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ABSTRACT

AN ACOUSTIC INTENSITY-BASED METHOD AND ITS AEROACOUSTIC

APPLICATIONS

By

Chao Yu

Aircraft noise prediction and control is one of the most urgent and challenging tasks world-

wide. A hybrid approach is usually considered for predicting the aerodynamic noise. The

approach separates the field into aerodynamic source and acoustic propagation regions.

Conventional CFD solvers are typically used to evaluate the flow field in the source region.

Once the sound source is predicted, the linearized Euler Equations (LEE) can be used to

extend the near-field CFD solution to the mid-field acoustic radiation. However, the far-

field extension is very time consuming and always prohibited by the excessive computer

memory requirements. The FW-H method, instead, predicts the far-field radiation using

the flow-field quantities on a closed control surface (that encloses the entire aerodynamic

source region) if the wave equation is assumed outside. The surface integration, however,

has to be carried out for each far-field location. This would be still computationally in—

tensive for a practical 3D problem even though the intensity in terms of the CPU time has

been much decreased compared with that required by the LEE methods. For an accurate

far-field prediction, the other difficulty of using the FW—H method is that the complete

control surface may be infeasible to accomplish for most practical applications.

Motivated by the need for the accurate and efficient far-field prediction techniques, an

Acoustic Intensity-Based Method (AIBM) has been developed based on an acoustic input

from an OPEN control surface. The AIBM assumes that the sound propagation is governed

by the modified Helmholtz equation on and outside a control surface that encloses all the

nonlinear effects and noise sources. The prediction of the acoustic radiation field is carried

out by the inverse method with an input ofacoustic pressure derivative and its simultaneous,



co-located acoustic pressure. The reconstructed acoustic radiation field using the AIBM is

unique due to the unique continuation theory ofelliptic equations. Hence the AIBM is more

stable and the reconstructed acoustic pressure is less dependent on the locations ofthe input

acoustic data. The solution of the modified Helmholtz equation in the frequency domain is

approximated by finite linear combination of basis functions. The coefficients associated

with the basis functions are obtained by matching the assumed general solution to the

given input data over an open control surface. The details on the optimization method, the

instability issue and the numerical implementation of the AIBM have been discussed in the

dissertation.

To verify the AIBM model, several acoustic radiation examples are solved, e.g. multiple

sources radiation. The analytical acoustic pressure and its normal derivative on a partial

spherical control surface are used as the input for the AIBM. The reconstructed acoustic

field is obtained then compared with the analytical acoustic field. Excellent agreement is

achieved and demonstrated. Some affecting factors on the AIBM, e.g. input locations and

the signal-to-noise ratio, are also investigated. In addition, the potential ofAIBM in broad-

band noise prediction is examined in vortex/trailing edge interaction problem. Furthermore,

a series ofreal world model problems are chosen to demonstrate the capability and potential

ofAIBM in CAA applications. Two important aircraft noises: turbofan noise and airframe

noise, are studied in detail. Both the permeable surface FW—H equation method and the

AIBM are used to evaluate the radiated field. The prediction results obtained from the

AIBM and the FW—H integral method are compared with the solution from the CPD/CAA

method. The accuracy and efficiency of both the AIBM and the FW-H integral method are

analyzed.

In summary, the “open surface” AIBM makes up the drawbacks of traditional “closed sur-

face” approaches. It provides an effective alternative for the far-field acoustic prediction of

practical aeroacoustic problems.
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Chapter 1 Introduction

As one ofthe most important pollutions, aircraft noise draws intensive attention worldwide.

As early as the 19705, the United States has issued the Federal Aviation Regulation (FAR)

Part 36 Noise Standards [1] to limit the transportation aircraft noise. From then on, noise

level has been one of the crucial guidelines on navigability. In the 1990s, the International

Civil Aviation Organization (ICAO) announced more stringent Noise Standards for Aircraft

Type Certification (NSATC) [2], which further spurred the “green aircraft” development

initiated by the National Aeronautics and Space Administration (NASA) and the aircraft

manufacturers.

In the 19705, NASA commenced the Aircraft Noise Prediction Program (A‘NOPP) [3] and

conducted more than ten years of study on new technology and comprehensive prediction

methods for aircraft noise. In 1992, NASA, in partnership with Federal Aviation Admin-

istration (FAA) and the US. industry giants Boeing, Pratt & Whitney and GE, developed

the Advanced Subsonic Technology (AST) program [4] on both airframe and engine noise

reduction. The initial goal was to achieve 10 dB reductions in each flight phase: take-

off, sideline, and approach in 20 years, relative to 1992’s technology. Soon after, in 1997,

NASA further raised the three pillar noise stretch goals, which are reducing the perceived

noise level of future aircraft by 10 dB in ten years and 25 dB in 20 years relative to 1997.

In Europe, similar research is also expanded around aircraft noise supported by European

Union and European industry companies (Airbus, Roll-Royce etc.), e.g. TurboNoiseCFD

program aimed at jet engine noise, and the RAIN program on airframe noise [5].

Despite significant progress having been made in reducing aircraft noise over the past

decade, further improvements are required because of increasing community noise expo-



sure caused by the growth in aircraft fleet. To develop low noise aircraft and control the

noise at the design stage, developing accurate and efficient noise prediction tools is un-

doubtedly important. In this chapter, the traditional computational techniques for aerody-

namic noise prediction and underlying theories are briefly reviewed. Then, a new advanced

method, Acoustic Intensity-Based Method (AIBM), is introduced and afforded particular

attention. Finally, the structure of the dissertation is outlined.

1.1 Traditional Techniques for Noise Prediction

Half a century ago, Lighthill [6] first proposed the “aerodynamic noise” concept in his re-

search on quiet jet engines. His Lighthill acoustic analogy also became the foundation of

aeroacoustics. Nowadays varieties of techniques have been developed to predict aerody-

namic noise either theoretically or numerically. In this section, four important methodolo-

gies are presented and reviewed. These are numerical simulation techniques, i.e. Computa-

tional Fluid Dynamics (CFD) and Computational Aeroacoustics (CAA), acoustic analogy

methods, aeroacoustic hybrid techniques, which combines the advantages of numerical

methods and acoustic analogy methods, and inverse acoustic methods.

1.1.] Numerical Simulation Methods

In this section, three most commonly used CFD and CAA techniques for aerodynamic

noise simulation have been reviewed.

Direct numerical simulation (DNS) is a simulation in CFD in which the Navier-Stokes

equations are numerically solved without any turbulence model [7]. DNS resolves the

whole range of spacial and temporal flow scales from the smallest dissipative scales to the

largest integral scale. Therefore, the computational cost of DNS is very high, even at low





Reynolds numbers. For the Reynolds numbers encountered in most industrial applications,

the computational resources required by a DNS would exceed the capacity of the most

powerful computers currently available. However, DNS is a useful tool in fundamental re-

search in turbulence. It provides a standard tool for evaluating different acoustic prediction

model [8].

Unsteady Reynolds-averaged Navier—Stokes (RANS) equations are a set of time-averaged

equations, which are derived from Navier-Stokes equations, dealing with turbulent flows.

These equations can be used to provide approximate averaged solutions to the Navier-

Stokes equations. In aerodynamic noise simulation, MNS can simulate the noise of the

largest flow features. However RANS suppresses the acoustic field and under predicts

dynamic loads [9].

Another alternative computational technique, Large-eddy simulation (LES), resolves only

the dynamically important flow scales and models the effects of small scales using a sub-

grid scale (SGS) model. LES requires less computational effort than DNS but more effort

than RANS. The main advantage of LES over computationally cheaper RANS approaches

is the increased level of detail it can deliver. While RANS methods provide ”averaged”

results, LES is able to predict instantaneous flow characteristics and resolve turbulent flow

structures. LES is a suitable compromise ofDNS and RANS in accuracy and cost.

Generally these numerical simulation techniques, DNS, RANS and LES methods offer at-

tractive alternatives. But they are not always affordable even with today’s high-performance

computers and parallel computing technology. Hybrid approaches are usually considered

for predicting aerodynamic noise, in which the field is divided into aerodynamic source and

acoustic propagation regions. For example, LES/FW-H and RANS/FW-H hybrid methods.



1.1.2 Acoustic Analogy

In 1952, the famous Lighthill theory [6] of sound generation by turbulence was brought

forward and soon became the birthstone of aeroacoustics. Lighthill’s equation was accu-

rately derived from compressible Navier—Stokes equations without any assumptions. With

the “analogy” idea of representing a complicated fluid mechanical process that acts as an

acoustic source by an acoustically equivalent source term [10], the Navier-Stokes equations

have been rearranged into the form of an inhomogeneous wave equation. Within this equa-

tion, all the noise effects on the right hand were described as noise source terms including

pressure and velocity fluctuation as well as stress tensor and force terms.

Lighthill’s equation is limited to radiation in free space when it was first developed. In

1955, Curle [l l] expanded a more general equation based on Lighthill’s analogy using

Kirchhoff method. The Curle equation takes still solid boundary effects into consideration.

In 1969, Ffowcs Williams and Hawkings [12] further expanded Curle equation introducing

general fimctions and developed FW-H equation. FW-H equation is valid for aeroacoustic

sources in a relative motion with respect to a solid surface. Nowadays, FW—H equation is

known as an effective acoustic far-field prediction method, in which Farassat’s Formulation

1A [13—15] is commonly used.

1.1.3 Aeroacoustic Hybrid Prediction Methods

The hybrid prediction technique based on CFD and FW—H with penetrable surface has ad-

vanced considerably. And much experience has been gained in its use. The technique

separates the field into aerodynamic source and acoustic propagation regions. Conven—

tional CFD solvers are typically used to evaluate the flow-field solution in the near field to

provide the aerodynamic sound source. Once the sound source is predicted, the linearized



Euler Equations (LEE) or the integral methods based on Lighthill’s analogy [6] are used for

the prediction of the acoustic wave propagation. The LEE methods assume the flow field

to be a time-averaged mean flow and a time-dependent small disturbance. The extension

of the near field CFD solution to the mid-field acoustic radiation can be achieved using the

LEE methods. However, the evaluation of the far-field radiation is prohibited by excessive

computer memory requirements. The integral methods (i.e. Kirchhoff method [16] or per-

meable surface FW-H equation method [12]), instead, predict the far-field radiating sound

using the flow field quantities on a closed control surface (that encloses the entire aero-

dynamic source region) if the wave equation is assumed outside. The surface integration,

however, has to be carried out for each far-field location. This would be still computation-

ally intensive for a practical three-dimensional problem even though the intensity in terms

of the CPU time has been much decreased compared to that required by the LEE methods.

For an accurate far—field prediction, the other difficulty of using these integral methods for

some aeroacoustic problems is that the control surface must completely enclose the aerody-

namic source region. This may be infeasible or impossible to accomplish for some practical

cases.

1.1.4 Inverse Acoustic Methods

In order to reduce aeroacoustic noise effectively, it is crucial to understand the character-

istics of the aerodynamic noise sources. These characteristics, however, are not known

analytically for aeroacoustic applications. With an inverse approach, the acoustic measure-

ments in the radiated field have been used for the characterization and identification of the

unsteady aerodynamic sources. In the past decade, the inverse aeroacoustic problems have

been investigated with various objectives. Grace and Atassi [17, 18] first introduced the in-

verse method into unsteady aerodynamics and aeroacoustics. They developed an inversion

model of gust/plate interaction based on solving the Helmholtz equation. The unsteady



pressure on a zero-thickness plate was successfully reconstructed using the acoustic mea-

surement in the radiated field. Li and Zhou [19] then proposed an inversion model for the

reconstruction of steady pressure distribution on a propeller surface based on the three-

dimensional FW-H equation. In the work of Luo and Li [20] and Li et al. [21] on the gust

cascade interaction and rotor wake/stator interaction, it has been shown that the accuracy of

the reconstruction of the unsteady pressure distribution on the cascade and stator surfaces

from the far-field acoustic measurement is excellent when the signal-to-noise ratio is not

very low. Recently Gerrard et al. [22] have developed an inverse aeroacoustic model of

subsonic axial flow fans, which can determine the circumferential blade loading variations

from far-field acoustic measurements. Holland and Nelson [23] applied the inverse meth-

ods to study the distributed acoustic sources by exploiting known correlation structures

among the sources. Later on, Nelson and Yoon [24] used the inverse methods to deduce

the acoustic source strength from radiated field measurements.

