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ABSTRACT 

 

A ROLE FOR MP1 SCAFFOLD PROTEIN IN BREAST CANCER CELLS 

 

By 

 

Mihaela Marina 

 

Breast cancer cells are characterized by their uncontrolled proliferation, high motility 

and ability to escape cell death. These pathophysiological processes are driven by 

aberrant expression and activity of various intracellular pathways, including ER, 

PI3K/AKT/mTOR, MAPK and integrins. Activated by estrogen, growth factors, nutrients, 

and other extra- and intracellular stimuli, these signaling pathways can cooperate or 

compensate for each other in order to promote tumor growth, metastasis and drug 

resistance. In normal cells, signaling can be tightly regulated by scaffold proteins that 

can turn on or off pathways, according to the cellular context. One such scaffold protein 

is MP1, which was initially discovered within the MAPK pathway. Subsequent studies 

revealed its association with additional pathways and its implication in regulating 

spreading, migration, proliferation, and differentiation. Since the pathways MP1 interacts 

with regulate breast tumorigenesis, we hypothesized and MP1 can directly participate in 

regulating the proliferation and survival of breast cancer cells. 

A panel of human mammary epithelial cell lines, consisting of ER-positive and ER-

negative tumorigenic and non-tumorigenic cells was used. MCF-7 ER-positive and 

MDA-MB-231 ER-negative cells represented the main models for our studies. We 



confirmed that MP1 was expressed in all the mammary cell lines investigated, with 

collectively higher levels in ER-positive breast cancer cells compared to ER-negative 

ones. We then used siRNA duplexes to investigate the role of MP1 in breast cancer 

cells. First, we observed that MP1 silencing specifically induced cell death of ER-

positive cells, whereas ER-negative cell lines examined were largely unaffected. Next, 

we established that the observed cell death effect was apoptosis, as indicated by PARP 

cleavage and downregulation of Bcl-2 pro-survival protein. These data suggested a 

novel pro-survival role of MP1 protein that is specific to ER-positive breast cancer cells. 

After establishing the biological relevance of MP1 silencing, we undertook a mechanistic 

approach and investigated the effects of MP1 siRNA on several signaling pathways. 

Partial depletion of MP1 was correlated with significant decrease in AKT activity and ER 

levels and activity. In contrast, MAPK activity was not affected, whereas reduced β1 

integrin expression did not reach statistical significance. In addition, the pro-apoptotic 

effects triggered by MP1 silencing were not dependent on ER signaling, which is also 

not required for survival of MCF-7 cells. Finally, we re-confirmed that in contrast to 

MDA-MB-231 cells, MCF-7 cells require PI3K for survival and active AKT was able to 

partly rescue the cell death phenotype induced by MP1 silencing. 

In summary, the studies presented here indicate a novel role for MP1 scaffold protein in 

ER-positive breast cancer cells. MP1 silencing resulted in cell death of ER-positive 

breast cancer cells only, therefore, expression of MP1 appears to be a requirement for 

promoting survival of this subset of breast cancer cells. They further suggest that the 

mechanism of cell death that occurred is apoptosis and this was mediated via PI3K/AKT 

signaling with possible cooperation from ER and β1 integrin.  
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LITERATURE REVIEW 

I. Breast cancer incidence, risk factors, and the importance of targeted 

therapies 

Over the past decade, both the incidence and mortality rate of breast cancer have 

decreased, reflecting improvements in screening, diagnosis and treatment methods. In 

spite of this encouraging progress, breast cancer remains the most common form of 

cancer detected globally and the second leading cause of cancer-related deaths in 

women. In 2011, over 39,000 women are expected to lose their lives to this disease in 

the United States alone (1, 2).  

It is estimated than one in eight women will develop breast cancer at some point in her 

lifetime. The chance that a woman will be diagnosed with breast cancer can be 

estimated based on reproductive factors including age at onset of menarche, pregnancy 

status, use of oral contraceptives and hormone replacement therapies. In addition, age, 

family history, BRCA1 and BRCA2 mutations and lifestyle factors such as physical 

activity, obesity, and alcohol consumption affect breast cancer risk. Fatality from breast 

cancer is mainly due to metastasis and the risk of metastasis and relapse is correlated 

with a series of parameters including tumor size and grade, lymph node involvement, 

hormone receptor status, HER2 overexpression, and gene expression signatures (3). A 

decrease in incidence and mortality rates might be made possible by a more in depth 

understanding of the aforementioned clinical and biological determinants. Biomedical 

research continues to have a tremendous impact on the management of this disease 

through analysis and characterization of genetic, molecular and cellular risk factors. 
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In addition to providing reliable data about the probability of breast cancer occurrence 

and mortality, basic and translational research is the driving force behind improving 

treatment methods. Effective treatments include single use or combinations of radiation, 

surgery, chemotherapy and endocrine therapy. However, there are subsets of patients 

who do not benefit from current therapies, and breast tumors often undergo recurrence 

due to chemotherapy failure and acquired resistance to all therapies. The following 

section reviews the major subtypes of breast cancer in terms of general mechanisms of 

progression, incidence, prognosis, current treatment and resistance and future 

directions of biomedical research. 

II. Breast cancer subtypes and therapies 

The uncontrolled proliferation of mammary epithelial cells leads to the formation of pre-

malignant lesions, called atypical ductal or lobular hyperplasia (ADH or ALH), which 

carry a high risk of developing breast cancer. This condition precedes the non-invasive 

stages called ductal or lobular carcinoma in situ (DCIS or LCIS). Since tumors 

progressing from DCIS have invasive potential (4), their treatment usually requires 

surgery, whereas patients with LCIS are subjected to careful screening or endocrine 

therapy (5). 

From the molecular standpoint, there are four main subtypes of breast tumors that are 

treated with current therapies: ER-positive, ER-negative, HER2-positive and triple 

negative (ER-/PR-/HER2-) breast tumors. Another classification scheme for breast 

tumors separates them into five subtypes: Luminal A (ER+ and/or PR+, HER2-) with 42-

59% incidence; Luminal B (ER+ and/or PR+, HER2+) with 6-12% incidence; HER2+ 
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(ER-/HER2+) with 7-12% incidence; Basal (ER-/PR-/HER2-) with 15-20% incidence; 

and unclassified (ER-/PR-/HER2-/CK5/6-/HER-) breast cancers with 6-10% incidence 

(6-13). Generally, ER-negative tumors fall into the HER2-overexpressing and triple 

negative breast cancers groups. Although poorly differentiated, these tumors display 

distinct features, including high grade, pushing margins and high p53 expression (14). 

Unfortunately, ER-negative tumors are more aggressive and less amenable to therapy 

than ER-positive tumors, and often have a poor clinical outcome. 

A. Estrogen receptor-positive breast tumors 

Estrogen receptor (ERα, for simplicity, ER) is a main regulator of mammary gland 

development and a potent stimulator of breast cancer proliferation. Expressed in over 

70% of breast tumors (defined by >1% positive staining), ER is a therapeutic and 

prognostic marker, since its status is a good predictor of response to endocrine 

therapies and is correlated with low risk of metastasis. The estrogen hormone, its 

natural ligand, is synthesized by ovaries in premenopausal women and by peripheral 

tissue in postmenopausal women. Upon binding to ER, estrogen is a powerful growth 

stimulant that controls the early stages of breast tumor proliferation (15). Aiming to 

inhibit the proliferative effects of estrogens, endocrine therapy blocks further growth of 

breast tumors and is usually well tolerated by both pre- and postmenopausal women. In 

general, anti-estrogen therapy is adjuvant to combinations of surgery, radiation and 

chemotherapy, but can be also administered pre-surgery. 

Current endocrine therapies involve the administration of selective estrogen receptor 

modulators (SERMS) such as tamoxifen and raloxifene, which block binding of estrogen 
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to ER, aromatase inhibitors (AI) such as anastrozole, letrozole or exemestane, which 

inhibit synthesis of estradiol, and pure antiestrogens such as fulvestrant, which induce 

degradation of ER (16-19).   

After initially responding to ER inhibition, 30% of breast tumors can become tamoxifen 

insensitive, and many progress to a non-responsive state to all endocrine therapies (16, 

20, 21). Therefore, innate and acquired endocrine resistance remains the greatest 

challenge in the management of ER-positive breast tumors. Evidence from cell-based 

studies, pre-clinical animal models, genome-wide arrays and proteomic analyses of 

breast tumors led to several proposed mechanisms for endocrine resistance. This 

phenomenon can be due to deregulation of the ER signaling pathway, including the 

receptor itself (22-26) or the switch of tamoxifen action from antagonist to agonist (27), 

impaired cell cycle regulation (28-30), impaired survival signals (31), or activation of 

compensatory cytosolic pathways that will promote tumor proliferation and survival in 

the presence of antiestrogens (32).  

B. HER2-overexpressing breast tumors 

The human epidermal growth factor (HER) family of receptors is another example of 

molecules that regulate cell growth in normal cells but have a potent oncogenic role in 

breast cancer (33, 34). Approximately 20% of breast cancer patients have tumors that 

overexpress HER2, an event that was historically associated with an aggressive 

phenotype and poor survival rate (35). HER2 signals via homo- or heterodimerization 

with the other HER receptors, with the strongest oncogenic unit being HER2:HER3 (36).  
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Current therapies targeting HER2-overexpressing breast tumors include the monoclonal 

antibody trastuzumab, which blocks receptor downstream signaling and the small 

molecule tyrosine kinase inhibitor, lapatinib, which inhibits the kinase activity of HER2. 

Both compounds were shown to block cell proliferation and promote cytotoxicity and 

were used as monotherapy or in combination with chemotherapeutic agents. 

Unfortunately, HER2-overexpressing breast cancers can acquire resistance to anti-

HER2 therapies and this may be attributed to the expression of truncated forms of the 

receptor or to misregulated signaling downstream of it, which can circumvent the 

inhibition of proliferative and survival signals. 

As evidence of their genetic and molecular heterogeneity, a number of HER2-

overexpressing breast tumors are also ER-positive, thus several trials have addressed 

the combination of these targeted therapies with promising results in terms of 

progression free survival (37-40).  

C. Triple negative breast tumors 

Around 10-15% of breast tumors do not express estrogen receptor, progesterone 

receptor, or HER2 and are classified as triple negative (TNBC) (41-43). Being non-

responsive to both endocrine and anti-HER2 therapies, these tumors have a more 

aggressive phenotype and a poor prognosis. Patients with TNBC have the highest risk 

of developing metastasis (44, 45) and a high risk of recurrence.  

Treatment of TNBC is based on standard cytotoxic polychemotherapy (46). Cytotoxic 

agents target mitotic events, including microtubule assembly, blocked by the use of 

taxanes, and the synthesis, replication and transcription or DNA, which can be inhibited 
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by platinum, anthracycline antibiotics or fluorouracil. Since these compounds 

unselectively target all proliferating cells, some common side effects include 

immunosuppression, alopecia, and gastrointestinal bleeding and vomiting. In spite of 

the systemic off-target effects, chemotherapy has been effective in the management of 

TNBC as neoadjuvant, adjuvant and anti-metastatic strategy (47). 

TNBCs are very heterogeneous and several biomarkers with therapeutic and prognostic 

relevance have been identified. For example, patients harboring BRCA1 and BRCA2 

germ-line mutations responded positively to poly(ADP-ribose) polymerase (PARP) 

inhibitors. In this setting, inhibition of PARP (DNA-repairing enzyme) induced cell death, 

by blocking the homologous recombination DNA repair step, which is critical to the cells 

in the absence of BRCA1 (48). 

