+ in order to improve the overall performance. For consistency

reasons, only molecules whose descriptors can be calculated by both our ESTD software and

ChemoPy software are used for training purpose. It is worth to mention that our ESTD approaches

are applicable to all molecules whereas ChemoPy has difficulty in dealing with some molecules.

Separate results and discussions for different sets of descriptors will also be conducted in later

chapters.
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CHAPTER 5

RESULTS

In this chapter, we will first introduce evaluation metrics used to evaluate model performances.

Next, we will present our results along with those in literature to see if the proposed models can

truly improve over others’ models. Specifically, we would like to predict solvation free energy,

partition coefficient, aqueous solubility, and various toxicity endpoints. Both results of different

machine learning methods using the same set of molecular descriptors, and results of different

molecular descriptors using the same machine learning algorithm will be provided, with emphasis

on both machine learning algorithms and predictive power of molecular descriptors. Notice we

may use different evaluation metrics/descriptors for different tasks.

Since solvation free energy is isolated from the other small molecular properties mentioned

above, a separate discussion will be provided for solvation free energy. On the other hand, partition

coefficient and aqueous solubility are closely related as they all measure how chemicals dissolve in

a given solvent, while different toxicity endpoints may share similarities. Thus we will learn these

properties jointly using multi-task learning framework, and the same descriptors shall be used for

related tasks.

5.1 Evaluation criteria

5.1.1 Commonly used evaluation metrics

Commonly used evaluation metrics used in quantitative predictions are Pearson correlation coef-

ficient (R), root mean squared error (RMSE), and mean unsigned error (MUE). Mathematically,

they are defined as following:

R =

∑N
i=1(X

Pred
i − XPred)(XExpl

i − XExpl
i )√∑N

i=1(X
Pred
i − XPred)2

√∑N
i=1(X

Expl
i − XExpl)2

, (5.1)
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RMSE =

√√√
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N∑
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XPred

i − XExpl
i

)2
(5.2)

and

MUE =
1
N

N∑
i=1

���XPred
i − XExpl

i

���, (5.3)

where N is the total number of molecules in the test set, XExpl
i and XPred

i stand for the experimental

and predicted value for the ith molecule, respectively, XPred and XExpl is the average of predicted

and experimental value for the entire test set, respectively.

5.1.2 Additional evaluationmetrics for partition coefficient andaqueous solubility prediction

In Tetko’s review paper [6] for partition coefficient prediction on Star and Non-star set, an additional

metric based on the difference between experimental and predicted log P (∆ log P) was proposed.

Specifically, the percentage within various error ranges was considered.:

• If |∆ log P | < 0.5, prediction is considered to be “acceptable";

• If 0.5 ≤ |∆ log P | < 1.0, prediction is considered to be “disputable";

• If |∆ log P | ≥ 1.0, prediction is considered to be “unacceptable".

This metric is exclusively used for Star and Non-star set proposed by Tetko [6].

5.1.3 Additional evaluation metrics for toxicity endpoint prediction

In T.E.S.T. software, developers referred to Golbraikh et al. [141]’s protocol to determine if a

QSAR model has a predictive power.

q2 > 0.5, (5.4)

R2 > 0.6, (5.5)
R2 − R2

0
R2 < 0.1 (5.6)

0.85 ≤ k ≤ 1.15 (5.7)
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where q2 is the squared leave one out correlation coefficient for the training set, R2 is the squared

Pearson correlation coefficient between the experimental and predicted toxicities for the test set,

R2
0 is the squared correlation coefficient between the experimental and predicted toxicities for the

test set with the y-intercept being set to zero so that the regression is given by Y = k X . All these

metrics will be used to compare performances of toxicity endpoint prediction models.

5.2 Evaluation results

5.2.1 Solvation free energy prediction

5.2.1.1 Microscopic feature parametrization

In earlier hybrid physical and knowledge (HPK) model [4], three types of atomic radii (Amber 6,

Amber bondi, and Amber mbondi2 [142]) and three types of charge assignments ( OpenEye-AM1-

BCC v1 parameters [143], Gasteiger [144], and Mulliken [142]) were used to test the sensitivity

and accuracy of models with respect to different parameterizations. For such reason, we continue

to use these 9 different parameterizations in order to conveniently compare current models with

previous ones.

5.2.1.2 Polar and non-polar descriptors for solvation free energy

Implicit solventmodels divide solvation free energies into polar and nonpolar additive contributions,

whereas polar and nonpolar interactions are inseparable and non additive. Thus in order to explore

how important polar and nonpolar descriptors contribute to solvation process, we use two different

set of descriptors to predict small molecule solvation energy.

Descriptor set 1: Polar descriptors with high correlations to solvation free energy. The list of

descriptors used can be found in Appendix.

Descriptor set 2: Non-polar atomic surface area descriptors (part of physical descriptors discussed

in previous chapter), in addition to polar descriptors with high correlations to solvation free energy

in descriptor set 1.
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5.2.1.3 Leave-one-out result

Fig. 5.1 contains leave-one-out results using different descriptor sets and HPK models for the 668

set, with different parameterizations. It is evident that the present model outperforms our earlier

HPK model with most parameterizations.

Figure 5.1: Illustration of leave-one-out predictions for the whole set of 668 molecules. Left chart:
Correlation between experimental solvation free energies and predictions obtained by BCC charges
and Amber MBondi2 using all polar-nonpolar features. Right chart: Comparison of prediction
RMSEs obtained by models with polar features and all features against HPK models. In the plot,
GAS and MUL are abbreviations for Gasteiger and Mulliken charges, respectively.

Moreover, leave-one-out method is also used to determine the number of nearest neighbors that

should be used to predict a given molecule. For each parameterization, we perform leave-one-out

prediction with 1 to 10 nearest neighbors. The best results can be found in Table 5.1. Although

complete numerical results are not provided, it is worth to mention that further increasing the

number of descriptors does not necessarily increase prediction accuracy. For consideration of

consistency, we select 10 nearest neighbors for all following tests.
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Table 5.1: The RMSE and ME of the leave-one-out test in the solvation free energy prediction of
668 molecules with descriptor set 1 (the first position), descriptor set 2 (the second position) and
HPK model (the last position) [4]. All errors are in unit kcal/mol.

Radius Charge BCC Mulliken Gasteiger

Amber 6 RMSE 1.19, 1.07,1.47 1.52, 1.28, 1.49 1.42, 1.24, 1.65
ME -0.01, 0.01, -0.13 -0.01, 0.00, -0.20 -0.03, -0.01, -0.19

Amber Bondi RMSE 1.23, 1.09, 1.34 1.52, 1.31, 1.48 1.35, 1.24, 1.66
ME -0.02, 0.01, -0.14 -0.01, 0.01, -0.21 -0.02, 0.00, -0.13

Amber MBondi2 RMSE 1.18, 1.05, 1.33 1.54, 1.30, 1.49 1.33, 1.23, 1.68
ME 0.00, 0.03, -0.14 0.0, 0.01, -0.22 0.00, 0.00, -0.22

5.2.1.4 Blind prediction of SAMPLx challenge molecules

SAMPL0 test First, let us consider the solvation free energy prediction for the SAMPL0 test set,

which contains a total of 17 molecules. All structures of this test set are relatively simple. However,

the molecule species of this set is quite diverse. Many researchers have reported their solvation free

energy predictions for this challenge set [145, 146]. Prior to our work, the optimal prediction for

this test set has an RMSE of 1.34 kcal/mol for the whole set [146]. Figure 5.2 depicts the present

results for a total of 9 charge and radius combinations. When the BCC charge is used, the RMSEs of

our predictions with three radius parametrizations are all smaller than 0.75 kcal/mol. Our optimal

prediction has an RMSE of 0.61 kcal/mol, obtained from Amber Bondi radius parametrization in

conjugation with the BCC charge assignment with polar features only. When all polar and nonpolar

features are used, the results become slightly worse whereas performances over all parametrizations

turn out to be more stable especially when the Mulliken charge assignment is used.

SAMPL1 test Having demonstrated the superiority of the proposed model for the prediction of

the SAMPL0 challenge set, we further consider the SAMPL1 test set, which is generally believed to

be the most difficult one, due to the following two reasons. First, the molecular structures of this test

set are extremely complex compared to other molecules with known experimental solvation free

energies. Second, the uncertainty of SAMPL1 experimental data is very large. For some molecules

the uncertainty is as large as 2.0 kcal/mol [147, 14]. Nevertheless, it is extremely desirable to

develop an accurate modeling paradigm for this test set because most molecules in this test set are
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Figure 5.2: Illustration of prediction RMSEs obtained with different molecular parametrizations
by the model for SAMPL0 test set. In the plot, GAS and MUL are abbreviations for Gasteiger and
Mulliken charges, respectively.

druggable. The best prediction for the whole set has an RMSE of 2.45 kcal/mol [146]. On a subset

of the SAMPL1 test set that contains only 56 molecules, the best performance was shown to give an

RMSE of 2.4 kcal/mol [14]. Figure 5.3 illustrates the results of the approach for the whole SAMPL1

test set. It is obvious to see that the model is much more accurate. The optimal prediction with only

polar descriptors has an RMSE as small as 2.07 kcal/mol, and adding nonpolar descriptors further

improves the RMSE to 1.86 kcal/mol, which is the best to our best knowledge. Additionally, the

present model is very robust with respect to the change in force fields. The maximum and minimum

prediction RMSEs over 9 sets of parametrizations and 2 feature combinations are 1.86 and 2.82

kcal/mol, respectively. The difference between the maximum andminimum is 0.96 kcal/mol, which

is much smaller than experimental uncertainty of 2 kcal/mol for this set [147, 14].

SAMPL2 test Another difficult test set is SAMPL2, which contains a total of 30 molecules [148].

The experimental uncertainty on these molecules is much less than that of the SAMPL1 test set.

Nevertheless, accurate solvation prediction for this set is rare. Using all-atom molecular dynamics

simulations and multiple starting conformations for prediction, Klimovich and Mobley reported
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Figure 5.3: Illustration of prediction RMSEs obtained with different molecular parametrizations
by the proposed model for SAMPL1 test set. In the plot, GAS and MUL are abbreviations for
Gasteiger and Mulliken charges, respectively.

an RMSE of 2.82 kcal/mol over the whole set and 1.86 kcal/mol over all the molecules except

several hydroxyl-rich compounds [148]. Some of the best reported predictions have an RMSE

of 1.59 kcal/mol [146]. In our previous test, the molecule containing an I atom (5-iodouracil) is

excluded in all calculations due to the lack of appropriate charge force field. In this work, we also

ignore this molecule for the same reason. The HPK model gives an optimal prediction with RMSE

1.96 kcal/mol. However, the RMSEs of the prediction vary over a large range, from 1.96 to 4.86

kcal/mol, when different charge and radius force fields are applied. A bar graph of the RMSEs of

the predictions is given in Fig. 5.4. Parametrizations based on AM1-BCC charge yield the best

results among polar features and adding nonpolar features offers a substantial improvement over

polar features, as the first three yellow bars are lower than the first three blue bars. The optimal

RMSE for SAMPL2molecules is 1.64 kcal/mol with AM1-BCC charge andAMBER6 radius, when

all features are used to train the models. It is also worthy to note that the variation of RMSEs under

different parametrizations is 1.42 kcal/mol (1.64 to 3.06 kcal/mol), which indicates the robustness

of the present models compared to HPK models.
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Figure 5.4: Illustration of prediction RMSEs obtained with different molecular parametrizations
by the proposed model for SAMPL2 test set. In the plot, GAS and MUL are abbreviations for
Gasteiger and Mulliken charges, respectively.

SAMPL3 test The SAMPL3 test set, which contains 36 molecules, is relatively easy for predic-

tion. The structures of SAMPL3 molecules are relatively simple, and most molecules in this set are

chlorinated hydrocarbon molecules [149]. The best prediction in the literature offers an RMSE of

1.29 kcal/mol [146]. Figure 5.5 depicts the RMSEs of the predictions by only polar features and all

features. Although the optimal result (RMSe of 0.86 kcal/mol) is generated by polar features with

Gasteiger charges, all features combination turns out to be more stable over all parametrizations

as Figure 5.5 clearly shows. More specifically, the RMSEs using polar features span over a small

range of 0.48 kcal/mol (i.e., from 0.86 to 1.34 kcal/mol) across all 9 different parametrizations,

while all features yield a variation of 0.24 kcal/mol. This further verifies the robustness of the

current solvation model.

SAMPL4 test Finally, we consider the SAMPL4 test set, which is a very popular one. Many

explicit, implicit, integral equation, and hybrid QM/MM approaches [16] have been applied to this

set [150]. As shown in Fig. 5.6, the overall performance enhances when all features are used as the

blue bars are consistently higher than yellow bars, which indicates the predictive power of nonpolar
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Figure 5.5: Illustration of prediction RMSEs obtained with different molecular parametrizations
by the proposed model for SAMPL3 test set. In the plot, GAS and MUL are abbreviations for
Gasteiger and Mulliken charges, respectively.

features. Our proposed model gives an optimal RMSE of 1.14 kcal/mol. It is also easy to see that

our current approach is quite robust across different force field and charge parametrizations.

