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ABSTRACT 

MODELING AND MEASUREMENT OF SURFACE PRESSURE FLUCTUATION IN AN 

IMPINGING JET 

 

By 

Nasem A. Aukla 

Impinging jets are used in many engineering and industrial applications, including heating, 

cooling, drying, food processing, and surface cleaning, among others. The present thesis work is 

focused on modeling and studying the unsteady wall-pressure signature produced by a jet 

impinging normally on a flat surface. This study is divided into two main parts: 

A theoretical part, to establish the beginning step towards building a physics-based, 

mathematical model to calculate the surface-pressure fluctuation on the impingement surface. The 

mathematical model is used to explore the effects of changing the flow and jet-vortices parameters, 

one at a time, on the characteristics of the surface-pressure fluctuation. Three main parameters are 

examined: vortex-passage frequency, jet Reynolds number, and vortex circulation.  

An experimental part, to measure the unsteady surface pressure fluctuation on the 

impingement surface for an axisymmetric jet at normal incidence.  Measurements are done, for 

Reynold numbers 𝑅𝑒𝐷 = 8272 and 24818 (based on the jet diameter (𝐷) and jet exit velocity), 

using a microphone array extending radially from the stagnation point (𝑟/𝐷 = 0) into the wall-jet 

zone (𝑟/𝐷 = 2.33).  

Comparison of the model and the experimental results shows that, despite of the model 

simplicity, certain qualitative features of the unsteady wall pressure are similar within the 

stagnation zone. This outcome establishes confidence to continue further development of the 

model in the future.  
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Δ𝑈   Velocity difference across the shear layer 

Ψ   Stream function 

ψ∗   Dimensionless stream function 
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CHAPTER 1: Introduction  

              

 

Experimental, computational and analytical research has been used to study impinging jets 

for the past decades because of their significance to many applications, including cooling, heating, 

drying, air conditioning, and ventilation. The present research is concerned with modeling, and 

understanding the physics of wall-pressure generation in impinging jets. This knowledge is 

significant for applications involving flow-induced noise and vibration. To motivate the current 

research, a summary of relevant previous literature is necessary. However, some understanding of 

the basic characteristics and flow features of free (non-impinging) jets is essential. Therefore, the 

present discussion starts with an overview of the latter. This is followed by a brief summary of the 

relevant work on impinging jets and their wall-pressure characteristics. Finally, the motivation and 

the specific objectives of this thesis are outlined at the end of the chapter. 

1.1 Free Jets 

1.1.1 Background 

Jets can be classified into different categories according to: the nozzle exit shape (e.g. 

circular, square, triangular, lobed, etc.), the nozzle contour (e.g. smooth versus sharp-edged), the 

pipe length from which the jet emerges (long or short; if any), and the initial discharge condition 

(free, wall and surface jet). The most basic type of jets is the axisymmetric free jet, driven by 

pressure to emerge at the end of a contoured nozzle into a quiescent ambient. For a free jet, after 

exiting the nozzle, a free shear layer with uniform pressure surrounds the jet. As the flow develops 

farther downstream, mixing of the jet fluid with the ambient causes an increase in the mass flow 

rate in the jet stream (i.e. via flow entrainment), and, in conjunction with viscous and turbulence 

effects, leads to jet spreading and decreasing of the flow speed to conserve momentum.  
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Depending on the characteristics of the jet’s centerline velocity decay, the jet development 

may be divided into three zones as depicted in Figure 1.1. see Shih-I Pai [1] 

• Zone 1: in this zone, there is a potential core in the central part of the jet and a mixing  

zone is sandwiched between the potential core and the surrounding medium. The 

potential core has a centerline velocity equal to the jet exit velocity. This zone extends 

up to 4 – 6 jet diameters; 

• Zone 2: represents the transition where the velocity profile gradually changes until self-

similarity is established. This zone extends from the end of zone 1 to 20 jet diameters;  

• Zone 3: represents the self-similarity zone where the transverse mean velocity profile 

is similar at different axial distances when normalized using the local centerline 

velocity and jet width.  

 

Figure 1.1 Schematic of a free-jet flow, depicting various flow development zones  
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1.1.2 Literature Review 

The primary and fundamental interest in studying free jets has been focused on the 

instability of the shear layer downstream from the nozzle exit, and the turbulence development 

farther downstream. Grant [2] theoretically studied the shear layer instability in axisymmetric jets. 

This study shows the formation of vortex structures from an instability wave originating at the 

beginning of the jet’s laminar axisymmetric shear layer. The initially weak instability wave 

amplifies with downstream distance, ultimately leading to creation of the eddies.  

Popiel and Trass [3] visualized free and impinging round jets using a smoke wire. For the 

free jet, they showed the vortices to form in the potential-core region within the free shear layer. 

The downstream merging of these vortices causes the creation of larger eddies. These vortices 

increase mixing and enhance the entrainment rate. Also, the axial symmetry of the near field of 

the nozzle exit is found to be created by the generation of the toroidal vortices, because they cause 

a significant upstream interaction. Zaman and Hussain [4] studied the natural large-scale structures 

in the axisymmetric mixing layer surrounding the jet. They found the flow from the jet exit to the 

end of the potential core to be controlled by two characteristic length scales: the jet diameter and 

the initial shear layer thickness. Near the jet exit, the momentum thickness controls the flow 

structure. Initially, the momentum thickness is thin, and as the shear-layer rolls-up into vortical 

structures, the momentum thickness grows. The vortices resulting from the roll-up start to interact 

and create larger eddies. After a distance x, which is comparable to the jet diameter, the diameter 

length scale controls the flow structure. As the jet Reynolds number (𝑅𝑒𝐷 = 𝑈𝑗𝐷/𝜈; where 𝑈𝑗 is 

the jet exit velocity, 𝐷 the jet diameter, and 𝜈 the fluid kinematic viscosity) increases, the ratio of 

the shear layer thickness at the nozzle lip to the diameter of the jet decreases, which leads to a 

smaller initial instability wavelength, relative to the jet diameter, and larger number of vortex 
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pairings before the vortices size becomes comparable to the jet diameter, at the end of the potential 

core.   

1.2 Impinging Jet  

1.2.1 Background 

In an impinging jet, the flow is incident on a, typically, flat wall at a distance H from the 

jet exit. Though the angle of incidence of the jet relative to the wall-normal direction may change, 

the present work is only concerned with normal incidence; i.e. where the jet symmetry axis is 

perpendicular to the wall. The flow field for an impinging jet may be divided into three zones (see 

Figure 1.2):  

• Free- jet zone: which represents the domain stretching from the nozzle exit to the point where 

the existence of the plate does not influence the flow. Within this zone, the jet flow and 

associated flow features are as discussed in the previous section;  

• Stagnation zone: which represents the domain where the mean flow direction changes from 

being normal to being parallel to the plate. This zone, which extends up to 𝑟 𝐷⁄ = 1 in the 

radial direction, has the maximum mean pressure of the flow (at the stagnation point on the 

wall); 

• Wall-jet zone: which corresponds to the domain 𝑟 𝐷⁄ > 1. Unsteady separation of the 

boundary layer is known to occur in this region due to the interaction of the jet vortices with 

the wall; See Didden and Ho [5] and Landreth and Adrian [6]. 
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 Figure 1.2 Schematic of the impinging jet at normal incidence (taken from Al-Aweni [7]) 

1.2.2 Literature Review 

A brief review is provided here of the current knowledge on wall-pressure fluctuation in 

impinging jets. Similar to the current work, focus will be on H/D values extending to the end of 

the potential core (𝐻/𝐷 ≈ 4 ). To characterize the strength of the pressure fluctuation, typically 

the radial distribution of the root mean square of the fluctuation (𝑝𝑟𝑚𝑠) is examined. The recent 

work of Krishna [8] provides the most comprehensive 𝑝𝑟𝑚𝑠 data, covering the Reynolds number 

range 𝑅𝑒𝐷 = 20,000 − 50,000, and 𝐻/𝐷 = 1 − 8. Krishna showed that for 𝐻/𝐷 ≤ 3, the largest 

pressure fluctuation are found in the wall-jet zone in the range 𝑟/𝐷 = 1.3 − 1.5 for all Reynolds 

numbers. A second peak within the stagnation zone emerged, near 𝑟/𝐷 ≈ 0.5, when 𝑅𝑒𝐷 reached 

25,000 and the impingement wall was sufficiently far from the jet (𝐻/𝐷 ≥ 4). When present, this 

secondary peak magnitude was higher than that in the wall-jet zone. 
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Consistent with the work of Krishna [8], several earlier studies have identified the wall-jet-

zone peak of the pressure fluctuation. These include the work of Hall and Ewing [9] and [10], who 

found the peak at 𝑟/𝐷 = 1.5 for 𝑅𝑒𝐷 = 23300 𝑎𝑛𝑑 50000, and 𝐻/𝐷 = 2 𝑎𝑛𝑑 4, El-Anwar et al. 

[11], at 𝑟/𝐷 = 1.7 for 𝑅𝑒𝐷 = 16500 and 𝐻/𝐷 = 4, and Al-Aweni [7],  𝑟/𝐷 ≈ 1.33 for 𝑅𝑒𝐷 =

7334 and 𝐻/𝐷 ≤ 4. The variation in the exact location of the peak between the different studies 

might be due to Reynolds number, the jet initial condition, or the radial spacing between the 

measurements. The RMS level of the pressure fluctuation associated with this peak is quite large, 

reaching around 20% of the jet’s dynamic pressure (based on jet exit velocity), but this level, along 

with the overall level of pressure fluctuation in the wall-jet zone, decrease with increasing both 

𝑅𝑒𝐷 and 𝐻/𝐷. This Reynolds number trend is seen in the data of Krishna [8], while the 𝐻/𝐷 

dependence is reported in all aforementioned studies. 

The  𝑝𝑟𝑚𝑠  peak in the stagnation zone is most clearly seen in the data of Krishna [8], which 

extend into a high-enough 𝑅𝑒𝐷 range for the peak to be observed. The presence of this peak is also 

implied in the data of Hall and Ewing [9,10] at 𝑅𝑒𝐷 = 23000, although there were not sufficient 

measurement points to ascertain the specific location of the peak inside the stagnation zone. 

Furthermore, Hall and Ewing employed a jet that exits at the end of a fully-developed turbulent 

pipe flow, which exhibits significant pressure fluctuations at the stagnation point (relative to jets 

exiting from a contoured nozzle) due to the absence of a potential core. 

Within the stagnation zone, 𝑝𝑟𝑚𝑠 increases with increasing 𝐻/𝐷; opposite to the trend in 

the wall-jet region. This behavior is generally associated in the literature with the growing 

influence of the vortical structures on the stagnation zone as the vortices grow to a size comparable 

to the jet diameter through successive pairings (e.g. see Al-Aweni [7]). On the other hand, the 
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Reynolds number influence is found to decrease the stagnation-zone pressure fluctuation (Krishna 

[8]). No specific explanation for this trend is known at this point. 

Frequency spectra analysis of the wall-pressure time series measured in the studies 

referenced above show that the frequencies of the spectral peaks are consistent with the passage 

frequency of the jet vortices. In addition to depending on the initial conditions and Reynolds 

number of the jet, the latter frequency is predominantly affected by the distance between the jet 

exit and the impingement plate. As the distance increases from H/D=2 to the end of the potential 

core, the number of vortex ring parings ahead of impingement increases, decreasing the passage 

frequency of the vortices. Al-Aweni [7] used simultaneous time-resolved flow visualization and 

wall-pressure measurement, employing a microphone array, for a jet Reynolds number of 7970, 

and H/D=2,3, and 4. He showed that for H/D=2, the first vortex merging occurred within the wall-

jet zone, as the vortices traveled parallel to the impingement wall. For 𝐻/𝐷 = 3, the first pairing 

was completed before reaching the impingement plate, while for H/D=4, the second merging took 

place ahead of the plate. When pairing happened ahead of reaching the wall, each merging resulted 

in halving the fundamental frequency in the pressure spectra. When merging happened while the 

vortices traveled past, and interacted with the wall (𝐻/𝐷 = 2), the spectrum contained the original 

vortex formation frequency (or Strouhal number 𝑆𝑡𝐷 ≈ 1.3) and its sub-harmonic (𝑆𝑡𝐷 ≈ 0.64). 

The lowest frequency observed, at 𝐻/𝐷 = 4 after two pairings, corresponded to 𝑆𝑡𝐷 ≈ 0.32. The 

drop of the dominant pressure-fluctuation Strouhal number with 𝐻/𝐷 and the overall order of 

magnitude of the Strouhal number values reported in Al-Aweni [7] is consistent with the findings 

of Hall and Ewing [9] and [10], El-Anwar et al. [11] and Krishna [8]. 

The earliest explanation for the large pressure fluctuation associated with the 𝑝𝑟𝑚𝑠 peak in 

the wall-jet zone came from the work of Didden and Ho [5]. These authors studied a normally 
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impinging axisymmetric forced air jet at Reynolds number of 19000, and H/D=4. Using phase 

averaged pressure and hot-wire measurements, they showed that the high level of pressure 

fluctuation in the wall-jet region is associated with the unsteady boundary layer separation, and 

subsequent formation of an opposite-signed secondary vortex, when a jet (primary) vortex 

interacted with the wall. Such an unsteady boundary-layer separation process, and associated 

phenomena, was first noted by Harvey and Perry [12] in relation to trailing wing-tip vortices 

interacting with the ground. In impinging jets, formation of secondary vortices was also reported 

in the work of Landreth and Adrian [6], for Reynolds number of 6500 using particle image 

velocimetry, and the flow visualization of Popiel and Trass [3]. Didden and Ho [5] showed that 

the boundary layer separation was associated with the adverse pressure gradient imposed by the 

jet vortices on the boundary layer. 

Naguib and Koochesfahani [13] used whole-field velocity data of an isolated axi-

symmetric vortex ring interacting with a flat wall to understand the fundamental surface-pressure 

generation mechanism associated with vortex-wall interaction. They employed Green’s function 

solution of Poisson’s equation for pressure (see section 1.2.3) to calculate the wall-pressure 

generating sources and wall-pressure signature from the velocity-field data. In addition to 

connecting negative wall-pressure peaks with the primary and secondary vortices, they were able 

to identify an important source of positive pressure fluctuation, not known before then. 

Specifically, they showed that the high strain zone associated with the separation of the boundary 

layer (induced by the main vortex ring) was an important source of positive pressure fluctuation. 

The results, however, did not show a strong negative pressure peak, as was found in the work of 

Didden and Ho [10] beneath the separated zone. This may have been due to the limited spatial 

resolution of the experimental data within the separating boundary layer.  
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Al-Aweni [7] conducted a comprehensive study of the wall-pressure fluctuation and 

associated generation mechanisms in impinging jets. The work utilized both experimental data 

(from simultaneous time-resolved flow visualization and wall-pressure sensor-array data) and axi-

symmetric laminar CFD calculation of isolated vortices interacting with a flat wall. An interesting 

and new finding from this study is that pressure fluctuation where the wall-jet 𝑝𝑟𝑚𝑠 peak is 

observed are especially strong when vortex-wall interaction happens while two vortices are in the 

process of pairing. He showed that during such pairing, which happened at 𝐻/𝐷 = 2, the resulting 

secondary vortex is much stronger than when a single vortex interacts with the wall. In particular, 

he saw that, occasionally, vortices may pass without pairing, in which case, the pressure spikes 

were not as strong. The switch between pairing/no-pairing seemed to happen randomly in time. 

The near-wall pairing produced strong negative pressure spikes that reached a magnitude 

comparable with the dynamic pressure, based on the jet exit velocity. Al-Aweni also found that 

the positive-pressure source identified earlier by Naguib and Koochesfahani [13], which is 

associated with the high strain rate within the separating boundary layer, has a significant influence 

on the shape and evolution of the strong negative spikes.  

1.2.3 Governing Equations 

To get better understanding of the physical mechanisms leading to wall-pressure 

fluctuation, it is insightful to connect the pressure fluctuation generation to the vortical structures. 

This may be done using Poisson’s equation for the pressure (𝑝) in incompressible turbulent flow:  

 −
1

𝜌

𝜕2𝑝

𝜕𝑥𝑖𝜕𝑥𝑖
=

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
 (1.1) 
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Where, 
𝜕𝑢𝑖

𝜕𝑥𝑗
  is the velocity gradient tensor and Einstein’s tensor notation is used. The forcing term 

in equation (1.1) (right-hand side) can be divided into two parts: symmetric (in terms of the strain 

rate 𝑒𝑖𝑗), and antisymmetric (in terms of the rotation tensor 𝛾𝑖𝑗); see Bradshaw and Koh [14]: 

 
−

1

𝜌

𝜕2𝑝

𝜕𝑥𝑖𝜕𝑥𝑖
= 𝑒𝑖𝑗𝑒𝑖𝑗 − 𝛾𝑖𝑗𝛾𝑖𝑗 

(1.2) 

Where, 

 

𝑒𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) (1.3) 

 𝛾𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) (1.4) 

 

It is known that the rotation tensor is connected to the vorticity vector through:  

 𝛾𝑖𝑗𝛾𝑖𝑗 =
1

2
(𝜔𝑖𝜔𝑖) (1.5) 

Thus, equation (1.2) can be written as 

 −
1

𝜌

𝜕2𝑝

𝜕𝑥𝑖𝜕𝑥𝑖
= 𝑒𝑖𝑗𝑒𝑗𝑖 −

1

2
(𝜔𝑖𝜔𝑖) (1.6) 

From equation (1.6), the pressure source strength (q) is given by:  

 𝑞 = 𝑒𝑖𝑗𝑒𝑗𝑖 −
1

2
(𝜔𝑖𝜔𝑖) (1.7) 

Equation (1.6) may be written in vector form as follows, 

 
1

𝜌
𝛻2𝑝(𝑥, 𝑦, 𝑧, 𝑡) = −𝑞(𝑥, 𝑦, 𝑧, 𝑡) (1.8) 
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Green’s function can be used to solve equation (1.8) (e.g. Blake [15]) to get the pressure on a solid 

wall beneath an unsteady flow, where the wall-normal coordinate 𝑦 = 0, for pressure source 

distribution 𝑞(𝑥′, 𝑦′, 𝑧′) within the flow. More specifically,  

𝑝(𝑥, 𝑦 = 0, 𝑧) =
𝜌

2𝜋
∫ [

𝑒𝑖𝑗𝑒𝑗𝑖(𝑥́, 𝑦́, 𝑧́) −
1
2 (𝜔𝑖𝜔𝑖)(𝑥́, 𝑦́, 𝑧́)

√(𝑥 − 𝑥́)2 + (𝑦́)2 + (𝑧 − 𝑧́)2
] 𝑑𝑉́

−
1

2𝜋
∫ [

𝜇 [
𝜕2𝑣
𝜕𝑦2 (𝑥′, 𝑧′)]

√(𝑥 − 𝑥́)2 + (𝑧 − 𝑧́)2
] 𝑑𝑆́ 

(1.9) 

                                                

The volume integral (first term) in equation (1.9) represents the contribution to the wall 

pressure by the flow structure within the body of the flow, while the surface integral is computed 

over the wall beneath the flow. For a flat wall, the second term is negligible (from boundary layer 

approximation perspective). The volume integrand shows that there are two wall-pressure 

generation mechanisms: one related to strain rate, and the other to vorticity. The former results in 

the generation of positive, and the latter in negative wall pressure. Thus, flow features where 

rotation dominates strain effects (e.g. in the core of vortices), generate negative pressure, while 

those associated with dominant strain (e.g. the zone in between interacting vortices) results in 

positive pressure generation; e.g. see Naguib and Koochesfahani [13]. Another important feature 

of the volume integrand in equation (1.9) is that the source term effect is inversely proportional to 

the distance between the point of wall-pressure observation and the pressure source location (as 

seen from the numerator of the integrand). Thus, as this distance increases, the observed wall 

pressure decreases. Therefore, the pressure observed at a point on the wall is a global quantity, 

related to all features within the flow with the net pressure being the result of the integrated effect 

of the strength and proximity of the different sources. 
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1.3 Motivation 

The motivation for this research is to understand the physics of, and to predict the unsteady 

surface pressure generation in impinging jets due to their significance in flow-induced noise and 

vibration. As described earlier in this chapter, the basic connection between the dominant flow 

features in impinging jets and wall-pressure generation is fairly well understood. However, there 

is practically no effort that capitalizes on this understanding to develop physics-based (also known 

as structure-based) models to compute the wall pressure in impinging jets. Such models, if 

sufficiently accurate, could be valuable as engineering design tools for flow-induced noise and 

vibration applications, since the models are much more efficient to run than direct numerical 

simulations, and they are more robust than non-physics based turbulence models.  

