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ABSTRACT 

 

 

THEORETICAL AND COMPUTATIONAL ANALYSIS OF UNSTEADY FLOW  

OVER AN ASYMMETRIC AIRFOIL  

 

By 

 

Shiwei Qin 

 

 

Various methods are employed for studying steady and unsteady flows over an asymmetric 

SD7003 airfoil. First, linear stability methods are used for the investigation of airfoil flow 

stability. Second, flows over the stationary airfoil with steady and unsteady freestream conditions 

are computed by the large eddy simulation (LES) method. 

The laminar separation bubble (LSB) region of the airfoil flow at Reynolds number of 

60,000 and angle of attack (AoA) of 4° is analyzed by the local and global stability methods.  

Both methods correctly predict that the flow is unstable and transitions to turbulence at these 

conditions. The maximum growth rates predicted by the two methods are in agreement.  

The LES results for several steady freestream flows are shown to be consistent with the 

available experimental and numerical data, and then three types of unsteady freestream flows are 

simulated by the LES method. In the first type, the AoA is fixed at 4°, while the freestream 

velocity magnitude varies harmonically with a mean Reynolds number of 60,000, reduced 

frequency from π/8 to 2π, and amplitudes of 0.183 and 0.366 of the mean velocity. In the second 

type of unsteady flows, the freestream velocity magnitude is fixed at Reynolds number of 60,000, 

but the AoA varies harmonically with a mean value of 4°, reduced frequency from π/8 to 2π, and 

amplitudes of 4° and 8°. In the third type of unsteady flow, a wind gust model is employed.  

For the flows with oscillating freestream velocity magnitude, the effect of freestream 

unsteadiness on the aerodynamic forces, vorticity field, velocity fluctuations, and boundary layer 



 

separation and reattachment are studied. The vorticity plots show that the size of the recirculation 

region changes slightly during a freestream cycle. The mean lift and drag coefficients are nearly 

the same as those obtained for the steady mean freestream flow. However, there is a phase shift 

between the aerodynamic forces and the freestream velocity which is mainly affected by the 

reduced frequency. Higher reduced frequencies and freestream amplitudes cause “wider” 

oscillations in the lift and drag forces, separation and reattachment locations. For the case with 

the highest frequency and the largest amplitude, the spanwise velocity fluctuations are much 

lower than those of the streamwise and normal velocities, while the fluctuation in the streamwise 

velocity is slightly more than that of the normal velocity.  

For the flows with oscillating freestream AoA, higher reduced frequencies and AoA 

amplitudes cause wider oscillations in the lift and drag forces. The amplitude of the lift force is, 

however, about one order of magnitude larger than that of the drag force. Compared to the steady 

mean freestream flow, there is little change in the mean lift, while the mean drag is reduced due 

to Katzmayr effect. The size of the recirculation region changes significantly during a freestream 

cycle at low reduced frequencies and high AoA amplitudes. Higher reduced frequency decreases 

the amplitude of separation point oscillations, but higher AoA amplitude increases it. Significant 

oscillation in the surface friction occurs near the trailing edge at high reduced frequencies and 

AoA amplitudes, resulting from strong vortex shedding at the trailing edge. Compared to the 

steady mean freestream flow, the mean separation point moves downstream and the mean 

reattachment point moves upstream when the freestream velocity magnitude or AoA oscillates. 

The wind gust simulation shows a rapid increase in the aerodynamic loads on the airfoil at 

the beginning of the gust. It is also shown that small fluctuations in the gust can cause significant 

fluctuations in the aerodynamic forces.  
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1.    Introduction 

 

 

There has been a growing interest in small Unmanned Air Vehicles, including Micro Air 

Vehicles (MAVs), in recent years due to their growing capability to perform a wide range of 

missions. These vehicles typically operate at low to moderate Reynolds numbers in the order of 

10
4
 to 10

5
 due to low speed and small vehicle size. At this range of Reynolds numbers, the flow 

near the airfoil leading edge is still laminar, and flow separation occurs at some point due to 

substantial adverse pressure gradients. At not very high Reynolds number and AoA, the flow can 

reattach to the airfoil.  The flow streamlines show a laminar separation bubble (LSB) [1-3] 

bounded by the separation and reattachment points. Based on its size, a LSB can be categorized 

as either a small bubble or a large bubble. A small bubble covers a small portion of the airfoil 

surface and does not have a significant effect on the velocity and pressure distributions. A large 

bubble covers a considerable portion of the surface and significantly changes the pressure 

distribution and the velocity field. A separation bubble, especially a large one, decreases the lift 

and increases the drag, and consequently reduces the efficiency of the airfoil. The onset and 

successive breakdown of the LSB at low Reynolds number flows is known to be detrimental to 

the performance, endurance, and stability of MAVs.  

To better understand the stability characteristics of the flow over a 2D wing at low 

Reynolds number, local and global stability methods are used in this study to analyze the flow 

instability over the SD7003 airfoil with a considerable LSB. Stability analysis is considered to be 

useful for better understanding of the instability of attached and separated flows [4]. Hammond 

and Redekopp [5] used a modeled separation bubble with the assumption of quasi-parallel flow 

and performed linear local stability analysis with a one-dimensional eigenvalue and Orr-

Sommerfeld solver to determine the conditions for absolute instability of the flow over an airfoil 
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with LSB. Theofilis et al. [6], on the other hand, used non-parallel two-dimensional steady flows 

as base flows in their “BiGlobal” linear stability analyses. Since stability analysis is sensitive to 

the base flow, it is important that the base flow is carefully quantified. Thus, experimental 

measurements or “reliable” numerical simulations are necessary for doing an accurate stability 

analysis. In the current study, the base flow is computed by LES [7]. Results of local and global 

stability analyses are compared, and stability features of the flow over the SD7003 airfoil are 

discussed.  

Many studies have been done on the characterization and control of LSB over symmetric 

and asymmetric airfoils. A commonly studied asymmetric airfoil for low-moderate Reynolds 

number flows is the SD7003 airfoil. Experimental study and measurements of flows around the 

SD7003 airfoil have been reported by a number of researchers using different facilities and 

methods. Radespiel et al [8] conducted experiments in a water channel and a low-noise wind 

tunnel at Technical University of Braunschweig (TU-BS) and obtained high resolution velocity 

and Reynolds stress data. Detailed particle image velocimetry (PIV) measurements were 

conducted by Ol et al. [9] at the Air Force Research Laboratory (AFRL) water channel. 

Measurements in a water channel using Molecular Tagging Velocimetry (MTV) were conducted 

by Katz et al. [10-13] at Turbulent Mixing and Unsteady Aerodynamics Laboratory (TMUAL) at 

Michigan State University. Numerical tools were also applied to simulate flows over the SD7003 

airfoil. Reynolds-averaged Navier-Stokes (RANS) [14-17] and LES [7, 18-21] models were both 

employed to capture the flow dynamics and to predict the aerodynamic forces.  

Unsteady aerodynamics of maneuvering airfoils has also been studied by experimental and 

numerical methods [22-24]. Both rigid and flexible airfoils were considered. The airfoil motions 

studied include pitching, plunging, or combination of the two. Bohl and Koochesfahani [22, 25] 
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reported measurements of the vortical field in the wake of a pitching airfoil. LES computation of 

flows past a plunging airfoil was reported by Visbal [23]. A comparison between measurement 

and computation of an airfoil in pitching and plunging motions was given by McGowan et al. 

[24]. Inviscid theory for this type of flows has a 75 years history and has provided valuable 

insight to many questions regarding unsteady flows over moving airfoils. For example, 

Theodorsen [26] presented the lift and pitching moment for a two-dimensional, flat-plate airfoil 

under harmonic pitching and plunging motions. Von Kármán and Sears [27] developed a general 

theory for unsteady aerodynamics of an airfoil in non-uniform motion. An excellent review of 

works in this area is given in reference [28].    

Discrepancy of the measured mean separation and reattachment points in flows over the 

SD7003 airfoil, obtained from different facilities has been reported [9, 11, 29]. The main reason 

for these discrepancies is suggested to be the different levels of freestream turbulence in the 

experimental facilities. Experiments by Olson [12] confirmed that the increased freestream 

turbulence delays the separation and triggers earlier reattachment.   

For MAVs typically flying at low speeds, freestream unsteadiness may cause significant 

changes in aerodynamic forces and thus possible flight instability. Some analytical works based 

on inviscid theory were developed by Isaacs [30] and Greenberg [31] for unsteady flows over 

airfoils. By extending the method of Theodorsen [26], they calculated the lift and moment of an 

airfoil at a fixed AoA in a freestream with harmonic velocity magnitude oscillation. Although 

different assumptions are applied to the wake, the predicted results by Isaacs and Greenberg are 

shown to be very similar. There are not many experimental studies on fixed airfoils operating in 

an unsteady freestream flow. This might be partly due to difficulty of controlling the flow in 

experiments. The frequency of freestream flow oscillation is limited by the fact that the 
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freestream uniformity across the test section becomes unacceptable even at relatively low 

frequencies [32]. Therefore, experiments of this type usually have very low reduced frequencies. 

To verify the Katzmayr effect [33], Toussaint et al. [34] used an array of pitching blades in front 

of the tested airfoil to create a freestream with oscillating flow direction. In this experiment, the 

maximum reduced frequency is less than 0.5, and freestream properties (e.g. level of turbulence) 

behind the oscillating blades were not given. Williams et al. [35] measured flows over a semi-

circular wing in a wind tunnel that generates sinusoidal oscillations in the freestream velocity 

magnitude with reduced frequencies less than 0.7. They found that the measured lift force lags 

the freestream velocity by a noticeable amount even at low reduced frequencies, and the phase 

shift does not show a strong dependence on the mean AoA. The amplitude of oscillations in the 

lift coefficient was shown to be affected by both the AoA amplitude and the frequency of 

oscillations in freestream AoA. However, the measured amplitude and phase shift in lift 

coefficient differed significantly from predictions by Greenberg’s theory. Using k-ω turbulence 

model and a 2D mesh, Gharali and Johnson [36] conducted unsteady RANS simulations of flows 

over fixed S809 airfoil with oscillating freestream velocity direction. In these simulations, the 

reduced frequency ranges from 0.026 to 18. The results for a case with a very low reduced 

frequency of 0.026 were compared to experimental results of a pitching airfoil with some level of 

agreement. Their study also showed that, at high reduced frequencies, the airfoil experiences 

oscillations in lift and drag coefficients with very large amplitude.  

In this work, we study the details of the unsteady flow over the SD7003 airfoil by unsteady 

numerical simulations with the LES method. The simulated oscillation frequencies extend from a 

relatively low value to high values, well beyond the highest found in experiments conducted with 

freestream flow oscillations. This provides a better understanding of the unsteady flow physics 
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over two-dimensional airfoils. Three types of unsteady freestream flows are considered. In the 

first type, the freestream velocity direction and AoA are fixed, but the freestream velocity 

magnitude oscillates harmonically in time. Frequency and amplitude of the oscillation are varied 

(within a range possible in our simulation) to investigate the flow response to different levels of 

flow unsteadiness. In the second type of unsteady flows considered in this study, the freestream 

velocity magnitude is fixed but the freestream velocity direction or AoA is changed harmonically 

in time. Again, the flow direction is changed over a range of frequencies and amplitudes. Effects 

of these two types of freestream flow oscillations on the aerodynamic forces, vorticity field, 

velocity fluctuations, boundary layer separation and reattachment are studied. The computed lift 

coefficients are compared to those predicted by the inviscid theory. Finally in the third unsteady 

flow type considered in this study, a wind gust model is used for studying the flow over the 

airfoil exposed to more realistic “wind type” flow conditions.  

The SD7003 airfoil is used in all analyses presented in this dissertation. Figure 1 shows a 

schematic 2D view of this airfoil, which has a maximum thickness and camber of 8.5% and 

1.48% of the chord length, respectively. This airfoil is chosen because of the availability of 

experimental and computational data.  

 

 
Figure 1: The SD7003 airfoil. 
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2.    Linear Stability Analysis 

 

2.1    Global Stability Formulation 

 

The global stability analysis conducted here is based on the numerical solutions of a three-

dimensional partial-derivative eigenvalue problem, which describes small-amplitude three-

dimensional disturbances developing on a two-dimensional steady or time-averaged base flow 

around the airfoil. The base flow is assumed to be the same in the spanwise direction (denoted by 

z) such that /z=0 for the base flow. Following Ding and Kawahara [37], slight compressibility 

is assumed so that the singularity in the spectrum of the eigenproblem is avoided. The singularity 

arises from the continuity constraint of incompressible flow as explained by Malkus [38]. The 

nondimensional scales for length, velocity, time, density, and kinematic pressure are taken to be 

C , 0U , 0C U , 0 , and 0SU , where S  is the sound speed in the fluid. The dimensionless form 

of the continuity equation is  

0
D

Dt


  V ,                                                         (1)  

where  
D

Dt t


  


V  is the substantial derivative. With the assumption of small 

compressibility, the kinematic pressure p  (which is the pressure divided by density) is a 

function of density as [37], 

 
1

a

Dp D

Dt M Dt




                                                        (2) 

where 0aM U S  is the Mach number of the flow. By substituting Equation (2) into Equation 

(1), a modified continuity equation is obtained  
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1
0

a

Dp

Dt M
  V .    (3) 

Under small compressibility conditions, considering the kinematic viscosity   of the fluid to be 

constant and f  to be a constant body force (e.g. gravitational force), the nondimensional 

momentum equation can be written as  

 21 1 1

3a e

D
p f

Dt M R

 
         

 

v
v v ,                             (4) 

where 0Re U C   is the Reynolds number.  

2.1.1    Base flow 

 

For global stability analysis, the airfoil is assumed to be infinitely long in the spanwise 

direction, so that the base flow becomes two-dimensional and steady. Compressibility is 

neglected in computing the base flow. Therefore, the base flow equations become 

0 V                      (5) 

   2
* * *

1

e

P
R

    V V V ,                                             (6) 

where V  and P  are the velocity and kinematic pressure in the base flow, respectively. * 

represents the two-dimensional gradient operator. 

2.1.2    Perturbation equations 

 

A flow variable may be decomposed into a steady base flow and an unsteady perturbation. 

The perturbed flow variables may be described in the following form 

    , , , ( , ) ' , , ,x y z t x y x y z t v V v                                             (7) 

   , , , ( , ) ' , , ,p x y z t P x y p x y z t  .                                           (8) 
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The perturbations ', ', ', 'u v w p  are assumed to be inhomogeneous in x and y, have a harmonic 

dependence on the spanwise coordinate z, and grow exponentially in time as,  

 ˆ' , ikz tp ip x y e  ,                                 (9) 

 ˆ' , ikz tu iu x y e  ,                              (10) 

 ˆ' , ikz tv iv x y e  ,                               (11) 

 ˆ' , ikz tw w x y e  .                                (12) 

In Equations (9) to (12), i  is the imaginary number, 2 zk C L  is the nondimensional spanwise 

wavenumber where zL  is the spanwise wavelength, and r ii     denotes the complex 

growth rate. The reason for using the imaginary amplitude in the normal modes is to avoid 

complex arithmetic in the calculation of eigenproblem [37].  

