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ABSTRACT

STATISTICAL MODELS FOR FINGERPRINT INDIVIDUALITY

By

Yongfang Zhu

The US. Supreme Court in the 1993 case of Daubert vs. Merrell Dow Pharmaceuticals

ruled that scientific evidence presented in a court is subject to the principles of scientific

validation that include whether (i) the particular technique or methodology has been sub-

ject to statistical hypothesis testing, (ii) its error rate has been established, (iii) standards

controlling the technique’s Operation exist and have been maintained, (iv) it has been peer

reviewed, and (v) it has a general widespread acceptance. Following Daubert, forensic

evidence based on fingerprints was first challenged in the 1999 case of USA vs. Byron

Mitchell based on the “known error rate” condition mentioned above, and subsequently,

in 20 other cases involving fingerprint evidence. The main concern with the admissibility

Of fingerprint evidence is the problem of individualization, namely, that the fundamental

premise for asserting the uniqueness Of fingerprints has not been objectively tested. In

other words, the fingerprint matching error rate is unknown. The problem Of fingerprint

individuality can be formulated as follows: Given a query fingerprint, what is the proba-

bility of finding a fingerprint in a target population having features Similar to that Of the

query? To answer this question, the variability Of fingerprint features, namely, minutiae in

the target population needs to be understood and quantified in terms Of statistical models.

For minutiae interclass variability, a family of mixture models iS developed to model

the minutiae variability Of individual fingers, including minutiae clustering tendencies and

dependencies in different regions of the fingerprint image domain. For a heterogeneous

population Of fingers, a hyper-mixture model is proposed to cluster the population into

homogeneous groups having similar distribution given by the mixture models. The group



densities and weights are acquired by clustering the mixture models fitted to individual

fingers from a sample of the population

Whereas mixture models take into account the minutiae interclass variability, a com-

pound stochastic model is developed for more sources of minutiae variability, i.e., besides

interclass variability, the model also considers intraclass variability, such as nonlinear de-

formation and variability due to partial prints.

The proposed models are shown to better describe the Observed variability in the minu-

tiae compared to the model by Pankanti et a1. [35]. To quantify fingerprint individuality,

a mathematical model that computes the probability of a random correspondence (PRC)

between minutiae sets of two randomly selected different fingers is derived. Compari-

son Of PRCS with empirical matching probability Shows that the PRCS from the proposed

model are closer to the empirical matching probability than those calculated by the model

of Pankanti et a1. [35].
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CHAPTER 1

Introduction to Fingerprint Based

Recognition

1.1 Overview of Fingerprint Recognition

Biometric recognition refers to the automatic authentication of humans using his/her

anatomical or behavioral characteristics. Biometric recognition is more reliable compared

to traditional approaches, such as password-based or token-based approaches, as biomet-

ric traits cannot be easily Stolen or forgotten. Some examples of biometric traits include

fingerprint, face, Signature, voice and hand geometry (see Figure 1.1). Biometric recogni-

tion systems have been deployed and implemented for human recognition (e.g., US-VISIT

program and the e-biometric passport which stores the owner’s biometric information in a

chip inside a passport). With increasing applications involving human-computer interac-

tions, there is a growing need for fast authentication techniques that are reliable and secure.

Biometric recognition meets such demand.

For a particular biometric trait to be considered for human authentication, several re-

quirements need to be met, namely, (i) universality, (ii) distinctiveness, (iii) permanence,

and (iv) collectability ( [42], [27]). Universality requires that every human being possesses



 
(d) (9)

Figure 1.1: Some examples of biometric traits: (a) fingerprint [26], (b) face, (c) signature,

(d) voice and (e) hand geometry

the biometric trait; distinctiveness requires that two persons have sufficiently different trait

characteristics; permanence requires that trait characteristics remain unchanged over time;

collectability requires that naits are quantitatively measurable. There are further consider-

ations for practical biometric systems, such as: (i) performance and authentication rates,

measured in terms of speed and recognition accuracy, (ii) public acceptance for use in our

daily lives, (iii) the extent of which the biometric recognition system can be attacked or

spoofed, and (iv) cost'efficiency.

Among biometric traits currently used, fingerprint has the longest history, and has been

widely adopted in both forensic and civilian applications. This is because fingerprint meets

the previously discussed requirements of a successful biometric trait, (see Table 1.1 taken



Table 1.1: Comparison of selected biometric technologies adapted from Maltoni et a1. [27].

UVSL = Universality, DSTC = Distinctiveness, PRMN = Permanence, CLTB = Collectabil-

ity, PRFM = Performance, ACPT = Acceptability, and CRVN = Circumvention.The sym-

bols H, M and L denote High, Medium and Low, respectively [27].

 

Biometric Trait UVSL DSTC PRMN CLTB PRFM ACPT CRVN
 

DNA H H H L H L L

Face H L M H L H H

Fingerprint M H H M H M M

Hand Geometry M M M H M M M

Iris H H H M H L L

Signature L L L H L H H

Voice M L L M L H H
 

from [27] comparing commonly-used biometric traits). Due to wide acceptance of finger-

prints, fingerprint-based recognition systems continue to dominate the biometrics market

by accounting for 52% of current authentication systems [27].

Rapid development of mobile commerce and mobile banking in recent years has cre-

ated new demands for biometric authentication. Some biometric systems, such as finger-

print, voice and face, have appeared in some high-end mobile phones. Miniaturized finger-

print sensors, capable of being embedded in a cell phone, have been recently developed.

Different from commonly-used two-dimensional sensors, new line-scan sensors enable a

fingerprint impression to be captured by swiping a finger across a line. Thus biometric

authentication, with increasing deployment in various applications, is here to stay.

There are two modes of biometric recognition, namely, verification and identification. In

the verification mode, the recognition task is to verify the claimed identity, 10, of a user

based on an input fingerprint, Q. A biometric system retrieves the template, T, of 10 that is

stored in its database, and extracts features from Q. The extracted and retrieved features are

tested by a fingerprint matcher, and a similarity measure S(Q, T) is obtained (1:1 match).

When the Similarity measure is above (respectively, below) a pre-determined threshold A,

the claimed identity is accepted (respectively, rejected).



On the other hand, when the biometric system is in the identification mode, the extracted

features of an input image Q are tested against the extracted features of every stored tem-

plate and a decision is made on whether a match is found or not. Compared to verification,

identification is much more difficult because no claimed identity is available. For a sys-

tem with M templates, the system searches through the entire database to recognize an

individual (1 to M matches).

1.2 General Procedures in Fingerprint Recognition

After establishing a system database through fingerprint enrollment, both the verification

and identification tasks can be divided into three different components, namely fingerprint

acquisition, feature extraction, and fingerprint matching. Figure 1.2 shows the basic tasks

in enrollment, verification and identification of a fingerprint-based recognition system.

1.2.1 Fingerprint Enrollment

Enrollment is the procedure of sensing and Storing fingerprint templates to establish a sys-

tem database. First, a fingerprint image is captured by a sensor. After that, a quality checker

is applied to the image. If the quality is good, the image is retained. Otherwise, the cap-

tured image is deleted and a new fingerprint image is acquired. The process is continued

till the quality of the acquired image iS sufficiently good. Image quality is determined by

the clarity of the ridge and valley structures and measured based on many different param-

eters, e.g., image resolution, sensed area, image contrast and the extent of deformation in

the enrolled finger. The quality checker ensures that the acquired images have low noise.

Noisy images can create problems for later processing (for example, during the fingerprint

matching stage). Figure 1.3 shows three images with good, medium and poor quality from

FVC 2002 DB1 database [26]. Poor quality images produce Spurious features which lead

to fingerprints from the same finger looking different, or fingerprints from different fingers
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Figure 1.2: Schematic diagram Showing the processing tasks involved in the enrollment,

verification and identification modes of a fingerprint-based authentication system [27].



  
(b) (C)

Figure 1.3: Fingerprints of different quality based on the clarity of ridge and valley struc-

tures: (a) good, (b) medium, and (c) bad. Extracting features and establishing matches

based on (c) can be difficult. Images are from FVC 2002 DB] [26]

looking alike, and thus should be avoided. Finally, a feature extractor is applied to the

enrolled image and the extracted features are stored in the system database.

1.2.2 Fingerprint Acquisition

Fingerprint acquisition is to capture fingerprint images during the recognition phase and

enrollment phases. There are two types of capture procedure, namely live scan and off-line

scan. Currently both types of fingerprints are used in applications. For example, live fin-

gerprints are used in the Automated Fingerprint Identification System (AFIS) [27] whereas

off-line fingerprints are still used in the forensic applications. In a live scan, fingerprints are

acquired directly from the sensors. In an off-line scan, preliminary fingerprint images are

obtained first and the final fingerprint images are obtained by digitizing the preliminary im-

ages. TWo examples of off-line fingerprint scans are ink-based and latent scans. During the

ink scans, fingers are first Spread with ink and rolled from nail edge to nail edge against a

paper fingerprint card. The rolled images can be digitalized through either a paper scanner

or a high quality camera. Latent fingerprint is a film of moisture or grease from fingerprint

ridges deposited on the surface of touched objects. Due to poor quality of the lifted image,



   (b)

Figure 1.4: Fingerprints of different sources: (a) live [26], (b) ink [33], and (c) latent

fingerprint scans [15]

later enhancement methods, such as powder dusting, ninhydrin spraying, iodine fuming,

and silver nitrate soaking, are involved for better fingerprint detection [6]. Figures 1.4 (a-c)

show examples of a live fingerprint, an ink fingerprint and a latent fingerprint.

1.2.3 Fingerprint Feature Extraction

Fingerprint Features

After the fingerprint acquisition, salient features need to be extracted for later matching.

As previously discussed, there is also feature extraction in the enrollment procedure. These

two extractions are similar with one main difference: Feature extraction in the enrollment

stage is used to establish a database and the quality of the acquired image can be controlled,

whereas during the testing phase, especially in a latent scan, we can not guarantee such a

good quality image. Two groups of features, namely global features and local features, are

critical in fingerprint matching. Local features, which are details that are believed to be

unique to an individual, are used for fingerprint matching.

Global features are used for fingerprint classification and for ruling out erroneous types

of fingerprints prior to matching. Fingerprint classification is the problem of binning finger-



print images into different classes. Figure 1.5 shows examples of major fingerprint classes

that include arch, loop (includes left loop and right loop), and whorl. Different fingerprint

classes are differentiated by the global ridge structures. For example, the fingerprints of

the left loop have ridges initiated from the left side of the fingerprints and continue to the

center area and finally come back to the left side.

 
(c)Whorl

Figure 1.5: Examples of fingerprint images from the major classes. Images are from NIST

2000 SD 4 [33].

Commonly-used global features include (i) singular points and (ii) the directional field of
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Figure 1.6: A fingerprint image showing the salient features [33]

ridge flow. Singular points are the discontinuities of fingerprints which consist of delta and

core. A delta is a point in a fingerprint image which is the confluence of ridge flows in three

different directions and a core is the point of inner most ridge with maximum curvature.

The core and delta are labeled in Figure 1.6.

Detection of singularity (i.e., core and delta) has been the focus ofmany previous studies.

In Nakarnura et a1. [32], and Srinivasan and Murthy [46], singularities were detected by first

finding high curvature regions and then classifying the regions into core, delta and non-

singular regions. In Rao and Jain [37], a method based on geometric theory of differential

equations was used to detect cores and deltas.

The directional field reveals direction of the ridge flow for each pixel or a block of pixels

in fingerprint images. Ridge flow direction can be described by an angle 0 with respect

to the x-axis. Opposite ridge flow directions are equivalent, and therefore 0 can only be

determined in [0, 7r]. The main challenge in estimation of directional field is that gradient

with opposite directions should not cancel each other, but rather reinforce them (see Figure
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Figure 1.7: Gradient directions and magnitudes of a partial fingerprint region from FVC

2002 DB1 [26] indicated by arrow heads and lengths, respectively.

1.7). Many studies have focused on estimating the directional field. These studies include

neural- network based approaches (Wilson et a1. [51]), filter-based approaches (O’Gorman

and Nickerson [34]), and gradient-based approaches (Hong et a1. [20], Jain et a1. [1], and

Bazen and Gerez [5]).

Local features are anomalies along ridge and valley structures, which are usually called

minutiae. There are several types of minutiae: ending, bifurcation, island, spur, crossover,

lake and others. Figure 1.8 Shows examples of different types of minutiae. A minutia

ending is a point where a ridge terminates, and a minutia bifurcation is a point where a

ridge bifurcates into two almost parallel ridges. This thesis focuses on ridge bifurcation

and ending because the other types of minutiae occur much less frequently compared to

endings and bifurcations in fingerprint images. Moreover, other types of minutiae can be

thought of as combinations of endings and bifurcations. Examples of a minutia ending

and bifurcation in a fingerprint image are shown in Figure 1.6 and Figure 1.8 (a) and (b).

Direction of a minutia ending is normally represented by the angle between the horizontal

axis and the minutiae tangent pointing away from the ridge terminating point. Direction of

a minutia bifurcation is represented by the angle between the horizontal axis and the tangent

pointing into the ridge prior to the bifurcation. Hence the minutiae direction of an ending

or a bifurcation is in range [0, 27r]. Figure 1.9 shows illustrations of minutiae directions



Ki: 5:,

(a) Bifurcation (b) Ending (0) Island

V¢ 7";

(d) Spur (e) Crossover (f) Lake

Figure 1.8: Examples of different minutiae. Images are from FVC 2002 D81 [26].

and locations for both ending and bifurcation, where minutiae location and direction are

represented by s and D, respectively.

Minutiae Extraction

Local features or minutiae, are most important for fingerprint matching. To extract minutiae

from fingerprint images, various algorithms have been developed. Binarization and direct

gray scale approaches are the two most popular methods for extracting minutiae. Both of

them use gray scale images, and the difference is that the binarization approach requires

gray scale images to be converted into black-and-white images, whereas the direct gray

scale method detects minutiae without binarizing gray scale images. The feature extraction

algorithm used in this thesis is a binarization method reported in [1]. The enhancement

process involves strengthening the clarity of the ridge Structures using directional Gabor

filters. This is followed by thinning where the enhanced ridges are reduced to connected

components of one pixel wide. The minutiae locations are then detected in the thinned

image as breaks or bifurcations in the connected components. Figure 1.10 (a) shows a

ll



 

 

 
(a) Ending (b) Bifurcation

Figure 1.9: Locations and directions of bifurcation and ending

typical fingerprint image in the FVC 2002. Figures 1.10 (b) and (c) Show, respectively,

images after applying enhancement and thinning algorithms to Figure 1.10 (a). Detected

minutiae locations and directions are Shown in Figure 1.10 ((1).

1.2.4 Fingerprint Matching

After features are extracted from the query image, they are matched to the template saved

in the system database. There are three approaches for fingerprint matching [27], namely

correlation-based, minutiae-based and ridge-feature-based matching. Correlation-based

matching computes a correlation between pixel gray values of aligned images. Minutiae-

based matching optimizes the alignment by maximizing the number of matched minu-

tiae pairs between aligned minutiae patterns. Minutiae-based matching is the most popu-

lar among the commercial fingerprint matchers and it is the basis of fingerprint matching

used by forensic fingerprint experts. An example of minutiae-based fingerprint matching iS

Shown in Figure 1.11, where matched minutiae correspondences are marked by connecting

lines. Ridge-based matching is usually applied to fingerprint images with low quality. Usu-

ally, for these low-quality images, correlation calculation is less consistent and minutiae
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Figure 1.10: Minutiae feature extraction steps. Different fingerprint processing stages for

extracting minutiae features: (a) original image from FVC 2002 DB1 [26], (b) enhanced

image, (c) thinned image and (d) detected features with minutiae locations indicated by

black boxes, and directions represented by solid lines.

 

features are unavailable, but ridge-pattem features (e.g., local orientation and frequency,

texture information, and ridge shape) are more reliable. We used minutiae based matching

in this thesis to match two fingerprint images.

1.3 Statistical Test of Hypothesis in Fingerprint Recogni-

tion

The task of biometric recognition can be described in terms of a statistical test of hypoth-

esis. Suppose a query image, Q, corresponding to the true but unknown identity, It, is

acquired. In order to carry out a test to determine whether Q belongs to a claimed identity

IC, template T corresponding to Ic is retrieved from the system database and is matched

with Q. The null hypothesis is that IC is not the owner of the fingerprint Q (i.e., Q is an

impostor impression of 16), and the alternative hypothesis is that 16 is the owner of Q (i.e.,

Q is a genuine impression of Is). The null-altemative hypothesis testing scenario is

H0 2 1,375 [C vs. H1 1 It 216- (1.1)

13
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Figure 1.11: Example Of fingerprint matching. Two impressions of the same finger from

FVC 2002 DB1 [26] with 37 and 38 minutiae, respectively. 25 true correspondences are

found here.

Suppose the matching score between Q and T is S(Q, T). Large (respectively, small)

values of S(Q, T) indicate that T and Q are similar to (respectively, dissimilar to) each

other. If S(Q, T) is lower (respectively, higher) than a pre-specified threshold A, it leads to

rejection (respectively, acceptance) of H0. Consequently, two types of errors can be made,

the probabilities of which are false reject rate (FRR) and false acceptance rate (FAR),

respectively. By definition, false reject rate ,which can also be called false non-match rate

(FNMR), is the probability of incorrectly rejecting a genuine fingerprint query, and false

acceptance rate, which can also be called the false match rate (FMR), is the probability of

incorrectly accepting an impostor query. The formulae of FRR and FAR are:

FRR(A) = FNMR(A) _ P(S(Q,T) g ,\|1, = 1,),

(1.2)

FAR(A) = FMR(A) = P(S(Q,T) > MI, ya la).

TWO sources of variability, namely large intraclass variability and small interclass vari-

ability cause erroneous decisions when testing between H0 and H1. Intraclass variability
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Figure 1.12: Multiple impressions of the same finger illustrating the intraclass variability

[26]
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Figure 1.13: Illustrating small interclass variability: A pair of impostor fingerprints with

13 features (minutiae location and direction) in correspondence.

refers to the fact that fingerprints from the same finger look different from one another.