Additionally, physics-based models could be used to understand the underlying flow 

physics from a point of view that is not possible with experiments or numerical simulations. 

Specifically, in real flows, or their simulations, it is difficult to vary certain flow or structure 

parameters one at a time because of the interdependence of these parameters. With a mathematical 

model, such variations are possible, which could lead to a clearer understanding of the effect of 

individual parameters on quantities of interest; the wall-pressure fluctuation in the present work. 

An example of such model-based insights may be found in the work of Monnier et al. [16], where 

a Gaussian-core vortex array was used to model the wake of a harmonically pitching airfoil. The 

model helped to understand the connection between the parameters describing the wake-vortex 

configuration (vortex streamwise and cross-stream spacing, vortex circulation, and core radius) 

and the mean thrust acting on the airfoil. 
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1.4 Objectives 

The objectives of this study may be summarized as follows:  

1- Developing a simple mathematical model, which represents the first step towards a high-

fidelity model, for predicting wall-pressure fluctuations in normally impinging jet flows. 

The model will be used to explore the effect of vortex passing frequency, vortex 

circulation, and Reynold number on the unsteady wall-pressure characteristics, while 

varying one parameter at a time. In addition, the model results, which are only applicable 

to the stagnation zone due to inherent simplicity/limitations of the model, will be compared 

to experimental data obtained in the present study. 

2- To conduct measurements of the unsteady surface pressure in a normally impinging jet 

using a microphone array. The measurements are done for two Reynolds numbers:  𝑅𝑒𝐷 = 

8272 and 24818 for H/D values of 2, 3 and 4 (reaching to the end of the potential core). 

The measurements will be used to examine the influence of the Reynolds number on the 

characteristics of the wall pressure flucution (primarily the radial distribution of the root 

mean square pressure fluctuation, the probability density function of the pressure 

fluctuation and the power spectral density). The lower Reynolds number is selected to 

match this of the earlier study by Al-Aweni [7] in the same jet facility. Al-Aweni utilized 

time-resolved flow visualization and microphone-array measurements to connect the flow 

features to the wall-pressure characteristics. Thus, combining Al-Aweni’s findings with 

those from the present work, it is possible to infer the effect of Reynolds number on the 

sources of wall-pressure generation.  

The remainder of the thesis is organized to show the mathematical model details in Chapter 2, the 

mathematical model results in Chapter 3, the experimental apparatus and procedure in Chapter 4, 
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the experiment results and their comparison with the model results in Chapter 5, and conclusions 

and recommendations for future work in Chapter 6.   
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CHAPTER 2: Mathematical Model 

              
 

2.1. Modeling Background 

Prior to describing the features of the physics-based model developed here, a recap of the 

flow details that should be captured by a good model is described. Near the jet exit, vortices are 

generated due to the instability of the shear layer and its subsequent roll-up into axisymmetric 

vortex rings. As the vortex rings travel downstream, the vortex size and strength increases by 

merging. Several such mergings may occur, with the number of successive pairings depending on 

Reynolds number and distance between the nozzle and the impingement plate. When the Reynolds 

number decreases, the coherence of the flow structure increases, and the number of successful 

pairings increases. Nearing impingement, within the stagnation zone, the flow changes its direction 

to be parallel to the plate. Further downstream as the flow advects through the wall-jet zone, 

boundary layer separation leads to secondary vortex formation and maximum wall-pressure 

fluctuation. Based on the literature review of Chapter 1, surface pressure fluctuation in impinging 

jets is caused by both inviscid phenomena (direct influence of vortices in stagnation and wall-jet 

zones) and viscous phenomena (vortex-wall and vortex-vortex-wall interaction in the wall-jet 

zone).  

The above description highlights that a complex model is needed to capture the impinging 

jet flow features and associated wall-pressure fluctuation. More specifically, elements of a high-

fidelity model should consist of  

• A viscous vortex ring model; 

• Ability to model vortex pairing; 

• Advection velocity field consistent with the actual mean jet velocity field; 
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• An impingement-plate boundary layer model; 

• A vortex-boundary layer interaction model; 

• Poisson’s equation solution to compute the wall-pressure from the velocity field. 

However, developing such high-fidelity model is an ambitious goal that requires several stages of 

development. This work focuses on the starting step by considering only the simplest possible 

model. Table (2.1) shows a comparison of the features of a high-fidelity and the present model. 

Feature High-Fidelity Model Current Model 

Vortex ring model Viscous-core vortex model Potential vortex model 

Vortex-vortex interaction • Mutual induction 

• Pairing model 

Not modeled 

Advection field Based on impinging-jet mean 

flow; e.g., from CFD or 

experiment 

Potential stagnation-point 

flow 

Impingement-plate boundary 

layer 

Modeled Not modeled 

Vortex-boundary layer 

interaction 

Modeled Not modeled 

Wall-pressure calculation Poisson’s equation solution  Unsteady Bernoulli’s 

equation 

Table 2.1 Comparison of high-fidelity and present model features 

Table (2.1) demonstrates that the present model is very simple and ignores all viscous and vortex-

vortex interactions effects. However, evidence suggests that within the stagnation-zone wall-
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pressure fluctuations are primarily generated via potential flow mechanisms for 𝐻 𝐷⁄ < ~4. 

Therefore, the present model may be successful in at least reproducing the same qualitative 

features of stagnation-zone wall-pressure fluctuations. One of the main goals of this work is to 

assess the ability of the present simple model to do so. 

2.2 Model Details 

2.2.1. Vortex Rings 

The full inviscid mathematical model for the impingement-jet problem is depicted 

schematically in figure (2.1). A cylindrical coordinate (𝑟, 𝜃, 𝑧) system is used to describe the 

problem mathematically. However, because of symmetry, the model equations have no 

dependence on (𝜃). Each of the jet vortices is modeled employing a potential vortex ring that has 

an axis of symmetry perpendicular to the impingement wall. Each ring has circulation (𝛤),  radius 

(𝑅), zero core radius (𝑅𝑐), and vertical core coordinate (Z). In the absence of the wall, the ring is 

in free space and translates downwards (for the sense of circulation depicted in figure 2.1) due to 

self-induction effects. The stream function for the ring is given by Helmholtz equation [17]  
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Figure 2.1 Schematic drawing of the full mathematical model of the impinging jet 

 

ψ(𝑟, 𝑧, 𝑡) = Γ [
(𝑅𝑟)1/2

2𝜋𝑘
{(2 − 𝑘2)𝐾(𝑘) − 2𝐸(𝑘)}] (2.1) 

where  

 
𝑘2 =

4𝑅𝑟

(𝑧 − 𝑍)2 + (𝑟 + 𝑅)2
 (2.2) 

𝐾(𝑘) represents complete elliptic integral of the first kind, and 𝐸(𝑘) represents complete elliptic 

integral of the second kind: 
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𝐾(𝑘) = ∫ √
1

(1 − 𝑘2𝑠𝑖𝑛 2 𝑥)

𝜋/2

0

 𝑑𝑥 

(2.3) 

 
𝐸(𝑘) = ∫ √(1 − 𝑘2𝑠𝑖𝑛 2 𝑥)

𝜋/2

0

 𝑑𝑥 
(2.4) 

To make equation 2.1 dimensionless, the initial vortex-ring radius 𝑅𝑜 is used as a length scale. 

Since in jet flow, the jet vortices have a radius approximately equal to the jet opening radius, this 

length scale is equivalent to half the jet diameter, D/2. The velocity scale is taken as the velocity 

of the advection field (potential stagnation flow, at the top of the computational domain, 𝑧 = 𝑍𝑜 =

5𝑅𝑜), which is given by 10𝑎𝑅𝑜 (see section 2.2.3). This velocity scale corresponds to the mean 

“exit jet velocity”. The dimensionless form of the equation (2.1) is:  

ψ∗(𝑟, 𝑧, 𝑡) = [
(𝑅∗𝑟∗)1/2

2𝜋𝑘
{(2 − 𝑘2)𝐾(𝑘̅) − 2𝐸(𝑘)}] (2.5) 

The above equations are for zero-core radius potential vortex ring. The infinitesimal core leads to 

an infinite induced velocity at the core, which makes it impossible to track the vortex movement. 

To overcome this problem, a finite, but small, vortex core radius is assumed (𝑅𝑐 ≪ 𝑅). Following 

the work of Walker et al. [18], the velocity distribution inside the core is assumed to be uniform. 

This leads to the following self-induced velocity of the ring: 

𝑢𝑧𝑠 =  −
Γ

4𝜋𝑅
[𝑙𝑜𝑔 (

8𝑅

𝑅𝑐
) −

1

4
] (2.6) 

2.2.2. Wall (Vortex Rings Images) 

The equations discussed in section 2.2.1 are valid for a vortex in free space. These 

equations need to be modified for the presence of the impingement wall; i.e., by enforcing a zero 

wall-normal velocity, or no-penetration, condition at the wall. This is done by adding to the model 

an image vortex, relative to the wall (𝑧 = 0) with equal but opposite circulation (−𝛤) to the real 
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vortex (see figure 2.1). this velocity induced by the image on the real vortex ring has radial and 

wall-normal components (𝑢𝑟𝑖 𝑎𝑛𝑑 𝑢𝑧𝑖). Thus, as the real vortex ring approaches the wall, the 

image vortex ring will affect the real ring in two ways: by stretching the ring radially outwards and 

reducing the approach velocity of the ring toward the wall. The radial stretching of the ring causes 

the ring radius to increase. According to Helmholtz, for inviscid incompressible flow, the vortex 

lines move with the fluid particles, and the vortex ring must have constant volume, i.e. 

 𝑅(𝑡) ∗ 𝑅𝑐
2(𝑡) = 𝐶 (2.7) 

Where 𝐶 is constant. Thus, in the presence of the wall, 𝑅 increases and 𝑅𝑐 decreases with time. 

Both of these quantities affect the self-induced velocity (see equation 2.6). The resulting self-

induced velocity components (𝑢𝑟𝑠 𝑎𝑛𝑑 𝑢𝑧𝑠), using equations (2.6 and 2.7) respectively are:  

 𝑢𝑟𝑠 = 0 (2.8) 

 
𝑢𝑧𝑠 =  −

Γ

8𝜋𝑅
[𝑙𝑜𝑔 (

64𝑅3

𝐶
) −

1

2
] 

(2.9) 
 

𝑢𝑧𝑠
∗ =  −

1

8𝜋𝑅∗
[𝑙𝑜𝑔 (

64(𝑅∗)3

𝐶∗
) −

1

4
] 

 

The stream function for the image vortex is given by  

ψ(𝑟, 𝑧, 𝑡) = −Γ [[
(𝑅𝑟)1/2

2𝜋𝑘̅
{(2 − 𝑘̅2)𝐾(𝑘̅) − 2𝐸(𝑘̅)}]] 

(2.10) 

ψ∗(𝑟, 𝑧, 𝑡) = − [
(𝑅∗𝑟∗)1/2

2𝜋𝑘̅
{(2 − 𝑘̅2)𝐾(𝑘̅) − 2𝐸(𝑘̅)}] 

where 
𝑘̅2 =

4𝑅𝑟

(𝑧 + 𝑍)2 + (𝑟 + 𝑅)2
 (2.11) 
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And as before, 𝐾(𝑘̅)  and 𝐸(𝑘̅) represent the complete elliptic integrals of the first and the second 

kind respectively.  

The velocity induced by the image on the real vortex is obtained from the stream function 

due to the image by applying equations (2.12 and 2.13) and setting (𝑟 = 𝑅)  and (𝑧 = 𝑍); i.e., the 

coordinates of the real vortex core. 

 
𝑢𝑟 =  

1

𝑟
 
𝜕Ψ

𝜕𝑧
 

(2.12)  
𝑢𝑟

∗ =  
1

𝑟∗
 (

𝜕Ψ

𝜕𝑧
)

∗

 

 

 
𝑢𝑧 =  −

1

𝑟
 
𝜕Ψ

𝜕𝑟
 

(2.13) 
 

𝑢𝑧
∗ = − 

1

𝑟∗
 (

𝜕Ψ

𝜕𝑟
)

∗

 

 

This leads to the velocity components produced by the image vortex ring on the real vortex (see 

Walker et al. [18]): 

 

𝑢𝑟𝑖 =  
Γ𝑘̅

4𝜋𝑍
[[2 {

𝐸(𝑘̅) − [{1 − 𝑘̅2}{𝐾(𝑘̅)}]

𝑘̅2
}] − 𝐸(𝑘̅)] 

(2.14) 

 

𝑢∗
𝑟𝑖 =  

𝑘̅

4𝜋𝑍∗
[[2 {

𝐸(𝑘̅) − [{1 − 𝑘̅2}{𝐾(𝑘̅)}]

𝑘̅2
}] − 𝐸(𝑘̅)] 

 
𝑢𝑧𝑖 =

Γ𝑘̅3

4𝜋𝑅
[
𝐾(𝑘̅) − 𝐸(𝑘̅)

𝑘̅2
] (2.15) 
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𝑢∗

𝑧𝑖 =
𝑘̅3

4𝜋𝑅∗
[
𝐾(𝑘̅) − 𝐸(𝑘̅)

𝑘̅2
] 

2.2.3. Advection Field (Stagnation Point Potential Flow) 

The next phase of the model involves adding steady flow to represent advection of the 

vortex rings by the jet mean flow. To this end, potential point-stagnation flow is selected. The 

stream function of the flow is given by [19] as 

 𝜓 = 𝑎𝑧𝑟2 

 
(2.16) 

 𝜓 = 𝑎∗𝑧∗𝑟∗2
 

 

 

Applying equations (2.12 and 2.13) to (2.16) leads to (see Naguib et al [20]): 

 𝑢𝑟𝑎 = 𝑎𝑟 

(2.17) 

 𝑢𝑟𝑎
∗ = 𝑎∗𝑟∗ 

 𝑢𝑧𝑎 = −2𝑎𝑧 

(2.18) 

 𝑢𝑧𝑎
∗ = −2𝑎∗𝑧∗ 

where (𝑎) is a constant with dimension [𝑇𝑖𝑚𝑒−1]. 

Equation 2.17 shows that the mean flow radial velocity increases linearly and unboundedly 

with 𝑟. In reality, this kind of variation is expected to hold only near the stagnation point with 

deviation from the model increasing with the radial distance. Therefore, we anticipate that this 

crude, yet very simple, model to be reasonable only within the stagnation zone.  

2.2.4. Vortex Advection and Flow-Field Evolution in Time 

 For a single vortex convecting through the 𝐿𝑟 − 𝑤𝑖𝑑𝑒 × 𝐿𝑧 − ℎ𝑖𝑔ℎ computational domain 

shown in figure 2.1, the velocity field at any time instance consists of three components due to: 

1. the real vortex; 
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2. the image vortex; 

3. the stagnation flow. 

The stream function of the system is the sum of the three corresponding stream functions; 

specifically 

ψ(𝑟, 𝑧, 𝑡) = Γ [[
(𝑅𝑟)1/2

2𝜋𝑘
{(2 − 𝑘2)𝐾(𝑘) − 2𝐸(𝑘)}]

− [
(𝑅𝑟)1/2

2𝜋𝑘̅
{(2 − 𝑘̅2)𝐾(𝑘̅) − 2𝐸(𝑘̅)}]] + 𝑎𝑧𝑟2 

(2.19) 

ψ∗(𝑟, 𝑧, 𝑡) = [
(𝑅∗𝑟∗)1/2

2𝜋𝑘
{(2 − 𝑘2)𝐾(𝑘) − 2𝐸(𝑘)}]

− [
(𝑅∗𝑟∗)1/2

2𝜋𝑘̅
{(2 − 𝑘̅2)𝐾(𝑘̅) − 2𝐸(𝑘̅)}] + 𝑎∗𝑧∗𝑟∗2

 

The velocity components of the resulting flow (𝑢𝑟 𝑎𝑛𝑑 𝑢𝑧) are found using equations (2.12 and 

2.13)  

𝑢𝑟 =
Γ

2𝜋
∑

𝑅𝑖

(𝑟𝑅𝑖)
3

2⁄

𝑁

𝑖=1

[−
{𝑟2 + 𝑅𝑖

2 + (𝑧 − 𝑍𝑖)2} ∗ (𝑧 − 𝑍𝑖) ∗ 𝑀𝑖 ∗ 𝐸(𝑘)𝑖

(𝑟 − 𝑅𝑖)2 + (𝑧 − 𝑍𝑖)2

+ 
{𝑟2 + 𝑅𝑖

2 + (𝑧 + 𝑍𝑖)2} ∗ (𝑧 + 𝑍𝑖) ∗ 𝑀𝑖
̅̅ ̅ ∗ 𝐸(𝑘̅)

𝑖

(𝑟 − 𝑅𝑖)2 + (𝑧 + 𝑍𝑖)2
+ 𝑀𝑖 ∗ (𝑧 − 𝑍𝑖)

∗ 𝐾(𝑘)𝑖 − 𝑀̅𝑖 ∗ (𝑧 + 𝑍𝑖) ∗ 𝐾(𝑘̅)
𝑖
] +  𝑎𝑟 

(2.20) 
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𝑢∗
𝑟 =

1

2𝜋
∑

𝑅∗

(𝑟∗𝑅𝑖
∗)

3
2⁄

𝑁

𝑖=1

[−
{𝑟∗2 + 𝑅𝑖

∗2
+ (𝑧∗ − 𝑍𝑖

∗)2} ∗ (𝑧∗ − 𝑍𝑖
∗) ∗ 𝑀𝑖 ∗ 𝐸(𝑘)𝑖

(𝑟∗ − 𝑅𝑖
∗)2 + (𝑧∗ − 𝑍𝑖

∗)2

+  
{𝑟∗2 + 𝑅𝑖

∗2
+ (𝑧∗ + 𝑍𝑖

∗)2} ∗ (𝑧∗ + 𝑍𝑖
∗) ∗ 𝑀𝑖

̅̅ ̅ ∗ 𝐸(𝑘̅)
𝑖

(𝑟 − 𝑅𝑖)2 + (𝑧 + 𝑍𝑖)2
+ 𝑀𝑖

∗ (𝑧∗ − 𝑍𝑖
∗) ∗ 𝐾(𝑘)𝑖 − 𝑀𝑖

̅̅ ̅ ∗ (𝑧∗ + 𝑍𝑖
∗) ∗ 𝐾(𝑘̅)

𝑖
] +  𝑎∗𝑟∗ 

𝑢𝑧 =  
Γ

2𝜋
∑

1

√𝑟𝑅𝑖

𝑁

𝑖=1

[
𝑀𝑖 ∗ {𝑟2 − (𝑅𝑖 + 𝑧 − 𝑍𝑖)(𝑅𝑖 − 𝑧 + 𝑍𝑖)} ∗ 𝐸(𝑘)𝑖

(𝑟 − 𝑅𝑖)2 + (𝑧 − 𝑍𝑖)2
−  𝑀𝑖 ∗ 𝐾(𝑘)𝑖

+
𝑀̅𝑖 ∗ {−(𝑟2 − 𝑅𝑖

2 + 𝑧2 + 2𝑧𝑍𝑖 + 𝑍𝑖
2} ∗ 𝐸(𝑘̅)

(𝑟 − 𝑅𝑖)2 + (𝑧 − 𝑍𝑖)2

+ {(𝑟 − 𝑅𝑖)
2 + (𝑧 − 𝑍𝑖)

2} ∗ 𝐾(𝑘̅)𝑖]  − 2𝑎𝑧 

 

(2.21) 

𝑢∗
𝑧 =

1

2𝜋
 ∑

1

√𝑟∗𝑅𝑖
∗

𝑁

𝑖=1

[
𝑀𝑖 ∗ {𝑟∗2 − (𝑅𝑖

∗ + 𝑧∗ − 𝑍𝑖
∗)(𝑅𝑖

∗ − 𝑧∗ + 𝑍𝑖
∗)} ∗ 𝐸(𝑘)𝑖

(𝑟∗ − 𝑅𝑖
∗)2 + (𝑧∗ − 𝑍𝑖

∗)2
−  𝑀𝑖

∗ 𝐾(𝑘)𝑖 +
𝑀𝑖
̅̅ ̅ ∗ {−(𝑟∗2 − 𝑅𝑖

∗2
+ 𝑧∗2 + 2𝑧∗𝑍𝑖

∗ + 𝑍𝑖
∗2

} ∗ 𝐸(𝑘̅)
𝑖

(𝑟∗ − 𝑅∗)2 + (𝑧∗ − 𝑍∗)2

+  {(𝑟∗ − 𝑅𝑖
∗)2 + (𝑧∗ − 𝑍𝑖

∗)2} ∗ 𝐾(𝑘̅)𝑖]  − 2𝑎∗𝑧∗ 

 

where  

𝑀 = √
𝑟𝑅

(𝑟 + 𝑅)2 + (𝑧 − 𝑍)2
 (2.22) 
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𝑀̅ = √
𝑟𝑅

(𝑟 + 𝑅)2 + (𝑧 + 𝑍)2
 (2.23) 

The summation in (2.20) and (2.21) is over the number of vortices 𝑁 present in the domain 

at any given time instant. At the start of the computation, a vortex ring is placed at the top of the 

domain at 𝑅(0) = 𝑅𝑜 𝑎𝑛𝑑 𝑍(0) = 𝑍𝑜 . as time progresses, the ring core coordinates 𝑅 𝑎𝑛𝑑 𝑍 

change with time according to  

 
𝑑𝑅

𝑑𝑡
= 𝑢𝑟𝑖 + 𝑢𝑟𝑎   (𝑟 = 𝑅, 𝑧 = 𝑍) 

(2.24) 

𝑑𝑅

𝑑𝑡
=  

Γ𝑘̅

4𝜋𝑍
[[2 {

𝐸(𝑘̅) − [{1 − 𝑘̅2}{𝐾(𝑘̅)}]

𝑘̅2
}] − 𝐸(𝑘̅)] + 𝑎𝑅 

𝑑𝑅∗

𝑑𝑡
=  

𝑘̅

4𝜋𝑍∗
[[2 {

𝐸(𝑘̅) − [{1 − 𝑘̅2}{𝐾(𝑘̅)}]

𝑘̅2
}] − 𝐸(𝑘̅)] + 𝑎𝑅∗ 

 

 
𝑑𝑍

𝑑𝑡
= 𝑢𝑧𝑖 + 𝑢𝑧𝑠 + 𝑢𝑧𝑎 (𝑟 = 𝑅, 𝑧 = 𝑍) 

(2.25) 
𝑑𝑍

𝑑𝑡
=

Γ̅𝑘3

4𝜋𝑅
[
𝐾(𝑘̅) − 𝐸(𝑘̅)

𝑘̅2
]  −

1

8𝜋𝑅
[𝑙𝑜𝑔 (

64(𝑅)3

𝐶
) −

1

4
] − 2𝑎𝑍 

𝑑𝑍∗

𝑑𝑡
=

𝑘̅3

4𝜋𝑅∗
[
𝐾(𝑘̅) − 𝐸(𝑘̅)

𝑘̅2
]  −

1

8𝜋𝑅∗
[𝑙𝑜𝑔 (

64(𝑅∗)3

𝐶∗
) −

1

4
] − 2𝑎𝑍∗ 

To model the periodic formation of vortices in a jet, as the leading vortex moves toward 

the impingement plate, subsequent vortices are added at the top of the domain at a selected 

frequency. All vortices approach the wall, gradually changing their dominant travel to be radially 

outwards. The computation is continued until the first vortex passes the end of the domain (i.e., 

𝑅 = 𝐿𝑟). 
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2.2.5. Wall-Pressure Calculation and Evolution in Time 

The unsteady pressure on the impingement plate is found using unsteady Bernoulli’s 

equation. 