Substituting Equations (7) and (8) into the continuity Equation (3) and the momentum 

Equation (4), subtracting the base flow Equations (5) and (6), neglecting the high order terms of 

perturbations and replacing the perturbed variables with Equations (9) to (12) result in the 

following eigenproblem for perturbations with the growth rate as the eigenvalue and perturbation 

amplitudes ˆ ˆ ˆ ˆ, , ,u v w p  as the eigenfunctions.  

        1 1 2 2
* * * *

ˆ 1
ˆ ˆ ˆ ˆ ˆ ˆ

3
a e

p
u u U M R k u kw

x x
    

              
V v v            (13) 

        1 1 2 2
* * * *

ˆ 1
ˆ ˆ ˆ ˆ ˆ ˆ

3
a e

p
v v V M R k v kw

y y
     

            
  

V v v            (14) 

      1 1 2 2
* * *

1
ˆ ˆ ˆ ˆ ˆ ˆ

3
a ew w M kp R k w k kw    

          
 

V v                   (15) 

      1
* * *ˆ ˆ ˆ ˆ ˆ 0ap p P M kw         V v v            (16) 
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For the stability analysis of the separated flow, the following boundary conditions are 

implemented: all disturbance velocity components are zero on the solid wall and in the 

freestream. On the solid wall, the compatibility conditions (Equations (17) and (18) below) are 

derived from the equations for the pressure perturbation. In Equation (17), I
*
 is the two-

dimensional identity matrix. All disturbances at the inflow boundary are zero, which, from a 

physical point of view, serves to ensure that no perturbations other than those due to potentially 

self-excited global eigenmodes enter the separated flow region. Linear extrapolation from the 

interior of the domain is applied for obtaining the disturbances on the outflow boundary.  

 * *
*

1 1 1
ˆ ˆ ˆ ˆ 0

3a e

p kw
M R

  
          

  
I v I v n                           (17) 

ˆ 0w  n             (18) 

Finite element method is used to discretize Equations (13)-(16). With this method, the 

imposition of the boundary conditions results in a real non-symmetric generalized eigenvalue 

problem in the form of 

AΦ BΦ ,         (19)  

where A  and B  are the assembly mass matrices calculated from the base flow and 

 ˆ ˆ ˆ ˆ, , ,u v w p   is the assembly vector of the eigenfunctions. Details on how A  and B are 

computed are presented in APPENDIX A. According to linear stability theory, the stability 

properties of the flow depend on the eigenvalue  . When   is real, the disturbances either grow 

or decay monotonically and the critical Reynolds number is one for which 0  . When   is 

complex, the neutral condition is 0r  , and the onset of instability is oscillatory with 

dimensionless angular frequency i . This normal mode form also includes the time-dependent 

two-dimensional instability of the steady flow for which 0k  .  
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With eigenmodes obtained from stability computation, the total three-dimensional flow 

field can be reconstructed on the basis of the two-dimensional base flow with an arbitrary 

number of disturbance eigenmodes. When these eigenmodes are chosen to be conjugate pairs of 

most unstable modes of an eigenspectrum, the three-dimensional flows can be expressed by the 

following superposition of eigenfunctions (the pressure and y-velocity v  have a similar form as 

that of u  ) 

      
1

ˆ ˆ2 cos cos sin
N nt n n n nr

i i r i
n

u U e kz u t u t
  



   
                   (20) 

      
1

ˆ ˆ2 cos cos sin
N nt n n n nr

r i i i
n

w e kz w t w t
  



  
                       (21) 

where subscripts r , i , n , N denotes the real and imaginary parts of the eigenfunctions, the thn  

pair of eigenmodes and the total number of conjugate pairs of eigenmodes, respectively.  

2.2    Local Stability Formulation 

 

As the first validation step of global stability analysis, local stability analysis is carried out 

for the same base flow, and its results are compared to those of global stability analysis. The base 

flow closely satisfies ∂/∂x<<∂/∂y at all locations, therefore it is reasonable to assume that in a 

short streamwise distance, the flow over airfoil is a parallel flow, which justifies the application 

of local stability analysis to local x-velocity profiles U  at different streamwise locations.  

For a parallel viscous flow  U y , with perturbations assumed to be in form of Equation (22) 

below, the temporal local stability variables are governed by the Orr-Sommerfeld Equation (23). 

For simplification, the viscosity is neglected and the Orr-Sommerfeld equation is reduced to the 

Rayleigh equation (24) [39] with boundary conditions described in Equation (25).  
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            ˆ ˆ ˆ ˆ', ', ', ' , , , expu v w p u y v y w y p y ikx t                    (22) 

    2 2 4ˆ ˆ ˆ ˆ ˆ ˆ'' '' '''' 2 '' 0
i

U i v k v U v v k v k v
k k

  
       

 
                   (23) 

 
2 ''

ˆ ˆ'' 0
U

v k v
U i k

 
   

 
                                 (24) 

    ˆ ˆ0 0 and k yv v y e                                    (25) 

 

A smoothing-spline method is developed in this study to enable exact fitting of any base 

flow profile obtained from experiments or computations with smooth first- and second-order 

derivatives. Simple analytical expressions of the velocity profiles were used by others [40-42] to 

perform local stability analysis. However, it is not practical to find simple analytical profiles for 

all experimental or simulation data. Inaccurate representation of the base flow could cause 

significant error in the stability analysis. The smoothing-spline method gives a nearly perfect 

fitting and is used in the current study. This fitting method is implemented in the eigensolver 

developed in this study. A shooting method [43] is used in the eigensolver to solve the Rayleigh 

equation.  

2.3    Base Flow Results  

 

The base flow used in the present work is the same as that obtained by Galbraith et al. [7] 

with high-order implicit large eddy simulation (LES) method. The airfoil flow has a Reynolds 

number of 60,000 and an AoA of 4°. The computational domain (shown in Figure 2 as an 

enclosed rectangle) for the global stability analysis covers the domain in the range of X/C ∈ 

(0.1941, 1.0156) and Y/C ∈ (0.0011, 0.2914), which ensures that the whole LSB is enclosed for 
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the global stability analysis. For local stability analysis, x-velocity profiles at different 

streamwise locations in the same base flow are used.  

 
 

Figure 2: Base flow around a SD7003 airfoil, Re=60,000, α=4° [7]. Contours represent time-

averaged x-velocity. The rectangular solid line shows the domain used in the global stability 

analysis (For interpretation of the references to color in this and all other figures, the reader is 

referred to the electronic version of this dissertation). 

 

2.4    Local Stability Results 

 

To obtain the most unstable modes, local stability analysis is applied to a series of x-

velocity profiles at different streamwise locations with an increment of 0.05C. The most unstable 

mode is found to occur with the velocity profile at x/C=0.5 shown in Figure 3. The Rayleigh 

Equation (24) is solved with boundary condition described in Equation (25) for the eigenmodes. 

Details of the numerical solution procedure can be found in reference [42]. The most unstable 

mode of is calculated to be ω=17.94+41.48i (Figure 4), corresponding to a most unstable 

nondimensional frequency (normalized by C/U0) of 6.6.   
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Figure 3: Time-averaged x-velocity (U) profile at x/C=0.5. 
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Figure 4: Local stability analysis results for time-averaged x-velocity (U) profile at x/C=0.5; (left) 

growth rate vs. wavenumber, (right) angular frequency vs. wavenumber. 

 

2.5    Global Stability Results 

 

A computational model/code is developed based on the formulation in Section 2.1. To 

validate our code, a series of computations on the global stability of the lid-driven cavity flow 

are performed with the same equations, different base flows and boundary conditions. The 

results are found to be in agreement with those obtained by Ding and Kawahara [37] and 

Theofilis [44]. 
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The effect of grid resolution on the solution is tested by considering six different meshes 

with the following resolutions: 29×21, 41×30, 47×35, 56×41, 70×51, and 76×80 (Figure 5). The 

largest difference between the results obtained by meshes 70×51 and 76×80 is about 3%, which 

indicates that the effect of mesh resolution is relatively small for the 70×51 mesh. This non-

uniform mesh is used for global stability analysis.  
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Figure 5: The four most unstable modes at wavenumber k=20, obtained with different base flow 

grids. 

 

For each wavenumber k, the most unstable mode is sought. A wide range of wavenumber 

values (0.2, 90) is considered. It should be noted that the upper limit of k is relatively high due to 

the fact that the airfoil chord is used as the length scale in our analysis ( 2 zk C L ). If a smaller 

length scale is used, the wavenumbers will be proportionally reduced. This wavenumber range 

corresponds to a range of wavelength normalized by the airfoil chord zL C  (0.070, 31.4). The 

relation between the most unstable eigenvalue, the one with the largest real part, and the 

wavenumber is shown in Figure 6. It is shown that the growth rate decreases as wavenumber 
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increases. In Equations (13) to (15), the terms -k
2
 and   are on opposite sides. Therefore, for k 

larger than 90, the growth rate of the most unstable mode is expected to decrease further. Since 

the real part of the growth rate of the most unstable mode is positive for all k values, the flow is 

unstable. Moreover, the angular frequency increases as the wavenumber increases, indicating 

that the shorter wavelength perturbations are less unstable. With wavenumber k being close to 

zero, the most unstable mode reaches a plateau of ω=18+59.4i at which the angular frequency 

59.4 corresponds to a nondimensional frequency of 9.5. The maximum growth rates from the 

global and local analyses are roughly in agreement, and both methods predict an unstable flow. 

However, the most unstable frequency from the global analysis is higher than that predicted by 

the local analysis. This difference is caused by the combined effect of using local velocity 

profiles and neglecting viscosity in the local stability analysis. Galbraith et al. [7] monitored in 

their simulation the time variation of velocity at a point directly above the airfoil surface at 

x/C=0.5, and plotted the turbulent kinetic energy spectrum at that point (Figure 7). They pointed 

out that the nondimensional frequency of 9 may be the most unstable frequency of the flow even 

though it is not the dominant frequency observed in the velocity energy spectrum. Their later 

stability analysis [20] also yields a most unstable frequency close to 9.  
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Figure 6: The most unstable modes vs. wavenumber; (upper) maximum growth rate, (lower) 

angular frequency. 

 

 

 
 

Figure 7: Turbulent-kinetic-energy frequency spectra at x/C=0.5 (about center of LSB) [7]. 
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According to Equations (20) and (21), the three-dimensional velocity field can be 

reconstructed by adding the summation of a number of eigenmodes to the base flow. Since linear 

instability is assumed, reconstructed velocities do not necessarily resemble the real flow. But the 

emphasis here is on the distribution of velocity disturbances and their relation. Figure 8 shows 

the reconstructed x-velocity given by Equation (20) for k=1, obtained with the conjugate pair of 

the most unstable eigenmodes. The eigenvalue for the most unstable mode is ω=18+59.4i with a 

nondimensional period of T=0.1058. Figures 8 shows the velocity at times 0, T/4, T/2, and 3T/4. 

Since the growth rate of the most unstable mode is greater than zero, the stability analysis 

predicts that the disturbances will amplify in time and become dominant over the base flow. The 

increasing range of the color bar in Figure 8 confirms this. Figure 9 shows the reconstructed 

disturbances (without the base flow velocity) of the three velocity components at T/2 obtained 

with the same eigenmodes. Evidently, the three velocity disturbances share some similar features. 

First, the disturbances are zero at inlet, at airfoil surface and at far-field boundaries, as enforced 

by the boundary conditions. It should be noted that disturbances are also zero at the outlet, which 

is not restricted by the boundary condition. Second, all disturbances are confined to the region 

0.2<x/C<0.65 and y/C<0.2, which corresponds to the LSB region where reverse flow occurs in 

the base flow. The maximum magnitude and maximum gradient of disturbances occur around 

x/C=0.4. It is found that the z-velocity disturbance is much smaller in magnitude than the 

disturbances of x- and y-velocities. Similar differences in disturbances were also found in the 

stability analysis of lid-driven cavity flow by Ding and Kawahara [37]. For wavenumbers other 

than 1, the qualitative structure of the velocity disturbances, calculated based on the pair of the 

most unstable eigenmodes, is similar to that shown in Figure 9. Therefore, the above remarks are 

valid at different wavenumber values.  
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The spanwise eigenmodes indicate the existence of oscillatory flow structure perpendicular 

to the base flow plane. This can be verified by the instantaneous z-velocity contours shown in 

Figure 10 at a z-section plane which are obtained from the 3D LES data of a fully developed 

flow.  
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Figure 8: Reconstructed total x-velocity using the conjugate pair of most unstable modes for k=1; 

(a) t=0, (b) t=T/4, (c) t=T/2, (d) t=3T/4. 
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Figure 9: Reconstructed velocity disturbances using the conjugate pair of most unstable modes 

for k=1 at t=T/2. 

       

 

 

      
Figure 10: Instantaneous normalized z-velocity mw U  on a z-section, α=4°, Re=60,000. 
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3.    Simulation Method 
 

3.1    Background 

 

In addition to stability analysis discussed in the previous chapter, detailed simulations of 

steady and unsteady flows over SD7003 airfoil are conducted with the large eddy simulation 

(LES) method. Reynolds-averaged Navier-Stokes (RANS) models are much computationally 

less demanding than LES but they can only predict the ensemble- or time-averaged behavior of 

the flow. Furthermore, RANS solutions greatly depend on empirical model constants and often 

fail to capture some of the key features of the flow such as flow separation and reattachment. In 

LES, large eddies of the flow are explicitly computed by solving the “filtered” Navier-Stocks 

equations, while smaller eddies are modeled using a subgrid-scale (SGS) model. The rationale 

behind LES is that by modeling less, the error caused by the modeling of turbulence can be 

reduced. It is also believed to be easier and more accurate to model small scales, since they are 

more isotropic and less affected by the boundary conditions. Although LES usually requires 

substantially more computational resources than RANS, it is computationally less demanding 

than direct numerical simulation (DNS) method, and hence can be applied to relatively high 

Reynolds number flows.  

The governing equations for LES are obtained by filtering the time-dependent Navier-

Stokes equations. The filtering process effectively removes eddies with sizes smaller than the 

filter width or grid spacing used in the computation. In some of LES calculations such as those 

conducted by the FLUENT code [45], the filtering is implicit, which means that the filtered 

equations do not explicitly show the information on the filter shape or width. The information is 

implicitly contained in the SGS model and the discretization of the equations.   



21 
 

3.2    Filtered Equations 

 

In any LES method, the resolved or filtered value of variable  is computed as  

     ' , ' '
D

G d  x x x x x ,                                          (26) 

where D is the flow domain, and G is the filter function which satisfies the normalization 

function  , ' ' 1
D

G d  x x x . There are a variety of filter functions such as Gaussian filter, Fourier 

cut-off filter, or box filter [46] available for LES. In the adopted code, the finite-volume 

discretization itself implicitly provides the box filtering operation as 

   
1

' '
V

d
V

  x x x  ,                                               (27) 

where V  is the volume of a computational cell. The implied box filter function is over the 

physical space, and it has the following form 

 
1 , '

, '
0,

V x v
G x x

otherwise


 


  .                                        (28) 

 The filtered continuity and momentum equations for an incompressible and Newtonian fluid 

take the following form [47]: 

           0i

i

u

x





                                                           (29) 

  
  1i j iji i

j i j j j

u uu up

t x x x x x






     
     

       

                          (30) 

where  

  i jij i ju u u u                                                        (31) 

is the unclosed subgrid-scale (SGS) stress tensor. 
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Often, the SGS turbulence models used for ij  are based on Boussinesq hypothesis [48] 

and are expressed by the following equation 

1
2

3
ijij ij kk t S        ,                                         (32) 

where t  
is the subgrid-scale eddy viscosity and ijS  is the resolved-scale strain rate tensor, 

1

2

ji
ij

j i

uu
S

x x

 
  

                                                  (33) 

With a model for t , Equation (30) is closed and may be solved for the resolved variables.   