Near—field Acoustic Holograph (NAH) is one important family of inverse acoustic meth-

ods. Several prominent inverse acoustic methods have been developed for NAH [25—34].

These methods can be classified into three categories: ( l) Fourier acoustics, (2) the inverse

boundary element methods (IBEM), and (3) the Helmholtz equation least squares (HELS)

method. Among these traditional inverse methods, the acoustic pressure measurement by

itself is considered as the input of the inverse methods. The solution of these inverse meth-

ods, therefore, is not unique unless the input acoustic pressure is provided over a surface

enclosing all the acoustic sources, i.e., a closed surface [35—37]. As a result, the effective-

ness of these methods weakens when the input acoustic pressure is only available over a

portion of a closed surface (i.e., open surface).

As a general rule, the more complete the input around a sound source, the more accurate

the solution of the inverse problem. However, the far-field acoustic measurement over a

surface enclosing the sound sources under consideration is often infeasible or impossible,



in particular for the far-field measurement. In addition, very large numbers of the field

measurements are also inconceivable. Therefore, there is a need to improve the accuracy

and consistency of the inverse methods especially in the case where the input acoustic data

is only available over an open surface.

1.2 Acoustic Intensity-Based Method (AIBM)

Recently, with the advent of new signal processing techniques and the advances in trans-

ducer technology, acoustic intensity measurement devices have been improved to make

them more reliable, accurate, and compact [45]. Using these devices, the acoustic inten-

sity as well as simultaneous, co-located acoustic pressure can be evaluated. The acoustic

pressure derivative can thus be derived along a given axis, e.g., the axis of a microphone

pair.

Motivated by the need for an accurate and efficient prediction ofthe far-field acoustic radia-

tion, an Acoustic Intensity-Based Method (AIBM) has been developed based on an acoustic

input from an open control surface in a two-dimensional and three-dimensional configura-

tions [38—43]. The AIBM assumes that the sound propagation is governed by the modified

Helmholtz equation on and outside a control surface that encloses all the nonlinear effects

and noise sources. The prediction ofthe acoustic radiation field is carried out by the inverse

method with an input of the acoustic pressure derivative and its simultaneous, co-located

acoustic pressure over a portion ofthe control surface. The reconstructed acoustic radiation

field using the AIBM is unique due to the unique continuation theory of elliptic equations.

Hence the AIBM is more stable and the reconstructed acoustic pressure is less dependent

on the locations ofthe input acoustic data. The solution ofthe modified Helmholtz equation

in the frequency domain is approximated by a finite linear combination of basis functions.

The coeflicients associated with the basis functions are obtained by matching the assumed



general solution to the given input data over an open control surface. The details on the

optimization method, the instability issue and the numerical implementation of the AIBM

will be discussed in the following chapters.

The “open surface” AIBM makes up the drawbacks of traditional “closed surface” ap-

proaches. It provides an effective alternative for the far-field acoustic prediction ofpractical

aeroacoustic problems.

1.3 Organization of the Dissertation

The dissertation is organized centering at the development and application of AIBM ap—

proach. In Chapter 2, the acoustic governing equations are derived starting at the fluid

mechanics conservation laws. In Chapter 3 through Chapter 5, the mathematical model,

verification examples and application problems are discussed in detail.

In Chapter 3, AIBM has been proposed and modeled without considering the effect of

mean flow. The mathematical and numerical formulations are first developed in a 2D con-

figuration. Three numerical examples of acoustic radiations from either single or multi-

frequency acoustic sources are presented for the verification. The advantages of the AIBM

over a traditional inverse method, HELS, are demonstrated. Furthermore, the sensitivity of

the AIBM to random noises with various signal-to-noise ratios (SNR) is examined.

In Chapter 4, AIBM is extended to problems with subsonic uniform flows in the 2D con-

figuration. Firstly, The mathematical formulation for sound propagations in uniform flows

is described. In addition, examples are given for the verification and demonstration of the

AIBM’s capability and potential in aeroacoustic applications. The results of the AIBM are

also compared with that from the FW—H integral method.

In Chapter 5, 3D AIBM with subsonic uniform flows is developed. The model is verified



by examples of the propagation of multiple acoustic sources in a uniform flow and the

acoustic scattering of a time dependent source by a sphere. The effectiveness of AIBM in

aeroacoustic applications is demonstrated by the accuracy and efliciency of the predicted

acoustic radiations from an axisymmetric duct intake by a hybrid CAA/AIBM approach.

The AIBM is much more eflicient than the other methods for the far-field acoustic predic-

tion and can use the input acoustic data from an open surface instead of a closed FW-H

surface.

In the last chapter, the concluding remarks are drawn through the study in this dissertation.

And the potential future work is also suggested.



Chapter 2 Aeroacoustic Governing Equations

2.1 Introduction

For acoustic propagation problems, the viscosity and thermal conductivity have little ef-

fects on the sound wave propagation. Hence the motion of the propagation media is al-

ways determined by solving Euler’s equations instead of Navier-Stokes (N-S) equations.

In this chapter, the linearized aerodynamic equations for an inviscid flow are firstly de-

rived. Then the wave equation is derived with small disturbances assumption. Furthermore

the Helmholtz equation, the governing equation in the frequency domain, has been obtained

by performing Fourier transformation from the wave equation.

As regards of the symbols, the boldface type (u) denotes a vector and the same letter (u) in

italic type is used to denote its components. The detailed physical meaning of the symbols

and operators used in this chapter are listed in the Nomenclature.

2.2 Wave Equation

From the conservation laws in fluid mechanics, we can obtain the fundamental equations

describing the fluid motion. These equations are called N-S equations for viscous flow or

Euler’s equations for inviscid flow. The wave equation for a uniform mean flow can be

derived based on the fundamental fluid mechanics equations.

Assuming a sound wave propagating in an inviscid flow and there is no external force

or quantity source, the governing equations (Euler’s equations) are expressed as below

10



[10, 44].

Mass conservation:

0p
52+V-(pu)=0 or

Momentum conservation:

p<gg+u-Vu> =—Vp or

Energy conservation (isentropic flow):

g+uov.s=0 or

Equation of State:

0p 5p
_ —— I " I‘ = 0

0t + at,- (”l”)

01/; + 0n,- 8])

'_—— '1' ' ——"' = ““7—

” 0f '1 am,- 0.13

p = p(p, .9), (1]) = ('2(1[) + (98) ds

()3 p

where the speed of sound (3 is defined as 02 = ( 24%) 9.

Introducing the acoustic perturbations,

P=i)0+P’a p=p0+p’, U=UO+ll,, 8:80-I-SI, (f
2
= (:02 + 6,2

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

where p0, p0, uu, so, Co and p’, p’, u’, s’. c' are for the uniform and perturbation variables,

respectively. And they satisfy

      

ll

   

 

I pl pl 'I (.12

— <<1, — <<1, — <<1, — <<1, —2 <<1

' P0 P0 50 ('0

(2.6)



For steady flow,

Polio ' V“0 = -VP0~ V ' P0111) = 0» u0 - V80 = 0, no ° VPO = €200 - VPO (27)

Substituting above relations into Equation (2.1) - Equation (2.4), we can get [10,44]

a/__’_ I I _

—d_f + V (pou + I) no) — 0 (2.8)

Bu’ / I

()t + uo Vu’ + u Vuo + p u0 - Vuu = —Vp (2.9)

()s’

W‘I‘UO' V9, +u" VSO—- (210)

l . I I I

6p 2 (9/) P P V
= —— ———— . :0dt +u0 Vp +u’- VPo with: +00 VP +u VP0+0(p0 p0 u0 PO

(2.11)

These are the Linearized Aerodynamic Equations. They govern the propagation of small

disturbances through a steady flow. If the disturbances and their gradients are not small,

we can no longer apply these equations to simulate the propagation.

For a uniform fluid,

u0 = const, p0 = const, p0 = const, and so = const (2.12)

Taking the time derivative on Equation (2.8) and the divergence on Equation (2.9), we get

a? ’ au' a'
02—2 +p0V aT +u0 Va—’:= 0 (2.13)

a I

[)0 (V 7‘; +V- (u()-V)u’> = —V2p’ (2.14)
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Then, subtracting Equation (2.13) from Equation (2.14), it yields

2/ 8/

—%t—/2)—+pOV-(uu-Vu'-d)—u0V7—p
_V2pI

From Equation (2.8), we know,

d_/_)’_

(9t—

Combining above two equations, we can get

I

%——2f:+ (uo- V)‘2p +2u0 Viz—l}: V21)I

Considering the isentropic state equation,

I 2 I

P = (‘0 I)

Finally, the wave equation with a uniform mean flow is obtained.

2

2; 1 a 2; (9 22/
Vp—C—20dt+u0 V p20 or dt+u0 V —con=0

-V- (poll, + ping) = —p0V ° u’ — “0Vp,

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

All of the small disturbance quantities describing the acoustic field satisfy the wave equa-

tion. For the notational convenience, we will use p (in the time domain) or P (in the

frequency domain) to represent acoustic pressure instead of p’ in the rest of this disserta-

tion.
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2.3 Helmholtz Equation

In the frequency domain, the acoustic field is governed by the Helmholtz equation which

can be obtained by Fourier transformation from the wave equation. Assuming the mean

flow Mach number is zero, the Helmholtz equation can be written as

V219 + k2P = 0, (2.20)

where P is the acoustic pressure in the frequency domain. When p is a simple harmonic

function of time, p and P can be related as p =2 P 6“”. k = w/q) is the wave number,

where w is the angular frequency and co is the speed of sound.

If the standard polar coordinates are used in a two-dimensional configuration, Equation

(2.20) can be written as

82F rap 182P
__+ _______ k2pzo, 2.21

(91"2 + 7' 07' + 7'2 662 + ( )

In three dimension spherical coordinates, Equation (2.20) is in the following form.

.
2

i2 7.2.63 +_¥__‘3_ 4,193.54 1 8P+k2P=0 (2.22)
1' 723111606

 

7‘2 sin2 (I 89")2

If a mean flow is considered, that is Mo # 0, modifications need to be made to the above

equations. The detailed derivation for the solution in this case is given in Chapter 4 when

needed.
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Chapter 3 Acoustic Intensity-Based Method for

Acoustic Far-Field Prediction

3.1 Introduction

Recently, the new signal processing techniques in transducer technology has been advanced

dramatically. Using these devices, the acoustic intensity as well as simultaneous, co-

located acoustic pressure can be evaluated. The acoustic pressure derivative can thus be

derived along a given axis of a microphone pair. Motivated by the advances in acoustic

measurement technology and the Helmholtz Equation Least Squares (HELS) method [32],

an Acoustic Intensity-Based Method (AIBM) is proposed for the accurate reconstruction

of the acoustic radiation pressure in the far field. The method uses the acoustic pressure

derivative and its simultaneous pressure as the input acoustic data for the computations.

Because ofthe addition ofthe acoustic pressure gradient in the input acoustic data, the solu-

tion ofthe AIBM becomes unique with the input given over an open surface [35]. However,

the solution is not stable since it is a Cauchy problem for Helmholtz equation [46]. Mathe-

matically, this instability comes from the highly oscillatory modes. By carefully removing

these modes, the AIBM, compared with the traditional inverse methods, could provide a

measurable improvement in terms of accuracy and consistency of the reconstructed acous-

tic pressure. The objectives of the study in this chapter are two-fold (1) developing, nu-

merically implementing and verifying the AIBM and (2) demonstrating the advantages,

effectiveness and potential of the AIBM for engineering applications.
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The chapter is organized as follows. The mathematical and numerical formulations of the

AIBM are discussed in Section 3.2. The exact mathematical solution of the Helmholtz

equation is approximated by finite linear combinations of basis functions. The numerical

formulation and implementation are developed to effectively determine the coeflicients of

these basis functions by the method with an input of acoustic pressure and its derivative of a

given direction. In Section 3.3, three numerical examples ofacoustic radiations from either

single or multi-frequency acoustic source are presented and verified. The advantages of the

AIBM over a traditional inverse method are demonstrated. Furthermore, the sensitivity of

the AIBM to random noises with various signal-to-noise ratios in the input acoustic data is

examined and analyzed. The concluding remarks are drawn in Section 3.4.