In summary, the genetic and molecular heterogeneity of breast tumors confer on 

epithelial cancer cells the ability to become poorly or non-responsive, to current 

therapies. An important goal of biomedical research is to unravel the mechanisms that 

cause resistance to various therapies, and to develop new drugs that will be effective for 

specific breast cancer subtypes. In this era of novel targeted therapies, the identification 

and validation of tumor biomarkers has also become an essential component of breast 

cancer research. Single or panels of biomarkers can potentially indicate the onset and 

progression of breast tumors, and/or predict the response to therapeutic agents. 

Tracking changes in appropriate markers in biopsies or circulating tumor cells in 

response to drug administration could provide correlations between the biomarker 

status and the efficacy of a particular drug. Ideally, this might indicate patients who are 
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less likely to benefit from newly designed compounds, and these patients could be 

excluded from long-term clinical trials with these drugs. 

 

III. Signaling pathways in breast cancer and the importance of scaffold 

proteins 

At the cellular level, breast cancer is not a single disease but rather a collection of 

conditions that vary in their biology and response to treatment.  As with other tumor 

cells, mammary cancer cells are characterized by high uptake of nutrients from their 

media, abnormal growth, uncontrolled proliferation, impaired DNA replication and repair, 

evasion of cell death,  and the acquisition of new abilities that allow them to invade the 

surrounding tissues, survive in the bloodstream, migrate and colonize distant organs 

(49). This section reviews some of the signaling pathways that are responsible for 

aberrant cellular processes that contribute to malignant transformation, and emphasize 

the biological and clinical relevance of signal transduction form these pathways and 

their complex interactions. 

A. Estrogen receptor 

As previously stated, ER promotes proliferation of breast cancer cells. ER is a type I 

ligand-activated nuclear receptor that functions as a transcription factor. Ligand-

activated ER dimerizes, translocates into the nucleus where it recruits coregulators and 

binds promoter regions of DNA that contain estrogen response elements (ERE). Direct 

binding to an ERE is referred to as the classical genomic pathway (50). In addition, ER 
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can regulate gene transcription indirectly, via protein-protein interactions with other 

transcription factors such as c-Fos/c-Jun, which bind activating protein 1-(AP-1) 

containing promoters (non-classical genomic pathway) (51). By turning on genes 

encoding proteins implicated in tumor proliferation, such as cyclin D1 (52), IGF-IR (53) 

and c-Myc (54, 55), ER promotes autocrine regulation of cell proliferation (56).  

Emerging data point out the bidirectional cross-talk between ER and other signaling 

molecules. First, ER can be activated by phosphorylation on a number of conserved 

residues, and this activation does not necessarily require the presence of estrogen (57). 

The ligand-independent receptor activation occurs in response to signals from growth 

factor receptors, such as HER2, epidermal growth factor receptor (EGFR), and insulin-

like growth factor receptor (IGF-IR) (58, 59). Downstream kinases, including MAPK, 

AKT, JNK, PAK1 and ILK phosphorylate and activate ER on specific sites (60-67) and 

phosphorylation of ER promotes ligand independent growth of breast cancer cells and 

has been linked to endocrine resistance (61, 68-70). The clinical relevance of ER 

phosphorylation at Ser167 includes the predictive of response to endocrine therapy and 

a good prognosis for overall survival in breast cancer patients (71-73). 

In addition to its genomic effects, ER has non-genomic functions. By modulating the 

activity of several cellular kinases, ER signaling controls a subset of genes that are 

usually regulated by growth factor signaling (62, 63, 74, 75). These non-genomic effects 

are due to a small subpopulation of extranuclear ER that may be homologue to the 

nuclear ER or an atypical G-coupled protein receptor (76). ERs localize to the plasma 

membrane, activate cyclic AMP second messenger  or receptor tyrosine kinases HER2, 
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IGFR and EGFR (77-80). Additionally, ER has functional interactions with adaptor 

protein Shc and with Src and PI3K kinases (59, 81-85). 

In addition to its well-established proliferative role, several studies indicate that ER may 

be implicated in breast cancer cell survival. ER promotes survival of breast cancer cells 

via cross-talk with the PI3K/AKT pathway (61), or by regulating the activity of NF-κB (86, 

87), Bcl-2 (88, 89), and inhibitor of apoptosis (IAP) family members (90). 

In summary, ER is a crucial regulator of breast cancer cell proliferation and survival. Its 

activation and signal transduction are part of intricate bidirectional interactions with 

other signaling pathways with known roles in malignant transformation and drug 

resistance. 

B. PI3K/AKT/mTOR 

The phopshoinositide 3-kinase (PI3K) pathway is an important signaling node in breast 

cancer biology. Activated by signals received from various sources, such as IGF-IR, 

integrins or ER (91), PI3K lipid kinases phosphorylate the 3’-hydroxyl group of 

phosphoinositides like phosphatidylinositol-3,4,5-trisphosphate (PIP3). This second 

messenger recruits phopshoinositide dependent kinase (PDK1) and the 

serine/threonine kinase AKT to the plasma membrane (92, 93). In turn, PDK1 

phosphorylates AKT on Th308, and this particular phosphorylation is essential for 

kinase activity (94). Complete activation of AKT is achieved by phosphorylation of 

Ser473 by a different kinase. The lipid phosphatase and tensin homolog PTEN is the 

physiological inhibitor of PI3K, since it dephosphorylates PIP3. Therefore, the levels of 

PIP3 are important for maintaining normal cellular functions.  
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Increased PI3K signaling is associated with breast tumorigenesis and can be attributed 

to a number of genetic and molecular alterations including high levels of constitutive 

active AKT1, mutations and amplifications of PI3KCA and mutations of PTEN tumor 

suppressor in 30% of breast cancers (95-97). AKT is the primary target of PI3K 

signaling. This kinase plays a pro-survival role in breast cancer cells, where it relays 

signals from upstream molecules such as integrins, growth factor receptors, PI3K, and 

mTORC1, to downstream molecules such as FLIP, Bcl-2, Bad, and NF-κB (98-101). 

Data from murine models of breast cancer indicate that AKT1 cooperates with other 

oncogenes to promote mammary tumorigenesis (102).  

Both cell-based and animal models of breast tumors report the cross-talk between AKT 

and other oncogenic pathways, including Raf/MAPK, ER, and integrin-linked kinase 

(ILK). Phosphorylation of Raf by AKT inhibited the Raf-MEK-ERK pathway and induced 

proliferation of breast cancer cells (103). This controversial effect is supported by 

previous findings showing that prolonged activation of the Raf/MAPK pathway results in 

growth inhibition (104). Several interactions between AKT and ER signaling have been 

demonstrated in breast cancer cells. For example, AKT phosphorylates ER and 

promotes survival of breast cancer cells (61), estrogen activates AKT (105, 106) and in 

turn, the AKT kinase activity modulates the effects of estrogen on ER activity (107, 108). 

Finally, in mouse mammary glands, high levels of AKT phosphorylation are correlated 

with overexpression of ILK, hyperplasia, and subsequent tumor formation (109).  

In addition to promoting breast tumor growth and survival, activation of PI3K/AKT 

signaling pathway has also been linked to resistance to antiestrogens (110-114) and 

trastuzumab (115-117). Thus, compounds targeting the PI3K/AKT signaling pathway 
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represent a potential therapeutic tool for ER-positive and HER-2 overexpressing breast 

tumors with primary or acquired resistance to current therapies (118).  

Another downstream target of PI3K is the mammalian target of rapamycin (mTOR), 

which is activated in response to nutrients and growth factors in proliferating cells and is 

an essential regulator of nutrient uptake, protein synthesis, growth, cell cycle, and 

survival/apoptosis (119). Two mTOR complexes have been identified, and they differ in 

their protein composition and response to rapamycin, which inhibits mTORC1 but not 

mTORC2. Both complexes include the mTOR serine/threonine kinase and one of the 

associated proteins raptor and rictor, which are found in mTORC1 and mTORC2, 

respectively. Importantly, mTORC1 is activated by AKT (120), whereas mTORC2 

signals upstream of and can phosphorylate AKT at Ser473 (121, 122). Due to its 

demonstrated functions in mammalian cells, it is not surprising that hyperactive mTOR 

signaling drives breast tumor growth by stimulating translation of mRNA and protein 

synthesis, cycle progression and survival of breast cancer cells (123).  

In conclusion, the PI3K/AKT/mTOR pathway integrates signals from growth factor 

receptors, integrins and ER to regulate growth, proliferation and survival of breast 

cancer cells, and is also implicated in drug resistance. Therefore, pre-clinical and early 

clinical studies have been carried out using inhibitors of PI3K, mTOR, dual PI3K/mTOR 

inhibitors, and compounds that selectively target the AKT kinase (118, 123-126). 

Ongoing trials include blockade of PI3K/AKT combined with aromatase inhibitors or 

trastuzumab. 
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C. MAPK 

The MAPK signal transduction requires sequential activation of three kinases (127, 128) 

and the Raf-MEK-ERK module is the most studied MAPK cascade in the context of 

breast cancer biology (129). The extracellular regulated kinase (ERK) receives amplified 

signals from its upstream partners and phosphorylates its cytosolic and nuclear targets 

to mediated cell proliferation (130, 131). 

The role of mitogen activated protein kinases (MAPKs) in breast tumorigenesis 

significantly overlaps with that of growth factor receptor tyrosine kinases, since the 

MAPK linear cascade is activated downstream of HER2, EFGR and IGF-IR. In addition 

to growth factors, membrane-localized ER, G-coupled protein receptors and several 

ligands, including insulin, prolactin, estrogen, and progesterone can initiate responses 

through MAPK signaling to regulate proliferation, growth, differentiation, migration, and 

survival of breast cancer cells (130). Moreover, activation of MAPK was observed in 

human tumors and was correlated with decreased disease free survival (132). 

In breast cancer cells, estrogen rapidly activates ERK, which translocates to the nucleus 

(133). Additional studies confirmed that proliferation of ER-positive breast cancer cells is 

partly due to activation of ERK by estrogen (134-137). Estrogen-induced activation of 

MAPK involves IGF-IR and EFGR to promote growth and survival of breast cancer cells 

(75, 138). Conversely, MAPK stimulates ER signaling, via phosphorylation of ER (139). 

A notable aspect of MAPK function is the compensatory activation after estrogen 

deprivation (140, 141). Both cell culture and in vitro models have demonstrated that ER-

positive cells adapt to long term deprivation of estradiol by activating the MPAL pathway, 
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which promotes cell proliferation via ER transactivation and also independently from ER. 

Moreover, high levels of tyrosine kinase activity are correlated with estrogen 

independence and anti-estrogen resistance, resulting in increased ERK activity (142, 

143).  

In summary, the MAPK signaling pathway is a crucial regulator of breast tumorigenesis, 

particularly via complex interactions with ER, in response to estrogen and growth factor-

driven stimulation. In clinical practice, MEK blockers are relatively new targets and 

ongoing trials are underway to investigate the effects of specific MEK inhibitors in solid 

tumors.  

D. PAK 

p21-activated kinase (PAK) is another serine/threonine kinase with well-established 

roles in the biology of breast cancer. In normal cells, PAK regulates actin reorganization 

and cell motility via binding to the small GTP-ases Rac and Cdc42, or through its 

scaffolding function between PDK1 and AKT (144, 145). Subsequent studies performed 

in fibroblasts reported a cross-talk between PAK1 and MAPK, as PAK1 activates a 

population of MEK1 and ERK in focal complexes during adhesion to fibronectin in the 

presence of MP1 scaffold protein (146, 147). 

PAK1 has increased expression and activity in breast tumors (148-150) and in many 

breast cancer cells (151), where it promotes cell migration (152, 153). PAK1 can be 

activated by known mitogens such as heregulin (154). In addition, high expression of 

PAK1 promotes malignant transformation by inducing chromosome instability in 

tumorigenic epithelial cells (152) and aberrant survival and transformation of non-
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tumorigenic mammary epithelial cells (65, 69, 148, 155, 156). MMTV-PAK1 transgenic 

mice developed malignant tumors that also expressed active (phosphorylated) MEK1 

(157). Several reports have noted the interaction of PAK1 with ER signaling, since ER is 

a direct phosphorylation target of PAK1, and the kinase was linked to tamoxifen 

resistance (65, 69).  

