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ABSTRACT 

SIMULTANEOUS SYNTHESIS OF BOTH RINGS OF CHROMENES VIA A 
BENZANNULATION/ORTHO-QUINONE METHIDE 

FORMATION/ELECTROCYCLIZATION CASCADE AND AN APPROACH TOWARDS 
THE ASYMMETRIC SYNTHESIS OF CHROMENES 

 
By 

 
Nilanjana Majumdar 

 
A new route to the chromene ring system has been developed which is the 

reaction of an α,β-unsaturated Fischer carbene complex of chromium with a propargyl 

ether bearing an alkenyl group on the propargylic carbon. This transformation involves a 

cascade of reactions that begins with a benzannulation reaction and is followed by the 

formation of an o-quinone methide, and finally results in the emergence of a chromene 

upon an electrocyclization in yields up to 95%. This reaction was extended to provide 

access to naphthopyrans by employing an aryl carbene complex. This constitutes the 

first synthesis of chromenes in which both rings of the chromene system are generated 

in a single step. The success of this method is highlighted in the synthesis of 

lapachenole and vitamin E. 

                     The asymmetric version of benzannulation/o-quinone methide 

formation/electrocyclization cascade was also explored for the synthesis of chiral 

chromenes using optically active enynes. Enantiomeric excesses up to 60% could be 

obtained. Interestingly, it was observed that the double bond geometry in the chiral 

enyne controlled the absolute stereochemistry in the final chromene product. A 

mechanistic investigation was carried out to have a better understanding of the reaction 

pathway. 
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CHAPTER ONE 

Recent Developments in the Synthesis of 2H-Chromenes 

 

1.1. Introduction 

Heterocycles undoubtedly constitute a dominant class of organic compounds with the 

widest variety of classifications.1 They are a very important class of compounds not only 

being common in biologically active important classes of natural products, for example, 

alkaloids, vitamins, hormones, and antibiotics but also because of their diverse 

applications in different fields. Most common heterocycles are oxygen, nitrogen and 

sulfur-containing compounds. Oxygen-containing heterocycles are ubiquitous in nature 

and can be classified by the number of ring atoms. In general three- to six-membered 

ring compounds are more common. Six-membered heterocycles including one oxygen 

in the ring are commonly named as pyrans. Although, simple and saturated pyran ring 

systems are not so stable compounds, a fusion with aromatic rings provides the system 

with significant stabilization. Thus, 2H-1-benzopyrans (chrom-3-enes) are widely 

abundant in nature and are very special because of their extensive chemistry. 

Chromene compounds can be found in many biologically active natural products.2,3,4 

These compounds exhibit a broad spectrum of biological activities5 e.g. antidepressant, 

antihypertensive, antitubulin, antiviral, antioxidant, activator of potassium channels and 

even inhibition of phosphodiesterase IV or dihydrofolate reductase.  They are also very 

important because of their photochromatic behavior.6 Chromenes are referred as 
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“privileged structures”.7 This “privileged” status is given to them because of their ability 

to bind to multiple, unrelated classes of protein receptors as high affinity ligands by 

orienting varied substituent patterns in a well-defined three-dimensional space. 

Privileged structures exhibit good drug like properties and that led to the formation of 

natural product-like combinatorial library8 based on 2,2-dimethylbenzopyran moieties as 

the template. The diverse array of biological activities of 2H-chromene containing 

compounds and the structural importance of benzopyran moiety has inspired the 

organic chemistry world for the development of new and improved synthesis of this 

molecular scaffold.3  

This review covers the metal-mediated, metal-free and organocatalytic approaches 

toward the enantioselective as well as racemic synthesis of highly functionalized 2H-

chromene derivatives. The organization of this review is based on the enantioselective 

as well as racemic approaches that employ various synthetic transformations. Both the 

synthetic applications as well as the mechanistic aspects of the described 2H-chromene 

syntheses are discussed. 

 

1.2. Synthesis of Chromenes 

1.2.1. Racemic Approaches for the Synthesis of Chromenes 

1.2.1.1. Metal-Mediated Approaches for the Synthesis of Chromenes 

In 2011, Jana and coworkers reported9 a new method for the synthesis of 3-substituted 

2H-chromenes by employing intramolecular alkyne-carbonyl metathesis as the key 

reaction in the presence of an iron catalyst. Thus, it was shown that alkynyl ethers of 
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salicyaldehyde 1-1 in the presence of 10 mol% FeCl3 in acetonitrile afforded the 

corresponding 3-substituted chromenes 1-2 in good to high yields (Scheme 1.1).  

 

Scheme 1.1: Synthesis of Chromenes by Fe-Catalyzed Intramolecular Alkyne-Carbonyl 

Metathesis  

 

Next, they explored the possibility of the intramolecular alkyne-carbonyl metathesis 

reaction with a variety of substituents around the aromatic ring of the salicyaldehyde as 

well as on the alkyne. It was found that the reaction was quite general with respect to a 

variety of functional groups including Cl, Br, OMe and Ph in salicylaldehyde. The yields 

of the products were good irrespective of the difference in electronic nature of 

substituents. Moreover, the reaction proceeded smoothly in naphthalene and biphenyl 
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systems providing very good yields. Similarly, various substituents on the aromatic ring 

attached to the alkyne were well tolerated. Alkyl groups at the alkyne terminus were also 

tested and the yield of the corresponding products were good. However, the reaction 

failed for simple propargyl ether with a terminal alkyne unit.  Thus, it is apparent that the 

reaction is more facile with an aromatic substituent on the alkyne in the starting 

compound.  

It was proposed that the reaction proceeds via a [2+2] cycloaddition. Initially, the 

carbonyl group was activated by the coordination with FeCl3, which promoted the 

nucleophilic attack of the alkyne on the aldehyde forming an oxetene intermediate 1-5 

via the vinylic cation intermediate 1-4. Intermediate 1-5 subsequently proceeds via a 

formal [2+2] cycloreversion to the 2H-chromene 1-2 with complete regioselectivity. 

Notably, the exact role of FeCl3 at this point is not clear (Scheme 1.2). 

 

Scheme 1.2: Proposed Mechanism 
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Hue et al showed10 that the synthesis of 2,2-dimethyl-2H-chromenes could easily be 

achieved by a one-pot cyclocondensation of phenols and 2-methyl-3-butyn-2-ol. Thus, 

when phenols were treated with 2-methyl-3-butyn-2-ol in the presence of ReCl(CO)5 in 

hexane at 60 °C, they gave the 2,2-dimethyl-2H-chromenes in high yields (Scheme 

1.3). The substrate scope was explored and it was found that simple phenol, p-, o- and 

m-cresols gave good yields of the products. Interestingly, this developed protocol was 

also capable of giving the naphthopyran derivatives from β and α–naphthols, although 

α–naphthol showed relatively lower reactivity. Electron withdrawing groups such as 4-Cl 

in phenol showed good result. In addition to that, the reaction of 4-methoxyphenol with 

2-phenyl-3-butyn-2-ol and 1-ethynyl cyclohexanol afforded the expected cycloadduct in 

28% and 65% yields respectively (Scheme 1.4). 
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Scheme 1.3: Synthesis of Chromenes by Re-Catalyzed Cyclocondensation 

 

 

Scheme 1.4: Extended Substrate Scope 
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route a, which involves dehydration followed by intramolecular hydroarylation (Scheme 

1.5).  

 

Scheme 1.5: Proposed Mechanism 
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Scheme 1.6: Synthesis of Chromenes from Aryl Propargyl Ether via Au-catalysis 
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the same catalyst. Similarly, xanthyletin 1-24 and seselin 1-25 were produced in a 40:60 

ratio, but could be easily separated by column chromatography (Scheme 1.7). 

 

Scheme 1.7: Synthesis of Chromene-Containing Natural Products 
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Scheme 1.8: Chromene-Containing Natural Products 
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Scheme 1.9: Fe-Mediated [3+3]-Annulation 
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Scheme 1.10: Further Synthetic Transformation 
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Scheme 1.11: Proposed Mechanism 
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donating and electron-withdrawing groups. Moreover, it proceeded cleanly even with 

highly substituted phenols and naphthols. Substitution on the pyran ring was also 

possible by this method by introducing substituents on the alkene of the starting phenol 

1-46. Although, the method proved pretty general, it was observed that inclusion of the 

dioxolane moiety led to only decomposition of products. Furthermore, the viability of 

substituents at different positions of the pyran ring was examined and it appeared that 

the reaction is general regardless of the electronic nature of the substituents on either 

the pyran or aromatic ring except in the case of 3-methyl-6-chloro-chromene, where 

only a trace of this material was observed (Scheme 1.13).  

 

Scheme 1.13: Substrate Scope 
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To gain insight into the mechanism, a series of para-substituted substrates of the type 

1-48 were examined where the electronic effects of substituents were directly 

conjugated to what might be a cationic centre (Scheme 1.14). Electron-donating groups 

seemed to give faster reactions and better yields. It is worth mentioning that Au-

complexes can serve as a π–acid to activate the alkene or as a Lewis acid to ionize the 

alcohol. Whatever the mechanism, the substituent studies shown in Scheme 1.14 

suggest that positive charge builds up on the allylic alcohol carbons. Surprisingly, when 

compounds 1-54a or 1-54b were subjected to the same reaction conditions there was 

no reaction; suggesting that the role of catalyst may change depending on the structure 

of the substrate.  
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Scheme 1.14: Mechanistic Investigation 
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Scheme 1.15: Au-Catalyzed Cycloisomerization 
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substrates including α and β–naphthol, aromatic as well as aliphatic alkynes, aromatic 

aldehydes and cyclic and acyclic aliphatic aldehydes were tested in this reaction. In all 

cases the desired naphthopyrans were obtained in good yields. The reaction also 

worked nicely when simple phenol was used instead of naphthols.  

 

Scheme 1.16: Ga-Catalyzed Multicomponent Reaction 
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Scheme 1.17: Proposed Mechanism 
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Scheme 1.18: Two Possible Pathways for Metal-Mediated Hydroaryloxylation 
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Scheme 1.19: Fe-Catalyzed Hydroaryloxylation 
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substrate scope, the method could be extended to a variety of naphthopyrans in a 

similar fashion starting with naphthyl propargyl ethers. In all cases the yields were 

moderate to good (Scheme 1.20). 

 

Scheme 1.20: Pd-Catalyzed Cyclization of Aryl Propargyl Ethers 
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intermediate 1-72 which by reductive elimination can form product 1-68. It is also 

possible that product 1-68 can be formed from intermediate 71 via intermediate 1-73 

maintaining a Pd(II) oxidation stage. In this pathway Cu(II) assists in ligand transfer to 

form the product (Scheme 1.21). 

 

Scheme 1.21: Proposed Mechanistic Pathway 
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oxidative addition step. For the arynyl moieties of chromones, the presence of electron-

donating groups on the alkyne of the chromone led to an increase in yield, while 

electron-withdrawing groups exhibit a negative effect (Scheme 1.22). 

 

Scheme 1.22: Pd-Catalyzed Multicomponent Reaction 
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Scheme 1.23: Proposed Mechanism  
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the E-isomer (Scheme 1.25). It was found that electron-donating groups on the 

salicylaldehyde favored higher yields in this reaction. However, with 2-

hydroxyacetophenone in place of salicylaldehyde the reaction with allenic ester 1-87 

provided a 79% yield of the expected chromene product 1-90 although the same 

reaction with an allenic ketone did not give any desired product (Scheme 1.26).  

 

Scheme 1.24: Synthesis of Chromenes via K2CO3-Catalyzed Reaction 
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Scheme 1.25: Substrate Scope with Allenic Ester 

 

 

Scheme 1.26: Reaction Between 2-Hydroxyacetophenone and Allenic Ester 
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R4
R3

R2
R1

CHO

OH
•

O
OEt

+
O

R
O

OEt

R1R2

R3
R4

K2CO3 (10 mol%)
DMSO, 120 °C, 1h

Series      R1           R2          R3            R4        Yield (%) of 1-88
a
b
c
d
e
f
g

H
OMe
H
H
H
H
Cl

H
H
OMe
H
H
H
H

H
H
H
Me

Br
Cl

H
H
H
H

H
H

89
93
84
79
88
88
81

1-881-84 1-87

OH

O

+ •

O
OEt

K2CO3 (10 mol%)

DMSO, 120 °C, 2.5 h O CO2Et
79%1-89 1-87 1-90



	
   28	
  

Scheme 1.27: Plausible Mechanism 
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Scheme 1.28: Reaction Between Salicyaldehyde and Allenic Ketone 

 

 

Scheme 1.29: Controlled Experiment 
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chromenes.22 It was also demonstrated that the use of elevated temperature (120 °C) in 

the first report were unnecessary for unsubstituted allenic ketones and esters and 

instead these reactions could be run at room temperature (Scheme 1.30). 

 

Scheme 1.30: Comparison Between Present and Previous Study 
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Scheme 1.31: Substrate Scope in the Reaction with Unsubstituted Allenic Esters 

 

 

Furthermore, compound 1-109 could be converted to compound 1-110 under acidic 

condition or simply by allowing 1-109 to stand for 2 days at room temperature in the 

absence of any reagents (Scheme 1.32). 
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Importantly, when the reaction was carried out with the unsubstituted allenic ketone 1-

111 under the same conditions in DMSO, the reactions gave a number of by-products. 

However, these reactions gave good yields of chromene products 1-112 in ethanol as 

solvent (Scheme 1.33).  

 

Scheme 1.33: Substrate Scope in the Reaction with Unsubstituted Allenic Ketone 

 

 

The proposed mechanism is outlined in Scheme 1.34. After activation by K2CO3, the 

phenolate anion of salicylaldehyde attacks the allenic ester forming the carbanion 1-113 

which then attacks the aldehyde C=O to complete the cyclization. The oxyanion 

intermediate 1-115 abstracts a proton from salicylaldehyde 1-89 to afford compound 1-

116 and regenerate 1-91. Compound 1-116 is isomerized to 1-117 and then dehydration 

gives the pyrylium intermediate 1-118, which is subsequently attacked by H2O to form 

R4
R3

R2

R1

CHO

OH
+

O
R1

R2

R3
R4

K2CO3 (10 mol%)

EtOH, 25 °C

1-106

•
COMe OH

COMe

Entry      R1           R2         R3            R4        Yield (%) of 1-106
1
2
3
4
5
6

H
OMe
H
H
H
Cl

H
H
Me
Cl
Br
Cl

H
H
H
H
H
H

67
68
68
64
74
67

H
H
H
H
H
H

1-84 1-101a



	
   33	
  

product 1-119. Moreover, this proposed mechanism was supported by labeling 

experiments.  

 

Scheme 1.34: Proposed Mechanism 
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Scheme 1.35: Pd-Catalyzed Hydroarylation/Hydrovinylation Cyclization 
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obvious from this observation that addition of fresh Pd(OAc)2 was necessary for the 

second step to give good yield of chromene. This is probably because of the irreversible 

precipitation of the majority of the catalyst in the first step. Since chloride ions stabilize 

low-ligated Pd(0) species, one equivalent of Bu4NCl was added at the beginning instead 

of the addition of fresh Pd(OAc)2 after the first step and the reaction seemed to work 

nicely. However, as a generalized procedure the reaction required the presence of 

Bu4NCl and the addition of fresh Pd(OAc)2, NaOtBu and dppf in the second step. 

Attention should be called to another palladium catalyzed synthesis of 4-ethoxy-2,2-

disunstituted chromenes reported by Venturello et al,25 involving a Suzuki coupling but 

the scope was not examined.  

In 2006, Malinakova et al reported26 the synthesis of polymer-supported palladacycles, 

which were used for the further development of a method for the synthesis of 2H-

chromenes (Scheme 1.36). They showed that the palladacycles 1-124, installed on a 

variety of resins, would react with dimethyl acetylene dicarboxylate (DMAD) 125 in DCE, 

to afford the 2H-chromene 1-126 in yields superior to those of analogous solution phase 

reactions. Small amounts of the chromatographically inseparable 4H-chromene 1-127 

was also observed which was probably generated from the in-situ isomerization of the 

original 2H-chromene caused by the high local concentrations of the phosphine and the 

palladacycle at elevated temperature under the employed reaction conditions. 
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Scheme 1.36: Polymer Supported Synthesis of Chromenes 
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Scheme 1.37: Yb-Catalyzed Synthesis of Chromenes 

 

 

To test the generality of this protocol Janin et al carried out a number of reactions with a 
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(Scheme 1.39).  
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Scheme 1.38: Substrate Scope 

 

 

Scheme 1.39: Synthesis of Spirochromene by Yb-Catalysis 
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Scheme 1.40: AlCl3-Catalyzed Intramolecular Cyclization 
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successful with PhSeBr. Surprisingly, the hydroxy-methyl substituted propargylic aryl 

ether successfully reacted with both I2 and ICl. The introduction of electron-donating 

groups on the aromatic ring was observed to render a positive effect on the yield while 

electron-withdrawing groups had the opposite influence (Scheme 1.42).  

 

Scheme 1.41: Electrophilic Cyclization of Propargylic Aryl Ethers 
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Furthermore, they also showed that the α-naphthyl propargyl ether 1-142 responded 

quite well in this reaction giving a modest yield of the corresponding naphthochromene 

1-143. Unfortunately, the simple phenyl propargyl ether 1-144 failed to give the desired 

product in this reaction (Scheme 1.43). 

 

Scheme 1.43: Electrophilic Cyclization of α-Naphthayl Propargyl Ethers 
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Scheme 1.44: Proposed Mechanism 
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Subsequently, Zeni and co-workers studied30 the same type of electrophilic cyclization 

on organochalcogen substituted propargyl aryl ethers as precursors and showed that 

with the use of three equivalents of I2 and Na2CO3 in THF or CH3CN, the reactions 

proceeded smoothly to give a wide range of 3- and 4-substituted chromenes in 

moderate to high yields (Scheme 1.46). Notably, they also studied these same 

reactions employing Larockʼs29 conditions in nitromethane to find that no reaction 

occurred.  

 

Scheme 1.46: Electrophilic Cyclization of Organochalcogen Propargyl Aryl Ethers 
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species 1-159, which was reduced to an organochalcogen (II) species by sodium 

thiosulfate which was used in the workup to remove the excess iodine (Scheme 1.47). 

 

Scheme 1.47: Proposed Mechanism 
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2H-chromenes (Scheme 1.48). This synthesis was rather unexpected because under 

the reaction conditions the cyclopropane 162 was the expected product. However, there 

was no trace of 162 and instead chromene 163 was obtained in 85% yield. 
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Scheme 1.48: Synthesis of 2-Substituted 2H-Chromenes via Michael Addition/Reverse 

Michael/Allylic substitution Cascade 

 

 

The scope was examined with a variety of unsaturated esters and with a variety of 

substituents on the phenyl ether ring. The desired chromenes were obtained in high 

yields despite the fact that 4H-chromenes were obtained in some cases as minor 

products. The ratio of 2H-chromenes to 4H-chromenes seemed to be substrate 

dependent and in the worst case 8:1 in favor of the 2H-chromenes (Scheme 1.49). 
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Scheme 1.49: Substrate Scope 
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tetrahydrothiophene 1-168 with bromide 1-165 to form sulfonium salt 1-169, which after 

deprotonation by K2CO3 forms the sulfonium ylide 1-170. An intramolecular Michael 

addition, followed by a retro-Michael reaction produces intermediate 1-172. An 

intramolecular SN2ʼ reaction of intermediate 1-172 affords the 2H-chromene 1-166 and 

regenerated tetrahydrothiophene 1-168 to close the catalytic cycle. 2H-chromene 1-166 

could be slowly transformed to 4H-chromene 1-167 in presence of K2CO3 and that is 

the reason why the 4H-chromene 1-167 is observed as a minor product in some cases 

O CO2R2

1-165

10 mol% THT
DCE, K2CO3
80 ºC

O CO2R2

1-166
O CO2R2

1-167

+R1 R1 R1

1
2
3
4
5
6
7
8
9
10
11
12

H
H
H
H
H
1-naphthyl
6-tBu
6-tBu
4-Me
4-Cl
5-Cl
4-Br

Et
Et
Me
iPr
Bn
Et
Et
Et
Et
Et
Et
Et

85
92
99
83
87
88
99
97
85
75
76
81

33:1
35:1
8:1
34:1
57:1
37:1
>99:1
>99:1
20:1
14:1
45:1
20:1

entries       R1                    R2                yield (%)      1-166:1-167

Br



	
   47	
  

(Scheme 1.50). The 4H chromene 1-167 is the thermodynamic product and is the 

exclusive product of the reaction if the stronger base Cs2CO3 is employed (Scheme 

1.51). 

 

Scheme 1.50: Proposed Catalytic Cycle 
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Scheme 1.51: Reaction Between Salicyaldehyde and Cyclic Enones 

 

Miyabe et al.33 utilized the high reactivity of aryne intermediates in a multicomponent 

coupling reaction which involves insertion of arynes 1-176 into C=O bond of 

dimethylformamide 1-179 followed by the nucleophilic attack by active methylenes 1-

177 to synthesize 2H-chromenes 1-180 (Scheme 1.52). 
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Since active methylene compounds 1-177 show high reactivity toward arynes 1-176 

giving ortho-disubstituted arene 1-178 it posed a challenge for the present methodology, 

as there might be a competition of insertions between DMF and active methylenes into 

arynes (Scheme 1.52). 

 

Scheme 1.53: Competition of Insertions Between DMF and Active Methylenes into 

Arynes  
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Scheme 1.54: Substrate Scope Varying Arynes 

 

 

The ketones were also varied and reacted with compound 1-182 under the optimized 

conditions. The yields were moderate to high (Scheme 1.55). 

 

Scheme 1.55: Substrate Scope Varying 1,3-Diketones 

 

 

TMS

OTf Me
O

Me
O

O Me
OH

Me
O

R1

R2

R1

R2

TBAF
RT, 3 h

O Me
OH

Me
O

O Me
OH

Me
O

R1

R2 O Me
OH

Me
O

MeO

MeO O Me
OH

Me
O

78%

1-187a: R1=MeO, R2=H
1-187b: R1=H, R2=MeO
1-187a/1-187b = 6:5

76% 66% 66%

+
DMF

1-186 1-183 1-187

TMS

OTf R1
O

R2
O

O R2
OH

R1
O

TBAF
RT, 3 h

R1, R2 = Ph, Me, CF3, –CH2CH2CH2–, –CMe2CH2CH2CH2–

OMe

1-182

OMe

O Ph
OH

Ph
OOMe

O Me
OH

CF3

OOMe

O

OMe

O

OMeO

OH

O

OH79% 40% 83% 56%

+

DMF1-179 1-189



	
   51	
  

This method was applied in a convenient synthesis of a neuropeptide YY5 acceptor 

antagonist 1-193 and was obtained in 86% yield. Similarly products 194 and 1-195 were 

synthesized in 87% and 69% yields. These transformations involved formation of three 

C–C bonds and two C–O bonds in one-pot (Scheme 1.56). 

 

Scheme 1.56: Synthetic Application 
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Scheme 1.57: Proposed Mechanism 
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(Scheme 1.58). 
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These results were also supported by thermodynamic considerations. The 

thermodynamic data from an ab initio molecular orbital calculation indicates that step A1 

is highly exothermic (ΔH = –177 kJ mol–1) because of the release of the strain energy of 

aryne 1-206, which overcomes the entropy loss of the bimolecular coupling (TΔS = –71 

kJ mol–1). The changes in Gibbs energy indicate that all these sequential reactions are 

thermodynamically favorable (ΔG < 0 kJ mol–1) probably due to the high reactivity of all 

the strained reactants (Scheme 1.59). 

 

Scheme 1.59: Thermodynamic Considerations 
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Scheme 1.60: Theoretical Support for Experimental Results  
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(Scheme 1.61). 
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Scheme 1.61: Synthesis of Chromenes by Knoevenagel Condensation 

 

 

A plausible mechanism suggested that the formation of a Knoevenagel product initiate 

the reaction. Then cyclization takes place by the nucleophilic attack of phenolic OH to 

the nearest C=O to Cl to give the chromene product. Probably powerful –I effect of Cl 

controls this step (Scheme 1.62). 
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Sosnovskikh and co-workers developed35 a convergent method for the first time for the 

synthesis of a variety of fused 2H-chromenes by the reaction of salicyaldehydes with 

chromones, γ-pyrones and β-furanones, which are activated by the polyhaloalkyl 

groups. The reaction underwent most likely via an oxa-Michael addition/Mannich 

condensation pathways. They found that 2-RF (RF = polyfluoro alkyl group) and 2-CCl3-

chromone smoothly reacted with a number of salicyaldehydes in the presence of 

piperidine in refluxing benzene to afford the corresponding chromenes in high to 

moderate yields without the generation of any competitive side products arising from the 

Baylis-Hillman reaction or any ring-opening of the pyrone ring (Scheme 1.63). Notably, 

when the same reaction was conducted with 2-hydroxyacetophenone instead of the 

salicyaldehyde, the reaction did not proceed at all. The reaction worked well with a wide 

range of substituents on both the salicyaldehydes and chromones giving reasonable to 

excellent yields of the products. Usually, the electron-withdrawing nitro group at the C6 

position of the chromones greatly facilitates the initial nucleophilic addition of the C2 

atom and the electron-donating methyl group complicates this process, which is most 

likely is the rate-determining step. Importantly, it is known that the Baylis-Hillman 

reaction is faster with electron-poor aldehydes.36 Unlike, the 2-substituted chromones, 

which reacted with aromatic aldehydes to provide Baylis-Hillman products,37,38 they did 

not obtain analogous compounds having 2-CF3-chromones and m-nitrobenzaldehyde in 

the presence of Et3N or DABCO, which was probably owing to the steric repulsion 

between the CF3 group and the tertiary amine at the very beginning stage.  
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Scheme 1.63: Convergent method for the Synthesis of Fused Chromenes 
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Scheme 1.64: Reaction Between Salicyaldehyde and Cyclic Enones  
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Scheme 1.65: Double Annulation of γ-Pyrones with Salicyaldehyde 
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Scheme 1.66: Synthesis of Chromenes from s-cis-Enones 
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Scheme 1.67: Synthesis of Pyrazolopyrimidine-Fused Chromenes 
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Ferreira et al reported43 a facile and general one-pot synthesis of 2H-chromenes from 

ortho-quinones 1-239 and allyltriphenylphosphonium salts 1-240, in the presence of 

aqueous NaOH and chloroform at room temperature (Scheme 1.69). The reaction 

undergoes via in-situ generated ylide, which subsequently reacted with an ortho-

quinones to produce a ortho-quinonemethide intermediate that eventually cyclizes to 

give the 2H-chromenes in 47- 85% yields. 

 

Scheme 1.69: Reaction Between o-Quinones and Allyltriphenylphosphonium Salts 
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In 2009, Adler and Baldwin have reported45 an efficient method for the synthesis of 2,2-

dimethyl-2H-chromenes in a single step from the corresponding phenols with 3-methyl-

butenal under microwave conditions in CDCl3 (Scheme 1.71). In general, increasing the 

number of electron-donating groups on the phenol increased the effectiveness of this 

method, though the yields of this reaction are very poor except only in one case. 

Changing the aldehyde to a methyl ketone slightly improved the yield of the product.  

 

Scheme 1.71: Microwave-Assisted Synthesis of Chromenes 
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249 under the heterogeneous reaction conditions in excellent yields (Scheme 1.72) in a 

very short reaction time with added advantage of the more than ten times catalyst 

recyclability. 

 

Scheme 1.72: Solid Supported Synthesis of Chromenes 
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Scheme 1.73: Synthesis of Chromenes Using Petasis Reaction 

 

 

Inspired by these findings, next, they performed a more detailed investigation, which 

suggested that the outcome of the process depends highly on the employed reaction 

conditions. The secondary amines are generally the most reactive in this chemistry and 

a variety of conditions have been reported for this process.48,49,50,51
 This 

transformation worked particularly well in protic solvents even with ethanol and water. 

They have showed that the use of dibenzylamine in water, salicyaldehyde 1-260 was 

fully converted to furnish 2H-chromenes 1-264 efficiently, with both alkenyl boronic 

acids (e.g. 1-261) as well as alkenyl trifluoroborates such as 1-262 (Scheme 1.74). 
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Moreover, the same research group also have studied the effect of tertiary amines as 

base and found that these can also mediate the transformation for the preparation of 

chromenes. However, tertiary amines are relatively less effective than the secondary 

amine, which is shown in Scheme 1.75. Notably, sterically congested seconday amine 

such as 2,2,6,6-tetramethylpiperidine proved to be less reactive than the congested 

Hunigʼs base, which resulted the desired product even through is considered to be non-

nucleohilic. Besides, tetrabutylammonium hydroxide, comparatively a strong base, was 

observed to be entirely ineffective. The proposed mechanism includes a direct 

nucleophilic attack of the amine 1-255 to the aldehyde, which facilitated by the by the 

intramolecular H-bonding with phenolic hydroxyl group 1-260. Intermediate 1-265 was 

then reacted with the boronic acid 1-261 to form an ion-pair 1-266 consisting of an 

electrophilic ammonium species and a nucleophilic borate species. A subsequent 

conjugate addition of the alkenyl group leads to an ammonium phenolate intermediate 

1-267, which underwent fragmentation to give the 2H-chromenes 1-264 via intermediate 

1-268. 
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Scheme 1.75: Proposed Mechanism 
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Scheme 1.76: Synthesis of Vitamin E 
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provided an unidentified mixture instead of the desired product, suggesting that the CX3 

group favors the initial oxa-Michael addition reaction due to its electron-withdrawing 

character, which lowered substantially the LUMO of the molecule53 (Scheme 1.77). 

 

Scheme 1.77: Synthesis of Chromenes via Tandem Oxa-Michael/aza-Henry Reaction 
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regioselectively at the chromenes by the employment of these strategies failed. Thus, 

Moustrou et al. developed56 the first efficient and highly selective synthesis of a number 

of nitro-substituted 2,2-diphenyl-2H-1-benzopyrans in two steps starting from their 

brominated homologues. These were in turn obtained by a classical chromenization 

between the commercially available 1,1-diphenyl-2-yn-ol and various brominated 

phenols. Subsequently, the group showed that the nitro-chromenes could be 

synthesized from their boronic acids followed by the regioselective electrophilic nitration 

(Scheme 1.78). 

 

Scheme 1.78: Uguenʼs Retro Synthetic Approach for Chromene Synthesis  
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routine acetyoxylation as in case of 1-289. Likewise, 1,4-hydroquinone 1-287 (R = H) 

resulted in the unprotected 2H-chromene 1-291 (Rac)-cordiachromene A in 40% yield 

(Scheme 1.79). The synthetic usefulness of this protocol was further showcased by an 

extension, which involves the efficient access to α-tocopherol acetate in high yield. 

 

Scheme 1.79: Uguenʼs  Approach Towards the Synthesis of Chromenes 
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(Scheme 1.80). 
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Scheme 1.80: Synthesis of Chromenes by Use of RCM/Based-Induced Ring Opening 

Reaction 

 

 

When the starting compound 1-292 was treated under ring-closing metathesis 
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80-98% yield range (Scheme 1.81).  
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Scheme 1.81: Substrate Scope 
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Scheme 1.82: Synthesis of Chromenes from C2-Symmetric Benzo[b]oxepine 

 

 

The mechanism of the reaction is outlined in Scheme 1.83. It involved the formation of 

the o-quinone-methide intermediate by [1,7]-sigmatropic H-shift which cyclized to give 

the chromene product. 

 

Scheme 1.83: Proposed Mechanism 
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Scheme 1.84: Synthesis of Chromenes via Modified Petasis Reaction 

 

 

All the vinylboronate salts used for this study were commercially available. Also they 

can be prepared very easily. These vinylborate salts are much more stable, easier to 

use than the corresponding organoboronic acids. They are also more reactive because 
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this method was explored by changing the substituents both on salicyaldehyde and on 

the alkenyl trifluoroborate salt. Generally, the yields were moderate to high. It was 

noticed that electron-withdrawing groups in the para-position of salicyaldehyde OH 

group showed somewhat positive influence in the product yield (Scheme 1.85). 
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Scheme 1.85:  Substrate Scope 

 

 

Wu and Chen recently reported60 a cascade reaction of β,γ-unsaturated-α-ketoesters 

with phenols in presence of tritylchloride as an oxiding agent in TFA under refluxing 

conditions for the construction of a variety of chromenes in excellent yields. They 
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an oxidant in presence of TFA, it gave the best yield of the chromene 1-307 (90%), 

which is actually the reverse regiochemical outcome of the previously reported61 

chromene synthesis by Jørgensen and Rutjes (Scheme 1.86).  
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Scheme 1.86: Synthesis of Chromenes by Reaction of β,γ-Unsaturated-α-Ketoesters 

with Phenols 

 

 

With the optimized conditions in hand, the scope of the reaction was investigated with 

respect to both the β,γ-unsaturated-α-ketoesters and phenol derivatives (Scheme 1.87). 
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Scheme 1.87: Substrate Scope 
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Scheme 1.88: Proposed Mechanism 
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Scheme 1.89: Synthetic Transformation of 2H-Chromenes 
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en-1-ol, along with the model compound 1-324. Employment of 0.66 equivalent of 

alcohol, 41% of the 1-324 and 12% of the 1-325 were obtained along with the recovered 

starting hydroquinone (47%). Surprisingly, using increased stoichiometric amounts of 

alcohol the amount of bis-alkylation product 1-325 was disportionately high; with 1.0 

equivalent of 1-323 only 34% of 1-324 and 33% of the pyrano chromene 1-325 were 

formed (Scheme 1.90). Finally, treatment of 1-325 with two equivalents of molecular 

bromine furnished the product 1-326 in 96% yield. 