3.2 Mathematical and Numerical Formulations

3.2.1 Mathematical Formulation

The acoustic pressure field P in the frequency domain is governed by the Helmholtz equa-

tion

V2P +1.21) = 0, in :2 = R2\Il,:,,, (3.1)

where I2," is a bounded domain in R2 containing all acoustic sources, I: = w/c is the

wave number with the angular frequency w and the speed of sound 0. If the standard polar

coordinates are used in a two-dimensional configuration, Equation (3.1) can be written as

62F 16F 18210
.2 _ - = 2 .-

67‘2 + 7‘ 07 + T2 {)02 +A P — 0’ 1n12 R \Szm- (3.2)

With the Sommerfeld radiation condition r1239 7'1/2[0,.P(r. 6) — ikP(r, 6)] = 0, the solu-
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tion of Equation (3.2) can be written as [47,48]

00

P(r, 6) = 2 (an cos I26 + bu sin 726)H,,,(I.:r), (3.3)

71:0

where Hn is the nth-order Hankel function of the second kind. In order to obtain a solution

from Equation (3.3), it is necessary to determine the coefficients an and bn. These coeffi-

cients are determined by matching the assumed form of the solution to the input acoustic

pressure in the HELS method [32]. Strictly speaking the solution is unique only if the in-

put acoustic pressure is made on a boundary 1‘ that encloses all the acoustic sources in the

domain 52. The acoustic pressure measurement on the boundary F is usually impractical

or infeasible for engineering applications. In practice, the input acoustic pressure is only

available on a number of segments of the boundary, I‘i (an open surface, see Figure 3.1) .

Although the AIBM could be implemented in various inverse acoustic methods, it is for-

mulated here similar to that of the HELS [32]. It will be demonstrated later that when the

input acoustic data is given over an open surface the AIBM strengthens the HELS method,

and improves its mathematical well-posedness and practical applicability.

In the AIBM, both the acoustic pressure and its co-located derivative (normal to F1) on

the boundary P1 are considered as the input acoustic data for the reconstruction of acoustic

radiation pressure in the domain 12. With the pressure derivative boundary condition as an

additional input, the uniqueness of the reconstructed acoustic pressure solution is guaran-

teed from the unique continuation theory of elliptic equations [35-37]. In the AIBM, the

partial boundary value problem for acoustic radiation pressure is defined as

V219 + 1:213 = 0. in 12 = 122w)",

(3.4)

Plrl = P, anPlr1 = Pn, 713590 r1/2[a,.P(r, 6) — ikP(-r, 0)] = 0,
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Figure 3.1: Acoustic radiation field with input acoustic data locations.

where n is the outward normal to the boundary 1‘ 1, P and Pu are the input acoustic pres-

sure on F1 and the pressure derivative normal to F1, respectively. The solution can then

be expressed as Equation (3.3) on and outside the control surface, which encloses all the

acoustic sources under consideration. It is worth mentioning that the boundary F1 where

the input acoustic data is provided needs to be outside of the control surface.

Although this partial boundary value problem is unique, it is not stable. Small variations in

the input data may lead to large differences in the solution P('r, 6). In the following section,

the numerical techniques and schemes are described for solving this partial boundary value

problem. The stability conditions and other restrictions of the numerical formulation and

implementation are discussed in details.

18



3.2.2 Numerical Formulation

In the current study, the numerical solution of Equation (3.4) is being sought by the follow-

ing three steps:

Step 1: Instead of using the infinite summation in Equation (3.3), the exact solution of

Equation (3.4) is approximated by a finite summation, i.e.,

N

P(r, 6) ~ (LOHQUCT) + 2 (an cos 716 + bn sin n6)Hn(Ir7'), (3.5)

1121

where N is a suitable integer. The choice for N will be discussed later in the section. In the

AIBM, the solution P is achieved by obtaining the coeflicients orn and bn. The coeflicients

are numerically determined by matching the assumed form of the solution to the input

acoustic data over the boundary F1. One obvious restriction of N is that the number of

coefficients (2N + 1) to be determined must be less than the number of the input data over

r1.

Step 2: In order to determine the coeflicients an and bu numerically, an accurate and

efficient method must be developed to evaluate each Hn. When kr is relatively large, the

first Q terms in the asymptotic expansion of H0(kr) [47] are used in the current numerical

calculation

H0(ktT)~H0,Q(kr)=i/%T_o—i(tor—g}mi gin—1)q(1/!2)2c:§f:/)2)q], Irv—>00,

(3.6)

 

where (1/2)q = 1/2(1+1/2)...(q — 1+ 1/2). It can be shown that the accuracy established

. . . . l .
1n the above approx1mation 13 of order 0 ((3376?) It 15 also noted that the error generated

by the approximation becomes unacceptable when Q is much larger than 2131*. Since the

accuracy of the method depends on a good approximation of the Hankel functions, the

restriction ofQ g 1.5kr is used. For the approximation ofother Hn, the recurrence relation
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for Hn is employed. Because of the initial error of 0(1/rQ), N has to be restricted to

prevent the propagation of the errors for H7),. From a careful analysis, N should be less

than 2137* to ensure that the error for Hn is also in the order of 0(1/rQ). In addition,

since the partial boundary value problem, Equation (3.4), is unstable due to the presence

of functions for large index n in Equation (3.5), a proper limit on the upper bound of n is

needed to control the solution instability.

When k7: is relatively small, one can use the expansion of H0(kr) for r ——> 0, or a higher

order numerical integration method to evaluate H0(kr). Other Hn, can be obtained again

by the recurrence relation.

In the current numerical calculation, a relatively large kr (i.e., kr = 6) is considered and

the above asymptotic expansion formulation is used. Thus, the definition of the control

surface in terms of the numerical solution of P needs to be extended beyond enclosing all

the acoustic sources. For a given wave number k, the radius of the control surface, to, is

given by, e.g., r0 2 6/k. The numerical solution is valid on and outside the control surface.

Step 3: After the evaluation ofthe Hankel functions, a suitable optimization method is used

to determine the coeflicients an and I)n in Equation (3.5) for the partial boundary value

problem (Equation (3.4)). The simplest method is the least squares technique. Because of

the underlying partial differential equation and the particular basis fiinctions used in this

calculation, some numerical techniques are introduced to improve the condition numbers

of the numerical schemes.

3.2.3 Numerical Implementation

If the input acoustic data, P and Pn, are known at M discrete points (7'1, 61), (TM, 6M)

over the boundary I‘t, the linear system for the coefficients an, and bn is given by the
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following 2M equations

N

(1.0H0.Q(krj) + 2: ((1,, cos 7163- + bu sin ItI‘Ij)Hn.Q(Ii'I'j) = P('I’j, 6]), (3.7)

11:]

N

aoanH0,Q(krj) + 2 an [(an cos 7263- + bn sin n6j)Hn,Q(k-rj)] = Pn(7'j,6J-), (3.8)

1121

where j = 1. M. The above system can be expressed in a matrix form as A51: 2 B,

where

.r = [(10.°'°,(11\r.bl,°",bN]T (3.9)
7

B = [PI'I‘1J/1)..-°°,1302196111).Pn(’l'1.61).°--,Pn(7'.ir,0M)IT, (3-10)

and A = (A1, A2)T, A1 corresponds to P and .42 corresponds to P“. The vector coefli-

cients a: can be determined by minimizing III-11: - B|| directly for a choice of norm || - ll.

However, when 7"] = 7'2 = = TM, i.e, the input acoustic data is prescribed on a circular

segment, it is well known that 6nH,,,Q(i-cr) = 01-H,,,Q(lrr) = ikH,,,,Q(kr) + O(1/(kr))

and therefore the matrix A2 ~ ikAt for a large T. In many cases, this will result a large

condition number for the system At: = B, and more importantly, this pr0portionality be-

tween A2 and A1 will not allow us to take the full advantage ofthe additional input acoustic

data Pn.

To overcome this difliculty, the original system is first modified as follows

cAlkr(Ag —-ier1):r = CPkr(Pn — ikP). (3.11)

Then, to further improve the condition number for the linear system, the coeflicients vector

x is replaced by the vector y defined as

y = (aoHoeaiHL waaNHNa blHL bNHNIT' (3.12)
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The new linear system for the vector y has a much simpler matrix form

  

CD10?!) 2 cPkr(Pn — iAfP), (3.13)

where

I 1 cos 61 cos N61 511161 sin N61 \

1 cos 6; cos N62 sin 62 sin N62

Dl :- (3.14)

K 1 cos 6M cos N611,I sin 6nI sin N6M )

( E0 E1 cos 61 EN cos N61 E1 sin 61 EN sin N61 I

D E0 E1 c0862 EN cos N62 E1 sin62 EN sin N62 I.

2 = 7

  \ E0 E1 COS 0.1! EN (“USA-r61” E1 Sill (In! EN sin A6011! /

(3.15)

HI-(kr) . . . .

and Ej = T6075 - 2k, EJ- can be obtamed eaSIIy from a recurrence relation [47].

The least squares method that minimizes the standard L2 norm H Dy — Bil is used to deter-

mine the vector 3;, which in turn gives values of the coefficients an and bn. In the current

numerical study, it is observed that although some regularization methods may be needed to

improve the stability of the system for large N, they are not necessary for relatively small

N. Based on the analysis given in section 2.2 (b) (N S 2kr), N is initialized within a

given range of2 - 12. The reconstructed solutions ofacoustic radiation pressure for various

N are compared with the input acoustic data given on the boundary F1. The total error at

all the input points is then computed for each N. The optimum N within the given range

is determined from the minimum overall error. The reconstruction of the acoustic field is
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then carried out using the optimum N.

It should be pointed out that without the addition of the pressure gradient to the input acous-

tic data the reconstructed acoustic pressure could not be unique if only PIP1 is specified.

For example, let 12,-” be the unit disk centered at the origin and all the acoustic sources are

enclosed by the unit circle, the acoustic pressure should then satisfy the following equation

(101-10M?) + Z (an cos 116 + bu sin II6)Hn(Ir) = P(1,6), 6 E [0, 7r] (3.16)

7121

if the upper half boundary of the unit circle ( 0 S 6 3 it) is considered as the boundary F1.

It is well known that an and bn are not unique from the Fourier analysis. Especially Pn has

always a cosine expansion for 6 E [0, 7r], i.e., bi = 02 = = 0. It is therefore impossible

to predict solutions for 6 E (7r, 27r).

3.3 Numerical Results and Discussions

Numerical examples are considered in this section for the purposes of: (1) verifying the

AIBM and indicating the advantages of the method, (2) discussing the effects of the signal-

to-noise ratio, and (3) demonstrating the potential of using the AIBM to reconstruct the

acoustic radiation field for engineering applications.

3.3.1 Verification and Advantages of AIBM

The example used here is formulated by the acoustic radiation from a combination of one

monopole, one dipole, and two quadrupoles in a two-dimensional domain. The acoustic

pressure generated by a dipole and quadrupole source can be expressed as a summation

J

of the pressure generated by a monopole, i.e., P(r, 6) = Z (Ao)j H0(kRj), where A0 is

3:1
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the strength of the monopole and R is the distance between a field point and the monopole

source. A dipole (J = 2) consists of two monopole sources separated by a small distance

compared with the wavelength of acoustic radiation. In the frequency domain the strengths

of these two monopoles are of equal amplitude but opposite sign. A quadrupole (J = 4)

is made of two opposite dipole. The strengths and locations of these acoustic sources

used in this example are given in Table 3.1. The acoustic sources are enclosed in the

circle of radius r =1 m. The wavenumber of the sources is considered as k = 2m’1 and

the control surface is then chosen as the circle of radius rc=3 m (see discussions on the

size of the control surface in section 3.2). The label P(r, 6) used in the figures of this

chapter denotes the real part of the acoustic pressure in the frequency domain. The units

used for r and 6 are the meter and the radian, respectively. The reconstruction of acoustic

radiation pressure is carried out on and outside the control surface. The input acoustic data

is given at two circular (or straight line) segments. The schematic diagram of the acoustic

sources and each input segment’s location is given in Figure 3.2. The starting and ending

point coordinates of the two segments are chosen as (6m, 637r/128), (6m, 657r/128) and

(6m, 637r/ 128 + 7), (6m, 6577/128 + y) in the polar coordinates. It is noted that the input

data is given over an open surface and the circular arc length of each segment is only 1/128

of the circumference of the circle. Each segment is then discretized uniformly into ten

grid points where the analytical acoustic pressure and its derivative normal to the segments

are given as the input acoustic data. The angle '7 shown in Figure 3.2 is a measure of

the dimensionless distance between the two segments of the input, with y = 7r being

the farthest, i.e., the segments are at the opposite sides of the control surface. Different

values ofy are considered to examine the sensitivity of the reconstructed acoustic radiation

pressure against various input locations of an open surface.