Figure 5.6: Illustration of prediction RMSEs obtained with different molecular parametrizations
by the proposed model for SAMPL4 test set. In the plot, GAS and MUL are abbreviations for
Gasteiger and Mulliken charges, respectively.
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5.2.1.5 Wang’s [1] dataset

Finally, we validate our models on the external datasets that Ref [1] used to develop weighted

solvent accessible surface area. It is interesting to compare our results with theirs since compounds

used for training and testing are essentially independent, which challenges the predictive power of

solvation models.

In Model III, they achieved unsigned average errors of 0.50 and 0.66 kcal/mol for the training

set and the test set, respectively [1], and an unsigned average error of 0.538 kcal/mol for the entire

set. Our models were also trained with 10 nearest neighbors and all polar/nonpolar descriptors,

and the average of 50 independent runs yields unsigned average errors of 0.00 and 0.57 kcal/mol,

respectively for the training set and the test set, and an unsigned average error of 0.441 kcal/mol for

the entire set. In fact, we used a slightly smaller training set of 289 molecules because 4 molecules

in the training set have ambiguous chemical names in the PubChem database, while all molecules

in the test set are included in our prediction.

Since there are 11 duplicates in the training set and the test set of Ref. [1] (see Table 4.2), we

also train models with these 11 duplicated molecules excluded from the training set. The updated

model acheives an RMSE of 0.61 kcal/mol for the test set, which is still smaller than that reported

in Ref. [1] (i.e., 0.66 kcal/mol).

Therefore, we conclude that our models have a competitive edge over the classic solvation

model based on weighted SASA.

5.2.2 Partition coefficient and aqueous solubility prediction

In this section, we present the results of the proposed ESPH methods in conjugation with gradient

boosting decision tree and multi-task deep neural networks for variety of data sets, including

partition coefficient and solubility test sets. Otherwise stated, different tasks are trained together

in the same network. Besides, we would like to introduce some notations for easier reference.

ESTD-1 contains 61 Betti-0 bar-based ESTDs, ESTD-2 contains all ESTDs listed in Table 4.9 (a

total of 145 ESTDs), and ESTD-3 corresponds to ESTDs discussed in Remark of Section 4.3.1.5.
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When molecular descriptors calculated by ChemoPy software [136] are combined with ESTD-1,

ESTD-2 and ESTD-3 respectively, two more descriptor sets are created and they are denoted as

ESTD+-1, ESTD+-2 and ESTD+-3, respectively.

5.2.2.1 log P training set cross-validation

In order to have an idea of how our topological representation would work for partition coefficient,

a 10-fold cross-validation is performed using baseline method GBDT. Note that 50 runs were done

to achieve the final results as randomness is involved and the results are summarized in Table

5.2. Notice that ChemoPy descriptors were not used here. It can be seen that our descriptors

Table 5.2: Results of 10-fold cross validation on the partition coefficient training set, N = 8199.

Method R2 RMSE MUE
GBDT-ESTD-2 0.923 0.45 0.32
GBDT-ESTD-1 0.912 0.48 0.35
XLOGP3-AA [5] 0.904 0.50 0.39

perform better than XLOGP3 software [5] given the same training data, and thus demonstrates

great predictive power. In addition, we also provide the fluctuation of 10-fold cross-validation of

Table 5.3, even though such statistics is not available for XLOGP3 software. It is clear that our

ESTDs give quite consistent predictions and their performances are independent of random fold

generations since RMSDs of R2, RMSE and MUE do not essentially fluctuate. Thus it would be

very interesting to see the performances of our MT-DNN compared to XLOGP3 and GBDT.

Table 5.3: Performances and fluctuations of fifty 10-fold cross-validation test runs.

Method Mean R2 (RMSD) Mean RMSE (RMSD) Mean MUE (RMSD)
GBDT-ESTD-2 0.923 (0.001) 0.45 (0.003) 0.32 (0.002)
GBDT-ESTD-1 0.912 (0.001) 0.48 (0.002) 0.35 (0.001)
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5.2.2.2 FDA set

The first test set that we would like to apply our model to is the FDA test set. A molecule that

contains Hg was dropped due to the difficulty of computation. A major challenge of this set is that

its structures are more complex than that of the training set, and the partition coefficient range spans

over nearly 12 units. A series of prediction methods [5], including our multi-task neural networks,

are applied to this set and their results are summarized in Table 5.4 for a comparison with ours.

Table 5.4: Results of different logP prediction methods on 406 FDA-approved drugs [5], ranked
by R2. Two molecules were dropped for our model evaluation due to feature generation failure of
ChemoPy

Method R2 RMSE MUE
GBDT-ESTD+-2-AD 0.935 0.51 0.24
GBDT-ESTD+-1-AD 0.932 0.52 0.23
MT-ESTD+-1-AD 0.930 0.53 0.22
MT-ESTD-1-AD 0.929 0.54 0.26
MT-ESTD+-2-AD 0.928 0.53 0.27

MT-ESTD-1 0.920 0.57 0.28
MT-ESTD-2-AD 0.912 0.59 0.37
GBDT-ESTD+-1 0.910 0.60 0.28
GBDT-ESTD+-2 0.910 0.60 0.30
MT-ESTD+-1 0.909 0.60 0.27
MT-ESTD+-2 0.909 0.60 0.34
ALOGPS 0.908 0.60 0.42

GBDT-ESTD+-1 0.900 0.63 0.39
GBDT-ESTD-1 0.893 0.66 0.41
MT-ESTD-2 0.891 0.66 0.44

GBDT-ESTD+-2 0.883 0.68 0.49
XLOGP3 0.872 0.72 0.51

GBDT-ESTD-2 0.848 0.78 0.57
XLOGP3-AA 0.847 0.80 0.57

CLOGP 0.838 0.88 0.51
TOPKAT 0.815 0.88 0.56
ALOGP98 0.80 0.90 0.64
KowWIN 0.771 1.10 0.63
HINT 0.491 1.93 1.30

As we can see from Table 5.4, our multi-task model gives the best prediction in terms of R2,

RMSE, and MUE. Specifically, the small MUE of our model indicates that our predictions are

less biased than other methods tested, except for some outliers. Also, note that the training set is
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completely independent of the test set which shows the applicability of our multi-task architecture.

We also build models with the same architecture when additional molecules gathered from NIH-

database are included as there is no guarantee that the training set of ALOGPS is completely

independent of the test set. It turns out that the accuracy can be greatly improved. For instance, the

performance of ESTD+-1 can be improved by more than 10% in terms of RMSE (0.60 log units to

0.53 log units). It demonstrates the potential of our MT-DNN architecture when more data become

available and it will be more carefully discussed in later section.

5.2.2.3 Star set and non-star set

Star set and Non-star set were proposed by Tetko [6] as two benchmark sets for evaluating partition

coefficient models. Over 20 different models were tested on these two sets. It should be emphasized

that for these sets, differentmodels are trained on different training sets and their overlapwith the test

sets is unknown. Thus it makes more sense to merge our 8199 training set with additional molecules

in NIH database and see how additional training data can benefit the overall performances. Results

of different models on these two sets can be found in Table 5.5. Notice that models trained with

additional data from NIH database are labeled with (-AD).

For star set, we achieve RMSE of 0.49 log units with other popular commercial software

packages such as ACD/logP and CLOGP, in addition to a high acceptable prediction percentage

(77%, rank 2). For non-star set, most methods do not give accurate predictions as the structures

in this set are relatively new and complex. Our 51% acceptable rate ranks number 2 among all

predictors, though RMSE is relatively high due to a few large outliers. The results are satisfactory,

especially when considering commercial software packages generally use a much larger training set

than that ours. In general, when there exist more overlapped molecules in the training set, the test

results will be significantly improved. Thus as a baseline comparison, it would be more meaningful

if we compare our results with XLogP3 software. As Table 5.5 indicates, our MT-ESTD+ models

achieve a substantial improvement over XLOP3 for star set, while XLogP3 achieves a lower RMSE

for Non-star set. It may be due to XLogP3’s corrections terms with relatively new structures. The
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performances of ourMT-ESTD+models suggest that ourmodels are able to predict log P accurately.

We also would like to know if the predictive power can potentially be further improved once more

molecules are incorporated into the training set. Thus we extend our original 8199 training set by

adding molecules in both Star set and Non-star set. As shown in Table 5.5, descriptor sets labeled

with (-AD) (with additional data from NIH database) generally offer better performances on both

Star set and Non-star set.

Table 5.5: Benchmark test results [6] on both star and non-star set.

Star Set (N = 223) Non-star Set (N = 43)

% of Molecules % of Molecules
Within Error Range Within Error Range

Method RMSE < 0.5 <1 > 1 RMSE < 0.5 <1 > 1
AB/LogP 0.41 84 12 4 1.00 42 23 35
S+logP 0.45 76 22 3 0.87 40 35 26

MT-ESTD+-1-AD 0.49 77 16 7 0.98 49 19 33
MT-ESTD+-2 0.49 74 21 5 0.97 49 23 28

MT-ESTD+-2-AD 0.50 76 17 7 0.94 51 19 30
ACD/logP 0.50 75 17 7 1.00 44 32 23

GBDT-ESTD+-1-AD 0.51 76 17 6 1.03 44 30 25
GBDT-ESTD+-2-AD 0.51 75 17 7 1.04 41 30 27

CLOGP 0.52 74 20 6 0.91 47 28 26
VLOGP OPS 0.52 64 21 7 1.07 33 28 26
ALOGPS 0.53 71 23 6 0.82 42 30 28

MT-ESTD+-1 0.53 75 17 8 0.97 47 28 26
MT-ESTD-1-AD 0.53 73 18 9 1.00 37 30 33
MT-ESTD-2-AD 0.53 71 19 9 1.01 47 19 35
MT-ESTD-1 0.55 72 18 10 1.01 33 28 40
MT-ESTD-2 0.56 66 23 11 1.06 35 33 33
MiLogP 0.57 69 22 9 0.86 49 30 21

GBDT-ESTD+-2 0.58 75 16 8 1.06 44 25 30
GBDT-ESTD+-1 0.60 74 15 9 1.02 46 23 30
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Table 5.5 (cont’d)

XLOGP3 0.62 60 30 10 0.89 47 23 30
KowWIN 0.64 68 21 11 1.05 40 30 30

GBDT-ESTD-2-AD 0.65 62 26 11 1.15 46 16 37
CSLogP 0.65 66 22 12 0.93 58 19 23

GBDT-ESTD-1-AD 0.68 71 16 12 1.16 41 11 46
ALOGP 0.69 60 25 16 0.92 28 40 33
MolLogP 0.69 61 25 14 0.93 40 25 26
ALOGP98 0.70 61 26 13 1.00 30 37 33

GBDT-ESTD-1 0.71 63 22 13 1.07 34 20 44
OsirisP 0.71 59 26 16 0.94 42 26 33
VLOGP 0.72 65 22 14 1.13 40 28 33

GBDT-ESTD-2 0.73 52 30 17 1.23 44 16 39
TLOGP 0.74 67 16 13 1.12 30 37 30
ABSOLV 0.75 53 30 17 1.02 49 28 23
QikProp 0.77 53 30 17 1.24 40 26 35
QuantlogP 0.80 47 30 22 1.17 35 26 40

SLIPPER-2002 0.80 62 22 15 1.16 35 23 42
COSMOFrag 0.84 48 26 19 1.23 26 40 23
XLOGP2 0.87 57 22 20 1.16 35 23 42
QLOGP 0.96 48 26 25 1.42 21 26 53
VEGA 1.04 47 27 26 1.24 28 30 42
CLIP 1.05 41 25 30 1.54 33 9 49
LSER 1.07 44 26 30 1.26 35 16 49

MLOGP(Sim+) 1.26 38 30 33 1.56 26 28 47
NC+NHET 1.35 29 26 45 1.71 19 16 65
SPARC 1.36 45 22 32 1.70 28 21 49

HINTLOGP 1.80 34 22 44 2.72 30 5 65

Remark for aqueous solubility prediction To evaluate the performances of our models for

aqueous solubility prediction, several datasets are used, derived fromWang et al. [2] and Hou et al.

56



[3]. For leave-one-out validation, only the baseline method is used. For 10-fold cross-validation,

the 9 remaining folds are trained together with the partition coefficient training set when evaluating

the remaining fold with MT-DNN architecture.

5.2.2.4 Wang’s 1708 set in ref. [2]

For this dataset, both leave-one-out and 10-fold cross-validation are carried out in order to evaluate

the performance of our models.

Leave-one-out As MT-DNN requires a lot of computational resources, only baseline method

GBDT is used for leave-one-out prediction. We use 4000 trees and 0.10 learning rate as training

parameters to develop models and following results in Table 5.6 are achieved.

Table 5.6: Leave-one-out test on the 1708 solubility data set.

Method R2 RMSE MUE
GBDT-ESTD+-1-AD 0.931 0.543 0.389
GBDT-ESTD+-2-AD 0.929 0.551 0.389
GBDT-ESTD+-2 0.910 0.621 0.457
ASMS-LOGP[2] 0.897 0.664 0.505
GBDT-ESTD+-1 0.893 0.683 0.494

ASMS[2] 0.884 0.707 0.547

10-fold cross-validation As MT-DNN and baseline method GBDT involve randomness, we run

MT-DNN and GBDT 50 times and report mean performances for all metrics. The results are

summarized in Table 5.7. It is observed that our models yield more accurate and robust predictions

than ASMS and ASMS-LOGP models do, improving the R2 from 0.884 to 0.925. Additionally, we

also notice that there generally exists an improvement of MT-ESTD models over GBDT models,

though, not as significant as what we see in the previous partition coefficient prediction.
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Table 5.7: 10-fold cross-validation on the 1708 solubility data set.

