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ABSTRACT

USING THE MULTIVARIATE MULTILEVEL LOGISTIC

REGRESSION MODEL TO DETECT DIF:

A COMPARISON WITH HGLM AND

LOGISTIC REGRESSION DIF DETECTION METHODS

By

Tianshu Pan

This study presents the Multivariate Multilevel Logistic Regression (MMLR)

models to detect Differential Item Functioning (DIF), which are likely to detect DIF

when the responses of an examinee are not locally independent. The study also compares

the uses ofthe three MMLR models, three modified versions ofKamata’s Hierarchical

Generalized Linear Model (HGLM) and the standard logistic regression model as DIF

detection methods. The comparison between these statistical procedures for DIF

detection will be made using Michigan Educational Assessment Program reading test and

simulated data. The simulation study evaluates their performances in the detection of

uniform DIF. Simulated data are generated by the 3-parameter logistic Item Response

Theory models, varying conditions of different sample size (400, 700, and 1000

examinees), test length (20, 40 and 60 items), the difference of parameter b (0.25, 0.50,

and 0.75) and the ability distributions with different means and variances for the

reference and focal groups. These test conditions are crossed completely and replicated

500 times. In these analyses, total score and IRT ability estimate are respectively used as

the matching variable. The results show that MMLR can be used for DIF detection. It is

also found that the heterogeneous variances of the two groups influence power and Type

I error rates ofthese methods, and the HGLM DIF models are unsuitable to identify DIF.
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Chapter 1

Introduction

In this chapter, the background and the importance of this study will be described

first. Then, related literature is also reviewed. The chapter will make clear what is new in

the study and state the purposes of the study.

1.1 Background

Sometimes, examinees in different demographic groups who have the same levels

of ability have different probabilities of answering a particular item correctly. The

difference is defined as differential item functioning (DIF). Differential item functioning

(DIF) refers to differences in the functioning of an item among groups after the groups

have been matched with respect to the ability or attribute that the item purportedly

measures (Dorans & Holland, 1993) In the item response theory (IRT) fiamework, DIF

means that the test item has a different item response function for one examinee group

than for others (Lord, 1980) and it can be defined as a difference in the conditional

probabilities that persons of the same ability answer an item correctly in two or more

groups (Hidalgo & LOpez-Pina, 2004). DIF is viewed as a necessary but not a sufficient

condition for item bias (Clauser & Mazor, 1998).

In the case oftwo groups, they are identified as reference and focal groups. The

reference group is composed of the majority or advantage group while the focal group is

composed ofthe minority or disadvantage group and this group is considered the subject

of DIF analysis. Mellenberg (1982) classified DIF as uniform and nonuniform DIF. In the

framework of IRT models, uniform DIF occurs when the item characteristic curves (ICC)



for the two groups differ only in the difficulty parameter and the relative advantage for

the reference or focal group is uniform across the score scale. Nonuniform DIF is present

when their ICCs are different as a result of the disparate differences of the discrimination

parameters and/or pseudo-guessing parameters (Clauser & Mazor, 1998). Statistically,

uniform DIF exists when there is no interaction between ability level and group

membership. Nonuniform DIF exists when there is interaction between ability level and

group membership. This study will compare the performance ofthree types ofmethods

for detecting uniform DIF.

In the 19805 and the beginning ofthe 19905, many DIF detection procedures were

developed to identify DIF, such as Mantel-Haenszel (MI-I) (Holland & Thayer, 1988),

logistic regression (Swaminathan & Rogers, 1990), standardized difference (Dorans &

Kulik, 1983; 1986), SIBTEST(Shea1y & Stout, 1993) and so on. But these mentioned

procedures can analyze only one item or small numbers ofrelated items at a time

(Swanson et a1, 2002). Confirmatory Factor Analysis was used to identify all DIF in a test

at a time (Muthén & Lehman 1985). But a simulation study shows the method has

extremely low power to find DIF (Finch & French, 2007). Since 1990’s, some types of

the Generalized Linear Mixed Models (GLMM) were applied to identify DIF, for

example, the Hierarchical Generalized Linear Model (HGLM) (Kamata, 1998; 2001), the

Hierarchical Logistic Regression Model (HLRM) (Swanson et al, 2002) and the Logistic

Mixed Model (LMM) (Van den Noortgate & Bock, 2005). The three DIF approaches are

able to analyze all items in one computer run. Kamata’s HGLM approach has different

equations or mathematical forms shown by different authors. Kamata’s HGLM and Van

den Noortgate’s LMM approaches both have random person ability. But random person



ability makes them unsuitable to detect DIF when the examinees ofthe two groups have

the different expected ability or proficiency. This study will analyze Kamata’s model and

try modifying it in order that it can be used when the two groups have different ability

means. Swanson’s HLRM method is not able to include the variations of the proficiency

of examinees from different groups, e.g. classes or schools. In addition, for all of the

methods mentioned here, it is impossible to take into account the probable dependence

between the binary responses of the same examinee.

In order to address these disadvantages of these methods, a Multivariate

Multilevel Logistic Regression (MMLR) Model will be introduced to detect DIF in this

study.

1.2 The Statement of Purpose

The multivariate logistic regression model in this study is not the one which is

usually used for the analysis of multinomial or ordinal data, but is an extension of the

Multivariate Multilevel Linear Model. The model is presented by Griffiths et a1 (2004),

Mcleod (2001), and Yang et al (2000). It is known as the Multivariate Multilevel Logistic

Regression Model (MMLR) since it has at least two levels.

The main purposes of this study are to introduce the MMLR model to identify

uniform DIF, set up a MMLR DIF detection procedure, and compare the performances of

the MMLR, HGLM and LR DIF detection procedures identifying uniform DIF by a

simulation study and their application to the real test data. These DIF detection

approaches are compared since all of them use a logit transformation. Additionally, LR

may be one of standard DIF detection methods as it is presented in the “Test Fairness”



chapter (Camilli, 2006) ofthe book, Educational Measurement, sponsored jointly by

National Council on Measurement in Education and American Council on Education. It

is expected that MMLR is acceptable as a DIF detection procedure if it performs as well

as LR when it is applied to detect DIF, otherwise it is not acceptable.

Second, as noted, there are confiising equations and a potential problem in

Kamata’s HGLM DIF procedure, which will be shown in the study. So, the secondary

purpose of the study is to modify Kamata’s HGLM DIF procedure to extend its applied

conditions.



Chapter 2

DIF Detection Methods

This chapter is the related literature review about DIF detection methods. It gives

more details about the DIF approaches and their disadvantages mentioned in Chapter 1.

First, the chapter shows how to classify the current DIF detection methods, and then

gives the details of some methods, and their disadvantages.

2.1 Classifications of DIF Detection Methods

Dozens of DIF procedures have been presented in the literature. They have been

grouped under two major types by Camilli (2006). One is the use of IRT models and the

other relies on analyzing the observed scores. The former includes Lord’s difference in

IRT parameters (Lord, 1980), Raju’s signed and unsigned area indexes (Raju, 1988;

1990), the likelihood ratio tests (Thissen et al, 1988) and so on. The latter includes the

Mantel-Haenszel, logistic regression, standardized Difference, SIBTEST, HGLM, and

MMLR. The last method will be presented in this study. “While IRT methods provide

useful results when the item models fit the data and a sufficient sample size exists for

obtaining accurate estimates of IRT parameters, observed-score methods are frequently

used with smaller sample sizes” than the IRT methods (Camilli, 2006: p. 236).

Among the IRT DIF methods, the IRT models for the reference and focal groups

are estimated separately first, and then the differences between the item response

functions of the two groups are calculated and tested for each item, 6.g. Raju’s indexes;

or the differences of the parameters are computed and tested, e.g. Lord’s approach. But in



the likelihood ratio test, the likelihood ratio of the two IRT models is calculated for each

item, i.e. the models with and without DIF, and has a large-sample chi-square distribution

(Camilli, 2006). Since the proposed method in the study belongs to the observed-score

methods, more details of the IRT methods are not shown in the dissertation.

2.2 Some Standard observed-score DIF Detection Methods

Here the methods that appear in the chapter by Camilli (2006) are labeled as

standard methods. In this type of methods, scored item responses from the focal group are

compared with the ones from the reference group in order to identify items that function

differently in the two groups, using one or more additional covariates to control for

individual differences on the construct to be measured. The covariate is called the

matching variable or conditioning variable. Usually total raw score is used as a matching

variable since it is easy and convenient to get the score.

2. 2. I The Mantel-HaenSzel Procedure

The Mantel-Haenszel procedure was introduced to identify DIF by Holland and

Thayer (1988). The MH DIF statistic is computed by matching examinees in each group

on total test score and then forming 2x2xA contingency tables for each item, where A is

number of the score levels on the matching variable which is usually total test score. At

each score level S, a 2-by-2 contingency table is created for each item,

Correct Incorrect Total

Reference Group CRS IRS HRS

Focal group CFS IFS ”FS

Total CTS 1TS ’7TS



where CRS stands for the number ofreference group examinees at score level S who

answer the item correctly. The other variables in the table have similar definitions. Then

the effect size measure of DIF is obtained by

aAMH = (ZCRSIFS lnTS)/(2CFSIRS ”’73).

s s

The statistic is typically converted to the log-odds scale, i.e. SW = log(oZW) . At

Education Testing Service, it is put on the delta scale with the transformation:

MH D — DIF = AMH = —2.355M,,,

Zieky (1993) divided the DIF magnitude into three categories according to the magnitude

ofAMH.

2. 2.2 The Logistic Regression DIF Detection Method

Swaminathan and Rogers (1990) first introduced logistic regression (LR) to detect

DIF. They also showed that the Mantel-Haebszel (MH) procedure can be considered as

being based on a LR model when the ability variable is discrete and no interaction term

between the group variable and ability is specified. The logistic regression procedure

employs the item response as the dependent variable, with a group membership variable,

the abilities of examinees and the interaction between them as independent variables. The

standard logistic regression model is expressed as

p.

1_:D )= :80 436er + ,3sz +fl3IJ/jGj (1)

j

 ln(

wherepj is the probability of examineej’s answering an item correctly, Wj is the

matching variable, and could be the ability estimate or total score of examineej, and 01- is



the group membership of examineej. The regression coefficients in the above equation

can be estimated using maximum likelihood and can be tested for significance. If the item

is unbiased, only ,6’0 and ,81 should be significantly different from zero. If,8; is nonzero

and ,B3 equals zero, an item shows uniform DIF. If the interaction parameter ,83 is nonzero,

the item has nonuniform DIF whether the other coefficients are equal to zero or not.

Generally, total raw scores are used to indicate the proficiency of examinees. When the

differentiating factors are assumed to function in the different patterns for examines with

the same characteristics in different units, e.g. classes or schools, the standard logistic

regression DIF model can be extended to a multilevel logistic regression model (e.g. van

den Bergh et al, 1995).

2. 2. 3 The Standardized Dijfkrence Method

The standardized difference approach was introduced to analyze DIF by Dorans

and Kulik(1983,l986). First, they calculate:

Aps =PRS —pFS =CRS/NRS "CFs/NFS,

using the similar notation as the used for the contingency table of MH. Then, after these

individual differences are summarizing across the levels of matching variables by

applying some standardized weighting function to the differences, a standardized p-

difference (STD P-DIF) can obtain be obtained by

STDP—DIF =(ZwsApS)/Zws.

S S



The weighth can be defined in several ways. When the numbers of examinees at level S

in the focal groups, nFS, are applied, the standard error ofSTD P-DIF was given as

follows by Dorans and Holland (1993: p.50).

 

SE<STDP—DIF) = \F’ (1 —PF)/NF +Znispm<1-pm)/(nmNi)
S

Where PF is the total correct proportion observed in the focal group, and NF is the

number of persons in the focal group.

2. 2.4 The SIBTESTProcedure

The Simultaneous Item Bias Test (SIBTEST) was proposed by Shealy and Stout

(1993). In the SIBTEST approach, test items are assigned to two subsets, the matching

subtest and the suspect subtest. The suspect subtest could be a single item or bundles of

items. In the former case, SIBTEST will analyze n items of a test individually and

successively. On each trial, the ith item is the object of study and the other (n -1) items

compose the matching subtest. The basic index for SIBTEST, B, is the mean ofthe group

difference in subtest scores across the focal group ability distribution and is given by

B = ZPS(YRS "' YFS).

S

where[)5 is the proportion of focal group examinees among all focal group examinees

and YR}, 71:5 are the average item scores for the reference and focal group at the Sth level

ofthe matching variable. An asymptotically normal test is provided by the ratio ofB and

its standard error, namely,



__ B

Std Err(B)

 

These procedures mentioned here are typically performed for each item

individually or for small numbers ofrelated items (Swanson et al, 2002). Typically, MH,

LR and standardized difference just can deal with items individually. SIBTEST can be

used to detect DIF either in single items or in bundles of items. But when it analyze

bundles of items, these items are viewed as the whole and then it should be called

Differential Bundles Functioning (Douglas et al, 1996) instead of DIF. Testing all items

in one analysis not only intends to reduce the number of operations, but also make the

procedure give us the results after analyzing the responses ofpersons to all items

comprehensively. The following methods can address the problem.

2.3 The DIF Detection Method Based on Factor Analysis

Factor-analytic DIF approaches are able to analyze all items of a test in one run.

The method can be traced to the 1970’s (I-Iumphreys & Taber, 1973). Later, Muthén and

Lehman (1985) applied confirmatory factor analysis to look for the DIF items, which is

based on the method of Muthén and Christoffersson (1981). Typically a first model is fit,

with all factor parameters fi'eely estimated across groups. This analysis provides several

fit statistics, for instance, a chi-square goodness of fit test statistic. Then, a second

constrained model is fit, with the hypothesis that all parameters (e.g. factor loadings) are

equal across all groups, and a chi-square statistic is computed. The difference of the two

chi-square statistics is calculated and compared to the critical value ofthe chi-square

distribution with appropriate degrees of freedom in order to test for parameter invariance.

10



If the hypothesis is rejected in terms of the statistical significant result, further tests are

implemented to single out items that contribute heavily to the rejection (Finch & French,

2007)

One disadvantage of the method is that no provision is made for the possibility of

guessing (Muthén & Lehman, 1985). It may be allowed since the presence of guessing

also influences the performances of other DIF detection procedures, such as SIBTEST

and LR (e.g. Finch & French, 2007), according to some simulation studies. However, the

largest disadvantage is that it has extremely low power (about 0.06) for DIF detection

(Finch & French, 2007), even for some other measurement invariance detection (French

& Finch, 2006) when the observed variables are dichotomous.

2.4 The DIF Detection Methods Based on GLMM

Since 19905, some methods were developed to analyze all items in one run using

the Generalized Linear Mixed Models, e.g. the Hierarchical Generalized Linear Model

GIGLM), the Hierarchical Logistic Regression Model (HLRM) and the Logistic Mixed

Model (LMM).