In conclusion, data emerging from human tumor samples together with functional 

studies provided the rationale for designing small molecule inhibitors of PAK1. Future 

pre-clinical investigations will evaluate the therapeutic potential of PAK1 inhibition in the 

context of breast cancer (158) . 

E. Integrins 

Proliferation and survival of breast cancer cells is highly dependent of their attachment 

to the extracellular matrix and this attachment is mediated by integrins. Mammalian cells 

have 24 distinct integrin receptors, which are dimers formed by combinations of α and β 

subunits. Their ligands are the extracellular matrix proteins collagen, laminin, fibronectin, 

and vitronectin (159, 160). While helping to maintain cell adhesion to the matrix and 

three-dimensional tissue structure, integrins connect extra- to intracellular molecules to 

regulate proliferation, survival, gene transcription and migration (161). Ligand-bound 

integrins function at focal adhesions, where they interact with paxillin, vinculin, talin, or 

alpha-actinin, intracellular proteins that regulate actin polymerization and formation of 

motile structures. Focal adhesions are also active signaling nodes, via activation of focal 

adhesion kinase (FAK), ILK, s-Src, Rho and Cdc42 as well as MAPK and PI3K (162). 
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Several integrin dimers are highly expressed in breast cancer cells and have been 

shown to contribute to malignant transformation. For example, α6β4 integrin activates 

PI3K through increasing HER2 activation (163), and the interaction of this integrin with 

another growth factor receptor was required for PI3K-mediated migration (164). In a 3D 

model of mammary acini, α6β4 integrin activates PAK1 to promote resistance to 

apoptosis (165) while β4 subunit was required to promote HER2-mediated 

tumorigenesis in vivo (166). Another laminin receptor, αvβ3 integrin, has higher 

expression in tumorigenic compared with nontumorigenic mammary epithelial cells 

(167), and its expression is correlated with the metastatic potential of breast cancer 

cells (168). Furthermore, inhibition of αvβ3 integrin blocks VEGF-induced angiogenesis 

and decreases cell proliferation (169). Finally, several studies have noted that 

expression and activity of another dimer, the αvβ1 integrin, is correlated with adriamycin 

resistance (170) and induces migration of breast cancer cells expressing Shc (171).  

Individual integrin subunits have been characterized in terms of expression, activity and 

their roles in breast cancer cells. Thus, α2 integrin inhibits metastasis in cell culture and 

in mouse models and is positively correlated with ER status in breast tumors (172). 

Significant research investigated the role of β1 integrin in breast tumorigenesis. This 

subunit displays aberrant expression in 30-50% of breast tumors (173) and is 

associated with low disease free survival (174). β1 integrin has been linked to 

chemotherapy resistance (175, 176). In 3D culture, β1 integrin inhibitory antibodies 

induce apoptosis of several breast cancer cell lines and sensitize cells to radiotherapy in 

xenograft models (177, 178). Moreover, β1 integrin is required for tumor formation and 

growth in a mouse model of human breast cancer (179). 
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Integrins can indirectly regulate the biology of breast cancer cells through signals 

emerging from their downstream targets such as ILK and FAK kinases. FAK is a 

cytosolic kinase activated upon integrin ligation and is responsible for controlling motility, 

proliferation and survival (180-182). In vitro studies have shown that FAK is activated by 

PI3K and can in turn activate Ras/MAPK pathway (146, 183, 184). Analysis of 

metastatic breast tumors and DCIS revealed high levels of FAK, suggesting its role in 

tumor initiation and metastasis (185, 186). Subsequent studies reported that its 

expression in breast tumor tissue was correlated with invasiveness (186, 187). 

Blockade of FAK expression inhibited lung metastasis in vivo and the kinase also 

cooperated with ERK to induce angiogenesis in breast cancer cells (188, 189). 

ILK is a serine/threonine kinase that binds to β1 and β3 integrin at focal adhesions (190) 

and requires PI3K and GSK3 to phosphorylates AKT on Ser473 (191, 192). While 

normal cells have low levels of ILK activity, this kinase is highly expressed in breast 

tumors, and its overexpression was correlated with p-AKT at Ser473 and elevated 

levels of IGF1 (193). Functional assays in breast cancer cells indicate that ILK 

suppresses anoikis, promotes cell survival through the PI3K/AKT/mTOR pathway (194-

196), and phosphorylates ER to facilitate estrogen-mediated migration (66). In addition, 

interaction of ILK with rictor protein (of mTORC2) stimulates phosphorylation of AKT1 

and promotes survival (197). Finally, overexpression of ILK causes malignant 

transformation in vivo (109).  

In summary, a great body of evidence demonstrates the role of integrin signaling in 

breast cancer formation and progression and offers new possibilities of therapeutic 

interventions (198). 
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F. Scaffold proteins 

Cells integrate information from a large number of extracellular and intracellular signals 

in order to elicit specific responses. As part of this integration, the stoichiometry, stability, 

and compartmentalization of signaling complexes are regulated by scaffold proteins. 

Located most often at branch points within signaling networks, scaffolds mediate cross-

talk between key molecules and can potentiate or inhibit the strength of signals. Models 

of pathway connections through scaffold proteins vary from simple to complex. For 

example, a scaffold protein can function to facilitate interactions in a linear manner or it 

can mediate pathway branching and amplification of output to multiple downstream 

partners. Finally, scaffolds can be part of more elaborate interaction networks involving 

feedback regulation, thus directly activating or blocking signaling pathways (199). In turn, 

scaffold proteins can be regulated based on a cell’s needs and the presence or absence 

of scaffold proteins therefore contributes to the diversity of possible cellular responses. 

Functional studies indicate a role for several scaffold proteins in breast cancer. For 

instance, modulator of non-genomic action of estrogen receptor (MNAR) mediates the 

interactions of ER with PI3K and Src, and is required for the rapid effects of estrogen in 

breast cancer cells (200). POSH is another scaffold protein the proapoptotic function of 

which is suppressed by AKT in breast cancer cells (201). The Gab2 adaptor/scaffold 

protein is required to promote mammary tumor metastasis in neu-expressing mice (202). 

A recent study investigated the GIP1 scaffold protein, which was previously linked to 

IGF-IR and other receptors (203). GIP1 gene silencing inhibited proliferation and 

induced apoptosis of breast cancer cells (204).  
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In conclusion, scaffold proteins are essential for complex signaling networks that impact 

various cellular functions. Changes in the levels of scaffold protein genes or their 

mislocalization can potentially alter signal transduction and lead to faulty cell decisions 

that may ultimately contribute to breast tumorigenesis. The following section addresses 

some of the currently known facts about the scaffold protein MP1 and its potential 

relevance in the context of breast cancer. 

G. MP1 scaffold protein  

MP1 (MEK partner 1) is a 14 KDa (124 amino acid) scaffold protein that is present in 

several species with various degrees of homology to humans: mouse (124 aa, 97% 

homology), rat (124 aa, 96%), frog (Xenopus laevis; 123 aa, 87%), fruit fly (Drosophila; 

124 aa, 45%), and worm (Caenohrabditis elegans; 145 aa, 20%) (205). The 16.2 kb 

MP1 gene is found on chromosome 4 and has seven exons and six introns. Alternative 

splicing results in three transcripts, with variant 1 being the longest transcript that 

encodes the 124 amino acid protein. According to NCBI RefSeq, transcript 3 encodes a 

shorter isoform (117 aa) but neither the CCDS (Consensus CoDing Sequence) 

database nor the UniProt database provide public data for this second isoform. MP1 

was originally identified as a scaffold protein that specifically binds MEK1 and ERK1, 

and its ability to regulate MAPK signaling (206) and its localization to late endosomes 

are the most well characterized functions of this protein.  

The scaffolding role of MP1 has been demonstrated in several in vitro studies that 

report its association with large signaling complexes located to different intracellular 

compartments (207). For example, in late endosomes, MP1 interacts with adaptor 
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proteins p14, p18 and KRas to induce ERK activation (208-211). p14 is required to 

localize MP1 to late endosomes, and although they have different primary sequences 

the two small proteins have similar structures and form a high affinity heterodimer (205, 

212). Biochemical and crystallographic analyses found that both proteins consist of a 

five-stranded β-sheet flanked by three α-helices (205, 213). No specific protein 

interaction domains were identified. However, the structures of MP1, p14 and their 

heterodimer indicate the presence of several surface-exposed residues, suggesting the 

possibility of interaction with cytoplasmic proteins (205, 212, 213).  

A more recent study reports the presence of MP1 in the mTOR pathway (214). In this 

study, the MP1/p14/p18 trimeric, coined Ragulator, interacts with and localizes Rag 

GTP-ases to lysosomes. Moreover,  MP1 knockdown in HEK392T cells prevents the 

lysosomal recruitment of mTORC1 in the presence of amino acids and inhibits the 

amino acid-induced stimulation of dTORC1 in Drosophila, suggesting that MP1 is 

required for the recruitment of mTORC1 to lysosomes and is essential for the amino 

acid-dependent activation of the complex. MP1 is also required for PAK1 to activate a 

population of MEK1 in focal complexes during adhesion of rat fibroblasts to fibronectin 

(215) and this interaction is sufficient to activate MEK1 in the absence of Raf, but to a 

lesser extent than observed with active Raf or EGF (147). Coimmunoprecipitations 

carried out in CCL39 mice fibroblasts shown an interaction between MP1 and RACK1, a 

scaffold protein that is required for the presence of active ERK to focal adhesions (216). 

In a family (humans) with an immunodeficiency syndrome, a mutation in 3' UTR for exon 

4 lead to reduced expression of p14 gene and the affected individuals had stunted 

growth (217). 
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Several cell-based and in vivo studies have addressed the functional role of MP1.  

Silencing of MP1 delayed spreading of fibroblasts and decreased migration of prostate 

cancer cells on fibronectin (215, 218). Furthermore, deletion of p14 gene in mice causes 

defects in embryo development and embryonic lethality before gastrulation (10.5 days). 

Epidermis of the p14-/- mice displayed fewer cell layers and had a lower mitotic index 

which prompted the authors of this study to conclude that p14/MP1 complex regulates 

cellular proliferation during development (209). Finally, transgenic lines of Drosophila, 

with either silenced or over-expressing dMP1, develop ectopic veins during wing 

development, suggesting that MP1 ortholog is required to regulate the vein cell 

differentiation (219). 

Taken together, these findings combined with published literature in breast cancer cell 

biology provide evidence for a potential role of MP1 scaffold protein in regulating 

survival, proliferation and motility of breast cancer cells.  

IV. Apoptosis 

Apoptosis is a normal cellular process in the development of breast tissue as it takes 

place during the formation of ducts and lumens, at the end of menstrual cycle and 

during involution post lactation. In breast tumors, apoptosis is the final effect of many 

drugs, in particular chemotherapeutic agents that are known to induce cytotoxicity. 

Morphologically, apoptotic cells shrink, display membrane blebbing, chromatin 

condensation and eventually disintegrate into apoptotic bodies which are subjected to 

phagocytosis (220).   
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At a cellular level, apoptosis is defined as the programmed cell death that involves two 

distinct processes, in terms of their localization and activation. The intrinsic pathway of 

apoptosis is activated mainly in response to DNA damage and centers on the release of 

cytochrome c from mitochondria. The decision of cell to undergo apoptosis is dependent 

on the functional balance between the pro-apoptotic and pro-survival members of the 

Bcl-2 protein family, which control the mitochondrial channels and release of 

cytochrome c (221). Once released, the cytochrome c binds Apaf-1 scaffold protein and 

facilitates the assembly of apoptosome and activation of initiator caspases 2, 8, 9 and 

10. At the same time, released mitochondrial protein Smac binds to and inactivates the 

inhibitor of apoptosis proteins (IAP). As a result, effector caspases are activated by 

proteolytic cleavage and can further cleave their downstream targets, including 

intermediate filament proteins, nuclear lamin, and the DNA-repair enzyme, PARP.  

