I. nxyfigg { . 9...; r}... . L363 5.. i be. . .. . .. . fififi. . 4.. .. .fl .9.- SEEM thuhfimeflmm. C .. S; :554 J » .Y‘il“: I u I t I .33- I . Lu. In 3. LI. a. .2 Junta... .4 1.9.15.5...m. \ fjfinfiu . 0.". uyfimfisfl #3.... {magisaanknmm , .. 51... .. s .5. EL... is. 2... $5,” a8 £I.‘1;,. i $l?"~‘%¢i. ,‘l’uv’ . . c, ”41! 3.6.1.... 15"! l F9134: . .n _ kw I wan-“VF?!“ t 6‘17. a!i.:;x :\-Lt...! ‘ . iii, y 1.3:... mass ' LIBRARY 4 Michigan State 2009 University —— This is to certify that the dissertation entitled TITANIUM-CATALYZED ADDITIONS OF SUBSTITUTED HYDRAZTNES TO ALKYNES: CATALYST DESIGN, MECHANISTIC STUDIES, AND APPLICATIONS IN HETEROCYCLE SYNTHESIS presented by SANJUKTA BANERJEE has been accepted towards fulfillment of the requirements for the Ph. D. degree in CHEMISTRY Major Professor’s Signature 7/3 2/3: F‘ / / Date MSU is an affirmative-action, equal-opportunity employer 6 ' v fi‘4~i—“ PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. 3 DATE DUE DATE DUE DATE DUE 5/08 K;lProj/Aco&Pres/ClRC/DateDue.indd TITANIUM-CATALYZED ADDITIONS OF SUBSTITUTED HYDRAZINES TO ALKYNES: CATALYST DESIGN, MECHANISTIC STUDIES, AND APPLICATIONS IN HETEROCYCLE SYNTHESIS VOLUME I By Sanj ukta Banerjee A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chemistry 2008 ABSTRACT TITANIUM-CATALYZED ADDITIONS OF SUBSTITUTED HYDRAZIN ES TO ALKYNES: CATALYST DESIGN, MECHANISTIC STUDIES, AND APPLICATIONS IN HETEROCYCLE SYNTHESIS By SANJUKTA BANERJEE The primary focus of this thesis is the development of hydrohydrazination reactions for alkynes and their applications towards the synthesis of heterocycles. Hydrohydrazination is the formal addition of a hydrazine to an unsaturated C—C bond resulting in hydrazone or substituted hydrazine. Hydrohydrazination reactions are closely related to hydroamination. In hydroamination, amines (instead of hydrazines) are added across the C—C unsaturation. While hydrohydrazination of alkyne has been developed only recently, hydroamination has been known since 1950’s and studied extensively. To cover sufficient background information for hydrohydrazination, hydroamination reactions are discussed in the first chapter. In 2002, our group first discovered the hydrohydrazination of alkynes with 1,1- disubstituted hydrazines leading to the synthesis of N-protected indoles. Here, we have developed a new pyrrole-based titanium catalyst that is found to be active for the monosubstituted hydrazines. In addition, this catalyst is also active for both terminal and internal alkynes. The design of the catalyst, substrate scope, and applications to different heterocycles synthesis including compounds containing NH-indoles are discussed in the second chapter. Iminohydrazination is the conversion of an alkyne to an (LB-unsaturated B- aminohydrazone, making both C—C and C—N bonds in a single step. This is a new multicomponent reaction (MCR) between an alkyne, 1,1-disubstituted hydrazine, and isonitn'le in the presence of a catalyst. The design of new Ti-based catalysts, the scope of the iminohydrazination reaction, mechanistic investigation, and applications towards the synthesis of pyrazoles are discussed in the third chapter. Vanadium(V) hydrazido complexes have been found in the active sites of different nitrogenase enzymes. The metal in these complexes is believed to be simultaneously coordinated to different donating centers such as N, O, and S. To understand the structures and fimctions of the active sites, different vanadium hydrazido complexes have been synthesized as model compounds. Interesting structural feature involving contributions from both hydrazido and isodiazene resonance forms has been observed in one of the model compounds. The synthesis of different vanadium(V) hydrazido complexes and important structural aspects are discussed in the fourth chapter. Copyright by Sanjukta Banetjee 2008 To my mother, Dr. Shyamali Banetjee ACKNOWLEDGMENTS First of all, I would like to thank Michigan State University for the support during my years as graduate student at MSU. I also want to thank the people in the Chemistry department for their help and generous support. I consider myself very fortunate to have Prof. Aaron L. Odom as my Ph. D. mentor. He was never tired of discussing science and always listened to my questions with deep interest (even the silliest onel). He helped me a lot to learn many aspects of inorganic and organometallic chemistry and to develop the analytical skills necessary to survive in an experimental lab. I am also indebted to him for doing the hard work of correcting and Proofreading this thesis. “Thank you” Aaron for your guidance, patience, and understanding. “Sandy” has thoroughly enjoyed her experience working with you. I eXpress my gratitude to Prof. Mitch Smith, Prof. Robert E. Maleczka, and Prof. Babak Borhan for serving on my committee and for all their suggestions. Thanks to Dr. Daniel Holmes and Mr. Kermit Johnson for their assistance in NMR, and eSPeCially for allowing me to reserve extended time slots to perform the kinetic e"‘pefilllcarlts. A special thank is due Dr. Richard Staples in the crystallography division. I am thankful to Bob Rasico, Melissa Parsons, and Bill Flick for their help in the general maintenance of the lab. I also want to thank Scott Bankrofi in the glass blowing shop, 0’“ Geissenger and Diane Karsten in the stockroom, Glenn Wesley and Tom Bartlett in vi the machine shop, and Scott Sanderson and Dave Cedarstaff in the electronics shop. Karen Maki, Beth McGaw, Cindy Sanford in the Business office and Nan Murray, Wendy Tsuji, Steve Poilios, Debbie Roper, Lisa Dillingharn in the Graduate office were always very supportive and I thank them all. In the process of working on one of my projects, and also in writing this thesis, I have received generous assistance from my colleague Dr. Eyal Bemea. He deserves a special thank you. I am also grateful to all the previous and present Odom group members: Yahong, Jim, Bala, Kapil, Supriyo, Doug, Steve, Sameer, and Kevin(s) for their support. I also want to mention all the undergraduates with whom I’ve worked in this lab. I’ve really enjoyed my experience working with all of you. I acknowledge my family for support and inspiration. Especially, my mother and sister Apaxajita for all of your loving support. I also like to thank all my fiiends in and outside East Lansing. Finally, the patience, inspiration, and encouragement of my huSbflnd, Ujjal, have been crucial to complete this thesis. Sanjukta Banetjee East Lansing, Michigan vii TABLE OF CONTENTS List of Tables ................................................................................................................... xi List of Figures ................................................................................................................. xv List of Schemes ............................................................................................................ xviii List of Abbreviations ..................................................................................................... xxi Hydroamination of alkynes ...................................................................................... 1 1.1 Introduction ....................................................................................................... 1 1.2 Hydroamination with alkali and alkaline earth metals ...................................... 4 1.3 Hydroamination with transition metals (Group 3 and 5) .................................. 6 1.4 Hydroamination with late transition metals ...................................................... 8 1.5 Hydroamination with lanthanides and actinides ............................................. 13 1.6 Hydroamination with Group 4 metal complexes ............................................ l7 1 .6.1 Hydroamination of alkynes with Zirconium ................................................... 17 l .6.2 Hydroamination of alkynes with Titanium ...................................................... l9 1 .6.3 Research in the Odom group ........................................................................... 25 1.7 Concluding Remarks ....................................................................................... 29 1-8 References ....................................................................................................... 30 Hydrohydrazination of alkynes with monosubstituted hydrazines ................... 34 2-1 Introduction ..................................................................................................... 34 2.1.1 Hydrohydrazination with Titanium ................................................................. 35 2.1.2 Hydrohydrazination with Cobalt ..................................................................... 41 2.1.3 Hydrohydrazination with Manganese .............................................................. 45 viii 2.1.4 Hydrohydrazination with Palladium ................................................................ 46 2.1.5 Hydrohydrazination with Zinc ......................................................................... 46 2.2 Synthesis of NH-indoles .................................................................................. 50 2.3 Aim of the current project ............................................................................... 51 2.4 Results and Discussion .................................................................................... 52 2.5 Concluding Remarks ....................................................................................... 66 2.6 Experimental ................................................................................................... 67 2.7 References ....................................................................................................... 87 Iminohydrazination of alkynes: scope, mechanistic investigation, and applications towards pyrazole synthesis ............................................................... 91 3 . 1 Introduction ..................................................................................................... 91 3 .2 Results and Discussion .................................................................................... 94 3.2.1 Iminohydrazination Results ............................................................................. 94 3.3 Mechanistic Investigation ............................................................................. 101 3.3.1 Pathway via 1,2-insertion .............................................................................. 101 3.3.2 [2 + 2]-cycloaddition mechanism .................................................................. 102 3.3.3 Kinetic studies ............................................................................................... 109 3.3.4 Overall mechanism for Iminohydrazination reaction .................................... 118 3.3.5 Experimental observations on regioselectivities ........................................... 1 18 3.4 Applications of the Iminiohydrazination reaction towards the synthesis of pyrazoles ................................................................................................... 122 3.4.1 Background information ................................................................................ 122 3.4.2 Results and Discussion .................................................................................. 123 3‘5 Multicomponent Coupling Reactions of alkynes, monosubstituted hydrazines, and isonitriles .................................................. 130 3‘6 Concluding Remarks ..................................................................................... 136 3-7 Experimental ................................................................................................. 137 3'8 References ..................................................................................................... 166 Synthesis or Vanadium(V) hydrazido(2-) thiolate imine all“Ride complexes ............................................................................................... 169 4-1 Introduction ................................................................................................... 169 4-2 Hydrazido versus isodiazene bonding in MNNRz complexes ...................... 171 ix 4.3 Vanadium(V) hydrazido(2—) complexes ....................................................... 173 4.4 Titanium hydrazido(2—) complexes .............................................................. 177 4.5 Aim of the current project ............................................................................. 