 

Scheme 1.90: Bromination Behavior of PyranoChromene  
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the 3-bromopyranochromene 1-331 after elimination of one equivalent HBr from 1-330. 

Interestingly, the reaction of 1-328 with Br2 does not lead to the formation of the bis-

chromene 1-329. 

 

Scheme 1.91: Proposed Mechanism 
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phenols 1-335. Allenyl phenols, in the presence of Nafion H, eventually yielded the 

chromenes through a electrocyclization reaction. 

 

Scheme 1.92: Microwave-Assisted Intramolecular Wittig and Claisen Rearrangement 

Followed by Internal Cyclizations 
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1.2.2. Asymmetric approach to the synthesis of chromene 

1.2.2.1. Organocatalytic Synthesis 

Organocatalysis play very significant role in the asymmetric synthesis of chromenes. 

The examples shown in this part of the review reveals its evolution as an efficient 

method for the synthesis of chiral chromenes.  

Schaus et al developed a new method67 to synthesize chiral 2-substituted 2H–

chromenes by employing a chiral Brønsted acid/Lewis acid catalytic system in an 

enantioselective addition of boronates to chromene acetals. Vinyl- and aryl-boronates 

were of particular importance, which would result in the placement of a vinyl or aryl 

group at the 2-position of chromene along with a chiral center. These moieties are very 

important because of their abundance in some natural products (Figure 1.1). 

 

Figure 1.1: Chromene Containing Natural Products 
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Optimization of the reaction revealed that it required a Lewis acid catalyst to increase 

the efficiency of the Brønsted acid catalyst. It is noteworthy to mention that Yamamotoʼs 

group first developed this concept68 of Lewis acid-assisted Brønsted acids. For this 

reaction the combination of the chiral tartaric amide with CeIII, CeIV or YbIII triflate salts 

gave the best yields and high enantioselectivity. Exploration of the substrate scope 

showed high enantiomeric ratio as well as high yields with some adjustments of reaction 

conditions. In some cases tBuOH had to be added to stabilize the starting compound. 

Aryl boronates were less reactive and were activated by addition of methoxy groups on 

the aromatic ring. Although the method proved to be very efficient, unfortunately it could 

not be generalized as the conditions had to be optimized for each substrate (Scheme 

1.94). 
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Scheme 1.94: Asymmetric Synthesis of Chromenes Using Chiral Brønsted Acid/Lewis 

Acid Catalytic System  
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pyrylium intermediate and the complexation of Ce(OTf)4 with the amide C=O of tartaric 

acid catalyst and with the boronate oxygen as well. Based on these valuable findings, a 

possible catalytic cycle was proposed which begins with the formation of dioxaborolane 

1-345 from the boronate and tartaramide acid 1-342. The complexation of Lewis acid to 

1-345 increased the acidity of the boronate to promote the formation of pyrylium 

intermediate along with boronate complex 1-347. The complex 1-347 was activated 

enough to facilitate the nucleophilic addition to the pyrylium intermediate giving the 

desired chromene product (Scheme 1.95). 

 

Scheme 1.95: Proposed Catalytic Cycle 
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catalyst, ethyl acetate as solvent at –40 °C in 1h the reaction resulted in the chromene 

product in 85% yield and 98:2 enantiomeric ratio (Scheme 1.96). 

 

Scheme 1.96: Experiment in Support of Proposed Mechanism 

 

 

A tandem oxa-Michael-aza-Henry-desulfonamidation reaction was approached in an 
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appeared to be the most effective catalyst compared to other quinine derivatives 

although giving poor yield (21%) and enantioselectivity (9% ee) of the nitrochromene 

product. The intermediate nitrochromane 1-352 was also isolated in 66% yield as a 

single diastereomer (>99% de) but with no enantioselectivity (Scheme 1.97).  
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Scheme 1.97: Asymmetric oxa-Michael-aza-Henry-desulfonamidation Reaction Using a 

Bifunctional Thiourea Catalyst 

 

 

Anticipating improvement of the reaction by increasing the binding ability with the 
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compromised (31%). Also, toluene proved to be a better solvent compared to 

dichloromethane for the stereoinduction (Scheme 1.98). 
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Scheme 1.98: Substrate Scope 
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and a chiral α,β-unsaturated ketone called levoglucosenone 1-355 using chiral-pool 

synthetic strategy (Scheme 1.99).70 The chiral ketone 1-355 can be derived from 

cellulose71 and is known for its application in asymmetric synthesis.72,71  

 

Scheme 1.99: Chiral Pool Synthesis of Chromenes 

 

 

In this reaction the new chiral center arises because the attack of the phenolate anion 

happens from the opposite side of the anhydro bridge (Scheme 1.100). 

 

Scheme 1.100: Substrate Scope 
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The reaction was facile with most of the substrates except for 5-nitro salicylaldehyde, 

which exhibited slow reactivity delivering low yield. This could be due to the poor 

nucleophilicity of the nitrophenolate anion. Interestingly, the oximes of 

pyranochromenes 1-357 could be converted into 3-cyano-2H-chromenes 1-360 in good 

yields via Beckmann fragmentation by treating with SOCl2. The intermediate 1,3-

dioxolan-2-ylium cation 1-358 was cleaved by attack of chloride anion at the least 

sterically hindered position. Product 1-359 could be further converted to chlorohydrin 1-

360 in high yield (Scheme 1.101). 

 

Scheme 1.101: Synthesis of 3-cyano-2H-chromenes 
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such as low ee, low yield and long reaction time (Scheme 1.102). Xie et al introduced 

an efficient kinetic resolution of racemic 3-nitro-2H-chromenes as an alternative route.74 

 

Scheme 1.102: Kinetic Resolution of Racemic 3-Nitro-2H-Chromenes 
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Figure 1.2: Takemotoʼs Catalyst 

 

 

In search for the best catalyst four different chiral thiourea catalysts were screened and 

among them Takemotoʼs catalyst 1-363 (Figure 1.2) seemed to be the potential one for 

this method. Toluene was the solvent of choice and the reaction was run at 0 °C. The 

substrate scope was examined by using differently substituted chromenes and α-amino 

malonate imine in presence of 10 mol% of Takemotoʼs catalyst. In all cases, enantiomer 

1-361 could be resolved in high enantioselectivities (77-85%) and good yields. At the 

same time the multifunctional benzopyrano pyrrolidine product could be obtained in a 

range of 13-70% ee with four vicinal chiral carbon centers reported for the first time 

(Scheme 1.103). 
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Scheme 1.103: Substrate Scope 
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Scheme 1.104: Organocatalytic Asymmetric oxa-Michael Addition for the Synthesis of 

Chromene 

 

 

Screening of catalysts revealed that diphenylprolinol trimethylsilyl ether 1-370 was 

promising both for promoting the reaction as well as inducing the chirality. Influence of 
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Scheme 1.105: Substrate Scope 

 

 

The actual mechanism of this reaction was not clear at that time but the rapid formation 

of the iminium ion 1-373 was detected and it was proposed that oxa-Michael addition 

was the rate-determining step (Scheme 1.106). 

 

Scheme 1.106: Proposed Mechanism 
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21% ee with poor conversion (18%). After an extensive screening of reaction conditions 

it was found out that addition of an organic acid boosted the reaction yield and 

enantioselectivity and 2-nitrobenzoic acid seemed to work best in toluene at room 

temperature (Scheme 1.107). 

 

Scheme 1.107: Enantioselective Domino oxa-Michael/Aldol Condensation 
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Scheme 1.108:  Substituent Effect on α,β-Unsaturated Aldehyde 
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Scheme 1.109: Substituent Effect on Salicyaldehyde 

 

 

To determine the stereocentre, the chromene-3-carbaldehyde products 1-382a and 1-

382b were oxidized to the corresponding chromene carboxylic acids in high yield. X-ray 

analysis of the enantiopure chromene-3-carboxylic acid 1-383b established that the 

absolute configuration at C2 was R (Scheme 1.110). 
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The proposed mechanism suggests that the reaction leads with the iminium ion 

activation of α,β-unsaturated aldehyde 1-385 by the organocatalyst 1-384 followed by 

the nucleophilic attack by the phenolic OH of salicylaldehyde 1-89. Since the bulky aryl 

groups shield the Si-face of the chiral iminium intermediate 1-386, the oxa-Michael 

addition happens on the Re-face stereoselectively generating the enamine intermediate 

1-387. Subsequently, the enamine attacks the C=O of salicylaldehyde to complete the 

cyclization. The resulting iminium ion 1-388 gets hydrolyzed to give chromanol 1-389. 

Elimination of water furnishes the final chromene product 1-382 (Scheme 1.111). 

 

Scheme 1.111: Proposed catalytic cycle 
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the iminium intermediate and also by activating the benzaldehyde moiety for 

intramolecular 6-exo-trig aldol condensation. Moreover, the addition of molecular sieves 

facilitated removing the water from the reaction medium and thus driving the 

condensation forward to the product formation. 

In an almost identical approach, reported by Wei and Wang77, chiral chromenes were 

synthesized using (S)-diphenylprolinol triethylsilylether 393 as the chiral organocatalyst 

and benzoic acid as the co-catalyst. 

 

Scheme 1.112: Effect of Benzoic Acid as Co-Catalyst 
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was noticed that the reaction resulted in much better ee when trans-cinnamaldehyde 

was bearing an electron-withdrawing group compared to the cases where it was neutral 

or electron-donating substituent. On the contrary, the substituents in salicylaldehyde did 

not influence the reaction much. 

Xu et al developed78 a one-pot asymmetric synthesis of 3-nitro-2H-chromene by using 

an enantioselective tandem oxa-Michael-Henry reaction between salicylaldehydes and 

nitro-olefins. It is noteworthy to mention that 3-nitro-2H-chromenes are very important 

compounds because they can be modified to flavonols, amines and other biological 

targets. In this method, a chiral secondary amine organocatalyst was used along with 

an organic acid as co-catalyst, which facilitated the reaction via aromatic iminium 

activation (AIA).  Although, the concept is same as for the domino oxa-Michael/aldol 

condensation reactions mentioned above, but this is probably the first report of 

activation of aromatic aldehydes through the iminium ion formation in the field of 

asymmetric organocatalysts. 

After a thorough screening, the authors found that the combination of catalyst 1-397 and 

salicylic acid as co-catalyst produced the highest yield and enantioselectivity of the 

desired product. Importantly, a polar solvent stabilized the partially ionized 

intermediated and DMSO turned out to be the best choice. 
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Scheme 1.113: Effect of Salicylic Acid as Co-Catalyst 
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Scheme 1.114: Proposed Catalytic Cycle 
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forming (R)-products (Scheme 1.115). This was also supported by the theoretical ECD 

spectra, simulated by TD-DFT calculations. 

 

Scheme 1.115: Proposed Transition States 
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by use of a combination of chiral amine and chiral acid organocatalytic system was 

reported by Xu and co-workers.79 They envisioned that chiral organic acids should 

accelerate the catalytic tandem reaction. Also fine-tuning of the catalytic environment by 

modifying chiral acid/chiral base ammonium salt should improve the enantioselectivity. 
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Scheme 1.116: Combination of Chiral Acid and Chiral Base 

 

 

As the model chiral base, (S)-diphenylprolinol trimethylsilyl ether 370 was chosen 

because its catalytic activity was the best in the field of tandem Michael-aldol reactions 

as reported in the literature. To select the best chiral acid, a range of organic acids was 

examined in combination with chiral base 1-370. After extensive screening, (S)-Mosher 

acid 1-404 turned out to be the definite choice as this combination of catalytic system 

gave the highest yield and enantioselectivity. Importantly, this new chiral acid/base 

system (Scheme 1.116) not only increased the rate of the reaction but also improved 

the selectivity relative to the case of just using the amine 1-370 under the same 

conditions. 
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Scheme 1.117: Application of Chiral Acid/Chiral Base Catalytic System   

 

 

With this optimized condition in hand, the generality of this reaction was tested with 

various substrates. It was observed that the presence of electron-donating group 

whether in salicylaldehyde or α,β-unsaturated aldehyde helped in the increment of both 

yield and ee. On the contrary, electron-withdrawing groups showed a negative effect in 

yield and ee of the products. However, the overall yields were good (45-90%) as well as 

the ee (70-99%) (Scheme 1.117).  
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Figure 1.3: Chiral Intermediate 

 

 

The proposed mechanism indicated that the reaction initiated with the formation of 

iminium ion, which was detected by both 1H NMR and mass spectroscopy. (S)-Mosher 

acid has a strong ability to accelerate the formation of the iminium ion as well as 

creating an efficient chiral environment by interacting with the chiral amine. They form a 

stable ionic pair on the less sterically hindered side of the pyrrolidine ring of 1-370 

(Figure 1.3). As a result, chirality-directing groups on its both sides flanked the 

secondary amine catalyst. Thus, the Si-face of the aldehyde shielded by the chiral 

framework of 1-370 and the phenyl group of (S)-Mosher acid by the formation of 

iminium ion from trans-cinnamaldehyde. The only choice left for the OH group of 

salicylaldehyde to attack the β–carbon of trans-cinnamaldehyde was from the Re-face. 

That was how the Michael addition step was stereocontrolled to give the chiral 

chromene product with high enantioselectivity. 

An effort to synthesize 2-substituted-3-nitro-2H-chromenes via a domino oxa-

Michael/aldol reaction in an organocatalytic way was reported by Das and Evans.80 The 

authors selected simple catalysts like guanidine, 1,1,3,3-tetramethylguanidine (TMG) 

and pipecolinic acid for screening in this reaction. Notably, no co-catalyst was used in 
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the study. By optimization, picolinic acid turned out to be the best giving best yield with 

poor ee.  

 

Scheme 1.118: Synthesis of 2-Substituted-3-Nitro-2H-Chromenes via a Domino 

Organocatalytic oxa-Michael/Aldol Reaction 

 

The substrate scope was studied by using variously substituted salicylaldehydes in 
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para-position to phenolic OH of salicylaldehyde (Scheme 1.118). An improvement in the 

domino oxa-Michael/aldol reaction of salicylaldehydes 1-413 with α,β-unsaturated 

aldehydes 1-414 was introduced by use of a recyclable tertiary amine-modified 

diarylprolinol silyl ether 1-415 as an effective organocatalyst.81 The reaction worked 

best in presence of p-chlorobenzoic acid and molecular sieves. This modified catalyst 

CHO

OH
R1

R2

+
NO2

O

NO2

R1

R2
20 mol% 1-412
toluene, 80 °C

24h
N
H

OH
O

1-412

O

NO2

Ph O

NO2

Ph
Cl

Cl

O

NO2Cl

O

NO2

Ph

Br

O

NO2

Ph

HO
81%, 5% ee 76%, 2% ee 79%, 17% ee

80%, 16% ee 60%, 13% ee

1-410 1-349 1-411

Ph



	
   111	
  

system improved previously reported75 enantioselectivity (72-90% ee) to upto 94% ee 

with improved yields (Scheme 1.119).  

 

Scheme 1.119: Modified Domino Organocatalytic oxa-Michael/Aldol Reaction 
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In 2011, Rueping and co-workers have presented82 a very new concept based on the 

chiral organic contact ion-pairs in metal free catalytic allylic substitution for the 

enantioselective synthesis of chromenes. The concept involves the employment of a 

chiral Bronsted acid-catalyzed enantioselective allylic alkylation of alcohol that delivered 

the substituted optically active product with the regeneration of the chiral Brönsted acid 

catalyst, which could be utilized for the subsequent enantioselective synthesis of 

chromenes (Scheme 1.120).  

 

Scheme 1.120: Chiral Bronsted Acid Catalyzed Synthesis of Chromenes 

 

 

For this purpose, they started their reaction with 1-422 as the model substrate. 
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Naturally, in order to investigate the role of substituents on the Bronsted acid catalyst 

they conducted a series of reaction changing different functionalities around the different 

positions of the binol systems. Among all the catalysts tested, comparable results were 

obtained with the 3,3ʼ-position of the BINOL/HSBINOL fragments, with phenyl 

substituents at lower temperature (Scheme 1.121). 

 

Scheme 1.121: Variation of Aryl Substituents on the Bronsted Acid Catalyst 

 

 

To test the generality of the developed protocol, a variety of reaction altering different 

substituents of the substrates (Scheme 1.122) was performed. Both electron-donating 

and electron-withdrawing groups in the para-position of the aryl ring conjugated to the 

alkene moiety afforded the chromenes in good overall yields. In contrast, when the 

reaction was carried out with meta-chloro derivative, the reaction did not proceed at all. 

However, increasing the temperature from –78 °C to –48 °C, it gave a decent yield with 

good ee. The reaction was also compatible with alkyl substituents delivering excellent 
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Scheme 1.122: Substrate Scope 
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the enantiomers are dihydrofolate reductase (DHFR) inhibitors and are known to be 

active against a broad range of bacteria. 

 

Scheme 1.123: Iclaprim Enantiomers 

 

 

To strategize the synthesis, a retrosynthetic plan was outlined. The starting compound 

was designed as the chiral homoallyllic alcohol (S)-1-428, which would lead to the chiral 

ether (R)-1-431, precursor to chromene, by Mitsunobu reaction (Schemes 1.123 and 

1.124). Notably, the diaminopyrimidine moiety was arranged to be installed before the 

cyclization to avoid any racemization. 
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Schemes 1.124: Retro Synthetic Pathway for the Synthesis of Iclaprim 

 

 

The synthesis was carried out according to the proposed plan though some steps 

required extensive optimization to achieve higher enantioselectivity for the chiral starting 

materials. Finally, for the synthesis of (R)-1-427, the precursor (S)- 1-433 to chromene 

could be obtained in 74% ee. The terminal olefin in (S)-1-433 was oxidized to the 

corresponding aldehyde and without isolation of the product it was directly cyclized to 

chromene giving 65% yield over last two steps maintaining the same ee. Final step of 

the synthesis involved deprotection of amines, which slightly compromised the ee 

leading to the desired product (R)-1-427 in 70% ee (Scheme 1.125). The overall yield of 

the product starting from phenol 1-432 was 27%. The other enantiomer of iclaprim (S)-

1-427 was achieved in similar fashion in 50% ee. 
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Scheme 1.125: Cyclization to Chromenes in the Synthesis of Iclaprim 

 

 

An enantioselective synthesis of (–)-cordiachromene was reported by using 6-endo-trig 

Wacker-type oxidative cyclization of 2-geranylphenols without use of any protecting-

groups.84 The reaction was optimized using 2-geranyl phenol 1-436 as the starting 

compound and the desired chromene 1-438 was obtained in 55% yield and 54% ee in 

presence of 11 mol% iPr-SPRIX 1-437, 10 mol% Pd(OCOCF3)2 and 4 equiv of p-

benzoquinone in dichloromethane as solvent at 60 °C. Although, 5-exo-trig cyclization 

product 1-439 was also formed alongside in 11% yield and 18% ee, this was the best 

condition found (Scheme 1.126).  
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Scheme 1.126: Synthesis of (–)-Cordiachromene 

 

 

However, this optimized condition failed in the actual synthesis because of an irresistible 

oxidation of 1-440 into 2-geranylbenzoquinone.  Stoichiometric use of the Pd catalyst 

turned out to be the solution to this problem giving 42% yield and 54% ee of (R)-

cordiachromene 1-442 (Scheme 1.127). 

 

Scheme 1.127: Modified Synthesis of (–)-Cordiachromene 

 

 

As an application of the Pd-catalyzed oxidative 6-endo-trig cyclization for the facile 
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examined and the results are appended in the following Scheme 1.128. 
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Scheme 1.128: Effect of Variation of Phenol Ethers 

 

The mechanism suggested that the reaction began with the activation of the double 

bond by coordinating to Pd(II). This was then followed by the nucleophilic attack and 

subsequent β-hydride elimination. Since the positive charge formed after activation of 

double bond would be more stabilized at a tertiary center compared to a secondary 

center, 6-endo-trig cyclization was favored in this case compared to 5-exo-trig (Figure 

1.4).  

Figure 1.4: 5-Exo-trig vs 6-endo-trig Cyclization 
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Likonide B and smenochromene D (Figure 1.5) are chiral chromene based natural 

products isolated separately from two different sponge species and they share an 

enantiomeric relationship. Moody et al85 attempted to synthesize this natural product in 

its racemic form using Claisen rearrangement and intramolecular Mitsunobu reaction as 

the key steps. 

 

Figure 1.5: Likonide B and Smenochromene D  

 

 

The synthesis started with a known allylic alcohol 1-448 and in a few steps the 

chromene precursor 1-449 was achieved in high yield. Compound 1-449 was then 

subjected to Claisen rearrangement for the cyclization to chromene 1-450. It was 

noticed that when the hydroxyl group on the benzene ring was protected with TBS or 

mesylate groups, the regioselectivity of the resulting chromene was poor. Remarkably, 

with the unprotected phenolic hydroxyl moiety as in compound 1-449, exclusively the 

desired chromene product 1-450 was obtained in 87% yield. In two more steps from 1-

450, using macrocyclization via Mitsunobu reaction the final target compound could be 

achieved. 
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Scheme 1.129: Synthesis of Likonide B 

 

 

Correia and co-workers have developed86 a nice tool for the synthesis of 2H-chromene 

by the sequential employment of o-allylation of phenols, Claisen rearrangement, o-

vinylation, ring-closing metathesis (RCM) and finally by the Heck arylation (Scheme 

1.130). They have reported that the Heck arylation of enol ether using arenediazonium 

tetrafluoroborate proved to be a viable alternative for the construction of chromen with 

high regioselectivity. They also have shown that the synthesis of 2H-chromene via this 

method opened up the way for the total synthesis of natural flavone possessing 

leishmanicidal activity. 
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Scheme 1.130: Synthesis of Natural Flavone 

 

 

1.3. Conclusion 

This review article emphasizes the growing interest in the development of various metal-

mediated, metal-free synthetic transformations of the 2H-chromenes. Mainly, we have 

discussed different typical development in this area. Most importantly, we believe that 

further transformation of the 2H-chromenes to biologically active compounds is still in its 

beginning. Although further development of novel, more general, and efficient 

methodologies is certainly highly warranted, the progress achieved so far in this area 

bodes well for broad application in organic synthesis. 
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CHAPTER TWO 

 

Simultaneous Synthesis of both Rings of Chromenes via a Benzannulation/o-
Quinone Methide Formation/Electrocyclization Cascade (BQME Reaction) 

 

 

2.1. Background 

The development of environmentally friendly procedures for the synthesis of organic 

compounds is an area of growing importance.87 In this regard cascade reactions88 play 

a very important role in organic chemistry as in these reactions several bonds are 

formed in sequence to build a large degree of complexity in one transformation without 

isolating intermediates, changing reaction conditions, or adding reagents. This 

minimizes the waste compared to stepwise reactions, avoids isolation of intermediates, 

and reduces labor and time to effect the transformation.89 

Cascade reactions have wide applications in organic synthesis. The concept has been 

used intellectually and artistically by organic chemists in the synthesis of many natural 

products. One such practical example would be the Prins-pinacol reaction used by 

Overman and coworkers90 in the total synthesis of sclerophytin A (Scheme 2.1). 
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Scheme 2.1: Application of Cascade Reaction in Total Synthesis 

 

 

Wulff-Dötz benzannulation reaction, first reported91 by Dötz in 1975, is a formal [3+2+1] 

cycloaddition reaction between an α,β-unsaturated pentacarbonyl chromium carbene 

complex and an alkyne to produce a highly substituted phenol (Scheme 2.2). Since its 
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due to its compatibility with different functional groups, and high regio- and 

chemoselectivity. 

 

Scheme 2.2: Wulff-Dötz Benzannulation Reaction 

 

 

Electrocyclization reactions are a type of pericyclic reactions in which a ring can be 

formed by formation of a new σ bond across the ends of a conjugated polyene 

(electrocyclic ring closure, eqn. 1)93 or the reverse process is also possible in which a 

ring can be opened to give a polyene (electrocyclic ring opening, eqn. 2).94 This is one 

of the classic reactions in organic chemistry and has wide utility.  
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of its potential for the construction of two or more rings in one step. This idea is 

illustrated in Scheme 2.4 for a proposed cascade reaction sequence leading to the 

formation of chromenes from a carbene complex and an alkyne. 

 

Scheme 2.4: Traditional Method vs This Work for The Synthesis of Chromenes 
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rearrangement,101 Pd-catalyzed ring closure of 2-isoprenyl phenols,102 electrocyclic 

ring closure of vinylquinone derivatives103 and an ylide annulation reaction104 (Scheme 

2.5). 
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Scheme 2.5: Different Synthetic Approaches Towards Chromene 
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differently substituted alkynes in the benzannulation reaction of chromium carbene 

complexes. 

The idea for this novel methodology came from an unexpected result observed by Dr. 

Korthals during the study of the benzannulation reaction of the propargyl amines. This 

observation was the formation of the chlorinated phenol 2-20 (Scheme 2.6).106 The 

formation of 2-20 is proposed to proceed by the benzannulation reaction to give 

compound 2-16, which in the presence of a base forms the ortho-quinone methide 2-18 

through intermediate 2-17. Chloride then nucleophilically attacks the vinyl carbon with 

subsequent rearomatization via phenoxide formation. The resulting phenol 2-19 is then 

protected by tert-butyl dimethylsilyl chloride to form the silyl ether 2-20.  

 

Scheme 2.6: Benzannulation between Styryl Carbene Complex and Propargyl Amine 
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generated in situ and consumed in subsequent reactions. They have been employed in 
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many useful chemical syntheses.107 They readily participate in inverse electron 

demand Diels-Alder reaction and so electron-rich dienophiles are required in this 

reaction.108 The general methods for the formation of o-quinone methides are shown in 

Scheme 2.7. These can be prepared from benzodioxoborins 2-23 using Lewis acid,109 

from compound 2-24 either in the presence of Lewis acid or by photolysis110 where X is 

leaving group. From o-bocsalicylaldehydes 2-25, o-quinone methides can be generated 

using an organometallic reagent such as Grignard reagent.111 Ortho-quinone methides 

can also be generated by the enolization of benzoquinone112 2-26 or by the oxidation of 

o-alkyl phenols 2-22 by using silver oxide. 113 

 

Scheme 2.7: General Methods for Generation of o-Quinone Methides 

 

The generation of o-quinone methide as an intermediate from the reaction of a carbene 
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(Scheme 2.8). The benzannulation between carbene complex 2-23 and alkyne 2-24 

forms the phenol 2-25, which after elimination forms intermediates 2-26 and 2-27. 

These intermediates then undergo a Diels-Alder reaction to form the observed product 

2-28. 

 

Scheme 2.8: First Report of The Formation of An o-Quinone Methide Intermediate in a 

Benzannulation Reaction 

 

 

The discovery of the formation of o-quinone methide intermediates in the 
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Scheme 2.9: Synthesis of Chromenes by Benzannulation Followed by 

Electrocyclization 

 

 

2.2. Present Work 

Previous studies from our group115 had shown that the reaction of alkenyl carbene 

complexes of the type 2-33 with propargyl ethers of the type 2-34 with a tethered alkene 
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group move away from the phenol unit in 2-35 to establish the E-stereochemistry in the 

o-quinone methide. This was a source of concern in the original planning of the 

chromene synthesis in Scheme 2.9, since the ultimate electrocyclic ring closure would 

require the Z-configuration of the alkene in the o-quinone methide unit. 

 

Scheme 2.10: Benzannulation Followed by Diels-Alder Reaction 

 

 

 

The benzannulation/o-quinone methide formation/electrocyclization cascade reaction 

(BQME reaction) was first attempted by Dr. Korthals, which involved styryl carbene 

complex 2-47 with alkyne 2-48 (Table 2.1). 106 
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Table 2.1: Initial Optimizationa 

 

 

Entry Solvent Additive Temp 
(°C) 

Time (h) Yield of 
2-39 (%) 

Yield of 
2-40 (%) 

1 Toluene 5 equiv 
NEt(iPr)2 

100 24 Complex 
mixture 

16 

2 Toluene 5 equiv 
NEt(iPr)2 

80 24 Complex 
mixture 

16 

3 CH2Cl2 2 equiv 
NEt(iPr)2 

60 12 Complex 
mixture 

10 

4 CH2Cl2 None 60 24 46 29 

a. All reactions were carried out at 0.03 M concentration using 1.2 equiv. of enyne 2-38. 
 

Table 2.1 shows that entries 1 to 3 did not give respectable yields of products. But in 

the absence of base (entry 4) a 46% yield of chromene 2-39 and a 29% yield of 

chromene-chromiumtricarbonyl complex 2-40 were obtained.  

Since entry 4 in Table 2.1 previously gave the best result the reaction was repeated but 

it was found difficult to separate the product 2-39 and 2-40. A non-oxidative work-up 

afforded an inseparable mixture of both the chromium-complexed and the chromium-

free chromenes 2-39 and 2-40. The products could not be separated by column 

chromatography due to the slow and continuous decomposition of compound 2-40 to 2-

39. This indicated that an oxidative work-up was necessary before isolation of 
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compound 2-39 which should remove the complexed chromium from 2-40 and convert it 

to 2-39. When ceric ammonium nitrate (CAN) was employed as oxidizing agent neither 

the chromene complex 2-40 nor the chromene 2-39 could be detected in the crude 

reaction mixture. (entry 2). Apparently CAN is too strong an oxidant and overoxidation of 

2-39 occurred. However, the corresponding chromene 2-39 could be obtained in pure 

form free of the metal if an oxidative workup with FeCl3•DMF complex was employed. It 

afforded the chromene 2-39 in 76% yield (entry 3) (Table 2.2).  

 

Table 2.2: Optimization for The Oxidative Work-upa 

 

 

Entry Oxidative workup Yield of 2-39 (%) 

1 None Not determinedb 

2 CAN (7.5 equiv.) Not determinedc 
3 FeCl3•DMF (7.5 equiv.) 76 

a. All reactions were carried out at 0.03 M concentration using 1.2 equiv. of enyne 2-38. 
b. TLC indicated the absence of 39 and 40 and the presence of compounds more polar 
than either. c. A mixture of 39 and 40 from which 40 could not be separated to purity due 
to its slow and continuous decomposition to 39. 
 

The optimal conditions for the BQME cascade were investigated through a series of 

experiments, where sequential changes were made to the solvents used. It was found 

that the solvent had a profound effect in the reaction yield. As generally observed for the 
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benzannulation reaction alone116, benzene, THF and hexane were equally as efficient 

as dichloromethane in the BQME reaction. However, when the reaction was performed 

in acetonitrile, the highest yield (95%) of the chromene 2-39 was realized. The reaction 

in toluene in presence of Hunigʼs base, was not beneficial, affording only a 35% yield of 

the product (entry 8).  

 

Table 2.3: Optimization of Solventa 

 

 

Entry Solvent Oxidative workup Yield of 2-39 (%) 
1 MeCN None 95 

2 Benzene FeCl3•DMF 74 

3 THF FeCl3•DMF 65 

4 Hexane FeCl3•DMF 70 

5 Toluene FeCl3•DMF 62a 

6 Toluene FeCl3•DMF 35a,b 

a. All reactions were carried out at 0.03 M concentration using 1.2 equiv. of enyne 2-38. 
b. Reaction performed at 80 °C for 24 h. c. Reaction performed with 5 equiv NEt(iPr)2. 
 

With the results of the solvent screen in hand, the generality of the reaction was then 

explored. Attention was turned to changing the enyne from terminal to internal. With the 
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internal enyne 2-41 the reaction showed almost equally good results in both 

dichloromethane (69%) and acetonitrile (66%) solvents. 

