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ABSTRACT

IMPLICIT SOLUTIONS TO THE WAVE EQUATION BASED ON THE
METHOD OF LINES TRANSPOSE

By

Gerard Lee Van Groningen

We present a numerical method for computing the wave equation implicitly. The ap-
proach discretizes the wave equation in time using the method of lines transpose, also known
as the transverse method of lines or Rothe’s method. This differs from conventional methods
in that we solve the resulting system of ODEs using boundary integral methods. We then
analyze the fully discretized solution resulting from the midpoint and trapezoidal quadrature
rules and show that convergent and unconditionally stable schemes result. We also show that
the choice of discretization in time can lead to various schemes of prescribed accuracy, which
may or may not introduce numerical dissipation into the approximate solution.

We start with the simplest case of solving the wave equation in one dimension using
either a free space solution or Dirichlet or Neumann Boundary conditions. We then analyze
the stability and consistency of the method, as well as investigating the dispersion relations
and deriving the phase error. Next, some numerical examples are presented which give
validation to the error estimates. Further, the method is adapted for both outflow boundary
conditions, using either one-way waves or a perfectly matched absorbing layer, as well as the
implementation of a soft source. Finally, we utilize an ADI scheme to explore solving the
wave equation in higher dimensions.

Since this method of lines transpose approach is implicit, it removes the usual CFL
stability limit inherent in explicit time stepping methods for solving the wave equation, and

thus the algorithm will be more efficient than these explicit methods.
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Chapter 1

Introduction

1.1 Literature Review

The wave equation is an important hyperbolic Partial Differential Equation (PDE) that
arises in acoustics, electromagnetics, and fluid dynamics. The focus of this dissertation is

computing numerical solutions to the wave equation

v = AV, e, t>0, (1.1)

U(ZE,O) :f(x>v Ut(xa()) :g(l’),

where € may either consist of the entire region of R n € {1,2,3}, or of a subset of R", in
which case boundary conditions must be applied.
We are particularly interested in the setting of Maxwell’s equations as they arise in non-

relativistic plasma situations. Maxwell’s equations may be expressed in terms of a scalar



potential ¥ and a vector potential A as

Ezﬂw—%? B=V x A, (1.2)

where F represents the electric field and B represents the magnetic field. If one chooses the

Lorenz gauge condition

100

A+ =
\Y 2 0,

(1.2) may be expressed in the form of a wave equation as

10°0 o p 10%4
S — VU=,

2
— 78 g2 =
2 ot? e’ 2 ot v o,

where p is the charge density, € is the free space permittivity, u is the free space permeability
and J is the current. In this situation, we wish to develop a numerical solver which will be
able to handle the time scale gap between the electron plasma frequency and the speed of
light.

There currently exist several well established approaches to computing a numerical so-
lution to the wave equation. One such approach is to use a separable solution. That is, we

assume the ansatz

v(x,t) = w(x)e_iwt,



which leads to the oscillatory Helmholtz equation

V3 + k2 = 0,

where k£ = w/c is the wave number and w is the frequency of an eigenmode. While the
resulting Helmholtz equation can be solved efficiently using fast summation methods [22, 41|,
this approach is only useful for generating time harmonic solutions to the wave equation.
A fairly standard approach for hyperbolic PDEs is the Method of Lines (MOL) discretiza-
tion. The prevalent idea behind the Method of Lines was introduced in 1949 by Courant
and Lax [28] as an adaptation for using the method of characteristics as a numerical solver
for hyperbolic PDEs. Courant and Lax began with semi-linear problems in which the char-
acteristics are known a priori and the solution to the PDE is then found using an iterative
method over the resulting integral equations. However, when this approach was extended
to non-linear problems, problems arose since the characteristics were not known beforehand.
Therefore, the resulting integral equations might no longer be easily solved using the same
iterative methods. Courant and Lax overcame this by replacing the characteristics with
lines upon which the spatial variable x is held constant. This gave rise to a PDE which is
discretized only in space, resulting in a system of Ordinary Differential Equations (ODEs),
which can then be solved using whichever Initial Value Problem (IVP) solver is desired. Each
individual ODE then represents a solution at some point on the grid as a function of time.
Many studies have been done on the numerical properties of the MOL discretization.
Courant et al. [27] studied convergence based on the ratio of step sizes in different dimen-
sions. Peter Lax [52] used his MOL discretization design to prove the existence of solutions

to non-analytic initial value problems that result from quasi-linear hyperbolic PDEs. In



addition to its original purpose in solving hyperbolic PDEs, the method of lines has also
been studied for both parabolic [71] and elliptic [49] equations as well. Much work has been
done in establishing the accuracy and stability of the MOL discretization, including Verwer
and Sanz-Serna [69], who showed convergence of both the space discretization based on a
logarithmic matrix norm and convergence of the time integration based on C-stability, as
well as Reddy and Trefethen [60], who used e-pseudo-eigenvalues to obtain conditions that
were both necessary and sufficient for the stability of the method of lines.

Another technique whose roots trace back to the method of characteristics are the semi-
Lagrangian methods, first introduced by Courant et al. [27]. In a purely Lagrangian solver
for the advection equation, the exact value of the solution at a given time is found by
tracing back along its characteristic to find the value at the previous time step. However,
this requires that the mesh be flexible and be able to move in time. As this is frequently
impractical to implement, semi-Lagrangian methods require a fixed mesh and then trace back
the characteristic to find its value at the previous time step. In the case of more complicated
PDEs where the characteristic may not be easily found, the characteristic must instead be
numerically approximated. In the likely event that this characteristic does not lie on a mesh
point at the previous time step, polynomial interpolation will be used to determine the value
of the point at which the characteristic does cross. This essentially reduces the problem
to solving a set of independent ODEs which will approximate the characteristic and then
determining the function value at those points using interpolation.

While originally based on advection equations (e.g. [62]), semi-Lagrangian methods are
now very commonly used for a range of problems, such as the Vlasov equation [65], but

especially in the atmospheric sciences |63, 66] due to its beneficial numerical properties, such



as the lack of restriction based on a Courant number [19]. Since the actual semi-Lagrangian
method can vary in order based on both the approximation of the characteristic and the order
of the interpolation used, a variety of studies have been done on the stability, convergence
and cost effectiveness of these various implementations [10, 19, 34, 53, 66].

Another common solver for hyperbolic PDEs is the finite volume methods, beginning in
1959 with Godunov’s method [38]. Godunov divided his domain into cells and found the
average of the numerical solution over each cell. He then constructed a Riemann problem
which consisted of the PDE whose initial conditions were given by the piecewise constant
function corresponding to the average numerical value over each cell. Next, he evolved the
solution to this Riemann problem for a time step and then recalculated the average value over
each cell. This process was then repeated until the desired final time was reached. The most
significant benefit of Godunov type schemes was a greater ability to handle shocks compared
to other contemporary numerical solvers, due to procuring the average value of the numerical
solution over each cell. The further study of the convergence and other numerical properties
of Godunov-type schemes have been studied for a range of problems [29, 45, 54, 59|. Current
examples of finite volume methods whose roots trace back to Godunov-type schemes include
the weighted essentially non-oscillatory (WENQO) method, which uses an adaptive stencil
and a combination of lower order reconstructions to obtain a higher order solution to the
PDE, as well as the discontinuous Galerkin (DG) method, which constructs a solution over
each element using lower order polynomials before updating the inter-element terms.

Godunov-type schemes are not without their drawbacks, however. Due to the Riemann
problem’s initial condition of a piecewise constant function, the scheme was limited to first

order. This order may be made higher though, if the initial condition uses piecewise poly-



nomials instead of piecewise constant functions. However, making this change will increase
the complexity of the problem and higher order schemes may still be hard to achieve. Addi-
tionally, the scheme is restricted in that the size of the time step is bounded by half the size
of the spatial step multiplied by the fastest signal in the solution.

Integral equation methods, such as [6, 39, 40, 51|, may also be used to solve hyperbolic
problems. The benefits of integral equation methods, in comparison to traditional finite
difference and finite element methods, include a much simpler incorporation of complex
boundary geometries and the easier attainment of higher order. The biggest drawback to
integral equation methods, however, is that they possess a large computational complexity,
with a time independent problem requiring a dense N 2 % N2 matrix for an N x N grid.
Advances are being made in reducing the amount of necessary operations, most notably the
fast multipole method (FMM) [25, 61] for the wave scattering problem. In FMM, if particles
are located within each other’s near-field, their interaction is calculated directly. Otherwise,
a particle’s contribution to its nearest multipole is calculated and the interaction between
multipoles is then calculated by traversing up and down a tree.

A further example of an integral equation method that is of particular interest comes
from Alpert, Greengard and Hagstrom [5]. Here, the authors take the wave equation and
use a Laplace transform to create the equivalent PDE in the frequency domain. They then
take a centered finite difference of the temporal derivative followed by an inverse Laplace
transform to revert to the time domain. This gives that the finite difference approximation
of the temporal derivative is equivalent to the integral of the spatial derivative multiplied by
the appropriate Green’s function. This evolution scheme can be seen as an integral form of

the Lax-Wendroff scheme and the numerical properties of the scheme will depend upon the



technique used to compute the integral.

A less common approach is the Method of Lines Transpose (MOLT)7 also known as the
transverse methods of lines or Rothe’s method or the horizontal line method, where the time
derivative is replaced by an algebraic approximation and the resulting system of Boundary
Value Problems (BVPs) must be solved. Here, each individual BVP represents the solution
at a given point in time. This approach has been relatively sparsely considered [8, 46, 56|,
in part because the numerical solution to BVPs may be more challenging to find than for
the ODEs that result from the standard method of lines, especially in the case where the
BVP is stiff or contains boundary layers. While the MOLT may not be as widely used
as the MOL, it does not possess all of the same drawbacks and thus has been used in a
variety of applications such as solving the heat equation [21, 51|, defect correction methods
[48], evolution equations [50], etc. With the continued development of boundary integral
methods [36, 55|, the method of lines transpose approach may be very beneficial for certain
classes of problems. For example, Li et al. [55] constructed recurrence relations for efficiently
evaluating derivatives to the Green’s kernel for the non-oscillatory Helmholtz equation in
R3.

In considering the vast array of previously developed temporal discretizations, two classes
of numerical schemes emerge: those which introduce numerical diffusion (i.e. dissipative
schemes), and those that do not (i.e. non-dissipative schemes). The non-dissipative schemes
will be useful for long time simulations that must maintain the strength of the wave am-
plitudes. The diffusive schemes are also of interest, for instance, in asymptotic preserving

applications in which the steady state approximation must be recovered.



1.2 Prerequisites

The following results that will be useful in showing the convergence of the MOLT scheme.

1.2.1 Eigenvalues of Perturbed Tri-diagonal Toeplitz Matrices

In section 3.1.2.1, we will use the inverse of a Toeplitz matrix to help determine stability
of the method. This inverse comes from Yueh and Cheng’s 2007 paper |[70] on finding the
eigenvalues and inverses of a Tri-Diagonal Toeplitz matrix with perturbed corners. The

relevant matrix will be of the form

_b+7 a 0 ... 0 —
a b a ... 0
Ap =
0 a b a
0O ... 0 a b+~y

Let A\ be an eigenvalue of A, with u its corresponding eigenvector. Ajpu = Au can then

be written as

buy + aug = Auyp — yuq

aul + bug + aug = Aug

AUp_9 + by, 1 + aup = Aup_q

AUp_1 + bup = Auy — yup



which is equivalent to

aup_1+ (b—Nug +aup 1 =0, k=1,2,...,n, (1.3)
aug = Yyui,

AlUp41 = YUn.

Let u;, i € {0,1,...,n+1} represent the first n+ 1 terms of an infinite complex sequence

u = {u;}:2;. The equations in (1.3) then satisfy the recurrence relation

aup_1 +bug +augq = Aug + fr, keN

under the condition

auy = aup+1 =0

with
¢
—yuy, k=1
Jr = —YUup, k=n
0, elsewise.
\

This relation is equivalent to

(ai_z2 +(b=Nh+ a) u = (aiiy + f)h



where

h=1{0,1,0,...},
n? ={0,0,1,0,...},

a

{a,0,0,...},
U1 :{ul,0,0,...},

f=1{fhite-

Note that k2 = h * h, where * is a convolution operator.

Since a # 0, this gives that

(a1 + f) h
@2+ (b—Nhta) 4

Consider the denominator as a quadratic in terms of h, whose roots are given by

0f =

_(b_;ii\/a, w=(b—\?—4d’. (1.5)

Then d40— =1 and thus,

d+ = cos(f) £ isin(0)

for some 6 in the strip {z € C|0 < Re(z) < 7}.

10



Consider first the case where 6 # 0. This will give that

cos() = )\2_&b = A =b+ 2acos(d).

Then, by partial fractions, equation (1.4) becomes

1 1 1 -
u:—( - — )(au1+f)h
Ww\o—_—h o4—h

= 2 {sin(j6)} * (0 + )R

Evaluating this convolution product will give

uj = Z{aul sin(j6) — duy sin((j — 1)0) — Hj'dup sin((j — n)0)

WhereHyzliijnanngf‘zoifj<n.

This will then give

asin(f)u, = auq sin(nf) — duq sin((n — 1)#) and

0 = auq sin((n + 1)0) — duy sin(nf) — duy, sin(6).

This can be rewritten as

Auy + Buy, =0

Cuy + Duy = 0.

11

(1.6)



Since uy and uy, both can’t be zero, this implies that

which gives the necessary condition

a®sin((n + 1)0) + 6% sin((n — 1)8) — 2aé sin(nd) = 0.

For any 6 that meets this qualification, the eigenvalues may then be found based on (1.6).

The case of § = 0 will be similar, but now instead with equation (1.5) giving

1=

— (b= A) £ /(b= )2 — da?
2a

— 2a=—(b— N) £ /(b \)? — da?
— (2a+ (b—X)% = (b —\)? — 44?
— 4a® +4a(b — \) = —4a’

= b—A=-2a = A=0b+2a.

1.2.2 Schur Polynomial Test

The Schur polynomial test will be used in section 3.1.2.2 to guarantee that all the roots of
a polynomial are in the unit disc. A polynomial ¢4(z) = Zgzo aizi is said to be a Schur
polynomial of exact degree d if ¢(z) has exactly d roots, counting multiplicities, each of
which has magnitude less than one. The roots of this polynomial may be hard to find, but

the Schur polynomial test [67] may determine if all the roots are within the unit circle. To

12



check these conditions, define the corresponding polynomials

d
dy(z) = Z ag_;7" and
1=0

b1y - G09) ~ 640)6)

z

Theorem 1 (Schur Polynomial Test). ¢4(z) is a Schur polynomial of exact degree d if

bq—1(2) is a Schur polynomial of exact degree d — 1 and |¢4(0)| < [¢5(0)].

Proof. Assume that ¢4_1(2) is a Schur polynomial of exact degree d — 1 and that |¢4(0)| <

|6g(0)]-

First, note that on the unit circle itself,

030 = |6 (271)| = I6a(2)

1

since Z~ - = z on the unit circle.
Define
204-1(2)
Y(z) = ———=.
&) =50
Then

~ 04(0)04(2) — ¢q(0)d4(2)
¢3(0)

¢f1(2)‘ < |p3(2)| = |p4(2z)| on the unit circle.

|0a(2) = ¥(2)] = |Pa(2)

¢4(0)
¢75(0)

Thus, by Rouche’s theorm, ¢4(z) and 1(z) must have the same number of zeros inside the

13



unit circle. Since ¢;_1(z) is a Schur polynomial of exact degree d — 1, 1(z) must have d
zeros, each of which lie within the unit circle, which implies that ¢4(z) also has d roots, each
of which lies within the unit circle.

Therefore, ¢4(z) is a Schur polynomial of exact degree d. ]

14



Chapter 2

MOL?T Formulation and Integral Solution

2.1 Formulation

In the MOLY discretizations for the wave equation, the PDE is first discretized in time.
Both dissipative and non-dissipative classes of discretization schemes may be derived. The
following derivations are done in the context of one dimension but are easily extended to

higher dimensions.

2.1.1 Dissipative Schemes

To construct the dissipative schemes, first observe that the one-sided first and second order

finite difference approximations to the operator UZ;H = vy (z, t”‘H) are:

ntl Un+1 — 0" 4 Un—l

) = + O(At) and 2.1
; o (a) 2.)
Qvn—i—l — 50" + 42]”_1 o Un—2
n+1 _ 2
Wit = o +0 (A (2.2)

15



Now let " = u(x,t") be the semi-discrete approximation to v(x,t"), which satisfies the wave
equation (1.1). If the Laplacian term is evaluated implicitly, with either the substitution (2.1)

or (2.2), we obtain, respectively, the semi-discrete equations

n+1l _ 2" n—1
“ AUQ . Aut and (2.3)
t

2 n+1 5ul + 4 n—1_ ,n-—2
“ “ Z 2u AN Ault (2.4)
t

Here and below, in accordance with context, we will reserve the variable v to mean the
continuous solution of the wave equation and u its semi-discrete approximation. It should
be emphasized that equations (2.3) and (2.4) produce numerical dissipation, which will be
shown in section 3.1. While not the focus of this work, this property is effective in recovering

magnetostatic limits and will be the subject of future work.

2.1.2 Purely Dispersive Schemes

A purely dispersive scheme may be constructed by carefully considering the choice of finite
difference approximations for both terms in v} = 200", where the Laplacian term is

replaced with an appropriate time-averaged approximation. For example, since

n+1 n—1

a second order accurate semi-discrete approximation to equation (1.1) is

n+1 2" n—1 n+1 n—1
u u +u — By (u +u ) (2.5)

(cAt)? 2

16



As will be shown in section 3.1, this formulation removes numerical dissipation. This
purely dispersive scheme may be more favorable for long time simulations, which wish to

avoid the spurious effects of numerical diffusion.

2.2 Integral Solution

This work differs from other MOLT methods in that we consider integral solutions to the
boundary value problem, rather than utilizing finite difference or finite elements methods for
the spatial derivatives. Specifically, we solve the resulting BVP through a free space Green’s
function [46, 48, 56|, which is then corrected with a boundary integral method.

Collecting ©™ 1 in any of equations (2.3) - (2.5) results in

Eﬁj [un+1] (x) = _(CZJ;)Q fﬁj (un,unfl,unfax) , (2.6)

where the Helmholtz operator is

L. [u] = (am _ )u (2.7)

J

where (3; is dependent upon the scheme chosen.

Equation (2.3) will correspond to choosing (31, = 1, for which the Helmholtz operator is

1

g =0 = 2

17



and

fpy, = 2u" (@) — u" ().

Equation (2.4) will correspond to choosing (31, = 2, for which the Helmholtz operator is

2

Finy = e = a2

and
foy, = 5u(z) — 4" (2) + "2 ().

Similarly, equation (2.5) will also correspond to 2, = 2, so that the Helmholtz operator is

Eﬁza = Cﬁlb and

(cAt)?
ﬁQa

[y, = 20" (z) — Lo [u”fl} (x).

The subscripts will be dropped when discussing the general case.