3.3    Subgrid-Scale Model 

 

The subgrid-scale model used in this study is the Wall-Adapting Local Eddy-viscosity 

(WALE) model of Nicoud et al. [49]. Compared to dynamic Smagorinsky and Kinetic Energy 

Transport SGS models, WALE model is relatively simple yet sufficiently accurate for the flows 

considered in this study. The model is based on the square of the velocity gradient tensor. The 

eddy viscosity is obtained from the following equation  

  
 

   

3 2

2

5 45 2

d d
ij ij

t w
d d

ij ij ij ij

S S
C

S S S S

  



 ,                                    (34) 

where 
d
ijS  is defined as  

 2 2 21 1

2 3

d
ij ijij ji kkS g g g   ,                    (35) 

i
ij

j

u
g

x





                                                       (36) 
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In Equation (34), Δ is the filter width computed as the cubic root of the computational cell 

volume, and wC  is the WALE model constant. A wC value of 0.325 has been found to yield 

satisfactory results for a wide range of flows [45].  

The WALE SGS model is a mixed model based on local rate of strain and rotational 

tensors, thus, suitable for prediction of the SGS kinetic energy dissipation. The eddy-viscosity 

goes naturally to zero in the model in the vicinity of the wall, and the model is able to return the 

correct wall asymptotic ( 3y ) behavior for wall bounded flows; therefore no dynamic procedure 

is required. Additionally, the WALE model generates zero eddy viscosity in laminar flows, while 

reproducing laminar to turbulent transition through the growth of linear instability modes. 

Guleren [50] tested several SGS models and concluded that WALE model performs generally 

better than other tested SGS models.  

A comparison between WALE and other SGS models is made in Figure 11, where the mean 

surface pressure coefficient over SD7003 airfoil as computed with different SGS models are 

compared with the LES results generated by Galbraith et al. [7], whose results are in good 

agreement with the experiment. Figure 11 shows that the WALE model yields a very good 

agreement. Based on these findings, all simulations considered below are conducted with the 

WALE SGS model.  
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Figure 11: Comparison of time- and spanwise-averaged pressure coefficient over the SD7003 

airfoil, obtained by our LES with different SGS models and compared with those obtained by 

Galbraith et al. [7].  The flow Reynolds number based on freestream velocity and airfoil chord is 

60,000, and AoA=4°. KET stands for Kinetic Energy Transportation model.  

 

 

3.4    Grid and Boundary Conditions  

 

Initially, a structured 2D O-grid (Figure 12a) of size 315×151 is generated for the SD7003 

airfoil with a rounded trailing edge (Figure 12c). To generate accurate solution, the mesh is made 

to be highly orthogonal and is stretched rapidly from the surface of the airfoil outward (about 

70% of the grid points are within a chord distance away from the airfoil center) to ensure high 

resolution of the flow near the airfoil (Figure 12c). The far field boundary is made to be almost a 

circle with the center at the chord mid-point and a radius of about 27 chords. The 2D mesh is 

copied in the spanwise (z) direction to form a 3D grid. The 3D grid has 101 nodes in the 

spanwise direction, and thus the total grid size is 315×151×101. The grids are evenly spaced in 
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the spanwise direction with a spanwise extent of 0.2C. The grid is similar to that used by 

Galbraith [20]. 

 

(a) (b) 

(c) (d) 

                                                

Figure 12: Computational grid: (a) grid on XY plane, (b) grid in the vicinity of airfoil, (c) grid 

near the trailing edge, (d) 3D airfoil. 

 

Solutions for the steady flow over SD7003 airfoil were obtained using the 3D 315×151×101 

grid and three other coarser and finer grids [20]. It was found that the 315×151×101 grid 

captures the flow features well and generates results that closely match those obtained based on 

substantially finer grids, even though the substantially finer grids provide slightly better details 
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of the flow in the transition region. The 315×151×101 grid provides an adequate flow resolution 

for the quantities reported here and is used in this study.  

Boundary conditions are specified in the following manner. On most of the far-field 

boundary, freestream velocity conditions with no perturbations are prescribed with steady or 

unsteady flow conditions for velocity and pressure. For wake region of the outer boundary, we 

use the outflow boundary condition in which variables on the boundary are extrapolated from the 

interior of the computational domain. The airfoil surface is modeled with a no-slip adiabatic wall 

boundary condition. A spanwise periodic boundary condition is imposed on the side faces, 

which, equivalently, requires the two side faces to be frictionless and have the same flow 

properties (e.g. velocity and pressure). 

In all simulations considered in this study, sufficient time is given to the flow to become 

fully developed before any data are recorded or analyzed. A flow with steady freestream is 

considered fully developed when lift and drag forces become stabilized and their moving 

averages over two residence times show no change in time. For a flow with periodic freestream 

to be considered fully developed, the monitored lift and drag forces are required to become 

periodic and their peak values become steady. In order to reduce the computational time 

associated with initial development of the 3D flow, a fully developed 2D flow is generated first, 

and the 2D data is then transferred to the 3D mesh and used as the initial condition. The non-

dimensional time step ΔtU∞/C is kept constant at 1.37×10
-4

 which is sufficiently small for 

resolving the temporal variations in the flow.   

The momentum equations are discretized using a second-order bounded central difference 

scheme, and the continuity equation is discretized using a second-order central scheme. With 

very fine mesh near the airfoil surface, implicit time integration is chosen over explicit methods 
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in order to avoid very small time steps. The transient terms are discretized using second-order 

implicit scheme.  

3.5    Separation, Transition, Reattachment, and Force Coefficients 

 

The mean separation and reattachment points are where the mean skin friction coefficient 

changes signs. To define the transition point we follow the approach described in reference [8]. 

Laminar to turbulent transition is assumed to occur where the normalized Reynolds shear stress 

reaches 0.1% of the free steam velocity and grows significantly after that [8].  

For flows with steady freestream, the x-direction is defined as the steady freestream 

direction, and the y-direction is perpendicular to the x-direction, as shown in Figure 13. The lift 

force is defined as the total force on the airfoil in the y-direction, and the drag force is defined as 

the total force on the airfoil in the x-direction. The lift and drag coefficients are defined as 

2( 2)LC L U C   and 2( 2)DC D U C   where L  is the total lift force per unit span length, 

D  is the total drag force per unit span length, and U  is the freestream velocity. The pressure 

coefficient CP is calculated as 2( ) ( 2)PC p p U   , where p  is the freestream pressure.  

The skin friction coefficient CF is calculated as 2( 2)F
u

C U  



n

. 

For flows with harmonically oscillating freestream velocity magnitude or direction, the x-

direction is defined as the mean freestream direction, and the y-direction is perpendicular to the 

x-direction. The lift and drag forces are also obtained by decomposing the total aerodynamic 

force along the x-direction. The same definition of lift and drag for flows with oscillating 

freestream velocity direction was used by other researchers [34, 36]. For flows with a steady 

freestream and an oscillating airfoil (not considered in this study), it is not uncommon to 

decompose the drag and lift along the freestream direction even though the effective AoA is 
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constantly changing due to the airfoil oscillation [23, 54]. Thus, CL, CD, CP, and CF are defined 

the same as for flows with steady freestream, except that U  is now changed to mU , the mean 

freestream velocity magnitude. Unlike flows with steady freestream where pressure gradient is 

zero, flows with unsteady freestream have time-dependent pressure gradient related to the 

freestream velocity acceleration in either velocity magnitude or direction. Therefore for flows 

with unsteady freestream, the reference pressure p  in the CP definition is chosen to be the 

pressure at the point (0, 25C, 0.1C), on the y-axis and 25 chords away from the airfoil leading 

edge. 

All CL, CD, CP, and CF calculated in our study are based on either both time- and spanwise-

averaged data or just spanwise-averaged data. Figure 13 shows a schematic view of the flow 

directions for both steady and unsteady flows. 

y

x

Constant U or U(t)
f

f

y

x

Constant U or U(t)
f

f

 
 

Figure 13: Schematic of flow over airfoil, showing the freestream and the coordinate system.  
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3.6    Comparison of 2D and 3D Simulations 

 

The effect of flow three-dimensionality flow on the aerodynamic forces, the separation and 

reattachment of the boundary layer, and the flow structure is discussed in this section before 

considering the 3D steady and unsteady LES results in detail. For the flow with steady 

freestream, Re=60,000 and AoA=4°, 2D and 3D solutions are compared in Table 1 and Figures 

14-16. Table 1 shows that the aerodynamic forces obtained from 2D solution are similar to that 

of 3D solution, though 2D simulation predicts a slightly longer LSB. Surface pressure coefficient 

obtained from the 2D solution also agrees reasonably well with the 3D solution. However, the 

separation occurs earlier in 2D simulation and the reattachment point is predicted by the 2D 

model to further downstream than that predicted by the 3D model. Also, the skin friction 

coefficient from the 2D solution does not increase to the same level as that of the 3D solution 

downstream of the reattachment point. The maximum difference in friction coefficient between 

2D and 3D solutions is 5.8% of the total variation of CF and it occurs at X/C=0.67. Figure 16 

shows that the difference observed in the spanwise-averaged instantaneous 2D and 3D z-vorticity 

contours is significant. In the 2D solution, the separated boundary layer develops into a series of 

large-scale connected vortices which do not breakdown to smaller structures, consistent with the 

observations made by Galbraith [20] and Hodge et al. [51]. The 2D and 3D results for larger 

angle of attack of AoA=8° (but same Reynolds number) in Table 2 and Figures 17-18 show 

trends similar to those for flows with AoA=4°, even though the differences are more noticeable 

at higher angle of attack.  
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Date Set 
Separation 

sX C  

Transition 

tX C  

Reattachment 

rX C  
Lift coeff. 

CL 

Drag Coeff. 

CD 

LES, 2D 0.23 0.44 0.67 0.55 0.021 

LES, 3D 0.25 0.50 0.64 0.59 0.020 

 

Table 1: Mean quantities obtained from 2D and 3D solutions for the flow with steady freestream 

and Re=60,000 and AoA=4°. 
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Figure 14: Time-averaged surface pressure coefficient obtained by 2D and 3D simulations of the 

flow with steady freestream and Re=60,000 and AoA=4°.  
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Figure 15: Time-averaged skin friction coefficient on the upper surface of the airfoil obtained by 

2D and 3D simulations of the flow with steady freestream and Re=60,000 and AoA=4°.  

 

 

 

 

Figure 16: Instantaneous normalized z-vorticity ( z mC U ) contours obtained by 2D and 3D 

simulations of the flow with steady freestream and Re=60,000 and AoA=4°. 
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Date Set 
Separation 

sX C  

Transition 

tX C  

Reattachment 

rX C  
Lift coeff. 

CL
 

Drag Coeff. 

CD
 

LES, 2D 0.037 0.15 0.29 0.91 0.042 

LES, 3D 0.042 0.16 0.25 0.93 0.040 

 

Table 2: Mean quantities obtained from 2D and 3D solutions for the flow with steady freestream 

and Re=60,000 and AoA=8°. 
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Figure 17: Time-averaged surface pressure coefficient obtained by 2D and 3D simulations of the 

flow with steady freestream and Re=60,000 and AoA=8°. 
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Figure 18: Time-averaged skin friction coefficient on the upper surface of the airfoil obtained by 

2D and 3D simulations of the flow with steady freestream and Re=60,000 and AoA=8°. 

 

 

The differences between 2D and 3D solutions are further examined for unsteady freestream 

flows over the airfoil. Comparison is made among three cases with oscillating freestream AoA. 

In each case, the velocity direction or AoA varies sinusoidally in the x-y plane as 

   4 8 sin 2 mt U t C     where mU
 
is the constant freestream velocity magnitude. The z-

velocity component is zero at freestream. The Reynolds number is calculated as Re mU C  , 

and it is 10,000, 30,000 and 60,000 for the three cases simulated, respectively. The 2D and 3D 

values of CL, CD and z-vorticity iso-surfaces obtained by LES are compared in Figures 19-24.  

As explained in Section 3.5, CL and CD are calculated by normalizing the aerodynamic forces 

with mU . In the z-vorticity iso-surface figures 20, 22, and 24, t0 is the beginning of a cycle when 

the AoA is at its mean value and increasing. When showing the vorticity iso-surfaces for the 2D 

solutions, the 2D domain is extended in the spanwise direction to the same spanwise size as the 
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3D domain for easier comparison. For all three Reynolds numbers, 2D and 3D solutions provide 

similar CL and CD profiles except in the peaks and valleys.  In the 2D profiles, the peaks and 

valleys are somewhat “chopped off”, and the amount “chopped off” increases slightly at higher 

Reynolds numbers. This is directly related to the difference in static pressure between 2D and 3D 

solutions. For the airfoil flows studied here, static pressure contributes vast majority of the lift 

(or drag).  

For the unsteady case with oscillating AoA and Re=60,000, the pressure coefficient CP on 

the airfoil surface at different times of a cycle is plotted in Figure 25. It can be seen that at times 

t0 and t0+T/2 when there is a significant acceleration in freestream AoA, the CP curves of the 2D 

solution are narrower than those of the 3D solution, which causes the “chop-off” in the 2D CL 

and CD curves. There is no significant difference in the overall shape of CP curves obtained from 

2D and 3D solutions at times t0+T/4 and t0+3T/4. This indicates that lack of spanwise instability 

in the 2D simulations prevents the pressure in the separation region from reaching the same low 

and high values as in the 3D simulations at times of fast changing freestream AoA. This 

difference between 2D and 3D solutions also happens at relatively low Reynolds number of 

10,000, which indicates that the spanwise instability has a significant effect on pressure even in 

laminar flows.  

The z-vorticity iso-surfaces obtained from 3D simulations clearly show that the flow 

changes from laminar to turbulent as Reynolds number increases, while 2D solutions fail to 

capture this trend. At lower Re=10,000, the 2D and 3D solutions show very similar flow 

structures that are laminar and similar in spanwise direction. At higher Re=30,000, the 3D 

simulation shows spanwise fluctuation, and breakdown of vortices near the trailing edge while a 

large portion of the flow over the airfoil remains laminar. As Reynolds number further increases 
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to 60,000, the 3D simulation shows that the large-scale vortices break down earlier. At both 

Reynolds numbers of 30,000 and 60,000, the 2D simulations predict the flows to be laminar. As 

Reynolds number increases, the flow structures predicted by 2D and 3D simulations become less 

similar; at Re=30,000, the similarity is still noticeable, but it is much less so at Re=60,000. 
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Figure 19: Lift and drag coefficients obtained by 2D and 3D simulations of the flow with 

oscillating AoA and Re=10,000. 