 

Scheme 2.11: Reaction with Internal Enyne 

 

 

General utility in this chromene synthesis will certainly depend on the range of carbene 

complexes that can be employed. Carbene complex 2-43 was chosen as the next 

substrate since it is the complex that would be needed for the synthesis of Vitamin E, 

which is discussed in Chapter 3. The BQME cascade of carbene complex 2-43 was first 

performed using the terminal enyne 2-38 in dichloromethane. The yield of the expected 

chromene product 2-44 was 88%. This reaction was also examined in acetonitrile, 

benzene and THF, which afforded 65%, 73% and 74% yields of the product, 

respectively. 
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Table 2.4: Reaction between Carbene Complex 2-43 and Enyne 2-38a 

 

 

Entry Solvent Yield of 2-44 (%) 

1 CH2Cl2 88 

2 MeCN 65 

3 Benzene 73 

4 THF 74 

a. All reactions were carried out at 0.03 M concentration using 1.2 equiv. of enyne 2-38. 
 
 
The proposed vitamin E synthesis would require a reaction of carbene complex 2-43 

with an internal enyne. Thus as a model system, the reaction of carbene complex 2-43 

and enyne 2-41 was examined (Scheme 2.12). This BQME cascade was performed in 

both dichloromethane and acetonitrile solvents, which gave the chromene 2-45 in 84% 

and 87% yields respectively. 

 

Scheme 2.12: Reaction between Carbene Complex 2-43 and Enyne 2-41 
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The sterically demanding carbene complex 2-46 also worked well in reaction with 

terminal enyne 2-38 affording a 78% yield of the corresponding chromene product 2-47 

both in dichloromethane and acetonitrile solvents. 

 

Scheme 2.13: Reaction between Carbene Complex 2-46 and Enyne 2-38 

 

 

The reaction of the t-butyl carbene complex 2-46 with the internal enyne 2-41 was not 

as straightforward. This reaction in dichloromethane solvent gave a 76% yield of the 

expected chromene 2-48 as a light yellow oil. A side product 2-49 was also formed in 

this reaction and the ratio of 2-48 to 2-49 was 84:16. The side product was purified and 

identified as the uncyclized phenol compound 2-49. When the reaction was conducted 

in acetonitrile the ratio of 2-48 to 2-49 was 38:62. It was found that, the phenol 2-49 

could be quantitatively converted to the chromene product 2-48 by treatment of the 

crude reaction mixture with triflic acid. 
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Table 2.5: Reaction between Carbene Complex 2-46 and Enyne 2-41 

 

 

Entry Solvent Additive x (equiv.) 2-48 : 2-49 Yield of 2-48(%) 

1 MeCN None 0 38 : 62 65a,b 

2 CH2Cl2 None 0 84 : 16 74 

3 CH2Cl2 iso-propanol 10 91 : 9 – 

4 CH2Cl2 iso-propanol 50 91 : 9 – 

5 CH2Cl2 iso-propanol 100 ≥95 : 5 – 

6 CH2Cl2 Aniline 10 – 86 

a. Oxidative workup not used. b. Isolation after treatment of crude reaction mixture with 

trifluoromethane sulfonic acid. 

 

The formation of side-product 2-49 can be explained by proposing structure 2-52 in 

which H-bonding prevents the proper anti-orientation of the benzylic oxygen with 

respect to the chromium for the assisted elimination to generate the benzylic cation of 
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the type 2-51 which is stabilized by the chromium tricarbonyl group.117 This benzylic 

cation is believed to assist the formation of the ortho-quinone methide intermediate. The 

bulky tert-butyl group probably influences the orientation of the leaving group X and 

resists the rotation to a rotamer that has X anti to the chromium. 

 

Figure 2.1: Carbocation Stabilization by Chromium 

 

 

The ratio of compound 2-48 to compound 2-49 in the BQME cascade of 2-46 and 2-41 

was probed as a function of added isopropanol. With 10 equivalents of isopropanol, the 

ratio was 91:9 compared to 84:16 without isopropanol. With 50 equivalents of 

isopropanol the ratio remained the same. In presence of 100 equivalents of isopropanol 

the ratio was ≥ 95:5. The reaction was also performed in dichloromethane in the 

presence of 10 equiv. of aniline as an additive and gave an 86% yield of chromene 2-48 

with no trace of side product. These results are interpreted to mean that isopropanol 

disrupts the H-bonding in structure 2-52 allowing the formation of ortho-quinone methide 

and leading to the chromene product. 

Acetonitrile would not be expected to disrupt the H-bonding since the pKa of protonated 
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the chromium tricarbonyl group from the benzannulated product before it can assist the 

formation of the carbocation 2-51. 

The BQME cascade was not as efficient for the α-silyl vinyl carbene complex 2-53 

which was reacted with the terminal enyne 2-38 to give the chromene product 2-54 in 

56% yield in dichloromethane and 23% yield in acetonitrile (Scheme 2.14). The same 

carbene complex 2-53 gave a much better yield of the chromene product in its reaction 

with the internal enyne 2-41. The yield of 2-55 was high (84%) in dichloromethane 

solvent but poor (35%) in acetonitrile (Scheme 2.15). 

 

Scheme 2.14: Reaction between Carbene Complex 2-53 and Enyne 2-38 

 

Scheme 2.15: Reaction between Carbene Complex 2-53 and Enyne 2-41 
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dichloromethane only a 41% yield of the chromene 2-57 was be afforded.  

 

Scheme 2.16: Reaction between Carbene Complex 2-56 and Enyne 2-38 

 

 

The effect of solvent on reactions of the trans-propenyl carbene complex 2-56 was 

reversed in its reaction with the internal alkyne 2-41. The reaction 2-56 and 2-41 gave 2-

58 in 61% yield in dichloromethane and 48% in acetonitrile. 

 

Scheme 2.17: Reaction between Carbene Complex 2-56 and Enyne 2-41 

 

 

The BQME cascade with isopropenyl carbene complex 2-59 showed poor yields of the 
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changing the solvent to hexane. 
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Scheme 2.18: Reaction between Carbene Complex 2-59 and Enyne 2-38 

 

 

The isopropenyl carbene complex 2-59 was more efficient in the chromene synthesis 

with the internal enyne 2-41 giving a 74% yield of 2-61 in hexane. 

 

Scheme 2.19: Reaction between Carbene Complex 2-59 and Enyne 2-41 

 

 

 

The BQME reaction with the cyclohexenyl carbene complex 2-62 gave very good results 

for both terminal and internal enynes. The reactions with the teminal enyne 2-38 in 

dichloromethane and acetonitrile gave 72% and 65% yields, respectively, of chromene 

2-63.  
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Scheme 2.20: Reaction between Carbene Complex 2-62 and Enyne 2-38 

 

 

The reaction of cyclohexenyl complex 2-62 with internal enyne 2-41 gave an 80% yield 

of chromene 2-64 in dichloromethane and a 68% yield in acetonitrile. 

 

Scheme 2.21: Reaction between Carbene Complex 2-62 and Enyne 2-41 
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zero or one substituents on its 2-position. 

 

The synthesis of enyne 2-67 started with the reaction between crotonaldehyde 2-65 and 

ethynyl magnesium bromide resulting in the alcohol precursor 2-66. The alcohol 2-66 

was then protected with a tert-butyldimethylsilyl group to form enyne 2-67. 

 

Scheme 2.22: Synthesis of Enyne 2-67 

 

 

The synthesis of enyne 2-71 started with acrolein, but it could not be prepared by a 

simple Grignard reaction pathway as mentioned above. For this synthesis, trimethylsilyl 

acetylene 2-68 was first deprotonated using n-butyllithium and then reacted with 

acrolein to form the corresponding alcohol 2-69, which was then protected with tert-

butyldimethylsilyl group to form compound 2-70. The trimethylsilyl group in compound 2-

70 was then deprotected using potassium carbonate to provide enyne 2-71.  

 

Scheme 2.23: Synthesis of Enyne 2-71 
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The BQME cascade reaction of the enyne 2-67 with carbene complex 2-43 gave the 

expected chromene product 2-72 in very good yield (70%). 

 

Scheme 2.24:  Reaction between Carbene Complex 2-43 and Enyne 2-67 

 

 

In considering the BQME reaction for the enyne 2-71 the main concern was that the 

lower stability of the intermediate cation 51 (Figure 2.1) due to the absence of the 

substituents at the alkene terminus might be problematic. Although the reaction of 

carbene complex 2-14 and enyne 2-71 could have been more efficient, the chromene 2-

73 could nonetheless be prepared in 47% yield.   

 

Scheme 2.25:  Reaction between Carbene Complex 2-43 and Enyne 2-67 
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The chromium tricarbonyl complex of the chromene product is generally unstable as it is 

slowly oxidized in air resulting in the precipitation of chromium(III) side products. An 

effort was made to isolate and characterize the chromium-complexed chromene 

product. A suitably air-stable derivative could be obtained from the reaction of carbene 

complex 2-43 and enyne 2-38 in dichloromethane solvent at 45 oC. The chromium 

tricarbonyl chromene complex 2-74 could be isolated and obtained in pure form in 61% 

yield. 

 

Scheme 2.26:  Synthesis of The Chromium-Complexed Compound 2-74 

 

 

2.3. Conclusion 

In conclusion, an efficient and novel synthetic strategy based on the 

benzannulation/o-quinone methide formation/electrocyclization cascade (BQME) has 

been developed. The experimental results for the substrate scope are summarized 

below in Table 2.6. 
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Table 2.6: Summary of The Substrate Scope 

 

 

Yield (%) Entry Product 

CH2Cl2 MeCN Hexane Benzene THF 

1 

 

76 100, 91 69, 70 75, 72 68, 61 

2 

 

69 66 – – – 

3 

 

– 47 – – – 

4 

 

88, 77,75 75, 61, 60 – 73 74 

5 

 

84, 84 87 – – – 

6 

 

70 – – – – 

7 

 

78 78 – – – 
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Table 2.6 continued…. 

Yield (%) Entry Product 

CH2Cl2 MeCN Hexane Benzene THF 

8 

 

76, 60,72, 86a 65b – – – 

9 
 

65, 52, 52 23 – – – 

10 

 

87, 81 35 – – – 

11 

 

41 83 – – – 

12 

 

61 48 – – – 

13 
 

45, 44 28, 24 55 38 – 

14 

 

68, 68 36, 31 74 57 – 

15 

 

72 65 – – – 

16 

 

80 63 – – – 

a. The reaction was performed in CH2Cl2 in presence of 10 equiv. of aniline. b. 65% 
yield is after treatment of the crude reaction mixture with triflic acid. 
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CHAPTER THREE 

 

Application of Benzannulation/o-Quinone Methide Formation/Electrocyclization 
Cascade (BQME Reaction) Towards the Synthesis of Vitamin E and Lapachenole 

 

3.1. Synthesis of Vitamin E 

3.1.1. Background: 

Vitamin E is a group of eight fat-soluble compounds that include α, β, γ, and δ forms of 

both tocotrienols and tocopherols (Figure 3.1). All naturally occurring tocopherols only 

exhibit the (2R,4ʼR,8ʼR) configuration. However, when the tocopherols are synthesized 

in the racemic form they contain eight different stereoisomers. On the other hand, 

natural tocotrienols occur with the  (2R,3ʼE,7ʼE) stereochemistry.119 

 

Figure 3.1: Vitamin E - Tocopherols and Tocotrienols 

 

 

Among the four types of tocopherols, α-tocopherol is the most biologically active form of 

vitamin E. Vitamin E has many biological functions such as enzymatic activities,120 
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gene expressions,121 and neurological functions122. However, it is primarily known for 

its antioxidant properties123 that prevent the production of reactive oxygen species 

formed when fat undergoes oxidation. Moreover, vitamin E acts as peroxyl radical 

scavenger. It stops the propagation of free radicals in tissues by forming tocopheryl 

radical, which in turn gets reduced by a hydrogen donor. Since vitamin E is fat-soluble it 

can enter the cell membranes very easily and protect them from oxidative damage.124 

Vitamin E is economically very important because of its important biological activities. 

The predominant commercial value of vitamin E is its use in animal feeds but it is also 

used in human applications for example in pharmaceuticals, in food and in cosmetics. 

Generally (all-rac)- α-tocopherol, an equimolar mixture of all eight stereoisomers, is the 

most important industrial product, with about 35,000 tons manufactured per year 

worldwide, which is mainly used as its acetate derivative. 

 

3.1.2. Previous Synthesis of Racemic Vitamin E: 

The first synthesis of (all-rac)- α-tocopherol was achieved by Karrer and coworkers125 

in 1938. They prepared the racemic tocopherol 3-3 in almost quantitative yield by 

heating trimethylhydroquinone 3-1 and racemic phytyl bromide 3-2 in presence of 

anhydrous zinc chloride in petroleum ether (Scheme 3.1).  
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Scheme 3.1: First Synthesis of α-Tocopherol 

 

 

In the same year, Work et al reported126 the second synthesis of vitamin E. They used 

phytol 3-4, trimethylhydroquinone 3-1, and zinc chloride and later modified the synthesis 

by adding decalin as the solvent (Scheme 3.2). 

 

Scheme 3.2: Synthesis of Vitamin E Using Phytol 
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Industrially (all-rac)-α-tocopherol 3-3 is produced on a large scale by means of an acid-

catalyzed reaction of trimethylhydroquinone 3-1 with all-rac-isophytol 3-5. Several 

classical Lewis and Brönsted acids work well in this reaction, for example, ZnCl2/HCl, 

BF3 or AlCl3 in various organic solvents. The mechanism of the reaction shown in 

Scheme 3.3 is generally accepted as a two-step process – Friedel-Crafts C-alkylation 

followed by a cyclization.119 

However, this industrial procedure suffers from serious limitations. The limitations 

include corrosion problems and contamination of wastewater, in particular with zinc and 

halide ions. Further drawbacks are the high, often near stoichiometric amounts of 

catalysts and the excess of expensive isophytol necessary for obtaining satisfying 

results. The isophytol 3-5 is generally prepared from petroleum bulk chemicals such as 

acetone, acetylene etc. but in a linear and lengthy synthesis (6-9 steps).    
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Scheme 3.3: Synthesis of Vitamin E Using Isophytol 

 

 

There have been several efforts to improve this procedure and make it environmentally 

friendly aiming at high yield and selectivity and also on reusability of the catalysts.127 

The efforts were directed towards alternative reaction media such as two- or multiphase 

solvents systems or supercritical fluids. There has also been focus on the use of new 

catalytic systems including “superacidic” and supported catalysts in order to replace 

traditional Lewis acids and mineral acids. Some novel catalysts are clays, ion exchange 

resins, rare earth and indium metal halides and triflates, heteropolytungsten acids, 

various polyfluorinated compounds (imides, methides), and boron and phosphorous 

compounds.127 These changes not only resulted in high chemical yields but also in 

extremely high selectivity of the condensation reaction by avoiding the formation of 

isomeric products specially the benzofuran compounds 3-6 (Scheme 3.4).127g  
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Scheme 3.4: Benzofuran Side Products in The Synthesis of Vitamin E 

 

  

Isophytol 3-5 is expensive and thus there is a preference for using the primary alcohol 

phytol 3-4 (Scheme 3.2) or a corresponding ester, halide, or a similar derivative instead 

of the tertiary alcohol (isophytol 3-5) in this acid-catalyzed reaction. 

Avoiding the use of isophytol, Kabbe and Heitzer in 1978 reported128 a synthesis of (all-

rac)-α-tocopherol 3-3 by using aryl methyl ketone 3-6, derived from 

trimethylhydroquinone 3-1 and farnesylacetone 3-7. The condensation and cyclization 

occurred in the presence of pyrrolidine to give compound 3-8 in 77% yield. Subsequent 

reduction followed by elimination provided the dehydro-tocotrienyl derivative 3-9 in 78% 

yield, which could be transformed to (all-rac)-α-tocopherol 3-3 by catalytic 

hydrogenation in 96% yield (Scheme 3.5). 
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Scheme 3.5: Synthesis of Vitamin E by Kabbe and Heitzer 

 

 

In 2000, Bienayme and coworkers reported129 another interesting approach for the 

synthesis of racemic tocopherol from cheap industrially available starting materials 

avoiding the use of expensive isophytol 3-5. They used the naturally available starting 

material myrcene 3-10, which could be dimerized to the C20 building block 3-13 via 

functionalizations by chlorine and HCl/CuCl. The conjugated diene 3-13 was reacted 

with trimethylhydroquinone 3-1 in presence of rhodium catalyst to give compound 3-14, 

which was then transformed to 3-15 by cyclization followed by catalytic hydrogenation 

and acetylation in an overall 50% yield (Scheme 3.6).  
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Scheme 3.6: Synthesis of Vitamin E by Bienayme and Coworkers 

 

 

In 1983 Dötz and coworkers reported130 a synthesis of vitamin E, which employed a 

benzannulation reaction between the butenyl carbene complex 2-43 and alkyne 3-16 

(Scheme 3.8). The alkyne 3-16 was obtained from readily available phytol 3-4 via the 

bromide 3-2 and propynylation with a Grignard reagent (Scheme 3.7). 

 

Scheme 3.7: Preparation of Enyne in Dötz Synthesis of Vitamin E 
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The benzannulation reaction afforded a mixture of regioisomers of the hydroquinone 

monoethers 3-17. The chromium was removed from the product by ligand exchange 

with CO under pressure. To utilize both of the regioisomers of 3-17 the methyl ether 

linkage was cleaved with boron tribromide to give hydroquinone 3-18 which was the 

converted to vitamin E 3-3 by cyclization (Scheme 3.8). 

 

Scheme 3.8: Synthesis of Vitamin E by Dötz and Coworkers 

 

 

To this end, a cascade of benzannulation followed by o-quinone methide formation 

followed by electrocyclization has proved to be a very efficient method for the synthesis 
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just the reduced form of a chromene. So we anticipated that our method could be 

2

H3CO
Cr(CO)5 +

1) t-BuOMe, 47 °C, 3.5 h
2) CO (80 bar), Et2O

OH(OMe)

OMe(OH)

2

59% (70:30 mixture of regioisomers)

BBr3

OH

OH

2

92%

ZnCl2

O

HO

2
 61%

3-162-43

3-17 3-18

3-3 (all-rac)-!-tocopherol



	
   159	
  

efficiently applied to the synthesis of vitamin E. This would be the first synthesis of 

Vitamin E in which both rings were made in the same step. 

 

3.1.3. Synthesis of Vitamin E via the Benzannulation/o-Quinone Methide 

Formation/Electrocyclization Cascade (BQME Reaction): 

 

In Chapter 2 the model reaction for the synthesis of vitamin E was presented and 

involved the butenyl carbene complex 2-43 and enyne 2-41 which was very successful 

in giving very high yields of the chromene 2-45 (Scheme 3.9).  

 

Scheme 3.9: Reaction between Carbene Complex 43 and Enyne 41 
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the corresponding aldehyde. Then propynyl magnesium bromide was reacted with this 
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aldehyde to generate the corresponding alcohol. Protection of the hydroxyl group 

provided the enyne 3-20 in very high overall yield (86%) (Scheme 3.10). 

 

Scheme 3.10: Synthesis of Enyne 

 

 

 

The reaction between carbene complex 2-43 and enyne 3-19 in dichloromethane 

occurred to give a very high yield (85%) of the expected chromene product 3-21. In 

acetonitrile, the reaction afforded a 73% yield of the chromene product 3-21. Catalytic 

hydrogenation provided quantitative conversion to the chroman product 3-22. In one 

more step, the target compound (all-rac)-α-tocopherol 3-3 could be obtained in 86% 

yield by demethylation of 3-22. The overall yield of the final product 3-3 was 73% from 

carbene complex 2-43 and 62% from compound 3-20 (Scheme 3.11). 
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Scheme 3.11: Synthesis of Vitamin E 

 

 

During the synthesis, the last demethylation step was also attempted with only 

anhydrous aluminum chloride, but the reaction gave very low yield of vitamin E along 

with some unidentifiable mixture of side products.  However, use of trifluoroborane-

dimethylsulfide complex along with anhydrous aluminum chloride proved to be the best 

reagents for this reaction.131 
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potential for providing access to 2H-benzo[h]chromenes 3-25 (naphthopyrans) in a 

single step (Scheme 3.12). 

 

Scheme 3.12: Proposed Synthesis of Naphthopyrans 

 

 

 

Both 2H-benzo[h]chromenes 3-27132 and 3H-benzo[f]chromenes 3-26133 are of interest 

because of their photochromatic behaviour which is associated with photo-induced 

electrocyclic ring opening to o-quinone methides (Scheme 3.13). The 2H-

benzo[h]chromene core is quite common and occurs in a large number of natural and 

unnatural products.134 One of the simplest members is the natural product lapachenole 

3-28 (Figure 3.2).   
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Figure 3.2: Benzochromenes and Lapachenole 

 

 

Scheme 3.13: Photoinduced Electrocyclic Ring Opening 

 

 

Lapachenole has been isolated from different sources including Avicennia 

rumphiana.135 This compound has been used as a fluorescent photoaffinity label132 

and shown to have cancer chemopreventive activity.135 It occurs in Tabebuia 

heptaphylla which is the source of the Paraguayan traditional medicine “tayi pytá” used 

in the treatment of wounds, cancer, and inflammations.136 

Notably, our group reported a synthetic approach to 3H-benzo[f]chromenes 3-39 via the 

simple benzannulation reaction  of chromene carbene complex 3-37 and alkyne 3-38. 

This approach required the preparation of the chromene carbene complex 3-37 which 

could be obtained in six steps from o-methoxybenzaldehyde (Scheme 3.14).137 
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Scheme 3.14: Previous Synthesis of 3H-Benzo[f]chromenes using Carbene Complexes 

 

 

The proposed route to 2H-benzo[h]chromenes (Scheme 3.12) following our newly 

developed cascade method for the synthesis would be more efficient than the synthesis 

of 3H-benzo[f]chromenes shown in Scheme 3.15 since the aryl carbene complexes  

can be directly obtained in high yield from the corresponding aryl bromide or iodide 

(Scheme 3.15).138 
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Scheme 3.15: Synthesis of Aryl Carbene Complexes 

 

 

 

Thus, we first targeted the synthesis of lapachenole 3-28 as it can be obtained in one 

step by reacting phenyl carbene complex 3-41 with enyne 2-38 (Scheme 3.16).  

 

Scheme 3.16: Synthesis of Lapachenole 

 

 

Here it should be mentioned that lapachenole has been previously synthesized by a few 

different approaches.  In 1956, Livingstone et al reported139 a synthesis of lapachenole 

starting by an esterification of 4-methoxy-1-naphthol 3-42 and β,β -dimethyl acryloyl 

chloride followed by Fries rearrangement and condensation. The resulting chromanone 

3-44 was then reduced and acetylated. Pyrolysis of compound 3-45 provided 

lapachenole 3-28 as the final product (Scheme 3.17). 
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Scheme 3.17: Synthesis of Lapachenole by Livingstone and Coworkers 

 

 

In 2007, Lee and coworkers reported140 another synthetic approach, which is much 

simpler than the previously reported synthesis. A reaction between compound 3-42 and 

3-methylbut-2-enal 3-46 with 20 mol% of ethylenediamine diacetate (EDDA) in refluxing 

CHCl3 for 24 h afforded lapachenole 3-28 in 60% yield (Scheme 3.18). 

Scheme 3.18: Synthesis of Lapachenole by Lee et al 
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For our synthesis, the reaction was first attempted in dichloromethane solvent using 1.2 

equivalents of enyne 2-38 with carbene complex 3-41 as the limiting reagent (Table 3.1, 

entry 1). However, the reaction did not go to completion and there was a significant 

amount of carbene complex left unreacted. So the amount of enyne 2-38 was increased 

to 1.5 equivalents, which gave rise to a 28% yield of lapachenole 3-28 after air oxidation 

(entry 2). A change in the solvent to toluene resulted in a much cleaner reaction giving a 

30% yield of the compound 3-28 after air oxidation (entry 3). The reaction in THF gave a 

drop in yield (entry 5). The reaction in acetonitrile solvent was also not clean and so the 

yield was not determined (entry 6). When the reaction was repeated in toluene but the 

oxidation was done using FeCl3•DMF as the oxidizing agent, the yield increased to 37% 

(entry 4). No significant by-products were observed to form along with the desired 

product lapachenole in toluene. Collection of other fractions from the silica gel column 

yielded a complex mixture of compounds, none of which are predominant or separable. 

This was suggestive of the incorporation of multiple units of the enyne, and this has 

been observed in other reactions to produce phenols, trisubstituted benzenes or 

oligomers.141 All of the reactions discussed up to this point were run at 0.035 M 

concentration. Previous experience suggests that improved yields could be achieved by 

controlling the concentration.142 When the concentration was changed to 0.1 M in 

toluene, the yield of 3-28 was 26% after FeCl3•DMF oxidation (entry 7). At 0.005 M 

concentration, the reaction afforded a 31% yield of lapachenole under the same 

conditions (Table 3.1, entry 8). 
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Table 3.1: Initial Optimization 

 

 

 

Entry Equiv. of 
Enyne 

Solvent Reaction 
Concentration 

Oxidation 
Type 

Yield (%) 

1 1.2 CH2Cl2 0.035 M – – 

2 1.5 CH2Cl2 0.035 M Air 
oxidation 

28 

3 1.5 Toluene 0.035 M Air 
oxidation 

30 

4 1.5 Toluene 0.035 M FeCl3•DMF 37 

5 1.5 THF 0.035 M Air 
oxidation 

15 

6 1.5 MeCN 0.035 M None – 

7 1.5 Toluene 0.1 M FeCl3•DMF 26 

8 1.5 Toluene 0.005 M FeCl3•DMF 31 

 

After this initial optimization it was clear that toluene was the best choice of solvent and 

that the use of 1.5 equivalents of enyne 2-38 was necessary. Furthermore, oxidative 

work up with FeCl3•DMF oxidation was superior to air oxidation. However, the optimized 

yield of 37% was not satisfactory. Thus the effects of a variety of additives were 

Cr(CO)5
H3CO

+
TBSO

O

H3CO

3-41 2-38 3-28 lapachenole

Solvent
60 °C



	
   169	
  

examined in this reaction in order to achieve improved yields. With 5 equiv Hünigʼs base 

the reaction was not clean thus the yield was not determined. With 10 equivalents of 

pyridine the chromene 3-28 was obtained in 39% yield. When 10 equivalents of aniline 

was employed, the yield was improved to 48%. With 20 equiv of aniline, the yield was 

42% and with 5 equiv of aniline the yield was 26% (from NMR). To probe the effect of 

variations in the electronic nature of aniline, the reaction was carried out using 10 equiv 

of p-nitroaniline, 10 equiv of p-methoxy aniline and 5 equiv of pentafluoroaniline and the 

yields of 3-28 were 46%, 26% and 47% respectively. These results indicate that 

electron deficient anilines work better for this reaction (Table 3.2).  
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Table 3.2: Optimization with Additives 

 

 

Entry Additive X Yield (%)a 

1 Hunigʼs base 5 – 

2 Pyridine 10 39 

3 Aniline 10 48 

4 Aniline 20 42 

5 Aniline 5 26 

6 p-Nitroaniline 10 46 

7 p-Methoxyaniline 10 26 

8 Pentafluoroaniline 5 47 

a. All the reactions were carried out in 0.048 M concentration using 1.2 equivalents of 
enyne 2-38 for 24 h. All the yields are isolated yields.  
 

 

If multiple insertions of enyne 2-38 containing a terminal alkyne function were 

responsible for the moderate yields of lapachenole, then increased yields would be 

expected for similar reactions with internal enyne 2-41. Indeed, the synthesis of 5-

methyllapachenole 3-46 was possible with a much higher yield (85%) than lapachenole 

3-28 (Scheme 3.19). 
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Scheme 3.19: Synthesis of 5-Methyllapachenole 

 

 

An alternative approach to lapachenole that has the potential to be more efficient is the 

reaction of the carbene complex with the enyne 3-47 bearing an internal alkyne as the 

trimethylsilylated analog of enyne 2-41. In analogy with the enyne 2-41 bearing an 

internal alkyne, the product from the reaction of enyne 3-47 would be expected to be 

naphthopyran 3-48 from which the trimethylsilyl group could be removed by protonolysis 

to give lapachenole 3-28. However, it was found that the reaction of the silylated enyne 

3-47 gave the indene product 3-49 rather than the expected naphthopyran 3-48. The 

indene 3-49 was isolated in 65% yield as a 1.14:1.0 mixture of diastereomers and was 

the only product that was observed that was mobile on TLC (Scheme 3.20).  
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Scheme 3.20: Alternative approach to Lapachenole 

 

 

This type of five-membered ring cyclized product is perhaps the most common of the 
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steric bulk of the two acetylene substituents. Mechanistically, this reaction should occur 

by initial insertion of the alkyne function of 3-47 into the metal-carbene bond in carbene 

complex 3-41 to give the vinyl carbene complexed intermediate 3-50. The subsequent 

events normally would be migratory insertion of a CO ligand to give the chromium 

complexed vinyl ketene 3-51 and then electrocyclic ring closure to give the phenol 

chromium tricarbonyl complex 3-52. Apparently, in the case of the vinyl carbene 

complexed intermediate 3-50, there is a preference for direct cyclization to 3-49 rather 
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that it may be related to the increase in bond angles for the sp2 carbons of 3-50, as 

cyclization occurs to give a five-membered ring and the associated decrease in strain 

energy as the large substituents move further apart (Scheme 3.21). 

 

Scheme 3.21: Explanation for the Formation of Indene Side-product 
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Scheme 3.22: Results for the Alternative Approach 

 

 

 

Although the synthesis of lapachenole was achieved in only moderate yield (48%), this 

approach represents a very short synthesis of lapachenole: Two steps from 

bromobenzene or two to three steps from the commercially available prenal. It was also 

shown that for the first time both rings of vitamin E were generated in a single step and 

the synthesis also featured very high yield (73%) in only three steps from the carbene 

complex 2-43. 
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CHAPTER FOUR 

 

Asymmetric Synthesis of Chromene by Asymmetric Benzannulation/o-Quinone 
Methide Formation/Electrocyclization Cascade (ABQME Reaction) 

 

 

4.1. Background 

Chiral chromium tricarbonyl complexed aromatic compounds are known to provide 

asymmetric induction in a number of different transformations.144 They have been used 

as chiral ligands in asymmetric catalysis and also as chiral auxiliaries. Surprisingly, they 

are not commonly used in spite of their great potential. An example of the use of a 

Cr(CO)3 complexed arene compound as a chiral ligand in a C–C bond forming reaction 

is shown in Scheme 4.1.144 

 

Scheme 4.1: Use of Cr-Complexed Arene as Chiral Ligand 
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top and bottom half of the molecular plane can be differentiated the arene compound 

can be made chiral. There are several methods available to make arene rings 

asymmetric and one of the convenient protocols is the complexation of an easily 

removable Cr(CO)3 fragment as is shown in Scheme 4.2 (compound 4-4 cannot be 

superimposed with its mirror image ent-4-4).144 

 

Scheme 4.2: Desymmetrization of Arenes Using Cr-Complexation 

 

 

 

Usually, in a benzannulation reaction between a chromium carbene complex and an 

alkyne, the resulting product contains a Cr(CO)3 unit complexed to the newly formed 

benzene ring. In most examples the Cr(CO)3 group coordinates to the benzene ring 

either from top or bottom giving rise to a racemic product. There are several ways to 

make this reaction asymmetric. Since the arene ring is synthesized at the metal center, 

the asymmetric induction could occur from an existing chiral center in one of the pieces, 

resulting in a facial selectivity of the coordination of the chromium to the newly formed 

arene. As outlined in Scheme 4.3, three potential sources for stereoselective 

introduction of the Cr(CO)3 group are a chiral ancillary on the heteroatom stabilizing 
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group of the carbene complex, chiral center present in the carbon substituent of the 

carbene complex and a chiral center present in the alkyne.145 

 

Scheme 4.3: Three Potential Sources of Chiral Induction in the Benzannulation 

Reaction 

 

 

The most successful approach to date has involved the use a chiral alkyne in which the 

chiral center in the alkyne dictates which side of the benzene ring the chromium is 

delivered. Notably, our group has previously shown that very high asymmetric induction 

can be achieved by utilization of this approach (Scheme 4.4).145a 
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Scheme 4.4: Diastereoselective Benzannulation Using Chiral Alkyne 

 

 

As a very efficient application of this asymmetric benzannulation, our group recently 

reported an excellent strategy for the asymmetric benzannulation followed by [4+2] 

cycloaddition.146 The overall stereochemical outcome was termed as a traceless 

stereoinduction since the origin of this stereoinduction cannot be discerned by 

examination of the product (Scheme 4.5). In this method the carbene complex 4-13 

underwent an asymmetric benzannulation reaction with chiral enyne 4-12 to form phenol 

product 4-14 which occurs with a highly diastereoselective installation of the Cr(CO)3 

unit. After formation of the o-quinone methide intermediate 4-15, the Cr(CO)3 group 

directs the orientation of the side chain to bring about high stereoselectivity in the 

subsequent Diels-Alder reaction. 
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Scheme 4.5: Traceless Stereoinduction 

 

 

4.2. Present Work 

Thus, inspired by the success of the traceless stereoinduction for the benzannulation/o-

quinone methide formation/Diels-Alder cascade shown in Scheme 4.5, an investigation 

was undertaken aiming at the development of an asymmetric synthesis of chromene, 

which involving the benzannulation, o-quinone methide formation, and electrocyclization 

cascade (BQME reaction) that was the subject of Chapter 2. It was envisioned that the 

benzannulation reaction between chromium carbene complex 4-17 and chiral enyne 4-

18 should result in the formation of the highly substituted chiral phenol complex 4-19, 

with the stereoselective introduction of the Cr(CO)3 group on the benzene ring. Previous 

observations suggest that the phenol complex 4-19 will be formed with high 

diastereoselection.145a,146 Naturally, the next step would be the formation of o-quinone 

methide 4-20 followed by the electrocyclization. Importantly, this electrocyclization was 

expected to occur with significant asymmetric induction as a result of the presence of 
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the Cr(CO)3 group (Scheme 4.6). For convenience, this newly hypothesized protocol 

will be termed as ABQME (asymmetric benzannulation/ o-quinone 

methide/electrocyclization cascade) reaction. 