Equation (2.6) can be solved formally by inverting the Helmholtz operator (2.7). The
resulting integral solution will consist of two components: a particular solution, uy(z), which
solves the free space problem, and a homogeneous solution uy(z), which acts as a correction
to enforce the boundary conditions. This will produce a solution in the form

W) = Egl [—a?f@j] = uZJFl(x) - uz+1($), (2.8)

18



where

NG

N

&g

and the respective particular and homogeneous solutions are given as

L
@) = o [ gy (a0 "2 0)) Glaly) dy (29)
and
i (@) = [ ()9, Glaly) — o ) Glaly)] (2.10)

The Green’s function for the Helmholtz operator (2.7) is

;

1
—eol=vl Rl

Glaly) = —5-

1
G(aly) = -5 Kolalz —y)), = €R?

e_a|x_y|

3
z€E€R
d|r—y| € R

G(rly) =

\

where Ky is a modified Bessel function.
Additionally, in the case where z € R, the homogeneous solution (2.10) may be replaced
with the Ansatz

UZ—H(ZL‘) = cpe~ =) 4 ppemallta), (2.11)

where ¢ and c9 are determined by the imposed boundary conditions.

19



In the case of zero Dirichlet boundary conditions, this produces the system

ugH(L) + o1 + cge 2l =,

UZ+1(—L) +ere 2l 4oy =0

which has a solution of

c1 1 e—2al u;)z—i—l (L)
&) E e 2oL 1 u;Hl( L)
1 1 _e—2alL u;hLl (L)
R —uit(~L)

Substituting in ¢; and ¢ in (2.11) then gives

sinh (a(L — 2)) gy sinh (a(L + x)) ()

n+1 _
(v) = sinh (2aL) “p sinh (2aL) “p

up,

In the case of zero Neumann boundary conditions, there is now the system

d

d—ug"H(L) + ey — acge 2L = 0,
x

d

%ug+1(—l}) +acie 2 —aey =0
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which has a solution of

c1 _ a —qe20L — U (L)
—9aL d i1
c9 ae «a —%Ug (—L)
—2aL i n+1 L)
B 1 1 —€ T e (
- — o—4al d
a(l—e ) e—2alL 1 —%ug‘ﬂ(—[/)

Note then that since u(z) is defined above in (2.9) as

L
@) =—a? [ g () ) 20)) Glaly)

This yields

L d
Tt ==a? [ gy (). ) 20) -Glaly) dy

L
==a? [ g5 () )0 20) (~asenle —)Glaly) dy

L
——a? [ —asgne = )fs (") 0" )0 20) Glaly) dy

and thus,
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while

L
At _py = _O?/ —asgn(—L —y) f3 (u”(y%un_l(y),un_?(y)) G(=Lly) dy

dx P _L
3 L -1 -2
= [ g () )2 w) G- Lin) dy
1
= auy (L),
This gives that
c1 1 1 _e—2alL ungl(L)
T 1 _ o—4al
) 1—e™ e—20L -1 —ug+1(—L)

Substituting in for ¢; and c9 in equation (2.11) gives this then as

_ cosh (a(L =) niq cosh (a(L +x)) ;11

sinh (2aL) u (=1 sinh (2a) up (L).

2.3 Numerical Approach

Consider first the discretization of the particular solution (2.9). Divide the domain into

non-overlapping regions €2;, so that

N
@) =30 o [ gy (w2 ) Gy (212
i=1 1

Generally, these regions may be of varying size, but in this dissertation, we will consider

a uniform partition for the composite midpoint rule, so that €; = [%’—1 /20 Tit1 /2], 1€

{1,2,...N}, where x; = —L + (i —1/2) Az and L = NAz/2. A midpoint quadrature
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approximation to equation (2.12), evaluated at x = xj, gives for each j =1,... N
N
up (@) =) Aijfs <un(9€z‘), U”_l(%),un_2($i)) + En(z)),
1=1
where the remainder term satisfies
N
Ep(zj) = Az Bijosfg (un(ﬁz‘), u"HE), u i))
=1
with & € ; and

Aj

i—1/2 i—1/2

Evaluating elements of the matrix A using the Green’s function gives

—li—jlv h<z> . .
i1/ e sin N
Aij:a/ﬁ_/eal% y‘dy:Z 2

x

i—1/2 1 —ev/?, i—j

where

Ag = VBB

 cAt

V=«

Likewise, the elements of the matrix B satisfy

iejlv ;o

Ti11/9 o c(v)e , 1F£ ]

By=a [y gl ay
T

i—1/2 0, i

23

Ti+1/2 Ti+1/2
i= 202 [Pt By =202 [V - Glasly) ay
X X

(2.13)

(2.14)



2
where ¢(v) = cosh <g> — —sinh (g) In practice, we are developing implicit methods, and
v

as such, the case where Ax < cAt, corresponding to v < 1, is of particular interest. Taking

a Taylor expansion for small v shows

¢(v) = cosh (g) - 2Sinh <Z> = i::o m _ 2 i M

v 2 (2n)! v (2n +1)!
L w2 w2t 2 (v w2 ()2 6
B R TRV R S N T +O<”>
V2 U4 6
-~
Thus, the error is bounded by
|EM(xj)‘ < 2Azc(v ‘foﬁH Ze_w (2.15)

= Azxc(v) HaxfﬁH

ool—e‘”

I/Ax

192/l o -

Here, we must note that each term in fg is a numerical solution to the wave equation at a
previous time step. Thus, since (% f= i%% f and we have already discretized the temporal
derivative, we have that 0, [ behaves like fﬂAtfl, giving that the error from equation (2.15)
is actually O (VQ).

For a trapezoidal approximation, consider the points z; = — L+ iAx with Q; = [z;_1, z;].

This approximation then gives for each j =0,1,... N
(o Z Ly (u" (i), (@) w2 () ) + (), (2.16)
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where the error term is

Analogous evaluation of the matrix terms gives

Ty Y—T;—1 — - Titl [ x; 1—Y _ .
Cij = a/x (—A; ) ¢zl dy + Oz/x (—HAx ¢zl dy
1—1 ?

o | 2sinh? (v/2)e 1=l i
_2 (2.17)

eV —14v, =7

and
K oz 2 iy
Dij = a/ (y - IL‘Z'_l) (y — :EZ-)@ a|x] Yl dy — (;> c(y)e li—j+1/2|v
Ti—1

2
where again ¢(v) = cosh (g) — —sinh (g) The corresponding error bound is
v

|Br(ay)] < (ATQ) Jors ol (2) ) Sl (218)

1=—00

Az? a L
(57) e fouefoll 2 37
1=0

2e7/2
1—eV

Az?

IN

)t 05a .
A

i
< = [0zl -

oo

Similar to the proof of the error estimate of the midpoint quadrature, 0z, fg behaves like

fﬂAt_Q, showing that the error in equation (2.18) is truly O (Vz).
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Since both of the error estimates for the midpoint and trapezoidal quadrature rule are
@) (V2), this will demand that we must satisfy that our spatial step size goes to zero at an
exponentially faster rate than the temporal step size. As we are creating an implicit scheme,
this is much less of a restriction than for an explicit scheme. However, in section 3.1.1.3,
we will show that the method of undetermined coefficients may be used to find weights that

will change the error from O (1/2) to O (AxQ), as is desired.
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Chapter 3

Analysis of the Free Space Solution

3.1 Convergence

The main result of this chapter is the following convergence theorem.

Theorem 2. Let u"(z) be the semi-discrete MOLT solution satisfying equations (2.8), (2.9),
(2.10), with initial and boundary conditions specified by equation (1.1). Then the semi-
discrete solutions satisfying equations (2.3), (2.4) and (2.5) will converge to v(z,t") as
O <At6>, with B = 1,2,2 respectively. Further, suppose the fully discrete solution u? 15
computed using either the midpoint (2.13) or trapezoidal (2.16) quadrature rules. Then, u'!

J

will converge to v(x;,t") as O (Atﬁ + l/2> and will be stable for 0 <t <T.

The proof of this theorem follows from the Lax—Richtmyer equivalence theorem upon
establishing consistency and stability. Consistency is established in section 3.1.1 and stability
in 3.1.2. In section 3.1.1.3, we will determine quadrature weights that will create a fully

discrete scheme that is O (Atﬁ + Am2> In section 3.2, the dispersion of these methods is

discussed.
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3.1.1 Consistency of the MOLT method

3.1.1.1 Non-dissipative Scheme

Let v be the the continuous solution satisfying the wave equation (1.1) with L = oco. Now,

the integral solution for the semi-discrete solution for (2.5) in free space is given by

W) = T (2) — o (@),

where [[v"] is defined by

I"] = /00 202G (x|y)v"™ (y)dy = a/oo e~z 4 2) dz

—0Q —0Q0

after applying the change of variables y — z = z.

Inserting v into this equation, we can define the global truncation error as

1
- UnJrl + Unfl — I ’
(CAt)Q < [ ])

The integral can be split at z = 0, giving

o o0
I=I)+(-) = a/ e Yo (x + 2)dz + a/ e Yo" (x
0 0

28

— z)dz.

(3.1)



For each integral, repeatedly apply integration by parts to get

o0
Lt = a/ e o (x+2)dz
0

0
= [~ ()" (z £ z)e_o‘z}go + / +0,0" (x £ 2)e” ¥ dz
0

k j o
+1 _
= |-« Z F(%) V(x££ 2)e”
Jj=0 0
o0 :i:l k+1
+ a/ <—8x> v (r+z2)e” Y dz
0 «

Notice that when evaluating at z = 0, the alternating signs cause the odd derivatives to
cancel and the even derivatives to combine for I = I + [_. Furthermore, the upper limit
makes no contribution due to the dominance of the negative exponential.

Truncating the integration by parts at the leading order for the error, corresponding here

to k = 3, gives

0]

Iv"] = [(1 + =0y + iaxx + igm:x) "z + Z>6_QZ}
o a2 3

« 0

oo

n [(1 Oy + Oy — iBa> oz — z)e““]

« o o’ 0

00
1

+ O‘/ 1 (vgxxac(x + Z) + UZJ:J:Q:(‘T - Z)) e “dz
0 «

1 1 _
=2 <Un + ;%&0) + a/O J (Ugwxx(x + Z) + U;mex@; - 2)) e Ydz

(cAt)?
4

o0
— o0 4 (cAB)2T + 20" () a / e 0% s, (3.2)
0

Note that we use the mean value theorem for integrals in the last line. The truncation
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error (3.1) then becomes

where the terms v"*! have been expanded about ¢" and differentiated in the context of the

wave equation to determine that

2 4
Vtttt = C Vttzx = C Vzzxx-

Hence, the semi-discrete error is second order in time.

3.1.1.2 Dissipative Schemes

The same ideas may be applied to the dissipative free space solver (2.6). However, the

expansion is now about "1, where now the first order semi-discrete solution is given by

W) = 1) ) + 5T [0 (@)
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where I[u] is defined, as before, by

Iu) = /Oo 202G (x|y)uly)dy = a/oo e~ lu(z + 2) dz.

—00 —0o0

Substituting in the continuous solution v and once again changing variables to z = y — x,

the global truncation error is defined as

" (ot =1 1]

Repeating the integral splitting and integration by parts done just above, it becomes easy

to see that truncating after three steps gives

2
1 1 1 1 o0
el a o 2 0
1 1 1 1 o
+ (1= =0y + —0pp — —0 ) (vn — —vn_1> T —z e_az}
1
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Thus, the global truncation error is

Tn-l—l _ @ <Un—|-1 — "+ Un—l . (CAt)2 (Q'Un . Un—l)gcx +0 (At4>)

1
=3 (vyl — Atvftj1> — o™l 4L 0 (At2>

1
= —— AN O + 0 (A
S +0 (a7)

= AN+ 0 <At2> ,

trx

which shows that this method is first order in time.

The second order semi-discrete solution is given by

W () = 21" @)+ 1 [0 () - %1 2] (@),

and thus

il = (cAlt)2 <Un+1 - gl[vn] +1 [vn_l} - il [Un_ﬂ) :

Using the same calculations as above,

1 1] _
11" :2(v"+—v§;x) ta /0 L o+ 2) 4 ol — 2))e ™ d

a2
= 20" + (cAt)?0?, + (c 1 ) (20200 () a/o e Y% dz.
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and therefore, after utilizing the linearity of I, this shows that

1 D )
= At (w“ — 5o = (et Pug, + 20" 4 (cAn) P
L n—2 2l n—2 4
—5v" - (cAt) Ve +0 <At )
1 /1 04\ 1,01 3A2 .4 4
3(cAt)?
:—J%TL¢$;+O<A#)

which gives that the method is indeed second order.

3.1.1.3 Fully Discrete Schemes

In the case of the fully discrete implementations, the results from sections 3.1.1.1 and 3.1.1.2
will still follow in the exact same manner, with the addition that I[u] now contributes an
O (VZ) error caused by the quadrature estimate.

A quick observation from equations (2.14) and (2.17) will show that the terms that come

from integrating equation (2.12) using quadrature will be of the form

I[u)(zj) = woulz;) +wi Y e F=IW (u(a; p) +ulz;_y)) .
k=1

Consider now the truncation error given by the non-dissipative scheme, shown in (3.1),

adapted for the fully discrete scheme as

1
(cAt)?

(x5) = (" )+ um ) = ") (zy) ) (3.3)
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Let

2
wy =2 — w11—2—w1226
k=1

(3.3) then becomes

u () — 20 (2;) + U 1
Tn(xj) = ( J) Aizj) At2 Z j+k) - 2un($j) + un(mjfk))

2 > (kAz)*

At w1 _
= U?t(xj) + 19 ——ugt(§1) — A2 Z i ( /fASU Um(fb’j) + T“me(&))
k=1

At? o kv)t At
= ufy(2)) + 5w (§1) — w1 Z b ( ugi(w5) + %U?ﬁt(ﬁz)

= mufy(z;) + AP naufly (€) (3.4)

where

Note that
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most notably with

(.¢]

1 v v
—kvy2 -+ v 2 (7
g e k —4coth<2>csch (2> and

k=1

1 v v 1%
—kvi4 2 2
E e k 4cot 5 csce 5 3cse 5 +

k=1

8

We must choose wq such that n; = 0 if we wish to have the order be O (AxQ). Thus,

2
1
m=0= 1-— wl; Zcoth (%) csch? (K) =0

8
= w = ﬁtanh <g) sinh? <Z) .

Then,

1 4 1
N =— — s tanh (Z) sinh? <Z) —coth (K) csch? (g) (?)(:s.ch2 <Z) + 1)

12 48 2 2/ 4 2 2
1 V2 v

351 (02 (5) 1)
12 24 <3CSC 5) T

Using the expansion

11 (1 7\?
csch?(z) :E—g—i— <%—|— (%> ):E2+O<:U4>

gives that

TR YY
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and thus, substituting in 79 into (3.4) gives that the truncation error is now
—-5 32
= AL (— ~2 40 <y4)> =0 (At +ac?).
Similar results will hold for the same wq and w; for the dissipative schemes.

3.1.2 Stability of the MOLT method

To establish the stability of the MOLT method, we treat the fully discretized system as a

one step method. To that extent, define

where z; = —L + (j — 0.5) Az in the case of the midpoint rule and z; = —L + jAz when
considering the trapezoidal rule. Then, for the dissipative scheme corresponding to equation

(2.3),
"t = Ay (a” - %a”1> . (3.5)
For the second order dissipative scheme in accordance with equation (2.4), we have
gt = iAt (5@” — 4"+ a””) (3.6)
and for the non-dissipative scheme, corresponding to equation (2.5),

a" = A —a L (3.7)
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In each of the cases, the matrix A; will possess the same structure, although the individual
matrix elements, which are based upon v, will differ. A; will consist of a particular and
homogeneous contribution, in analog to the free space and boundary terms in the integral
solution of the continuous problem. It also contains the information of the discretization
scheme in use; in this case, the midpoint or trapezoidal quadrature rules. If we write A; =
Ap + Ap, then for the midpoint rule, A, is given by the matrix A in equation (2.14), and
the matrix C' of equation (2.17) in the case of the trapezoidal rule. The boundary matrix
entries are

(Ap)ij = —2agsinh (g) ( , e ( J (3.8)
sinh (2aL)

sinh (a(L — z;)) —a(L+z;
* sinh (2aL) ‘ ( ]))’

sinh (a(L + ;) —a(L-z .)

where the coefficient aq distinguishes between the midpoint and trapezoidal rules with

1, Midpoint Rule
ag = (3.9)
2

—sinh <g), Trapezoidal Rule.
v

We will establish stability for these schemes by studying the eigenvalues of A, and Ay.
Since A;, will be exponentially small away from the boundaries, the main part of this work
will focus on analyzing the eigenvalues of the free-space problem, which would neglect A,
altogether. Once the free space problem is understood, we will proceed with the boundary

correction matrix.

37



3.1.2.1 The Eigenvalues of A,

In order to simplify the proceeding analysis, which is for two different methods of discretiza-
tion, write the matrices Ay, = A of equation (2.14) and A, = C of equation (2.17) in the
form

Ap = 2agIy + 2ay sinh (g>T (3.10)

where Iy is the N x N identity matrix, and the constants ag and aq distinguish the quadra-

ture rule. They are given by

1—e¥/2 —sinh (g) , Midpoint Rule

o, dy = (3.11)

1 2
-z <6—V — 14 v — 2sinh? (%)) , —sinh <g) , 'Trapezoidal Rule.

14 14

1
Note that these expressions can be simplified to 1 —cosh (g) and 1— — sinh (v), respectively.
v

Finally, the matrix 7" is a Toeplitz matrix and is given by
—V

T = 2=l p=e

Notice that the eigenvalues of A; can be found from the eigenvalues ¢ of T', since A, differs
from T by a scaling factor and a multiple of the identity matrix. Therefore, the eigenvalues

A of Ay are given by

A = 2dg + 2a1 sinh (g)tk (3.12)
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Now, due to its structural symmetry, the inverse matrix 7! has a special form, and the

eigenvalues may be found analytically. In fact, 71 is a nearly-Toeplitz, tri-diagonal matrix,

— 1 —T 0 0 _
—r 1+22 -2 0
T_lz1 1332 , x=c¢ ".
0 —r 1422 -z
0 0 —T 1

Since this is a tri-diagonal Toeplitz matrix with permuted corners, recall that based on the

results in section 1.2.1, the eigenvalues of this matrix are given by

1 z? — 2z cos (0;) + 1
k 1 2 )
—x

where 6}, is a root of

sin((N + 1)0) 4 x?sin((N — 1)0) — asin(N6) =0, 0 € (0,7).

This gives that the eigenvalues of our Toeplitz matrix are given by

1— 22

22 — 2z cos (0) + 1

tp =
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Making use of x = e~ ¥, we can find an explicit form for the eigenvalues by solving

1— 22

22 — 2z cos (0)) + 1
1— €—2V
e=2V — 2e~Vcos(f,) + 1

v

eV —2cos(f;) + e
B 2sinh(v)
~ 2cosh(v) — 2cos(fy,)

sinh(v)
cosh(v) — cos(6}.)
2sinh (v/2) cosh (v/2)

1+ 2sinh? (v/2) — 1 + 2sin? (6;,/2)
__sinh (v/2) cosh (v/2)

sinh? (v/2) + sin? (6),/2)

Thus, the eigenvalues are given by

sinh (v/2)
sinh? (v/2) + sin? (6},/2)

tk:cosh(y/2)< >, 0<b <m.