 

 

 
Figure 20: Iso-surfaces of z-vorticity ( 10z mC U   ) obtained by 2D and 3D simulations of 

the flow with oscillating AoA and Re=10,000 (colored by u/Um for better visibility).  
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Figure 21: Lift and drag coefficients obtained by 2D and 3D simulations of the flow with 

oscillating AoA and Re=30,000. 

 

 

 

    
Figure 22: Iso-surfaces of z-vorticity ( 10z mC U   ) obtained by 2D and 3D simulations of 

the flow with oscillating AoA and Re=30,000. 
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Figure 23: Lift and drag coefficients obtained by 2D and 3D simulations of the flow with 

oscillating AoA and Re=60,000. 

 

 
 

 
Figure 24: Iso-surfaces of z-vorticity ( 10z mC U   ) obtained by 2D and 3D simulations of 

the flow with oscillating AoA and Re=60,000. 
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The spanwise domain size Z/C=0.2 is selected based on Galbraith and Visbal findings [20, 

23]. They compared solutions with spanwise extent ranging from 0.1C to 0.3C and concluded 

that Z/C≥0.1 is sufficient for capturing flow details in the spanwise direction. To further verify 

this, the size of flow vortices in planes perpendicular to the freestream direction was examined in 

the most “extreme” case with Re=60,000 and AoA=16° which involves relatively large vortical 

flow structures in comparison to cases with smaller AoAs. Contours of x-vorticity obtained from 

the LES data for AoA=16° case at several x/C locations are plotted in Figure 26, which shows 

that the size of almost all large-scale vortices in the spanwise direction is less than 1/5 of the 

spanwise extent. Therefore, flow properties in the spanwise direction are not affected by the 

chosen spanwise size.  

Based on the above discussion, the 3D mesh with spanwise extent Z/C=0.2 will be used for 

all computations in the rest of this thesis. 
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Figure 25: Pressure coefficient obtained by 2D and 3D simulations of the flow with oscillating 

AoA and Re=60,000. 

 

 

Figure 26:  Instantaneous contours of x-vorticity ( x mC U ) obtained by 3D simulations of the 

flow with steady freestream and Re=60,000, AoA=16°. 
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4.    Large Eddy Simulations of Steady Freestream Flows over SD7003 Airfoil 

 

To validate the computational method and to establish reference cases for comparison with 

unsteady flows considered in the next chapter, flows around SD7003 airfoil with steady 

freestream are computed in this chapter and compared to available experimental and 

computational data. The z-vorticity iso-surfaces of flows with Re=60,000 and AoA=4°, 8°, 12° 

and 16° as obtained by LES in Figure 27 show the general expected trend that at higher AoA the 

size of recirculation region over the airfoil is bigger and so are the sizes of the vortices formed by 

the separation. For steady flow conditions, high resolution velocity and Reynolds stress 

measurements have been reported by Radespiel et al. [8] whose experiments were conducted in a 

water channel and a low-noise wind tunnel at Technical University of Braunschweig (TU-BS). 

Detailed particle image velocimetry (PIV) measurements for the SD7003 airfoil were also 

conducted by Ol et al. [9] at the Air Force Research Laboratory (AFRL) water channel. Katz et 

al. [10-13] at Turbulent Mixing and Unsteady Aerodynamics Laboratory (TMUAL) at Michigan 

State University also measured the flow over SD7003 airfoil in a water channel with the 

molecular tagging velocimetry (MTV) method. Galbraith et al. [7] simulated steady flows over 

SD7003 airfoil with LES and a high-order low-pass filter as a SGS model. Results obtained by 

two compact differencing schemes (2nd-order and 6th-order) and two meshes (base-line mesh 

and overset mesh) were reported. The base-line mesh used in reference [7] is similar to the one 

used in our study, while the overset mesh has a refined region around the upper surface of the 

airfoil.  

For the steady flow with Re=60,000 and AoA=4°, the predicted separation, transition, and 

reattachment points and lift and drag coefficients are compared to the numerical and 

experimental results in Table 3. These variables are defined in Section 3.5.  
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Figure 27: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for the flow with steady 

freestream, Re=60,000, AoA=4°, 8°, 12° and 16°.  

 

 

Date Set 
Separation 

sX C  

Transition 

tX C  

Reattachment 

rX C  
Lift coeff. 

CL 

Drag Coeff. 

CD 

LES 0.25 0.50 0.64 0.59 0.020 

Galbraith 2nd-order [20] 0.25 0.46 0.66 - - 

Galbraith  6th-order [20] 0.23 0.55 0.65 0.59 0.021 

TU-BS [8] 0.30 0.53 0.62 - - 

AFRL [9] 0.18 0.47 0.58 0.56 - 
 

Table 3: Computed and measured time-averaged data for the flow with steady freestream, 

Re=60,000 and AoA=4°. LES refers to our simulations with WALE SGS model.  
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There are some quantitative differences between the computed data and the AFRL 

experimental data. According to Galbraith and Ol [20], some of these differences may be 

attributed to the fact that the tested airfoil had a tendency to vibrate at certain AoAs, promoting 

premature flow transition. 

The LES predictions are generally in agreement with those measured in TU-BS wind tunnel, 

but seem to predict earlier separation and latter reattachment, thus a larger LSB. Similar trends 

are reported by Radespiel et al. [14], Yuan et al. [16], and Galbraith [20]. Part of the differences 

may be caused by the freestream turbulence intensity in the experimental facility [12, 29, 52]. 

Another possible reason is the reported discrepancy between the nominal and effective angles of 

attack due to interference effects in the wind tunnel.  

Figures 28 and 29 compare the surface pressure coefficient CP and skin friction coefficient 

CF obtained from LES to those by Galbraith [20]. Our LES results obtained with a 2nd-order 

scheme are expected to be comparable to those of Galbraith obtained with the 2nd-order scheme. 

The comparison shows overall good agreement between the two LES results. However, our LES 

predictions seem to be closer to Galbraith baseline 6th-order and overset 6th-order predictions, 

instead of their baseline 2nd-order results.  
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Figure 28: Time-averaged surface pressure coefficient for the flow with steady freestream, 

Re=60,000 and AoA=4°.  
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Figure 29: Time-averaged skin friction coefficient on the upper airfoil surface for the flow with 

steady freestream, Re=60,000 and AoA=4°. 
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Table 4 and Figures 30 and 31 compare LES results for higher AoA of 8° and Reynolds 

number of 60,000. The trends and conclusions are similar to those shown above for the case with 

AoA=4° and Re=60,000. There seems to be a slight shift in the CP and CF curves predicted by 

the two LES models which is due to differences in the SGS model, mesh, and discretization 

method. 

 

 

Date Set 
Separation 

sX C  

Transition 

tX C  

Reattachment 

rX C  
Lift Coeff. 

CL
 

Drag Coeff. 

CD
 

LES 0.042 0.16 0.25 0.93 0.040 

Galbraith 6th-order 0.04 0.18 0.28 0.92 0.043 
 

Table 4: Computed time-averaged data for the flow with steady freestream, Re=60,000 and 

AoA=8°. 
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Figure 30: Time-averaged surface pressure coefficient for the flow with steady freestream, 

Re=60,000 and AoA=8°. 
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Figure 31: Time-averaged skin friction coefficient on the airfoil upper surface for the flow with 

steady freestream, Re=60,000 and AoA=8°. 

 

 

To consider a much more extreme case in terms of flow separation, the 3D flow over the 

airfoil for AoA=16° and Re=60,000 is also computed. The time- and spanwise-averaged data for 

this case are presented in Table 5. For comparison, the results for AoA=4°, 8°, and 12° are also 

listed. The instantaneous vorticity iso-surfaces for AoA=16° in Figure 27 clearly show the rapid 

separation of the flow at the leading edge. At this steep AoA, the flow is not able to recover the 

static pressure (as shown in the CP plot in Figure 32) and thus cannot reattach to the airfoil 

surface. The AFRL measurements [9] show that the maximum CL for SD7003 airfoil at this 

Reynolds number is around 1.05, and CL drops to 0.96 at AoA=14°. Following this trend, the 

predicted CL=0.91 at AoA=16° seems reasonable. Since experimental and numerical data for the 

simulated Re  and AoA are not available for direct comparison, the time-averaged pressure 

coefficient is compared with Galbraith [7] results at AoA=14°, Re=60,000 in Figure 32. Also 

shown in this figure are the LES results for the same Reynolds number but lower AoAs of 4° and 
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8°. The difference between LES results at different AoA is much more significant on the upper 

side of the airfoil as expected. The overall trends observed in current LES results are similar to 

that of Galbraith, though minor differences exist.  

 

AoA (°) 
Separation 

sX C  

Transition 

tX C  

Reattachment 

rX C  
Lift Coeff.  

CL 

Drag Coeff.  

CD 

4 0.25 0.50 0.64 0.59 0.020 

8 0.042 0.16 0.25 0.93 0.040 

12 0.008 - 0.92 1.14 0.124 

16 0.006 - - 0.91 0.277 
 

Table 5: Time-averaged data for the flow with steady freestream, Re=60,000, and AoA=4°, 8°, 

12°, 16°. 
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Figure 32: Time-averaged surface pressure coefficient for the flow with steady freestream at 

different AoAs and Re=60,000.  

 

 

Katz et al. [11] at MSU’s TMUAL conducted a series of water channel measurements for 

steady freestream flows around a fixed SD7003 airfoil using Molecular Tagging Velocimetry 
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(MTV) method. The reported freestream turbulence intensity in the water channel was about 

2.8% of the mean freestream velocity. Also, the Reynolds number in this experiment varied from 

20,000 to 40,000 and AoA varied from 3.75° to 10.44°. These experiments are simulated here 

via LES. Table 6 compares the LES predictions and the experimental data. There are some 

differences between the numerical and experimental results. At relatively small AoAs, LES 

predicts earlier separation in comparison to experiment. The prediction of reattachment point is 

generally not as good as that of the separation point. Some of these differences are inevitably due 

to modeling and numerical issues. There could be some issues related to the experiment. One 

possible reason is the relatively high turbulence intensity in the water channel. Recent 

measurements by Olson [12] show that freestream turbulence will move the separation point 

downstream and move the reattachment point upstream. More discussion regarding the effect of 

freestream unsteadiness on mean separation and reattachment points is given in Section 5.3. Katz 

et al. [11] also reported uncertainty of ±0.4° in the AoA measurement. This may be another 

reason for the discrepancy between numerical and experimental results.  

 

Reynolds Number 20,000 30,000 40,000 

AoA (°) 3.75 7.39 5.49 10.44 

Separation 

( sX ) 

LES 0.303 0.063 0.121 0.017 

TMUAL 0.402 0.054 0.223 0.024 

Reattachment 

( rX ) 

LES 0.981 0.661 0.652 0.102 

TMUAL 0.994 0.438 0.526 0.144 

 

Table 6: Separation and reattachment points obtained by LES and TMUAL experiments. 

 

 

The lift and drag coefficients by LES for all steady freestream cases are compared in Figure 

33. CL and CD for the cases with Re=60,000 have been compared to the available experimental 

and numerical results. For other Reynolds numbers and AoAs, we found no numerical or 
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experimental data for CL and CD in the literature. A rough comparison at data of different 

Reynolds numbers suggest that, for the same AoA, lift coefficient increases as Reynolds number 

increases, and drag coefficient decreases as Reynolds number increases. The same trend was 

observed in simulation results of Galbraith [20] at AoA=4° and 8° and Re=10,000 to 90,000. 
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Figure 33: Time-averaged lift and drag coefficients obtained by LES for flows with steady 

freestream condition.  
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 5.    Large Eddy Simulation of Unsteady Freestream Flows over SD7003 Airfoil 
 

 

In this chapter, 3D flows with unsteady freestream condition over SD7003 are computed by 

LES with the WALE model. The effects of flow unsteadiness on the aerodynamic force, 

boundary layer separation/reattachment, vorticity and velocity fluctuations are systematically 

studied. The unsteadiness in freestream flow is assumed to be simple and sinusoidal. Two sets of 

unsteady flows are considered. In Section 5.1, the freestream flow direction or AoA is fixed, 

while the freestream velocity magnitude or speed is varied harmonically in time. In Section 5.2, 

the freestream velocity magnitude is fixed, while the freestream flow direction or AoA is 

changed harmonically in time. The effect of freestream flow unsteadiness on boundary layer 

separation and reattachment is discussed in Section 5.3. Section 5.4 considers cases involving a 

wind gust.  

5.1    Flows with Oscillating Freestream Velocity Magnitude  

 

In this set of unsteady flows, the airfoil is fixed at 4° relative to the freestream flow 

direction or x-axis, so the AoA is fixed at 4° but the velocity magnitude oscillates sinusoidally in 

time according to Equation (37) (Figure 13). In this equation, mU
 
is the mean velocity 

magnitude, σ denotes the amplitude of freestream velocity oscillation normalized by the mean 

velocity, and 2 f   is the angular frequency. The reduced frequency is mk f C U  and the 

mean Reynolds number based on mU
 
is 60,000.  

    

4

1 sin

0

mU t U t

V W



 

 


 


 

                                                 (37) 
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Case σ k  
CL 

Mean 

CL 

Amplitude 

CD 

Mean 

CD 

Amplitude 
SX C  

Mean 
RX C  

Mean 

Steady 

mean 

freestream 

0 - 0.59 
2.6×10

-3
 

(standard 

deviation) 

0.020 
2.5×10

-4
 

(standard 

deviation) 

0.25 0.64 

U1 0.183 2  0.56 0.43 0.021 0.485 0.33 0.53 

U2 0.183   0.57 0.25 0.020 0.243 0.33 0.51 

U3 0.183 2  0.57 0.18 0.020 0.123 0.33 0.46 

U4 0.183 4  0.57 0.17 0.020 0.063 0.33 0.44 

U5 0.183 8  0.57 0.16 0.020 0.033 0.32 0.47 

U6 0.366 2  0.60 0.86 0.021 0.968 0.30 0.53 

U7 0.366   0.60 0.49 0.020 0.489 0.32 0.49 

U8 0.366 2  0.60 0.36 0.020 0.248 0.31 0.35 

U9 0.366 4  0.60 0.34 0.020 0.126 0.31 0.37 

U10 0.366 8  0.60 0.33 0.020 0.066 0.32 0.40 

 

Table 7: Mean quantities for cases with oscillating velocity magnitude.  

 
 

Table 7 lists the flow parameters for ten simulated cases with unsteady freestream speed 

(labeled U1 to U10). In cases U1-U5 and cases U6-U10 the amplitude of oscillations is the same 

but the frequencies are different. The amplitudes and frequencies chosen cover a range of these 

parameters limited by the LES grid. The force coefficients discussed below are defined in 

Section 3.5. 