The extrinsic pathway of apoptosis is triggered upon activation of a death receptor at 

the plasma membrane. TRAIL and FAS receptors bind their cognate ligands and 

undergo conformational changes to recruit Fas-associated death domain (FADD) 

protein and form the death-inducing signaling complex (DISC). FADDs recruit and 

mediate cleavage of caspase 8, thus activating the caspase cascade. In addition, by 

cleaving the pro-apoptotic Bid member of the Bcl-2 family, caspase 8 integrates the 

intrinsic and extrinsic apoptotic pathways. A distinct apoptotic extrinsic mechanism is 

represented by TNF signaling. Secreted by tumor cells or by their neighboring cells, this 

cytokine binds and activates TNF-R1. In turn, the receptor associates with TRADD and 

signals to activate caspases via interaction with FADD or to regulate gene transcription 

though NF-κB signaling.  
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Additional proteins have been shown to regulate apoptosis. Cellular FLICE inhibitory 

protein (c-Flip) prevents cleavage and activation of caspase 8 (222) and several cell-

based studies revealed its requirement for cell survival. Activated AKT can repress 

apoptosis by inactivating caspase 9 and Bad, FLIP or by upregulating Bcl-2 (99, 101, 

222). The Myc oncoprotein and NF-κB seem to have both pro-apoptotic and anti-

apoptotic roles. A notable regulator of apoptosis is the p53 tumor suppressor, which 

targets many components of the apoptotic machinery, triggers apoptosis under DNA 

damage events, thus contributing to the tissue homeostasis. In turn, in breast cancer 

cells, AKT was shown to mediate degradation of p53 protein (223). 

Breast cancer cells have developed strategies to evade apoptosis in order to overcome 

two main obstacles: to survive in the hostile environment found in the bloodstream 

during migration and to resist the cytotoxic effects of therapeutic agents or gamma 

irradiation. One way of achieving this requirement is by altering the levels of molecules 

directly implicated in apoptosis. For example, the Bcl-2 pro-survival protein is 

overexpressed in breast tumors, and this is correlated with poor prognosis (224). In 

addition, mutation of TP53 and loss of p53 functional protein impedes the ability of 

breast cancer cells to induce pro-apoptotic genes (225). An alternative mechanism of 

escape occurs through constitutive activation of growth factor signaling pathways and 

their downstream MAPK and PI3K/AKT cascades, and this strategy accounts for drug 

resistance in many types of breast tumors. Although challenging, understanding the 

mechanisms regulating apoptotic events in subtypes of breast cancer may provide 

valuable clues about potential novel molecules with prognostic and therapeutic 
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relevance. This dissertation research has focused on one such protein, MP1, which we 

identify as an important pro-survival molecule in ER-positive breast cancer cells.  
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Figure 1. Signaling pathways in breast cancer.  
1. Loss of integrin expression triggers defects in cell adhesion and increased tumor 

cell invasiveness and metastasis. 
2. Activation of ER signaling by ligands or phosphorylation leads to synthesis of cell 

cycle proteins and promotes cell proliferation. 
3. Activation of receptor tyrosine kinases by growth factors stimulates proliferation 

and growth of tumor cells and also renders ER ligand-independent. 
4. Activation of the PI3K/AKT pathway and of Bcl-2 pro-survival protein leads to 

escape from apoptosis and promotes tumor cell survival. 
For interpretation of the references to color in this and all other figures, the reader is 
referred to the electronic version of this dissertation. 
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ABSTRACT 

MEK Partner 1 (MP1 or MAPKSP1) is a scaffold protein that has been reported to 

function in multiple signaling pathways, including the ERK, PAK and mTORC pathways. 

Several of these pathways influence the biology of breast cancer, but the functional 

significance of MP1 in breast cancer cells has not been investigated. In this report, we 

demonstrate a specific requirement for MP1 expression in estrogen receptor (ER) 

positive breast cancer cells. MP1 is widely expressed in both ER-positive and negative 

breast cancer cell lines.  However, inhibition of its expression using siRNA duplexes 

resulted in detachment and apoptosis of ER-positive, but not ER-negative, breast 

cancer cells. Inhibition of MP1 expression in ER-positive cells resulted in reduced AKT1 

activity, and expression of a constitutively active form of AKT1 partially rescued the cell 

death phenotype observed when the MP1 gene was silenced. Together, these results 

suggest that MP1 is required for pro-survival signaling from the PI3K/AKT pathway 

specifically in ER-positive breast cancer cells. 

INTRODUCTION 

The small protein MEK Partner 1 (MP1, also known as Map Kinase Scaffold Protein 1 

and LAMTOR3) was originally identified as a scaffold protein that potentiates MAPK 

signaling by binding to MEK1 and ERK1 (1). MP1 interacts with another small protein 

p14, and together these two proteins are localized to endomembrane compartments as 

part of larger signaling complexes. For example, an MP1-p14-MEK1 complex is 

localized to late endosomes, and this localization is required for EGF-induced ERK1/2 

signaling (2-4). A second MP1-p14-p18 Ragulator complex is required for the 
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recruitment of mTORC1 to the lysosomal surface, and is essential for its amino acid-

dependent signaling (5). In addition to these trimeric complexes, MP1 has been 

reported to bind PAK1 at the plasma membrane, and the MP1-PAK1 interaction is 

required for MEK phosphorylation by PAK1 in the absence of Raf (6, 7). Thus, the 

scaffold protein MP1 can regulate the function of several intracellular kinases in different 

subcellular locations. 

Both in vitro and in vivo approaches have been taken to investigate the biological 

functions of MP1. Transient inhibition of MP1 expression using RNA interference in 

fibroblasts resulted in decreased Rho activity and delayed cell spreading on fibronectin 

(7). Similar knockdown experiments in DU145 prostate cancer cells resulted in 

decreased migration on fibronectin (6). This effect on migration was independent of the 

ability of MP1 to activate ERK and PAK1, since the levels of phosphorylated ERK and 

PAK1 were unchanged upon MP1 knockdown. However, inhibition of MP1 expression 

was associated with both decreased expression of paxillin and decreased number and 

turnover of focal adhesions at the migratory edge. Together, these data indicate that 

one function of MP1 in cell culture is related to cell adhesion and migration. Studies 

performed in conditional p14 knockout mice and in Drosophila have addressed the in 

vivo functions of MP1. The endosomal p14-MP1-MEK1 complex is required for cell 

proliferation in the epidermis during mouse embryogenesis (3). In Drosophila, the 

MP1/ERK complex regulates cell differentiation during development of the wing, since 

both down-regulation and overexpression of dMAPKSP1 lead to an ectopic wing vein 

phenotype (8).  In summary, MP1 is a widely expressed protein that interacts with 

multiple protein kinases and may impact various cellular processes including 
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proliferation, spreading, migration, and differentiation. Since many of these processes 

play important roles in cancer biology,  we used a loss of function approach to evaluate 

the role of MP1 in regulating the proliferation and/or survival of breast cancer cells. 

Analysis of publicly available gene expression datasets indicates that MP1 RNA is 

expressed in both normal mammary epithelial cells and in breast cancer cells. In this 

report, MP1 protein expression was investigated in a panel of human mammary 

epithelial cell lines. The data indicate that MP1 is expressed in both estrogen receptor 

alpha (ER)-positive and ER-negative breast cancer cell lines, as well as in non-

transformed cells.  However, the effects of inhibiting MP1 expression by transient 

transfection with siRNA duplexes differed between the cell lines. MP1 knockdown 

induced apoptosis of the ER-positive breast cancer cells, but not ER-negative breast 

cancer or non-tumorigenic cell lines.  The apoptosis observed in ER-positive cells was 

associated with cell detachment, and with decreased ER expression and AKT activation. 

The phenotype could be partially reversed by overexpressing a constitutively active 

form of AKT1, suggesting that MP1 plays a novel role in promoting survival of ER-

positive breast cancer cells via the AKT pathway.  

 

MATERIALS AND METHODS 

Cell lines and culture conditions 

MCF-7 and LCC9 cells were obtained from the Lombardi Cancer Center. T47D, ZR-75-

1, MDA-MB-231, BT-549, and Sk-Br-3 cells were purchased from the American Type 

Culture Collection. Cells were maintained in Improved Modified Eagle’s Medium (IMEM) 
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containing phenol red (GIBCO-Invitrogen-Applied Biosystems), supplemented with 5% 

fetal bovine serum (HyClone), and 100 Units/ml Penicillin/100 µg/ml Streptomycin 

(Invitrogen) and incubated at 37 ºC with 5% CO2. 

siRNA transfections 

All siRNA transfection reagents were purchased from Dharmacon-Thermo Scientific. 

Two independent MP1 siRNA duplexes (ON-TARGETplus), ER siRNA duplexes (ON-

TARGETplus siRNA Human ESR1) and a non-targeting siRNA (ON-TARGETplus 

siCONTROL) were used. Cells were plated in six-well plates at 105-3 x 105 cells per well 

in FBS containing medium. After 24 h, cells were transfected with 30-150 nM of either 

control or MP1 siRNA using DharmaFECT 1 transfection reagent. After 48 h, cells were 

harvested by scraping on ice cold PBS and prepared for protein extraction.  

Determination of cell death 

Cell death was assessed at 48 h post transfection using Trypan blue exclusion assays. 

Briefly, floating cells were collected, centrifuged, and resuspended in PBS, while 

attached cells were trypsinized, centrifuged, and resuspended in PBS. For each cell 

suspension, 18 µl were incubated with 2 µl trypan blue for 15 min and both total number 

and the number of dead cells were counted with a hemacytometer. The remaining 

harvested cells were processed for protein determination and immunoblotting.  

Immunoblotting 

Cell pellets were lysed in CelLytic M lysis buffer (Sigma), supplemented with cocktail 

tablets of protease (Roche - Complete Mini EDTA-free) and phosphatase inhibitors 

50 

 



(Roche – PhosSTOP). Protein concentrations were determined using the Bradford 

protein assay (Bio-Rad). Total protein (10-20 µg) was subjected to 4-20% Tris-HCl 

SDS-PAGE (Bio-Rad), transferred to Immobilon-FL polyvinylidene difluoride 

membranes (Millipore), blocked with Odyssey Blocking Buffer and then incubated with 

the appropriate primary antibodies. Alexa Fluor 680 anti-goat, anti-rabbit, and anti-rabbit  

(Invitrogen) and IRDye 800CW anti-mouse and anti-rabbit (LI-COR) secondary 

antibodies were used for two-color detection of proteins. Membranes were scanned and 

analyzed using the LI-COR Odyssey system.  

Luciferase assay 

MCF-7 cells were cultured in six-well plates at 3 x 105 cells per well. The following day 

they were co-transfected with 0.5 µg of ERE2-tk109-luc and 0.06 µg of pβgal-Basic, 

using Superfect transfection reagent (Qiagen). After 3 h, the medium was changed to 

transfection mixes of either control or MP1 siRNA and cells were incubated overnight. 

The transfection medium was then replaced with phenol red-free IMEM supplemented 

with 5% CSS for 24 h, then cells were stimulated with 10 nM 17β-estradiol (Sigma) for 8 

h. Cells were lysed and assayed for luciferase (Promega) and β-galactosidase 

(Clonetech) activity as suggested by each manufacturer.  