 

Scheme 4.6: Asymmetric Synthesis of Chromenes via the ABQME Cascade 
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Scheme 4.7: Proposed Asymmetric Induction in Electrocyclization 

 

 

 

Here it should be mentioned that the asymmetric influence of a Cr(CO)3 unit on an 

electrocyclization was previously reported in literature.147 The Staudinger reaction of an 

imine derived from a chromium tricarbonyl complex of an aryl aldehyde with ketenes 

has been studied by Del Buttero et al148 for a diastereoselective synthesis of β-lactams. 

The reaction provided the corresponding cis-β lactam in 98% yield as a single 

diastereoisomer. Subsequent photolysis of the chromium complex yielded the optically 

pure metal free lactam 4-26 in 95% yield (Scheme 4.8). 
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Scheme 4.8: Asymmetric Induction by a Chromium Tricarbonyl Complexed Arene in 

Electrocyclization 

 

 

In addition, our group has also investigated the electrocyclic ring closure of metal-

complexed vinyl ketenes (Scheme 4.9).145b Based on earlier work2a it was 

hypothesized that the in-situ generated chromium ketene complex 4-31 would be 

formed with high stereoselectivity, and that the observed overall diastereoselectivity for 

the formation of 4-30 was due to a selective 6π-electrocyclization of the ketene complex 

4-31. The major diastereomer is formed from an upward rotation of the cis-methyl group 

while the downward rotation is apparently disfavored because of the close interactions 

with the metal and its ligands. 

 

Scheme 4.9: Asymmetric Induction in an Electrocyclization 
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For the asymmetric synthesis of chromene, according to Scheme 4.6 a chiral enyne 

would be required. The chiral enyne (S)-4-37 was targeted since its synthesis could 

begin with geraniol 4-32 as the starting material, which would have the advantage of its 

low cost. Geraniol 4-32 has a double bond with an E-configuration. It was first converted 

to geranial 4-33 by a swern oxidation. There was a concern for retaining the double 

bond stereochemistry during this oxidation. Interestingly, it was found that the double 

bond geometry was unchanged under the swern oxidation conditions. Subsequently, the 

aldehyde 4-33 was treated with lithiated trimethylsilyl acetylene to produce the racemic 

alcohol rac-4-34. The resulting racemic alcohol rac-4-34 was further oxidized using 

MnO2 to the corresponding ketone 4-35, which was subjected to an asymmetric CBS 

reduction to produce the alcohol (S)-4-34 in several runs with optical purities ranging 

from 95-99% ee. Next, applying routine desilylation conditions, (S)-4-34 could be 

converted to alcohol (S)-4-36, which was subsequently protected with a tert-

butyldimethylsilyl group to give the enyne (S)-4-37 (Scheme 4.10).    
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Scheme 4.10: Synthesis of Chiral Enyne from Geraniol 

 

 

 

Before conducting the benzannulation reaction of the chiral enyne (S)-4-37 with a 

carbene complex, the racemic version of the enyne rac-4-37 was prepared for the 

purpose of optimizing the reaction conditions. The racemic enyne could be obtained 

very easily in two steps from geranial 4-33 by treatment with ethynyl magnesium 

bromide followed by TBS-protection of the resulting alcohol rac-4-36 in 75% overall yield 

from geraniol 4-32 (Scheme 4.11). 
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Scheme 4.11: Synthesis of Racemic Enyne rac-4-37 from Geraniol 

 

 

 

The stage was set for the optimization of ABQME reaction, and to this end a series of 

experiments were performed between the styryl chromium carbene complex 4-38 and 

racemic enyne rac-4-37 to establish the optimal reaction conditions. The reaction was 

first attempted in toluene as solvent without using any additives at 80 °C for 24 h (Table 

4.1, entry 1). But the final result was not satisfying. The product rac-4-39 could be 
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clean giving a mixture of unidentified and inseparable compounds, which were not 

further characterized. Thus the product could not be isolated nor could the yield be 

determined (entry 2). Next, the reaction was carried out using the 5 equiv of Hünigʼs 

base in toluene as solvent. To our delight, the desired product rac-4-39 could be 
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some cases on the racemic BQME cascade (Table 2.5, Chapter 2). Gratifyingly, in the 

present case, when the reaction was performed in toluene solvent using 10 equiv of 

aniline as an additive at 60 °C, the reaction showed a very clean TLC with the 

predominant formation of the chromene product rac-4-39. After oxidation with 

FeCl3•DMF the chromene product rac-4-39 could be isolated in 66% yield and the 

compound was clean both by TLC and NMR (Table 4.1, entry 4). 

 

Table 4.1: Optimization for Reaction between 4-38 and rac-4-37a 

 

 

Entry Solvent Additive Temperature (°C) Yield (%) 

1 Toluene None 80 24 

2 DCE 5 equiv (iPr)2NEt 80 Not determined 

3 Toluene 5 equiv (iPr)2NEt 80 34 

4 Toluene 10 equiv Aniline 60 66 

a. All the reactions were performed at 0.03 M concentration using 1.2 equiv of rac-4-37. 
 

To this end, the method was all set to test the asymmetric synthesis of chromenes with 

the chiral enyne (S)-4-37.  
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decided to test the same reaction with the racemic enyne rac-4-41, which is the Z-

isomer of enyne rac-4-37. This reaction was planned to set up a competition between a 

final electrocyclization versus a final Diels-Alder cycloaddition.  As the enyne contains a 

double bond with Z-stereochemistry, the benzannulated intermediate 4-42 can open to 

two different o-quinone methide intermediates 4-43 or 4-44. The orientation of the long 

side chain from the enyne can determine whether eletrocyclization or Diels-Alder 

addition will happen. If the side chain were oriented in such a way that the terminal 

double bond comes closer to o-quinone methide as in 4-43, Diels-Alder addition would 

be the preferred reaction. To the contrary, if the orientation of the side chain brings the 

Z-double bond closer to o-quinone methide as in 4-44, electrocyclization would be 

expected to take place. The choice between these two potential reactions can arise only 

in case of the enyne rac-4-41 where the double bond has the Z-stereochemistry. Since 

Cr(CO)3 unit should be pointing away from the propargyl ether group (OTBS) it was 

expected that the formation of o-quinone methide would prefer an E-geometry of the 

newly formed doule bond as in 4-43 favoring Diels-Alder reaction. Should this reaction 

prefer to undergo a Diels-Alder addition then it could be the basis for a different 

methodology, which could be applied to the synthesis of the natural product conicol 

(Scheme 4.12). Notably, conicol could be synthesized easily from the reaction of 

carbene complex 4-49 and enyne rac-4-41 to form the benzopyran 4-50. Desilylation of 

the benzopyran 4-50 eventually can afford the conicol 4-51 (Scheme 4.12). 
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Scheme 4.12: Electrocyclization or Diels-Alder  
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was the oxidation of nerol 4-52 to its corresponding aldehyde neral 4-53. The main 

concern for this oxidation reaction was the loss of double bond stereochemistry. As the 

starting compound has the Z-stereochemistry of double bond, there was great concern 

that once the oxidation would occur and the double bond would be in conjugation with 

the carbonyl, the double bond geometry could isomerize from Z to E as E-alkenes are 

thermodynamically more stable. However, reports in the literature149 indicate that for 

the oxidation of allyl alcohols to the corresponding aldehydes the double bond 

stereochemistry is completely retained with MnO2 as the oxidant. Fortunately application 

of the same conditions in the present case also gave retention of stereochemistry in the 

product enal 4-53.  In the oxidation of nerol 4-52 to neral 4-53 the ratio of neral 4-53 to 

geranial 4-33 was found to be 176:1 from 1H NMR (based on integration of the aldehyde 

protons) (Scheme 4.14). 

 

Scheme 4.13: Stereoselective Oxidation of Nerol 
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Scheme 4.14: Synthesis of Racemic Enyne rac-4-41 from Nerol 4-52 

 

 

As the enyne rac-4-41 was ready, the reaction was tested with the styryl carbene 

complex 4-38.  Two possibilities were expected in the product: (i) benzoyran derivative 

of the type 4-47 by the Diels-Alder pathway or (ii) chromene rac-4-39 by the 

electrocyclization pathway. Experimentally it was observed that this reaction prefers 

electrocyclization to Diels Alder and gives the chromene product rac-4-39 in very good 

yields in toluene, dichloromethane and also in acetonitrile solvents (Table 4.2). It was 

quite surprising as it was discussed before in Scheme 4.12 that because of the 

preferred anti-orientation of OTBS group and Cr(CO)3 the formation of the o-quinone 

methide 4-43 would be preferred and therefore the Diels-Alder pathway. However the 

experimental results showed the formation of electrocyclization products. 
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Table 4.2: Optimization of the Reaction between Carbene Complex 4-38 and Z-Enyne 

rac-4-41a 

 

 

Entry Solvent Additive Yield (%) 

1 Toluene None 77 

2 CH2Cl2 None 68 

3 MeCN None 76 

4 Toluene 5 equiv (iPr)2NEt 57 

5 Toluene 10 equiv Aniline 90 

a. All the reactions were performed at 0.03 M concentration using 1.2 equiv of rac-4-41. 
 

It was also interesting to examine the effect of additives on this reaction. Thus, the 

reaction was repeated in toluene in presence of 5 equiv of Hünigʼs base. However, this 

reaction was not as clean and the product rac-4-39 could be isolated in 57% yield 

(Table 4.2, entry 4). Pleasingly, when the same reaction was repeated in toluene in the 

presence of 10 equiv of aniline, the reaction was extremely clean affording a 90% yield 

of the chromene product rac-4-39 (entry 5). The Diels-Alder product was not detected in 

any of the reactions (Table 4.2). 
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After this observation, we turned our attention toward the asymmetric synthesis of 

chromenes. The ABQME reaction between the styryl carbene complex 4-38 and the 

chiral enyne (S)-4-37 that was of 95% optical purity was performed at 60 °C in toluene 

in the presence of 10 equiv of aniline as an additive for 24 h. The chromene was 

obtained in 54% yield and in about 44% ee (the enantiomers could not be fully 

separated in HPLC). Although, the observed enantioselectivity was obviously not as 

high as we would have liked, nonetheless, this first attempt was encouraging enough to 

be indicative for further optimization (Scheme 4.15). 

 

Scheme 4.15: First Attempt for the Reaction between 4-38 and (S)-4-37 

 

 

The reaction was also conducted under the same conditions at a lower temperature (40 
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was observed (Scheme 4.16).  

 

 

 

 

OTBS

Ph

Cr(CO)5
H3CO

+ O
Ph

H3CO1) Toluene
10 equiv. aniline
60 !C, 24 h

54%, ~44% ee95% ee4-38 (S)-4-37
4-39

2) FeCl3•DMF



	
   193	
  

Scheme 4.16: Reaction of 4-38 and (S)-4-37 at Lower Temperature 

 

 

 

The same reaction was also repeated in three different solvents, which were benzene, 

dichloromethane and hexane. All these attempts did not work successfully as the 

enantiomers of the chromene product could not be separated completely in HPLC even 

after trying several different conditions on different columns (Table 4.3). Although the 

enantiomers were not completely separated, it was easily seen that the products were 

almost racemic. 
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Table 4.3: Reaction between 4-38 and (S)-4-37 in Different Solventsa 

 

 

Entry Solvent Yield (%) ee (%) 

1 Benzene 52 Not determined 

2 CH2Cl2 55 Not determined 

3 Hexane 56 Not determined 

a. All the reactions were performed at 0.03 M concentration using 1.2 equiv of (S)-4-37. 
 

From the previous results, comparing the reactions of styryl carbene complex 4-38 with 

E-enyne rac-4-37 and Z-enyne rac-4-41, it was noticed that the reaction with Z-enyne 

rac-4-44 gave much better result in terms of the yield of the product (Table 4.2 vs Table 

4.1). This observation was encouraging enough to lead to the investigation of the 

reaction between the styryl carbene complex 4-38 and the chiral version of Z-enyne (S)-

4-41 to see if increased yields and enantioselectivity would be observed for the 

chromene product 4-39.  

The synthesis of chiral enyne (S)-4-41 was attempted in similar fashion to the method 

by which chiral E-enyne (S)-4-37 was prepared (Scheme 10). However, in the second 
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observed by TLC (Scheme 4.17). 

 

Scheme 4.17: Attempted Synthesis of Chiral Z-Enyne (S)-4-41 from Nerol 4-52 
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4.18). 
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Scheme 4.18: Synthesis of Chiral Enyne (S)-4-41 from Neral 4-53 
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37 (Scheme 4.19). 

 

Scheme 4.19: Reaction between 4-38 and (S)-4-41 
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was changed in the enyne. In a previous report145b it was observed that the 

diastereoselection in the product 4-10 in the reaction between carbene complex 4-8 and 

chiral alkyne 4-9 (a propargyl ether) (Scheme 4.4), is a function of the protecting group 

on the alcohol moiety. Specifically, it was found that a change of protecting group from 

tert-butyldimethylsilyl group to the much bulkier trityl group increased the selectivity 

significantly. In the present reaction changing the alcohol protecting group from TBS to 

trityl in the enyne (S)-4-60 seemed to increase the enantioselectivity in the chromene 

product 4-39. However, the enantiomers could not be completely separated after 

examining several different HPLC columns and so the exact enantioselectivity could not 

be determined (Scheme 4.20). 
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Scheme 4.20: Reaction between 4-38 and (S)-4-60 

 

 

 

At this point in an effort to avoid the problem of overlapping enantiomers in HPLC, which 

created problems for the determination of the enantioselectivity, the carbene complex 

was changed so that a different chromene product will be produced in the reaction. The 

first attempt was to use propenyl carbene complex 4-61 and fortunately the enantiomers 

of the resulting chromene rac-4-62 could be separated successfully by HPLC using 

Chiralcel OD-H column (Scheme 4.21). 

 

Scheme 4.21: Reaction between 4-61 and rac-4-37 
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product 4-62 was 40% ee for the E-enyne (S)-4-37 and –42% ee for the Z-enyne (S)-4-

41 (Scheme 4.25). This confirms the earlier observation that the enyne with Z-

stereochemistry about the double bond produced the opposite enantiomer of the 

chromene product than that was observed with the E-enyne (S)-4-37 (Scheme 4.15 vs 

Scheme 4.19). 

 

Scheme 4.22: Opposite Enantiomers from Enynes with Different Double Bond 

Geometry 

 

 

When the carbene complex 4-61 was treated with enyne (S)-4-60 with a trityl protecting 

group on its alcohol moiety the product 4-62 was produced in 60% ee, which was a 

significant improvement over the corresponding TBS protected enyne (S)-4-37 

(Scheme 4.22 vs Scheme 4.23). 
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Scheme 4.23: Reaction between Carbene Complex 4-61 and Trityl E-Enyne (S)-4-60 

 

 

 

With the improved induction observed for the trityl protected E-enyne (S)-4-60 it became 

of interest to study the same reaction with trityl protected Z-enyne (S)-4-63.  For the 

synthesis of this compound, enyne (S)-4-41 (94% ee) was desilylated with TBAF to form 

alcohol (S)-4-54 which was then protected with the trityl group to give (S)-4-63 in a 92% 

yield (Scheme 4.24).  

 

Scheme 4.24: Conversion of (S)-4-41 to (S)-4-63 
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role in setting the configuration of the new chiral quaternary center. 

 

Scheme 4.25: Reaction between 4-61 and (S)-4-63 

 

 

 

4.3. Mechanistic Investigation 

To explain the relationship between the double bond geometry and the absolute 

configuration of the chromene a mechanism was proposed as shown in Scheme 4.26. 
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group and also the stereochemistry of the double bond can play a very important role in 

determining the configuration of the new chiral center. 

 

Scheme 4.26: Proposed Mechanism 

 

 

The biggest limitation of this reaction that could be found from the analysis of this 

mechanism is the possibility of a stereochemical interconversion between structures 4-
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final chromene product because potentially it is the source of a leakage between the 

pathways to the two opposite enantiomers. 

 

Scheme 4.27: Interconversion of 4-67 and 4-76 

 

 

Thus, it would be a very good test reaction if the single bond rotation, which is 

responsible for the interconversion between 4-67 and 4-76, could be prevented by 

locking it in a ring such as in cation 4-83 shown in Scheme 4.28 below. In this way, if 

the mechanistic predictions are correct, a very high enantioselectivity can be expected 

in the chromene product 4-85. 
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In addition it was also found that chromene units of the type 4-85 occur in a number of 

biologically important natural products150 and a few are shown in Figure 4.1 that 

include the same core structure as 4-85.  

 

Figure 4.1: Natural Products Containing 4-85 Structure 

 

 

To make this test reaction successful, an enyne with a structure similar to as 4-85 was 

required. Initially, aldehyde 4-86 was chosen as the starting compound, which was 

converted to compound rac-4-88 as the test enyne (Scheme 4.29).  

 

Scheme 4.29: Preparation of Terminal Enyne rac-4-88 from 4-86 
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give the expected chromene product. The result was a complicated mixture of products 

and absorptions for the expected chromene product could not be identified in the crude 

1H NMR spectrum (Scheme 4.30). 

 

Scheme 4.30: Reaction between Carbene Complex 4-61 and Enyne rac-4-88 

 

 

Simultaneously, the chiral enyne (S)-4-91 was also prepared from 1-cyclohexene 

carboxaldehyde 4-86 in 90% ee. Notably, the CBS reduction of compound 4-90 was a 

little difficult. The reaction was warmed to 0 °C and was run for over 6 h however, the 

reaction still did not go to completion. This was the reason that the yield for the 

asymmetric reduction was low (47%). The alcohol (S)-4-87 was protected with a trityl 

group to form the chiral enyne (S)-4-91 (Scheme 4.31). 
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Scheme 4.31: Synthesis of Chiral Enyne (S)-4-91 

 

 

A change in the protecting group did not change the outcome as both the reactions of 

compounds 4-61 and (S)-4-91 (Scheme 4.32), and the reaction between 4-61 and rac-

4-88 (Scheme 4.30) provided a complicated mixture of products, which was not 

characterized. 

 

Scheme 4.32: Reaction between 4-61 and (S)-4-91 
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than with terminal alkynes (Table 3.2 vs Scheme 3.19, Chapter 3). So the next attempt 

at testing the mechanism in Scheme 4.26 was to synthesize the internal enyne 4-93 

which could be made very easily in two steps as shown in Scheme 4.33 from the 

aldehyde 4-86 following the same procedure used in the synthesis of rac-4-88 (Scheme 

4.29). 

 

Scheme 4.33: Preparation of Internal Enyne 4-93 from 4-86 

 

 

The reaction between the carbene complex 4-61 and the internal enyne 4-93 also failed 

to produce the clean formation of a chromene product following the optimized conditions 

(Scheme 4.34). Instead a complicated reaction mixture was obtained which was not 

processed any further.  

 

Scheme 4.34: Reaction between 4-61 and 4-93 
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the enyne rac-4-96 was targeted which is a trimethyl analog of rac-4-88 and should be 

easy to prepare from the commercially available β-cyclocitral 4-94. The terminal enyne 

rac-4-96 was prepared following the standard method in 92% overall yield as shown in 

Scheme 4.35. 

 

Scheme 4.35: Preparation of Terminal Enyne rac-4-96 from 4-94 

 

 

Unfortunately, under the same optimized conditions the reaction between the carbene 

complex 4-61 and the new enyne rac-4-96 also failed to produce a clean formation of 

the chromene product (Scheme 4.36). 

 

Scheme 4.36: Reaction between 4-61 and rac-4-96 
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Scheme 4.37: Preparation of Internal Enyne 4-98 from 4-94 

 

 

 

Interestingly, the reaction between carbene complex 4-61 and enyne 4-98 gave a trace 

amount of the chromene product 4-99 as detected by TLC as well as by the 1HNMR 

spectrum of the crude reaction mixture. However, the compound could not be isolated 

as it was part of an inseparable mixture with other unidentifiable compounds and also 

because the amount of chromene product produced in the reaction was very low 

(Scheme 4.38). 

 

Scheme 4.38: Reaction between 4-61 and 4-98 
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of these reactions. Several different conditions were attempted by changing solvent and 

additive. The reaction was also tried without any additives in toluene and acetonitrile 

solvents. In three cases the chromene product was observed (Table 4.4). In the 

reaction where 5 equiv of Hünigʼs base was used in toluene as the solvent, the product 

was observed by TLC but the crude mixture was not further processed, as the reaction 

mixture was quite complex. However, the reactions in toluene and acetonitrile solvents 

exhibited promising results with predominant formation of the chromene product 4-99. 

So the product was purified in each case to determine the yield. In case of the reaction 

in acetonitrile, the oxidation step was not necessary but for the reaction in toluene, the 

reaction mixture was subjected to oxidation with FeCl3•DMF to get rid of the chromium. 

In both reactions, the final chromene products were isolated by column 

chromatography. In the reaction in toluene, the yield was found to be 65% while in 

acetonitrile the yield was 52% (Table 4.4).  
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Table 4.4: Optimization of the Reaction between 4-61 and 4-98a 

 

 

Entry Solvent Additive Yield (%) 

1 Toluene 5 equiv (iPr)2NEt Not determined 

2 Toluene None 65% 

3 MeCN None 52% 

4 CH2Cl2 10 equiv Aniline <10 

a. All the reactions were performed at 0.06 M concentration using 1.2 equiv of 4-98. 
 

 

As part of the optimization, carbene complex was also varied and the reaction was 

attempted under two different conditions between compounds 4-38 and 4-98, both in 

toluene solvent but one with Hünigʼs base as the additive while the other one was with 

aniline used as the additive. But both these reactions did not show any conversion even 

after one week and even after increasing the temperature to 80 °C as revealed by TLC, 

which indicated only the presence of 4-38 and 4-98 (Table 4.5). 
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Table 4.5: Reaction between 4-38 and 4-98a 

 

 

Entry Solvent Additive Result 

1 Toluene 5 equiv (iPr)2NEt No reaction 

2 Toluene 10 equiv Aniline No reaction 

a. All the reactions were performed at 0.06 M concentration using 1.2 equiv of 4-98. 
 

After the success of the reaction of carbene complex 4-61 with the internal enyne 4-98 

in absence of any additives (Table 4.4), it was considered prudent to re-examine the 

reaction of carbene complex 4-61 with the terminal enyne rac-4-96 (Scheme 39) in the 

absence of additives. Two sets of reactions were conducted - one in toluene solvent and 

the other in dichloromethane. Indeed, both experiments were successful giving a 66% 

yield of the chromene product rac-4-101 in toluene and a 61% yield in dichloromethane 

(Scheme 4.44). 
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Scheme 4.39: Reaction between Carbene Complex 4-61 and Enyne rac-4-96 

 

 

With the successful development of a clean benzannulation/o-quinone methide 

formation/electrocyclization cascade (BQME reaction) with a cyclic enyne, the next step 
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(S)-4-96 is presented in Scheme 4.40. It is important to mention here that CBS 

reduction of the ketone substrate 4-103 was unbelievably slow. The reduction time had 
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see reasonable conversion. Still the reaction was not complete and that is the reason 

the yield was very low, only 30%. But satisfactorily the enantioselectivity was not 

compromised too much, and the product (S)-4-102 could be isolated with 97% ee 

(Scheme 4.44). 
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chiral alcohol (S)-4-102 was recovered, desilylated and the alcohol moiety was 

protected with tert-butyldimethylsilyl group to give the enyne (S)-4-96 (Scheme 4.40). 

 

 Scheme 4.40: Synthesis of Chiral Enyne (S)-4-96 from 4-94 

 

 

After the synthesis of the chiral enyne (S)-4-96, the asymmetric test reaction was 

attempted in both toluene and dichloromethane (Scheme 4.41). Unfortunately, the 

result was not up to our expectation. Only a 26% ee was observed in the product 

obtained from the reaction in dichloromethane, while the reaction in toluene showed 

only a 12% ee in the chromene product 4-111. 
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Scheme 4.41: Reaction between Carbene Complex 4-61 and Enyne (S)-4-96: Test 

Reaction 

 

  

It was first thought that the reason for the low ee could be the result of racemization of 

the chromene product under the reaction conditions (60 °C, 24 h). The racemization can 

occur by a reversible eletrocyclic ring opening and closing mechanism shown in 

Scheme 4.42. So the chromene product 4-101 with 26% ee was taken up in 

dichloromethane and the resulting solution was stirred at 60 °C for 3 days. After that 

time, the enantioselectivity was checked again and no loss in ee was observed (the ee 

of the compound after 3 days was 26% ee). 

 

Scheme 4.42: Change in Enantioselectivity Under The Reaction Condition 
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proposed mechanistic pathway (Scheme 4.26). There is another possibility for the loss 

of enantioselectivity, which cannot be ignored. Although, the ee of the chromene 4-101 

did not change under the reaction conditions, when there is a chromium attached to 

chromene the racemization is possible by the reversible electrocyclic ring opening and 

ring closing pathway.  

It is also important to mention here that, an inspiration behind this project for the 

asymmetric synthesis of chromene was to synthesize vitamin E (2R,4ʼR,8ʼR)-α-

tocopherol in its optically active form (Figure 4.2). 

 

Figure 4.2: Optically Active Vitamin E 

 

  

As a model reaction for α-tocopherol synthesis, the reaction between carbene complex 

4-105 and racemic enyne rac-4-37 was attempted and the yield of the chromene 

product rac-4-106 was 76%. Inspired by this high yield, the reaction was performed 

between carbene complex 4-105 and chiral enyne (S)-4-60 to determine if there would 

be any asymmetric induction at the newly formed quaternary center. Unfortunately, the 

product 4-106 turned out to be completely racemic (Schemes 4.43 and 4.44). 
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Scheme 4.43: Model Reaction for the Synthesis of Optically Active Tocopherol 

 

 

Scheme 4.44: Model Reaction for the Synthesis of Optically Active Tocopherol 

 

From the previous experiences145b it was seen that if R1 in carbene complex 4-8 is not 

hydrogen, there was a significant loss in diastereoselectivity (Scheme 4.4). Thus this 

result was not fully unexpected. 
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mechanism, it can be assumed that compounds 4-65 and 4-74 in Scheme 4.26 should 

be formed with high enantioselectivity (~95% ee) according to the results previously 

reported145a. Therefore there must be a significant loss in the enantioselectivity 

somewhere in the following steps, which are leading compounds 4-65 and 4-74 to the 

final chromene products 4-72 and ent-4-72. Intriguingly, enantioselectivity of chromene 

4-101 proved to be unaffected under the reaction conditions (dichloromethane solvent, 

60 ºC). However, the possibility of racemization in the chromium tricarbonyl complexed 

chromene 4-71 or 4-80 (Scheme 4.26) cannot be completely excluded, which can occur 

by pyran ring opening and ring closing. Also the oxidation method employing 

FeCl3•DMF could be a possible reason for the loss of enantioselectivity as FeCl3 being 

a very strong Lewis acid can assist in pyran ring opening and ring closing and thereby 

the racemization. It would also be very interesting to trap the intermediates 4-65 and 4-

74 by addition of a protecting group in the reaction. The diastereoselectivity of those 

intermediates should give an insight about the stereoinduction in the asymmetric 

benzannulation reaction, which is the preliminary source for the chirality. Although very 

important results and some valuable insights have been gained from this study, the 

asymmetric BQME reaction still needs some more exploration to fully understand the 

mechanism which is the only key to solving the puzzle that can lead to a very high 

enantioselectivity in the chromenes. If successful it would open a new avenue for the 

asymmetric synthesis of chromenes where both the rings can be formed in one step. 

Also just by changing the stereochemistry of the double bond in the enyne, both the 

enantiomers of a chromene compound can be achieved very efficiently.  
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CHAPTER FIVE 

EXPERIMENTAL PROCEDURES 

 

5.1. General Information 

All reactions were carried out in flame-dried glassware under an atmosphere of argon 

unless otherwise indicated. All solvents were strictly dried prior to use: dichloromethane 

and acetonitrile were distilled over calcium hydride under nitrogen; tetrahydrofuran and 

ether were distilled from sodium and benzophenone; benzene and toluene were distilled 

from sodium under nitrogen. Hexanes and ethyl acetate were ACS grade and used as 

purchased. Melting points were recorded on a Thomas Hoover capillary melting point 

apparatus and are uncorrected. IR spectra were recorded in KBr matrix (for solids) and 

on NaCl disc (for liquids) on a Nicolet IR/42 spectrometer. 1H NMR and 13C NMR were 

recorded on a Varian Inova 300 MHz or Varian Unity Plus 500 MHz or Varian Inova 600 

MHz spectrometer using CDCl3 as solvent. Low-resolution Mass Spectrometry and High 

Resolution Mass Spectrometry were performed at Michigan State University Mass 

Facility. Analytical thin-layer chromatography (TLC) was performed on Silicycle silica gel 

plates with F-254 indicator. Visualization was by short wave (254 nm) and long wave 

(365 nm) ultraviolet light, or by staining with phosphomolybdic acid in ethanol. Column 

chromatography was performed with silica gel 60 (230 – 450 mesh). All reagents were 

purified by simple distillation or crystallization with simple solvents unless otherwise 

indicated.  
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5.2 Chapter Two and Three Experimental 

 

Preparation of the Enynes : 

Preparation of Enyne (2-38): 

 

 

 

To a solution of 3-methylbut-2-enal 2-38a (10.00 mL, 10.46 g, 124.3 mmol) in 250 mL of 

THF at –78 °C was added ethynylmagnesium bromide (0.5 M in THF, 250.0 mL, 150.2 

mmol).  The reaction mixture was stirred for 3 hours at –78 °C and warmed to room 

temperature. After completion (as judged by TLC) the reaction mixture was then poured 

into 100 mL of saturated ammonium chloride solution.  The aqueous layer was 

separated and extracted with ethyl acetate (100 mL x 3).  The organic layers were 

combined and dried over magnesium sulfate.  The solution was filtered through fluted 

filter paper and the solvent was removed under reduced pressure. The resulting alcohol 

2-38b (12.80 g, 116.2 mmol) was used in the next step without further purification.  

A 500 mL single neck round bottom flask was charged with all of the compound 2-38b  

(12.80 g, 116.2 mmol), imidazole (11.76 g, 172.9 mmol), TBSCl (17.89 g, 118.7 mmol) 

and dry DMF (390 mL).  The mixture was stirred at room temperature for overnight.  The 

solution was extracted with ether (250 mL x 2), saturated ammonium chloride solution 

(250 mL), and water (300 mL). Each aqueous layer was then back extracted with ether 

H
O BrMg

THF, -78 to 0 °C

OH TBSCl, imidazole
DMF, RT, overnight

OTBS

2-38b 2-382-38a
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(150 mL x 3).  The organic layers were combined and dried over magnesium sulfate.  

The crude product was purified by chromatography on silica gel with 5% ethyl acetate / 

hexane to give 19.84 g (87% yield, 94.90 mmol) of compound 2-38 as light yellow oil.   

