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ABSTRACT 

BALANCING EXPLORATION AND EXPLOITATION 
IN BOTTOM-UP ORGANIZATIONAL LEARNING CONTEXTS 

 
By 

 
Ross Ian Walker 

 
In order to keep pace with a rapidly changing environment, organizations must navigate a 

fundamental tension between exploration and exploitation. Over time, organizations often drift 

toward exploitation of known strengths and established resources, but this tendency can be 

harmful in a dynamic and competitive landscape. A classic simulation by James March (1991) 

demonstrated the importance of maintaining some degree of belief heterogeneity in an 

organization for the sake of long-term learning. In March’s lineage, this thesis examines the 

effects of various exploratory strategies (i.e., individual experimentation, codification frequency, 

structural modularity, and employee turnover) on organizational learning in a bottom-up, 

networked, interpersonal learning context. Results demonstrate the complex interdependency of 

these variables in the exploration/exploitation tradeoff. Exploratory analyses suggest that a small 

degree of random individual experimentation has a favorable reward-to-risk ratio and that it is 

preferable to turnover as an exploratory strategy. 
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INTRODUCTION 

 

Warren Bennis (1967) described bureaucracies as organizations with well-defined 

rotocols and chains of command, specialized roles, an emphasis on technical competence, and an 

impersonal nature. He also predicted that bureaucracies would have died by now. Today, 

bureaucracy is alive but ailing (Davis, 2016). The murder is slow, as the four co-conspirators that 

Bennis named have been poisoning bureaucracy these last fifty years. Bennis’ suspects include 

rapid change, globalization, the need for diverse skills, and humanistic management styles. 

Having an accurate model of reality becomes more challenging when rapid change creates a 

moving target. This study examines how levels of network connectivity, individual trial-and-

error, and knowledge codification interact to influence organizational knowledge. 

Traditional bureaucracies tend to perform best in stable, predictable industries that 

require efficiency through the management of clear, short-term problems (Burns & Stalker, 

1961). More fluid, networked structures excel in dynamic and uncertain environments, as they 

can adapt with greater agility and follow through more effectively on long-term strategies 

(Kotter, 2012). More open communication and a greater propensity for risk-taking are conducive 

to organizational adaptation to change (Kontoghiorghes, Awbre, & Feurig, 2005). When what 

constitutes knowledge today could change tomorrow, organizations must be able to adjust 

strategies gracefully through continuous learning. Complex problems in a global economy will 

continue to need people who can pool their cognitive and social resources rather than go it alone.  

Ashby and colleagues have highlighted the importance of an entity’s degree of internal 

variety or degrees of freedom in relation to the environment. Applied to organizational science, 

the Law of Requisite Variety (Ashby, 1956) suggests that an organization must have the capacity 
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for at least as much variety as its environment does. That is, an organization’s agility and internal 

complexity must equal or exceed the dynamism of the surrounding environment. Further, the 

Good Regulator Theorem (Conant & Ashby, 1970) suggests that maximizing both achievement 

and efficiency requires the development and maintenance of a sufficiently accurate model of 

reality. Therefore, a “well regulating” organization is aligned with its environment, not just 

through its structure but also through culture, beliefs, goals, etc.  

When faced with rapid change and complexity, one of the greatest assets of a group is a 

diversity of perspectives. It seems intuitive that experts from different fields or different 

specializations in the same field should be able to collaborate to make better decisions than they 

could separately. However, research has found mixed effects of diversity in groups. Cohen and 

Levinthal (1990) describe the importance of balancing diversity and commonality in groups. 

They recognize that some degree of overlap in member knowledge is necessary to communicate 

effectively. For example, speaking different languages entails substantial process loss through 

translation or, potentially, an inability to communicate at all. Differences in values within a team 

can lower satisfaction and commitment (Jehn, Northcraft, & Neale, 1999). Certain types of 

demographic diversity can either provoke emotional conflict (Pelled, Eisenhardt, & Xin, 1999) 

or boost team satisfaction (Jehn et al., 1999). Functional background diversity can stimulate task 

conflict (Pelled et al., 1999) as can informational diversity (Jehn et al., 1999), and task conflict 

may drive team performance in these instances. Indeed, one meta-analysis showed only a very 

small, positive relationship between functional background diversity and team performance 

when examined across tasks (Bell, Villado, Lukasik, Belau, & Briggs, 2011).  

The ambiguity in the literature on the effects of diversity in teams poses some important 

questions. Under what circumstances should a team or organization leverage the breadth of its 
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diversity to aim for optimal, long-term performance? Conversely, when should its members 

capitalize on the available knowledge for tangible, immediate results? These issues imply a 

fundamental tension that pervades individual, team, and organizational learning: the trade-off 

between exploration and exploitation. Performance of any type involves taking action based on 

current knowledge or the exploitation of existing resources. However, to succeed in a complex, 

interdependent task, a group often needs to leverage the diverse strengths of its members through 

collaboration and the cross-fertilization of ideas. 

In a seminal paper, March (1991) computationally demonstrated the importance of 

balancing exploration and exploitation to optimize organizational learning. The simulations 

suggested that while maintaining diverse beliefs in an organization can slow progress initially, 

some dissent is vitally important for sustained organizational learning. Never acting on available 

knowledge produces no results, but having an especially strong organizational culture in which 

everyone quickly converges on the same “best practices” can yield suboptimal results. 

The model in this current paper seeks a greater understanding of knowledge diversity in 

team-based organizational structures through the lens of the exploration/exploitation tradeoff. 

Encouraging diverse opinions and acting on new ideas is riskier than promoting homogeneity 

just as exploration is usually riskier than exploitation. Understanding how informational diversity 

manifests in organizations can encourage smarter risks in team and organization management. It 

can enable more effective balancing of short- and long-term perspectives and of micro and macro 

objectives. Many subtle mechanisms can drive organizations toward homogeneity, so this paper 

will focus most explicitly on examining the efficacy of various exploratory tactics. It does this 

with a computational model in March’s (1991) lineage and draws on notable extensions of 

March’s model (Fang, Lee, & Schilling, 2010; Miller, Zhao, & Calantone, 2006; Rodan, 2005) to 
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incorporate individual experimentation as well as interpersonal learning in a networked structure. 

As such, the study is well-situated in the organizational learning literature and focuses 

specifically on intra-organizational learning.  

In summary, this computational study aims primarily to examine specific tactics that 

might balance exploration and exploitation across different conditions (e.g., internal structures, 

learning rates, and environmental change). Such tactics include individual belief change and the 

frequency of updating an organizational code. Previous models in this lineage have only 

examined learning from and by an organizational code or peer-to-peer learning – but never both. 

Since both mechanisms operate to some extent in almost all organizations, examining how they 

co-occur could productively guide theory building in the organizational learning literature. In 

addition to testing specific hypotheses on the balance between exploration and exploitation, this 

study also uses the model for more exploratory purposes that may inform future deductive 

research. After introducing foundational theory, offering hypotheses, and outlining the 

computational model, this thesis presents the simulated results and discusses their implications.  

Exploration & Exploitation 

In organizational research, exploration and exploitation are somewhat nebulous concepts. 

However, they have proven useful in understanding adaptability (Mehlhorn et al., 2015). Most 

scholars conceptualize exploration and exploitation as two ends of a continuum implying that 

one should aim to balance the two (Gupta, Smith, & Shalley, 2006) rather than maximize 

orthogonal levels of both (e.g., Katila & Ahuja, 2002). Some call this coveted balance 

“organizational ambidexterity” (O’Reilly & Tushman, 2004). Additionally, classifying behavior 

as either one or the other can be deceptively difficult. A group decision to side with tradition 

might be exploitative in isolation but exploratory when contextualized by the group’s entire 
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lifecycle. Driven, conscientious employees wanting to learn the ropes in a new job are seemingly 

exploratory, but they could drive homogeneity and constitute an exploitative phenomenon at the 

organization level. Additionally, all activities deviate from prior ones in some way, even if 

imperceptibly, so some exploration is technically involved in even the most exploitative actions. 

Conceptual Definitions  

Exploration is associated with search, novelty, learning, experimentation, and 

information gathering while exploitation is associated with execution, efficiency, and the use and 

refinement of existing resources or knowledge. Both of these are imperative to the adaptability 

and long-term survival of all species, as ignoring either one has distinctly negative consequences. 

Exploitation without exploration leads to the premature acceptance of mediocre or suboptimal 

results. Levinthal and March (1993) called this a “success trap.” Conversely, overvaluing 

exploration hinders any execution at all. This strategy has a much lower payoff expectancy and 

leads to a “failure trap.” 

Exploitation Dominance 

While both strategies have advantages and disadvantages, March (1991) argued that 

exploration naturally carries greater risk and that the short-term attractiveness of exploitation can 

lure organizations toward conservatism. The payoffs from exploration are less certain and 

realized further into the future. Exploitation tends to produce clearer, more immediate feedback 

that can feed productive self-regulation. Specialized knowledge in one domain tends to increase 

the likelihood of attaining reward from its application. This, in turn, incentivizes further 

specialization. Investing in research and development does not guarantee a new revenue stream, 

but tightening an established manufacturing protocol to produce the same good at lower cost will 

almost certainly increase net income (holding all else constant). However, as March 
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demonstrated in his model, strict exploitation or incremental refinement of an existing resource 

can be maladaptive on a longer timeline and, therefore, myopic. 

The attraction-selection-attrition cycle (Schneider, 1987) illustrates how homogeneity can 

emerge unintentionally. People are more interested in joining groups that share their goals, and 

groups tend to select people who share their goals. Even when divergent perspectives do enter 

the group, dissenters are more likely to leave due to irreconcilable differences. Each of these 

forces can restrict the range of knowledge, values, and beliefs in a team or organization. 

Schneider argued that this unintentional restriction of employee types can blind the organization 

to environmental changes or compromise its adaptability when changes are recognized. 

Aligning teammates through shared mental models tends to improve team performance 

(DeChurch & Mesmer-Magnus, 2010), and this finding is somewhat intuitive. However, striving 

for a cohesive team culture in which everyone identifies strongly with a common mission could 

also stymie contradictory viewpoints that might have ultimately improved team effectiveness. 

Indeed, research suggests that minority dissent can improve the quality of group decisions and 

stimulate creativity (De Dreu & West, 2001). Sometimes combining people in teams yields 

worse outcomes than independent individuals, and a key factor in that phenomenon can be the 

group tendency to rush toward a suboptimal consensus without adequately considering divergent 

opinions (Hackman & Morris, 1975). 

It is not always obvious when strategies and structures are encouraging too much 

homogeneity, traditionalism, and exploitation. Organizations are complex, dynamic systems 

involving a multitude of variables. Decisions rarely yield clear, immediate feedback, and the 

long-term consequences are generally far from intuitive. This is why exploitation of what we 

already know is attractive. It is also why exploration of what we do not know is an essential 
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counterbalance. 

Cultural Transmission and Evolutionary Parallels 

Exploration and exploitation are analogous to variance and selection in evolutionary 

terms (Buss, 2012). Dawkins (2006) posited “When we die, there are two things we can leave 

behind us: genes and memes.” While gene frequencies drive human biological evolution, 

Dawkins argued that “memes” (e.g., ideas, songs, or in this case, beliefs) are the fundamental 

replicating unit in the human cultural evolution. Cultural and psychological variation may be 

more significant than genetic variation in modern times (Henrich & Boyd, 1998). Genes spread 

through sexual reproduction while memes spread between brains through social imitation. Genes 

that confer a greater survival advantage on their carriers enjoy greater prominence. Similarly, 

ideas and beliefs that bring an adaptive advantage tend to fare better along with their owners. 

Karl Popper (1972) advanced this evolutionary metaphor arguing that scientific knowledge 

advances through a process similar to Darwinian selection: hypotheses have different 

comparative fitness levels that influence their probability of survival. 