Method Mean R2 (RMSD) Mean RMSE (RMSD) Mean MUE (RMSD)
MT-ESTD+-1 0.925 (0.001) 0.568 (0.005) 0.393 (0.003)
MT-ESTD+-2 0.924 (0.003) 0.571 (0.010) 0.395 (0.004)

GBDT-ESTD+-1 0.924 (0.002) 0.572 (0.006) 0.408 (0.005)
GBDT-ESTD+-2 0.923 (0.002) 0.571 (0.006) 0.408 (0.005)
MT-ESTD-1 0.908 (0.002) 0.630 (0.005) 0.466 (0.003)

GBDT-ESTD-2 0.904 (0.002) 0.642 (0.008) 0.469 (0.005)
MT-ESTD-2 0.902 (0.002) 0.649 (0.007) 0.466 (0.005)

GBDT-ESTD-1 0.889 (0.003) 0.697 (0.009) 0.502 (0.005)
ASMS[2] 0.884 (0.021) 0.699 (0.054) 0.527 (0.034)

ASMS-LOGP [2] 0.869 (0.022) 0.742 (0.053) 0.570 (0.034)

5.2.2.5 Dataset in ref. [3]

We test ourmodels on dataset proposed byHou et al. [3], where training and test setswere predefined

to cover a variety of molecules. Klopman’s test set contains 21 commonly used compounds

of pharmaceutical and environmental interest [151] and is to be trained on the original 1290

molecules. Zhu’s test set contains 120 molecules that were used to develop Klopman and Zhu’s

group contribution model [152]. As Hou et al. [3] suggested, we remove 83 molecules that overlap

with Zhu’s test set from the training set to make predictions independent and unbiased. This reduces

the size of the training set for Zhu’s test set to 1207.

Klopman’s test set Table 5.8 shows the performances of different models on Klopman’s test set.

Our MT-ESTD models perform similarly to Drug-LOGS method while achieving improvement

over Klopman and Zhu’s MLR method [152] with ESTDs. It is also evident that the MT-DNN

method has an edge over GBDT method, which is consistent with our previous experiments.

Zhu’s test set The results of Zhu’s test set are summarized in Table 5.9. For this dataset, our

MT-ESTD models give satisfactory results with a high Pearson correlation over 0.97 across all

ESTD combinations. Such results indicate that our methods are applicable to a wide variety of

molecules. Again, the MT-DNN method outperforms the GBDT method.
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Table 5.8: Results of Klopman’s test set [3], where MUE was not reported.

Method R RMSE
MT-ESTD+-1 0.94 0.69
Drug-LOGS[3] 0.94 0.64
GBDT+-2 0.94 0.71

MT-ESTD+-2 0.93 0.75
GBDT+-1 0.93 0.76

MT-ESTD-2 0.92 0.79
Klopman MLR [152] 0.92 0.86

GBDT-2 0.92 0.85
MT-ESTD-1 0.91 0.82
GBDT-1 0.84 1.07

Table 5.9: Results of Zhu’s test set.

Method R RMSE MUE
MT-ESTD+-1 0.97 0.65 0.47
MT-ESTD+-2 0.97 0.67 0.48
MT-ESTD-1 0.97 0.70 0.50
MT-ESTD-2 0.97 0.71 0.53
GBDT+-2 0.97 0.73 0.50
GBDT+-1 0.96 0.76 0.52

Drug-LOGS [3] 0.96 0.79 0.57
GBDT-2 0.96 0.79 0.60
GBDT-1 0.96 0.82 0.58

Group contribution [152] 0.96 0.84 0.70

Small Delaney set The small Delaney set has been extensively tested using different approaches,

such as ESOL [129] and GSE [153]. Table 5.10 shows the 10-fold cross-validation results of

the MT-DNN-ESTD+ model and other methods. Overall, MT-DNN-ChemoPy and MT-DNN-

ESTD+ give very similar results in terms of the R2, RMSE and MUE, which essentially proves

the predictive power of our MTL framework. In addition, it is encouraging to notice that the

MT-DNN-ESTD model which uses purely ESTDs as input slightly improves 2D kernel model

[154]. As a comparison, our baseline method (random forest) underperforms. Again, we notice a

substantial accuracy improvement of MT-DNN architecture over RF by direct comparison between

their results. It indicates that our MT-DNN models benefit from MTL and there potentially exists

an underlying feature representation for partition coefficient and aqueous solubility.
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Table 5.10: 10-fold cross-validation results on the small Delaney set.

Methods R2 RMSE MUE
MT-ESTD+-3 0.93 0.54 0.37
MT-ESTD-3 0.92 0.61 0.43
RF-ESTD+-3 0.91 0.63 0.45
RF-ESTD-3 0.88 0.71 0.52
GSE[153] - - 0.47

2D kernel[154] 0.91 0.61 0.44

Huuskonen set The Huuskonen set is also a popular solubility set. Similary to the previous small

Delaney set, a direct 10-fold cross-validation yileds the results as listed in Table 5.11. Again the

results of MT-DNN turn out to be the best in terms of all metrics. When only 121 ESTDs are

used, the results of MT-DNN become slightly worse but still perform better than the RBF kernel

approach and random forest models.

Table 5.11: 10-fold cross-validation results on the Huuskonen set.

Methods R2 RMSE MUE
MT-ESTD+-3 0.93 0.55 0.39
MT-ESTD-3 0.91 0.60 0.43
RF-ESTD+-3 0.91 0.61 0.45
RF-ESTD-3 0.89 0.69 0.51
RBF[155] 0.90 - -

Remark We find that ESTD-1 and ESTD-2 do not perform as well as ESTD-3 for Delaney and

Huuskonen set, thus their results are skipped. For similar reasons, ESTD-3’s results are not included

for the other sets.

5.2.3 Toxicity endpoint prediction

5.2.3.1 Fathead minnow LC50 test set

The fathead minnow LC50 set was randomly divided into a training set (80% of the entire set)

and a test set (20% of the entire set) [133], based on which a variety of TEST models were built.

Table 5.12 shows the performances of five T.E.S.T. models, the TEST consensus obtained by the
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average of all independent TEST predictions, four proposed methods and two consensus results

obtained from averaging over present RF, GBDT, ST-DNN and MT-DNN results. TEST consensus

gives the best prediction [133] among TEST results, reporting a correlation coefficient of 0.728

and RMSE of 0.768 log(mol/L). As Table 5.12 indicates, our MT-DNN model outperforms TEST

consensus both in terms of R2 and RMSE with only ESTDs as input. When physical descriptors

are independently used or combined with ESTDs, the prediction accuracy can be further improved

to a higher level, with R2 of 0.771 and RMSE of 0.705 log(mol/L). The best result is generated by

consensus method using all descriptors, with R2 of 0.789 and RMSE of 0.677 log(mol/L).

Table 5.12: Comparison of prediction results for the fathead minnow LC50 test set.

Method R2 R2−R2
0

R2 k RMSE MAE Coverage
Hierarchical [133] 0.710 0.075 0.966 0.801 0.574 0.951
Single Model [133] 0.704 0.134 0.960 0.803 0.605 0.945

FDA [133] 0.626 0.113 0.985 0.915 0.656 0.945
Group contribution [133] 0.686 0.123 0.949 0.810 0.578 0.872
Nearest neighbor [133] 0.667 0.080 1.001 0.876 0.649 0.939
TEST consensus [133] 0.728 0.121 0.969 0.768 0.545 0.951

Results with ESTDs
RF 0.661 0.364 0.946 0.858 0.638 1.000

GBDT 0.672 0.103 0.958 0.857 0.612 1.000
ST-DNN 0.675 0.031 0.995 0.862 0.601 1.000
MT-DNN 0.738 0.012 1.015 0.763 0.514 1.000
Consensus 0.740 0.087 0.956 0.755 0.518 1.000

Results with only auxiliary molecular descriptors
RF 0.744 0.467 0.947 0.784 0.560 1.000

GBDT 0.750 0.148 0.962 0.736 0.511 1.000
ST-DNN 0.598 0.044 0.982 0.959 0.648 1.000
MT-DNN 0.771 0.003 1.010 0.705 0.472 1.000
Consensus 0.787 0.105 0.963 0.679 0.464 1.000

Results with all descriptors
RF 0.727 0.322 0.948 0.782 0.564 1.000

GBDT 0.761 0.102 0.959 0.719 0.496 1.000
ST-DNN 0.692 0.010 0.997 0.822 0.568 1.000
MT-DNN 0.769 0.009 1.014 0.716 0.466 1.000
Consensus 0.789 0.076 0.959 0.677 0.446 1.000
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5.2.3.2 Daphnia magna LC50 test set

The Daphinia Magna LC50 set is the smallest in terms of set size, with 283 training molecules and

70 test molecules, respectively. However, it brings difficulties to building robust QSAR models

given the relatively large number of descriptors. Indeed, five independent models in TEST software

give significantly different predictions, as indicated by RMSEs shown in Table 5.13 ranging from

0.810 to 1.190 log units. Though the RMSE of Group contribution is the smallest, its coverage

is only 0.657 % which largely restricts this method’s applicability. Additionally, its R2 value is

inconsistent with its RMSE andMAE. Since Ref. [133] states that “The consensus method achieved

the best results in terms of both prediction accuracy and coverage”, these usually low RMSE and

MAE values might be typos.

We also notice that our non-multitask models that contain ESTDs result in very large devia-

tion from experimental values. Indeed, overfitting issue challenges traditional machine learning

approaches especially when the number of samples is less than the number of descriptors. The

advantage of MT-DNNmodel is to extract information from related tasks and our numerical results

show that the predictions do benefit from MTL architecture. For models using ESTDs, physical

descriptors and all descriptors, the R2 has been improved from around 0.5 to 0.788, 0.705, and

0.726, respectively. It is worthy to mention that our ESTDs yield the best results, which proves the

power of persistent homology. This result suggests that by learning related problems jointly and

extracting shared information from different data sets, MT-DNN architecture can simultaneously

perform multiple prediction tasks and enhance performances especially on small data sets.

5.2.3.3 Tetraphymena pyriformis IGC50 test set

IGC50 set is the second largest QSAR toxicity set that we want to study. The diversity of molecules

in IGC50 set is low and the coverage of TESTmethods is relatively high compared to previous LC50

sets. As shown in Table 5.14, the R2 of different TEST methods fluctuates from 0.600 to 0.764 and

Test consensus prediction again yields the best result for TEST software with R2 of 0.764. As for

our models, the R2 of MT-DNN with different descriptors spans a range of 0.038 (0.732 to 0.770),
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Table 5.13: Comparison of prediction results for the Daphnia magna LC50 test set.

Method R2 R2−R2
0

R2 k RMSE MAE Coverage
Hierarchical [133] 0.695 0.151 0.981 0.979 0.757 0.886
Single Model [133] 0.697 0.152 1.002 0.993 0.772 0.871

FDA [133] 0.565 0.257 0.987 1.190 0.909 0.900
Group contribution [133] 0.671 0.049 0.999 0.803a 0.620a 0.657
Nearest neighbor [133] 0.733 0.014 1.015 0.975 0.745 0.871
TEST consensus [133] 0.739 0.118 1.001 0.911 0.727 0.900

Results with ESTDs
RF 0.441 1.177 0.957 1.300 0.995 1.000

GBDT 0.467 0.440 0.972 1.311 0.957 1.000
ST-DNN 0.446 0.315 0.927 1.434 0.939 1.000
MT-DNN 0.788 0.008 1.002 0.805 0.592 1.000
Consensus 0.681 0.266 0.970 0.977 0.724 1.000

Results with only auxiliary molecular descriptors
RF 0.479 1.568 0.963 1.261 0.946 1.000

GBDT 0.495 0.613 0.959 1.238 0.926 1.000
ST-DNN 0.430 0.404 0.921 1.484 1.034 1.000
MT-DNN 0.705 0.009 1.031 0.944 0.610 1.000
Consensus 0.665 0.359 0.945 1.000 0.732 1.000

Results with all descriptors
RF 0.460 1.244 0.955 1.274 0.958 1.000

GBDT 0.505 0.448 0.961 1.235 0.905 1.000
ST-DNN 0.459 0.278 0.933 1.407 1.004 1.000
MT-DNN 0.726 0.003 1.017 0.905 0.590 1.000
Consensus 0.678 0.282 0.953 0.978 0.714 1.000

a these values are inconsistent with R2 = 0.671.

which indicates that our MT-DNN not only takes care of overfitting problem but also is insensitive

to datasets. Although ESTDs slightly underperform compared to physical descriptors, its MT-DNN

results are able to defeat most TEST methods except FDA method. When all descriptors are used,

predictions by GBDT and MT-DNN outperform TEST consensus, with R2 of 0.787 and RMSE of

0.455 log(mol/L). The best result is again given by consensus method using all descriptors, with

R2 of 0.802 and RMSE of 0.438 log(mol/L).
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Table 5.14: Comparison of prediction results for the Tetraphymena Pyriformis IGC50 test set.