Kamata (1998, 2001) extended HGLM with 2 or 3 levels to set up a generalized

Rasch Model and a HGLM DIF model. Subsequently, Luppescu (2002) and Kim (2003)

respectively applied the method to identify uniform and nonuniform DIF, and Shen (1999)

used a 3-level HGLM approach to detect DIF. Swanson et al (2002) developed a HLRM

DIF detection approach. The details of Kamata’s model will be given later and

Swanson’s model is shown as follows:

11



logit[PrOb(Yji = 1)] = b0, + b1i(proficiency)J. + 1’2sz

box = 700 + ”or

bli 2' 710 + ”1i

bzr = 720 +72111+m+72k1k +1421.

where Y}; is the examineej’5 score on itemj; (proficiency)- is an index ofproficiency on

a common scale for all examinees; 61- is a dummy variable for the group membership; b0,-

reflects (the log odds of) item difficulty in the reference group; b],- reflects item

discrimination, constrained (in this model) to be equal in reference and focal groups; and

b2,- reflects the deviation of item difficulty in the focal group from the reference group; I

is the dummy variable to indicate each item.

There are the following obvious distinctions between the two models:

0 The persons are within an item in Swanson’s model while the items are nested

within a person in Kamata’s method.

0 Swanson’s model has three random effects but Kamata’s has only one.

o Swanson’s model is based on a 2PL IRT model (Swanson et al, 2002) while

Kamata’s is Rasch-styled (Kamata, 1998; 2001).

o Swanson’s model has a matching variable but Kamata’s does not (the reason

will be given later).

Van den Noortgate and Boek (2005) employed the logistic mixed model to detect

uniform DIF, treating the person ability, the item effects and the interactions between

items and groups as random. So, their model may be more appropriate to identify DIF for

multiple groups than two groups of examinees.

12



Although Kamata’s HGLM and Van den Noortgate’s LMM approaches can deal

with all items in an analysis but their uses may be limited as there is actually no matching

variable in his model (the details will be given later in the dissertation). Swanson’s

HLRM procedure has a matching variable, but it is difficult to extend the model to 3-

level model by including the variations for students from different classes or schools

since the item level is the second level in the model. Additionally, all of these methods

are implemented under the IRT assumption — local independence, which means that the

responses of the same examinee are locally independent. It is impossible for them to deal

with the local dependence, which possibly appears when a test consists of several testlets

or measures multiple constructs.

A Multivariate Multilevel Logistic Regression Model can be applied to detect DIF

and solve these problems. Although MMLR also belongs to the Generalized Linear

Mixed Models family, MMLR could have a complex covariance matrix between the

dichotomous responses within a cluster, which will be discussed in the next chapter. Then

it is possible for MMLR to include the correlations between the responses in the model.

13



Chapter 3

Multivariate Multilevel Models

This chapter will introduce the Multivariate Multilevel Linear Model, generalize

the model to the Multivariate Multilevel Logistic Regression Model, and apply it to

detect DIF.

3.1 The Development of Multivariate Multilevel Models

Multilevel or Hierarchical Linear Models (HLM) appeared in the 1980’s when

contextual analysis and mixed effects models came together (Snijders & Bosker, 1999, pp.

1-2). Then the multilevel structure was used to construct multivariate multilevel models.

There are a couple of different types of multivariate multilevel models. Goldstein &

McDonald (1988), Goldstein (1995), Longford (1993), and Snijders & Bosker (1999)

showed how to extend the hierarchical structure to do multivariate regression analysis for

continuous dependent variables. Raudenbush and Bryk (2002: p. 450-54) and Hox (2002:

p. 1 58-161) presented the same hierarchical/multilevel multivariate linear model, which is

algebraically equivalent to the model of Goldestein’s. Thum (1997) presented a two-stage

multivariate hierarchical linear model, which is the simplification of any three-stage

HLM. Other scholars (e.g. Raudenbush et al, 1991) also formulated the multivariate

multilevel model for the analysis of repeated measurement data.

These models all are appropriate for continuous dependent variables. However,

Goldestein’s multivariate multilevel linear model was also extended to analyze binary

response data (Hox, 2002; Griffiths, 2004; Mcleod, 2001; Yang et a1 2000). They set up

14



two types of the Multivariate Multilevel Logistic Regression model (MMLR). Hox (2002:

p.161-166) set one kind ofMMLR model. The others showed the different model from

his. Mcleod (2001) presented the MMLR model and gave the details how to extend

Goldstein’s multivariate multilevel model to binary dependent variables. Yang et al (2000)

applied the univariate and multivariate multilevel logistic regression models to analyze

the repeated binary outcomes for attitudes and voting over the electoral cycle. Griffiths et

al (2004) compared univariate and multivariate logistic regression models for repeated

measures for analysis of antenatal care in Uttar Pradesh. There are also some other

multivariate logistic models which were not created within the multilevel framework (e.g.

Glonek & McCullagh, 1995; Agresti, 1997). This dissertation will introduce Mcleod’s

MMLR model to the detection of DIF.

3.2 Multivariate Multilevel Linear Models

In Goldstein’s multivariate multilevel linear model, a dummy variable is used to

differentiate the different dependent variables and there is no random effect at level-1.

Random effects for different dependent variables are put at level-2.

Suppose that we have n realizations of a multivariate random vectory of

dimension k, i.e., k measurements or observations made on each of n individuals, andy is

assumed to conform to a multivariate normal distribution (MVN). In light of the

description of Mcleod (2001), the general level-1 model is written as:

P

yij = Zznj(160y' + Zflqrjxqi)
t=l q

l for t=i (2)

where z .. =

"J {0 otherwise

15



Thus yij is the ith response for thejth individual, and t indexes a set of k measurements.

The 25 are dummy variables used to distinguish between the k dependent variables. When

t=i, the level-2 model is shown as follows:

flog=7m+eij fori=1,2,...,k.

flqr’j = yqi

" ‘ ' 2 ‘ 3er; / 0.1 f ( )

82 0'21 0'22
where ej= .’ ~MVN 0,

      Leap \ _0kl 01:2 0'11)

This model also can be extended to 3-level multivariate model if the individuals are

nested in another unit.

As compared with the univariate multilevel model, this model has the following

advantages: conclusions can be drawn about the correlations between the dependent

variables (clearly the scores of individual items are correlated within persons as the same

person provides responses to all items on a test); and the tests of specific effects for single

dependent variables are more powerful in multivariate analysis (Snijders & Bosker, 1999).

3.3 Multivariate Multilevel Logistic Regression Models

The Multivariate Multilevel Logistic Regression Model (MMLR) is an extension

of Goldstein’s Multivariate Multilevel Model (Goldstein, 1995). In the MMLR model,

the dependent variable yij i5 binary but is still the ith response of individualj. Suppose that

y is a vector and given the probability py- that the ith response for the13‘ individual, yij is

assumed to conform to the Bernoulli distribution for any i andj, that is,
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yy' IPU ~ 38771014”i(pg) . If the logit transformation is used, the generalized multivarite

model is written by Mcleod (2001) as:

 

19v
log(1 _ 19,-,- ) = :12")- (flOtj + quflqtjxqi )] (4)

where the notation has the same meaning as before.

But how do we deal with random effects? Given pi]- the expected value ofyij is pij

and the variance is py(1-p,-j). In terms of the explanations of Mcleod (2001) and Snijder

and Bosker (1999), the following equations are given:

 

yzj = pij +erj\/pr'j(1_ pij)

where E(eij) = 0, Var(ey-) = 0:2 (5)

0', 15 known as “extra-bmomral variation”, which 15 used to test the assumption of the

Bemoulli distribution (Goldstein, 1995), and also named as the extra-binomial parameter

(Yang et al, 2000), the extra-dispersion parameter (Guo & Zhao, 2000) or the scale

parameter (Mcleod, 2001 ). If it is approximately equal to 1, yy- conforms to the Bernoulli

distribution. The variance of c; has the following form (Yang et al, 2000; Griffiths et a1,

 

2004y

r012 -

Var(ej)= 02' 02 ,

-. . (6)

_0'kr 01:2 0k _ 
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When the model is applied to solve some practical problem, different variance structures

shown by Equation (6) can be assumed and used, such as diagonal, compound-symmetric,

autoregressive (AR), autoregressive moving average (ARMA), unconstrained structure

and so on.

In Hox’s MMLR model, he simply used a logit transformation ofpi]- in Equation

(4) to take place of the dependent variable yij in Equation (2) (Hox, 2002: p.161-166).

3.4 MMLR DIF Detection Model

In the case for the detection of DIF, yij is personj’5 response to the ith item. If Gj

is a dummy variable for the group membership and GJ=1 when personj belongs to the

focal group, otherwise Gj=0, a basic MMLR DIF detection model can be presented as the

following equations:

 

 

pi" k

Iog<1_’ >=Zz..,.<a,+a.6.>

" i=1 (7)

yij=pij+eij\/pij(1_pij)

,012 1

0'21 0'22
and E(ej)=6,Var(ej)=

(8)

  
2

01:1 01:2 0k

where the 25 are dummy variables used to distinguish between the individual’s responses

to different items; k is the number of items. If the examinees are nested in classes or

schools, another level also could be added into the model. Here ej is called the R-side
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random effect in SAS PROC GLIMNflX (SAS Institute, 2008), which is introduced with

the G-side random effect in Chapter 5.

If Equation (2) is used to model random effects in MMLR, the model is not

multivariate, but univariate. When the multivariate multilevel model was presented in the

last section, there was no random effect for level-1. But for the multilevel logistic

regression model, the level-1 model has a constant variance “20 for the logit

transformation (Snijder & Bosker, 1999) when the scale parameter is set to be 1. This

implies there is variation between the different binary responses. So, if the multiple

dependent variables have the same scale and measure the same thing, for instance,

repeated measures, and they are thought to be nested in a level-2 unit, the variance matrix

can be set as in Equation (2).

However, Equation (7) does not have a matching variable. Since “DIF is defined

as item performance differences between examinees of comparable proficiency” (Camilli,

2007: p. 236), the MMLR model must include a matching variable to control the

disparities of ability estimate between two groups. Suppose Wj is the ability estimate of

thefh person, then for MMLR, Equation (7) will be rewritten as follows:

pi' k
log(1—:LT) = :12")- (flm + fllth + flZIWj ) . (9)

Pa

Now this model looks like a 2 Parameter Logistic (2PL) IRT model with DIF

parameters. fig corresponds to the discrimination parameter, and -(fl0,+ finGj) to the

product of the discrimination and difficulty pararnters. Or, in terms ofthe Rasch model,
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when the discrimination parameters of all items is set to the same value, the model also

can be rewitten as:

P.3-

l-p

 

k

log( ) = aWj + Zztij(fl0t + fllth), (10)

t=l
1.}.

Equation (10) can be regarded as the special case of Equation (9) when ,821=---=,82k=a.

The variance matrix shown in Equation (8) makes it likely that MMLR can deal

with the correlations between the responses of the same examinee to different items. For

the DIF detection, however, it is only possible to select diagonal, compound-sysmetric or

unconstrained structure. The type of autoregrssive structures are not reasonable since it is

impossible to explain it in practice. In the simulation study, the simplest variance

structure is assumed. First, 0,-1-=0 (i, j, = 1, 2, ..., k and i ij ) is set in the matrix of

Equation (8). If Uy¢0, it means that the responses of an examinee to different items are

correlated or locally dependent. It conflicts with the local item independence assumption.

But the simulated data are generated based on the assumption. So, the constraint ail-=0 is

2 2 2

set. Then, 0'1 = 0'2 = ' ° ° — 0k z ¢ is also assumed to simplify the operation.

Now, Var(e]) =¢I where I stands for the identity matrix. SAS PROC GLIMMIX is able

to be employed to estimate this type of models.
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Chapter 4

HGLM DIF Detection Methods

This chapter describes the Hierarchical Generalized Linear Model DIF detection

method, points out the confusing equations and potential problems, and modifies the

model to solve these problems.

4.1 Kamta’s HGLM DIF Model

The earlier papers about the multilevel models for binary data were published in

1985 (Guo & Zhou, 2000). This type of multilevel model is included in the Hierarchical

Generalized Linear Model (HGLM) framework (Raudenbush & Bryk, 2002). Kamata

(1998, 2001) outlined the extension ofHGLM to IRT-style item analysis and the DIF

analysis. His model assumes, given the item effects and the test-takers’ abilities, yy takes

on a value of 1 with probability pij. The level-1 model is

yij pi,- ~ Bernoulli(pij)

 

pr" k-l

771)“ = log I = ”or +27%;qu (11)
l—pij q=1

where

Zqij is a dummy variable that takes on a value of unity if response i for personj is to

item q, otherwise 0;

7t,”- is thus the difference in log-odds of a correct response between item q and a

“reference item” for examineej;
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k is the number of items.

While there are k items, only (k—l) dummy variables are included. The item not

included is the reference item, whose difficulty is arbitrarily set to zero.

Then, an unconditional model is formulated for the abilities and all the item

effects at level-2 model are fixed.

7501' =1600 +u0j’ “01' ~N(Oaroo)

72;”. = ,qu for q > 0 (12)

where uoj is a random component of fig and it is distributed as a normal distribution with

the mean of 0 and variance of T00. According to the studies of Kamata (1998; 2001), uoj

is considered to be the ability of personj, which is consistent with the one from BILOG

based on the Rasch model, and —(flq0+,800) is correspondent to the difficulty of the Rasch

model. Now the ability of persons is a random variable. In SAS PROC GLIMMIX, uoj is

the G-side random effect (SAS Institute Inc., 2008).

When HGLM model is used to find DIF, especially uniform DIF, the level-2

model changed into the one shown as follows:

7:0]. = ,800 + uoj, uoj ~ N(0,2'00)

7r..- =fl.o +fl..G,- for q>o <13)

where 01- denotes the group membership of personj. If the fixed coefficient of an item,

A,1, is significant, the item is thought to have uniform DIF.

However, this model does not examine whether the reference item has DIF or not

if no group membership variable appears in the random intercept M in Equation (13).
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About this problem, Kamata’s position causes some confusion. Sometimes he (e.g.

Kamata, 1998; Kamata et al, 2005) put a group membership variable in the random

intercept 71:0]- of Equation (13) to show if the reference item has DIF. It is feasible to do it

theoretically and practically. But sometimes he (e.g. Kamata & Binici, 2003) deleted it

fiom this random intercept troj. Besides, other researchers, such as Kim (2003) and

Luppescu (2002), also gave the same model as Kamata and Binici did in their article of

2003. The likely reason is that they met a problem when interpreting the reference item

with DIF. According to the definition of Raudenbush and Bryk (2002), 7:0]- is the ability

of examineej, so ,600 should be the average ability of all examinees. Therefore, adding a

group membership variable for 7r0j can test if the examinees in the different groups have

the different average ability. Of course, ,800 can also be viewed as the difficulty of the

reference item. But if its difficulty varies for the different groups, how can it be a

reference?