5.1.1    Aerodynamic forces 

 

Figures 34-37 show the variation of CL and CD during a cycle after the flows have fully 

developed under the periodic freestream condition. In these figures, a negative CD value implies 

a net thrust force on the airfoil. Both CL and CD oscillate periodically with the frequency of the 

freestream velocity, and a phase shift with respect to freestream velocity which is a function of 

the reduced frequency and freestream velocity amplitude. The mean and amplitude of lift and 
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drag coefficients are listed in Table 7 along with data for the steady freestream flow with 

AoA=4° and Re=60,000. Low values of the standard deviation of CL and CD in Table 7 for the 

steady flow indicate that lift and drag forces are constant when there is no oscillation in 

freestream velocity. Interestingly, Table 7 also show that the freestream velocity oscillation has 

little or no effect on the mean CL and CD which stay close to their steady freestream values. A 

comparison between cases U1~U5 and cases U6~U10 (five pairs: U1-U6, U2-U7, …, U5-U10) 

shows that the mean lift increases slightly (around 5%) when the freestream amplitude is doubled.  

CL and CD in Figures 34-37 are normalized by the mean freestream velocity mU  as 

explained in Section 3.5. If the instantaneous freestream velocity U(t) is used for the 

normalization,  a new set of lift and drag coefficients can be defined/computed as 

* 2( ( ) 2)LC L U t C  and * 2( ( ) 2)DC D U t C  which are plotted in Figures 38-39 for cases 

U6-10.  Evidentially, the time profiles of CL
*
 and CD

*
 are significantly different from those of CL 

and CD and are no longer “sinusoidal-like”.  

Figure 40 shows amplitudes of fluctuations in CL and CD as functions of reduced frequency 

k and the amplitude of freestream velocity oscillation σ. Evidently, CD amplitude increases 

linearly with the reduced frequency. However, CL is not fully linear with respect to the reduced 

frequency. At relatively low reduced frequency, CL amplitude increases slowly with increasing 

reduced frequency. At higher reduced frequency, CL amplitude increases faster and its relation 

with the reduced frequency seems to become closer to being linear. At any reduced frequencies 

considered in this study, doubling the amplitude of freestream velocity oscillation causes both CL 

and CD amplitudes to double, suggesting a linear relation between the amplitude of freestream 

velocity oscillation and the aerodynamic forces. Figure 40 also shows comparison with the 

Greenberg theory [53] which will be discussed later. 
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 Figure 34: Time variations CL for flows with oscillating freestream speed (cases U1-5). 
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Figure 35: Time variations of CD for flows with oscillating freestream speed (cases U1-5). 
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Figure 36: Time variations of CL for flows with oscillating freestream speed (cases U6-10). The 

phase shift for one of the cases is shown as an example. 
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Figure 37: Time variations of CD for flows with oscillating freestream speed (cases U6-10). 
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Figure 38: Time variations of CL

*
 for flows with oscillating freestream speed (cases U6-10).  
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Figure 39: Time variations of CD

* for flows with oscillating freestream speed (cases U6-10). 
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Figure 40: Amplitude of CL and CD for flows with oscillating freestream velocity magnitude. 

 

 

Figures 34-37 show that the phase of aerodynamic forces leads those of the freestream 

velocity. This is shown better in Figure 41 which plots the phase shift between the freestream 

velocity oscillations and lift/drag oscillations for different reduced frequency and amplitude. The 

phase shift is defined as the phase difference between the maximum lift (or drag) and the 

maximum freestream velocity. Unlike amplitudes of CL and CD which are significantly affected 

by σ, Figure 41 shows that the phase shift is slightly affected by σ and is mainly dependent on 

the reduced frequency. For both lift and drag, the phase shift increases as reduced frequency 

increases, more so at lower frequencies. For the considered range of reduced frequency (π/8 ~ 

2π), CD phase shift with respect to freestream velocity varies between 70 and 90 degrees. At high 

reduced frequencies, CD phase shift seems to asymptotically approach 90 degrees, indicating that 

the maximum drag coincides with the maximum acceleration of freestream velocity (instead of 

the maximum velocity magnitude). For the same range of reduced frequency, CL phase shift has 
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a much wider range with the maximum value being around 70 degrees and a minimum close to 

zero. However, the rate of increase in phase shift decreases at higher reduced frequencies. At low 

freestream frequency, CL phase shift quickly drops to zero.  
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Figure 41: Phase shift between force coefficients and freestream velocity for flows with 

oscillating freestream velocity magnitude.  

 

The LES predictions of the CL amplitude and its phase shift are compared with the inviscid 

Greenberg’s theory [53] in Figures 40 and 41. According to Greenberg’s theory, the lift 

coefficient is obtained from Equation (38), where ,L mC  is the lift coefficient of the steady 

freestream flow obtained by the thin airfoil theory [54] as , 2L mC  .  
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Variables F and G in Equation (38) are the real and imaginary parts of the Theodorsen’s function 

[26] both functions of the reduced frequency k. In Figure 40, the two Greenberg CL amplitude 

curves have different rates at the same reduced frequency since σ appears as an independent 

variable in Equation (38). For CL amplitude, LES values are higher than those predicted by 

Greenberg’s theory. However, the CL phase shift obtained from LES data compares much more 

favorably with Greenberg’s theory. The inviscid theory predicts that the harmonic freestream 

velocity oscillations do not affect the mean CL which still takes the steady freestream flow value 

of 0.44. Indeed, the mean CL computed by LES for all ten unsteady cases match the steady flow 

CL, even though the LES values are generally higher than those of the inviscid theory. 

Greenberg’s theory is based on the assumptions that the flow is two-dimensional, fully attached 

over the airfoil, and the wake is planar. These assumptions are not completely true for the 3D 

flows studied here, suggesting why the results predicted by the 3D LES do not match very well 

with the inviscid theory.  

At high reduced frequencies, Figure 41 indicates that the maximum CL values coincide with 

the maximum freestream velocity acceleration. To explain this behavior, the airfoil surface 

pressure coefficient CP at the time of maximum acceleration of freestream velocity for two 

“high” frequency cases U6 and U7 is shown in Figure 42. The pressure component of the lift 

coefficient is obtained directly from the integral of CP over the airfoil surface. For the two cases 

considered in Figure 42, the pressure component makes up almost the entire lift and the viscous 

component is negligible. Our LES results (Figure 43), as expected, indicate that the surface 

pressure is strongly affected by the freestream pressure. In the freestream, both the y- and z-

velocities are zero and the x-velocity is spatially uniform. When gravity is further neglected, the 

momentum equations are reduced to Equation (39) and then Equation (40) for the x-velocity. 
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Equation (40) indicates that the freestream pressure gradient in x-direction is proportional to the 

freestream acceleration and at higher frequencies higher pressure gradient around the airfoil is 

expected to develop. This will lead to higher pressure difference between the lower and upper 

airfoil surfaces, and thus high amplitude of the lift coefficient.  
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Figure 42: Pressure coefficient on the airfoil surface at the time of maximum acceleration of 

freestream velocity for case U6 with 2k   and 0.366   and case U7 with k   and 

0.366  .  

 

 

 
Figure 43: Pressure coefficient around the airfoil at the time of maximum acceleration of 

freestream velocity for case U6 with 2k   and 0.366  . 
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5.1.2    Vorticity field 

 

The instantaneous vorticity fields for flows with oscillating freestream velocity magnitude 

are compared to those of the steady freestream flow in Figures 45-59. For each flow, the 3D iso-

surfaces of the z-vorticity component, the 2D contours of spanwise-averaged z-vorticity 

component, and the line integrals of the spanwise-averaged vorticity magnitude are shown. All 

iso-surfaces are set to have the same normalized z-vorticity value of 10z mC U   . A line is 

drawn across the four snapshots for a better comparison. It should be noted that the vortices 

formed far beyond the trailing edge are not accurately computed because of the relatively coarse 

mesh used in regions away from the airfoil. To quantify the vorticity field, the normalized 

spanwise-averaged vorticity magnitude 2 2 2
x y z

m

C

U
       is integrated along the airfoil 

surface normal and tangent direction (n and s axes in Figure 44, n and s are normalized by the 

airfoil chord C). The spanwise-averaged vorticity magnitude which is an indication of vorticity 

strength is integrated along the n axis from the airfoil surface to the far-field boundary of the 

computational domain, i.e. dn . The spike in dn  close to the trailing edge is due to rapid 

and local formation of the wake at the trailing edge. The profile of dn  oscillates 

considerably in the recirculation region, which makes it difficult to compare vorticity values at 

different times. To get a better picture of how vorticity magnitude changes over time, dn  is 
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further integrated along the s axis from the leading edge to the trailing edge on the upper surface 

as dnds  . 

Figures 45-47 show that the vorticity field over the airfoil does not significantly change in 

time in the steady freestream flow, despite significant variations of the vorticity and vorticity 

magnitude over the airfoil. Even though there are considerable fluctuations in vorticity 

magnitude in the recirculation region, the line integral of the spanwise-averaged vorticity 

magnitude stays almost constant in time. For the flows with oscillating freestream velocity 

magnitude, the vorticity field and magnitude vary much more significantly in time. It appears in 

the iso-surface plots of vorticity that the separation point moves back and forth during each cycle 

depending on the reduced frequency and amplitude of the freestream velocity oscillations. At 

high reduced frequencies (Figures 49 and 55), the fast oscillating freestream flow seems to 

promote the formation of distinct vortices which convect downstream and break down to smaller 

vortices near the trailing edge (as shown by arrows in Figure 55). This is not seen in flows with 

low reduced frequencies (Figures 52 and 58). The integrated vorticity magnitude ( dn  or 

dnds  ) clearly vary in time much more than that observed for steady freestream flow. For 

all cases with oscillating freestream velocity magnitude, dnds   values correlate well with 

the freestream velocity magnitude, and for the time instants shown in Figures 50, 53, 56 and 59, 

the maximum (minimum) value of dnds   coincides with the maximum (minimum) 

freestream velocity magnitude. At t0 and t0+T/2, the freestream velocity magnitudes are the 

same, and values of the integral dnds   are relatively close; the small difference could be due 

to possible phase shift between the maximum dnds   and the maximum freestream velocity. 
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A direct comparison between unsteady cases (cases U1 U5, U6 and U10) in Figure 60 indicates 

that the integrated vorticity values ( dn  ) on the airfoil upper surface for different k and σ 

start to show fluctuations around X/C=0.3. It will be shown in Section 5.1.4 that X/C=0.3 is 

close to the mean separation point for all unsteady cases listed in Table 7. Clearly and expectedly, 

the vorticity magnitude and the deviation between different unsteady flows are significant at or 

after the separation point. At later phases, e.g. at t0+3T/4, the vorticity magnitude for different 

cases with different k and σ start to deviate from each other much sooner at locations closer to 

the leading edge. This can be perhaps related to the shift of the separation point upstream toward 

the leading edge. 

 

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

s

n

 
Figure 44: The n-s coordinate system around the airfoil surface.  
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Figure 45: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) during one residence time 

for the flow with steady freestream, Re=60,000, AoA=4°. (T is the residence time mC U , same 

for Figures 46-47). 

 

 

 
Figure 46: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) during one 

residence time for the flow with steady freestream, Re=60,000, AoA=4°.  
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Figure 47: Integrals of spanwise-averaged vorticity magnitude |Ω| for the flow with steady 

freestream, Re=60,000, AoA=4°. (a) Integrated along n axis; (b) integrated along n and then s 

axes.  

 

 

   
Figure 48: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) during one cycle for case 

U1 with 2k   and
 

0.183  . (t0 is the beginning of the cycle when U equals Um and is 

increasing. T is the period. Same for Figures 49-60) 
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Figure 49: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) during one cycle 

for case U1 with 2k   and
 

0.183  .  
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Figure 50: Integrals of spanwise-averaged vorticity magnitude |Ω| for case U1 with 2k   and

 
0.183  . (a) Integrated along n axis; (b) integrated along n and then s axes.  
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Figure 51: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) during one cycle for case 

U5 with 8k   and 0.183  . 

 

 

 

 
Figure 52: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) during one cycle 

for case U5 with 8k   and 0.183  .  
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Figure 53: Integrals of spanwise-averaged vorticity magnitude |Ω| for case U5 with 8k   and

 
0.183  . (a) Integrated along n axis; (b) integrated along n and then s axes. 

 

 

 

   

Figure 54: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) during one cycle for case 

U6 with 2k   and 0.366  . 
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Figure 55: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) during one cycle 

for case U6 with 2k   and 0.366  .  
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Figure 56: Integrals of spanwise-averaged vorticity magnitude |Ω| for case U6 with 2k   and

 
0.366  . (a) Integrated along n axis; (b) integrated along n and then s axes. 
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Figure 57: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) during one cycle for case 

U10 with 8k   and 0.366  . 

 

 

 

 
Figure 58: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) during one cycle 

for case U10 with 8k   and
 

0.366  .  
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Figure 59: Integrals of spanwise-averaged vorticity magnitude |Ω| for case U10 with 8k   and

 
0.366  . (a) Integrated along n axis; (b) integrated along n and then s axes. 
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Figure 60: Integral of spanwise-averaged vorticity magnitude |Ω| along n axis for cases U1, U5, 

U6, and U10. 

 

5.1.3    Velocity fluctuations 

 

The effect of freestream velocity unsteadiness on the velocity fluctuations over the airfoil is 

studied in this section by comparing the root mean square (RMS) values of three velocity 

components and turbulent kinetic energy (TKE) of steady and unsteady cases. 
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Velocity RMS is calculated for unsteady case U6 with σ=0.366 and k=2π, using LES data 

for five freestream cycles. This case is chosen due to its short period and large amplitude of 

oscillation in freestream velocity magnitude. The larger amplitude of σ=0.366 is chosen because 

it is expected that larger amplitude of oscillation in freestream velocity causes larger variation in 

velocity RMS. During each cycle, the velocity data are recorded at four different times or phases. 

The 3D computational domain has 101 grids in the spanwise (z) direction. Therefore, for a given 

point on the x-y plane and five available cycles, there are 505 (=101×5) instantaneous velocity 

samples for spanwise and phase averaging, from which the velocity RMS and the turbulence 

kinetic energy (TKE) are calculated. The velocity RMS of the steady freestream flow with 

Re=60,000 and AoA=4° is also calculated for comparison, using velocity data for five flow 

residence times. Figure 61 shows the integrated values of the RMS of three velocity components 

for the steady case. These integrated values are easier to interpret and are obtained by integrating 

the velocity RMS and TKE values along the n or n and s directions (Figure 44). These integrated 

values are represented by  RMS dn ,  RMS dnds  , and  TKE dnds  . The integrated values 

of RMS of u, v, w, and TKE along airfoil surface normal and tangent directions (n and s), i.e. 

 RMS dnds  ,  TKE dnds  , are 0.0237, 0.0209, 0.0024 and 0.0004, respectively for the 

steady case. Figure 61 shows that, for the steady freestream flow,  RMS dn  increases along the 

airfoil surface and peaks around the trailing edge.    

The integrated values of velocity RMS and TKE for the unsteady case U6 are plotted in 

Figures 62-64. Similar to steady case, Figure 62 shows that the integrated RMS values of all 

three velocity components are essentially zero at X/C=0, but gradually increases till trailing edge, 

where it suddenly increases. Figures 62-63 show that the RMS of velocity fluctuations changes 

only slightly with the phase and are similar to those shown in Figure 61 for steady flow. Figure 
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64 shows that the TKE values are slightly higher at time t0+T/4 compared to other times or 

phases, suggesting that higher freestream velocity induces stronger “turbulence” and higher 

velocity fluctuations. Also similar to steady flow, it is shown that the fluctuations or RMS of x- 

and y-velocities are comparable, but much bigger than that of z-velocity. Naturally, the TKE is 

dominated by the x- and y-velocity fluctuations and behaves similar to RMS of these velocity 

components. 