Method R2 R2−R2
0

R2 k RMSE MAE Coverage
Hierarchical [133] 0.719 0.023 0.978 0.539 0.358 0.933

FDA [133] 0.747 0.056 0.988 0.489 0.337 0.978
Group contribution [133] 0.682 0.065 0.994 0.575 0.411 0.955
Nearest neighbor [133] 0.600 0.170 0.976 0.638 0.451 0.986
TEST consensus [133] 0.764 0.065 0.983 0.475 0.332 0.983

Results with ESTDs
RF 0.625 0.469 0.966 0.603 0.428 1.000

GBDT 0.705 0.099 0.984 0.538 0.374 1.000
ST-DNN 0.708 0.011 1.000 0.537 0.374 1.000
MT-DNN 0.723 0.000 1.002 0.517 0.378 1.000
Consensus 0.745 0.121 0.980 0.496 0.356 1.000

Results with only auxiliary molecular descriptors
RF 0.738 0.301 0.978 0.514 0.375 1.000

GBDT 0.780 0.065 0.992 0.462 0.323 1.000
ST-DNN 0.678 0.052 0.972 0.587 0.357 1.000
MT-DNN 0.745 0.002 0.995 0.498 0.348 1.000
Consensus 0.789 0.073 0.989 0.451 0.317 1.000

Results with all descriptors
RF 0.736 0.235 0.981 0.510 0.368 1.000

GBDT 0.787 0.054 0.993 0.455 0.316 1.000
ST-DNN 0.749 0.019 0.982 0.506 0.339 1.000
MT-DNN 0.770 0.000 1.001 0.472 0.331 1.000
Consensus 0.802 0.066 0.987 0.438 0.305 1.000

5.2.3.4 Oral rat LD50 test set

The oral rat LD50 set contains the largest molecule pool with 7413 compounds. However, none of

methods is able to provide a 100% coverage of this data set. The results of single model method

or group contribution method were not properly built for the entire set [133]. It was noted that

LD50 values of this data set are relatively difficult to predict as they have a higher experimental

uncertainty [156]. As shown in Table 5.15, results of two TEST approaches, i.e., Single Model

and Group contribution, were not reported for this problem. The TEST consensus result improves

overall prediction accuracy of other TEST methods by about 10 %, however, other non-consensus

methods all yield low R2 and high RMSE.

For our models, all results outperform those of non-consensus methods of TEST. In particular,
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GBDT and MT-DNN with all descriptors yield the best (similar) results, giving slightly better

results compared to TEST consensus. Meanwhile, our predictions are also relatively stable for this

particular set as R2s do not essentially fluctuate. It should also be noted that our ESTDs have slightly

higher coverage than physical descriptors (all combined descriptors) since 2 molecules in the test

set that contains As element cannot be properly optimized for energy computation. However this

is not an issue with our persistent homology computation. Consensus method using all descriptors

again yield the best results for all combinations, with optimal R2 of 0.653 and RMSE of 0.568

log(mol/kg).

Table 5.15: Comparison of prediction results for the Oral rat LD50 test set.

Method R2 R2−R2
0

R2 k RMSE MAE Coverage
Hierarchical [133] 0.578 0.184 0.969 0.650 0.460 0.876

FDA [133] 0.557 0.238 0.953 0.657 0.474 0.984
Nearest neighbor [133] 0.557 0.243 0.961 0.656 0.477 0.993
TEST consensus [133] 0.626 0.235 0.959 0.594 0.431 0.984

Results with ESTDs
RF 0.586 0.823 0.949 0.626 0.469 0.999

GBDT 0.598 0.407 0.960 0.613 0.455 0.999
ST-DNN 0.601 0.006 0.991 0.612 0.446 0.999
MT-DNN 0.613 0.000 1.000 0.601 0.442 0.999
Consensus 0.631 0.384 0.956 0.586 0.432 0.999

Results with only auxiliary molecular descriptors
RF 0.597 0.825 0.946 0.619 0.463 0.997

GBDT 0.605 0.385 0.958 0.606 0.455 0.997
ST-DNN 0.593 0.008 0.992 0.618 0.447 0.997
MT-DNN 0.604 0.003 0.995 0.609 0.445 0.997
Consensus 0.637 0.350 0.957 0.581 0.433 0.997

Results with all descriptors
RF 0.619 0.728 0.949 0.603 0.452 0.997

GBDT 0.630 0.328 0.960 0.586 0.441 0.997
ST-DNN 0.614 0.006 0.991 0.601 0.436 0.997
MT-DNN 0.626 0.002 0.995 0.590 0.430 0.997
Consensus 0.653 0.306 0.959 0.568 0.421 0.997
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CHAPTER 6

DISCUSSION

We split the discussion chapter into several parts, namely, solvation free energy, partition coefficient

and aqueous solubility, various toxicity endpoints. Within each part, we reviewmodel performances

of different datasets, and also discuss how current models can be potentially improved.

6.1 Solvation free energy

6.1.1 Descriptor importance analysis

An important concern for machine learning is descriptor importance. In order to analyze this issue,

we rank all descriptors by their importance and consequently generate 40 different sets of feature

combinations. Note that the descriptor importance here refers to Gini importance [157] weighted

by the number of trees in a forest calculated by our baseline methods. We train models with different

numbers of descriptors to examine their predictive performances on test sets. More specifically,

the protocol to select descriptors relies on a series of descriptor importance cutoffs, equally spaced

between 0 and 0.01, with features whose importance is greater than the given cutoff value being

selected.

Figure 6.1 represents the RMSEs of predicted solvation energy of SAMPL molecules against

different descriptor importance cutoffs. When the feature importance cutoff value is large, the

number of features is small, and RMSE is typically large too. The performance is getting better

when the importance cutoff value is relatively small. However, further reduction in the cutoff value

does not necessarily improve the prediction accuracy and may result in worse performance. Indeed,

a suitable cutoff value can benefit overall performance. Cutoff value of 2.5 × 10−3 appears to be a

good choice in our case according to our descriptor importance analysis.
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(a) SAMPL0 (b) SAMPL1

(c) SAMPL2 (d) SAMPL3

(e) SAMPL4

Figure 6.1: Descriptor importance cutoff versus RMSE for all test sets with AM1-BCC charge
and MBondi2 radius parametrization. The larger cutoff value is, the smaller number of features is
selected.

6.2 Partition coefficient and aqueous solubility

6.2.1 ESTDs for small molecules

As the previous results indicate, there exists a common descriptor representation for partition

coefficient and solubility prediction. Our descriptors come from two different categories – one that

is computed solely by ESPH, and the other one that has been widely used in the development of

67



QSARmodels. Although the number of ESTDs is small, it turns out that our topological descriptor

representation of molecules has a very strong predictive power compared to baseline method. Our

ESTDs highlight atom type information and are able to retain intra-molecular interactions via a

filtration prcoess.

6.2.2 Multitask learning

The goal of multitask learning is to learn commonalities between different tasks, and to simultane-

ously improve model performances. Partition coefficient and aqueous solubility are trained jointly

and substantial improvements over single task models are observed. Our results suggest that there

exists shared information across these two tasks that can benefit prediction accuracy. Indeed, the

original motivation for predicting log P and log S is that both coefficients closely relate to the extent

to which a compound dissolves in solvents. By comparing our MT-DNN with gradient boost-

ing trees, we find that it is beneficial to learn partition coefficient and aqueous solubility models

together. Our MT-ESTD models achieve satisfactory results on various partition coefficient and

aqueous solubility data sets, some of which are the state-of-the-art to our best knowledge. Moreover,

ESTDs alone can give very accurate predictions, bringing us new insights by ESPH computations.

In addition to ESTDs, commonly-used 2D descriptors also help to improve the overall accuracy.

Learning these two related properties together boosts the overall model performances.

6.2.3 Predictive power for log P and log S

We have shown that a common set of ESTDs can be used to accurately predict log P and log S.

However, we also notice that the performances of ESTDs on log P are generally better than those

of log S. One major reason is that the size of log S training set is small comparing to the size

of log P training set, and it is difficult to fulfill the potential of MT-DNN algorithms. Also the

(descriptor)/(training sample size) ratio of log S is much lower than that of log P, and MT-DNN

and GBDT models are likely to overfit due to the large number of fitting parameters. However,

MT-DNN is still able to take advantage of log P prediction tasks - for Klopman’s and Hou’s test
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sets, MT-DNN achieves better results than GBDT. We believe that log P and log S can be predicted

simultaneously using MT-DNN architectures and it could be beneficial for both prediction tasks.

6.3 Toxicity endpoints prediction

6.3.1 The impact of descriptor selection and potential overfitting

To deal with descriptor redundancy and overfitting, four different sets of high-importance descrip-

tors are selected by a threshold to perform prediction tasks, in a similar way as discussed in previous

subsection. More specifically, we rank all descriptors according to their feature importance and

use various feature importance thresholds as a selection protocol. Four different values are chosen

(2.5e-4, 5e-4, 7.5e-4 and 1e-4) and the results using MT-DNN are shown in Table 6.1. Results for

the other three remaining sets are provided in Appendix.

Table 6.1: Results of selected descriptor groups for LC50 set

Threshold # of descriptors R2 R2−R2
0

R2 k RMSE MAE Coverage
0.0 1030 0.769 0.009 1.014 0.716 0.466 1.000

2.5e-4 411 0.784 0.051 0.971 0.685 0.459 1.000
5e-4 308 0.764 0.062 0.962 0.719 0.470 1.000
7.5e-4 254 0.772 0.064 0.958 0.708 0.468 1.000
1e-3 222 0.764 0.063 0.963 0.717 0.467 1.000

Table 6.1 shows performancewith respect to different numbers of descriptors. When the number

of descriptors is increased from 222, 254, 308, 411 to 1030, RMSE does not increase and R2 does

not change much. This behavior suggests that our models are essentially insensitive to the number

of descriptors and thus there is little overfitting. MT-DNN architecture takes care of overfitting

issues by successive feature abstraction, which naturally mitigates noise generated by less important

descriptors. MT-DNN architecture can also potentially take advantage across related tasks, which

in turn reduces the potential overfitting on single data set by the alternative training procedure.

Similar behaviors have also been observed for the remaining three data sets, as presented in

Appendix. Therefore our MT-DNN architecture is very robust against descriptor selection and can

avoid overfitting.
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6.3.2 The predictive power of ESTDs for toxicity

One of the main objectives of this study is to understand toxicity of small molecules from a

topological point of view. It is important to see if ESTDs alone can match those methods proposed

in T.E.S.T. software. When all ESTDs and MT-DNN architecture are used for toxicity prediction,

we observe following results:

• LC50 set and LC50DM set. Models using only ESTDs achieve higher accuracy than T.E.S.T.

consensus method.

• LD50 set. Consensus result of ESTDs tops T.E.S.T. software in terms of both R2 and RMSE

and MT-DNN results outperform all non-consensus T.E.S.T methods.

• IGC50 set. ESTDs are slightly underperformed than T.E.S.T consensus. However, MT-DNN

with ESTDs still yield better results than most non-consensus T.E.S.T methods except FDA.

It is evident that our ESTDs along withMT-DNN architecture have a strong predictive power for

all kinds of toxicity endpoints. The ability of MT-DNN to learn from related toxicity endpoints has

resulted in a substantial improvement over ensemble methods such as GBDT. Along with physical

descriptors calculated by our in-house MIBPB, we can obtain state-of-the-art results for all four

quantitative toxicity endpoints.

6.3.3 Alternative element specific networks for generating ESTDs

Apart from the element specific networks proposed in Table 4.8, we also use alternative element

specific networks listed below in Table 6.2 to perform the same prediction tasks. Instead of using

two types of element-specific networks, we only consider two-element networks, which essentially

puts more emphasis on intra-molecular interaction aspect. Eventually, this new construction yields

30 different element specific networks (9+8+7+6), and a total of 840 ESTDs (30× 28) are calculated

and used for prediction. On LC50 set, IGC50 set and LD50 set, overall performances of the new

ESTDs can be improved slightly. However on LC50-DM set, the accuracy is comparably lower (still
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Table 6.2: Alternative element specific networks used to characterize molecules

Network type Element specific networks

Two-element {bi, c j }, where bi ∈ B, c j ∈ C, i ∈ {1 . . . 3}, j ∈ {1 . . . 9}, and i < j,
where B={H, C, N, O} and C={H, C, N, O, F, P, S, Cl, Br, I}.

higher than T.E.S.T consensus). Detailed performances of these ESTDs are presented in Appendix.

Thus the predictive power of our ESTDs is not sensitive to the choice of element specific networks

as long as reasonable element types are included.

6.3.4 A potential improvement with consensus tools

In this work, we also propose consensusmethod as discussed in Section 5.2.3. The idea of consensus

is to train different models on the same set of descriptors and average across all predicted values.

The underlying mechanism is to take advantage of system errors generated by different machine

learning algorithms with the potential to reduce bias for the final prediction.