March’s (1991) model and its extensions are evolutionary in nature such that more 

accurate beliefs tend to rise to the top through natural selection. On the other hand, some 

cognitive divergence is necessary to maintain the aforementioned requisite variety (Ashby, 

1956). Fast learning from others can allow quick adaptation to immediate selection pressures, but 

it may hinder adaptation to future environmental shifts if it erodes internal variety. Fang et al. 

(2010) varied the complexity of problems that people faced such that an individual needed to 

hold a configuration of several correct beliefs for any of the correct beliefs to qualify as 

knowledge. This parameter is analogous to polygenic traits in which multiple genes determine 

phenotypic expression. The current model, however, assumes a simple, one-to-one 
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correspondence as with purely Mendelian traits. 

Background in I/O Psychology and Management 

While the exploration/exploitation tradeoff is a widely applicable lens, it is rarely 

mentioned explicitly in organizational literature. Nonetheless, it has undergirded research and 

theory on key organizational phenomena including strategy formulation as well as turnover and 

selection. 

A Typology of Strategy 

Miles, Snow, Meyer, and Coleman (1978) recognized that administrative systems can 

have both lagging and leading functions. That is, organizations can crystallize useful information 

from the past and also create systems that allow innovation and future adaptation to occur. They 

proposed a typology of organizational strategy to make sense of the exploration/exploitation 

tradeoff. Defenders are exploitative. They are highly specialized organizations that carve out 

market niches and aggressively defend their turf against competitors. They do best in stable 

environments which reward efficiency and tend to have more rigid, top-down structures and 

highly divided labor. Conversely, the core strength of Prospectors is adaptability. They pursue 

novelty and innovation at the cost of efficiency and sometimes profitability. They allocate 

resources more disparately in experimental endeavors to stay relevant and lead the market. 

Analyzers represent a compromise between these two types and, potentially, the balance point 

between exploration and exploitation. Analyzers might maintain a core market and also adopt 

new technologies or products after Prospectors have proven their viability. Lastly, organizations 

that lack a clear strategy or stubbornly refuse to adapt to change are Reactors. Without a great 

deal of protection, Reactor organizations do not last long and must choose one of the first three 

strategies to survive.  
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Miles and colleagues (1978) argue that a “Human Resources” theory of management 

involving flatter organizational structures with more dispersed, bottom-up decision making is 

more viable in Prospector and Analyzer organizations. These types value adaptation and often 

cannot depend solely on a small group of leaders to succeed. Individual experimentation can 

relieve pressure on top management since it allows learning to occur at many levels of the 

organization (Hart, 1992). As environmental change quickens, organizations are forced toward 

more and more exploration to which traditional top-down management is poorly suited.  

Turnover as Variation 

 Typically, organizational scientists and HR practitioners see employee turnover as a 

problem, something to be minimized. Staw (1980) outlined the major downsides to turnover as 

(1) selection and recruitment, (2) training and development, (3) operational disruption, and (4) 

demoralization of organizational membership. Finding, vetting, and ultimately choosing new 

hires can be costly, and filling positions that require high levels of skill or experience often 

requires more time. Organizations with enough churn need to hire full-time staff just to carry out 

these functions. While the cost of a formal training program is self-evident, even informal peer 

training has an opportunity cost since it diverts time from mentors’ core job responsibilities. 

Additionally, it takes time for a new hire’s performance to reach an adequate and productive 

level and for the organization’s investment in the individual to realize a return. When an 

employee leaves, his or her extant colleagues’ productivity may suffer, particularly when the 

work is highly interdependent and when the vacant role is highly specialized or high status in the 

organization. Lastly, turnover can have attitudinal costs for remaining employees if they perceive 

the exit as a reflection of systemic problems in the organization. In this way, turnover can 

potentially trigger more turnover. 
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 However, Staw (1980) also highlighted the underemphasized benefits of organizational 

turnover: (1) increased performance, (2)reduction of entrenched conflict, (3) increased mobility 

and morale, (4) innovation and adaptation. Sometimes new hires perform better than their 

predecessors, and young employees can bring a renewed motivational force. Turnover can 

reduce interpersonal clashes that are either unresolvable or not worth the effort to resolve. 

Turnover can also have positive attitudinal consequences when employees notice their 

colleagues get better opportunities, as it signals the value of their current employment for future 

goals. Most germane to this paper, when turnover leads to hiring outside the organization, new 

people can bring new ideas, skills, and experiences. While it is certainly not guaranteed, this 

injection of variety can support innovation and more effective adaptation to a changing 

environment by subjecting entrenched beliefs, values, and operating procedures to “naïve” 

scrutiny. These positive consequences of turnover are harder to quantify, and they are realized 

less immediately than the downsides. Nonetheless, they can still contribute meaningfully to the 

long-term viability of an organization. 

 While maintaining the same employees and the same conception of reality that has 

always worked is the optimal strategy in a static environment, March (1991) demonstrated 

computationally the positive effects of turnover in a dynamic environment. When reality 

changes, previously correct beliefs grow stale, so introducing new agents with randomly 

assigned beliefs allowed the organization’s codified knowledge level to maintain a relatively 

high level rather than sinking into maladaptation. Similarly, March’s model showed that turnover 

can counteract the homogenizing effect of high socialization rates (i.e., when employees are too 

quick to adopt the organizational prescribed beliefs). The current model will examine both 

turnover and individual belief change as exploratory mechanisms which introduce stochastic 
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variation into an organizational system. 

Organizational Learning 

 Despite a lack of clarity on exactly how to define it, the topic of organizational learning 

has supported interesting theory, research, and discussion. Psychologists have typically studied 

the process of organizational learning while management researchers have focused on the 

outcome of that learning (i.e., sustainable competitive advantage; Dodgson, 1993). In line with 

Ashby’s position, organizations must develop and maintain a sufficiently accurate model of a 

dynamic reality to adapt and survive. Learning is typically conceived as an individual activity, so 

individual learning is the fundamental substrate of organizational learning. However, as Hedberg 

described, “Organizations do not have brains, but they have cognitive systems and 

memories…Members come and go, and leadership changes, but organizations’ memories 

preserve certain behaviours, mental maps, norms, and values over time” (1981, p. 3). Argyris and 

Schon (1978) argued that, at bottom, an organization is defined by its shared goals, so the state of 

such organizational characteristics which dictate daily functioning are critical. Organizational 

learning scholars have also emphasized the importance of context (e.g., what people learn 

depends on the people and the environment that surrounds them; Simon, 1991) and time (e.g., 

discarding obsolete information when appropriate is just as important as acquiring new 

information; Hedberg, 1981). 

Modeling Organizational Learning 

Senge (1995) describes learning organizations as continually and collectively working 

toward greater understanding of relevant systems and greater capacity for sustainable success. 

However, learning as a psychological process is difficult to capture at the individual level and 

even more daunting at the team and organization levels. Indeed, researchers have often treated 
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team learning as an unknowable “black box” (Grand, Braun, Kuljanin, Kozlowski, & Chao, 

2016). Some have used team performance as a proxy for learning (Kozlowski & Ilgen, 2006) 

while others operationalize team knowledge as the sum or average of individual knowledge (Bell 

& Kozlowski, 2008). This suggests a conceptualization of team learning as a precursor to 

emergent, compositional outcomes like team mental models (Cannon-Bowers, Salas, Converse, 

1993). This aligns with what DeChurch and Mesmur-Magnus (2010) call “cognitive similarity-

congruence” or the degree of convergence of member cognitions. However, this conception of 

team learning does not reflect its true complexity, and computational modeling may be the only 

method currently available to study such complexity. This complexity is only magnified in 

organizational learning, and it explains why March (1991) conducted his study “in silica” rather 

than in the field. 

Why Use Computational Modeling?  

Computer simulation is still an underutilized research paradigm in organizational science 

(Weinhardt & Vancouver, 2012) in which computational models of systems are paired with 

experimental designs (Harrison, Lin, Carroll, & Carley, 2007). This approach has many 

advantages that supplement traditional research methods. In this study, the two most salient are 

that simulations can (1) examine how complex systems with many variables function over time, 

and (2) allow and encourage development of clearer, more internally consistent theory.  

Accurately assessing the complex dynamics of teams and organizations is often 

intractable in empirical studies. Just thinking through the dynamic interdependencies of 

organizational subsystems quickly runs into a processing ceiling of the human mind. In terms of 

raw processing power, computers are far more robust, and that capacity is growing rapidly. 

Further, the relatively few studies that do measure change over time often rely on arbitrary 
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sampling frequencies or ones based on convenience (Hulin & Ilgen, 2000). Computer 

simulations can help make sense of complex phenomena, but few researchers have 

computationally modeled the exploration/exploitation tradeoff with realistic representations of 

organizational structures. The empirical studies that have examined it at the team level may have 

limited generalizability (e.g., Taylor & Greve, 2006; Peretti & Negro, 2006). The potential for 

computational modeling to reveal non-obvious, emergent phenomena from systems in which the 

data generating mechanisms are fully specified can guide theoretical progress in organizational 

learning (Miner & Mezias, 1996). 

Informal theories conveyed in natural language usually have ambiguities that formalized 

or mathematically represented theories do not (Vancouver & Weinhardt, 2012). Ilgen and Hulin 

(2000) identify two types of “overidentification errors.” The first occurs when a multitude of 

different theories seem to explain the same phenomena. In this case, the observations have too 

little information to differentiate good claims from bad ones. The aforementioned advantage of 

computational modeling addresses this potential error by providing essentially perfect 

observational fidelity. The second overidentification error occurs when a theory is not adequately 

falsifiable. Here, it is the theory that has too little information. Its ambiguity maintains immunity 

from contradiction. Formalizing theory in equations or concrete rules and testing them 

computationally guards against this potential error. This strategy “quickly reveals logical 

inconsistencies that lie hidden beneath the verbal turf” (Hulin & Ilgen, 2000). 

March’s Model  

March (1991) used an elegant computational model to show that slow socialization to the 

organization’s code of knowledge combined with a code that adapts quickly to reflect the best 

available information yields the best long-term learning outcomes. While knowledgeable 
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employees can influence the organizational code in this scenario, all learning happens through 

the code and is, therefore, entirely top-down. When individuals learn slowly from the 

organization, greater cognitive diversity persists which allows the code to eventually become 

more accurate or more concordant with reality than if every newcomer socialized quickly and 

thoroughly. Preserving nonconforming beliefs through slow learning at any organizational level 

is exploratory, as it forsakes existing knowledge to prospect for a better future. Fast learning 

from the organizational code can increase aggregate knowledge quickly, but it sets a lower 

ceiling on what the group can ultimately achieve. 

March’s (1991) model begins with a set of randomly determined “truths” about reality. 

Agents in the model begin with randomly assigned beliefs about each of these dimensions. 

Agents with the most accurate beliefs are assumed to be superior performers, so they ascend to 

the policy-making elite that dictates an organizational code. Specifically, anyone whose 

knowledge exceeds that of the code is allowed to influence it. The code structure is isomorphic 

to reality and the beliefs of individuals but represents formally communicated organizational 

knowledge or best practices. The model includes two learning mechanisms with associated 

probabilities: individuals learning from the code and the code learning from the policy-making 

elite. While this bidirectional learning process can fuel long-term success, an imbalance can 

easily impede it. The primary marker of success in this model is organizational knowledge or the 

degree of concordance between the organizational code and reality. 

March (1991) included two parameters that would introduce stochastic shocks in an open 

system: turnover and environmental turbulence. Exogenous probabilities determined when a new 

hire with random beliefs ousted a current employee and when the dimensions comprising reality 

changed. Argote, Insko, Yovetich, and Romero (1995) noted the adverse effects of turnover on 



 

 15 

team knowledge. However, while the replacement of a veteran with an outsider who is 

unfamiliar with team processes and shared knowledge can certainly drain what Simon (1991) 

called “organizational memory,” turnover can also introduce valuable variance. Indeed, March 

found that low to moderate rates of turnover could ameliorate the homogenizing effect of fast 

learning from the organizational code and maintain higher aggregate knowledge levels in a 

turbulent environment. He cautioned that “A major threat to the effectiveness of [mutual 

learning] is the possibility that individuals will adjust to an organizational code before the code 

can learn from them.”  