183 4.6 Results and Discussion .................................................................................. 184 4.7 Concluding Remarks ..................................................................................... 189 4. 8 Experimental ................................................................................................. 1 90 4.9 References ..................................................................................................... 201 Appendix A Crystallographic information ........................................................................ 205 B Kinetic reaction plots .................................................................................... 303 C 1H and 13C NMR spectra .............................................................................. 312 Table 2.1 Table 2.2 Table 2.3 Table 3.1 Table 3.2 Table 3.3 Table 3.4 Table 3.5 Table A1 . 1 Table A1 ,2 Table A1 .3 Table A1 ,4 Table A1 .5 Table Al.6 Table A1.7 LIST OF TABLES Hydrohydrazination of alkynes with phenylhydrazine ........................... 58 Hydrohydrazination with substituted phenylhydrazines ................................ 62 Hydrohydrazination with diynes and enyne ................................................. 65 Examples of alkyne Iminohydrazination ................................................ 98 Rate Constants and conditions for kinetic experiments ........................ 114 Observed rate constant vs catalyst concentration ................................. 1 17 Iminohydrazination of phenylacetylene by different catalysts ............. 120 Effect of p-substituents on arylhydrazine on pyrazole formation ......... 128 Crystal data of Hzenp (4) ...................................................................... 205 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for Hzenp. U(eq) is defined as one third of the trace of the orthogonalized UIJ tensor ......................................... 206 Bond lengths (A) and angles (°) for Hzenp .......................................... 207 Anisotropic displacement parameters (A2 X 103) for Hzenp. The anisotropic displacement factor exponent takes the form: —2pi2 [h2 a*2U” +...+2hka*b*U12] ........................................... 211 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for Hzenp ............................................................................ 212 Torsion angles (°) for Hzenp ................................................................. 213 Hydrogen bonds (A) and angles (°) for Hzenp ..................................... 214 xi Table A2.1 Table A2.2 Table A2.3 Table A2.4 Table A2.5 Table A3.1 Table A3.2 Table A3.3 Table A3.4 Table A3.5 Table A4.1 Table A4.2 Table A4.3 Crystal data for Ti(bap)(NMe2)3 (28) ................................................... 215 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for Ti(bap)(NMe2)3. U(eq) is defined as one third of the trace of the orthogonalized UlJ tensor ................................ 216 Bond lengths (A) and angles (°) for Ti(bap)(NMe2)3 .......................... 217 Anisotropic displacement parameters (A2 X 103) for Ti(bap)(NMe2)3. The anisotropic displacement factor exponent takes the form: -2pi2 [hza *2 U 1+. ..+2hka*b*U ] ............................................ 219 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 x 103) for Ti(bap)(NMe2)3 ............................................................ 220 Crystal data for Ti(NNMe2)(dap)(nacnac) (36) .................................... 222 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for Ti(NN Me2)(dap)(nacr_1ac). U(eq) is defined as one third of the trace of the orthogonalized UIJ tensor ..................... 223 Bond lengths (A) and angles (°) for Ti(NNMe2)(dap)(nacnac) ............ 224 Anisotropic displacement parameters (A2 X 103) for Ti(NNMe2)(dap)(nacnac). The anisotropic displacement factor exponent takes the form: -2 pi2 [h2 a"‘2 U“ +...+ 2 h k a* b* U12] 227 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for Ti(NNMe2)(dap)(nacnac) ............................................. 228 Crystal data for Ti2(dap)3(NNMe2)2(NHNMe2) (37) .......................... 231 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 x 103) for Ti2(dap)3(NNMe2)2(NHNMe2). U(eq) is defined as one third of the trace of the orthogonalized UIJ tensor ........ 232 Bond lengths (A) and angles (°) for Ti2(dap)3(NNMe2)2(N HNMez)" 23 3 xii Table A4.4 Table A4.5 Table A4.6 Table A5.1 Table A5.2 Table A5.3 Table.A5.4 Table A5.5 Table A5.6 Table A6.1 Table A6.2 Table A6.3 Table A6.4 Anisotropic displacement parameters (A2 X 103) for Ti2(dap)3(NNMe2)2(NHNMe2). The anisotropic displacement factor exponent takes the form: —2 pi2 [h2 a"‘2 U11 +...+ 2 h k a* b* U12]... 245 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 x 103) for Ti2(dap)3(NNMe2)2(NHNMe2) ................................... 247 Torsion angles (°) for Ti2(dap)3(NNMe2)2(NHNMe2) ........................ 249 Crystal data for 3-mesitylpyrrole (43) .................................................. 259 Atomic coordinates (X 104) and equivalent isotropic displacement 103) for 3-mesitylpyrrole. U(eq) is defined as one third of the trace of the orthogonalized U” tensor ................................ 260 Bond lengths (A) and angles (°) for 3-mesitylpyrrole .......................... 261 2 parameters (A X Anisotropic displacement parameters (A2 X 103) for 3-mesitylpyrrole. The anisotropic dilsplacement factor exponent takes the form: -2piz [hza *2 U] 1+. ..+2hka*b*U 2] ............................................ 263 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for 3-mesitylpyrrole ............................................................ 264 Torsion angles (°) for 3-mesitylpyrrole ................................................ 265 Crystal data for Ti(dap3'"‘es)2(NMe2)2 (45) ........................................ 266 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for Hzenp. U(eq) is defined as one third of the trace of the orthogonalized UlJ tensor ......................................... 267 . 3—mes Bond lengths (A) and angles (°) for T101511) )2(NM62)2 ................ 269 Anisotropic displacement parameters (A2 X 103) for Ti(dap3-mes)2(NMe2)2. The anisotropic displacement factor exponent takes the form: -2 pi2 [112.1112 U” +...+2 hka* 13* U12] ................... 279 xiii Table A6.5 Table A6.6 Table A7.1 Table A7.2 Table A7.3 Table A7.4 Table A7.5 Table A7.6 . 4 . . . Hydrogen coordinates (X 10 ) and lSOtI'OplC displacement parameters (A2 x 103) for Ti(dap3-mes)2(NMe2)2 .................................................. 281 . . 3-mes Torsron angles (°) for T1(dap )2(NMe2)2 ...................................... 283 Crystal data of V(NNMe2)(TIP)(dmpe)(I) (49) .................................... 288 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 x 103) for V(NNMe2)(TIP)(dmpe)(I). U(eq) is defined as one third of the trace of the orthogonalized UlJ tensor ........ 289 Bond lengths (A) and angles (°) for V(NNMe2)(TIP)(dmpe)(I) .......... 290 Anisotropic displacement parameters (A2 X 103) for V(NNMe2)(TIP)(dmpe)(I). The anisotropic displacement factor exponent takes the form: —2 pi2 [h2 a"‘2 U11 +...+ 2 h k a* b* U12]... 296 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for V(NNMe2)(TIP)(dmpe)(I) ............................................ 297 Torsion angles (°) for V(NNMe2)(TIP)(dmpe)(I) ................................ 299 i__ LIST OF FIGURES “Images in this dissertation are presented in color” Figure 1.1 Figure 1.2 Figure 2.1 Figure 2.2 Figure 3.1 Figure 3.2 Figure 3.3 Figure 3.4 Figure 3.5 Figure 3.6 Figure 3.7 Figure 3.8 Figure 3.9 Figure 3.10 Figure 3.11 Figure 4.1 Scandium-based metal complexes for intramolecular hydroamination 6 Tantalum catalysts (neutral and cationic) for intramolecular hydroamination ......................................................................................... 7 ORTEP representation (50% probability level) of Hzenp (4) ................ 53 Synthesis of Ti(enp)(NMe2)2 (5) and comparison with Ti(dap)2(NMe2)2 (1) ............................................................................... 54 Solid-state structure of Ti(NMe2)3(bap) (28) from X-ray diffraction... 97 Structure of hydrazido(2—) complex 36 from X-ray diffraction. .......... 105 Possible resonance forms of 36. (For simplicity, the other ligands are not shown) ....................................................................................... 106 ORTEP representation of Ti2(dap)3(u2:nl,nz—NNMe2)2(u1 :nl-NHNMez) (37) at 50% probability level ................................................................ 108 Representative plot for the catalysis with Ti(dap)2(NMe2)2 (1) .......... 110 Representative plot for the catalysis with 36 ........................................ 112 Representative plot for reaction of 36 with 1,1 -dimethylhydrazine ..... 113 Representative plot for the catalysis with 10 mol% of 36 and Hdap 115 Dependence of kobs on catalyst concentration ..................................... 117 ORTEP representation of 3-mesity1pyrrole (43) .................................. 132 . . 3-mes ORTEP representation of T1(dap )2(NMe2)2 (45) ........................ 134 Hydrazido(2—) vs isodiazene resonance forms ..................................... 171 XV Figure 4.2 Figure 4.3 Figure 81.1 Figure 81.2 Figure 81.3 Figure 82.1 Figure 82.2 Figure 82.3 Figure 83.1 Figure 83.2 Figure 83.3 Figure 84.1 Figure 84.2 Figure 84.3 Figure 85.1 Figure 86.1 Figure 86.2 Figure 86.3 Figure C] Figure C.2 ORTEP representation of the cationic part in 49 .................................. 187 (a) Hydrazido(2—) vs isodiazene resonance forms in vanadium complex. (b) Structure of 52 ................................................................. 188 Kinetic plot for Run 1 with 10% Ti(dap)2(NMe2)2 (1). ....................... 303 Kinetic plot for Run 2 with 10% Ti(dap)2(NMe2)2 (1). ....................... 304 Kinetic plot for Run 3 with 10% Ti(dap)2(NMe2)2 (1). ....................... 304 Kinetic plot for run 1 with 10% 36 ....................................................... 305 Kinetic plot for run 2 with 10% 36 ....................................................... 305 Kinetic plot for run 3 with 10% 36 ....................................................... 306 Kinetic plot for run 1 with 36 + 10 MezNNHZ reaction. ...................... 306 Kinetic plot for run 2 with 36 + 10 MezNNHz reaction ....................... 307 Kinetic plot for run 3 with 36 + 10 MezNNHz reaction ....................... 307 Kinetic plot for run 1 with 10% 36 + 10% Hdap reaction .................... 308 Kinetic plot for run 2 with 10% 36 + 10% Hdap reaction .................... 308 Kinetic plot for run 3 with 10% 36 + 10% Hdap reaction .................... 309 Kinetic plot for run 1 with 10% 37 ....................................................... 309 Kinetic plot with 15% Ti(dap)2(NMe2)2 .............................................. 310 Kinetic plot with 5% Ti(dap)2(NMe2)2 ................................................ 310 Kinetic plot with 2.5% Ti(dap)2(NMe2)2 ............................................. 31 1 1H and 13C NMR spectra of compound 2. ........................................... 312 1H and '3C NMR spectra of compound 4. ........................................... 313 xvi Figure C.3 Figure C.4 Figure C.5 Figure C.6 Figure C.7 Figure C.8 Figure C.9 Figure C.10 Figure C.11 Figure C.12 Figure C.13 Figure C.14 Hymafi Figure C.16 Figure C.17 mwmcm Figure C.19 Figure C.20 1H and 13C NMR spectra of compound 5. ........................................... 314 1H and 13C NMR spectra of compound 7. ........................................... 315 1H and 13C NMR spectra of compound 13 and 14 ............................... 316 1H and 13C NMR spectra of compound 15. ......................................... 317 1 13 H and C NMR spectra of compound 17. ......................................... 318 1 13 H and C NMR spectra of compound 20. ......................................... 319 1H and 13C NMR spectra of compound 21. ......................................... 320 1H and 13C NMR spectra of compound 24. ......................................... 321 1H and 13C NMR spectra of compound 25. ......................................... 322 1H and 13C NMR spectra of compound 35. ......................................... 323 1H and 13C NMR spectra of compound 38. ......................................... 324 1 13 H and C NMR spectra of compound 39. ......................................... 325 1H and 13C NMR spectra of compound 40. ......................................... 