Sources for this variability include non-linear deformation due to skin elasticity, partial

print, non uniform fingertip pressure, poor finger-condition (e.g., dry finger), and noisy en-

vironment, etc. Non-linear deformation is introduced into a fingerprint image when a three

dimensional fingertip is projected onto a two dimensional sensing plane. Partial image is

due to small sensing surface, capturing only a portion of fingerprint. Poor finger condition

and noisy environment can produce images whose features are unable to discriminate be-

tween different fingers. In Figure l.12, multiple impressions of the same finger appear dif-

ferent from each other due to various sources of intraclass variability discussed above. On

the other hand, interclass variability is inherent in different fingers in the population. Small

interclass variability causes fingerprints from different individuals to look very similar to

each other (See Figure 1.13). The research presented in this thesis develops statistically

models for both the interclass and intraclass variability of fingerprint minutiae.



1.4 Summary

This chapter gives an overview of fingerprint-based recognition. Among various biometric

traits, fingerprints are most commonly used. They are also universal, distinctive, permanent

and collectible, and thus have dominated the biometric market over a long time. There are

two modes of fingerprint recognition, i.e., verification and identification. In a verification

mode, a fingerprint is matched against a claimed identity; whereas in an identification

mode, a fingerprint is matched against all fingerprint images in the database.

The general procedure of fingerprint recognition includes four steps, namely fingerprint

enrollment, fingerprint acquisition, feature extraction and fingerprint matching. Fingerprint

verification can be viewed as a statistical test of hypothesis that involves two types of errors,

namely, false acceptance rate and false reject rate. This thesis focuses on false acceptance

rate since it gives an estimate of the probability of random correspondence (that is, the

probability that a pair of different fingers will match with each other), which is the measure

of fingerprint individuality.
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CHAPTER 2

Fingerprint Individuality

2.1 Importance of Fingerprint Individuality

There are two premises underlying fingerprint based recognition. The first premise is that

fingerprints are permanent, i.e., fingerprints do not change over a person’s life-time. The

second premise is that fingerprints are unique, i.e., the characteristics of fingerprint features

of different fingers are different. The first premise has been widely investigated and proven

to be valid based on the anatomy and morphogenesis of friction ridge skin [27]. However,

the second premise of uniqueness has not been thoroughly studied. In particular, when

fingerprints are matched, statistical measures of the confidence associated with the match

have not been thoroughly investigated. Fingerprint individuality is the study of the extent

of uniqueness of fingerprints and this is the focus of the research presented in this thesis.

Investigation of fingerprint individuality is most important in the legal setting. Expert

testimony based on fingerprint evidence is delivered in a courtroom by comparing salient

features of a latent print query lifted from a crime scene with that of the defendant. Thus, we

are in the hypothesis testing scenario of Equation 1.1 where the court has to decide whether

the defendant is truly the criminal (reject H0) or otherwise (accept H0). A reasonably high

degree of match between the query and template fingerprints from the defendant leads the

18



experts to testify irrefutably that the owner of the latent print and the defendant are the

same person. For decades, the testimony of forensic fingerprint experts was almost never

excluded from these cases, and on cross-examination, the foundation of this testimony was

rarely questioned. A prerequisite to establishing an identity based on fingerprint evidence is

the assumption of discernible uniqueness, i.e., salient features of fingerprints from different

individuals are different. Only when this is true can the experts conclude that the owners of

two different prints with reasonably high degree of similarity are one and the same person.

However, in reality, forensic experts are never questioned on the uncertainty associated with

their testimony (that is, how frequently an observable match between a pair of prints would

lead to errors in identification of individuals). Thus, discernible uniqueness precludes the

opportunity to determine error rates of fingerprint matching from analyzing inherent feature

variability and calculating the probability of two different persons sharing a set of common

features.

A significant event that broke this trend occurred in 1993 in the case of Daubert v. Merrell

Dow Pharmaceuticals [13] where the US. Supreme Court ruled that in order for an expert

forensic testimony to be allowed in courts, it had to be subject to five main criteria of

scientific validation, that is, whether (i) the particular technique or methodology has been

scientifically tested, (ii) its error rates have been established, and (iii) known standards

of the technique have been developed and well maintained, (iv) the technique has been

peer-reviewed, and (v) the technique has gained broad public acceptance [35]. Forensic

evidence based on fingerprints was first challenged under Daubert’s ruling in 1999 in the

case of USA v. Byron Mitchell [49], stating that the fundamental prerrrise for asserting the

uniqueness of fingerprints had not been objectively tested and its matching error rates were

unknown. The Brandon Mayfield Case [36] is another case that challenges the reliability

of fingerprint. In this case, Brandon Mayfield, a lawyer from Oregon, was mistakenly

identified by FBI as the terrorist who attacked the commuter trains in Madrid in March,

2004. In October, 2007, fingerprint evidence was excluded in the case of Bryan Rose for
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the conviction of death penalty by a Baltimore Countyjudge [10]. The judge challenged the

reliability of fingerprints based on the error made from fingerprint evidence in the Brandon

Mayfield case [10]. Fingerprint-based identification has been challenged in more than 20

court cases in the United States (see [9] for details). It is clear that there is a need to study

fingerprint individuality which is the basis for the admissibility of fingerprint evidence in

COLII’I cases.

2.2 Early Studies on Fingerprint Individuality

There have been a few previous studies that addressed the problem of fingerprint individu-

ality using mathematical models on fingerprint features. All these studies utilized minutiae

features (both location and direction information) to assess individuality. In 1892, Gal-

ton [16] raised the topic of fingerprint individuality for the first time. He assumed that

a full fingerprint iS a combination of 24 disjoint and independent square regions, each of

which consists of six ridges. He found that the probability of correctly re-building each

of the 24 regions by only looking at its neighboring ridges is 1 /2. Thus the probability of

correctly re-building all of the 24 regions is (1/2)24. Further, Since the probability of find-

ing a specific fingerprint class (i.e., arch, whorl, left loop, right loop, double loop) is 1 / 16,

and the probability of finding the correct number of ridges entering and exiting each region

is 1/256, the probability of finding a set of given neighboring ridges is (1 / 16) x (1 /256).

Based on these assumptions, Galton estimated that the probability of finding each finger-

print configuration in a given population is

. . , , 1 1 1 24
P(F1ngerpr1nt configuration): 1—6 x 2576 x (2) = 1.45 x10'11. (2.1)

Later, Pearson [41] and Kingston [23] disputed Galton’S assumptions and suggested that,

given the fact that there are 36 possible minutiae locations within a six-ridge block, the

probability of observing a given ridge configuration in one block is actually 1 /36, instead

of 1 /2 as proposed by Galton. Therefore, the probability of fingerprint configuration Should
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be

1 124
— —— =1. ‘41. 2.2
36x256x(36) 09X“) ( )

 P(Fingerprint configuration) =

After Pearson and Kingston, several subsequent models (e.g., Henry [18], Balthazard [3],

Bose [47], Wentworth and Wilder [50], and Cumrrrins and Midlo [11]) of fingerprint indi-

viduality were proposed based on the number of minutiae in a fingerprint and the proba-

bility (p) of occurrence of a minutia. The probability of a fingerprint configuration with N

minutiae is given by the general formula

P(Fingerprint configuration) = pN, (2.3)

with different values for p used in different studies. For example, Henry estimated p as 1 /4,

and thus, for a given fingerprint type and a given number of ridges between core and delta,

Henry determined the probability of fingerprint configuration to be pN+2. By contrast,

Wentworth and Wilder [50] chose p to be 1/50, and Cummin and Midlo [11] chose p to be

1/31.

The above investigations as well as many other later studies made assumptions that were

not validated on actual fingerprint databases. This is a serious drawback Since estimates

of fingerprint individuality obtained by these studies were also never validated. The first

attempt to validate a fingerprint individuality model on an actual database was carried out

by Pankanti et al. [35].

2.3 A Stochastic Model of Fingerprint Individuality

A Significant improvement on earlier models of fingerprint individuality was reported by

Pankanti et al. [35]. Since this thesis makes an effort to improve this model, the model by

Pankanti et a1. [35] is presented in this section in detail .

Pankanti et a1. [35] estimated fingerprint individuality via probability of random corre-

spondence (PRC), which is defined as the probability that two different fingerprints from a
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target population randomly match each other. Suppose the query fingerprint Q has n “effec-

tive” minutiae and the template T has m “effective” minutiae, where “effective” minutiae

indicates minutiae in the overlapping region of two fingerprints after alignment. A more

natural definition of PRC which is utilized in this thesis is the probability of match when

Q and T have n and m minutiae, respectively, in the whole fingerprint instead of in the

overlapping region. Recall the hypothesis testing scenario of Equation 1.1 for biometric

authentication. When the similarity measure S(Q, T) is above the threshold A, the claimed

identity (IC) is accepted as the true identity It. Based on the statistical hypothesis in Equa-

tion 1.1 in Chapter 1, the PRC is defined as the false acceptance rate, which is

PRCO) = P<S(Q, T) .>_ Alm, n, Ho), (2.4)

where the probability is computed under the assumption that H0 is true.

To estimate PRC, the following assumptions were made:

1. Only minutia ending and bifurcation are considered as salient fingerprint features for

matching. No distinction was made between minutia ending and bifurcation. Other

types of minutiae, such as islands, Spur, crossover, lake, etc., rarely appear and can

be thought of as combination of endings and bifurcations.

2. Minutiae location and direction are uniformly distributed and independent of each

other. Further, minutiae locations can not occur very close to each other.

3. Different minutiae correspondences between Q and T are independent of each other,

and any two correspondences are equally important.

4. All minutiae are assumed true, that is there are no missed or spurious minutiae.

5. Ridge width is unchanged across the whole fingerprint.

6. Alignment between Q and T exists, and can be uniquely determined. To align two

sets of minutiae, corresponding minutiae were first determined by a matching al-

gorithm [1]. A rigid transformation consisting of rotation and translation was then
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determined with a least square approximation between the corresponding minutiae

pairs [35].

2.3.1 Definition of a Random Minutiae Correspondence

For a query fingerprint Q with n minutiae, Pankanti et a1. [35] estimated the probability of

Q sharing q minutiae out of the m minutiae in template T. Use the same letters Q and T

to denote the minutiae sets in fingerprint Q and template T. These minutiae can be then

expressed as

Q 2 {{SQ,D?}.{S§’,D§3}, ....,{S,?,D.?}} (2.5)

T +— {isTJDlT}, {55.0%}, {35.0%}, (2.6)

where S and D refer to a generic rrrinutia location and direction pair. Assume that the

minutiae in Q have been aligned with minutiae in T. To assess fingerprint individuality, a

random minutiae correspondence between Q and T needs to be defined: a minutia in Q,

(SQ, DQ), is said to match or be in correspondence with a minutia in T, (ST, DT), if for

fixed positive numbers 7‘0 and do, the following inequalities are valid:

 

ISQ — STls S 7‘0 and IDQ — DTld S do, (27)

where

|SQ — STIS a 3/(xQ — J)? + (1,0 — yT) (2.8)

is the Euclidean distance between the minutiae locations SQ E (xQ,yQ) and ST E

(HST, if)

and

|DQ — DTld E min(|DQ — DT|, 2n — IDQ — DT|) (2.9)

is the angular distance between the minutiae directions DQ and DT.

The choice of parameters To and d0 defines a tolerance region (see Figure 2.1), which

is critical in determining a match according to Equation 2.7. Large (respectively, small)

23



 

 

Sensing _

Plane, S
   

 

Fingerprint

Area, A
   

 

I Minutia i

    
Figure 2.1: Identifying the tolerance region for a query minutia.

values of the pair (70,010) will lead to spurious (missed) minutiae matches. Thus, it iS

necessary to select (r0, d0) judiciously so that both kinds of matching errors are minimized.

A discussion on how to select (To, do) is given subsequently.

Parameters (To, do) determine the matching region for a query minutia. In the ideal Situa-

tion, a genuine pair of matching minutiae in the query and template will correspond exactly,

which leads to the choice of (To, do) as (0,0). However, factors such as Skin elasticity and

non-uniform fingertip pressure can cause the minutiae pair that is supposed to perfectly

match, to slightly deviate from one another. To avoid rejecting such pairs as non-matches,

non-zero values of To and do need to be specified for matching pairs of genuine minutiae.
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The value of To is determined based on the distribution of the Euclidean distance between

every pair of matched minutiae in the genuine case. To find the corresponding pairs of

minutiae, pairs of genuine fingerprints were aligned, and Euclidean distance between each

of the genuine minutiae pairs was then calculated. The value ofm was selected so that only

the upper 5% of the genuine matching location distances (corresponding to large values of

7') were rejected. In a Similar fashion, the value of do was determined to be the 95th per-

centile of the distribution of genuine matching angular distances (i.e., the upper 5% of the

genuine matching angular distances were rejected).

To find the actual 1'0 and d0, Pankanti et al. [35] used a database of 450 mated fingerprint

pairs from IBM ground truth database [38]. The true minutiae locations in this database

and the minutiae correspondences between each pair of genuine fingerprints in the database

were determined by a fingerprint expert. Using the ground truth correspondences, To and do

were estimated to be 15 and 22.5, respectively. These same values will be used to estimate

the PRC in the experiments presented in this thesis.

2.3.2 Estimation of Fingerprint Individuality by Uniform Model

In the model by Pankanti et al. [35], the similarity measure between the query Q and the

template T, namely S(Q, T), is taken as the number of common minutiae between Q and

T. When S(Q, T) is above a threshold w, the claimed identity (Ic) is accepted as true

identity It. Given Q with n minutiae and T with m minutiae, Pankanti et al. [35] evaluated

fingerprint individuality by measuring the probability of finding exactly q matches between

them.

Let A be the overlapping area between Q and T, and To and do be the estimated threshold

for the tolerance region. Moreover, define C = 7T’r‘02. Pankanti et al. [35] claimed that

considering any subset of p minutiae in Q, the probability that all of these p minutiae and
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only these p minutiae have correspondences in location (in whatever direction) in T is

mC.(m—1)C. .(m—p+l)C

A A—C A—(p—1)C

  

(2.10)

A—mC A—(m—1)C. .A—(m—(n—p+1))C

XA—pC'A—(p+1)c A—(n—1)C

  

The probability in Equation 2.10 can be derived sequentially as follows. First, let

{S1, Sg, ..., Sp} be locations of the p selected rrrinutiae in Q. Then, the probability that

S1 is matched with one of the m minutiae in the template T is

m9A .

Moreover, given that 81 is matched with a minutia in T, the probability that 52 is matched

with one of the remaining m — 1 minutiae in T is

(m — 1)C'

A -— C '

Recall that the second assumption of their model is that minutiae can not be very close to

each other. After introduction of the tolerance region by To, this assumption can be restated

as follows: The minimum distance between any pair of minutia locations in a fingerprint

is larger than 27:0. Therefore, Sg cannot correspond with the same minutiae of T as that of

31. Similarly, given that all of {$1, SQ, ..., Sk_1} find their matches in T, the probability

that Sk (k S p) finds a match in T is

(m—k+1)C

A—(k—1)C'

 

Furthermore, given that all of the p minutiae have found their correspondences in T, the

probability for minutiae 5;, (p < k g 71) not to match with any minutiae in T is (recall that

only these p minutiae have correspondences in T)

A—(mC—(k—p+l))C

A—(k—1)C

 

Combining these steps gives Equation 2.10.
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Equation 2.10 gives the probability of p matches between Q and T for a given set of

p minutiae, {{Sl, D1}, {S2, D2}, ..., {Sp, Dp}}, in Q. However, in practice, it is more

It

important to find the probability for any set of p minutiae in Q. Since there are (p ) ways

to select p minutiae from Q, the probability of finding exactly p minutiae pairs between Q

and T matched in location is

P(A, C, m, n, p) = (z) 
 

.mC.(m——1 C. (m—p+1)C

A C mA—(p—1)C

  

A—

XA—mC.A—(m—1)C. .A—(m—(n—p+1))C

A—pC A—(p+1)C A—(n—1)C '

(2.11)

A

Equation 2.11 can be further Simplified. Define M : C' Since M is large (this is be-

cause C is much smaller compared to the fingerprint area, A), it is realistic to take M as an

integer. Thus Equation 2.11 approaches the probability of a hyper-geometric distribution:

M._

('3) X ( n-2,”)

(M) 'n

The model introduced above considers only minutiae matches in location, and ignores

 P(M, m, n, p) = (2.12)

minutiae direction. To account for direction, Pankanti et al. [35] introduced a binomial

model. They assumed that minutiae direction is independent of minutiae location, and

therefore matching minutiae in location and in direction are also independent. They further

assumed that minutiae direction is uniformly distributed in [0, 27r]. Defining

6

1: P009 — 071 5 do) = —0,
it

the probability that there are q pairs of minutiae matched in direction follows a binomial

(2)100 — 09—4.

Based on the hyper-geometric distribution for minutiae match in location and the bino-

distribution:

mial distribution for minutiae match in direction, the probability that there are p matches

in location and q matches in both location and direction (q 5 p) between Q and T is

P(M m n l p) =WX (p)lq(1—l)p_q. (2.13)

, ’ ’ , (if) q
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Therefore, the probability of q minutiae matches in both location and direction is the sum

of Equation 2.13 over p, i.e.,

P _ min{m,n} (TS) (Nit?) p q p_q

(M,m,n,q) _ Z ——M—-— x I (1—1) . (2.14)

10:9 ( n ) q

2.3.3 Corrected Uniform Model

Pankanti et al. [35] validated their stochastic model on various databases. However, the

model predictions deviated significantly from empirical results obtained through an auto-

matic fingerprint matching system [35]. This is mainly because the assumption of uniform

distribution on minutiae location and direction does not hold true in practice. For example,

it is known that fingerprint minutiae tend to form clusters [44], and minutiae only occur

on fingerprint ridges instead of valleys. Therefore minutiae locations are not unifomrly

distributed. Moreover, minutiae in different regions of a fingerprint are observed to be

associated with different region-Specific minutiae directions. Hence minutiae directions

are neither uniformly distributed nor independent of the location. Furthermore, minutiae

points that are spatially close to each other tend to have Similar directions. These observa-

tions on the distribution of fingerprint minutiae need to be accounted for in eliciting reliable

statistical models for fingerprint individuality.