4.2 The Modification of Kamata’s HGLM

To reduce the difficulty of interpreting it, by using the notation of equations (11),

(12), and (13), Kamata’s unconditional model is reformulated as follows:

Level — 1 :

yij pi]. ~ Bernoulli (pij) (14)

k

pi}

77:7 =log =an +27%qu
-py‘ q=l
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Level—2:

7701' = “0}" qu ~N(0a700)

7r,” =,qu for q>0

As compared with Equation (9), zqij has the same meaning but it,”- or ,qu is the log-odds

ofpersonj’5 response to item q now since no reference item is defined in the model. The

unconditional model is still algebraically equivalent to Kamata’s model, i.e., his

generalized Rasch Model with random person ability (Kamata, 1998; 2001). The random

intercept troj represents person ability and - ,qu are still correspondent to the estimate of

item’s difficulty.

Equation (14) reparameterizes Equation (11). In Equation (11), if dummy

variables for all items are used, the matrix of independent variables of the equation will

not be invertible so the coefficient of one dummy variable is zeroed out and its relevant

item is defined as the reference item, which is called reference parameterization by

Giesbrecht and Gumpertz (2004). But the matrix can also be invertible after deleting the

level-1 intercept in Equation (11) and keeping all dummy variables for all items. Then it

is changed into Equation (14). So, they are algebraically equivalent, but Equation (14)

has k dummy variables at level-1 and no reference item.

When the model shown by Equation (14) is applied to look for DIF, the level-2

models of Equation (14) may be rewritten as:

”01' = “o," ”o; ~N(09700)

_ (15)

Then this DIF model is also mathematically equivalent to the HGLM DIF model which

Kamata and others presented in their papers in 1998 and 2005. But it is more easily
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interpreted than Kamata’s. ,Bq1 will be used to test if an item shows DIF. In this study, the

new DIF models will be used to identify DIF items. In this study, the new model will be

called as the HGLM DIF model or detection procedure, and the original model ofKamata

will be Kamata’s HGLM.

In contrast with the standard logistic regression DIF procedure, the HGLM

approach has a disadvantage before and after being modified. The random variable uoj in

HGLM is correspondent to the matching variable in standard logistic regression DIF

model. The random variable should be the matching variable in HGLM because a

matching variable must be constructed to create comparable subsets of examinees in DIF

techniques (Camilli, 2007). These HGLM procedures assume that the ability ofpersons

conform to the same normal distribution, that is, N(0, Too) as mentioned in the above

equations. So, theoretically, the ability of all examinees should have the same expected

value 0 and variance 1'00 although it can be regarded as the estimate of a person ability in

practice. The assumption is not always true. Practically, after the group membership

variable is added into the models, the random ability or the residual uoj in HGLM

Equation (12) and (14) will change, and it is not the ability estimate any more, so it is not

able to be a matching variable to adjust the abilities of different groups or match the two

groups. The subsequent simulation study will give the evidence to support the conclusion.

Therefore, Kim (2002) set up a HGLM DIF detection procedure with a matching

variable, which can identify uniform and nonuniform DIF. In his procedure, the matching

variable is the estimate ofperson ability, which is the residual uoj of Equations (12) as

suggested by Kamata (1998, 2001) and mentioned in Section 4.1. But the random effect
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was used as fixed in his method, so the HGLM procedure also needs a fixed matching

variable W}. Then if his procedure is just used to look for uniform DIF, Equation (15) can

be reformulated as follows:

no]. =u0}, uoj ~N(0,z'00)

”(11' = 'BqO + IquGj + flquj for q > 0 (16)

In the model, the item parameters 7th- are changed according to the person ability.

In addition, in light of Rasch model, Equation (15) can be shown as:

7’0; = 160er +u0j’ ”o; N N(09700)

72"”. = q0 +flqu} for q>0 (17)

71'0} is still an estimate ofperson ability, and then the random error can be described as the

error of the measurement of person ability.

4.3 Differences between MMLR and HGLM

Generally, there are the following differences between the MMLR model and

HGLM.

- MMLR is really a multivariate analytic method and deals with multiple dependent

variables if 03-}790 (i 36j) in the covariance matrix of Equation (6) while HGLM

uses univariate method to do that as mentioned, and it is actually a special case of

Hox’s MMLR model. When every coefficient in Equation (11) is set as random,

then it is Hox’s unconditional MMLR model. So, one random coefficient makes it

change fiom the multivariate to the univariate model.
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MMLR can test whether the extra-binomial or scale parameter is equal to 1 or not,

viz., whether the dependent variables conform to the Bernoulli distribution. But

the parameter is constrained to 1 in HGLM, so it is not possible to test whether

the assumption is reasonable.

As mentioned before, MMLR has no random effect at the first level and has it at

the second level (Yang et al, 2000) while HGLM also has the random effects on

both of level 1 and level 2.

According to the definition of Kamata (1998, 2001), the residuals uoj could be

regarded as an estimate of person ability which is consistent with the estimate

from the BILOG program. However, MMLR would not give the residual or the

estimate of ability in that way.

Finally, MMLR may deal with multidimensional tests more easily than HGLM

when they are used to detect DIF in a test and appropriate matching variables are

applied, for example, a science test including biology and physics items. If

HGLM is used, another dummy variable needs to be added into the model and

indicate different dimensions (Kamata, 1998) while MMLR does not need an

additional dummy variable to do that since it is a real multivariate analysis.
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Chapter 5

Estimation Methods

In this chapter, the estimation methods ofMMLR and HGLM are introduced. The

first section of the chapter presents the linearization and integral approximation methods,

and explains why the linearization-based methods are selected in the study. The second

section introduces some estimation methods in SAS GLIMMIX procedure. Finally, some

details about these estimation methods are given.

5.1 Linearization and Integral Approximation Methods

It is easy to estimate the LR models by Maximum Likelihood. They will be

estimated by SAS PROC LOGISTIC in the study. It is much more difficult and

complicated to estimate MMLR and HGLM by Maximum Likelihood. At first, the

marginal distribution of Y is approximated. The relevant approaches can mainly be

classified into two broad categories, linearization and integral approximation methods

(Schabenberger & Pierce, 2002). A linearization method approximates the nonlinear

mixed model by a Taylor series to arrive at a pseudo-model and integral approximation

methods use quadrature or Monte Carlo integration to calculate the marginal distribution

of the data and maximize its likelihood (Schabenberger & Pierce, 2002). The

linearization methods subsurne Pseudo-Likelihood (PL), Penalized or Predictive Quasi-

Likelihood (PQL) and Marginal Quasi-Likelihood (MQL). PL is almost the same as PQL

and MQL except that PL explicitly estimates the extra-binomial or extra-dispersion
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parameter (Guo & Zhao, 2000). The integral approximation methods include Laplace,

quadrature and Markov Chain Monte Carlo methods.

These linearization-based methods have a relatively simple form of the linearized

model, which typically can be fit using only the mean and variance in the linearized form.

The methods can fit the models for which the joint distribution is difficult or impossible

to ascertain and the ones with correlated errors, a large number ofrandom effects, crossed

random effects, and multiple types of subjects. However, the approaches include the

absence of a true objective function for the overall optimization process and potentially

biased estimates ofthe covariance parameters, especially for binary data (SAS Institute,

2008), and these approaches are such crude approximations that the fit statistics based on

the likelihood (e.g. deviance, Akaike’s and Bayesian Information Criterion) are not

recommended for use (Hox, 2002: p.110; Snijders & Bosker, 1999; p.220).

In contrast with the linearization-based methods, integral approximation methods

provide an actual objective function for optimization, which enables researchers to

perform likelihood ratio tests among nested models and to compute likelihood-based fit

statistics (SAS Institute, 2008). The integral approximation methods are also more

accurate than the linearization methods, e.g. Laplace approximation is more precise than

PQL and MQL (Raudenbush, Yang & Yosef, 2000). But integral approximation methods

are difficult for accommodating crossed random effects, multiple subject effects, and

complex R-side covariance structures. Integral approximation methods are practically

feasible for a small number ofrandom effects (SAS Institute, 2008).

In light of these discussions, the linearization methods have to be selected to

estimate MMLR in this study because it has complex R-side covariance structures. So,
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SAS PROC GLIMMIX is used to estimate MMLR since it implements one linearization-

based methods — Pseudo-Likelihood. For the purpose of the comparison, it is better to

apply the same software to HGLM so HGLM is also estimated by the procedure.

5.2 SAS GLIMMIX Procedure

SAS PROC GLIMMD( implements Pseudo-Likelihood. As noted, PL is almost

the same as PQL and MQL except that PL explicitly estimates the extra-binomial or

extra-dispersion parameter (Guo & Zhao, 2000). Some scholars (e.g. Van den Noortgate

et al, 2003) even say SAS GLIMMIX macro (procedure) employs PQL and MQL. For

the purpose of keeping consistent, it is also used to estimate HGLM. Although PQL and

MQL were found to have downward bias (Breslow & Clayton, 1993; Rodriguez &

Goldman, 1995), SAS GLIMMIX macro (procedure) is likely to be adequate for most of

the projects undertaken in social science (Guo & Zhao, 2000) and even the first-order

MQL is able to give acceptable estimates for less extreme datasets (Goldstein & Rasbash,

1996)

According to the SAS/STATE User’s Guide (SAS Institute, 2008), the GLIMMIX

procedure can use four linearization-based methods to estimate these models. They are

RSPL, MSPL, RMPL and MMPL. The abbreviation “PL” stands for pseudo-likelihood

techniques. The first letter determines whether estimation is based on a residual

likelihood (“R”) or a maximum likelihood (“M”). The second letter identifies the

expansion locus for the underlying approximation. The expansion locus of the first-order

Taylor series expansion is either the vector ofrandom effects solutions (“S”) or the mean

of the random effects (“M”). The expansions are also referred to as the “S”ubject-specific
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and “M”arginal expansions. RSPL is the default estimation method ofPROC GLIMMIX.

Ofthem, RSPL, MSPL are correspondent to PQL and RMPL and MMPL are MQL.

In the process ofparameter estimation, several optimization techniques can be

selected in the SAS procedure. For the Generalized Linear Mixed Model, the default is

Quasi-Newton Optimization. To get the convergent outputs, other techniques also are

used, such as Newton-Raphson Optimization with Line Search, Newton-Raphson Ridge

Optimization, Quasi-Newton Optimization, etc. The details about these optimization

techniques are shown in the SAS/STATE User’s Guide. Newton-Raphson Ridge

Optimization is the default for pseudo-likelihood estimation with binary data in the

procedure (SAS Institute Inc., 2008).When the simulated data are analyzed, the four

estimation methods and these optimization techniques are used in turn until the outputs

converge and RMPL and MMPL are used first since the first—order MQL} is the most

stable between the first- and second-order MQL and PQL (Snijders & Bosker, 1999).

5.3 Pseudo-Likelihood Estimation Based on Linearization

In terms of Wolfinger and O’Connell (1993) and the SAS/STAT® User’s Guide

(SAS Institute Inc., 2008), here are some details about the pseudo-likelihood estimation

based on linearization. Suppose Y is the (n X 1) vector and represents the observed data;

and 'y is a (r X 1) vector of random effects. A Generalized Linear Mixed Model assume

that

—1

E[Y| r] =g (77)=#

where r] = XB + Zy ; g(-) is a differentiable monotonic link fimction and g_l(~) stands for

its inverse. The matrix X is a (n ><k) matrix of rank k, and Z is a (n ><r) design matrix for
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the random effects. The G-side random effects are assumed to be normally distributed

with mean 0 and variance matrix G. The variance of the observations, conditional on the

random effects, is

Varfl’l y] ___ Al/ZRAl/Z,

Where the matrix A is a diagonal matrix and contains the variance functions of the model

and R is the variance-covariance matrix between the R-side random effects, which is

composed of Equation (6) or (7) in the study. In Section 3.4, the MMLR models are

assumed to have the simplified covariance matrix, and only have R-side random effects.

Then, R = #1 where I is the identity matrix and d is the scale parameter. If a model has

G-side random effects only, the procedure models R = d1, When the HGLM model is fit

in the study by SAS PROC GLIMMIX, ¢=l is set.

Then, a first-order Taylor series ofu about [7 and 7 yields

g“(n)-—’tg“(r’i’)+3X(fl-§)+ZZ(r-7)

~

fli

5g" (77)
where A = 677 is a diagonal matrix of derivatives of the conditional mean

evaluated at the expansion locus. If the terms are rearranged, the expression is:

My—gum] + X3 + 27) s Xfl + Zr

Its left-hand side is the expected value, conditional on, of

A“ [Y — g" (27)] + XE + 27) a P

and Var(P | 7) = A'lAl/ZRAWA"I.
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The model can thus be considered as P = Xfl + Zy + s, which is a linear mixed model

with pseudo-response P, fixed effects [3, random effects 7, and Var(e) = Var (P | y ).

Now in the linear mixed pseudo-model, the marginal variance can be defined as

Var(.9) = ZGZ' + A‘IAI’ZRAI’ZA‘I

where .9 is the parameter vector consisting of all unknowns in G and R. It is assumed that

shas a normal distribution and P is known. Then, the maximum log pseudo-likelihood

function I (.9, P) and restricted log pseudo-likelihood function IR( .9, P) are respectively

gotten based on this linearized model. The former is used in MSPL and MMPL, and the

latter is in RSPL and RMPL.

The fixed effects parameters B are profiled from these expressions. The

parameters in .9 are estimated by the optimization techniques. The objective function for

minimization will be -21 (.9, P) or -21R( .9, P). At convergence, the profiled parameters ,6

are estimated and the random effects .9 are predicted as:

,5 =(X'Var(.9)‘1X)"X'Var(.9)“P

7 = GZ'Var(.9)-‘ [P - X(X'Var(.9)” X)’1X'Var(.9)“l P] ,

With the statistics, the pseudo-response and error weights ofthe linearized model are

recalculated and the objective function is minimized again. In the approximated linear

model, the predictors 7 are the estimated Best Linear Unbiased Predictions. This process

will continue until the relative change between parameter estimates at two successive

iterations is sufficiently small. (SAS Institute Inc., 2008)

33



Chapter 6

Simulation Study

This chapter is about the simulation study. The study compares the performances

of seven models, i.e. Reduced Logistic Regression, MMLR with Equations (7) (9) and

(10) and HGLM with Equations (15) (16) and (17), detecting the uniform DIF. Power and

Type I error rate of the seven models are calculated. Two types of matching variables are

respectively employed, total raw score and ability estimate based on the 3PL IRT model.

6.1 Simulated Data

In this study, the efficiencies ofthe MMLR and HGLM models to identify DIF

will be compared using a simulation study. The study was designed on the basis of the

study by Narayanan and Swaminathan (1996). But some factors in their study will be

excluded in this study, such as the proportion of item contamination, the sample size ratio

of reference and focal groups, because their study was too complex and it had 384

conditions! This study just focuses on the influence of sample size, test length, DIF effect

size and the ability distributions of person in the reference and focal groups.