326 l 13 H and C NMR spectra of compound 41. ......................................... 327 l 13 H and C NMR spectra of compound 42. ......................................... 328 1 13 H and C NMR spectra of compound 44. ......................................... 329 1 13 H and C NMR spectra of compound 45. ......................................... 330 1 13 H and C NMR spectra of compound 46. ......................................... 331 xvii Scheme 1.1 Scheme 1.2 Scheme 1.3 Scheme 1.4 Scheme 1.5 Scheme 1.6 Scheme 1.7 Scheme 1.8 Scheme 1.9 Scheme 1.10 Scheme 1.1 1 Scheme 1.12 Scheme 1.13 Scheme 1.14 Scheme 2.1 Scheme 2.2 Scheme 2.3 Scheme 2.4 LIST OF SCHEMES Hydroamination of alkenes and alkynes generating amines ..................... 2 Thermodynamics for addition of ammonia and ethylamine to ethylene .. 3 Indole synthesis via hydroamination of vinylarenes by alkali metals ...... 4 Mechanistic pathway for hydroamination of alkynes by lanthanides ..... 14 Intermolecular hydroamination with actinides ....................................... 15 Mechanistic pathway of hydroamination of alkynes by actinides .......... l6 Mechanistic pathway for catalytic hydroamination of alkynes .............. 18 Synthesis of first titanium-based hydroamination catalyst ..................... 20 Synthesis of (fl-monomorine ................................................................. 21 Intermolecular hydroamination of alkyne with szTiMez .................... 22 Synthesis of (it-amino esters via hydroamination pathway ..................... 25 Synthesis of Ti(dpma)(NMez)2 .............................................................. 27 Proposed mechanistic pathway for hydroamination of alkyne ............... 27 Synthesis of Ti(dpm)(NMe2)2 ................................................................ 28 Titanium-catalyzed hydrohydrazination of alkynes and synthesis of N-substituted indole ................................................................................ 35 Proposed mechanistic pathway for the hydrohydrazination reaction using 1,1-disubstituted hydrazines .......................................................... 37 Cp-based titanium-catalyzed hydrohydrazination of alkynes and synthesis of substituted N—methylindoles ................................................ 38 Cp—based titanium-catalyzed hydrohydrazination of alkynes and synthesis of substituted N-methyltryptamines ........................................ 38 xviii Scheme 2.5 Scheme 2.6 Scheme 2.7 Scheme 2.8 Scheme 2.9 Scheme 2.10 Scheme 2.11 Scheme 2.12 Scheme 2.13 Scheme 3.1 Scheme 3.2 Scheme 3.3 Scheme 3.4 Scheme 3.5 Scheme 3.6 Scheme 3.7 Scheme 4.1 Scheme 4.2 Scheme 4.3 Scheme 4.4 Synthesis of tryptamine derivatives by aryloxo—based Ti-catalyst ......... 40 Proposed mechanism for Co-catalyzed hydrohydrazination of olefin.... 42 Synthesis of NH-indole by zinc salts ...................................................... 47 Synthesis of pyrazoline and pyrazole by Zn(OTf)2-catalyzed hydrohydrazination ................................................................................. 48 Synthesis of pyridazinones via hydrohydrazination using ZnC12 .......... 49 Synthesis of Hzenp (4) ............................................................................ 53 Reaction of 2-hexyne with phenylhydrazine catalyzed by 5 .................. 56 Hydrohydrazination of 5-chloropent-1-yne with phenylhydrazine ........ 61 Possible pathways to 24 and 25 .............................................................. 64 Ugi 4-component reaction ...................................................................... 92 Possible 1,2-insertion pathway for the iminohydrazination reaction 101 Possible mechanistic pathway of iminohydrazination by l for Entry 1 in Table 3.1 .............................................................................. 103 Synthesis of pyrazole from 4-amino-l-azabutadienes .......................... 122 Synthesis of N-phenyl-5-n-butylpyrazole and N-phenyl-3 -n-buty1pyrazole .................................................................. 1. 24 Possible mechanistic pathways for the pyrazole formation .................. 125 Synthesis of 3-mesitylpyrrole (43) ....................................................... 131 Synthesis of a vanadium hydrazido(2—) complex with O(SCH2CH2)22- as co-ligand ........................................................... 175 Synthesis of titanium hydrazido(2—) complexes ................................... 180 Synthesis of titanium-hydrazido(2—) complexes with different fac-N3 donor ligands .............................................................. 181 Synthesis of titanium hydrazido(2—) complexe from imido complexesl 82 xix Scheme 4.5 Synthesis of V(NNMe2)(OAr)(TIP) (46) (Ar = 2,6-Pri2C6H3) ........... 184 Scheme 4.6 Synthesis of cationic hydrazido(2—) complexes ................................... 186 XX bap BOC bpy But-bpy COD dap DEAD DIPP DMAP dpm szpm dpma dppf GC/F ID GCMS Hzenp LLCT Nacnac RT TBS triphos Tosyl LIST OF ABBREVIATIONS bis-2,5-(N, N—dimethylaminomethyl)pyrrolyl tert-butyloxycarbonyl 2,2'-bipyridine 4,4'-di-tert—butyl-2,2'-bipyridine cyclooctadiene 2-((dimethylamino)methy1)pyrrolyl di-tert-butylazodicarboxylate di-iso-propylphenyloxide N,N-dimethylaminopyridine Dipivaloylmethanato 5,5—dimethyldipyrrolylmethane N,N-di(pyrrolyl-a—methyl)-N-methylamine 1 ,1 '-bis(diphenylphosphino)ferrocene Gas Chromatography Flame Ionization Detector Gas Chromatography Mass Spectroscopy Nl ,Nz-bis((1H—pyrrol-2-y1)methyl)-NI ,Nz-dimethylethane-l ,2-diamine Ligand to ligand charge transfer [N(But)CHCHC(Bun)N(NMe2)-k2N] room temperature tert-butyldimethylsilyl 1 , 1 ,1 -tris(diphenylphosphinomethyl)ethane p—tolylsulfonyl xxi n. 4“... 4.... .- A A CHAPTER 1 Hydroamination of alkynes The primary focus of this thesis is the development of hydrohydrazination reactions for alkynes and their applications towards the synthesis of heterocycles. Hydrohydrazination is the formal addition of hydrazine to unsaturated C—C bonds resulting in hydrazones or substituted hydrazines. The first example of hydrohydrazination was reported in 2002 by our group; since, it has been explored by us and other research groups. On the other hand, hydroamination, where amines (instead of hydrazines) are added across the C—C unsaturation, has been more extensively studied since its discovery in the 1950’s. Because hydroamination reactions are closely related to hydrohydrazination, and more prominent in the literature, they will be discussed as an introduction in this chapter. Hydrohydrazination of alkynes and its synthetic applications will be discussed in subsequent chapters. 1.1 Introduction Hydroamination is the formal addition of an N—H bond across C—C unsaturation resulting in nitrogen-containing products such as amines, imines, or enamines (Scheme 1.1).1 These molecules are important building blocks of different biologically active compounds (e.g. alkaloids, amino acids, vitamins), fine chemicals, and pharmaceuticals. Hydroamination is an efficient way to synthesize amines, imines, or enamines with 100% atom economy. While hydroamination of alkenes generates amines, alkynes produce imines and enamines, which can also be reduced to amines if desired. Therefore, hydroamination provides an efficient route to synthesize amines, which are produced in several million tons per year industrially. In addition to this, 80% of the pharmaceutical products are composed of C—N bonds. Scheme 1.1 Hydroamination of alkenes and alkynes generating amines R3 3 \N-R4 _ + NH = ,—< 1‘ '7 2 R1 R2 amine R R enamlne R _ R2 + R3NH2 = R? l N-H 3 ‘ L ‘ (NR / R1 R2 amine R1 R2 H 2 imine However, hydroamination usually has a high activation energy, primarily due to repulsion between the lone pair on nitrogen and n—electrons of the C—C unsaturated bond. In addition to that, since the uncatalyzed reactions exhibit a negative entropy change, increasing the temperature makes the forward reaction thermodynamically less favorable (Scheme 1.2). To overcome all these barriers, a suitable catalyst design is necessary. As illustrated in Scheme 1.2, the addition of ammonia or simple amines to ethylene is . . 3 . . . . slightly exothermic or thermoneutral. Semiempirical calculations have shown that the addition of ammonia to acetylene is even more exothermic than ethylene by approximately 63 kJ mol_].I As a consequence, while hydroamination of alkynes have been extensively explored, that of unactivated alkenes is still a challenge. Scbeme 1.2 Thermodynamics for addition of ammonia and ethylamine to ethylene AG° = —14.7 kJ mol—1 NH2 _1 = + NH3 _/ AH° =—52.7 kJ mol AS° = —127.3 J mol‘1 K‘1 ,__ —1 _ + NHEt AG — 33.4 kJ mol 1 — EtNH2 AH° = —78.7 kJ mol— AS° = —152.2 J mor1 K‘1 Over the last few decades, extensive research efforts have been directed towards the hydroamination reaction. Hydroamination of alkynes is known with different metals Spar“ling the periodic table from alkali metals to transition and f—block metals. In the following sections, intermolecular hydroamination (mainly) with some 0f the r epl.eSentative metals will be discussed with an emphasis on Group 4 metal catalysis. 1.2 Hydroamination with alkali and alkaline earth metals The first well-recognized example of alkali metal catalyzed hydroamination was reported in 1954 by Howk et al.4 They demonstrated that ammonia adds to ethylene in the presence of metallic sodium at about 200 °C and 1000 bar in an inert medium forming ethyl-, diethyl-, and triethylamine in 70% total yield. Alkali metal hydrides such as NaH and LiH have also been found to be equally active. Aniline is converted to N- ethylaniline by Na or NaNH2 at 250—300 °C and 50—200 bar. It is interesting to note that a few late alkali metal amides such as rubidium and cesium amides catalyze the amination of ethylene at considerably milder conditions (80—1 10 °C and 90—120 bar) in moderate yields.5’6 Since milder conditions are used in the case of alkali metal amides, mOI10--alkylated amines are formed selectively. Apart from the inorganic salts of alkali metals, organic salts have also been found to be active for hydroamination of alkynes with amines. For example, BunLi7 and KOBut8 serve as active precatalysts for the addition of amines to alkenes (ethylene or styrene). Benet has expanded this protocol towards the synthesis of indoles by hydroamination of Styrene derivatives followed by oxidation (Scheme 1.3).9 Sch eme 1.3 Indole synthesis via hydroamination of vinylarenes by alkali metals l \ \ n // 1) 0.1 equw. Bu Ll X THE—30 °c I \ Pd/C m '0' ; > R’ 2) KOBut // N HCOONH4 // N NH2 X k: 120°C X h' toluene, 135 °C Knochel has shown that CsOH-HZO is an effective precatalyst for the addition of secondary aromatic or heterocyclic amines to phenylacetylene in NMP (N- methylpiperidine) leading to enamines. I 0 There are only a few examples in the literature of hydroamination catalyzed by alkaline earth metals. Hill first reported Ca-catalyzed intramolecular hydroamination of aminoalkene. A B-diketiminato—based Ca complex, [{HC-(C(Me)2N-2,6-Pri2C6H3)2}Ca- {N(SiMe3)2}-(THF)], was used as the catalyst.” More recently, Roesky et al. has reported a different complex with Group 2 metals (M = Ca, Ba, Sr), [{(Pri)2ATI}M{N(SiMe3)2}(THF)2], where (Pri)2ATI = N-isopropyl-2-(isopropylarnino) troponiminate.12’l3 These complexes are active for intramolecular hydroamination of aminoolefins. It is interesting to note that the reactivity decreases with increasing atomic radius of the metal. Although the elements in this group are not well-explored for hydroamination reactions, they are potentially important for industrial use as they are inexpensive and environmentally benign. 1.3 Hydroamination with transition metals (Group 3 and 5) Roesky and co-workers have reported that mono- and bis(N-iso-propyl-2-(iso- propylamino)troponiminato) yttrium amides, [(Pri)2ATI]mY[N(SiMe3)2]n (where m = 1-2; n = 3—m), are effective for intramolecular hydroamination of alkynes.14 Schafer has described scandium-catalyzed hydroamination of aminoalkynes and aminoalkenes. Both neutral and cationic complexes were synthesized using aldiminato- and diketiminato- ligands (Figure l.l). The key to this activity is the small ionic radius of scandium and the . . . . . . . . 15 . . . availability of an open coordination Site on the cationic complex. Further investigation in this field has involved the synthesis of both neutral and cationic complexes of scandium and yttrium with bidentate amidinate and tetradentate triamine-arnide ligands. 