 
𝑑𝜙

𝑑𝑡
+

𝑢2

2
+

𝑝

𝜌
+ 𝑔𝑧 =  𝐹(𝑡) (2.26) 

Where, 𝜙 is the velocity potential, 𝑔 is gravity acceleration, and 𝐹(𝑡) is a function of time. 

Evaluating the LHS on the wall and 𝐹(𝑡) at a suitable reference point, and ignoring gravity effect, 

equation (2.26) becomes  

 
𝑑𝜙𝑤

𝑑𝑡
+

𝑢𝑤
2

2
+

𝑝𝑤

𝜌
= (

𝑑𝜙

𝑑𝑡
+

𝑢2

2
+

𝑝

𝜌
)𝑟𝑒𝑓 (2.27) 

Or  

 

𝑝𝑤 − 𝑝𝑟𝑒𝑓

𝜌
=  

𝑑

𝑑𝑡
(𝜙𝑟𝑒𝑓 − 𝜙𝑤) + (

𝑢𝑟𝑒𝑓
2 − 𝑢𝑤

2

2
) 

 

(2.28) 

Equation (2.28) shows that to obtain the wall pressure at a given point at any instant in time 

requires: 

1- Knowledge of the radial velocity component at the wall 𝑢𝑤. This information is readily available 

from the velocity field equations (2.20) and (2.21); 

2-  Selection of a reference point where: the velocity magnitude 𝑢𝑟𝑒𝑓 is known and the pressure 

𝑝𝑟𝑒𝑓is fixed so it can be used as a reference pressure. The first of these conditions is easily satisfied 

using equations (2.20) and (2.21). The second condition is more difficult to satisfy and, as will be 

seen below, meeting this condition sets a lower limit on the radial computational domain size 𝐿𝑟 

and an upper limit on the computational time.  
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3-  Calculation of the time rate of change of the velocity potential difference between the point of 

interest and the reference point. At every time instant, the velocity potential can be computed by 

integrating the velocity field. This leads to two potential issues. First, the integration yields the 

potential with an unknown additive integration function of time. This issue is not problematic since 

the time function is subtracted out when computing the potential difference. Second, though the 

velocity field is known analytically, its form is not easy to integrate. Therefore, integration is done 

numerically to get the potential difference at each time instant. The resulting fields are 

subsequently differentiated numerically in time to arrive at the first term on the RHS of equation 

(2.28). Further details follow. 

As depicted in figure (2.1), the reference point is selected on the wall at the end of the 

computational domain 𝑟𝑟𝑒𝑓 = 𝐿𝑟. This point remains unaffected by the vortex rings until the first 

vortex ring convects through the entire domain, reaching near 𝑟 = 𝐿𝑟. Thus, the pressure 𝑝𝑟𝑒𝑓 is 

steady up to the point of arrival of the first vortex ring, at which point the computation is stopped. 

This imposes a limit on the computational time, leading to a tradeoff process. Given the periodic 

influence of the vortices, the computation must be run until at least two vortices pass by a given 

point on the wall in order to obtain a full period of pressure fluctuations. Thus, 𝐿𝑟 must be large 

enough for the computation time to be larger than the lowest period of vortex passage of interest. 

On the other hand, 𝐿𝑟 cannot be made arbitrarily large since the radial domain must be discretized 

finely for the integration leading to the calculation of the velocity potential difference, which could 

lead to a prohibitively long integration time. Therefore, 𝐿𝑟 is set only as large as necessary by 

allowing enough running time for the core of at least the second vortex injected into the domain to 

reach the largest radial location of interest. As discussed previously, it is expected that the 

applicability of the present model is limited to the stagnation zone. Accordingly, the extent of the 
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radial domain of interest 𝐿𝑠 (see figure 2.1) is 𝐿𝑠 𝐷⁄ = 1, where 𝐷 = 2𝑅𝑜 is the equivalent of the 

jet diameter. The unsteady potential function difference 
𝑑(𝜙𝑟𝑒𝑓−𝜙𝑤)

𝑑𝑡
, is calculated using: 

 
𝑢𝑤(𝑟) = 𝑢𝑟𝑤(𝑟) =  

𝑑𝜙𝑤(𝑟)

𝑑𝑟
 

(2.29) 

which leads to    

 𝜙𝑟𝑒𝑓 − 𝜙𝑤(𝑟) = ∫ 𝑢𝑟𝑤(𝛼)𝑑𝛼
𝑟

𝑟𝑒𝑓
, (2.30) 

 

Where, 𝛼 is a dummy variable for integration along the radial coordinate. The integral (2.30) is 

evaluated numerically, where the integrand is obtained by setting 𝑧 = 0 in equation (2.20). 

Notably, since it is the time derivative of (2.30) that is required for evaluating the wall pressure, 

the stagnation flow component, which is steady, does not affect the unsteady potential difference 

term. 

2.3. Numerical Details  

The model was implemented numerically using Matlab. The implementation consisted of 

two main tasks. The first one involved periodically seeding vortices at the entrance of the domain 

and tracking the core centers of these vortices as they advect through the computational domain. 

Knowledge of the core centers locations at each time instant enabled computation of the 

instantaneous stream function and velocity field. This information is used to visualize the flow 

field concurrently with the wall pressure. The second task employed the distribution of the radial 

velocity component at the wall to compute the distribution of the wall-pressure at each time instant. 

The specifics of the numerical implementation of these two tasks are given in the two following 

sub-sections. 
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2.3.1. Computation of the Time-Dependent Stream Function and Velocity Field 

Given the initial core coordinates (Ro, Zo) of a vortex at the top of the computational 

domain, subsequent locations of the core (R, Z) at each time step was determined by solving 

equations (2.24 and 2.25) using fourth-order Runge-Kutta method for the two variables R(t) and 

Z(t). Once (R, Z) was determined, the stream function was calculated by evaluating equation (2.19) 

on 100 × 100-point grid using symbolic math tools in Matlab. The solution was independent of the 

time step and grid resolution, as demonstrated in Section 2.4.  

 2.3.2. Calculation of the Wall Pressure 

As given by the unsteady Bernoulli’s equation (2.28), the calculation of the wall pressure 

at any radial location relative to the pressure at the reference point requires knowledge of the radial 

velocity at the same radial location and at the reference point, as well as the rate of change of the 

velocity potential difference between the pressure observation and the reference point. The 

velocity information was straightforward to obtain. Specifically, once the vortex core locations 

were determined at every time instant in the first task, the radial velocity distribution on the wall 

could be determined by setting z = 0 in the analytical equation (2.20). The reference velocity 𝑢𝑟𝑒𝑓 

was further determined by setting r = rref in the resulting equation. The radial velocity distribution, 

and subsequently the wall pressure, was evaluated at 600 points on the wall spanning from the axis 

of symmetry of the domain to the reference point. This number of points was sufficiently large for 

the calculated wall pressure to be independent of the number of grid points (see Section 2.4 for 

details).  

On the other hand, to find the unsteady term (
𝑑(𝜙𝑟𝑒𝑓(𝑟)−𝜙𝑤)

𝑑𝑡
) on the wall in Bernoulli’s 

equation (2.28), 𝜙𝑟𝑒𝑓(𝑟) − 𝜙𝑤 was determined by numerically computing the integral (2.30). 
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Specifically, the integral was discretized on the 600-point wall grid using the method of rectangles, 

leading to: 

 
∫ 𝑑𝜙

𝜙(𝑟)

𝜙𝑟𝑒𝑓

= ∫ 𝑢𝑟 𝑑𝑟
𝑟

𝑟𝑟𝑒𝑓

 

(2.31) 
 

𝜙(𝑟𝑟𝑒𝑓 − 𝑖 Δ𝑟) − 𝜙𝑟𝑒𝑓 = −Δ𝑟 ∑ 𝑢𝑟𝑖

𝑛−1

𝑖=1

 

Where i is an index of the wall grid points starting from the point next to the reference point and 

increasing towards the axis of symmetry, n is the number of grid points (600), and Δ𝑟 is the radial 

resolution of the grid. The negative sign on the right-hand side reflects the fact that the integration 

is in the direction of decreasing r coordinate. 

To evaluate the summation in (2.31), the radial velocity uri was evaluated by substituting 

for z = 0 and r = ri in equation (2.20). This enabled evaluation of 𝜙𝑟𝑒𝑓(𝑟) − 𝜙𝑤 using (2.31) for 

all time instants. Subsequently, the time derivative of the potential difference was computed using 

forward finite differencing. The solution was independent of the time step and grid resolution, as 

demonstrated in Section 2.4. 

2.4  Validation of the Computational Approach  

Validation tests were done to ensure that the model results are independent of: 

- Radial computational domain size; 

- Wall-pressure resolution (number of points on the wall to calculate the pressure); 

- Time step. 

In addition, the outcomes of these validation tests, in terms of the domain size, radial wall-

grid resolution and time step, were employed to numerically compute the unsteady surface 

pressure associated with a line vortex advecting parallel to a flat wall. This was done since: (1) the 

advecting line vortex problem has certain similarities with the current vortex-rings problem; and 
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(2) the wall-pressure is known analytically for the line vortex problem, enabling further 

verification of the numerical solution approach and implementation.   

2.4.1 Impinging-Jet Model  

2.4.1.1 Validation of the Computational Domain Size 

As described in Section 2.2, the main influence of the radial domain size is related to the 

basic assumption that the pressure at the reference point, which is placed at the radial end of the 

domain, remains steady throughout the computation. Thus, a larger domain allows longer 

computation time since it takes the first vortex injected into the domain longer to reach the end 

and affect the pressure at the reference point. To ensure that the selected domain size is appropriate, 

three different computational domains having a radial extent of 10, 15, and 20 cm are compared. 

These values correspond to approximately 20, 30 and 40 times the initial vortex radius. For each 

of these domains, the wall pressure is computed and the resulting radial distribution at a time 

instant when the negative “pressure spike” produced by the vortex passage is located at r = 5 cm 

is considered (Figure 2.2). The selected location 𝑟 = 5 𝑐𝑚 is 10 times the initial vortex radius; 

well beyond what would be considered the stagnation zone of the jet (r = one jet diameter  twice 

the initial vortex ring radius), which is the main focus of the present work. The three pressure 

distributions from the different domains are compared in pairs at the selected time instant using a 

Normalized Root Mean Square error (NRMSE), defined as follows:   

 

𝑁𝑅𝑀𝑆𝐸 =
√

∑ (𝑝domain 1,i − 𝑝𝑑𝑜𝑚𝑎𝑖𝑛 2,𝑖)2𝑛
𝑖=1

𝑛
|𝑝𝑚𝑖𝑛|

 

(2.32) 

 where subscripts domain 1 and domain 2 denote the two domains under comparison, 

|𝑝𝑚𝑖𝑛| is the magnitude of the negative pressure spike (minimum pressure) produced by the vortex, 

and the summation is over all wall grid points; n = 600. Other than the domain radial extent, other 
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model parameters are the same as used for the results presented in Chapter 3. It is noteworthy that 

the computational time for the three different cases varied from about 10 to 45 minutes for the 

smallest and the largest domains respectively for the reference case which is define in table 3.1. 

 

 

 

 

Figure 2.2 Radial wall-pressure distribution at the time instant when the negative pressure 

spike (minimum pressure) associated with vortex passing is located at r=5 cm location. 

Different color lines represent different radial domain sizes used for computing the wall 

pressure (as given by the legend). The inset shows the overall distribution, while the main plot 

depicts a magnified view to show the change between the different cases. 
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Figure 2.3 depicts the NRMSE % as a function of time up to the time corresponding to 

Figure 2.2. The maximum pressure magnitude |𝑝𝑚𝑖𝑛| at each time step is used in calculating 

NRMSE. As seen from the figure, the effect of increasing the domain size beyond 10 cm is 

practically zero (well below 0.1%). Therefore, a 10-cm wide domain was utilized for all the 

computations conducted here.  

 

 

 

 

 

 

 

Figure 2.3 Normalized Root Mean Square Error (NRMSE) resulting from comparing the results 

of domain sizes 10 and 15 cm (blue) and 15 and 20 cm (red). The results are shown up to the 

computation time corresponding to the time instant where the negative pressure spike appears at 

r = 5 cm. 
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2.4.1.2     Validation of the Wall-Pressure-Grid Resolution  

This step targets the validation of the resolution of the wall grid used to find the wall-

pressure fluctuations. The higher the resolution, the better the accuracy. However, increasing the 

resolution is expensive, consuming more computer resources and time. To validate the selected 

wall resolution, three wall resolutions were examined for a radial domain extent of 10 cm: 0.33mm 

(300 points on the wall), 0.16mm (600 points on the wall), and 0.0833mm (1200 points on the 

wall). These resolutions correspond to approximately 0.07, 0.034 and 0.017 of the initial vortex 

ring radius 𝑅𝑜. All other model parameters are as described in Chapter 3. It is noteworthy that the 

computational time for the three different cases varied from about 10 to 40 minutes for the 

resolution 0.33mm and 0.0833mm respectively for the reference case which is define in table 3.1. 

The pressure distributions for the three cases considered are shown in figure 2.4 for the 

time instant when the pressure spike is located at 𝑟 ≈ 5 cm (t = 0.0039 s). The difference between 

the different cases is quantified using NRMSE, which is shown in figure 2.5 up to the time when 

the negative pressure spike appears at ≈ 5 cm . Noticable from the plot, the maximum error 

decreased from approximately 10% for the case between 300 and 600 points to less than 1% for 

the case between 600 and 1200 points. Therefore, 600 grid points on the wall were used for all 

wall-pressure results reported in Chapter 3. 
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Figure 2.4 Radial wall-pressure distribution at the time instant when the negative pressure 

spike (minimum pressure) associated with vortex passing is located at 𝑟 ≈ 5cm. Different 

color lines represent a different number of wall grid points used for computing the wall 

pressure (as given by the legend). The inset shows the overall distribution, while the main plot 

depicts a magnified view to show the change between the different cases. 
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Figure 2.5 Normalized Root Mean Square Error (NRMSE) resulting from comparing the 

results of grid resolution 300 and 600 points (blue) and 600 and 1200 points (red). The results 

are shown up to the computation time corresponding to the time instant when the negative 

pressure spike appears at 𝑟 ≈ 5 cm. 
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2.4.1.3     Validation of the Time Step Size 

The final validation step is to verify the size of the time step to produce results with an 

acceptable accuracy while minimizing time and computer resources. For this evaluation, three-

time steps are used corresponding to 1000, 2000 and 4000-time steps during the period between 

injecting two successive vortices in the domain. The corresponding time step is 4.06, 2.03, and 

1.016 s, respectively, for the vortex passage frequency considered (details of how the physical 

value of frequency is determined will be given in Chapter 3). All other model parameters are as 

described in Chapter 3. The computational time for the three different cases varied from 

approximately 10 minutes for 1000 points/cycle to 40 minutes for 4000 points/cycle for 𝑓 ≈

245 Hz. 

Pressure distributions for the three-time steps utilized are shown in figure 2.6 at the instant 

when the pressure spike is located at 𝑟 ≈ 5 cm (t = 0.0039 s). As before, the difference between 

the different cases is quantified using NRMSE in figure 2.7. As seen from the plot, the maximum 

error decreased from 3% when comparing between 1000 and 2000 point per cycle (PPC) to 1.65% 

between 2000 and 4000 point per cycle (PPC). All computations done here utilized 2000 PPC. 
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Figure 2.6 Radial wall-pressure distribution at the instant when the negative pressure spike 

(minimum pressure) associated with vortex passing is located at 𝑟 ≈ 5cm. Different color 

lines represent a different number of computational time steps in the period between injecting 

two successive vortices (as given by the legend). The inset shows the overall distribution, 

while the main plot depicts a magnified view to show the change between the different cases. 
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Figure 2.7 Normalized Root Mean Square Error (NRMSE) resulting from comparing the 

results of time step 4.066e-06 s (1000 PPC) and 2.033e-06 s (2000 PPC) (blue) and 2.033e-06 

s (2000 PPC) and 1.0161e-06 s (4000 PPC) (red). The results are shown up to the computation 

time corresponding to the time instant when the negative pressure spike appears at 𝑟 ≈ 5cm. 
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2.4.2 Application to a Line Vortex Above a Flat Wall 

To validate the overall unsteady-wall-pressure computational approach and the 

implemented algorithms, it was desired to apply the method/algorithms to a closely related 

problem, where an analytical solution for the unsteady wall pressure is known.  The problem of a 

line vortex above a wall seemed to be appropriate. Similar to the vortex-ring problem, the presence 

of the line vortex above a flat wall, as depicted schematically in figure 2.8, is modeled using an 

imaginary image vortex placed symmetrically relative to the wall. The presence of this image 

vortex causes advection of the vortex pair in the positive streamwise direction (for the given sense 

of circulation), producing an unsteady wall-pressure imprint on the wall. Physically, this scenario 

is similar to that of the vortex ring once it changes its advection direction from being predominantly 

towards, to being approximately parallel to the wall. In both the line and ring vortex cases, the 

unsteady pressure field at a given point on the wall is caused by the passage of vortices above the 

point. Therefore, the ability to reproduce the unsteady wall-pressure field of the line vortex 

accurately using the tools developed for the impinging jet problem provides further confidence in 

the implementation of the model developed in the present work.  
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Figure 2.8 Schematic of a line vortex centered at (xo, yo) above an infinite flat wall at y = 0. An 

image vortex centered at (xo ,-yo) models the presence of the wall. 