Pankanti et al. [35] improved their model to better fit the empirical results. First, to

account for non-homogeneity of minutiae location, they redefined the parameter M in their

model as

A

27'00) ,

 

where w is the ridge width. This definition deviates from their uniform assumption of

minutiae location.

Second, when evaluating the parameter I, Pankanti et al. [35] found that instead of using

_ 2 x 22.5

_ 360

 

= 0.125,
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as derived based on the uniform distribution, they instead used

I = 0.267,

based on empirical results on real databases which again deviates from their uniform as-

sumption minutiae directions.

2.3.4 Limitations of Corrected Uniform Model

A comparison between model predictions and empirical observations in Figure 2.2 [35]

based on two databases, MSU DB1 and MSU VERIDICOM [35], Showed that the cor-

rected uniform model grossly underestimated the probabilities. In this figure, there are

two different probability distributions of the number of matched minutiae pairs for each

database, namely the empirical distribution and the theoretical distribution. The empirical

distribution is obtained through an automatic fingerprint matching system (AFMS) [1] and

theoretical distribution is computed from the corrected uniform model when M is taken

as the average value estimated from the database. As seen from the figures, the empirical

distributions are to the right of their corresponding theoretical distributions which indicates

that the corrected uniform model grossly underestimates the PRCS. This is mainly be-

cause the corrected uniform model didn’t model the minutiae clustering tendency and the

dependence between minutiae locations and directions.

A comparison of PRCS derived from their model with empirical PRCS based on NIST

2002 SD4 reached the same conclusion. For example, for a query fingerprint Q and a

template fingerprint T, each with 52 minutiae, the empirical probability that they share 12

or more minutiae is 3.9 x 10’3, differing greatly from the model estimation of 4.3 x 10—8

(See Table 7.11 based on the estimates from NIST 2000 SD 4 [30]).

The inherent limitation of the corrected uniform model motivated the research presented

in this thesis. The thesis develops statistical models that are Significant improvements over

the model by Pankanti et a]. [35].
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Figure 2.2: Comparison of experimental and theoretical probabilities for the number of

matching minutiae: (a) MSU DBI database, and (b) MSU VERIDICOM database. Figure

is the reproduction of Figure 9 in Pankanti et al. [35]
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2.4 Contributions of the Thesis

The uncertainty involved in assessing fingerprint individuality can be quantified as the

probability of finding a fingerprint in a target population having minutiae Similar to that

of a given query fingerprint. This probability is also known as the probability of random

correspondence (PRC). To compute this probability, fingerprint samples from a target pop-

ulation are collected first. Then the variability of the minutiae from various fingerprints

Should be analyzed. After that, a notion of similarity between a pair of fingerprints and the

probability that two different individuals share a set of Similar minutiae should be defined.

In this thesis, it is assumed that a sample of prints is available from a target population

and a notion of similarity is given, and thus it does not address the issues and challenges

involved in sampling from a target population, which is worthy of separate investigations.

Instead, this thesis demonstrates how the proposed methodology can be used to obtain es-

timates of fingerprint individuality based on the database that is assumed to be available.

If the available database is representative of the target population, the proposed estimates

will generalize to the target population. Figure 2.3 Shows the structure of the thesis.

To address the issue of individuality, candidate models must meet two important require-

ments: (i) flexibility, i.e., the elicited model can represent the minutiae distribution from

a variety of fingerprints in the target population, and (ii) computational efficiency, i.e., as-

sociated measures of fingerprint individuality can be easily obtained from the model. In

practice, a forensic expert uses many fingerprint features, such as minutiae location and di-

rection, fingerprint class, inter-ridge distance, to match a pair of fingerprints. In this thesis,

we only use minutiae locations and directions for Simplicity. Although Pankanti et a1. [35]

provided a stochastic model based on the same set of features (as discussed in Section

2.3), their model cannot satisfactorily represent minutiae Variability because the uniformity

assumption Of minutiae location and direction disagrees with observations from empirical

studies.

Empirical studies suggest that minutiae tend to cluster together, and minutiae close to
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Figure 2.3: Outline of the thesis contributions where the labels Cks indicate the chapters
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each other Share Similar orientations (in Similar or almost opposite directions), which, in

turn, implies that minutiae locations and directions are dependent. To account for these

minutiae characteristics, a family of mixture models is proposed to represent the observed

distribution of minutiae (both location and direction) in Chapter 3. A mathematical model

for the PRC is derived in Chapter 4 and an approximation formula is derived to improve

computational efficiency. The approximate PRC follows a Poisson distribution, and thus

the corresponding model is called Poisson model.

The PRCS obtained in this thesis and those from Pankanti et al. [35] are estimated in

different scenarios, which makes it difficult to compare these two models. To carry out

this model-comparison, an overlapping area model was also developed, which adopts the

definition of PRC proposed by Pankanti et al. [35], and which still estimates the PRC with

the mixture models developed in this thesis.

Estimation of fingerprint individuality for a target population involves averaging over all

pairwise impostor fingerprints in a sample database. For a reasonably large database, to

calculate PRCS for all impostor pairs is infeasible. To solve this problem, a hyper-mixture

model is developed in Chapter 5, assuming that the target population is composed of clus-

ters of mixture distributions. The model conveniently estimates the PRC by the clusters

without dealing with the individual mixture distributions, which greatly improves the com-

putational efficiency. Finally, experimental results that compare hyper-mixture model and

the uniform model are given in Chapter 7.

Between the two sources of minutiae variability, namely interclass and intraclass vari-

abilities, the intraclass variability has not been thoroughly investigated by previous research

on fingerprint individuality. While the mixture and hyper-mixture models still only deal

with minutiae interclass variability, a compound stochastic model is developed in Chap-

ter 6 to account for both interclass variability and intraclass variability. In particular, we

address the two most important types of intraclass variability: (i) variability due to local

perturbations arising from non-linear distortions in multiple impressions of the same finger,
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and (ii) variability due to partial prints in multiple acquisitions of the same finger. There-

fore, compared with the mixture model and hyper-mixture model, the compound stochastic

model iS a more realistic model, accounting for both interclass and intraclass variability.

2.5 Summary

Fingerprint individuality studies uniqueness of fingerprints which is the premise for fin-

gerprint evidence. This problem has not been extensively studied and as a consequence,

fingerprint evidence has been challenged in multiple court cases in the last two decades.

Although there is some existing research on fingerprint individuality, almost all early re-

searchers developed their models based on assumptions that were not validated on actual

databases.

The first study validating model assumptions on an actual database was presented by

Pankanti et al. [35]. In their model, fingerprint individuality was assessed by probability of

random correspondence, which is the false acceptance rate of fingerprint recognition. Their

model made two simplifying assumptions, (i) the uniformity of minutiae locations and

directions and, (ii) independence between minutiae location and direction. Pankanti et al.

[35] did modify their hyper-geometric model to account for the non-uniformity of minutiae

locations and directions. However, fundamentally, this model is still based on the uniform

assumptions. Furthermore, it does not consider the dependence between minutiae location

and direction. AS a result, experimental results showed that the hyper-geometric model

grossly under-estimates fingerprint individuality even after the empirical modification (see

figure 2.2).

Section 2.4 summarizes the contributions by this thesis.The proposed model gives a bet-

ter estimate of the fingerprint individuality as supported by experimental results.
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CHAPTER 3

Mixture Models for Fingerprint

Minutiae

In this chapter, a mixture model is proposed to model the minutiae variability of a finger-

print. For each fingerprint, this mixture model captures the minutiae clustering tendencies

in different fingerprint regions and the dependence between minutiae locations and direc-

tions.

3.1 Features for Fingerprint Individuality Model

Minutiae are utilized as the features for fingerprint matching by forensic experts and most

automatic fingerprint matching systems. In this research, only the two dominant types,

minutia bifurcation and minutia ending are considered. Minutia bifurcation and ending

are not distinguished since it is often not easy to distinguish between them by automatic

systems and they can convert between each other under noisy environment during the cap-

turing procedure. Each minutia is characterized by its location and direction. Subsequently,

the term minutiae features will be used to refer to the location and direction of a rrrinutia in

a fingerprint impression.
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3.2 Mixture Models

Let S denote a generic random minutiae location and D denote its corresponding direc-

tion. Let A Q R2 denote the subset of the plane representing the fingerprint domain.

It follows that S E A and D E [0, 27r). Further, denote the total number of minutiae

in the fingerprint region by k. A joint distribution model for the k minutiae features

{ (Sj, Dj), j = 1, 2, . . . k} is proposed to account for (i) clustering tendencies (i.e., non-

uniforrnity) of minutiae, and (ii) dependence between minutiae location (8]) and direction

(Dj) in different regions of A.

The joint distribution model proposed is a mixture model consisting of G components.

Let cj, cj 6 {1,2, . . .,G}, be the cluster label of the j-th minutia, j = 1,2, . . .,k. The

labels cj’s are identically and independently distributed according to a multinomial distri-

bution with G classes, and the probabilities of the G classes (i.e., 71, 72, . . . ,TG) satisfy

C?

Tj 2 0 and Z Tj = 1. Given label cj = 9, we assume the minutiae location Sj is

3:1

distributed according to the density

f§9(3|#g, Z:g)=</)2(Slligazg)i (3-1)

where (02 is the bivariate Gaussian density with mean pg and covariance matrix 29. Equa-

tion 3.1 states that the minutiae locations arising from the g-th cluster follow a two-

dimensional Gaussian distribution with mean p9 and covariance matrix 29.

The Von-Mises distribution [28] is a typical distribution used to model angular random

variables, and we adopt it to model minutiae directions. We elicit the distribution Dj given

cj = g to be the density

ngWII/gifig, Pg) =pgv(0)-I{0 3 0 < 7r}+ (1 -—pg)v(l9—7r)-I{7r g 6 < 2w}, (3.2)

where [{A} is the indicator function of A (i.e., [{A} = 1 if A is true; and [{A} = 0,

otherwise), and 11(6) is the Von-Mises distribution given by

12(6) :—: v( 6 | ug, mg) 2 exp{rzg c052(6 — I/g)}, (3.3)_L.

10059)
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with 100:9) defined as

27r

10(Isg) = [O exp{I~cg cos (9 — ug)} dd. (3.4)

In Equation 3.3, V9 and reg represent the mean angle and the precision (inverse of the

variance) of the Von-Mises distribution, respectively. Figure 3.1 plots two density functions

associated with Von-Mises distributions with common means l/g but with two different

precisions rag < leg. The figure shows that I/g represents the “center” (or modal value)

while my controls the degree of Spread around the center (thus, the density with precision

K; has higher concentration around Vg). The density f? in Equation 3.2 can be interpreted

in the following way: The ridge flow orientation, w, is assumed to follow the Von-Mises

distribution in Equation 3.3 with mean ug and precision reg. Subsequently, minutiae arising

from the g-th component have directions that are either 02 or w + it with probabilities pg

and 1 — pg, respectively.

Combining the distributions of the minutiae location (S) and direction (D), it follows

that each (S, D) is distributed according to the mixture density

G

me I 90) = Z rgfgseiug, 2:9) 15(611/9. mg), (3.5)

g=1

where f; (-) and ng (-) are defined in Equations 3.] and 3.2, respectively.

In Equation 3.5, OG denotes all the unknown parameters in the mixture model which

includes the total number of mixture components, G, the mixture probabilities 79, g =

1,2, . . . ,G, the component means and covariance matrices of f9 ’5 given by “G 5

{p1, p2, ...., pg} and 2G E {21, 22, ..., 20}, the component mean angles and precisions

of f9 ’3 given by V0 2 {V1,1/2, . . . ,V0} and Isa E {831,832, . . . ,I‘Eg}, and the mixing

probabilities PG E {p1, p2, . . . ,pG}. The model described by Equation 3.5 has three ad-

vantages: (i) it allows for clustering tendencies in minutiae locations and directions via

G different clusters, (ii) it incorporates dependence between minutiae location and direc-

tion since if SJ- is known to come from the g-th component, the direction Dj also comes
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6 (radians)

Figure 3.1: Probability distribution plots of the Von-Mises distribution with center Vg =

37r/4, and with two different precisions, rig and 5;, with I19 < 10;. The values of 12(0) at 0

and 7r are equal to each other due to the cyclical nature of the cosine function.
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from the g-th component, and (iii) it is flexible because it allows for two sub-components

with almost opposite minutiae directions in each component which is the novel part of this

mixture model.

The mixture density given in Equation 3.5 is defined on the entire plane R2, and is not

restricted to the fingerprint domain A. The constrained mixture model on the fingerprint

 

domain is

3,6 9

fseA 0:0 f(s,6 | BC) d6ds

If the fingerprint area A is large, it follows that A a: R2 and,

fA(Sa 9 I 90) % f(8, 9 | 90) (3.7)

because the denominator in (3.6)

f f: f((Smeg))d6ds~ (3.8)

6A 6-

To estimate the unknown parameters in the model, an algorithm is developed based on the

expectation maximization (EM) algorithm [14, 31]. The optimal number of components,

0*, is selected using the Bayes Information Criteria (BIC). The BIC [43] has been widely

used in various model selection problems, and has the property that it selects a model that

is most parsimonious (with the least number of model parameters). Details of the EM

algorithm and the BIC are given in the next section.

The extension of mixture models to minutiae direction is a novel contribution. In each

component in the mixture model, as shown in Equation 3.5, ng (6 | 119, Kg, pg) is, according

to Equation 3.2, a sum of two weighted Von-mises distributions for minutiae direction. The

mean angles of the two Von-Mises distributions in Equation 3.2, i.e., 12(6) and 12(6 — ii),

are different by it, capturing two sub-groups of minutiae in each component with almost

opposite minutiae directions. This is motivated by the fact that neighboring minutiae tend

to have Similar orientations, i.e., with similar or almost opposite directions.
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3.3 EM algorithm for Estimating 90

The Expectation Maximization (EM) algorithm [14] is a well-known iterative method for

finding the maximum likelihood estimate of parameters either in the presence of missing

data or when the model can be Simplified by adding latent variables. In such cases, the

original (or observed) likelihood can be obtained by marginalizing a complete likelihood

over the missing or latent variables. The EM algorithm consists of two main steps:

1) the E-Step, where the expectation of the logarithm of the complete likelihood is ob-

tained conditional on the observed data and parameter estimates at the current itera-

tion step, and

2) the M-step, where a maximization is performed to update the parameter estimates for

the subsequent iteration step.

The E- and M-Steps are cycled until the parameter estimates converge. For a more detailed

introduction of the EM algorithm, refer to [31].

The k minutiae features (Sj, Dj), j = 1, 2, . . . , k, are assumed to be independent of each

other and distributed according to the mixture density in Equation 3.5. In this case, the

missing component for the EM algorithm consists of the class labels, cj, j = 1, 2, . . . , k,

corresponding to each of the 10 features. The transformation

D- ifD- E [0 7r)
. = .7 .7 ’

02] { Dj — 7r if Dj 6 [7r, 271') (3'9)

converts the minutiae directions into orientations which take values in [0, 7r). The corre-

sponding distribution for each (Sj, 02]) then becomes

C

2: Ta fflsj My, 29) - ng(wj|I/g, rig), (3.10)

9:1

where ng (02]- | l/g, reg ) is aS given in Equation 3.3. Note that the expression in Equation

3.10 is now in the standard form for mixture models (see, for example, Section 2.7 of [31]),
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and can be solved using general formulas for the E- and M-Steps. In this case, the E- and

M-steps can be combined into a single updating equation for each parameter linking the

current estimates to subsequent ones. The estimate of T9 at the (n + 1)-th iteration,5nn+1),

is given by

+1)_1 k9(7).

__ g 22;?“), (3.11)

j=1

where

z)? E P(cj = g | 3,312,, 9(3)) (3.12)

is the posterior probability that the j-th observation is from the g-th class, conditioned on

(n).
Sj, wj and the parameter estimates at the n-th iteration OG

 

The estimates of pg and 29 at the (n + 1)-th iteration, :57”n+1) and 29241), respectively,

are given by the equations

k

(71)

Z Z92 SJ

(’1)

Z zgj

j=1

and k

(n) (n+1) (n+1) T

Z Zgj (SJ _ #9 )(SJ _ g )

(n+1) __ 2:1

29 — k ( ) , (3.14)

TI

2 zgj

j=1

where 25”.) is as defined in Equation 3.12.

We next proceed to estimate the parameters V9 and 21:9 at the (n + 1)-th iteration. The

component of the complete log-likelihood function (after the E-Step of the (n + 1)-th iter-

ation) involving only the parameters V9 and Hg is given by

k k

(n) n 2
E 29gj log {f90(u2II/g,- 239)} = E Zéj) {Kg cos2(u2j — Vg)+10g {10(Kg)}}.

i=1 i=1
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Differentiating with respect to V9 and setting the derivative to zero, the estimate of V9 at

the (n + 1)-th step, l/gH-l), satisfies the equation

k < ) 1 +1)2 29’]? 3111200]- — 129" ) = 0, (3.16)

i=1

which can be solved to give the closed form solution

 

k

1 Z 2;?) Sin 2023-

ujn“) = 5 tan—’1 3‘: (3.17)

(n) ,
Z 29]. cos 202]

i=1

Substituting Equation 3.17 in Equation 3.15, differentiating with respect to leg and setting

the derivative to zero, we note that the (n + 1)-th step estimate of mg, 213‘“), satisfies the

 

equation

k

n (n+1)

I (n+1) Z Zéj) “’5sz “ V9 )

W— - (- )
I0(“39 ) 2 2(11)

92'

121

The numerical method outlined in [19] is then used to compute 223‘“) from Equation 3.18.