16 The activity of the catalysts depends on the nature of the ancillary ligands. Figure 1.1 Sc-based metal complexes for intramolecular hydroamination. R2 R‘Q _N R1 Sc-CHZSiMezPh o t Bu Ar = 2 R1 = Pr’, R2 = H R = CH3. ‘CH33(C6F5)3 R1 = R2 = H Among the group 5 metals, Bergman has shown several tantalum imido complexes (both neutral and cationic) that are efficient catalysts for intermolecular hydroamination of alkynes and alkenes (Figure 1.2).17 Different amido- and imido-vanadium complexes have shown moderate reactivity towards intermolecular hydroamination of alkynes with . . l8 . . . aromatic ammes. These catalysts generate Markovnikov imine products almost exclusively. Figure 1.2 Tantalum catalysts (neutral and cationic) for intramolecular hydroamination. t Ph—\ t Bu _\ t P h—\® t e rTaZN—Bu l/TaZN-Bu TaZN-Bu 8(06F5)4 Ph 1‘ t PhJ Ph BU Bu 1.4 Hydroamination with late transition metals In contrast to early transition metals and f-block elements, late transition metals provide alternative catalytic systems that are less air and moisture sensitive. They are also less oxophilic and often more functional group tolerant. Until 1999, hydroamination was . l9 . 20 . . only known With mercury and thallium among the late tranSition metals. However these two are toxic. Therefore, the search for more environmentally benign catalytic systems was necessary. Wakatsuki and co-workers first reported an efiicient late transition metal catalyst, RU3(CO)12, for intermolecular hydroamination?‘ Only 0.1 mol% of the catalyst was used in the presence of 0.3 mol% acidic additive NH4PF6 for the hydroamination of terminal alkynes with aniline. Moreover, the reactions can be carried out in open air under solvent-free conditions. More recently, Takai has expanded this methodology towards the synthesis of indene derivatives in a one-pot, two-step procedure; hydroamination was followed by C—H activation with [ReBr(CO)3(THF)]2 and coupling with ethyl acrylate.22 A cationic complex, [(PCy3)2(CO)(CH3CN)2RuH]+BF4_, also has been used for intermolecular cyclization of amine and alkynes. The resulting quinoline products are obtained in 43— 94% yield.23 The first example of rhodium-catalyzed intermolecular hydroamination of terminal alkynes with aniline was reported by Beller in 2001.24 The cationic Rh(l) catalyst, «F3 ’4, ' f; .l-H “In . a n . .. s“ Rh(COD)2BF4/3 PCy3 in THF was found to be very active for such transformations with up to 99% yield under very mild conditions (room temperature) and without any acid or base (Equation 1.1). The generated imines were further converted to secondary amines in situ by organolithium reagents. This catalyst is less oxophilic, nontoxic, and easy to handle compared to early transition metal catalysts. 1.5% [Rh(COD)2]BF4 NR R—E + R'NH2 = R (1 .1) 4.5% PCy3 R = n-hexyl, n-butyl, C6H5 yields: 55—99% R' = C6H5, 2-Me-06H4, 4-Me-CGH4, 4-OMe-C6H4, 3-F-C6H4, 4-CI-CGH4 More recently, different Rh(I) and Ir(l) complexes containing bidentate phosphine- pyrazolyl ligands having the molecular formula [M(R2PyP)(COD)]BPh4 (R = Me, Pri, Ph; M = Ir, Rh) (where COD = cyclooctadiene), [lr(R2PyP)(COD)]BPh4 (R = Me, Pri), and [M(R2PyP)(CO)Cl] (R = Me, Pri, Ph, M = Ir, Rh) were reported for intramolecular hydroamination of alkynes. Cationic Ir complexes with COD ligands are more active than CO ligands. Moreover, the neutral complexes are inactive for intramolecular hydroamination. Another interesting observation is that the Rh(I) cationic complexes are less effective than their Ir(I) analogues.25 Among the noble metals, a few Au(I) and Au(III) complexes are known to be active for hydroamination of alkynes. In 1987, Utimoto reported NaAuCl4-2HzO-catalyzed hydroamination of S-alkynylamines to form tetrahydropyridine derivatives (Equation 1.2).26’ 27 He also expanded this methodology towards the synthesis of indoles (Equation 1.3).28 Marinelli expanded the scope of this reaction by using an ethanol/water mixed 29 solvent system. NH2 5% NaAuCl4-2H20 LNjA’mBHfi = (12) % CH3CN, reflux, 1 h nC5H13 80% / Bun H / 5% NaAuCI4-2H20 N = / EU" (1.3) NH2 THF, 25 C, 2 h 87% Acid-promoted intermolecular hydroamination of terminal and internal alkynes have been carried out with (PPh3)Au(CH3) to generate imines (Equation 1.4).30 Both aryl and alkyl, terminal and internal alkynes have been used. Different primary aromatic amines (electron-rich, electron-deficient, and sterically hindered) are effective in this reaction, however, alkylamines are not. More recently, a new porphyrin-based Au(III) catalyst was . . . I introduced for hydroamination of alkynes.3 Br 0.1% (PPh3)Au(CH3) 0 ¢ 3' 050/ H PW o O - o 3 12 4o CH3 + o > (1-4) H2N 70 0,211 94% l0 Surprisingly, the reaction of phenylacetylene with aniline in the presence of catalytic AgBF4/HBF4 produces 1,2—dihydroquinoline derivatives instead of imine products (Equation 1.5). In this case, the products are formed by hydroamination followed by hydroarylation.32 Ag-catalyzed hydroamination are also applied to synthesize pyrroles.33 / \ / \ NH2 catAgBF4 l \. + l \, (1.5) ’ R ’ R' cat. HBF4 140 °C R = H, p-Me, p-F R' = p—Me, p-Cl, p-F YIBIdI 60—88% In addition, a combination of both Au/Ag-catalyzed microwave-assisted hydroamination of alkynes with amines was reported where 1,2-dihydroquinolines were obtained as the final products (Equation 1.6).34 I \ NH2 1 X122 5% AuCI3/AgOTf 11 R H N N 15% NH PF \ \ + 4 6 > R2_: R1+ R2_:_ R1 (1.6) CH3CN, 150°C / / / / :——R microwave irradiation R1 R1 Yamamoto described the formation of pyrrolidine and piperidines by intramolecular hydroamination of amines or sulfonyl amides, bearing a terminal allene group using Pd catalyst. This involved the addition of an M—H bond across an allenic double bond.35 Pd- catalyzed hydroamination of allenes was reported for the synthesis of allylic amines.36 The same group showed an efficient stereoselective hydroamination of conjugated enynes in the presence of a palladium catalyst (Equation 1.7).37 The reactions only occured in the presence of a phosphine-based ligand. [(n3—C3H5)PdCI]2 R1 1 dppf, CH3C02H )1 R 1 E—-\{ +R\NH ‘ R H /R (17) 1 THF, 80°C N R \ l R = Me, hexyl, SiMe3 R1 = PhCH2, —CHZCH=CH2 dppf = 1,1'—bis(diphenylphosphino)ferrocene Intermolecular hydroamination of aminoalkynes using Group 7—12 metals has been reported. For example, [Cu(CH3CN)4]PF6, Zn(CF3SO3)2, and [Pd(triphos)](CF3SO3)2 (where triphos = 1,1,l-tris(diphenylphosphinomethyl)ethane) have been used, and the products are substituted pyrrolidines and piperidines.38 12 1.5 Hydroamination with lanthanides and actinides Marks and co-workers discovered lanthanide-based catalysts effective for both intra- and intermolecular hydroamination of alkenes and alkynes.39 The f-block elements are quite different in their activity towards activation of unsaturated organic substrates (C=C and CEC activation in particular) and heteroatom cyclization due to their high electrophilicity, large atomic radius, and nondissociative ancillary ligation. Complexes having the structure Cp'anCH(SiMe3)2 (Ln = Sm, Cp' = nS-M65C5) and MezsiCp"2LnCH(SiMe3)2 (Ln = Nd, Sm, Lu; Cp" = nS-Me4C5) are effective precatalysts for both intra- and intermolecular hydroamination of alkenes, alkynes, and dienes. However, the corresponding intramolecular processes are ~1000 times faster than the intermolecular processes. Mechanistically, the turnover limiting step is the insertion of C=C or CEC bonds into Ln—N bond followed by rapid protonolysis of the resulting Ln-C bond (Scheme 1.4). Scheme 1.4 Mechanistic pathway for hydroamination of alkynes by lanthanides , g\ H, “Si Ln— C” \ SIMe3 / ,\ é‘ \SiMe3 /R It R'—C CH _ H2 3 R NH2 I CH2(SiMe3)2 H NHR R. CH3 I, / 5\ 'Si Ln—NHR ’ 2 [$9 CH3 R-NHZ J K: I?! NHR 5 ,, \ CH , \ Si Lnf 3 Si Ln— NHR ’ .\ R. (é % %%CH3 2 R. r... i R . , KNLH R = n-propyl, n-butyl, i-butyl . ' n , \ I _ . I 33‘ ’x) R - SlMe3, CeH5, CH3 VCH3 Ln = Sm, Nd R! Intermolecular hydroamination of terminal alkynes (aliphatic and aromatic) with primary aliphatic amines was carried out with organoactinide complexes Cp*2AcR2 (Ac = Th, U; R = Me, HNR) developed by Eisen and co-workers.40’4l Here the regioselectivity of hydroamination depends on the nature of the metal. While aldimine products are obtained in good to excellent yield with the uranium complex, only poor to moderate yields of ketimine products were observed in the case of thorium (Scheme 1.5). Scheme 1.5 Intermolecular hydroamination with actinides ,E Nt _ 0.5% Cp*2UMe2 /\/\/U\H H—_—\_\ + EtNHz 88°/ 0 0.5% Cp*2UMez H———\__ + EtNH2 10% V \/\/U\CH3 Cp"r = C5Me5 In general, there are considerable differences in the reactivity of 4f- (lanthanides) and 5f— (actinides) metal complexes in hydroamination reactions. In the case of actinides, only terminal alkynes undergo reaction with amines but not internal ones. Silyl substituent effects are minor for actinides. Hydroamination of alkenes have not been observed with actinides. Mechanistically, for actinides, the rate-determining step is the formation of the metal-imido complex after N—H o—bond activation followed by the release of CH4 (Scheme 1.6). The intermediate then undergoes rapid cyclization with alkyne to form a four-membered metallacycle. This is followed by protonolysis by amine. The enamine product is produced along with regeneration of the metal-imido species. The enamine product then converts into the more stable imine isomer. Scheme 1.6 Mechanistic pathway of hydroamination of alkynes by actinides Cp*2AcMe2 / R'NH2 JK 2 CH4 * INHR‘ 0" ZAC‘NHR' NH2R' H NR' / R H H NHR' Cp*2Ac(NHR')2 R H R'NHz Cp2*Ac=NR' + R'NH2 Cp2*Ac’ /N' X00 Cp*— - Me5C5 NHR' Cp2*Ac’ ’\ c .A / NHR' ‘c C” 92 C / R C=CH R'NH2 1.6 Hydroamination with Group 4 metal complexes 1.6.1 Hydroamination of alkynes with Zirconium The earliest example of zirconium-catalyzed hydroamination appeared in the 2, literature from the pioneering work of Bergmann in 1992.4 43 He discovered that the zirconocene bis(amide) [Cp2Zr(NH-2,6-Me2C6H3)2] catalyzed the intermolecular hydroamination of aromatic amines with alkynes and allenes. The reaction took place at 90-120 °C in the presence of 2—3 mol% of the catalyst. Although the catalyst seemed to be stable under these reaction conditions, the reaction was found to be relatively slow. While the enamine formed from diphenylacetylene was isolated in 60% yield, the enamine formed from 2-butyne only was observed by 1H NMR. In the second case, the product was the more stable imine isomer (Equation 1.8). o NHAr N—Al' R : R + A rNH2 3 mol /0 CpZZr(NHAr);= _ + 2, (1.8) 06H6, 120 °C. 13 d R R R R R=Ph,Me R=Ph R=Me Ar = 2,6—Me205H3 enamine imine Although the above described zirconocene catalyst was inactive for alkene hydroamination, it hydroaminated allene under relatively mild conditions (Equation 1.9). The Markovnikov addition product, the imine of acetone, was isolated in 83% yield. 2.7 mol% CpZZr(NHAr)2 NAr ArNHz + (1.9) 05H5, 90 °C, 6 (1 Me Me 83% Ar = 2.6-Me2C6H3 A detailed kinetic study was carried out to investigate the mechanism of the above transformation (Scheme 1.7). The catalytic cycle begins with the formation of zirconium imido complex from the zirconocene precatalyst. This is followed by the [2 + 2]- cycloaddition of the alkyne to form an azametallacyclobutene intermediate. Rapid protonation by the amine generates the enamide-amide complex, which then undergoes a-elimination of enamine to regenerate the catalytically active species. Scheme 1.7 Mechanistic pathway for catalytic hydroamination of alkynes CpZZr(NHAr)2 Cp22r=NHAr + ArNH2 NHAr Ph : Ph [2+2] Ar Ph _ ’ /N Cp Zr N Cp22r\ l 2 _ A,NH Ph Ph Ph Ar = 2,6-Me206H3 ArNH2 l8 Although the reaction was limited to disubstituted alkynes and bulky aromatic amines, this was a breakthrough in Group 4 alkyne hydroamination. Not surprisingly, this was followed by a series of hydroamination reactions using another Group 4 element, titanium, which are described in the next section. More recently, Schafer has reported bis(amidate) bis(amido) zirconium complexes (Equation 1.10), which are effective precatalysts for both intra- and intermolecular . . 44,4 hydroamination of alkynes. 