In order to determine if the addition of the pressure gradient in the input acoustic data

would improve the accuracy and consistency of the inverse method, two sets of the input

acoustic data are considered. The first set of the input consists of the analytical acoustic
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Figure 3.2: Schematic diagram of acoustic sources and each input segment’s location.
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Table 3.1: The strengths and distributions of the 2D acoustic sources

Ago/Wm?) x<m> y(m)
 

Quadrupole I 1.00 0.30 0.60

-1.00 -0.10 0.60

1.00 -0.10 0.20

-l .00 0.30 0.20

 

Quadrupole II -1.20 0.49 -0. 12

1.20 0.20 -0.20

-1.20 0.28 -0.49

1.20 0.57 -0.41

 

Dipole -0.80 -0.54 -0.16

0.80 -0.78 -0.45

 

Monopole 0.90 -0.58 -0.58

pressure and its normal derivative, i.e., the AIBM, and the second set of the input consists

of only the analytical acoustic pressure, which is referred as the AIBM_without. Since

in this study both the AIBM and AIBM_without are implemented using the least squares

method, it allows us to examine the sole effect of the addition of the pressure derivative in

the input acoustic data.

The reconstructed acoustic radiation pressure at r=50m is compared with the analytical

solution for four different values of ’7 in Figure 3.3. Since the reconstructed pressure cal-

culated using the input acoustic data from the two straight line segments are identical to

that using the input from the two circular segments, only the results based on the input

from the circular segments are shown in Figure 3.3. It can be seen clearly that the recon-

structed acoustic pressure obtained from the AIBM.without deteriorates in some regions as

'y deviates from 7r. On the other hand, the reconstructed acoustic pressure from the AIBM
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agrees reasonably well with the analytical solution for 7 = 0.87r and 0.67r. The results

demonstrate that the reconstructed acoustic pressure using the AIBM is less dependable

on the input location of the acoustic data. The AIBM gives more consistent, reliable and

accurate reconstruction of acoustic radiation pressure when the input acoustic data is avail-

able over an open surface. However, for the case of 7 = 0.47r, the solution of the AIBM

starts to deviate from the analytical solution. As 7 decreases further, the effectiveness of

the AIBM becomes hindered. As a general rule, the more complete the input around an

acoustic source, the more accurate the reconstructed acoustic pressure solution. If the input

is given on a single segment over an open surface, a considerable extent of the segment is

needed in order to achieve acoustic pressure reconstructions with acceptable accuracy. If

the input is available on multiple segments over an open surface around an acoustic source,

then a better accuracy of the reconstructed solution will be obtained when the segments

are on the opposite sides of the control surface, although the exact location of the acoustic

source may not be known.

It is also worth mentioning that for an input given over a closed surface, the reconstructed

acoustic pressure solution is unique without the addition of the pressure gradient to the

input acoustic data. The advantage of the AIBM over the AIBM_without diminishes. The

formulation used for the AIBM_without is identical to that ofthe HELS [32]. Therefore, by

including the pressure gradient in the input of the HELS, the mathematical well-posedness

of the HELS will be improved and the method will be enhanced.

3.3.2 Effect of Signal-to-Noise Ratio (SNR)

Until now the analytical solution has been used as the input acoustic data for the calcula-

tion. In practice, however, the input data is usually experimentally measured. The acoustic

measurements are unfortunately prone to random errors. It is therefore desirable to have the

reconstructed acoustic radiation pressure less sensitive to random noises. In the following,
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Figure 3.3: Comparisons of reconstructed acoustic radiation pressure with analytical solu-

tion at r = 50m for different 7.
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Figure 3.3 continued
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the effect of the SNR is investigated in a two-dimensional configuration using an acoustic

source similar to a monopole but with an amplitude proportional to a sine fimction.

Assuming the sound source is located at (10.310), i.e., r0 = 0.8m, yo = 0.6m, the exact

solution is constructed in the following form

Po(r, 6) = sin (1H1 (Ni), (3.17)

 

where R = (/(.r — $0)2 + (y — y0)2. a is the shifted angle and is given by tana =

(.2: - :ro) / (y — yo). Like the previous example, the acoustic source is enclosed in the circle

of r = 1m. The wavenumber and the radius of the control surface are given as k = 2m"1

and rc = 3m, respectively. The input acoustic data consists of the exact acoustic pressure

solution with an added random noise RN(r, 6).

The location of the input is chosen as the upper half circle of radius r =2 6111 (an open

surface). The SNR is defined as

 

M M

SNR: 2 men, 6,”)12/ Z |RN(r,6m)|2 (3.19)

112.21 771.21

where 771 represents each uniformly distributed grid point (M = 200) over the upper half

circle, and the random noise has zero mean and the identity covariance matrix. The recon-

structed acoustic radiation pressure from the AIBM and AIBM.without is compared with

the analytical solution in Figure 3.4 for different SNRs. The results demonstrate that the

accuracy of the reconstructed acoustic pressure with the SNR up to 10 is overall accept-

able for the AIBM. However, without the addition of the acoustic pressure gradient in the

input acoustic data, the reconstructed acoustic pressure from the AIBM.without is unac-
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ceptable even for the SNR as large as 100. In order to have an overview ofthe reconstructed

acoustic radiation field, the acoustic pressure contours of the analytical solution and the re-

constructed solutions from the two inverse methods are given in Figure 3.5. Since the input

acoustic data is given over the upper half circle, as expected the reconstructed acoustic

pressure for the upper half domain is very accurate using both inverse methods. The con-

tour plots also show that the reconstructed pressure contours in the lower halfdomain ofthe

AIBM-without are completely different from the analytical solution even with SNR=100.

On the other hand, the accuracy of the reconstructed acoustic pressure in the lower half

domain of the AIBM is very good for the same SNR. The results indicate that by including

the pressure gradient in the input acoustic data, the AIBM can handle random noises much

more effectively. As it is shown in Figure 3.4, with up to 10% random noises (SNR-=10),

the reconstructed acoustic radiation pressure using the AIBM agrees with the analytical

solution reasonably well.
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Figure 3.4: Effects of SNRs on reconstructed acoustic radiation pressure at r = 10m.
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Figure 3.5: Comparisons of reconstructed acoustic radiation pressure P(r, 6) contours for

SNR=100 with analytical solution.
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Figure 3.5 continued
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3.3.3 Application to Multi-Frequency Acoustic Radiation Problem

The acoustic radiation fiom 2D vortex filament moving around the edge of a semi-infinite

plane is a simplified model for the radiation of flow—airfoil interaction problem in relation

to the airframe noise study. Ffowcs William & Hall [49] initially developed the general

theory of the scattering of aerodynamic noise by flow-surface interaction. Shortly after,

Crighton [50] developed the simplified 2D vortex model and derived the analytical acoustic

solution in the form of the potential function using the singular perturbation method. Since

then, the model has been used [51] to verify the effectiveness of the numerical methods of

solving the Ffowcs Williams and Hawkings (FW-H) integral equation.

In the current study, the vortex model is used to show the capability and potential of apply-

ing the AIBM for multi-frequency acoustic radiation problems in general.

A schematic diagram of a 2D vortex moving around a semi-infinite half plane is shown

in Figure 3.6. The origin of the polar (or Cartesian) coordinates is located at the edge of.

the semi-infinite plane. Based on the analysis given by Crighton [50], the first term in the

asymptotic expansion of the analytical potential function as Um —+ 0 is given by

4 9: Um(12 sin i6

1 1 ’

[1113(7‘ — 156)2 + 4]? 7‘?

 <I>(-r. 6, t) = 6 6 (—7r, 7r), (3.20)

where c is the speed of sound, d is the shortest distance between the vortex and the edge

(see Figure 3.6), Um is the maximum speed of vortex motion, and the Mach number Ma

is defined as Mo = Um/c. These variables are considered as c = 344m/s, d = 1m

and Mo = 0.01 in the current numerical investigation. It can be easily shown that the

acoustic pressure derived from the above potential fiinction satisfies the wave equation and

the solid wall boundary condition, Zip/59y = 0 at the top and bottom surfaces of the plane.

Since the acoustic radiation of the vortex model problem is not in a free space, the general
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approximated solution (Equation (3.5)) for the Helmholtz equation needs to be modified to

satisfy the solid wall boundary condition and can be written as

TV

‘ 1

P(r, 6) = Z on cos n6Hn(kr) + 1)” sin (n. + 2)6H 10.4)] . (3.21)
”:0 n+2

As it can be seen from Equation (3.20), the acoustic radiation of the vortex model problem

is not a single frequency problem. The FFT of the acoustic pressure time history at a

field point with the polar coordinates ( 75m, 7r/4) is shown in Figure 3.7. The continuum

spectrum demonstrates the multi-frequency nature of the acoustic radiation. It can also

be shown mathematically that the pressure time history of any given point in the field

has the same frequency spectrum although the amplitude may vary. Since the AIBM is

a frequency domain method, the reconstructed acoustic pressure field for each frequency

component needs to be calculated. A superposition ofthe contribution from each frequency

gives the total acoustic pressure field in the frequency domain. The reconstructed acoustic

pressure field in the time domain can then be obtained by an inverse FFT. In order to

accurately reconstruct the acoustic pressure, all the dominant frequency components need

to be included in the calculation. The input acoustic data for the AIBM consists of the

analytical acoustic pressure at four uniformly distributed points on each of the two circular

segments (7' = 50m) as shown in Figure 3.6.

The reconstructed acoustic pressure time history at a field point with the polar coordinates

(100m, 7r/5) and the directivity pattern at the radius of r = 100m are calculated by the

AIBM and compared with the respective analytical solutions in Figures 3.8 - 3.10 for three

selected ranges of the frequency components. The poor agreement between the analytical

and the reconstructed acoustic pressure shown in Figure 3.8 is expected since the input

acoustic data includes only a small portion (0.05 to 0.2Hz) of the dominant frequency com-

ponents. As the frequency range widens to include more dominant frequency components

(0.05 to 0.45Hz), the accuracy of the reconstructed acoustic solutions using the AIBM im-
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segment I Vortex path

 

  

 015= 3-13rad Half Plane

91.= - 3.13rad ._

Figure 3.6: Schematic diagram of 2D vortex filament moving around the edge of a semi-

infinite plane and input acoustic data points on specified segments.

proves significantly (see Figure 3.9). Finally, an excellent agreement is achieved between

the analytical and the AIBM solutions if the frequency range widens fiirther to include all

frequency components from 0.05 to 1.45Hz in the input acoustic data (see Figure 3.10).

After the verification of the AIBM for the reconstruction of acoustic radiation pressure

generated by the multi-frequency model problem, it is important to examine the sensitivity

of the reconstructed acoustic pressure to the SNR to ensure the potential of the AIBM for

engineering applications. Since the acoustic radiation of the vortex model problem involves

multi-frequency components, a random noise is added to the input acoustic data in the time
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domain. For a given set of the input acoustic data, the SNR is defined as

 SNR = (3.22)

I 1 ' 1 2

2.1;. 2);. 1.24,. x.) /
III - N - a

 

where M and N are the numbers of the input locations (points) and the time discretization

over a period of measurement time (or data collection time), a is the variance ofthe random

noise. The mean of the random noise is zero. It is noted from Equation (3.22) that the SNR

is defined based on the average of the input acoustic data in the time domain. Since the

magnitude of the input data varies, the SNR could be larger or smaller than defined for an

input at a specific location.