As we notice from Section 5.2.3, consensus method offers a considerable boost in prediction

accuracy. For reasonably large sets except LC50-DM set, consensus models turn out to give the

best predictions. When it comes to small set (LC50-DM set), consensus models perform worse

than MT-DNN. It is likely due to the fact that large number of descriptors may cause overfitting

issues for most machine learning algorithms, and consequently generate large deviations, which

eventually result in a large error of consensus method. Thus, it should be a good idea to perform

prediction tasks with both MT-DNN and consensus methods, depending on the size of data sets, to

take advantage of both approaches.
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CHAPTER 7

THESIS CONTRIBUTION AND FUTUREWORK

In this chapter, thesis contribution is highlighted for predictions of small molecule properties, in

terms of topological modeling and machine learning algorithms. The thesis then ends with some

perspectives on future work.

7.1 Solvation free energy

Implicit solvent models intuitively split the total solvation free energies into polar and nonplar

contributions. However, polar and nonpolar interactions are coupled and interdependent during

solvation process. A novel framework is proposed to break the polar-nonpolar division used in

implicit solvent models and treat polar and nonpolar contributions on an equal footing, based on

the assumption that there exists a microscopic descriptor vector that can uniquely characterize a

molecule and distinguish it from other molecules.

To validate the proposed method, we adopt a large dataset of 668 molecules collected in our

earlier work [4]. We propose two sets of descriptors to train the quantitative models: one set with

polar features are highly correlated with solvation free energies of this dataset and the other set

with both polar and onpolar features. Although non-polar features such as atomic area are not

highly correlated with solvation free energy, the inclusion of nonpolar features improves the overall

performance of the present method. Highly accurate solvation free energy prediction is confirmed

by both the leave-one-out test over 668 molecules and the prediction of five SAMPL test sets,

namely, SAMPL0, SAMPL1, SAMPL2, SAMPL3 and SAMPL4. Finally, we consider a test set

of 94 molecules and its associated training set [1] for a comparison of the present method and a

classic solvation model based on weighted solvent accessible surface area [1].
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7.2 Partition coefficient and aqueous solubility

Partition coefficient and aqueous solubility are among the most important physical properties

of small molecules and have significant applications to drug design and discovery in terms of

lipophilic efficiency. Based on chemical and physical models, a wide variety of computational

methods has been developed in the literature for the theoretical predictions of partition coefficient

and aqueous solubility.

Present work introduces an algebraic topology basedmethod, element specific persistent homol-

ogy (ESPH), for simultaneous partition coefficient and aqueous solubility predictions. ESPH offers

an unconventional representation of small molecules in terms of multiscale and multicomponent

topological invariants. Here the multiscale representation is inherited from persistent homology,

while the multicomponent formulation is developed to retain essential chemical information during

the topological simplification of molecular geometric complexity. Therefore, the present ESPH

gives a unique representation of small molecules that cannot be obtained by any other methods.

Although ESPH representation of molecules cannot be literally translated into a physical inter-

pretation, it systematically and comprehensively enciphers chemical and physical information of

molecules into scalable topological invariants, and thus is ideally suited for machine learning/deep

learning algorithms to decipher such information.

To predict partition coefficient and aqueous solubility, we integrate ESPH with advanced ma-

chine learning methods, including gradient boosting tree, random forest, and deep neural networks

to construct topological learning strategies. Since partition coefficient and aqueous solubility are

highly correlated to each other, we develop a common set of ESPH based descriptors, called element

specific topological descriptors (ESTDs), to represent both properties. This approach enables us to

perform simultaneous predictions of partition coefficient and aqueous solubility using a topology

based multi-task deep learning strategy.

To test the representational of ESPH and the predictive power of the proposed topological

multi-task deep learning strategy, we consider some commonly used data sets, including two

benchmark test sets, for partition coefficient, as well as additional solubility data sets. Extensive
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cross validations and benchmark tests indicate that the proposed topological multi-task strategy

offers some of the most accurate predictions of partition coefficient and aqueous solubility.

7.3 Toxicity endpoints

Toxicity refers to the degree of damage a substance on an organism, such as an animal, bac-

terium, or plant, and can be qualitatively or quantitatively measured by experiments. Experimental

measurement of quantitative toxicity is extremely valuable, but is typically expensive and time

consuming, in addition to potential ethic concerns. Theoretical prediction of quantitative toxicity

has become a useful alternative in pharmacology and environmental science. A wide variety of

methods has been developed for toxicity prediction in the past. The performances of these methods

depend not only on the descriptors, but also on machine learning algorithms, which makes the

model evaluation a difficult task.

We introduce a series of novel descriptors, called element specific topological descriptor

(ESTD), for the characterization and prediction of toxicity endpoints. Additionally, physical de-

scriptors based on established physical models are also developed to enhance the predictive power

of ESTDs. These new descriptors are then combined with a variety of advanced machine learning

algorithms to demonstrate their capability in quantitative toxicity analysis.

Four quantitative toxicity data sets, i.e., 96 hour fathead minnow LC50 data set (LC50 set), 48

hour Daphnia magna LC50 data set (LC50-DM set), 40 hour Tetrahymena pyriformis IGC50 data set

(IGC50 set), and oral rat LD50 data set (LD50 set), are used in the present study. Comparison has also

been made to the state-of-art approaches given in the T.E.S.T website at https://www.epa.gov/

chemical-research/toxicity-estimation-software-tool-test by United States Envi-

ronmental Protection Agency. Our numerical experiments indicate that the proposed ESTDs are

as competitive as individual methods in T.E.S.T. Aided with physical descriptors and MT-DNN

architecture, ESTDs are able to establish state-of-the-art predictions for quantitative toxicity data

sets. Additionally, MT-DNN models are typically more accurate than ensemble methods.

It is worthy to note that the proposed new descriptors are very easy to generate and thus have
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almost 100% coverage for all molecules, indicating their broader applicability to practical toxicity

analysis and prediction. In fact, our topological descriptors are much easier to construct than

physical descriptors, which depend on physical models and force fields. The present work indicates

that ESTDs are a new class of powerful descriptors for small molecules.

7.4 Future work

In this section, we propose the future work of this thesis from several different aspects, following

cheminformatics, topological modeling and machine learning point of view.

First of all, there are still many other useful chemical/phyiscal properties to be studied. Prop-

erties such as boiling point, viscosity, boiling point, and melting point of a chemical can all

potentially be predicted following the same QSAR pipeline. Furthermore, qualitative proper-

ties can also be incorporated into our current framework. For instance, Tox21 data challenge

(https://tripod.nih.gov/tox21/challenge/), although also focuses on toxicity predic-

tions, proposes 12 different qualitative toxicity endpoints for participants to predict. After all,

both quantitative and qualitative properties would be essential for drug design and drug discovery.

Secondly, our current ESPH framework can be further improved. From the idea of primitive

PH, we have developed ESPH, and further modified ESPH to better characterize small molecules

by eliminating covalent bonding. Proposed ESPH, however, mainly takes care of geometric in-

formation. A potential approach is to incorporate electrostatic persistence or resolution based

persistence to generate more ESTDs. Moreover, it may also be beneficial to construct complexes

(such as Alpha complex) in addition to Vietoris-Rips complex or to use different sets of distance

metrics. We firmly believe that topological modeling has tremendous potential in cheminformatics

and bioinformatics applications.

Last but not least, it is promising that our current molecular descriptors can benefit from the

development of machine learning techniques. Neural network based models, such as convolutional

neural networks (CNN), generative adversarial networks (GAN) and capsule networks (CN), have

all demonstrated success or achieved preliminary results when applying to biomolecule modeling.
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For example, one can take advantage of image processing by splitting atoms of different element

types into different channels (analogous to RBG channel for image) and analyzing molecular

descriptors based on locations. The potential of machine learning can never be overestimated.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR SOLVATION FREE ENERGY PREDICTION

A.1 A list of polar descriptors used for solvation free energy prediction

Table A.1: Microscopic polar features with high correlations to the solvation free energy used in
this study

Feature Name
Sum of atomic reaction field energy
Sum of the absolute value of atomic reaction field energy
Sum of H atomic reaction field energy
Sum of the absolute value of H atomic reaction field energy
Sum of O atomic reaction field energy
Sum of the absolute value of O atomic reaction field energy
Minimum value of atomic reaction field energy
Maximum of the absolute value of reaction field energy
Minimum value of H atomic reaction field energy
Maximum of the absolute value of H atomic reaction field energy
Mean of atomic reaction field energy
Mean of the absolute value of atomic reaction field energy
Variance of atomic reaction field energy
Variance of the absolute value of reaction field energy
Variance of H atomic reaction field energy
Variance of the absolute value of H atomic reaction field energy
Sum of the absolute value of atomic charge
Sum of H atomic charge
Sum of the absolute value of H atomic charge
Sum of O atomic charge
Sum of the absolute value of O atomic charge
Minimum of atomic charge
Maximum of the absolute value of atomic charge
Maximum of H atomic charge
Maximum of the absolute value of H atomic charge
Mean of the absolute value of atomic charge
Variance of the atomic charge
Variance of the absolute value of atomic charge
Variance of the absolute value of H atomic charge
Variance of H atomic charge
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A.2 Leave-one-out results

Table A.2 shows the query of each molecule and leave one out results of AM1-BCC charge and
MBondi2 radius parameterizations with selected polar features.

Table A.2: Molecules with corresponding query number, and eave one out results with AM1-BCC
charge and MBondi2 radius

PubChem ID Query Number Experimental Value Predicted Value
10008 1 -0.8 -0.535
10041 1 2.51 1.893
101 2 -9.52 -7.801
1031 2 -4.85 -5.018
1032 2 -6.46 -6.244
10326 1 -1.46 -0.877
10371 3 -7.1 -7.277
10399 2 -5.48 -3.895
10405 2 -2.65 -2.505
10422 3 -5.56 -4.679
10430 2 -6.09 -6.315
10461 5 -3.92 -3.353
10486 5 1.09 -0.379
1049 3 -4.69 -5.326
10541 3 -8.7 -10.266
10553 1 1.31 0.767
10566 1 0.4 1.337
1068 6 -1.61 -1.418
10686 1 -1.21 -0.935
10687 2 -6.16 -6.429
10722 2 -3.93 -4.715
10740 1 -2.78 -3.035
107828 3 -17.17 -18.016
10822 3 -4.73 -4.581
10823 3 -4.59 -4.856
10824 3 -7.29 -7.762
10864 1 -0.23 -0.442
10870 1 0.16 -0.167
10882 2 -2.49 -2.445
10899 5 -0.33 -0.260
10903 2 -2.1 -2.414
10907 1 2.89 2.773
10926 5 -0.7 -1.395
10943 5 -0.98 -1.125
10974 3 -1.88 -2.334
10977 5 -0.07 -0.515
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Table A.2 (cont’d)

10992 5 0.0 0.087
11 1 -1.79 -1.228

11000 5 -0.99 -0.912
11095291 2 0.1 -1.943
11124 6 -2.93 -2.928
11126 3 -1.38 -1.475
11137 2 -9.62 -6.729
11182 1 -1.66 -1.559
11229 1 2.56 2.535
11239 2 1.83 1.502
11251 1 -3.24 -3.015
11260 2 2.52 2.545
11264 1 -3.88 -3.905
11269 2 2.56 2.870
11271 1 -2.74 -3.442
11304 1 -2.82 -2.428
11327 2 -2.47 -2.770
11335 1 -5.26 -5.531
11386 1 -2.78 -2.485
11387 1 -2.63 -2.800
1140 1 -0.9 -0.797
11416 3 1.58 2.105
11417 3 -5.22 -4.831
11420 2 -4.82 -4.853
11428 3 -4.35 -4.182
1146 5 -3.2 -5.502
11507 1 2.71 2.815
11513 2 -4.01 -3.224
11519 1 2.97 2.870
11523 1 2.11 1.670
11526 3 -4.72 -4.959
11542 1 2.88 2.547
11543 2 -3.92 -3.999
11565 3 -4.84 -4.516
11574 1 0.67 1.255
11582 1 2.93 2.585
11583 2 -3.28 -3.102
11587 1 0.93 1.170
11597 1 1.58 1.760
11598 1 1.01 1.170
11610 1 1.66 1.680
11611 1 1.68 1.675
11638 1 -0.22 1.047
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Table A.2 (cont’d)

11643 5 -0.77 -0.775
11670 2 -3.91 -4.364
11721 2 -2.01 -2.215
1174 3 -16.59 -17.440
11903 1 -0.85 -0.535
11904 1 -1.24 -1.244
11940 1 -3.78 -2.800
12009 3 -14.0 -13.380
12016 5 0.04 0.132
12083 3 -6.88 -6.300
12101 2 -6.25 -5.703
12160 1 -0.95 -1.170
12178 2 -4.06 -4.539
12180 2 -2.83 -2.650
12206 2 -2.56 -2.593
12217 2 -2.11 -2.116
12232 6 -1.83 -1.535
12245 5 0.07 0.045
12257 2 -2.02 -2.802
12264 6 -1.21 -1.314
12287 3 -4.01 -4.811
12291 3 -3.88 -3.671
12302 3 -3.09 -2.827
12309 1 0.01 0.248