 

The velocity, and velocity potential for the line vortex problem are given by [21]: 

𝑢 =
Γ

2𝜋
[

2𝑦𝑜

(𝑥 − 𝑥𝑜)2 + (𝑦𝑜)2
] 

(2.31) 

𝑑𝜙

𝑑𝑡
= −

4Γ2𝑦𝑜
2

Γ2𝑡2 − 8Γ𝜋𝑡𝑥𝑦𝑜 + 16𝜋2𝑦𝑜
2(𝑥2 + 𝑦𝑜

2)
 

(2.32) 

 

The corresponding wall-pressure distribution at a given time instant is computed using equations 

(2.31) and (2.32) in conjunction with equation (2.28). The numerical implementation is the same 

as described in Section 2.3. For this calculation, the vortex and computational parameters are kept 

the same as for the vortex ring case (without the inclusion of the stagnation flow). Specifically, the 

parameters values are: 
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- Domain size: 10cm 

- Time step: 2.0331 μs, 𝑜𝑟 2000 Points cycle⁄  

- Circulation: Γ = 0.1798 m2 s⁄  

- Wall resolution: 0.16 mm, 𝑜𝑟 600 𝑔𝑟𝑖𝑑 𝑝𝑜𝑖𝑛𝑡𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑑𝑜𝑚𝑎𝑖𝑛 

- Vortex location above the plate 𝑦𝑜 = 5 mm 

Figure 2.9 depicts the wall-pressure signature obtained analytically and computationally, 

concurrently with the streamlines at selected time steps. The streamlines are depicted in a frame 

of reference convecting with the vortex but placed at the appropriate x location as the vortex travels 

in the positive x-direction. Beneath the center of the “circular” streamline pattern a negative 

pressure peak is found; as expected. Two additional positive, but substantially weaker, peaks are 

found ahead and behind the vortex center. Overall, excellent agreement is found between the 

computed and analytical wall pressure distribution even up to the time when the vortex is fairly 

close to the reference point (subplot f in figure 2.9). This agreement is quantified by calculating 

the NRMSE, which is displayed in figure 2.10 versus time. For this plot, the time shown is only up 

to the point when the vortex center reaches x = 5 cm. As seen from the figure, the NRMSE does 

not exceed 0.3% over the entire duration depicted. 
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(a) Time=0.00278 s (b) 0.00627 s 

 

 

(c) 0.01324 s (d) 0.02022 s 

 

 

(e) 0.0237 s (f) 0.02719 s 

Figure 2.9 Computational and analytical results of the wall pressure and associated streamlines 

for a line vortex above a wall. Different subplots represent different times (as indicated beneath 

the plots). The streamlines are shown in a frame of reference convecting with the vortex. 
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Figure 2.10 Normalized Root Mean Square Error (NRMSE) between analytical and numerical 

values of the wall-pressure distribution beneath a line vortex above a flat wall. The time 

duration shown is from the start of the vortex motion until the vortex center is located at r = 5 

cm. 
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CHAPTER 3: Mathematical Model Results 

              

 

This chapter will focus on the interpretation of the mathematical model results including 

the mean and Root Mean Square (RMS) of the fluctuating pressure. The analysis was done for 

three main cases. For each case, the solution was obtained when changing only one parameter 

while the other parameters remained unchanged. This facilitates understanding the effect of 

changing each of these parameters on the wall-pressure characteristics. In fact, varying one 

parameter at a time is one advantage of the model because in the actual flow it is generally not 

possible to change these parameters independent of one another. The three parameters examined 

are:  vortex passage frequency (f), jet Reynolds number 𝑅𝑒𝐷, and vortex circulation (𝛤). Though 

the model is inviscid, a “Reynolds number” may still be defined in relation to the jet diameter 

(vortex ring diameter) and initial jet velocity (stagnation flow velocity at top of the computation 

domain) in order to facilitate comparison with actual jet flow results. 

The nominal values of the model parameters were selected to be representative of an actual 

jet flow at the end of the potential core. The details of determining these values follow. Crow and 

Champagen [14] showed that the jet unsteadiness at the end of the potential core is dominated by 

the preferred, or column, mode with a Strouhal number of 𝑆𝑡 ≈ 0.3. Thus, 

 𝑓𝐷

𝑈𝑗
= 0.3 

(3.1) 

In the model, the jet diameter 𝐷 is reasonably equivalent to twice the vortex ring radius; i.e. 𝐷 =

2𝑅𝑜, and the jet velocity 𝑈𝑗 to the centerline velocity of the stagnation (advection) flow at the top 

of the computational domain; i.e. 𝑈𝑗 = 2𝑎𝑍𝑜. Making these substitutions in equation (3.1): 
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𝑓 =

0.3𝑎𝑍𝑜

𝑅𝑜
 (3.2) 

In equation (3.2), both 𝑍𝑜 and 𝑅𝑜 are known a priori. 𝑍𝑜 is the height of the computational domain, 

and 𝑅𝑜 is the initial vortex ring radius (equivalent to the jet exit radius), which is arbitrarily selected 

without loss of generality since it is also chosen as the length scale for making quantities non-

dimensional. To determine 𝑎, and hence the vortex passing frequency via equation (3.2), use is 

made of 𝑅𝑒𝐷: 

 
𝑅𝑒𝐷 =

𝑈𝑗𝐷

𝜈
=

(2𝑎𝑍𝑜)(2𝑅𝑜)

𝜈
 

(3.3) 

where, 𝜈 is the kinematic viscosity. Equation (3.3) leads to: 

 
𝑎 =

𝜈 ∗ 𝑅𝑒𝐷

4 ∗ 𝑅𝑜 ∗ 𝑍𝑜
 (3.4) 

Hence, by specifying the ring radius, jet Reynolds number and knowing the computational domain 

height it is possible to compute the nominal vortex passage frequency (corresponding to the jet 

column, or preferred mode). Because the jet preferred mode frequency corresponds to the vortex 

passage frequency at the end of the potential core, the frequency calculated as outlined above 

represents vortices near the end of the potential core (approximately 4𝐷 downstream of the jet 

exit). To model vortex passage at locations closer to the exit of the jet, use is made of the fact that 

the terminal vortex passage frequency of the preferred mode is the result of successive pairings of 

vortices, which initially form as an instability of the jet shear layer, rather than the jet column. 

With each pairing, the vortex passage frequency drops by a factor of 2. Hence, to represent vortex 

passage at distances closer to the jet, the nominal frequency is increased by a factor of 2, 4, etc.  

To connect the nominal vortex circulation (𝛤) value to the jet flow, use is made of the 

approximation of the circulation for a shear layer (Koochesfahani and Dimotakis [22]): 
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Δ𝑈 ≈

Γ𝑠𝑙

𝜆
 

(3.5) 

where, Δ𝑈 is the velocity difference across the shear layer, 𝜆 is the wavelength between vortices, 

and 𝛤𝑠𝑙 is the circulation around a contour that encompasses the shear layer and extends a length 𝜆 

in the streamwise direction. Equation (3.5) assumes all vorticity is concentrated in the shear layer 

vortices and is equivalent to computing the velocity jump across a zero-thickness potential vortex-

sheet from the circulation density (circulation per unit length) along the sheet. For the jet flow 

Δ𝑈 = 𝑈𝑗 and 𝜆/𝐷 = 2.38 [23], thus: 

 Γ = 𝜆 ∗ 𝑈𝑗 = 2.38(2𝑅𝑜)(2𝑎𝑍𝑜) = 9.52𝑎𝑅𝑜𝑍𝑜 (3.6) 

For all cases studied, parameters-maintained constant are 

- Computational domain’s radial extent: 𝐿𝑟 = 0.1 m (see figure 2.1 for definition). 𝐿𝑟 is 

selected to be much larger than 𝑅𝑜 and to ensure invariance of the results with further 

increase in 𝐿𝑟, as discussed in Chapter 2; 

- Initial vortex ring radius: 𝑅𝑜 = 0.0048 m; 

- Initial wall-normal distance between the vortex ring and the impingement plate (also wall-

normal extent of the computational domain 𝐿𝑧): 𝑍𝑜 = 5𝑅𝑜 = 0.024 m. This value was not 

critical. If 𝑍𝑜 is increased, the vortices will travel a longer distance towards the wall before 

they have any effect on the wall. Since the focus of the model is on the wall-pressure, 𝑍𝑜 

needs to be larger than or equal to the height at which the vortex presence affects the wall 

pressure. The choice of five times the ring radius fulfills this requirement for all cases 

examined here; 

- Volumetric constant (𝐶) in equation (2.7): 𝐶 = 0.033 × 10−6 m3. This value was taken to 

be the same as used by Walker et al [18]. The specific value of C is not critical since it only 
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affects the self-induced velocity of the vortex, which in turn only affects how quickly the 

vortex ring lineally approaches the wall.  

- Air kinematic viscosity (at 20°C): 𝜈 = 15.11 × 10−6 m2/sec. Air is selected as the fluid 

since the results of the model are compared to the measurements in an air jet in Chapter 5. 

With 𝑅𝑜 and 𝑍𝑜 values fixed, the selection of 𝑅𝑒𝐷, sets 𝑎 (equation 3.4), which in turn sets 𝑓 

and 𝛤 (equations 3.2 and 3.6, respectively). A reference case was arbitrarily selected to correspond 

to 𝑅𝑒𝐷 = 5,000, resulting in 𝑓 = 245.9 Hz and 𝛤 = 0.1798 m2/s. This reference case was 

repeated in three series of parametric investigations aimed at examining the influence of 𝑓, 𝑅𝑒𝐷 

and 𝛤 on the wall pressure. Each series contained three cases, including the reference and involved 

varying only one parameter, while all other parameters remained fixed in order to isolate the 

influence of each parameter. This one parameter at a time variation is only possible using a 

mathematical model since in the real jet 𝑓, 𝑅𝑒𝐷 and 𝛤 are generally interdependent. Indeed, this 

independence is even reflected in equations (3.2), (3.4) and (3.6), which attempt to mimic the real 

jet flow in a simplistic way.    

The parameter values for all cases investigated are summarized in table 3.1. For the frequency 

series, two other frequencies representing doubling and quadrupling the reference-case frequency 

are examined. As discussed earlier these higher frequencies represent vortex passage prior to the 

second and first vortex pairing, respectively, in the real jet (which corresponds to shorter jet to 

impingement plate distance). For the Reynolds number cases, the three values utilized are 

5000, 15000, 𝑎𝑛𝑑 25000. Finally, the three cases in the circulation (𝛤) series are those from the 

reference case (0.1798 m2 s⁄ ), and the others taken to be half and double of the reference 

circulation. For each series, the reference case is highlighted in table 3.1 using green color.  

 



 

49 
 

case 

Reynolds 

number (𝑅𝑒) 

Frequency 

(𝑓)Hz 

Jet velocity 

(𝑈𝑗) m s⁄  

Circulation 

(Γ) m2 s⁄  

Constant 

(𝑎) 1 s⁄  

Frequency 

(𝑓) 

5000 245.9 7.8698 0.1798 163.954 

5000 491.8 7.8698 0.1798 163.954 

5000 983.6 7.8698 0.1798 163.954 

Reynolds 

number 

(𝑅𝑒𝐷) 

5000 245.9 7.8698 0.1798 163.954 

15000 245.9 23.6094 0.1798 491.862 

25000 245.9 39.3490 0.1798 819.77 

Circulation 

(𝛤) 

5000 245.9 7.8698 0.0899 163.954 

5000 245.9 7.8698 0.1798 163.954 

5000 245.9 7.8698 0.3596 163.954 

Table 3.1 Model parameters for frequency (𝑓), Reynold number (𝑅𝑒𝐷), and circulation (𝛤) 

cases. Rows highlighted in green depict the parameters for the reference case 

3.1 Frequency Effect   

Figure 3.1 and 3.2 show snapshots of the streamlines of the computed flow and associated 

wall-pressure for the lowest and highest frequency respectively. In each figure, the point-vortex 

location is indicated with an asterisk. In both figures, a given vortex approaches the wall moving 

vertically downwards without much change in the radial location, until the vortex is very close to 

the wall where the main travel direction switches from towards to parallel to the wall. The main 

difference between the two frequency cases is that multiple vortices are seen within the 

computational domain in the high-frequency case (figure 3.2). The spacing between the vortices 

initially decreases, as they approach the wall, resulting in packing them rather densely within the 

stagnation zone. Subsequently, as the vortices travel parallel to the wall, their spacing increases 
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substantially. The change in the vortex spacing is related to their convection velocity. Initially, as 

they move towards the wall, their convection velocity decreases (due to the decrease in the 

stagnation flow wall-normal velocity and the opposing influence of the image vortex). Once they 

“turn the corner”, radial velocity acceleration of the stagnation flow and the induced radial velocity 

by the image vortex both combine to “shoot” the vortex away from the stagnation zone. As a result, 

within the wall-jet zone the spacing of the vortices is increased substantially. 

In the wall-jet zone, because the vortices are spaced far apart, regardless of their frequency, 

their wall-pressure signature is similar in character in both the low- and high-frequency cases. This 

signature takes the form of a negative pressure spike immediately beneath the vortex (where the 

induced velocity by the vortex is highest on the wall) surrounded by two small positive peaks up 

and downstream of the negative peak. This signature, which is consistent with the expected 

“focusing” of the stream lines beneath a vortex (see figure 2.9), can be observed best at the last 

time instant (largest 𝑟/𝐷𝑜 vortex location) in figures 3.1 and 3.2. The negative spike first appears 

when the vortex gets close enough to the wall (as will be seen later, this takes place within the 

stagnation zone, between 𝑟/𝐷 = 0.5 and 1), then it monotonically increases in magnitude as the 

vortex travels radially outwards. This monotonic increase is caused by the continuous decrease in 

the vortex distance to the wall with increasing time. Since potential vortices are employed in the 

present model, as the wall nears the vortex center, the induced velocity on the wall becomes higher 

and higher, and therefore the corresponding pressure is expected to become lower and lower.  
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t=0 s 

 
t=0.0004 s 

 
t=0.0008 s 

  
t=0.0011 s 

  
t=0.0015 s 

  
t=0.0019 s 

  
t=0.0022 s 

  
t=0.0026 s 

 
t=0.003 s 

Figure 3.1 Streamlines and normalized pressure at different time steps for frequency 𝑓 ≈

245 𝐻𝑧, Re=5000, and circulation 𝛤 = 0.1798 m2 s⁄  
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t=0.0004 s 
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t=0.0012 s 

  
t=0.0015 s 
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Figure 3.2 Stremlines and normalized pressure at different time step for frequency f= 980 Hz, 

Re=5000, and circulation 𝛤 = 0.1798 m2 s⁄  
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 To examine the wall-pressure characteristics quantitatively, radial profiles of the mean and 

RMS pressure are computed. Both of these quantities are calculated over one period of oscillation 

(1/𝑓) after the initial transients of starting the calculation have passed. The mean pressure 

distribution is shown in figure 3.3 in the form of a mean-pressure coefficient 𝐶𝑝 = (𝑝 − 𝑝𝑜)/𝑃𝑑; 

where 𝑃𝑑 is the dynamic pressure based on 𝑈𝑗, for a truncated radial domain that focuses on the 

stagnation zone. The latter is delineated in these figures, as well as similar ones later in the chapter, 

using broken green lines. As seen in figure 3.3, the mean pressure has its maximum at the 

stagnation point (as expected). It should be clarified that the stagnation point pressure coefficient 

exceeds unity because of three reasons. First, the dynamic pressure used for normalization is 

computed using a velocity scale that is representative of the stagnation (advection) flow only. 

Therefore, any added mean streaming velocity towards the wall due to the presence of the vortices 

does not affect the velocity scale. The added velocity would increase the stagnation pressure 

beyond that of the stagnation flow alone, causing the pressure coefficient to go beyond unity. The 

difference between the overall pressure and that due to the stagnation flow alone can be seen in 

figure 3.3, where 𝐶𝑝 of the stagnation flow alone is also plotted (indicated with SP in the legend). 

As expected, this distribution does not vary with frequency. Second, the reference pressure 𝑃𝑜 used 

in defining 𝐶𝑝 is taken from a different spatial location (𝑧 = 0, 𝑟 = 𝐿𝑟) than that where 𝑈𝑗, and 

hence 𝑃𝑑, is calculated (𝑧 = 𝐿𝑧 , 𝑟 = 0). Third, the flow is unsteady, and therefore, generally 

speaking, the stagnation pressure coefficient need not be unity. 
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Figure 3.3 Effect of vortex passage frequency on the radial distribution of the mean pressure 

coefficient. The green broken lines outline the boundary of the stagnation zone 

 

Figure 3.3 shows that 𝐶𝑝 at the stagnation point increases with increasing frequency. This effect 

can be understood as being caused by the net streaming velocity induced by the vortices towards 

the wall. As the frequency increases, more vortices are present simultaneously within the 

stagnation zone (e.g. compare figures 3.1 and 3.2), and the superposition of their induced velocity 

increases with the number of vortices, leading to larger stagnation pressure. Another interesting 

effect is the development of a local negative peak just outside the stagnation zone, which is seen 

clearly for the highest frequency. This effect is also understood to be caused by the net streaming 

velocity induced on the wall by the collective effect of the vortices, which becomes stronger with 

increasing frequency. Unlike the streaming effect towards the wall at 𝑟/𝐷 = 0, which 

understandably produces a positive pressure peak on the wall at the stagnation point, when the 

flow velocity is forced to zero, the stronger the wall-parallel velocity induced by the vortices, the 
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lower the pressure. The presence of a localized peak at a given radial location, for large enough 

frequency, is indicative of the location where the collective influence of the vortices is highest. As 

discussed in figure 3.2, as the vortices approach the wall, they get packed densely resulting in 

maximum collective effect. However, subsequently the vortex spacing increases substantially 

reducing this effect. The negative peak in the mean pressure distribution is believed to be a 

manifestation of this behavior when enough vortices are present in the simulation (i.e. when the 

vortex passing frequency is high enough). The negative peakon figure 3.3 can be explained 

alternatively based on figures 3.1. and 3.2. More tightly packed vortices means a larger "induced" 

flow. Since this flow cannot bypass the streamlines, the velocity is increased in regions where the 

spacing between streamlines is reduced. That is the place where the vortices first approach the 

wall. Since vortex injection frequency is higher, streamlines tend to stay closer to each other almost 

permanently at that point. 

The radial distribution of 𝐶𝑝𝑟𝑚𝑠 = 𝑝𝑟𝑚𝑠/𝑃𝑑  is depicted in figure 3.4. Two different trends 

are observed with increasing frequency. In the first “half” of the stagnation zone (below 𝑟/𝐷 ≈

0.5), the level of pressure fluctuation decreases with increasing frequency, while the opposite takes 

place for larger 𝑟/𝐷 values. For all frequencies, the distribution is “flat” depicting insensitivity to 

𝑟/𝐷 near the stagnation point. As 𝑟/𝐷 increases beyond this flat zone, two different behaviors are 

seen, depending on frequency. At low frequency, a decrease in the RMS level is observed with the 

increase in 𝑟/𝐷, before a monotonic increase is observed. The initial decrease with 𝑟/𝐷 becomes 

smaller with increasing frequency, eventually disappearing at the highest frequency, where the 

RMS level increases monotonically with 𝑟/𝐷 beyond the initial flat distribution near the stagnation 

point.  

 



 

56 
 

 

Figure 3.4 Effect of vortex passage frequency on the radial distribution of the RMS pressure 

coefficient. The green broken lines outline the boundary of the stagnation zone 

 

Possible physical reasoning for the trends observed in the 𝐶𝑝𝑟𝑚𝑠 distributions could be 

developed via inspection of sample pressure times series. Figure 3.5 depicts pressure signals for 

one cycle of vortex passage at various r/D locations within the stagnation zone. Two plots are 

included in the figure for the lowest and highest frequencies; 𝑓 ≈ 245 Hz (top) and 𝑓 ≈ 980 Hz 

(bottom), respectively. For both cases, the general features of the signals are qualitatively similar, 

depicting a fundamental difference in the signal shape between radial locations that are below 

approximately 𝑟/𝐷 ≈ 0.5 and those that at larger radial locations. For 𝑟/𝐷 locations larger than 

0.5, an energetic pressure signature that is characterized by a strong negative peak is observed. As 

discussed in figures 3.1 and 3.2, the strong/narrow negative pressure peak is found directly beneath 

the vortex closest to the wall, and is produced by vortex passage. Once seen at the wall, this peak 

continuously increases in magnitude with 𝑟/𝐷 since the vortex’s distance to the wall continuously 
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decreases as the vortex convects radially outwards. This increase in negative-peak strength is seen 

in figure 3.5 between 𝑟/𝐷 = 0.75 𝑎𝑛𝑑 1, for both frequencies.  