This leads to the following lemma.

Lemma 3. The eigenvalues of the matriz given by equations (2.14) and (2.17) are contained

in the interval (0, 2).

Proof. This is a consequence of equation (3.12), using the coefficients from (3.11). In the
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former case, the eigenvalues for k =1,2,... N, are

sinh? (v
Ak =2 (1 TR ek ) ( sinh? (v/2h) +( sﬁ; (0r/ 2)>>

=2 (1 — cosh (v/2) ( Sinh2 (Siﬂ2 u/2) )) , 0<O < (3.13)

v/2) + sin? (6,/2)

We obtain the bounds by letting 6. = 0, 7, and therefore

2 25ech(%> <\ <2 (3.14)

where 6;. = 0 corresponds to 2 and ;. = 7 corresponds with 2 — 2sech<%). Similarly, for

the trapezoidal rule, the eigenvalues are for k =1,2,... N,

sinh? (v
Ap = 2 (1 - %sinh (v) + %Sinh (v/2) cosh (v/2) (sinh2 (z//2h) JE S{ii (9k/2)>>

B 1 sin? (6}, /2)
=2 (1 - sinh (v) ( 2 (0/2) + sin? <9k/2)>> , 0< 0, <m. (3.15)

Now, the bounds obtained by letting 0;. = 0, 7, are
4 v
2 — ~tanh (5) < <2, (3.16)
v

4
where 0}, = 0 corresponds to 2 and 0 = 7 corresponds with 2 — — tanh (g)
v

The lower bound in (3.14) and (3.16) will be identically zero only for v = 0 and positive
otherwise. Therefore, the lemma is proven. O

Lemma 4. The matrices A and C given by equation (2.14) and (2.17) respectively, are
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symmetric positive definite.

Proof. Note first that Ay is symmetric since 7' is symmetric as Tj; = li=il = =il = Ty;.

Also,

sinh(2aL) o
—2aosinh(y/2)( nij =

sinh(a(L 4+ xi))e_a(L_mj) + sinh(a(L — xi))e_a(L+xj)
- (ea(L+xi) — e—oz(Leri)) go(L=zj) | (ea(L—xZ-) _ e_a(L_xi)> —olLt;)

oz(xi—kxj) _ 6_2aL€a(—xi—|—xj) —a(a:z-—kxj) _ e_zaLeoz(a:i—xj)

=e +e

<ea(L+Ij) _ e*Oé(L+arj)> e—all—z;) | (eo‘(L’IJ) B efa(foj)) ool Lt;)

= sinh(a(L + xj))@_a(L_xi) + sinh(o(L — .Tj))e_a(L—HEi)

_ sinh(2aL)
~ —2qgpsinh (v/2) (An)ji

Thus, the matrices A and C' are symmetric. They are positive definite because of the previous

lemma which proved that all of the eigenvalues were positive. O]

3.1.2.2 Dissipative Schemes

We are now in a position to show stability for the free-space problem using Von Neumann
analysis. Let the numerical solution be given by u" = /ﬂ"&o for n > 0. Inserting this
expression into equations (3.5) and (3.6) with A; = Aj, and canceling the common factor

produces the stability equations

1
plad = (,u — 5) Apﬂo and (3.17)

1
,ugﬂo =1 <5,u2 —4p+ 1) Apﬂo.
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Now, since Ay is a symmetric positive definite matrix, it is diagonalizable as A; = QAQ L,
where @ is orthonormal and A is the diagonal matrix with entries given by (3.13) or (3.15).

Thus, solvability of the expression (3.17) leads to the degree 2N Von-Neumann polynomial

p(p) = |w*Iy — (u - %) Ap

~ ey - (- 5) ore!

1
= ,uQIN—<,u—§>A‘:0.

Since this latter form is expressed as the determinant of a diagonal matrix, the Von-Neumann
polynomial can be written in factored form, and the amplification factors ,uf will be deter-

mined in pairs by the expression

A
u%—/\kuk+7’“:0, k=1,2,...N.

Solving these resulting quadratic equations gives

i_xki,/A%—zAk

Ky = B

Since Aj, € (0,2), it is immediately apparent that the amplification factors form complex
conjugate pairs. Further, since each ;. will be distinct, this means that for each k, the roots
of the Von-Neumann polynomial will also be distinct. If it is further shown that |uz| < 1,

then stability of the numerical scheme will be established. Taking the modulus of the roots,
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we have

2 2
A A A A
+ k k k k
Thus, the first order system will be stable, and, since |u| < 1, dissipative.

Repeating the process for the second order formulation gives
A3 — SARIE + A\ppt — A = 0
o ety AR — A = 0.

Lemma 5. The magnitude of the roots of 4,u% — 5>‘sz + ANy, — A are all less than one.

Proof. This will be shown using the Schur polynomial test given in section 1.2.2.

Define

do(z) = 423 — 5022 + 4\pz — A\ and

O5(2) = = N\p2d + 4N 22 = Nz 4 4

Note that |¢g(0)] = Ap < 4 = |¢5(0)].
Then,

4 (423 — 5)‘14:22 + 4Nz — )‘k) + A\ (—)\kz?’ + 4)\k22 — A2+ 4)
z

— (16— Ap) 22 + <4A§ - 20>\k> 2+ 16); — 52 and thus

$1(2) =

61() = (160 = 547 ) 22 + (40 = 2004 ) 24+ 16 — g
This gives that ¢1(0) = 16X, — 5/\% > 0 and ¢](0) = 16 — Ay > 0. Thus, we can check the
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condition of |¢1(0) < |¢7(0)| by finding the roots of ¢y, (0) — ¢, (0) = —5)\% + 17\, — 16.
Solving this quadratic shows that the roots are imaginary and thus the equation is negative
everywhere since using A\;, = 0 gives —16.

Taking this further by one step yields

() = %((16 ) <(16 )22 (4)\k _ 20)\k> 24 16X, — 5)\2>
— (163 = 527) (163 = 537 ) 22 4 (407 — 200 ) = + (16— Ay)) )

( (16 — \p)2 16)\k . 5Ak) ) Pt (16 AT 5Ai) <4A§ . 20>\k> ,

which is obviously a polynomial of degree 1.

Furthermore, this yields that

Gole) = — L6~ M2 = (160 = 532)° 4 (5A] — 4222 + 85, — 80)
(16 — 17Ap +502) (402 —20\) (16 — 17A +5A7) (402 —20);)

Mathematica can then be used to show that (52(2) has a critical point at 0 and no other
critical points in [0,2]. Thus, since |¢(1)| ~ 0.4848, I have that ¢9 is a Schur polynomial

and thus subsequently, so are ¢1 and ¢.

3.1.2.3 Non-dissipative Scheme

The process of the previous section is now repeated on (3.7). This gives rise to a polynomial

of the form

—A\ppp+1=0, k=1,2,...N.
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Thus, the amplification factors are now given as

2
MERVESVOTEY!
— .

2

Ju

This time, the modulus of each complex conjugate pair is

i (2) - (2)

Thus, since the eigenvalues are all distinct, the method is stable, and, since |u| = 1, the

scheme is non-dissipative.

3.2 Dispersion

We now analyze the phase error of the free-space approximation. The continuous dispersion

relation results from looking at sinusoidal solutions of the wave equation

v(x,t) = elhr=wl) with w? = 22,

We now analyze the semi-discrete dispersion relations and define the phase error for the free

space dissipative and non-dissipative schemes.
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3.2.1 Semi-discrete Non-dissipative Scheme

For the semi-discrete equation, define u" = ﬂeikm_ia’(”m), where @ denotes the discrete

temporal frequency. Substituting this ansatz into the non-dissipative scheme yields
o0
(e—idet . ei&;At) aeike—innAl) _ / e—ale—yl goiky—id(nAL) g,
—0o0

Cancel the common term e @At to get

cos (WAt) = %/OO e~ ele—yl=ik(z=y) g,
—0o0
m . .
— g/ e ¥ (elkz + e_ZkZ> dz (3.18)
2 Jo

after the change of variables z = y — x. Evaluation of the integral gives

a2 B 1
24 k2 keAt)2
a® + 1+%

cos (WAt) = (3.19)

This is the semi-discrete analog to the continuous dispersion relation. To avoid aliasing,
consider only the wave numbers in the region 0 < ©At < 7. The phase error can then be

defined as

O(AL) = |2 1]

ke
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For a fixed frequency k, we can analyze the convergence of this approximation using a Taylor

series approximation for small kcAt. First, make use of the trigonometric identity

cos (20) = 1 — 2sin? ()

in (3.19) to obtain

At 1
1 — 2sin? ( ) = 3
2 . (kcAt)
2
A 1
— 2sin? (w—t —1-
2 (keAt)?
1+
2
o2 (wAt) _ (keAt)?
2 2+ (keAt)?’
which gives
, WAL (keAt)? 1 22
Sln2 = - )
2 4 (keAt)? 1+ 222
1+
2
where z = CT Taking the square root and arcsin of both sides of the equation now yields

2 z
O = —arcsin [ ——|. (3.20)
At (\/ 1+ 222>
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The first terms of the binomial expansion for the denominator are given by

~1/2 1 2
(1 i 222> 2Ly g <2z2>

2
1 (keAt)? N 3(keAt)*
4 32
which, in turn, gives that
A At)?
z :kct<1_(kc t>>+O<At5>.
V14222 2 4
Substituting this into the arcsin expansion
3 5
z 32
=205 458 10(?)
arcsin(z) = z + 5 + 10 +0 (2

now turns (3.20) into

keAt <1 B (keAt)?

2 kcAt(l(kcAt)2>+( 2 4 ))3+O<At5>

YTAL| 2 4

6
_ 5 2 4
— ke (1 — Sq(keat)? +0 <At )) ,

from which it follows that the phase error is second order.
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3.2.2 Semi-discrete Dissipative Schemes

For the dissipative scheme, similarly define u" = getkr—io(nAt), Substituting this ansatz

into the first order dissipative scheme yields

i “ . a oo i “ . e _ “ . _ _
o~ iw(n+1)Atp ikr _ 5/ (6 iwnAtp iky iw(n 1)Atu€zky> e alx y|dy‘
—00

Once again, cancel the common term fie~WnAt ¢ get

.~ m . .~ .
o IWAL _ Q/ <ﬁezk(y—m) _ ezwAtaezk:(y—x)> 6—a|x—y|dy
—00

2
00
_ %/ eik(y—w)—a\x—y| <2 _ eidJAt) dy
—00
—iwAt 0
N ﬁ _ % / eik(y—a)=ala—yl g,
- —00

Use the change of variables z =y — x to get

e—i&}At a [P - ”
o oA 5/ e~ (el ftet Z) dz.
—e 0

Performing the integration gives

e—iJ)At o
9 _ GBAL 02 4 k2
o aone_ 2-e9N
1+ (kcAt)?

From this expression we would like to isolate w, and so we solve the corresponding
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quadratic polynomial for A = ¢@At
A2 20+ 1+ (keAt)? =0,

which admits complex solutions A = 1 + +ikcAt. Thus, the temporal frequencies will be

complex (dissipative), and are of the form

- 1 :
=0 log (1 + tkcAt)

— ke (1 — ik(;m +0 (At2>) ,

which shows that the phase error is first order.

We then repeat this for the final method by putting the ansatz u" = fietkr—iw(nAl) i

the second order dissipative scheme. This gives

e

—iG(n+1)At ik

m .~ . .~ . .~ .
%/ (ge—zwnAtaezky _ 2€—lw(n—1)At,&ezky + %e—zw(n—Q)Atﬁezky) e—a|x—y|dy'
—00

Cancel the common term e @nAt ¢ get

o0
o—iBAL _ %/ <geik(y—x) _ 9 i@t ik(y—z) | %e%d)Ateik(y—x)) e—ol=yl g,
—00

o0 5 . 1 .~ .
_ %/ <§ _ 9plwAt + 5621wAt> ezk(yfﬂf)*akﬂfmdy
—00
LAY 00
5 — 4etwAt  o2iwAt 0
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Again, use the change of variables z = y — = to get

—iwAt
2e” " _ o —az [ ikz —ikz
— —— = — e e +e dz.
5 — 4etwAt + e2iwAt 2 Jo

Performing the integration gives

2e—iJJAt Oé2

B 4ci0AL | 20N 02 4 k2
(keAt)?

14 =
- 2

. 9p—iBAL _

Setting \ = @At and setting this as a polynomial gives

A3 — X2 45X — 2 — (keAt)? = 0.

Solving this in Mathematica gives the solutions as

3 3R 33

3Y4R 62 '3 3YiR 692

3 : : : '
)\:{4 V2 R §_1—Z\/§_(1+z\/§)34 1+Z\/§_(1—“/§)R},(3.21)

where R = ?\)/2 + 27(keAt)? + 3\/5\/4(k’cAt)2 + 27(kcAt)4.

From here, consider the asymptotic limit as At — 0, which gives that these roots approach

3
4 2
respectively {2,1,1}. Note that the first root, = + i + is real and thus corresponds
3 3R 3 %

to a parasitic mode instead of a propagating mode and thus it will not be considered any
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further. For the two complex roots, consider perturbative roots of the form
A=1+6, (52016—1—0262—1—0363—1—..., € = kcAt. (3.22)
We may now substitute A = 1 + ¢ into A3 — 4N 4+ 5\ — 2 — €2 = 0 and this becomes

(1402 =41 +0)2 +5(1406) —2 = ¢
= 1+30+362+6%—4—85—462+5+56 —2=¢2

— P52 =é (3.23)
From (3.22), we get

5% = ci)’e3 + 30%6264 +0 (65)

52 = 0%62 + 2616263 + (20103 + c%) +0 <€5) )
Matching powers of € in (3.23) gives the system of equations

— C% =1,
cif — 2c1c9 =0,

30%02 —2c1c3 — C% =0
which has a solution of

Clziia 02:77 C3 = ——
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and thus, the two complex roots of (3.21) are given by

keAt)?  5(keAt)3i
A= 1 ikeat — FeAD” L SkeAl) S+ (ar)
2 8
. 11(kcAt)3i
_ FikeAt _ LIkeat)™ 4
. T o(a
- : 11(keAt)3i
A eztzk;cAt - % +0 (At4> .

Thus, we have that iwAt matches *ikcAt to the third order which implies that
@? = (k) + 0 <At2>
and the phase error is of second order.

3.2.3 Fully Discrete Non-dissipative Scheme

Consider the non-dissipative scheme employing the midpoint quadrature rule for spatial

discretization. The only modification to equation (3.18) will be that the integral is replaced

i(kjAz—n@At)

with an infinite sum. Let ug‘ = ue , where now @ denotes the fully discrete

temporal frequency, yielding

. . o ©  Az/2 L
<€—zwAt + euuAt) aezk]A:c—@w(nAt) —a / e—a|x—y\ﬁezky—zw(nAt) dy.
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After dividing through by ae®J Az—iwnAt this becomes

m=—0oo

—> 2cos (wAt)

mIBAL | DAL _ Z eik(m—j)A / e~olwi=vl g,
Om

Z etk (m=5)A / e—a\xj—y\dy.
Qm

m=—0oQ

The integration produces

2
«

/ €7a|xj7y|dy —
Om

2

This then gives that

2 cos (WAt) =

(12,

ae—a|j—m|Ax sinh <%>, Jj#m.

(=v/2) +Z

j=m

Az —a|j m|Az sinh <Z>
2

m#j

After dividing by two and centering the sum about m = j, this now becomes

cos (WAL) =

1—e(-7/2) —|—Smh< )
=1—e¥/2) 4 ginh (%)

=1—€e""/?) 4 ginh (%)

=1—¢"/?) 4 ginh (g)

Z ptkmAz —a|m|Ax
m#0

—00
Z olik+a)Azm +

m=—1

e(ik—a)A:cm

WK

1

m

oo

—ik—a)Azm

el +

WK

e(ik—oz)Axm)

) |

I
—_

m=1 m

elik—a)Ax
— elik—a)Az

e(_
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Finding a common denominator then yields

(—ik—a)Ax _ 9 —2aAzx (ik—a)Ax
N o (v)2) . <Z> e e +e
cos (@A) =1 —e TS )\ T S a)Ar _ Gk -m)dr 5 o 2ads

(w2 v cos (kAx) —e™”
=l-e +sinh <2> (cosh (v) — cos (kAz) )

Further algebraic manipulation shows that this becomes

kAz)e” — 1
o) 1 2 (3) (1)

+ 9sinh ( > cos (kAx)e” — 1
1+ e2V —2cos (kAx)e?

)
) (1 + €2V — 2cos (kAx)e” + cos (kAz)e” — 1)
)

—1—¢¥/2) —{—QSmh(

NN

—1— /2 —{—QSmh(

I IAN

1+ e2V —2cos (kAx)e?
1 — cos (kAx)e™
14+ e 2 —2cos (kAz)e ™ |

As in the semi-discrete analysis, we study the phase for a fixed frequency k. Some

—1— /2 —{—QSmh(

RIS

additional algebraic manipulation, including the double-angle formulas for cos and cosh,

gives

1-— Azx)e "
cos (BA1) =1 = /) 4+ 25inh <g> (1 — QCOSC((:LZ)Z_)VevL 6_21/)

e/2) (1 —2cos (kAz)e™ + e~2¥) + 2sinh (v/2) (1 — 2 cos (kAz)e ™)
1 —2cos (kAx)e™? + =2V

(e(—V/2) + e(—SV/Q)) cos (kAz) — e(=3/2) — (=v/2)
1 —2cos (kAx)e~V + e~ 2V

(/2 4 1)) cos (k) — et/ — (/2
e’ —2cos (kAx) + eV

=1-

=1+

=1+
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This then becomes

cos ( k;Aa:
2 cosh (v) — 2 cos (kAx)

)
=1+ 2cosh g) ( cos (kAx) — 1 )

4sinh? (v/2) + 4sin? (kAz/2)

-1 _ sm2 kAx cosh (V/2)
=1-2 ( 2 ) (251nh2 (v/2) + 2sin? (kAx/2)>

_cos (@A) -1 <in? kAz cosh (v/2)
— 2 2 * < 2 ><2$1nh2 (v/2) + 2sin? (kA:v/Q))

1 cos(0AL) k:Ax
i e
— sIn T

2
Since we are interested in implicit methods, the relevant inequality is Az < cAt, and so

cosh (v/2)
2sinh? (v/2) + 2sin2 (kAz/2)

cosh (v/2)
2sinh? (v/2) + 2sin2 (kAz/2)

consider the limit of the phase error for Az, At — 0, while leaving v as a small, fixed
quantity. The error will be better understood if put it in a form similar to equation (3.20).