12309460 4 -4.23 -4.692
12321 6 -1.43 -2.143
12332 3 -9.31 -8.857
12340 2 -1.81 -1.912
12348 2 -2.51 -2.350
12350 1 0.6 0.248
12370 1 0.71 0.675
12371 5 0.29 -0.232
12375 2 -3.54 -3.127
12418 5 -1.43 -1.047
12463 5 -1.34 -1.943
12468 5 -1.62 -1.262
12508 2 -2.22 -2.412
12580 2 -5.21 -6.061
12586 2 -4.1 -3.166
126 2 -8.83 -9.038
12720 1 0.04 -0.250
12724 1 1.91 1.680
12732 1 0.29 0.530
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Table A.2 (cont’d)

12741 2 -2.34 -2.765
12896 3 -11.24 -9.358
12986 1 1.47 1.680
13 2 -1.12 -1.047

13004 3 -4.61 -3.668
13019 7 -10.17 -9.746
13081 2 -6.5 -5.217
13187 2 -2.49 -2.709
13207 3 -3.9 -3.442

13238893 3 -1.92 -6.087
13263 3 -7.65 -7.663
13389 3 -7.0 -6.837
13394 3 -9.65 -8.318
13450 5 -6.68 -8.389
135191 2 -20.52 -23.559
13529 2 -3.77 -4.357
13567 3 -2.09 -2.012
13855 2 -2.92 -1.993
138747 3 -4.29 -4.243
138975 3 -11.95 -7.774
1390 3 -8.41 -6.564
14109 1 -0.04 -0.535
141897 2 -5.73 -5.918
14215 3 -3.64 -4.378
14276 3 -4.4 -3.162
14282 3 -7.62 -7.206
14315 1 -2.4 -2.800
144381 3 -6.4 -7.051
144702 4 -4.59 -4.107
15050 2 -4.42 -4.368
15413 2 -2.21 -2.220
15546 3 -16.43 -15.724
15600 1 3.16 2.930
15625 4 -3.37 -3.758
156391 2 -10.21 -9.925
15758 3 -17.74 -16.703
16003 3 -4.13 -3.644
16270 1 2.13 2.585
16295 1 -0.18 0.247
16318 5 -2.98 -0.978
16441 2 -4.09 -3.290
16628 1 1.58 1.993
16666 2 -3.2 -3.507
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Table A.2 (cont’d)

1672 3 -6.93 -7.207
16900 2 -3.43 -3.437
17190 3 -8.94 -11.688
1732 4 -6.79 -6.848
174 2 -9.3 -7.136
176 2 -6.69 -7.501
177 2 -3.5 -3.250
17739 2 -5.26 -6.844
17756 2 -6.4 -5.745
178 3 -9.71 -10.312
180 2 -3.8 -3.945
18636 5 -4.53 -1.125

18927701 1 -0.8 0.246
18937 1 1.05 0.597
19041 1 2.93 2.895
19540 1 2.55 2.502
19878 3 -4.46 -4.072
20419 3 -7.44 -10.787
20528 3 -14.21 -9.851
20748 2 -3.3 -2.412
2078 3 -8.21 -8.459
20848 3 -7.98 -9.430

21075956 3 -4.95 -5.145
21210 2 -5.73 -4.771

21269179 1 -1.29 -0.768
2160 3 -7.43 -6.135
220639 3 -2.82 -2.896
221525 5 -2.32 -2.815
22188 3 -11.14 -9.860
222 2 -4.29 -6.906
22227 2 -3.75 -3.752
222536 7 -4.97 -5.298
223106 1 1.07 0.247
22386 2 -4.39 -4.420
2244 2 -9.94 -9.319
2268 7 -10.03 -6.451
2319 3 -3.51 -2.982
2331 3 -11.0 -10.803
240 2 -4.02 -4.978
244 2 -6.62 -5.745

249266 5 -2.69 -2.933
25146 7 -5.74 -8.238
2519 3 -12.64 -10.790
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Table A.2 (cont’d)

2566 3 -9.61 -9.117
261 2 -3.18 -3.181
263 2 -4.72 -4.731
26331 3 -5.45 -5.476
264 2 -6.35 -6.268
26447 2 -2.53 -3.442
2730 7 -5.04 -6.853
27588 5 -2.28 -2.661
2879 2 -6.13 -6.548
297 1 2.0 1.680
3017 7 -6.48 -6.172
30209 3 -1.66 -1.928
3030 4 -9.86 -7.827
3031 3 -4.71 -3.673
3048 4 -4.82 -6.154
3059 2 -9.4 -9.804
3100 3 -9.34 -7.454
31234 2 -6.92 -6.060
31242 2 -6.13 -5.747
31246 2 -2.92 -2.986
31249 2 -5.71 -5.298
31260 2 -4.42 -4.568
31265 2 -2.23 -2.178
31268 3 -5.48 -4.395
31272 2 -2.64 -2.573
31275 2 -5.06 -3.895
31276 2 -2.21 -2.505
31285 1 2.06 1.670
31289 2 -2.07 -2.303
31297 7 -4.87 -6.475
31347 7 -8.61 -9.740
31373 5 0.1 -2.514
31420 3 -11.85 -9.586
31423 1 -4.52 -3.741
31645 3 -9.41 -10.178
32594 3 -3.68 -4.959
3283 2 -1.59 -2.125
3286 7 -6.1 -6.834
3301 3 -7.6 -6.557
33135 3 -4.4 -4.702
335 3 -5.9 -6.011
33500 2 -2.45 -3.264
3385 3 -16.92 -18.056
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Table A.2 (cont’d)

3394 2 -8.42 -8.897
342 2 -5.49 -6.429
34468 3 -5.66 -7.407
34586 4 -3.56 -4.243
34591 3 -5.04 -5.461
35454 4 -3.81 -4.010
356 1 2.88 2.930
3589 5 -2.55 -3.352
36401 5 -3.48 -2.516
36613 4 -3.67 -3.539
3672 2 -7.0 -6.699
36980 5 -2.46 -2.394
37037 5 -4.4 -2.973
37207 4 -3.52 -3.580
37247 5 -2.16 -2.517
3776 2 -4.74 -4.272
38019 5 -3.04 -3.352
3825 4 -10.78 -19.721
38251 2 -3.71 -3.920
38252 4 -3.1 -3.684
38253 4 -4.05 -3.757
38254 4 -4.15 -3.758
38306 5 -3.17 -3.610
39253 5 -4.61 -2.270
398 3 -3.13 -3.178
4004 7 -8.15 -6.873
402 6 -0.7 -1.207
4044 3 -6.78 -9.428
40818 3 -5.73 -4.518
4101 3 -4.56 -8.587
4109 3 -10.65 -9.717
4116 5 -1.12 -0.640
4130 7 -7.19 -6.462
4156 7 -4.87 -9.685
442474 2 -2.49 -3.586
447466 2 -4.22 -4.218
447907 3 -10.91 -9.807
454 2 -2.29 -2.783
460 2 -5.94 -5.930

46174049 4 -4.82 -4.554
4684 4 -7.03 -6.792
4685 5 -1.01 -1.228
4790 7 -4.37 -6.853
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Table A.2 (cont’d)

4837 3 -7.4 -7.050
48889 4 -3.84 -3.888
4929 3 -8.43 -6.704
4933 3 -7.78 -8.305
5216 3 -10.22 -9.381
527 2 -3.43 -3.438

5281168 2 -3.68 -4.445
5283324 2 -3.44 -3.434
52997 3 -20.25 -14.017
52999 3 -15.54 -16.091
53167 3 -7.77 -6.563

5326160 1 1.31 1.217
5326161 1 1.34 0.850
53476 4 -8.68 -7.291
53479 4 -7.78 -8.449

5377791 7 -7.07 -6.513
5541 2 -8.84 -15.756
5569 3 -3.25 -2.799
56160 3 -14.01 -17.548
5793 2 -25.47 -22.599
5802 3 -18.17 -17.100
5853 7 -12.74 -9.281
5899 3 -15.46 -18.053
5943 5 0.08 -1.396
5993 5 -3.44 -2.812
6027 2 -20.52 -23.556
6053 3 -6.66 -7.217
6054 2 -6.79 -6.588
6115 3 -5.49 -6.007
6129 3 -9.45 -10.469
61362 2 -4.51 -3.290
6184 2 -2.81 -2.505
6212 5 -1.08 -0.640
6213 7 -10.08 -6.889
6214 5 -0.64 -1.263
6228 3 -7.81 -7.456
6251 2 -23.62 -23.886
6276 2 -4.57 -4.633
6278 5 -0.19 -1.138
63079 5 -4.38 -2.972
63088 5 -3.61 -2.972
6324 1 1.83 2.105
6325 1 1.28 1.091
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Table A.2 (cont’d)

6326 1 -0.01 -0.024
6327 5 -0.55 -0.525
6329 3 -4.55 -5.738
6334 1 2.0 2.105
6335 1 -0.48 -0.197
6337 5 -0.63 -0.455
6338 5 -0.59 -0.105
6341 3 -4.5 -4.712
6342 3 -3.88 -4.517
6343 6 -1.14 -1.125
6344 5 -1.31 -1.047
6351 1 0.75 1.670
6360 1 2.3 2.379
6361 5 -0.25 -0.188
6365 5 -0.84 -1.047
6366 5 0.25 -0.168
6368 1 -0.11 -0.766
6372 5 -0.5 1.343
6373 1 0.81 0.000
6375 3 -4.02 -4.096
637564 2 -4.63 -3.786
637566 2 -4.45 -4.802
638186 5 -0.78 -0.685
6386 2 -4.47 -5.047
6391 5 1.69 0.994
6392 5 2.52 1.717
639662 1 1.66 1.680
6403 1 2.51 2.502
6405 2 -4.43 -4.364
6408 5 0.06 -1.394
6409 2 -4.31 -4.595
64151 2 -4.46 -3.226
6416 2 -3.11 -3.920
6419 5 -1.23 -0.845
6423 5 -1.45 -4.483
6427 5 0.82 0.042
6428 5 1.77 0.973
6429 5 2.32 2.123
6430 5 2.87 0.614
643820 2 -4.78 -4.485
643833 5 -1.17 -1.262
6441 2 -4.88 -5.480
64689 2 -25.47 -22.599
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Table A.2 (cont’d)

6497 7 -5.1 -7.770
6544 2 -5.18 -3.819
6556 1 2.38 2.547
6557 1 0.68 0.597
6560 2 -4.5 -4.897
6561 2 -2.86 -3.194
6563 5 0.0 -0.105
6564 5 -1.27 -2.370
6568 2 -4.62 -4.701
6569 2 -3.71 -3.763
6574 5 -1.99 -1.465
6575 5 -0.44 -1.138
6578 3 -9.4 -9.803
6582 3 -10.0 -9.778
6584 2 -3.13 -2.803
6587 3 -3.71 -3.265
6589 1 2.34 2.259
6591 5 -2.37 -1.574
66750 2 -7.75 -8.895
6710 3 -9.44 -9.808
6720 5 -5.22 -0.585
6734 1 -3.15 -1.894
6736 3 -5.88 -5.578
674 3 -4.29 -5.145
679 7 -9.28 -4.596
6809 3 -9.61 -10.127
6845 5 -3.32 -2.810
68510 3 -0.41 -2.980
6853 1 -3.35 -2.427
688400 3 -6.23 -6.264
6895 5 -1.24 -2.670
6896 3 -5.21 -4.913
69027 2 -2.4 -3.058
6944 3 -3.58 -3.645
6946 3 -7.37 -7.436
6947 3 -4.58 -9.511
6950 3 -6.23 -6.003
69689 3 -13.6 -11.641
69720 2 -4.04 -5.281

6993809 2 -4.2 -4.183
6997 2 -5.66 -6.348
6998 2 -4.68 -7.800
7000 3 -6.12 -7.456
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Table A.2 (cont’d)

7002 1 -2.44 -2.800
7005 2 -7.67 -7.315
702 2 -5.0 -4.837
7041 2 -6.96 -6.053
7043 2 -5.33 -4.366
7047 3 -5.72 -5.836
7057 3 -7.47 -6.834
7095 1 -2.7 -3.035
712 2 -2.75 -4.071
7144 2 -5.8 -6.918
7150 2 -3.92 -4.183
7165 2 -3.64 -4.943
7175 2 -9.37 -9.042
7184 2 -8.72 -9.318
7237 1 -0.9 -0.935
7238 5 -1.14 -0.977
7239 5 -1.36 -1.315
7240 3 -4.91 -5.894
7242 3 -5.53 -5.736
7245 4 -4.55 -5.665
7247 1 -0.86 -1.232
7249 2 -6.5 -6.128
7258 4 -7.29 -6.731
7267 2 -5.91 -5.240
727 5 -5.44 -2.660
7270 5 -1.34 -1.573
7282 1 2.51 2.547
7288 2 -3.41 -3.102
7295 4 -4.0 -4.549
7296 1 1.59 1.680
7298 2 -5.49 -4.980
7301 2 -3.3 -2.802
7304 3 -2.89 -3.436
73272 3 -15.83 -13.950
7351 2 -1.69 -2.481
7366 1 -0.44 -0.465
7368 1 -0.25 -0.000
7393 2 -5.91 -5.801
7406 1 -0.3 -0.797
7407 1 -1.24 -1.308
7410 2 -4.58 -4.714
7416 3 -4.12 -4.098
7422 3 -3.45 -3.675
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Table A.2 (cont’d)