First, Simulated data will be generated by SAS PROC IML, based on the 3-

parameter logistic (3PL) IRT model. None of LR, MMLR and HGLM fit the data

generated by the 3PL model, and none has in an advantage in the comparison. If the 2PL

or the Rasch model were used, the simulated data would only fit some ofthese models

and the other model would be at a disadvantage.

The following 3PL model is applied to generate the simulated data:
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P0 = 1) = c + (1 - c)/{1 + arpI-am - b - (1)1} .

In the above equation, 6 is the person ability, a is the discrimination or slope which has

uniform distribution on the interval [2/3, 1.5], b is the item difficulty which has the

standard normal distribution, and c is lower asymptote or pseudo-guessing parameter

which has uniform distribution on the interval [0, 0.2]. d represents the difference of b,

i.e., item difficulty difference for the reference and focal groups, which result in DIF for

the selected items. If an item has no DIF, then dis 0. If an item is randomly selected to

have DIF, then the three levels of d, 0.25, 0.50 and 0.75, is set, and these differences are

generated to favor the reference group over the focal group. But parameters a and c will

not change and parameter b will be determined for the reference and focal groups to

generate different DIF effect sizes since this study is only concerned with uniform DIF.

Ability 6 of the reference group are set to be normally distributed with mean 0 and

variance 1, i.e., N(0,1) while 6 ofthe focal group conform respectively to N(0, l), N(0.5,

1) and N(0, 9). Many related studies (e.g. Finch & French, 2007;.Jodoin & Gierl, 2001;

Kristjansson et al, 2005; Narayanan & Swaninathan, 1996) showed the influence ofthe

ability distributions with unequal means on the power and Type I error rate of the DIF

detection procedures, but so far no other study discuss the influence ofthe difference of

their variances except for Bolt and Gierl (2006).

Different sample sizes are selected to show sample size’s effect on the DIF

detection. A variety of sample sizes are used to explore the performance ofthe two

methods. But the sample size ratio between the reference and focal group is equivalent

for every test. The percentage, 50%, is arbitrarily set for the convenience. Three sample

size conditions are simulated: (a) 400 total (200 in each group), (b) 700 total (350 in each
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group), (c) 1,000 total (500 in each group). Finch and French (2007) used three sample

sizes: 500, 750, and 1000. To show more obvious effect, the differences between three

sample sizes are increased a little fiom 250 to 300.

Finally, different test lengths are selected to show their effects on DIF detection.

A variety of length sizes are chosen to examine the performance ofthe two procedures.

Three test length conditions are simulated: (a) 20 items, (b) 40 items, (c) 60 items in each

test, which were used by Whitrnore and Schumacker (1999).

Then the three levels of d, i.e. the difference of parameter b, are selected, that is,

0.25, 0.50 and 0.75. The author tried 0.3, 0.6 and 0.9, which is from the design of

Hidalgo and LOpez-Pina (2004), i.e., 0.30, 0.60, and 1.00. But the trial simulation showed

that 0.6 ofb difference is large enough to make these methods to find most ofDIF items,

and 0.9 is too large to make these methods to find all DIF items under some conditions

and not to show the detection differences. So, the average of 0.6 and 0.9, that is, 0.75 is

selected and then 0.5 and 0.25 are selected in accordance with the study of Bolt and Gierl

(2006). These differences are generated to favor the reference group over the focal group.

An item’s DIF effect size of IRT models should be quantified in terms of the area

between the generating item response fimctions (Narayanan & Swaminathan, 1996;

Swaminathan & Rogers, 1990). As the 3PL IRT model is used and parameters a and c

keeps constant, the DIF effect size is (1 - c) times the difference ofparameter b in light

of the formula of Raju (1988; 1990). Since 0 S c 30.2, the DIF effect size is between 0.2

and 0.25 when d=0.25, the effect size is between 0.40 and 0.50 when d=0.50, and the

effect size is between 0.6 and 0.75 when d=0.75.
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So, they will form 81 different conditions when the different types of sample size,

test length and DIF effect size are crossed completely. For every condition, 500

simulation tests, i.e., 500 datasets, will be generated. In every dataset, the proportion of

item contamination is kept the same. Twenty percent of all items are selected randomly

and are set as DIF items. So, tests with 20, 40, and 60 items respectively have 4, 8 and 12

DIF items.

Finally, the generated probability p of each person’s response to each item is

compared to a uniform random number, which has a uniform distribution on the interval

[0, 1]. If the probability is greater than the random number, the response is assigned the

value of 1; otherwise, 0. At the same time, the different levels of sample size, test length

and DIF effect size are simulated.

6.2 Some Practical Issues of the Simulation Study

6. 2. 1 Reduced LR DIF Model

The interaction term in the LR model shown by Model (1) may adversely

influence the power when only uniform DIF is present because one degree of freedom is

unnecessarily lost (Swaminathan & Rogers, 1990). Therefore, since this study only

explores the performances ofthese procedures detecting uniform DIF, a reduced logistic

regression (RLR) DIF model is applied in the study which is given by:

 

p.

10g(1 J )= 180 + AW} + :6sz

where Wj is the matching variable and G}- is the group membership variable.
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The simulated data were analyzed by RLR, MMLR with Equations (7) (9) and (10)

(MMLR 7, MMLR 9 and MMLR 10) and HGLM with Equations (15) (16) and (17)

(HGLM 15, HGLM 16 and HGLM 17). IfMMLR performs better than or as well as RLR

under this condition, it may has more efficient since it can deal with all items at one

analysis.

6. 2. 2 Matching Variables

Since it is convenient to get total raw score for every person, total scores were

used as the matching variables W. In addition, the R package ltm (Rizopoulos, 2006) was

employed to estimate the person ability based on the 3PL IRT model and the IRT ability

estimate also was used as the matching variable. In the R package, parameter estimates of

the IRT models are obtained under marginal maximum likelihood using the Gauss-

Herrnite quadrature rule and then ability estimates can be obtained using Empirical Bayes

(EB). These EB estimates are good measures ofthe person ability when the number of

items tends to the infinity.

Table 1: Comparison of Means and Variances for the Matching Variables

 

 

 

Ability Comparison of Means Equality of Variances

Distribution of (t test) (Folded F test)

focal group Total Score IRT Ability Total Score IRT Ability

Estimate Estimate

N(0, 1) 25.14% 24.15% 1.39% 3.64%

N(5, l) 97.73% 98.05% 4.53% 5.05%

N(0, 9) 10.72% 6.12% 100% 100%
 

The t test and the Folded F test were applied to compare respectively the means

and variances of the total scores and ability estimates of the reference and focal groups by

SAS PROC TTEST. The t tests were based on the results of Folded F test, i.e. the ttests

were regular ones with pooled variance estimate if the two groups were shown to have
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the equal variances and they were from Satterthwaite’s method if the variances were

unequal. Table 1 displays the rates of the significant tests in the all tests. At the 0.05 level

of significance, the folded F test was able to find the unequal variances 100% in the study,

and the error rates ranged from 1.39% to 5.05% and were not obvious while the t test had

the correct rates of 98% but its highest error rate was 25%.

6. 2. 3 Evaluation Indexes

The accuracy of the these DIF detection methods were evaluated under a variety

of conditions by Power and Type I error rate for detecting uniform DIF. Power is defined

as the probability that an item that has DIF will be identified. Type I error rate is the

probability that an item is identified to have DIF and in fact, really does not have it. In the

DIF analysis, power was defined as the proportion of times that DIF is correctly

identified while Type I error rate was defined as the proportion oftimes that a non-DIF

item was falsely identified (Kristjansson et al, 2005).

First, in MMLR HGLM or RLR, the coefficient of G}- for each item was tested at

significant level 0.05, and then it was judged that the item would be a DIF item, if the test

was significant. It was known which judgment was true or false since the real DIF items

were simulated. Finally, power was equal to the number of the correct judgments divided

by the total number of all DIF items; and Type I error rate was the number of the wrong

judgments divided by the total number of all non-DIF items. All of these judgments and

calculations were only relevant to significant statistical tests.
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6.3 Results of the Simulation Study

When total score was used as the matching variable, for three MMLR models, the

extra-binomial or scale parameters were greater than 0.90 and smaller than 1.04. These

could be regarded approximately as 1. So, the assumption ofthe Bernoulli distribution

was tenable and the simulated data were not overdispersed or underdispersed (Goldstein,

1995; Yang et al, 2000). For HGLM and MMLR models, all simulated datasets had the

convergent results provided by RMPL. For every condition, power and Type I error rate

were computed, the results are listed in Table 4-9.

At first, a multivariate analysis of variance (MANOVA) was implemented using

Wilks’ Lambda to test the effect of test length, sample size, b difference and ability

distributions for the reference and focal groups, the results of which are displayed in

Table 2. According to these results, different test lengths, sample sizes, b differences and

ability distributions of the two groups had significant effect on the power and Type I

error rates of these seven models. After the computed power and error rates in Table 4-9

were checked, it was found, approximately:

0 The longer the test, the larger power and Type I error rates.

0 The more examinees take the test, the larger power and Type I error rates.

0 The greater b-parameter difference between the two groups, the larger power and

Type I error rates.

0 The more different the ability distributions are for the two groups, especially, the

more heterogeneous variances, the greater power and Type I error rates.

In general, for any condition, Type I error also inflates when power increases. It is

impossible to raise power and reduce Type I error at the same time.
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Table 2: Outputs of Multivariate Analysis of Variance

 

 

Wilks' Den. Num. p-

Effect Lambda F DE DE value

Test Length 3.433x10‘4 11.351 28 6 0.003

Sample Size 2.958x10'7 393.793 28 6 0.000

b Difference 5.6O3x10'9 2862.574 28 6 0.000

Distribution 2.589x10‘“ 42114.723 28 6 0.000

Test Length x Sample Size 1.168x10'4 2.288 56 13.8 0.046

Test Length x b Dif. 6.724x10'5 2.675 56 13.8 0.024

Test Length x Distribution 1.133x106 8.101 56 13.8 0.000

Sample Size x b Dif. 7.339x10'9 30.249 56 13.8 0.000

Sample Size x Distribution 8.053x10'll 97.039 56 13.8 0.000

b Dif. x distribution 1.190x10'12 287.266 56 13.8 0.000

Test Length x Sample Size 1.652x10'6 1.655 112 32.7 0.050

x b Dif.

Test Length x Sample Size 1.663x10'6 1.653 112 32.7 0.050

x distribution

Test Length x b Dif. x 4.990x10'7 2.017 112 32.7 0.012

Distribution

Sample Size x b Dif. x 4.571x10‘“ 8.403 112 32.7 0.000

Distribution
 

Table 3: Multiple Comparisons of Power and Type I Error Rates

 

 

 

HGLM HGLM HGLM MMLR MMLR MMLR

15 16 17 7 9 10

Power RLR 0.09* 0.000 -0.005 0.05 -0.004* -0.008*

0.03 0.000 0.002 0.03 0.001 0.002

HGLM -0.04*

15 0.002

HGLM -0.004*

16 0.001

HGLM -0.003*

17 0.0004

Type I RLR -0.161* 0.000 -0.008* -0.20* -0.004* -0.010*

Error 0.03 0.000 0.001 0.03 -0.001 -0.001

rate HGLM -0.04*

15 0.002

HGLM -0.004*

16 0.001

HGLM -0.002*

17 0.0004  
Note: In every cell, the upper number is the average difference and the lower is its

standard error. * means p < 0.0056.

41



In the calculated power and Type I error rates listed in Table 4-9, under the same

condition, HGLM16 and 17 had the similar results with RLR, and MMLR 7, 9 and 10

respectively had larger power or Type I error rate than HGLM 15, 16 and 17. Then, the

repeated measure analysis of variance (Wilks’ Lambda test) was used to compare these

calculated power and error rates of the seven models detecting uniform DIF. The results

showed that there were some significant differences ofpower and Type I error rate

between these seven methods (for power, A = 0.08, F=135.45, degrees of freedom were 6

and 75, and p < 0.0001; for Type I error rate, A = 0.11, F=100.52, degrees of freedom

were 6 and 75, and p < 0.0001 .). So, the paired t test was used to make multiple

comparisons between the pair ofmethods and a Bonferroni correction was employed to

control the farnilywise error. Only the pairs that are of interest were compared. Totally,

nine comparisons were made, so the level of significance was 0.05/920.0056. Table 3

shows paired test’s results of these comparisons.

By Table 3, MMLR 7, 9 and 10 respectively had significantly larger power or

Type I error rate than HGLM 15, 16 and 17. The reason is that the estimates of the

correspondent coefficients in these paired models were very similar, the difference was

less than 1%, and the standard errors of these coefficients ofMMLR were smaller than

the counterparts ofHGLM. As compared with RLR, generally, MMLR 7 had slightly

smaller power and obviously larger error rate; MMLR 9 and 10 models had significantly

larger power and smaller error rate; HGLM 15 had significantly smaller power and larger

error rate; HGLM 16 had very similar results with RLR; and HGLM 17 had slightly

larger power with RLR but significantly larger error rate than RLR. Actually, RLR and

HGLM 16 had very similar estimates for the correspondent coefficients and their
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standard error, so their power and Type I error rate was also exactly the same in terms of

Table 3.

MMLR 7 and HGLM 15 performed worse than RLR on power and Type I error

rate while the other methods performed better at least on power or error rate. When the

calculated power and error rates were checked carefully, the reason is obvious. When the

ability distributions ofthe two groups had different means, the two methods performed

very badly. Table 4-9 displays the power and Type I error rates of the seven models when

the two groups have different ability distributions. By Table 5 and 8, almost for every

condition combination, MMLR 7 and HGLM 15 had smaller power and larger Type I

error rates than the others. Table 10 shows the mean power and Type I error rates ofthe

seven models. By this table, on the average, the power rates MMLR 7 and HGLM 15

were less than 0.2 while the other methods’ power rates were about 0.5; the error rates of

the two models were greater than 0.6 while the other methods’ error rates were about

0.09. MMLR 7 performed as badly as HGLM 15 under the condition. MMLR 7 has no

matching variable while HGLM 15 has a random matching variable. These results mean

that the random matching variable performs just like no matching variable in a DIF

detection method. Therefore, MMLR 7 and HGLM 15 are not appropriate when the

groups have different ability means.

Table 4 and 7 respectively show power and Type I error rates under every

condition when the two groups have the same ability distribution, and Table 6 and 9

respectively show them when the two groups have the ability distributions with different

variances. When power in Table 4 and 6 are compared, if the same methods are used

under the same condition, power in Table 6 almost always is smaller than power in Table
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4. When Type I error rates in Table 7 and 9 are compared, if the same methods are used

under the same condition, error rates in Table 9 almost always is greater than power in

Table 7. When power in Table 6 and Type I error rates in Table 9 are compared, for the

same method, sometimes Type I error rate is even larger than power under the same

conditions.