Key Variables in the Model 

Organizational Structure  

Geneticist Sewall Wright (1932) noted that evolving populations typically show loose 

coupling or modularity. He explains that in nearly isolated subgroups that allow some 

crossbreeding, “all gene frequencies can drift irregularly…without reaching fixation and giving 

the effects of close inbreeding. The resultant differentiation…is of course increased by any local 

differences in the conditions of selection.” The persistence of relatively small, isolated subgroups 

maintains genetic diversity that would diminish if everyone was part of one large, fully 

connected population. In this latter case, Wright says, “further evolution can only occur by the 

appearance of wholly new (instead of recurrent) mutations…which happen to be favorable from 

the first.” In this scenario, full interconnection with low variability produces a higher average but 

a likely forfeiture of optimality. A study in computational evolution found that networks 

performed better when incentivized to minimize connection costs between nodes (Clune, 

Mouret, & Lipson, 2013). The additional constraint led to more modular network structures that 

were more effective and “evolvable.” The authors listed potential reasons for this phenomenon 
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including fewer parameters to optimize and faster, more sustainable adaptation since negative 

shocks could stay confined in individual subsystems without spreading to the entire population. 

Additionally, Lipson (2007) offered the caveat that “increased performance gained by reduction 

of modularity is often justified in the short term, whereas increased modularity is often justified 

over longer time scales where adaptation becomes a dominant consideration.” This aligns with 

the established notion that exploitative strategies often perform best in the short term by rising 

quickly to equilibrium, but exploratory strategies can achieve a higher equilibrium and greater 

performance in the long term. 

Loose connectivity has many advantages in organizations. Scholars (e.g., Weick, 1976; 

O’Reilly & Tushman, 2004) have argued that structural separation can help maintain adequate 

cognitive diversity and balance exploration and exploitation. For example, Benner and Tushman 

(2003) found that isolating new product design teams from the strictures of organizational norms 

helped innovation flourish through the exploration of new alternatives. Weick (1976) explained 

that “It is conceivable that loosely coupled systems preserve more diversity in responding than 

do highly coupled systems, and therefore can adapt to a considerably wider range of changes in 

the environment…” Fiol and Lyles (1985) summarize this point well: “A centralized, 

mechanistic structure tends to reinforce past behaviors, whereas an organic, more decentralized 

structure tends to allow shifts of beliefs and actions.” Additionally, modularity in a system can 

limit the potential damage that unforeseen shocks can bring (Weick, 1976; Page-Jones, 1980). 

Herbert Simon’s (1962) parable of the watchmakers demonstrates this benefit of modularity. The 

watchmaker whose method includes separable, independent chunks does not suffer disturbances 

as much as the peer who needs to restart each watch from scratch every time the phone rings. 

Also, given a fixed set of inputs (e.g., employees), modularity allows a higher number of 
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possible configurations which can increase the flexibility of the whole system (Schilling, 2000).      

Loose coupling also has weaknesses. Just as problems are less likely to spread between 

units, useful ideas or positive mutations are also less likely to spread (Weick, 1976). 

Additionally, while many systems tend to converge toward loose coupling, this is not universally 

true. Schilling (2000) outlines a theory that explains how and under which circumstances 

systems converge either toward or away from modularity. When the inputs to and demands of a 

system are relatively homogenous, modularity can degrade fitness. 

While most empirical research has examined subgroups with exploratory missions, Miller 

et al. (2006) showed computationally that physical separation and local learning could preserve 

diversity while unfettered distant learning suppressed it. Their model extended March’s (1991) in 

several ways including the introduction of direct, interpersonal learning and tacit knowledge 

transfer independent of the organizational code. Agent could learn locally from agents in direct 

physical proximity. However, when agents decided they had nothing left to learn from their 

immediate teammates, they could also explore the organizational network more broadly. 

Through distant learning, agents gained access to the whole organizational network. This 

strongly homogenized the organization, as unrestricted distant learning rendered learning from 

the organizational code obsolete. 

Fang et al. (2010) demonstrated how semi-isolated subgroups can maintain requisite 

variety while selecting for greater knowledge over the long-term. Their model includes direct, 

interpersonal learning from team members and between semi-randomly linked teams. They used 

a slightly modified version of the “connected caveman” model (Watts, 2009) in which otherwise 

isolated cliques or “caves” have a very small degree of connectivity between them in the baseline 

model. The point of optimal learning that Fang et al. (2010) found corresponds theoretically to 
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what Wright (1932) described as being most conducive to long-term evolutionary adaptation. 

Kotter (2012) argues that organizations can benefit from having two complementary structures 

operating simultaneously. One is a traditional hierarchy that handles concrete, short-term tasks 

and the other is a “voluntary army” of people from different subgroups and levels working on 

strategy and long-term adaptability. From this lens, the # parameter that Fang et al. (2010) used 

to add inter-team ties to their baseline network is analogous to Kotter’s strategic network. 

Fang et al. (2010) found that no connectivity beyond the basic structure yielded the 

lowest aggregate knowledge followed by highly connected subgroups and then by semi-isolated 

subgroups (i.e., when 10% of intra-team ties were repurposed as inter-team ties). This preserved 

subgroup identity through adequate modularity but still allowed knowledge to spread to other 

teams. They found that this loosely coupled subgroup structure was ideal for aggregate learning 

across a range of contingency variables. Therefore, they interpreted their findings as evidence 

against contingency theorists (e.g., Burns & Stalker, 1961) who would argue that no ideal 

organizational structure exists since it depends on a variety of factors like organizational goals 

and environmental stability. Contingency theorists might also argue that one structure can be 

exploratory or exploitative depending on other moderating factors. The findings of Fang et al. 

(2010) do not rule out contingency theory since it is possible that this pattern emerged as an 

artifact of the learning mechanism’s operationalization. However, this model will attempt to 

replicate conceptually this ideal point of modularity. 

Hypothesis 1: With no organizational code and no individual experimentation, a small 

degree of inter-team connectivity (i.e., “loosely coupled subgroups” with 10% of intra-

team ties repurposed as inter-team ties) will yield higher levels of organizational 

knowledge than isolated and tightly coupled subgroups. 
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Individual Experimentation  

When subgroup isolation fizzles (i.e., the organization becomes increasingly 

interconnected), long-term knowledge tends to decline slightly as the organization shifts toward 

exploitation. To mitigate this driver of homogeneity, many models inject variance through 

employee turnover and environmental turbulence. The current model will include these but also 

focus on individual experimentation as another potentially useful source of variation.  

Most extensions of March’s (1991) model assume that all learning in an organization 

occurs either interpersonally or from formalized knowledge at the organizational level. Huber 

(1991) noted that almost no work in organizational learning had focused on unintentional or 

unsystematic learning. People can acquire knowledge anywhere, and the augmentation of one’s 

beliefs need not be constrained to working hours. Rodan (2005) incorporated various forms of 

experimentation but found that only random “foolishness” had a significant and positive effect 

on learning outcomes. Another form was organizationally constrained experimentation which 

only allowed mutations to beliefs on which the organizational code was neutral. Lastly, self-

restrained experimentation only allowed mutations to beliefs on which the individual was 

neutral. The blind variation from completely random experimentation outperformed both of these 

more deliberate and thoughtful strategies. Like Rodan’s, this model will allow individuals to 

change their beliefs irrespective of the organizational code, interpersonal interaction, or 

preexisting belief structures. For this reason, the “experimentation” in this model has no pre-

specified goal, nor does it intentionally seek feedback on whether the change was effective. It 

simply represents individuals changing their beliefs, maybe as a consequence of personal 

experience or research. While this random experimentation is not an intentional learning process, 

the organization as a whole may be able to learn from such “foolishness.” 
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In reinforcement learning, the multi-armed bandit problem sheds light on the 

exploration/exploitation dichotomy (Sutton & Barto, 2012). Slot machines, also known as “one-

armed bandits,” produce some payoff at a particular probability. The multi-armed bandit problem 

tasks an agent with using multiple metaphorical slot machines with varying payout probabilities 

to maximize total winnings over a limited number of trials. The agent does not know the 

expected value of any machine’s payout but may develop estimates through experimentation. 

The action that the agent estimates to have the highest value at a given time is called the greedy 

option. To maximize payoff on the next pull, a rational agent chooses the greedy option to 

exploit its current knowledge. On the other hand, the agent might choose to explore other options 

and potentially sacrifice short-term payoff to find a machine with a greater expected value. How 

should an agent approach this decision? One solution is to exploit the greedy option most of the 

time but experiment with a small probability *. This strategy is known as *-greedy. As the 

aforementioned models would predict, no exploration (i.e., * = 0) tends to show faster initial 

improvement, but slight experimentation yields greater long-term winnings. 

 This example demonstrates how introducing random variation in action selection 

problems can lead to more desirable results. In this proposed model, individuals will alter their 

beliefs at some specified rate to maintain variation in their core team and in the system overall. 

In evolutionary terms, individual experimentation is akin to random genetic mutation. Some 

(e.g., Eiben & Schipper, 1998; Črepinšek, Liu, & Mernik, 2013) have argued that mutation in 

evolutionary algorithms can be exploitative because most of the prior material remains. 

However, it is still inherently exploratory, as it introduces unbiased novelty. In tightly coupled 

subgroups that promote fast convergence toward a homogenous, suboptimal organizational 

knowledge level, individual experimentation should counteract the homogeneity through random 
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belief mutations. Conversely, nearly isolated subgroups maintain dissent well. Rather, these 

groups can struggle to capitalize on superior knowledge in other parts of the organization. It 

should follow that individual experimentation would exacerbate their isolation and that low 

levels of experimentation should produce better outcomes. 

Hypothesis 2a: In tightly coupled subgroups, high individual experimentation will yield 

higher organizational knowledge than low experimentation and no experimentation. 

Hypothesis 2b: In disconnected subgroups (i.e., the baseline structure), no individual 

experimentation will yield higher organizational knowledge than low experimentation 

and high experimentation. 

Tacit Knowledge  

Bandura’s (1963) social learning theory argued that we learn not just through direct 

instruction but also through observation and mere proximity. Ostroff & Kozlowski (1992) noted 

that newcomers socialize primarily through informal observation of others and experimentation. 

Polanyi (1967) posited two categories of knowledge: explicit and tacit. Explicit knowledge can 

be expressed directly in a formal language while tacit knowledge is transmitted only through 

indirect exposure and experience. The latter forms through implicit learning or “the process 

through which one becomes sensitive to certain regularities in the environment: (1) without 

trying to learn regularities, (2) without knowing that one is learning regularities, and (3) in such a 

way that the resulting knowledge is unconscious” (Cleeremans & Dienes, 2008). While most 

education focuses on the formalized transmission of directly communicable knowledge, it seems 

that a significant proportion of learning in organizations happens in subtler ways.  

March’s (1991) model assumes explicit learning through a formalized organizational 

code, but Miller et al. (2006) allowed tacit dimensions by restricting the number of beliefs that 
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the code included. These inert dimensions of the code meant that their knowledge would need to 

spread interpersonally rather than top-down. This proposed model will adopt this assumption 

since it is more realistic, and it weighs interpersonal learning more heavily. 

Episodic Codification  

Beyond the code’s inability to transmit all useful knowledge, March, Shulz, and Zhou 

(2000) note that, in reality, code updates occur periodically, not continuously. March’s (1991) 

original model assumed constant updating of the organizational code according to the beliefs of 

the policy-making elite and constant learning from the code by employees. Miller et al. (2006) 

addressed this limitation by including episodic updates and limiting the timeframe during which 

agents could learn from it. When the code updated, people learned what they would based on the 

learning rate and then ignored the code until its next iteration. This proposed model will adopt a 

similar codification scheme. Both of these features, along with the allowance for tacit knowledge 

transmission, lessen the code’s influence and tend to preserve heterogeneity. This exploratory 

effect is expected to interact with organizational structure. 