Using the input locations shown in Figure 3.6, the effect of the SNR on the acoustic radia-

tion pressure time history at a given point in the field is shown in Figure 3.11 for different

SNRs. As it is shown, a very good agreement between the reconstructed solution and the

analytical solution is obtained for the case of SNR=10. As the SNR decreases to 5, the

error of the reconstructed acoustic pressure increases as expected, particularly in the region

where the amplitude of the analytical pressure is small as expected. Nevertheless, the re-

sults demonstrate that the AIBM can effectively handle the input acoustic data with up to

20% random noise.
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Figure 3.9: Acoustic radiation pressure and directivity calculated from the input data with

frequency range of 0.05 - 0.45Hz.
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Chapter 4 2D AIBM with Subsonic Mean Flow

4.1 Introduction

In Chapter 3, an acoustic intensity-based method (AIBM) has been proposed without con-

sidering the effects of mean flow. The objectives of this chapter are to extend the AIBM to

include sound propagations in uniform flows and demonstrate the capability of the method

when coupling with the near-field CFD/CAA methods for the prediction of far-field sound

radiations in a two-dimensional configuration.

First of all, the mathematical formulation and numerical implementation of the AIBM for

sound propagations in uniform flows is described in Section 4.2. In Section 4.3, The method

is then coupled with the near-field CFD/CAA methods for the prediction of sound radia-

tions in the far field. An example of sound radiation from monopole in a uniform flow is

solved for the verification. Two aeroacoustic problems, sound radiation by a flow around

a NACA airfoil and sound scattering by a cylinder, are solved in the following sections to

demonstrate the effectiveness of the CFD/AIBM and CAA/AIBM hybrid techniques. At

the same time, the sound radiation field obtained from the AIBM and the FW—H integral

method are compared. The effects of input locations and the signal-to-noise ratio (SNR) on

the accuracy of the AIBM solution are examined. Conclusions are drawn in Section 4.4.
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4.2 Mathematical Formulations

In this section the formulation of the AIBM [3 8] is extended to include sound propagations

in uniform flows. Without loss of generality, we assume the uniform mean velocity is in

.r-direction no = uoi. Let ll,” be a bounded domain in R2 containing all acoustic sources

in this mean flow (see Figure 4.1), and c be the speed of sound, it is well-known that the

acoustic pressure p(;r, y, t) is governed by the following homogeneous wave equation

2 1 2
Vp—Z§(at+u0-V)p=0. (4.1)

Two cases will be considered in this paper. One is the problem with a single frequency, the

other is with multiple frequencies.

4.2.1 A Single Frequency

Assume that p = e'MPCr. y) with angular frequency u), P(.1:, 3]) satisfies

v21? — 111,212., — Mil/1,131+ k2!) = 0, (4.2)

where k = w/c is the wave number. Ma = uO/c represents the Mach number, which is

assumed to be less than 1 in the current study. In order to get the solution ofEquation (4.2),

we want to convert this equation to the standard Helmholtz equation.

Set W(;ic, 3)) = P(.r., y) with (if. g) = (:r/J. y) and 0’ = in — .4102, the governing equation

of P, Equation (4.2), can be rewritten as

QikAIU

V2W — ll}, + k2W = 0. (4.3)
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To eliminate the first order term W5., we define the function 3(53, 3)) as

S(;i:, g) = exp[—ikiMa;it/,U]l'V(§:, 3}). (4.4)

The equation for S is therefore expressed as

v25 + +3 = 0. (4.5)

In terms ofthe polar coordinates for ig—plane, i: = 7“ cos 6, g) = i‘ sin 6 and 1“ = l/ i2 + {12.

the general solution for S on or outside a control surface, which encloses all the sound

sources under consideration, is given by

(x: A. A

S(.i7, ) = 2: (an cos 726 + bn Sin n6)Hn (kf/b’) , (4.6)

7120

where Hn is the nth—order Hankel fimction of the second kind. Combining these equations

yields

m A A

P(;r, y) = exp('z'kiV:r/5_2) 2 (an ('05726 + 1),, sin n6)Hn (k'f/U) . (4.7)

7120

Note that a: is scaled by the factor 6 = V 1 — Mag, 72 is not the usual 6.122 + y2, and 6 are

also different from the usual angle 6 in the polar coordinates for cry-plane.

In order to obtain the solution ofEquation (4.7), it is necessary to determine the coefficients

an and bn. These coefficients are determined by matching the assumed form ofthe solution

to the measured acoustic pressure and its normal derivative over the input surface segments.

Once these coefficients are determined, the solution can be quickly evaluated at any field

point on or outside the control surface. In the AIBM, both the acoustic pressures and its

simultaneous, co-located derivative (in out normal direction) on the boundary [‘1 are given

as the input for the reconstruction of the acoustic field in the domain 52 (see Figure 4.1).

With the pressure derivative boundary condition as an additional input, the uniqueness of
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the reconstructed solution is guaranteed from the unique continuation theory of elliptical

equations [35—37]. The method also yields a consistent and accurate solution on and out-

side of the control surface. When using the AIBM, it is assumed that the control surface is

known although the exact locations of sound sources may not be available.
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Figure 4.1: Schematic diagram of sound propagation field and locations of acoustic mea-

surements.

With the consideration of sound propagations in uniform flows, the partial boundary value

problem is defined as

V21) — A102PLL' ‘ 2M711‘10.P.r +1‘72P = 0 in Q = R2\Qm, (4 8)

Plrl = R anplrl = Pn»

where n is the outward normal to F1. Similar to the procedures given in our earlier work
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[38], the following three steps are used to solve Equation (4.8) in the solution form given

by Equation (4.7).

Step 1: The infinite summation in Equation (4.7) is replaced by a finite summation, i.e.,

P(.77, y) ~ EXPO/{Ali/ij) (10H0(k7‘/21 )+3)(§:((2,, cos 726 + ()7, sin n6) HAM/7’3)

”2 1 (4.9)

where N is a suitable integer. The choice for N will be discussed later in the section.

Obviously, one restriction is that the number of coefficients (2N + 1) to be determined

must be less than the number of the measurement or input points.

Step 2: An accurate and efficient method must be developed to evaluate each Hn. When

1373/13 is relatively large, the first Q terms in the asymptotic expansion of H710"), namely

Hn(7‘) ~ ”9(7), are used in the current numerical study. For the completeness, we

derive the expression for Hn,Q here. Even though the asymptotic expansion for Bessel

functions are well documented, it seems that the expansion for Hn cannot be found easily.

It is known that Hn has the following explicit integral expression [52]

 

 

H. - = /_ ”(1 —t "*1/212. 4.10

”(7) 2"1r((72++1/2) 6?? 1+st 2) ( ( )

By the change of variable for integration, t = —1 + 27}, we have

26.—(72 1/2)772/22726 —z'7' /: "2

H = Vi]; e—“(n'n 7' V221. 4.11

Furthermore by letting 7 2 77], the asymptotic expansion ofHn, for 'r —» 00 is derived as

Q s) ,- .
_ 2 —i r_n7r 2—7T 4()’l]*1/2)j11'(

77+]+1/2)
-

Hn(7“) — fie ( / / )[l-i— 32:1 (1;!2jTjF(Jrl + 1/2) ]_ 72,Q
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It is easy to see that the order of error established in the above approximation is

Q

E(n Q)(7') 7*)3' H((n—j+1/2) (72+j —1/2) (4.13)

jzl

 

which tends to 00 when N —> 00 or Q —+ co. Hence the asymptotic expansion is not

convergent, it is necessary to choose N and Q carefiilly. For fixed 7 and n, the error

E(n, Q)(7) is roughly (28):? the restriction of Q S 27 should be used to control the

approximation errors. Furthermore, for fixed 7 and Q, N (the maximum of 72) must also be

controlled from E(N, Q)(7) ~ (21%? which requires that N cannot be larger than 27' as

well. In this study, we will restrict our choice so that Q g 1.5kf/{3 and N g 1.5197:/ ,6.

Step 3: Suitable optimization method is used to determine the coefficients an and bn. For

the partial boundary value problem, Equation (4.8), the simplest method is the least squares

technique because the resulting equations for an and bn are linear. If 91 and g2 are known

at M discrete points, (71, 61), ..., (71i1, 6M), the linear system for the coefficients an and bn

is given by the following 2M equations

' . '2 . IV A A

erlIan/J (aoHQQ + Z ((27” cos 726J~ + 1),, sin 726j)Hn‘Q) = P(:1:j, yj), (4.14)

7221

' .7 '. , . IVY A a

8n [e’UIaJJ/‘j (aOHOQ + 2 (an. cos 7261' + 1),, si11n6j)Hn,Q) = Pn(.rj, yj), (4.15)

72:1

 

where j = 1,. .,.M It18 noted thatin order to solve the above linear system, the terms Hn,

Bf/an and 86/0n need to be evaluated first.

The linear system can be expressed in a matrix form as AX = B, where

_ T
X — [(1.0,---,a.‘,v,b1,-~,bN] , (4.16)

B = [P(é171~y1)a ' ° '» PWMWM): PnULUl): ' ' ° ,Pn(<l’.l1ay.l1)lTa (4-17)
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and A = (A1, A2)T, A1 corresponds to P and A2 corresponds to normal derivative Pn.

One could find X by minimizing ||AX — B||2, where H.“ is the standard L2 norm. Dur-

ing the numerical study, it is observed that although some regularization methods may be

needed to improve the stability of the system for large N, they are not necessary for rela-

tively small N. In the current work, N is initialized within a given range of 0 — 20. The

reconstructed solutions for various N are compared with the input acoustic solutions of the

inverse problem. The total error at all the input points is then computed for each N. The

optimum N within the given range is determined from the minimum overall error. Finally,

the reconstruction of the entire acoustic field is carried out using the optimum N.

It is worth a mention that without the inclusion of the pressure gradient to the input of

the inverse methods the reconstructed solution cannot be unique if only PIP1 is spec-

ified. For example, if 522-7, is the unit disk centered at the origin, we assume that all

the acoustic sources are enclosed by the unit circle, and the boundary F1 is defined as

F1 = {(33, y) | i2 + 92 = 72, g) > 0}. That is, F1 is the upper halfboundary ofan ellipse, 7‘

is chosen large enough so that the ellipse will include all the acoustic sources. The acoustic

pressure for 6 E [0, 77] should satisfy Equation (4.7). It is well known that an and bn are

not unique from Fourier analysis. Especially P always has Fourier cosine expansion for

6 E [0, 7r], namely one can set b1 2 b2 2 = 0. In any case, it is impossible to predict

solutions for 6 E (77, 277).

Furthermore, it should be pointed out that even though our formula are derived for the uni-

form fiow u0 = uoi = (220, 0), it is very easy to modify it for a general case no = (21.0, 170).

In that case, by rotating the coordinates for an angle a, where a in the range of (0, 277) is

given by (27.0, 220) = MU?) + 228(cos a, sin a), the pressure P(.r, y) in the frequency domain

with angular frequency no can then be calculated by

CX: A

P(.'r., y) = exp(2'k.M;ifJ—2) 2 (an cos n6 + 1),, cos n6)H,,(kf‘/{3), (4.18)

72:0
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where

Ma ’ 28 + l’8/C,

i‘ = (:r cosa + ysiil (2)/,6 = fcos 6,

(4.19)

9 = —;77 sina + ycosa = fsin6,

.. (.9 .2

7‘ = \/.’I“" + y .

4.2.2 Multiple Frequencies

When the scattering problem involves multiple frequencies, the FFT can be used to decom-

pose the problem into the linear combinations of several dominant frequencies. Since the

AIBM is a frequency domain method, the reconstruction of the sound pressure for each

frequency component needs to be individually calculated. A superposition of the contri-

bution from each frequency gives the total sound pressure in the frequency domain. The

reconstructed sound pressure field in the time domain is obtained by an inverse FFT. The

details of the solution of the AIBM are explained in the following steps:

Step 1: Input Acoustic Data.

The input acoustic data are obtained from measurements, or from numerical solutions of

CAA calculation on a circle with radius 70 for 0 g t g to, where to is large enough so that

the solution asymptotically decays at large t. Assuming the dimensionless speed of sound

c = 1, then the wave number for each frequency kj = wj. The fast Fourier transform is

then used to decompose the solution in terms of its frequencies wj, i.e.,

J

Mir, 1% t) = Z €XP('iw‘jt)Pj(-r, y) (420)

i=1

with PJ-(r, y) satisfies the Helmholtz equation

v21),- + ufipj = 0. .r e ii = R2\B(0,7'1) (4.21)
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where B(O, 71) is a circle of radius 71, centered at the origin. The boundary condition P]-

on the circle of 7 is given as the input acoustic data for the AIBM. If the polar coordinates

are used in a two-dimensional configuration, the solution of Equation (4.21), which also

satisfies the radiation condition, can be written as

DC

Pj(;r, y) = E(a-jm cos 726 + (2%,, sin 726)H.n(u2j7‘) (4.22)

[=0

where Hn is the nth-order Hankel function of the second kind.