Below 𝑟/𝐷 ≈ 0.5, the pressure signal has lower magnitude, it looks more “sinusoidal” and 

it does not exhibit the strong negative peak characteristic of vortex passage. Since the only 

unsteadiness in the model originate from vortex passage, there is no doubt that the unsteady 

pressure is still connected to the vortices; it is just that the unsteadiness does not reflect the strong 

local effect, near the vortex core. Therefore, hereafter the pressure unsteadiness is characterized as 

remote for 𝑟/𝐷 < 0.5, and local for 𝑟/𝐷 > 0.5. The remote effects are more harmonic and weak 

in nature, and the local effect are strong and only felt at the wall for sufficiently large 𝑟 𝐷⁄ . For 

real (viscous core) vortices, the distinction between local and remote is expected to depend on how 

far is the point of observation from the vortex-core center relative to the vortex core radius. Since 

the vortex core size increases with each merging, one would expect that local effects would extend 

farther and farther with merging. This physical hypothesis cannot be tested with the present model, 

which is based on zero-core-size potential point vortices. 
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Figure 3.5 Pressure time series at various r/D locations within the stagnation zone, Re=5000, 

𝛤 = 0.1798 m2 s⁄ , and 𝑓 ≈ 245 Hz(𝑡𝑜𝑝) 𝑎𝑛𝑑 𝑓 ≈ 980 Hz (𝐵𝑜𝑡𝑡𝑜𝑚). The small 

discontinuities in the time series for 𝑓 ≈ 980 𝐻𝑧 correspond to the time instant when a new 

vortex is injected at the top of the computational domain. Because the discontinuities are 

small, no attempt was made to get rid of them by using a larger wall-normal extent for the 

computational domain. 
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The discussion of figure 3.5 provides insight regarding the effect of 𝑟/𝐷 on 𝐶𝑝𝑟𝑚𝑠 in the 

stagnation zone. To analyze the influence of frequency, pressure time series at the same radial 

location but different frequencies are shown in figure 3.6. Two radial locations are chosen, at the 

start and end of the stagnation zone: 𝑟 𝐷⁄ = 0 (top) and 𝑟 𝐷 = 1⁄  (bottom), respectively. These 

two locations are chosen because one of them exhibits decrease in pressure fluctuation level with 

frequency (𝑟/𝐷 = 0), and the other, the opposite. Focusing first at the stagnation point, the 

decrease in the amplitude of the sinusoidal-like pressure variation with increasing frequency is 

obvious. This trend may be clarified as follows: per earlier discussion of figures 3.1 and 3.2, as the 

frequency increases, the vortices become packed densely near the wall within the stagnation zone.  

As a result, the induced velocity on the stagnation streamline (i.e. the flow approaching the 

stagnation point) by the individual vortices become increasingly overlapping. This reduces the 

vortex-to-vortex velocity fluctuation, and leads to more of a steady streaming flow with increasing 

frequency.  

To substantiate this physical picture just described, figure 3.7 shows the induced velocity 

along a line that is parallel to an array of line vortices with varying inter-vortex spacing: 10 mm, 

50 mm, and 500 mm. This simple situation is intended to emulate the influence of the “packing 

density” of the vortices on a line parallel to the array (similar to how the vortices approaching the 

wall are parallel to the stagnation streamline in the present model).   The results in figure 3.7 are 

plotted for only one wavelength (i.e. for a length equal to the spacing between the vortices), since 

outside the shown range, the induced velocity would repeat periodically for an infinite array. For 

all vortices in the array, the circulation is the same. As seen from figure 3.7, for the largest 

wavelength (smallest packing of vortices), the vortices are spaced so far away that the induced 

velocity from the neighboring vortices has no influence within the wavelength shown (as seen 
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from the velocity practically decaying to zero at the ends of the wavelength). As the vortices 

become more packed (𝜆 = 50mm), the effect of neighboring vortices overlaps more, causing an 

overall rise in the mean velocity (i.e. increasing streaming effect), and a reduction in the velocity 

fluctuation (since the induced velocity amplitude does not fall too much before the influence of a 

neighboring vortex is felt). This trend is particularly evident for the highest vortex packing (𝜆 =

10𝑚𝑚), where the induced velocity is practically steady, having the strongest streaming 

component and no fluctuation.  

On the other hand, within the zone where the local vortex effects are felt (bottom plot in 

figure 3.6), the pressure amplitude increases only slightly with increasing frequency, suggesting 

that this increase is not responsible for the strong increase in RMS with frequency seen in figure 

3.4. Instead, a substantial broadening of the pressure peaks is found to take place with increasing 

frequency. This shows that the monotonic increase in 𝐶𝑝𝑟𝑚𝑠 with frequency for 𝑟/𝐷 > 0.5 is a 

result of an increase in the “duty-cycle” of the pressure signal, rather than in its magnitude. This 

broadening is again a result of the increase in the number of packed vortices affecting the pressure 

as the frequency increases. However, unlike 𝑟/𝐷 < 0.5, the effect of vortex packing relates to the 

induced velocity along a line that is practically normal, rather than parallel, to the vortex array, 

which leads to a different influence of vortex packing. 

To further clarify the effect of vortex spacing on the induced velocity on the wall, a simple 

situation is considered where three line vortices are placed at the same positions relative to a wall 

as the vortices in the model when the leading vortex center is at 𝑟/𝐷 = 1 (i.e. the same location 

for which the time series are shown in figure 3.6). The induced velocity on the wall by each of 

these vortices is plotted in figure 3.8 versus distance along the wall, together with the velocity 

induced by all of them. If the vortex spacing is so large such that only one vortex passes through 
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the domain at a time (as in the low-frequency case of the present model), the induced velocity 

signature at the time when the vortex is located at 𝑟/𝐷 = 1, would be the same as given by the 

red line in figure 3.8. On the other hand, if the vortex spacing is so small such that when the leading 

vortex passes 𝑟/𝐷 = 1, two other vortices are trailing in close proximity (with relative spacing 

similar to the high-frequency case of the model), substantial broadening of the induced velocity is 

seen due to the effect of the trailing vortices. This should influence the wall pressure in the same 

way, clarifying the influence of frequency on the time series in figure 3.6. 

 

 

 

 

 

 

 

 



 

62 
 

 

 

Figure 3.6 Pressure time series at various frequencies, Re=5000, 𝛤 = 0.1798 m2 s⁄ , and 

𝑟 𝐷𝑜⁄ = 0(𝑡𝑜𝑝) 𝑎𝑛𝑑 𝑟 𝐷𝑜⁄ = 1  (𝐵𝑜𝑡𝑡𝑜𝑚). The small discontinuities in the time series for the 

two larger frequencies correspond to the time instant when a new vortex is injected at the top 

of the computational domain. Because the discontinuities are small, no attempt was made to 

get rid of them by using a larger wall-normal extent for the computational domain.  
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Figure 3.7 Induced velocity by an infinite line-vortex array along a line parallel to the array. 

Results are shown over one vortex spacing (𝜆) with the vortex located at the center (𝑥 = 0). 

Different colors indicate different spacing (i.e. different vortex packing density). 
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Figure 3.8 Individual and collective induced wall velocity by three-line vortices placed relative 

to a wall at the same locations as those from the present model’s high-frequency case when the 

leading vortex is located at 𝑟/𝐷 = 1. 

3.2 Reynolds Number Effect 

Figure 3.9 and 3.10 show the radial distribution for the mean and RMS wall pressure when 

the jet Reynolds number is varied. Since the velocity scale is defined as that based on the stagnation 

(advection) flow at the top of the computational domain, increasing 𝑅𝑒𝐷 corresponds to increasing 

the strength/velocity of the stagnation flow. In addition, because the model is inviscid, essentially 

the interpretation of “Reynolds number” in this case is increasing the characteristic velocity of the 

jet relative to that induced by the vortices since all vortex parameters remain unvaried.  

Figure 3.9 shows that the stagnation-point (SP) flow 𝐶𝑝 does not vary with Reynolds 

number. This is expected given the normalization by a velocity scale based on the stagnation flow. 

In contrast, the overall 𝐶𝑝 exhibits a deviation from 𝐶𝑝 of SP flow that decreases with increasing 
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𝑅𝑒𝐷. This should not be too surprising given that the deviation is produced by the streaming flow 

induced by the vortices, which should remain invariant since the vortex characteristics are 

unchanged between Reynolds numbers. This invariance when normalized with an increasing 

dynamic pressure causes the deviation from SP mean pressure to decrease with increasing 𝑅𝑒𝐷. 

Similarly, the decrease of the RMS pressure coefficient with Reynolds number (figure 3.10) can 

be attributed to an invariance in the unsteady pressure from vortex passage that produces smaller 

coefficient of pressure when normalized by the increasing dynamic pressure of the “jet”. 

 

Figure 3.9 Effect of Reynolds number on the radial distribution of the mean pressure 

coefficient 
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Figure 3.10 Effect of Reynolds number on the radial distribution of the RMS pressure 

coefficient 

 

3.3 Circulation Effect  

Figures 3.11 and 3.12 depict the mean and RMS pressure distributions for various vortex 

circulation magnitudes (i.e. vortex strengths). The case with the intermediate circulation value is 

the reference case (the same as the 𝑓 ≈ 245Hz in section 3.1), where one vortex at a time is 

affecting the wall pressure. The other two cases are similar with the exception of the vortex 

strength, which is weaker in one case and stronger in the other.  

The overall features of the mean pressure profile stay the same with varying circulation 

strength. Quantitatively, the stagnation pressure increases, and a local minimum develops with 

increasing circulation. The same trends were observed to take place with increasing frequency in 

section 3.1. In that case, these changes were attributed to the increase in induced velocity due to 

the increasing number of vortices with increasing frequency. Here, the effect is similar but since 
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the number of vortices does not change (the frequency is the same for all three cases), the induced 

velocity increases due to circulation. 

 

 

Figure 3.11 Effect of vortex circulation on the radial distribution of the mean pressure 

coefficient 
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Figure 3.12 Effect of vortex circulation on the radial distribution of the RMS pressure 

coefficient 

 In regard to the RMS distribution (figure 3.12), the overall shape remains invariant with 

changing circulation (consult figure 3.4 to see the details of the reference case/intermediate 

circulation more clearly) but the RMS level increases monotonically with increasing circulation 

(consistent with the stronger vortices). Overall, the pressure signal shapes within the stagnation 

zone remain similar with increasing circulation, while the magnitude of the pressure peaks 

increases (leading to the larger RMS level). This may be seen by comparing figure 3.13 for the 

highest-circulation case to the top plot in figure 3.5 for the reference case. A more direct 

comparison between the time series shapes of the lowest and highest circulation cases at the 

stagnation point and end of the stagnation zone is given in figure 3.14. The results clearly 

demonstrate the increasing strength of the pressure fluctuations without change in the pressure 

signal shapes. 
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Figure 3.13 Pressure time series at various r/D locations within the stagnation zone, Re=5000, 

𝛤 = 0.359 m2 s⁄ , and 𝑓 ≈ 245 Hz 
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Figure 3.14 Pressure time series for various vortex circulations, Re=5000, 𝑓 ≈ 245 Hz, and 

𝑟 𝐷𝑜⁄ = 0(𝑡𝑜𝑝) 𝑎𝑛𝑑 𝑟 𝐷𝑜⁄ = 1  (𝐵𝑜𝑡𝑡𝑜𝑚). 
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CHAPTER 4: Experiment Setup and Apparatus 

              
 

This chapter exhibits the experimental setup that was used to measure the unsteady wall 

pressure and the initial jet velocity profiles. The coordinate system and the configuration of the 

flow utilized in the experiment will be described. The measurement techniques and procedures 

used to measure the velocity and the fluctuating pressure will be demonstrated. Moreover, the 

stepper motor and 2D traversing system used to traverse the hot-wire velocity probe over the 

measurement domain, the hardware and software used to collect experimental data, and the 

assembly of the experimental components will be explained.  

4.1 Coordinate System and Flow Configuration 

This research is focused on the normal incidence impinging jet flow. The flow 

configuration is depicted in figure 4.1. Two coordinate systems are used. The first system is 

(𝑋, 𝑌, 𝑍) cartesian system with origin at the jet exit centerline, and the second is a polar system 

(𝑟, 𝜃, 𝑧) originating at the center of the impingement plate and at (shown in figure 4.1 for the plane 

𝜃 = 0).  

The impinging jet facility used in the current experiments resides in the Flow Physics and 

Control Laboratory at Michigan State University. The facility underwent a major renovation and 

subsequent characterization by Al-Aweni [7].  The jet discharges through a round exit with 

diameter 𝐷 = 25mm, at the end of a contoured nozzle, resulting in an initial condition of a top-

hat velocity profile.  The flow from the jet impinges on a circular flat plate with diameter 12𝐷. 

The disc diameter is greater than the jet diameter by an order of magnitude to reduce the effect of 

the edge of the disc on the flow. The mean flow does not change in the 𝜃 direction and it is assumed 
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to be axisymmetric (as verified in Al-Aweni [7]), and the distance between the jet exit and the 

impingement plate 𝐻 is adjustable. 

 

Figure 4.1 Flow configuration for normal-incidence impingement jet 

 

4.2 Experiment General Assembly 

The experimental facility is presented in figure 4.2, and it consists of a centrifugal blower, 

type Dayton 4C108, driven by 3 4⁄  HP DC motor. The flow rate through the facility is adjusted by 

changing the speed of the motor. The blower provides provide air to the jet through a PVC pipe 

with a of diameter 7.7 cm. The exit pipe diameter of the blower is smaller than, and it does not 

touch the inner diameter of the PVC pipe to reduce the vibration effect from the blower. 

The air passes into a flow conditioning chamber with dimensions 30.5 cm × 30.5 cm ×

76.2 cm, before entering a nozzle with an area contraction ratio of 80, to decrease the turbulence 

intensity. The turbulence intensity was measured at the nozzle exit using a hot-wire anemometer, 
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and was found to be less than 1% for the jet velocity of 5 m/s (based on the streamwise velocity 

fluctuations)  

 

Figure 4.2 Experimental facility 

 

Referring to figure 4.3, the impingement disc is embedded flush in a vertical square plate 

with dimensions of 45.8 cm × 45.8 cm. The circular disc is fitted with 30 microphones for 

measuring the unsteady wall pressure, including eight microphones, employed in the current work, 

that are arranged as a line array along the radial direction (see section 4.4 for more details). The 

square plate is placed on a sliding table that can be moved in the x-direction using a manual traverse 

system (as shown in figure 4.3), model Velmex A1506P40-S1.5-TL, which allows to change the 

distance between the impingement plate and the nozzle exit (H). The Velmex traverse system can 

move total distance of 115 mm with an accuracy of 0.0254 mm.  
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Figure 4.3   An image of the impingement plate and the sliding table attached to the Velmex 

manual traverse system 

A steel frame is used to hold the conditioning chamber, the nozzle, and the impingement 

plate. The frame is mounted on a table different from the one utilized to support the blower to 

isolate the facility from the vibration generated by the blower.  

In the course of this study, a stepper-motor-driven Velmex traversing system was added to 

the facility. The system was used to traverse a single hot-wire probe to characterize the jet velocity 

profiles near the nozzle exit (i.e. the initial condition). The hot-wire was attached to the carriage 

of the Velmex system via a custom-made arm (see figure 4.4 and 4.5). The traverse system has 

three-degrees of freedom (DOF): two-linear and one rotational (models MB4027K2J-56 and 
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B4872TS respectively). Only the linear DOF are used in the present work to move the velocity 

probe in X and Y directions.  The traverse system is controlled by Velmex controller, type VP9000, 

with the ability to control the system manually through a joystick, or programmatically through an 

RS-232 interface with a desktop PC computer.  

The jet mean exit velocity was determined from measurement of the difference between 

the stagnation pressure in the setting chamber and the ambient pressure (further details are given 

in section 4.3). Data acquisition was accomplished using National Instruments NI PCI-6024E PC-

based analog to digital (A/D) converter card. The A/D card was coupled with National Instruments 

BNC2080 analog breakout board to facilitate signal connections via coaxial BNC cables. The card 

has 12-bit resolution and input range that is changeable between ±50 𝑚𝑉 to ±10 𝑉, and it can 

sample up to 16 single-ended multiplexed channels at a maximum rate of  200kHz  using 

LabVIEW version 8.2.  
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4.3 Hot-wire Setup and Calibration  

 A single hot-wire probe was used to measure the streamwise velocity profile of the jet near 

the exit of the nozzle. Figures 4.4 and 4.5 depict a schematic of the hot-wire setup used during 

calibration and measurements, and an image showing the motorized traverse system respectively.  

 

 

Figure 4.4 Block diagram of the setup used for calibration and measurements of the hot-wire 
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Figure 4.5 An image of the motorized system for traversing the hot wire 

The hot wire was built using tungsten with a sensing length and diameter of 1 mm and 5𝜇𝑚 

respectively, which provide a length to dimeter ratio of 200. The wire was used to measure the 

mean and the fluctuating streamwise velocity while operated using a Constant Temperature 

Anemometer (CTA), model TSI 1750, at an overheat ratio 𝑟ℎ = 0.6, defined as:  

 
𝑟ℎ =

𝑅𝑤

𝑅𝑎
− 1 

(4.1) 
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Where, 𝑅𝑤 represents the operating (heated) hot-wire resistance, and 𝑅𝑎 the hot-wire resistance at 

room temperature. The overheat ratio can be as high as 1 but it is generally kept between 0.6-0.8. 

The higher the value, the better the velocity sensitivity and the smaller the temperature sensitivity. 

Too high of a value, however, could cause oxidation, and hence drift in the response of the wire. 

The bandwidth cut-off frequency 𝑓𝑐 of the hot-wire was found using the following equation 

 
𝑓𝑐 =

1

1.3𝜏
 

(4.2) 

Where, 𝜏 represents a response time, which was obtained from a square wave test. Figures 4.6 and 

4.7 depict the diagram for the square wave test and the result respectively. During the test, 0 −

10 mV square wave with frequency of  5 kHz was fed from Agilent WAVETEK function 

generator to the square wave input of the CTA. The output of the CTA was captured on a Tektronix 

TDS 1002B digital oscilloscope, as shown in figure 4.7. the figure also demonstrates how 𝜏 was 

determined to be 25μs yielding a bandwidth of 30.7kHz. 
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Figure 4.6 Block diagram of the setup for the square wave test 
 

Figure 4.7 An image of the oscilloscope screen showing a typical square wave test result 
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The hot-wire was calibrated in-situ by placing the wire near the center of the jet within the 

potential core where the jet velocity can be obtained from the difference between the stagnation 

and the ambient pressure. This pressure difference was measured using either high a (10 torr) or a 

low (1 torr) pressure transducer Baratron model 223BD-00010ACU or 223BD-00001ACU 

respectively. The pressure transducers have sensitivity of 0.75 mV/Pa and 7.5 mV/Pa respectively. 

The positive-input side of the pressure transducer was connected via Tygon tubing to a pressure 

tap in the wall of the setting chamber, just upstream of the nozzle. The other, low pressure, side of 

the pressure transducer was left open to ambient pressure. Temperature of the air flow was 

measured sing a thermistor, type Omega DP-25-TH, with a sensitivity of 100 mV/C°. The 

measured temperature was used to correct the hot-wire output for the variation of the flow 

temperature from that of the calibration. Figure 4.8 depicts an image of the hot-wire, temperature 

sensor, stagnation pressure tap, nozzle, impingement plate, and the setting chamber. 
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Figure 4.8 An image of the hot-wire, temperature sensor, nozzle, impingement plate, and the 

conditioning box 

 

To acquire the pressure, the temperature, and the hot-wire signal, a LabVIEW program was 

developed for this purpose. Typically, the signals were acquired for eight different velocities 

depending on the velocity range in the experiments which varied between 5 to 15 m/s. All hot-wire 

voltages were corrected for the variation of the temperature during the period of calibration using 

 
𝐸𝑐 = 𝐸𝑚 [

𝑇𝑤 − 𝑇𝑐𝑎𝑙

𝑇𝑤 − 𝑇𝑚
]

1/2

 
(4.3) 
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Where, 𝐸𝑐 represents the corrected hot-wire voltage, 𝐸𝑚 the measured hot-wire voltage, 𝑇𝑤 The 

hot-wire temperature calculated using equation (4.4) below, 𝑇𝑚 the flow temperature measured 

during the acquisition of data, 𝑇𝑐𝑎𝑙 the average temperature during the calibration process. The 

hot-wire temperature (𝑇𝑤) was found using  

 𝑟ℎ = 𝛼(𝑇𝑤 − 𝑇𝑎) (4.4) 

Where, 𝛼 represents the resistance-temperature coefficient (for tungsten 0.0045 ºC-1), and 𝑇𝑎 is the 

ambient temperature. 