7423 3 -8.84 -7.406
7456 2 -9.51 -8.900
74626 2 -3.82 -4.512
7463 1 -0.68 -0.935
7475 3 -9.82 -9.629
7476 2 -4.4 -4.541
7498 6 -2.38 -1.958
7500 1 -0.79 -0.397
7501 1 -1.24 -0.935
7503 5 -1.93 -2.668
7505 3 -4.1 -5.145
7506 3 -6.02 -6.781
7515 3 -4.69 -6.085
7519 2 -2.45 -2.599
7520 6 -2.73 -1.636
7523 3 -4.33 -4.703
753 2 -13.43 -10.059
7560 3 -9.13 -10.800
7580 1 -2.82 -2.882
7583 2 -2.87 -3.393
76122 2 -4.1 -3.128
7668 1 -0.53 -0.513
7674 2 -2.22 -2.490
7705 1 -0.4 -0.475
7732 3 -7.48 -6.724
7749 2 -2.68 -2.650
7761 2 -6.0 -5.741
7762 2 -2.49 -2.540
7765 3 -3.28 -2.930
77650 2 -9.8 -7.340
7770 2 -2.28 -2.540
7771 2 -6.01 -5.703
77918 3 -7.63 -8.403
7797 2 -2.3 -2.080
7803 2 -2.44 -2.481
7809 1 -0.8 -1.232
7812 3 -5.9 -5.462
7813 3 -5.57 -5.462
7818 3 -7.58 -6.381
7824 2 -2.49 -2.468
7843 1 2.1 2.313
7844 1 1.38 1.320
7845 1 0.56 0.353
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Table A.2 (cont’d)

7846 1 -0.16 -0.250
7848 6 -1.1 -1.135
7850 5 -0.57 -0.640
7852 3 -4.39 -4.516
7854 3 -3.84 -3.376
7858 2 -5.03 -5.480
7865 2 -2.78 -3.080
7892 1 2.51 2.088
7895 2 -3.52 -3.275
79 3 -6.75 -6.088

7903 1 -3.34 -3.563
7907 2 2.83 2.625
7909 2 -3.05 -3.508
7910 3 -3.73 -3.427
7912 3 -3.22 -4.020
79123 2 -1.82 -2.083
7914 3 -0.53 -1.687
79143 2 -18.4 -20.045
7915 1 -2.64 -2.540
7929 3 -0.83 -0.535
7932 3 -5.82 -5.462
7933 4 -6.62 -6.891
7936 3 -4.86 -4.327
7937 3 -4.59 -4.517
7947 1 -0.9 -0.349
7948 2 -6.27 -5.915
795 5 -9.63 -9.141
7950 3 -0.78 -1.110
7956 3 -18.06 -16.249
7962 1 1.7 1.583
7963 3 -4.93 -4.703
79639 3 -22.4 -17.631
7964 5 -1.12 -1.395
7965 3 -4.59 -3.989
7966 2 -5.46 -5.018
7967 2 -4.91 -3.427
7970 3 -4.77 -4.651
7972 3 -6.32 -4.958
7975 3 -4.63 -5.007
7976 3 -5.51 -5.671
7977 3 -4.39 -5.241
7991 2 -6.16 -6.126
7997 2 -2.79 -2.650
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Table A.2 (cont’d)

8003 1 2.3 1.893
8004 1 1.68 1.338
8005 5 -0.16 0.186
8007 3 -4.24 -4.441
8008 3 -3.64 -3.192
8012 6 -0.99 -1.162
8018 3 -6.55 -5.543
8019 2 -6.62 -6.428
8020 2 -2.93 -4.000
8021 3 -4.07 -4.858
8025 2 -2.56 -2.783
8027 3 -4.78 -4.412
8028 2 -3.47 -3.081
8030 6 -1.4 -1.535
8038 2 -2.36 -2.650
8051 2 -3.04 -3.077
8052 2 -2.13 -2.540
8058 1 2.48 2.693
8059 5 -2.32 -2.272
8060 3 -4.09 -4.543
8061 3 -3.52 -3.436
8063 2 -3.03 -2.842
8071 2 -4.84 -2.650
8076 2 -6.69 -6.588
8077 6 -1.64 -1.418
8078 1 1.23 1.137
8079 1 0.14 1.378
8082 3 -5.11 -4.287
8083 3 -7.17 -6.226
8091 2 -2.04 -2.282
8093 2 -2.88 -2.842
8095 2 -5.31 -3.943
8102 3 -3.95 -4.286
8103 2 -4.4 -4.110
8114 2 -1.16 -1.509
8115 5 -4.23 -2.270
8118 6 -1.28 -1.418
8121 2 -6.34 -5.969
81226 3 -5.99 -7.609
8125 1 2.08 1.818
8127 3 -3.79 -3.376
8129 2 -4.21 -4.540
8130 2 -2.67 -2.599
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Table A.2 (cont’d)

8133 2 -6.25 -6.222
8141 1 3.13 2.870
8143 3 -3.65 -3.989
8148 3 -3.24 -3.222
8163 2 -2.16 -2.283
81713 3 -11.01 -10.472
8174 2 -3.64 -3.507
8252 1 1.32 1.335
8254 2 -1.91 -2.350
8255 1 1.16 1.320
8263 1 3.43 1.552
8302 1 2.31 1.680
8323 3 -9.53 -8.664
8341 3 -11.53 -11.107
8370 5 -2.33 -0.684
84179 3 -9.76 -9.008
8418 1 -3.95 -3.883
8434 2 -9.2 -9.591
84440 2 -5.23 -4.566
8452 2 -4.7 -4.365
8454 3 -3.98 -3.888
8471 3 -3.22 -2.980
8500 2 -4.7 -4.709
85254 3 -8.18 -9.703
8606 3 -9.01 -6.731
8640 3 -7.28 -7.497
8663 2 -8.11 -6.914
8680 1 -0.45 -0.349
8723 2 -4.42 -4.485
878 6 -1.2 -0.983
8857 2 -2.94 -2.883
887 2 -5.1 -5.064
8881 5 -1.89 -2.428
8882 1 0.56 0.665
8892 2 -6.21 -6.347
8894 2 -3.12 -3.167
8900 1 2.67 2.547
8902 3 -3.65 -3.260
8908 2 -2.26 -2.125
8909 2 -0.83 -1.687
8914 2 -3.89 -3.443
9005 2 -4.42 -4.455
9007 2 -7.66 -6.348
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Table A.2 (cont’d)

9033 3 -5.42 -5.782
91662 5 -1.96 -2.970
91729 3 -16.23 -16.916
9216 2 -3.15 -3.509
9253 1 1.2 1.046
9265 1 0.8 1.553
9266 1 0.86 1.091
931 1 -2.4 -3.539
9321 7 -9.3 -4.566
93462 4 -6.44 -6.922
9411 3 -9.73 -10.890
94221 2 -4.44 -4.485
949 3 -3.45 -4.793
957 3 -4.09 -4.150

9570071 2 -9.84 -9.119
9589 3 -8.26 -6.727

9595287 3 -10.18 -13.603
9609 6 -1.46 -1.372
962 2 -6.3 -5.047
96257 3 -4.8 -4.351
9707 2 -5.29 -5.746
9774 2 -4.16 -4.193
9775 5 2.51 2.074
980 3 -10.64 -8.973
9818 1 1.07 0.806
9872 2 -4.15 -4.408
9893 2 -1.1 -3.016
991 7 -6.74 -6.860
995 1 -3.88 -3.558
996 2 -6.61 -6.347
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A.3 SAMPLx challenge results

Table A.3, A.4, A.5, A.6 and A.7 represent the solvation energy prediction for SAMPL0,
SAMPL1, SAMPL2, SAMPL3, SAMPL4 molecules calculated with polar features, respectively.
Table A.8, A.9, A.10, A.11 and A.12 represent the solvation energy prediction for SAMPL0,
SAMPL1, SAMPL2, SAMPL3, SAMPL4molecules calculatedwith all available polar and nonpolar
features, respectively.

Table A.3: Solvation energy prediction results for SAMPL0molecules using selected polar features

PubChem ID Experimental Value Predicted Value
223106 1.07 0.155
31275 -5.06 -4.735
7765 -3.28 -2.783
8020 -2.93 -3.574
222536 -4.97 -5.138
7761 -6.0 -6.423
8121 -6.34 -5.941
5541 -8.84 -10.141
12375 -3.54 -3.057
74626 -3.82 -4.409
795 -9.63 -9.872

84179 -9.76 -9.798
81713 -11.01 -10.798
7503 -1.93 -2.429
8115 -4.23 -2.964
9609 -1.46 -1.372
7498 -2.38 -1.958
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Table A.4: Solvation energy prediction results for SAMPL1molecules using selected polar features

PubChem ID Experimental Value Predicted Value
6544 -5.18 -4.032
14215 -3.64 -4.749
16003 -4.13 -4.768
6053 -6.66 -7.696
3031 -4.71 -3.257
34468 -5.66 -7.334
5569 -3.25 -2.982
2319 -3.51 -2.982
33500 -2.45 -2.982
56160 -14.01 -16.171
15546 -16.43 -18.067
107828 -17.17 -18.016
91729 -16.23 -18.021
52997 -20.25 -16.157
52999 -15.54 -14.734
9411 -9.73 -10.395
10974 -1.88 -3.220
13567 -2.09 -2.984
79123 -1.82 -2.698
40818 -5.73 -4.807

21075956 -4.95 -5.463
7560 -9.13 -10.910
17190 -8.94 -14.287
20419 -7.44 -11.639
12896 -11.24 -10.456
2566 -9.61 -9.836
6950 -6.23 -6.174
81226 -5.99 -7.206
85254 -8.18 -9.963
31645 -9.41 -11.945
6129 -9.45 -10.908
2078 -8.21 -9.919
20848 -7.98 -9.437
13263 -7.65 -8.699
13450 -6.68 -9.082
8606 -9.01 -7.367
4929 -8.43 -8.577
4933 -7.78 -7.700
22188 -11.14 -10.395
9570071 -9.84 -9.373
9595287 -10.18 -13.643
4109 -10.65 -10.412
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Table A.4 (cont’d)

5216 -10.22 -10.923
12309460 -4.23 -4.181

3030 -9.86 -7.827
3048 -4.82 -4.326

46174049 -4.82 -4.328
3589 -2.55 -3.583
5993 -3.44 -3.395
727 -5.44 -2.790
6423 -1.45 -4.702
3286 -6.1 -9.321
4004 -8.15 -9.307
4790 -4.37 -9.313
25146 -5.74 -9.308
13081 -6.5 -9.315
2730 -5.04 -9.311
5853 -12.74 -9.309

5377791 -7.07 -9.301
2268 -10.03 -9.316
991 -6.74 -9.310
4130 -7.19 -9.313
3017 -6.48 -9.308
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Table A.5: Solvation energy prediction results for SAMPL2molecules using selected polar features

PubChem ID Experimental Value Predicted Value
18927701 -0.8 0.530

8263 3.43 2.312
3394 -8.42 -6.588
3672 -7.0 -6.217
753 -13.43 -8.779
3825 -10.78 -7.796
3059 -9.4 -9.119
156391 -10.21 -7.508
2244 -9.94 -7.084
135191 -20.52 -19.263
5793 -25.47 -20.759
7175 -9.37 -7.797
7184 -8.72 -7.797
7456 -9.51 -7.797
8434 -9.2 -7.797
15758 -17.74 -17.666
73272 -15.83 -17.666
3385 -16.92 -17.268
5899 -15.46 -17.262
5802 -18.17 -17.675
1174 -16.59 -16.315
7956 -18.06 -17.619
6809 -9.61 -10.142
2519 -12.64 -9.295
10541 -8.7 -11.448
8370 -2.33 -2.969
6720 -5.22 -3.463
31347 -0.64 0.063
6214 -8.61 -9.867
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Table A.6: Solvation energy prediction results for SAMPL3molecules using selected polar features

PubChem ID Experimental Value Predicted Value
6324 1.83 2.035
7095 -2.7 -2.428
9216 -3.15 -4.715
37207 -3.52 -4.694
38252 -3.1 -4.694
34586 -3.56 -4.695
36613 -3.67 -4.695
38253 -4.05 -4.695
15625 -3.37 -4.696
35454 -3.81 -4.696
48889 -3.84 -4.696
38251 -3.71 -4.634
38254 -4.15 -4.632
6214 -0.64 0.087
12418 -1.43 -1.443
6419 -1.23 -0.757
6337 -0.63 -0.515
11 -1.79 -2.225

6365 -0.84 -0.657
6574 -1.99 -1.372
6591 -2.37 -1.372
249266 -2.69 -1.940
36980 -2.46 -2.115
37247 -2.16 -2.115
27588 -2.28 -2.225
36401 -3.48 -3.722
63088 -3.61 -3.307
91662 -1.96 -2.225
38019 -3.04 -2.380
63079 -4.38 -2.910
37037 -4.4 -2.380
38306 -3.17 -3.726
39253 -4.61 -3.726
6278 -0.19 0.187
16318 -2.98 -4.206
18636 -4.53 -4.715
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Table A.7: Solvation energy prediction results for SAMPL4molecules using selected polar features