5 , 4( Toluene N INEtz JL J< + Zr(NEt) - R—(z Zr. (1.10) N 24 O 2 2 R H heat, 14h NEt2 R = Pri, Ph. c61=5 1.6.2 Hydroamination of alkynes with Titanium The earliest example of titanium-catalyzed hydroamination was reported by Rothwell and co-workers.46 They showed the hydroamination of 3-hexyne with aniline using bis(phenylamido) titanium(IV) complex (Scheme 1.8). They also reported for the first time a structurally characterized titanium imido complex. However, the isolated imido pyridine complex did not exhibit any reactivity towards hydroamination of 3-hexyne. In 1992, Livinghouse reported hydroamination with a Cp-based (Cp = cyclopentadiene, C5H5-) titanium complex. He showed intramolecular hydroamination of y— and 5-aminoalkynes with 20 mol% CpTiCl3 and 40 mol% PrizNEt.47’48 Scheme 1.8 Synthesis of first titanium-based hydroamination catalyst Py Ar"Oz,, , Ph 2PhNH Ar"o, NHPh 291/ Ar"0m.. i .. (TI: 2 T }Ti: ; " / iZNHPh A, 0 Ph Ar"O NHPh Ar 0 . PY Ar" = Pr’206H3 Ar"O,,' '/NHPh .. (TR Ph Ar 0 NHPh \N Et : Et + PhNH2 f EtJK/Et The mechanism is very similar to that depicted by Bergman. The cycle starts with the formation of the imido complex, followed by [2 + 2]-cycloaddition with the alkyne forming an azametallacyclobutene intermediate. The final step involves protonation to generate the product. Although this methodology was restricted to intramolecular hydroamination, it did not require a sterically bulky amine. He also extended this methodology towards the synthesis of the natural product (i)-monomorine.49 The key step involves CpTiCl3-catalyzed hydroamination of aminoalkyne as shown in Scheme 1.9. 20 Scheme 1.9 Synthesis of (dz)-monomorine 0’ 0‘ 20% CpTiCl3 40% NEt3 _ THF, 25 °C 93% (i)-monomorine Another Cp-based titanium catalyst, szTi(NHPh)2, and more versatile CpZTiMez were introduced by Doye in 1999.50 Both aryl and alkyl amines can be used in the hydroamination with symmetrically substituted internal and terminal alkynes. The resulting imines were either converted into ketones or reduced to amines (Scheme 1.10). Although good yields were obtained with aryl amines and sterically demanding sec- and tert-alkyl amines, yields were poor for less hindered n-alkyl and benzyl amines. Later, a slightly modified Cp-based titanium catalyst, Cp*2TiMe2 (Cp* = Me5C5-), was found to be successful for hydroamination with less hindered amines.“ A recently reported catalyst for similar transformations involves an indenyl ligand, (Ind)2TiMe2, which is also commonly used for intermolecular hydroamination of alkynes.52 While anti- Markovnikov products were observed with arylalkynes, only Markovnikov products were 21 1'15 obtained with alkylalkynes and arylamines. Bergman has shown hydroamination of . . . . . 53 allene us1ng szTlMEz as the precatalyst, and the product 13 the imine of acetone. Scheme 1.10 Intermolecular hydroamination of alkyne with szTiMez 1) 3% Cp2TiMe2 Ph : Ph 1) 3% Cp2TiMe2 20, toluene, 100 °C + tomene, 100 °C NHR Ph Ph 2) $102 R—NH2 2) LiA|H4 ph’ Ph THF, 65 °C In 2002, Beller developed new titanocene alkyne complexes [(Cp2Ti('r)2- Me3SiCECSiMe3)] and [(szTi(n2-Me3SiCECPh)] for intermolecular hydroamination of . . 54 . . . . both terminal and internal alkynes. Excellent anti-Markovnikov select1v1ty was observed with terminal aliphatic alkynes with tert—butylamine. The selectivity was observed to increase depending on the steric bulk of the amine. In the reaction of aniline with l-hexyne, the product was obtained almost to the exclusion of the anti—Markovnikov product (Markovnikov:anti-Markovnikov = 1:99). Later, the same group introduced an aryloxo-based titanium precatalyst for chemo- and regioselective intermolecular hydroamination of terminal and internal alkynes with aliphatic and aromatic amines in good to excellent yields (Equation 1.11).55 The regioselectivity can also be reversed by suitably changing the substituents on the aryloxo ligand.56 22 /NMez O 0 TI \NMez cat 1 2 2 1 NR2 R : H + R-NHZ = R—( (1.11) up to to 99% yield Me Ackennann showed another user-friendly protocol for intermolecular hydroamination of alkynes with various alkyl and arylamines using commercially available TiCl4. Addition of tert—butylamine to TiCl4 generated the active catalyst in situ. This catalyst tolerates various halides, which enables the synthesis of various indoles via one-pot . . . . . 57.58 hydroamination/Heck coupling reaction sequence (Equation 1.12). 1) 10% TiCI4 1.2 equiv. ButNHz Ph C' toluene, 105 °C, 20 h \ + Et : Ph e Et (1 12) NH2 2) 5% Pd(OAc)2 u ' 5% NHC-HCI KOBut toluene, 105 °C, 20 h Pri Fri —_| , .. G) Pr Pr' 23 Another class of the intermolecular hydroaminations of internal and terminal alkynes with primary amines was developed by the Schafer group using amidate ligands (yields as high as 97%). However, the enhanced reactivity also reduced the selectivity for some 45,59 terminal alkynes. -6] This methodology was further extended to the synthesis of 01- amino acids and a-amino esters (Scheme 1.11).62 24 Scheme 1.11 Synthesis of a-amino esters via a hydroamination pathway 2 H2NAPh a) catalyst ms. A o N Ph C H .65 C, 1211 6 6 > Burk/kc“. b) TMSCN (1 equiv) TFAA (2.5 equiv) 5 min 1.6.3 Research in the Odom group The first example of non-Cp—based titanium catalyst, T1(NMe2)4, for alkyne hydroamination was reported from our group in 2001.63 Hydroaminations of terminal and internal alkynes were carried out with aniline and different aromatic amines. This precatalyst is selective for Markovnikov products, as opposed to the szTiMez system which produces anti-Markovnikov products selectively. The reactions were carried out with 10% catalyst loading at 75 °C. The reactions with terminal alkynes were faster than the internal ones. However, alkyne oligomerization and polymerization were observed with phenylacetylene, hence low yield of the imine product was obtained. Unfortunately, hydroamination reactions of alkynes with alkyl amines were not successful with this precatalyst. 25 In search for a better catalytic system, a pyrrolyl-based ligand was used. Pyrrolyl ligands are less it-donating to the metal due to its competition with the aromatic stabilization of pyrrole (aromatic stabilization energy of pyrrole is ~21 kcal mol-l).64 This makes the metal center more Lewis acidic. A pyrrolyl-based ligand, szpma (dpma = di(pyrrolyl-a-methyl)methylamine), was synthesized by Mannich reaction of pyrrole, formaldehyde, and methylamine hydrochloride (88% yield). A new precatalyst, Ti(dpma)(NMe2)2, was synthesized (Scheme 1.12) and applied successfully to . . . 65-67 . . intermolecular hydroamination of alkynes. Both terminal and internal alkynes were hydroaminated by aliphatic and aromatic amines. The reaction of terminal alkynes with aniline was most effective. A large number of functional groups (m-, p-OMe, halogen) on aniline were tolerated. Although steric effects on the aniline were not dominant, a large electronic effect was observed. In addition, the reactions were successfiil with alkyl amines (cyclohexyl, benzyl, and benzhydrylamine). Compared to Ti(NMe2)4, this catalyst was more selective towards Markovnikov products for most of the alkynes (except l-phenylpropyne) (50:1 versus 3:1 for the reaction of l-hexyne with aniline). This was attributed to the presence of the pyrrolyl ligand in the active species during catalysis. 26 Scheme 1.12 Synthesis of Ti(dpma)(NMe2)2 H 2 o + H H , \ NMe2 o EtOH/HZO Wig/D T1(NMe2)4 \NTIi NMe2 > / _ 2 H/U\H 55°C, 411 \ Me Ether / N l 88‘V / "N. o H2dpma 92% Me \ MeNHz-HCI Ti(dpma)(NM92)2 The proposed mechanistic pathway (Scheme 1.13) leading to the imine product is very similar to that for hydroamination of alkynes by zirconocene established by Bergman and co-workers. The first step is the formation of the imido complex, followed by [2 + 2]-cycloaddition of the alkyne forming an azametallacyclobutene intermediate.The metallacycle then undergoes protonolysis by amine to form the imine product and regenerates the imido species. Scheme 1.13 Proposed mechanistic pathway for hydroamination of alkyne Ti(dpma)(NMe2)2 k 2 NHMe2 protonolysis [2+2] R‘l — R2 Ph\ R1 PhNH2 8 l _ . [Ti] 2 [T1] = T1(dpma) R 27 However, to decrease the steric strain and increase the Lewis acidity of the metal center, a slightly different pyrrolyl ligand was used. The complex was Ti(dpm)(NMe2)2, where szpm is 5,5-dimethyldipyrrolylmethane (Scheme 1.14).68 This was an improved precatalyst for intermolecular hydroamination of both terminal and internal alkynes with aliphatic and aromatic amines. In fact, this was actually an order of magnitude faster than the previous precatalyst, Ti(dpma)(NMe2)2, as revealed by kinetic experiments. Several other Ti(dpm)(NMe2)2-type catalysts have been synthesized more recently. This includes the use of 2,9—diaryldipyrrolylmethane derivatives.69 These also have been found to be active catalysts for intermolecular alkyne hydroamination. Scheme 1.14 Synthesis of Ti(dpm)(NMez)2 H l N 25 O H Me Me H cat. TFA N N TilNMe2l4 + e \ l l / = E120 neat, 5 min. )L 53% 53% Me Me Ti(dpm)(NMe2)2 TFA = CF3C02H 28 1.7 Concluding Remarks A variety of metal complexes covering most of the periodic table have been used to catalyze hydroamination of alkynes. Both inter— and intramolecular versions have been explored widely. Earlier examples of hydroamination involved harsh conditions such as high temperature and pressure, while new reactions are facile at or near room temperature. Hydroamination also has been applied towards the synthesis of amines and different heterocycles. During the development of titanium-based precatalysts for hydroamination, a new reaction was discovered that involves hydrazines in place of amines. This process is formally known as hydrohydrazination. Details on hydrohydrazination and its synthetic applications will be discussed in the next chapter. Reactions involving metal-ligand multiple bonds in catalysis, e.g., hydrohydrazination, are the main focus of this thesis. Expansion of this new chemistry towards multicomponent coupling reactions and synthesis of different transition metal hydrazido complexes will be discussed in the subsequent chapters. 29 1.8 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. References Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104. Heilen, G.; Mercker, J. H.; Frank, D.; Reck, A. R.; Jackh, R. Ullman ’5 Encyclopedia of Industrial Chemistry, 1985, A2, 36. Steinbom, D.; Taube, R. Z. Chem. 1986, 26, 349. Howk, B. W.; Little, E. L.; Scott, S. L.; Whiteman, G. M. J. Am. Chem. Soc. 1954, 76. Closson, R. D.; Napolitano, J. P.; Ecke, G. G.; Kolka, A. J. J. Org. Chem. 1957, 22, 646. Pez, G. P.; Galle, J. E. Pure Appl. Chem. 1985, 57, 1917. Hartung, C. G.; Breindl, C.; Tillack, A.; Beller, M. Tetrahedron 2000, 56, 5157. Beller, M.; Breindl, C.; Riermeier, T. H.; Eichberger, M.; Trauthwein, H. Angew. Chem. Int. Ed. 1998, 37, 3389. Beller, M.; Breindl, C.; Riermeier, T. H.; Tillack, A. J. Org. Chem. 2001, 66, 1403. Tzalis, D.; Koradin, C.; Knochel, P. Tet. Lett. 1999, 40, 6193. Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 12 7, 2042. Datta, S.; Gamer, M. T.; Roesky, P. W. Organometallics 2008, 27, 1207. Datta, S.; Roesky, P. W.; Blechert, S. Organometallics 2007, 26, 4392. Burgstein, M. R.; Berberich, H.; Roesky, P. W. Organometallics 1998, I 7, 1452. Lauterwasser, F.; Hayes, P. G.; Brase, S.; Piers, W. E.; Schafer, L. L. Organometallics 2004, 23, 2234. Bambirra, S.; Tsurugi, H.; van Leusen, D.; Hessen, B. Dalton Trans. 2006, 1157. Anderson, L. L.; Arnold, J .; Bergman, R. G. Org. Lett. 2004, 6, 2519. Lorber, C.; Choukroun, R.; Vendier, L. Organometallics 2004, 23, 1845. Barluenga, J .; Aznar, F.; Liz, R.; Rodes, R. J. Chem. Soc., Perkin Trans. 1 1980, 2732. 30 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. Barluenga, J.; Aznar, F. Synthesis 1977, 195. Tokunaga, M.; Eckert, M.; Wakatsuki, Y. Angew. Chem. Int. Ed. 1999, 38, 3222. Kuninobu, Y.; Nishina, Y.; Takai, K. Org. Lett. 2006, 8, 2891. Yi, C. S.; Yun, S. Y. J. Am. Chem. Soc. 2005, 127, 17000. Hartung, C. G.; Tillack, A.; Trauthwein, H.; Beller, M. J. Org. Chem. 2001, 66, 6339. Field, L. D.; Messerle, B. A.; Vuong, K. Q.; Turner, R; Failes, T. Organometallics 2007, 26, 2058. Fukuda, Y.; Utimoto, K. Synthesis 1991, 975. Fukuda, Y.; Utimoto, K.; Nozaki, H. Heterocycles 1987, 25, 297. Iritani, K.; Matsubara, S.; Utimoto, K. Tet. Lett. 1988, 29, 1799. Arcadi, A.; Bianchi, G.; Marinelli, F. Synthesis 2004, 610. Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349. Zhou, C. Y.; Chan, P. W. H.; Che, C. M. Org. Lett. 2006, 8, 325. Luo, Y. M.; Li, Z. G.; Li, C. J. Org. Lett. 2005, 7, 2675. Robinson, R. S.; Dovey, M. C.; Gravestock, D. Tet. Lett. 2004, 45, 6787. Liu, X. Y.; Ding, P.; Huang, J. 8.; Che, C. M. Org. Lett. 2007, 9, 2645. Meguro, M.; Yamamoto, Y. Tet. Lett. 1998, 39, 5421. Besson, L.; Gore, J .; Cazes, B. Tet. Lett. 1995, 36, 3857. Radhakrishnan, U.; Al-Masum, M.; Yamamoto, Y. Tet. Lett. 1998, 39, 1037. Muller, T. E.; Grosche, M.; Herdtweck, 13.; Pleier, A. K.; Walter, E.; Yan, Y. K. Organometallics 2000, I9, 170. Li, Y. W.; Marks, T. J. Organometallics 1996, 15, 3770. Straub, T.; Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky, M.; Eisen, M. S. Organometallics 2001, 20, 5017. 