The cluster label for observation (Sj, Dj) at the (n + 1)-th step, 091+”, is determined as

(n+1) _ (n)

cj — arg maxg zgj . (3.19)

and the estimate of pg is obtained as

k

Itcjn“) = g, D,- e 10.70}
1

1231“) = J: k . (3.20)

j=1

 

The E— and M-stepS are repeated till the parameter estimates converge. To find the op-

timal number of clusters (0*), the EM algorithm was first implemented to estimate the
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model parameters for different values of G, and the BIC criteria

k

310(0) = 2 1: 2 log f(SJ-, D,- | (96) — legl log(k), (3.21)

j=1

is used to select 0*, where |Ogl is the cardinality of 90. i.e., the number of unknown

parameters in 90, and f is the mixture density as defined in Equation 3.5. For the databases

used in this thesis, G was chosen to be less than or equal to 5. Based on the number of

minutiae typically observed in the database used here, choosing a larger value of C may

lead to model over-fitting. The value of 0* is selected as the value of G’ that maximizes

BIC(C).

Figure 3.2 illustrates the fit of the mixture model to two different fingerprint images from

the NIST 2000 SD 4 . Observed minutiae locations (white boxes) and directions (white

lines) are Shown in panels (a) and (b). Panels (c) and ((1), respectively, give the cluster

assignment for each rrrinutia feature in (a) and (b). The cluster label of the jth minutiae

(53-, Dj) is estimated according to Equation 3.19 after the EM algorithm has converged.

Panels (a) and (b) in Figure 3.3 Shows the BIC values for different values of C. When

G = 3 (or G = 2), BIC is maximum for fingerprint in Figure 3.3 (a) (or b). Figures 3.4

(a) and (b) plot the minutiae features in the 3-D (S, D) space for easy visualization of the

clusters (in both location and direction). The BIC criteria yields 0* to be 3 and 2 for panels

(a) and (b), respectively. Minutiae from the same cluster are labeled with the same Shape

and number.

Another way to Show the effectiveness of the fit of the models to the observed data is to

Simulate a minutiae realization from the fitted models. Figures 3.5 (a) and (b) Show two

fingerprints whose minutiae features were fitted with the mixture distribution in Equation

3.6. Figures (0) and ((1) Show a simulated realization when both S and D are assumed

to have the mixture distributions fitted to (a) and (b), respectively. Figures 3.5 (e) and (1)

Show a simulated realization when both S and D are assumed to be uniformly distributed

and independent of each other. Note that there is a good agreement, in the distributional
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(C) ((1)

Figure 3.2: Assessing the fit of the mixture models to minutiae location and direction:

Observed minutiae locations (white boxes) and directions (white lines) are shown in panels

(a) and (b) for two different fingerprints from the NIST 2000 SD 4. Panels (c) and ((1),

respectively, show the cluster labels for each minutia in (a) and (b).
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Figure 3.3: Assessing the fit of the mixture models to minutiae location and direction

observed for fingerprint images (a) and (b) in Figure 3.2. Panels (a) and (b) Show the BICS

when 1 S G S 5.
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sense, between the observed minutiae locations and directions [Figures 3.5 (a) and (b)] and

those Simulated from the proposed models [Figures 3.5 (c) and (d)], but no such agreement

exists for the uniform model. [Figures 3.5 (e) and (1)]

3.4 Goodness-of-fit Tests for the Mixture Models

To test the goodness-of-fit of the mixture models to the observed minutiae, the following

null and alternative hypotheses have been considered:

H0 : fT(s, 6) = f5(s, 6 | Og) for some G and 90, versus H1 : not H0, (3.22)

where fT(s, 6) is the true distribution of minutiae location and direction. For a fingerprint

with k minutiae, the above goodness-of-fit test can be carried out by partitioning the (S, D)

, Space into W2 x V non-overlapping blocks, which means the Space S is partitioned into W

equal-size rows by W equal-Size columns and the Space D is partitioned into 12 equal-size

blocks, and computing

= observed number of (Sj, Dj)’s that fall in the (1121., we, 12)-th block, and
0(wr1wC1v)

= k . P((S, D) e (wr, we: v)-th block I éG*)
600731001”)

= expected number of (S, D)’s that fall in the (112,», we, 12)-th block under the fitted

mixture model.

The two tests discussed below require ewr,wc,v to be large for each block (10,-,1120, 12).

Let nwnwcm denote the number of minutiae in block (112T, 1126, 12). For the tests to be valid,

the expected frequency for all the blocks Should be at least 5 [45]. Consequently, the total

number of minutiae in the finger Should be at least 5 times the number of blocks. Therefore,

a threshold 7 = 5 was selected, so that blocks with ewnwcm < T for either the mixture

models or the uniform model are combined with neighboring blocks that have ewnwcw

greater than or equal to r. The set of blocks resulting from this merger is denoted by 8.

Two non-parametric test statistics are considered:
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(i) the Freeman-Tukey statistic [24] given by

1 2

Z {Ow/r,wc,v + (Ownwcm + 1)1/2 — (4 X awnwcm + 1)1/2}21 (3-23)

(wr,wc,12)EB

and

(ii) the Chi-square statistic given by

2
Z — 6

(OwTIwCIv wr,w2iv) . (3.24)

ewriwcsv

 

(wr,wc,v)€3

Both the Freeman-Tukey and the Chi-square statistics have asymptotic chi-square distri-

butions (corresponding to the total number of minutiae being large) with |B| — 1 degrees

of freedom under H0, where |B| is the total number of blocks in B. The chi-square distri-

bution can be used to obtain a p-value to either accept or reject H0. Small (respectively,

large) p-values, typically below (respectively, above) 0.05, lead to rejection (respectively,

acceptance) of H0, which in the case of Equation 3.22, leads to a conclusion that a mixture

model is inadequate (respectively, adequate) as a model for minutiae.

To perform the good-neSS-of-fit test, the parameters W and V are taken to be W = 10

and V = 4, resulting in W2V = 400 blocks. However, Since many of these blocks

contain less than or equal to 5 minutiae, the merging procedure discussed earlier results

in a smaller number of blocks. For example, the fingerprint image in Figure 3.5 (a)

gives |B| = 8 blocks, with observed and expected frequencies of (3,9, 5, 7,8, 8, 10, 7)

and (5.1, 5.8, 6.3, 6.9, 9.0, 6.5, 10.9, 6.6), respectively. The Freeman-T‘ukey and Chi-square

tests give p-values of 0.88 and 0.84, respectively, based on a chi-square distribution with 7

degrees of freedom, resulting in the acceptance of H0.

In order to compare the adequateness of the mixture and uniform models as candidate

models on minutiae, it is necessary to perform the goodness-of-fit test for the uniform

model as well. If a larger number of Ho’s are rejected for the uniform model compared

to the mixture model, it can be concluded that the mixture model is more adequate for

representing the distribution of minutiae. To obtain the goodness-of-fit test for the uniform
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model, we simply substitute fA(8, 6 | Og) in Equation 3.22 by the uniform distribution

1/ (27rA), where A is the fingerprint area. The p-values for the Freeman-Tukey and Chi-

square tests for the uniform models were calculated in the same way as for the mixture

models. The results of p—values can then be used to decide either in favor, or against, H0.

For the fingerprint image in Figure 3.5 (a), the expected frequencies under the uniform

model are (14.6, 5.1, 5.1, 5.1, 5.1, 5.1, 5.1, 12.9). The p-values for the Freeman-Tukey and

Chi-square tests are 2 x 10"4 and 1.2 x 10’4, leading to the rejection of the uniform

model. Results of the model fit on several fingerprint databases are given in Section 7.2

based on which we can conclude that the mixture model is a far superior model to describe

the distribution of minutiae compared to the uniform model.

3.5 Summary

In order to model minutiae distribution, a G-component mixture model was developed in

this chapter. The model takes into account clustering tendency of minutiae and dependence

between minutiae location and direction. For each of the G components, minutiae location

was modeled by a bivariate Gaussian distribution, and minutiae direction was modeled

by a mixture of two Von-Mises distributions. To compare the mixture model with the

uniform model, goodness-of-fit tests based on Freeman-Tukey test and Chi-square test were

performed for both models. The test results Showed the superiority of the mixture model

over the uniform model.
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Figure 3.4: The clusters in 3-D space for fingerprint images in Figure 3.2 (a—b) are Shown

in panels (a) and (b) with :13, y, 2 as the row, column, and the direction of the minutiae.
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(e) (0

Figure 3.5: Minutiae locations and directions simulated from the proposed model ((c) and

(d)), and from the uniform distribution ((e) and (f)) for two different images ((a) and (b)).

The true minutiae locations and directions are marked in (a) and (b).
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CHAPTER 4

Fingerprint Individuality for a Pair of

Fingerprints

4.1 Assumptions for Estimating PRC

To estimate fingerprint individuality, a similarity measure between a pair of fingerprints is

required. In this thesis, the Similarity measure, S(Q, T), is defined as the number of minu-

tiae matches between a query fingerprint Q and a template fingerprint T. Thus, estimation

of PRC is equivalent to finding the probability distribution of the number of matched minu-

tiae pairs for every impostor (Q, T) pair from the target population. This estimation is

achieved by a newly developed mathematical model introduced in this chapter.

Suppose the query, Q has n minutiae and template T has m minutiae. Let (St-Q , D29), 1' =

1,2, . . . ,n, and (5}, DJT), j = 1,2, . . . ,m, be the minutiae in query fingerprint Q and

template fingerprint T, respectively. A fingerprint recognition system accepts or rejects the

query fingerprint Q based on a threshold 122, which is a positive integer. The PRC is the

probability of obtaining 112 or more matched minutiae pairs between Q and T and can be
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expressed as

PRC/”(WWW = P(S(Q,T) 2 w l ",m, 1c # It)

-_—_ Z P(S(Q,T) =1'ln,m,Ic 75 It). (4-1)

wgigmin{n,m}

The right-hand side of Equation 4.1, i.e., the probability distribution of S(Q, T), will be

carefully investigated in this chapter.

Query and template minutiae are assumed to be independently distributed according to

the following mixture densities:

fQ(SQ, 09) = f(SQ. DQ I 9Q) (4.2)

and

fT(5T, DT) = f(5T, DT I 9T)- (4-3)

In this chapter, a match is defined in the same way as used by Pankanti et al. [35] (Equa-

tion 2.7), and it depends on the two parameters ro and do. Using the method to estimate To

and do introduced in Chapter 2, the values of T0 and do are found to be 15 and 22.5, based

on the ground truth database [38], respectively. These values will be used in the subsequent

experiments to estimate the PRC.

As in corrected uniform model by Pankanti et al. [35], minutiae in Q are taken to be at

least a distance of 2ro apart from each other. The spatial region within a distance ro of S?

is defined by

 

818?; m) = {(2:3) : 3/<:c — x9)? + (y — 32,913 To}, (4.4)

where1=1,2,...,n.

It follows from our assumption that the sets B0329; T0),i = 1, 2, 3, ..., m are non-

overlapping. A Similar condition is imposed on the template minutiae set. Subsequently,

the sets B(SJT; To) for j = 1, 2, . . . ,m, are also pairwise non-overlapping. It follows

from this assumption that there can be at most one match for each query minutiae point
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(5?, D?) If (SI-Q, D?) matches with (SJT, D?) for some j, then (Sf, Dz) cannot match

with the other minutiae points of Q.

4.2 Model for Estimating Fingerprint Individuality

An analytical model for the PRC is obtained in this section. Initially, let the query minutiae

set, (8?, DZQ), 1' = 1, 2, . . . ,n, be fixed. Define

11,: P{|ST — Sin g m and |DT — Din 3 do} (4.5)

to be the probability that a random minutiae from T, (ST, DT), distributed according to

Equation 4.3, is matched with (SI-Q , D?) Similarly, let

0, = P{|ST — SJT| g m and IDT — 0}] 3 do} (4.6)

denote the probability that (ST, DT) is matched with (3?, DE). The dependence of u,-

and vj on Q and T via the mixture distribution is implicit and subsequently suppressed.

We first compute the probability that there is exactly one match between Q and T, with-

out loss of generality, between (SQ, B?) and (Sir , Dill"). This probability is given by

(l—iui\ (l—iui—vg\ {l—iui—vg—v3\

1—111 1—111—122 1—111—122—123

1 l l . m2 1 2

{l—gui—;Uj\j

  

      

 

  

m .

1 — 11.1 - Z ’Uj

A 2:2 A

(4.7)

The first term in Equation 4.7, namely 111, corresponds to the event that there iS a match

between the minutiae points (5? , D?) and (SC111, D?) The second term is the probability

that (811,03) does not match with any of the other minutiae (8?, Big), 1' 2 2, given
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that there is already a match for (SQ, D?) Given (SIT,D:1F) and (S;, Dg), the third

template minutiae (ST, D?) can be positioned anywhere in the region outside B(SQ, D?)

and B(ST, D31); B(ST, D;) has to be considered as well, due to the imposed condition

that the template minutiae should not be close to each other. The requirement that (S31:w , B?)

should not match with any other query minutiae (Si-Q , D29), 1' 2 2, gives

77.

1—211, —122

i=1

(4.8)

1 - 111 - 122

 

as the required probability, which is the third term in Equation 4.7. Proceeding in this way,

the last term in Equation 4.7 is the probability that (8,15, D35) does not match any of the

previous template minutiae (Sf, Dir), j 2 2, due to the same condition that the template

minutiae should not be close to each other, or any of the query minutiae points. 1

Carrying this argument for w minutiae matches, the probability of obtaining matches

between (SRDIQ) and (ST,D;F) for l = 1,2, . . . ,w, and no matches between all re-

maining minutiae is Shown in Equation 4.9 and is denoted as g({(SQ, DZQ) : l =

1,2,---w},{(ST,DEF) :l=1,2,~-- ,w}.

g({(SQ,D,Q):I—_—1,2,.--w},{(S}’",Dg’") :l~—=1,2,~- ,w})

”2 ”3 ”112
_— ,_ _— 4.

u1x(1 1)x(1 1 2)x x 1 (9)

v

(1)

11) {l—iui—vw+1\ {1

121

X w XH-X

 

  

{1_i

\1—gui) \1_;ui—Uw+l) K1

-E1

.=w+1

 
 

      

71

~12?)
i=1

w m-l

~52
1:1 j=w+1 ”1.)!

v

(2)

where the term (1) denotes the probability that minutiae {(SQ, DIQ) : l =
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3,4, - - ~112}, {(SlT, DIT) : l = 3, 4, - .. ,w} are corresponded and term (2) denotes the

probability that there are no other matches except the p matches between Q and T.

Equation 4.9 is derived assuming that matches occurred between the first 112 minutiae of

the query and template, and no other matches were found for the remaining minutiae. It is

the first step towards estimation of probability of exactly 112 matches between Q and T. In

general, the match between Q and T can happen between any 112 minutiae from Q and T

respectively. Let {SIQ , D1622} be the 112 minutiae from Q that are matched to rrrinutiae in T,

where

IQ ={(z’1,1'2,---,1'w):151'1 <12 < <1w 311}.

Let {8}}, D51} be the 112 minutiae from T that are matched to minutiae in {SIQ ,ngz},

where

IT = {(21,22, - -- .212) = 1 s j11j21"'jw s m}-

Denote the minutiae in T that fail to match with any minutiae in Q as {8%, D26}, where

l0 —_— {jw+11jw+2a’” 1.7m: 1$j11j2a"'jw S m}.

The probability that minutiae {53211922} are matched to minutiae {S17}, D51}, and no

other minutiae are matched, is

21115? 21%)}, {(53}, 0,1911)

U" u‘ u.

= 111 x 22 x 23 x x 2‘”
1 — 11,1 1— uil — “(1.12 w—l
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n n

l—Zui\ (l—Eui_vjw+l\

z:
 

   

 

  

X 1:] X 112 X

1 — u- 1 — 11- — 12-
,; 1k) K I; 2k Jw+1}

{ n m—l \

1 — Z: 11, — Z vjk

X i=1 k:=nw+l . (4.10)

(1 - Z “I Z ”ka

l=1k=w+l

In order to calculate the probability of obtaining exactly 112 matches, all possible 112 indices

out of the total m from the template have to be considered for matching with the first 112

minutiae ofthe query. This can be done in m(m- 1)(m——2) - - - (m—w+1) = ml/(m—w)!

ways. Furthermore, 112 query minutiae can be selected for matchingm (If,) ways. Taking

into account the above facts, the probability of obtaining exactly w matches is given by

Z f({(S,QQ,DM111105.11) (4.11)

1511<12<-~<iwgn,

lsj13j21".tjwsm

In summary, the probability of exactly 112 matches between Q and T can be calculated as

follows,

(1) For each sequence of w minutiae in Q and T, 51% and S11}, calculate the probability

that minutiae 31% is matched with minutiae S5 from Equation 4.10.

(2) Calculate the sum of all the m!/(m — 112)! probabilities calculated in step (1) and

obtain the PRC by Equation 4.11. Thus the probability of exactly 112 matches between

Q and T is achieved.

4.3 Difficulties in Estimating Fingerprint Individuality

There are several difficulties in calculating the PRCS for a given fingerprint database ac-

cording to Equation 4.11. The main challenge is that it involves a sum over all possible
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subset of 112 distinct indices from {1, 2, . . . ,m}. Even for moderate values of w and m

(such as the values considered in Section 7.1), the number of terms in the summation, i.e.,

(3)), is very large. For example, when m = 26 and w = 12, the value of (3,) is 9, 657, 700.

Thus, any method that involves Simulation for computing the entire summation (or, an

estimate of the summation using, for example, bootstrap samples) becomes infeasible in

terms of computational time. Another challenge is that the above summation needs to be

computed for every pair of impostor fingerprint images in the given database to estimate

fingerprint individuality of a target population. For example, the NIST database used in

this thesis have, respectively, 3, 998, 000 pairs of impostor fingerprint images, making any

simulation-based method both infeasible and impractical. In the next section, we Show that

Equation 4.11 can be approximated by a Poisson distribution which drastically simplifies

estimation of fingerprint individuality. The Poisson model solves the problems mentioned

above with regard to the summation over different 1' and j indices. The Poisson model

simplifies the estimation of fingerprint individuality for a pair (Q, T). In chapter 5, we

consider a population/database from which the pairs (Q, T) are generated. There are prob-

lems with computations in this scenario, too, and for this reason, the hyper-mixture models

are developed.