By comparing the integrals of velocity RMS and TKE along n and s axes, i.e. 

 RMS dnds   and  TKE dnds   in Figures 63 and 64, it is found that the x- and y-velocity 

fluctuations of the unsteady case U6 with k = 2π and σ = 0.366 are generally lower than those of 

the steady freestream flow while the z-velocity fluctuations are close for these two flows. This is 

also shown in Figure 65 for  RMS dn . It seems that the oscillation in freestream velocity 

magnitude suppresses the fluctuations of the x- and y-velocities but does not noticeably affect the 

spanwise velocity fluctuations.  
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Figure 61: Integrated values of velocity RMS along n axis for the flow with steady freestream, 

Re=60,000 and AoA=4°.  
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Figure 62: Integrated values of velocity RMS along n axis for case U6 with 2k   and 

0.366  . 
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Figure 63: Integrated values of velocity RMS along n and s axes for case U6 with 2k   and 

0.366  . 
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Figure 64: Integrated values of turbulence kinetic energy (TKE) along n and s axes for case U6 

with 2k   and 0.366  . 
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Figure 65: Comparison of integrated values of velocity RMS along n axis between case U6 with 

2k   and 0.366 
 
and the flow with steady freestream with Re=60,000 and AoA=4°. (a) u 

RMS; (b) v RMS; (c) w RMS. 

 

5.1.4    Boundary layer separation and reattachment 

 

Effect of oscillating freestream velocity on the flow over airfoil is further examined in this 

section by comparing the separation and reattachment points for various unsteady and steady 

cases.  Similar to the separation and reattachment points obtained from the mean flow field, the 

instantaneous separation point can be calculated to be the location where the instantaneous skin 

friction coefficient CF first goes from positive to negative, and the instantaneous reattachment 
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point is defined as the location where CF last goes from negative to positive. The mean CF is 

calculated from the time- and spanwise-averaged velocity, and the instantaneous CF is based on 

the instantaneous spanwise-averaged velocity. For the steady freestream flow, Figure 66 clearly 

shows that the instantaneous CF profiles at different times closely follow the mean profile. The 

instantaneous profiles are identical to the mean profile before the separation point, and 

consequently, the instantaneous separation and reattachment points oscillate around the mean 

values with small amplitude. The small oscillations in the CF are due to small perturbations in the 

vortical flow over the airfoil and are not due to any freestream turbulence in the flow which is 

negligible. When the freestream velocity magnitude oscillates at low reduced frequency of π/8 

(Figure 67), the instantaneous separation and reattachment points fluctuate with amplitudes 

larger than those of the steady freestream flow. At higher reduced frequency of 2π (Figure 68), 

the four instantaneous CF profiles deviate further from the mean profile, so much so that the flow 

at time t0 and t0+T/4 becomes almost fully attached. Compared to Figure 68, Figure 69 shows 

that higher freestream velocity amplitude causes even wider oscillation in the skin friction 

coefficient profile. The CF profile at t0+T/4 in Figure 69 suggests that the flow is fully attached, 

while the CF profiles at t0+T/2 and t0+3T/4 show the flow, after early separation, to reattach as 

late as the trailing edge. Figures 67-69 generally show that the separation will be delayed or 

completely eliminated as freestream velocity is accelerating, and it will happen earlier and closer 

to the leading edge when the freestream velocity is decelerating. This is related to the freestream 

pressure gradient as Equation (40) suggests. As the freestream velocity is accelerating, the strong 

negative pressure gradient in the freestream flow will alleviate or completely eliminate the 

positive pressure gradient induced by the airfoil curvature which causes the separation.  
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The mean separation and reattachment points computed based on the mean CF curves for 

steady and unsteady cases are listed in Table 7. The mean separation points for all ten unsteady 

cases are shown to be quite similar, while the mean reattachment points vary between 0.35 and 

0.53 without a clear trend. Compared to the flow with steady freestream velocity, each of 

unsteady cases has a delayed mean separation point and an earlier mean reattachment point 

closer to the airfoil leading edge.  
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Figure 66: Time-averaged and instantaneous skin friction coefficient on the airfoil upper surface 

for the flow with steady freestream, Re=60,000 and AoA=4°.  
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Figure 67: Time-averaged and instantaneous skin friction coefficient on the airfoil upper surface 

for case U5 with 8k   and
 

0.183  . 
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Figure 68: Time-averaged and instantaneous skin friction coefficient on the airfoil upper surface 

for case U1 with 2k   and
 

0.183  . 
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Figure 69: Time-averaged and instantaneous skin friction coefficient on the airfoil upper surface 

for case U6 with 2k   and
 

0.366  .  

 

 

5.2    Flows with Oscillating Angle of Attack (AoA) 

 

In this section we discuss the results for a set of simulations with variable AoA. The airfoil 

is assumed to be fixed but the direction of freestream flow is periodically changed according to 

Equation (41) below. The freestream velocity has a constant magnitude of
 mU  with a mean 

Reynolds number of 60,000. The mean AoA is fixed at 4m   , while the amplitude and 

reduced frequency, f  and k, are changed within a range similar to that used for velocity 

magnitude oscillations in Section 5.1. The ten cases with unsteady AoA considered in this 

section are listed in Table 8. The range of variation in the reduced frequency, k, is chosen again 

to be the same as that in Table 7. The amplitude of AoA oscillations is 4° for cases A1 through 

A5 and 8° for cases A6 through A10.  
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Case 
f

 
(deg.)

 k  
CL 

Mean 

CL 

Amplitude 

CD 

Mean 

CD 

Amplitude 
SX C  

Mean 
RX C  

Mean 

Steady 

mean 

freestream 

0 - 0.59 
2.6×10

-3
 

(standard 

deviation) 

0.020 
2.5×10

-4
 

(standard 

deviation) 

0.25 0.64 

A1 4 2  0.57 2.30 0.018 0.158 - - 

A2 4   0.56 1.13 0.017 0.080 0.35 0.42 

A3 4 2  0.56 0.57 0.017 0.044 0.33 0.46 

A4 4 4  0.56 0.31 0.016 0.030 0.30 0.42 

A5 4 8  0.56 0.25 0.015 0.024 0.29 0.37 

A6 8 2  0.60 4.62 0.011 0.322 - - 

A7 8   0.58 2.29 0.008 0.160 - - 

A8 8 2  0.57 1.15 0.007 0.089 - - 

A9 8 4  0.56 0.62 0.006 0.062 - - 

A10 8 8  0.56 0.50 0.003 0.051 - - 

 

Table 8: Time-averaged data for cases with oscillating AoA.  

 

 

Lift coefficient, drag coefficient, pressure coefficient, and skin friction coefficient are 

defined in Section 3.5. As the AoA oscillates in these flows, it should be noted that the lift and 

drag forces can be computed by decomposing the aerodynamic force vector along the coordinate 

directions or axes constructed based on fixed mean AoA of m  
or they can be obtained by 

decomposing the force along coordinate directions constructed based on instantaneous AoA or 

( )t  (Figure 13). Both of these will be considered below. 
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5.2.1    Aerodynamic forces 

 

Figures 70-73 show the variations of lift and drag coefficients (CL and CD) for one cycle 

after the flows have fully developed under the periodically variable freestream flow AoA 

condition. Lift and drag forces and CL and CD in these figures are calculated over the fixed (mean) 

flow axial and normal directions. Similar to what was observed in flows with oscillating 

freestream velocity magnitude, CL and CD oscillate in time with the freestream frequency, and CL 

and CD profiles are generally “sinusoidal-like”.  

The lift and drag forces can also be computed by decomposing the aerodynamic force 

vector along the coordinate directions constructed based on instantaneous AoA or ( )t . The new 

lift and drag coefficients, denoted as CL
*
, CD

*
, can be calculated by a simple conversion from CL 

and CD as shown in Equation (42), and the results for cases A6-10 are shown in Figures 74 and 

75. Clearly, CL
*
 is similar to CL, but CD

*
 is significantly different from CD, simply because the 

conversion affects the smaller drag coefficient much more than it does the lift coefficient. As 

shown in Figure 75, CD
*
 profiles are no longer “sinusoidal-like”.  
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                                   (42) 

 

The mean and amplitude of CL and CD are listed in Table 8 along with the data for the 

steady freestream flow with Re=60,000 and AoA=4°. It is clear that reduced frequency and 

amplitude of AoA oscillation have only slight effect on the mean lift coefficient which stays 

close to its steady freestream flow value of 0.59. However, in all cases, the mean drag coefficient 

is lower than its steady freestream flow value of 0.020. The reduction in drag of an airfoil when 

the freestream direction is oscillating is referred to as the Katzmayr effect [33]. Toussaint et al. 
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[34] verified the existence of Katzmayr effect in a set of wind tunnel experiments with 

oscillating freestream flow direction with respect to an airfoil, induced by pitching blades. Based 

on these experiments, Ober [55] provided an explanation for the Katzmayr effect, showing that, 

on average, the rotated lift vector has a bigger component in negative drag (thrust) than in 

positive drag. In the experiments by Toussaint et al., the reduced frequencies are lower than 0.5, 

and effects of reduced frequency and amplitude of the AoA oscillation cannot be separated 

because these two parameters could not be changed independently in the experiments. The LES 

results here confirm the Katzmayr effect to a much bigger range of reduced frequency and also 

show that the drag reduction is increased at lower reduced frequency and higher amplitude of 

AoA oscillation. For example, CD drops as much as 83% from case A1 to case A10 because f  

is doubled and k is reduced to 1/16 of its value in case A1. The effect of AoA oscillation 

amplitude on drag reduction may be examined by considering case A10. In case A10, the 

amplitude of oscillation in AoA is 8°, allowing the flow AoA to vary between -4° and 12° during 

one cycle. For this case, the time interval with negative AoA is 1/3 of the cycle. At a negative 

AoA, the freestream velocity has a component in the negative y-direction (Figure 13), resulting 

in a thrust on the airfoil. By comparing CD profiles of cases A5 (Figure 71) and A10 (Figure 73), 

it is clear that the airfoil spends a bigger portion of each period of CD oscillations with negative 

drag (thrust) when the freestream AoA amplitude is higher.  

The amplitudes of oscillations in CL and CD for the unsteady AoA cases are listed in Table 8 

and are also plotted in Figure 76 against the reduced frequency and freestream AoA amplitude. 

Both CL and CD amplitudes seem to increase linearly with the freestream AoA amplitude or f , 

meaning that if AoA amplitude is doubled while keeping the reduced frequency the same, CL and 

CD will also double in amplitudes. CL and CD 
amplitudes seem to be almost linear to reduced 
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frequency too when the reduced frequency is higher than π/2. At low reduced frequencies, CL 

and CD amplitudes change much less with the reduced frequency. Understandably, the flow 

varies more slowly and becomes quasi-steady as the reduced frequency gets close to zero.  In a 

quasi-steady flow, enough time is given to the flow to adjust to changes in AoA, and CL and CD 

values become close to those of the corresponding steady freestream flow.  
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Figure 70: Time variations of CL for flows with oscillating AoA, cases A1-5.  
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Figure 71: Time variations of CD for flows with oscillating AoA, cases A1-5. 
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Figure 72: Time variations of CL for flows with oscillating AoA, cases A6-10.  
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Figure 73: Time variations of CD for flows with oscillating AoA, cases A6-10. 

 

0 45 90 135 180 225 270 315 360
-4

-2

0

2

4

6

8

C
L*

0 45 90 135 180 225 270 315 360
-6

-4

-2

0

2

4

6

8

10

12

14


 (

d
e

g
.)

t (deg.)

 

 , 
f
=8

C
L

* , 
f
=8, k=2

C
L

* , 
f
=8, k=

C
L

* , 
f
=8, k=/2

C
L

* , 
f
=8, k=/4

C
L

* , 
f
=8, k=/8

 
Figure 74: Time variations of CL

*
 for flows with oscillating AoA, cases A6-10.  
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Figure 75: Time variations of CD

*
 for flows with oscillating AoA, cases A6-10. 
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Figure 76: Amplitude of oscillations in CL and CD for flows with oscillating freestream AoA and 

the prediction by Theodorsen’s theory for a pitching airfoil in the steady mean freestream. 
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A notable difference between the results presented in Section 5.1.1 with those shown in this 

section is magnitude of CL and CD amplitudes. For flows with oscillating freestream velocity 

magnitude, the oscillation amplitudes in CL and CD are comparable to each other. However, for 

flows with oscillating freestream AoA, the CL amplitude is one order of magnitude larger than 

the CD amplitude. As explained in Section 5.1.1, when the freestream has constant AoA and 

oscillating velocity magnitude, the acceleration and deceleration in freestream velocity induce 

pressure gradients in the flow direction. However, when the AoA oscillates, the direction of 

pressure gradient vector will also change in time with change in AoA. Figure 77 shows contours 

of pressure coefficient around the airfoil at the time of maximum acceleration of freestream AoA. 

As expected, the direction of pressure gradient in freestream, induced by changes in velocity 

vector is not parallel to the mean flow direction and has a significant component perpendicular to 

the mean flow direction, and therefore the pressure difference helps to significantly increase the 

lift. The pressure coefficient on the airfoil surface is shown in Figure 78. The large magnitudes 

of CP in Figures 77 and 78 are mainly due to large pressure gradient in the freestream flow.  

 
 

Figure 77: Contours of pressure coefficient around the airfoil at the time of maximum 

acceleration of freestream AoA for case A1 with 2k   and 4f  .  
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Figure 78: Pressure coefficient on the airfoil surface at the time of maximum acceleration of 

freestream AoA for case A1 with 2k   and 4f  . 

 

 

Figure 79 shows that the lift and drag forces lead the freestream AoA in phase. Similar to 

the phase shift described in Section 5.1.1, the phase shift here is calculated as the phase 

difference between the peak of CL (and CD) and the peak of freestream AoA. Similar to flows 

with oscillating freestream velocity magnitude, the phase shift is almost not affected by the 

amplitude of oscillations in AoA. However, the CD phase shift increases as the reduced 

frequency decreases, which is opposite to the flows with oscillating freestream velocity 

magnitude. The minor decrease in CD phase shift at low reduced frequencies (compare case A5 

to case A4 for example) is due to the CD profiles being distorted from the “sinusoidal” shape. At 

low reduced frequency, the CD profile is “flattened” at high values and the peak values are 

delayed, and therefore the phase shift is reduced. Similar to flows with oscillating freestream 

velocity magnitude, the reduced frequency affects CL phase shift more than CD phase shift. Phase 

shifts in CL and CD seem to converge to 90 degrees at high reduced frequencies, indicating that 

the maximum values of the aerodynamic forces coincide with the maximum acceleration of the 
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freestream AoA. This is due to the fact that, at high values of reduced frequency, the non-

circulatory or apparent mass terms dominate the solution [54]. 