RNA isolation and quantity assessment 

Total RNA was isolated using the Trizol/Chloroform method. Briefly, cells were lysed 

and homogenized with Trizol, followed by a phase separation using chloroform. Next, 

the samples were precipitated with isopropanol, washed and redissolved in RNA 
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storage solution (Ambion). After a new precipitation step using sodium citrate and 

ethanol, RNA pellets were subjected to DNase digestion (Ambion). Total RNA was 

quantified at 260 nm using a Nanodrop ND-1000 spectrophotometer. The purity of RNA 

was verified by a 260/280 ratio of 2.0 ± 0.25 and a 260/230 ratio of 1.8 ± 0.15.  

Reverse transcription, semi-quantitative PCR and DNA gel electrophoresis 

A hundred ng (100 ng) total RNA were reverse-transcribed using Superscript One Step 

kit according to the manufacturer’s protocol (Invitrogen). To perform a semi-quantitative 

PCR analysis, 25 µl of cDNA-containing reaction solutions were subjected to various 

PCR conditions using a Bio-Rad Thermal cycler. The PCR products were loaded on 

1.5% agarose gel containing 100 ng/ml ethidium bromide (Sigma) and bands were 

visualized using a thermal gel imaging system (FUJIFILM). 

Primers and PCR conditions 

The following human primers were used for PCR reactions:  

• MP1 forward 5’-AACGGATCCATGGCGGATGACCTAAA-3’; reverse 5’-

GCCGAATTCCAGAAACTTCCACAACTTG-3’.  

• ER forward 5’-CATTATGGAGTCTGGTCCTGTGA-3’; reverse 5’-

GTTTCAACATTCTCCCTCCTCTT-3’.  

• Actin forward 5’-CTGGGACGACATGGAGAAAA-3’; reverse 5’-

AAGGAAGGCTGGAAGAGTGC -3’.  

The following PCR conditions were used: 

52 

 



• MP1 and actin primers: 56 ºC annealing temperature (30 seconds) and 30 

cycles 

• ER primers: 54 ºC annealing temperature (30 seconds) and 36 cycles 

The PCR products were 391 bp for MP1, 214 bp for ER, and 563 bp for actin. 

 

Antibodies and reagents 

The following primary antibodies were used for Western blotting: MP1 (A-19, Santa 

Cruz), actin (AC-40, SIGMA), estrogen receptor alpha (AB-17, Lab Vision-Thermo 

Scientific, or F-10, Santa Cruz), PARP (Cell Signaling), p-AKT (T308, Cell Signaling), 

AKT1 (BDI111, Santa Cruz), ERK (C-16, Santa Cruz),  p-ERK (Cell Signaling), Flag M2 

(Sigma), β1 integrin (N-20, Santa Cruz) or Bcl-2 (BD Biosciences).  

Pan caspase inhibitor z-VAD-FMK was obtained from BD Biosciences, Trizol from 

Invitrogen and PI3K inhibitor LY294002 was purchased from Sigma.  

Retroviral infection of MCF-7 cells 

pBabe-puro (Addgene plasmid 1764) or pBabe-puro-Myr-Flag-AKT1 (Addgene plasmid 

15294, (9)) were transfected into 293GPG packaging cells and retroviral stocks were 

prepared as previously described (10). These virus stocks were used to infect MCF-7 

cells (1 ml per 10 cm dish), in the presence of polybrene (8 µg/ml), and stable colonies 

were selected with 0.5 µg/ml puromycin. Both single colonies and pools of 50-100 

colonies were selected and propagated. Stable cell lines/pools were routinely 

maintained in medium supplemented with 0.25 µg/ml puromycin and plated in 

puromycin-free conditions for siRNA transfections. 
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Statistical Analysis 

Data are expressed as the mean ± S.D. Most experiments were performed three times. 

Paired evaluations were made for experimental and control conditions within each 

experiment and for comparing groups of cell lines an unpaired two-tailed evaluation was 

done. Significance was determined by Student’s t test. Significance level was set at p< 

0.05. 

RESULTS 

MP1 expression profiling in human mammary epithelial cells 

Expression of MP1 protein was assessed by immunoblotting in the following human 

mammary epithelial cell lines: MCF10A and 184B5 (nontumorigenic), MCF-7, LCC9, 

T47D, and ZR-75-1 (tumorigenic, ER-positive), and MDA-MB-231, BT-547, Hs579T, 

and Sk-Br-3 (tumorigenic, ER-negative) (Figure 2). MP1 was present in all cell lines, 

although the level was variable.  Actin expression also varied between cell lines, but 

was consistent between experiments. A comparison between ER-positive 

(mean=3.8±0.4) and ER-negative (mean=2±1.1) breast cancer cell lines indicated a 

small but significantly (p=0.03) higher ratio of MP1/Actin protein levels in the ER-positive 

group. Since the number of samples investigated here is small, we also queried publicly 

available databases for MP1 mRNA expression that were downloaded from GEO 

including: GSE2034, GSE3494, GSE6532, GSE4922, GSE11121, GSE7390, GSE2603 

and GSE14020.  Data was normalized using RMA in Affymetrix Expression console and 

batch effects were removed. In agreement with our protein results, MP1 was widely 

expressed, but showed a small but statistically significant elevation in both ER and PR  
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Figure 2. MP1 expression in breast cancer cell lines. Human mammary epithelial 
cell lines were grown in exponential culture and whole-cell lysates were prepared. Top 
panel: Immunoblot from a representative experiment. Lower panel: Quantitation of 
MP1/Actin ratios in three independent experiments (mean ± SD, *p<0.05). 
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positive breast cancer samples (p<0.0001 by t-test for both). One clinical study 

identified MP1 as a gene associated with poor prognosis in sporadic lymph-node 

negative breast cancer patients (11), suggesting a putative role in the context of breast 

tumors. However, our analysis did not reveal a correlation between high MP1 

expression and disease outcome (time to distant metastasis or disease free survival). 

Inhibition of MP1 expression induces cell death and detachment of ER-positive 

breast cancer cells  

To study the effect of inhibiting MP1 expression in breast cancer cells, short interfering 

RNA (siRNA) duplexes were used. Initial experiments were carried out in ER-positive 

MCF-7 cells. By 48 h post-transfection, cells treated with two independent MP1 siRNAs 

displayed a dramatic phenotype involving cell rounding and detachment (Figure 3A). As 

shown in Figure 3B, MP1 protein levels were reduced more than 50% by 48 h with 

these two MP1 siRNAs relative to control siRNA.   

To determine if this response to MP1 knockdown was a general feature of ER-positive 

breast cancer cells, two additional ER-positive cell lines were examined: LCC9 and 

T47D. The LCC9 cell line is an estrogen independent and antiestrogen resistant 

derivative of MCF-7 cells (12), and T47D is an independently derived ER-positive cell 

line.  The siRNA sequence that consistently yielded better knockdown (MP1 siRNA #1) 

was chosen for these experiments and MP1 was silenced in all of the cell lines 

investigated (Figure 4A). As shown in Figure 4B, LCC9 and T47D cells exhibited a 

similar phenotype to MCF-7. To quantitate the effect of MP1 knockdown, attached and  

 

56 

 



 

 

CON siRNA MP1  siRNA #1 MP1  siRNA #2A

 

siRNA     

MP1

Actin

B

MP1/Actin    100     35     31

M
P

1 
 #

1

M
P

1 
 #

2

C
O

N

 

Figure 3. MP1 silencing using two independent siRNA sequences. MCF-7 cells 
were transfected with 40 nM control or MP1 siRNAs. At 48 h cells were photographed, 
then harvested for counting and extract preparation. A) Photographs of MCF-7 cells 
transfected with two different MP1 siRNA and control siRNA sequences. B) Immunoblot 
of transfected samples. Numbers represent the relative MP1/Actin ratios.  
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detached cells were collected at 48 h following siRNA transfection, stained with trypan 

blue, and counted (Figure 5). As determined by trypan blue staining, MCF-7 cells were 

the most sensitive to MP1 knockdown, with more than 70% of cells detached by 48 h, 

and the majority of these were dead. In contrast, only 10% of cells were detached in the 

control siRNA transfections. Although LCC9 and T47D cells were less sensitive than 

MCF-7, both showed a significant increase in dead/floating cells upon MP1 knockdown, 

with the average percentage of dead cells being 70% for MCF-7, 42%  for LCC9 and 

49% for T47D.   

Inhibition of MP1 expression does not induce death of ER-negative breast cancer 

cells or non-tumorigenic cells 

Since MP1 is expressed in ER-negative breast cancer cells and in non-tumorigenic 

mammary epithelial cells (Figure 2), the effects of MP1 knockdown in representatives of 

these cell types were also examined. Three ER-negative breast cancer cell lines (MDA-

MB-231, BT-549, and Sk-Br-3) and one non-tumorigenic mammary epithelial cell line 

(184B5) were transfected with either control or MP1 siRNA and examined at 48 h. 

Although MP1 levels were decreased to the same or greater extent as that obtained in 

the ER-positive lines (Figure 6), no obvious changes in cell morphology were seen, and 

cell counting/trypan blue exclusion indicated that there was no significant increase in 

cell detachment or death in MP1 siRNA transfected cells compared with control 

samples (Figure 7). Thus, the requirement for MP1 expression for cell attachment and 

survival may be specific to ER-positive breast cancer cells.   
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Figure 4. MP1 expression is required for attachment and survival of ER-positive 
breast cancer cells. A) Immunoblots of MCF-7, LCC9 and T47D cells transfected with 
40 nM control or MP1 siRNA. B) Representative photographs of transfected cells. Scale 
bar = 100 µm.  
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Figure 5. Quantitation of detachment and death induced by silencing of MP1 in 
ER-positive mammary epithelial cells. Attached and floating cells were collected and 
analyzed. The percentage of dead cells (black bars) and live cells (white bars) in each 
population was determined by trypan blue exclusion assays. Error bars represent the 
mean ± SD of three independent experiments.  
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Figure 6. MP1 expression is not required for attachment or survival of ER-
negative mammary epithelial cells. MDA-MB-231, BT-549, Sk-Br-3, and 184B5 cells 
were transfected with 40 nM control or MP1 siRNAs for all cell lines except 184B5, 
where 150 nM siRNAs were used. At 48 h cells were photographed, then harvested for 
counting and extract preparation. A) Immunoblots of transfected samples. Numbers 
represent the MP1/Actin ratios expressed as percentage of control samples. B) 
Representative photographs of transfected cells. Scale bar = 100 µm.  
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Figure 7. Quantitation of detachment and death induced by silencing of MP1 in 
ER-negative mammary epithelial cells. Attached and floating cells were collected and 
analyzed. The percentage of dead cells (black bars) and live cells (white bars) in each 
population was determined by trypan blue exclusion assays. Error bars represent the 
mean ± SD of three independent experiments for all samples except 184B5 cells. For 
this cell line the numbers shown represent the average of two independent experiments.  
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Inhibition of MP1 expression results in apoptosis of MCF-7 cells 

To examine the mechanism of the cell death observed in MCF-7 cells upon MP1 

silencing, expression of the anti-apoptotic protein Bcl-2 was examined. As shown in 

Figure 8A, Bcl-2 levels decreased approximately two fold in MP1 siRNA treated cells. In 

addition, cleavage of poly (ADP-ribose) polymerase (PARP), which is a marker of 

apoptosis, occurred in MCF-7 cells but not in MDA-MB-231 cells (Figure 8B). To further 

confirm that death was via apoptosis, cells were treated with the pan-caspase inhibitor 

z-VAD-FMK concurrently with siRNA transfection. As shown in Figures 8C and 8D, this 

treatment prevented PARP cleavage and cell rounding/detachment in MCF-7 cells.   