4.4 Poisson Model

In this section, we Show that Equation 4.11 can be approximated by a Poisson distribution

which drastically Simplifies assessment of fingerprint individuality and therefore solves the

main challenge discussed above.

Recall that 111, defined in Equation 4.5, is the probability that (59,12?) matches

(ST , DT) . Let

pier) = Eel) = P(IST — SQI s m and IDT — DQI 3 do) (4.12)

denote the probability of a match when (SQ, DQ) and (ST, DT) are random pair of minu-
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tiae from Equations 4.2 and 4.3. For a set of n minutiae in query Q sampled from Equation

4.2, and a set of m minutiae in query T sampled from Equation 4.3,

A(Q, T) E m np(Q, T) (4.13)

is the expected value of the number of matches between Q and T. Similarly, when both Q

and T arise from Equation 4.3, let

1/(Q, T) = m n E(121) (4.14)

be the expected value of the number of matches between them, where 121 is defined in

Equation 4.6. The term (2) in Equation 4.9 is approximately e—A for large m and n. This

is derived as follows. When m and n are large (m x n > 100), the largest summation

involving the vj’s in Equation 4.9 (term (2)) is

m—l 1 m—l I! V

12- = m- — 12- szv =m(———)=:-. 4.153:. m2, (.1 nmn<>
J=w+1 J=w+1

m—l

. V .

Since — 13 close to zero for large 11, each of the terms 12w+1, 12w+1 + 12w+2, . . . , Z 123'

n

j=w+1

is also close to zero by Equation 4.15. Moreover, note that the difference

112 / n n A

I‘Z“1‘\1*Z“i T: the}; (4.16)

2:1 2:1 2=w+1

w

using an argument Similar to that in Equation 4.15. Furthermore, Since 2 u,- z 0 for large

i=1

m and n, we get the following two equations:

” 1 n ,\ A
l—Zui=1—n(;Zuz-)zl—n(n—1;L-)=1—T—n-, (4.17)

1:1 2:1

and

111

1—2 a,- z 1. (4.18)

121
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In order to calculate (term (2)) in Equation 4.9, first calculate the logarithm of ((2)) as

 

    
 

 

follows:

71 w

(m - w) 10230 - Z: 141) - (m - w) 105(1 - Z 14)

i=1 1:1

('1')

B B \3

m—l ( Z vj\ m—l K E v]

+ 2 log 1 — ———]=w+nl — 2 log 1 — ———J:wtul

B=w+1 1 _ Z “'2' B=w+1 1_ Z “2'

1 1 1 1
(17)

(II) can be Simplified as

m—l B m—l B

Z Z a, Z Z a,-
(II) = B=w+1j=w+1 _ B=w+1j=w+1

TI. 11)

1 -— Z 11, 1 — Z 11,-

i=1 i=1

m—l B

A/m

(T-T/ai Z Z ”1'
B=w+1 j=w+1

< C i (m K) (4.19)
m n

for some constant C for large m and 11 using equations 4.15, 4.16 and 4.17. From the last

line in Equation 4.19, it follows that (H) goes to zero as m and 11. go to to infinity. Thus,

log(B) = (m — 112) log(1 —— Z 21,-) — (m — 112)log(1—- Z 11,-)

i=1 i=1

2 —(m — 112) Z 11,-

i=w+l

as m and 11 go to to infinity. Therefore (term 2) in (4.9) can be approximated by

exp{—A(Q, T)} (4.20)
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when both m and n are large, and when the number of matches 11) is moderate (i.e., 112/m

and 112/n are not too close to either 0 or 1). In applications, where m x n > 100 and

m x n x p(Q,T) < 10, m and n are considered sufficiently large and the number of

matches are considered as moderate [39].

Each term in the denominator of (term (1)) in equation 4.9 is close to 1 Since 11,- :e 0 for

each 1' = 1, 2, . . . ,112 — 1. Thus, equation 4.9 can be written approximately as

w

I] utexpt—A(Q.T)}- (4.21)

121

Similar to Equation 4.21, starting with Equation 4.10 (instead of Equation 4.9), the follow-

ing holds:

Q Q w
MS, ,DlQ», {(8311, 0,711)» = H at, exp{-A(Q,T)}- (4.22)

Applying Equation 4.22 to Equation 4.11, the probability of obtaining exactly 112 matches

is given by

m! w ,

11<12<m<1w k=1

where the summation in (4.23) is over all 112 distinct indices 1'1 < 12 < .. . < 1w from

{1,2,...,n}.

Equation 4.23 can be Simplified when n is large. Note that

1 w

(7.— Z [1 “1k e (E(ut))“’, (4.24)

w 2‘1<1'2<---<1'w k=1

where E(111) iS defined as in Equation 4.12, because ui’s are independent and identically

distributed. Substituting Equation 4.24 in Equation 4.23 with E(111) = A(Q, T)/(mm)

from Equation 4.13, the probability of exactly 112 matches is

p(wiQ,T) a —""——,(”) (Myewt—MQTH
(m — 112). 112 mn

e—A(Q,T) A(QI T)w

112!

(4.25) 22
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for large m and n and moderate 112, which corresponds to a Poisson distribution with mean

A(Q, T)-

4.5 Justification of the Poisson Model

Equation 4.29 corresponds to a Poisson probability mass function with mean A (as defined

in Equation 4.13), where A is the expected number of matches from the total number of

mn possible pairings between 71 minutiae in Q and m minutiae in T, with the probability

of each match being p(Q, T). Using a Poisson distribution to approximate the number

of matched minutiae pairs, which follows a binomial distribution, is valid because of the

following three properties. (i) In fingerprint matching, a “success” is defined as a minutia

match and the number of trials, mn, is large (_>_ 100) [39]. This can be confirmed by

Figures 7.2 and 7.3 in Chapter 7, which Show that m and n are much greater than 10 for

most fingerprints. (ii) The probability of a success, p(Q, T), is small. (iii) The number

of impostor matches between Q and T is moderate. The properties (ii) and (iii) can be

confirmed by Table 7.7 where the right-most column Shows that, for all three databases,

the empirical value of the number of matched minutiae pairs between two fingerprints is

always less than 10. In summary, it is appropriate to use Poisson model in Equation 4.29.

4.6 Overlapping Area Model: Comparison of Mixture

Model with Corrected Uniform Model

During fingerprint matching, an overlapping area is formed after alignment between minu-

tiae regions of Q and T (see Figure 4.1). Assume that no out of the n minutiae in Q,

and mo out of the m minutiae in T are within the overlapping area. The PRC proposed

by Pankanti et al. [35] was based on the parameters within the overlapping area, namely

no and mo, whereas the PRC in this thesis is based on n and m of the entire fingerprint.
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Because of this difference, the PRCS from the corrected uniform model and those from

the mixture model on the entire fingerprint area cannot be compared. For comparing with

the corrected uniform model, an overlapping area is developed, adopting the parameter no

and mo as used by Pankanti et al. [35], but still estimating the PRC based on the minutiae

density from the mixture models.

4.6.1 Determination of no, mo and the Overlapping Area

The first step of overlapping area model is to find no, mo and the overlapping area between

Q and T. To find the overlapping area, the model has to first determine the entire minutiae

region for both Q and T, which is defined as the minimal ellipse that encompasses all the

minutiae in the fingerprint, as follows. A convex hull encompassing all minutiae locations

is first determined (see Figure 4.2, where minutiae locations are labeled as squares). Then,

an ellipse (denoted by a dashed line in Figure 4.2) is obtained by the direct least square

fitting method [17]. Since some of the minutiae fall outside the dashed ellipse, the size

of the ellipse is increased until it encloses all the minutiae. The resulting ellipse (i.e., the

minimal ellipse) is denoted by a solid line in Figure 4.2. After determining the minutiae

regions, Q and T are aligned with a Procrustes transformation [29]. This completes the

first step of the model construction, namely, finding no, mo and the overlapping area.

4.6.2 Adaptation of Mixture Model to Overlapping Area Model

The second step of the overlapping area model is to estimate the PRC adopting no and mo

as used by Pankanti et al. [35], and employing the minutiae density of the mixture model

truncated to the overlapping area. Assume that the minutiae densities of fingerprints Q and

T are fQ(S, D) and fT(S, D) as in Equations 4.2 and 4.3, respectively. The alignment

of minutiae region Q with respect to minutiae region T, which is obtained from the Pro-

crustes transformation, is denoted as TR(Q, T). Further assume that after alignment, the

overlapping area is A(Q, T). It is obvious the minutiae density from fingerprint Q in the
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Template. T

Overlapping

Region

 
Figure 4.1: Overlapping area of two fingerprints during matching

overlapping area is

fQ1TR'1(QiT)(S,D)) X M

from) fQ(TR‘1(Q, T)(S, 12)) x lJldeD'

 (4.26)

where TR‘1 (Q, T)(S, D) is the transformation to obtain the original placement of query

Q without its alignment with T at which placement the minutiae density of Q is estimated

and |J| is absolute value of the Jacobian determinate. The minutiae density from T in the

overlapping area is

fT(Si D)

fA(Q,T) fT(S, D)deD

Let (SQ, DQ) be a random selected minutia from Q in the overlapping area, and let

 (4.27)

(ST, DT) be a random selected minutiae from T in the overlapping area. Furthermore,

let the probability of a random match in the overlapping area be

P0(Q,T) = P(ISQ - 8T1 3 re and IDQ — 071 3 doing, m0)- (428)

63



  (a)

Figure 4.2: Convex hull of minutiae and best fitting ellipses. (a) The minutiae from image

(b) and the best fitting ellipse to the minutiae set. p1, p2, c, 6 are the major axis, minor

axis, center, and orientation of the ellipse. (b) Fingerprint image with minutiae and the best

fitting ellipse

Applying the Poisson model, the probability of obtaining exactly 112 minutiae matches is

(MW) Ao(Q, le
p0(w; QIT) z w, , (4.29)

Where A0(Q, T) = n0 X m0 >< 100(Q,T)-

4.7 Summary

A mathematical model was developed to estimate PRCS, given a pair of fingerprints Q

and T with n and m minutiae, respectively. The minutiae density was estimated from

the mixture models developed in Chapter 3. Although the model calculates PRCS in a

closed form, its estimation is time-consuming for practical applications. Hence a Poisson

approximation was derived to improve the computational efficiency. The Poisson model

simplifies the estimation of fingerprint individuality for a pair (Q, T).

To compare PRCS from the mixture model with those from the corrected uniform model,
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an overlapping area model was developed, adopting the definition of PRC proposed by

Pankanti et al. [35], while still assuming that the minutiae density is estimated from the

proposed mixture model. In chapter 5, we consider a population/database from which the

pairs (Q,T) are generated. There are problems with computations in this scenario, too, and

for this reason, the hyperrrrixture models are developed.
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CHAPTER 5

Assessment of Fingerprint Individuality:

Target Population

There are two challenges involved in obtaining an assessment of fingerprint individuality.

The first challenge was resolved after Poisson model was developed in the last chapter. The

second challenge for the assessment of fingerprint individuality is that computation for ev-

ery pair of impostor fingerprint images in the given database is required to estimate finger-

print individuality of a target population. For example, the NIST 2000 SD4 database used

in this thesis have, respectively, 3, 998,000 pairs of impostor fingerprint images, making

any simulation-based method both infeasible and impractical. The hyper-mixture density

model developed in this chapter, on the other hand, is meant to solve the second challenge.

5.1 The Hyper-mixture Density Model

Assume in a target population there are N* unknown different minutiae distribution groups

with class densities H1, H2, ..., HN* and corresponding proportions 7r1, 7r2, ..., ”N* (where

Nil!

71,- 2 0 for 1' :2 1, 2, ..., N*, and Zn,- 2 1). Thus, fingerprints in different groups have

121

different distributions (Hi’s), whereas those within the same group have Similar minutiae
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distributions. Therefore, this hyper-mixture model is capable of capturing different minu—

tiae distributions in different fingers in the population. Note that this assumption is needed

Since it is well-known that fingerprints belong to five different classes (i.e., right-loop, left-

loop, whorl, arch and tented arch), and therefore are likely to have different class-Specific

minutiae distributions. Thus, using only one common minutiae distribution may smooth

out different distributions in the fingerprint classes. Moreover, PRCS depend heavily on the

composition of each target population and different target populations may have different

composition of the fingerprint classes [18]. For example, the proportion of occurrence of

the right-loop, left-loop, whorl, arch and tented arch classes of fingerprints is estimated

to be 31.7%, 33.8%, 27.9%, 3.7% and 2.9%, respectively, in the general population [27].

Thus, PRCS computed for fingerprints from the general population will be influenced more

by the mixture models fitted to the right-loop, left-loop and whorl classes, than to the arch

and tented arch classes. In effect, the composition of target population needs to be Studied,

which is the goal of the hyper-mixture model. Besides the possible uneven proportions,

more important is the fact that the class proportions might change across different target

populations (for example, if the target population has an equal number of fingerprints in

each class, or with class proportions different from the ones given above), which will lead

to change of the PRCS. With a hyper-mixture model comprising of N* clusters of minutiae

distributions, the methodology of obtaining PRCS for a pair of fingerprints can be extended

to any target population.

To formally obtain the composition of a target population, an agglomerative hierarchi-

cal clustering procedure [21] was adopted on the space of all fitted mixture models. The

dissimilarity measure between the estimated mixture densities f and g is taken to be the

Hellinger distance [25]

H(f,g)=/ / (3/f(s,9)—\/g(s,9))2drrd0- (5.1)
568 6€[0,27r)

The reasons for using Hellinger distance, H(f, g), is that it is a number bounded between

0 and 2, with H(f, g) = 0 (respectively, H(f, g) = 2) if and only if f = g (respectively,
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f and 9 have disjoint support). Thus, we avoid distance measures that are arbitrarily large

and therefore can focus on thresholds of clustering in [0,2] only.

For a database of F fingers, a total of F(F — 1) /2 Hellinger distances were obtained

corresponding to the F(F — 1) /2 mixture pairs. The agglomerative hierarchical clustering

methodology with Ward’s method [22] gives a dendrogram that can be cut at an appropriate

level to form N clusters of mixture densities, 01,02, . . . ,CN. Note that N = 1 when

A = 2, and N increases to F(F — 1)/2 as A decreases to 0. When the number of clusters is

N, the within cluster dissimilarity is defined as

1

WN = 2:] 317.1 P(Ct), (5.2)

where

17(01): Z H(f.g) (5.3)

f,g€Ci

is the sum of all distances H(f, g) for f and g in 0,, and |C,-| is the number of mixture

densities in Ci. Note that as N increases to F, WN decreases to 0. To choose the optimal

number of clusters, the “Gap Statistic” [48] is applied as follows: Let GN = |WN—WN_1|

denote the absolute difference between the within cluster dissimilarities WN_1 and WN.

N* is selected as the number of clusters if the values of GN for N > N* are insignificant

(close to 0) compared to the value of GN*. Figure 5.1 shows the plot of GN against N for

NIST 2000 SD 4. GN doesn’t change Significantly when the number of clusters is more

than 33. Hence N* iS chosen as 33. For now, N* is chosen by visual inspection of Figure

5.1; we tend to prefer larger N* values so as not to under-represent the interclass variability

of the population.

Once the number of clusters N* has been determined, the mean mixture density for each

cluster C,- is determined as

113.6) = 33.-I 2 213,6), (5.4)
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Figure 5.1: Determination of the number of clusters for NIST 2000 SD 4. The number of

clusters estimated is 33.
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where f (s, 6) is the mixture distribution from Equation 3.5. The weight 7r,- of cluster C,- is

(5.5)

At this point, all the parameters in the model have been estimated. Since the minutiae

distribution of each cluster is a mixture (average) of the densities of the mixture models

that are fitted to each individual finger, the model is appropriately called a “hyper-mixture

model”.

5.2 Relationship between Clusters from Hyper-mixture

Model and Fingerprint Classes

Fingerprint clusters in the hyper-mixture model are determined by minutiae distribution,

whereas the definition of the fingerprint classes is based on global ridge pattern. Thus the

relationship between clusters and fingerprint classes is worthy of investigation. Finger-

prints in a cluster can belong to different classes. If the clusters and classes are totally

uncorrelated, every one of the three classes should be evenly distributed among all the 33

clusters. On the other hand, if a certain fingerprint class tends to concentrate into some

clusters, it can be concluded that there is a strong correlation between clusters and classes.

Figure 5.2 shows the composition of the three major fingerprint classes (i.e., the number

of fingerprints for each class, loop, whorl, arch, where loop includes left loop and right

loop, arch includes arch and tented arch) for each of the 33 clusters in the NIST 2000 SD

4. The wide spread on the vertical axis indicates that the classes are not evenly distributed

among the 33 clusters (otherwise the plot should be approximately a flat line). More quan-

titatively, for each fingerprint class, after ranking the clusters according to the number of

fingerprints in the class, the total number of fingerprints from the top 16 out of the 33 clus-

ters were counted. If the clusters are evenly distributed, the total number should be close to
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Figure 5.2: The number of fingerprints in the three main classes for the 33 clusters from

the hyper-mixture models on NIST 2000 SD 4. For each cluster label 2' as shown in the

horizontal axis, the vertical coordinate of each point shows the number of fingers in loop

(labeled with dots), whorl (labeled with triangles) and arch (labeled with squares).