Hypothesis 3a: In disconnected subgroups, frequent code updates will yield higher 

organizational knowledge than infrequent and non-existent code updates. 

Hypothesis 3b: In tightly coupled subgroups, non-existent code updates will yield higher 

organizational knowledge than frequent and infrequent code updates. 
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METHOD 
 
 
 

 The current model incorporates elements from March’s (1991) original model and from 

the three aforementioned extensions (Fang et al., 2010; Miller et al., 2006; Rodan, 2005). 

Broadly, the model focuses on interpersonal learning, a simplified organizational code that 

allows for tacit knowledge accrual, and individual experimentation or learning from outside of 

the organization. To test the proposed hypotheses, simulations mimic a 3x3x3 experimental 

design by varying organizational structure, individual experimentation, and the frequency of 

code updates. In addition to testing the stated hypotheses, this paper also explores the emergent 

phenomena in the model inductively to decipher interesting patterns that might inform future 

theory. The model was constructed in the open source statistical program R. Broadly, a script 

establishes initial conditions and runs functions aligned with the equations outlined in the 

following sub-sections. Those functions generate and store longitudinal data in matrices for 

analysis. The full script is included in Appendix B.  

Core Elements 

Faithful to March, the model has three core elements: individuals, an exogenous reality 

(also known as “the environment”), and an organizational code. 

Individuals 

Dodgson (1993) said that “individuals are the primary learning entity in firms, and it is 

individuals which create organizational forms that enable learning in ways which facilitate 

organizational transformation.” The model includes n individuals organized into teams of z 

individuals each. Each individual holds m beliefs and begins the simulation with each belief set 

randomly to 1, 0, or -1 (i.e., +, = +,., +
,
0, … +

,
2 with +,3 ∈ {−1,0,+1}). Holding a belief of 
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+,3 = 0 indicates neutrality or indecision on that dimension.  

Fang et al. (2010) found that at the optimal level of inter-team coupling (i.e., # = 0.1), 

seven-member groups yielded the optimal solution, so individuals will be organized into teams 

of seven by default. Sensitivity analyses revealed that lower team sizes (e.g., teams of two agents 

each) produced slightly lower aggregate knowledge levels. However, the results from seven-

person teams used here produce results that are representative of a wider range of larger team 

sizes. This also seems to be a reasonable team size given prior research in both traditional and 

modern organizations. Bantel and Jackson (1989) found an average team size of 6.3 people for 

top management teams in banking. More recently, archival data estimated the average team size 

in software development to be 7.9 people per team (Rodriguez, Sicilia, Garcia, & Harrison, 

2011).  

Fang et al. (2010) ran simulations with 100 belief dimensions and 200 runs per condition, 

and this model does the same. Simulations with more beliefs yielded less variable aggregate 

knowledge levels, but they also yielded lower aggregate knowledge, presumably because reality 

is more complex and, therefore, more difficult to know. Running 200 trials per condition ensures 

adequate stability of knowledge outcomes. Also, including 200 time points per simulation allows 

organizational knowledge to reach a more satisfactory equilibrium (e.g., rather than ending a trial 

in the middle of an ascent or descent). Fang et al. (2010) began with 280 individuals in the 

model, but this model begins with 140 individuals to represent a medium sized organization. 

This smaller organizational size is still relatively large given that 89.24% of organizations in the 

U.S. have fewer than 20 people and 98.15% have fewer than 100 employees (United States 

Census Bureau, 2015). However, an organizational size of 140 produced a more stable estimate 

of other larger organizational sizes whereas a smaller organizational size of 70 agents produced 
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slightly higher levels of average individual knowledge. The number of teams in the organization 

is represented as n / z. 

Environment 

Reality also has m dimensions that are randomly determined but do not include zero (i.e. 

; = ;., ;0, … ;2 with ;3 ∈ {−1, +1}).  

Organizational Code 

This code is a belief set from which agents can learn. It has the same structure as the 

belief sets of individuals and the environment. This code begins all simulations with all 

dimensions set to zero. However, in some instances, the code only includes a subset of the m 

dimensions that the environment and individuals have. The parameter q dictates the number of 

tacit dimensions in the code. These dimensions remain at zero through the simulations and are, 

therefore, non-functional. That is, the organizational code can be characterized functionally as 

< = <., <0,… <2=> and <3 ∈ {−1,0,1} since all other dimensions of the code will be neutral (i.e., 

[<2=>, <2] = 0). 

Miller et al. (2006) specified that half of all beliefs should be tacit. However, 

unsurprisingly, when learning was more tacit, the frequency of organizational code updates had 

less of an effect on knowledge. The current model uses q = 50 as its default. 

Organizational Structure 

In the baseline structure, each team is fully connected within itself (i.e., each team begins 

with ?(?=.)
0

 total ties) but fully disconnected from other teams. For every tie that a focal 

individual has to a teammate, the # parameter represents the probability that that intra-team tie is 

eliminated and replaced with a tie to an individual outside of the team. This process repeats for 

every tie and for every individual in the organization sequentially. The result is that high levels 
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of # indicate greater inter-team connection, less intra-team connection, and therefore, less 

overall clustering. As the protocol behind the # parameter suggests, the total number of ties in 

the network does not change from the baseline model. Each new tie is preceded by the 

elimination of one. Figure 1 is a notional representation of the baseline network structure, and 

Figure 2 exemplifies how ties are replaced randomly according to #. Structure is determined 

before each trial, but it does not change over the course of a trial (i.e., individuals cannot form or 

drop social ties). The only difference between this protocol and the one used by Fang et al. 

(2010) is that the baseline model (i.e., # = 0) here has completely disconnected teams while the 

baseline, connected caveman structure began with minimal ties between neighboring teams. 

Beginning with isolated teams makes the # = 0 instance more meaningful. 

The model tests three structures with values of # equal to 0, 0.1, and 0.5. Respectively, 

these values correspond to the disconnected, loosely coupled, and tightly coupled subgroup 

structures in the hypotheses. For each run, the simulation generates a binary, symmetric matrix 

with n rows and n columns. Because relationships in the model are always bidirectional and do 

not vary in strength (neither between relationships nor between directions in a relationship), a 1 

in the matrix indicates that the two members are linked, and a zero indicates that they are not 

linked. 

Knowledge 

Knowledge is operationalized as the concordance of a belief set with the environment. To 

determine whether or not a belief is correct, the coding allows simple multiplication of the 

individual belief with the corresponding dimension of reality (i.e., +,3;3). This formulation yields 

-1 when an individual chooses the wrong belief (e.g., +,3 = 1 when ;3 = −1),	0 when the 

individual is neutral, and 1 when the individual’s belief is concordant with the environment. In 
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addition to holding a belief that is true, Baron (2000) asserts that true knowledge also requires 

the holder to have chosen the belief based on the right evidence and inferences. That is, the belief 

should be both true and justified. This model ignores how and why individuals choose beliefs, 

however, and concordance with reality is the sole criterion. 

Individual Knowledge 

This is the degree of concordance between an individual’s belief set and reality. 

Averaging the products of an individual’s beliefs and their corresponding environmental 

dimensions yields individual knowledge such that CDEFDGH, =
.

2
∑ +,3;3
2
3J. . It follows then 

that CDEFDGH, and all other knowledge levels are bounded by -1 and 1, and the expected value 

KLCDEFDGH,M = 0 at time T = 0.  

Organizational Knowledge 

Aggregate organizational knowledge across conditions will be the primary outcome of 

interest. To calculate this, two levels of intermediary averages are required: 

1) Time: the average of every individual’s knowledge at each time point in each trial. 

Formally, this is calculated as NOCDEFDGH =
.

%∗2
∑ ∑ +,3;3

2
3J.

%
,J. . 

2) Condition: the Time averages are themselves averaged across N trials per condition 

(this produces the typical trajectory over time for each condition).  

Finally, the aggregate organizational knowledge level for a condition is the average of the 

knowledge levels at each time point. This metric is then divided by m (i.e., the number of 

dimensions in reality) to yield the proportion of possible knowledge. While this value can 

technically range from -1 to 1, in practice, it only dips barely below zero at T = 0 due to the 

random configuration of beliefs in the initial conditions. 

March (1991) operationalized knowledge as the concordance of the code with reality. 
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While having leadership with high knowledge levels would be likely to improve organizational 

performance, it is also possible for management to have all the answers while the employees 

ignore the knowledge. This model chooses to operationalize organizational knowledge 

differently for two reasons. First, the organizational code is meant to be a feature or only one 

possible way to learn in this more bottom-up learning context. Code knowledge as an outcome is 

incongruent with that goal of the model, and examining the aggregate of all individual 

knowledge levels is a more appropriate measure. March and Fang et al. (2010) both used 

equilibria as an outcome measure in various analyses (i.e., the level at which code knowledge 

leveled out and stayed roughly constant). This model eschews measuring equilibria because it 

carries an unfair bias toward exploratory strategies. In a static environment, exploitative 

strategies tend to rise quickly to a mediocre equilibrium. A more long-term, exploratory strategy 

takes longer to rise knowledge levels but often reaches a higher equilibrium. Simply measuring 

the end state of these two trajectories ignores the slower rise of exploration and the opportunity 

cost that it carries. Thus, organizational knowledge in this model accounts for knowledge levels 

throughout the course of each run. 

Knowledge Transmission 

There are three main learning mechanisms in the model: learning from the code, learning 

by the code, and learning from others (interpersonal learning).  

Learning From the Code 

This model uses March’s (1991) parameter, !., to indicate the probability in any given 

time period that an individual adopts a belief from the organizational code. This is set 

exogenously and applied uniformly to all individuals. 

 



 

 29 

Learning By the Code 

The code reflects the majority view of a policy-making elite. This group consists of 

individuals with a knowledge level that exceeds that of the organizational code. QR3 reflects the 

number of policy makers who agree on the S'T  dimension of the code subtracted from the 

number of policy makers who disagree. Therefore, positive values of k indicate that the code will 

change at some probability. However, when k is negative (i.e., more people agree than disagree) 

or zero (i.e., there is a tie), the code does not change. The value of QR3 is used to determine OR3 

(the position of the organizational code on dimension j), and this transformation is formally 

expressed as: 

OR3 ∈ {−1,0,+1} = U

+1	if	QR3 > 0

0	if	QR3 = 0

−1	if	QR3 < 0

	 

The probability of <3 changing to OR3 is 1 − (1 −	!0)Z[. Table 1 depicts a simplified and 

hypothetical scenario with randomly generated starting values in R. The organizational code 

begins completely neutral, so any individual with a positive knowledge level will participate in 

the policy-making elite until the organizational code surpasses the individual. Additionally, tacit 

dimensions of the code remain at zero throughout the trials. 

Whenever the code updates, people have the opportunity to learn from it. The \ 

parameter represents the frequency of code updates. Therefore, the tested values of 0, 1, and 10 

represent no code, continuous updating, and sporadic updating once every 10 time points 

respectively. These values allow exploration of different orders of magnitude while controlling 

the number of conditions. 

Interpersonal Learning 

Individuals can learn from the people to whom they are conneced, whether in their core 



 

 30 

team or not. Individuals can decipher the aggregate knowledge level of a peer, but they do not 

know which of the peer’s beliefs are correct and which are not. The interpersonal learning 

mechanism in this model reflects both a prestige bias and a conformist bias (Henrich, 2001). 