MP1 knockdown reduces ER protein and mRNA levels and transcriptional activity  

Because the most robust effect of MP1 silencing after prolonged treatment with siRNA 

is apoptosis and since ER was shown to mediate survival of breast cancer cells, the 

effect of MP1 knockdown on ER expression and activity was investigated. MP1 

silencing reduces the protein and mRNA levels of ER (Figure 9A and B) at 48 and 30 

hours, respectively. In addition, relative luciferase activity in the presence of estrogen 

was significantly decreased following siRNA treatment (Figure 9C). These data suggest 

that MP1 is required to maintain ER levels and facilitate ER-driven transcription on 

ERE-containing promoters. 

MP1 siRNA induced apoptosis does not require ER  

Given the results on ER levels and activity upon silencing of MP1, a double knockdown 

approach was undertaken in order to test whether ER is required for MP1 siRNA  
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Figure 8. MP1 knockdown induces apoptosis of MCF-7 but not of MDA-MB-231 
cells. MCF-7 and/or MDA-MB-231 cells were transfected for 48 h with 30 nM control or 
MP1 siRNA, and cell extracts were prepared. A) Immunoblot of Bcl-2 protein in MCF-7 
cells. Numbers represent the average MP1/Actin ratios expressed as percentage of 
control samples (n=3). B) Immunoblot of PARP in MCF-7 and MDA-MB-231 cells. C) 
Immunoblot and quantification of PARP cleavage in MCF-7 cells transfected with MP1 
siRNA in the absence or presence of 50 µM z-VAD-FMK. D) Representative 
photographs of the samples analyzed in panel (C). Scale bar = 100 µm. 
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Figure 9. MP1 silencing decreases ER mRNA levels and transcriptional activity.  A) 
Immunoblots of ER, MP1 and actin in MCF-7 cells transfected with MP1 siRNA for 48 
hours. B) Semi-quantitative PCR indicating mRNA levels of MP1, ER and actin in MCF-
7 cells transfected with siRNA for 30 h. C) Quantification of luciferase/β galactosidase 
activity in MCF-7 cells cotransfected with plasmids expressing ERE2-tk109-luc and 
pβgal-Basic then treated with siRNA and stimulated with estrogen. Bars represent 
normalized luciferase activity in estrogen-stimulated cells relative to CSS (n=4 ± SD, 
*p<0.5). 
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Figure 10. ER silencing does not rescue the apoptosis induced by MP1 siRNA in 
MCF-7 cells. Cells were transfected with control, MP1, ER or combination of MP1 and 
ER siRNAs for 48 h then harvested and probed for PARP cleavage, ER, MP1, and actin 
by immunoblotting. 
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induced apoptosis of MCF-7 cells. If this process was dependent on ER, then the siRNA 

inhibition of ER expression concurrently with MP1 silencing, would prevent it. As 

illustrated by the immunoblots in figure 10, both MP1 and ER proteins were decreased 

with siRNA. Inhibition of MP1 expression induced PARP cleavage, which is indicative of 

apoptosis. Silencing of ER did not result in PARP cleavage and apoptosis, suggesting 

that MCF-7 cells do not depend on ER signals alone for survival. Interestingly, double 

silencing of MP1 and ER did not rescue cells from the MP1 siRNA-induced PARP 

cleavage and apoptosis, indicating that the ER is not required for apoptosis induced by 

MP1 silencing. 

MP1 knockdown reduces β1 integrin expression and decreases AKT activity but 

does not impact ERK expression or activity in MCF-7 cells 

To identify pathways affected by MP1 knockdown, expression of total and 

phosphorylated ERK and AKT1 and β1 integrin were examined (Figure 11). AKT1 is a 

pro-survival protein with a well-established role in the biology of cancer. ERK signaling 

is typically associated with proliferation, but may also be involved in regulating cell 

survival. The level of phospho-ERK was unaffected by MP1 knockdown (Figure 11A), 

suggesting that a loss of ERK signaling is not responsible for the observed detachment 

and cell death . In contrast, both phospho-AKT1 and β1 integrin levels decreased within 

48 h of MP1 knockdown (Figure 11B and C).  
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Figure 11. Effect of MP1 knockdown on cellular signaling pathways. MCF-7 and/or 
MDA-MB-231 cells were transfected with 30 nM MP1 siRNA for 48 h. A) Immunoblot of 
total and phospho-ERK in MCF-7 cells. The average p-ERK/total ERK ratios are 
expressed as percentage of control samples (n=3). B) Immunoblot of total and phospho-
AKT in MCF-7 cells (n=4). C) Immunoblot of β1 integrin in MCF-7 and MDA-MB-
231cells (n=3, p=0.1). 
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Differential requirement for PI3K/AKT pathway for survival of MCF-7 and MDA-

MB-231 cells  

Inhibition of MP1 expression resulted in cell death in MCF-7 cells, and this was 

correlated with decreased phosphorylated (active) AKT1. In contrast, MDA-MB-231 

cells showed no such response to MP1 knockdown. If decreased AKT activity is 

responsible for the cell death observed after MP1 knockdown, the lack of death in MDA-

MB-231 cells could be due to the fact that AKT activity is not dependent on MP1 in 

MDA-MB-231 cells, or that survival of these cells is not dependent upon active AKT.  To 

test the latter possibility, MCF-7 and MDA-MB-231 cells were treated with various 

concentrations of the PI3K inhibitor LY294002, and the effects on AKT1 phosphorylation 

and cell viability were examined. As shown in Figure 12A, a concentration of 20 µM was 

sufficient to partially inhibit PI3K activity in both cell lines, as indicated by decreased p-

AKT1 levels. MCF-7 cell viability declined upon LY294002 treatment, and this was the 

result of apoptosis as indicated by increased PARP cleavage (Figure 12B and C). In 

contrast, MDA-MB-231 cells were unaffected by LY294002 treatment. These data 

indicate that MCF-7 cells are more dependent on PI3K/AKT1 pro-survival signaling than 

MDA-MB-231 cells, and are in agreement with previous reports showing a differential 

requirement for PI3K signaling in these two cell lines (13, 14) . 

Constitutively active AKT1 partially rescues MP1 siRNA induced apoptosis of 

MCF-7 cells 

MP1 knockdown was correlated with decreased activation of AKT1 in MCF-7 cells, 

which are highly dependent on pro-survival signals from the PI3K/AKT pathway. To  
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Figure 12. The PI3K/AKT pathway is required for survival of MCF-7 but not MDA-
MB-231 cells. MCF-7 and MDA-MB-231 cells were treated with various concentrations 
of LY294002 for 48 h. A) Immunoblot of p-AKT in MCF-7 and MDA-MB-231 cells treated 
LY294002. B) Effects of LY294002 treatment on viability as determined by trypan blue 
exclusion assays. C) Immunoblot of PARP cleavage in MCF-7 and MDA-MB-231 cells 
treated with LY294002. 
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Figure 13. Constitutively active AKT1 partially rescues MCF-7 cells from the 
apoptosis induced by MP1 siRNA. A) Immunoblot of p-AKT and Flag in stable pools 
of MCF-7 cells infected with control (pBabe-puro) or Myr-Flag-AKT1 expression vector 
as described in Materials and Methods. B) The stable pools of cells described in (A) 
were transfected with 30 nM control siRNA or MP1 siRNA for 48 h, and cell viability was 
determined by trypan blue exclusion assay. Bars represent the percentage of trypan 
blue-positive cells. Error bars represent the mean ± SD for three independent 
experiments, *p<0.05. C) Immunoblot of PARP and MP1 in a representative experiment 
described in (B).  
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examine whether active AKT1 is sufficient to maintain cell viability in the absence of 

MP1 we generated MCF-7 cells expressing constitutively active AKT1 (MCF-7/pBabe-

puro/Myr-Flag-AKT1). p-AKT1 was highly expressed in a pool of MCF-7/pBabe-

puro/Myr-Flag-AKT1 cells compared to a pool of cells containing the control pBabe-puro 

vector (Figure 13A). These pools of cells were transfected with MP1 siRNA or control 

siRNA, and the effects on cell survival were examined. As shown in Figure 13B, 64% of 

pBabe-puro containing cells were dead in the MP1 siRNA treated sample, but this 

decreased to 41% in cells expressing constitutively active AKT1. In addition, the extent 

of PARP cleavage was decreased in Myr-Flag-AKT1 expressing cells (Figure 13C). 

Together, these findings indicate that expression of active AKT1 partially overcomes the 

requirement for MP1 expression for survival of MCF-7 cells. They also suggest that 

AKT1 signals, at least in part, downstream of MP1. 

DISCUSSION 

The results presented here reveal a novel role for the small scaffold protein MP1 in 

breast cancer cells. Although MP1 is expressed in both ER-positive and ER-negative 

breast cancer cells, its depletion using RNAi-mediated suppression led to detachment 

and death of several ER-positive cell lines, but not three ER-negative breast cancer or a 

non-tumorigenic mammary epithelial cell line. Although this is a limited sample, MP1 

has also been depleted in rat fibroblasts and human prostate cancer cells, and cell 

detachment/death was not reported in either case (6, 7). Therefore, MP1 expression 

seems to be required for survival in a subset of cell types, including ER-positive breast 

cancer cells. The observed cell death that occurred as a result of inhibiting MP1 
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expression in MCF-7 cells was shown to be due to an intrinsic apoptotic mechanism, as 

demonstrated by decreased Bcl-2 expression, increased PARP cleavage, and rescue of 

the death phenotype by treatment with the pan-caspase inhibitor z-VAD-FMK.   

Several interesting questions are raised by these results. One is what pro-survival 

pathways are affected by loss of MP1 expression in MCF-7 cells. Depletion of MP1 did 

not result in decreased ERK activation, indicating that its pro-survival functions are not 

mediated by the ERK pathway. The lack of an effect on ERK activation was somewhat 

surprising, since MP1 was originally identified as a scaffold protein that increased ERK 

signaling, but is consistent with results obtained in prostate cancer cells (6). In addition, 

since the expression of MP1 protein was evaluated in whole cell extracts it is possible 

that impaired ERK activity was localized to endosomes only, as reported by previous 

studies. Immunoblotting data demonstrated that inhibition of MP1 expression resulted in 

a greater than two fold decrease in AKT phosphorylation, suggesting that AKT1 signals, 

at least in part, downstream of MP1. The extent of AKT inhibition may be an 

underestimate, since by 48 h a majority of cells were dead, and the remaining live cells 

might represent ones with the lowest extent of MP1 knockdown. AKT plays a known 

pro-survival role in breast cancer cells, where it functions to relay signals from integrins 

or growth factor receptors, PI3K, or mTORC1, to downstream molecules such as Bcl-2 

and NF-κB (15-20). The fact that AKT may also play a role in MP1 mediated survival is 

supported by the fact that expression of a constitutively active AKT1 partially rescued 

the cell death phenotype observed upon MP1 knockdown. There are two possible 

explanations for the lack of a full rescue: first, it is possible that not all of the MCF-7 

cells in the pool selected here express the constitutively active AKT1 and second, the  
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Figure 14. Proposed model of MP1 siRNA-induced apoptosis of ER-positive 
breast cancer cells. Although not directly proven, inhibition of MP1 expression may 
decrease the expression of IGNβ1 and possibly other molecules (GFR, RTK) at the 
plasma membrane. This in turn decreases signaling from the PI3K/AKT and/or other 
downstream pro-survival pathways that ER-positive breast cancer cells in particular are 
highly dependent on, leading to Bcl-2 downregulation and apoptosis. 
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PI3K/AKT may not be the only pro-survival pathway in MCF-7 cells and silencing MP1 

may trigger the activity of parallel AKT-independent apoptotic signals. 