PubChem ID Experimental Value Predicted Value
8079 0.14 1.337
10740 -2.78 -2.780
8418 -3.95 -3.726
11903 -0.85 -0.475
11940 -3.78 -2.780
31275 -5.06 -3.427
9216 -3.15 -4.465
10722 -3.93 -4.940
8908 -2.26 -2.275
26447 -2.53 -4.200
16666 -3.2 -3.166
6251 -23.62 -23.886
6997 -5.66 -6.390
8894 -3.12 -3.166
7583 -2.87 -3.245
7043 -5.33 -6.849
16441 -4.09 -2.845
6998 -4.68 -5.932
442474 -2.49 -1.839
8095 -5.31 -3.667
22227 -3.75 -3.165
61362 -4.51 -3.783
94221 -4.44 -4.530
637566 -4.45 -4.715
643820 -4.78 -4.271
21210 -5.73 -4.825
460 -5.94 -6.267
7144 -5.8 -6.635
17739 -5.26 -6.245
7041 -6.96 -5.184
8082 -5.11 -4.020
2160 -7.43 -5.108
77918 -7.63 -9.305
4044 -6.78 -8.255
30209 -1.66 -1.928
96257 -4.8 -5.623
138747 -4.29 -5.093
31420 -11.85 -8.441
6710 -9.44 -10.139
8341 -11.53 -10.140
20528 -14.21 -10.151
8323 -9.53 -7.613
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Table A.7 (cont’d)

3100 -9.34 -8.408
53479 -7.78 -7.944
53476 -8.68 -7.883
7258 -7.29 -7.346
93462 -6.44 -4.693
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Table A.8: Solvation energy prediction results for SAMPL0 molecules using all features

PubChem ID Experimental Value Predicted Value
223106 1.07 -0.137
31275 -5.06 -4.717
7765 -3.28 -2.650
8020 -2.93 -3.370
222536 -4.97 -5.924
7761 -6.0 -6.265
8121 -6.34 -4.709
5541 -8.84 -25.855
12375 -3.54 -2.533
74626 -3.82 -4.686
795 -9.63 -10.133

84179 -9.76 -9.596
81713 -11.01 -9.598
7503 -1.93 -0.662
8115 -4.23 -2.170
9609 -1.46 -1.330
7498 -2.38 -1.372
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Table A.9: Solvation energy prediction results for SAMPL1 molecules using all features

PubChem ID Experimental Value Predicted Value
6544 -5.18 -4.385
14215 -3.64 -4.262
16003 -4.13 -4.262
6053 -6.66 -8.247
3031 -4.71 -2.672
34468 -5.66 -3.900
5569 -3.25 -2.695
2319 -3.51 -2.703
33500 -2.45 -2.727
56160 -14.01 -16.387
15546 -16.43 -16.068
107828 -17.17 -18.361
91729 -16.23 -18.285
52997 -20.25 -15.588
52999 -15.54 -14.088
9411 -9.73 -11.020
10974 -1.88 -3.029
13567 -2.09 -2.159
79123 -1.82 -3.022
40818 -5.73 -4.990

21075956 -4.95 -5.421
7560 -9.13 -11.112
17190 -8.94 -12.631
20419 -7.44 -11.561
12896 -11.24 -10.571
2566 -9.61 -10.656
6950 -6.23 -6.238
81226 -5.99 -8.910
85254 -8.18 -8.932
31645 -9.41 -12.282
6129 -9.45 -10.462
2078 -8.21 -9.347
20848 -7.98 -11.169
13263 -7.65 -9.850
13450 -6.68 -8.214
8606 -9.01 -7.741
4929 -8.43 -8.199
4933 -7.78 -8.772
22188 -11.14 -11.029
9570071 -9.84 -9.651
9595287 -10.18 -13.044
4109 -10.65 -9.827
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Table A.9 (cont’d)

5216 -10.22 -9.443
12309460 -4.23 -3.702
3030 -9.86 -7.995
3048 -4.82 -7.429

46174049 -4.82 -7.451
3589 -2.55 -4.050
5993 -3.44 -3.070
727 -5.44 -2.285
6423 -1.45 -0.243
3286 -6.1 -4.572
4004 -8.15 -4.822
4790 -4.37 -4.503
25146 -5.74 -4.772
13081 -6.5 -4.658
2730 -5.04 -4.649
5853 -12.74 -4.825

5377791 -7.07 -4.783
2268 -10.03 -4.789
991 -6.74 -4.916
4130 -7.19 -5.018
3017 -6.48 -4.373
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Table A.10: Solvation energy prediction results for SAMPL2 molecules using all features

PubChem ID Experimental Value Predicted Value
18927701 -0.8 0.603

8263 3.43 1.318
3394 -8.42 -6.511
3672 -7.0 -5.764
753 -13.43 -9.164
3825 -10.78 -13.958
3059 -9.4 -8.420
156391 -10.21 -8.337
2244 -9.94 -7.683
135191 -20.52 -20.937
5793 -25.47 -23.679
7175 -9.37 -7.329
7184 -8.72 -6.887
7456 -9.51 -7.729
8434 -9.2 -7.702
15758 -17.74 -16.623
73272 -15.83 -13.920
3385 -16.92 -16.831
5899 -15.46 -15.115
5802 -18.17 -17.318
1174 -16.59 -17.474
7956 -18.06 -14.373
6809 -9.61 -11.710
2519 -12.64 -11.015
10541 -8.7 -14.316
8370 -2.33 -3.180
6720 -5.22 -3.070
31347 -0.64 -0.723
6214 -8.61 -9.778
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Table A.11: Solvation energy prediction results for SAMPL3 molecules using all features

PubChem ID Experimental Value Predicted Value
6324 1.83 2.310
7095 -2.7 -3.083
9216 -3.15 -4.577
37207 -3.52 -4.479
38252 -3.1 -4.479
34586 -3.56 -4.531
36613 -3.67 -4.532
38253 -4.05 -4.579
15625 -3.37 -4.631
35454 -3.81 -4.623
48889 -3.84 -4.630
38251 -3.71 -4.564
38254 -4.15 -4.675
6214 -0.64 -1.590
12418 -1.43 -2.416
6419 -1.23 -1.545
6337 -0.63 -0.608
11 -1.79 -1.115

6365 -0.84 -0.801
6574 -1.99 -2.376
6591 -2.37 -2.414
249266 -2.69 -3.299
36980 -2.46 -2.137
37247 -2.16 -2.194
27588 -2.28 -2.024
36401 -3.48 -2.217
63088 -3.61 -3.091
91662 -1.96 -2.293
38019 -3.04 -2.805
63079 -4.38 -3.006
37037 -4.4 -2.733
38306 -3.17 -2.719
39253 -4.61 -2.626
6278 -0.19 -1.679
16318 -2.98 -2.528
18636 -4.53 -1.355
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Table A.12: Solvation energy prediction results for SAMPL4 molecules using all features

PubChem ID Experimental Value Predicted Value
8079 0.14 0.870
10740 -2.78 -3.063
8418 -3.95 -3.848
11903 -0.85 -0.888
11940 -3.78 -3.011
31275 -5.06 -3.679
9216 -3.15 -5.498
10722 -3.93 -4.864
8908 -2.26 -2.107
26447 -2.53 -3.283
16666 -3.2 -2.917
6251 -23.62 -25.954
6997 -5.66 -6.143
8894 -3.12 -2.278
7583 -2.87 -3.669
7043 -5.33 -4.852
16441 -4.09 -3.572
6998 -4.68 -6.869
442474 -2.49 -2.027
8095 -5.31 -4.956
22227 -3.75 -3.463
61362 -4.51 -3.635
94221 -4.44 -4.034
637566 -4.45 -4.185
643820 -4.78 -4.031
21210 -5.73 -4.109
460 -5.94 -5.257
7144 -5.8 -7.423
17739 -5.26 -6.888
7041 -6.96 -5.976
8082 -5.11 -5.291
2160 -7.43 -5.097
77918 -7.63 -9.472
4044 -6.78 -8.697
30209 -1.66 -2.491
96257 -4.8 -4.599
138747 -4.29 -3.502
31420 -11.85 -9.133
6710 -9.44 -9.773
8341 -11.53 -11.820
20528 -14.21 -11.259
8323 -9.53 -8.767
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Table A.12 (cont’d)

3100 -9.34 -7.481
53479 -7.78 -8.435
53476 -8.68 -9.121
7258 -7.29 -7.877
93462 -6.44 -4.586
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR TOXICITY ENDPOINT PREDICTION

This part of supplementary materials contain MT-DNN results with selected descriptors for all four
datasets. Table B.1 - B.4 correspond to results calculated with descriptors whose importance are
higher than 2.5e-4, 5e-4, 7.5e-4 and 1e-3, respectively. Table B.5 - B.12 contain the results with
the ESTDs proposed in Discussion section using different algorithms.

Table B.1: Performances of different descriptor groups with importance threshold 2.5e-4

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.784 0.051 0.971 0.685 0.459 1.000

LC50DM 0.760 0.145 0.943 0.850 0.550 1.000
IGC50 0.760 0.078 0.981 0.482 0.334 1.000
LD50 0.617 0.306 0.954 0.598 0.433 0.997

Table B.2: Performances of different descriptor groups with importance threshold 5e-4

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.764 0.062 0.962 0.719 0.470 1.000

LC50DM 0.742 0.152 0.951 0.877 0.552 1.000
IGC50 0.757 0.075 0.984 0.486 0.338 1.000
LD50 0.612 0.325 0.954 0.601 0.437 0.997

Table B.3: Performances of different descriptor groups with importance threshold 7.5e-4

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.772 0.064 0.958 0.708 0.468 1.000

LC50DM 0.729 0.157 0.945 0.899 0.565 1.000
IGC50 0.751 0.076 0.983 0.491 0.341 1.000
LD50 0.600 0.341 0.953 0.611 0.439 0.997
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Table B.4: Performances of different descriptor groups with importance threshold 1e-3

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.764 0.063 0.963 0.717 0.467 1.000

LC50DM 0.677 0.204 0.945 0.981 0.611 1.000
IGC50 0.746 0.075 0.982 0.497 0.342 1.000
LD50 0.607 0.325 0.955 0.605 0.437 0.997

Table B.5: Performances of RFon different datasets using ESTDs only proposed in Discussion
section

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.685 0.324 0.947 0.829 0.608 1.000

LC50DM 0.418 1.749 0.960 1.327 1.023 1.000
IGC50 0.649 0.407 0.967 0.584 0.414 1.000
LD50 0.585 0.936 0.947 0.629 0.471 0.999

Table B.6: Performances of RF on different datasets using ESTDs proposed in Discussion section
along with physical descriptors

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.732 0.314 0.948 0.776 0.561 1.000

LC50DM 0.449 1.517 0.957 1.289 0.973 1.000
IGC50 0.737 0.245 0.979 0.510 0.370 1.000
LD50 0.615 0.766 0.948 0.607 0.455 0.997

Table B.7: Performances of GBDT on different datasets using ESTDs only proposed in Discussion
section

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.687 0.119 0.959 0.829 0.583 1.000

LC50DM 0.490 0.489 0.969 1.261 0.917 1.000
IGC50 0.737 0.072 0.987 0.508 0.348 1.000
LD50 0.609 0.431 0.958 0.604 0.449 0.999
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Table B.8: Performances of GBDT on different datasets using ESTDs proposed in Discussion
section along with physical descriptors

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.764 0.103 0.960 0.715 0.485 1.000

LC50DM 0.498 0.563 0.957 1.236 0.913 1.000
IGC50 0.791 0.053 0.994 0.451 0.313 1.000
LD50 0.635 0.328 0.959 0.583 0.438 0.997

Table B.9: Performances of MT-DNN on different datasets using ESTDs only proposed in Discus-
sion section

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.738 0.012 1.004 0.763 0.497 1.000

LC50DM 0.723 0.001 0.993 0.907 0.629 1.000
IGC50 0.736 0.001 1.008 0.506 0.365 1.000
LD50 0.611 0.000 0.998 0.602 0.442 0.999

Table B.10: Performances of MT-DNN on different datasets using ESTDs proposed in Discussion
section along with physical descriptors

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.771 0.012 1.017 0.716 0.467 1.000

LC50DM 0.725 0.000 0.999 0.903 0.597 1.000
IGC50 0.768 0.000 1.002 0.473 0.335 1.000
LD50 0.632 0.000 1.000 0.585 0.427 0.997

Table B.11: Performances of Consensus (MT-DNN and GBDT) on different datasets using ESTDs
only proposed in Discussion section

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.745 0.084 0.962 0.745 0.496 1.000

LC50DM 0.653 0.297 0.968 1.017 0.736 1.000
IGC50 0.765 0.105 0.979 0.476 0.336 1.000
LD50 0.635 0.401 0.956 0.584 0.431 0.999
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Table B.12: Performances of Consensus (MT-DNN and GBDT) different datasets using ESTDs
proposed in Discussion section along with physical descriptors

Dataset R2 R2−R2
0

R2 k RMSE MAE Coverage
LC50 0.792 0.074 0.958 0.674 0.444 1.000

LC50DM 0.674 0.288 0.960 0.985 0.711 1.000
IGC50 0.802 0.068 0.987 0.437 0.304 1.000
LD50 0.657 0.321 0.957 0.565 0.420 0.997
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