Table 10 also shows that when the two groups have the ability distributions with

different variances, the average ofpower was only 0.29-0.41 and Type I error rate

average was as high as 0.20-0.29 while under the other conditions the power was greater

than 0.5 and the error rate was less than 0.1. It seems that the heterogeneous variances of

the ability distributions significantly reduce power rates of these DIF detection

approaches and inflate their Type I error rates in terms of the output ofMANOVA in

Table 2. The outputs are consistent with the study of Bolt and Gierl (2006). In their study,

the disparities ofthese power and Type I error rates have appeared under the condition of

unequal variances, but they did not find the obvious effect. In their study, the variances of

two groups’ ability distribution were set as 1 and 2, so the difference ofthe two variances

was small and then the effect was too small to be noticed.
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Table 4: Power by Methods for the Same Ability Distributions

 

 

Test Sample HGLM HGLM HGLM MMLR MMLRMMLR

Length Size b Dif. RLR 15 16 17 7 9 10

20 400 0.25 0.139 0.133 0.139 0.137 0.162 0.138 0.138

20 400 0.50 0.373 0.392 0.373 0.371 0.439 0.375 0.372

20 400 0.75 0.667 0.727 0.667 0.663 0.756 0.668 0.663

20 700 0.25 0.216 0.209 0.216 0.212 0.248 0.219 0.213

20 700 0.50 0.571 0.624 0.571 0.569 0.668 0.571 0.569

20 700 0.75 0.840 0.892 0.840 0.833 0.915 0.840 0.833

20 1000 0.25 0.282 0.281 0.282 0.278 0.325 0.284 0.279

20 1000 0.50 0.694 0.747 0.694 0.692 0.780 0.695 0.693

20 1000 0.75 0.912 0.948 0.912 0.901 0.956 0.913 0.901

40 400 0.25 0.135 0.125 0.135 0.134 0.155 0.135 0.133

40 400 0.50 0.398 0.41 0.398 0.393 0.459 0.398 0.391

40 400 0.75 0.659 0.724 0.659 0.655 0.755 0.659 0.655

40 700 0.25 0.204 0.202 0.204 0.200 0.239 0.205 0.200

40 700 0.50 0.574 0.627 0.574 0.571 0.676 0.575 0.570

40 700 0.75 0.837 0.893 0.837 0.826 0.911 0.837 0.825

40 1000 0.25 0.276 0.275 0.276 0.273 0.317 0.277 0.273

40 1000 0.50 0.701 0.765 0.701 0.695 0.804 0.701 0.694

40 1000 0.75 0.914 0.955 0.914 0.900 0.965 0.914 0.900

60 400 0.25 0.129 0.124 0.129 0.129 0.150 0.128 0.128

60 400 0.50 0.386 0.404 0.385 0.381 0.450 0.384 0.381

60 400 0.75 0.649 0.704 0.649 0.643 0.740 0.649 0.642

60 700 0.25 0.203 0.203 0.203 0.201 0.246 0.203 0.201

60 700 0.50 0.571 0.623 0.571 0.571 0.667 0.572 0.571

60 700 0.75 0.845 0.902 0.845 0.834 0.919 0.845 0.834

60 1000 0.25 0.265 0.27 0.265 0.263 0.317 0.266 0.263

60 1000 0.50 0.694 0.763 0.694 0.684 0.797 0.695 0.684

60 1000 0.75 0.915 0.951 0.915 0.904 0.961 0.915 0.904
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Table 5: Power by Methods for Different Means of Ability Distributions

 

 

Test Sample HGLM HGLM HGLM MMLR MMLRMMLR

Length Size b Dif. RLR 15 16 17 7 9 10

20 400 0.25 0.144 0.129 0.144 0.154 0.155 0.146 0.154

20 400 0.50 0.386 0.035 0.386 0.392 0.053 0.389 0.393

20 400 0.75 0.681 0.130 0.680 0.702 0.157 0.684 0.702

20 700 0.25 0.184 0.207 0.184 0.194 0.246 0.190 0.197

20 700 0.50 0.600 0.034 0.600 0.622 0.045 0.606 0.624

20 700 0.75 0.868 0.201 0.868 0.905 0.235 0.869 0.907

20 1000 0.25 0.267 0.281 0.267 0.279 0.325 0.273 0.281

20 1000 0.50 0.722 0.038 0.722 0.754 0.055 0.724 0.757

20 1000 0.75 0.942 0.286 0.942 0.968 0.334 0.943 0.969

40 400 0.25 0.124 0.134 0.124 0.138 0.165 0.125 0.138

40 400 0.50 0.371 0.041 0.371 0.383 0.056 0.372 0.383

40 400 0.75 0.661 0.126 0.661 0.699 0.155 0.662 0.698

40 700 0.25 0.186 0.196 0.186 0.204 0.235 0.187 0.206

40 700 0.50 0.575 0.041 0.575 0.598 0.054 0.578 0.599

40 700 0.75 0.848 0.202 0.848 0.896 0.241 0.849 0.896

40 1000 0.25 0.243 0.273 0.243 0.253 0.323 0.245 0.255

40 1000 0.50 0.713 0.033 0.713 0.759 0.043 0.715 0.760

40 1000 0.75 0.926 0.278 0.926 0.963 0.328 0.926 0.963

60 400 0.25 0.131 0.127 0.131 0.139 0.160 0.131 0.139

60 400 0.50 0.366 0.034 0.366 0.380 0.049 0.366 0.379

60 400 0.75 0.660 0.133 0.660 0.698 0.166 0.661 0.696

60 700 0.25 0.194 0.200 0.194 0.204 0.241 0.197 0.204

60 700 0.50 0.564 0.039 0.564 0.595 0.056 0.566 0.596

60 700 0.75 0.843 0.204 0.843 0.894 0.244 0.845 0.894

60 1000 0.25 0.251 0.277 0.251 0.264 0.324 0.254 0.265

60 1000 0.50 0.695 0.037 0.695 0.737 0.054 0.697 0.738

60 1000 0.75 0.927 0.282 0.927 0.965 0.328 0.927 0.965
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Table 6: Power by Methods for Different Variances of Ability Distributions

 

 

Test Sample HGLM HGLM HGLM MMLR MMLRMMLR

Length Size b Dif. RLR 15 16 17 7 9 10

20 400 0.25 0.092 0.163 0.092 0.097 0.229 0.098 0.107

20 400 0.50 0.193 0.241 0.193 0.195 0.308 0.202 0.204

20 400 0.75 0.357 0.360 0.357 0.346 0.425 0.371 0.359

20 700 0.25 0.121 0.268 0.121 0.127 0.336 0.134 0.136

20 700 0.50 0.276 0.374 0.276 0.270 0.435 0.291 0.279

20 700 0.75 0.520 0.481 0.520 0.508 0.535 0.528 0.517

20 1000 0.25 0.149 0.310 0.149 0.155 0.373 0.158 0.167

20 1000 0.50 0.374 0.432 0.374 0.352 0.472 0.388 0.364

20 1000 0.75 0.607 0.543 0.607 0.601 0.587 0.618 0.609

40 400 0.25 0.083 0.162 0.083 0.089 0.215 0.087 0.094

40 400 0.50 0.180 0.232 0.180 0.171 0.292 0.186 0.175

40 400 0.75 0.338 0.339 0.338 0.330 0.402 0.349 0.337

40 700 0.25 0.114 0.270 0.114 0.119 0.334 0.120 0.125

40 700 0.50 0.267 0.352 0.267 0.256 0.41 1 0.277 0.265

40 700 0.75 0.501 0.465 0.501 0.487 0.527 0.508 0.494

40 1000 0.25 0.151 0.339 0.151 0.159 0.405 0.159 0.166

40 1000 0.50 0.355 0.430 0.355 0.345 0.483 0.372 0.351

40 1000 0.75 0.602 0.550 0.602 0.587 0.599 0.612 0.593

60 400 0.25 0.093 0.172 0.093 0.098 0.232 0.098 0.101

60 400 0.50 0.172 0.237 0.172 0.171 0.302 0.182 0.176

60 400 0.75 0.328 0.343 0.328 0.319 0.414 0.340 0.325

60 700 0.25 0.121 0.263 0.121 0.120 0.326 0.127 0.125

60 700 0.50 0.262 0.360 0.262 0.255 0.427 0.274 0.263

60 700 0.75 0.500 0.483 0.500 0.483 0.540 0.511 0.489

60 1000 0.25 0.142 0.339 0.142 0.151 0.407 0.151 0.159

60 1000 0.50 0.350 0.440 0.350 0.336 0.493 0.360 0.345

60 1000 0.75 0.602 0.532 0.602 0.580 0.576 0.608 0.588
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Table 7: Type I Error Rates by Methods for the Same Ability Distributions

 

 

Test Sample HGLM HGLM HGLM MMLR MMLRMMLR

Length Size b Dif. RLR 15 16 17 7 9 10

20 400 0.25 0.055 0.039 0.055 0.056 0.051 0.056 0.056

20 400 0.50 0.069 0.040 0.069 0.07 0.052 0.070 0.070

20 400 0.75 0.092 0.036 0.092 0.092 0.049 0.093 0.092

20 700 0.25 0.059 0.040 0.059 0.058 0.054 0.060 0.059

20 700 0.50 0.088 0.034 0.088 0.086 0.049 0.088 0.086

20 700 0.75 0.127 0.037 0.127 0.125 0.050 0.128 0.126

20 1000 0.25 0.064 0.037 0.064 0.066 0.050 0.065 0.066

20 1000 0.50 0.096 0.040 0.096 0.093 0.053 0.097 0.093

20 1000 0.75 0.163 0.037 0.163 0.158 0.050 0.164 0.159

40 400 0.25 0.055 0.037 0.055 0.054 0.049 0.055 0.054

40 400 0.50 0.071 0.036 0.071 0.071 0.050 0.071 0.071

40 400 0.75 0.092 0.037 0.092 0.092 0.051 0.092 0.091

40 700 0.25 0.061 0.037 0.061 0.061 0.051 0.061 0.061

40 700 0.50 0.088 0.037 0.088 0.086 0.050 0.088 0.086

40 700 0.75 0.128 0.037 0.128 0.124 0.051 0.129 0.124

40 1000 0.25 0.064 0.036 0.064 0.063 0.051 0.064 0.063

40 1000 0.50 0.100 0.038 0.100 0.095 0.053 0.101 0.095

40 1000 0.75 0.163 0.035 0.163 0.158 0.049 0.164 0.158

60 400 0.25 0.054 0.034 0.054 0.054 0.047 0.053 0.054

60 400 0.50 0.069 0.035 0.069 0.068 0.048 0.069 0.068

60 400 0.75 0.093 0.036 0.093 0.091 0.050 0.093 0.090

60 700 0.25 0.061 0.038 0.061 0.061 0.052 0.062 0.060

60 700 0.50 0.084 0.037 0.084 0.082 0.053 0.084 0.081

60 700 0.75 0.128 0.035 0.128 0.125 0.049 0.128 0.125

60 1000 0.25 0.063 0.035 0.063 0.062 0.048 0.064 0.062

60 1000 0.50 0.100 0.036 0.100 0.097 0.052 0.101 0.097

60 1000 0.75 0.162 0.032 0.162 0.155 0.044 0.163 0.155
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Table 8: Type I Error Rates by Methods for Different Means of Ability

 

 

Distributions

Test Sample HGLM HGLM HGL MMLR MMLRMMLR

Length Size b Dif. RLR 15 16 M 17 7 9 10

20 400 0.25 0.057 0.425 0.057 0.071 0.471 0.058 0.072

20 400 0.50 0.075 0.421 0.075 0.084 0.467 0.077 0.084

20 400 0.75 0.097 0.412 0.097 0.109 0.460 0.099 0.1 10

20 700 0.25 0.058 0.643 0.058 0.085 0.680 0.060 0.087

20 700 0.50 0.095 0.644 0.095 0.118 0.688 0.097 0.120

20 700 0.75 0.138 0.646 0.137 0.155 0.693 0.140 0.158

20 1000 0.25 0.068 0.776 0.067 0.102 0.808 0.070 0.104

20 1000 0.50 0.117 0.785 0.117 0.144 0.813 0.119 0.145

20 1000 0.75 0.188 0.790 0.188 0.212 0.821 0.192 0.214

40 400 0.25 0.058 0.432 0.058 0.072 0.481 0.058 0.072

40 400 0.50 0.074 0.420 0.074 0.086 0.470 0.075 0.086

40 400 0.75 0.097 0.427 0.097 0.109 0.477 0.097 0.109

40 700 0.25 0.061 0.642 0.061 0.085 0.686 0.062 0.085

40 700 0.50 0.091 0.639 0.091 0.114 0.686 0.093 0.114

40 700 0.75 0.139 0.645 0.139 0.161 0.689 0.141 0.161

40 1000 0.25 0.067 0.771 0.067 0.102 0.805 0.068 0.103

40 1000 0.50 0.113 0.775 0.113 0.145 0.807 0.115 0.145

40 1000 0.75 0.182 0.775 0.182 0.213 0.807 0.183 0.214

60 400 0.25 0.057 0.418 0.057 0.072 0.464 0.058 0.072

60 400 0.50 0.074 0.416 0.074 0.086 0.467 0.074 0.086

60 400 0.75 0.097 0.414 0.097 0.1 10 0.466 0.097 0.109

60 700 0.25 0.058 0.638 0.058 0.086 0.684 0.059 0.087

60 700 0.50 0.093 0.632 0.093 0.1 15 0.680 0.094 0.1 15

60 700 0.75 0.138 0.645 0.138 0.156 0.689 0.139 0.157

60 1000 0.25 0.066 0.778 0.066 0.101 0.810 0.067 0.102

60 1000 0.50 0.108 0.777 0.108 0.144 0.811 0.109 0.145

60 1000 0.75 0.173 0.770 0.173 0.206 0.806 0.175 0.207
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Table 9: Type I Error Rates by Methods for Different Variances of Ability

 

 