Depletion of MP1 in MCF-7 cells also resulted in decreased levels of ERα protein, 

mRNA and reduced the transcriptional activity of the receptor, suggesting that MP1 may 

promote ER expression and activity. However, the apoptosis observed is unlikely to be 

due solely to a loss of ER signaling, since we and others have found that inhibition of 

ER expression using siRNA does not result in MCF-7 cell death (21). Furthermore, 

concurrent silencing of MP1 and ER did not rescue the cell death observed, indicating 

that the apoptosis induced by MP1 silencing does not depend on ER. Several studies 

indicate that ER may be implicated in breast cancer cell survival via cross-talk with the 

PI3K/AKT pathway (22), or by regulating the activity of NF-κB (23, 24), Bcl-2 (25, 26), or 

IAP family members (27). We therefore cannot rule out the possibility that decreased 

ER expression may contribute to the apoptosis observed.  

A second question raised by these results is the molecular basis for the differential 

requirement for MP1 for survival of ER-positive vs. ER-negative breast cancer cells.  

One possibility is that activation of pro-survival proteins such as AKT is not dependent 

on MP1 in ER-negative cells, and a second is that the ER-negative cells are less 

dependent on these pro-survival signaling pathways. Unfortunately we were not able to 

test the impact of MP1 silencing on AKT activity in MDA-MB-231 cells. The fact that 

LY294002 caused a concentration-dependent apoptotic response in MCF-7 cells, but 

did not affect MDA-MB-231 cells supports the latter hypothesis. This is in agreement 

with previous reports describing a differential sensitivity to this compound between the 
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two breast cancer cell lines (13, 14). Our findings suggest that MP1 promotes survival in 

part via PI3K/AKT1 signaling in MCF-7 cells.  

A final question is whether the cell death that we have observed is related to the 

previously identified roles of MP1 in cell spreading and cell motility. Since the apoptotic 

phenotype involves cell rounding and detachment, inhibition of MP1expression may 

disrupt cell adhesion signals, which could then trigger cell death.  

MP1 silencing in MCF-7 cells was correlated with decreased levels of β1 integrin protein 

expression. This receptor is of a particular interest, since 30-50% of breast tumors 

display aberrant expression of β1 integrin and αvβ1 heterodimer is the primary receptor 

for fibronectin. Data from literature address the interactions between β1 integrin and 

molecules that regulate cell survival. However, the direct effect of β1 integrin on breast 

cancer cell viability, is far from being elucidated and may be ligand- and cell-type 

dependent, and involve only a subpopulation of the receptor. Although not statistically 

significant, the decrease in β1 integrin suggests that inhibition of MP1 expression in 

MCF-7 cells may decrease the availability of pro-survival β1 integrin at the plasma 

membrane, which in turn, may trigger the activation of downstream apoptotic signals. 

This data partly fit a more recent study in which β1 integrin inhibitory antibodies induce 

apoptosis of several breast cancer cells in a 3D culture system, regardless of ER status 

(28). 

In summary, this is the first report investigating the role of the small scaffold protein 

MP1 in mammary epithelial cells. We have identified a novel functional interaction 

between MP1 and AKT1, and demonstrated that a loss of MP1 expression results in 
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apoptosis in ER-positive cells that are highly dependent upon the AKT pathway for 

survival. Future studies will further examine the molecular mechanism(s) by which MP1 

promotes survival of ER-positive breast cancer cells, and evaluate its potential as a 

therapeutic target for ER-positive breast tumors. 
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APPENDIX 

ABSTRACT 

Proliferation and migration of breast cancer cells are regulated by various cytosolic 

kinases, including the members of the MAPK pathway and PAK1. In turn, as shown by 

studies carried out in fibroblasts, the activity of these molecules requires the 

participation of MP1 scaffold protein. Moreover, in ER-positive breast tumors, 

intracellular kinases potentiate the function of ER, even in the absence of ligands, and 

trigger various cellular responses. Because MP1 interacts with signaling molecules that 

are known to promote breast tumorigenesis, the initial aim was to investigate the role 

that MP1 plays in regulating the proliferation and migration of breast cancer cells. The 

effects of inhibiting MP1 expression by siRNA-mediated silencing were investigated. 

First, we observed that inhibition of cell cycle progression seemed to have a protective 

effect against apoptosis. Under these experimental conditions, we observed that neither 

short-term proliferation nor migration of MCF-7 cells requires MP1. Taken together, 

these studies indicate that although it is required for ER activity, MP1 scaffold protein is 

not essential for estrogen-mediated proliferation and migration after release from cell 

cycle arrest.  
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INTRODUCTION 

Uncontrolled proliferation is one of the acquired attributes of cancer cells and this 

tumoral process is promoted by mitogens such as estrogens and growth factors. Their 

mechanism of action involves increased transcription of molecular components of the 

cell-cycle machinery. For over 70% of breast tumors, ER is a major regulator of cell 

proliferation. Activated by estrogen, ER stimulates the expression of genes encoding 

the cyclins that are involved in the transition from G1 to S phase of the cell cycle 

Therefore, antiestrogens like fulvestrant (ICI) block cell proliferation by arresting the 

cells in G0/G1 phase (1). Regardless of ER status, growth factors and their receptors as 

well as integrins can regulate cell cycle progression, hence stimulate proliferation, 

mainly through the MAPK and PI3K pathways.  

Another hallmark of epithelial cancers is the acquisition of motility. In many breast 

cancers, including some ER-positive tumors, this feature is a prerequisite for the 

switching of neoplastic cells to a metastatic phenotype. Compelling data reveal 

numerous mechanisms accounting for cell migration. In addition to its proliferative 

function, ER also influences motility. In MCF-7 cells, estrogen-stimulated ERα positively 

regulates cell migration (2). In MDA-MB-231 cells transfected with ERα and ERβ, 

migration and invasion are inhibited in a ligand-independent manner (3). Notably, Raf, 

MEK and ERK, members of the mitogen activated protein kinase (MAPK) cascade, and 

the p-21 activated kinase-1 (PAK1) regulate cell motility in normal cells and are 

implicated in breast cancer signaling. Several studies have reported the direct 

involvement of MEK and ERK in the motility of tumor cells (4-7).  PAK1 is downstream 
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of Rac and Cdc42, and its activation induces the formation of membrane protrusions (8, 

9). PAK1 may also play a role in breast cancer by causing tumorigenesis and 

hyperplasia of the mammary epithelium (10, 11), and by regulating spreading and 

migration (12, 13). In addition, MAPK and PAK1 are known to trigger ligand 

independent effects of ER-signaling by directly activating ER (10, 14). 

MEK binding partner 1 (MP1) is a small scaffold protein that promotes MEK1 activation 

by B-Raf (15). The overexpression of MP1 enhances ERK activation in cultured 

fibroblasts (15). In HeLa cells and mouse fibroblasts, the adaptor protein p14 recruits 

MP1 to late endosomes where the MP1/p14 heterodimer is required for ERK activation 

(16, 17). Recently, crosstalk between PAK1 and MEK1 was demonstrated in rat 

fibroblasts, where PAK1 activates a population of MEK1 and ERK in focal complexes 

during adhesion to fibronectin. This interaction requires MP1 (18) and is sufficient to 

activate MEK1 in the absence of Raf, but to a lesser extent than observed with active 

Raf or EGF (19). Of particular interest is the involvement of MP1 in regulating 

attachment of fibroblasts. Knocking down MP1 inhibited their acute spreading on 

fibronectin, thus indicating that MP1 allows the rapid cytoskeletal reorganization 

necessary for membrane protrusions and cell spreading to occur. The existence of this 

new interaction between MP1 and PAK1, which was required for subsequent MEK1 

activation, suggested a role for MP1 in coupling MAPK signaling to Rho (18).  

The pathways that MP1 interacts with control the proliferation and motility of breast 

cancer cells, therefore we reasoned that MP1 might have similar functions in mammary 

tumor epithelial cells and might directly contribute to the proliferation and motility of 

86 

 



breast cancer cells. To test this hypothesis, the effects of MP1 silencing on MCF-7 cell 

short-term proliferation and migration were examined. Our results indicate that inhibition 

of cell cycle appears to have a protective effect against the apoptosis induced by MP1 

silencing. Consequently, when cells are released from arrest using estrogen, MP1 is not 

required to promote the entry in the S phase or migration. Taken together, these studies 

indicate that MP1 scaffold protein is not essential for estrogen-mediated proliferation 

and migration of breast cancer cells following arrest. 

MATERIALS AND METHODS 

Cell lines and culture conditions 

MCF-7 cells were obtained from the Lombardi Cancer. Cells were maintained in 

Improved Modified Eagle’s Medium (IMEM) containing phenol red (GIBCO-Invitrogen-

Applied Biosystems), supplemented with 5% fetal bovine serum (HyClone), and 100 

Units/ml Penicillin/100 µg/ml Streptomycin (Invitrogen) and incubated at 37 ºC with 5 % 

CO2. 

siRNA transfections 

All siRNA transfection reagents were purchased from Dharmacon-Thermo Scientific. 

MP1 (ON-TARGETplus siRNA Human MAP2K1IP1) and a non-targeting siRNA (ON-

TARGETplus siCONTROL) were used. Cells were plated in six-well plates at 105-3 x 

105 cells per well in FBS containing medium. After 24 h, cells were transfected or co-

transfected with 30 nM siRNA using DharmaFECT 1 transfection reagent. After 48 h, 
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cells were harvested by scraping on ice cold PBS or trypsinization and prepared for 

protein extraction.  

Cell cycle arrest 

After 5-6 h, siRNA transfection mixes were replaced with charcoal-stripped serum (CSS) 

medium supplemented with 10 nM ICI182,780 for 24 hours, which induced their growth-

arrest in the G0/G1 phase of the cell cycle and abolished ER signaling. 

BrdU incorporation 

MCF-7 cells were plated on glass coverslips in 6-well plates, then transfected and pre-

arrested as previously described. Following ICI pre-arrest for 24 hours, cells were 

treated with 10 nM 17-β estradiol or vehicle in CSS-containing medium for 19 hours. 

During the last five hours of treatment, cells were labeled with 25 µM BrdU, then fixed 

for 15 minutes with 3% methanol-free formaldehyde (Polysciences) and subjected to 

immunofluorescence. In parallel, cells were plated, treated and harvested at the same 

time point for protein extraction. 

Immunofluorescence 

Formaldehyde-fixed cells were washed with PBS, then fixed for 10 minutes with ice-cold 

pure methanol at -20ºC. DNA was denatured using 2N HCl for 30 min at 37ºC, then 

slides were neutralized by 0.1 M borax solution pH 8.5 (Sigma) for 30 min. After a brief 

wash with PBS, cells were blocked in 2% BSA, then incubated with anti-BrdU/Alexa 

Fluor conjugated antibody (Invitrogen). A DAPI nuclear counterstain was performed. 
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Eight random fields were visualized and the percentage of BrdU positive cells was 

calculated using the Metamorph program. 

Immunoblotting 

Cell pellets were lysed in 1% Triton XC-100/HEPES or CelLytic M lysis buffer (Sigma), 

supplemented with cocktail tablets of protease (Roche - Complete Mini EDTA-free) and 

phosphatase inhibitors (Roche – PhosSTOP). Protein concentrations were determined 

using the Bradford protein assay (Bio-Rad). Total protein (10-20 µg) was subjected to 4-

20% Tris-HCl SDS-PAGE (Bio-Rad), transferred to Immobilon-FL polyvinylidene 

difluoride membranes (Millipore), blocked with Odyssey Blocking Buffer and then 

incubated with the appropriate primary antibodies overnight. Alexa Fluor 680 anti-goat, 

anti-rabbit, and anti-rabbit (Invitrogen) and IRDye 800CW anti-mouse and anti-rabbit 

(LI-COR) secondary antibodies were used for two-color detection of proteins. 

Membranes were scanned and analyzed using the LI-COR Odyssey system.  