Therefore, define

kcAt 2 . v 2 . (kA
z= , 81 = —sinh (§>, 52 = 13 Sin (T) (3.24)
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Then the fully discretized phase error can be given as

where

512 ~ 2sinh (v/2) 9 o

Z =

in (kAz/2 1 kA
22, IORGR) L g (E20 ) s (£). (3.25)
2 2
Notice that since s = 1+ O (V2) and s3 = 1+ O ((kAx)z), that the semi-discrete limit
Z ~ z is recovered by letting ¥ and Az tend to zero such that At is held fixed.
The relative phase error will now depends on v, Az and At with

O (v, Az, At) = ’
c

3—1‘.

Following the exact algebra and expansions as given in section 3.2.1, we have

& = cosh (v/2)ke (1 _ (kcAt)Q) ) (COSh(Vé2>kCAt (1 _ (kedt)?

1 >) +0 <At4>

1 3L
— cosh <g)kc (1 . (kcfm 4 (cosh (”/21)(]“&» I (At4)) .
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Using the expansion

it becomes easy to see that the error is now O (At2 + 1/2). If for a fixed wave number k, we
let At and Az — 0 in such a way that v is held constant, we see that the phase error is

non-zero in the static limit

. (. [cosh(v/2)
arcsin V4 W h( /2)
fim 9y, Az, Af) = |- |_v .

Az—0 ke S1

which has been verified numerically for a range of v. Additionally, letting v — 0 produces
zero phase error, but this limit is not realizable, as it implies that either Ax = 0 or At = oo.

The fully discrete phase error is shown for the second order method in Figure 3.1, for
several values of v. Clearly the phase error is reduced as v is reduced, which in the context

of the plot corresponds to spatial refinement.

3.2.4 Fully Discrete Dissipative Schemes

We now repeat the same ideas for the dissipative schemes. Begin once again with the ansatz

n

U = qetlkiAz—nwAt)
J

, which when substituted into the first order scheme gives

- o . s Az/2 oo .
efzwAtaezk]Axfzw(nAt) — / e—a|zfy|ﬂezky72w(nAt) (2 o euuAt) dy.

(= oo/ —AT/2
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Relative phase error
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Figure 3.1: Relative Phase Error for the Non-dissipative Scheme

"For interpretation of the references to color in this and all other figures, the reader is referred
to the electronic version of this dissertation."
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Repeating the integration techniques used in the previous section, we arrive at
pIWAL _ (2 _ ei&At) o

where

Z) 1 — cos (kAx)e™"

. 3.26
271 —2cos (kAx)e ™V + e 2V (3.26)

0:1—6(”/2)+23inh<

Using the exact algebra as was given above, we have in terms of the expressions (3.24) and

(3.25)
v sin? (kAx/2) v\ 432
o =1—cosh (—) =1 — cosh (—)
2/ sinh? (v/2) + sin? (kAz/2) 2/ 14422
iGAL AL vy 42
— e W = (2 — e > (1 — cosh —> > : (3.27)
2714422

Letting A = WA and then multiplying (3.27) by giwAl yields the quadratic equation
oA2 — 20\ +1=0.

This quadratic equation has solution A = 1 £ 74 /% — 1. Here,

I 1442 .
o 1+ 422 — cosh (v/2)422
472 cosh (v/2)

14432 — cosh (v)2)4z2
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Therefore,

/_ - 72 cosh (v/2)
1+ 422 — cosh (v/2)472
_ o3 cosh (v/2)
1+ 422 — cosh (v/2)422

_9s cosh (v/2)
1 —822sinh (v/4)

This results in

3 h(v)2
A= e@A _ 1 4 gin (kgx)csch (”) cosh(v/2) (3.28)
\/1 — 8sinh? (v/4)32

We now take the following expansions for each of the terms that make up the last term in

equation (3.28):

3
“in (kAJ;) _ kAx (kAx) Lo (Ax5) 7

2 2 48
w(g) -2 0 ()
\/cosh(g> \/1—1+Cosh< )
cosh (v/2) —1 2

=1 o () 1+ L s 0 (o).

and \/1—8smh2 (4) 52 = 1 + 4sinh? <4>z —|—O<1/2>
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Substituting all of these in to equation (3.28) gives

N A 2
N = iwAt _ kA (1 + ”—) (1 + 4 sinh? (5) 22) +0 (Amz n y2)
v 8 4
2

— 1+ ikeAt (1 i % 1 sinh? (”

Z) (keAt)? + 0 (Aaz2 + 1/2>) :

We then take the log of both sides and expand the right hand side using the Taylor

expansion for log (1 + ) to get
2 v

L v o (Y 2 2., 2
iwAt = tikcAt <1+ S + sinh <4>(kcAt) —l—O(Am +v ))

Dividing through by ‘At will give that the error is first order.
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Chapter 4

Analysis of the Solution on a Bounded

Domain

We now repeat the analysis of these schemes on a bounded domain.

4.1 Consistency

4.1.1 Non-dissipative Scheme

First, consider the purely dispersive solver (2.6) with 3 = 2 on the region [—L, L] with either

zero Dirichlet or Neumann boundary conditions. The truncation error is now given as

o 1 <Un+1 + N J[Un]> ’
(cAt)2
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where

L L
J[v"] =« ( /—L e_o“x_mvn(y) dy + ¢1(x) /—L e_o‘(L_y)v"(y) dy

L
+ ¢o(x) /—L e_a(L+y)v”(y) dy).

Zero Dirichlet boundary conditions will give

_sinh(a(L + 7)) o) = _sinh(a(L — 7))
sinh(2aL) = 2T sinh(2aL)

c1(x) =

while zero Neumann boundary conditions give

cosh(a(L + z)) o) = cosh(a(L — x))
sinh(2aL) = 2 sinh(2a/L)

¢1(w) =

(4.1)

This can be written as the integral of a single function @Q(x,y) multiplied by v" with

Q(z,y) = a [e~ = 1 ¢ (2)em V) 1 gy (a)emEHY) |

and due to the negative exponentials, it is easy to see that

Qz,y)l <2, V(z,y) € [-L, L]

Observe that a direct consequence of the homogeneous Dirichlet boundary conditions is

that at x = £L, v" and all of its even spatial derivatives will vanish. That is,

1 1

lim (0)*v(z,t) = lim —— (8)*v(x,t) = - (0)*™ v(£L,t) = 0.

r—+L z—+L c2m ccm
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The order of the limits and the derivatives can be swapped as long as the 2m-th derivatives
of v exist and are continuous.
Similarly, for homogenous Neumann boundary conditions, the odd derivatives will dis-

appear as

lim (0)?" oz, ¢) = lim L(at)%x(x,t) (8)*™ vy (£L, 1) = 0.

r—+L x—+L c2m N c2m

Now, we perform integration by parts on J[v"| = J4[o"] + J_[v"] + é1(x) K+ [v"] +

éo(x) K_[v"], where

L¥x
Jr = a/ e " (xt2)dz
0

L¥x L¥x
= [z £ 2)e” ] + / (£1)vl(z + 2)e” ¥ dz
0

L¥x

k J
— |- Z (%am) V(x££ 2)e” Y

Jj=0 0

L¥x +1 k+1
— / (—(%) V(x££ 2)e” Y dz.
0 «
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Similarly, the boundary terms are

L
K —a / LAy () dy
L

and

L

_ |:,Un<y)e—01(L—y):| LL _ / Uzvl(y)e—oé(lz—y) dy
- —L

L

ko, J
|3 (Fa) et
- (8%
J=0 L

L o/_q \Kktl
+/ (—Gx) VM (y)e LY gy,

L\«

Taking this expansion out to k& = 5 and after grouping by odd and even derivatives at
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the boundary points, we arrive at

0 = 0 (L) + L)+ (D))

052
I, I, I,
+ 04 _Ua?(_L) + _Ux:m:(_L) + _Uxa:xm:v(_L)
[0 a3 a5

oy (v”(L) o)+ évﬁmm(L))

CYQ
1, I, I
+ 4| Uy (L) + _U;m:x(L) + _Ux:cmxx(L)

o a3 ad

n I I

+2(v"(z) + _QUmx(x) + jvmxxx(x)
(e v
1 L

+ _6 Q(ZE, y)vga:xmxm (y) dy
a” JO

with

5 = Ey(x) £ e 200¢ (z) £ e LHT),

—2aL —a(L—x)

v+ = Fér(z) —e co(x) —e

For zero Dirichlet boundary conditions,

sinh(2aL)04 = —sinh(a(L — z)) — e_QO‘LSinh(a(L + 1)) + Sinh(?aL)e_O‘(L‘m")
_eo(L—2) + ca(—L+z) _ ca(—L+x) + e (—=3L—x) + ca(L—z) _ pa(—3L—1x)
2

=0
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while

sinh(2aL)5_ = —sinh(a(L — z)) + e 2*Fsinh(a(L + z)) — sinh(2aL)e(L47)
e(L—x) + c0(—L+x) + ea(—L+z) _ pa(=3L—z) _ ja(L—1x) + et(=3L—x)
2

= e(—L+2) _ po(l—z) _ 2sinh(a(z — L)).

Additionally,

sinh(2aL)yy = sinh(a(L + z)) + e 2*Lsinh(a(L — 2)) — sinh(2aL)e~*(E—7)
e(L+z) _ ja(—L—x) + et(—L—z) _ ca(-3L+x) _ jo(L+x) + e(—3L+x)
2

=0

and

sinh(2aL)y_ = —sinh(o(L + 2)) + e 2*Lsinh(a(L — 2)) — sinh(2aL)e~*E—?)
_eo(L+w) + e(—L—x) + et(—L—z) _ ca(=3L+z) _ ja(L+z) + e(—=3L+x)
2
= —e(L4o) 4 c(=L=2) — _oginh(a(L + z)).

However, it was already shown that all even derivatives of v" are zero at the boundary.

Thus, all of the boundary terms vanish identically, and

2 2 1 L
J[Un] = 20" + Qng + 4U;7le:rx + 6 / Q(I7 y)vgx:cx:m@) dy. (4-2>
a (0% (6% —L

A comparison of (4.2) and (3.2) shows that J[v"] and I[v"] differ by O (AtG). Thus, for
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all cases on a bounded domain with Dirichlet boundary conditions, J[v"] may be substituted
for I[v™] into the free space consistency proof for the respective solver without having an
effect on the order of the method.

For zero Neumann boundary conditions,

sinh(2aL)54 = cosh(a(L — z)) + e 2*Leosh(a(L + z)) + sinh(2a.L)e*(E+7)
e(L—x) + e(—L+x) + et(—L+x) + c0(—3L—x) + ct(L—z) _ po(—3L—1x)
2

= elL—w) 4 pal—Ltz) _ 2cosh(a(L — 1))

while

sinh(2aL)d_ = cosh(a(L — z)) — e 2“Leosh(a(L + z)) — Sinh(gaL)e—Oé(L+fU)
ea(L—x) + et(—Ltz) _ pa(—L+z) _ ja(—=3L—z) _ jo(L—1x) + e(=3L—x)
2

=0.

Additionally,

sinh(2aL)vy = —cosh(a(L + z)) — e 2*Leosh(a(L — x)) — sinh(2aL)e~ L~
B _ea(Ltx) _ pa(—L-z) _ pa(—L-z) _ ja(-3L+z) _ ja(l+z) + c(—=3L+x)
2

= —e=L=7) _ pall4e) — _9cosh(a(L + )
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and

sinh(2aL)y— = cosh(a(L + z)) — 6_2aLCOSh(a(L — 1)) — sinh(2aL)e_O‘(L_x)
eoz(L—i—x) 4+ eoz(-L—x) _ ea(—L—x) _ ea(—3L—|—J;) _ eoz(L—H;) + ea(—3L+x)
2

=0.

However, it was already shown that all odd derivatives of v™ are zero at the boundary.

Thus, all of the boundary terms vanish identically, and

2 2 1 (L
J[Un] = 20" + —'ng + _ngx:v +— Q(.QZ, y)vgmxxxm (y) dy.
a? a4 ab —L

Once again, we may freely substitute J[v"] for I[v"] in any of the freespace consistency

proofs without changing the order.

4.1.2 Dissipative Schemes

For the dissipative schemes (2.3) and (2.4), we can show consistency based on results obtained

in previous sections. From section 3.1.1.2, we have that the first order scheme is given by
n+1 n 1 n—1
u" T (x) = Tu"] — 5[ [u } (4.3)

and the second order scheme is given by

i) =g [ g [, .

n+1 _
u™ () :
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We can adapt these situations to the case of a finite mesh as

u"H(z) = J[u"] — %J [u"_l} (4.5)
and
u"(z) = ZJ [w"] —J [un_l] - %J [un_ﬂ (4.6)

respectively, where J is as defined in (4.1). From section 3.1.1.2, we have that equations
(4.3) and (4.4) are first and second order, respectively. From section 4.1.1, we have that

Ju] = Ifu] + O (AtG). Thus, (4.5) and (4.6) must similarly be of first and second order.

4.2 Stability

In this section, the focus is on the incorporation of the boundary matrix, such that Ay = A+
A;, in equation (3.5). We will treat the matrix Ay, given by equation (3.8), perturbatively
and look for a bound on the eigenvalues of A;, based on A 4+ §, where X is an eigenvalue of
Ap and 6 is an eigenvalue of Aj,. Stability will follow if it can be shown that |u| < 1, where

/4 is now given by

A+6
uz—(A+5)u+%:0and

) 1
MS—Z(A+5)M2+<A+5)M—Z(AM)M:O
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in the respective dissipative schemes and
= A+8pu+1=0

in the non-dissipative scheme. While stability will hold for the non-dissipative scheme if
A+ 0 € [—2,2], the interval is [—2/3,2] for the first order dissipative scheme and [—2/5, 2]
for the second order dissipative scheme. The region for the second order dissipative scheme

was found numerically while the other regions may be found by solving a quadratic equation.
Lemma 6. \ +0 < 2.

Proof. By the Gerschgorin theorem, the maximal eigenvalue of Ay + Ay, is bounded above

by the maximal row sum of Ay + Aj. For zero Dirichlet boundary conditions,
L
> (Ap)ij = / ae—elri=vlgy — 9 _ gmalaitl) _ —a(l=wj) 4q
; —L
J

sinh(a(L + z; L —allL—
2 (A=~ Siilh((on_L) ! /_L ae™ = May

sinh(a(L — z;)) /L —a|—L—y|
~ sinh(20L) I e a

<1 _ €—2aL) —sinh(a(L + z;)) — sinh(a(L — z;))
sinh(2a.) :

Thus,

Z(Ap -+ Ah)” =2 — e_a(xi+L) _ e_OZ(L—xi)

J

< 2.

_oqr\ —sinh(a(L + x;)) — sinh(a(L — x;))
+ (1 e L) sinh(2aL)
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In a similar manner, zero Neumann boundary conditions will give

L
Z(Ap)ij = / ae_akci_y'dy — 9 _ p—aly+L) _ j—a(l—w;) 419
- L
J

~_cosh(a(L + x;)) /L —a|L—y|
%:(Ah)” ~ sinh(2al) I e @

boll =) [ ol
sinh(2aL) L

<1 B e_zaL> cosh(a(L + x;)) + cosh(a(L — x;))
sinh(2aLL)
e—a(Ltw;) _’_ea(L—&—xi) —|—ea($i_L) +ea(L—a?i)
2sinh(2a L)
e—a(BL+z;) _ palz;—L) _ pofx;—3L) _ —a(Ll+z;)
2sinh(2aL)
e—aL <€2aL _ 6—2aL> (eo‘xi + e—axi)

2sinh (2 L)

= 2¢"*Leosh(ax;).

Thus,

Z(Ap +Ap)ij =2 — e~ 0@ith) _ g—all—z;) 4 2¢ =L eosh (o)

J

_ 9 _ g—olzi+L) _ —a(l-x;) + e—a(z;+L) 4 e~ a(L—zj) _ o

]

Since we already know that A > 0, we must ensure that —2/3 < § < 0 in the first order
scheme and —2/5 < § < 0 in the second order dissipative scheme to ensure stability. Below,

we will make use of the Bauer-Fike theorem.
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Theorem 7 (Bauer-Fike Theorem [11]). Let B be a diagonalizable matriz, and Q) be the
non-singular eigenvector matriz such that A = QAQ™Y, where A is the diagonal matriz

containing the eigenvalues of B. Then for the matriz B + E, with eigenvalues A + 6, and

where E 1s an arbitrary perturbation matriz,

181 < 11QII2/1Q 12112

We will apply this theorem with B = A, which is a real symmetric positive definite

matrix, and therefore we have that ||Q[|2]|Q 1|2 = 1 since @ is orthogonal. Also, set

E = Aj, and thus

0] < 1[Ap|l2-

Therefore, attention will be restricted to the norm of A,

Notice that if we define the vectors

vg = (sinh (a(L — 21)), . ..sinh (a(L — xN)))T ,
vp, = (cosh (a(L — z1)),...cosh (a(L — a:N)))T ,

h = (e—a(Lﬂq)’ . e—a(LerN))
then the matrix Ay, (3.8) can be expressed as

Aj = —QGOW(W ~h+ (Ju;) - (Jh)), i€{d,n} (4.7)

where ag is given by (3.9) and the matrix J is the counter-identity matrix, containing ones
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along the anti-diagonal. It has the effect of reversing the elements of a vector that it acts
upon, and for an equally spaced symmetric mesh is equivalent to replacing z; with —z;.

Since v - h and (Jv) - (Jh) are both rank one matrices, Ay is a matrix of at most rank two.

Theorem 8. For the centrosymmetric rank-two matriz with n distinct entries which are

negative and of decreasing magnitude less than one, the separation between the eigenvalues

15 bounded by 2ay,.
The proof of this theorem will make use of the following lemmas.

Lemma 9. For these centrosymmetric matrices, Ap(1, )% + Ap(1,n —j +1)2 = Aj(1,1) «

Ap(4,7) + Ap(L,n) * Ap(j,n —j +1).

_ dx . sinh((n—i4+05)v) . sinh((: —0.5)v) (. -
Proof. Lett 2 q _ (j—0.5)v (n—j+0.5)v
roof. Letting v cAt’ n(i.) sinh(nv) c * sinh(nv) ¢

This gives then that

sinh? (nv)(Ap,(1,5)* + Ap(1,n — j + 1)) =

(sinh(—0.5y)e(j_"_0'5)’/ + sinh((0.5 — n)y)e(0-5—j)z/>2 +
(sinh(~0.50)e 2= & sinh((0.5 n)y)€<jno.5>u>2

— 41272y g @2y _ v o 2y 4 [(2-2)v | (25-2n)v _ 4 (1-2n)p

42w 4 e(2i—dn)v _ 46(1—2j)u _ 4e(2j—2n-1)v + e(2—2n—2j)u + o(2i—2n—2)v
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which is equal to

(sinh(—0.5u)e(0‘5_")V + sinh((0.5 — n)y)e_0'5”)

: <smh((0.5 — ))elU=7=05Y 4 inh((j —n — O.5)y)e(0~5_j)V>
+ (sinh(—0.5y)e_0'5” +sinh((0.5 - n)y)e(0'5_")”)

: (sinh((0.5 — ))el05=I 4 ginh((j —n — 0.5)y)e(j—n—0.5>u>

— sinh2(n0) (A (1,1) * Ap(j»5) + Ap(Ln) % Ap(iyn — j + 1)),

For the case of zero Neumann boundary conditions,

cosh((n —i+ 0.5)v)
sinh(nv)

cosh((i — 0.5)v)
sinh(nv)

A(i,g) = exp((j — 0.5)v) + exp((n —j + 0.5)v),

which will consistently change signs in the algebra above and the result will be the same. [

ayTrace(Ap) + anSkewTrace(Ay,)

The corollary seen from this is that > i, a? = 5 .