31 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. Haskel, A.; Straub, T.; Eisen, M. S. Organometallics 1996, 15, 3773. Baranger, A. M.; Walsh, P. J .; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 2753. Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708. Thomson, R. K.; Zahariev, F. B; Zhang, 2.; Patrick, B. 0.; Wang, Y. A.; Schafer, L. L. Inorg. Chem. 2005, 44, 8680. Li, C.; Thomson, R. K.; Gillon, 3.; Patrick, B. 0.; Schafer, L. L. Chem. Commun. 2003, 2462. Hill, E. J.; Profilet, D. R.; Fanwick, E. P.; Rothwell, P. I. Angew. Chem. Int. Ed. 1990, 29, 664. McGrane, P. L.; Jensen, M.; Livinghouse, T. .1. Am. Chem. Soc. 1992, 114, 5459. McGrane, P. L.; Livinghouse, T. J. Am. Chem. Soc. 1993, 115, 11485. McGrane, P. L.; Livinghouse, T. J. Org. Chem. 1992, 5 7, 1323. Haak, E.; Bytschkov, 1.; Doye, S. Angew. Chem. Int. Ed. 1999, 38, 3389. Heutling, A.; Doye, S. J. Org. Chem. 2002, 67, 1961. Heutling, A.; Pohlki, F.; Doye, S. Chem. Eur. J. 2004, 10, 3059. Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123, 2923. Tillack, A.; Castro, 1. G.; Hartung, C. G.; Beller, M. Angew. Chem. Int. Ed. 2002, 41, 2541. Khedkar, V.; Tillack, A.; Beller, M. Org. Lett. 2003, 5, 4767. Tillack, A.; Khedkar, V.; Beller, M. Tet. Lett. 2004, 45, 8875. Ackermann, L.; Sandmann, R.; Villar, A.; Kaspar, L. T. Tetrahedron 2008, 64, 769. Ackermann, L. Organometallics 2003, 22, 4367. Bexrud, J. A.; Li, C. Y.; Schafer, L. L. Organometallics 2007, 26, 6366. Lee, A. V.; Schafer, L. L. Organometallics 2006, 25, 5249. Zhang, Z.; Schafer, L. L. Org. Lett. 2003, 5, 4733. 32 62. 63. 64. 65. 66. 67. 68. 69. Lee, A. V.; Schafer, L. L. Synlett 2006, 2973. Shi, Y. H.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 3967. March, J. Advanced Organic Chemistry, 4th ed.; John Wiley and Sons: New York, 1996, p 45. Li, Y. H.; Tumas, A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem. 2002, 41, 6298. Harris, S. A.; Ciszewski, J. T.; Odom, A. L. Inorg. Chem. 2001, 40, 1987. Cao, C. S.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20, 5011. Shi, Y.; Hall, C.; Ciszewski, J. T.; Cao, C.; Odom, A. L. Chem. Commun. 2003, 586. Swartz, D. L.; Odom, A. L. Organometallics 2006, 25, 6125. 33 CHAPTER 2 Hydrohydrazination of alkynes with monosubstituted hydrazines 2.1 Introduction Hydrohydrazination is the formal addition of a hydrazine to an unsaturated C—C bond resulting in a hydrazone or substituted hydrazine, which is shown for alkynes in Equation 2.1. This reaction allows access to heterocyclic structures that act as the core of many natural products and pharmaceuticals]-4 Metal-catalyzed hydrohydrazination of alkynes is primarily known for Ti, Co, Mn, Pd, and Zn. The catalytic process for these metals will be discussed here. This is followed by the discussion of our work on hydrohydrazination of alkynes using monosubstituted hydrazines. .1 i R1 — R2+ RiN-NH —cat'—> NI, ‘R: + N5; ‘R4 (21) — R4/ 2 R1J\/R Rle/R1 hydrazone 34 2.1.1 Hydrohydrazination with Titanium The first example of titanium-catalyzed addition of 1,1-disubsituted hydrazines to alkynes was reported by our group in 2002.5 In these reactions, hydrazones are generated, and, if aryl-substituted hydrazines are used, Fischer indole cyclization results in isolation of the corresponding N-substituted indoles (Scheme 2.1). Scheme 2.1 Titanium-catalyzed hydrohydrazination of alkynes and synthesis of an N- substituted indole NMez QN;T i ”(\NMez H . , ° ‘ 2N N Me 10/o ~1er Me (5 0"“: Me : Ph + N toluene, 100 °C, 20 h p Me/U\/ h F" Me Me Me _ \ (1’) [3,3]-sigmatropic '1. H2N N EN -- A rearrangement HN’ Me Me H Me)§ H Ph Ph Ph — NH3 Me \ N Me \ Ph 35 For 1,1-disubstituted hydrazine substrates, a pyrrole-based ligand framework on titanium was found to be effective. The originally reported design was Ti(dap)2(NMe2)2 (1), where dap = 2-(dimethylaminomethyl)pyrrole. In addition, a thiolate-based catalyst was also found to be very active, Ti(SC6F5)2(NMe2)2(l\lHMe2). In titanium-catalyzed hydrohydrazination, the reactions are believed to follow a pathway similar to that discovered for hydroamination by Bergman and co-workers using zirconocene as catalyst (Scheme 2.2).6'8 In the first step, a titanium hydrazido(2—) complex is generated from the bis(dimethylamido) precatalyst losing two equivalents of dimethylamine.9 The hydrazido(2—) then undergoes [2 + 2]-cycloaddition with an alkyne forming an azatitanacyclobutene intermediate. Finally, the metallacycle undergoes protonolysis with hydrazine to form product and regenerate the metal-ligand multiple bond. 36 Scheme 2.2 Proposed mechanistic pathway for the hydrohydrazination reaction using 1 ,1 -disubstituted hydrazines NMez [Ti l—NMe2 R / HzN-N\ — 2 NHMe2 R 2 [T1] = Ti(dap) R H N NMe2 Hdap = [)4 More recently, Beller and co-workers have used a Cp-based (Cp = cyclopentadiene) titanium catalyst for a similar transformation. nS-CpgTi(n2-Me3SiCZSiMe3) has been used as the precatalyst for hydrohydrazination of terminal alkynes with N-phenyl-N- methyl hydrazine (Scheme 2.3).IO Typical reaction conditions involve 2.5—10 mol% catalyst at 85—100 °C, and the reactions are complete in 24 h. Addition of ZnClz to the resulting hydrazones affords substituted N—methylindoles in 52—90% yield (Scheme 2.3). Except for phenylacetylene, high Markovnikov selectivity is observed for other terminal alkynes and 2-methyl-3-alkylsubstituted indoles are obtained as products. In the case of phenylacetylene, the ratio of the indole products is 4:1 (Markovnikov:anti-Markovnikov). In case of 5-chloropent-1-yne, the hydrochloride salt of N—methyl-3-(2-aminomethyl-)-2— 37 methylindole is obtained, which on addition of NaOH affords N-methyl-3-(2- aminoethyl)-2-methyl indole in high yield (Scheme 2.4). Scheme 2.3 Cp-based titanium-catalyzed hydrohydrazination of alkynes and synthesis of substituted N-methylindoles SiMeg _ 1 Ti 1 1’“ 1’“ 7 F: ca . ,N ,N + t, R + Ph toluene, 100°C L Me/J\/ H R H2N-N: Markovnikov anti-Markovnikov Me ZnC|2 —NH3 Me Me N N W“? + / .. R R Scheme 2.4 Cp-based titanium-catalyzed hydrohydrazination of alkynes and synthesis of substituted N—methyltryptamines 1) cat. %T'% CI/V\\\ SiMes Me Me SWb3 toluene, 100 °C, 24 11 N NaOH N + ; / Me / Me ph 2) 3 equiv. ZnCl2 HzN—N/ toluene, 100 °C, 24 h ‘Me 64% NHz-HCI NH2 38 In addition, Beller has reported alkoxide-based ligands for titanium-catalyzed hydrohydrazination with 5-chloropent-1-yne to generate N—substituted tryptamines (Scheme 2.5).11 Here, 2.5—5 mol% of bis(2,6-di-tert-butyl-4-methylphenoxo)- bis(dimethylamide)titanium is used as catalyst, and the reactions are carried out at 80— 120 °C. The products are isolated in moderate to good yield. The steps involved in forming the tryptamine products are hydrohydrazination followed by [3,3]-sigmatropic rearrangement of the resulting hydrazone combined with the elimination of ammonia. The final step involves the nucleophilic attack of ammonia to the chloroalkane to generate the tryptamine derivatives. Both electron-donating and electron-withdrawing ' groups are tolerated on the hydrazine during this reaction. Note that the presence of the aryloxo ligand is necessary for the high yield of the indole product since only low yield was obtained using Ti(NMe2)4 as the precatalyst. 39 Scheme 2.5 Synthesis of tryptamine derivatives by aryloxo-based titanium catalyst /NMez + _ Ti NH3 Cl ° 3 \ + Me 3 toluene, 100°C, 24 h N. 1 R R NH N/ 2 NaOH l1 R R1 = Ph, Benzyl, CH3 R2 = H, F, 01, CH3, OCH3 R3: H, Cl Beller and co-workers have also reported the hydrohydrazination of tert- butyldimethylsiloxy-2-propyne with N—methyl-N-phenylhydrazine generating 3-siloxy-2- . . 12 . . . . . . . methyl indoles (Equation 2.2). The optimized conditions for this reaction involve the use of 5% Ti(NEt2)4 and 10% 2,6-di-tert-butyl-4-methyl-phenol at 100 °C in the presence of a slight excess of hydrazine. Zan is used for the Fisher indole cyclization step. A range of different substituents are tolerated in the para position of the hydrazine. Note that the yields are higher for N-methyl indoles compared to N-benzyl indoles. Recently, they have presented a similar transformation generating different N—substituted tryptophol derivatives.l3 TiCl4/ButNH2-catalyzed hydrohydrazination of alkyne with 40 1,1-disubstituted alkynes have also been reported and the final products are N-substituted . . . . . . . . l4 indoles. Here, T1Cl4 1S suffic1ently LeWis ac1dic to Circumvent the use of ZnClz. . t ///\0’S'M928” 1- Ti(NEt2)4, 2.6-di-tert-butyl- . t 4-methylphenol S'MeZB” toluene \ + > Me (2.2) 2. ZnClz N N ,NH2 toluene, 100 °C, 24 h Me 1 Me 2.1.2 Hydrohydrazination with Cobalt A cobalt(IlI) catalyst with a Schiff-base ligand has been reported by Carreira for olefin hydrohydrazination.15 Both cyclic and acyclic olefins including monosubstituted, 1,1- and 1,2-disubstituted, and trisubstituted olefins are used in the presence of 1—5% catalyst at 23 °C for 2—8 h (Equation 2.3). The reaction is highly selective for Markovnikov products (except for esters in the case of 1,2-dusubstituted olefins). A large number of functional groups including bromides and ketones are tolerated. However, only low yields are obtained for unactivated 1,2-disubstituted olefins (crotyl alcohol and cyclohexene). 41 9 ‘ Na® >90 _ O ales/Do O I \ _ O N R3 t 1 COzBu O < RZDKL R WRG'. = / e H t N N R (2.3) R t 1 equ1v. PhSIH3 / N 3“ 02C ButOZC I ethanol, 23 °C, 2—8 h H The proposed mechanistic pathway involves a hydrido cobalt intermediate, which undergoes chemoselective addition of olefin to afford an organocobalt species (Scheme 2.6). The metal alkyl then adds to the N=N bond of azodicarboxylates to generate a cobalt—nitrogen species. The final step involves o—bond metathesis of PhSiH3, which regenerates the cobalt-hydrido complex. Scheme 2.6 Proposed mechanistic pathway for Co-catalyzed hydrohydrazination of olefin 1 3 R R 3 t _ 2R Bu 02C. 2) < R1R 11' R H H N. t COL" COZBU R3 H siHZPh LnCo—H q R N R1 N/ \COZBut 1R2R3 | COzBut R H N / PhSiH3 R3 H CoLn OBut R1 il/ ‘cozeu COzBut 42 The same group later reported the synthesis and use of a neutral Co(III) catalyst active for a similar transformation. The catalyst was synthesized in a two-step procedure starting from Co(OAc)2-4H20 and reacting with salicylaldehyde and a,a-dimethyl substituted amino acid (Equation 2.4).16 H 1) 1 equiv. L H o H20. argon 0 1' .112 Me + Co(OAc)2-4H20 e "-00-“ M (24) OH 2) 1 equiv. L -N’ C')_ X 9 ethanol, air, 23 °C Me 0 77% Me 0 M3 < 3 R2 R R R 1 4 R R t . = , (2.6) t iPhSil—l3 ButOZC’N‘n 0°23” lCOzBu Pr OH 0 ",0 2— 311 t N=N Bu 02C 45 2.1.4 Hydrohydrazination with Palladium Addition of hydrazine or hydroxylamine to a C=C bond in 1,3-dienes has been carried out in the presence of 1% [{Pd(n3—allyl)Cl}2] and 2% xantphos by Haltwig and co- workers. It generates branched allylation products in excellent yields (Equation 2.7).19 Various nucleophiles such as benzophenone hydrazone, fluorenone hydrazone, 1- aminobenzotriazole, and phenylhydrazine are used as substrates to add to C=C bond in 1,3-diene to yield the corresponding products. Benzophenone hydrazine has also been used to add to a C=C bond in catalytic amination of allylic esters. 