Distributions

Test Sample b HGLM HGLM HGLM MMLR MMLRMMLR

Length Size Dif. RLR 15 16 17 7 9 10

20 400 0.25 0.116 0.143 0.116 0.121 0.196 0.124 0.127

20 400 0.50 0.134 0.142 0.134 0.138 0.194 0.143 0.144

20 400 0.75 0.161 0.143 0.161 0.168 0.197 0.171 0.176

20 700 0.25 0.158 0.226 0.158 0.165 0.291 0.168 0.173

20 700 0.50 0.191 0.223 0.191 0.190 0.288 0.202 0.199

20 700 0.75 0.243 0.229 0.243 0.245 0.294 0.255 0.255

20 1000 0.25 0.202 0.296 0.202 0.210 0.364 0.213 0.216

20 1000 0.50 0.250 0.302 0.250 0.258 0.369 0.264 0.267

20 1000 0.75 0.310 0.309 0.310 0.307 0.381 0.320 0.316

40 400 0.25 0.115 0.140 0.115 0.122 0.197 0.121 0.127

40 400 0.50 0.133 0.130 0.133 0.137 0.187 0.140 0.142

40 400 0.75 0.156 0.143 0.156 0.160 0.197 0.163 0.166

40 700 0.25 0.167 0.224 0.167 0.170 0.292 0.175 0.176

40 700 0.50 0.195 0.225 0.195 0.197 0.293 0.204 0.205

40 700 0.75 0.240 0.221 0.240 0.240 0.290 0.249 0.246

40 1000 0.25 0.208 0.299 0.208 0.213 0.369 0.219 0.218

40 1000 0.50 0.262 0.303 0.262 0.262 0.375 0.272 0.268

40 1000 0.75 0.309 0.296 0.309 0.302 0.364 0.321 0.308

60 400 0.25 0.116 0.135 0.116 0.120 0.193 0.121 0.125

60 400 0.50 0.134 0.131 0.134 0.138 0.186 0.141 0.143

60 400 0.75 0.160 0.132 0.160 0.160 0.188 0.166 0.166

60 700 0.25 0.161 0.222 0.161 0.166 0.290 0.169 0.172

60 700 0.50 0.199 0.225 0.199 0.200 0.294 0.207 0.205

60 700 0.75 0.243 0.222 0.243 0.241 0.291 0.252 0.246

60 1000 0.25 0.212 0.295 0.212 0.217 0.370 0.221 0.225

60 1000 0.50 0.256 0.297 0.256 0.254 0.369 0.266 0.260

60 1000 0.75 0.315 0.302 0.315 0.308 0.375 0.325 0.315
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Table 10: Power and Type I Error Rates by Method and Ability Distributions

 

Ability Distributions of Focal

 

 

 

Group

Methods N(O, 1) N(.5, 1) N(0, 9) Total

Power RLR 0.520 0.521 0.291 0.444

HGLM15 0.551 0.148 0.351 0.350

HGLM16 0.520 0.521 0.291 0.444

HGLM17 0.515 0.546 0.285 0.449

MMLR7 0.584 0.179 0.410 0.391

MMLR9 0.521 0.523 0.300 0.448

MMLRlO 0.515 0.546 0.293 0.451

Typel RLR 0.091 0.098 0.198 0.129

Error HGLM15 0.037 0.613 0.220 0.290

rate HGLM16 0.091 0.098 0.198 0.129

HGLM17 0.089 0.120 0.200 0.136

MMLR7 0.050 0.655 0.285 0.330

MMLR9 0.091 0.099 0.207 0.132

MMLRIO 0.089 0.121 0.207 0.139
 

Table 11: Similarity Rates (%) of Results of the Seven Models

 

 

Model HGLM HGLM HGLM MMLR MMLR MMLR

15 16 17 7 9 10

RLR 71.08 100.00 95.69 68.91 99.63 95.61

HGLM15 71.08 71.23 95.94 70.95 71.15

HGLM16 95.69 68.91 99.63 95.61

HGLM17 69.06 95.66 99.73

MMLR7 68.83 69.01

MMLR9 95.63
 

Finally, the similarity of the DIF detection results for the seven models was

evaluated. By Table 11, RLR and HGLM 16 almost gave the identical results for all

items. Only 67 results were different among 1,620,000 times of detection. The identical

judgments were more than 99% between RLR and MMLR 9. Between HGLM 17 and

MMLR 10, the same results also exceeded 99%. It may mean that RLR and MMLR 10

almost give the same results if RLR and MMLR 10 are used to detect DIF and MMLR 10

has the R-side variance matrix assumptions of this study. The similarity rate between
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HGLM 15 and MMLR 7 was also about 96%. It also supports the conclusion that the

random matching variable performs like no matching variable in the DIF methods.

However, when total score was used as a matching variable in HGLM, the SAS

GLIMMIX procedure gave the warnings that the covariance matrix is a zero matrix and

the variance of the random effect was ZERO in the output no matter what estimation

methods or optimization techniques were used in the SAS procedure. It is not reasonable.

Actually, when RMPL was used, the estimates of the fixed effects and their standard

errors ofHGLM16 were ahnost the same as the correspondent ones gotten by RLR

individually.

Since the variance estimate was not reasonable while total score was used as the

matching variable in HGLM 16 and 17, the IRT ability estimate was tried as the matching

variable. However, the variance estimates of the random effect in HGLM 16 and 17 were

still equal to ZERO. For MMLR 9 and 10, the scale parameter was between 0.89 and 1.52.

The range was larger than the one for the scale parameter that total score was used as the

matching variable. Table 12 displays power and Type I error rates for the different

matching variables. According to this table of the results fiom the paired t-tests, it was

found that power and Type I error rates were improved for RLR, HGLM 16, 17, and

MMLR 9 and 10 after the IRT ability estimate replaced total score as the matching

variable in those models. If the comparisons, which were analogous to the ones when

total score was used as the matching variable, were made the similar results and

conclusions were obtained except that Type I error rates ofMMLR 10 and HGLM 17

were not significantly different. The detailed power, Type I error and similarity rates are

listed in Appendix I and II and the analysis results are in Appendix III.
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Table 12: Power and Type I Error Rates Comparisons

for the Different Matching Variables

 

 

 

 

Model Matching Variable Difference

Total score IRT ability Mean Std. Error

estimate

Power RLR 0.444 0.450 -0.006** 0.014

HGLM16 0.444 0.450 -0.006** 0.014

HGLM17 0.448 0.456 -0.007** 0.015

MMLR9 0.448 0.453 -0.005** 0.014

MMLR]0 0.451 0.459 -0.007* * 0.016

Type RLR 0.129 0.117 0.012M 0.011

I error HGLM16 0.129 0.117 0.012M 0.011

rate HGLM17 0.136 0.125 0.011" 0.011

MMLR9 0.132 0.120 0.013" 0.012

MMLRlO 0.139 0.125 0.014“ 0.014  
Note: * means 0.01<p <0.05 and ** meansp < 0.01 in paired t-tests. Five comparisons

are made respectively for power and Type I error rate. So, if a Bonferroni correction

is used, the adjusted significant level should be 0.05/5=0.01.
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Chapter 7

Real Test Study

In this chapter, a Michigan Educational Assessment Program (MEAP) test is

analyzed using the seven models, RLR, MMLR 7, 9 and 10, HGLM 15, 16 and 17. The

uniform DIF items in the test are identified by these models. Two types of matching

variables are respectively employed, total score and ability estimate based on the 3PL

IRT model. The multilevel models are extended to have three levels.

7.1 Data

The data used in the study are from Office of Educational Assessment and

Accountability, Michigan Department of Education. They are the third-graders’ scores on

Michigan Education Assessment Program (MEAP) reading test fi'om fall of 2006. The

study just analyzed 29 dichotomous items ofthe test. In 749 school districts, 118,245

students took the test. When SAS PROC GLIMMIX was used to estimate the models, a

numerical value used in the estimation process was larger than the largest one allowed by

SAS computing memory and the procedure was not able to run. So, 5% of all districts, i.e.

38 districts, were randomly selected so the SAS procedure can run the 2- and 3-level

HGLM and MMLR models. In the selected sample, there are 6,351 students from Grade

3, including 3,125 girls and 3,226 boys, at these districts.

The students’ total scores ofthe reading test were calculated and their reading

abilities were estimated based on the 3PL IRT model by R package ltm. Table 13 shows

the means and standard deviation of total scores and ability estimate of girls and boys.
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Girls had higher scores and ability estimates than boys. First, the fold F test was applied

to compare the variances of total scores and ability estimates of the girls and boys. The

results were very significant (for total score, F = 1.22, p <0.0001, for ability estimate,

F=l.18, p < 0.0001). Then, by Satterthwaite’s t test, the girls and boys had significantly

different means of total scores and ability estimates (for total score, t= 7.59, degree of

freedom = 6321 , p < 0.0001; for the IRT ability estimate, t = 7.65, degree of freedom =

6333, p < 0.0001). Therefore, by the simulation study, HGLM 15 and MMLR 7 are not

suitable for these data. If the two models were applied, they flagged 25 items as DIF

items. The results would not be reasonable.

Table 13: Means of the Matching Variables by Gender

 

 

 

Std.

Variable Gender N Mean Dev.

Total Score F 3125 21.75 5.06

M 3226 20.74 5.58

Ability F 3125 -0.05 0.81

Estimate M 3226 -0.22 0.88  

7.2 Results of Two-Level MMLR and HGLM DIF Detection Methods

Since MMLR 7 and HGLM 15 were not appropriate, RLR, MMLR 9 and 10, and

HGLM 16 and 17 were used to look for DIF items in the reading test respectively with

the matching variables, total score and IRT ability estimate. At first, for MMLR 9 and 10,

the R-side variance matrix was assumed as diagonal, which is the same as the matrix used

in the simulation study, that is, 0',-}-=0 and Var (ej) =¢I.

By Table 14, 15, and 16, whether total score or IRT ability estimate was used as

the matching variable in RLR, MMLR 9 and HGLM 16, they gave the same results for

DIF detection when the significant level 0.05 was applied. They flagged Item 8, 9, 11, 12,
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16, 20, 24 and 26 as potential DIF items. MMLR 10 and HGLM 17 also gave the same

detection results. They identified Item 9, 10, 11, 14, 16, 20, 24, and 28 as DIF item. The

differences were Item 8 and 28. Even for the same item, however, itsp values from

different methods with different matching variables were differential.

When comparisons were made between these results, RLR, MMLR 9 and HGLM

16 gave similar coefficient estimates if the same matching variable was used in them. For

RLR and HGLM 16, even the standard errors of these coefficients were very similar. But

their standard errors fi'om MMLR 9 were smaller than the ones from the former two

methods. As noted in Section 6.3, the same phenomenon was also found by checking the

estimate of the coefficients and their standard errors in the simulation study.
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Table 14: Results of the Reduce Logistic Regression DIF Detection Models

 

 

 

Matching Variable

Item Total Score Ability Estimate

1 -0.107 0.088 -0.127 0.088

2 0.012 0.057 0.016 0.056

3 0.010 0.054 0.030 0.053

4 -0.028 0.065 -0.038 0.065

5 0.008 0.058 -0.066 0.063

6 -0.069 0.064 -0.069 0.063

7 0.026 0.054 0.032 0.054

8 -0.181* 0.086 -0.232** 0.088

9 0.246M 0.084 0.219" 0.084

10 0.150 0.100 0.099 0.102

11 -0.214** 0.056 -0.196** 0.055

12 -0.001 0.078 -0.038 0.080

13 0.007 0.082 -0.018 0.082

14 0.348“ 0.082 0.324" 0.083

15 -0.003 0.058 0.006 0.057

16 0.311" 0.104 0.261“ 0.108

17 0.070 0.069 0.060 0.069

18 -0.063 0.082 -0.099 0.083

19 0.112 0.073 0.091 0.073

20 -0.110* 0.054 -0.091 0.053

21 -0.015 0.079 -0.036 0.079

23 0.061 0.083 0.046 0.083

24 -0.163** 0.061 -0.155* 0.060

25 0.070 0.061 0.075 0.060

26 -0.185* 0.080 -0.204* 0.080

27 -0.020 0.063 -0.003 0.062

28 -0. 105 0.054 -0.087 0.053

29 -0.050 0.067 -0.049 0.066

30 -0.074 0.073 -0.079 0.072
 

Note: The table displays the coefficients that are relevant to DIF detection in every

analysis and their standard errors. In each cell, the first number is the estimate of the

coefficient and the second is its standard error. * means 0.01<p <0.05 and **

meansp < 0.01. '
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Table 15: Results of the DIF Detection (the Matching Variable: Total Score)

 

 

 

Item HGLM 16 HGLM 17 MMLR 9 MMLR 10

l -0. 107 0.088 -0.045 0.083 -0. 107 0.085 -0.045 0.080

2 0.012 0.057 0.003 0.057 0.012 0.055 0.003 0.055

3 0.010 0.054 -0.084 0.058 0.010 0.052 -0.084 0.056

4 -0.028 0.065 0.003 0.063 -0.028 0.064 0.003 0.061

5 0.008 0.058 0.024 0.057 0.008 0.057 0.024 0.055

6 -0.069 0.064 -0.053 0.062 -0.069 0.062 -0.053 0.060

7 0.026 0.054 -0.027 0.057 0.026 0.053 -0.027 0.055

8 -0.181* 0.086 -0.063 0.078 -0.181 * 0.084 -0.063 0.075

9 0.246M 0.084 0.272** 0.081 0.246** 0.081 0.272** 0.078

10 0.150 0.100 0.223* 0.092 0.150 0.097 0.223** 0.089

1 1 -0.214** 0.056 -0.240** 0.057 -0.214** 0.055 -0.240** 0.055

12 -0.001 0.078 0.083 0.071 -0.001 0.076 0.083 0.069

13 0.007 0.082 0.028 0.080 0.007 0.080 0.028 0.077

14 0.348“ 0.082 0.364" 0.080 0.348** 0.080 0.364" 0.077

15 -0.003 0.058 -0.050 0.060 -0.003 0.056 -0.050 0.058

16 0.311* 0.104 0.370** 0.095 0.311" 0.101 0.370** 0.091

17 0.070 0.069 0.069 0.069 0.070 0.067 0.069 0.066

18 -0.063 0.082 0.014 0.076 -0.063 0.079 0.014 0.073

19 0.112 0.073 0.148* 0.069 0.112 0.071 0.148* 0.066

20 -0.110* 0.054 -0.194** 0.058 -0.1 10* 0.053 -0. 194** 0.055

21 -0.015 0.079 0.028 0.075 -0.015 0.076 0.028 0.072

23 0.061 0.083 0.111 0.079 0.061 0.081 0.111 0.076

24 -0. l 63** 0.061 -0.167** 0.061 -0.163** 0.060 -0. l 67** 0.059

25 0.070 0.061 0.060 0.062 0.070 0.060 0.060 0.060

26 -0.185* 0.080 -0.099 0.075 -0.185* 0.078 -0.099 0.072

27 -0.020 0.063 -0.085 0.066 -0.020 0.061 -0.085 0.063

28 -0.105 0.054 -0. l 78** 0.057 -0. 105* 0.052 -0. l 78** 0.055

29 -0.050 0.067 -0.054 0.067 -0.050 0.065 -0.054 0.064

30 -0.074 0.073 -0.051 0.071 -0.074 0.071 -0.051 0.069

Var. 0 0 0.947 0.930
 

Note: The table displays the coefficients that are relevant to DIF detection in every

analysis and their standard errors. In each cell, the first number is the estimate ofthe

coefficient and the second is its standard error. * means 0.01<p <0.05 and **

meansp < 0.01. The last row is the variance estimate of the random effect of the

model.
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Table 16: Results of the DIF Detection (the Matching Variable: Ability Estimate)