Step 2: Determination of the coefficients ”1122 and bJ7,

The numerical solution of Equation (4.22) is obtained by replacing infinite summation in

Equation (4.22) by a finite summation, i.e.,

[VJ

P(:2:, y) % aj,0H0(WjT) + Z (“JEN cos 726 + by, sin n6)Hn(wJ-7) (4.23)

7221

where N]- is a suitable integer for each frequency component. Because of the broadband

nature of the problem, it is necessary to accurately determine the coefficients aj.” and

bjm. for each frequency wj. As in the case for single frequency, these coefficients are

determined by matching the assumed form of the solution to the input acoustic data in

the frequency domain, i.e., P(;2:, y) and P“, on the circle of radius 70. The choice for NJ-

must be carefully chosen to ensure both the accuracy and stability as discussed in [38].

Apparently, the accuracy of the solution naturally requires a large value of Nj. However,

a large Nj can also result in computational instability. For any given to], a mathematical

analysis yields

 

272. n

Hn(wjr)=( ) . n—mo (4.24)
GUJJ'T

When wjr is small, Hn(w’j'l‘) is very large when n 7:: (Eulj r/2) . A small perturbation in

the input acoustic data may result in large variations in (13-9,, and by". Hence the value for
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NJ- has to be restricted for the stability of the numerical solution. In the current study, the

restriction is given as Nj S [wjro] + 1, where [z] is the greatest integer less than or equal

to 2:. In the current work, the value of Nj is chosen as

N) = rnin{Nj S [adj-7'0] + 1, 30} (4.25)

with considerations of numerical stability and computational efficiency.

For any given wj and Nj, the coefficients a”, and bjm are determined for each frequency

component of 1 g j 3 J and 0 S n g NJ- based on the acoustic input provided on the

circle of 7.

Step 3: Prediction of sound radiation p(7, 6, t).

For any given a: E B(0, 7‘2) with polar coordinate (7, 6), and t 6 [0,110], with 72 not far

away from 71,

N(a) ,

(21,-) 00816 + b“ sin ((7)6thH,(wjla|), (4.26) ‘

_-0 .

J

[)(7’, 6,t) N Z

j=1 [-

where the upper limit Nj (.23) is chosen as

NJ-(gr) = n1in{[wJ-|.T|] +1,[u2j7‘0]+ 1,30}. (4.27)

It is noticed that Nj (.7) can’t be larger than ([wj 70] + 1, 30) due to the value of Nj (as) used

in determining the coefficients am and bjm- The additional restriction [wjr] + 1 is added

for a similar reason mentioned earlier in the discussion of Equation (4.24). Without the

additional restriction on Nj, the solution p(-r, 6, 2‘) may become unstable.
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4.3 Numerical Examples and Discussions

In this section, the AIBM is first verified for sound source propagations in a uniform flow.

The method’s effectiveness and capability for aeroacoustic applications are then demon-

strated by airfoil noise and sound scattering problems.

4.3.1 Monopole in a Uniform Flow

The AIBM is first applied to a stationary monopole source placed in a uniform flow. A

schematic diagram ofthe source in a uniform flow ofMa = 0.5 in the +2: direction is shown

in Figure 4.2. The two circular arc segments are the locations of the acoustic input and the

angle 7 is a measure of the dimensionless distance between the two segments, with 7 = 7r

being the farthest, i.e., the segments are at the opposite sides of the control surface. The

units used for 7 and 6 are the meter and the radian, respectively. The monopole is placed

at (1m, 0.27r) in the polar coordinates. The wavenumber and intensity of the monopole is

given as k = 2m‘1 and A0 = 0.001m2/s. The control surface is considered here as the

circle of radius 7 = 2m. The analytical complex potential for the monopole is given by

Dowling and Ffowcs Williams [53] as

7' , k 52:2

<I>(;2:, y, t) = 7401561))th + Mam/752)]H0 313—, + y2 (4.28)

The analytical acoustic pressure and its normal derivative, over the two circular arc seg-

ments, can be derived from Equation (4.28) and are used as the input for the inverse cal-

culation. The polar coordinates of the starting and ending points of the two segments are

(10m, 0), (10m, 0.17r) and (10m, 7), (10m, 0.177 + ’7’), respectively. Ten uniformly spaced

grid points are used on each of the segments. With {3 = 7r, the far-field directivity from
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the AIBM is calculated and compared with those from the analytical solution and the FW-

H integral equation in Figure 4.3. The results show excellent agreement among the three

methods. It is important to point out that the arc length of the each input segment for the

AIBM is only about 1/20 of the circumference of the circle (7 = 10m), that is used as

the FW-H surface. The reconstructed acoustic pressure contours from the AIBM and the

analytical solution are shown in Figure 4.4. As it is indicated, an accurate reconstruction

of the radiated field is achieved on and outside the control surface using the AIBM.

As it has been shown in the work ofYu et al . [39,40], though an accurate reconstruction can

be obtained from the input given over an open surface, the AIBM becomes less effective

when the input segments become clustered. As a general rule, the more scattered the input

segments around a sound source, the more accurate the reconstructed acoustic solution.

Since the choices of the input segments are limited by the accessibility and practicality

of the acoustic measurement in the radiated field, some regularization techniques may be

needed to improve the effectiveness of the AIBM when the input locations are not scattered

far enough around the sound source.
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Figure 4.2: Schematic diagram of a monopole radiation in a uniform flow and locations of

acoustic measurements.
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Figure 4.4: Pressure contours of a monopole radiation in a Ma = 0.5 flow.
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4.3.2 Sound Radiation by a Flow Around a NACA Airfoil

After the above verification of the AIBM for the prediction of sound radiation in a uniform

flow, the method is used to obtain the sound radiation from a uniform flow around a NACA

airfoil. Based on the near field CFD solution, the aerodynamic sound generated in the

far-field is calculated using the AIBM. The predicted sound radiation of the AIBM is then

compared with that from the FW-H integral equation.

The far-field acoustic solution is commonly obtained by solving the FW—H integral equation

based on the unsteady CFD solutions on a FW-H surface that encloses the airfoil. The FW-

H equation is a rearrangement of the exact continuity and momentum equations to a wave

equation with source contributions from the monopole, dipole and quadrupole terms. The

contribution of the quadrupole term, the Lighthill stress tensor, is neglected since the FW-

H surface, as indicated in Figure 5 for the current study, is placed outside of all regions

where the stress tensor is significant. The quadrupole contribution is in fact included by

the surface sources. The contours shown in Figure 4.5 are the instantaneous sound pressure

contours of the flow around NACA0018 airfoil of a chord length 0.3m. As also shown in

Figure 4.5, the free-stream Mach number, Ma, is 0.2 and the angle ofthe attack is 20°. The

details of the CFD solutions were given by Greschner et al. [54].

The AIBM and the FW—H integral method are used for the prediction of the far-field sound

radiation by the flow around the airfoil. The AIBM is carried out by using the unsteady

pressure solution over an open surface, formed by the curved segments I and II or segments

III and IV ofthe FW—H surface (see Figure 4.5), as the acoustic input. The two-dimensional

formulation of the FW—H equation in the frequency-domain [55] is used with the input of

the unsteady pressure and velocity solutions over the entire FW—H surface.

The comparison of the far-field directivity obtained from the AIBM and the FW—H integral

method is shown in Figure 4.6. As can be seen in Figure 4.6, the results of the AIBM based
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Figure 4.5: Instantaneous pressure perturbations of the flow around the NACA 0018 airfoil

along with the location of the FW-H surface.

on the inputs of two chosen open surfaces agree reasonably well with that of the FW-H

integral method.

In order to have an overview of the sound propagation in the far-field, the sound pressure

contour plots from the AIBM and the FW-H method are shown in Figure 4.7. It is noted that

the radius of the control surface used for this problem is r = 3m, which is ten time of the

chord of the airfoil. It should also be pointed out that the FW-H surface used in the study,

though not a circular shape, is enclosed in the control surface. The close agreement among

the three contour plots indicates that the AIBM is capable to effectively obtain the radiated

sound field based on the acoustic input from an open surface. The method, therefore, has

a potential application for the far-field sound reconstruction for problems where a closed

FW-H surface is not possible.
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Figure 4.7: Pressure contours of the sound propagation generated by the flow around the

NACA 0018 airfoil.



4.3.3 Sound Scattering

This example is an ideal model of the physical problem of predicting the sound field gen-

erated by a propeller scattered off by the fuselage of a moving aircraft. In the model, the

fuselage is considered as a circular cylinder and the noise source (propeller) as a line source

such that the computational problem is two-dimensional. A polar coordinate system and

the Cartesian coordinate system centered at the center of the circular cylinder of the di-

mensionless radius 0.5 are shown in Figure 8. The mean flow is given as Mach number of

zero. The governing equations for this problem are the linearized Euler equations (LEE).

The equations are discretized using the optimized upwind dispersion-relation-preserving

scheme (DRP) of Zhuang and Chen [56]. The detailed implementations of the boundary

and initial conditions are given by Chen and Zhuang [57], in which the numerical solution

(CAA solution) was also verified by the analytical solution. In the current study, the CAA

solution is used as the acoustic input for the AIBM. The input is given at forty uniformly

distributed points on each of the two circular segments (see Figure 4.8) with the radius of

6.125. The initial pressure pulse located at (4, 0) is given as

(x “-412 +22
0 22 (4.29) p(:2:, y) 2: exp -— 1112

and the perturbation velocity components in 2- and y-directions are considered as zero,

u=v=0.

The results ofpredicted sound pressure history for different frequency ranges are also com-

pared with the corresponding CAA solutions at three locations are shown in Figures 4.10-

4.12, respectively. As it is indicated that the accuracy of the predicted solution improves

significantly as all the dominant frequencies are included in the AIBM calculation. In terms

of peak pressure values and locations of the incident and reflected waves, excellent agree-

ments between the two methods, AIBM and CAA, are demonstrated. The oscillations at
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Figure 4.8: Schematic diagram of the sound scattering by a cylinder.

the lower amplitudes are due to a relatively large value of N. As it is discussed in Sec-

tion 11, the number of summations, N (Equation (4.8)), needs to be reduced as the radius

7' decreases to provide a converged solution. The pressure contour plots from the CAA

calculation and the AIBM are compared in Figures 4.13-4.15 for various times. The results

of these contour plots demonstrate that the AIBM can effectively predict the propagations

of both the incident and reflected sound waves.
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Figure 4.9: Frequency spectrum for the sound scattering, 7* = 6.125.
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Figure 4.13: Instantaneous pressure contours of the sound scattering at t=15: CAA (top),

AIBM (bottom).
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Figure 4.14: Instantaneous pressure contours of the sound scattering at t=1 l: CAA (top),

AIBM (bottom).

70



 

    

 

0.0186856

410216143

43.028543

Figure 4.15: Instantaneous pressure contours of the sound scattering at t=9: CAA (top),

AIBM (bottom).
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Chapter 5 3D AIBM with Subsonic Mean Flow

5.1 Introduction

Motivated by the need for an accurate and efficient prediction of the far-field acoustic radi-

ation, an Acoustic Intensity-Based Method (AIBM) has been developed based on acoustic

input from an open control surface in a two-dimensional configuration [38—40]. In this

chapter, a three-dimensional AIBM for the reconstruction and prediction ofradiated acous-

tic fields is developed [41—43]. The method is verified by examples of the propagation of

multiple acoustic sources in a uniform flow and the acoustic scattering of a time dependent

source by a sphere. The effectiveness of AIBM in aeroacoustic applications is demon-

strated by the accurate and efficient prediction of acoustic radiations from an axisymmetric

duct intake using a hybrid CAA/AIBM approach. The results of the radiated acoustic field

from the AIBM agree well with the solutions ofCAA and the FW-H integral equation. The

AIBM is much more eflicient than other methods for the far-field acoustic prediction and

can use the input acoustic data from an open surface instead of a closed FW—H surface.

The organization of this chapter is outlined. First of all, the details on the extension of

the AIBM to a three-dimensional configuration with a subsonic uniform flow are derived.