For the calibration, the jet velocity 𝑈𝑗 was found using Bernoulli’s equation  

 𝜌 =
𝑝𝑎𝑡𝑚

𝑅𝑇𝑎
 (4.5) 

 
𝑈𝑗 =

1

√1 − (
𝐴𝑗

𝐴𝑠
)

2

∗ √
2Δ𝑝

𝜌
≈ √

2Δ𝑝

𝜌
= √

2(𝑝𝑜 − 𝑝𝑎𝑡𝑚)

𝜌
 

(4.6) 

Where, 𝜌 is the air density, 𝑝𝑎𝑡𝑚 the atmospheric pressure, 𝑅 the ideal gas constant for air 

(0.287 
kj

kg.k
), 𝑇𝑎 the ambient air temperature, measured using the temperature sensor, and 𝑝𝑜 is the 

stagnation pressure in the settling chamber, measured using the pressure transducer.  Note that 

𝐴𝑗/𝐴𝑠 is one over the contraction area ratio (1/80), which is neglected in the above calculation. 

The data pairs of the jet velocity and the corrected voltage of the hot-wire sensor were fitted 

with equation (4.7), which represents King’s Law, by using the method of least-squares:   

 𝐸2 = 𝐴 + 𝐵 ∗ 𝑈𝑛 (4.7) 

Where, 𝐸 represents the corrected voltage of the hot-wire, 𝑈 the measured velocity using the 

pressure transducer, and n (typically in the range 𝑛 = 0.4 to 0.45), 𝐴 𝑎𝑛𝑑 𝐵 are the equation 

constants found using the least-squares method. 
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The calibration was done before and after the experiments. Figure 4.9 depicts a sample of 

typical calibrations after and before the experiments, which agree within a maximum difference of 

0.8 %. 

 

Figure 4.9 Sample of hot-wire calibrations before and after an experiment  

4.4 Microphone Setup and Calibration 

The fluctuating pressure was measured using eight electret Panasonic WM-61A 

microphones embedded in the impingement plate, as shown in figure 4.10. The microphones’ 

sensing hole and package diameter are 2 mm (0.08D) and 6 mm (0.24D) respectively. The 

microphones have a flat frequency response between 20-20,000 Hz and a typical manufacturer-

provided sensitivity of −35 ∓ 4𝑑𝐵 @ 1kHz (corresponding to 11.22 to 28.18 mV/Pa,) with DC 

supply voltage in the range 2V and 10V. The eight-microphone array was arranged starting from 

the center of the disc (r/D=0) along the radial direction with a spacing of 0.33D between the centers 
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of each successive microphones. Figure 4.10 depicts the configuration of the microphones on the 

impingement plate. The microphones were connected to a homemade 16-channel microphone 

circuit powered by 9 DC volts to provide power to the microphone and connect the microphone to 

the NI-6024E board.  

 

Figure 4.10 Front and cross section (B-B) view (top and bottom respectively) of the 

 microphone array configuration used in the present work 

Since the sensitivity of the microphones provided by the manufacturer is nominal, the 

individual microphones had to be calibrated before each experiment. This also accounts for 

possible change in sensitivity due to variation in temperature, humidity, dirt, and installation. The 

eight microphones were calibrated, one at a time by using a plane wave tube (PWT) and a reference 

microphone that has known sensitivity. The reference microphone used for the calibration was 
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Brüel and Kjær (B&K) 1 4⁄
′′

 model 4923-A-001 with sensitivity of 1.424 mV/Pa at a polarization 

voltage of 200𝑉. The microphone has a bandwidth of 4 − 70000 Hz.  

The PWT was built by Al-Aweni [7] using a 12.7𝑚𝑚 × 12.7𝑚𝑚 PVC square tube, which 

fastens to the impingement plate, by using two clamps, as shown in figures 4.11 and 4.12. The 

tube has eight holes for mounting the B&K microphone at the same radial locations of the 

Panasonic microphones. On the other hand, the wall of the tube that is in contact with the 

impingement plate was removed allowing the Panasonic micrphone array to be embedded in the 

PWT. Acoustic waves were generated in the tube using Agilent model HP-33120A function 

generator coupled to a Hafler-P1000 amplifier, which drives a Dayton model RS150S-8 audio 

speaker. The speaker was placed at one end of the plane wave tube, generating white noise acoustic 

waves in order to excite all frequencies of interest simultaneously inside the PWT. 

According to [24], for example, if an acoustic wave with a wavelength 𝜆 > 2𝑙 

(corresponding to a frequency 𝑓 < 𝑐
2𝑙⁄ ; where 𝑙, 𝑓, 𝑎𝑛𝑑 𝑐 represent the tube cross-section side 

length, the sound frequency, and the speed of sound respectively) propagates in a square solid duct, 

then the wave will remain planar at any given cross section. This means, the phase and the 

magnitude of pressure will remain constant over the cross section at the given plane. So, the 

reference microphone (B&K) and the microphone to be calibrated (Panasonic) will be exposed to 

the same pressure magnitude and phase because they are located at the same cross section.  

During calibration, each microphone was calibrated individually by inserting the reference 

microphone into the PWT at the same cross section of the Panasonic microphone. One hundred 

records, each having 4096 point data points sampled at 50 kHz, were acquired from two A/D 

channels, to which the microphones were connected. Applying the analysis shown in Al-Aweni 
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[7], the acquired data produced the magnitude and phase response of the Panasonic microphones; 

as exemplified in figure 4.13.  

 

Figure 4.11 Block diagram of the calibration setup for the microphone array 
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Figure 4.12 An image of the calibration setup for the microphone array 

Table 4.1 shows a sample of the eight microphones’ sensitivities, where microphone 1 is 

located at the stagnation point and microphone 8 is placed at the end of the measurement domain.  

 

The values given, which fall within the manufacturer-reported nominal range, are found by 

averaging the magnitude response over the frequency range 100-5000 Hz.   

 

Microphone 1 2 3 4 5 6 7 8 

Sensitivity 

mV/Pa 

18.625 18.447 23.789 19.623 18.837 22.652 25.666 25.624 

Table 4.1 Sample of the microphones’ sensitivity obtained from calibration. 
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Figure 4.13 A sample of the microphone calibration results: sensitivity (top) and phase 

(bottom) 
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4.5 Procedure to Acquire Velocity Profile  

After calibration, the hot-wire was placed near to the edge of the shear layer. The latter was 

found approximately by monitoring the hot-wire signal on an oscilloscope as the wire was 

traversed across the shear layer.  Once the edge of the shear layer was found, the wire was traversed 

to 50 to 100 different positions (with a resolution of 5μm), depending on the X location, such that 

measurements were conducted across the entire shear layer. The movement and the data 

acquisition were automated using a LabView program. At each location, time series containing 

409600 data points of jet velocity, jet temperature, and hot-wire signal were acquired at 5000 

samples/second. The duration of the acquisition 𝑇𝑎𝑐𝑞 is such that almost 5000 vortices travel across 

the measurement point at the lowest frequency of vortex passage (St = 0.3 and the lowest velocity 

of 𝑈𝑗 = 5 m/s). The sampling rate is also selected to be much larger than any frequency of interest 

(𝑆𝑡𝑎𝑐𝑞 = 6.35, based on the highest velocity). 

4.6 Procedure to Acquire the Microphone Signals  

After calibration of the microphones, the PWT was removed and the impingement plate 

was fixed at a desired distance (H/D). Before acquiring the microphone signals, the mean jet 

velocity was fixed to provide the desired Reynolds number. Once the jet reached steady state, 800 

data records containing 512-point per record were acquired at a rate of 5000 samples/s from all 

microphones in the array using a LabVIEW program.  
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CHAPTER 5: Jet Characteristics and Wall-Pressure Measurements  

              
 

Before investigating the pressure measurements, it is important to demonstrate the jet 

characteristics as it emerges from the nozzle; i.e. the initial condition. This chapter will explore 

the characteristics of the jet and the wall-pressure measurements.  The jet characteristics were 

found by measuring the streamwise flow velocity component using a single hot wire, traversed 

across the shear layer at a few streamwise locations. The data were used to demonstrate the self-

similarity of the jet’s initial shear layer; in agreement with the literature.  The pressure 

measurements from this study were compared with previous studies using different statistical 

quantities, including power spectra, root mean square of the pressure fluctuation, probability 

density functions (pdf), skewness, and kurtosis. 

5.1 Initial Shear Layer Self-Similarity  

 It is important to examine the characteristics of the shear layer and the initial flow 

conditions. To achieve this goal, the mean and fluctuating streamwise velocity were measured, 

and the data were used to obtain the corresponding cross-stream velocity profiles across the shear 

layer. For these measurements, the hot-wire was initially moved using relatively large steps, with 

a resolution of 0.5 mm/step, in the transverse direction and the wire output signal was monitored 

on the oscilloscope to approximately locate the edges of the shear layer. Subsequently, the 

movement resolution was refined gradually to verify the location of the edges of the shear layer. 

Once the edges were found, the probe was controlled to traverse across the whole shear layer with 

even higher resolution (0.01 mm/step) to properly resolve the high-shear zone within the shear 

layer. The data were recorded at Reynolds numbers of 8272, 165454, and 33090 which represented 

velocities of 5 m/s, 10 m/s, and 20 m/s, respectively. Profiles were obtained at three different 
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streamwise locations (X/D= 0.2, 0.4, and 0.8). The self-similarity of the profiles obtained at 

different Reynolds numbers was verified using normalized mean and fluctuating velocity plots, as 

shown in figures 5.1 and 5.2 respectively. For these plots, the origin of the cross-stream coordinate 

is taken at the shear layer centerline; defined as the y location where the mean velocity is half of 

the jet exit velocity. The y coordinate is normalized by the momentum thickness (𝜃), which is 

found using 

 
𝜃 = ∫

𝑈(𝑦)

𝑈𝑗

𝑦𝑈=𝑈𝑗

𝑦𝑈=0.1𝑈𝑗

 (1 −
𝑈(𝑦)

𝑈𝑗
)  𝑑𝑦 (5.1) 

Where 𝑈(𝑦) is the mean streamwise velocity profile, and 𝑈𝑗 is the jet exit velocity. To minimize 

the error resulting from hot-wire data near the shear layer outer edge, where reverse velocity may 

occur due to the energetic shear-layer vortices, the momentum thickness was calculated by 

truncating the integration limit to the location where 𝑈(𝑦) is 10% of the jet velocity; i.e. the lower 

integral limit in equation 5.1 (𝑦𝑈=0.1𝑈𝑗
).  As seen from figures 5.1 and 5.2, the velocity profiles 

for the various Reynolds numbers at the same streamwise location (X/D=0.2) collapse well. The 

collapse of the velocity profiles demonstrates the initial self-similarity of the jet.  
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Figure 5.1 Shear-layer mean velocity profile at X/D=0.2 for various Reynolds numbers  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Shear-layer fluctuating-velocity root-mean-square profile at X/D=0.2 for various 

Reynolds numbers  
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To check the self-similarity at different X/D locations, mean and fluctuating-velocity 

profiles of the shear layer were measured at three streamwise locations (X/D= 0.2, 0.4, and 0.8) 

for Reynolds number of 8272. The results are depicted in figures 5.3 and 5.4 respectively, which 

demonstrate that the velocity profiles collapse for the distance X/D=0.2-0.8, further confirming 

self-similarity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Shear-layer mean velocity profile at various X/D locations and 𝑅𝑒𝐷 = 8272 
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Figure 5.4 Shear-layer fluctuating-velocity root-mean-square profile at various X/D locations and 

𝑅𝑒𝐷 = 8272 

5.2 The Root Mean Square of the Fluctuating Pressure   

The root mean square pressure is calculated from the pressure time series using 

 

𝑝𝑟𝑚𝑠 = √
∑ (𝑝i − 𝑃)2𝑛

𝑖=1

𝑛
 

(5.2) 

Where, 𝑝𝑖 is the instantaneous pressure, 𝑃 is the mean pressure, i indicates the time index, or 

sample number in the digitized pressure time series, and n is the total number of samples in the 

time series. The number of samples is 409600 samples with a sampling frequency of 5000 

samples/sec. Note that since microphones are used for measuring the pressure, they are incapable 

of capturing 𝑃. However, the measured time series typically have a small offset voltage error, 

necessitating removal of the mean “pressure”, as given by equation 5.2. 
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Figure 5.5.a depicts the radial distribution of the root mean square results for the pressure 

fluctuation (𝑝𝑟𝑚𝑠) for Reynolds number 8272.  The fluctuating-pressure RMS value is normalized 

by the dynamic pressure (𝑃𝑑 =  1
2⁄ 𝜌𝑈𝑗

2) and the radial location (r) is normalized by the jet 

dimeter (D).  Results are shown for different H/D values, represented by different colors. The 

results show that, though the overall shape of the root mean square pressure distribution is similar 

for all H/D values, the 𝑝𝑟𝑚𝑠 magnitude depends on H/D. A peak is noticed for all three H/D = 2, 3 

and 4 cases at r/D  1.33. The magnitude of this peak, and 𝑝𝑟𝑚𝑠 in the wall-jet zone in general, 

decreases with increase in H/D. Also, the location of the maximum 𝑝𝑟𝑚𝑠 seems to shift towards 

smaller r/D with increase in H/D, as implied from the “flattening” of the peak. The precise location 

of the maximum cannot be determined with the present measurement resolution.  

On the other hand, within the stagnation zone, the trend with H/D is reversed, where the 

magnitude of the root mean square pressure increases, rather than decreases, with increasing H/D. 

For example, the magnitude of 𝑝𝑟𝑚𝑠 at the stagnation point (r/D = 0) increases to 54% of the 

maximum for H/D=4, in contrast to 14% at H/D=2. Also noteworthy, for all H/D values, the 

normalized  𝑝𝑟𝑚𝑠 drops rapidly for the range 𝑟 𝐷 > 1.33⁄  to a magnitude of around 5% by the end 

of the measurement domain.  

Figure 5.5.b depicts 𝑝𝑟𝑚𝑠(𝑟) for the higher Reynolds number of 24818. The distribution 

has the same behavior as for ReD = 8272, except for H/D=4, where a second peak emerges within 

the stagnation zone, at r/D=0.67. Significantly, unlike all other cases, at the higher Reynolds 

number and H/D = 4, the maximum 𝑝𝑟𝑚𝑠 is found in the stagnation, instead of the wall-jet zone. 

The magnitude of 𝑝𝑟𝑚𝑠 at the stagnation point increases to 42% of the maximum for H/D=4, in 

contrast to 12% at H/D=2.  

  



 

96 
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Figure 5.5 Normalized Root Mean Square Pressure (𝑝𝑟𝑚𝑠/𝑃𝑑) versus 𝑟 𝐷⁄  for different 𝐻 𝐷⁄  and 

two Reynolds numbers: (a) ReD = 8272, and (b) ReD = 24818 
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To better examine the effect of Reynolds number, Figure 5.6.a depicts a comparison 

between the 𝑝𝑟𝑚𝑠 radial distributions for ReD = 8272 and 24818 when H/D=2. The figure shows 

that as Reynolds number increases, the  𝑝𝑟𝑚𝑠 profile does not change, for all practical purposes. 

For both cases, the minimum pressure is at the stagnation point, where r/D = 0, and the maximum 

pressure is measured at r/D=1.33.  Figures 5.6.b and 5.6.c depict a similar comparison for H/D=3 

and 4, respectively. For both cases, increasing the Reynolds number, results in decreasing the level 

of pressure fluctuations within both the stagnation and wall-jet zones. In addition, as noted 

previously, a second local 𝑝𝑟𝑚𝑠 peak emerges at r/D = 0.67 for the higher Reynolds number and 

𝐻/𝐷 = 4. It is unclear if this peak reflects a change in the physics of wall-pressure generation 

within the stagnation zone at the higher ReD, or simply that the peak becomes observable due to 

reduction on the level of pressure fluctuations in the wall-jet zone. 

Overall, the characteristics of the RMS profiles and how they change with 𝐻/𝐷 and 𝑅𝑒𝐷 is 

very consistent with those reported in the literature, and summarized in section 1.2.2. 
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Figure 5.6 Normalized Root Mean Square Pressure (𝑝𝑟𝑚𝑠/𝑃𝑑) versus 𝑟 𝐷⁄  at ReD = 8272 and 

24818, for:  (𝑎)𝐻 𝐷⁄ = 2, (𝑏) 𝐻 𝐷⁄ = 3, and (𝑐) 𝐻 𝐷⁄ = 4   
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5.3 Time Series Analysis   

5.3.1 Time Series  

Figure 5.7.a depicts sample normalized-pressure signals at ReD = 8272 at the stagnation 

point (𝑟 𝐷 = 0⁄ ) and the location of maximum 𝑝𝑟𝑚𝑠 (𝑟/𝐷 = 1.33) for  𝐻 𝐷⁄ = 2. As expected 

from the 𝑝𝑟𝑚𝑠 distribution (figure 5.5.a), the pressure signal at r/D=0 is low compared to that at 

r/D=1.33. Aside from this, inspecting the time series enables extraction of additional interesting 

information. Specifically, Figure 5.7.a demonstrates that the signal shape is completely different 

between the stagnation point and r/D = 1.33. At the former location, the signal is relatively 

symmetric around zero level and looks like a distorted sinusoid. In contrast, at r/D = 1.33, the 

signal is highly skewed and exhibits prominent negative spikes that reach beyond half of the jet’s 

dynamic pressure! In his study in the same jet facility at a similar Reynolds number and H/D, Al-

Aweni [7] used simultaneous time-resolved flow visualization and wall-pressure measurements 

and numerical simulations to demonstrate that these very strong pressure spikes are a result of the 

interaction of the jet vortices with the wall and the formation of secondary vortices (see section 

1.2.2).  

Similar strong negative spikes can also be seen at the same r/D = 1.33 location but the 

larger H/D values of 3 and 4 (figures 5.7.b and 5.7.c respectively). However, a significant 

difference between the signals observed at the three H/D values is that the average time period 

between spikes increases with increasing H/D. Based on the flow visualization of Al-Aweni [7], it 

is known that this increase is due to two successive pairings of the jet vortices before reaching the 

impingement wall: one pairing taking place between H/D = 2 and 3, and the other between H/D = 

3 and 4. Interestingly, the magnitude of the spikes in figure 5.7 is almost unaffected by the H/D 

values, suggesting that the strength of the pressure produced from the vortex-wall interactions is 
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maintained with increasing H/D. These observations lead to the following explanation for the 

decrease in the maximum 𝑝𝑟𝑚𝑠 (and likely 𝑝𝑟𝑚𝑠 in general for the whole wall-jet region as well) 

with increasing H/D (see figure 5.5): with the strength of the spikes remaining invariant with H/D 

but becoming less frequent, the 𝑝𝑟𝑚𝑠 value must decrease.  

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 

Figure 5.7 Sample normalized Pressure signals (𝑝′/𝑃𝑑  %) at ReD = 8272, for 𝑟 𝐷 = 0 𝑎𝑛𝑑 1.33⁄  

for:  (𝑎) 𝐻 𝐷⁄ = 2, ( 𝑏 ) 𝐻 𝐷⁄ = 3, and (𝑐) 𝐻 𝐷⁄ = 4   
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Figure 5.8 displays plots similar to those in figure 5.7 for the higher Reynolds number. 

Generally speaking, observations similar to those made in relation to figure 5.7 can be made from 

figure 5.8. However, there are also some notable differences. One of these relate to the strength of 

the negative pressure spikes. Unlike the time series for ReD=8272, the strength of the negative 

pressure spikes at r/D = 1.33 decreases noticeably with increasing H/D for ReD=24818. This 

decrease is associated with the signal becoming more irregular and the appearance of high-

frequency fluctuation. This is consistent with the decrease in the 𝑝𝑟𝑚𝑠 level with increasing ReD 

observed in figures 5.6.b and 5.6.c at H/D = 3 and 4 respectively. The signal forms in figure 5.8.b 

and figure 5.8.c suggest that this decrease is associated with weakening of the pressure spikes at 

the higher Reynolds number and larger H/D, which might be related to the jet vortices breaking 

up and becoming irregular/turbulent with increasing Reynolds number (as implied from the 

irregularity of the signal and appearance of high frequency fluctuations). 
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Figure 5.8 Sample normalized Pressure signals (𝑝′/𝑃𝑑  %) at ReD = 24818, for 

𝑟 𝐷 = 0 𝑎𝑛𝑑 1.33⁄  for:  (𝑎) 𝐻 𝐷⁄ = 2, ( 𝑏 ) 𝐻 𝐷⁄ = 3, and (𝑐) 𝐻 𝐷⁄ = 4   
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5.3.2 Probability Density Function (pdf)   

The time series analysis in the previous section sheds light on the general characteristics of 

the pressure signal at the stagnation point, as well as where 𝑝𝑟𝑚𝑠 is highest in the wall-jet zone. 