Prestige bias suggests that people tend to mimic the beliefs of superior performers, not because 

the beliefs are better but because the people have higher status. A conformist bias exists when 

people favor ideas espoused by a majority of others over those expressed by a minority (e.g., 

Davis, Kerr, Atkin, Holt, & Meek, 1975). Therefore, individuals will learn only from people who 

are linked to them in the network and have higher knowledge levels than themselves. Further, 

individuals will only ever adopt the majority view of their superior others. With this learning 

mechanism, groups tend to converge toward homogeneity at first. Once an individual knows as 

much or more than others in the group, the influence of out-group members tends to grow. The 

choice to operationalize interpersonal learning through a majority of superior peers rather than 

only from the highest performing peer highlights an important assumption. Fang et al. (2010) 

note that the latter strategy significantly attenuates the effect of subgroup structure on 

performance. In fact, such a “tournament selection” rule tends to produce the opposite results: 

higher performance at very low and very high levels of subgroup connectivity. They 

operationalized interpersonal learning in this way, and the current model attempts to replicate it.  

The “majority rule” decision-making process requires several pieces of information. First, 

each dimension in each agent is either selected for learning or not according to the parameter !". 

This parameter is similar to the coefficient of imitation in a Bass diffusion model which is 

typically set between 0.3 and 0.5 with a mean value of 0.38 (Mahajan, Muller, & Bass, 1995). 

Fang et al. (2010) used a default of !]$^)%,%_ = 0.3, and this model will do the same for !". 

Agents then recognize who among their peers has superior knowledge to themselves (i.e. those 
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peers with CDEFDGH, exceeding their own). As with the organizational coding process, the 

individual determines the majority position on each dimension j within the higher performing 

peers by summing the values of each superior team member to obtain Q]3. Values of Q]3 

determine O]3, or the majority’s view on dimension j such that: 

O]3 ∈ {−1,0, +1} = `

+1	if	Q]3 > 0

0	if	Q]3 = 0

−1	if	Q]3 < 0

	 

If a dimension was selected for learning and the associated agent has peers with superior 

knowledge levels, the agent will adopt O]3. Table 2 shows planned starting values for simulations 

that will test the hypotheses. 

Experimentation 

 The probability that any belief held by any individual will change is determined by the 

parameter *. A belief selected to change will always change to either a 1 or a -1. If the belief was 

originally set to 0, then either 1 or -1 will be selected at equal (i.e., 0.5) probabilities. The model 

will explore * levels of 0, 0.01, and 0.1 to examine different orders of magnitude. 

Turnover & Environmental Turbulence 

 Turnover and changes to the dimensions of reality follow the same protocol as March’s 

(1991) model. The parameter !'()% represents the probability that any given individual in the 

model is eliminated and replaced with a “naïve” individual with randomly set beliefs. For each 

dimension of reality, !$%& represents the probability that it will change at each time point (i.e., 

from a 1 to a -1 or vice versa). A !$%& value of 0.02 suggests that, on average, two dimensions 

out of 100 will change at each time point. Therefore, with T = 100 time points, the environmental 

code would flip entirely two times over the course of a trial—on average.  
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RESULTS 

 

Tested Hypotheses 

To test the hypotheses, a 3x3x3 experimental design was used to manipulate the 

connectivity of teams (#), individual exerimentation (*), and the frequency of code updates (\). 

In each condition, the focal criterion is organizational knowledge operationalized as the average 

concordance of employee beliefs with reality across each time point and each trial. Because 

some mechanisms of this model are based on predecessors, two replication experiments were 

conducted to replicate key results from March (1991) and Fang et al. (2010). The full discussion 

of those replications can be found in Appendix C. 

Figure 3 shows aggregated organizational knowledge across the three levels of inter-team 

connectivity, code update frequency, and individual experimentation. When there is no code (\ = 

0) and no experimentation (* = 0), loosely coupled subgroups (# = 0.1) outperform isolated 

subgroups substantially and tightly coupled subgroups marginally (Table 3 includes all effect 

sizes for context). This degree of clustering also produced the highest knowledge level when the 

code updates every 10 time points. However, when the code updates at every time point, there is 

no significant difference between loosely coupled and tightly coupled subgroups. Therefore, 

hypothesis 1 is supported, but loosely coupled subgroups do not outperform tightly coupled ones 

across all conditions. Even with the slightly different network structure (i.e., no inter-team ties at 

# = 0), these results replicate the superiority of loosely coupled subgroups found in Fang et al. 

(2010). 

Hypothesis 2a is partially supported, since high individual experimentation (* = 0.1) 

yields the highest organizational knowledge level in tightly coupled subgroups when the code 
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updates at every time point. However, as shown in the left and right panes of Figure 3, high 

experimentation has a highly negative effect on learning when the code is less active. A 

constantly updating code seems to be an overly exploitative phenomenon that high 

experimentation buffers, but without that exploitation, high experimentation stymies knowledge. 

This is further supported by the fact that high experimentation fares better with infrequent code 

updates than it does with no code updates. This suggests that having some degree of exploitation 

to balance it out yields better results. Hypothesis 2b is not supported since no experimentation 

performs roughly the same as low experimentation in disconnected structures. When the teams 

are disconnected, a small degree of experimentation seems to have little effect. 

Without experimentation, organizational knowledge tends to peak when # = 0.1 and then 

either level off or decline slightly. However, when there is no code as in the left panel of Figure 

3, a small degree of experimentation offsets the decline that the non-experimental group has at # 

= 0.5. Not only does it prevent a decline, but it actually provides a small boost suggesting that 

the slight exploitation of higher inter-group connectivity is synergizing with experimentation to 

produce a better outcome. 

Hypothesis 3a is only supported when there is high individual experimentation. At the 

other two levels of experimentation, a continuously updating code tends to have a negative effect 

on knowledge. The fact that knowledge is slightly higher at # = 0 when the code updates 

infrequently (i.e., \ = 10 in the right pane of Figure 3) than when there is no code suggests that 

offering some code learning to disconnected subgroups can have beneficial effects but that 

continuous updating is too exploitative. Hypothesis 3b is only supported when there is a small 

degree of experimentation since that yields the highest knowledge for tightly coupled subgroups 

with no code. However, when there is no experimentation, infrequent code updating performs 
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roughly the same. With high experimentation, non-existent code updates produce the lowest 

knowledge levels compared to other tightly coupled subgroups. Regarding intra-trial dynamics, 

sporadic updating yields a higher equilibrium than continuous updating. However, organizational 

knowledge shows a minor dip every time the code updates suggesting its overall undesirability in 

this model. 

Exploratory Analyses 

 When agents learned from each other and from an organizational code continuously, 

organizational knowledge suffered across conditions and interpersonal learning had little effect. 

However, when the code learning was removed (i.e., effectively, \ = 0), the dynamics from 

interpersonal learning became notable. The exploratory analyses ignore the organizational code 

altogether and focus on bottom-up learning. The most interesting patterns in this model emerged 

at the intersection of five key variables: (1) individual experimentation (*), (2) subgroup 

connectivity (#), (3) interpersonal learning, (4) environmental turbulence (!$%&), and (5) 

turnover (!'()%). Table 4 summarizes the parameter values tested in the exploratory analyses. 

The following sections highlight key findings. Changes to the tested parameter values in the 

exploratory analyses (e.g., number of agents and number of beliefs) were motivated by the desire 

to replicate March’s (1991) model as closely as possible. This allows a reasonable comparison of 

his findings on the beneficial effects of turnover with individual experimentation in this bottom-

up learning framework. Additionally, the maximum value of inter-team connection (# = 1) 

produced knowledge levels similar to those at # = 0.2 (or marginally lower as the 3 x 3 x 3 

design revealed), so # = 0.2 is the highest value included in results. Overall, the values of inter-

team connection (#) in the exploratory analyses were informed by sensitivity analyses such that 

more interesting shifts occurred when # was 0, 0.05, and 0.2. This also allowed for greater 
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parsimony in analyses. 

Experimentation vs. No Experimentation 

Figure 4 shows the aggregate knowledge levels across the full range of interpersonal 

learning values (!") and across three levels of # (i.e., 0, 0.05, and 0.2) without any 

environmental turbulence or turnover. Each plot shows trajectories with and without individual 

experimentation. When # = 0, the organization struggles to transmit useful knowledge beyond 

the strict team boundaries, and overall performance suffers dramatically. Adding inter-team 

connections tends to yield higher aggregate knowledge levels at # = 0.05 and even higher at # = 

0.2. Additionally, the slight inverted-U shape of each trajectory suggests that the optimal level of 

interpersonal learning falls somewhere between 0.2 and 0.8 in stable circumstances. Note that 

experimentation harms knowledge slightly at lower levels of !" but improves it slightly at higher 

levels. 

 Figure 5, in comparison, shows the deleterious effect that changing reality (!$%& = 0.02) 

can have on aggregate knowledge levels. At every level of !" and #, knowledge is lower with 

environmental turbulence than without it. With turbulence, experimentation raises the 

performance of completely isolated teams across every level of !". For other network structures, 

experimentation hinders performance slightly at very low levels of !" but yields large 

improvements at higher levels and mitigates the dip seen at very high levels of !" in Figure 4. 

Very high levels of interpersonal learning may be exploitative since random experimentation 

(i.e., exploration) yields higher knowledge levels compared to conditions without 

experimentation. Conversely, at very low levels of peer learning, information is not transferring 

well enough and this constitutes an overly exploratory strategy which preserves too much 

heterogeneity. Adding experimentation to those conditions only exacerbates the imbalance, albeit 
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slightly. Table 5 illustrates the interaction. 

Experimentation vs. Turnover with Environmental Turbulence 

As mentioned previously, March (1991) showed the positive effects of turnover as 

variation in response to environmental turbulence. However, March’s model had a formalized 

learning protocol in which individuals could only learn from the organizational code rather than 

each other. Figure 6 shows the effect of turnover (!'()% = 0.1) in the face of environmental 

turbulence under this study’s interpersonal learning protocol. Here, adding individual 

experimentation has almost no effect on knowledge at lower levels of interpersonal learning. 

However, at higher levels of interpersonal learning (i.e., !" ≥ 0.5), adding individual 

experimentation improves aggregate knowledge by adding beneficial variance above and beyond 

turnover.  
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DISCUSSION 

 

 Fang et al. (2010) argue in favor of the evolutionary perspective by showing that semi-

isolated subgroups tend to stike the optimal balance between exploration and exploitation 

regardless of contingencies. However, one purpose of this study is to evaluate interventions that 

could potentially mitigate the deleterious effects of high and low subgroup coupling on 

organizational learning (and particularly the strategies that can combat unintended exploitation). 

This model examines the effects of individual experimentation and the frequency of 

organization-level communication of “best practices” on organizational learning through varying 

levels of network connectivity and environmental turbulence. 

Tested Hypotheses 

Combining code learning and interpersonal learning had a large overall negative effect on 

organizational knowledge, and code learning muted the generally positive main effects of inter-

team connectivity. That is, when the code updates at every time point, the positive effect of inter-

team connection remains but the slope is lower than when the code updates sporadically or when 

the code is removed. It is possible that combining the two learning mechanisms was too 

exploitative such that learning from a code and from peers increased belief homogeneity and 

prevented proper adaptation to the environment. When employees learn from their most 

knowledgeable peers and from a code dictated by the organization’s most knowledgeable 

members, the two mechanisms are likely to reinforce the same opinions. When the code and the 

most knowledgeable peers are mostly correct in their beliefs, this might not be a problem. 

However, as these simulations indicate, strong socialization can also compound the exploitative 

effects of top-down learning. 
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When that exploitation was combined with a high degree of individual experimentation, 

however, those conditions yielded higher organizational knowledge than either no 

experimentation or low experimentation. In less exploitative conditions (i.e., when code learning 

was absent or infrequent), high levels of individual experimentation had a strongly harmful effect 

on organizational knowledge. This suggests that high individual experimentation can introduce 

too much random variation and is, therefore, too exploratory under those circumstances. 