Like Figure 76, Figures 79 and 80 compare the lift and drag coefficients of an airfoil 

pitching around the chord mid-point given by Theodorsen’s theory [26] with those obtained by 

LES here for the fixed SD7003 airfoil in flows with oscillatory direction or AoA. Gharali and 

Johnson [36] compared CFD results for flows with oscillating freestream direction around a 

S809 airfoil to experimental results of a pitching airfoil, and found some level of agreement 

between them. Since the computational domain used in this study has a far-field boundary that is 

close to a perfect circle centered at the chord mid-point, it is speculated that flow configuration 

of these simulations might be equivalent, in terms of force acting on the airfoil, to the flow with 

steady freestream velocity mU  and the airfoil pitching around its chord mid-point with mean 

AoA 4m    and AoA amplitude f . For a pitching airfoil, Theodorsen’s theory gives the lift 

coefficient in Equation (43) where F and G are Theodorsen’s function as described in Section 

5.1.1. For CL, Figures 76 and 79 show that the predictions of Theodorsen’s theory for the phase 

shift and amplitude agree with the LES results quite well with only a slight discrepancy in CL 

amplitude at high values of reduced frequency, even though some of the assumptions made in the 

theory are not necessarily satisfied for the simulated flow. However, Figure 80 shows that there 

is a significant discrepancy in mean CL values obtained by LES for flows with oscillatory 

freestream AoA with the predictions of Theodorsen’s theory for a pitching airfoil in a steady 

mean freestream.  

 2cos sin

2 sin cos
2 2

L f

m f f

C k t k t

kG kF
F F t G t

  

     

 

    
        
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Figure 79: Phase shift of CL and CD for flows with oscillating AoA and the prediction by 

Theodorsen’s theory for a pitching airfoil in the steady mean freestream. The two Theodorsen 

curves overlay each other. 
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Figure 80: Computed time-averaged lift coefficient for flows with oscillating freestream AoA 

and the prediction by Theodorsen’s theory for a pitching airfoil in the steady mean freestream. 

The two Theodorsen curves overlay each other. 
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For flows with steady freestream, both CL and CD increase monotonically with AoA until 

AoA reaches the stall angle of about 11° for Re=60,000 [20]. The maximum AoA considered in 

this section is 12°, slightly above the stall angle. Therefore, when the reduced frequency is very 

low and the flow has a quasi-steady freestream condition, the maximum CL and CD should 

coincide with the maximum AoA, i.e. the phase shift between the aerodynamic force and the 

freestream AoA should be nearly zero. The profiles of CL phase shift in Figure 79 clearly show 

that the lift coefficient is nearly in phase with the AoA at low frequencies. However, the profiles 

of CD phase shift seem to follow a different trend and still show phase shifts higher than 100 

degrees at low frequencies. This indicates that the minimum reduced frequency considered in 

this study might still be high enough to induce significant phase shift in the CD.  

5.2.2    Vorticity field 

 

A comparison of vorticity iso-surfaces/contours made between flows with steady freestream 

flows at Re=60,000 and AoA=4°, 8°, 12° (Figures 81 and 82) indicates typical effects of AoA on 

vorticity field. For example, as the AoA increases, the separation point moves towards the 

leading edge and the recirculation region grows in size. However, the trends are very different 

when the AoA oscillates. This is illustrated in Figures 83-94, where the z-vorticity iso-

surfaces/contours, and the line integrals of spanwise-averaged vorticity magnitude dn , 

dnds   for cases A1, A5, A6, and A10 are shown. The z-vorticity iso-surfaces and contours 

show that lower reduced frequency and higher amplitude in the AoA oscillation lead to wider 

variations in the vorticity field in terms of vortex size and the starting point of the recirculation 

region. This is consistent with dn  and dnds   plots in Figures 85, 88, 91, and 94. For 

example, in case A6 with k=2π the dn  profiles at four different times as shown in Figure 91 
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are very similar and the difference between the maximum and the minimum dnds   values is 

about 0.2, while in case A10 with k=π/8 the dn  profile varies significantly over time and the 

difference between the maximum and the minimum dnds   values is about 0.7. A 

comparison between a flow with oscillating freestream AoA and a steady freestream flow with 

the same maximum AoA shows that the unsteady flow has a smaller recirculation region. For 

example, in the extreme case A10 with k=π/8 and 8f    (Figures 92 and 93) the freestream 

AoA varies from -4° to 12° during one freestream cycle, but the maximum size of the 

recirculation region is similar to that of the steady freestream flow with AoA=8°, which is much 

smaller than that of the steady freestream flow with AoA=12° (Figures 81 and 82). 

By relating the CD values of case A10 ( 8f  , k=π/8) in Figure 73 with the z-vorticity 

iso-surfaces in Figure 92, it can be seen that the boundary layer separation occurs around the 

same time (t0+T/2) when the CD value starts to flatten out. Compared to flows oscillating with 

high reduced frequency, those with low reduced frequency have more time to develop and thus 

cannot sustain the adverse pressure gradient and experience separation near the leading edge. 

After the separation, the static pressure in the recirculation region recovers from its low values, 

keeping the drag coefficient low and the CD profile flattened.  
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Figure 81: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for flows with steady 

freestream, Re=60,000 and AoA=4°, 8° and 12°. 

 

 

 
Figure 82: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) for flows with 

steady freestream, Re=60,000 and AoA=4°, 8° and 12°.  
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Figure 83: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A1 with 2k   

and 4f  . At t0, α(t) = 4°; at t0+T/4, α(t) = 8°; at t0+T/2, α(t) = 4°; at t0+3T/4, α(t) = 0°. 

 

 

 

 
Figure 84: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) for case A1 with 

2k   and 4f  . At t0, α(t) = 4°; at t0+T/4, α(t) = 8°; at t0+T/2, α(t) = 4°; at t0+3T/4, α(t) = 

0°. 
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Figure 85: Integrals of spanwise-averaged vorticity magnitude |Ω| for case A1 with 2k   and 

4f  . (a) Integrated along n axis; (b) integrated along n and then s axes. 

 

 

 

 

   
Figure 86: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A5 with 8k   

and
 

4f  . At t0, α(t) = 4°; at t0+T/4, α(t) = 8°; at t0+T/2, α(t) = 4°; at t0+3T/4, α(t) = 0°. 
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Figure 87: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) for case A5 with 

8k   and
 

4f  . At t0, α(t) = 4°; at t0+T/4, α(t) = 8°; at t0+T/2, α(t) = 4°; at t0+3T/4, α(t) = 

0°. 
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Figure 88: Integrals of spanwise-averaged vorticity magnitude |Ω| for case A5 with 8k   and

 
4f  . (a) Integrated along n axis; (b) integrated along n and then s axes. 
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Figure 89: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A6 with 2k   

and
 

8f  . At t0, α(t) = 4°; at t0+T/4, α(t) = 12°; at t0+T/2, α(t) = 4°; at t0+3T/4, α(t) = -4°. 

 

 

 
Figure 90: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) for case A6 with 

2k   and
 

8f  . At t0, α(t) = 4°; at t0+T/4, α(t) = 12°; at t0+T/2, α(t) = 4°; at t0+3T/4, α(t) 

= -4°. 
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Figure 91: Integrals of spanwise-averaged vorticity magnitude |Ω| for case A6 with 2k   and

 
8f  . (a) Integrated along n axis; (b) integrated along n and then s axes. 

 

 

 

   
Figure 92: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A10 with 8k   

and
 

8f  . At t0, α(t) = 4°; at t0+T/4, α(t) = 12°; at t0+T/2, α(t) = 4°; at t0+3T/4, α(t) = -4°. 
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Figure 93: Instantaneous contours of spanwise-averaged z-vorticity ( z mC U ) for case A10 

with 8k   and
 

8f  . At t0, α(t) = 4°; at t0+T/4, α(t) = 12°; at t0+T/2, α(t) = 4°; at t0+3T/4, 

α(t) = -4°. 
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Figure 94: Integrals of spanwise-averaged vorticity magnitude |Ω| for case A10 with 8k   and

 
8f  . (a) Integrated along n axis; (b) integrated along n and then s axes. 

 

5.2.3    Velocity fluctuations 

 

The effect of freestream AoA oscillations on velocity fluctuations over the airfoil is studied 

in this section by considering the RMS values of various velocity components and TKE for case 
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normal direction, (n),  RMS dn  at four different times during a cycle of oscillation in AoA are 

nearly the same. This is further confirmed by the integrated values of velocity RMS along airfoil 

surface normal and tangent directions, (n, s),  RMS dnds   in Figure 96 and those of TKE in 

Figure 97. It is evident that the velocity fluctuations at different phases, as measured by RMS 

values are similar when the oscillation in freestream direction has a high reduced frequency. It 

can also be seen in Figures 95 and 96 that the RMS of x-velocity and RMS of y-velocity 

components (u′ and v′) are comparable and are one order of magnitude higher than the RMS of 

z-velocity component (w′). The RMS of y-velocity is slightly higher than the RMS of x-velocity 

(Figure 96), which shows that the oscillation in freestream AoA can cause more fluctuation in y-

velocity than in x-velocity.  

The trends in Figures 96 and 97 are similar to those in Figures 63 and 64, indicating that 

qualitatively the effects of freestream oscillations in AoA on the airfoil flow velocity fluctuations 

are similar to those caused by oscillations in the freestream velocity magnitude. However, the 

velocity fluctuations induced by AoA oscillations are observed to be quantitatively much more 

significant than those caused by velocity magnitude oscillations. 
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Figure 95: Integral of velocity RMS along airfoil surface normal direction, n for case A6 with 

2k   and
 

8f  . 
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Figure 96: Integral of velocity RMS along n and s axes for case A6 with 2k   and
 

8f  . 
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Figure 97: Integral of turbulence kinetic energy (TKE) along n and s axes for case A6 with 

2k   and
 

8f  . 
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5.2.4    Boundary layer separation and reattachment 

 

In this section, the effects of oscillating freestream direction or AoA on the boundary layer 

separation and reattachment are examined. Mean and instantaneous values of the skin friction 

coefficient on the airfoil for cases A1, A3, A5, A6, and A10 are plotted in Figures 98-102. 

Similar plots for the steady freestream flow with Re=60,000 and AoA=4° were previously shown 

in Figure 66 in Section 5.1.4. A comparison between steady and unsteady cases indicates the CF 

variation, or profile over the airfoil becomes very different when the freestream flow direction 

oscillates. The CF profiles are also very different at different phases or times. Figures 98-100 

show that as the reduced frequency of oscillation in AoA increases, the separation point moves 

less. This is in agreement with the observation made in the previous section that higher 

frequency of oscillation in freestream AoA leads to lower variation in the vorticity magnitude. 

Another observation made from CF plots in Figures 98-100 is that, close to the trailing edge, CF 

oscillates around the mean value with larger amplitude as the reduced frequency increases. This 

is due to vortex shedding from the trailing edge that occurs at high reduced frequencies (Figures 

83, 84, 89 and 90). Because of oscillation in the freestream flow direction, the vortex shed from 

the airfoil upper surface near the trailing edge can move either upward or downward. For the 

vortex to be shed downward, the fluid above the airfoil upper surface and near the trailing edge 

will have to impinge the airfoil surface harder in comparison to the flow with the vortex shed 

upward, thus the instantaneous CF has to be higher than the averaged CF. A comparison between 

Figure 100 (case A1) and Figure 101 (case A6) shows that as the amplitude of oscillation in AoA 

increases, the instantaneous separation point moves upstream towards the leading edge, and the 

near trailing edge values of CF also oscillate more. A comparison between Figure 101 (case A6) 

and Figure 102 (case A10) shows that the oscillation in CF around the trailing edge subsides 
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significantly when the reduced frequency drops from 2π to π/8, which again shows the 

significance of vortex shedding at the trailing edge and the effect it has on the CF.  

The mean separation and reattachment points reported in Table 8 are obtained based on the 

mean skin friction coefficient. No separation (and thus reattachment) is found for cases A1 and 

A6-10. For cases A2-5 which have separation and reattachment points, the mean separation point 

is delayed by an increase in the reduced frequency. Compared to the flow with steady freestream 

velocity, results of the ten cases considered here show that oscillations in freestream flow AoA 

generally suppress the mean separation. 
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Figure 98: Time-averaged and instantaneous skin friction coefficient on the airfoil upper surface 

for case A5 with 8k   and 
 

4f  . 
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Figure 99: Time-averaged and instantaneous skin friction coefficient on the airfoil upper surface 

for case A3 with 2k   and 
 

4f  . 
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Figure 100: Time-averaged and instantaneous skin friction coefficient on the airfoil upper 

surface for case A1 with 2k   and 
 

4f  . 
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Figure 101: Time-averaged and instantaneous skin friction coefficient on the airfoil upper 

surface for case A6 with 2k   and 
 

8f  . 
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Figure 102: Time-averaged and instantaneous skin friction coefficient on the airfoil upper 

surface for case A10 with 8k   and 
 

8f  .  
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5.3    A Discussion Regarding Effect of Freestream Unsteadiness on Mean Separation and 

Reattachment Points 

 

There have been some discussions in the literature regarding the effect of freestream flow 

perturbations on the mean separation and reattachment points. Measurements of laminar 

separation bubble (LSB) over SD7003 airfoil at Re=60,000 and AoA=4° were conducted at four 

different facilities [9, 29] including the tow tank at Institute for Aerospace Research (IAR), the 

low-noise wind tunnel at Technical University of Braunschweig (TU-BS), the free-surface water 

tunnel at Air Force Research Laboratory (AFRL), and the closed-circuit water tunnel at RWTH 

Aachen University. Mean separation and reattachment data from these facilities are listed in 

Table 9, along with the estimated freestream turbulence intensity in the facilities. Evidently, IAR 

and TU-BS data agree quite well, the slight difference can be partly due to the finite aspect ratio 

of the wing in the IAR facility which induces a smaller effective AoA than those in the other 

three cases [9]. In the AFRL experiment, the separation bubble forms considerably further 

upstream and the boundary layer reattaches also further upstream in comparison to IAR and TU-

BS data, which is likely caused by a true AoA that may be slightly larger than the nominal [9]. 

The RWTH data show delayed separation and advanced reattachment (and consequently smaller 

LSB) compared to the other three data sets. This seems to be caused mainly by the substantially 

higher freestream turbulence intensity in the RWTH facility. 