Antibodies and reagents 

The following primary antibodies were used for Western blotting: MP1 (A-19, Santa 

Cruz), actin (AC-40, SIGMA) and estrogen receptor alpha (AB-17, Lab Vision-Thermo 

Scientific, or F-10, Santa Cruz)  

CDK2 inhibitor SU9516 was obtained from Calbiochem, ICI from Tocris, 17-β estradiol, 

DAPI and BrdU were purchased from Sigma.  
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Migration assay 

Cell migration or invasion was analyzed using a Boyden chamber transwell assay 

(Corning). Cells were plated, transfected, and synchronized in G0/G1 phase as 

previously described. Pre-arrested cells were then incubated overnight in 10 nM 

estrogen/CSS. Untransfected cells treated with estrogen were used as a positive control 

for migration, while cells in steroid-depleted media (CSS) represented the negative 

migration control. To prepare them for migration, cells were trypsinized, quenched with 

soybean trypsin inhibitor, counted and resuspended in serum-starvation media. 

Uncoated polycarbonate transwell permeable inserts were pre-treated with BSA in order 

to block the attachment to the membrane. Fifty thousand cells were seeded in the upper 

chambers and allowed to migrate for 24�h. The chemoattractant in the lower chamber 

was medium supplemented with 10% FBS. The permeable membranes were then fixed, 

stained with crystal violet and the migrating cells were visually scored under a phase-

contrast microscope equipped with a grid-containing eyepiece, at 200X. The results are 

the average number of cells invading through the membrane as counted per five 

random grid areas, in duplicate inserts 

Statistical Analysis 

Data are expressed as the mean ± S.D. Most experiments were performed three times. 

Paired evaluations were made for experimental and control conditions within each 

experiment. Significance was determined by Student’s t test and set at p<0.05. 
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RESULTS 

The initial transfection protocol resulted in cell detachment and death, preventing the 

performance of additional functional assays under these conditions. We therefore 

modified the procedure, so that transfection mixes containing control or MP1siRNA 

were replaced with ICI-containing medium after five-six hours. This change partially 

rescued the observed phenotype, causing fewer cells to detach. Under these new 

conditions, we have investigated the requirement for MP1 in two estrogen-mediated 

cellular processes in MCF-7 cells: S phase entry and migration. 

MP1 siRNA induced apoptosis is rescued by cell cycle arrest 

Our observations indicate that the replacement of transfection media with ICI/CSS 

reduced the cell death phenotype in MCF-7 cells. ICI anti-estrogen decreases the levels 

of ER and also induces cell cycle arrest in G0. The same effect can be achieved by 

treating cells with SU9516, that specifically blocks CDK2, which is required from the 

transition of G1 to S phase. This latter experiment lacks a negative control, which would 

be represented by MCF-7 cells transfected with MP1 siRNA for 48 hours, in the 

absence of SU9516. Such experiment would have resulted in PARP cleavage in the 

presence of MP1 siRNA but not in control samples. Both ICI and SU9516 prevented 

PARP cleavage upon MP1 silencing, as demonstrated in figure 15, suggesting that cell 

cycle arrest counteracts the apoptotic signals mediated by loss of MP1 expression. 
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Figure 15. Cell cycle arrest rescues the apoptosis induced by MP1 siRNA in MCF-
7 cells. A) Immunoblot of PARP, ER and actin in cells transfected with siRNA mixes in 
FBS or ICI. B) Immunoblot of PARP, MP1 and actin in cells transfected with MP1 siRNA 
concurrently with 5 µM SU9516, specific CDK2 inhibitor, for 48 h. 
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Silencing of MP1 does not affect estrogen-induced S phase entry following arrest 

in MCF-7 cells 

Since the best described role of MP1 involves the scaffolding between MEK1 and ERK1 

and because these kinases have been linked to ER signaling, we asked whether 

endogenous MP1 was necessary for MCF-7 cells to proliferate in the presence of 

estrogen. To better delineate the role of estrogen in S phase entry, cells were 

synchronized in the G0 quiescent phase of their cell cycle, then released with estrogen. 

The results from three independent experiments revealed that transfection with MP1 

siRNA did not alter estrogen-stimulated DNA synthesis (Figure 16). Under estrogen 

stimulation, there were 34.5% BrdU-positive cells in control siRNA-treated wells and 

30.5% with MP1 siRNA transfection. In the absence of estrogen, there were only 12% 

BrdU-positive cells in control wells and 10.8% in MP1siRNA transfected wells. These 

data suggest that basal expression of MP1 scaffold protein is not required for the 

estrogen-dependent S phase entry of the cell cycle.  

Effects of MP1 silencing on estrogen-stimulated migration after cell cycle arrest 

Estrogen promotes migration of MCF-7 breast cancer cells independently from its 

effects on proliferation (20). As shown in figure 17, our results suggest that high levels 

of MP1 may not be required for migration of MCF-7 cells following release from arrest. 

Although chemoattractants were present in the bottom wells, the migratory potential of 

untransfected cells increased four-fold when treated with estrogen compared to CSS 

alone, whereas control and MP1 siRNA transfected cells migrated at comparable levels. 

A specific mitosis inhibitor, such as mitomycin D, was not used in order to clearly  
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Figure 16. Effect of MP1 knockdown on DNA synthesis. MCF-7 cells were plated, 
pre-arrested and stimulated with estrogen. A) Representative overlaid 
immunofluorescent images of pre-arrested MCF-7 cells transfected with MP1 siRNA 
(lower panels) or control siRNA (upper panels) in the absence (left) or presence of 
estrogen (right).  Green=anti BrdU Alexa Fluor 480; blue=DAPI. B) Immunoblots of MP1 
and actin in samples plated, treated and harvested under similar conditions as the BrdU 
labeled cells. C) Quantification of BrdU incorporation. Bars represent percentage of 
BrdU-positive cells (mean ±SD, n=3). 
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Figure 17. Effect of MP1 knockdown on estrogen-stimulated migration of MCF-7 
cells. A) Representative images of migrating MCF-7 cells at 200X magnification. 
Untransfected cells (upper panels) were treated with CSS alone (left) or 10 nM estrogen 
(right). Cells transfected with control siRNA (lower left) or MP1 siRNA (lower right) were 
stimulated with estrogen. B) Immunoblots of MP1 and actin of samples shown in (A). C) 
Quantification of cell migration. Bars represent number of migrating cells/area. Error 
bars are the mean standard error of replicate wells. 
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distinguish between proliferation and migration. However, even if the cells had 

completed a new cell cycle after their 24 h-long movement through the permeable 

inserts, the migration would have been masked by proliferation in both MP1 siRNA and 

control siRNA treated samples, since the knockdown of MP1 resulted in similar 

numbers of BrdU-positive cells.  

DISCUSSION 

The additional findings reported here help delineate the functions of MP1 protein in 

breast cancer cells. Our data indicate that its partial inhibition using siRNA transfection 

for two days results in apoptosis. This effect prevented us from examining additional 

physiologically relevant processes, such as proliferation and migration. Previous studies 

have clearly established the role of estrogen in promoting proliferation and migration of 

MCF-7 cells. Therefore, in order to investigate these functions we undertook a well-

established strategy of pre-arresting the cells in the G0/G1 phase of the cell cycle, then 

releasing them with estrogen to further stimulate their proliferation or migration. Since 

cell transfection requires active proliferation, the ICI-mediated cell cycle arrest was done 

at 5-6 hours post siRNA transfection with MP1 siRNA.   

Interestingly, replacement of transfection media with ICI/CSS diminished the observed 

cell death effect and prevented the cleavage of PARP. Similar effects were noted when 

MCF-7 cells were transfected with MP1 siRNA in the presence of a specific CDK2 

inhibitor. Cell cycle arrest is not always followed by apoptosis, since these are two 

distinct processes that share some regulatory factors (21). However, the molecular 

mechanisms that determine cell decision between proliferation and apoptosis are still 
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elusive and may be cell type and context dependent. In our experiments, is appears that 

inhibition of cell cycle progression has a protective effect against pro-apoptotic signals 

induced by MP1 silencing. Although we do not provide direct evidence to support this, it 

is possible that inhibition of apoptosis occurred via transcriptional regulation of pro-

apoptotic molecules by highly active inhibitors of cell cycle, such as p21. Such 

mechanisms have been noted in different cell types (22, 23). Alternatively, exit of G1 

phase by estrogen may activate cytosolic pro-survival pathways, such as PI3K/AKT, 

that can override the pro-apoptotic signals initiated by MP1 silencing (24). 

Under these conditions of partial MP1 silencing and reduced cell death, we carried out 

functional studies to establish the role of MP1 in short-term proliferation and migration of 

estrogen-stimulated MCF-7 cells. BrdU labeling during release from arrest revealed that 

MP1 siRNA transfection did not significantly decreased the percentage of proliferating 

cells compared to control, suggesting that sustained levels of MP1 are not required for 

S phase entry. MP1 was reported to regulate Rho function and its inhibition delayed 

spreading of fibroblasts (18) and decreased migration of prostate cancer cells (25). 

Generally, a suppression of tumor cell spreading is believed to be correlated with 

increased migration. However, there are conflicting reports on the significance of 

spreading relative to the metastatic potential (12, 20, 26).   Our data indicate that 

inhibition of MP1 expression using siRNA duplexes does not influence the migration of 

breast cancer cells in Boyden chamber assays. Thus, MP1 may not be required for 

estrogen-stimulated proliferation or migration of MCF-7 cells, following cell cycle arrest.  
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CONCLUDING REMARKS 

 

The main goal of this dissertation was to investigate how MP1 protein affects tumoral 

processes in breast cancer cells. Given its scaffolding function, and therefore its 

contribution to potentiating signals that regulate proliferation, spreading, migration, and 

differentiation, we reasoned that MP1 might play similar roles in breast cancer cells.  

We propose a novel pro-survival role for MP1 that is specific to some ER-positive cell 

lines. Our results indicate that MP1 silencing results in detachment and death of ER-

positive breast cancer cells. In contrast, in three independent ER-negative breast 

cancer cells, the same approach had no significant effect on survival. More importantly, 

non-tumorigenic mammary epithelial cells were unaffected by MP1 silencing. In MCF-7 

cells, a widely used model of estrogen-stimulated, antiestrogen sensitive human breast 

cancer, apoptosis induced by inhibition of MP1 expression was correlated with 

decreased activity of AKT and decreased levels of the Bcl-2 pro-survival protein. 

Interestingly, we demonstrate that MCF-7 cells depend on the PI3K but not on ER 

signaling for survival. Moreover, concurrent silencing of MP1 and ER failed to rescue 

the observed cell death whereas this phenotype was partly rescued with the expression 

of a constitutively active AKT1. This suggests that PI3K/AKT activity is not sufficient to 

counteract the pro-apoptotic signals initiated by MP1 silencing, and that ER is not 

required for this phenomenon. However, MP1 promotes ER expression and activation in 

response to estrogen, therefore, the ER signaling pathway may play a contributing role 

in promoting cell survival. 
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Although our query did not reveal any significant correlations between the levels of MP1 

protein expression and disease outcome, this is a biological meaningful molecule that 

may have a potential clinical relevance for ER-positive breast tumors: 

• MP1 could be a potential therapeutic target, since ER-positive breast cancer cells 

are more susceptible to apoptosis upon MP1 depletion. In general, the 

physiological response of drugs targeting ER-positive tumors involves inhibition 

of or interference with tumor proliferation and growth. Inhibition of MP1 

expression could specifically trigger apoptosis of ER-expressing tumor cells, 

without affecting non-tumorigenic cells. However, this strategy would be 

ineffective during treatment with fulvestrant (ICI), since in our cell model, this 

compound and the alternative cell cycle inhibitor SU9516 were able to prevent 

apoptosis induced by MP1 silencing. 

• MP1 expression in ER-positive breast cancer cells could predict the response to 

specific kinase inhibitors, since these tumors would be more likely to respond to 

PI3K inhibition than to blockade of MAPK.  
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