Rf = 0.82 (30% ethyl acetate / hexane); 1H NMR (CDCl3, 500 MHz) δ 0.09 (s, 3H), 0.11 

(s, 3H), 0.88 (s, 9H), 1.66 (d, 3H, J = 1.3 Hz), 1.71 (d, 3H, J = 1.3 Hz), 2.40 (d, 1H, J = 

2.5 Hz), 5.03 (dd, 1H, J = 8.5, 2.5 Hz), 5.29-5.33 (m, 1H); 13C NMR (CDCl3, 125 MHz) δ 

–4.67, –4.53, 18.08, 18.22, 25.54, 25.77, 59.84, 71.62, 85.12, 125.73, 134.29; IR (neat 

film) 3314, 2959, 2932, 2859, 1474, 1252, 1069, 837 cm-1; mass spectrum m/z (% rel 

intensity) 225 [M+1]+ (0.03), 224 M+ (0.1), 209 (2), 167 (47), 91 (23), 83 (17), 75 (100), 

61 (15); Anal calcd for  C13H24OSi: C, 69.58; H, 10.78.  Found; C, 69.38; H, 10.92.   

 

Preparation of Enyne (2-41): 

 

 

 

The compound 2-41 was prepared following the procedure described above for 

compound 2-38. Compound 2-38a (2.00 mL, 1.74 g, 20.7 mmol) was reacted with 

propynyl magnesium bromide (0.5 M in THF, 50.0 mL, 25.0 mmol) in dry THF (50 mL). 

The entire crude product 2-41b was used in the next step and reacted with tert-

H
O BrMg

THF, -78 to 0 °C

OH TBSCl, imidazole
DMF, RT, overnight

OTBS

2-41b 2-412-38a
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butyldimethylsilyl chloride (3.97 g, 26.4 mmol) and imidazole (2.60 g, 38.4 mmol) in 

dimethylformamide (115 mL). The final product 2-41 was obtained as a colorless oil in 

98% yield (4.85 g, 20.4 mmol).  Rf  = 0.62 (5% Ethyl acetate / Hexane); 1H NMR 

(CDCl3, 500 MHz) δ 0.07 (s, 3H), 0.08 (s, 3H), 0.87 (s, 9H), 1.63 (d, 3H, J = 1.5 Hz), 

1.68 (d, 3H, J = 1.5 Hz), 1.79 (d, 3H, J = 2 Hz), 4.99 (dd, 1H, J = 8.5, 2.0 Hz), 5.28 (dt, 

1H, J = 8.5, 1.5 Hz); 13C NMR (CDCl3, 125 MHz) δ –4.62, –4.47, 3.64, 17.99, 18.27, 

25.52, 25.84, 60.21, 79.80, 80.52, 126.63, 133.12; IR (neat film) 2957, 2932, 2858, 

1674, 1472, 1245 cm-1; HRMS (TOF MS EI+) calcd for C14H26OSi m/z 238.1753, meas 

238.1761. 

 

Preparation of Enyne (2-67): 

 

 

 

The compound 2-67 was prepared following the procedure described above for 

compound 2-38. Freshly distilled crotonaldehyde 2-65 (1.00 mL, 0.850 g, 12.1 mmol) 

was reacted with ethynyl magnesium bromide (0.5 M in THF, 30.2 mL, 15.1 mmol) in 

dry THF (30 mL). The entire crude product 2-66 was used in the next step and reacted 

with tert-butyldimethylsilyl chloride (2.18 g, 14.5 mmol) and imidazole (1.32 g, 19.3 

mmol) in dimethylformamide (30 mL). The final product 2-67 was obtained as colorless 

H
O BrMg

THF, -78 to 0 °C
OH TBSCl, imidazole

DMF, RT, overnight

OTBS

2-66 2-672-65
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oil in 74% yield (1.89 g, 9.00 mmol). Rf = 0.67 (5% Ethyl acetate / Hexane); 1H NMR 

(CDCl3, 500 MHz) δ 0.11 (s, 3 H), 0.12 (s, 3H), 0.89 (s, 9H), 1.68-1.71 (m, 3H), 2.45 (d, 

1H, J = 1.5 Hz), 4.80-4.83 (m, 1H), 5.50-5.56 (m, 1H), 5.76-5.84 (m, 1H); 13C NMR 

(CDCl3, 125 MHz) δ –4.83, –4.61, 17.39, 18.31, 25.78, 63.29, 72.96, 84.10, 127.02, 

130.62; IR (neat film) 3312, 2958, 2930, 2833, 1652 cm-1; HRMS (TOF MS ES+) calcd 

for C12H23OSi (M
++H) m/z 211.1518, meas 211.1512. 

 

Preparation of Enyne (2-71): 

 

 

 

The compound 2-71 was prepared following known literature method and spectroscopic 

properties were identical to those previously reported.152a To a solution of 

(trimethylsilyl) acetylene 2-68 (2.00 g, 2.90 mL, 20.4 mmol) in dry THF (130 mL) at –78 

°C was added dropwise a solution of n-butyllithium (2.5 M in hexanes, 8.16 mL, 20.4 

mmol) under Ar atmosphere. After 15 minutes, freshly distilled ice-cold acrolein (1.40 g, 

1.67 mL, 24.5 mmol) was introduced slowly. The resulting mixture was allowed to warm 

gradually to 0 °C over a period of 1.5 h. After stirring for an additional 1 h at room 

TMS

nBuLi
O

THF
-78 °C to RT TMS

OH TBSCl
Imidazole

CH2Cl2, RT
TMS

OTBS K2CO3
MeOH

RT

OTBS

2-712-68 2-69 2-70
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temperature, the mixture was quenched with ice-cold satd. NH4Cl. The aqueous phase 

was extracted with Et2O, dried with MgSO4 and concentrated to dryness in vacuo. The 

crude compound 2-69 was pure enough (from 1H NMR) to be used in the next step 

without further purification. 

All the crude compound 2-69 was used in the next step along with tert-butyldimethylsilyl 

chloride (3.70 g, 24.7 mmol) and imidazole (2.20 g, 32.4 mmol) in dichloromethane (115 

mL). The mixture was stirred for 16 h at room temperature. The crude product was 

concentrated in vacuo and directly chromatographed on silica gel (eluted with 100 : 1 

hexane–ethyl acetate) to afford 4.85 g (18.1 mmol) of 2-70 as colorless oil, giving 89% 

yield over two steps. The spectroscopic properties were identical to those reported in 

literature.152b 

The deprotection of trimethylsilyl group from compound 2-70 to the target enyne 2-71 

was followed from known literature procedure.152c To a solution of 2-70 (2.31 g, 8.62 

mmol) in MeOH (20 mL), K2CO3 (2.38 g, 17.2 mmol) was added and the mixture was 

stirred for 4 h at room temperature. The reaction mixture was filtered through Celite and 

the filtrate was concentrated under reduced pressure. The concentrated mixture was 

directly loaded onto a silica gel column, which was eluted with 1% Ethyl acetate/Hexane 

to give pure compound 2-71 (1.50 g, 7.65 mmol, 89% yield) as a colorless oil. 1H NMR 

(CDCl3, 500 MHz) δ 0.12 (s, 3H), 0.13 (s, 3H), 0.90 (s, 9H), 2.47 (d, 1H, J = 2.5 Hz), 

4.86-4.88 (m, 1H), 5.15 (dt, 1H, J = 10, 1.5 Hz), 5.40 (dt, 1H, J = 17, 1.5 Hz), 5.89 (ddd, 
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1H, J = 17, 10, 4.5 Hz); 13C NMR (CDCl3, 125 MHz) δ –4.94, –4.67, 18.30, 25.74, 

63.44, 73.33, 83.42, 115.14, 137.40. The spectroscopic data match with the previously 

reported in the literature.152b 

 

Preparation of Enyne (3-47): 

 

 

 

The compound 3-47 was prepared following the same procedure previously described 

for compound 2-71. To a solution of (trimethylsilyl) acetylene 2-68 (1.00 g, 1.45 mL, 

10.2 mmol) in dry THF (65 mL) at –78 °C was added dropwise a solution of n-

butyllithium (2.5 M in hexanes, 4.08 mL, 10.2 mmol) under Ar atmosphere. After 15 

minutes, ice-cold 3-methylbut-2-enal 2-38a (1.03 g, 1.18 mL, 12.24 mmol) was 

introduced slowly. The resulting mixture was allowed to warm gradually to 0 °C over a 

period of 1.5 h. After stirring for an additional 1 h at room temperature, the mixture was 

quenched with ice-cold satd. NH4Cl. The aqueous phase was extracted with Et2O, dried 

with MgSO4 and concentrated to dryness in vacuo. The crude compound 3-47a was 

pure enough (from 1HNMR) to be used in the next step without further purification. 

TMS
nBuLi, 2-38a

THF
–78 ºC to RT

OH

TMS

OTBS

TMS

TBSCl
Imidazole
DCM, RT

2-68 3-47a 3-47
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All the crude compound 3-47a was used in the next step along with tert-

butyldimethylsilyl chloride (3.40 g, 22.5 mmol) and imidazole (2.50 g, 36.0 mmol) in 

dichloromethane (57 mL). The mixture was stirred for 16 h at room temperature. The 

crude product was concentrated in vacuo and directly chromatographed on silica gel 

(eluted with 100 : 1 hexane–ethyl acetate) to afford 2.95 g (9.96 mmol) of 3-47 as 

colorless oil, giving 97% yield over two steps. 1H NMR (CDCl3, 500 MHz) δ 0.10 (s, 3H), 

0.11 (s, 3H), 0.13 (s, 9H), 0.88 (s, 9H), 1.65 (d, 3H, J = 1.5 Hz), 1.70 (d, 3H, J = 1.5 Hz), 

5.01 (d, 1H, J = 8 Hz), 5.29 (dt, 1H, J = 8, 1.5 Hz); 13C NMR (CDCl3, 125 MHz) δ –4.51, 

–4.35, –0.16, 18.10, 18.30, 25.64, 25.84, 60.42, 88.19, 107.10, 125.73, 134.51; IR (neat 

film) 2959, 2930, 2898, 2858, 2172, 1673, 1472, 1250, 1063 cm-1; HRMS (TOF MS 

ES+) calcd for C16H33OSi2 (M
++H) m/z 297.2070, meas 297.2062. 

 

Preparation of the Carbene Complexes 2-14, 2-43, 2-56, 2-59, 2-46, 2-53, 2-62, and 

3-41: 

 

 

Ph

Cr(CO)5
H3CO

2-14

Cr(CO)5
H3CO

2-43

Cr(CO)5
H3CO

TMS

2-53

Cr(CO)5
H3CO

2-46

Cr(CO)5
H3CO

2-56

Cr(CO)5
H3CO

2-59

H3CO
Cr(CO)5

2-62

H3CO
Cr(CO)5

3-41
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Carbene complexes 2-14,153 2-43,154 2-56,155 2-59,156 2-46,157 2-53,158 2-62159	
  and 

3-41160 were prepared according to the literature methods. 

 

General Procedure for the Synthesis of Chromenes: 

 

 

 

The carbene complex A (0.26 mmol), enyne B (0.32 mmol), and solvent (8.00 mL) were 

added to a 25 mL Schlenk flask.  The reaction mixture was deoxygenated by the freeze-

pump-thaw method (3 cycles) and finally the flask was back-filled with argon. The 

reaction mixture was stirred and heated at 60 ºC for 24 hours.  The solvent was 

removed under reduced pressure and the crude compound was dissolved in 8 mL of 

diethyl ether. To this mixture, water (8 mL) and 7.5 equiv. of FeCl3•DMF complex were 

added and stirred under air. Upon completion of the oxidation of compound C (judged 

by TLC), the organic layer was separated. The aqueous layer was washed with ether (3 

x 15 mL). Organic layers were combined, washed with brine and dried over magnesium 

sulfate. Column chromatography with 1% ethyl acetate / hexane gave pure compound 

D. 

 

O R4
R5

R1

H3COOCH3
(OC)5Cr

R1

OTBS
+ Solvent

O R4
R5

R1

H3CO

(CO)3Cr

Oxidation

R3 R5R4R2
R2

R3

R2

R3

A B C D
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Compound 2-39: The carbene complex 2-14 (0.30 g, 0.88 mmol) was reacted with 

enyne 2-38 (0.221 g, 1.06 mmol) in 27 mL of dichloromethane. The reaction gave 0.18 g 

(76% yield, 0.67 mmol) of compound 2-39 as light yellow oil. This reaction was 

conducted in five other solvents, which were acetonitrile, hexane, benzene, THF and 

toluene and gave 95%, 70%, 74%, 65% and 62% yields respectively.  These yields in 

the first four solvents were the average of two runs. The reaction in toluene was done at 

80 °C for 24 h. The reaction was also done in toluene in presence of 5 equiv. of Hunigʼs 

base at 80 °C for 24 h and the yield was 35%. The reaction didnʼt need an oxidative 

workup when acetonitrile was the solvent. Rf = 0.25 (1% Ethyl acetate / Hexane); 1H 

NMR (CDCl3, 500 MHz) δ 1.41 (s, 6H), 3.79 (s, 3H), 5.66 (d, 1H, J = 9.5 Hz), 6.33 (d, 

1H, J = 9.5 Hz), 6.57 (d, 1H, J = 3 Hz), 6.77 (d, 1H, J = 3 Hz), 7.31 (t, 1H, J = 7 Hz), 

7.40 (t, 2H, J = 7.5 Hz), 7.57 (dd, 2H, J = 8 Hz, J = 1 Hz); 13C NMR (CDCl3, 125 MHz) δ 

27.49, 55.74, 75.88, 111.06, 115.45, 122.59, 122.73, 126.80, 127.84, 129.37, 130.17, 

131.86, 138.08, 143.68, 153.41; IR (neat film) 3100, 3050, 2975, 2936, 2890, 1750, 

1597, 1489, 1437, 1424, 1321, 1199 cm-1; HRMS (TOF MS EI+) calcd for C18H18O2 

m/z 266.1307, meas 266.1304. 

 

O
Ph

H3COOCH3
(OC)5Cr

Ph

TBSO+ Solvent
60 °C, 24h

2-14 2-38 2-39
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Compound 2-42: The carbene complex 2-14 (0.30 g, 0.88 mmol) was reacted with 

enyne 2-41 (0.251 g, 1.06 mmol) in 27 mL of dichloromethane. The reaction gave 0.171 

g (69% yield, 0.611 mmol) of compound 2-42 as a light yellow oil. The reaction was also 

conducted in acetonitrile and gave 66% yield. Rf = 0.27 (1% Ethyl acetate / Hexane); 1H 

NMR (CDCl3, 500 MHz) δ 1.42 (s, 6H), 2.25 (s, 3H), 3.82 (s, 3H), 5.74 (d, 1H, J = 8.5 

Hz), 6.62 (d, 1H, J = 8.5 Hz), 6.76 (s, 1H), 7.32 (t, 1H, J = 6 Hz), 7.42 (t, 2H, J = 6 Hz), 

7.59 (dd, 2H, J = 7, 1.5 Hz); 13C NMR (CDCl3, 125 MHz) δ 10.76, 27.23, 56.15, 74.70, 

112.47, 119.93, 121.42, 121.87, 126.50, 126.98, 127.81, 129.38, 131.81, 138.63, 

143.60, 151.57; IR (neat film) 3054, 2973, 2931, 2855, 1463, 1388, 1212, 1100 cm-1; 

HRMS (TOF MS ES+) calcd for C19H21O2 (M
++H) m/z 281.1542, meas 281.1545. 

 

 

 

Compound 2-73: The carbene complex 2-14 (0.30 g, 0.88 mmol) was reacted with 

enyne 2-71 (0.207 g, 1.06 mmol) in 27 mL of acetonitrile. The reaction gave 0.10 g 

OCH3
(OC)5Cr

Ph

TBSO

O
Ph

H3CO
+ 60 °C, 24h

Solvent

2-14 2-41 2-42

O
Ph

H3COOCH3
(OC)5Cr

Ph

TBSO+ Solvent
60 °C, 24h

2-14 2-71 2-73
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(47% yield, 0.42 mmol) of compound 2-73 as light yellow oil. Rf = 0.11 (1% Ethyl 

acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 3.80 (s, 3H), 4.73-4.74 (m, 2H), 5.86-

5.89 (m, 1H), 6.47 (dd, 1H, J = 10, 1.5 Hz), 6.59 (d, 1H, J = 2.5 Hz), 6.78 (d, 1H, J = 2.5 

Hz), 7.35 (t, 1H, J = 7 Hz), 7.44 (t, 2H, J = 7.5 Hz), 7.57 (d, 2H, J = 7.5 Hz); 13C NMR 

(CDCl3, 125 MHz) δ 55.64, 65.23, 111.25, 115.28, 123.17, 123.83, 125.02, 127.09, 

127.98, 129.26, 129.96, 137.73, 144.72, 153.70; IR (neat film) 3062, 2965, 2952, 2836, 

1598, 1471, 1435, 1429, 1319, 1199 cm-1; HRMS (TOF MS ES+) calcd for C16H13O2 

(M+–H) m/z 237.0916, meas 237.0910. 

 

 

 

Compound 2-44: The carbene complex 2-43 (0.300 g, 1.03 mmol) was reacted with 

enyne 2-38 (0.278 g, 1.24 mmol) in 27 mL of dichloromethane. The reaction gave 0.199 

g (88% yield, 0.913 mmol) of compound 2-44 as a light yellow oil. This reaction was 

conducted in three other solvents including acetonitrile, benzene and THF and gave 

65%, 73% and 74% yields, respectively. The yield in acetonitrile was an average of 

three runs. Rf = 0.27 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.38 (s, 

6H), 2.12 (s, 6H), 3.75 (s, 3H), 5.55 (d, 1H, J = 10 Hz), 6.25 (d, 1H, J = 10 Hz), 6.37 (s, 

OCH3
(OC)5Cr TBSO

O

H3CO
+

60 °C, 24h
Solvent

2-43 2-38 2-44



	
   231	
  

1H); 13C NMR (CDCl3, 125 MHz) δ 11.58, 12.03, 27.57, 56.00, 75.37, 105.99, 118.31, 

122.83, 125.51, 126.16, 130.15, 144.62, 151.40; IR (neat film) 3040, 2973, 2932, 2859, 

1637, 1577, 1462, 1422, 1261 cm-1; HRMS (TOF MS ES+) calcd for C14H19O2 (M
++H) 

m/z 219.1385, meas 219.1382. 

 

 

 

Compound 2-45: The carbene complex 2-43 (0.300 g, 1.03 mmol) was reacted with 

enyne 2-41 (0.285 g, 1.24 mmol) in 27 mL of dichloromethane. The reaction gave 0.201 

g (84% yield, 0.866 mmol) of compound 2-45 as a light yellow oil. Repeat of this 

reaction in the same solvent gave 84% yield again. This reaction was also conducted in 

acetonitrile and gave 87% yield. Rf = 0.25 (1% Ethyl acetate / Hexane); 1H NMR 

(CDCl3, 500 MHz) δ 1.37 (s, 6H), 2.07 (s, 3H), 2.16 (s, 3H), 2.19 (s, 3H), 3.60 (s, 3H), 

5.59 (d, 1H, J = 10 Hz), 6.46 (d, 1H, J = 10 Hz); 13C NMR (CDCl3, 125 MHz) δ 11.13, 

11.53, 12.76, 27.57, 60.29, 74.65, 117.98, 119.93, 122.77, 123.11, 129.98, 146.79, 

150.26 (1 sp2 C not located); IR (neat film) 3050, 2977, 2936, 2898, 1640, 1597, 1462, 

1406, 1387, 1289, 1217, 1090 cm-1; HRMS (TOF MS EI+) calcd for C15H20O2 m/z 

232.1463, meas 232.1461. 

OCH3
(OC)5Cr

TBSO

O

H3CO
+ 60 °C, 24h

Solvent

2-43 2-41 2-45
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Compound 2-72: The carbene complex 2-43 (0.300 g, 1.03 mmol) was reacted with 

enyne 2-67 (0.260 g, 1.24 mmol) in 27 mL of dichloromethane. The reaction gave 0.147 

g (70% yield, 0.721 mmol) of compound 2-72 as a light yellow oil. Rf = 0.21 (1% Ethyl 

acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.41 (d, 3H, J = 5.5 Hz), 2.12 (s, 6H), 

3.75 (s, 3H), 4.86-4.91 (m, 1 H), 5.63 (dd, 1H, J = 8.5, 2.5 Hz), 6.32 (dd, 1H, J = 8.5, 1.5 

Hz), 6.37 (s, 1H); 13C NMR (CDCl3, 125 MHz) δ 11.71, 12.05, 20.90, 56.11, 71.04, 

106.19, 119.03, 124.36, 125.36, 126.38, 126.41, 145.27, 151.62; IR (neat film) 3050, 

2974, 2931, 2845, 1608, 1579, 1463, 1425, 1386, 1321, 1228, 1109 cm-1; HRMS (TOF 

MS ES+) calcd for C13H17O2 (M
++H) m/z 205.1229, meas 205.1221. 

 

 

 

Compound 2-47: The carbene complex 2-46 (0.094 g, 0.296 mmol) was reacted with 

enyne 2-38 (0.081 g, 0.362 mmol) in 9 mL of dichloromethane. The reaction gave 0.057 

OCH3
(OC)5Cr

OTBS

O

H3CO
+ 60 °C, 24h

Solvent

2-43 2-67 2-72

OCH3
(OC)5Cr
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O

H3CO
+

Solvent
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g (78% yield, 0.232 mmol) of compound 2-47 as a light yellow oil. This reaction was also 

conducted in acetonitrile and gave 78% yield. Rf = 0.36 (1% Ethyl acetate / Hexane); 1H 

NMR (CDCl3, 500 MHz) δ 1.40 (s, 9H), 1.45 (s, 6H), 3.76 (s, 3H), 5.60 (d, 1H, J = 10 

Hz), 6.27 (d, 1H, J = 10 Hz), 6.42 (d, 1H, J = 3 Hz), 6.76 (d, 1H, J = 3 Hz); 13C NMR 

(CDCl3, 125 MHz) δ 27.34, 29.66, 34.66, 55.50, 75.54, 108.20, 113.47, 121.96, 123.16, 

130.80, 138.81, 145.25, 152.88; IR (neat film) 3041, 2961, 2873, 2835, 1599, 1468, 

1429, 1205 cm-1; HRMS (TOF MS ES+) calcd for C16H23O2 (M++H) m/z 247.1698, 

meas 247.1701. 

 

Reaction of complex 2-46 and enyne 2-41 with triflic acid workup: 

 

 

 

Compound 2-48: The carbene complex 2-46 (0.30 g, 0.94 mmol) was reacted with 

enyne 2-41 (0.269 g, 1.13 mmol) in 27 mL of acetonitrile. The crude reaction mixture 

was then treated with few drops of trifluoromethane sulfonic acid. The reaction gave 

0.159 g (65% yield, 0.649 mmol) of compound 2-48 as a light yellow oil. Rf = 0.32 (1% 

Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.37 (s, 9H), 1.41 (s, 6H), 2.14 (s, 

OCH3
(OC)5Cr

TBSO

O

H3CO
+

Solvent
60 °C, 24h

2-46 2-41 2-48
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3H), 3.76 (s, 3 H), 5.65 (d, 1H, J = 10 Hz), 6.52 (d, 1H, J = 10 Hz), 6.72 (s, 1H); 13C 

NMR (CDCl3, 125 MHz) δ 10.56, 27.18, 29.84, 34.66, 56.54, 74.43, 110.17, 120.16, 

120.31, 121.15, 130.93, 135.13, 145.40, 150.91; IR (neat film) 2960, 2926, 1595, 1409, 

1382 cm-1; HRMS (TOF MS EI+) calcd for C17H24O2 m/z 260.1776, meas 260.1774. 

 

 

Reaction of complex 2-46 and enyne 2-41 without triflic acid workup: 

 

 

 

The carbene complex 2-46 (0.30 g, 0.94 mmol) was reacted with enyne 2-41 (0.269 g, 

1.13 mmol) in 27 mL of dichloromethane. The reaction gave 0.187 g (76% yield, 0.719 

mmol) of compound 2-48 as a light yellow oil as the major product. A side product 2-49 

was also formed in the reaction and the ratio of compound 2-48 to compound 2-49 was 

84:16. The ratio of compound 2-48 to compound 2-49 was tested in this reaction with 

isopropanol as additive. With 10 equivalents of isopropanol, the ratio was 91:9. With 50 

equivalents of isopropanol the ratio remained the same. In presence of 100 equivalents 

of isopropanol the ratio was ≥ 95:5. The reaction was repeated again and the yield of 

compound 2-48 for the second run was 72%. The reaction was also performed in 

OCH3
(OC)5Cr TBSO

O

H3CO
+
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60 °C, 24h
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dichloromethane in presence of 10 equiv. of aniline as an additive and gave 86% yield 

of product 2-48 with no trace of side product. When the reaction was conducted in 

acetonitrile the ratio of compound 2-48 to compound 2-49 was 38:62.  

Isolation and Characterization of Compound 2-49: The side product 2-49 was 

purified from compound 2-48 by column chromatography using 40% CHCl3-Hexane. In 

some cases column chromatography had to be repeated two or three times to get a 

pure fraction of compound 2-49. Rf = 0.63 (40% Chloroform / Hexane); 1H NMR (CDCl3, 

500 MHz) δ 0.02 (s, 3H), 0.11 (s, 3H), 0.86 (s, 9H), 1.40 (s, 9 H), 1.68 (s, 3H), 1.80 (s, 

3H), 2.10 (s, 3H), 3.74 (s, 3H), 5.58-5.63 (m, 1H), 5.73 (d, 1H, J = 10 Hz), 6.75 (s, 1H), 

8.74 (s, 1H); 13C NMR (CDCl3, 125 MHz) δ –5.19, –4.73, 10.91, 18.01, 18.42, 25.58, 

25.86, 29.55, 34.90, 56.66, 70.64, 109.94, 120.50, 124.59, 127.53, 133.77, 134.99, 

149.51, 149.77; HRMS (TOF MS ES–) calcd for C23H39O3Si (M+–H) m/z 391.2668, 

meas 391.2656. 

Compound 2-49 was subjected to deuterium exchange and the 1H NMR spectrum of 

compound 2-49 OD was taken. 1H NMR (CDCl3, 500 MHz) δ 0.02 (s, 3H), 0.11 (s, 3H), 

0.86 (s, 9H), 1.40 (s, 9 H), 1.68 (s, 3H), 1.80 (s, 3H), 2.08 (s, 3H), 3.74 (s, 3H), 5.58-

5.63 (m, 1H), 5.73 (d, 1H, J = 10 Hz), 6.75 (s, 1H). 
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Acid Rearrangement of Compound 2-49 to 2-48: 

 

 

 

Compound 2-49 (0.043 g, 0.110 mmol) was taken up in a 25 mL round bottom flask in 

5 mL of dichloromethane and few drops of trifluoromethanesulfonic acid was added. 

The reaction mixture was stirred for 10 minutes. The reaction was then quenched with 

saturated aqueous sodium carbonate solution (10 mL). The aqueous phase was 

extracted with dichloromethane (5 mL x 2). The organic layers were combined and dried 

with MgSO4 and concentrated to dryness in vacuo. The compound 2-48 was obtained in 

quantitative yield (0.028 g, 0.110 mmol) and was analytically pure. 

 

 

 

Compound 2-54: The carbene complex 2-53 (0.30 g, 0.90 mmol) was reacted with 

enyne 2-38 (0.242 g, 1.08 mmol) in 27 mL of dichloromethane. The reaction gave 0.152 

g (65% yield, 0.580 mmol) of compound 2-54 as a light yellow oil. The reaction was 
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repeated two more times and both times the yield was 52%. This reaction was also 

conducted in acetonitrile and gave 23% yield. Rf = 0.27 (1% Ethyl acetate / Hexane); 1H 

NMR (CDCl3, 500 MHz) δ 0.22 (s, 9H), 1.40 (s, 6H), 3.73 (s, 3H), 5.59 (d, 1H, J = 10 

Hz), 6.27 (d, 1H, J = 10 Hz), 6.45 (s, 1H), 6.78 (s, 1H); 13C NMR (CDCl3, 125 MHz) δ –

0.94, 27.80, 55.64, 75.84, 107.60, 122.29, 122.39, 122.44, 129.03, 131.57, 146.22, 

158.53; IR (neat film) 3040, 2964, 2936, 2856, 1630, 1670, 1479, 1463, 1409, 1349, 

1261, 1248, 1199, 1164 cm-1; HRMS (TOF MS ES+) calcd for C15H23O2Si (M++H) m/z 

263.1467, meas 263.1470. 

 

 

 

Compound 2-55: The carbene complex 2-53 (0.30 g, 0.90 mmol) was reacted with 

enyne 2-41 (0.256 g, 1.08 mmol) in 27 mL of dichloromethane. The reaction gave 0.215 

g (87% yield, 0.779 mmol) of compound 2-55 as a light yellow oil. The reaction was 

repeated again and the yield was 81%. This reaction was also conducted in acetonitrile 

and gave 35% yield. Rf = 0.26 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) 

δ 0.26 (s, 9H), 1.40 (s, 6 H), 2.22 (s, 3H), 3.64 (s, 3H), 5.64 (d, 1H, J = 10 Hz), 6.48 (d, 

1H, J = 10 Hz), 6.67 (s, 1 H); 13C NMR (CDCl3, 125 MHz) δ –0.14 11.87, 27.75, 61.44, 

OCH3
(OC)5Cr

TMS

TBSO

O

H3CO

TMS

+
Solvent

60 °C, 24h
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74.97, 119.51, 119.83, 122.06, 125.49, 131.37, 132.80, 148.46, 157.62; IR (neat film) 

3050, 2977, 2955, 1620, 1590, 1456, 1391, 1368, 1289, 1248 cm-1; HRMS (TOF MS 

EI+) calcd for C16H24O2Si m/z 276.1546, meas 276.1553. 

 

 

 

Compound 2-57: The carbene complex 2-56 (0.300 g, 1.08 mmol) was reacted with 

enyne 2-38 (0.292 g, 1.30 mmol) in 27 mL of acetonitrile. The reaction gave 0.185 g 

(83% yield, 0.907 mmol) of compound 2-57 as a light yellow oil. The reaction in 

acetonitrile didnʼt need the oxidative workup. This reaction was also conducted in 

dichloromethane and gave 41% yield. Rf = 0.25 (1% Ethyl acetate / Hexane); 1H NMR 

(CDCl3, 500 MHz) δ 1.39 (s, 6H) 2.16 (s, 3 H), 3.73 (s, 3H), 5.61 (d, 1H, J = 10 Hz), 

6.25 (d, 1H, J = 10 Hz), 6.39 (d, 1 H, J = 3 Hz), 6.55 (d, 1H, J = 3 Hz); 13C NMR 

(CDCl3, 125 MHz) δ 15.59, 27.61, 55.57, 75.49, 108.69, 115.94, 121.30, 122.69, 

126.42, 131.44, 144.80, 153.03; IR (neat film) 3040, 2974, 2935, 2838, 1592, 1465, 

1207 cm-1; HRMS (TOF MS EI+) calcd for C13H16O2 m/z 204.1150, meas 204.1145. 

 

OCH3
(OC)5Cr

TBSO

O

H3CO

2-38

+
Solvent

60 °C, 24h
2-56 2-57



	
   239	
  

 

 

Compound 2-58: The carbene complex 2-56 (0.300 g, 1.08 mmol) was reacted with 

enyne 2-41 (0.310 g, 1.30 mmol) in 27 mL of dichloromethane. The reaction gave 0.145 

g (61% yield, 0.665 mmol) of compound 2-58 as a light yellow oil. This reaction was also 

conducted in acetonitrile and gave 48% yield. The reaction in acetonitrile didnʼt need the 

oxidative workup. Rf = 0.27 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 

1.37 (s, 6H) 2.14 (s, 3H), 2.16 (s, 3H), 3.75 (s, 3H), 5.67 (d, 1H, J = 10 Hz), 6.52 (d, 1H, 

J = 10 Hz), 6.53 (s, 1H); 13C NMR (CDCl3, 125 MHz) δ 10.49, 15.64, 27.41, 56.24, 

74.38, 113.08, 119.61, 119.97, 120.47, 122.82, 131.44, 144.76, 151.08; IR (neat film) 

3060, 2975, 2930, 2880, 1591, 1466, 1412, 1390, 1260, 1213, 1110 cm-1; HRMS (TOF 

MS EI+) calcd for C14H18O2 m/z 218.1307, meas 218.1305. 