16/33 z 50%. However, the top 16 whorl clusters consist of 97% of all whorl fingerprints;

for the top 16 loop clusters and the top 16 arch clusters, the percentages are 73% and 80%,

respectively. Furthermore, the whorl clusters are so clustered that 69% of the whorl finger—

prints belong to the top 5 whorl clusters, and those 5 clusters have very few fingerprints

from the other two classes, namely loop and arch. We conclude there is a strong correlation

between clusters of hyper-mixture models and the three main fingerprint classes.
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5.3 Assessment of Fingerprint Individuality for a Target

Population

Given the N* cluster densities (H1, H2, ..., HN*) and cluster weights {n1,7r2, ...7rN*},

fingerprint individuality of the target population can be calculated as follows.

The mean parameter A(Q, T) in Equation 4.13 depends on Q and T via the mean mixture

densities of the clusters from which Q and T are taken. If Q and T belong to clusters C,- and

C}, respectively, then the mean mixture densities of C,- and Cj can be used in place of the

original mixture densities in Equation 4.12, i.e., A(Q, T) E A(Ci, 0]). Let p*(w; Ci, 0])

denote the Poisson probability

_ . . ,\
p*(w; 02363) =e A(CZ’CJ) (5.6)

11)!

For a fingerprint database consisting of N* different clusters of distributions, the most rep-

resentative value for the probability of a random correspondence is reported as the estimate

of fingerprint individuality for this database. There are a total of N*(N* — 1) possible

impostor pairs of fingerprint images (Q, T), where Q and T come from different clusters.

Let T0 ={(z’,j):1§z’§ N* andl g j g N*,z’ 7é j}. The average PRC corresponding

to w minutiae matches is given by

__ 203356511) Wifijp*(’w; Cucj)
PRC = ,

2 W1

(i,J')€To

(5.7)
 

where p*(w; Q, T) is defined in Equation 4.29. Note that p*(w; Q, T) is symmetric in

Q and T, and thus it is sufficient to consider only the N*(N* — 1) /2 distinct impostor

pairs instead of the total N*(N* — 1). Each of the probabilities, p*(w; Q,T), is very

small, e.g., 10‘6 or 10‘7. Thus, the average PRC in Equation 5.7 is highly affected by

the largest of these probabilities, and is, therefore, not reliable as an estimate of typical

PRCS arising from the impostor pairs. A better measure would be to consider an average

of the trimmed probabilities. Let (1 denote the percentage of p*(w; Q, T) to be trimmed,
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and let p* (w; a/2) and p* (w; 1 — a/2), respectively, denote the lower and upper 100a/2-th

percentiles of these probabilities. Define the set of all trimmed p*(w ; 0,, 03-) probabilities

as T E {(z',j) : p*(w;oz/2) S p*(w; Ci,CJ-) S p*(w;1— a/2)}. Then, the a-trimmed

mean PRC is

Z(i,j)€T 7r,-7rj P*(w; CiaCj)

2 7n 7rj

(i,j)eT

The above discussion is general and holds true for any distribution of the query and

PRCa = (5.8) 

template minutiae. In particular, when the distribution on the minutiae (both location and

direction) are chosen to be uniform as in the model by Pankanti et al. [35], the following

expression for A(Q, T) is obtained:

/\U(Q,T) = man pp, (5.9)

where pL (respectively, pD) is the probability that SQ and ST (respectively, DQ and DT)

will match. The probability of a location-and-direction match appears as the product pL

and pD since the minutiae location and direction are distributed independently of each

other.

5.4 Summary

A hyper-mixture model was proposed to cluster the mixture models of all the fingers in the

sample database into clusters so that fingerprints in the same cluster have similar distribu-

tions. The PRCs for the target population can be calculated by the weighted average of

PRC5 for the clusters from the hyper-mixture models. Study on the clusters in the hyper-

mixture model showed that fingerprints of the same class are not uniformly distributed in

the clusters of hyper-mixture models and fingerprints of the same class tend to belong to

the same cluster.
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CHAPTER 6

Assessing Fingerprint Individuality:

Compound Stochastic Models

6.1 Motivation

There are two sources of fingerprint variability in matching, namely interclass variability

and intraclass variability. Chapter 5 addressed interclass variability, i.e., minutiae variabil-

ity in different fingers in target population. While still taking minutiae locations and di-

rections as the salient features, this chapter focuses on modeling both intraclass variability

and interclass variability. The previous studies discussed in Chapter 2 ( [3], [11], [16], [18],

[23], [41], [47], [50] ) did not model intraclass variability. Though the corrected uniform

model by Pankanti et al. [35] estimated parameter I from empirical genuine matching, their

model didn’t study the intraclass variability intensively. In this chapter, compound stochas—

tic models are developed to account for three sources of minutiae variability, namely, (i)

variability in minutiae distributions in different fingers, (ii) variability due to local perturba-

tions arising from non-linear distortion effects in multiple impressions of the same finger,

and (iii) variability due to partial prints in multiple acquisitions of the same finger. The

three sources of variability mentioned here account for most of the variability in minutiae
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Figure 6.1: Flow chart for constructing compound stochastic model and assessing finger-

print individuality

distributions. Since a compound stochastic model involves both interclass and intraclass

variability, it is a more realistic model compared to the hyper-mixture model introduced in

Chapter 5 which only addressed the first variability mentioned above. The flow chart in

Figure 6.1 gives the steps involved in constructing the compound stochastic model.

6.2 Compound Stochastic Model

6.2.1 Construction of Master Minutiae Set

Suppose a fingerprint database consists of prints of F different fingers with L impressions

per finger. Let .7:( f, 1) denote the l-th impression of the f-th finger. As a first step to-

wards constructing the compound stochastic model for finger f, the minutiae in all the L

impressions of a finger, .7-"( f, l),l = 1, 2, . . . ,L, are combined to obtain a “master” set. A
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reference impression for each finger f, without loss of generality, f(f, 1), say, the first

impression, is chosen as follows: Since the quality and the sensed area corresponding to

different impressions of the same finger are typically different, the reference impression

is chosen as the one that has relatively good quality computed according to [8] and maxi-

mizes, on the average, the number of minutiae matches with all other impressions of that

finger.

Once the reference impression is determined, all other impressions are aligned to it via

a Procrustes transformation [29] based on the correspondences from the matcher reported

in Section 6.4.1. Thus, for each I = 2, 3, . . . ,L, .7-‘(f, l) is aligned to .7-"(f,1), using the

rigid transformation T(f, l), and correspondences between minutiae in .7:(f, l) and .77(f, l)

are found. The correspondence between the minutiae sets was achieved by both auto-

matic fingerprint matching and manual verification as described in section 6.4.1. When

a minutia in .7:(f, I) does not have any corresponding minutiae in f(f, 1), that minutiae

is appended to the list of minutiae in .7:(f, 1). The consolidation of minutiae into the

master set in this way eventually results in a total of n consolidated minutiae in .7:(f, 1)

with correspondence sets Mk, k = 1, 2, . . . ,n. The elements in each Mk are denoted by

{(Skj, ij), j = 1, 2, . . . ,mk}, where SM and ij are, respectively, the j-th location and

direction of minutiae Is. For each set of correspondences, define the mean, or the center,

mk
_ 1 _

of Skj as 5;, = — Z Skj. The mean of ij, Dk, is taken to be the phase angle of the

mk j=l

mk

complex number 2 cos(ij) + isin(ij) (see also [28]). The deviations of locations

i=1

and directions from their respective centers for the k-th minutiae are given by

{(Skj‘gk,ij—Dk),j=1,2,-.-,mk}- (6.1)

An illustration of the construction of a master minutiae set is presented in Figure 6.2, in

which multiple impressions of the same finger (top panel) are aligned to the reference image

(bottom left panel) to obtain the master minutiae set with minutiae centers shown (bottom

right panel).
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(b) Reference impression (c) Master

Figure 6.2: Master minutiae set construction. Eight impressions are shown which include

the reference impression (b) and the other seven impressions (a). The number of minutiae

in each impression in the first row is 29, 30, 27, 32, 32, 38, 24. The number of minutiae in

the reference impression in the second row is 38. There are 70 minutiae centers kept in the

master minutiae set .

6.2.2 Mixture Model on the Centers: Adaptation of Mixture Models

to Compound Stochastic Models

The first two stages of the compound stochastic models consist of developing statistical

models on (i) the centers, and (ii) the deviations of the observed minutiae from their re-

spective centers.

Each minutia center in the master, (5k, Dk), k = 1, 2, . . . ,n, is assumed to be indepen-

dently distributed according to the mixture density defined in Equation 3.5. The parameters

of the mixture model are estimated using the method introduced in Chapter 3. Figure 6.3
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Figure 6.3: The ability of the mixture model to capture clustering characteristics of the

master in (a). The eight impressions are shown in Figure 6.2. Three cluster components

labeled by circles, squares and asterisk in the mixture model fitted to the minutiae in (a).

shows an example of fitted mixture model to a master minutiae set. Figure 6.3 (a) is the

master minutiae set obtained from eight different fingerprint impressions of a finger. Fig-

ure 6.3 (b) shows three clusters, labeled with circles, squares and asterisks, obtained by the

mixture model fitting.

6.2.3 Local Perturbation Model

The local perturbation model consists of a probability model to capture fingerprint distor-

tions in different finger regions. For the local perturbation model, the domain of the master

is first divided into a lattice of b0 non-overlapping blocks, 13 = {Bb, b = 1, 2, . . . ,bO }. If

the mean of the k-th minutiae 3,, belongs to 35, then the k-th minutiae is assigned to block
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Bb.

In block Bb, the location deviations of all the minutiae that fall in 81,, i.e.,

{Skj — 3k : 3k E Bb},

are modeled as a bivariate normal distribution with mean zero and covariance matrix

COVBb. The covariance matrix COVBb allows for flexible modeling of the dominant

directions of distortions via the eigenvalues and eigenvectors of COVBb- In this chapter,

the covariance matrix COVBb is estimated by

mk

6073,) =% Z Z (Skj — 5k) ' (Skj — EDT,

k : SkEBb j=1

where N = 2,615,663,) mk.

The minutiae direction deviations, on the other hand, {ij — Dk : 5'), E Bb}, are

modeled as a Von-Mises distribution with mean zero and precision 53b. The unknown

parameter 1:3,) is estimated from the observed deviations in each block Bb (based on the

estimation procedure given in [28]).

The local perturbation model assumes that the non-linear distortions of different minutiae

within the same block are independent and identically distributed, whereas the distortions

in different blocks can be different. Figure 6.4 (a) shows two minutiae, labeled as 1 and 2, in

the reference image. The locations and directions of minutiae 1 and 2 in seven other aligned

impressions are shown in Figures 6.4 (b) and (c). Note that there are multiple location

and direction values for the same minutiae in different impressions of the same finger.

The changes in the location and direction values are due to nonlinear distortion introduced

during sensing as the three-dimensional finger surface is projected onto a two-dimensional

plane. The amount of distortion is different in different regions of the finger. The distortion

is usually less in regions closer to the center of a finger, compared to peripheral regions

due to nonuniform pressure of the finger against the sensor [7]. In the area closer to the

center of the fingerprint image, the pressure is high and the slippage is little and therefore
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(b) minutiae 1 (c) minutiae 2  

Figure 6.4: Consolidating minutiae: (a) a partial fingerprint image. (b) and (c) show the

locations and directions of the two labeled minutiae in (a) from eight aligned impressions.

the distortion is small; However, in the outer region, the pressure is small and slippage can

be large which leads to large distortion. Computing the average location (5),) and average

direction (Dk) for each minutia smoothes out the noise.

6.2.4 Modeling the Variability of Partial Prints

The third and the final component of the compound stochastic model accounts for minutiae

variability due to partial prints in multiple acquisitions of a finger. The partial print region

can be determined as the minimal ellipse discussed in Chapter 4.

For the impression .7-"(f, l), the following parameters uniquely determine the minimal

ellipse discussed in section 4.6: the area [A(f, l)], length of major axis [p1(f, l)], the ori-

entation [6(f, l)], and the center [c(f, l)]. In our experiments, the ratio of the lengths of the

major to minor axes of each ellipse (say, 7'0) is fixed. Thus, the effective ellipse parame-

ters reduce to the triplet E(f, l) E {A(f, l), 0(f, l),c(f, 1)}. Denote the collection of all

the ellipse parameters for all the fingerprint impressions in the fingerprint database by 8,

and let T E {T_1(f, l)}, where T(f, l ) is a Procrustes transformation [29] used to align

.7-"(f, l ) to .7-"(f, 1). With these quantities defined, a conditional minutiae synthesis method

can be applied to estimate the fingerprint individuality, which is described in the following

section.
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6.3 Conditional Minutiae Synthesis

In Chapter 4, an analytical method, namely the Poisson model, based solely on the in-

terclass variability was introduced for the assessment of fingerprint individuality. When

additional sources of minutiae variability are considered, larger number of parameters are

involved in calculating fingerprint individuality requiring a more elegant analytical for-

mula. An alternative synthesis method, namely the conditional minutiae synthesis method,

is developed in this section so that all sources of variability in the stochastic model, i.e.,

both interclass and intraclass variabilities, are considered in the simulation procedure and

the simulated minutiae sets are matched by a matcher to find the PRC. This method re-

places the step of fingerprint individuality calculation by matching the simulated minutiae

sets.

A minutiae set is synthesized for a finger consisting of a pre—specified number (m) of

minutiae. In order to synthesize this minutiae set, the minimal ellipse that encompasses all

minutiae needs to be simulated first. The areas of best-fitting ellipses are found, in general,

to be strongly correlated with the total number of minutiae, i.e., m(f, 1 ), in a fingerprint

impression. As an example, an illustration is given based on FVC 2002 D31 database.

In this database the ellipse area A(f, 1) is positively correlated with m(f, 1) (see Figure

6.5), while the other variables had no significant correlation. Consequently, a quadratic

polynomial in m(f,1), i.e., Q0(m(f, 1)), was fitted to the scatter plot of (m(f,1),A(f, 1))

(Figure 6.5). The residuals from the fit were found to follow a normal distribution with

mean u and standard deviation 00, where p, = 4.5 and 00 = 1.4 x 104. As a consequence,

the area of a partial print with a fixed number of minutiae can be simulated.

An illustration of the conditional synthesis technique is given based on the FVC 2002

DB1 database. Panels (a) and (b) in Figure 6.6 give an instance of a finger f. Panel (a)

shows the constructed master set with m minutiae, and panel (b) shows the corresponding

minimal ellipse. The procedure of minutiae synthesis is as follows: (i) A random ellipse

is generated whose area is a sample from a normal distribution with mean Q0(m) and
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Figure 6.5: Scatter plot of the area of ellipse [A(f, l )] versus the total number of minutiae

[m(f, 1 )], and the fitted quadratic polynomial for the FVC 2002 DB] [26].

standard deviation 00, and the orientation and center of the ellipse are randomly selected

from the second and third components of 8 . (ii) a minutia center is then generated from the

mixture model of master f. (iii) A deviation is generated according to the local perturbation

model, and compounded to the generated minutiae center from step (ii). This synthesized

minutiae is retained if its location lies within the ellipse in step (i) and rejected otherwise.

Steps (ii) and (iii) are repeated until m synthesized minutiae fall inside the ellipse. In Figure

6.6, panel (c) shows the m synthesized minutiae centers from the mixture model, whereas

panel ((1) shows the synthesized minutiae after compounding with the local perturbation

model. (iv) Finally, the m minutiae are transformed by a random rigid transformation from

T to form the synthesized impression (Figure 6.6 (e)). During this synthesis procedure,

the inter-minutiae distances in an impression are controlled so that they are no smaller than
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Figure 6.6: Simulating m0 = 36 minutiae for FVC 2002 DB1: (a) Finger impression,

(b) Minutiae and minimal ellipse for the impression, (c) Random ellipse and synthesized

minutiae centers from the mixture model, (d) Synthesized minutiae after compounding with

local perturbations, and (e) Synthesized impression after rigid transformation.

the minimal inter-minutiae distance estimated from the empirical databases. Note from

Figures 6.6 (c-e) that the synthesized fingerprint has similar clustering characteristics and

dependence structure as the original fingerprint (Figure 6.6 (a)). The fingerprint synthesis

procedure described above is able to simulate any number of synthetic impressions of a

finger (as a minutia set) with a pre-determined number of minutiae (m) while preserving

the clustering and dependence characteristics of the minutiae.

Given a query fingerprint Q with n minutiae and a template T with m minutiae, the prob-

ability that Q and T share exactly to minutiae is needed to estimate fingerprint individuality.
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This probability is given by the expression

p(wlm, n) = P{S(Q,T) = w I #Q = n, #T = m, IQ 75 IT}, (6.2)

where S(Q, T) is the number of minutiae matches between Q and T as determined by a

matcher.

The conditional synthesis technique, described earlier in this section, is applied to simulate

fingerprint impressions so that each Q (respectively, T) has exactly 71 (respectively, m)

minutiae. Without loss of generality, we assume m = 71. Corresponding to each finger

f in the database, multiple synthetic impressions are generated based on the conditional

synthesis technique. The resulting synthetic database is denoted as follows,

{J-"*(f,1), 1 = 1, 2, ..., H, f = 1, 2, ..., F},

where .7-'*(f, 1) is the 1-th synthetic impression from finger f. In order to obtain the dis-

tribution of the number of impostor matches for the synthetic database, the fingerprint

matcher reported in [40] is applied to each pair of impostor fingerprints. A description of

the matcher is described in section 6.4. To compute the probability of 11) matches, namely

p(wlm, n), the number of impostor pairs that resulted in w minutiae matches is counted,

and this number is then divided by the total number of impostor pairs. Thus p(wlm, n) is

given by the following equation

H H F F

:2Z Z Iw{(frl)r(f’rl,)}

l=11l=1f=1f1=1

f¢ ’

F(F — 1)H2 ’ (6'3)

 

p(wlm, 71) =

where Iw{(f,1), (f’,l’)} is 1 ifS(.F*(f,1),.7-'*(f’,1’)) equals to, and 0 otherwise. Note that

p(wlm, 72) provides an estimate of the probability in Equation 6.2 based on the synthetic

database.

Although the compound stochastic models incorporate more sources of minutiae vari-

ability compared to the hyper-mixture model, they have limited capability to estimate fin-
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gerprint individuality. While Equation 6.3 gives reliable estimates of fingerprint individu-

ality for small and moderate values of w, the estimate obtained for large to is not reliable.