 

Data Set 
Freestream Turbulence 

Intensity, (%) 
Separation sX C  Reattachment rX C  

IAR 0 0.33 0.63 

TU-BS 0.1 0.30 0.62 

AFRL ~0.1 0.18 0.58 

RWTH 1 0.390 0.515 
 

Table 9: Measured separation and reattachment points for AoA=4° and Re=60,000 from different 

experimental facilities. 
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Burgmann et al. [29, 52] at RWTH Aachen University measured the flow over SD7003 

airfoil with Re=20,000 and AoA=4° at two levels of freestream turbulence. The freestream 

turbulence intensity was 1.5% in their earlier experiments, but with additional flow conditioning 

devices in their later experiments it was lowered to 1%. The measured separation and 

reattachment points from these experiments are reported in Figure 103, which clearly indicates 

that the separation point moves downstream at higher turbulence intensity, except in the case 

with an AoA of 8°. At this high AoA, the strong adverse pressure gradient at the separation 

region could make the effect of freestream turbulence intensity become insignificant. These data 

do not support the discussion about effect of turbulence intensity on reattachment, because the 

method of determining the reattachment point in the later experiments is fundamentally different 

from that in the earlier experiments. In the earlier experiments, both separation and reattachment 

points were determined using time-mean streamlines. In the later experiments, an instantaneous 

reattachment point was determined at each time step dividing the flow field into a main 

recirculation region and a region of shed vortices, and then the variables were averaged to be the 

time-mean reattachment point. It was noted by Burgmann et al. that this new method results in 

reattachment points to significantly move upstream in comparison with points obtained based on 

mean streamlines.  
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Figure 103: Comparison of the separation and reattachment points for freestream turbulence 

intensity of 1.0% and 1.5% at Re=20,000 [29, 52]. 

 

Galbraith [20] used LES to investigate the sensitivity of the separation bubble size and 

shape to the leading edge disturbances in steady flows. The disturbance was selected to be a wall 

normal zero-net mass-flow blowing/suction slot with a streamwise sinusoidal distribution, and 

the slot was positioned near the leading edge. Two disturbance velocity amplitudes, with 0.1% 

and 1% of the freestream velocity, were considered. It was found that, for both disturbance 

velocity amplitudes, the separation point moves downstream while the reattachment point moves 

upstream, resulting in diminished separation bubbles compared to the case without disturbances. 

Olson [12] measured the LSB size over a stationary SD7003 airfoil under different levels of 

freestream turbulence and verified that the increased freestream turbulence moves the separation 

point downstream and the reattachment point upstream. It was further shown that the increase in 
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freestream turbulence can even eliminate the reversed flow region in the mean flow plots (within 

the resolution of the measurements). 

In the current study, the mean separation and reattachment results in Sections 5.1.4 and 

5.2.4 show that the harmonic oscillations of freestream velocity, either in magnitude or direction, 

will delay the mean separation, pushing it downstream and trigger earlier mean reattachment 

closer to the leading edge up to the point that the mean flow may become fully attached. 

Compared to the studies mentioned above, flows in this study have much higher level of 

freestream fluctuations. This implies that suppression of LSB could occur under much higher 

level of freestream fluctuations than freestream turbulence. Nevertheless, our findings are 

consistent with most of experimental data reported in the literature.  
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5.4    Flow with Wind Gust  

 

This section considers the aerodynamic response of the SD7003 airfoil to a wind gust. Wind 

gust is difficult to predict or model as it depends on many factors such as the geographical 

location and season. This is evident in the measured time variation of wind speed shown in 

Figure 104 [56, 57]. As a universal model of wind gust is not realistic, and a simple model can be 

very helpful in better understanding of flow over airfoils in harsh wind gust environment.   

 

 
Figure 104: Measured wind speed at (upper) a sea mast in Vindeby offshore wind farm [56] and 

(lower) a 10 meter tower [57]. 

 

 

Here, the flow over SD7003 airfoil is computed by LES with a wind gust model [58] 
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decrease in wind speed with added oscillations, while the wind direction is kept constant with a 

fixed AoA of 4°. It takes the following form 

  0 1 2 3U t U G G G    .                                              (44) 

where 0U  is the freestream velocity prior to the wind gust, and 1G , 2G , 3G  are defined as  

 1 1 2exp( )G D t D t  ,                                              (45) 

 

                                                                2 3 4G D erf D t ,                                              (46) 

 

    3 5 6 7exp sinG D D t D t ,                                    (47) 

 

1 7~D D  are the model constants. The “damping” function, 1G  causes a sudden increase in the 

freestream wind speed, the saturation function 2G  sets the speed after the wind gust, and 3G  

controls the perturbations of the wind gust. The model constants can be adjusted to reflect 

different type of “wind gusts”.  

The model constants in Table 10 generate the wind gust shown in Figure 105. The Reynolds 

number for the steady flow before the wind gust is Re=60,000. The sudden increase in velocity 

drives the Reynolds number up to maximum Re=74,000. It takes about 3 residence times 

(residence time=
0C U ) for the freestream velocity to decline from the maximum velocity and 

stabilize at Re=63,000.  

 

Constants D1 D2 D3 D4 D5 D6 D7 

Values 0700U  7 (3 )RT  1 1 RT  0.15 7 (10 )RT  20 RT  

 

Table 10: Constants of the wind gust model. 
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The time variation of lift and drag coefficients obtained by LES is shown in Figure 105. The 

lift and drag coefficients are defined in the same way they were defined in the previous sections, 

with the freestream velocity prior to the wind gust U0 as the reference velocity in both 

coefficients. Prior to the wind gust, the flow with steady freestream is fully developed with CL 

and CD fluctuating slightly around their time-averaged values of 0.59 and 0.020.  As the wind 

gust moves over the airfoil, CL and CD rapidly increase to maximum values of 0.84 and 0.17, 

respectively, and then start to decrease as the freestream velocity declines. The lift coefficient 

closely follows the trend in the freestream velocity and stabilizes at a value slightly higher than 

that prior to the wind gust since the lift force is normalized by U0 which is lower than U after the 

wind gust as shown in Figure 105, while the drag coefficient goes negative before it stabilizes at 

a value very close to that prior to the wind gust. The perturbation parameter 3G  generates 

oscillations in CL and CD 
with the frequency comparable to that of the freestream flow. The 

amplitudes of fluctuations in CL and CD 
diminish as the amplitude of wind perturbation decays. 

The maximum amplitude in G3 is less than 1% of U0, yet it causes fluctuations in CL and CD with 

amplitude up to 3% of the maximum CL value and 15% of the maximum CD value. This suggests 

that even a weak (low amplitude) wind gust can have a significant effect on the aerodynamic 

forces and the flight stability of MAVs. The lift and drag coefficients obtained by normalizing 

the forces with the time-dependent U(t) are also plotted in Figure 105, and as expected, are lower 

than those obtained by normalizing the forces with U0. 

The iso-surfaces of z-vorticity of the flow over the airfoil at various times are shown in 

Figure 106. As the freestream velocity suddenly increases due to the wind gust, the separation 

point is pushed downstream toward the trailing edge.  But when the wind gust starts to diminish, 

the separation point begins to move back and even slightly passes its original (pre-wind gust) 
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position. As the freestream velocity continues to stabilize at a velocity slightly higher than the 

original velocity, the separation point gets close to steady state flow value.  
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Figure 105: Time variations of the wind gust model parameters, velocity and lift and drag 

coefficients induced by the wind gust. CL and CD are computed by normalizing the lift and drag 

forces with U0 and U(t), both. 
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Figure 106: Instantaneous iso-surfaces of z-vorticity ( 0 10z C U   ) simulated by LES with 

wind gust at different times. The numbers on figures match the times in Figure 105. 
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6.    Summary and Conclusions 

 

 

Various methods are used to study flows around the SD7003 airfoil at different flow 

conditions. First, linear stability methods are used to investigate the local and global instability of 

the time- and spanwise-averaged two-dimensional base flow. Second, large eddy simulation 

(LES) method is used to simulate steady and unsteady freestream flows around the airfoil.  

For the stability analysis, the LSB region of mean (time- and spanwise-averaged) flow field 

around the SD7003 airfoil at Reynolds number of 60,000 and AoA of 4° is employed. The base 

flow is obtained using a compressible model and an implicit LES solve. The eigenvalue system 

is solved in the global stability analysis and the classic Rayleigh equation is solved in the local 

stability analysis. The maximum growth rates obtained from the two methods are in agreement, 

and both methods correctly predict that the flow is unstable and will transition to turbulence.  

To validate the LES method, a number of flows over SD7003 airfoil with steady freestream 

are simulated, and the results are compared to available numerical and experimental data. The 

LES results are found to compare reasonably well with other LES data in the literature. The LES 

results are also consistent with the experimental data, despite discrepancies among the 

experimental data obtained from different facilities.  

The effect of flow three-dimensionality is studied by comparing two-dimensional (2D) and 

3D solutions of flow over SD7003 airfoil. The 2D and 3D solutions are found to be generally 

different. While the difference in instantaneous velocity, pressure and vorticity fields are quite 

significant, the global quantities like the lift or drag coefficients are not very different unless in 

extreme situations in unsteady flows. The 2D solutions fail to capture the 2D to 3D transition due 

to lack of vortex stretching term and spanwise flow variables.  
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The main objective of this thesis is to study the aerodynamic response of the SD7003 airfoil 

to unsteady freestream flows. Three types of unsteady freestream conditions are considered. In 

the first type, AoA is fixed at 4°, while the freestream velocity magnitude varies periodically 

with mean Reynolds number of 60,000, reduced frequencies ranging from π/8 to 2π, and 

normalized oscillation amplitudes of 0.183 and 0.366. In the second type, the freestream velocity 

magnitude is fixed at Reynolds number of 60,000, while the freestream flow AoA varies 

periodically around the mean AoA value of 4° with the reduced frequency ranging from π/8 to 

2π and the oscillation amplitudes of 4° and 8°. In the third type of unsteady flows considered in 

this thesis, a wind gust model is applied to the freestream flow, causing sudden increase and 

subsequent gradual decrease in velocity magnitude.  

For flows with oscillating freestream velocity magnitude, the oscillations of aerodynamic 

forces, vorticity magnitude, separation and reattachment points are studied in details. Our results 

indicate that the amplitudes of lift and drag coefficients increase as the reduced frequency and 

amplitude of freestream velocity magnitude increase. However, the freestream velocity 

oscillation does not noticeably change the mean lift and drag coefficients from their steady mean 

freestream values. There is a phase shift between the aerodynamic forces and the freestream 

oscillation, which is mainly a function of reduced frequency. Compared to the inviscid theory, 

the lift coefficient obtained from the LES simulations have significantly higher amplitudes, while 

phase shifts are predicted similarly by the theory and simulation. The oscillating freestream 

velocity magnitude causes the vorticity field to change slightly during a cycle. For the cases 

studied, the changes in vorticity field are not significant enough to show a clear trend. However, 

the integral of the vorticity magnitude along the airfoil wall normal and tangent, n and s 

( dnds  ) shows strong correlation with the freestream velocity magnitude. The root-mean-
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square (RMS) values of flow, calculated for the case with the highest reduced frequency and the 

largest amplitude indicate that the fluctuations in various velocity components represented by 

velocity RMS values are quite the same at different phases of a cycle. The intensity of 

fluctuations in x-velocity (u′) is slightly higher than that of y-velocity (v′), while the fluctuation 

of z-velocity (w′) has a much lower magnitude compared to the other two velocity components. 

Our results also indicate that the separation and reattachment points oscillate over a wider range 

as the reduced frequency and freestream amplitude increase.  

Compared to the flows with oscillating freestream velocity magnitude, the flows with 

oscillating freestream direction have some similar features but are also different in some respects. 

The amplitudes of lift and drag coefficient increase as the reduced frequency and amplitude of 

oscillations in flow AoA increase. However, the lift amplitude is one order of magnitude larger 

than the drag amplitude. The phase shift between aerodynamic forces and freestream AoA is 

significantly affected by the reduced frequency. Compared to the flow with steady freestream 

condition, the mean lift is almost unchanged; but, the mean drag is reduced due to the Katzmayr 

effect. It is shown that lower reduced frequency and higher amplitude of oscillations in AoA lead 

to bigger reduction in drag. The amplitude and phase shift of the lift coefficient compare quite 

well with the inviscid theory developed for a pitching airfoil in a steady freestream, while there 

is significant difference in the mean lift. At low reduced frequencies and high AoA amplitudes, 

the vorticity field changes dramatically during a cycle, and this is related to the wide variations 

in the separation point. At high reduced frequencies, the vorticity field shows less variation in 

time, but strong vortex shedding at the trailing edge. The strong vortex shedding causes a wide 

variation in the skin friction coefficient near the trailing edge. For the case with the highest 
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reduced frequency and the largest amplitude of oscillations in flow AoA, the magnitude of 

velocity fluctuations is nearly unchanged in different phases. 

Based on the mean separation and reattachment points calculated for unsteady flows with 

freestream velocity magnitude and direction (or AoA) oscillations, it is shown that the 

oscillations in freestream velocity, either in magnitude or direction, delay the mean separation 

and promote earlier reattachment of the boundary layer up to the point that the mean flow 

becomes fully attached.  

Simulations conducted with the wind gust model shows sudden increase in the aerodynamic 

load at the beginning of the gust. Generally, the aerodynamic forces behave the same way as the 

freestream velocity but they show relatively high sensitivity to the small changes in freestream 

flow.  

The current work can be expanded in several ways if substantially better computational 

resources become available. Stability analysis can be performed on finer mesh for more detailed 

analysis of the onset of instability over a bigger region to develop a broader and better picture of 

the flow instability. For flows with unsteady freestream, finer meshes should be used to obtain 

details of the flow in regions away from the airfoil and in the wake particularly for flows at high 

AoA. Much longer simulations are also needed for capturing the response of flow to very low 

frequency oscillations in the freestream. These details may provide a clearer picture of the 

development of boundary layer and wake vortices under the effect of oscillating freestream.  
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APPENDIX A 
 

 

The perturbation equations (13)-(16) are solved with the finite element method. For this, the 

velocity and pressure eigenfunctions are interpolated as  
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where v̂ and p̂ are the node values,  are the shape functions, and n  is the number of grid 

nodes in an element. The coefficient matrices in Equation (19) for a 2D base flow are obtained 

via the following equations.  
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The elemental matrices are obtained from the following equations.   

 

 , 1,2, ,M d n           

   , , 1,2, ,c x yA U V d n                 

,ux xA U d         

,uy yA U d         
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APPENDIX B 

 

 

The plots of z-vorticity iso-surface not shown in Section 5.1.2 for flows with oscillating 

freestream speed are presented here.  

 

   
Figure 107: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case U2 with k   

and
 

0.183  . 
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Figure 108: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case U3 with 2k   

and
 

0.183  . 

 

   
Figure 109: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case U4 with 4k   

and
 

0.183  . 
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Figure 110: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case U7 with k   

and
 

0.366  . 

 

   
Figure 111: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case U8 with 2k   

and
 

0.366  . 
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Figure 112: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   )

 
for case U9 with 4k   

and
 

0.366  . 
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APPENDIX C 

 

The plots of z-vorticity iso-surface not shown in Section 5.2.2 for flows with oscillating 

freestream AoA are presented here.  

 

 

   
Figure 113: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A2 with k   

and
 

4f  . 

 

 

t0 

t0+T/4 

t0+T/2 

t0+3T/4 

u/Um 

-0.50 

-0.12 

0.25 

0.62 

1.00 

1.38 

1.75 

2.00 



130 
 

   
Figure 114: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A3 with 2k   

and
 

4f  . 

 

   
Figure 115: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A4 with 4k   

and
 

4f  . 
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Figure 116: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A7 with k   

and 8f  . 

 

   
Figure 117: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A8 with 2k   

and 8f  . 
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Figure 118: Instantaneous iso-surfaces of z-vorticity ( 10z mC U   ) for case A9 with 4k   

and
 

8f  . 
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