Furthermore, the accuracy of the AIBM for the far-field acoustic prediction is shown by

numerical examples and the advantages of the method with respect to both efficiency and

choice of locations for the acoustic input are demonstrated.
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5.2 Mathematical Formulations

Let F be the boundary of a sphere containing all acoustic sources, and F1 be a (usually

very small) part of I‘. In the AIBM, both the acoustic pressure P and its collocated normal

derivative BP/On on F1 are considered as the input acoustic data. In practice, P and 0P/6n

are given at a finite number ofpoints (.rj, yj, 2]) E F1,j = 1, M.

5.2.1 Basic Formulation for AIBM

Assuming that the mean flow is in z direction and employing the standard separation of

variables in terms of spherical coordinates, the general solution for the Helmholtz equation

can be approximated by a linear combination of basis functions

00 72 . .

P(7‘, 6, 02) = exp(iA.']1~Iaf cos 0273—2) 2 Z (anm cos 7226 + bum sin 722.6)P,',nG,l,(ka_2),

7220 72220

(5.1)

where Ma is the free-stream Mach number, ,6 = (/1 — 1113, k is the wave number, Pi,” =

P,’,"(cos 03) is the associated Legendre polynomial and Gn represents the generalized Han-

kel function or spherical Hankel function. The coordinates (7, 6, 6)) are defined as the

modified spherical coordinates from Cartesian coordinates (:r, y, z) in the physical domain.

Let (2:, g). :3) = (13:23, fly. 2), then

 

i=75in5cos6, Qz'fsincfisin6, 2=7°cos02, f=\/;i72+g)2+32. (5.2)

Differentiating both sides ofEquation (5. 1) with respect to the unit normal n = (72 x, ny, 72.3)

and using the chain rule, we have the formula for normal derivative of P,

6P ('9ng 012 829 0130;;

0n<r 'Q) 67‘0n+000n+0¢6n ( )
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Note that
A

 

86 1 , . ~ . A60 . . . ~67)
—-— = ——.-——. 2372. -— 7 cos 'srn6—-— — s1n srn6— 5.4

Q“ 751n¢cos6 ( y (D an 45 an ( )

and

602 1 07

—,—'= cos -— —— m (55)

0n 7sinq)( 99811".)

As it is shown in the above two equations, there are singularities when 05 = 0 and 77 or

6 = 7r/2 and 377/2. These singularities lead to computational difficulties. To eliminate

these poles, an improved formulation is derived in the next section.

5.2.2 Improved Formulation for AIBM

In this section, the coordinate system will be converted from spherical coordinates to Carte-

sian coordinates, and the singularity terms will be eliminated after the multiplication of

suitable trigonometric fimctions.

First, cos m6 and sin 7226 can be expressed as

27226 —27226 1 7 -~ m A, _ .. 722

(e + e ): 2]""1 sin,” (2)1-L'r( +7.21) + (‘r 2y) 1’ (5.6)

1

:2?

2A— 21-1627726 __ 6—27226) : 1 _ . [(i‘ + 2:12),” _ (j; _ imm]

227-77” 5111"” (2‘)

Substituting the above equations into Equation (5.1), we have

13(17 .7!» ~)—_ eXP(7676172“212 2101727225722— ibnmnmig1156-1)anPQ—QVQP’”)7

72:0772:0

(5.7)

where

5772 = (5% + 2mm + (.2? — 2.2))7", 77-m—— (:7 + 2y)’"— (.2: — 23))m, (5.8)
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and Q7": Pf,” / sinm (25. From the expression for P5", we note that

- +22 72+722

n2, , __("1)"1 d ,2 n

A n (U) _ 2”,"! dlUvn+7n (1 — 7L ) '1 22/7"

 

which has no singularity. Therefore, Equation (5.7) is an improved form of the general

solution of the Helmholtz equation. The corresponding normal pressure derivative can be

derived as

6P ~ 6P , 6P +872"
—4277233+ 0y377y+ 0—2."

5.2.3 Simplified 2.5D Formulation for AIBM

Axisymmetric problems are sometimes considered as 2.5D problems, e.g., acoustic modes

propagation in an axisymmetric duct intake with an axisymmetric mean flow. In this sec-

tion, we are going to simplify the 3D improved formulation into a 2.5D formulation. Let

772 be the azimuthal mode, and assume that the mean flow is along the z direction. If 6 is

specified in Equation (5.7), for example 6 = 0 (gm = 27m, 72m = 0), the equation can be

simplified on :r —— z plane as

P(;77, O,z)—— exp(2kllfazz32)Z Z anmrm,m( ’1)Gn(k7d2)/7722. (5.10)

72—() 772: ()

Especially, if the mode 772 is known in advance, the formula can be further simplified as

P(:7:,0.z) = exp(2'kil1a3.32)Z anmlQOf‘1)Gn(k77327)/722. (5.11)

)3”722

This is the simplified 2.5D solution of the Helmholtz equation for axisymmetric propaga-

tion problems. The normal derivative can be derived based on the above simplified solution

as

8P P r P

’ — $713773; + d ’72~. (5.12)

.17 87"
~

~
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5.2.4 Numerical Implementation

The numerical solutions for Equations (5.1), (5.7), (5.10) and (5.11) are obtained from the

following three steps.

Step 1: Instead ofusing the infinite summation in these equations, the solutions are approx-

imated by a finite summation. Namely, the size of 72 is suitably restricted. For example,

Equation (5.7) is approximated by

N 72

PN = exp(z'7.~Ma2,6—2) Z Z [amném — ibn,,,n,,,]Q$(27—1)G.,(2~727—2)/(27m).

72:0 m:0

(5.13)

The upper limit N must be chosen large enough to accurately reconstruct the acoustic data

on the input surface and in the field, but the number should be minimized to reduce the

computational costs. N is initialized within a given range of 1-40. The optimum N is

determined from the minimum overall error [38].

Step 2: The coefficients anm and bum, 0 g 722 g 72 ;<_ N are numerically determined

by matching the assumed form of the solution to the input data P(:rj, yj, 2]) and BP/Bn,

1 S j S M. Namely, a linear system of 2M equations with anm and bnm as unknowns

must be solved. One obvious requirement is that this system must be overdetermined,

which also restricts the size of N. In the paper, the least squares method is used to solve

this linear system.

Step 3: For any given field point, including the input points, in a radiated acoustic field, the

acoustic pressure can be approximated by Equation (5.13) using the coefficients anm and

bnm obtained from the previous steps. Detailed numerical techniques are described in the

earlier publication [38, 39].
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5.3 Results and Discussions

5.3.1 Multiple Sources in a Uniform Flow

To verify the accuracy ofAIBM in a three-dimensional configuration, acoustic radiation of

multiple sources in a uniform flow are studied. A schematic diagram of the sources and

their locations is shown in Figure 5.1. The mean flow is in the :r—direction with a Mach

number of 0.5. The density and the speed of sound of the ambient medium are given as

1.21kg/m3 and 344m/s, respectively. All the multiple sources radiate with the same angular

frequency, w=200Hz. The analytical solution for the multiple sources can be obtained by

the summation of each point source solution as

J

p(,t :73, y,z 21211)]-,(t 2:, y,z (5-14)

where p is the acoustic pressure of the radiated field from the multiple sources and pj is the

solution of each point source. The analytical solution of a monopole in a uniform flow is

given as [53]

dd? dd)

pj 2 —po (07 + 2208—13) (5.15)

with (I), the velocity potential function, expressed as

14 ., ,

<I>(t, :13, y, z) = fl exp[2(wt — 12(7 — 1110.27),23—2)] (5.16)

 

where ,73 = (71 — Mg, 7 = \/.7:2 + ,d2(y2 + 22) and A0, w are the strength and the angular

frequency of the monopole, respectively.

In the current study, the multiple sources, consisting of two quadrupoles, two dipoles

(formed by superposing monopoles) and one monopole, are distributed inside a control
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Figure 5.1: Schematic diagram of multiple sources in a uniform flow.

surface of 7 = 1m. The coordinates and strengths of the sources are given in Table 5.1.

The acoustic pressure and its normal derivative on the two planar surfaces are considered

as the input for AIBM (see Figure 5.1) and obtained by using the FFT of the analytical

solution of Eq. (5.14). In the current implementation, the distance of each planar surface

to the origin is given as 10m and the size of the each surface is 4m by 4m. The angle 7

between the surfaces is 120°. Each surface was discretized into 10 by 10 uniform grid lines.

The radiated acoustic field for the range of 4m 3 7 3 40m is then predicted by AIBM.

Quantitative comparisons of the predicted pressure with the analytical pressure are shown
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Table 5.1: The strengths and distributions of the 3D acoustic sources

Ao(W/m2) x<m) y(m> z(m)
 

Quadrupole I 1.0 0.0 -0.5 0.5

-l .0 0.0 0.5 0.5

1.0 0.0 0.5 -0.5

-l .0 0.0 -O.5 -0.5

 

Quadrupole II 0.8 -0.6 0.0 0.6

-O.8 0.6 0.0 0.6

0.8 0.6 0.0 -0.6

-0.8 -0.6 0.0 -O.6

 

Dipole 1 1.1 0.4 0.3 0.1

-1.1 0.7 —0.1 0.5

 

Dipole II 0.9 0.3 0.2 -0.2

-0.9 -0.2 0.5 -0.3

 

Monopole 1.0 -0.5 —O.5 -0.1

79



in Figure 5.2 along the x—axis and the y-axis. Excellent agreement ofthe radiated pressure

solutions from the near-field to the far-field is demonstrated in the figure. Contours of

the instantaneous pressure are compared with the respective analytical solutions in Figures

5.3. These pressure contour results substantiate that AIBM accurately predicts the radiated

acoustic field in a uniform flow of a three-dimensional configuration.
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Figure 5.3: 3D instantaneous pressure contours for the sound radiation of multiple sources:

Analytical (top), AIBM (bottom).
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5.3.2 Acoustic Scattering

This example is an ideal model of the physical problem of predicting the sound field gen-

erated by a propeller scattered by the fuselage of a moving aircraft. In the model, the

fuselage is considered as a sphere and the noise source (propeller) as a time-dependent,

single frequency acoustic source. The mean flow is given as Mach number of zero. The

dimensionless radius of the sphere is given as l. The Cartesian coordinates centered at the

center of the sphere are shown in Figure 5.4. The governing equations for this problem are

the linearized Euler equations. The acoustic source is located on the :2:—axis at :27 = 1.5 and

expressed as

S = 0.01 exp[—161n2((x — 1.5)2 + y2 + 2.2)] cos(27rt) (5.17)

The CAA solution [56] verified by the analytical solution of the scattering by a sphere

[58] was used as the acoustic input for AIBM calculations. The input surface of 7 =

 

(£132 + y2 + 22 = 4 is also depicted in Figure 5.4. It is worth mentioning that the input

surface for AIBM can be an open surface as indicated in the previous example. Since the

CPU time is not at all an issue here, a spherical surface was used for the sake of simplicity.
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Figure 5.4: Schematic diagram of acoustic scattering by a sphere.
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Figure 5.5: Instantaneous pressure contours of the sound scattering in the plane y = 0:

CAA (top), AIBM (bottom).
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The predicted instantaneous pressure contours by AIBM are compared with the CAA so-

lution in Figure 5.5 for the plane of y = 0. As it is noted from the figure, the predicted

radiated acoustic field agrees very well with the CAA solutions outside a minimum sphere

(7 = 2) that encloses the acoustic sources. The proper size of a minimum sphere was dis-

cussed in our previous work [38]. Quantitative comparisons of the perturbation pressure

along the as—axis and the y—axis are shown in Figure 5.6. Again an excellent agreement is

achieved.

5.3.3 Acoustic Radiation from an Axisymmetric Duct Intake

Both CAA methods [19, 20, 59] and the FW—H integral method coupled with CAA meth~

ods [21] were used in the past for the prediction of acoustic propagation and radiation from

an engine inlet. In the current study, an axisymmetric geometric model of a duct intake

is considered with a uniform subsonic flow. Small acoustic perturbations are propagating

upstream through the axisymmetric duct flow and radiating to the far field. A schematic

of the duct intake configuration along with the Cartesian and the spherical coordinates and

the domain of acoustic propagation and radiation is shown in Figure 5.7. The far field flow

pressure, density, Mach number and the speed of sound are given as P00 2 101.325kPa,

,000 = 1.249kg/m3, MaOO = 0.19 (in negative z-direction) and coo = 337m/s, respec-

tively. A single frequency sound source with the non-dimensional angular frequency of

14.2567 is considered. The azimuthal and radial modes used in the CAA calculations are

(722., 72) = (2,1).(3, 1) and (4,1).