However, these observations are based on short, randomly selected time series samples. Therefore, 

to ensure that the observations made in section 5.3.1 are statistically relevant, Probability Density 

Function (pdf) results are examined. The pdf was estimated by finding the maximum and minimum 

fluctuating-pressure values in a given time series. The range bound by these values was then 

divided into 30 equal-width bins. Finally, the number of data points falling in each bin was divided 

by the total number of points in the time series and the bin width to obtain the probability of the 

pressure value occurring within a given bin per bin width, or the pdf.  

Figure 5.9 depicts the pdf for the pressure time series at ReD = 8272 and 𝑟 𝐷 = 0 𝑎𝑛𝑑 1.33⁄  

for all three 𝐻 𝐷⁄  values. By examining the plots, we can see that at 𝑟 𝐷 = 0 ⁄ , the pdf is 

approximately symmetric and narrow, which is consistent with the symmetric, low-level character 

of the corresponding signals observed in figure 5.7. On, the other hand, at 𝑟 𝐷 = 1.33⁄ , the signal 

has a pronounced negative skewness, as reflected in the long negative tail and consistent with the 

strong negative pressure spikes noted earlier in figure 5.7. In addition, the pdf is substantially wider 

than that at 𝑟 𝐷 = 0⁄ , consistent with the smaller 𝑝𝑟𝑚𝑠/𝑃𝑑 at 𝑟 𝐷 = 0⁄  (figure 5.5.a).  

Another interesting observation at H/D = 2, is the presents of a plateau with a hint of a peak 

at 𝑝𝑟𝑚𝑠/𝑃𝑑 ≈ −0.5. This suggest the presence of a bi-model phenomenon. Interestingly, Al-

Aweni[7] found the vortex structures to either merge as they convect past 𝑟/𝐷 = 1.33 or to pass 

without merging. This may explain the subtle bi-modal feature of the 𝑝𝑑𝑓 at 𝑟/𝐷 = 1.33 in figure 

5.9.a 
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At 𝑟 𝐷 = 0⁄ , the width of the pdf increases with increasing H/D, demonstrating the 

increasing level of  𝑝𝑟𝑚𝑠/𝑃𝑑 at the stagnation point with larger H/D (see figure 5.5.a). At 

𝑟 𝐷 = 1.33⁄ , the pdf remains negatively skewed with increasing H/D, approximately reaching 

negative pressure values as high as –Pd for all H/D values. However, the pdf appears to become 

overall narrower with increasing H/D, consistent with the corresponding reduction in  𝑝𝑟𝑚𝑠/𝑃𝑑 

(see figure 5.5.a). The narrowing of the pdf primarily manifests itself in the reduction in the pdf 

value for the large negative pressure spikes (𝑝 approximately less than −0.5 𝑝𝑟𝑚𝑠), which 

reinforces the idea discussed in section 5.3.1 of these spikes becoming less frequent at larger 𝐻/𝐷 

due to vortex pairing. 
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Figure 5.9 Probability Density Function (𝑝𝑑𝑓) for the pressure signal at ReD = 8272, for 

𝑟 𝐷 = 0 𝑎𝑛𝑑 1.33⁄ , and:  (𝑎) 𝐻 𝐷⁄ = 2, (𝑏) 𝐻 𝐷⁄ = 3,  and (𝑐) 𝐻 𝐷⁄ = 4   

Figure 5.10 depicts the 𝑝𝑑𝑓 results for ReD = 24818 at 𝑟 𝐷 = 0 𝑎𝑛𝑑 1.33⁄ , and all 𝐻 𝐷⁄  

values. By examining these plots, we can see the same general behavior as seen for ReD = 8272. 

However, there are some notable differences. Overall, the pdf at r/D = 1.33 is not as strongly 

skewed as for the lower Reynolds number case. Additionally, the long negative tail of the pdf 
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extends to smaller negative-pressure magnitudes with increasing H/D; in contrast to reaching 

approximately the same value for ReD = 8272. The reduction in the magnitude of the negative 

spikes with increasing H/D was also noted earlier from the time series plots in figure 5.8. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5.10 Probability Density Function (𝑝𝑑𝑓) for the pressure signal at ReD = 24818, for 

𝑟 𝐷 = 0 𝑎𝑛𝑑 1.33⁄ , and:  (𝑎) 𝐻 𝐷⁄ = 2, (𝑏) 𝐻 𝐷⁄ = 3,  and (𝑐) 𝐻 𝐷⁄ = 4  𝐻 𝐷⁄ = 4  
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5.3.3 Skewness and Kurtosis   

The overall features of the pdfs presented in section 5.3.2 may be expressed in terms of 

their skewness and kurtosis. The skewness provides a measure of the symmetry of the pdf. A 

skewed pdf exhibits a long negative tail (if negatively skewed) or a positive one (if positively 

skewed). On the other hand, the kurtosis indicates how flat (as opposed to having a prominent 

peak) a pdf distribution is. A pdf with large kurtosis tends to have long tails. For reference, a 

Gaussian pdf has a skewness of zero (due to its symmetry) and a kurtosis of 3. In the present work, 

the skewness and kurtosis were calculated as follows 

 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  ∑
(𝑝𝑖 − 𝑃)3 𝑛⁄

𝜎3

𝑛

𝑖=1

 (5.3) 

 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  ∑
(𝑝𝑖 − 𝑃)4 𝑛⁄

𝜎4

𝑛

𝑖=1

 (5.4) 

 

where, 𝑝𝑖 is the instantaneous pressure, 𝑃 is the mean pressure, i indicates the time index, or sample 

number in the digitized pressure time series, 𝜎 is the standard deviation of the pressure time series 

points, and n is the total number of samples in the time series 

Figure 5.11.a depicts the variation of skewness over the measurement domain (r/D range 

0 to 2.33) for a Reynolds number of 8272 at H/D = 2, 3, and 4. The plots show that at H/D=2, the 

pressure signal has positive skewness in the stagnation zone (𝑟 𝐷⁄ ≤ 1), but it switches sign and 

becomes negative in the wall-jet zone. For H/D=3 and 4, the switch from positive to negative 

skewness happens near the end of the stagnation zone. The negative skewness is particularly strong 

at r/D = 1.33 and 1.67. This is consistent with the long negative tail of the pdfs and the strong 

negative pressure spikes in the time series discussed earlier for r/D = 1.33. However, as r/D 

increases further, the skewness magnitude decreases monotonically; though it remains negative. 
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Figure 5.11.b depicts the skewness results for the higher Reynolds number of 24818. With 

the exception of one apparently errant data point (at r/D = 0.33 and H/D = 4), the general qualitative 

behavior of the skewness distribution is similar to the lower Reynolds number. However, at ReD = 

24818, the largest negative skewness is not as large in magnitude as for ReD = 8272. Also, the 

skewness becomes zero (or low valued) by r/D = 2.0; implying the pdfs reach symmetry by the 

end of the measurement domain.  
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( b ) 

Figure 5.11 Radial distribution of skewness for 𝐻 𝐷⁄ = 2, 3 and 4, and: (𝑎)𝑅𝑒𝐷 = 8272, and 

( 𝑏)𝑅𝑒𝐷 = 24818 
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Figure 5.12.a depicts the kurtosis results for Reynolds number of 8272. Within the 

stagnation zone (𝑟/𝐷 ≤ 1), the kurtosis is similar to that of a normal (Gaussian) distribution with 

a magnitude near 3. In the wall-jet zone, the kurtosis initially increases substantially (up to the 

radial location r/D = 1.67) then it decays monotonically. For the higher Reynolds number, the 

kurtosis behavior (figure 5.12.b) is surprisingly different. In this case, the kurtosis is highest at the 

stagnation point and decays monotonically with increasing r/D. The reason for the fundamental 

change in kurtosis behavior with Reynolds number is not clear. Measurements at intermediate 

Reynolds numbers would be recommended in order to observe if this change is gradual or abrupt, 

and attempt to understand the reasons behind it. 

The large magnitude of negative skewness and kurtosis near the location of maximum 𝑝𝑟𝑚𝑠 

in the wall jet zone indicates the presents of strong pressure spikes. This is consistent with the 

strong negative peaks found in the work of Didden and Ho [5], Hall and Ewing [9,10] and Al-

Aweni [7]. The latter study connected the formation of the spikes to the secondary vortex formation 

(as also Didden and Ho [5] and Hall and Ewing [9,10]), and the formation of high strain zone in 

the boundary layer beneath the jet vortex. 
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( b ) 

Figure 5.12 Radial distribution of Kurtosis for 𝐻 𝐷⁄ = 2, 3 and 4, and: (𝑎)𝑅𝑒𝐷 = 8272, and 

( 𝑏)𝑅𝑒𝐷 = 24818 
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5.4 Spectra Analysis   

Analyzing spectra of the pressure fluctuations is considered one of the useful tools to get 

information about the frequency content of the pressure signal. In this work, spectral information 

is presented as power spectral density (PSD). The PSD is calculated as an average of the PSDs 

obtained from 𝑚 different pressure data records, as follows:  

 𝑃𝑆𝐷(𝑘) =
1

𝑚 ∗ 𝑛 ∗ 𝑓𝑠
∑ |𝑃𝑓

𝑖(𝑘)|
2

𝑚−1

𝑖=0

 (5.5) 

 

Where, 𝑃𝑓
𝑖 is the Fourier transform of the ith pressure data record, 𝑛 is the number of points in the 

data record, 𝑘 is an index indicating frequency and  fs is the sampling frequency. The physical 

frequency corresponding to each 𝑘 value is given by 𝑘𝐹𝑠/𝑛 = 𝑘Δ𝑓 (where Δ𝑓 is the frequency 

resolution of the PSD).  

To compute the PSD, 409600 samples of a given pressure signal were acquired at a 

sampling frequency of 5000 Hz. The resulting data were divided into 800 records, each containing 

512 points. The PSD was obtained for each record by taking its Fast Fourier Transform (FFT), 

multiplying the transform by its conjugate, and dividing the result by the square of the number of 

points (512 points) and the spectrum frequency resolution (Δ𝑓 = 5000/512 = 9.77 Hz). The 

resulting spectrum random uncertainty is 3.5%. 

Figure 5.13 shows the normalized PSD in the form of contour plots versus r/D and Strouhal 

number (StD = fD/Uj) at 𝑅𝑒𝐷 = 8272and all 𝐻 𝐷⁄  values. This way of presenting the spectra 

provides a global perspective of the entire measurement domain, but it does not allow clear 

observation of some of the less dominant spectral features. To see these, the spectra are presented 

using line plots at r/D = 0 and 1.33 in figure 5.15.  The contour plots in Figure 5.13 show a 
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dominant spectral peak at 𝑆𝑡𝐷 ≈ 0.6 (the actual value varies between 0.64 for H/D = 2 and 3, and 

0.58 for H/D = 4, which is approximately within the spectrum 𝑆𝑡𝐷 resolution of 0.05). From the 

work of Al-Aweni [7], it is known that the 𝑆𝑡𝐷 ≈ 0.6 corresponds to that of the jet vortices after 

the first pairing.  

As discussed in section 5.3.1, Al-Aweni also found that for approximately the same 

Reynolds number, the first vortex pairing took place as the vortices traveled parallel to the wall, 

within the wall-jet zone, at H/D = 2, and ahead of reaching the impingement plate, at H/D = 3. A 

second pairing was observed before the vortices reached the plate at H/D = 4. These conclusions 

suggest that the spectrum should be dominated by fluctuations at 𝑆𝑡𝐷 ≈ 0.6 at H/D = 2 and 3, and 

𝑆𝑡𝐷 ≈ 0.3 at H/D = 4. The former expectation is consistent with the results in figure 5.13.a and 

5.13.b. However, the dominance of 𝑆𝑡𝐷 ≈ 0.6, instead of 𝑆𝑡𝐷 ≈ 0.3 at H/D = 4 (figure 5.13.c) 

seems inconsistent with Al-Aweni’s conclusions. The apparent discrepancy is partly due to the 

fact that the dominant spectrum peak in figure 5.13.c is seen within the wall-jet zone (r/D> 1). 

Inspecting a sample of the corresponding time series (figure 5.7.c), it is evident that the time series 

is highly irregular and dominated by strong negative spikes with varying strength (i.e. modulation) 

from one spike to another. The spectrum of such a signal is not expected to yield a clean peak at 

the dominant frequency, but rather a broader spectrum of multiple peaks. Indeed, although 𝑆𝑡𝐷 ≈

0.6 is dominant in figure 5.13.c, another, barely visible peak is seen at 𝑆𝑡𝐷 ≈ 0.3 (pointed to by a 

white arrow in figure 5.13.c). This peak can also be observed more clearly in the line plots of figure 

5.15.b. Although the observed peak is weaker than that at 𝑆𝑡𝐷 ≈ 0.6, this could be caused by the 

vortices being less coherent after the second merging (which was observed in the flow 

visualization videos of Al-Aweni). However, this reasoning cannot be ascertained at this stage.  
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A better indication of the presence of pressure fluctuation at the second-pairing frequency 

(𝑆𝑡𝐷 ≈ 0.3) at H/D = 4 may be seen in the stagnation zone, particularly at r/D = 0, in figure 5.13.c. 

Due to the simplicity of the signal at the stagnation point (figure 5.7.c), the corresponding spectrum 

has a more straight forward interpretation. The contour plot in figure 5.13.c and the line plots in 

figure 5.15.a show that indeed when H/D = 4, the dominant spectral peak shifts to 𝑆𝑡𝐷 ≈ 0.3 at 

r/D = 0.  
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Figure 5.13 Normalized PSD contour plots at 𝑅𝑒𝐷 = 8272, for:  (𝑎) 𝐻 𝐷⁄ = 2, (𝑏) 𝐻 𝐷⁄ = 3, 

and (𝑐) 𝐻 𝐷⁄ = 4    

Figure 5.14 shows normalized PSD contour plots similar to those in figure 5.13 but for 

𝑅𝑒𝐷 = 24818. Consistent with the lower Reynolds number, the spectrum peak at 𝑆𝑡𝐷 ≈ 0.6 is 

dominant within the wall-jet zone at H/D = 2 and 3. At H/D = 4, the dominant peak clearly shifts 

to 𝑆𝑡𝐷 ≈ 0.3 within the stagnation zone at 𝑟/𝐷 = 0.67. Recall that this is also the radial location 
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where the maximum 𝑝𝑟𝑚𝑠 is found for the larger Reynolds number and H/D = 4 (figure 5.5.b), 

which is different from all other cases. These results reinforce earlier observations regarding the 

overall weakening of the pressure fluctuation in the wall-jet zone with increasing H/D and 

Reynolds number. Since it is known from the work of Al-Aweni that the vortex-wall interactions 

dominate the pressure fluctuations in the wall-jet zone at low Reynolds number, the present results 

suggest that the ability of these interactions to generate unsteady pressure weakens with increasing 

Reynolds number, leading to the observed dominance within the stagnation zone. 

Another notable characteristic of the spectra at the higher Reynolds number is the rise of 

low-frequency fluctuations. These are seen clearly in both the contour plot in figure 5.14.c and the 

line plots in figure 5.16. The latter plots also show the general shift of the dominant frequency 

towards low values with increasing H/D (figure 5.16.a). 
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Figure 5.14 Normalized PSD contour plots at 𝑅𝑒𝐷 = 24818, for:  (𝑎) 𝐻 𝐷⁄ = 2, (𝑏) 𝐻 𝐷⁄ = 3, 

and (𝑐) 𝐻 𝐷⁄ = 4    
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Figure 5.15 Normalized PSD at 𝑅𝑒𝐷 = 8272 for, 𝐻 𝐷⁄ = 2,3 and 4, at: 

(𝑎) 𝑟 𝐷 = 0 𝑎𝑛𝑑 (𝑏) 𝑟 𝐷 =⁄ 1.33⁄    
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Figure 5.16 Normalized PSD at 𝑅𝑒𝐷 = 24818, for 𝐻 𝐷⁄ = 2,3 and 4, at: 

(𝑎) 𝑟 𝐷 = 0 𝑎𝑛𝑑 (𝑏) 𝑟 𝐷 =⁄ 1.33⁄    
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Figures 5.17 and 5.18 depict a direct comparison of the normalized PSD at the two different 

Reynolds number ( 𝑅𝑒𝐷 = 8272 𝑎𝑛𝑑 24818). These plots are provided to facilitate understanding 

of the Reynolds number effect on the spectra. Overall, both figures show that the Strouhal number 

band of the pressure fluctuations is consistent for both Reynolds number. However, the PSD has 

higher level and sharp peaks at the lower Reynolds number; in comparison to being broader and 

having lower level with increasing Reynolds number. This suggests that the basic wall-pressure 

generating mechanisms remain the same with increasing Reynolds number, but they become 

weaker and more stochastic in nature. In addition, at the largest H/D of 4, and the high Reynolds 

number, the vortex-wall interaction effectiveness in generating pressure in the wall jet zone 

weakens substantially. 
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Figure 5.17 Normalized PSD at  𝑅𝑒𝐷 = 8272 𝑎𝑛𝑑 24818 𝑎𝑛𝑑 𝑟 𝐷 = 0⁄ , for:  (𝑎) 𝐻 𝐷⁄ =

2 , (𝑏) 𝐻 𝐷⁄  and (𝑐) 𝐻 𝐷⁄ = 4 
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Figure 5.18 Normalized PSD at  𝑅𝑒𝐷 = 8272 𝑎𝑛𝑑 24818 𝑎𝑛𝑑 𝑟 𝐷 = 1.33⁄ , for:  (𝑎) 𝐻 𝐷⁄ =

2 , (𝑏) 𝐻 𝐷⁄  and (𝑐) 𝐻 𝐷⁄ = 4 

 
 
 
 
 
 
 
 

 
 

 

( a ) 

 

( b ) 

 

( c ) 

 



 

123 
 

5.5 Comparison between Experiment and Mathematical Model 
 

In the present section, a comparison is conducted between the results of the experiments 

and the model. The purpose of this comparison is to assess the degree by which the model is 

successful in capturing the underlying physics of wall-pressure generation in impinging jets. It is 

emphasized here that, given the fairly crude nature of the model, the comparison is focused on 

qualitative features and trends and is constrained to the stagnation zone of the impinging jet.  

The discussion in section 3.1 demonstrated that the character of the modeled wall-pressure 

time series is different depending on whether the radial location is near the stagnation point (𝑟/𝐷 <

0.5) or the end of the stagnation zone (𝑟/𝐷 > 0.5). Near the stagnation point, the pressure signal 

was weaker and characterized with sinusoidal like variation, and the end of the stagnation zone, 

the signal featured a prominent negative pressure peak and a strong, but less prominent positive 

peak. The pressure variation (which are replicated at the bottom of figure 5.19) were connected to 

“remote” (at 𝑟/𝐷 = 0), and “local” (at 𝑟/𝐷 = 1) effects of vortex passage. Comparing similar 

signals obtained experimentally at the lower Reynolds number and 𝐻/𝐷 = 4 (top of figure 5.19), 

we see very similar qualitative features, suggesting that he basic physics of wall-pressure 

generation in the stagnation zone are captured by the present model, notwithstanding its high level 

of simplicity. 

Some of the differences between the experimental and model results in figure 5.19 include 

the broadness of the positive and negative peaks at 𝑟/𝐷 = 1. The experimental time series clearly 

exhibit much broader peaks, which is not surprising given that the real jet vortices have a finite 

core size, in comparison to the point vortices employed in the present model. Thus, one of the 

important future improvements of the model is to utilize finite-core vortices; for example, Oseen 

type, having Gaussian vorticity distribution. This point is also important from the perspective that 
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whether a point on the wall is influenced by “remote” versus “local” vortex effects is expected to 

depend on how far is the point from the vortex center, relative to the vortex core size. 
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Figure 5.19 Sample time series from microphone measurements (top) and the vortex-

array model (bottom) at the stagnation point (𝑟/𝐷 = 0) and end of the stagnation zone (𝑟/𝐷 =

1). Experimental data are shown for the 𝑅𝑒𝐷 = 8272 and 𝐻/𝐷 = 4, and model results for the 

reference case (emulating the conditions at the end of the potential core). 
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Though shown over a short time period, the experimental time series in figure 5.19 is 

characteristic of the remainder of the time series, with the shown signature repeating quasi-

periodically. However, at 𝑟/𝐷 = 1, there are moments in time were the signature character is 

different. This is exemplified in figure 5.20 for the same time-window size as the top of figure 

5.19. The signal shape during such periods is very similar to that associated with the vortex-

induced separation of the boundary layer. This conclusion can be made based on the work of Al-

Aweni [7]. Such vortex-boundary-layer interactions cannot be captured by the present model, 

which is both inviscid and does not include any modeling of boundary layer effects. 