 

 

 

Item HGLM l6 HGLM 17 MMLR 9 MMLR 10

1 -0.127 0.088 -0.042 0.082 -0.127 0.087 -0.042 0.079

2 0.016 0.056 -0.006 0.057 0.016 0.056 -0.006 0.055

3 0.030 0.053 -0.092 0.058 0.030 0.053 -0.092 0.056

4 -0.038 0.065 -0.002 0.062 -0.038 0.065 -0.002 0.060

5 -0.066 0.063 0.014 0.057 -0.066 0.063 0.014 0.055

6 -0.069 0.063 -0.057 0.062 -0.069 0.062 -0.057 0.059

7 0.032 0.054 -0.039 0.058 0.032 0.054 -0.039 0.056

8 -0.232** 0.088 -0.061 0.077 -0.232** 0.087 -0.061 0.074

9 0.219** 0.084 0.266" 0.080 0.219** 0.084 0.266** 0.077

10 0.099 0.102 0.220 0.091 0.099 0.102 0.220* 0.088

11 -0.196** 0.055 -0.250** 0.057 -0.196** 0.055 -0.250** 0.055

12 -0.038 0.080 0.080 0.071 -0.038 0.079 0.080 0.068

13 -0.018 0.082 0.029 0.079 -0.018 0.082 0.029 0.076

14 0.324" 0.083 0.356" 0.079 0.324** 0.082 0.356** 0.076

15 0.006 0.057 -0.056 0.060 0.006 0.057 -0.056 0.058

16 0.261 ** 0.108 0.363 0.093 0.261 * 0.107 0.363" 0.090

17 0.060 0.069 0.065 0.068 0.060 0.068 0.065 0.066

18 -0.099 0.083 0.014 0.075 -0.099 0.082 0.014 0.072

19 0.091 0.073 0.143* 0.068 0.091 0.072 0.143* 0.066

20 -0.091 0.053 -0.202** 0.057 -0.091 0.053 -0.202** 0.055

21 -0.036 0.079 0.028 0.074 -0.036 0.078 0.028 0.072

23 0.046 0.083 0.109 0.078 0.046 0.082 0.109 0.075

24 -0.155** 0.060 -0.171** 0.061 -0.155* 0.060 -0.171 ** 0.058

25 0.075 0.060 0.054 0.061 0.075 0.060 0.054 0.059

26 -0.204** 0.080 -0.097 0.074 -0.204* 0.080 -0.097 0.071

27 -0.003 0.061 -0.086 0.065 -0.003 0.061 -0.086 0.063

28 -0.087 0.053 -0.188** 0.057 -0.087 0.053 -0.l88** 0.055

29 -0.049 0.066 -0.056 0.066 -0.049 0.066 -0.056 0.064

30 -0.079 0.072 -0.051 0.070 -0.079 0.072 -0.051 0.068

Var. 0.989 0.929
 

Note: The table displays the coefficients that are relevant to DIF detection in every

analysis and their standard errors. In each cell, the first number is the estimate of the

coefficient and the second is its standard error. * means 0.01<p <0.05 and **

meansp < 0.01. The last row is the variance estimate of the random effect of the

model.
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Then, the R-side variance matrix for MMLR 9 and 10 was assumed to be

compound-symmetric (CS), which means that 03-}- = 0 9f 0 for any i 76j and

_ 2 _ _ 2 -

0-1 — 0'2 ‘ ' ° ° — 0k - ¢ . But when the total score was usedasthe matching

variable, no convergent result was reached. Table 16 displays the partial results of

MMLR with IRT ability estimate as the matching variable. The identified items were the

same as the ones shown in Table 15. But when a different variance matrix was used for

MMLR 9, the estimates of coefficients and their standard errors were different fi'om the

ones with the diagonal matrix, and both ofthem seemed to tend small. For Item 24,

however, the p-value was just smaller than 0.05 when the simple diagonal variance

matrix was set; but it was smaller than 0.01 when the variance matrix was compound

symmetric. However, for MMLR 10, estimated a was close to zero, these estimates were

still similar to the ones in Table 16. The extremely small a may means that the local

independence assumption is tenable for the MMLR 10. Finally, the unconstrained matrix

was tried, but no convergent results were reached.
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Table 17: Results of the MMLR DIF Detection Models with CS Variance Matrix

 

 

 

Item MMLR 9 MMLR 10

1 -0124 0.086 -0042 0.079

2 0.016 0.055 -0.006 0.055

3 0.030 0.052 -0092 0.056

4 -0.037 0.064 -0002 0.060

5 -0.064 0.062 0.014 0.055

6 -0.069 0.062 -0057 0.059

7 0.032 0.053 -0039 0.056

8 -O.228** 0.086 -0.061 0.074

9 0.221" 0.083 0.266" 0.077

10 0.102 0.100 0220* 0.088

11 -0.196** 0.054 -0250" 0.055

12 -0035 0.078 0.080 0.068

13 -0.016 0.081 0.029 0.076

14 0.326" 0.081 0.356" 0.076

15 0.006 0.056 -0.056 0.058

16 0263* 0.105 0.363" 0.090

17 0.061 0.068 0.065 0.066

18 -0.096 0.081 0.014 0.072

19 0.093 0.071 0143* 0.066

20 -0.092 0.053 -0202" 0.055

21 -0034 0.077 0.028 0.072

23 0.048 0.081 0.109 0.075

24 -0154" 0.060 -0171" 0.058

25 0.075 0.059 0.054 0.059

26 -0202"- 0.079 -0097 0.071

27 -0003 0.061 -0.086 0.063

28 -0.088 0.052 -0.188** 0.055

29 -0.048 0.065 -0.056 0.064

30 -0.078 0.071 -0051 0.068

,1 0.975 0.929

a -.0101 1.27x10'15
 

Note: The table displays the coefficients that are relevant to DIF detection in every

analysis and their standard errors. In each cell, the first number is the estimate of the

coefficient and the second is its standard error. * means 0.01<p <0.05 and **

meansp < 0.01. The last row is the variance estimate of the random effect ofthe

model.
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7.3 Results of Three-Level MMLR and HGLM DIF Detection Methods

Since students are nested in different districts, these 2-level HGLM and MMLR

models are extended to have 3 levels. Ify,~}-1 is the response of studentj in district I to item

i, and for t=i, z,,-}-;=1; otherwise z,,-}-;=0, in terms of Mcleod (2001), a simple 3-level

extension for MMLR 9 (3L MMLR 9) could be written as follows:
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For the 3-level extension ofMMLR 10 (3L MMLR 10), the level-1 model is

shown as follows and the others are the same as the ones for MMLR 9.
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Now the 3-level MMLR model has the random effects at both of R- and G- sides.

The constraint Var (efl) =¢I for the R—side variance matrix is still set, and the same type

of matrix also is set for the G-side variance matrix, namely, T1: 1’]. Total score and IRT

ability estimate were still respectively used as the matching variable in this real test study.

The results are shown in Table 18.

Table 18 shows that p was between 0.9 and 1, so the assumption of the Bernoulli

distribution was tenable. By Table 18, under the constraint, the same types of the 3-level

MMLR models gave the same results of the DIF detection whether total score or IRT

ability estimate was used as the matching variables. In contrast with the correspondent 2-

level MMLR model, 3L MMLR 9 additionally identified Item 20 and 28 as DIF items

while 3L MMLR 10 gave the same DIF-detection results as 2L MMLR 10.

However, practically, the unconstrained variance matrixes might be more

reasonable than the diagonal ones. Unfortunately, SAS PROC GLIMMIX did not give

any convergent output for the 3-Level MMLR models with the unconstrained variance

matrixes at R- or G-sides.

Based on Equations (14) and (16), the 3-level HGLM DIF model is rewritten as

follows:

Level-1 :

yij, pi}, ~ Bernoulli (va)

k

-l ——p’7’ - +
77g] " 0g1_ " ”by"! Zflqflzqifl

ijl (Fl
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Level-2:

”0}" =fl001+u0j19
quI~N(O’z-OOI)

”qi = flqu + flqllGjI + flqZWjI for q > 0

Level-3:

[3001 = r00], r00, N N(0, 7000)

IquI=7qsl for q>O;S=09192

If Equation (17) is used, then the leve-2 and leve-3 model can be shown as:

Level-2:

”011 = 76001 + 18011er + ”017: “sz N N(Oatooz)

7’qu = flqOI + flquGjl for q > 0

Level-3:

76001 = 7001’ row N N(O: 1000)

76011 = 7010

,qu, = 74,, for q > 0:5 = 0,1

The fixed part ofthe 3-level HGLM is the same as the one in HGLM 16 and 17.

Because the estimates of variances at level-2 and -3 both were still zero, the results did

not change.
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Table 18: Results of the 3-Level MMLR DIF Detection Methods

 

 

 

 

 

Matching Variable

Total Score IRT Ability Estimate

Item MMLR 9 MMLR 10 MMLR 9 MMLR 10

1 -0. 103 0.084 -0.042 0.079 -0. 122 0.086 -0.038 0.078

2 0.011 0.055 0.001 0.055 0.015 0.056 -0.008 0.055

3 0.014 0.052 -0.078 0.056 0.034 0.052 -0.087 0.056

4 -0.024 0.064 0.005 0.061 -0.035 0.065 0.001 0.060

5 0.004 0.056 0.018 0.054 -0.069 0.062 0.007 0.054

6 -0.069 0.062 -0.054 0.060 -0.070 0.062 -0.058 0.059

7 0.022 0.053 -0.031 0.055 0.028 0.053 -0.043 0.055

8 -0.182* 0.084 -0.063 0.075 -0.233** 0.087 -0.060 0.074

9 0.243" 0.082 0.269** 0.078 0.215* 0.084 0.262** 0.077

10 0.147 0.097 0220* 0.089 0.096 0.102 0.218* 0.088

11 -0.210** 0.055 -0.232** 0.055 -0.193** 0.055 -0.242** 0.055

12 0.001 0.076 0.084 0.068 -0.036 0.079 0.081 0.067

13 0.006 0.080 0.029 0.077 -0.018 0.082 0.029 0.076

14 0.345" 0.080 0.362" 0.077 0.322** 0.082 0.353" 0.076

15 -0.007 0.056 -0.055 0.058 0.002 0.056 -0.061 0.057

16 0.315** 0.100 0.374" 0.091 0.266* 0.107 0.369** 0.089

17 0.070 0.067 0.072 0.066 0.060 0.068 0.068 0.065

18 -0.063 0.079 0.010 0.072 -0.099 0.082 0.010 0.072

19 0.1 13 0.070 0.148* 0.066 0.092 0.072 0.142 0.065

20 -0.1 12* 0.052 -0.195** 0.055 -0.093 0.053 -0.204** 0.055

21 -0.009 0.076 0.034 0.072 -0.029 0.078 0.035 0.071

23 0.057 0.081 0.105 0.076 0.043 0.082 0.104 0.075

24 -0.159** 0.059 -0.165** 0.059 -0.151* 0.060 -0.168** 0.058

25 0.070 0.060 0.061 0.060 0.074 0.060 0.054 0.059

26 -0.181* 0.079 -0.097 0.073 -0.201* 0.080 -0.094 0.072

27 -0.023 0.061 -0.081 0.063 -0.006 0.061 —0.083 0.063

28 -0.109* 0.052 -0.176** 0.055 -0.092 0.053 -0.187** 0.055

29 -0.051 0.065 -0.058 0.064 -0.050 0.065 -0.060 0.063

30 -0.075 0.072 -0.052 0.070 -0.080 0.073 -0.051 0.069

,4 0.940 0.922 0.983 0.921

1‘ 0.038 0.045 0.034 0.045
 

Note: The table displays the coefficients that are relevant to the DIF detection and their

standard errors. In each cell, the first number is the estimate of the coefficient and

the second is its standard error. * means 0.01<p <0.05 and ** meansp <0.01. The

last row is the variance estimate of the random effect of the model.
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Chapter 8

Discussions

This chapter summarizes the findings of the study, shows the advantages and

disadvantages of the MMLR DIF detection methods, illustrates the reasons that some

results appear, and explains the limitations of the study.

8.1 Using of the MMLR DIF Detection Method

From the simulation study, the MMLR DIF models was shown to have greater

power rate for DIF detection than RLR, and from the real test study, these model showed

similar results. Although their Type I error rates of the DIF was also greater than RLR’s,

the similarity rate of the results between RLR and these MMLR models is greater than

95%, especially the rate ofMMLR 9 is 99.6% when the diagonal variance matrix is

applied. If the unstructured or other reasonable variance matrixes are employed, it is

expected that MMLR will give more accurate results for the DIF detection. Then, if LR is

able to be used to detect DIF, MMLR also should be able to be applied to detect DIF

especially when large power is needed.

In contrast with other DIF detection methods, the main advantage is that NflVILR

is able to model the related items of a test. As a natural multilevel model, MMLR can

include the variations of examinees from the different groups, such as classes, schools

and districts. The standard logistic regression DIF model can identify nonuniform DIF,
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and so can MMLR if an interaction term between the group membership and the

matching variables is put in Equation (9). Then Equation (9) is rewritten as follows:

log('1—p_—)= erij(16w + flthj + :8:sz + rBt3G'jW )

“Pr,-

If,6,3 is significantly different from zero, then the item has nonuniform DIF. By a similar

process, the 3-Leve1 MMLR nonuniform DIF model is also developed.

Owing to the limitations ofthe estimation software, MMLR is not appropriate

when a great number of examinees take a test or a test has too many items. Even when

the sample size is small and the test does not have too many items, the computer still

takes much more time and resources to deal with MMLR than HGLM and LR. For the 2-

level MMLR model, different estimates of the R—side variance matrix only seem to

influence the standard errors of the coefficients when the matrix is diagonal, i. e. 0‘,-}-=0 (i,

j = 1, 2, ..., k and i ij ). But the convergence is another problem if complex variance

matrixes are applied.

When a test has k items, k(k+1) parameters need to be estimated in the matrix. In

the real test study, the MEAP reading test has 29 items, and then 406 parameters need

estimating if an unconstrained matrix is assumed, and over a hundred thousand students

took the test. It is a task impossible for SAS PROC GLIMMIX to estimate the MMLR

model with the unconstrained variance matrix and thousands of examinees.

As shown by the results of this study, MMLR inflates Type I error rate (see Table

7, 8 and 9, and Appendix 11) if the sample size and DIF effect size are large. The inflated

Type I error rate may result from the pseudo-guessing parameter. Jodoin and Gierl (2003)

suggested reducing Type I error rate of LR using an effect size measure of LR. Possibly,
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the additional statistic also needs to be developed for MMLR in the future when it is used

to analyze the 3PL-model-fitted data.

Due to the characteristics ofMMLR, in light ofthe study, there are some tips or

recommendations for using MMLR to detect DIF.

First, care is needed when selecting the appropriate variance matrices for MMLR.