 

 

 

Compound 2-60: The carbene complex 2-59 (0.300 g, 1.08 mmol) was reacted with 

enyne 2-38 (0.292 g, 1.30 mmol) in 27 mL of dichloromethane. The reaction gave 0.10 g 

(45% yield, 0.490 mmol) of compound 2-60 as a light yellow oil. This reaction was also 
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conducted in three other solvents, which were acetonitrile, hexane and benzene and 

gave 26%, 55% and 38% yields respectively. The yield in acetonitrile was the average 

of two runs. Rf = 0.25 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.38 

(s, 6H), 2.14 (s, 3H), 3.75 (s, 3H), 5.53 (d, 1H, J = 9.5 Hz), 6.25 (d, 1H, J = 9.5 Hz), 6.45 

(s, 1H), 6.58 (s, 1H); 13C NMR (CDCl3, 125 MHz) δ 16.20, 27.62, 55.90, 75.64, 108.19, 

118.57, 119.01, 122.36, 127.51, 130.19, 146.25, 151.87; IR (neat film) 3039, 2973, 

2925, 2859, 1701, 1498, 1465,1418, 1362, 1207 cm-1; HRMS (TOF MS ES+) calcd for 

C13H17O2 (M
++H) m/z 205.1229, meas 205.1236. 

 

 

 

Compound 2-61: The carbene complex 2-59 (0.300 g, 1.08 mmol) was reacted with 

enyne 2-41 (0.31 g, 1.3 mmol) in 27 mL of dichloromethane. The reaction gave 0.16 g 

(68% yield, 0.73 mmol) of compound 2-61. A repeat of the reaction gave the same yield. 

This reaction was also conducted in three other solvents, which were acetonitrile, 

hexane and benzene and gave 34%, 74% and 57% yields respectively. Rf = 0.25 (1% 

Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.38 (s, 6H), 2.20 (s, 6H), 3.63 (s, 

3H), 5.58 (d, 1H, J = 10 Hz), 6.45 (d, 1H, J = 10 Hz), 6.46 (s, 1H); 13C NMR (CDCl3, 

OCH3
(OC)5Cr
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125 MHz) δ 11.27, 16.27, 27.60, 60.10, 74.90, 116.02, 118.52, 119.57, 126.30, 129.94, 

131.21, 148.73, 150.66; IR (neat film) 3045, 2975, 2933, 2860, 1634, 1608, 1476, 1470, 

1407, 1256 cm-1; HRMS (TOF MS EI+) calcd for C14H18O2 m/z 218.1307, meas 

218.1304. 

 

 

 

Compound 2-63: The carbene complex 2-62 (0.30 g, 0.95 mmol) was reacted with 

enyne 2-38 (0.255 g, 1.14 mmol) in 27 mL of dichloromethane. The reaction gave 0.167 

g (72% yield, 0.684 mmol) of compound 2-63 as a light yellow oil. This reaction was also 

conducted in acetonitrile and gave 65% yield. The reaction in acetonitrile did not need 

the oxidative workup. Rf = 0.36 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 

MHz) δ 1.37 (s, 6H), 1.70-1.72 (m, 4H), 2.57-2.63 (m, 4H), 3.74 (s, 3H), 5.53 (d, 1H, J = 

8 Hz), 6.24 (d, 1H, J = 8 Hz), 6.32 (s, 1H); 13C NMR (CDCl3, 125 MHz) δ 22.28, 22.41, 

23.18, 23.60, 27.73, 55.65, 75.40, 104.80, 117.51, 122.77, 126.51, 127.04, 129.86, 

144.19, 151.04; IR (neat film) 3039, 2970, 2931 2867, 1636, 1607, 1577, 1259, 1434, 

1424, 1328, 1271, 1107 cm-1; HRMS (TOF MS ES+) calcd for C16H21O2 (M++H) m/z 

245.1542, meas 245.1533. 
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Compound 2-64: The carbene complex 2-62 (0.30 g, 0.95 mmol) was reacted with 

enyne 2-41 (0.271 g, 1.14 mmol) in 27 mL of dichloromethane. The reaction gave 0.196 

g (80% yield, 0.759 mmol) of compound 2-64. This reaction was also conducted in 

acetonitrile that gave 68% yield. The reaction in acetonitrile didnʼt need the oxidative 

workup. Rf = 0.27 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.37 (s, 

6H), 1.70-1.72 (m, 4H), 2.18 (s, 3H), 2.56-2.59 (m, 2H), 2.67-2.71 (m, 2H), 3.62 (s, 3H), 

5.57 (d, 1H, J = 8 Hz), 6.46 (d, 1H, J = 8 Hz); 13C NMR (CDCl3, 125 MHz) δ 11.26, 

22.72, 22.82, 23.20, 24.23, 27.97, 60.19, 74.90, 117.53, 120.03, 122.96, 123.87, 

129.83, 131.22, 146.80, 149.92; IR (neat film) 3096, 2974, 2932, 2858, 1638, 1596, 

1452, 1415, 1322, 1268 cm-1; HRMS (TOF MS ES+) calcd for C17H23O2 (M++H) m/z 

259.1698, meas 259.1705. 

 

 

 

Lapachenole 3-28: The carbene complex 3-41 (0.30 g, 0.96 mmol) was reacted with 

enyne 2-38 (0.258 g, 1.15 mmol) in 20 mL of toluene in presence of 10 equiv. of aniline 
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as additive. The reaction was run at 60 °C for 24 h. The reaction gave 0.11 g (48% 

yield, 0.46 mmol) of compound 3-28 as a light yellow oil. The compound was dissolved 

in a little pentane and was allowed to evaporate slowly. This process left a layer of waxy 

crystal. Rf = 0.23 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.48 (s, 

6H), 3.94 (s, 3H), 5.64 (d, 1H, J = 9.5 Hz), 6.39 (d, 1H, J = 9.5 Hz), 6.50 (s, 1H), 7.40-

7.47 (m, 2H), 8.14 (d, 2H, J = 8.30 Hz); 13C NMR (CDCl3, 125 MHz) δ 27.52, 55.74, 

76.16, 102.47, 114.74, 121.66, 121.78, 123.02, 125.43, 125.82, 125.88, 125.98, 129.89, 

141.88, 149.22; IR (neat film) 3067, 3041, 2973, 2933, 2863, 2834, 1644, 1598, 1457, 

1370 cm-1; HRMS (TOF MS ES+) calcd for C16H17O2 (M
++H) m/z 241.1229, meas 

241.1217. 

 

 

 

5-Methyl-Lapachenole 3-46: The carbene complex 3-41 (0.30 g, 0.96 mmol) was 

reacted with enyne 2-41 (0.274 g, 1.15 mmol) in 20 mL of toluene in presence of 10 

equiv. of aniline as additive. The reaction was run at 60 °C for 24 h. The reaction gave 

0.21 g (85% yield, 0.82 mmol) of compound 3-46 as a light yellow oil. This reaction was 

also conducted in toluene without aniline and gave 80% yield. Rf = 0.22 (1% Ethyl 

acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.50 (s, 6H), 2.41 (s, 3H), 3.85 (s, 3H), 

Cr(CO)5
H3CO

+
TBSO Solvent

O

H3CO

3-41 2-41 3-46

60 °C, 24 h
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5.69 (d, 1H, J = 10 Hz), 6.61 (d, 1H, J = 10 Hz), 7.38-7.46 (m, 2H), 7.98 (d, 1H, J = 8.30 

Hz), 8.18 (d, 1H, J = 8.06 Hz); 13C NMR (CDCl3, 125 MHz) δ 11.70, 27.47, 61.42, 

75.51, 115.39, 119.97, 121.57, 122.22, 122.44, 124.66, 126.13, 128.04, 129.68, 144.57, 

146.88; IR (neat film) 3069, 2975, 2934, 2843, 1643, 1455, 1378, 1360 cm-1; HRMS 

(TOF MS ES+) calcd for C17H19O2 (M
++H) m/z 255.1385, meas 255.1377. 

 

 

 

Compound 3-49: The carbene complex 3-41 (0.30 g, 0.96 mmol) was reacted with 

enyne 3-47 (0.341 g, 1.15 mmol) in 20 mL of toluene in presence of 10 equiv. of aniline 

as additive. The reaction was run at 60 °C for 24 h. The reaction gave 0.26 g (65% 

yield, 0.62 mmol) of compound 3-49 (1.14:1.00 mixture of diastereomers 3-49a and 3-

49b) as light yellow oil. Compounds 3-49a and 3-49b were separated by preparative 

TLC. This reaction was also conducted in toluene in presence of 10 equiv. of aniline as 

additive and gave 62% yield of compound 3-49 as major product. However the crude 1H 

NMR spectrum revealed a trace amount of another compound, which is tentatively 

identified as compound 3-48. 
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Compound 3-49a: 1H NMR (CDCl3, 500 MHz) δ –0.05 - –0.03 (m, 6H), 0.13 (s, 9H), 

0.83 (s, 9H), 1.64 (s, 3H), 1.71 (s, 3H), 3.30 (s, 3H), 5.34 (d, 1H, J = 1.2 Hz), 6.00 (s, 

1H), 7.13-7.26 (m, 3H), 7.34 (dd, 2H, J = 7.9, 1.6 Hz); 13C NMR (CDCl3, 125 MHz) δ –

0.22, 18.01, 19.29, 25.60, 25.67, 27.39, 57.07, 77.25 (overlapped with CDCl3), 87.41, 

119.42, 120.51, 124.39, 127.38, 127.49, 128.59, 128.86, 135.54, 138.31, 160.41; IR 

(neat film) 3059, 2956, 2930, 2899, 2858, 1590, 1472, 1253, 1198, 1166 cm-1; HRMS 

(TOF MS ES+) calcd for C24H41O2Si2 (M
++H) m/z 417.2645, meas 417.2627. 

Compound 3-49b: 1H NMR (CDCl3, 500 MHz) δ –0.27 (s, 9H), 0.14 (s, 6H), 0.94 (s, 

9H), 1.74 (s, 3H), 1.86 (s, 3H), 3.22 (s, 3H), 5.50-5.71 (m, 1H), 6.28 (s, 1H), 7.26-7.32 

(m, 2H), 7.32-7.37 (m, 3H); 13C NMR (CDCl3, 125 MHz) δ  –4.86, 0.57, 18.44, 19.25, 

25.96, 28.02, 56.39, 77.45, 87.17, 121.21, 123.94, 126.00, 128.05, 128.58, 129.60, 

130.31, 137.15, 137.78, 158.69; IR (neat film) 3060, 2957, 2931, 2857, 1589, 1257, 

1196, 1165 cm-1; HRMS (TOF MS ES+) calcd for C24H41O2Si2 (M
++H) m/z 417.2645, 

meas 417.2631. 
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Preparation and Isolation of the Intermediate Chromium Tricarbonyl Complex (2-

74): 

 

 

 

To a 100 mL Schlenk flask was added carbene complex 2-43 (0.300 g, 1.03 mmol), 

alkyne 2-38 (0.278 g, 1.24 mmol), and dichloromethane (10 mL).  The contents of the 

flask were heated for 24 hours at 45 °C. The solvent was quickly removed under 

reduced pressure at room temperature and loaded onto a silica gel column. The column 

was eluted with 4:1 pentane : ether. The compound 2-74 was collected and most of the 

solvent was removed below room temperature under a nitrogen purge through the 

solution. Finally rest of the solvent was removed under reduced pressure in a rotavapor 

without applying any heat. Yield = 61%; bright yellow crystal, mp 125 °C; Rf = 0.35 (4:1 

pentane / ether); 1H NMR (CDCl3, 500 MHz) δ 1.37 (s, 3H), 1.50 (s, 3H), 2.16 (s, 3H), 

2.22 (s, 3H), 3.68 (s, 3H), 4.98 (s, 1H), 5.64 (d, 1 H, J = 10 Hz), 6.05 (d, 1H, J = 10 Hz); 

13C NMR (CDCl3, 125 MHz) δ 12.48, 12.76, 25.65, 29.45, 56.39, 72.47, 78.31, 85.62, 

98.39, 98.62, 120.06, 128.15, 132.85, 135.31, 235.22; IR (neat film) 2975, 2928, 2855, 

1945, 1874, 1458 cm-1; HRMS (TOF MS ES+) calcd for C17H19O5Cr (M++H) m/z 

355.0638, meas 355.0624. 
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Synthesis of Vitamin E: 

Preparation of Enyne (3-20): 

 

 

 

In dichloromethane (60 mL), DMSO (1.57 g, 1.43 mL, 20.1 mmol) was treated with 

oxalyl chloride (0.93 g, 0.65 mL, 7.41 mmol) at -78 °C for 5 minutes. Then (all-rac)- 

phytol 3-4 (2.00 g, 2.35 mL, 6.74 mmol, from Sigma-Aldrich) was added and the 

reaction mixture was stirred for 15 minutes. Triethyl amine (4.75 g, 6.54 mL, 47.0 mmol) 

was added. The reaction was warmed to room temperature over an hour. The solution 

was poured into 100 mL of 1M HCl. The solution was extracted with ethyl acetate (3 x 

100 mL). The organic layers were combined and washed with brine (50 mL). The brine 

layer was back extracted with 3 x 25 mL of ethyl acetate. The organic layers were 

combined and dried and neutralized over solid sodium bicarbonate and magnesium 

sulfate. The solvent was removed under reduced pressure and crude aldehyde 3-4a 

was used without further purification.  

To all of the crude aldehyde from the above oxidation, was added propynyl magnesium 

bromide (0.5 M in THF, 19.8 mL, 9.87 mmol) over 10 minutes in THF (20 mL) at -78 °C. 

The solution was warmed to 0 °C and stirred for 1 h. After completion (as judged by 

TLC) the reaction mixture was then poured into 20 mL of saturated ammonium chloride 

HO R
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(COCl)2
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Et3N

MgBr OH
R

TBSCl
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DMF, RT

R =

O R THF
-78 to 0 °C3-4a 3-4b
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solution. The aqueous layer was separated and extracted with ethyl acetate (20 mL x 3).  

The organic layers were combined and dried over magnesium sulfate.  The solution was 

filtered through and the solvent was removed under reduced pressure in a rotavapor. All 

of the crude alcohol was used in the next step.  

The alcohol 3-4b was reacted with TBSCl (1.25 g, 8.29 mmol), imidazole (0.820 g, 12.1 

mmol) in dry DMF (110 mL). The mixture was stirred at room temperature for overnight.  

The solution was extracted with ether (100 mL x 2), saturated ammonium chloride 

solution (100 mL), and water (100 mL). Each aqueous layer was then back extracted 

with ether (25 mL x 3).  The organic layers were combined and dried over magnesium 

sulfate.  The crude product was purified by chromatography on silica gel with 5% ethyl 

acetate / hexane. The final enyne 3-20 was prepared in 86% yield (2.61 g, 5.82 mmol) 

over 3 steps following the procedure described above for compound 2-38 as a light 

yellow oil. Rf = 0.66 (5% Ethyl Acetate - Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.08 (s, 

3H), 0.09 (s, 3H), 0.82-0.86 (m, 12H), 0.88 (s, 9H), 0.99-1.55 (m, 22H), 1.80 (d, 3H, J = 

2 Hz), 1.94 (t, 2H, J = 5 Hz), 5.00-5.04 (m, 1H), 5.27-5.30 (m, 1H); 13C NMR (CDCl3, 

125 MHz) δ –4.59, –4.54, –4.40, –4.33, 3.72, 16.37, 16.38, 18.31, 19.64, 19.65, 19.68, 

19.70, 19.72, 19.75, 22.62, 22.71, 23.22, 24.42, 24.44, 24.46, 24.80, 24.81, 24.89, 

25.88, 25.91, 26.03, 26.05, 27.97, 32.54, 32.65, 32.67, 32.68, 32.70, 32.75, 32.77, 

32.79, 32.80, 36.60, 36.69, 36.70, 37.31, 37.37, 37.41, 37.46, 39.37, 39.53, 59.90, 

60.25, 79.72, 80.57, 126.27, 126.84, 136.90, 136.91; IR (neat film) 1597, 1463, 1376, 

1259, 1089, 1037 cm-1; HRMS (TOF MS ES+) calcd for C29H56OSi m/z 448.4100, 
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meas 448.4119. 

 

Preparation of Compound 3-21: 

 

 

 

To a 100 mL single neck flask that had been modified by replacement of the joint with a 

threaded high vacuum Teflon valve was added carbene complex 2-43 (0.300 g, 1.03 

mmol), alkyne 3-20 (0.556 g, 1.24 mmol), and dichloromethane (27 mL).  The contents 

of the flask were heated for 24 hours at 60 °C. The solvent was removed under reduced 

pressure and dissolved in 15 mL ether and also 15 mL of water was added. In that 

reaction mixture FeCl3•DMF complex (1.85 g, 7.75 mmol) was added. The mixture was 

stirred for 2 hours. The oxidation was monitored by TLC. After the oxidation was 

complete, the organic layer was separated and the water layer was washed with 3 x 20 

mL of ether. All the organic layers were combined and dried with magnesium sulfate. 

The solvent was removed and the crude compound was purified by column 

chromatography using 1% ethyl acetate/hexane as the eluent. The yield of the product 

3-21 was 85% (0.39 g, 0.88 mmol). The reaction was repeated in acetonitrile and the 

yield was 73%. Light yellow oil; Rf = 0.30 (1% Ethyl Acetate - Hexane); 1H NMR (CDCl3, 

OCH3
(OC)5Cr +

2-43

TBSO
R

3-20
O

H3CO

R
3-21

R =
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500 MHz) δ 0.8-0.86 (m, 12H), 1.00-1.62 (m, 24H), 2.67 (s, 3H), 2.16 (s, 3H), 2.19 (s, 

3H), 3.60 (s, 3H), 5.56 (d, 1H, J = 10 Hz), 6.48 (d, 1H, J = 10 Hz); 13C NMR (CDCl3, 

125 MHz) δ 11.13, 11.54, 12.78, 19.57, 19.62, 19.64, 19.67, 19.74, 21.37, 21.39, 21.40, 

22.62, 22.71, 24.42, 24.44, 24.46, 24.79, 24.81, 25.63, 27.97, 32.67, 32.70, 32.77, 

32.79, 37.29, 37.30, 37.34, 37.36, 37.39, 37.45, 39.37, 40.92, 40.95, 60.32, 117.86, 

120.14, 122.60, 123.10, 129.44, 129.46, 129.99, 146.87, 150.12; IR (neat film) 3010, 

2951, 2927, 2867, 1460, 1407, 1381, 1265 cm-1; HRMS (TOF MS ES+) calcd for 

C30H51O2 (M
++H) m/z 443.3889, meas 443.3868. 

 

Preparation of compound 3-22: 

 

 

 

A 10 mL single neck flask was charged with compound 3-21 (0.20 g, 0.45 mmol), ethyl 

acetate (6 mL), isopropanol (6 mL), and 10 % Pd on carbon (0.096 g). The flask was 

fitted with a septum and then high vacuum was applied very briefly through a needle 

and as soon as the solvent began to bubble, vacuum was replaced with hydrogen 

introducing hydrogen filled balloon.  The reaction was stirred for overnight at room 

O

H3CO

R
3-21

O

H3CO

R
3-22

Pd/C, H2
EtOAc, iPrOH

R =
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temperature.  The reaction mixture was filtered through Celite and the organic solvent 

was removed under reduced pressure to give compound 3-22 in 100% yield (0.20 g, 

0.45 mmol) as a colorless oil. Rf = 0.28 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 

500 MHz) δ 0.81-0.86 (m, 12H), 1.00-1.58 (m, 24H), 1.70-184 (m, 2H), 2.06 (s, 3H), 

2.12 (s, 3H), 2.17 (s, 3H), 2.56 (t, 2H, J = 5.6 Hz), 3.61 (s, 3H); 13C NMR (CDCl3, 125 

MHz) δ 11.64, 11.68, 11.73, 11.77, 12.51, 12.54, 19.59, 19.62, 19.66, 19.68, 19.74, 

20.64, 21.04, 22.62, 22.71, 23.88, 23.89, 24.44, 24.81, 27.97, 29.70, 31.24, 31.29, 

32.68, 32.70, 32.77, 32.79, 37.29, 37.34, 37.37, 37.39, 37.42, 37.46, 37.50, 37.57, 

37.59, 39.38, 40.07, 40.11, 60.27, 60.32, 60.37, 60.43, 74.75, 74.76, 117.50, 122.87, 

125.67, 127.70, 147.77, 149.38; IR (neat film) 2927, 2867, 1459, 1404, 1380, 1257, 

1090 cm-1; HRMS (TOF MS ES+) calcd for C30H53O2 (M
++H) m/z 445.4046, meas 

445.4043. 

 

Preparation of compound (all-rac)-α-Tocopherol 3-3: 

 

 

 

O

H3CO

R

BF3•SMe2, AlCl3
CH2Cl2, MeCN O

HO

R
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The final cleavage of the methoxy ether was performed with a method developed for the 

conversion of 3-22 to vitamin E.161 To a solution of compound 3-22 (0.100 g, 0.225 

mmol) in dichloromethane (2.5 mL) and acetonitrile (1.7 mL) were added boron 

trifluoride-dimethylsulfide complex (0.420 mL, 3.99 mmol) and anhydrous aluminum 

chloride (0.300 g, 2.25 mmol) at 0 ºC. The reaction mixture was stirred for 6 h at room 

temperature. The solvent was evaporated in rotavapor. The mixture was neutralized by 

adding ice-cold sat. aqueous NaHCO3 (10 mL) and extracted with ethyl acetate (15 mL 

x 3). The organic phases were combined and washed with water and brine and dried 

with Na2SO4. After evaporation of the volatiles in rotavapor, the residue was purified by 

flash chromatography using Hexane/ethyl acetate (v/v, 5:1) as eluent to provide 

compound 3-3 (vitamin E) as light yellow oil (0.083 g, yield 86%). Rf = 0.16 (5% Ethyl 

acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.80-0.89 (m, 12H), 1.02-1.59 (m, 

24H), 1.72-1.84 (m, 2H), 2.10 (s, 6H), 2.15 (s, 3H), 2.60 (t, 2H, J = 6.84 Hz), 4.16 (s, 

1H); 13C NMR (CDCl3, 125 MHz) δ 11.26, 11.76, 12.19, 19.59, 19.63, 19.65, 19.68, 

19.70, 19.74, 20.76, 21.04, 21.05, 21.07, 22.62, 22.71, 23.79, 24.44, 24.80, 24.81, 

27.97, 31.50, 31.55, 32.68, 32.69, 32.70, 32.71, 32.78, 32.79, 37.28, 37.33, 37.39, 

37.40, 37.41, 37.45, 37.46, 37.47, 37.50, 37.56, 37.59, 39.37, 39.81, 39.88, 74.51, 

117.34, 118.45, 121.00, 122.61, 144.52, 145.55; IR (neat film) 3469, 2926, 2867, 1461, 

1379, 1261, 1085 cm-1; HRMS (TOF MS ES+) calcd for C29H51O2 (M++H) m/z 

431.3889, meas 431.3881.  
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5.3 Chapter Four Experimental 

Preparation of the compound rac-4-34: 

 

 

 

In diethyl ether (250 mL), TMS acetylene (3.06 g, 31.1 mmol) was deprotonated with n-

butyl lithium (2.5 M in hexane, 12.5 mL, 31.1 mmol) at -78 ºC.  The solution was allowed 

to warm to room temperature over one hour.  The solution was recooled to –78 ºC and 

the prepared aldehyde 4-33 was added dropwise.  The solution was warmed to 0 ºC 

and stirred for 40 minutes.  The solution was then warmed to room temperature.  The 

solution was poured into 100 mL of saturated aqueous ammonium chloride and back 

extracted with ether (3 x 100 mL).  The organic layer was dried over magnesium sulfate, 

filtered through Celite, and the solvent removed under reduced pressure. Column 

chromatography with 10 % ethyl acetate / hexane gave 5.39 g of compound rac-4-34 

(83 % yield over two steps, 21.5 mmol). The spectroscopic properties match with the 

previously reported data.162 

 

1H NMR (CDCl3, 600 MHz) δ 0.15 (s, 9 H), 1.58 (s, 3 H), 1.66 (s, 3 H), 1.69 (s, 3 H), 

1.76 (br s, 1 H), 2.00 - 2.14 (m, 2 H), 2.07 – 2.12 (m, 2 H), 5.03 - 5.09 (m, 2 H), 5.32 - 

H
O

TMS
nBuLi, ether

OH

TMS

4-33 rac-4-34
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5.35 (m, 1 H); 13C NMR (CDCl3, 150 MHz) δ –0.14, 16.58, 17.69, 25.66, 26.15, 39.28, 

59.49, 88.98, 106.08, 123.65, 124.30, 131.87, 140.64. 

 

Preparation of the compound 4-35: 

 

 

 

A 500 mL round bottom flask was charged with compound rac-4-34 (5.16 g, 20.6 mmol), 

DCM (250 mL), and MnO2 (17.43 g, 200.4 mmol).  The contents of the flask were stirred 

overnight and filtered through Celite washing with DCM to remove the MnO2.  Column 

chromatography with 10 % ethyl acetate / hexane gave 3.89 g (76 % yield, 15.7 mmol) 

of 4-35. The spectroscopic properties match with the previously reported data.162  

1H NMR (CDCl3, 500 MHz) δ 0.22 (s, 9 H), 1.59 (s, 3 H), 1.67 (s, 3 H), 2.15 – 2.17 (m, 4 

H), 2.18 (s, 3 H), 5.03 (br s, 1 H), 6.15 (s, 1 H); 13C NMR (CDCl3, 150 MHz) δ –0.76, 

17.66, 19.86, 25.61, 26.05, 41.38, 95.81, 104.66, 122.71, 125.30, 132.71, 161.76, 

176.34;  

 

 

 

OH

TMS
MnO2

DCM, RT, 12 h

O

TMS

rac-4-34 4-35
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Preparation of the compound (S)-4-34: 

 

 

 

To a solution of (S)-(–)-2-methyl-CBS-oxazaborolidine (2.21 g, 7.9 mmol) and 

compound 4-35 (0.97 g, 3.9 mmol) at –45 ºC in 40 mL of THF was added dropwise 

slowly BH3•SMe2 (2 mL of a 2 M solution in THF, 4.0 mmol).  The solution was warmed 

to –30 ºC over 30 minutes.  The TLC was checked to insure the reaction was complete.  

To the stirring solution was added methanol (20 mL) via syringe. The solvent was 

evaporated under reduced pressure. The residue was purified by column 

chromatography (5 : 1 pentane : ether) to give 0.52 g (76%, 2.10 mmol) of compound 

(S)-4-34 as light yellow oil. The spectroscopic properties were identical with those 

previously reported for the racemate rac-4-34. The enantioselectivity was determined to 

be 95% ee by chiral HPLC with Chiralcel OD-H column using 99.6 : 0.4 hexane : 

isoprpanol at 0.7 mL/min gave retention times of 16.05 minutes for the major and 18.38 

minutes for the minor enantiomers. [∝]D
22 +69.3° (c 1.00, CH2Cl2) at 99 % ee. The 

reaction was also repeated and the enantioselectivity was found to be 98%, 97% and 

99%. The spectroscopic properties match with the previously reported data for the 

racemic compound 4-34.162  

O

TMS

OH

TMS
2 equiv CBS Cat

1 equiv BH3•SMe2
–45 to –30 °C, 30 min

4-35 (S)-4-34
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Preparation of the compound (S)-4-36: 

 

 

 

To a stirred solution of compound (S)-4-34 (0.61 g, 2.44 mmol) in 12 mL of THF, TBAF 

(1M in THF, 2.68 mL, 2.68 mmol) was added slowly at RT and stirred at this 

temperature for 1 h. The reaction mixture was then added slowly to a vigorously stirred 

mixture of 25 mL of brine. The aqueous layer was extracted with ether (3 x 25 mL). The 

organic layers were combined and dried with MgSO4. Ether was distilled off under 

reduced pressure and the crude product was purified by column chromatography 

(eluent: dichloromethane) to give pure product (S)-4-36 as a light yellow oil (0.43 g, 2.39 

mmol, 98%). The spectroscopic properties match the previously reported data.162  

 

1H NMR (CDCl3, 500 MHz) δ 1.58 (s, 3 H), 1.66 (s, 3 H), 1.70 (d, 3 H, J = 1.3 Hz), 1.87 

(br s, 1H), 1.95 - 2.15 (m, 2 H), 2.60 – 2.12 (m, 2 H), 2.47 (d, 1 H, J = 2.0 Hz), 5.01 - 

5.08 (m, 2 H), 5.34 – 5.38 (m, 1 H); 13C NMR (CDCl3, 125 MHz) δ 16.58, 17.66, 25.64, 

26.14, 39.23, 58.88, 72.43, 84.44, 123.55, 123.97, 131.95, 140.93. 

 

 

OH

TMS
TBAF, THF

OH

(S)-4-34 (S)-4-36

RT, 1 h
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Preparation of the compound (S)-4-37: 

 

 

 

To a mixture of imidazole (0.27 g, 4.0 mmol) and TBSCl (0.44 g, 2.9 mmol) in DMF (30 

mL) was added compound (S)-4-36 (0.47 g, 2.6 mmol, 98 % ee).  The reaction mixture 

was stirred over night.  The solution was quenched with 30 mL of saturated aqueous 

ammonium chloride and the aqueous layer was back extracted with ethyl acetate (2 x 

30 mL).  The organic layers were combined and dried over magnesium sulfate.  The 

solution was filtered through fluted filter paper and then the solvent was removed under 

reduced pressure.  Column chromatography with 5 % ethyl acetate / hexane gave 0.68 

g (89 %, 2.31 mmol) of (S)-4-37. The spectroscopic properties match with the previously 

reported data.162  

 

1H NMR (CDCl3, 500 MHz) δ 0.09 (s, 3 H), 0.1 (s, 3 H), 0.87 (s. 9H), 1.57 (s, 3 H), 1.65 

(s, 6 H), 1.94 - 2.5 (m, 4 H), 2.40 (d, 1 H, J = 2.1 Hz), 5.00 - 5.12 (m, 2 H), 5.31 (dd, 1 H, 

J = 8.2, 1.2 Hz); 13C NMR (CDCl3, 125 MHz) δ –4.69, –4.54, 16.45, 17.63, 18.18, 

25.63, 25.75, 26.07, 39.20, 59.87, 71.56, 85.03, 123.77, 125.71, 131.60, 137.42. 

 

OH

TBSCl, Imidazole
CH2Cl2

OTBS

(S)-4-37(S)-4-36
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Preparation of the compound rac-4-37: 

 

 

 

In dichloromethane (250 mL), DMSO (5.5 mL, 77.5 mmol) was treated with oxalyl 

chloride (2.5 mL, 28.5 mmol, 1.1 eq) at -78 °C for 5 minutes then geraniol 4-32 (4.5 mL, 

25.9 mmol) was added and the reaction mixture was stirred for 15 minutes. Triethyl 

amine (25.3 mL, 181.0 mmol, 7 eq.) was added. The reaction was warmed to room 

temperature over an hour. The solution was poured into 200 mL of 1 (M) HCl. The 

solution was extracted with ethyl acetate (3 x 200 mL). The organic layers were 

combined and washed with brine (100 mL). The brine layer was back extracted with (3 x 

50 mL) ethyl acetate. The organic layers were combined and dried over magnesium 

sulfate. The solvent was removed under reduced pressure and crude aldehyde 4-33 

was used in the next step without further purification. The spectroscopic properties were 

identical with that previously reported in the literature.163 

To the aldehyde 4-33 was added ethynyl magnesium bromide (0.5 M in THF, 55 mL, 

27.5 mmol) over 10 minutes in 55 mL of THF at –78 ºC.  The solution was warmed to 0 

ºC and stirred for 1 hour.  The reaction mixture was poured into 100 mL of saturated 

ammonium chloride and back extracted with (3 x 50 mL) ethyl acetate.  The resulting 

organic layers were combined and dried over magnesium sulfate.  The solution was 

OH (COCl)2
DMSO
Et3N

O
MgBr

OH TBSCl
  Imidazole

DCM

OTBS

4-32 4-33 rac-4-36 rac-4-37
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filtered through fluted filter paper and the solvent removed under reduced pressure.  The 

crude compound rac-4-36 was pure enough (from NMR) to be used in the next step 

without any purification. 