 

Figure 5.20 Sample wall-pressure signature characteristic of that produced by vortex-induced 

separation from microphone measurements at 𝑟/𝐷 = 1, 𝑅𝑒𝐷 = 8272 and 𝐻/𝐷 = 4 

 

Another point concerning the comparison in figure 5.19 is that it is done using the 

experimental data at the lower Reynolds number. At the higher Reynolds number, as discussed 

previously, small-scale pressure fluctuations start to appear, implying the formation of small-scale 
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turbulence. Such turbulence, which obviously cannot be reproduced by the present model, makes 

it more difficult at times to identify the vortex-passing signature in the time series. 

Another interesting qualitative feature of wall-pressure fluctuation in the stagnation zone 

that is captured by the vortex-array model relates to the effect of 𝐻/𝐷 on 𝑝𝑟𝑚𝑠. The reader is 

reminded that the effect of increasing 𝐻/𝐷 in the model is simulated by decreasing the vortex 

passing frequency; i.e. emulating the reduction in frequency via vortex pairing. This frequency 

effect, which was presented in figure 3.4 and is reproduced in the bottom of figure 5.21, is 

qualitatively similar to that seen in the experimental results (figure 5.21 top). At high frequency 

(small 𝐻/𝐷), both model and experimental results show the pressure fluctuations to be lowest at 

the stagnation point and rise to be highest at the end of the stagnation zone. As the frequency 

decreases (𝐻/𝐷 increases), the level of pressure fluctuations increases at the stagnation point. Also 

both the model and the experimental results show that within the zone 𝑟/𝐷 < 0.5, the pressure 

fluctuations increase with 𝑟/𝐷 at highest-frequency (smallest 𝐻/𝐷), while they decrease with 𝑟/𝐷 

for the middle and lowest frequency (𝐻/𝐷 = 3 𝑎𝑛𝑑 4). For all cases, the RMS pressure level 

increases with 𝑟/𝐷 when 𝑟/𝐷 > 0.5 (within the stagnation zone) for both the model and the 

measurement results. 
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Figure 5.21 Comparison of the effect of varying 𝐻/𝐷 on RMS wall-pressure fluctuation 

between the experimental (top) and the model (bottom) results at 𝑅𝑒𝐷 = 8272 . In the model, 

increasing frequency corresponds to decreasing 𝐻/𝐷. The broken green lines outline the end 

of the stagnation zone 
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Figure 5.21 also show consistency between the calculation and the measurement in that the 

trend of increasing RMS level with increasing 𝐻/𝐷 (decreasing frequency) at the stagnation point, 

reverses by the end of the stagnation zone. The switching point, which happens at a specific 𝑟/𝐷 

location in the model results, happens at different 𝑟/𝐷 locations in the measurements, depending 

on which two 𝐻/𝐷 cases are considered. This difference in the location of switching might be due 

to the increasing vortex core size with increasing 𝐻/𝐷 (due to vortex pairing); an effect that is not 

captured in the present model but need to be included in future development of the model. 

Finally, figure 5.22 demonstrates the general consistency between the experimental (top 

plot) and the model (bottom plot) results regarding Reynolds number effect. In both cases, as 

Reynolds number increases, the fluctuating pressure level decreases. Based on the discussion of 

the model results in section 3.2, the overall decrease in the normalized RMS pressure fluctuation 

with Reynolds number is predominantly due to the increase of the normalization scale (the jet 

dynamic pressure) while the level of pressure fluctuation remaining invariant. Of course in the real 

jet it is not expected that the jet’s dynamic pressure would increase with 𝑅𝑒𝐷 without affecting the 

strength of the vortices, and hence the wall-pressure fluctuation. However, a more realistic 

interpretation of the clue from the model results is that perhaps the strength of the jet vortices 

increases with 𝑅𝑒𝐷 at a slower rate than the jet’s dynamic pressure. This idea leads to the following 

hypothesis: the vortex strength (vorticity/circulation) is expected to increase in proportion to the 

shear in the separating shear layer, which is expected to scale as the viscous shear stress in the 

separating boundary layer. The latter is expected to be proportional to 𝑅𝑒𝐷
0.5, based on laminar 

boundary layer theory (Al-Aweni [7] showed that the boundary layer at the jet exit is laminar over 

the Reynolds number investigated). In contrast, the dynamic pressure should increase as 𝑅𝑒𝐷
2. 

Thus, if the wall pressure increases in proportion to the square of vorticity/circulation (based on 
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the pressure source term in equation 1.7) of the jet vortices, the normalized pressure would decay 

as 𝑅𝑒𝐷
−1. This could explain the decay of the normalized pressure fluctuation with Reynolds 

number. 
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Figure 5.22 Comparison of the effect of varying 𝑅𝑒𝐷 on RMS wall-pressure fluctuation 

between the experimental (top) and the model (bottom) results at 𝐻/𝐷 =  3 (experiment) and 

𝑓 ≈ 245 Hz (model). The broken green lines outline the end of the stagnation zone 
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CHAPTER 6: Conclusions and Recommendations  

              
 

The present investigation is focused on studying the unsteady surface pressure fluctuation 

in jets impinging normally on a flat wall. The study is divided into two parts: the first part is 

concerned with developing a simple physics-based mathematical model of the impinging-jet wall 

pressure, and the second part involves measurements of the unsteady wall pressure in an existing 

impinging jet facility.  The intent of developing the mathematical model is twofold:  

(I) as a first step in a multi-step process of developing a high-fidelity, efficient model that may 

be used as a design tool for predicting wall-pressure fluctuation for problems involving 

flow-induced noise and vibration by impinging jets;  

(II) to utilize the model for understanding the connection between the characteristics of the jet 

vortex structures and the surface pressure by varying the main jet and vortex parameters 

one at a time, and investigating the influence of this variation on the wall-pressure 

characteristics. 

As the first-step in the development process, the present model is very simple, consisting 

of an array of potential, point-vortex rings that are advected under their own influence and that of 

their image vortices (due to the presence of the impingement wall), in addition to a steady 

advection field (emulating the mean-jet flow) consisting of potential stagnation point flow. This 

model flow field is coupled with the unsteady Bernoulli’s equation to compute the wall pressure 

at each time instant as the vortex rings advect periodically towards the wall then radially outwards. 

In comparison to the real jet, the present model does not account for several significant 

phenomena. These include the viscous core of real vortices, vortex pairing, vortex-boundary layer 

interaction, and the specific mean advection field of the jet flow. As such, the model is not expected 
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to be useful, in quantitative or qualitative sense, in characterizing the pressure fluctuations outside 

the stagnation zone of the impinging jet, where vortex-wall interaction is known from literature to 

play a significant role in wall-pressure generation. However, the model results are expected to be 

qualitatively consistent with the characteristics of the wall-pressure fluctuation within the 

stagnation zone. Establishing this point, which is done here using experimental data from the 

second part of the investigation, would provide the necessary initial confidence to continue the 

development of the model in the future. 

The model was utilized to examine the effects of changing the vortex-passing frequency, 

jet Reynolds number, and the vortex circulation on the fluctuating wall-pressure in the stagnation 

zone. The effect of varying the frequency effectively corresponded to varying the spacing between 

the jet exit and the impingement plate (𝐻/𝐷). Overall, the model results revealed that the 

stagnation zone pressure fluctuation are either low-level, sinusoidal-like and rather symmetric for 

𝑟/𝐷 < 0.5, or energetic, featuring strong positive and negative peaks, with the negative peak being 

more prominent, for 𝑟/𝐷 > 0.5. The former fluctuations were attributed to “remote” vortex 

influences, and the latter to “local” effects. While the pressure fluctuation associated with remote 

influences remained fairly invariant with 𝑟/𝐷, local effects increased with increasing 𝑟/𝐷 because 

of the increased proximity of the vortices to the wall as they convect radially outwards.  

For 𝑟/𝐷 < 0.5, as the frequency increased (𝐻/𝐷 decreased), 𝑝𝑟𝑚𝑠 was found to decrease 

due to the increasing “packing density” of vortices near the wall within the stagnation zone. The 

corresponding decrease in the inter-vortex spacing caused the induced flow along the stagnation 

streamline (which is parallel to the vortex array) by the individual vortices to overlap, reducing the 

vortex-to-vortex velocity and pressure fluctuation. An opposing frequency (𝐻/𝐷) trend was found 

on locally produced fluctuation (𝑟/𝐷 > 0.5), where increased vortex packing/passage frequency 
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resulted in increasing 𝑝𝑟𝑚𝑠. This opposite effect was connected to the broadening of the induced 

velocity peaks on the wall underneath (which is normal, rather than parallel to the array) with the 

packing density of vortices. 

 When changing the vortex circulation (𝛤) and the Reynolds number (𝑅𝑒𝐷), the overall 

radial distribution of 𝑝𝑟𝑚𝑠 remained qualitatively the same. The main influence of increasing these 

two parameters was to either increase (𝛤) or decrease (𝑅𝑒𝐷) the strength of the pressure fluctuation 

relative to the dynamic pressure of the jet.  

In the second (experimental) part of the investigation, the unsteady wall pressure was 

measured at two Reynolds numbers (𝑅𝑒𝐷 = 8272 𝑎𝑛𝑑 24818; based on exit jet velocity (𝑈𝑗) and 

the jet diameter (𝐷)) for a jet at normal impingement incidence. The pressure was measured using 

an array of eight microphones over a radial domain range 𝑟 𝐷 = 0 𝑡𝑜 2.33⁄  for three separation 

distances between the jet exit and the impingement wall:  𝐻 𝐷⁄ = 2,3, 𝑎𝑛𝑑 4. 

The results yielded radial distributions of 𝑝𝑟𝑚𝑠 that were consistent, both in their shape as 

well as their trends with 𝐻/𝐷 and 𝑅𝑒𝐷, with the literature. Within the stagnation zone, several 

observations showed good qualitative agreement with the mathematical model results. These 

include, the wall-pressure time series features at 𝑟/𝐷 < 0.5 versus 𝑟/𝐷 > 0.5, and the trends in 

the 𝑝𝑟𝑚𝑠 distribution with both 𝐻/𝐷 and 𝑅𝑒𝐷. On the other hand, it appeared that discrepancy in 

finer qualitative details between the experimental and the model results may be accounted for by 

including a vortex viscous-core in the model.  

Analysis of the experimental data alone, using time series and power spectra, suggested 

that the basic wall-pressure generating mechanisms remain the same with increasing Reynolds 

number. However, the overall weakening of the level of pressure fluctuation with Reynolds 

number was inferred to be due to two reasons. First, the slower increase of the pressure source 
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strength (square of vorticity/vortex circulation) with 𝑅𝑒𝐷 relative to that of the jet’s dynamics 

pressure (𝑅𝑒𝐷 𝑣𝑠. 𝑅𝑒𝐷
2  respectively).  Second, the weakening of the vortex-wall interaction 

effectiveness in generating pressure in the wall jet zone. This was hypothesized to be related to the 

jet vortices breaking up and becoming irregular/turbulent with increasing Reynolds number. This 

was implied from the appearance of small-scale random fluctuations in the pressure time series, 

and the irregularity of the negative pressure spikes at the higher Reynolds number (particularly at 

𝐻/𝐷 = 4) . 

Another interesting observation from the experimental data was the fact that the strong 

negative pressure spikes in the wall-jet zone did not weaken with increased 𝐻/𝐷, notwithstanding 

that the overall pressure RMS level decreased with 𝐻/𝐷. This was observed in both time series as 

well as in the wall-pressure probability density functions and skewness results. Since it is well 

understood in the literature that these spikes are produced during vortex-wall interaction, and given 

that the passage frequency of vortices decreases with 𝐻/𝐷 due to vortex pairing, it was concluded 

here that the decrease in RMS is due to the reduction in frequency of the spikes.  

Overall, the results of the present investigation, in addition to providing some new insights 

into the connection between the unsteady wall pressure and the jet vortical structures, establishes 

an encouraging first step towards developing a physics-based model of impinging jets wall-

pressure fluctuation. However, as a first step, the present model is very simple and it does not 

include phenomena that are known to be important for wall-pressure generation: vortex-vortex 

interaction, impingement-plate boundary layer, vortex-boundary layer interaction, viscous-core 

vortex model, and using Poisson’s equation to calculate the wall pressure. These elements should 

be added in future development of the model. The present study suggests that, as far as the 

stagnation zone is concerned, the next two highest priority elements would be the inclusion of 
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viscous-core vortices and the use of a more realistic advection field. Both of these items are 

expected to not only enhance the qualitative agreement with physical observations in the stagnation 

zone, but to possibly also lead to reasonable quantitative comparisons.   
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Appendix: Uncertainty Calculation 

              
 

1- Finding the uncertainty for the root mean square pressure  (𝑝𝑟𝑚𝑠)[(see 28)] 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑣𝑎𝑟(𝑝𝑟𝑚𝑠) ∗ 𝑛 =
𝑝2

2

̅̅ ̅
 

𝑣𝑎𝑟(𝑝𝑟𝑚𝑠) =
𝑝2

2𝑛

̅̅̅̅
 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎 = √𝑣𝑎𝑟(𝑝𝑟𝑚𝑠) 

𝜎 = √
𝑝2

2𝑛

̅̅̅̅
=

𝑝𝑟𝑚𝑠

√2𝑛
 

Where 𝜎 represents the uncertainty and 𝑛 represents the number of independent samples and was 

found assuming 𝑛 to be equal to the number of vortices passing during the measurement period. 

Thus, 

𝑆𝑡𝐷 =
𝑓 ∗ 𝐷

𝑈𝑗
=

𝐷

𝑇 ∗ 𝑈𝑗
→ 𝑇 =

𝐷

𝑆𝑡𝐷 ∗ 𝑈𝑗
 

Where 𝑇 represents the time period between the passage of successive vortices, and 

𝑛 =
𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑎𝑐𝑞𝑢𝑖𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒
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2- Finding the uncertainty for the third order moment (skewness), assuming Gaussian 

variation [(see 28)] 

𝑆 =
(𝑝 − 𝑃)3

𝜎3
=

(𝑝́)3 𝑛⁄

(√∑(𝑝 − 𝑃)2

𝑛 )

3 =
(𝑝́)3 𝑛⁄

(√∑(𝑝́)2

𝑛 )

3 =
(𝑝́)3̅̅ ̅̅ ̅̅

𝑝𝑟𝑚𝑠
3  

𝜕𝑆

𝜕(𝑝́)3̅̅ ̅̅ ̅̅
=

1

𝑝𝑟𝑚𝑠
3  

𝜕𝑆

𝜕𝑝𝑟𝑚𝑠
3 = −

(𝑝́)3̅̅ ̅̅ ̅̅

𝑝𝑟𝑚𝑠
6  

Δ𝑆 = |
𝜕𝑆

𝜕(𝑝́)3̅̅ ̅̅ ̅̅
| ∗ Δ(𝑝́)3̅̅ ̅̅ ̅̅ + |

𝜕𝑆

𝜕𝑝𝑟𝑚𝑠
3 | ∗ Δ𝑝𝑟𝑚𝑠

3  

Δ𝑆 =
1

𝑝𝑟𝑚𝑠
3 ∗ Δ(𝑝́)3̅̅ ̅̅ ̅̅ +

(𝑝́)3̅̅ ̅̅ ̅̅

𝑝𝑟𝑚𝑠
6 ∗ Δ𝑝𝑟𝑚𝑠

3  

Δ𝑆

𝑆
=

Δ(𝑝́)3̅̅ ̅̅ ̅̅

𝑝𝑟𝑚𝑠
3 ∗

𝑝𝑟𝑚𝑠
3

(𝑝́)3̅̅ ̅̅ ̅̅
+

(𝑝́)3̅̅ ̅̅ ̅̅

𝑝𝑟𝑚𝑠
6 ∗ Δ𝑝𝑟𝑚𝑠

3 ∗
𝑝𝑟𝑚𝑠

3

(𝑝́)3̅̅ ̅̅ ̅̅
 

Δ𝑆

𝑆
=

Δ(𝑝́)3̅̅ ̅̅ ̅̅

(𝑝́)3
+

Δ𝑝𝑟𝑚𝑠
3

𝑝𝑟𝑚𝑠
3  

ΔS = [
Δ(𝑝́)3̅̅ ̅̅ ̅̅

(𝑝́)3
+

Δ𝑝𝑟𝑚𝑠
3

𝑝𝑟𝑚𝑠
3 ] ∗ 𝑆 

More generally  

ΔS = [(
Δ(𝑝́)3̅̅ ̅̅ ̅̅

(𝑝́)3
)

2

+ (
Δ𝑝𝑟𝑚𝑠

3

𝑝𝑟𝑚𝑠
3 )

2

]

1/2

∗ 𝑆 

Finding (
Δ𝑝𝑟𝑚𝑠

3

𝑝𝑟𝑚𝑠
3 ) by assuming 
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𝐹 = 𝑝𝑟𝑚𝑠
3 → Δ𝐹 = 3𝑝𝑟𝑚𝑠

2 ∗ Δ𝑝𝑟𝑚𝑠 

Δ𝐹

𝐹
= (

Δ𝑝𝑟𝑚𝑠
3

𝑝𝑟𝑚𝑠
3 ) =

3𝑝𝑟𝑚𝑠
2 ∗ Δ𝑝𝑟𝑚𝑠

𝑝𝑟𝑚𝑠
3 =

3Δ𝑝𝑟𝑚𝑠

𝑝𝑟𝑚𝑠
 

(
Δ𝑝𝑟𝑚𝑠

3

𝑝𝑟𝑚𝑠
3 ) =

3Δ𝑝𝑟𝑚𝑠

𝑝𝑟𝑚𝑠
 

Where  

Δ𝑝𝑟𝑚𝑠 = 𝜎 = √
𝑝2

2𝑛

̅̅̅̅
=

𝑝𝑟𝑚𝑠

√2𝑛
→  (

Δ𝑝𝑟𝑚𝑠
3

𝑝𝑟𝑚𝑠
3 ) = (

𝑝𝑟𝑚𝑠

√2𝑛
) 𝑝𝑟𝑚𝑠⁄  

Finding (
Δ(𝑝́)3̅̅ ̅̅ ̅̅

(𝑝́)3 ) and assuming Gaussian variation  

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑣𝑎𝑟(𝑝3̅̅ ̅) ∗ 𝑛 = 6(𝑝2̅̅ ̅)
3
 

𝑝𝑟𝑚𝑠 = √𝑝2̅̅ ̅ → 𝑝𝑟𝑚𝑠
2 = 𝑝2̅̅ ̅ 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝜎 = Δ(𝑝́)3̅̅ ̅̅ ̅̅ = √𝑣𝑎𝑟(𝑝𝑟𝑚𝑠) = √
6(𝑝𝑟𝑚𝑠

2 )3

𝑛
= √

6𝑝𝑟𝑚𝑠
6

𝑛
= √

6

𝑛
𝑝𝑟𝑚𝑠

3  

(
Δ(𝑝́)3̅̅ ̅̅ ̅̅

(𝑝́)3
) = (√

6

𝑛
𝑝𝑟𝑚𝑠

3 ) (𝑝́)3⁄  

ΔS = [((√
6

𝑛
𝑝𝑟𝑚𝑠

3 ) (𝑝́)3⁄ )

2

+ ((
𝑝𝑟𝑚𝑠

√2𝑛
) 𝑝𝑟𝑚𝑠⁄ )

2

]

1/2

∗
(𝑝́)3̅̅ ̅̅ ̅̅

𝑝𝑟𝑚𝑠
3  
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3- Finding uncertainty for the fourth order moment (kurtosis), assuming Gaussian variation 

and following the same procedure for calculating the uncertainty of skewness [(see 28)] 

𝐾 =
(𝑝 − 𝑃)4

𝜎4
=

(𝑝́)4 𝑛⁄

(√∑(𝑝 − 𝑃)2

𝑛 )

4 =
(𝑝́)4 𝑛⁄

(√∑(𝑝́)2

𝑛 )

4 =
(𝑝́)4̅̅ ̅̅ ̅̅

𝑝𝑟𝑚𝑠
4

 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑣𝑎𝑟(𝑝4̅̅ ̅) ∗ 𝑛 = 96(𝑝2̅̅ ̅)
4
 

ΔK = [((√
96

𝑛
𝑝𝑟𝑚𝑠

4 ) (𝑝́)4⁄ )

2

+ ((
𝑝𝑟𝑚𝑠

√2𝑛
) 𝑝𝑟𝑚𝑠⁄ )

2

]

1/2

∗
(𝑝́)4̅̅ ̅̅ ̅̅

𝑝𝑟𝑚𝑠
4
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