In the case of large w, the true value of Equation 6.2 is extremely small. As a consequence,

Equation 6.3 gives zero as the estimate of Equation 6.2, due to limitations of numerical

precision.

6.4 Description of Matchers

6.4.1 Matcher for Master Construction

During master construction, in order to find correspondence between multiple impressions

of the same finger, an adaptive elastic string matcher, developed by Jain et al. [1], was

applied. One can reference the original article for details of this matcher. After applying

the matcher, the reported correspondence was manually checked to remove false matched

minutiae pairs and to add true matched minutiae pairs that were not detected by the matcher.

6.4.2 Matcher for Synthesized Minutiae Matching

In order to match the minutiae sets synthesized from the compound stochastic models, a

matcher developed by Ross et al. [40] was used. Unlike the matcher for construction above

which utilizes the fingerprint ridges besides minutiae, this matcher utilizes only minutiae

information. The matcher was implemented as follows. First, two minutiae, one query

minutia and one template minutia were selected to form a reference minutiae pair. form a

reference minutiae pair. Then the two minutiae sets were aligned by translating the query

minutiae set, so that the reference minutiae pair had identical locations. Next, the query

minutiae set was rotated about its reference minutiae, which maximized the number of

minutiae that were paired (i.e., fell within a tolerance window) with the template minu-

tiae set. The above procedure was repeated till all possible reference minutiae pairs were
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considered, and the maximum number of matched minutiae pairs was reported.

6.5 Summary

A family of compound stochastic models was developed to account for both interclass

variability and intraclass variability of fingerprints. Based on the models, a conditional

minutiae synthesis method was introduced to simulate minutiae sets, which were then com-

pared between simulations of different models (i.e., fingers) with a matcher. Based on the

obtained probability distribution of the number of matched minutiae pairs, fingerprint in-

dividuality was then reported as the probability that the matched minutiae pairs exceeds a

given threshold.
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CHAPTER 7

Experimental Results

7.1 Fingerprint Databases

The methodology for assessing the individuality of fingerprints is validated on three target

populations, namely, the NIST 2000 SD 4 [30] (denoted as “NIST” in this chapter), FVC

2002 DB1 (denoted as “DB 1” in this chapter) and FVC 2002 DB2 [26] (denoted as “DB2”

in this chapter) fingerprint databases. All the three databases are publicly available. The

NIST database contains 2,000 8-bit gray scale fingerprint image pairs of size 512-by-512

pixels. Because of the relative large size of the images in the NIST, the first image of each

pair was used for statistical modeling. Minutiae could not be automatically extracted from

two images of the NIST due to poor quality. Thus, the total number of fingerprints used in

the experiments for NIST is F = 1, 998. For the FVC 2002, the DB1 impressions (image

size = 388 x 374) are acquired using the “TouchView H” optical sensor by Identix, while the

DBZ impressions (image size = 296 x 560) are acquired using the “FXZOOO” optical sensor

by Biometrika. Both DB 1 and DB2 databases consist of fingerprints of 100 different fingers

with 8 impressions per finger. Because of the small size of the DB1 and DB2 databases,

the minutiae consolidation procedure was adopted to obtain a master nrinutiae set for each

finger. The mixture models were subsequently fitted to each master. Figure 7.1 shows two
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(e) (D

Figure 7.1: Examples of fingerprint images from different databases. Images (a—b) are from

NIST database [30]; Images (c-d) are from D81 and images (e-f) are from DBZ [26] .
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Figure 7.2: Empirical distribution of the number of minutiae (m,n) in the NIST database.

The average number of minutiae is 62.

fingerprint images from each of the three databases.

The distribution of the number of minutiae (m, n) for the images in NIST is shown in

Figure 7.2 and those of the master minutiae sets from DB1 and DB2 are given in Figure

7.3, panels (a) and (b), respectively (The distribution of m and the distribution of n are

identical, and hence only one histogram is shown). The average number of minutiae for the

images in NIST and the master minutiae sets in DB1 and DB2 databases are approximately

62 , 63 and 77, respectively.

Based on the three databases, experiments were performed to validate the fingerprint

individuality models developed in this thesis.
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Figure 7.3: Empirical distributions of the number of minutiae (m,n) in the master prints

constructed from (a) DB1 database, and (b) DB2 database. Average number of minutiae in

the master minutiae set for the two databases are 63 and 77, respectively.
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7.2 Fitting the Mixture Models

The best fitting mixture model (see Equation 3.5) was found for minutiae in each fingerprint

and the goodness-of-fit test was applied to each database. The results for the goodness

of fit for the mixture model as well as those for the uniform model (see Equation 3.22)

are reported in Tables (7.1- 7.3) with W = 2,4,10,20,50 and V = 4,6,9. For all the

three databases, the numbers of fingerprint images with p—values above (corresponding to

acceptance of H0) and below the threshold 0.05 (corresponding to rejection of H0) were

computed. The results show that the mixture model is generally a better fit to the observed

minutiae distribution compared to the uniform. For example, when W = 10 and V = 4,

the mixture is a good fit to 1,948 out of 1, 998 images from the NIST (corresponding to p-

values above 0.05) based on the Freeman-Tukey test. For the Chi-square test, this number

is 1, 945. In comparison, the uniform model is a good fit to only 360 and 352 images based

on the Freeman-Tukey and Chi-square tests, respectively.

7.3 Fitting the Hyper-mixture Models

Hyper-mixture model assumes that there are N* clusters in the target population, which

can be estimated based on the gap statistic GN. The gap statistic GN as a function of the

number of clusters for the NIST was shown in Figure 5.1, and the plots for the DB1 and

DB2 databases are shown in Figure 7.4. Based on these figures, N* for the NIST, DB1 and

DBZ databases are estimated as 9, 12 and 33, respectively.

7.3.1 A Check to See if the Clusters of Mixture are Meaningful

Replicability is an important feature for a meaningful cluster analysis. Ideally, the cluster

analysis is meaningful when re-performing it on a new sample produces similar results as

the original clustering. In reality, if the variation in the clusters is within a reasonable limit,

the cluster analysis can be considered to be reliable. To evaluate reliability of the hyper-
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NIST

Freeman-Tukey Test (a = 0.05)

 

Chi-square Test (a = 0.05)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(W,V) Mixture Uniform Mixture Uniform Average#

Accepted Accepted Accepted Accepted Blocks

(2,4) 1,567 708 1,542 714 6.2

(4,4) 1,914 153 1,909 179 7.2

(10,4) 1,945 352 1,948 360 8.2

(20,4) 1,935 390 1,938 397 8.3

(50,4) 1,940 405 1,938 395 8.3

(2,6) 987 425 911 416 7.0

(4,6) 1,880 135 1,877 148 7.4

(10,6) 1,942 331 1,939 327 8.2

(20,6) 1,937 396 1,937 395 8.3

(50,6) 1,939 403 1,936 392 8.3

(2,9) 981 462 933 456 7.4

(4,9) 1,882 137 1,865 150 7.5

(10,9) 1,944 325 1,945 330 8.2

(20,9) 1,938 393 1,942 396 8.3

(50,9) 1,939 407 1,937 392 8.3
 

Table 7.1: Results of the Freeman-Tukey and Chi-square tests for testing the goodness-of-

fit of the mixture and uniform models on NIST. (W, V) means the whole minutiae location

space S is partitioned into W equal-size rows by W equal-size columns and the minutiae

direction space D is partitioned into V equal-size blocks initially, prior to merging blocks

of insufficient minutiae with their neighboring blocks. Entries correspond to the number

of fingerprints in each database with p—values above 0.05. The total number of mixture

models that are tested in NIST is 1,997 because three out of the 2,000 fingerprints don’t

have enough minutiae (at least 5) for the tests.
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DB1

Chi-square Test (a = 0.05) Freeman-Tukey Test (a = 0.05)

 

 

(W,V) Mixture Uniform Mixture Uniform Average#

Accepted Accepted Accepted Accepted Blocks
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2,4) 57 14 55 9 4.7

(4,4) 60 2 57 2 4.8

(10,4) 90 0 89 O 4.4

(20,4) 92 O 90 0 4.8

(50,4) 93 O 92 O 4.9

(2,6) 38 10 36 7 5.1

(4,6) 48 1 45 O 5.0

(10,6) 87 0 85 O 4.6

(20,6) 91 O 89 0 4.8

(50,6) 92 O 91 0 4.8

(2,9) 41 14 41 12 5.4

(4,9) 46 0 47 0 5.4

(10,9) 86 0 87 O 4.6

(20,9) 91 O 89 0 4.8

(50,9) 93 O 92 0 4.9
 

Table 7.2: Results of the Freeman-Tukey and Chi-square tests for testing the goodness-of-

fit of the mixture and uniform models on DB 1. (W, V) means the whole minutiae location

space S is partitioned into W equal-size rows by W equal-size columns and the minutiae

direction space D is partitioned into V equal-size blocks initially, prior to merging blocks

of insufficient minutiae with their neighboring blocks. Entries correspond to the number of

fingerprints in each database with p-values above 0.05. The total number of mixture models

that are tested in this database is 100 since all master minutiae sets have total number of

minutiae more than 5.
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DB2

Chi-square Test (a = 0.05) Freeman-Tukey Test (a = 0.05)

 

 

(W,V) Mixture Uniform Mixture Uniform Average#

Accepted Accepted Accepted Accepted Blocks
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2,4) 47 4 44 8 6.9

(4,4) 67 2 64 5 7.4

(10,4) 92 1 94 2 8.8

(20,4) 94 5 94 5 10.2

(50,4) 95 3 93 4 10.5

(2,6) 37 6 35 6 7.5

(4,6) 57 2 52 2 8.0

(10,6) 95 2 94 2 9.0

(20,6) 96 5 95 5 10.2

(50,6) 95 4 93 4 10.5

(2,9) 27 4 28 6 8.0

(4,9) 37 l 38 1 8.5

(10,9) 94 2 93 3 9.1

(20,9) 95 4 94 5 10.2

(50,9) 95 4 93 4 10.5
 

Table 7.3: Results of the Freeman-Tukey and Chi-square tests for testing the goodness of

fit of the mixture and uniform models on DB2 database. (W, V) means the whole minutiae

location space S is partitioned into lW equal-size rows by W equal-size columns and the

minutiae direction space D is partitioned into V equal-size blocks initially, prior to merging

blocks of insufficient minutiae with their neighboring blocks. Entries correspond to the

number of fingerprints in each database with p-values above 0.05. The total number of

mixture models that are tested in this database is 100 since all master minutiae sets have

total number of minutiae more than 5.
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Figure 7.4: Estimating the number of clusters for FVC database.The estimated number of

clusters for DB1 and DB2 are 9 and 12, respectively. The horizontal axis shows the number

of clusters N and the vertical axis is the value of gap statistic at N.
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Figure 7.5: Analysis of Hyper-mixture model using the NIST. The figure shows the cumu-

lative distribution of the ranks for the fingerprints in the validation set. The horizontal axis

shows the rank, and the vertical axis shows the number of fingerprints that have a rank less

than or equal to a given rank.

mixture model, a check [4] was implemented on the NIST database. In this database, there

are two impressions for each finger. Thus for the total of 2,000 fingers, there are 2,000 pairs

of images. Most of the pairs (1,975 out of the 2,000 pairs) share at least 3 minutiae features

(the fitting process of the mixture models requires at least 3 minutiae features), but 25 pairs

do not. The check was performed only for the minutiae shared by each of the 1,975 pairs.

First, the two databases were partitioned into two sets, namely a development set and

a validation set. Each set has one and only one impression for each finger. When apply-

ing the hyper-mixture model on the development set, the fingerprints were grouped into

33 clusters. For each fingerprint in the validation set, a Hellinger distance between the

fingerprint and each of the 33 clusters was calculated. A fingerprint is similar to a cluster

if the Hellinger distance between them is small. Ideally, the Hellinger distance between a

fingerprint and a cluster containing its counterpart (i.e., the fingerprint of the same finger)

should be the smallest, which is given a rank one. However, in reality, it is not always true.

Therefore, a rank k can be given to each fingerprint, which describes that the Hellinger dis-

96



tance between the fingerprint and the cluster containing its counterpart is the kth smallest

among the Hellinger distances for the 33 clusters. The rank k characterizes quantitatively

the reliability of the clustering method, i.e., the smaller the k, the more reliable the cluster-

ing method is. Figure 7.5 shows the cumulative distribution of the ranks for the fingerprints

in the validation set. The horizontal axis shows the rank, and the vertical axis shows the

number of fingerprints that have a rank less than or equal to a given rank. As the curve

shows, 1,564 out of the 1,975 mixture models in the validation set were within rank 5, indi-

cating good reliability of the clustering procedure, that is, the clustering is capturing some

aspects of inter-class variability in the population.

7.3.2 Evaluation of Hyper-mixture Models on Assessment of Finger-

print Individuality

In order to improve computing efficiency, hyper-mixture model was introduced to replace

the individual mixture models with an average density of similar mixture models. Obvi-

ously, this modification should not significantly change the individuality estimates if the

clusters represent original characteristics of the population. Therefore, it is necessary to

compare the hyper-mixture model with the individual mixture models. Experiments were

carried out on the three databases. The PRCS estimated by the hyper-mixture model (Equa—

tion 5.8) are shown in the first row in each block of Table 7.4. The PRCS estimated by the

individual mixture models, on the other hand, are calculated according to Equation 7.1, and

are shown in the middle row in each block of Table 7.4.

— Z: 1,2,...,L, ,2‘ ' P(w; iaj)

PRCNIixture = {(z'J)E{ L X61332; a (7-1)
 

where

_),(i,j) Mid)!”
(7,2)

and A(z’, j) is estimated by Equation 4.13 (i.e., Poisson model) for fingers z' and j.
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Database (m, 71,111) Method PRC PRC Ratio

NIST (62,62, 12) Individual Mixture Model 6.1 x 10-3 l

NIST (62,62, 12) Hyper-mixture Moder 4.1 x 10-4 1/14

NIST (62, 62, 12) Random Growing 1.0 x 10-5 1/554

DB1 (63, 63, 12) Individual Mixture Model 2.7 x 10-2 1

331 (63,63,12) Hyper-mixture Model 5.9 x 10-3 1/5

DBl (63,63,12) Random Grouping 5.5 x 10-5 1/491

332 (77,77,12) Individual Mixture Model 3.2 x 10-2 1

332 (77,77,12) Hyper-mixture Model 8.4 x 10-3 1/4

DBZ (77,77, 12) Random Grouping 1.6 x 10’3 1 /20

 

 

 

 

Table 7.4: Comparison of PRCS estimated from three different methods: (1) Individual

mixture models, (11) Hyper-mixture models, and (111) Random grouping. The right-most

column shows the relative ratios of the PRCS.

Comparing the top two rows in each block of Table 7.4, it appears that the PRCS from the

individual mixture model and those from the hyper-mixture model are similar. However,

without a reference, it is difficult to see how similar they are. That is why a third row has

been included in each block of Table 7.4, which is the PRCs from random grouping, i.e.,

while keeping the same number of clusters and the same number of fingerprints in each

cluster as in the hyper-mixture model, the members in each cluster are randomly selected

from the entire database with no replacement. In each block of Table 7.4, as the right-most

column shows, the PRCS from random grouping (the bottom row) is always at least 20 times

smaller than those from the individual mixture model (the top row); whereas the PRCS from

the hyper-mixture model (the middle row) is at most 14 times smaller than those from the

individual mixture model. Therefore, compared with the PRCS from random grouping,

those from the hyper-mixture model are more similar to those from the individual mixture

models, which gives support to the clustering based on hyper-mixture models.
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Database (m, 11,111) N* Mean Mean A PRCa

Fingerprint area Hyper-Mixture Model
 

NTST (62,62,12) 33 2.5 x 105 2.5 4.1 x 10"4

D31 (63,63,12) 9 1.2 x 105 5.1 5.9 x 10-3

DB2 (77,77,12) 12 1.8 x 105 5.14 8.4 x 10-3

 

Table 7.5: The number of clusters, N*, as well as mean A and PRCa based on the hyper-

mixture models for the three databases.

7.4 Assessment of Fingerprint Individuality with the

Hyper-mixture Models

For the three databases, the agglomerative clustering procedure in Chapter 5 was canied

out for the fitted mixture models to estimate the number of clusters, i.e., N* . The re-

sults are shown in Table 7.5, which also gives the following quantities for each database:

the numbers of minutiae in master minutiae sets (namely m and n), the fingerprint area,

and the parameter A for the mixture model representing the expected mean number of im-

postor matches from the mixture models. The last column in Table 7.5 gives the mean

PRC, PRCQ, corresponding to w = 12 based on the hyper-mixture model (i.e., obtaining

12 or more matches). The parameter a was chosen to be 0.05 to correspond to the 5%

trimmed mean of the probabilities. Note that while the mean values of m and n for the

NIST and DB1 databases are similar, the mean of A for DB1 is much larger than that for

NIST database, resulting in a much larger mean PRC for DE] compared to that for NIST

database. Comparing DB1 and DBZ, the mean A remains the same but the mean value of

minutiae in DB2 is much larger than that in D31 (77 vs. 63). A larger number of total

minutiae implies a greater chance of obtaining a random match and hence a larger value

for the PRC.

A comparison of TWO, (Oz 2 0.05) was carried out for two different choices of A for

the Poisson model: (i) the A that was derived from the cluster of the mixture models (see
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Database (m, n, w) Hyper-Mixture Model Uniform Empirical
 

NIST (62,62,12) 4.1 x 10-4 2.9 x 10-7 3.4 x 10'-3

331 (63,63,12) 5.9 x 10-3 1.0 x 10-4 1.4 x 10—2

332 (77,77,12) 8.4 x 10-3 8.4 x 10—5 1.9 x 10*2
 

Table 7.6: A comparison of the PRCa obtained from the mixture and uniform models based

on mean 711., n with empirical values.