To a mixture of imidazole (2.82 g, 41.4 mmol) and TBSCl (4.66 g, 31.1 mmol) in DMF 

(100 mL) all the crude compound rac-4-36 was added.  The reaction mixture was stirred 

over night.  The solution was quenched with 150 mL of saturated ammonium chloride 

and the aqueous layer was back extracted with ether (3 x 100 mL).  The organic layers 

were combined and dried over magnesium sulfate.  The solution was filtered through 

fluted filter paper and then the solvent was removed under reduced pressure.  Column 

chromatography with 5 % ethyl acetate / hexane gave 5.69 g (75 %, 19.5 mmol) of rac-

4-37. Light yellow oil; Rf = 0.73 (5% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) 

δ 0.09 (s, 3H), 0.10 (s, 3H), 0.88 (s, 9H), 1.57 (s, 3H), 1.65 (s, 6H), 1.97-2.01 (m, 2H), 

2.05- 2.09 (m, 2H), 2.39 (d, 1H, J = 1.5 Hz), 5.03-5.06 (m, 2H), 5.28-5.32 (m, 1H); 13C 

NMR (CDCl3, 125 MHz) δ –4.67, –4.54, 16.49, 17.66, 18.22, 25.67, 25.76, 26.06, 39.19, 

59.87, 71.56, 85.06, 123.75, 125.61, 131.70, 137.54; IR (neat film) 2958, 2934, 2858, 

1606, 1388, 1262 cm-1; HRMS (TOF MS ES+) calcd for C18H32OSi (M
+–OTBS) m/z 

161.1330, meas 161.1334.  
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Preparation of the compound rac-4-39: 

 

 

 

The carbene complex 4-38 (0.09 g, 0.25 mmol), enyne rac-4-37 (0.09 g, 0.29 mmol), 

and solvent (8.00 mL) were added to a 25 mL Schlenk flask. The reaction mixture was 

deoxygenated by the freeze-pump-thaw method (3 cycles) and finally the flask was 

back-filled with argon. The reaction mixture was stirred and heated at 80 ºC for 24 

hours. The solvent was removed under reduced pressure and the crude compound was 

dissolved in 8 mL of diethyl ether. To this mixture, water (8 mL) and 7.5 equiv. of 

FeCl3•DMF complex were added and stirred under air. Upon completion of the oxidation 

(judged by TLC), the organic layer was separated. The aqueous layer was washed with 

ether (3 x 15 mL). Organic layers were combined, washed with brine and dried over 

magnesium sulfate. Column chromatography with 1% ethyl acetate / hexane gave pure 

compound rac-4-39 (0.02 g, 0.06 mmol, 24% yield). 

The reaction was also conducted in toluene in presence of 10 equivalents of aniline as 

an additive at 60 ºC and the yield was 66% but in presence of 5 equivalents of Hünigʼs 

base (at 80 ºC) the yield was 34%. The reaction was also repeated in dichloroethane in 

presence of 5 equivalents of Hünigʼs base (at 80 ºC). The yield of the product was not 

determined as the product yield was very low and it was mixed with an inseparable 

Ph

Cr(CO)5

H3CO
+

OTBS
1) solvent, additive
    temp, 24 h

O
Ph

H3CO

rac-4-374-38 rac-4-39

2) FeCl3•DMF
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complicated side product mixture. Light yellow oil; Rf = 0.27 (1% Ethyl acetate / 

Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.34 (s, 3H), 1.51 (s, 3H), 1.58-1.72 (s, 3H, m, 

2H, overlapped), 1.95- 2.10 (m, 2H), 3.78 (s, 3H), 5.05 (t, 1H, J = 7 Hz), 5.63 (d, 1H, J = 

10 Hz), 6.35 (d, 1H, J = 10 Hz), 6.55 (d, 1H, J= 2.5 Hz), 6.77 (d, 1H, J = 2.5 Hz), 7.30 (t, 

1H, J = 7.5 Hz), 7.38 (t, 2H, J = 7.5 Hz), 7.57 (d, 2H, J = 7.5 Hz); 13C NMR (CDCl3, 125 

MHz) δ 17.49, 22.68, 25.55, 25.61, 40.89, 55.76, 78.19, 111.12, 115.43, 122.38, 

123.14, 126.76, 127.76, 129.37, 129.92, 130.93, 131.60, 138.04, 143.82, 153.27, 

165.56; IR (neat film) 3039, 2968, 2925, 2854, 1598, 1464, 1436, 1408, 1321, 1198 cm-

1; HRMS (TOF MS ES+) calcd for C23H26O2 (M
++H) m/z 335.2011, meas 335.1998. 

 

Preparation of the compound 4-53: 

 

 

 

A mixture of 2.5 g of nerol 4-52 and 29 g of active manganese dioxide164 in 300 ml of 

hexane was stirred at 0 ºC for 30 min. Filtration and removal of solvent afforded 2 g 

(82%) of neral 4-53 shown by NMR165 to be >95% pure and also free of geranial (α, β-

geometrical isomer). The procedure was followed from a similar procedure reported in 

the literature.166 

O HHO

MnO2
Hexane

4-52 4-53
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Yellow Oil; Rf = 0.68 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.56 

(s, 3H), 1.65 (s, 3H), 1.95 (s, 3H), 2.20 (q, 2H, J = 7.5 Hz), 2.55 (t, 2H, J = 7.5 Hz), 5.04-

5.10 (m, 1H), 5.84 (d, 1H, J = 8.5 Hz), 9.86 (d, 1H, J = 8.5 Hz); 13C NMR (CDCl3, 125 

MHz) δ 17.68, 25.01, 25.59, 27.00, 32.53, 122.21, 128.62, 133.65, 163.75, 190.75; IR 

(neat film) 3025, 2969, 2918, 2859, 2756, 1676, 1632, 1443, 1395, 1378 cm-1; HRMS 

(TOF MS ES–) calcd for C10H16O (M
+–H) m/z 151.1123, meas 151.1118. 

 

Preparation of the compound rac-4-41: 

 

 

 

To the aldehyde 4-53 (2.02 g, 14.62 mmol) was added ethynyl magnesium bromide (0.5 

M in THF, 36 mL, 17.6 mmol) over 10 minutes in 36 mL of THF at –78 ºC.  The solution 

was warmed to 0 ºC and stirred for 1 hour.  The reaction mixture was poured into 100 

mL of saturated ammonium chloride and back extracted with 3 x 50 mL of ethyl acetate.  

The resulting organic layers were combined and dried over magnesium sulfate.  The 

solution was filtered through fluted filter paper and the solvent removed under reduced 

pressure.  The crude compound rac-4-54 was pure enough (from NMR) to be used in 

the next step without any purification. 

OH

MgBr

THF, -78 to 0 °C HO

TBSCl
Imidazole

DMF TBSO
4-53 rac-4-54 rac-4-41
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To a mixture of imidazole (1.60 g, 23.4 mmol) and TBSCl (2.42 g, 16.0 mmol) in DMF 

(60 mL) compound rac-4-54 (2.60 g, 14.6 mmol) was added.  The reaction mixture was 

stirred over night.  The solution was quenched with 100 mL of saturated ammonium 

chloride and the aqueous layer was back extracted with ether (3 x 100 mL).  The 

organic layers were combined and dried over magnesium sulfate.  The solution was 

filtered through fluted filter paper and then the solvent was removed under reduced 

pressure.  Column chromatography with 5 % ethyl acetate / hexane gave 3.34 g (78 %, 

11.4 mmol) of rac-4-41. 

Light yellow oil; Rf = 0.72 (5% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 

0.09 (s, 3H), 0.11 (s, 3H), 0.88 (s, 9H), 1.59 (s, 3H), 1.67 (s, 3H), 1.71 (s, 3H), 1.98-2.12 

(m, 4H), 2.39 (d, 1H, J = 1.5 Hz), 5.05-5.12 (m, 2H), 5.30-5.33 (m, 1H); 13C NMR 

(CDCl3, 125 MHz) δ –4.62, –4.46, 17.65, 18.21, 23.18, 25.71, 25.79,26.36, 32.41, 

59.53, 71.65, 85.32, 123.66, 126.25, 132.11, 137.75; IR (neat film) 2957, 2924, 2858, 

1653, 1472, 1379, 1254 cm-1; HRMS (TOF MS ES+) calcd for C18H32OSi (M
+–OTBS) 

m/z 161.1330, meas 161.1336. 
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Synthesis of rac-4-39 by Reaction between 4-38 and rac-4-41: 

 

 

 

The carbene complex 4-38 (0.10 g, 0.29 mmol), enyne rac-4-41 (0.10 g, 0.35 mmol), 

and dichloromethane (10 mL) were added to a 25 mL Schlenk flask. The reaction 

mixture was deoxygenated by the freeze-pump-thaw method (3 cycles) and finally the 

flask was back-filled with argon. The reaction mixture was stirred and heated at 80 ºC 

for 24 hours. The solvent was removed under reduced pressure and the crude 

compound was dissolved in 10 mL of diethyl ether. To this mixture, water (10 mL) and 

7.5 equiv. of FeCl3•DMF complex were added and stirred under air. Upon completion of 

the oxidation (judged by TLC), the organic layer was separated. The aqueous layer was 

washed with ether (3 x 15 mL). Organic layers were combined, washed with brine and 

dried over magnesium sulfate. Column chromatography with 1% ethyl acetate / hexane 

gave pure compound rac-4-39 (0.07 g, 0.20 mmol, 68%). 

The reaction was performed at 80 °C in two other solvents such as toluene and 

acetonitrile that gave 77% and 76% yields respectively. When the reaction was 

conducted in toluene in presence of 10 equivalents of aniline as an additive and the 

Ph

Cr(CO)5
H3CO

+

OTBS
1) solvent, additive
    temp, 24 h

O
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H3CO

rac-4-374-38 rac-4-39

2) FeCl3•DMF
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yield was 90% but in presence of 5 equivalents of Hünigʼs base the yield was 57%. The 

spectroscopic properties match the previously given data for compound rac-4-39. 

 

Preparation of the compound 4-39: 

 

 

 

The carbene complex 4-38 (0.10 g, 0.29 mmol), enyne (S)-4-37 (0.10 g, 0.36 mmol, 

95% ee), aniline (0.26 mL, 0.27 g, 2.90 mmol) and solvent (10.0 mL) were added to a 

25 mL Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 10 mL of diethyl ether. To this 

mixture, water (10 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

combined, washed with brine and dried over magnesium sulfate. Column 

chromatography with 1% ethyl acetate / hexane gave pure compound 4-39 (0.05 g, 0.16 

mmol, 54% yield). The spectroscopic properties are identical to that of the previously 

OTBS
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H3CO1) Toluene
10 equiv. aniline
60 !C, 24 h

54%, ~44% ee95% ee4-38 (S)-4-37
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synthesized compound rac-4-39. Chiral HPLC with Chiralcel OD-H column using 99.6 : 

0.4 hexane : isopropanol at 0.5 mL/min gave retention times of 19.90 minutes for the 

major and 20.87 minutes for the minor enantiomers. Although the enantiomers were 

only partially separable but the enantioselectivity could be predicted as 44% ee for 

compound 4-39. 

When the reaction was repeated under the same conditions but at lower temperature 

(40 ºC) the yield of the product 4-39 was 50% but it was racemic. The reaction was also 

repeated in three other solvents such as benzene, dichloromethane and hexane at 60 

ºC maintaining other conditions same and the yields of the product 4-39 was 52%, 55% 

and 56% respectively. Although for all these reactions, the enatiomers were not well 

separated, it was easily seen that the products were almost racemic. 

 

Preparation of the compound rac-4-55: 

 

 

 

To a solution of trimethylsilyl acetylene 4-57 (1.22 mL, 0.840 g, 8.57 mmol) in 30 mL of 

THF at 0 °C was added isopropylmagnesium chloride 4-56 (2.0 M in THF, 4.30 mL, 8.57 

mmol). The reaction mixture was then warmed to room temperature for 2 hours. Freshly 

prepared neral 4-53 (1.21 mL, 1.09 g, 7.14 mmol) was added to the reaction mixture at 

O H
TMS

iPrMgCl

THF TMSClMg
HO

TMS4-57

4-56

4-58

4-53

rac-4-55
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0 °C. The reaction mixture was warmed to room temperature for 4 hours. After 

completion (as judged by TLC) the reaction mixture was then poured into 50 mL of 

saturated ammonium chloride solution. The aqueous layer was separated and extracted 

with ether (50 mL x 3). The organic layers were combined and dried over magnesium 

sulfate. The solution was filtered through celite and the solvent was removed under 

reduced pressure. The crude product was purified by chromatography on silica gel with 

10% ethyl acetate / hexane to give 1.69 g (95% yield, 6.78 mmol) of compound rac-4-55 

as light yellow oil. Rf = 0.42 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 600 MHz) δ 

0.15 (s, 9H), 1.59 (s, 3H), 1.67 (s, 3H), 1.74 (d, 3H, J = 1.2 Hz), 2.08-2.14 (m, 4H), 5.03 

(d, 1H, J = 9.0 Hz), 5.09 (br s, 1H), 5.36 (dd, 1H, J = 9.0 Hz, J = 1.8 Hz); 13C NMR 

(CDCl3, 150 MHz) δ –0.14, 17.68, 23.33, 25.66, 26.30, 32.24, 59.16, 88.94, 106.03, 

123.65, 125.32, 132.71, 140.56; IR (neat film) 3334, 2965, 2927, 2859, 2172, 1665, 

1447, 1378 cm-1; HRMS (TOF MS ES+) calcd for C15H26OSi (M
++H) m/z 251.1831, 

meas 251.1825. 

 

Preparation of the compound 4-59: 
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CH2Cl2 O
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A 500 mL round bottom flask was charged with compound rac-4-55 (1.04 g, 4.15 mmol), 

dichloromethane (50 mL), and MnO2 (3.51 g, 40.4 mmol). The contents of the flask 

were stirred overnight and filtered through celite washing with dichloromethane to 

remove MnO2. The crude product was purified by chromatography on silica gel with 

10% ethyl acetate / hexane to give 0.78 g (75% yield, 3.14 mmol) of compound 4-59 as 

light yellow oil. Rf = 0.69 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 600 MHz) δ 

0.21 (s, 9H), 1.60 (s, 3H), 1.66 (d, 3H, J = 0.6 Hz), 1.91 (d, 3H, J = 1.2 Hz), 2.12- 2.18 

(m, 2H), 2.67 (t, 2H, J = 7.8 Hz), 5.10-5.13 (m, 1H), 6.12 (s, 1H); 13C NMR (CDCl3, 150 

MHz) δ –0.73, 17.64, 25.66, 25.90, 26.83, 34.19, 95.58, 104.50, 123.37, 125.97, 

132.52, 162.44, 175.80; IR (neat film) 2965, 2925, 2857, 2151, 1652, 1606, 1443, 1377, 

1252 cm-1; HRMS (TOF MS ES+) calcd for C15H24OSi (M
++H) m/z 249.1675, meas 

249.1669. 

 

Preparation of the compound (S)-4-58: 
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To a solution of (S)-(–)-2-methyl-CBS-oxazaborolidine (1.52 g, 5.45 mmol) and 

compound 4-59 (0.69 g, 2.78 mmol) at –45 ºC in 25 mL of THF was added dropwise 

slowly BH3•SMe2 (2 M in THF, 1.44 mL, 2.89 mmol).  The solution was warmed to –30 

ºC over 30 minutes.  The TLC was checked to insure the reaction was complete.  To the 

stirring solution was added methanol (20 mL) via syringe. The solvent was evaporated 

under reduced pressure. The residue was purified by column chromatography (5:1 

pentane : ether) to give 0.61 g (88%, 2.44 mmol) of compound (S)-4-55 as light yellow 

oil. Chiral HPLC with Chiralcel OD-H column using 99.6 : 0.4 hexane : isoprpanol  at 0.7 

mL/min gave retention times of 12.8 minutes for the major and 16.8 minutes for the 

minor enantiomers showing 94% ee for compound (S)-4-55. The spectroscopic 

properties match with the previously synthesized compound rac-4-55. When the 

reaction was repeated the ee was calculated to be 99%. [∝]D
22 +149.6° (c 1.00, 

CH2Cl2) at 99 % ee. 

 

Preparation of the compound (S)-4-54: 

 

 

 

To a stirred solution of compound (S)-4-55 (0.61 g, 2.44 mmol) in 12 mL of THF, TBAF 

(1 M in THF, 2.68 mL, 2.68 mmol) was added slowly at RT and stirred at this 

HO
TMS

HO
TBAF
THF

(S)-4-55 (S)-4-54
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temperature for 1 h. The reaction mixture was then added slowly to a vigorously stirred 

mixture of 25 mL of brine. The aqueous layer was extracted with ether (3 x 25 mL). The 

organic layers were combined and dried with MgSO4. Ether was distilled off under 

reduced pressure and the crude product was purified by column chromatography 

(eluent: dichloromethane) to give pure product (S)-4-54 as light yellow oil (0.43 g, 2.39 

mmol, 98%). Rf = 0.41 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.58 

(s, 3H), 1.67 (s, 3H), 1.73 (s, 3H), 1.90 (d, 1H, J = 4.5 Hz), 2.05-2.16 (m, 4H), 2.45 (t, 

1H, J = 2.0 Hz), 5.02-5.11 (m, 2H), 5.37 (d, 1H, J = 8.0 Hz); 13C NMR (CDCl3, 125 

MHz) δ 17.63, 23.23, 25.63, 26.25, 32.22, 58.51, 72.40, 84.43, 123.49, 124.99, 132.71, 

140.79; IR (neat film) 3298, 3035, 2967, 2924, 2857, 2136, 1665, 1446, 1377 cm-1; 

HRMS (TOF MS ES+) calcd for C12H18O (M+–OH) m/z 161.1330, meas 161.1328. 

[∝]D
22 +100.8° (c 1.00, CH2Cl2) at 99 % ee. 

 

Preparation of the compound (S)-4-41: 

 

 

 

To a mixture of imidazole (0.26 g, 3.88 mmol) and TBSCl (0.42 g, 2.81 mmol) in DCM 

(13 mL) compound (S)-4-54 (0.43 g, 2.44 mmol) was added.  The reaction mixture was 

HO TBSO

TBSCl, Imidazole
CH2Cl2

(S)-4-54 (S)-4-41
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stirred over night.  The solution was quenched with 50 mL of saturated ammonium 

chloride and the aqueous layer was back extracted with ether (3 x 25 mL).  The organic 

layers were combined and dried over magnesium sulfate.  The solution was filtered 

through fluted filter paper and then the solvent was removed under reduced pressure.  

Column chromatography with 5 % ethyl acetate / hexane gave 0.60 g (84%, 2.05 mmol) 

of (S)-4-41. The spectroscopic properties match with the previously given data for rac-4-

41. [∝]D
22 +40.3° (c 1.00, CH2Cl2) at 99 % ee. 

 

Synthesis of 4-39 by Reaction between Compounds 4-38 and (S)-4-41: 

 

 

 

The carbene complex 4-38 (0.10 g, 0.29 mmol), enyne (S)-4-41 (0.10 g, 0.35 mmol, 

94% ee), and solvent (10.0 mL) were added to a 25 mL Schlenk flask. The reaction 

mixture was deoxygenated by the freeze-pump-thaw method (3 cycles) and finally the 

flask was back-filled with argon. The reaction mixture was stirred and heated at 60 ºC 

for 24 hours. The solvent was removed under reduced pressure and the crude 

compound was dissolved in 10 mL of diethyl ether. To this mixture, water (10 mL) and 

7.5 equiv. of FeCl3•DMF complex were added and stirred under air. Upon completion of 

the oxidation (judged by TLC), the organic layer was separated. The aqueous layer was 
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2) FeCl3•DMF



	
   272	
  

washed with ether (3 x 15 mL). Organic layers were combined, washed with brine and 

dried over magnesium sulfate. Column chromatography with 1% ethyl acetate / hexane 

gave pure compound 4-39. The spectroscopic properties match the previously reported 

data for compound rac-4-39. In chiral HPLC even after trying many different conditions 

and chiral columns the enantiomers couldnʼt be completely separated. So the ee was 

only predicted to be –10% ee. It was observed that the opposite enantiomer was the 

major isomer in this case compared to the reaction between 4-38 and (S)-4-37 or 

between 4-38 and (S)-4-60.  

 

Preparation of the compound (S)-4-60: 

 

 

 

To a solution of triphenylmethyl chloride (0.94 g, 3.37 mmol) and DBU (0.59 mL, 0.60 g, 

3.93 mmol) in dichloromethane (5 mL), the alcohol substrate (S)-4-36 (0.50 g, 2.81 

mmol, 99% ee) was added and the mixture was stirred at room temperature for two 

days. The progress of the reaction was conveniently monitored by TLC analysis of 

crude reaction mixture. Products were isolated by washing the reaction mixture with 

cold water, extracting the aqueous layer with dichloromethane and drying the organic 

extracts with sodium sulfate. Evaporation of the solvent yielded crude triphenylmethyl 

OH OTr

TrCl, DBU
CH2Cl2
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ether (S)-4-60, which was purified by short column chromatography on silica gel with 

5% ethyl acetate / hexane to give 1.12 g (95% yield, 2.67 mmol) of compound (S)-4-60. 

Colorless condensed oil; Rf = 0.65 (5% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 

MHz) δ 1.37 (d, 3H, J = 1.5 Hz), 1.62 (s, 3H), 1.70 (d, 3H, J = 1.0 Hz), 1.82-1.94 (m, 

2H), 1.98-2.04 (m, 2H), 2.16 (d, 1H, J = 2.0 Hz), 4.76 (dd, 1H, J = 8.0 Hz, J = 2.0 Hz), 

5.06-5.15 (m, 1H), 5.25 (dd, 1H, J = 8.0 Hz, J = 1.5 Hz), 7.21-7.32 (m, 10H), 7.51-7.62 

(m, 5H); 13C NMR (CDCl3, 125 MHz) δ 16.75, 17.71, 25.69, 26.12, 39.04, 61.99, 72.04, 

83.31, 88.23, 123.89, 123.98, 127.01, 127.70, 128.96, 131.64, 136.78, 144.35; IR (neat 

film) 3292, 3058, 3032, 2967, 2918, 2854, 1668, 1597, 1491, 1448 cm-1; HRMS (TOF 

MS ES+) calcd for C31H32O (M
++H) m/z 421.2531, meas 421.2519; [∝]D

22 +15.0° (c 

1.00, CH2Cl2) at 99 % ee. 

 

Synthesis of 4-39 by Reaction between Compounds 4-38 and (S)-4-60: 

 

 

 

The carbene complex 4-38 (0.10 g, 0.29 mmol), enyne (S)-4-60 (0.15 g, 0.36 mmol, 

99% ee), aniline (0.26 mL, 0.27 g, 2.90 mmol) and solvent (10.0 mL) were added to a 

OTr
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25 mL Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 8 mL of diethyl ether. To this 

mixture, water (8 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

combined, washed with brine and dried over magnesium sulfate. Column 

chromatography with 1% ethyl acetate / hexane gave pure compound 4-39 (0.08 g, 0.25 

mmol, 84% yield). The spectroscopic properties match the previously given data for 

compound rac-4-39. In chiral HPLC even after trying many different conditions and 

chiral columns the enantiomers couldnʼt be completely separated. So the ee was not 

determined. 

 

Preparation of the compound rac-4-62: 

 

 

 

The carbene complex 4-61 (0.05 g, 0.18 mmol), enyne rac-4-37 (0.06 g, 0.22 mmol), 

aniline (0.16 mL, 0.17 g, 1.80 mmol), and solvent (5.00 mL) were added to a 25 mL 

OTBS
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Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 8 mL of diethyl ether. To this 

mixture, water (8 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

combined, washed with brine and dried over magnesium sulfate. Column 

chromatography with 1% ethyl acetate / hexane gave pure compound rac-4-62 (0.04 g, 

0.13 mmol, 71% yield). 

 

Yellow oil; Rf = 0.28 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.34 (s, 

3H), 1.56 (s, 3H), 1.65 (s, 3H), 1.64-1.70 (m, 2H), 2.02- 2.20 (m, 2H), 2.14 (s, 3H), 3.72 

(s, 3H), 5.06-5.12 (m, 1H), 5.56 (d, 1H, J = 10 Hz), 6.27 (d, 1H, J = 10 Hz), 6.36 (d, 1H, 

J = 2.5 Hz), 6.54 (d, 1H, J = 2.5 Hz); 13C NMR (CDCl3, 125 MHz) δ 15.62, 17.55, 22.69, 

25.66, 25.90, 40.83, 55.65, 77.81, 108.77, 116.01, 121.10, 123.07, 124.25, 126.20, 

130.57, 131.57, 144.98, 152.90; IR (neat film) 3037, 2967, 2925, 2855, 1733, 1676, 

1592, 1473, 1440 cm-1; HRMS (TOF MS ES+) calcd for C18H24O2 (M++H) m/z 

273.1855, meas 273.1843. 
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Synthesis of 4-62 by Reaction between 4-61 and (S)-4-37: 

 

 

  

The carbene complex 4-61 (0.05 g, 0.18 mmol), enyne (S)-4-37 (0.06 g, 0.22 mmol, 

95% ee), aniline (0.16 mL, 0.17 g, 1.80 mmol), and solvent (5.00 mL) were added to a 

25 mL Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 8 mL of diethyl ether. To this 

mixture, water (8 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

combined, washed with brine and dried over magnesium sulfate. Column 

chromatography with 1% ethyl acetate / hexane gave pure compound 4-62 (0.03 g, 0.10 

mmol, 57% yield). The spectroscopic data is identical to that of rac-4-62. Chiral HPLC 

with Chiralcel OD-H column using 99.6 : 0.4 hexane : isopropanol at 0.5 mL/min gave 

retention times of 14.61 minutes for the minor and 17.41 minutes for the major 

enantiomers showing 40% ee for compound 4-62. 
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Synthesis of 4-62 by Reaction between 4-61 and (S)-4-41: 

 

 

 

The carbene complex 4-61 (0.05 g, 0.18 mmol), enyne (S)-4-41 (0.06 g, 0.22 mmol, 

94% ee), aniline (0.16 mL, 0.17 g, 1.80 mmol), and solvent (5.00 mL) were added to a 

25 mL Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 8 mL of diethyl ether. To this 

mixture, water (8 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

combined, washed with brine and dried over magnesium sulfate. Column 

chromatography with 1% ethyl acetate / hexane gave pure compound 4-62 (0.025 g, 

0.09 mmol, 51% yield). The spectroscopic data is identical to that of rac-4-62. Chiral 

HPLC with Chiralcel OD-H column using 99.6 : 0.4 hexane : isopropanol at 0.5 mL/min 

gave retention times of 14.35 minutes for the major and 17.12 minutes for the minor 

enantiomers showing –42% ee for compound 4-62. 
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Synthesis of 4-62 by Reaction between 4-61 and (S)-4-61: 

 

 

The carbene complex 4-61 (0.05 g, 0.18 mmol), enyne (S)-4-61 (0.09 g, 0.22 mmol, 

99% ee), aniline (0.16 mL, 0.17 g, 1.80 mmol), and solvent (5.00 mL) were added to a 

25 mL Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 8 mL of diethyl ether. To this 

mixture, water (8 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

combined, washed with brine and dried over magnesium sulfate. Compound 4-62 was 

obtained in 33% NMR yield using dibromomethane as internal standard. The 

spectroscopic data is identical to that of rac-4-62. Chiral HPLC with Chiralcel OD-H 

column using 99.6 : 0.4 hexane : isopropanol at 0.3 mL/min gave retention times of 

28.98 minutes for the minor and 33.97 minutes for the major enantiomers showing 60% 

ee for compound 4-62. [∝]D
22 –51.5° (c 1.00, CH2Cl2) at 60% ee.  

OTr
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H3CO
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H3CO
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Preparation of the compound (S)-4-63: 

 

 

 

To a solution of triphenylmethyl chloride (0.29 g, 1.03 mmol) and DBU (0.18 mL, 0.18 g, 

1.20 mmol) in dichloromethane (2 mL), the alcohol substrate (S)-4-54 (0.15 g, 0.85 

mmol) was added and the mixture was stirred at room temperature for two days. The 

progress of the reaction was conveniently monitored by TLC analysis of crude reaction 

mixture. Products were isolated by washing the reaction mixture with cold water, 

extracting the aqueous layer with dichloromethane and drying the organic extracts with 

sodium sulfate. Evaporation of the solvent yielded crude triphenylmethyl ether (S)-4-63, 

which was purified by short column chromatography on silica gel with 5% ethyl acetate / 

hexane to give 0.33 g (92% yield, 0.78 mmol) of compound (S)-4-63. 

 

White condense oil; Rf = 0.65 (5% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) 

δ 1.53 (s, 3H), 1.64 (s, 3H), 1.66 (s, 3H), 1.65-1.77 (m, 1H), 1.78-1.88 (m, 1H), 1.90-

2.02 (m, 2H), 2.15 (d, 1H, J = 2.0 Hz), 4.77 (dd, 1H, J = 8.0 Hz, J = 2.0 Hz), 4.99 (t, 1H, 

J = 6.5 Hz), 5.33 (d, 1H, J = 8.0 Hz), 7.20-7.39 (m, 10H), 7.50-7.62 (m, 5H); 13C NMR 

(CDCl3, 125 MHz) δ 17.53, 23.03, 25.63, 26.11, 32.58, 61.60, 72.19, 83.62, 88.13, 

HO

TrCl, DBU
DCM

TrO
(S)-4-54 (S)-4-6395% 92%
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123.84, 124.64, 127.00, 127.66, 128.99, 131.80, 137.16, 144.30; IR (neat film) 3295, 

3086, 3058, 2967, 2925, 2857, 1665, 1597, 1491, 1448 cm-1; HRMS (TOF MS ES+) 

calcd for C31H32O (M++H) m/z 421.2531, meas 421.2551; [∝]D
22 +3.7° (c 1.00, 

CH2Cl2) at 94 % ee. 

 

Reaction between 4-61 and (S)-4-63: 

 

 

 

The carbene complex 4-61 (0.08 g, 0.29 mmol), enyne (S)-4-63 (0.15 g, 0.36 mmol), 

aniline (0.26 mL, 0.27 g, 2.90 mmol), and solvent (10 mL) were added to a 25 mL 

Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 10 mL of diethyl ether. To this 

mixture, water (10 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

combined, washed with brine and dried over magnesium sulfate. Column 

Cr(CO)5
H3CO

+
O

H3CO

55%, –50% ee
TrO
94% ee4-61 (S)-4-63 4-62

1) Toluene
10 equiv. Aniline

60 °C, 24 h
2) FeCl3•DMF
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chromatography with 1% ethyl acetate / hexane gave pure compound 4-62 (0.04 g, 0.16 

mmol, 55% yield). The spectroscopic data is identical to that of rac-4-62. Chiral HPLC 

with Chiralcel OD-H column using 99.6 : 0.4 hexane : isopropanol at 0.5 mL/min gave 

retention times of 12.17 minutes for the major and 14.34 minutes for the minor 

enantiomers showed –50% ee for compound 4-62. 

 

Preparation of the compound rac-4-88: 

 

 

 

To a solution of 1-cyclohexene-1-carboxaldehyde 4-86 (0.52 mL, 0.50 g, 4.54 mmol) in 

10 mL of THF at –78 °C was added ethynylmagnesium bromide (0.5 M in THF, 10.1 mL, 

4.54 mmol). The reaction mixture was stirred for 3 hours at –78 °C and warmed to room 

temperature. After completion (as judged by TLC) the reaction mixture was then poured 

into 25 mL of saturated ammonium chloride solution. The aqueous layer was separated 

and extracted with ethyl acetate (25 mL x 3). The organic layers were combined and 

dried over magnesium sulfate. The solution was filtered through fluted filter paper and 

the solvent was removed under reduced pressure. The crude compound rac-4-87 was 

pure enough (from 1HNMR) to be used in the next step without further purification. All of 

the crude compound rac-4-87 was used in the next step along with tert-butyldimethylsilyl 

H
O

MgBr
THF

OH TBSCl
Imidazole

DCM

OTBS

4-86 rac-4-87 rac-4-88
72% (2 steps)
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chloride (0.82 g, 5.45 mmol) and imidazole (0.49 g, 7.26 mmol) in dichloromethane (12 

mL). The mixture was stirred for 16 h at room temperature. The crude product was 

concentrated in vacuo and directly chromatographed on silica gel (eluted with 100 : 1 

hexane–ethyl acetate) to afford 0.82 g (3.27 mmol) of rac-4-88 as colorless oil, giving 

72% yield over two steps.  

 

Rf = 0.71 (5% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ –0.25 (s, 3H), –

0.22 (s, 3H), 0.55 (s, 9H), 1.18-1.35 (m, 4H), 1.65-1.80 (m, 4H), 2.08 (s, 1H), 4.36 (br s, 

1H), 5.49 (br s, 1H); 13C NMR (CDCl3, 125 MHz) δ –4.99, –4.68, 18.30, 22.33, 22.51, 

24.01, 24.94, 25.78, 66.98, 72.67, 84.17, 123.40, 137.06; IR (neat film) 2956, 2930, 

2858, 2228, 1463, 1387, 1363, 1254 cm-1; HRMS (TOF MS ES+) calcd for C15H26OSi 

(M+–H) m/z 249.1675, meas 249.1667. 