Changing individual beliefs 10% of the time prevented valuable knowledge from accruing. This 

circumstance might correspond to an organization in which employees seek out a great deal of 

new and competing information. Maybe employees in this organization are too skeptical of the 

shared wisdom of their peers and even of their own past experiences. Switching beliefs 

erratically creates a failure trap in which organizational knowledge can never adequately vet 

beliefs that are so dynamic. However, as mentioned, this high degree of exploration proved 

useful in the otherwise exploitative condition in the middle pane of Figure 3. This result fits well 

with the notion that exploration and exploitation must be balanced to yield better knowledge 

outcomes. 

The interaction between experimentation and network structure demonstrates the 

compensatory and even salutary effects that individual experimentation can have in highly 

connected organizations. Not only can individual experimentation counteract the exploitative 

tendency of highly connected networks, but it may also be able to synergize with it in some 

circumstances. For example, when there is no code and no experimentation, knowledge dips 

slightly going from loosely coupled to tightly coupled subgroups (in line with Fang et al., 2010). 

However, adding experimentation in this transition actually improves knowledge. This effect is 

not present in the right pane of Figure 3 when the code updates infrequently. It is possible that 
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the small degree of experimentation present was not sufficient to counteract the exploitation of 

code updating in that scenario. Future simulations should test a wider range of the 

experimentation parameter to determine if a higher degree of experimentation would replicate 

the beneficial effect of experimentation in the left pane of Figure 3.   

Exploratory Simulations 

At very high levels of interpersonal learning, organizational knowledge tends to dip, 

presumably because the cognitive diversity disappears, and aggregate knowledge settles for a 

suboptimal equilibrium. Experimentation, however, tends to mitigate this exploitative and 

homogenizing effect of high interpersonal learning. Even with turnover injecting useful variance, 

individual experimentation can provide an advantage in cultures with high socialization rates, 

particularly in dynamic environments. This suggests that individually based trial-and-error may 

be a better strategy for adapting to environmental change than bringing in entirely new people. A 

small amount of healthy and enduring skepticism about one’s own beliefs and the beliefs of 

peers can help organizations remain successful in tumultuous conditions. 

Under the conditions tested in these exploratory simulations, the reward-to-risk ratio is 

high for individual experimentation. In a dynamic environment, experimentation allows 

organizational knowledge to keep pace and synergize with interpersonal learning. In a stable 

environment with relatively little interpersonal learning, experimentation can degrade 

performance slightly. When turnover is added to that circumstance, the deleterious effect of 

individual experimentation on organizational knowledge increases slightly. However, these 

negative effects are small, so the potential reward of experimentation in these circumstances 

seems to justify the minor risk across a variety of contexts. It should be noted, however, that the 

level of individual experimentation in these simulations is tempered. Here, each belief had a 1% 
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chance of changing at every time point. It is likely that significantly higher degrees of belief 

change would degrade organizational knowledge as one did in the first round of simulations. The 

degree of variance from experimentation that is desirable ultimately depends on the strength of 

opposing exploitative mechanisms. 

Earlier discussion described some of the counterintuitive benefits of employee turnover 

(Staw, 1980). However, as an exploratory mechanism, individual experimentation is essentially 

cost-free for the organization. It delivers fresh perspectives but sidesteps the hassles of 

recruiting, selecting, onboarding, and training new employees. As a caveat, individual 

experimentation must be contained and orthogonal. In the evolutionary analogy previously 

discussed, individual experimentation parallels genetic mutation given its unpredictability. In 

nature, genetic mutations are harmful far more frequently than they are beneficial. The reason 

that mutation can be useful in this simulation is that the downsides of bad belief changes are 

highly constrained. When a belief changed in this simulation, it did so independent of any other 

event in the organization. Whole teams did not change beliefs simultaneously nor did the 

organization as a whole change tack randomly. When an individual agent changed a belief, the 

likelihood of that new belief spreading depended on the agent’s influence (i.e., relative 

knowledge level among peers). Thus, the bottom-up learning mechanism constituted a check on 

new (and potentially bad) ideas. Additionally, the risk of changing any one belief (or conducting 

one mini-experiment) was constrained. To be an effective strategy in organizations, this type of 

bottom-up experimentation must carry negligible risks and may need to occur independently of 

pre-existing norms. While individual experimentation is cost-free, it may require some 

encouragement and cultural molding. Some level of psychological safety may be necessary for 

employees to feel comfortable trying new things at all and then to be able to share their findings 
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with coworkers and ultimately benefit the organization (Baer & Frese, 2003; Edmondson, 1999). 

These findings shed light on how organizations might try to balance exploration and exploitation 

in more modern, informal, bottom-up structures. 

Limitations 

 As mentioned previously, organizational learning has been studied with computational 

models because the mechanisms involved are often too complex to study empirically. Thus, this 

paper does no attempt to validate results through comparison to real world observations. Rather, 

Appendix C includes a discussion of how this model was validated against prior models in its 

lineage. Additionally, to construct a virtual simulation of organizational dynamics, all 

computational models require assumptions and simplifications (Harrison, Lin, Carroll, & Carley, 

2007). This model makes assumptions similar to March’s (1991) model and its extensions. What 

follows are highlights of the most significant ones.  

Most notably, this framework abstracts the learning process in teams and organizations 

by drastically simplifying the mechanism of knowledge transmission and ignoring individual 

differences altogether. It assumes that agents can accurately assess the beliefs that superior 

agents hold. This is the primary way that agents change their own beliefs through interpersonal 

learning. However, research in the “hidden profile” paradigm has shown that people in groups 

tend to spend most time discussing shared knowledge (Stasser & Titus, 1985). While getting 

everyone on the same page is useful, failing to disclose unique and relevant information is both 

common and detrimental to team decision-making. It follows that real team members would not 

have access to every belief of every colleague to make fully informed decisions. Rather, the 

model assumes that agents use heuristics to infer how and why their esteemed peers perform 

better than themselves. 
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This model also assumes that knowledge emerges from individual to team level and from 

individual to organizational level in entirely compositional ways (Kozlowski & Klein, 2000). 

The beliefs of agents, teams, and the organizational code all share the same dimensional structure 

of reality. In real reality, however, humans categorize knowledge in different schemata, and 

previously held knowledge can influence how we encode new information (Anderson, 1977). 

Additionally, the model operationalizes belief change as immediate and total when actual change 

is more likely a gradual process of probability updating that can retain elements of what came 

before (Busemeyer & Townsend, 1993; Bohner & Dickel, 2011). Fiol and Lyles (1985) assert 

that “organizational learning is not simply the sum of each member’s learning,” so the 

operationalization of organizational knowledge as the average of individual knowledge is 

arguably imperfect. People hold beliefs configurations with far more nuance than simply 

positive, neutral, and negative. However, the structure and transmission of knowledge in March’s 

(1991) model are fundamental, and altering them would disqualify this model as an extension. 

This framework is incomplete but not entirely unrealistic, as compositional team cognition forms 

the basis of team mental models (Cannon-Bowers et al., 1993). 

Lastly, there is no guarantee that more effective organizational learning will produce 

better performance at any level of an organization. Having a more accurate representation of 

reality should presumably fuel better decisions and competitive advantages as the Good 

Regulator Theorem suggests. However, while evidence for such a relationship certainly exists, it 

is not overwhelming (Jiménez- Jiménez & Sanz-Valle, 2011). This empirical dearth may be due 

to the difficulty of conducting research in this domain. In the theory of planned behavior (Ajzen, 

1991), beliefs about the likely outcomes of behavior influence one’s attitude toward the 

behavior. This attitude along with subjective norms and perceived behavioral control relate to 
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behavioral intentions which finally relate to actual behavior. Thus, it may be important to 

separate conceptually organizational learning from the actions and decisions that organizational 

members make on the basis of their learned beliefs. 

Future Research 

 Because the reward-to-risk ratio of individual experimentation was favorable in the 

exploratory analyses, future research could focus on identifying the boundaries of that 

phenomenon. For example, at what level of experimentation does the exploratory benefit become 

maladaptive and impede the retention of valuable organizational knowledge? Do more turbulent 

environments require more individual experimentation in a linear fashion, or are there 

diminishing returns that might require other adaptive mechanisms to maintain sustainable 

knowledge? 

Another promising avenue for future research is the role of compilational team cognition 

or transactive memory systems (Wegner, 1987) in inter-team and organizational learning. 

DeChurch and Mesmur-Magnus (2010) showed that while compositional team cognition 

positively impacts team performance, compilational cognition has a significantly stronger effect. 

Since compilational cognition is a distinctly team-level construct, it has more proximal influence 

on team-level performance. Rather than assuming that most or all people in a group need to share 

a piece of knowledge for it to emerge at a higher level, it would be valuable to develop theory 

through computation about how qualitatively different types of knowledge can remain 

distributed but accessible to everyone in a way that bolsters aggregate organizational knowledge. 

 Other computational models could use more complex experimentation parameters and at 

more than just the individual level. For example, one might assume that individuals explore 

based on a dynamic allocation index or Gittins index (Gittins, 1979). Like *-greedy, this emerged 
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as an attempt to deal with the multi-armed bandit problem. The decision of whether to exploit or 

explore is influenced by the interval of consideration. The Gittins index assumes an infinite 

future, as many organizations hope for, but it discounts future rewards given their lower certainty 

and lower desirability compared to immediate rewards. While this method is still limited (e.g., it 

uses linear discounting and does not account for switching costs), it could be an interesting and 

more nuanced way to operationalize team and organizational experimentation going forward. 

Moore’s law suggests that technology grows exponentially rather than linearly (Moore, 

1965). The current model assumes that each dimension of reality has a fixed probability of 

switching its value at each time point. However, because Moore’s prediction seems to have held 

true even longer than he anticipated, future models might experiment with rates of environmental 

change that increase over time (e.g., doubling every 18 months or every 2 years as theories 

suggest). Similarly, Harrison & Carroll (1991) included organizational growth rate (i.e., 

increasing total number of employees) and selectivity (i.e., recruiting people with varying 

degrees of similarity to the organizational code). They also tested different configurations of the 

core parameters to mimic different organizational types (e.g., an entrepreneurial model with high 

growth rates or a Japanese business model with an intensive socialization and very low 

turnover). 

Future models could employ even more realistic organizational structures with multi-

tiered hierarchies (e.g., building from Bray & Prietula, 2007) and specialized roles. They might 

also vary the degree to which individuals can shape the organizational code. Given the 

importance of specialization and division of labor in organizations, it could be useful to specify 

distinct but overlapping knowledge sets for different roles or individuals. Roles can dictate where 

people look for information (Simon, 1991), and not all information is relevant to every person. 
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Varying roles might synergize with the aforementioned exploration of transactive memory 

systems as well. Additionally, future models might examine multiple goals by supplementing the 

current selecting mechanism (i.e., knowledge or concordance with reality) with a desire to act in 

alignment with the organizational code. When the dimensions of reality and the organizational 

code are not perfectly aligned, employees may experience a tension between adapting to the 

external environment and adapting to the internal environment (i.e., the organizational culture).  

Practical Implications 

To demonstrate the utility of this model and the consideration of the 

exploration/exploitation tradeoff, consider Valve, a video game design company based in 

Bellevue, Washington that purports to have an entirely flat organizational structure. They publish 

their employee handbook (Valve, 2012) which describes the nuances of their non-traditional 

non-hierarchy. While it is possible that their espoused and enacted values differ (Zohar & 

Hofmann, 2012), their philosophy revolves around the autonomy to get involved in multiple and 

varied team-based projects throughout the company as well as learning from a great deal of 

informal interaction rather than top-down training. In the context of this proposed model, Valve 

shows relatively tight subgroup coupling or high organizational connectivity. This contemporary 

structure might have exploratory intentions, but this paper has discussed the covertly 

homogenizing effect that it can have.  

It appears, however, that Valve has some strategies that might counterbalance its 

unintentionally exploitative structure. The handbook explicitly states that their structure makes 

them bad at disseminating information internally and that mentoring newcomers is not a strength. 