The FW—H integral method is the most commonly used method for the far-field acoustic

prediction. The method is based on the N-S equations and therefore is valid in both the

near field and the far field. The AIBM, on the other hand, is based on the linearized Euler’s

equations and developed for the effective prediction of the far-field acoustic radiation. To

show the capability and effectiveness of AIBM in a far-field prediction, the method is
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coupled with CAA methods for the prediction ofthe acoustic radiation from the duct intake.

The results of AIBM are compared to CAA solutions as well as the solution from the FW-

H integral method. Since the acoustic wave is radiating in a 3D configuration, Farassat’s

3D Formulation 1A [15] with the quadruple term neglected was used in the FW-H integral

method. The FW-H surface is depicted in Figure 5.7, and the input surface used for AIBM

is 1 /9 of the FW—H surface, with 6 from 00 to 400. The input acoustic data is provided by

CAA solutions, and the number of grid points used for the input is 57,960 for the FW-H

method and 6,440 for the AIBM method. The input data consists of the unsteady pressure

and its normal derivative to the input surface for AIBM, and the unsteady pressure and

velocity for FW-H, respectively. Since the mean flow and the duct intake geometry are

both axisymmetric, the simplified 2.5D formulation for AIBM is also used. The input data

for 2.5D AIBM is given on a number of line segments in the plane of 6 = 0 (see Figure

5.7).

The acoustic pressure is predicted by AIBM, FW—H and 2.5D AIBM at 136 grid points in

the range of 0 g a: S 6.5m with z = 6.5m and y = 0. The results from these methods are

compared to the CAA solution in Figure 5.8. It is shown that the results from both AIBM

and FW-H agree reasonably well with the CAA solution. The computation was performed

on a personal computer of Pentium (R) 4CPU at 3.ZGHz and memory of lGB. In general,

the computational time for AIBM is directly related to the number of input points and the

number of coefficients, anm and bum. The CPU time will quadruple as the number of

input points doubles and be increased by eight times if the number of coefficients doubles.

For this single frequency radiation problem, the CPU times used for 3D AIBM and 2.5D

AIBM are 5 minutes and 4 seconds, respectively. The total CPU time for FW-H is 16

hours. However, the time-domain formulation of FW—H is used and 64 time increments

were considered in the period. The equivalent CPU time for FW-H is 15 minutes if the

frequency-domain formulation of FW—H would be considered. Furthermore, in AIBM the

acoustic pressure in a radiated field is calculated analytically after the coefficients of the
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Figure 5.7: Schematic diagram of acoustic radiation through an axisymmetric duct intake.

basis functions are determined. In FW—H, on the other hand, the surface integration has

to be carried out for each far—field location. Therefore, AIBM is much more efficient than

FW-H and can lead to a significant CPU time reduction if the entire acoustic far field shown

in Figure 7 is to be determined. Furthermore, it is noted from Figure 5.8 that the solution

by 2.5D AIBM agrees very well with the CAA solution. The better agreement can be

attributed to a relatively more complete input surface.

Since the problem considered here is axisymmetric, in the following studies, the radiated

acoustic field is calculated based on the 2.5D AIBM formulation. The instantaneous pres-

sure contours and the pressure amplitude contours obtained by 2.5D AIBM are compared

to the CAA solutions in Figures 5.9 and 5.10 for the duct modes of (2, 1) and (3, 1), re-
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spectively. In addition, the quantitative comparisons of the acoustic pressure for the (2, 1)

mode and the directivity for the (3, 1) mode are given in Figures 5.1] and 5.12, respec-

tively. The results shown in these figures clearly demonstrate the effectiveness of AIBM

for the prediction of far-field acoustic radiation. It is noted that the solution inside and in

the vicinity of intake although not valid was kept in the contour plots for convenience. In

addition, the input acoustic data for AIBM should be given away from aerodynamic noise

sources in order to guarantee the accuracy of the predicted acoustic solution in radiated

fields. The reconstructed 3D instantaneous pressure contours by AIBM are compared to

the CAA solution in Figure 5.13 for the duct mode of (4, 1). The capability and the overall

effectiveness ofAIBM for aeroacoustic applications are demonstrated by the example.
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Figure 5.9: Instantaneous pressure contours in the plane 6 = 0 for the duct mode of m=2

and n=l: CAA (top), AIBM (bottom).



 
Figure 5.10: Pressure amplitude contours in the plane 6 = 0 for the duct mode of m=3 and

n=l: CAA (top). AIBM (bottom).
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Figure 5.13: 3D reconstructed pressure contours for the duct mode of m=4 and n=l: CAA

(t0p), AIBM (bottom).
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Chapter 6 Conclusions

6.1 Conclusion

An advanced computational methodology, Acoustic Intensity-Based Method (AIBM), has

been developed for the acoustic far-field prediction in both 2D and 3D configurations. This

method assumes that the sound propagation is governed by the Helmholtz equation on

and outside of a control surface that encloses all the nonlinear effects and noise sources.

By employing the standard separation of variables, the general solution for the Helmholtz

equation can be approximated by finite linear combinations of basis functions. The coef-

ficients in the general solution are numerically determined by matching the assumed form

of the solution to the input acoustic pressure and its co-located pressure derivative at mea-

surements. With the addition of pressure derivative input, the solution of the Helmholtz

equation is unique and more stable. Its advantages over traditional methods can be summa-

rized as less input data over an “open surface” and computational efficiency.

The AIBM method is initially developed in 2D configuration without considering the mean

flow effect. Several acoustic radiation problems have been studied to showcase the reli-

ability and accuracy of the AIBM. In each example, both the qualitative and quantitative

comparisons have been conducted between HELS and AIBM. When the input acoustic

data is only provided over an open surface, the AIBM improves the accuracy, reliability,

and consistency of reconstructed acoustic radiation pressure. The improvement, however,

becomes less significant when the input segments are clustered. The AIBM is especially

effective when random noises are added in the input acoustic data. The results indicate that

the reconstruction ofHELS method, i.e, without the addition of the pressure gradient to the
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input acoustic data, starts to deteriorate even with 1% of random noise in the input from

an open surface. The AIBM, on the other hand, can give reasonably accurate reconstructed

acoustic pressure from the input acoustic data with up to 20% random noise. In addition,

the capability and efficiency of the AIBM for multi-frequency (broadband) acoustic radia-

tion have been demonstrated through a vortex/trailing edge interaction noise problem.

Accurate and efficient noise prediction plays a very important role in the aircraft design.

The current far-field acoustic prediction technique, FW-H equation method, needs the input

acoustic data on a closed surface, which encloses all the noise sources. Clearly, it is not pos-

sible for most aerospace application cases. Another important drawback ofFW-H method

is that the surface integration has to be carried out for each far-field location. Hence, it

is very time consuming for FW-H method in a 3D acoustic simulation. Motivated by the

strong need for an efficient open surface method in aircraft noise prediction, the AIBM is

successfully extended for predicting sound propagations in a uniform flow. By coupling

with the CFD/CAA numerical techniques, the extended AIBM has been verified in various

acoustic propagation and radiation problems, such as flows around the airfoil, the scatter-

ing of a time-dependent acoustic source and the radiation of duct acoustic modes from an

axisymmetric duct intake. The predicted acoustic fields by AIBM for all the cases agree

very well with the respective CAA and the FW-H solutions. On the other hand, the AIBM

only requires partial input data of FW-H and costs less computation time than FW—H. The

overall effectiveness of the AIBM indicates that the method has the capability for the pre-

diction of acoustic radiations encountered in engineering applications. In addition, relying

on the advantage of computation efficiency, the AIBM has the potential to become a part

of an integrated computational or design optimization procedure for evaluation of far-field

acoustic propagations. Furthermore, the accurate prediction of the sound propagation and

reflection of the scattering problem demonstrates that the AIBM can be used for both the

near-field and far-field acoustic reconstruction and prediction. However the accuracy of the

near—field reconstruction has been sacrificed to increase the reconstruction availability.
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As pointed out by Ffowcs Williams (1993), the nature of aeroacoustics fields “permits

many different, but equally exact, computational procedures for evaluation both the sound

and its source field.” The results in the current study demonstrate that the AIBM could

be used for the far-field sound prediction for aeroacoustic problems when a closed FW—H

control surface is not possible. In general, the AIBM provides an effective alternative for

the far-field acoustic prediction of practical aeroacoustic problems.

6.2 Suggestions for Future Work

AIBM method is a newly developed technique extended from HELS. We first published it in

the AlAA/CEAS Aeroacoustics Conference in 2007, later in the Journal of the Acoustical

Society ofAmerica in 2008. There could be several interesting possibilities in methodology

extension and applications for the future study.

First, in dealing with practical problems, usually lots of measurements are needed as input

data for AIBM. The inverse problem models are usually ill-posed with huge condition

numbers. Also the Cauchy problem for the Helmholtz equation is unstable theoretically.

The regularization technique could be considered and introduced to effectively solve the

ill-posed problems with our AIBM method.

Second, the AIBM is initially defined as a far-field acoustic prediction method. The near-

field (source region) prediction is also of interest by aircraft and automobile manufacturers.

The AIBM has a potential for accurate near-field reconstruction with the additional basis

functions.

Finally, there is currently no effective way to predict jet noise, which is one of the most

challenging tasks in computational aeroacoustics. As our AIBM method was derived based

on uniform flow assumption, a new model for dealing with a non-uniform flow is desired
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for jet noise assumption. We hope to solve this real-world puzzle with further developments

of the AIBM.

We believe the future of AIBM is promising with more exposure and examination of real

industrial projects.
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Appendix A: Associated Legendre Polynomial

The associated Legendre polynomial is derived in this section following the derivation of

Numerical Recipes [63].

With 1 g .r S 1, the associated Legendre polynomials are defined in terms of ordinary

Legendre polynomials by

 

, j . (1m

P7117l($):(_1)77t(1_ 1‘2)m/2WPN(I) (A-l)

where

1 (171(332 _ 1)”

PM) = PRU?) = 2,”, M (A-2)

Introducing the stable recurrence on 71 presented in [63],

(n. — '111.)P,27" = J'(2n. — 1) 77:1 — (n. + m —— 1) {:12 (A-3)

For the starting value, there is a closed-form expression,

17;}; = (~1)”"(2m — 1)!!(1-— 1:2)m/2 (A-4)

The notation n!! denotes the product of all odd integers less than or equal to n. Using

Equation A-3 with n = m. + 1, and setting 7777,14 = 0, we can obtain

,2?“ = .‘l-‘(Q'I’Il + 1)P,7,’,' (A-5)

Equation A-4 and A-5 provide the two starting values required for Equation A-3 for general
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n. The derivative of P77," with m < «n can be derived from its definition equation.

6P5” = —mJ'———Pm _ 1

017 1 — 1'2 "

 
Pm+l

v1 — 1'2 n

When m = n, the derivative is

  

(937,” _ —m;r m

(9.17 — 1 —- 1:2 "

Let

PHI (1.) (1777.

31(1) : (1 _nx2)m/2 = (— )m dxm P7101.)

Then the recurrence for Q’"(.r ) is

(n—m)’1‘: 12n—1>Q:::1—(n+m—1>Q;."

Z: = (—1)m(2m —1)!!

an+1- (-1)m(2m +1)!!;r

The derivative for Qm(.r ) when m < n is

an _ m+1

8T _ - TL

When m = n, the derivative is

a m

—Q—" =0

8.1?
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Appendix B: Spherical Hankel Function

The 0-th order and first order Spherical Hankel functions are [63]

00(7‘) 2 igerp [—i (7‘ — g» (B-l)

01(7) = éfiew 1—2‘(r — vol (1— E) (8-2)

Employing the recurrence formulation, n-th order can be obtained based on the 0—th and

first order formulations.

211—1

th-(r) = Gn—l — Gn—2 (3‘3)
 

The corresponding derivative formulations for 0-th order is just simply derived from G0 (7").

And the higher orders are obtained by recurrence relations.

05(7) = —Go (1+1) (B-4)

 
0:10,) = ’1 , 071 + Gn—l (B-5)
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