Lemma 10. For the given matriz, SkewTrace(Ap)? = Trace(An)? —4M,, where My, consists
of the principal 2-minors of Ay,.
Proof. Proof of theorem by induction:

alp ag
Base Case: Consider the two by two matrix Ao =

az ai

Trace(Ag)? — 4M,, = (2a1)% — 4 (a% — a%)

— 4a3 = SkewTrace(As)>.
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Induction Step:
Assume this true for any such matrix of size n. Extend the matrix to A, 49 of size n + 2 by

adding on an additional first and last row and column. Due to the nature of the extension

from Ay, to Ay 4o, Trace(A,+9) = Trace(Ay) + 24,,42(1,1). Thus,
Trace(Ay2)? = Trace(Apn)? + 44, 19(1, 1) Trace(Ap) + 44,419(1,1)2. (4.8)

My, can be extended to M, 19 by adding in the principal 2-row minors that have an entry

in the first or last row. Thus,

My = My + Apio(1,1)%2 = Apya(1,n+2)? (4.9)
n
+4A549(1, 1) Trace(An) — 2 Apio(1,4)%.
1=2

Thus,

Trace(Ap42)% — 4Mp 40

= Trace(Ap)? + 44, 19(1,1)% + 44, 19(1, 1) Trace(Ay)

n—1
—4 (Mn + An+2(17 1)2 - An+2<17 n+ 2)2 + 2An+2<17 1)Trace(An) —2 Z An+2<17 Z)2>
1=2

n
= Trace(Ap)? — 4My, + 4Apo(1,n + 2)% — 44, 49(1, 1) Trace(An) +8 Y Apio(1,i)?
1=2
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From the base case, this is now

n
SkewTrace(Apn)? + 44y,19(1,n 4 2)2 — 44,1 9(1,1)Trace(A,) + 8 Z Apia(1,0)?
1=2

— SkewTrace(Ap)? + 44, 19(1,n 4 2) + 44, 9(1,n + 2)SkewTrace(A;,)
— (SkewTrace(An) + 24, 12(1,n + 2))?

— SkewTrace(A,49)>.

Proof. Proof of theorem 8 by induction:

Base case 1:
Consider the case of the one by one centrosymmetric matrix [a]. This obviously has one
eigenvalue a and there is no separation to consider.

Base case 2:

a; as
Consider the case of the two by two centrosymmetric rank-two Hankel matrix

az @

which obviously has eigenvalues A = a; + a9, which have a difference of 2a9 = 2ay,.

Induction Step:
Assume this is true for any matrix A, of size n. Extend the matrix to Ao of size n + 2
by adding on an additional first and last row and column. The characteristic polynomial is

given as
2n .
PN =) ¢\, (4.10)
1=0
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Since this is the characteristic polynomial, ¢9,, = 1. Further, because the matrix is of rank-
two, ¢; = 0 for i < 2n—2. Also, ¢9,,—1 = Trace(A,12) and ¢y, 9 is the sum of the principal
2-row minors. Solving the resultant quadratic equation yields that the eigenvalues of the

matrix are

<Trace(An+2) + \/Trace(An+2)2 - 4Mn+2) (4.11)

N | —

where M,, 2 denotes the sum of the principal 2-row minors. Since A, and A, ;9 are real and
symmetric, all the eigenvalues must be real, which implies that Trace(An+2)2 > AMy 10,
By lemma 10, the eigenvalues for A, 49 are Trace(A;12) + SkewTrace(A,+2).
O

T Ap) £ T JA
From the above theorem, the eigenvalues of A;, are given by race(Ay) 5 race( h).

Furthermore, it is clear from equation (3.8) that A;; = Aj;, giving that Aj, is symmetric.

Therefore, the 2-norm of the matrix is equal to its spectral radius

Trace(Ay,) + Trace(JAp,)

Aylly = —
[ Apll2 5

= —;iil((;ﬁ)) (v-h+ (Jv) - (Jh) + (Jv) - h+v - (Jh)) .

These dot products are each given by a geometric series determined by the boundary

30



conditions. For Dirichlet boundary conditions,

N a(L
v-h— Z +25) ginh (a(L — z))

N
ZefZaxj _ e 2aL

and

N
(Jv)-h e oLtz;) smh( (L + :r;j))
j=1

1ZN 2a(L+x )

_ _ —Za(ltx;

= 5 1 e J
j=1

1 N esz/SH.lh (Nv) |
2 sinh (v)

where we recall that 2al. = Nv. Thus,

<o (1) () (S )

=ap (1-¢7) (% " N%) |
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Neumann boundary conditions give

N
v-h= Z e~ UEHTH) cosh (a(L — z))
j=1
1 N 9
_ —2az; | —%aL
— 5 Z e J + @
j=1
_ 1 (sinh(Nv) Neo—Nv
2 \ sinh (v)
and
N
(Jv)-h=wv-(Jh)= Z e~ UEH25) sk (a(L + )
j=1
1 N o(L+z;)
+7;
5 Z 1+ e
7=1
1 _npsinh (Nv)
— (N y AP
2 ( e sinh (v)
Thus,

18] < [14,]] = a0 <1+67N1/> <sinh(u/2)) (sinh(Ny) +N>

sinh (Nv) s?nh (v)
) (S i)

Figures 4.1 and 4.2 give numerical plots of these eigenvalue bounds versus v = Az /(cAt)
and N. The figure encompasses 1 < N < 75 and 0.01 < v < 2. The white strips indicate
a region where the bound § > —2/3 is not satisfied, and therefore indicates a potential for
instabilities to arise. The blue area indicates a region where —2/3 < 6 < —2/5 indicating

stability of the first order scheme but not of the second order scheme. However, no such
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instabilities have been observed in my numerical experiments thus far, and it is likely that
if a tighter bound were taken, this region of instability would not be present. It should
be emphasized that this stability region only applies to the dissipative schemes and has no

bearing on the second order purely dispersive scheme.

4.3 Numerical Results

In this section we present preliminary results for the convergence of the outlined numerical
schemes for a test case. The wave equation is computed on the unit interval, with wave
speed ¢ = 2, up to a time ¢ = T" = 1, and zero Dirichlet conditions are imposed. For the

initial condition, we prescribe a Gaussian function

_(12(93 - 0.5)>2
flz)=e L , g(z)=0

which will be initially of negligible amplitude at the boundaries, and will have the exact

solution

12(z — 0.5 — ct)\ 2 12(z — 0.5 4 ct)\ 2
€_< L ) —+ 6_< L >

2

vz, t) =

The discretization is made so that the ratio cAt/Ax is held fixed at 10 in the first order
method, and 20 in the second order methods. Note that in both cases, this quantity is well
beyond the CFL stability limit imposed on standard finite difference schemes, and so this

method is an order of magnitude faster. The spatial step Az = 1/N is varied in the range
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Lower Eigenvalue Bound for Dirichlet Boundary Conditions
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Figure 4.1: Contour Plot of the Minimum Eigenvalue of the Dissipative Schemes for Zero
Dirichlet Boundary Conditions with Midpoint Quadrature

Lower Eigenvalue Bound for Neumann Boundary Conditions
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Figure 4.2: Contour Plot of the Minimum Eigenvalue of the Dissipative Schemes for Zero
Neumann Boundary Conditions with Midpoint Quadrature
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corresponding to N = 50 x 2]‘3, k= {1,2,...,8}, and At is scaled accordingly. The error is
computed as

HU(%‘, t) o U(l’, t)HLQ[O,l]'

The error for the first order dissipative scheme is shown in Figure 4.3. The convergence
is as expected, with the exception of the gradual decrease for larger values of At. Similar
trends are observed in Figures 4.4 and 4.5, the second order schemes that are dissipative
and non-dissipative, respectively. Since our interest is in taking time steps larger than the
CFL condition, it is reassuring to see the error drop with increasing time step over some
nontrivial interval.

1Convergence Study for the First Order Dissipative Scheme
10 — —

——Midpoint
| =*-Trapezoidal
At

10° ¢ |

IIu—vII2

10 +

-2
10 ) s

107 10 10 10
At

Figure 4.3: Convergence of the First Order Dissipative Scheme with v = Az /(cAt) = 0.1.
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Czonvergence Study for the Second Order Dissipative Scheme
10

~—Midpoint
——Trapezoidal
i 2
‘|01 i At

107 ¢ ;

IIu—vII2

10_2§

-3

10 4 | “‘HH—S | “““‘—2 | “““‘—1

10 10 10 10
At

Figure 4.4: Convergence of the Second Order Dissipative Scheme with v/v/2 = Ax/(cAt) =
0.05.
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Cor12vergence Study for the Second Order Non-Dissipative Scheme
| ——Midpoint
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Figure 4.5: Convergence of the Second Order Non-dissipative Scheme with v/v2 =
Ax/(cAt) = 0.05.
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4.4 Fast Implementation

All of the structure underlying both the matrices A, and Ay, creates opportunities for either
fast implementation or minimized storage. The matrix A; (3.10), which corresponds to the

free space solution, can be written as

Ap =bol +by(L+U),

where [ is the standard identity matrix and L and U are strictly lower and upper triangular

matrices respectively. The entries of L and U have been defined as

0, J=t
Lij = Uji =
e~li=ilv 5 <.
Consider the matrix vector multiplication Ay, - with 7 = [z1,29,..., 2 N]T. Then

Ay & =b L7+ 01Uz + bol7.

a1l requires only that a; be stored and multiplied by each entry in Z, requiring precisely
N operations.
Both Lz and Uz can be quickly solved in a manner akin to Horner’s method. The

structure of L will yield that

Lz =0, Yz, e Vag+e Pap e Yoy + e Pagte Vg,
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Starting with the second entry, each entry can be found recursively based solely on the

previous entry using

L(x1) =0, L(zp)=e¢ V*(L(xp_1)+xp_1), k={2,...,N}

Similarly,

Ulxn) =0, Uley_g)=¢ "*U(@y_gt1) +oN_p41), k={2,...,N}.

Each of these matrix multiplications will require N multiplications and N additions. There-
fore, the matrix vector multiplication A - Z requires storing only the quantities ag, a1, and
e~V as well as O(N) computations.

The matrix Ay, corresponding to the boundary correction can also be stored as two O(N)
vectors as can easily be seen by equation (4.7). Additionally, since A;, may be defined as
a constant multiplied by the summand of two outer products, v - h and Jv - Jh, it may be
implemented fast as well. Note that multiplying the outer product by another vector z gives,

for example,

(v-h)z=v-h-z=v-(h-2)=(h-Z)v.

Here, h -  is simply a dot product which requires only 2N — 1 operations and that scalar is
simply multiplied by v. Thus, the matrix vector multiplication for A; will require this to be

done twice, yielding a total of O(V) operations.
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Chapter 5

Non-Reflecting Boundary Conditions

A common problem that must be resolved when solving the wave equation is choosing how to
truncate the domain for numerical computation. For a wave propagating on a finite domain,
boundary conditions should be applied. While Dirichlet or Neumann conditions may be
used, a more practical approach may be to create an artificial non-reflecting boundary which
will allow the wave to flow out of the domain without re-entering [37]. One example of
such an approach is to use a radiation condition at infinity, which states that the waves
are outgoing. For R d € {1, 2, 3}, the most well-known such condition is the Sommerfeld
radiation condition [64], given by

lim 7(4=/2 (4, — iku) = 0, (5.1)

r—0o0

where r is the radial coordinate, u is the scattered field and £ is the wavenumber. For the

case of one dimensional time harmonic waves, u(x,t) = @(z)e~!, the Sommerfeld radiation
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condition (5.1) will exactly reduce to

ut & cuy =0, (5.2)

where the sign depends on the direction the wave is traveling. Both the accuracy [35] and the
stability [43] of solvers using various finite difference approximations implementing (5.2) have
been studied. In one dimension still, applying either of (5.2) is analogous to implementing
a one-way wave, that is, a wave that is allowed to propagate in only one direction [44, 68].

While a viable option in one dimension, radiation conditions may experience problems
in higher dimensions, however. The implementation of such conditions in two or three
dimensions has typically suffered from significant spurious reflections at the boundary [37].
Several attempts have been made to correct this, most notably [32, 33].

An alternative approach introduced by Berenger [15] is the idea of Perfectly Matched
Layers (PML), specifically designed for the context of solving Maxwell’s equation in two di-
mensions, wherein the computational domain is surrounded by a layer of absorbing material.
Berenger split the magnetic field H, into directional components H,, and H,, and then

showed that if the electric conductivity o and the magnetic conductivity o* satisfied

then the interface between the computational domain and the absorbing material would be
perfectly matched allowing the wave to pass through into the absorbing medium without
reflection. The wave would then decay exponentially in the absorbing layer. Berenger would

later go on to adapt this method for the three dimensional case of Maxwell’s equations [16].
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This idea of a perfectly matched layer has since been extended to wave problems in other
fields such as the linearized Euler equations [47], advective acoustics [1], shallow water waves
[58], etc.

The PML method proved numerically advantageous over other such methods for trun-
cating domains, such as radiating boundary conditions and absorbing boundary conditions.
However, Abarbanel and Gottlied [3| showed that Berenger’s initial PML implementation
with field splitting was only weakly well-posed and thus when slightly perturbed, this numer-
ical solution was subject to becoming divergent due to explosive modes. This splitting was
later shown to be unnecessary by Zhao and Cangellaris [72]. Many other studies, including
[2, 4, 7, 13, 12, 14, 30], have investigated the key properties of well-posedness and stability
of PML in its various schemes.

Another key tenet of PML that has been frequently studied is the method’s efficiency.
These implementations include further component splitting, coordinate stretching, the use
of absorbing boundaries in the absorbing medium [17|, reductions in number of auxiliary
variables [42| and optimization of both the absorbing function and the absorbing material
grid [9, 18, 26]. While significant time has been invested into finding an optimal absorbing

function, the problem is still regarded as open.

5.1 Perfectly Matched Layers

Let v(x,t) be a true solution to the 1D wave equation (1.1). We wish to compute a nu-
merical solution u(x,t) to this problem on the truncated computational domain [—L, L] by

introducing perfectly matched layers of length d. Boundary conditions at the end of the
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perfectly matched layer may be enforced, but are unnecessary. Thus, we wish to compute

up = Cuzz, t>0,—L—d<i<L+d (5.3)

u(xv()) = f(fL‘), ut(ZE,O) = g(fﬂ)

u(£(L+d),t) = 0.

Here, we have chosen to enforce zero Dirichlet conditions at the end of the PML region for
convenience.
The new variable Z will be defined using an analytic continuation of the wave equation

and the Laplace transform. Let

o0
ﬂ(a:,s):/ e Stu(x, t)dt
0

be the Laplace transform of the solution to equation (1.1). Now, define & by the mapping

c1l_9c:1_|_0(9§)7
dx s

where o(x) is some spatially varying damping rate, which is non-decreasing into the PML,

and nonzero only in the PML regions. Next, since

ou B dz Ou S ou

0  didr s+ o(x)0x’
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we can take the Laplace transform of equation (5.3) (with f(z) = g(x) = 0), and get

2. 2 S S .
s“U=rc 0 U
(s—l—a x(s—i—a x))

2 /
=54 32'& - —(SC) <7:Lxm - O- am)

where

>
I

U — S+ o0)0 =0 Ug.
3+0m ( ) *

Now, using the inverse Laplace transform on the expressions for u and v gives the following

system of equations:

1
> (Utt + 20ut + a2u) = Upy — U, (5.4)
c

v+ ov = ol ug. (5.5)

Alternatively, we can write a second order integro-differential equation involving only w,

by solving for v using an integrating factor. Elimination then gives

1 t
- <Utt + 20us + 02u> = Upy — 0// ug(z, s)e_g(t_s)ds. (5.6)
c 0
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5.1.1 Constant Damping Function

As a first attempt to understand this approach, consider the case where o(x) is a piecewise
positive constant, with the wave equation satisfied for < L, and the PML region for x > L;

then

0, x <L

op>0, x>1L

Then, o(x) = ogH(x — L), where H(x) is the Heaviside step function, and therefore
o' (r) = ogd(x — L). (5.7)

5.1.1.1 Implementation

Making use of (5.7) in equation (5.6) produces
1 5 t
- (utt +20u + 0 u> = Ugg — 0gd(x — L) / ug(z, s)e*U(t*s)ds.
C 0

The delta function will not prove problematic for my method of solution since we intend to
integrate over space with the Green’s function.
We now discretize equation (5.4) in time, using the standard first order discretization to

get

1

m (u"+1 — 2" +u" 1 4 20t (u”+1 — u”) + (aAt)Qu”H) =l gt
cAt
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or

1
—( iE (2un+1 — 5 4 4y = 2
c
3 1
+ 20 At <§Un+1 — oy + §un—1) + (O_At)Qun-‘rl) _ ug;l o Un+1

by using the standard second order discretization.
The term v can be discretized in a number of ways. If we apply the integrating factor

to equation (5.5) and integrate over [ty,t,+1] using the trapezoidal rule, we get
e (e—aAtvn 4oz — L>UOTAt <u;‘+1 n e“’AtuZ)> ‘
Now, we can apply the Helmholtz operator, which gives
r [un—i-l} (2) = f (un—&-l’un?un—l’vn—H)

where

and « is dependent upon the discretization used.
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The right hand side, depending on the desired order, is then given either by

f(u T vn+1> = —a? (2un — o oz — z2un+1> + 0" or
f (un—i—l u™ un—l un—2 Un—i—l) _
9 9 ) 9 -

2
a _ _ _
> <5un g 2 3y g — L z2u”+1> 1+t

with

z = oAt.
The Green’s function is given by
G(zly) = ie—alx—y\
2

and upon inverting the Helmholtz operator, we have either

00 n—1 00
S / —alr—y| (un(y) _ “T@)) &+ a / cemol=lynyay  (5.8)
—00 L

00 Z2
o O.// (? —|—Z) e_a|m_y|un+1(y)dy+17”+1(L)
L

or
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Here

—1 1
2~)’n+1 _ _/5($ _ L>€—a|x—y\vn+l(y)dy - ¢

—alz—L|,n+1p
2a 2a o).