1% [{Pd(n3-aIIyI)CI}2] 3 4 1 2 R R 2% Xantphos 2 1 R3 R4 R R NNH2 + / \ #- R R NHN \ (2.7) 5R6 CHZCIZ, 23 °C, 24 11 6 R 76—98% RSR PPh2 PPh2 R1, R2 = P1120, PhH 0 R3, R4 = H, Me xantphos: O O R5 R6 = H 2.1.5 Hydrohydrazination with Zinc Very recently, Beller and co-workers reported intermolecular hydrohydrazination of terminal alkynes catalyzed by zinc salts.20 In particular, both ZnClz and mom; (OTf = 0802CF 3) have been used for such transformations. The reactions are carried out in THF at 100 °C for 24 h, and indole products are obtained in good to excellent yields 46 (Scheme 2.7). Both N-protected and NH-indoles are obtained. However, only terminal alkynes are employed. Different functional groups including free and protected alcohols, esters, pthalimide-protected amines are tolerated on the alkyne. On the other hand, functional groups such as p-Me, p-prl, p-But, p-Br, p-Cl, p-F, p-OMe are tolerated on the phenylhydrazine. This appears to be an elegant approach for the synthesis of both N- protected and NH-indoles in an environmentally benign way bypassing N-protection of hydrazine and N-deprotection of indole in the final product. Scheme 2.7 Synthesis of NH—indole by zinc salts ///\C5H11 3 equiv. ZnC|2 C5H11 051-111 4' : ________> e THF,100°C,24h // NyN R,// N | \ 5o-97% R é 1R / ,NH l- J . R. / iii 2 arylhydrazone Indole R R = Me, H; R' = p-Me, o-Me, p-pr’, p-But, p—F, p-Cl, p-Br, p-OMe; OTf = OSOZCF3 The Beller group has also extended the above hydrohydrazination reaction towards the synthesis of pyrazolines and pyrazoles.21 Reaction between 3-butynol and phenylhydrazine affords N-phenylpyrazoline and N-phenylpyrazole derivatives in the presence of Zn(OTf)2 as catalyst (Scheme 2.8). Different substituents including o-Me, p- Me, p-Cl, o-Cl, p-Br, p-CN, p-tolylsulfonyl are tolerated on the phenylhydrazine. The reaction between 3-butynol and phenylhydrazine generates pyrazoline first, which on filrther oxidation by air in the presence of acetic acid results in the pyrazole product in 47 good to excellent yield. No difference is observed in the yield of the pyrazole product if the reaction is carried out with the isolated pyrazoline or all in one pot. Scheme 2.8 Synthesis of pyrazoline and pyrazole by Zn(OTf)2-catalyzed hydrohydrazination R_g NH 5% Zn(OTf)2 1 OH + / , > é/V N 2 THF, 100 °C, 24 11 arylhydrazone R+ R+ — H20 ’ CH3COOH ’ )NLN) air, 50 °C, 24-72 h 7 D Me 52—99% Me pyrazoline pyrazole R = p-Me, o-Me, p-CI, p-Br, p-CN, tosyl %Tf =%SOZCF3 A further extension of this chemistry involves the synthesis of dihydropyridazinones.22 Hydrohydrazination of 4-pentynoic acid with different arylhydrazines generates aryl-substituted 4,5-dihydro-3(2H)-pyridazinones in the presence of ZnClz (Scheme 2.9). This is a convenient method to form pyridazinones in one-pot procedure and does not require any special handling of the reagents or air- or moisture-free solvents and atmosphere. 48 Scheme 2.9 Synthesis of pyridazinones via hydrohydrazination using ZnClz O + ON,NH2 H 3 equiv. ZnCl2 A THF, 100 °C, 24 11 v OH -M 1 8N0 N I1 NH <3 arylhydrazone 49 Me I — H 0 Y1 2 a N N o 90% i pyridazinone 2.2 Synthesis of NH-indoles Since the discovery of the Fischer indole synthesis in 1883, synthesis and . . . . . . 23 . functionallzatlon of lndoles continued to be an active area of research. A variety of modern and well-documented methods are also available for NH—indole synthesis.24 For example, Pd-catalyzed coupling and annulation reactions have been employed in the . . 25-34 . . . . syntheSls of indole frameworks. Recently, titanium-based hydroammatlon of alkynes followed by Heck couplings have been developed by Ackermann for the synthesis of NH—indoles (Equation 2.8).35 1) 10% TiC|4 1.2 equiv. ButNHz Ph 0' toluene, 105 °c, 20 11 + Et : Ph 47 \ Et (2 8) NH2 2) 5% Pd(OAc)2 fl 5% NHC-HCI KOBut toluene, 105 °C, 20 h Pr, Pr, | . = e where NHC HCI QN¢\N© Cl ' ~_—’ - 50 2.3 Aim of the current project We have seen that titanium-catalyzed hydrohydrazination of alkynes with 1,1- disubstituted hydrazines forms the corresponding hydrazones. If one of the substituents is an aryl or phenyl group, the hydrazones can be converted to N-substituted indoles in the presence of an external Lewis acid, ZnC12 (Scheme 2.1). However, indoles present in . . . . 36-39 natural products and pharmaceuticals more often contam the NH-functlonallty. Our interest here is to carry out direct synthesis of NH-indoles using hydrohydrazination. For this we have developed a new pyrrole-based ligand for the hydrohydrazination of alkynes using monosubstituted hydrazines.40 This is the first titanium-based catalyst active for monosubstituted hydrazines. In addition, this is the only reported catalyst that is active for both terminal and internal alkynes. NH—hydrazones are generated in situ by the catalytic process, and a variety of heterocycles are synthesized using this methodology. The development of this new precatalyst, its substrate scope, and applications to various heterocyclic synthesis will be described in the following sections. This project was carried out with the help of Dr. Eyal Barnea who joined our group as a post-doctoral associate during the exploration of this new methodology. Also note that during the course of our work, the Beller group developed a zinc-catalyzed hydrohydrazination to synthesize NH-indoles using exclusively terminal alkynes. This work was described in Section 2.1.5. 51 2.4 Results and Discussion In an attempt to extend the hydrohydrazination reaction to monosubstituted hydrazines, we investigated the reaction between l-hexyne and phenylhydrazine with our previous catalysts Ti(dap)2(NMe2)2 (l) and Ti(SC6F5)2(NMe2)2(NHMe2) at 100 °C for 16 h. However, no hydrohydrazination product was observed. With Ti(NMe2)4, where all the ligands are protolytically labile, we did not observe any hydrazone product. Reaction of l with 10 equiv of phenylhydrazine resulted in greater than l equivalent of Hdap being generated per titanium. As a consequence, the clap ancillaries were assumed to be too protolytically labile to support monosubstituted hydrazine reactivity. Therefore, we attempted to increase the protolytic stability of the ancillary ligand set by using a tetradentate ligand instead of two bidentate ligands. For the synthesis of the new tetradentate ligand (Scheme 2.10), Hdap“.43 was converted to N-(Boc)-dap (2) with (Boc)20 and DMAP (where, 800 = terI-butyloxycarbonyl, DMAP = N,N- dimethylaminopyridine). The tertiary amine of the lBoc-protected dap was quarternized with methyl iodide to form the corresponding ammonium salt (3). Reaction of 3 with N,N'-dimethyl-1,2-ethylenediamine in the presence of excess K2C03 formed the desired ligand Hzenp (where, Hzenp = N,N-bis(a-methylpyrrol)-N,N-dimethylethane-1,2- diamine) (4) in ~50% yield with concomitant pyrrole nitrogen deprotection. 52 The X-ray crystal structure of 4 is shown in Figure 2.1. There is intermolecular hydrogen bonding between the hydrogen atom of pyrrole nitrogen and the tertiary amine nitrogen. Scheme 2.10 Synthesis of Hzenp (4) (800)20 (1 equiv.) H We DMAP (0.15 equiv.) 2 M CH2C|2, RT, 18h Hdap 55% Me-N N—Me M NH HN M ’— / NH e e CH3CN, 105 °c, 2 d 50% BOC I N NMez 2 M 2 Mel (2.2 equiv.) THF, RT, 18 h 87% P09 <9 e NMe3| 2E>—/ 3 Figure 2.1 ORTEP representation (50% probability level) of Hzenp (4). Next, a new titanium precatalyst Ti(enp)(NMe2)2 (5) was prepared by reaction of one equivalent of Hzenp with Ti(NMe2)4 as shown in Figure 2.2. The expected structure has two pyrroles coordinating in an nl-fashion with two dimethylamido fiagments mutually . . . . . . 44 cis, Wthh lS conSlstent With the spectroscoplc properties of the molecule. Figure 2.2 Synthesis of Ti(enp)(NMe2)2 (5) and comparison with Ti(dap)2(NMe2)2 (1). Me-N N-Me —~ NMe2 Ti(NMezl4 + 7‘ ""‘T1"““e2 \ NH / 870/0 Me/ |\/N\/|Q Ti(eanNMezlz (5) H2enp NMez "”133 MGZN Ti(dap)2(NM62)2 (1) Previous catalyst In order to probe the substrate scope of Ti(enp)(NMe2)2 (5), both terminal and internal alkynes were treated with different monosubstituted hydrazines in the presence of catalytic 5. Test reactions using 1-hexyne and phenylhydrazine with 10 mol% catalyst loading at room temperature proceeded to near full conversion, but the reaction rates 54 were impractically slow requiring ~ 5 days to reach completion. The reaction of l-hexyne with phenylhydrazine was optimized to run at 80 °C with 5 mol% 5 and was complete in 2 h. Under the optimized conditions, reactions were carried out with 5 mol% 5 in toluene at 80 °C for 4.5—41 h (Table 2.1). Hydrazones of l-hexyne were also obtained with methyl- and benzylhydrazine. Only the Markovnikov product was observed in these cases (Equations 2.9 and 2.10). In order to apply this methodology towards indole synthesis, arylhydrazines were reacted with different alkynes. In large part for expediency of product isolation and characterization, arylhydrazones (observed by GC/F ID and GCMS) were converted to indoles in a one-pot procedure with excess ZnClz. In all cases, the hydrazones were cleanly generated and observed prior to ZnC12 addition. Therefore, this methodology is in general applicable to hydrazone synthesis. lllle n 5% T1(enp)(NMe2)2 N‘" NH H : Bu + MeaN,NH2 o T /U\ n (2.9) H toluene, 80 C, 16h Me Bu 73% 5 . NH H _ B n (DAN/””2 5%T1(enp)(NM92)2 N” 210 _ u + F ' toluene, 80 °C, 16“ Me/1L Bun ( ) 60% 7 55 The regioselectivity of the products was dependent on the electronic and steric properties of the alkyne. Only the Markovnikov product was obtained for reaction of 1- hexyne with phenylhydrazine (Entry 1, Table 2.1). For 2-hexyne (Entry 2, Table 2.1), the apparent hydrohydrazination regioselectivity, based on the ratios of isolated indoles, is 1:4 with a preference for hydrazine addition to the 3-carbon (Scheme 2.11). If the two alkyl groups (methyl and n-propyl) in this alkyne are considered electronically equivalent, this reaction demonstrates the preference of the catalyst to create the new C— N bond at the more hindered carbon in the triple bond. Scheme 2.11 Reaction of Z-hexyne with phenylhydrazine catalyzed by 5 Me : Prn N frN(H)Ph N J.,N(H)Ph 5% Ti(enp)2(NMez)2 /u\ A n + > n + toluene, 80 °C, 16 h Me BU Et Pr Ph\N,NH2 80% H l l l 1 I 3.9 l 1 Me Et HN HN \ \ 3 9 4. Fr" HN \ 1 : 1.3 : 2.6 Me 10 56 For symmetrical 3-hexyne, a 1:25 mixture of indole products are obtained due to a lack of selectivity in the Fischer indole cyclization (Entry 3, Table 2.1). For aryl-substituted alkynes, there is an electronic preference for generating the new C—N bond [3 to the phenyl group. Consequently, for phenylacetylene there is a steric preference for addition a to the phenyl group and an electronic preference [3 to the phenyl group. This leads to a mixture of products for this substrate (Entry 6, Table 2.1), and the hydrohydrazination reaction with phenylhydrazine resulted in a 122.6 mixture favoring the electronically preferred indole from anti-Markovnikov addition. Adding even a small amount of sterics to the terminal carbon lessens the steric preference, and for the 1- phenylpropyne reaction, only the indole product from electronically preferred B-addition of hydrazine with respect to the phenyl group was observed (Entry 4, Table 2.1). Protected alcohols and amines on the alkyne were employed to provide TBS- protected (where TBS = tert-butyldimethylsilyl) 2-methyltryptophol and 2-methyl-N, N- diethyltryptamine, respectively, after the Fischer indole cyclization (Entries 7 and 8, Table 2.1). 57 Table 2.1 Hydrohydrazination of alkynes with phenylhydrazine , Fl’h F1)“ _ 1 _ 2 . NH HN, H R — R 5% T1(enp)2(NMe2)2 N“ N 2 3-5 ZnC|2 N R3 + —> 2+ ; Ph NH2 toluene, 80°C,4.5—41h R1J\/R Rl’lK/R 100—120°c, / 1N! 16—24h R4 H L 2 observed by GC/F ID and GCMS Ratio Yleld Entry Substrate Product(s) (azb or azbzc) (%)a Me HN \ l H : Bu" Pr" — 87 8 Me HN &\Prn 8 Et HN \ 2 Me : P1" Et 1:1.3:2.6 80 9 Pr” HN \ 61m 10 Et HN \ CR3 3 Et — Et 9 125 76 _ Prn ' ' HN [9Me 10 58 Table 2.1 (Cont’d.) Me HN \ 4 Me : Ph Ph — 7O 11 Ph HN \ 5 Ph : Ph Ph — 55 12 Ph HN \ 6 H : Ph 13 1:26 70 HN \ (9% 14 Me ’MeM HN \ _ ./ e 7 O SKB t b — 62 __ ” OTBS H _ 15 Me NEt2 HN \ 8 — 48 H : NEt2 16 a Reaction time for the first step: 16 h for entries 2-4 and 7; 4.5 h for entries I and 6; 4] h for entry 5, b 24 h for entry 8. TBS = tert-butyldimethylsilyl The effect of using coordinating solvents instead of toluene was also studied. It was found that using THF or acetonitrile as the solvent had no obvious effect on the hydrohydrazination reactions. In addition, these solvent changes had no obvious effect on the indole cyclization for hydrazone derived from 1-hexyne and phenylhydrazine. To determine the sensitivity of the titanium catalysis to a variety of potential amine bases, we ran the reaction between l-hexyne and phenylhydrazine in the presence of several amines. It was observed that there was no significant effect for addition of quiniclidine, triethylamine, 2,6-lutidine, or pyridine. The conversions after 18 h at 80 °C with 10 mol% 5 and 20 mol% base were approximately the same (66—71%) as in the absence of these bases (75%). From the reaction of 5-chloropent-1-yne with phenylhydrazine two products were obtained (Scheme 2.12). One product, 3-methyl-l-phenyl-1,4,5,6-tetrahydropyridazine (17), was obtained by hydrohydrazination followed by intramolecular elimination of hydrochloric acid and cyclization in situ. The remaining hydrazone 19 undergoes Fisher cyclization, perhaps catalyzed by HCI in the reaction mixture, generating the salt of 2- methyltryptamine (18). Free 2-methyltryptamine (20) was obtained on basification. Compound 17 was found to be very stable in the presence of HCI generated in the . . . . . . . 45 reaction mixture, and also external LeWis ac1d as observed prev10usly in the literature. 