This suggests that their organizational code requires a great deal of tacit learning. Their 

handbook expresses a deep respect for individuality and encourages healthy disagreement among 
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colleagues. It recommends scrutinizing the founder/president’s ideas as heavily and honestly as 

any other coworker’s. These notions combat homogeneity by guarding against socialization that 

is too swift. The handbook also asserts that, “Screwing up is a great way to find out that your 

assumptions were wrong or that your model of the world was a little bit off.” This suggests that 

individual experimentation and learning through failure are not only tolerated but also 

encouraged at Valve. This exploratory maxim might infuse needed variance into a system that 

might otherwise be pointed toward exploitation. The “managerial” strategies at the Valve 

Corporation illustrate how a modern organization might balance exploration and exploitation. 
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CONCLUSION 

 

Because organizational learning is such a complex process to capture empirically, 

computational modeling has proven t be a useful analytical and exploratory tool. March’s (1991) 

model sparked conversation about exploration and exploitation in organizational science and 

strategy that continues today. While this model is computational and abstract, it nonetheless 

clarifies some specific circumstances and concrete strategies that can help individuals, teams, 

and organizations in non-hierarchical networks balance exploration and exploitation and set 

themselves up for long-term learning. 
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APPENDIX A 

 

Tables and Figures 
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Figure 1. Notional Representation of the Baseline Network Structure (# = 0) 
 

 
Figure 2. Notional Representation of How Network Ties are Replaced 
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Table 1. Notional Representation of Initial Conditions 
 Belief 1 Belief 2 Belief 3 Knowledge 

Environment -1 1 1 NA 
Agent 1 -1 1 0 2 
Agent 2 1 0 1 0 
Agent 3 0 -1 -1 -2 

Code 0 0 0 0 
 
 
 

Table 2. Model Parameters and their Simulated Values in 3x3x3 Design 
Parameters Description Range of parameter 

values analyzed 
n Number of individuals in the organization 140 
m Number of belief dimensions 100 
z Size of subgroup 7 
q Number of dimensions in the code that are tacit 50 
#	 Probability of adding social ties to the network 0, 0.1, 0.5 
!.	 Probability of learning from the organizational code 0.1 
!0	 Probability of the code learning from PMEs 0.9 
!"	 Probability of learning from peers 0.3 
!'()%	 Probability of an agent being replaced with a naïve agent 0.1 
!$%&,) 	 Probability of reality dimensions changing 0.02 
*	 Probability of an agent changing a belief 0, 0.01, 0.1 
\	 Number of time periods between code updates 0 (i.e., no code), 1, 10 
T Number of time periods per trial 200 
N Number of runs per condition 200 
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Figure 3. Organizational Knowledge in the 3x3x3 Design

 
Note. Inter-Team Connectivity values represented on the horizontal axes 

 are spaced evenly, not by magnitude.
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Table 3. Effect Sizes Between All Conditions in the 3x3x3 Design 
 ! " #          
!    0 0 0 .01 .01 .01 .1 .1 .1 
"    0 0 0 0 0 0 0 0 0 
#    0 .1 .5 0 .1 .5 0 .1 .5 
 0 0 0 -         
 0 0 .1 5.53 -        
 0 0 .5 4.29 -0.53 -       
 .01 0 0 0.18 -5.49 -4.23 -      
 .01 0 .1 6.27 0.38 0.89 6.24 -     
 .01 0 .5 5.49 0.79 1.21 5.45 0.48 -    
 .1 0 0 -15.42 -15.05 -12.35 -16.57 -16.5 -12.97 -   
 .1 0 .1 -13.01 -13.75 -11.26 -13.96 -15.1 -11.96 3.72 -  
 .1 0 .5 -9.85 -11.95 -9.72 -10.59 -13.17 -10.55 8.34 4.58 - 
 0 1 0 -1.31 -4.3 -3.75 -1.39 -4.62 -4.6 3.72 3.04 2.06 
 0 1 .1 0 -2.82 -2.38 -0.07 -3.09 -3.2 4.49 3.89 3.02 
 0 1 .5 0.15 -2.65 -2.22 0.09 -2.92 -3.04 4.6 4.01 3.14 
 .01 1 0 -1.28 -4.51 -3.89 -1.37 -4.86 -4.79 4.28 3.53 2.44 
 .01 1 .1 -0.19 -3.01 -2.56 -0.26 -3.28 -3.38 4.31 3.71 2.83 
 .01 1 .5 0.13 -2.95 -2.46 0.06 -3.25 -3.34 5.13 4.45 3.49 
 .1 1 0 0.97 -5.05 -3.82 0.82 -5.8 -5.08 18.7 15.83 12.19 
 .1 1 .1 2.3 -4.22 -3.08 2.19 -4.94 -4.4 21.14 18.08 14.25 
 .1 1 .5 3.73 -3.05 -2.07 3.67 -3.67 -3.44 20.87 18.23 14.83 
 0 10 0 2.43 -3.32 -2.41 2.33 -3.88 -3.68 14.91 13.1 10.65 
 0 10 .1 5.41 0.02 0.54 5.37 -0.35 -0.76 14.58 13.33 11.59 
 0 10 .5 3.92 -0.73 -0.2 3.86 -1.09 -1.39 11.7 10.64 9.16 
 .01 10 0 2.78 -3.34 -2.38 2.69 -3.94 -3.69 16.93 14.83 12.04 
 .01 10 .1 6.82 0.86 1.33 6.8 0.5 -0.06 16.99 15.6 13.69 
 .01 10 .5 5.61 0.43 0.9 5.57 0.08 -0.38 14.17 13.02 11.4 
 .1 10 0 -13.72 -14.15 -11.6 -14.72 -15.53 -12.27 2.59 -1.1 -5.67 
 .1 10 .1 -11.59 -12.94 -10.57 -12.45 -14.24 -11.33 5.99 2.2 -2.44 
 .1 10 .5 -8.49 -11.15 -9.05 -9.15 -12.32 -9.93 9.98 6.3 1.79 

Note. Positive values indicate that the condition described on the horizontal axis had higher aggregate knowledge across trials. 
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Table 3 (continued) 
 ! " #          
!    0 0 0 0.01 0.01 0.01 0.1 0.1 0.1 
"    1 1 1 1 1 1 1 1 1 
#    0 0.1 0.5 0 0.1 0.5 0 0.1 0.5 
 0 0 0          
 0 0 .1          
 0 0 .5          
 .01 0 0          
 .01 0 .1          
 .01 0 .5          
 .1 0 0          
 .1 0 .1          
 .1 0 .5          
 0 1 0 -         
 0 1 .1 0.9 -        
 0 1 .5 1.02 0.11 -       
 .01 1 0 0.11 -0.84 -0.96 -      
 .01 1 .1 0.76 -0.14 -0.25 0.69 -     
 .01 1 .5 1.05 0.09 -0.03 1 0.24 -    
 .1 1 0 1.71 0.35 0.19 1.73 0.54 0.25 -   
 .1 1 .1 2.23 0.81 0.65 2.3 1.01 0.76 1.42 -  
 .1 1 .5 2.86 1.38 1.22 2.99 1.58 1.4 3 1.7 - 
 0 10 0 2.42 1.04 0.88 2.5 1.23 1.02 1.72 0.64 -0.72 
 0 10 .1 4.28 2.81 2.65 4.48 3 2.94 4.93 4.13 2.99 
 0 10 .5 3.55 2.21 2.06 3.68 2.39 2.28 3.45 2.73 1.76 
 .01 10 0 2.53 1.12 0.96 2.63 1.31 1.1 2.04 0.87 -0.62 
 .01 10 .1 4.94 3.38 3.21 5.2 3.57 3.57 6.36 5.51 4.25 
 .01 10 .5 4.49 3.04 2.87 4.69 3.22 3.18 5.16 4.4 3.32 
 .1 10 0 -3.26 -4.08 -4.19 -3.76 -3.9 -4.67 -16.66 -18.96 -18.99 
 .1 10 .1 -2.6 -3.49 -3.61 -3.03 -3.31 -4.02 -14.21 -16.38 -16.72 
 .1 10 .5 -1.64 -2.64 -2.77 -1.97 -2.46 -3.07 -10.63 -12.6 -13.35 

Note. Positive values indicate that the condition described on the horizontal axis had higher aggregate knowledge across trials. 
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Table 3 (continued) 
 ! " #          
!    0 0 0 0.01 0.01 0.01 0.1 0.1 0.1 
"    10 10 10 10 10 10 10 10 10 
#    0 0.1 0.5 0 0.1 0.5 0 0.1 0.5 
 0 0 0          
 0 0 .1          
 0 0 .5          
 .01 0 0          
 .01 0 .1          
 .01 0 .5          
 .1 0 0          
 .1 0 .1          
 .1 0 .5          
 0 1 0          
 0 1 .1          
 0 1 .5          
 .01 1 0          
 .01 1 .1          
 .01 1 .5          
 .1 1 0          
 .1 1 .1          
 .1 1 .5          
 0 10 0 -         
 0 10 .1 3.27 -        
 0 10 .5 2.11 -0.74 -       
 .01 10 0 0.14 -3.28 -2.08 -      
 .01 10 .1 4.41 0.82 1.52 4.49 -     
 .01 10 .5 3.57 0.4 1.09 3.59 -0.37 -    
 .1 10 0 -13.64 -13.71 -10.97 -15.45 -16.02 -13.37 -   
 .1 10 .1 -12 -12.55 -9.97 -13.58 -14.75 -12.29 3.3 -  
 .1 10 .5 -9.58 -10.83 -8.51 -10.83 -12.85 -10.68 7.36 4.21 - 

Note. Positive values indicate that the condition described on the horizontal axis had higher aggregate knowledge across trials.
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Table 4. Parameters in Exploratory Analyses and their Simulated Values 
Parameters Description Range of parameter 

values analyzed 
n Number of individuals in the organization 50 
m Number of belief dimensions 30 

z Size of subgroup 5 
! Probability of adding social ties to the network 0, 0.05, 0.2 
"#	 Probability of learning from peers 0 through 1 in 

increments of 0.1 
"$%&'	 Probability of an agent being replaced with a naïve agent 0, 0.1 
"(')	 Probability of reality dimensions changing 0, 0.02 
*	 Probability of an agent changing a belief 0, 0.01 
T	 Number of time periods per trial 100 
N Number of runs per condition 80 

 
Figure 4. Organizational Knowledge with No Turbulence and No Turnover 
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Figure 5. Organizational Knowledge with Turbulence (!"#$ = 0.02) and No Turnover 

 
 

Table 5. Ranges of !% in which Experimentation is Better than No Experimentation 
!&'(# !"#$ ) !% Range 

0 0   
  0 !% > 0 
  0.05 !% ≥ 0.3 
  0.2 !% ≥ 0.8 
0 0.02   
  0 !% ≥ 0.1 
  0.05 !% ≥ 0.2 
  0.2 !% ≥ 0.2 

0.1 0   
  0 !% ≥ 0.6 
  0.05 !% ≥ 0.9 
  0.2 !% = 1 

0.1 0.02   
  0 !% ≥ 0.5 
  0.05 !% ≥ 0.6 
  0.2 !% ≥ 0.7 

Note. Ranges indicate the levels of !% at which experimentation (i.e., , = 0.01) yields 
significantly (p < 0.05) higher aggregate knowledge than with no experimenation (i.e., , = 0).  
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Figure 6. Organizational Knowledge with  
Both Turbulence (!"#$ = 0.02) and Turnover (!&'(# = 0.1) 
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Figure 7. Replication of March (1991) 

 
Note. Parameter values are m = 30, n = 50, !- = 0.5, !. = 0.5, !"#$ = 0.02, N = 80. 
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Figure 8. Conceptual Replication of Fang et al. (2010)  