 

Database (m,n,w) Hyper-Mixture Model Uniform Model Empirical

 

Mean A Mean A

NIST (62, 62, 12) 2.5 1.5 7.1

DB1 (63,63, 12) 5.1 3.0 8.0

DBZ (77,77, 12) 5.1 3.0 8.6
 

Table 7.7: A comparison of the mean number of matches obtained from the mixture and

uniform models and empirical matches.

Equations 4.29, 5.6 and 5.8), and (ii) the A that was derived from the uniform model (see

Equations 5.9 and 5.8). The values of m and n are taken to be the mean in each database.

The REG/s obtained from the mixture model are reported in Table 7.5. Table 7.6 gives

the PRC—a from the mixture and uniform models corresponding to w = 12 from the NIST

and FVC 2002 based on the fingerprint area. Note that the fingerprint individuality esti-

mates using the mixture models are at least one order of magnitude higher compared to the

uniform model. It is because when minutiae from the query and template have similar clus-

tering tendencies, a larger number of random matches will arise compared to the uniform

model. The empirical PRCS for w = 12 in each database is the proportion of impostor pairs

with 12 or more matches among all pairs that have m and n values within i5 of the mean.

Using the matcher reported in [40], the n query minutiae (5?, D29), 1' = 1, 2, . . . ,n, are

optimally aligned with the m template minutiae (S511, Dir), j = 1, 2, . . . ,m, to obtain the

best number of matches between each impostor pair. The mean number of impostor minu-

tiae matches for each database is reported in Table 7.7. Note that the empirical number of

matches and the PRCS are closer to the values derived from the mixture models compared
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Database (m, n, to) N* Mean A Hyper-Mixture Uniform

 

Hyper-Mixture Model

NIST (46,46,12) 33 1.9 2.3 x 10—6 5.0 x 10-10

331 (46, 46, 12) 9 2.7 5.6 x 10—5 2.8 x 10—7

332 (46,46,12) 12 1.8 4.1 x 10“6 3.2 x 10‘9
 

Table 7.8: A comparison between PRCa obtained from the mixture and uniform models

form=n=46andw =12.

 

Database (m,n) Mean Overlapping Area (pixe12) M

 

NIST (52,52) 1 12,840 413

DB1 (51,51) 71,000 259

DB2 (63,63) 1 10,470 405
 

Table 7.9: Table giving the mean m and n in the overlapping area, the mean overlapping

area and the value of M for each database.

to those from the uniform model, suggesting the appropriateness of the mixture models in

representing the distribution of minutiae.

Since the mathematical model for the PRC was developed for any combination of m, n

and w, the trimmed mean PRC value corresponding to m = n = 46 and w = 12 can be

found for the three databases as an example. These PRCs are given in Table 7.8 for the

mixture and uniform distributions. Note, again, that the PRCS derived from the mixture

model are orders of magnitude higher compared to those from the uniform model.

In the following paragraphs, the results obtained from the proposed methodology in this

thesis are compared with those of Pankanti et a1. [35], introduced in Section 2.3. There

are two main differences between the experiments presented in this section and the ones

discussed in the previous paragraphs (i.e., Tables 7.6 and 7.8). First, the “corrected” uni-

form model of Pankanti et al. [35], instead of the fully uniform model, is considered (the

“corrected uniform model” was discussed in section 2.3.3). Second, the overlapping area

between the query and the template, instead of the whole fingerprint area, is considered. In
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Database (m, n, w) Empirical Mixture Model Pankanti
 

NIST (52, 52, 12) 7.1 3.1 1.2

331 (51, 51, 12) 8.0 4.9 2.4

332 (63,63, 12) 8.6 5.9 2.5
 

Table 7.10: A comparison between the mean A obtained from the mixture and uniform

models and the mean number of matched minutiae from the empirical matches in the over-

lapping area.

 

Database (m,n,w) Empirical Mixture Model Pankanti

NIST (52,52,12) 3.9 x 10-3 4.4 x 10-3 4.3 x 10—8

331 (51,51,12) 2.9 x 10—2 1.1 x 10—2 4.1 x 10‘-6

332 (63,63,12) 6.5 x 10-2 1.1 x 10-2 4.3 x 10-6

Table 7.11: A comparison between fingerprint individuality estimates using the (a) Poisson

and mixture models, and (b) the corrected uniform model of Pankanti et al. [35].

 

 

other words, the overlapping area model was utilized to estimate fingerprint individuality.

Since mixture models were used in the overlapping area model instead of hyper-mixture

models, the comparison is between mixture models and the “corrected uniform model”.

In order to compare the fingerprint individuality estimates using the mixture model and

the model by Pankanti et al. [35], we first need to find the overlapping area between the

query and template. This is done as follows. The query and template fingerprints in the

NIST and FVC databases are first aligned using a Procrustes transformation [29] based on

the minutiae correspondence obtained from the matcher described in section 6.4.2. Then,

bounding boxes encompassing all minutiae points in the query and template fingerprints

are determined. The overlapping area between the two bounding boxes is taken to be the

overlapping area between the query and template fingerprints. Thus the fingerprint indi-

viduality estimates presented here are dependent on the matcher. In order to compute the

Poisson probabilities, overlapping area model is used. Meanwhile, the fingerprint individ-

uality estimates based on the corrected uniform model is also obtained. Table 7.10 gives

the mean A of the Poisson model in the overlapping area for the NIST and FVC databases.
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The mean A’s (i.e., the theoretical mean numbers of matches) obtained from the hyper-

rnixture density model are closer to those from the empirical results, compared to those

from the corrected uniform model, which illustrates superiority of the mixture model over

the corrected uniform model. Table 7.11 shows the PRCS corresponding to the mean 111

and the mean 71, compared with the empirical PRCS. The empirical PRC is computed as

the proportion of impostor pairs with 12 or more matches among all pairs with m and n

values within :l:5 of the mean in the overlapping area. Note that as m or n or both increase,

the values of PRC for both models become large because it becomes much easier to obtain

spurious matches for larger m and n values. More important, however, is the fact that the

Poisson probabilities based on the mixture models are, again, orders of magnitude larger

than those from the corrected uniform model. Also the PRCs corresponding to the hyper-

mixture model are closer to the empirical counterparts, compared to those corresponding

to the corrected uniform model, confirming again the reliability of the mixture models.

7.5 Estimation ofFingerprint Individuality with the Com-

pound Stochastic Model

Instead of all the three databases as in other experiments, only two databases, namely DB1

and DB2, were used to demonstrate effectiveness of the proposed compound stochastic

models. There are two reasons not to use NIST. First, in the NIST database, there are only

two impressions for each finger; whereas in DB1 and DBZ, each finger has eight impres-

sions. Therefore the NIST might not have sufficient data to model the local perturbation

for each finger. Second, the ink fingerprints in the NIST database have very large area and

cover most of the fingertips, which makes it difficult to show the effectiveness of the partial

print model.

To validate the models, a synthetic database consisting of F fingers with L impressions

per finger was generated. For finger f, a total of n (the actual number of consolidated
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minutiae) minutiae were synthesized from the fitted mixture model (for minutiae centers)

and the local perturbation model (for deviations from the minutiae centers). The param-

eterized ellipse for the l-th impression was then used to select a subset of the synthetic

minutiae set. Subsequently, the rigid transformation T(f, 1 ) was used to obtain a synthetic

impression. Since the ellipses used in this synthesis are the ellipses from the original fin-

gerprint impressions, this simulation is called the fixed ellipse simulation. The distribution

of the number of impostor minutiae matches for this synthetic database is obtained using

the matcher described in [40]. This distribution is represented by the solid line with squares

(El) labeled as “fixed-ellipse” in Figures 7.6 (a-b). Another synthetic database of F fingers

with L impressions per finger was constructed using the conditional minutiae synthesis

technique so that the number of minutiae for the 1-th impression of finger f equals to the

observed number of minutiae in the l-th impression of finger f, namely m(f, 1). When

simulating the best fitting ellipse, the ratio of lengths of major to minor axes for the DB1

and DB2 were taken to be the mean values, namely 1.48 and 1.90, respectively. Since this

synthesis simulates random ellipses from the partial-print model, it is called the random

ellipse synthesis. The corresponding distribution of the number of impostor matches is

represented in Figures 7.6 (a-b) by dashed lines labeled as “random ellipse”. The distribu-

tions based on the real fingerprint impressions and based on the uniform distribution (i.e.,

with no clustering tendency) for the minutiae centers and deviations were also obtained

(denoted by the dot-dashed lines with circles and by the solid lines, respectively). Note

the close agreement between the impostor distributions of the synthesized and empirical

databases, demonstrating the adequateness of the proposed compound stochastic models in

representing the distribution of minutiae in the databases.

Fingerprint individuality estimates computed using Equation 6.3 (using 20 synthetic im-

pressions per finger, i.e., H = 20) are given in Table 7.12 for DB1 and DBZ databases.

For example, given a query and a template impression with 36 minutiae, the estimated

probability of getting more than or equal to 12 matches is 7.2 x 10”7 for DB1. When
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Figure 7.6: A comparison between the synthetic and empirical impostor distributions for

the number of minutiae matches.
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(m,n,w) 331 332

(26, 26, 12) 0* 0*

(36,36,12) 7.2 x 10-7 0*

(46,46,12) 2.6 x 10—5 7.9 x 10—7

Table 7.12: The estimation of fingerprint individuality from the compound stochastic model

when w = 12. Notice that when m = n = 26, none of two synthesized minutiae sets share

12 or more matched minutiae. Hence the probability cannot be estimated accurately for the

case ofm = n = 26.

 

 

m = n = 26, none of two synthesized minutiae sets share 12 or more matched minutiae,

and thus the PRC is reported as zero. Since the fingerprint individuality (i.e., the PRC) is

very small, to estimate such small probability, the sample size of the synthesized database

needs to be large; otherwise a trivial result (i.e., zero) as for m = n = 26 will occur.

The PRCS from the compound stochastic models are slightly smaller than those from the

hyper-mixture models as shown in Table 7.8. For example, when m. = n = 46, estimated

probability of obtaining more than or equal to 12 matches for D82 of hyper-mixture model

and compound stochastic model are 4.1 x 10‘6 and 7.9 x 10‘7, which can be explained by

the multiple sources of minutiae variability from the compound stochastic model compared

to single source of minutiae variability from the hyper-mixture model.

Table 7.13 gives fingerprint individuality estimates from the compound stochastic model

for the “12-point match criteria” (see [2] and [35]) based on DB1 database. For com-

parison purposes, the fingerprint individuality estimates of the corrected uniform model

by Pankanti et. a1 [35] are also given. Recall that the PRCS from the corrected uniform

model are computed based on the number of minutiae in the query and template that oc-

cur in the overlapping area. The parameters 11 and m from the mixture models represent

the total number of minutiae in a query and template, respectively. In order to make valid

comparisons, the mean number of minutiae occurring in the overlapping area is found.

When n = m = 36, this mean number is approximately 25. Consequently, the estimate

1.0 x 10‘10 in Table 7.13 was calculated using Equation 2.13 from the corrected uniform
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(m, n, 10) Compound Stochastic model Corrected Uniform Model

(36,36,12) 7.2 x 10-7 1.0 x 10-10

(46,46,12) 2.6 x 10-5 3.9 x 10-8

Table 7.13: A comparison of fingerprint individuality estimates. n and m are the total

number of minutiae in the query and the template, respectively. 10 is the number of matches

between the query and template fingerprints.

 

 

model based on the combination (25, 25, 12). Note that the estimates of the compound

stochastic models are orders of magnitude higher compared to those of the corrected uni-

form model. This is due to the fact that the compound stochastic model accounts for the

clustering tendency of minutiae via mixture model whereas the corrected uniform model

does not, which indicates that the compound stochastic models gives a more realistic es-

timate of fingerprint individuality compared to the corrected uniform model. In conclu-

sion, the experiment results indicates that the compound stochastic models consider more

sources of minutiae variability but are not able to estimate the PRC at the tails of the distri-

bution. However, if only the variability of minutiae in different fingerprints are considered,

the hyper-mixture models are more computational efficient (no minutiae synthesis and

matching is required) in fingerprint individuality assessment via Poisson approximation.

The mixture models are also better models for representing the distributions of minutiae

compared to the uniform or “corrected” uniform models.

7.6 Summary

To validate and compare models on fingerprint individuality, the models were implemented

on three different databases, namely NIST 2000 SD 4, FVC 2002 DB1 and DB2. For all

the databases, goodness-of-fit tests on the mixture models showed better performance than

the uniform model. For computational efficiency and without jeopardizing the inherent

interclass variability, the hyper-mixture model was used on the entire database/population

of fingerprints. The compound stochastic model is a further development, accounting in-
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traclass variability of fingerprints. In order to compare between the compound stochastic

model and the uniform model, synthetic minutiae sets were generated based on each of the

models. Visually comparing the matching distributions of the synthetic minutiae sets with

empirical distribution (Figure 7.13) shows that the results from the compound stochastic

model is more similar than those from the uniform model to the empirical distribution, fa-

voring the compound stochastic model. Finally, the PRCS from the hyper-mixture model,

those from the compound stochastic model (based on the synthetic minutiae sets), those

from the uniform model, and those from the corrected uniform model were compared with

the empirical PRCS. The results show that the PRCs from the hyper-mixture model and the

compound stochastic model are orders of magnitude higher than those from the uniform

model and the corrected uniform model. Since the proposed models better represent minu-

tiae distributions, we believe that the PRCS reported in this thesis are better estimates of

fingerprint individuality compared to previous works.
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CHAPTER 8

Conclusions and Future Directions

The task in fingerprint individuality is to develop statistical measures that characterize the

extent of uniqueness of a fingerprint. The measure can be taken as the probability of find-

ing another fingerprint that is sufficiently similar to a given query fingerprint in a target

population. A satisfactory estimate of fingerprint individuality will make it possible for

forensic experts to determine the admissibility of fingerprints as evidence in courts of law

where fingerprint-based evidence is increasingly being challenged. The main issue in the

assessment of fingerprint individuality is to satisfactorily model two sources of fingerprint

variability, namely, the intraclass variability and interclass variability of fingerprint fea-

tures. This thesis developed a mixture model for the interclass variability, and a com-

pound stochastic model for minutiae intraclass variability. Publications for this research

are [12], [53], and [52].

As models for minutiae interclass variability, the mixture models provide a flexible way

to represent a variety of observed minutiae distributions in different fingers. Goodness-

of-fit tests showed that the mixture model better represents the characteristics of minutiae

features observed in fingerprint images compared to the uniform model. For example, for

FVC 2002 DB2 with W = 10 and V = 4, the rejection rate for the mixture model and

the uniform models are 1 — 94/ 100 = 6% and 1 — 2/100 = 98%, respectively, based on

109



Freeman-Tukey test at the 0.05—level.

Although the proposed mixture model is successful in capturing interclass variability, it

does not address intraclass variability. Therefore a compound stochastic model was de-

veloped to model intraclass variability. More specifically, the model quantifies three main

sources of intraclass variability, namely, the nonlinear deformation, local perturbation, and

partial fingerprint. A synthesis technique was then used to validate the compound stochas-

tic model and to estimate fingerprint individuality. Experimental results showed that the

impostor matching distributions of synthesized databases based on the compound stochas-

tic model were closer to the corresponding empirical matching distributions compared to

the distributions based on the uniform model. This observation indicates the superiority of

the compound stochastic model over the uniform model.

To estimate individuality of a target population using the above models of minutiae vari-

ability, there are two different approaches, namely, synthesis and analytical approaches.

In the synthesis approach, minutiae sets are synthesized by the models and a matcher is

applied to the synthesized minutiae sets to obtain impostor matching distribution. Fin-

gerprint individuality is then estimated based on the observed number of matches in the

synthetically generated database. On the other hand, in the analytical approach, fingerprint

individuality is estimated based on a mathematical formula from the Poisson model. This

approach is implemented when minutiae density is calculated based on the hyper-mixture

model, which only considers minutiae interclass variability. The Poisson model enables

analytical estimation of fingerprint individuality. However, the implementation of the Pois-

son model becomes infeasible for the compound stochastic model where additional sources

of variability are considered. As an alternative method, the synthesis approach is good at

incorporating multiple sources of minutiae variability, which produces more realistic esti-

mate. Therefore, the synthesis approach is used for the compound stochastic model, which

incorporates both interclass variability and intraclass variability. Although the synthesis

approach has many advantages, its matching procedure to obtain the impostor matching
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distribution, nevertheless, is time-consuming and doesn’t produce reliable estimates of fin-

gerprint individuality, especially for very small values of PRC. By contrast, the analytical

method has the advantage of high efficiency, but has the disadvantage of not accounting for

intraclass variability.

The PRCS obtained from the proposed models were reported and compared with those of

the “corrected” uniform model of Pankanti et al. [35] as well as with empirical results which

is matcher dependent. It was found that the estimation based on the proposed approach in

this thesis is closer to the empirical results compared with those from the “corrected” uni-

form model. Also, the PRCS from the proposed models are orders of magnitude larger than

those from the corrected uniform model which can be explained by the similar clustering

tendencies of minutiae from different fingers. Since the proposed models better represent

minutiae distributions, we believe that the PRCs reported in this thesis are better estimates

of fingerprint individuality compared to previous works.

There are different ways to improve the model presented in this thesis. First of all,

the mixture model can be improved. Instead of using a Gaussian mixture model, a t-

mixture model, with heavier tails can be applied. As many distributions for angular data

can be used to model minutiae directions, such as wrapped Cauchy distribution, wrapped

normal distribution, a detailed study on these distributions is needed to choose an optimal

distribution model for minutiae directions. Secondly, a non-homogenous Poisson process

model incorporating all aspects of minutiae variability (from sources such as superposition

of ghost points, thinning, censoring, and uncertainty in the correspondence function) can be

developed to incorporate intraclass variability and to develop analytical models. Another

direction is to explicitly model spatial dependence of neighboring minutiae. A model for

spatial correlation of minutiae distribution will shed more light on quantifying the tendency

of minutiae to cluster spatially.
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