Hence, due to the delta function, the term v is localized to the space-PML interface.
Consider the discretization of equation (5.8) or (5.9) using the midpoint rule. Let u
denote this fully discretized solution at (z;_1/9,tn), With x;_1/0 = =L 4+ (j — 1/2)Ax
The gridpoints corresponding to 7 = 1,2,... N are in the computational region and those
corresponding to j = N+ 1, N+2,... N+ M are in the PML region. The solution can then

be written as

n+1 Ni:MA ( ?_1> _ o eio1jamen] nt
2
Ner 2
+ Z Aji (zu? — (% + Z) u;”l) (5.10)

1=N+1

or
gl ) 1 | |
+1 _ 1 -2 | — N +1
uj = ZAji<Zu?—U? + Uy )— RN
=1
Ntm 22 32 z
1 -1
+ Y Ay ((_Z_ Z) u oz — ) (5.11)
i=N+1
with
n+l _  —z o n+1 n+1 —z n n
v =e Jr>‘(“N+1+p_“N p € (“N+1+p_”N—p>)‘
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The coefficient A can be simplified using v = aAx, so that

oo At 1 z

202 (2p+ DA 4(2p+ 1)

and p is any non-negative integer of my choice to represent the derivative at * = L. The

matrix A is as given in section 2.3,
]/ . .
Aji =2 (1 — 671//2) 5]‘2' + 2sinh <§>67|27]‘V(1 — 6]'1')7 1<t <N+ M

in terms of the Kronecker delta d;.

The important observation to be made here is that while the solution is given implicitly,
these implicit terms arise solely in the PML region. This will allow the continued use of the
fast summation methods used in the non-outflow algorithms, after further analysis of the

implicit equations which consitute the subsystem, N +1 <7 < N 4+ M.

5.1.1.2 Implicit Update

The matrix A decomposes as
A= (byg—b1)I+0T

where

by = 2 (1 _ e_V/z) by = 2sinh (g)
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and T is the Toeplitz matrix given in terms of d = e~ " by

1 d .. dNt+M-1
d 1 . dNtM=2
T = ,
dN+M—1 dN-I—M—? 1

whose inverse is given by the tridiagonal matrix with perturbed corners

1 —d 0
1 | —-d 1+ 0
Tl =
1—d?
0 1
Now, define
u = (uN—i—L ce 7uN+M)T7

then the subsystem corresponding to (5.10) or (5.11) can be rearranged and expressed by

2
1
(I + <% + z) A) a"tl = A ((Z +1)a" — 511”_1) — ot (5.12)

or
2
z 3z 5 z 1
A —n+1 _ A 9N -n <_ 1) -n—1 --n—2) _ -n+l
([+(—4+—4> )u <<z+4)u 4+ U —|—4u v
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with
ﬂize_a‘xi_1/2_$N‘vn+l> N+1<i< N+ M.

We can rewrite the first order system as

2
1
(I + (% + z) A) gt =4 <(z +1)a" — 5u"‘l) — gt

1
= (1 +co)] + 1)@t = (oI + 17) ((z +1)a" — §un_1> — gt

with

1 1
co = (bg — b1) (5224—2) , c1=0 (522—1-2’) .

Multiply by T- to get
1
((1 )T+ 01[) a"t = (cOT_l + 01[) ((z +1)a" — Eun_1> — gt

From here, note that the matrix on the left hand side, (1 + cO)T_1 + c1{ is tri-diagonal

+1

and thus this equation can be solved for "7+ using a tri-diagonal solver.

An alternative approach is to bring all of the implicit terms to the left hand side of the

equation. We begin with the breakdown of the temporal derivative as

—n4+1 _ _O"xi_l Q_mN‘ —z.n n+1 . n+l —2( n _.mn
0] =e¢ / e v+ A UNT14p uN_p—i—e UN 4 14p — UN—p )
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Rewrite this as

o+ gD+ 4 ¢ Ol (70 2 (7 (hany — )

alz;_q 9=z Nl

where E is the matrix with e on the ¢th diagonal entry and D is the matrix

with —1 in the (N — p)th column and 1 in the (N + p+ 1)th column. Note that the matrix
multiplication ED results in a matrix with only two non-zero columns.

We can then rewrite (5.12) as

2
(I+ <% —|—z> A+AED> attl =

1 —alz; -
A ((z + 1)1]” _ 5an—l) e a‘xz_l/g CUNl (6_22)” + ) (6—2 (unNJrler _ U?\ffp>>> _

Once again, reformulate A in terms of I and T as

(14 co)I + T + AED) @™ = (¢oI + 17T) ((z +1)a" — a"—l)

1
2
- e_a’xi_l/Q_xN‘ (e_zvn + A (e_z <u%+1+p — u%—p)))

Multiply by T~ as before to get

1
((1 +e)T M+ eI+ )\T_lED> "t = (cgT7 + 1) ((z +1)a" — 5@"—1)

B T—le_a‘xi—lﬂ_le (e_zvn + A (6_2 (UnNJrler - ugbV*P)))

It must be noted here that, due to the A\T"1ED term, the left hand side is no longer

tri-diagonal. However, since T~ is tri-diagonal and ED is a matrix with only two non-zero

102



columns, N\T "1 ED will also be a tridiagonal matrix with two additional non-zero columns.
Thus, the left hand side will still be sparse. Furthermore, this has the benefit of creating
a right hand side that is truly explicit as it depends solely upon values from previous time
steps.

The second order system may be solved in a very similar way, resulting in either the

tri-diagonal system

2
3 5 1
(I + (ZZ + Zz) A) "t =A ((z + Z) " — (Z + 1) a4 Zu”—2> — gttt

— (1 +c)l +T)a" =

5 1
(col +c1T) ((z + Z) " — (Z + 1) T Za””) — gt

— ((1 )T+ 01]> gl =

5 1
(coT*1 + 61]) ((2 + Z) a" — (Z + 1) T —a”2> — 7 gt

Again, we have the option to remove all the implicit terms from the right hand side with

>~

((1 +eo)T el + AT’IED> "t =

5 z 1
T*l ]’ e =N <_ 1) —n—1 _—?172
(co —l—cl)<(z—|—4)u 4+ u —|—4u

- Tﬁleia‘xi_lﬂﬂan (efzvn + A (e*’z (U?\H-H-p - u?v_p)>> .

Once again, the left hand side is now a tri-diagonal matrix with two additional non-zero

columns for every change in o).
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For the second order non-dissipative MOLT formulation, (5.6) becomes

1 n+1 n—1
(u”+1 — 2" +u" T 4 oAt <un+1 — un_1> + (0At)? (%))
(cAt)? 2

n+1 n—1
Ugg ~ + Ugy _ Un—i—l
5 .

We treat v in exactly the same fashion as above in the dissipative solvers. After refor-

mulating this as a Helmholtz equation and inverting the operator, this leads to

1 1 o
w4y :a/

—00

o0
e~ Tyl (y)dy + Oé/L 2z~ eVl (y)dy

—a /LOO (22 + z) eyl (u"“(y) + u"il(y)> dy + 3" H(L),

with

This gives

N+M

n+1 n—1 _ on *Of‘ﬂ?'_1 2*13N| n+1
uj —i—uj = Z Aﬂui e i-1/ v
1=1

N+m
+ Z Aj; <2zu? — (22 + z) (u?Jrl + u?_1>> :

1=N+1

n+l _ -2z n n+1 _,n+l =2z (,n )
v =e “v +)\<UN+1+p un_, e <UN+1+p uN_p)>
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where

00 At z

A = — .
a22p+ 1Az (2p+1)v

The subsection corresponding to the PML region can then be expressed as

(I + <z2 + z> A) (a”“ + ﬁ“‘1> = A (a” + 22@“‘1> — 9,

b; = e_“’xi—l/Q_””N‘u”“, N+1<i<N+M.
Letting ¢y = (by — b1) (22 + Z) and c; = by (z2 + z), this now becomes
(1+co) I +e1T) (a”“ + a”—l) = (col +¢17T) (a" + mn—l) "
Multiply both sides by T~ to get the tri-diagonal system
<(1 +e)T 1+ cll> <ﬂn+1 + ﬂn_1> = <00T_1 + cll> (ﬂn - 2211”_1> — T 1%

Furthermore, we can obtain the system with only explicit terms on the right hand side

as

(I + (22 + z) A+ AED) (a”“ 1 a”*l) —\ED@" ! =

_ _n-1 —a|r;_y9=TN| (-2 )
A(u”+2zu” )+e [ 1/2 ’(e Zvn+)\(e Z(uy\,ﬂﬂj—u?\_p))).
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This implies that

(1+co) I+ 1T + AED) (a"“ + a"—l) = AED@ L+ (col + 1 T) (a” + zza"—l)

+ colrijaen] <€_221)n + A (6_2z (“nN+1+p - “%—P») '

Multiplication by 71 then gives

<(1 +e) TV + eI+ AT‘lED> <ﬂ”+1 + a”_1> =

M EDE ! 4+ (coT_1 + 01]> (a” + 2za”_1>

erteolrim e (e (2 (i)

5.1.1.3 Performance

While using a constant damping factor o(z) = ogH (z — L) may be fairly easy to implement,
it does not necessarily provide a good method for truncating the domain. The biggest issue
is that, due to the Heaviside function, o(z) is not smooth when switching from the interior
of the domain to the PML region and thus, the regions are no longer ‘perfectly’ matched.
This break in continuity may cause reflections of the wave as it passes the boundary into
the absorbing layer. To check for these reflections and to quantify the damping potential of
a piece-wise constant damping function, we start with an initial Gaussian pulse and let it
propagate for a full pass through the domain with a perfectly matched region on the right

side and see what percentage of the initial function still remains. The parameters were:

2
_ —100(z—0.5)

e Initial conditions are f(x) ,g(z) =0.

e The mesh sizes are Az = At = 0.1 with a wave speed of ¢ = 1.
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The interior domain is given by [—1,1].

The damping layer is [1, 5].

The initial damping constant was given by one of {0.1,0.01,0.001,0.0001}.

The damping constant was doubled halfway through damping region.

At time ¢ = 1, a check is perfomed on both ||[u(z)||2 and ||u(z)||s in the range [0, 1].
At this point, it is safe to assume that the right bound wave has entered the PML region
while the left bound wave has not yet reached the matched boundary. This will allow us to
compare the spurious numerical reflection coming off of the boundary from the right bound
wave caused by the discontinuity in the damping function. Finally, at a time of ¢ = 12, which
corresponds to the time necessary for the wave to make one full pass through the domain, we
once again check both ||u(x)||2 and ||u(x)||cc to see how much of the initial pulse remains.
The results are shown in tables 5.1 and 5.2.

As can easily be seen from the tables, the reflection caused by the discontinuity in the
damping function may eliminate much of the benefit that comes from the actual damping.
In addition, the actual damping itself does not perform well, removing no more than 70% of

the wave despite the damping region taking up well over half of the domain.
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Table 5.1: Reflection and Damping for the Dissipative 1st Order Scheme with a Piecewise
Constant Damping Function

00 oo-norm at t =1 | 2-norm at t =1 | co-norm at ¢t = 12 | 2-norm at ¢t = 12
0 0.000014176 0.000022378 0.17580 1.48488
0.0001 0.000016310 0.000029892 0.17559 1.48313
0.001 0.000035517 0.00018632 0.17374 1.46747
0.01 0.00022812 0.0018358 0.15625 1.31976
0.1 0.0022091 0.018325 0.054052 0.45717

Table 5.2: Reflection and Damping for the Dissipative 2nd Order Scheme with a Piecewise
Constant Damping Function

) oo-norm at t =1 | 2-norm at t =1 | oco-norm at ¢t = 12 | 2-norm at ¢ = 12
0 0.00000098983 0.0000013516 0.35042 2.44360
0.0001 0.0000039184 0.000020798 0.35001 2.44077
0.001 0.000030283 0.00020579 0.34638 2.41540
0.01 0.00029472 0.0020593 0.31205 2.17588
0.1 0.0030214 0.020930 0.11020 0.76839

5.1.2 Polynomial Damping Functions

To correct the matching deficiencies of the piece-wise constant damping functions from the

previous section, consider damping functions of the form

o(z) = o (QS;L

m
) , m > 2.

We make use of a Heaviside function to extend this to the entire domain as

These polynomial damping functions will ensure that o(z) € C™.
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5.1.2.1 Implementation

We now wish to create a fast implementation of equations (5.4) and (5.5) incorporating

(5.13). We first note that by use of an integrating factor, the solution to (5.5) is given by

t
v(z,t) = a’(x)/ e_a(x)(t_s)ux(:v,s)ds
0

—o(z) ("1 g
— o(z, t") :a/(x)/ e )<t >ux(9c,s)ds
0
n (m—+1)At
— o(z, t") = Z Ul(m)/ e_a(x)((n+1)At_s)u$(a:,s)ds.
mAt

m=0

We then approximate each integral using trapezoidal quadrature and arrive at

/ n
N o o ('Z)At< Z g, mAt)ea(x)(m—n—l)At (5.14)

m=0

+ uy(z, (m + 1)At)eo($>(m_n)m) :

Applying the standard first order discretization to equation (5.4) gives

(Lt 20(@)At +o (@A) u"THz) 20+ Mo(@)u” | M) o
At2 At2 At2 '

= A (2) — 0/(x)/ Uy (z)e~ @) (E=s),
0

Combining equations (5.15) and (5.14) produces the following scheme which we would
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like to solve quickly:

(1+20(2)At + o(2)2At2) " () 201+ Ato(x))u™®  u"L(z) nal
- + = C"uzy (2)
At? At? At?

Z ug (z, mAt)e o(@)(m-n-1)At ug(z, (m + 1)At)eg($)(m_”)At,
m=0

At

This then may be re-arranged into a Helmholtz equation as
<8m — a2> ut = o2 <<20At + JQAt2> u"t—2(1 4 oAt + un_1> + "L
An inversion of the Helmholtz operation then yields

"t = —% /e_a|x_y| ( (20(y)At + UQ(y)At2> un+1(y) (5.16)

— 21 + o (y) Aty (y) + un—l(y)> dy 1 51

with
1 —alaul 0 (y) Al
s+l ~ alz—y|9 Y X
! 20 / ¢ 5 (5.17)
n
Z <uy y, mAt)e o(y )(m—n—l)At_'_uy@’ (m + 1)At)ea(y)(m—n)At> dy.
m=0
Define

/ A
o At — o w
(iJO)é e Oé|:L. y') ("‘k‘i’l =e U(y) ' k(y)

wo(y) =
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such that integration by parts on (5.17) will yield

1 [
gl — _EmZ:O/L o’ (y) Ate~lr=yl=(n—m)Ata(y) (uZHl(y) . 6—Ata(y)u:ryn(y)> dy
== /L wn—m(y)uy () + wpr1-m(y)uy' (y)dy
m=0

== 3 [ @ ) + w1 )]
m=0

L
n 00
S /L Wy () 4 g ()™ () dy.
m=0

The left boundary term will vanish due to the stipulation that the minimum order of our
polynomial was at least 2, which guarantees wi.(L) = 0,k € {0,1,...,n}. Additionally, the

right boundary term will vanish due to the negative exponential. This leaves that

n 00
=) /L ()" THY) + W1 ()" () dy.
m=0

Furthermore, for a truncated domain, we can ensure the right boundary term disappears
by enforcing zero Dirichlet boundary conditions at the end of the damping region.
Using the same techniques as in section 5.1.1.1, we now consider the fully discretized

form of equation (5.16), given by

N+M 1
u"+1(:(:j) = Z Aj; (uf — §u?1) (5.18)
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where

nb — a/xi a(y)Ate_a|xj_1/2_y‘dy and (5.19)

=7 = a/x (U(y)At)Qe_a’xj‘l/ry'dy,

which are defined for 1 <4, j < N+ M, but noting that o(y) = 0 outside of the PML region.

Further, we can simplify the term L After application of the midpoint rule on the u

J

terms, we have

N+M

L+iAx , 41
Wh—m (W)U + W) (y)ui"dy
/L—|—(z 1)A n—m n+l—m 7

- n
~n+ Z

=N-+1
N+M

n
T
=D I Bl T I
m=0 =N+

1 L o' (YAt —alz;_q /9| Al 1
gl — Z Z {—6 j—1/27 Y] ;=(n—m)o(y) t} U?H—

J 4o .
i=N+1m=0 Ti—1
N+M n / T;
o' ()AL —alz;_q9-y| —(nt1- At|
+.Z Z [Te |g 1/2 ‘e (n+1-m)o(y) | ul
i=N-+1m=0 Ti—1
N+M
B Z a’(xi)At a‘x] 1/2 xz|
4o
1=N+1
n
Z e (n—m)o(x;)At <um+1(xl) +e U(IZ)Atum(IZ)>
m=0
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Therefore,

gy | olz; 19—z
~n+1 __ E : 1/27 n+1 - i—1/27%i—1|, n+1
Uj = @ .7 / LZ. —e j—=1/ 1)27.

i=N+1

N+M (2)
_ n+1 n+1
= Z B Ul B B i Vo

1=N+1

where

(1) _ —vlj—i-1/2 (2) _ —v|j—it+1/2
By =e vlj—i=1/2| By =e vlj—i+1/2|

and the sums are defined by the auxiliary variables

o (z) At &
v?f-zu _ Z (um—i—l 1 emola)At m(xz)>7
m=0
n
n+l _ xz 1)At m—|—1 o(x;_ 1)At m
Vg, = Z +e~ (x;)) .
m=0

We can simplify this further by using a recurrence relation to remove the sum. Thus, the

auxiliary variables can be updated locally in time by

v?jl Evlz—l—F(nJ“l—l—Eu), vg;rl E;_ 1U21+FZ 1(”+1—1—EZ 1u) (5.20)

where

E‘ . e*O’(IL‘Z‘)At F o 0'/({L‘Z)At
i = =

——— N<i<N+ M. 5.21
) (3 4.0[ ’ S + ( )

Thus, for each time step, we update the equations (5.20) as well as solving for equation
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(5.18) in the following form

N+M 1 N+m 1
u"+1(xj) = Z Aj; (u? — 5u2_1> — Z (Z(l)unJrl +pl@ el Z(.l.)u?) (5.22)
i=1

71 7 Jji 9 71
i=N+1
N+m .
+ Z Bj(z) (Eﬂ)?ﬂi + Fi <u?+1 + Eﬂt?))

1=N-+1

N+m @)

Z le- (Eiflvg’i + F;q <u?+1 + Eiflu?)) .

1=N+1

We now specifically consider the damping function

o(z) = 0 (x;L)z

for the purpose of fast implementation of this scheme. The techniques that will follow can

be adapted in a very straight-forward manner for polynomials of higher order. However, we
have chosen to use a polynomial of degree 2 as it will be the easiest to implement as well as
performing the best as a damping function as can be seen in figure 5.1.

Since we have assumed the damping region to be M grid points wide, we have d = M Ax

and can write

A\ 2
Si:U(JJi)AtzaoAt <27) , N<i<N+ M.

Similarly,

1—N

sgza’(xi)AtzzaOAt( ) N<i<N+M.
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Damping Profiles for Low Order Polynomials

1 I I I I I I I
—— Order 2
— Order 3
0.8-|— Order4
0.6
0.4
02" - _
///// / }
0 e N e | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
(x-L)/d

Figure 5.1: Damping Profiles for Low Order Polynomials

From these expressions, we can now evaluate (5.19)

. 2
E(l) = aopAt /33@ (%) e_a‘xj—l/Q_y|dy
x

ji
i—1
1/2 ; 2
:z/ooAt/ / (Z_ 1/2—N—|—z> e V=2l gy
~1/2 M

using the change of variables z = <y — x4 /2) /dx. This then becomes

1/2 o
(1) UOAt/ 2 N 2 - . —v|j—i—z|
n) =7 » (Z +(i— N —1/2)2 + (2i — 2N 1)z>e dz.