The diagonal R-side variance matrix for MMLR is simple and helpfirl to save time to

estimate the model. It can be used only when it is known that the local independent

assumption is tenable. Some methods should be employed to measure local item

dependence, which were discussed by Yen and Fitzpatrich (2006: p. 141), before using

the variance matrix. When it is not sure whether the assumption is reasonable, the

unconstrained variance matrix should be used if a test is not too long, or the compound-

symmetric variance matrix if the test does have many items.

Second, the IRT ability estimate should be applied as the matching variable in

MMLR instead of total score, if the estimate is available. The reason is that the

simulation study shows that MMLR had larger power and smaller Type I error rates when

the IRT ability estimate was used as the matching variable than when total score was

used in the simulation study.

Third, MMLR model with Equation (9) can be used to detect nommiform and

uniform DIF, so the interaction term should be included when it is applied in case the

nonuniform DIF is omitted.

Finally, A third level should be included if it is known that the examinees are

nested within some clusters, such as schools, states or others, and these data are available.
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The hierarchical structure ofMMLR is its basic advantage, and the use ofthe third level

may improve the estimation ofthe model and DIF detection.

8.2 HGLM Is Unsuitable for DIF Detection

By the simulation study in Chapter 6 and the analysis in Section 4.2, HGLM is

not able to identify DIF until it has a fixed matching variable. However, when total score

or IRT ability estimate are added into the HGLM DIF models as the matching variable,

the variance estimate of the level-2 random effect is zero in the simulation and the real

test studies. The variance estimate is not reasonable. It means that neither of the matching

variables should be included in the model, or the random effect should be excluded. If the

two variables are inappropriate for the HGLMs, then it is difficult to find a matching

variable. If the random effect is excluded, then the model will be regular logistic

regression model.

Why is the variance estimate zero? It may be because total score or any ability

estimate is highly correlated to means of the independent variable y or 7] across the level-

2 units in Equation (11) or (14). Then for the whole HGLM DIF models, most of

variation is explained by the matching variable. So, the residual is so small that it is close

to zero. Finally, SAS PROC GLIMMIX sets it as zero.

If the hypothesis is correct, then any matching variable might be highly correlated

to the means across the level-2 units, i.e. examinees. Even if it is not correct, neither the

total score nor IRT ability estimate is good as the matching variable. The method ofKim

(2003), using the ability estimate from the residual up} in Equation (12) as a matching

variable, was also tried when analyzing the MEAP data, but the variance estimate was
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still zero. It is a mystery why I am not able to replicate the study of Kim (2003). Then it

is very difficult to find an appropriate matching variable for the HGLMS but the model

must have one if we want to use it to find DIF. It is a dilemma. So, HGLM may not be

suitable to identify DIF.

8.3 Effects of the Heterogeneous Variances on the DIF Detection Methods

In the study, it is found that the different variances of the ability distributions of

the reference and focal groups influence power and Type I error rates of LR, HGLM and

MMLR DIF approaches. There are two explanations. If the variance ofone group’s

ability distribution is much different fi'om the one ofthe other group’s, it may make one

group have more persons with extreme ability than the other. When these persons are

matched in the DIF methods by a matching variable, sometimes the regular values of one

group are matched with the outliers of the other group, and then the poor results appear.

Of course, for the HGLM models, the random matching variable for all persons

are assumed to conform to the same normal distribution. The assumption is not tenable

no matter whether the models have the group membership variable or not when the

ability distributions of the two groups have different variances. It must influence the

results of the DIF detection procedures.

8.4 Comparisons of the Coefficients and Their Errors in MMLR and HGLM

The simulation study shows if the three types ofMMLR models, MMLR 7, 9 and

10 respectively correspondent to HGLM 15, 16 and 17, the estimate of the correspondent

coefficients in these paired models are very similar, and their standard errors in MMLR
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are smaller than the counterparts of correspondent HGLM. Why does that happen? It is

related to the specification and estimation of the two kinds of models.

For MMLR 7, combining the two parts of Equation (7), and given independent

variables, the following equation is given:

y..- = {1+ Eel-gate. + fl..G,-)]}“
 

k k

+ e... {1 + expl-gl z...- (a. + AG. )1 }’2 eXPI—t}; 2...- (flo. + AG, )1

Then the expected value ofya,

E(y.-,-IX)={1+exp[-t}:212.,-,-(fls+flr.Gj)]}" (...,

where X is used to denote all independent variables in the models.

For the modified HGLM DIF procedure, the outcome variable y,-}- can be written

as y,-}=p,-}-+e,-}-, where E(e,-}-)=0 and Var(ey)=p,-}(l+p,-}-) (Snijders & Bosker, 1999). Then

combining equations (12) and (14), y,-}- can be written as follows:

1‘ -1

yij = {1+ epr- leqij(flq0 + flquj) _ uoj]} + 81}

q:

Since E(e,-}-)=O, if the first-order Taylor series expansion is used, the approximation of

the expected value ofyij,

E0, IX) e {1+ apt—gem. + 13,6.) — Etu..)ll"

k

Then E(yij IX) z {1+ exp[_t=zlijj(i6q0 + IBquj )]}—l (19)
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So, ifwe compare Equation (18) with (19), the expected values ofthe outcome

variables in the MMLR 7 and HGLM 15 have the same expressions. So, it may imply

that the estimates of fixed effects in the two models will be similar if the same data set is

analyzed, the random effect ofHGLM is omitted, and estimated the coefficients ofthe

two models by some estimation approaches, in which the first Taylor series expansion is

applied to get the approximation, such as PQL, MQL and PLs. The situation happens

when RMPL or MMPL is used to estimate MMLR 7 and HGLM 15. The two methods

are similar to MQL. The difference between PQL and MQL is that the Taylor series is

expanded around the condition u0}=0 in MQL while it is expanded around approximate

posterior mode in PQL (Raudenbush & Bryk, 2002). Then, ifMQL (RMPL or MMPL) is

used to estimate HGLM then u0}=0 is applied, and MMLR 7 has no random effect at G-

side and then u0}=0, the coefficients in HGLM 15 and MMLR 7 will be estimated based

on the same equation. So, they have the similar estimates of the coefficients, which were

shown in the results of the simulation study.

However, HGLM actually has the two random effects, up} at level-2 or G-side and

a random effect at level-1 or R-side. Comparatively, MMLR 7 only has the R-side

random effect. The scale parameter will influence the standard errors of the regression

coefficients as it influences them in the Generalized Linear Model. But it has little effect

when it is close to 1. Actually, the parameter approximates to 1 in the simulation study.

So, the estimates of fixed effects in MMLR will have smaller standard errors. Since the

estimates are similar and HGLM are estimated by RMPL in the simulation study, the

hypotheses tests are significant more easily in MMLR 7 than in HGLM 15. Therefore,
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MMLR7 always has greater power and Type I error rate than HGLM 15 under the same

condition.

By the same reasoning, MMLR 9 and HGLM l6, MMLR 10 and HGLM 17 also

respectively have the same expressions for fixed effects and the estimates of these fixed

effects in the former also have the smaller standard errors. So, if the appropriate matching

variable is used in these models and the estimate of the variance ofthe level-2 random

effect is not zero, the former may still have greater power and Type I error rate than the

latter when RMPL is employed to estimate the latter.

In the study, the estimate of the G-side variance is zero in HGLM 16 and 17, and

then the HGLM models are changed into the regular logistic regression model. It is

shown as follows:

Pi“ k
log1—_i— = leqrjwqo + flthj + 13qu1) (20)

q:
If

Pt" k

logl—ja— = flij + 22,.)qu + 54161“ ) (21)
2,- 4:1

Equations (20) and (21) are the regular logistic regression models respectively

corresponding to HGLM 16 and 17. In this situation, the coefficient estimates are still

similar in the two models and the differences depend on their standard errors. Actually,

under this condition, the standard error of a coefficient ofMMLR is the counterpart of the

regular logistic regression model multiplied by the corresponding 0', , i.e., the square root

of the diagonal entries in the variance matrix of the 2-level MMLR model. So, the

standard errors of the coefficient estimates in MMLR are smaller than the ones in the
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regular logistic regression model when its scale parameters are less than 1 if both ofthem

have the same fixed model. But most of the scale parameters ofMMLR in the simulation

study are smaller than 1. Therefore, for the most cases, the MMLR models have larger

power and Type I error rates than the correspondent HGLM models.

However, the simulation and the real test studies show that HGLM 16 without

random efiect has the same estimates of the coefficients and their standard error as RLR.

Why? Like standard logistic regression DIF model, RLR nms individual analysis for each

item. If k dummy variables are used to identify these models for the different items, these

individual RLR models are combined by these variables and merged into one model, and

then it is HGLM16 without any random effect, and expressed as Equation (20). These

models are the simple collection ofthe RLR models for all items. The estimates of

coefficients and their standard errors in the combined model do not change (but their

estimates are respectively from SAS PROC GLIMMIX and LOGISTIC so some small

differences still exist between the correspondent estimates in the simulation study)

although the individual RLR models are put together. So, by this way, LR DIF model

also is able to analyze all items in a single run.

8.5 Limitations

2 2 2

Inthesimulationstudy, 0'1 =02 =°°°=0k =¢ andoij=0(i,j=l,

2, ..., k and #j) are assumed. But these assumptions may not be correct or reasonable for

real tests. At the same time, when the covariances are constrained to 0, it may make the

multivariate model become univariate and the multivariate model will lose the advantage

in contrast with the univarite model.
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This simulation study is not designed to explore the effects of the sample size

ratio between the reference and focal groups and the proportion of item contamination.

The sample size ratio between the reference and focal groups may influence DIF

detection. If the proportion of items contaminated with DIF is set at a different

percentage, the results may be different.

In some statistical tests of the simulation study, e.g., Wilks’ Lambda and paired t

tests, the calculated power and Type I error rates ofthe 7 models are the dependent

variables. They may not be normally distributed. For Wilks’ Lambda tests in MANOVA,

the test of the heterogeneity of variances is not able to be implemented because the

results ofRLR and HGLM 16 are too similar. So, it is unknown if they have

heterogeneous variance matrices. These factors have effects on the robustness of the

statistical tests.

For the real data, an unconstrained R—side variance matrix may be more

reasonable than others. As mentioned, the convergence is a big problem. Even if the

convergent output exists, SAS PROC GLIMMIX will take long time, possibly several

days, to get the output. Maybe other multilevel model software need'to be tried, for

example MLwiN.

Finally, this study is not involved with nonuniform DIF. In this Chapter, It is

mentioned that MMLR 9 is able to be extended to identify nonuniform DIF. HGLM also

has an extension for nonuniform DIF. As noted in Section 4.2, Kim (2003) extended

Karnata’s model to identify nonuniform DIF. Equation (16) is the reduced form of his

model. His level-2 model is written as follows:
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”01' = ”0]" ”0} N N(0,1'00)

7Q”. = flqo +,Bq1Gj +flq2Wj +,Bq3(Gj xW}. )for q > 0

If this model and the MMLR nonuniform DIF model in Section 8.1 are applied to identify

uniform and nonuniform DIF in the 2005 MEAP reading test, they give the same results

as the full logistic regression DIF model when all of them use the same matching variable,

but the estimate variance of up}- is still 0. If the different matching variables, total score

and IRT ability estimate, are respectively used in these methods, they give different the

results.
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Appendix I:

The following numbers are calculated when the IRT ability estimate is used as the

The Calculated Power Rates for LR, HGLM and MMLR

matching variable:
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Appendix II:

The Calculated Type I error Rates for LR, HGLM and MMLR

The following numbers are calculated when the IRT ability estimate is used as the

matching variable:
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Appendix III:

Results of Analyses with the IRT Ability Estimate

The results displayed here are obtained when the IRT ability estimate is used as

the matching variable.

1. Output of multivariate analysis of variance for power and Type I error rates of

LR, MMLR7, MMLR9, MMLR10, HGLM15, HGLM16 and HGLM17.

 

 

Wilks' Den. Num. p-

Effect Lambda F D.F. D.F. value

Test Length 1.565x10'5 53.947 28 6 0000

Sample Size 8.471x10‘8 736.038 28 6 0.000

b Difference 4.808x10'9 3090-202 28 6 0.000

Distribution 1.087x10'll 65005.161 28 6 0.000

Test Length x Sample Size 3.457x10'6 6.020 56 13.8 0.000

Test Length x b Dif. 2.179x10'3 0.948 56 13.8 0.584

Test Length x Distribution 1.272x10'6 7.856 56 13.8 0000

Sample Size x b Dif. 7.060x10‘9 30.554 56 13.8 0000

Sample Size x Distribution 2.486x10'll 131.364 56 13.8 0.000

b Dif. x distribution 7.774x10’12 177.200 56 13.8 0.000

Test Length x Sample Size 2.303).“)6 1.514 112 32.7 0.087

x b Dif.

Test Length x Sample Size 3,490x10‘8 2.681 112 32.7 0.001

x distribution

Test Length x b Dif. x 3,139x1045 1.481 112 32.7 0.099

Distribution

Sample Size x b Dif. x 2,572x10-11 9.095 112 32.7 0.000

Distribution
 

2. Multiple comparisons ofpower and Type I error rates of LR, MMLR7,

MMLR9, MMLRIO, HGLM15, HGLM16 and HGLM17. When repeated measure

analysis Of variance (Wilks’ Lambda test) is used, for power, A = 0.09, F=124.28,

degrees of freedom are 6 and 75, andp < 0.0001; for Type I error rate, A = 0.17, F=59.27,

degrees of freedom are 6 and 75, andp < 0.0001. When the pairs that are of interest are
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compared, the results of the paired t-tests are shown in the follow table. In every cell, the

upper number is the average difference and the lower is its standard error, and * means

p < 0.0056 by a Bonferroni correction.

 

 

 

HGLM HGLM HGLM MMLR MMLR MMLR

l 5 16 17 7 9 10

Power RLR 0.10* 0.000 -0.006 0.059 -0.003 * -0.009*

0.03 0.000 0.003 0.030 0.0004 0.002

HGLM 15 -0.04*

0.002

HGLM 16 -0.003 *

0.0004

HGLM 17 -0.003*

0.001

Type I RLR -0.173 * 0.000 -0.009* -0.21* -0.002* -0.008*

Error 0.030 0.000 0.002 0.030 0.0004 0.002

rate HGLM 15 -0.04*

0.002

HGLM 16 -0.002*

0.0004

HGLM 17 -0.001

0.0004 
 

3. Similarity rates of DIF detection between the 7 models with the IRT ability

estimate.

 

 

Model HGLM15 HGLM16 HGLM17 MMLR7 MMLR9 MMLRIO

LR 70.30 100.00 94.81 67.98 99.73 94.83

HGLM15 70.30 70.40 95.94 70.22 70.47

HGLM16 94.82 67.99 99.73 94.84

HGLM17 68.09 94.80 99.70

MMLR7 67.94 68.16

MMLR9 94.83
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