 

Preparation of the compound rac-4-89: 

 

 

 

In diethyl ether (80 mL), TMS acetylene (1.43 mL, 0.98 g, 10.0 mmol) was deprotonated 

with n-butyl lithium (2.5 M in hexane, 4.18 mL, 10.0 mmol) at –78 ºC.  The solution was 

H
O

TMS
nBuLi

OH

TMS
4-86 rac-4-89 95%
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allowed to warm to room temperature over one hour.  The solution was recooled to –78 

ºC and 1-Cyclohexene-1-carboxaldehyde 4-86 (1.04 mL, 1.00g, 9.09 mmol) was added 

dropwise.  The solution was warmed to 0 ºC and stirred 40 minutes.  The solution was 

then warmed to room temperature.  The reaction mixture was poured into 100 mL of 

saturated ammonium chloride and back extracted with ether (3 x 100 mL).  The organic 

layer was dried over magnesium sulfate, filtered through Celite, and the solvent 

removed under reduced pressure.  Column chromatography with 10 % ethyl acetate / 

hexane gave 1.79 g (95 % yield, 8.60 mmol) of compound rac-4-89. 

 

Yellow oil; Rf = 0.43 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.16 

(s, 9H), 1.51-1.54 (m, 4H), 1.55-1.56 (br s, 1H), 2.00-2.02 (m, 3H), 2.03-2.05 (m, 1H), 

4.69 (s, 1H), 5.90 (s, 1H); 13C NMR (CDCl3, 125 MHz) δ –0.14, 22.16, 22.48, 24.12, 

25.03, 67.23, 90.65, 104.69, 125.14, 136.67; IR (neat film) 3372, 2932, 2859, 2838, 

2171, 1437, 1397, 1250 cm-1; HRMS (TOF MS ES+) calcd for C12H20OSi (M
++H) m/z 

209.1362, meas 209.1371. 

 

Preparation of the compound 4-90: 

 

 

OH

TMS
MnO2
CH2Cl2

O

TMS
rac-4-89 4-9095% 83%
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A 250 mL round bottom flask was charged with compound rac-4-89 (1.79 g, 8.60 mmol), 

DCM (60 mL), and MnO2 (7.57 g, 87.1 mmol).  The contents of the flask were stirred 

overnight and filtered through Celite washing with DCM to remove the MnO2.  Column 

chromatography with 5 % ethyl acetate / hexane gave 1.48 g (83 % yield, 7.16 mmol) of 

4-90. 

 

Yellow oil; Rf = 0.65 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.21 

(s, 9H), 1.56-1.64 (m, 4H), 2.18-2.20 (m, 2H), 2.26-2.32 (m, 2H), 7.31-7.35 (m, 1H); 13C 

NMR (CDCl3, 125 MHz) δ –0.70, 21.51, 21.53, 22.21, 26.49, 97.48, 100.21, 140.31, 

147.97, 179.22; IR (neat film) 2938, 2863, 2152, 1632, 1449, 1421, 1382, 1271, 1251, 

1221 cm-1; HRMS (TOF MS ES+) calcd for C12H18OSi (M
++H) m/z 207.1205, meas 

207.1210. 

Preparation of the compound (S)-4-89: 

 

 

 

To a solution of (S)-(–)-2-methyl-CBS-oxazaborolidine (2.16 g, 7.77 mmol) and 

compound 4-90 (0.80 g, 3.88 mmol) at –45 ºC in 40 mL of THF was added dropwise 

O

TMS

OH

TMS

4-90 (S)-4-89

2 equiv
CBS catalyst
BH3•SMe2
–45 to 0 ºC
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slowly BH3•SMe2 (0.38 mL, 0.31 g, 4.04 mmol).  The solution was warmed to –30 ºC 

and eventually to 0 ºC for over 6 h.  The TLC was checked. Although the reaction was 

not complete the reaction was worked up. To the stirring solution was added methanol 

(20 mL) via syringe. The solvent was evaporated under reduced pressure. The residue 

was purified by column chromatography (5 : 1 pentane : ether) to give 0.38 g (47%, 1.82 

mmol) of compound (S)-4-89 as light yellow oil. The spectroscopic properties were 

identical with those given for the racemate rac-4-89. Chiral HPLC with Chiralcel OD-H 

column using 99.6 : 0.4 hexane : isoprpanol  at 0.7 mL/min gave retention times of 13.8 

minutes for the minor and 14.9 minutes for the major enantiomers showed 90% ee for 

compound (S)-4-89. [∝]D
22 +19.4° (c 1.00, CH2Cl2) at 90 % ee. 

 

Preparation of the compound (S)-4-87: 

 

 

 

To a stirred solution of compound (S)-4-89 (0.20 g, 0.96 mmol) in 6 mL of THF, TBAF 

(1M in THF, 1.15 mL, 1.15 mmol) was added slowly at RT and stirred at this 

temperature for 1 h. The reaction mixture was then added slowly to a vigorously stirred 

mixture of 12 mL of brine. The aqueous layer was extracted with ether (3 x 20 mL). The 

organic layers were combined and dried with MgSO4. Ether was distilled off under 

OH

TMS
(S)-4-89

OH

(S)-4-87

TBAF
THF, RT, 1 h
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reduced pressure and the crude product was purified by column chromatography 

(eluent: dichloromethane) to give pure product (S)-4-87 (0.126 g, 0.93 mmol, 97%). 

 

Yellow oil; Rf = 0.37 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.50-

1.52 (m, 4H), 1.82-2.42 (m, 4H), 2.50 (d, 1H, J = 2.0 Hz), 4.70 (s, 1H), 5.90 (s, 1H); 13C 

NMR (CDCl3, 125 MHz) δ 22.10, 22.38, 23.96, 24.93, 66.54, 73.79, 83.13, 125.23, 

136.45, IR (neat film) 3298, 3035, 2967, 2924, 2857, 2136, 1665, 1446, 1377 cm-1; 

[∝]D
22 +19.4° (c 1.00, CH2Cl2) at 90 % ee. 

 

 

Preparation of the compound (S)-4-91: 

 

 

 

To a solution of triphenylmethyl chloride (0.32 g, 1.15 mmol) and DBU (0.19 mL, 0.20 g, 

1.34 mmol) in dichloromethane (2 mL), the alcohol substrate (S)-4-87 (0.13 g, 0.96 

mmol) was added and the mixture was stirred at room temperature for two days. The 

progress of the reaction was conveniently monitored by TLC analysis of crude reaction 

mixture. Products were isolated by washing the reaction mixture with cold water, 

OH

(S)-4-87

OTr

(S)-4-91

TrCl, DBU
CH2Cl2
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extracting the aqueous layer with dichloromethane and drying the organic extracts with 

sodium sulfate. Evaporation of the solvent yielded crude triphenylmethyl ether, which 

was purified by short column chromatography on silica gel with 5% ethyl acetate / 

hexane to give 0.33 g (87% yield, 0.83 mmol) of compound (S)-4-91. 

 

White solid; Melting Pt. 119-120 ºC; Rf = 0.65 (5% Ethyl acetate / Hexane); 1H NMR 

(CDCl3, 500 MHz) δ 1.42-1.62 (m, 4H), 1.68-1.88 (m, 2H), 2.02-2.22 (m, 2H), 2.27 (d, 

1H, J = 2.0 Hz), 4.47 (br s, 1H), 5.25 (br s, 1H), 7.20-7.39 (m, 10H), 7.53-7.61 (m, 5H); 

13C NMR (CDCl3, 125 MHz) δ 17.53, 23.03, 25.63, 26.11, 32.58, 61.60, 72.19, 83.62, 

88.13, 123.84, 124.64, 127.00, 127.66, 128.99, 131.80, 137.16, 144.30; IR (neat film) 

3287, 3086, 3058, 2928, 2857, 2837, 1597, 1491, 1448 cm-1; HRMS (TOF MS ES+) 

calcd for C28H26O (M++H) m/z 379.2062, meas 379.2080; [∝]D
22 –24.2° (c 1.00, 

CH2Cl2) at 90 % ee. 

 

Preparation of the compound 4-93: 

 

 

 

H
O

MgBr
THF

OH TBSCl
Imidazole

DCM

OTBS

4-86 4-92 4-93
80% (2 steps)
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To a solution of 1-cyclohexene-1-carboxaldehyde 4-86 (0.41 mL, 0.40 g, 3.64 mmol) in 

10 mL of THF at –78 °C was added proynylmagnesium bromide (0.5 M in THF, 8.73 

mL, 4.36 mmol). The reaction mixture was stirred for 3 hours at –78 °C and warmed to 

room temperature. After completion (as judged by TLC) the reaction mixture was then 

poured into 25 mL of saturated ammonium chloride solution. The aqueous layer was 

separated and extracted with ethyl acetate (25 mL x 3). The organic layers were 

combined and dried over magnesium sulfate. The solution was filtered through fluted 

filter paper and the solvent was removed under reduced pressure. The crude compound 

4-92 was pure enough (from 1HNMR) to be used in the next step without further 

purification. 

The entire crude compound 4-92 was used in the next step along with 

tertbutyldimethylsilyl chloride (0.66 g, 4.40 mmol) and imidazole (0.40 g, 5.87 mmol) in 

dichloromethane (12 mL). The mixture was stirred for 16 h at room temperature. The 

crude product was concentrated in vacuo and directly chromatographed on silica gel 

(eluted with 100 : 1 hexane–ethyl acetate) to afford 0.77 g (2.92 mmol) of 4-93 giving 

80% yield over two steps. 

 

Yellow oil; Rf = 0.72 (5% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.08 (s, 

3H), 0.10 (s, 3H), 0.89 (s, 9H), 1.52-1.66 (m, 4H), 1.82 (d, 3H, J = 2.0 Hz), 1.98-2.10 (m, 

4H), 4.66 (br s, 1H), 5.77-5.80 (m, 1H); 13C NMR (CDCl3, 125 MHz) δ –4.95, –4.57, 

3.65, 18.35, 22.41, 22.57, 24.14, 24.93, 25.86, 67.35, 79.50, 80.80, 122.59, 137.95; IR 
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(neat film) 2930, 2857, 1472, 1463, 1253 cm-1; HRMS (TOF MS ES+) calcd for 

C16H28OSi (M
++H) m/z 265.1988, meas 265.1997. 

 

Preparation of the compound rac-4-96: 

 

 

 

To a solution of β-cyclocitral 4-94 (0.53 mL, 0.50 g, 3.28 mmol) in 10 mL of THF at –78 

°C was added ethynylmagnesium bromide (0.5 M in THF, 7.88 mL, 3.94 mmol). The 

reaction mixture was stirred for 3 hours at –78 °C and warmed to room temperature. 

After completion (as judged by TLC) the reaction mixture was then poured into 25 mL of 

saturated ammonium chloride solution. The aqueous layer was separated and extracted 

with ethyl acetate (25 mL x 3). The organic layers were combined and dried over 

magnesium sulfate. The solution was filtered through fluted filter paper and the solvent 

was removed under reduced pressure. The crude compound rac-4-95 was pure enough 

(from 1H NMR) to be used in the next step without further purification.  

All the crude compound rac-4-95 was used in the next step along with tert-

butyldimethylsilyl chloride (0.59 g, 3.95 mmol) and imidazole (0.36 g, 5.26 mmol) in 

dichloromethane (15 mL). The mixture was stirred for 16 h at room temperature. The 

O
H

4-94
!-cyclocitral

OH

rac-4-95

OTBS

rac-4-96

TBSCl
imidazole

DCM

MgBr
THF

92% (2 steps)
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crude product was concentrated in vacuo and directly chromatographed on silica gel 

(eluted with 100 : 1 hexane–ethyl acetate) to afford 0.88 g (3.02 mmol) of rac-4-96, 

giving 92% yield over two steps. 

 

Yellow oil; Rf = 0.69 (5% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.09 (s, 

3H), 0.17 (s, 3H), 0.87 (s, 9H), 1.02 (s, 3H), 1.04 (s, 3H), 1.38-1.44 (m, 2H), 1.50-1.59 

(m, 2H), 1.84 (s, 3H), 1.95 (t, 2H, J = 6.5 Hz), 2.37 (d, 1H, J = 2.0 Hz), 4.95 (d, 1H, J = 

2.0 Hz); 13C NMR (CDCl3, 125 MHz) δ –4.96, –4.58, 18.04, 19.24, 20.82, 25.71, 27.76, 

28.70, 33.56, 34.56, 39.83, 60.06, 71.12, 86.38, 133.12, 137.34; IR (neat film) 2956, 

2930, 2907, 2859, 1464, 1388, 1364, 1252 cm-1; HRMS (TOF MS ES+) calcd for 

C18H32OSi (M
+–OTBS) m/z 161.1330, meas 161.1329. 

 

Preparation of the compound 4-98: 

 

 

 

To a solution of β-cyclocitral 4-94 (1.06 mL, 1.00 g, 6.56 mmol) in 20 mL of THF at –78 

°C was added propynylmagnesium bromide (0.5 M in THF, 16.0 mL, 7.88 mmol). The 

reaction mixture was stirred for 3 hours at –78 °C and warmed to room temperature. 

H
O

MgBr
THF

OH TBSCl
Imidazole

DCM

OTBS

4-94 4-97 4-98
90% (2 steps)
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After completion (as judged by TLC) the reaction mixture was then poured into 25 mL of 

saturated ammonium chloride solution. The aqueous layer was separated and extracted 

with ethyl acetate (25 mL x 3). The organic layers were combined and dried over 

magnesium sulfate. The solution was filtered through fluted filter paper and the solvent 

was removed under reduced pressure. The crude compound 4-97 was pure enough 

(from 1HNMR) to be used in the next step without further purification.  

All the crude compound 4-97 was used in the next step along with tert-butyldimethylsilyl 

chloride (1.18 g, 7.90 mmol) and imidazole (0.72 g, 10.5 mmol) in dichloromethane (30 

mL). The mixture was stirred for 16 h at room temperature. The crude product was 

concentrated in vacuo and directly chromatographed on silica gel (eluted with 100 : 1 

hexane–ethyl acetate) to afford 1.81 g (5.92 mmol) of 4-98, giving 90% yield over two 

steps. 

 

Yellow oil; Rf = 0.65 (5% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.08 (s, 

3H), 0.15 (s, 3H), 0.88 (s, 9H), 1.01 (s, 3H), 1.04 (s, 3H), 1.39 (t, 2H, J = 5.5 Hz), 1.50-

1.58 (m, 2H), 1.79 (d, 3H, J = 2.5 Hz), 1.82 (s, 3H), 1.94 (t, 2H, J = 6.5 Hz), 4.93 (d, 1H, 

J = 2.5 Hz); 13C NMR (CDCl3, 125 MHz) δ –4.94, –4.49, 3.71, 18.10, 19.33, 20.69, 

25.80, 27.86, 28.72, 33.54, 34.50, 39.95, 60.50, 78.88, 81.78, 133.04, 138.10; IR (neat 

film) 2955, 2930, 2858, 2227, 1471, 1469, 1387, 1252 cm-1; HRMS (TOF MS ES+) 

calcd for C19H34OSi (M–OTBS) m/z 175.1487, meas 175.1480. 
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Preparation of the compound 4-99: 

 

 

 

The carbene complex 4-61 (0.08 g, 0.30 mmol), enyne 4-98 (0. 10 g, 0.36 mmol), and 

solvent (5.00 mL) were added to a 25 mL Schlenk flask. The reaction mixture was 

deoxygenated by the freeze-pump-thaw method (3 cycles) and finally the flask was 

back-filled with argon. The reaction mixture was stirred and heated at 60 ºC for 24 

hours. The solvent was removed under reduced pressure and the crude compound was 

dissolved in 8 mL of diethyl ether. To this mixture, water (8 mL) and 7.5 equiv. of 

FeCl3•DMF complex were added and stirred under air. Upon completion of the oxidation 

(judged by TLC), the organic layer was separated. The aqueous layer was washed with 

ether (3 x 15 mL). Organic layers were combined, washed with brine and dried over 

magnesium sulfate. Column chromatography with 1% ethyl acetate / hexane gave pure 

compound 4-99 (0.06 g, 0.21 mmol, 71% yield). 

However, when the reaction was performed under the same conditions in presence of 

10 equivalents of aniline, only trace amount of the product could be detected in 1H 

NMR. In the reaction using 5 equiv. of Hünigʼs base the reaction gave a complicated 

mixture of products so it was not processed any further. In acetonitrile solvent without 

use of any additive the yield of the product 4-99 was 52%. 

Cr(CO)5
H3CO

+

OTBS

4-61 4-98
O

H3CO

4-99

1) Toluene
10 equiv. Aniline

60 °C, 24 h
2) FeCl3•DMF
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Yellow oil; Rf = 0.25 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.14 (s, 

3H), 1.26 (s, 3H), 1.31 (s, 3H), 1.40-1.55 (m, 2H), 1.60- 1.72 (m, 2H), 1.83-1.91 (m, 1H), 

2.05-2.15 (m, 1H), 2.14 (s, 6H), 3.74 (s, 3H), 6.45 (s, 1H), 6.49 (s, 1H); 13C NMR 

(CDCl3, 125 MHz) δ 10.56, 15.54, 19.05, 25.08, 30.63, 30.75, 35.72, 39.69, 40.02, 

56.25, 76.47, 112.14, 113.90, 118.95, 122.39, 122.46, 143.71, 148.70, 151.27; IR (neat 

film) 3067, 2934, 2866, 1588, 1466, 1415, 1382, 1366, 1242 cm-1; HRMS (TOF MS 

ES+) calcd for C19H26O2 (M
++H) m/z 287.2011, meas 287.2007. 

 

Preparation of the compound rac-4-101: 

 

 

 

The carbene complex 4-61 (0.08 g, 0.30 mmol), enyne rac-4-96 (0.11 g, 0.36 mmol), 

and solvent (5.00 mL) were added to a 25 mL Schlenk flask. The reaction mixture was 

deoxygenated by the freeze-pump-thaw method (3 cycles) and finally the flask was 

back-filled with argon. The reaction mixture was stirred and heated at 60 ºC for 24 

hours. The solvent was removed under reduced pressure and the crude compound was 

dissolved in 8 mL of diethyl ether. To this mixture, water (8 mL) and 7.5 equiv. of 

FeCl3•DMF complex were added and stirred under air. Upon completion of the oxidation 

Cr(CO)5
H3CO

+

OTBS 1) Toluene
      60 °C, 24 h

O

H3CO

rac-4-964-61 rac-4-101

2) FeCl3•DMF
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(judged by TLC), the organic layer was separated. The aqueous layer was washed with 

ether (3 x 15 mL). Organic layers were combined, washed with brine and dried over 

magnesium sulfate. Column chromatography with 1% ethyl acetate / hexane gave pure 

compound rac-4-101 (0.05 g, 0.20 mmol, 66% yield). 

When the reaction was repeated in dichloromethane solvent, under the same conditions 

the yield of the product rac-4-101 was 61%. 

 

Yellow solid; Melting Pt. 88-89 ºC; Rf = 0.28 (1% Ethyl acetate / Hexane); 1H NMR 

(CDCl3, 500 MHz) δ 1.13 (s, 3H), 1.23 (s, 3H), 1.33 (s, 3H), 1.38-1.54 (m, 2H), 1.59- 

1.72 (m, 2H), 1.88 (td, 1H, J = 13.5 Hz, J = 5 Hz), 2.04-2.10 (m, 1H), 2.14 (s, 3H), 3.72 

(s, 3H), 6.20 (s, 1H), 6.38 (d, 1H, J = 3 Hz), 6.50 (d, 1H, J = 3 Hz); 13C NMR (CDCl3, 

125 MHz) δ 15.53, 19.06, 25.22, 30.40, 30.65, 35.52, 39.60, 39.98, 55.60, 77.56, 

108.11, 115.05, 116.90, 123.60, 126.11, 143.84, 148.86, 153.29; IR (neat film) 3044, 

2935, 2868, 1597, 1480 cm-1; HRMS (TOF MS ES+) calcd for C18H24O2 (M
++H) m/z 

273.1855, meas 273.1850. 

 

Preparation of the compound rac-4-102: 

 

 

H
O
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In diethyl ether (250 mL), TMS acetylene (5.15 mL, 3.54 g, 36.1 mmol) was 

deprotonated with n-butyl lithium (2.5 M in hexane, 15.1 mL, 36.1 mmol) at -78 ºC.  The 

solution was allowed to warm to room temperature over one hour.  The solution was 

recooled to –78 ºC and β-cyclocitral 4-94 (5.30 mL, 5.00g, 32.8 mmol) was added 

dropwise.  The solution was warmed to 0ºC and stirred 40 minutes.  The solution was 

then warmed to room temperature.  The solution was poured into 300 mL of saturated 

ammonium chloride and back extracted with ether (3 x 150 mL).  The organic layer was 

dried over magnesium sulfate, filtered through Celite, and the solvent removed under 

reduced pressure.  Column chromatography with 10 % ethyl acetate / hexane gave 7.50 

g (91 % yield, 30.0 mmol) of compound rac-4-102. 

 

Yellow Oil; Rf = 0.39 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.15 

(s, 9H), 1.03 (s, 3H), 1.09 (s, 3H), 1.43 (t, 2H, J = 5.74 Hz), 1.51-1.64 (m, 2H), 1.93 (s, 

3H), 1.98 (t, 2H, J = 5.37 Hz), 4.92-5.06 (m, 1H); 13C NMR (CDCl3, 125 MHz) δ –0.17, 

19.09, 20.88, 27.59, 28.42, 33.56, 34.61, 39.42, 60.10, 88.78, 106.91, 134.26, 137.90; 

IR (neat film) 3393, 2959, 2931, 2868, 2830, 2169, 1457, 1365, 1250 cm-1; HRMS (TOF 

MS ES+) calcd for C12H18OSi (M
+–OH) m/z 233.1726, meas 233.1722. 
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Preparation of the compound 4-103: 

 

 

 

A 250 mL round bottom flask was charged with compound rac-4-102 (5.00 g, 20.0 

mmol), DCM (120 mL), and MnO2 (16.7 g, 192.1 mmol).  The contents of the flask were 

stirred overnight and filtered through Celite washing with DCM to remove the MnO2.  

Column chromatography with 5 % ethyl acetate / hexane gave 2.63 g (53 % yield, 10.6 

mmol) of 4-103. 

 

Yellow Oil; Rf = 0.70 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 0.18 

(s, 9H), 1.11 (s, 6H), 1.38-1.42 (m, 2H), 1.58-1.65 (m, 2H), 1.69 (s, 3H), 1.98 (t, 2H, J = 

6.5 Hz); 13C NMR (CDCl3, 125 MHz) δ –0.88, 18.59, 20.92, 28.38, 32.08, 33.72, 39.11, 

98. 82, 104.28, 135.89, 141.87, 185.87; IR (neat film) 2961, 2935, 2869, 2145, 1643, 

1459, 1381, 1363, 1252 cm-1; HRMS (TOF MS ES+) calcd for C15H25OSi (M
++H) m/z 

249.1675, meas 249.1683. 

 

 

 

OH

TMS

MnO2
DCM

O

TMS

rac-4-102 4-103 53%
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Preparation of the compound (S)-4-107: 

 

 

 

To a solution of (S)-(–)-2-methyl-CBS-oxazaborolidine (4.49 g, 16.1 mmol) and 

compound 4-103 (2.00 g, 8.06 mmol) at –45 ºC in 80 mL of THF was added dropwise 

slowly BH3•SMe2 (0.80 mL, 0.64 g, 8.39 mmol).  The solution was warmed to –30 ºC 

and eventually to 0 ºC for over 16 h.  The TLC was checked. Although the reaction was 

not complete the reaction was worked up. To the stirring solution was added methanol 

(100 mL) via syringe. The solvent was evaporated under reduced pressure. The residue 

was purified by column chromatography (5 : 1 pentane : ether) to give 0.50 g (25%, 2.00 

mmol) of compound (S)-4-102 as light yellow oil. The spectroscopic properties were 

identical with those given for the racemate rac-4-102. Chiral HPLC with Chiralcel OD-H 

column using 99.6 : 0.4 hexane : isopropanol at 0.7 mL/min gave retention times of 8.1 

minutes for the major and 10.9 minutes for the minor enantiomers showed 97% ee for 

compound (S)-4-102. [∝]D
22 –75.0° (c 1.00, CH2Cl2) at 97 % ee. 

 

 

 

 

O

TMS
4-103

OH

TMS

(S)-4-102

2 equiv CBS cat
1 equiv BH3•SMe2

–45 °C to RT
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Preparation of the compound (S)-4-95: 

 

 

 

To a stirred solution of compound (S)-4-102 (0.50 g, 2.00 mmol) in 10 mL of THF, TBAF 

(1M in THF, 2.20 mL, 2.20 mmol) was added slowly at RT and stirred at this 

temperature for 1 h. The reaction mixture was then added slowly to a vigorously stirred 

mixture of 15 mL of brine. The aqueous layer was extracted with ether (3 x 20 mL). The 

organic layers were combined and dried with MgSO4. Ether was distilled off under 

reduced pressure and the crude product was purified by column chromatography 

(eluent: dichloromethane) to give pure product (S)-4-95 (0.25 g, 1.40 mmol, 70% yield). 

 

Yellow oil; Rf = 0.42 (30% Ethyl acetate / Hexane); 1H NMR (CDCl3, 600 MHz) δ 1.02 

(s, 3H), 1.07 (s, 3H), 1.40-1.46 (m, 2H), 1.50-1.60 (m, 2H), 1.94 (s, 3H), 1.97 (t, 2H, J = 

6.0 Hz), 2.48 (d, 1H, J = 1.8 Hz), 5.02 (d, 1H, J = 2.4 Hz); 13C NMR (CDCl3, 150 MHz) δ 

19.10, 20.90, 27.55, 28.38, 33.56, 34.66, 39.36, 59. 53, 72.32, 84.99, 134.55, 137.83; 

IR (neat film) 3298, 3035, 2967, 2924, 2857, 2136, 1665, 1446, 1377 cm-1; HRMS (TOF 

MS ES+) calcd for C12H18O (M
++H) m/z 179.1436, meas 179.1431; [∝]D

22 –76.3° (c 

1.00, CH2Cl2) at 97 % ee. 

OH

TMS

(S)-4-102

THF
TBAF

OH

(S)-4-95
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Preparation of the compound (S)-4-96: 

 

 

 

The alcohol (S)-4-95 (0.20 g, 1.12 mmol) was added to a mixture of tert-

butyldimethylsilyl chloride (0.20 g, 1.35 mmol) and imidazole (0.12 g, 1.79 mmol) in 

dichloromethane (7 mL). The mixture was stirred for 16 h at room temperature. The 

crude product was concentrated in vacuo and directly chromatographed on silica gel 

(eluted with 100 : 1 hexane–ethyl acetate) to afford 0.27 g (0.93 mmol) of (S)-4-96 as 

colorless oil, giving 83% yield over two steps. The spectroscopic properties were 

identical with those given for the racemate rac-4-96. [∝]D
22 –50.8° (c 1.00, CH2Cl2) at 

97 % ee. 

 

Preparation of the compound 4-101: 

 

 

 

OH

(S)-4-95

TBSCl, Imidazole
DCM

OTBS

(S)-4-96

Cr(CO)5
H3CO

+
OTBS 1) Solvent

60 °C, 24 h
O

H3CO

4-61 (S)-4-96 4-101

2) FeCl3•DMF

97% ee

*
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The carbene complex 4-61 (0.08 g, 0.30 mmol), enyne (S)-4-96 (0.11 g, 0.36 mmol, 

97% ee), and dichloromethane (5.00 mL) were added to a 25 mL Schlenk flask. The 

reaction mixture was deoxygenated by the freeze-pump-thaw method (3 cycles) and 

finally the flask was back-filled with argon. The reaction mixture was stirred and heated 

at 60 ºC for 24 hours. The solvent was removed under reduced pressure and the crude 

compound was dissolved in 8 mL of diethyl ether. To this mixture, water (8 mL) and 7.5 

equiv. of FeCl3•DMF complex were added and stirred under air. Upon completion of the 

oxidation (judged by TLC), the organic layer was separated. The aqueous layer was 

washed with ether (3 x 15 mL). Organic layers were combined, washed with brine and 

dried over magnesium sulfate. Column chromatography with 1% ethyl acetate / hexane 

gave pure compound 4-101 (0.06 g, 0.21 mmol, 70% yield). The reaction was repeated 

in toluene solvent under the same conditions and the product 4-101 was obtained in 

63% yield (0.05 g, 0.19 mmol). Chiral HPLC with Chiralcel OD-H column using 99.8 : 

0.2 hexane : isoprpanol  at 0.5 mL/min gave retention times of 9.07 minutes for the 

major and 10.5 minutes for the major enantiomers showed 26% ee for compound 4-101. 

[∝]D22 +3.6 ° (c 1.00, CH2Cl2) at 26 % ee. The rection was repeated under the same 

conditions just by changing the solvent to toluene and the enantioselectivity for the 

product 4-101 was found to be 12 % ee and the yield was 63%. The spectroscopic 

properties were identical to that reported for compound rac-4-101. 
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Preparation of the compound rac-4-106: 

 

 

 

The carbene complex 4-105 (0.08 g, 0.28 mmol), enyne rac-4-37 (0.10 g, 0.33 mmol), 

aniline (0.25 mL, 0.26 g, 2.70 mmol) and solvent (8.00 mL) were added to a 25 mL 

Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 8 mL of diethyl ether. To this 

mixture, water (8 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

combined, washed with brine and dried over magnesium sulfate. Column 

chromatography with 1% ethyl acetate / hexane gave pure compound rac-4-106 (0.06 g, 

0.21 mmol, 76% yield). 

 

Yellow oil; Rf = 0.27 (1% Ethyl acetate / Hexane); 1H NMR (CDCl3, 500 MHz) δ 1.34 (s, 

3H), 1.56 (s, 3H), 1.65 (s, 3H), 1.65-1.68 (m, 2H), 2.05- 2.20 (m, 2H), 2.11 (s, 6H), 3.74 

(s, 3H), 5.06-5.15 (m, 1H), 5.52 (d, 1H, J = 10 Hz), 6.27 (d, 1H, J = 10 Hz), 6.36 (s, 1H); 

OTBS

Cr(CO)5
H3CO

+
O

H3CO1) Toluene
10 equiv. aniline
60 °C, 24 h

76%rac-4-374-105 rac-4-106
2) FeCl3•DMF
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13C NMR (CDCl3, 125 MHz) δ 11.61, 12.06, 17.55, 22.73, 25.66, 25.79, 40.75, 56.13, 

77.69, 106.15, 118.14, 123.20, 124.34, 125.35, 126.27, 129.34, 131.51, 144.76, 151.29; 

IR (neat film) 3038, 2967, 2926, 2857, 1640, 1608, 1577, 1462, 1424, 1378 cm-1; 

HRMS (TOF MS ES+) calcd for C19H26O2 (M
++H) m/z 287.2011, meas 287.2021. 

 

Preparation of the compound 4-106: 

 

 

 

The carbene complex 4-105 (0.05 g, 0.17 mmol), enyne rac-4-60 (0.09 g, 0.20 mmol), 

aniline (0.15 mL, 0.16 g, 1.70 mmol) and solvent (5.00 mL) were added to a 25 mL 

Schlenk flask. The reaction mixture was deoxygenated by the freeze-pump-thaw 

method (3 cycles) and finally the flask was back-filled with argon. The reaction mixture 

was stirred and heated at 60 ºC for 24 hours. The solvent was removed under reduced 

pressure and the crude compound was dissolved in 8 mL of diethyl ether. To this 

mixture, water (8 mL) and 7.5 equiv. of FeCl3•DMF complex were added and stirred 

under air. Upon completion of the oxidation (judged by TLC), the organic layer was 

separated. The aqueous layer was washed with ether (3 x 15 mL). Organic layers were 

OTr

Cr(CO)5
H3CO

+
O

H3CO

94%, racemic99% ee
(S)-4-604-105 4-106

1) Toluene
10 equiv. aniline
60 °C, 24 h
2) FeCl3•DMF
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combined, washed with brine and dried over magnesium sulfate. Column 

chromatography with 1% ethyl acetate / hexane gave pure compound 4-106 (0.05 g, 

0.16 mmol, 94% yield). Chiral HPLC with Chiralcel OD column using 99.8 : 0.2 hexane : 

isopropanol at 0.5 mL/min gave retention times of 14.03 minutes for the major and 

16.17 minutes for the minor enantiomers showed compound 4-106 to be racemic. The 

spectroscopic properties were identical with those given for the racemate rac-4-106. 
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