Note that ©(1) can be decomposed into terms of the form

1/2
k) :u/ / Kevli—i—zlg,
It —1/2
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We now evaluate these expressions for each value of k and the cases i = j and i # j.

When k£ = 0, we recover

W =a=2 (1 - e*”/2> 5ji + 2sinh (g)e*“’ﬂ”u —5i1).

More generally, for the diagonal terms and arbitrary k,

1/2
Ggf) = 1// HKevlel g,
~1/2
§
0, k  odd
2 v/2 k —w
_kfo we Ydw, k even
\
(
0, k  odd
) 2
— (1 — by (g) e_”/2> k even,
\ v

where
k Zg
=0

Note that by, <g) is exactly the Taylor polynomial for e” /2 of order k, so that Ggf) is

well defined as v tends to 0.
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For j # ¢, we similarly have

. 1/2
G(.];) = I/e_b_"V/ Ko vzqy
J —1/2

1 [v/2 _
:e—|]—zu_/ wke—sgn(]—z)wdw

vk —v/2
= e_|j_i”5—]i <sgn(j — i)k, (—%) /2 — by (g) e_”/2>

— e*l]‘*i\’/(sgn (j — z))ki—k]: <ck (%) sinh (g) — S} <%) cosh <g>) :

where ¢;.(z) and sj(z) are the even and odd terms, respectively, of b.(z). Because of the
sign change due to odd values of k, it will be useful to define the upper and lower triangular

Toeplitz matrices U and L = UL, where

0 d d> ... gN+tM-1
0 d
U =
0 d
0

with d = e™". Further, we have the Toeplitz matrix

1 d ... ... gNtM-1
d 1
T l'=I+U+L=
1 d
gN+M=1-" g 1
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which is the inverse of the tridiagonal matrix

—d 1+ d2

T:
1 —d?
1+d? —d

Assembling all of this, we can now write

9ol +91.1(U+ L), k even
ak) —

g (U — L), k odd

where

o= 21 (5)) . =2 o 5) o (2) o () ()

Having fully determined expressions for G (k), We NOwW express

51 _ “Jgff (62 + 260D + 6O p?)
opAt
M2

= (r7'sb+ U (o1 -=b) + L (%) - =) (5.23)

(9201 +gooD?+ U (9211 + 2911 D + 901D2> +L (9211 — 2911 D + 901D2>)

where we have used the fact that ] = 77! — U — L and D is the diagonal matrix with
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1 1
elements (0, ..., 0, 2 g, o, M — 5) Additionally, we have defined

opAt
55 = Ve (9201 + 900D2> :

opAt
of = 2 (9211 +2g11D + 90102) ,

oAt
23 = ](\)/[ (9211 —2911D + go1D2) -

2

Likewise,

2
52 _ (UON) (69 +469D + 6612 D? + 161 D* + GO D1

9
oAt
= ( u ) (g4of+6920D2 + gooD*

+U (941[ +4g31D + 6g91 D% + 4911 D3 + 901D4)
+ L (9411 — 4931 D + 6g91 D* — 4911 D3 + 901D4> )

= (r7'53+u (zt-53) + o (53 - %)), (5.24)

with
XG5 = Ve <g4of + 6920D” + gooD ) ;
Y] = Ve (g41[ +4g31D + 6921 D + 4911 D° + go1 D ) )
Y5 = Ve <g41] —4g31D + 6991 D” — 4911 D° + go1 D > :
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We can also write the matrices B(Y) and B(2) using combinations of 771, U and L as

BCU::e—”%j4-U)4-442L::e—%@7“44-2anh<g)L, (5.25)

B@ = e_”/Q(I +L)+ e’2U = e /2771 4 25inh (g)U

Due to the symmetry and structure of T',

0 d
0 —d?
1
TU — 9
1 — d?
d?2 d
0 —d?
and similarly
—d? 0
d —d?
TL = 1
1—d?
—d? 0
d 0

This makes it possible to write expressions for TB(l), etc. as a combination of diagonal
matrices and products with 77U and T'L. From this, we will show that equation (5.22) can
be written as a tridiagonal system.

Upon collecting common terms in equation (5.22), and considering only N +1 < j <
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N + M, we have

<f +x0 4 1e® gty B<2>F—) u (5.26)

- <A +xM 4 pWptpt B<2)F—E—> u — %Au”_l

+BWEt - BAE g,

where the plus and minus superscripts of £ and F' indicate whether all but the first or last
entry of the M + 1 diagonal entries given by equations (5.21) is taken. Multiply by 7" and

make use of the decompositions given by (5.23), (5.24) and (5.25), so that
Tou™ = Ty — Tou 1 + Tyol —T-vy,
where

Ty=T (I +xM 4 %2(2) —BWFt 4 B(Q)F_)

1
— {T +3b+ 523 — e V(R - F‘)}

1o 1
—TU {25 — 2} + 55§ - 527 - 2sinh (g) F‘}

1, 1
~TL [2(1) — 2} + 55§ — 5¥3 - 2sinh (g) Ft

)
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T =T (A L) L g prpt _ B(Q)F*E*>
= [TA + 5+ e VA ETFT - E‘F‘)]
-TU [2(1) — Z% — 2sinh (g) F+E+}

~TL [2(1) — ) — 2sinh (g) F—E—} ,

Ty = [e 2B 4 25in (5) TL[EY],
and
T = [e7"/E7| + 2sinh (5) TU [E7].

The system is solved with a basic tridiagonal algorithm for u;”rl in the PML region. It
is then used to update v{Hl and v’é”rl.

In the free space region, note that equation (5.22) gives the solution for u}“’l explicitly
for 1 < 5 < N, since the sums involving PML terms will not be carried over this range.
Thus, all terms arising from the PML will only appear as a constant vector in the N x N
subsystem. Furthermore, this vector has a simple form due again to the structure of T, U

and L.

If we instead choose to use a second order dissipative discretization for equation (5.4),
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we 1nNOwW recover

(2 + 30(2) At + o(x)2At?) u" T (2) _ (5 +4o(z)At)u"

At? At?
n— n— n+l1
. (4+o(@)A)u" (=) u"2(x) ) ol () /t g () (=)
0

- = C Upy

At? At?

instead, but still treat

in exactly the same manner. Once again, rearrange this into a Helmholtz equation as

2
(@m — a2> e :%( <30At + J2At2> " — (5 + doAt) u”

+ (4 + a(x)At) un—l . un—2) + "Un+1,

2
with a = AL here. Invert the Helmholtz operator to get
c

un—&—l(x) _ @

2 [l (sotae+ a2)a) u iy

— (5 + 4o (y) MW(Y) + (4 + o () At (y) - u”—2<y>) dy + 5",

with 971 defined as before.
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Discretization using the midpoint approximation will then result in

N+M 5 1
n+l/.. .\ _ . n n—1 n—2
u""(z5) = E 1 Aji (Zu’ —u; o+ 7Y )
1=

Nz+m 3(1) 1.2 (1) 1.1

2 n+l | - n+1 n o, - n—1 ~n+1

2 1(45)]-2. u; +4ij’u Ejz' u; +4§:jiu >—i—vj ,
=N+

with 21 and 2(2) defined as before.
Following the exact same procedure as for the 1st order dissipative scheme will yield that

equation (5.26) now becomes

( 135 Lne g i) F_) u!

= (ZA +xU) 4 B p+ET - B(2>F—E—> u"

Multiply by T' to give that all the matrices on the left hand side become tri-diagonal at

worst, which gives

Tyu™ 1 = Tou” — Tt + Ty =2 + Toof — T oY,
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where

I3=T ([ + Z%2(1) + 32(2) _gMp+ 4 3(2)F—)

3., 1 B B

= {TJFZE(HZZ(% — e VAFT - F )}
3., 3., 1., 1

U [ZE‘I) - 2xf 4 3f - 2} - 2sinh <g> F‘}
3., 3., 1., 1

T [125 — 25} + ;58 - 753 — 2sinh (g) F*} ,

To=T (gA +xW 4 pUFtET - B(Q)F_E_)
= BTA + 54+ e/ AETFT - E‘F_)]
_ 1yl _ o YN pt+pt
TU 3§ - o} 2s1nh<2>F |

_TL [2(1) — 2} — 2sinh (g) F—E—] ,

n=T (A + }12(1)>

|
:TA+Z<Z(1)—TU [zé—zﬂ ~TL [Zé—Eﬂ),

1
=-TA,
4

=
|
[

T, = [e—v/2E+] + 2sinh (g) TL[E"],

125



and
T =[e7"/E7| + 2sinh () TU [E7].

We can then find «"*! in the PML region using a tri-diagonal solver before explicitly
updating for "t in the entire domain.
For the second order non-dissipative scheme, after the standard discretization, equations

(5.4) and (5.5) become

(1 + 25 + 252) w — 2u™ — 4su" L 1

= —wyp — 0"

(cAt)2 2"

n
o= ¢ Z e~ 2s(n—m) (u?‘“ + 6_2516?) ;
m=0
where
x)At
w=u"T " s(z) = o 2>

Arranging this in a Helmholtz type equation gives

<(’3m — a2) w = —2a” (un 125yl (s + s2> w) 4t

V2

with a = AL After inverting the operator, this now yields
c

wi@) =a [l () + 2500 ) - (s(0) + 520) () dy + 5!
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with
?~]n+1(x) _ _% e—a|CE—y|Sl Z e—Q(H—m)S(y) <uzl+1(y) + 6_28(y)u;n(y)> dy.

After a full discretization of the domain, we obtain

N+M N+m ) @)
1 sl
Z Ajial + ) ( hui _<Eji +2j¢) )“’"
i=N+1

Handling the temporal integral f;;”l in the same way as for the dissipative cases then

gives

N+M N+m

(2) (1)
1=N+1
N+m .
+ Z Bj<'z') <Eiv7f7i + F; <Ezu? +w; — u?_1)>

1=N+1

N+m @)

> B (Eiflvg,i +Fiq <E171U? +w; — u?_1>> ,

i=N+1

This then becomes

(1 +yx® 2@ - pOp+ B(2>F—) w
_ (A + BOEtF+ _ B(Q)E’F’> u" + (22<1) —BWp+ 4 B<2)F*) w1

+BWET - BAE ).
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Multiplication by 7" then produces
Tww = Tiu" + Tou" 1 + Tyol — Tl + S,
where

Ty = [1+5§+ 55 — e 2P - F7)]
~TU |1+~ + 35 - 5} -y F |

—TL| I+ - +52 -5 40 F T,
0 2 0 2

Ty = |agl + e A(EYFY - E7F))]
- TU [(a() —ay)l + &1E_F_}

—TL [(ag —a1)] — a1 EYFT],

Ty = |25 + 255 — e V/(F - F7)]
- T 25§ - 25} + 253 - 25} — @ |

~TL |25} - 253 + 253 - 253 + i FH] |

T = PB4 i TL[EY],
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T = [e*V/QEf] +a1TU [E7],

and finally the vector S is nonzero only in the first entry, and is comprised of the matrix

vector product over j =1,2,... N

N
Sj:5j7N+1 Z(TL)N+1,Z'U?7 N+1 S] SN+M.
1=1

Equation (5.27) may then be solved in the PML region using a tri-diagonal solver. This

+1

solution may then be used to calculate an explicit solution for "™+ over the entire domain.

5.1.2.2 Optimization

Optimizing the damping of a wave in a PML layer has been a subject of significant study, but
most authors believe that the result is very much problem specific. Thus, we will conduct a
numerical study for optimizing the absorbance of a perfectly matched layer for a quadratic
damping function. The variables will consist of both og and the length of the PML region.

The other parameters of the study are as such:

2
e The initial conditions are f(z) = e~109%" and g(x) = 0.

The interior domain is [—1, 1].

The PML region has a length of {0.5,2,3}.

e Ax = At =0.01 with a wave speed of ¢ = 1.

The chosen final time is tf = 20, such that all waves would end on a recombination.

oo = {1,2,3,4,5,10, 15,20, 25}.
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Table 5.3: Optimization of the Dissipative 1st Order Quadratic Damping Function

| d=05 | d=2 | d=3 |
ooO-norm 2-norm ‘ 00-norm 2-norm ‘ 00-norm 2-norm
0.14901 1.35786 0.13877 1.30731 0.13422 1.28520

0.046120 0.40325 0.021976 0.19768 0.016763 0.16238
0.014676 0.12161 0.0047455  0.045587 | 0.0029356  0.035231
0.0046670 0.036095 0.0014279  0.018349 | 0.00087016 0.011461
0.0014033 0.010184 | 0.00086525 0.010557 | 0.0010083  0.011400
0.00035072  0.0031107 | 0.00045273 0.0058206 | 0.0010008  0.011423
0.000045637 0.00032578 | 0.00044261 0.0056118 | 0.00065305 0.0076492
0.000044945 0.00032420 | 0.00047148 0.0044793 | 0.00050443 0.0053598
20 | 0.000038350 0.00027405 | 0.00053009 0.0050003 | 0.00050236 0.0066065
25 | 0.000030196 0.00023973 | 0.00038082 0.0032459 | 0.00036747 0.0044241

—
mE ok we ol

Both the 2-norm and oco-norm of u was taken at the end of the run. A baseline with og = 0
was run for each PML length to determine how much damping had actually occurred. The
results can be seen in table 5.3. From the table, while it appears that the first few increases of
og are quite helpful, the results very much level out shortly thereafter. This could be due to
the larger co-efficient exacerbating the error that is caused by the numerical approximation
of the integral. The best scenario appears to be taking a shorter PML region accompanied
with a relatively larger o(, especially in consideration of the fact that a shorter PML region
will constitute less work being done by the tri-diagonal solver when solving the implicit step

which appears only in the PML region.

5.2 One-Way Waves

An alternative approach to the idea of a perfectly matched damping layer is to construct
a boundary that appears invisible that will simply let the outward propagating wave pass
through without creating any reflection. While this may be rather difficult to do in the

general case, it is quite feasible in the one dimensional case under a few basic assumptions.
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Assume that the initials conditions f(z) and ¢g(z) in equation (1.1) are of compact support
and that this support does not extend beyond (), the desired domain of computation. For
the sake of simplicity, let Qg = [—L, L].

The first order dissipative MOLT solution to the 1D wave equation is then given by

W () = /Q

where ), is the domain of dependence for u(x) at time ¢,.

o (u"<y> - gun—%y)) el =gy, (5.28)

tn

Since the wave speed propagation is limited by c, it is easy to see that (1}, is fully

contained in [—L — cty, L + ctyp], which gives that (5.28) now becomes

u"(z) = / e o (U”(y) - %U”_l(y)) e~ Cle=vlay, (5.29)

*L*Ctn

This is equivalent to the free space solution as u”Jrl(x) will be identically zero outside of
this region.

We now wish to compute the solution only over the initial region {2 while still factoring in
the contribution from the additional domain of €2 41 /Qg. This is accomplished by writing

(5.29) as

L
W(z) = / a <u"(y> - %u”l(y)) e~ eyl gy 4 gnHl 4 gpHl (5.30)
—L
—L
Chan / a (un(y) - 1un_l@)) e~ @) gy,
—L—Ctn 2

L+Ctn 1
sp = [T a () - ) ) e ay

Since we are considering the case of outflow boundary conditions, the key step here is to
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restrict only to outgoing waves that will not reflect back into the domain. This means that
we must impose non-reflecting boundary conditions at x = +L. For this one dimensional

case, this condition simplifies to the respective transport equations

ut+cupy =0, x>1L

ur —cuy =0, =< —L.

We now consider the case where x > L and the case where x < —L will be similar.

Tracing along the characteristics gives that
uw(L +y,t) = (Lt——) for y > 0.
c

Thus, for x < L, we can write

L—|—Ctn
Sn+1 a (u - —u 1(y)) e~ W=7) gy
L+Ctn
a (u Y tn) — (y,tn 1)) —ol=r) gy
1
= ae ol / ( (L+y.tn) = gu(l+ y,tn—1)> e~ Yy
0

tn 1
= ace (L) / (u (L,typ — ) — U (L,t,—1 — s)) e ““ds.
0

This, in effect, has transformed the spatial integral into a temporal integral and therefore,
we must only track the time history at the boundary points x = +L. Additionally, we may

proceed to track this temporal integral using a recurrence relation which limits storage to
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the previous two time steps. Note that

tn 1
572”L+1 = e_o‘(L_w)ac/ (u (L,ty, —s) — U (Lytp—1 — S)) e *“ds
0

_ o —a(L—1) sntl
— oo x)Sg.

Making use of the change of variables s = s + At gives

. tn 1
Sg+1 = ac/ (u (Lyty, —s) — U (L,tp,—1 — s)) e ““%ds
0
At
~ 1
0

At
~ 1
— 6_155L + 040/ (u (L,ty —s) — U (Lytyp—1 — 3)) e Y% ds.
0

We now choose to integrate fOAt u(L,ty — s)e”*“®ds by approximating u(L, t, — s) with
a linear function through points at u(L,t,) and u(L,t,_1). This linear approximation is

given by

L,t, 1) —u(L,t
u(L,ty —s) ~ ULy tn 1>At ul, n)s+u(L,tn):zs+b. (5.31)
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Thus,

S

At 1 At _
ac/ u(L,ty —s)e ““ds = —/ (zs +ble Atds
0 At Jo

. S At At 5
= — (—(zs +b)Ate At +/ zAte At dS)
At 0 0

1 _ 5 At 5 At
= — | —(zs+b)Ate At| —At?ze At

_ é (~(zat+ b)ate™ = AZze 4 bAL+ A

= —(z2At+b)e = Atze 7+ b+ 2AL

S (u”_l(L) —u™ML) + u”(L)) el (u”_l(L) - u”(L)) el
+u™(L) +u" (L) — (L)

— e (L) + (1 — 2" Hu" (D).
This also gives that

At
0
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Thus, estimating this integral using the trapezoidal rule results in

ey (1B L

This implies that

. . 5 1— 27!

STQH_l —e 182 p e ly(L) + (1 — —e_1> WL — —eun_Q(L).
Similarly,

S{H-l(x) _ e—a(L+az)§?+1
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Thus, the fully discretized solution over 2 will be given by

m
1 .
u}”l = E Aj; (u? - §uf 1) + S{Hrl + S;Hl
=1

1=1
_9,—1
+€7o¢(L+mJ) ( 715?4—6 lun( L) + (1 _ ge 1) un—l(_L) _ 1 ;6 u” 2(_L>)
_9,—1
+€—a(L7$]) ( 71551_‘_6 1un(L)+ (1 . ge 1) u™ 1(L) . 1 226 u™ Q(L))

For the second order dissipative scheme, equation (5.29) now becomes

L-I—Ctn 5 1
)= [ 0 (Fur) -+ e ) ey
—L—Ctn

which in turn changes equations (5.30) to

L

1

W) = / a (iu%) —u" N y) + ZuH(y)) e ldy 1 ST sy,
—L

—L 5 1 I 9
si- [ (—u”<y> () + L <y>) e—la=1) gy,
—L—Ctn 4

L-ct
spt = [ a (G )+ ) ) e
L
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Repeating the same change of variables will give

~ tn (5 1
S;Hl = ac/ (Zu (Lytn —s) —u(L,t,—1 —s) + 74 (L, ty_o — s)) e ““%ds
0

At

~ ) 1

_ —acAth + ac/ (Zu (Lytp —s) —u(L,ty,—1 —s) + 7Y (L,ty_9 — s)> o OCS ]
0

Va3 At (5 |
— V25 tac | (Z“ (Lutn = 8) — (Lot — )+ Su (Lt o — s)) ey
0

Repeating the estimation of the linearized integral (5.32) now gives

At At y=2
2 —
ac/ u(L,ty, —s)e ““ds = £/ (zs+Db)e At ds
0 At Jo
2s \/§S
At At A
2 At ——— At —
= £ —(zs + b)—te At +/ z—te At (s
\/§s A S
2 At —~— At A2 A
= \/—— —(2s+b)—=e At — —~ze At
At V2 0 2 0
t At
:—zAt+be_\/§— z_\/g+b+z—.