 
Note. This represents average organizational knowledge while Fang et al. plotted average 

equilibria. The results are still roughly similar, but when ) = 0, knowledge is lower in this model 
than it was in Fang et al. This is likely due to subgroups being completely isolated in the current 

model whereas the baseline in Fang et al. had some intergroup ties. 
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APPENDIX B 
 
 
 

R Simulation Code 
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############################################################################## 
# Define Simulation Function 
############################################################################## 
 
full_sim <- function(n, m, z, q, beta, p1, p2, p3, p.turn, p.env, epsilon, tau, T,  N){ 
   
  # Initialize vectors & matrices 
  varnames       <- c('beta', 'q', 'p1', 'p2', 'p3', 'p.turn', 'p.env', 'epsilon', 'tau') 
  num.conditions <- length(beta)*length(q)*length(p1)*length(p2)*length(p3)* 
    length(p.turn)*length(p.env)*length(epsilon)*length(tau) 
  avg.know.mat   <- matrix(as.numeric(NA), nrow = N, ncol = T) 
  avg.know.trial <- rep(as.numeric(NA), N) 
  aggregate.know <- rep(as.numeric(NA), num.conditions) 
   
  # Specify conditions 
  if(num.conditions == 1) { 
    combinations <- t(as.matrix(sapply(varnames, function(x) get(x) ))) 
  } else { 
    combinations <- expand.grid(sapply(varnames, function(x) get(x) )) 
  } 
   
  # Create output matrix 
  p.matrix <-  
    cbind(combinations,  
          matrix(as.numeric(NA), nrow = num.conditions, ncol = 1 + N,  
                 dimnames = list(NULL, c('aggregate.know', paste0("N", 1:N))))) 
   
  ########################################################################### 
  # Define Sub-Functions 
  ########################################################################### 
   
  # Environmental turbulence 
  poss.env <- c(-1L, 1L) 
  turbulence <- function(x){ 
    return(poss.env[poss.env != x]) 
  } 
   
  # Code Learning: Determine the probability of the code learning 
  get.p <- function(x){ 
    return(1 - (1 - p.matrix[cond.num, 'p2'])^k[x]) 
  } 
   
  # Individual experimentation 
  poss.beliefs <- c(-1L, 1L) 
  experiment <- function(x){ 
    return(sample(poss.beliefs[poss.beliefs != x], 1)) 
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  } 
   
  # Peer Learning: Determine from whom and what each agent can learn 
  what.to.learn <- function(x){ 
    peers.to.learn.from = which(net.know[x, ])  
    dims.to.learn = peer.learn.list[[which(will.learn.vec == x)]] 
    sup.belief.matrix = d[peers.to.learn.from, dims.to.learn, drop = F] 
    sup.belief.vector = colSums(sup.belief.matrix) 
    sup.belief.vector[sup.belief.vector > 0] = 1 
    sup.belief.vector[sup.belief.vector < 0] = -1 
    return(sup.belief.vector) 
  } 
   
  # Peer Learning: Helps make peer.learn.list 
  make.peer.list <- function(x){ 
    return(which(peer.learn[x, ])) 
  } 
   
  # Faster mean function 
  avg <- function(x){ 
    sum(x, na.rm = T) / length(x) 
  } 
   
  ############################################################################# 
  # Loops 
  ############################################################################# 
   
  for(cond.num in 1:nrow(p.matrix)){  # Begin Condition Loop ---------------------------------------- 
    for(trial.num in 1:N){  # Begin Trial Loop -------------------------------------------------------------- 
       
      ##################### 
      # Create Network Matrix 
      ##################### 
       
      # Baseline  matrix 
      network <- matrix(0L, nrow = n , ncol = n) 
      teams <- matrix(1:n, nrow = z, ncol = n/z) 
      for(i in 1:(n/z)){ 
        network[teams[, i], teams[, i]] <- 1L 
      } 
      diag(network) <- 0 
 
      # Remove and add ties to baseline according to beta 
      net.switch <- matrix(NA, nrow = n, ncol = n) 
      for(i in 1:n){ 
        rnums <- runif(sum(network[i, ]), 0, 1) < p.matrix[cond.num, 'beta'] 
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        if(sum(rnums) == 0){next} 
        net.switch[i, ] <- network[i, ] == 1 
        net.switch[i, which(net.switch[i, ])] <- rnums 
        local.team <- teams[, as.numeric(which(teams == i, arr.ind = T)[, 2])] 
        avail.cons <- (1:n)[as.logical((network == 0)[i, ]*((1:n)!=local.team))] 
        newcon <- sample(avail.cons, sum(rnums)) 
        network[i, newcon] <- 1 
        network[newcon, i] <- 1 
        column <- which(net.switch[i, ]) 
        network[i, column] <- 0 
        network[column, i] <- 0 
      } 
 
      # Set diagonal to NA and make network matrix logical 
      diag(network) <- NA 
      network <- network == 1 
      network[network == FALSE] <- NA 
 
      # Working matrix for peer learning 
      net.know <- matrix(0, nrow = n , ncol = n) 
       
      ########################### 
      # Initial conditions for each trial 
      ########################### 
       
      d <- matrix(sample(c(-1L, 0L, 1L), n*m, replace = TRUE), nrow = n, ncol = m) 
      explicit_dims <- m - p.matrix[cond.num, 'q'] 
      code <- rep(0, explicit_dims) 
      env <- sample(c(-1L, 1L), m, replace = TRUE) 
      know <- as.vector(d%*%env) 
      avg.know <- rep(as.numeric(NA), T) 
      code.know <- as.numeric(c(0, rep(NA, T - 1))) 
      PME <- know > code.know[1] 
      PME[!PME] <- NA 
      no.code <- p.matrix[cond.num, 'tau'] == 0 
      PMEbeliefs <- PME*d[, 1:explicit_dims] 
       
      for(time.pt in 1:T){  # Begin Time Loop --------------------------------------------------------------- 
         
        # Code knowledge level (at each T) 
        if(time.pt > 1){ 
          code.know[time.pt] <- sum(code * env[1:explicit_dims]) 
        } 
         
        # Recalculate individual knowledge levels 
        know <- as.vector(d%*%env) 
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        # Who's in the policy making elite? 
        PME <- know > code.know[time.pt] 
        PME[!PME] <- NA 
         
        # Average individual knowledge (at each T) 
        avg.know[time.pt] <- avg(know) 
         
        # Learning BY the code 
        PMEbeliefs <- PME*d[, 1:explicit_dims] 
        if(no.code == FALSE & time.pt%%p.matrix[cond.num, 'tau'] == 0){ 
          which.match.code <- PMEbeliefs == matrix(rep(code,each = n), nrow=n) 
          k <- apply(which.match.code, 2, function(x){ 
            do.not.differ = sum(x, na.rm = T) 
            differ = sum(!x, na.rm = T) 
            output = differ - do.not.differ 
            return(ifelse(output > 0, output, 0)) 
          }) 
          what.code.learns <- sapply(1:length(k), function(x){ 
            if(k[x] > 0){ 
              position = sum(PMEbeliefs[which(PMEbeliefs[, x] != code[x]), x]) 
              return(ifelse(position > 0, 1, ifelse(position < 0, -1, 0))) 
            } else { 
              return(NA) 
            } 
          }) 
          p.by.code <- sapply(1:length(code), get.p) 
          by.code <- runif(explicit_dims, 0, 1) 
          by.code <- code != what.code.learns & by.code < p.by.code 
          code[by.code] <- what.code.learns[by.code] 
        } 
         
        # Individual experimentation 
        exp <- matrix(runif(n*m, 0, 1), nrow = n, ncol = m) < p.matrix[cond.num, 'epsilon'] 
        if (sum(exp) > 0) { 
          toexp  <- d[exp] 
          d[exp] <- ifelse(toexp == 1, -1, 
                           ifelse(toexp == -1, 1, sample(poss.beliefs, 1))) 
        } 
         
        # Interpersonal learning 
        peer.learn <- matrix(runif(n*m, 0, 1), nrow = n, ncol = m) < p.matrix[cond.num, 'p3'] 
        selected.to.learn <- rowSums(peer.learn) > 0 
        net.know <- t(network * know) > know 
        net.know[net.know == FALSE] <- NA 
        has.sups <- rowSums(net.know, na.rm = T) > 0 
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        will.learn.vec <- which(selected.to.learn & has.sups) 
        peer.learn.list <- lapply(will.learn.vec, function(x){which(peer.learn[x, ])}) 
        peer.learn[-will.learn.vec, ] <- FALSE 
        replacements <- unlist(lapply(will.learn.vec, what.to.learn)) 
        if (!is.null(replacements)){ 
          peer.learn <- t(peer.learn) 
          d <- t(d) 
          d[peer.learn] <- replacements 
          peer.learn <- t(peer.learn) 
          d <- t(d) 
        } 
         
        # Learning FROM the code 
        if(no.code == FALSE & time.pt%%p.matrix[cond.num, 'tau'] == 0){ 
          fc1 <- t(sapply(1:nrow(d),  
                          function(x){return(d[x, 1:explicit_dims] != code & code != 0)})) 
          fc2 <- matrix(as.numeric(NA), nrow = n, ncol = explicit_dims) 
          fc2[fc1] <- runif(sum(fc1), 0, 1) 
          fc2 <- fc2 < p.matrix[cond.num, 'p1'] 
          fc2[is.na(fc2)] <- FALSE 
          if (any(fc2)){ 
            d[fc2] <- unlist(lapply(1:explicit_dims, function(x){rep(code[x], sum(fc2[, x]))}))} 
        } 
         
        # Turnover 
        turn <- c(runif(n, 0, 1)) < p.matrix[cond.num, 'p.turn'] 
        d[turn,] <- sample(c(-1, 0, 1), m*sum(turn), replace = TRUE) 
         
        # Environmental turbulence 
        env.change <- c(runif(m, 0, 1)) < p.matrix[cond.num, 'p.env'] 
        env[env.change] <- unlist(sapply(env[env.change], turbulence)) 
         
      }  # End Time Loop --------------------------------------------------------------------------------------- 
       
      avg.know.mat[trial.num, ] <- avg.know 
      avg.know.trial[trial.num] <- mean(avg.know) / m 
       
    }  # End Trial Loop ----------------------------------------------------------------------------------------- 
     
    avg.know.by.time <- colMeans(avg.know.mat) / m 
    p.matrix[cond.num, c('aggregate.know', paste0("N", 1:N))] <-  
      c(avg(avg.know.by.time), avg.know.trial) 
     
  }  # End Condition Loop ------------------------------------------------------------------------------------ 
  return(p.matrix) 
}  
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APPENDIX C 

 

Replication Discussion 
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 Not only does this model mimic certain aspects of March (1991) and Fang et al. (2010), 

but it also compares some key findings. For this reason, it is important to demonstrate that the 

current incarnation of the model has faithfully replicated the important aspects of prior models. 

What follows is a description of those replication efforts. 

 The ways in which this model draws from March (1991) have already been discussed. 

However, one of March’s findings is particularly relevant to this model. He found that turnover 

allowed organizational knowledge (operationalized as the concordance of the organizational 

code with reality) to maintain a relatively high equilibrium in the face of environmental 

turbulence. Without that turnover, organizational knowledge would rise quickly but then fall 

dramatically as the organization failed to adapt to changing circumstances. Using the same 

parameter values in the current model yielded a satisfactory replication as shown in Figure 7. 

 Hypothesis 1 in this study seeks a conceptual replication of a finding from Fang et al. 

(2010). Namely that isolated subgroups fare poorly, loosely coupled subgroups perform best, and 

further inter-group connectivity beyond a low level degrades knowledge very slightly. Because 

the network structure in this model is not exactly the same as in the original, the standards for 

replication are less stringent. Results from this model (Figure 8) show roughly the same pattern 

as Fang et al.: a steep ascent from isolated subgroups to the peak and then a gradual and subtle 

descent as groups become more interconnected. 
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