Substituting back in for z and b from (5.31) produces

(ML) — (L) e V2

_ _un—l(L)e—\f \/§ + un(L) + un_1<L\)/§_ un(L)
IRy eV B
_ V2 i/g () 4 L V2 7 WYL
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with

V2 -1+ e_\/i d
€] = an
! V2
1-— \/56_\/5 — e_\/é
€9 =
? NG
Thus
on—+1 —V2an i) n ) n—1 1 n—2 1 n—3
So Tt =e VESY + 161U (L) + J2 e u (L) — [ e2+ 161 ) u (L) + 162U (L).
S will be similar.

Therefore, the fully discretized scheme will be given by
o 5) 1 I ~ I ~
u}”l = ZAji (Zu? — u?_l + Zu?_2> 4o +xj)$?+1 +e _xj)SgH'l.
1=1

Similarly, for the second order non-dissipative scheme,

L+Ctn
un+1(:13) +un—1(x) _ a/ 6—a|x—y|un(y)dy
*L*Ctn

L
= a/ e_O"x_y‘un(y)dy + ST + 55
—L

We then follow exactly the same procedure outlined for the second order dissipative

scheme to get
Sl = e_\/ﬁgg + eu™(L) + equ (L)

with a a similar result for 5’?+1.
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Therefore,

N
wpth = T Y A+ UGy molbm gy (5.32)
i=1

5.2.1 Performance

Instituting this non-reflecting boundary condition definitely produces an increase in perfor-

mance as can be seen in table 5.4, based on the following parameters:

2
The initial conditions are f(z) = ¢~109% and g(z) = 0.

The domain is [—1, 1].

o Ax = At = 0.01 with a wave speed of ¢ = 1.

e The 2-norm and oo-norm were taken at time t = 2k, k € {0,1,2,3,4,5} as to measure

based on recombinations.

Implementing a non-reflecting boundary condition produces significantly better results
than an absorbing layer, especially when considering that the non-reflecting boundary needs
neither additional mesh points or an implicit solve. However, it does have certain drawbacks
that will force continued consideration of PML as a viable option for further work. First,
the non-reflecting boundary condition established here is strictly one dimensional. The idea
translates well to higher dimensions, but demands a considerably greater amount of work
and based on the literature, will produce lesser results. PML, on the other hand, was initially
created for a two dimensional setting and has been well established in three dimensions as

well.
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Further, the non-reflecting boundary may not be stable under certain perturbations of the
problem. When first implementing this code, the mesh points x; were located at —L+1ix Az,
meaning the domain truly covered [—L — Az/2, L+ Ax/2]. This actually caused the code to
diverge as exponential growth was seen at the boundary. When the domain was reduced to
[—L, L] and the boundary points were estimated by using the end mesh points +(L — Az /2),
the code converged. Currently, a Taylor approximation is used for the value at the boundary

based upon the two mesh points nearest the boundary.

Table 5.4: Performance of the Dissipative 1st Order Scheme with a Non-reflecting Boundary

Time ‘ 2-norm ‘ oO-norm
0 3.54022 1.00000
2 0.072160 0.013608
4 0.0017082 0.00024755
6 0.000043195 0.00000047568
8 0.0000011799 0.00000012592
10 0.00000039215 | 0.0000000051711
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Chapter 6

MOLT in Higher Dimensions Utilizing

an Alternating Directly Implicit Scheme

The adaptation of the scheme to higher dimensions creates a more difficult, yet more in-
teresting challenge. Further, the MOLY scheme will be more valuable in higher dimensions
as the true known solution for the wave equation is considerably more complex in multiple
dimensions. Some of the difficulties that will arise due to higher dimensionality include an ex-
ponential growth in the number of mesh points as well as Green’s functions integrals that can
no longer can be evaluated analytically. Additionally, an increase in geometrical complexity
is to be expected as higher dimensions are more inclined to non-Cartesian coordinates, such
as spherical coordinates for three dimensions.

While there is currently no way to avoid the increase in the number of mesh points,
we can avoid the latter difficulties by implementing an Alternating Direct Implicit (ADI)
scheme, which will split the problem dimensionally and treat it as a series of one dimensional

problems.
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6.1 Freespace Solution

Consider the wave equation (1.1) specifically in two dimensions with no applied boundary

conditions. That is,

Once again, the Method of Lines Transpose begins by discretizing the temporal derivative,

yielding

This can then be re-arranged into a Helmholtz type equation as

— " 4 L 1
2 2
( @ )U AA2 CT A (6.1)

From here, note that this Helmholtz operator may be split dimensionally as

0 0 0 0
2_2_00 00 9
\V4 « 8x8x+8y8y o

—1 (62 92 1 0202
el R L Gkl R
a? \ 92 02 a2 92 92
—1(2*> L\ [ 9
:§<6_§_a><8_§_a +O<At>. (6.2)

2 62
While this dimensional split will introduce an O (At2) error if we drop the 5 term,

a? 020

Ty
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this is acceptable as none of the schemes we are implementing are of order greater than 2.
While this may affect the accuracy of the scheme, it will not affect the order of the scheme.

We then take the split operator (6.2) and substitute it into equation (6.1) to obtain

“1 (2 o\ (2 2\ e 2T
a? \ 92 05 c2At2

This may then be arranged as the two step system of Helmholtz equations

5 —20" 4 1

n+l _
Lo Ly T = EYVCRE (6.3)
where
92 92
r=—=—« andﬁy:—2—a2

Inverting the operators in order in equation (6.3) using our MOLT solver gives

—20™(2) + 0" N2) e
n+1 2 alz—z|
Ly (2, y) —/ a A e dz

— "z, y) = / (/ —a? —20"(2) + 0" () e—alx—zdz) e—ly=2l g,

2 A2

_ / ( / (21}”(2)—11”_1(2)) e—alx—ddz) e—olv=2lg,,

This is the method for which we will implement the first order dissipative method. In
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exactly the same fashion, we may calculate the second order dissipative scheme, given by

(2 y) = a4/ (/ (Zvn(z) o) 4 ivn—z(z)> e—a|x—zdz> o—aly—2,

and the second order non-dissipative scheme, given by

"z y) = =" (2, y) + a4/ (/ 2vn(z)e_o‘|x_z|dz> e~ lyv==lqz,

To minimize any error that may arise from always propagating first in one direction,
we will solve the problem twice, changing only the order of the dimensions. That is, find

numerical solutions to both

£[I;£yvn+1 =f (vn,vn_l,vn_2> and

AcychTH_l — f (Un’ Un—l7 Un_2>

and take v"T1(z,y) to be the average of these two solutions. While this is helpful for two
dimensions, solving for all possible orders of dimensions may become cost prohibitive as the

number of dimensions increases and n! solutions are needed for a domain in R".

6.2 Finite Domain

Thanks to the splitting of the operator in (6.2), enforcing any of the boundary conditions from
chapters 4 and 5 is as simple as applying the boundary condition in each step corresponding
to a dimension.

For example, to apply one-way wave boundary conditions to the 1st order dissipative
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method, apply the temporal integral from 5.2 to each of the dimensions in equation (6.3),

which can be rewritten as

o = 042/17(z)e_a|y_z|dz. (6.5)

Thus, the fully discretized solution for (6.4) for each row %, upon which y is held constant,

will be given by

_ . - 5 1—2e!
+e Q(L+I]) (elsgl +€71'Zjn(—L,y) + (1 _ —61) ,an*].(_Ljy) _ Tevn 2( L y))

) —1lan —1yn o -1\ vn—1 1 - 26_1 on—2
7 e She +e (L, y) + 1—56 ) (L,y)—Tu (L,y) |,

where S, and S,o are the natural equivalents to the original definition of S and Sy taken

at the boundaries ©+ = —L and x = L, respectively.

This will then give that the fully discretized solution for (6.5) is

m
W (z,y) Z ( ) (L-l-yj)(e—lsv;]l_|_€—1un<x7_L)

1—2¢1
1-— —e ) —6un_2(a7, —L)
2

Any of the previous boundary conditions may be applied to any of the three schemes

already presented in a similar manner.
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An example of the first order dissipative method conjoined with ADI with the one way

wave boundary condition of section 5.2 is shown in figures 6.1 - 6.3. The initial pulse was

, —5<x2+y2)
given by f(z,y) =e and allowed to propagate outward at a speed of ¢ = 1. The

wave was then tracked at times t = {0,0.5,1.25}.

ADI with One Way Waves
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Figure 6.1: Propagation of the First Order Dissipative ADI Scheme at t = 0

146



ADI with One Way Wave
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Chapter 7

Soft Sources

When computing the wave equation, a soft source is a prescribed source which is time varying
and introduces propagating waves into the medium at a given spatial location. The source
is said to be soft since, while it will emit waves at that given location, the source does not
interact with incoming waves and thus creates no reflection. To implement a soft source for
the one dimensional wave equation, begin with the equation (1.1) with zero initial conditions

which satisfies the soft source condition
v(xs, t) = S(t). (7.1)

This soft source condition is not a boundary condition as the domain is free to extend to
the left and right of x5 and waves may freely travel in either direction. Although we are
interested in time harmonic sources, this formulation will be for a general temporal function

S(t). We wish to understand how this problem might be reformulated by

v = Coge + Q(x,1), t>0, —oo <z <00 (7.2)
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with zero initial conditions, without explicitly enforcing condition (7.1). That is, we would
like to find a source term Q(z,t) that ensures v(zs,t) = S(¢) will hold. We proceed by
constructing the Laplace solution to equation (1.1) with the soft source condition (7.1) and
equation (7.2) independently and equating the results. After applying the Laplace transform

to the first equation, it is easily seen that

5\ 2
(_) V - V:r,x, —x<r< OO,

c
and after imposing V'(xs, s) = S (s), along with proper decay at oo, this produces
s

——|z—xs|

Viz,s)=S(s)e ¢ . (7.3)

Likewise, after applying the Laplace transform to the second equation,

S

2 A
<—> V=Vie +Q(z,8), —o0<zx<00,
c
which can be solved using the Green’s function for the Helmholtz operator. Thus
s
c [ ——lz—y|
V(z,s) = — Qy,s)e ¢ dy. (7.4)
25 | _~
We now impose upon Q(y, s) that equations (7.3) and (7.4) be equal, yielding

S
——|z—xs|
C

S
m —_— - A~
i/ Oy s)e e "y = 5(s)e
2s | _~
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a 25
This may be solved by separating the variables in Q(y, s) as 23 (s)g(y). This will require
c

that the undetermined function g(y) satisfies

o0 |z ® l—as|
——|z—y ——|z—2
/ gye ¢ Tdy=e ¢ 7.

—00

While the function ¢(y) may not be unique, there is the natural choice of

or, after taking the inverse Laplace transform,
2
Q(z,t) = ES (t)o(x — xs).

Therefore, solving the wave equation (1.1) with the soft source condition (7.1) is equivalent

to solving the problem

2
Ut = Cugy + =S )6(x — x5), t>0,—00 < T < 00. (7.5)
c
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7.1 Implementation

The implementation of a soft source based on equation (7.5) follows in a manner similar to
the methods already presented. For the first order dissipative scheme, first discretize the

temporal derivative and then rearrange to form the Helmholtz equation

1 n —u"(x) +u" ) 2,
<3xx - (cA—t)2> W= A + 6—35 (1)d(z — xg).

Upon inversion of the Helmholtz operator, we have

i = o [ (W) — 2uly) ) el rlay — [ Lg' o — seclsay  (16)
[ (w3 w) [

ac

—a [ () - Gu ) eIy - Lok

ac

Some care should be taken in choosing the source function S(¢). Ideally, we would prefer
a source term that creates a wave and thus should be some combination of sin and cos
terms. Additionally, we would like the source to initially be off, i.e., S(0) = 0 and thus,
we will consider source terms of the from S(t) = sin (w(t — (x — x5)). Further, we would
like to gradually introduce the source term in order to limit numerical error in the initial

introduction of the term; therefore, the source term will look like
S(t) = E(ot) sin (w(t — (z — x5)),

where E(t) satisfies E(0) = 0,E(c0) = 1 and £ € C*. A good example of this is to
choose E(t) = tanh(t). The constants o and w are chosen to ensure that E(ct) and

sin (w(t — (z — xs)) have different frequencies. Finally, if we wish to turn the signal off,
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we can multiply S(t) by E(t), where Ea(t) satisfies Fo(0) = 1, Fa(c0) = 0 and Fy € C™.

On a finite domain, we may include boundary conditions by simply adding in the bound-
ary correction term, as was done in section 6.2. However, if we choose to utilize boundary
conditions, it makes more sense to include outflow boundary conditions as to be able to avoid
the continuous buildup of reflected waves that would occur with non-outflow boundary con-
ditions.

The implementation of a soft source may be seen in figure 7.1. It simulates the first order
dissipative scheme with the one way wave boundary conditions from section 5.2. The wave
is created in the center of the domain using the source term S(t) = sin(nt) tanh(7/4). The
waves shown were taken at times t = {1, 3,5} and show the general introduction of the wave.

The long term behavior, showing the waves flowing out of the domain is displayed in figure

7.2.

Wave Introduction via Soft Source
0.5 I I I \ \

Figure 7.1: Wave Introduction via Soft Source
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Long Term Time Behavior of the Soft Source

0.6

—~t=21

Figure 7.2: Long Term Time Behavior of the Soft Source

7.2 Higher Dimensions

When we moved the MOLT solver to a higher dimension, ADI was incorporated to split
the problem dimensionally. Thus, the natural choice for creating a soft source in a domain
encapsulating more than one dimension would be to split the source dimensionally as well.
The latter term from equation (7.6) will be applied to each dimension as it is split in the
ADI framework.

The simplest case of the implementation of a two-dimensional soft source in a dimen-
sionally split environment is given as such. Begin with the free-space split problem, given

by equation (6.3) as

5 —2" 4+ Un—l

Lo L™ = —a
o 2 At?
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In the first step, invert the operator in the z-dimension, £, as well as propagating the wave

emanating from my source, as given by equation (7.6). This results in

n n—1
w(z, y) = o3 —20"(z,y) +v (z,9) e—a|zfz| ds — le(t)efodxfxsh
2 3
Q ac

w(z,y) = L™+ (2, y).

Repeating the process in the y-dimension will then give that

V" (2, y) = / _Me—aly—Z\ ds — le(t)e—aly—ysl'
Q 2 ac3

As in section 6.1, it may be useful to solve the problem twice, varying the dimension

order and averaging the solution to minimize any dimensional order error.
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Chapter 8

Future Directions

8.1 Further Problems

As the implementation of d’Alembert’s solution to the one-dimensional wave equation is
fairly straight-forward, more interesting problems lie in higher dimensions. The results that
have been proved here are useful as a basis for extending the work already done in one
dimension to higher dimensions. We have used an ADI scheme to dimensionally split the
problem and lift the numerical solution from one dimension to two dimensions. However,
this approach may not be practical for interesting problems in plasma physics, which will
likely require the six dimensions of space and velocity-space. The usefulness of the MOLT
method may be determined by how well it can be scaled for use in a higher dimensional
setting.

We would like to apply this work and determine its usefulness in solving other PDEs.
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The most natural extension would be to the heat equation,
v = V2, o(z,0) = f(x).

While the Method of Lines Transpose idea has been used to numerically solve the heat
equation [51], the convergence of the method was never proven. The extension of the proofs
of consistency and stability should be fairly straight forward to extend from the wave equation
to the heat equation.

One of the factors impeding the practicality of the Method of Lines Transpose scheme is
its limitation to second order. The natural extensions to a third order dissipative scheme and
a third and fourth order purely dispersive scheme have also been investigated. Alas, these
methods were not feasible due to stability issues. For the third order dissipative scheme,
one of the eigenvalues of the matrix A; was slightly larger than one, leading to a long-term
instability. Due to its symmetric temporal structure, the fourth order purely dispersive
scheme required that all the eigenvalues of A; multiply to one. Numerical testing showed
two of the eigenvalues to be complex with norm equal to one, but unfortunately, the other
two were shown to be real and of different magnitude, causing the method to be completely
unstable. The issue with the third order purely dispersive scheme is slightly different. The

1
third order approximation to the temporal derivative vy about the point ¢~ 2 is given by

n—+1 n_ Un—l + Un—2

2

— v
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A centered third order equivalence for v,, is given by

R Y Vs

Thus, rearranging the wave equation (1.1) into a Helmholtz type equation would give

L <U”+1 — = Un_2> = 8%, + vl L,

Due to the Helmholtz operator having a positive sign, the local nature of the inverted opera-
tor is destroyed as the corresponding Green’s function now becomes complex and oscillatory
instead of a negative exponential, yielding this as an unfeasible scheme.

Defect correction schemes |20, 23, 24, 31, 57| may provide a way to overcome these order
constraints. In a defect correction setting, the differential equation is originally solved with
a low order based scheme. An integral equation for the error is then determined, yielding a
correction term which is then applied to the solution, which in turn will raise the order of
the numerical solution. These methods would have to be adapted to fit this second order
partial differential equation, but may provide an avenue to obtaining higher order numerical

solutions for the wave equation using the MOLT as its base scheme.

8.2 Numerical Work

In this dissertation, we have discussed the advantages of implementing the MOLT scheme

for the wave equation. As we have the ability to take a large CFL, we expect to be able
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to outperform standard explicit methods, however, a comparison on the accuracy and com-
putational complexity of this method against standard finite difference methods and finite
element methods should be done.

Additionally, some of the proofs of the numerical properties could be more completely
solved. Namely, in section 3.2, we showed the dispersion relationship for the semi-discrete
methods. Attempts have been made to show the dispersion relation for the fully discrete
methods, but to this point, have been unsuccessful in showing that the second order dissi-
pative scheme actually achieves second order. This is something that we hope to be able to
show in the future. Also, the stability bounds from section 4.2 for the finite domain schemes
can be tightened down. All of the numerical tests that we have run for the eigenvalues of the
matrix A; = Ay + Ayp, defined in section 4.2, have shown the eigenvalues to be positive and
within the predetermined bounds. The expectation is that the method is fully stable and
we would like to find a way to prove this, getting rid of the dependence on the Bauer-Fike

theorem to determine a region on which stability is guaranteed.
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