46 The products were obtained in a 1:1 ratio, in an overall yield of 64%. Addition of 1.1 equivalents of triethylamine to a similar reaction between 5- chloropent-l-yne and phenylhydrazine resulted in the formation of two compounds, 17 60 and 19, which were observable by GCMS. Sequential addition of ZnC12 and NaOH provided 2-methyltryptamine 20 (Scheme 2.12). Scheme 2.12 Hydrohydrazination of 5-chloropent—1-yne with phenylhydrazine H A “—\ 5% T1(enp)(NMe2)2 (5) ,N / Me + Cl R + toluene, 80 °C, 16 h l) Me (+) e 64% Q 17 a "“3“ ’NH2 1:1 11 10% Ti(enp)(NMe2)2 1.1 NEt3 toluene, 80 °C, 16 h —+J’N© 1) 3 ZnCI2 toluene, 100 °C, 18 h M N > + e TUMM 2) NaOH b / 62% Me 17 20 NaOH NH2 observed in GC/FID and GCMS 1:1 Substituted phenylhydrazines were also used in reactions with l-hexyne, and the products were isolated in good yield. Corresponding indoles were obtained when p-Me, p-F, and p-OMe substituted phenylhydrazines were used. Only the products derived from Markovnikov addition to the alkyne were obtained in all of these cases (Table 2.2). 61 Table 2.2 Hydrohydrazination with substituted phenylhydrazines X H H : Bun _ N 5% T1(enp)2(NMez)2 NH 3 ZnC|2 / Me + > 5" = toluene, 80 °C, 16 11 j: 100 °c, 16 11 x Prn x Me Bu” 0 ,NH2 N H Entry X Product Yield (%) H N Me 1 Me “new 64 n Pr 21 H N Me 2 F FW 70 Fr" 22 H N / Me 3 OMe mom 76 Pr 23 62 The scope of the reaction was also extended to diynes. When nona-l,4-diyne was reacted with phenylhydrazine at 80 °C for 16 h, it led to the formation of substituted dihydropyridazine (24) in one step along with a substituted pyrazole product (25) (Entiy 1, Table 2.3). In this particular case, the dihydropyridazine (24) was obtained as the minor product (24:25 = 1:26). The hydrazone generated was due to exclusive addition of the phenylhydrazine in a Markovnikov fashion to the terminal triple bond. The formation of the observed products can be explained as shown in Scheme 2.13. We speculate that cyclizations may occur through an allene intermediate under the reaction conditions, which can then undergo either 6-endo or S-exo trig cyclization, giving rise to 24 or 25 respectively.47’48 An alternative 1,2-insertion pathway involving the alkyne and a titanium hydrazido(1—) of the initial hydrohydrazination product cannot be ruled out . . . 49-53,54 under these reaction conditions. When octa-l,7-diyne was reacted with 2.2 equivalents of phenylhydrazine at 100 °C for 24 h, hydrohydrazination at both the triple bonds results. Fischer indole cyclization in one pot furnished l,2-bis(2-methyl-1H—indol-3-yl)ethane55 (26) in 70% yield (Entry 2, Table 2.3). 63 Scheme 2.13 Possible pathways to 24 and 25 H \\ / Bun Q / 0 . + ”TKenprMem e N,N Bu” + N,N Bu” Toluene, 812 °C, 16 11 M M P11NHNH2 59 /° Me 125 Me 24 25 NH ,NH H Nr..\ H N L A n n C J Bu C‘é Bu Me H H V 6-endo trig 5'9“ tr ’9 T _ 1— NH NH N' / Bu" ~ ‘ N“ i n / MGM Me/IKFC BU _. J H allene intermediate 64 Table 2.3 Hydrohydrazination with diynes and enyne .. a Isolated Entry Substrate Condltlons Pmd‘mt Yield (%) Q, Q l l A NN b l -penty| ¢ 11. / MJ3); 24 26 Me N é " 11 3 c 52 27 0A is 5 mol% 5 at 80 °C for 16 h, B is 5 mol% 5 at 100 °C for 24 h followed by 4 equiv ZnClz at 100 b °C for 24 h, C is 5 mol% 5 at 80 °C for 24 h followed by 3 equiv ZnClz at 100 °C for 36 h. 24:25 = 1:2.6. One enyne substrate was examined with phenylhydrazine, l-ethynylcyclohex-l-ene (Entry 3, Table 2.3). After the formation of the hydrazone, which was not isolated, addition of ZnClz resulted in Michael addition of the B-nitrogen of the hydrazone across the C=C bond of the cyclohexenyl moiety to yield the substituted indazole56’57 27 in 52% yield. 65 2.5 Concluding Remarks A new catalytic hydrohydrazination reaction of monosubstituted hydrazines with alkynes has been developed. This was accomplished by suitably designing the ligand framework on the titanium center. Both terminal and internal alkynes have been used with aliphatic as well as aromatic hydrazines. The regioselectivity of the addition is highly dependent on the electronic and steric nature of the alkyne, and the catalyst is applicable to generating both N-alkyl- and N-arylhydrazones. This methodology has also been applied to the synthesis of different NH-indoles including 2-methyltryptamine and tryptophol derivatives, which are important building blocks of different natural products. As discussed here, many different 5- and 6-membered heterocycles are available using titanium-catalyzed hydrohydrazination. 66 2.6 Experimental General Considerations All manipulations of air sensitive compounds were carried out in an MBraun drybox under a purified nitrogen atmosphere. Pentane (Spectrum Chemical Mfg. Corp.), toluene (Spectrum Chemical Mfg. Corp.), ether (Columbus Chemical Industries Inc.), dichloromethane (EM Science), acetonitrile (Spectrum Chemical), and tetrahydrofuran (JADE Scientific) were sparged with nitrogen to remove oxygen then dried by passing through activated alumina. Hydrazines were purchased from Aldrich Chemical Company and dried by distillation from KOH under dry nitrogen. Alkynes were distilled from CaO under dry nitrogen. Octa—1,7-diyne was purchased from GFS chemicals, and distilled over CaO under dry nitrogen. Nona-1,4-diyne,58 and l-ethynylcyclohex-l-enes9 were prepared according to the literature procedures. (BOC)2O (BOC = t-butyloxycarbonyl) and DMAP (4-dimethylaminopyridine) were purchased from Aldrich and used as received. Ti(NMez)460 was prepared using the literature procedure. The Hdap (where dap = 2-(dimethylaminomethyl)pyrrole) ligand was prepared as described in the literature.22 Deuterated solvents were dried over purple sodium benzophenone ketyl (C6D6) or phosphoric anhydride (CDC13) and distilled under nitrogen. 1H and 13C spectra were recorded on Inova-3OO or VXR-SOO spectrometers. IH and 13C assignments were . . . l 1 l3 1 confirmed when necessary With the use of two-dimenSlonal H— H and C— H . . . . . 13 correlation NMR experiments. Routine coupling constants in C NMR are not reported. 67 All spectra were referenced internally to residual protiosolvent (1H) or solvent (13C) resonances. Chemical shifts are quoted in ppm, and coupling constants in Hz. 68 Synthesis of butyl-2-((dimethylamino)methyl)-lH-pyrrole-l-carboxylate (2) Elm A 500 mL round bottom flask was charged with Hdap (2.617 g, 21.10 mmol), M62 (80079 (4.600 g, 21.10 mmol), and DMAP (0.386 g, 3.1 mmol) in dichloromethane (250 mL) and was allowed to stir at room temperature overnight. The solution was quenched with water (20 mL) and extracted with ether (3 X 20 mL). Combined organic layers were washed with water. The organic layer was then dried over MgSO4, filtered, and volatiles were removed under vacuum. The product was isolated by distillation under vacuum (~65 °C, 0.1 Torr) as a colorless oil in 66% yield (3.120 g, 13.90 mmol). 1H NMR (499.7 MHz, CDC13): 7.18 (dd, 1 H, JHH = 1.8, 3.4 Hz, 5H—pyrrole), 6.11 (m, 1 H, 4H—pyrrole), 6.08 (t, JHH = 3.3 Hz, 1 H, 3H—pyrrole), 3.65 (s, 2 H, CH2), 2.26 (s, 6 H, NCH3), 1.57 (s, 9 11, CCH3). '3C1'H} NMR (125.7 MHz, CDCl3): 149.9, 132.7, 121.5, 113.3, 109.7, 83.3, 56.6, 45.5, 28.0. Elemental Analysis; Experimental (Calc.), C: 63.88 (64.26). H: 8.98 (8.99). N: 13.11 (12.49). MS (EI) m/z = 224 (M+). 69 Synthesis of [N-(t-butoxycarbonyl)-2-(trimethylaminomethyl)pyrrole]I (3) H3C CH 0 71/033 yo we / @N To a 500 mL round bottom flask was added 2 (9.870 g, 44.00 mmol), methyliodide C) Me3 I (6.870 g, 48.40 mmol), and THF (250 mL). The reaction was allowed to stir at room temperature overnight. A white precipitate appeared during the reaction. The precipitate was filtered, washed with THF, and dried under vacuum to yield the product as a white powder in 87% yield (14.00 g, 38.00 mmol). 1H NMR (499.7 MHz, CDC13): 7.35 (d, JHH = 3.4 Hz, 1 H, 5H-pyrrole), 6.85 (dd, JHH = 1.7, 3.6 Hz, 1 H, 4H-pyrrole), 6.27 (t, JHH = 3.4 Hz, 1 H, 3H—pyrrole), 5.22 (s, 2 H, CH2), 3.37 (s, 9 H, NCH3), 1.58 (s, 9 H, CCH3). 13C{'H} NMR (125.7 MHz, CDCl3): 149.4, 125.5, 123.3, 120.9, 111.4, 86.0, 61.4, 52.8, 27.9. Elemental Analysis; Experimental (Calc.), C: 42.81 (42.63). H: 6.52 (6.33). N: 7.75 (7.65). mp 180 °C ((160). 70 Synthesis of Hzenp (4) Me-N N-Me ——— / NH \ NH / A round bottom flask (500 mL) was charged with K2CO3 (7.561 g, 54.80 mmol) in dry acetonitrile (250 mL) and N,N’-dimethylethy1enediarnine (0.483 g, 5.50 mmol). To the flask was added 3 (4.091 g, 10.90 mmol). Initially, the reaction was a light brown colored suspension and was refluxed at 105 °C for 2 d. After that, the suspension was allowed to cool to room temperature and sit, producing a brown solution with white precipitate. The mixture was filtered, and the filtrate was dried by rotary evaporation. Ethylacetate was added to the brown oily product, which led to additional white precipitate. The brown solution was filtered, and the filtrate was dried under vacuum. The dark brown resulting oil was subjected to column chromatography on alumina using 60% ethylacetatezpentane followed by 10% MeOHzethylacetate. The product was isolated as a pale yellow solid in 50% yield (0.670 g, 2.70 mmol). X-ray quality crystals were grown at room temperature from dichloromethane solution of 4 with one drop of toluene by slow evaporation. 1H NMR (499.7 MHz, 00013): 9.38 (b, 2 H, NH), 6.69 (q, JHH = 2.4 Hz, 2 H, 5H—pyrrole), 6.12 (q, JHH = 2.7 Hz, 2 H, 4H—pyrrole), 5.99 (m, 2 H, 3H- pyrrole), 3.58 (s, 4 H, CHz-pyrrole), 2.48 (s, 4 H, CHZCHZ), 2.22 (s, 6 H, CH3). I3C{1H} NMR (125.7 MHz, CDCl3): 128.9, 117.4, 108.0, 107.0, 54.8, 54.1, 42.8. m.p.: 95-97 °C. 71 Synthesis of Ti(enp)(NMe2)2 (5) All the manipulations were carried out inside an inert atmosphere glove box. A filter flask (125 mL) was loaded with Ti(NMeZ)4 (0.388 g, 1.70 mmol) in ether (2 mL) and cooled inside the cold well. To the solution was added cold 4 (0.427 g, 1.70 mmol) in ether (25 mL) dropwise over a period of 15 min. The reaction was allowed to warm to room temperature and stir overnight producing a dark red solution. Volatiles were removed in vacuo. The product was recystallized from 1:1 etherzpentane as an orange solid in 87% yield (0.560 g, 1.50 mmol). 1H NMR (499.7 MHz, CDC13): 6.98-7.02 (m, 2 H, SH-pyrrole), 6.10 (app t, JHH = 2.3 Hz, 2 H, 4H—pyrrole), 5.80—5.84 (m, 2 H, 3H- pyrrole), 4.50 (d, JHH= 15.4 Hz, 2 H, CHH-pyrrole), 3.67 (d, JHH = 15.3 Hz, 2 H, CHH- pyrrole), 3.38 (s, 12 H, N(CH3)2), 2.55 (d, JHH= 9.2 Hz, 2 H, CHH-CHH), 2.14 (d, JHH = 8.8 Hz, 2 H, CHH-CHH), 1.96 (s, 6 H, CHZNCH3). I3C(‘H1 NMR (75.4 MHz, CDCl3): 138.4, 126.0, 107.0, 99.8, 62.3, 62.1, 49.1, 47.6. mp. 126-128 °C. Complex 5 after many attempts did not pass elemental analysis. Spectra for the complex are included in the supporting information. 72 Synthesis of the E—benzylhydrazone of 2-hexanone (7) Q NH 3" N )L n Me Bu Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.057 g, 0.15 mmol) in toluene (750 11L), benzylhydrazine (300 11L, 3.00 mmol), and 1- hexyne (350 11L, 3.00 mmol). The reaction vessel was sealed and removed from the dry box to be heated at 80 °C for 16 h. The solution was then cooled to room temperature, diluted with ether, and passed through a pad of alumina in a fritted funnel. Volatiles were removed from the filtrate under vacuum. The resulting dark brown oil was subjected to column chromatography on alumina using 4:1 hexanes:ethylacetate as eluent. The product was isolated as brown oil in 60% (0.360 g, 1.80 rmnol). 1H NMR (499.7 MHz, CDC13): 7.34 (m, 2 H, 0-H Ph), 7.31 (d, 2 H, m-H Ph), 7.26 (t, 1 H, JHH= 7.1 Hz, p-H Ph), 1.36-1.23 (br s, 1 H, NH), 4.34 (s, 2 H, NH-CHzPh), 2.21 (t, 2 H, JHH: 8.2 Hz, C(=N)CH2), 1.69 (s, 3 H, C(=N)CH3), 1.52-1.40 (m, 2 H, JHH = 7.9 Hz, C(=N)CH2CH2), 1.36-1.22 (m, 2 H, JHH= 8.0 Hz, CH3CH2), 0.98 (t, 3 H, JHHZ 7.5 Hz, CHZCH3). l3C{1H} NMR (125.7 MHz, CDC13): 149.7, 139.6, 128.4, 128.3, 127.1, 55.4, 38.8, 29.1, 22.4, 14.3, 13.9. MS (EI) m/z = 204 (M+). 73 Synthesis of 2-methyl-3-propyl-lH-indole (8) Me HN \ Pr" Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.114 g, 0.30 mmol) in toluene (1.5 mL), phenylhydrazine (295 11L, 3.00 mmol), and 1- hexyne (350 uL, 3.00 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 4.5 h. The reaction was then allowed to cool to room temperature, taken inside the box, and excess ZnC12 (1.227 g, 9.00 mmol) was added. It was heated at 100 °C for 24 h. After that, the reaction was allowed to cool to room temperature, diluted with ether, and passed through a pad of silica in a fritted funnel. Volatiles were removed from the filtrate in vacuo. The resulting dark brown oil was subjected to column chromatography on silica gel with 7:3 dichloromethanezpentane as eluent. The product“ was isolated as pale yellow oil in 87% yield (0.450 g, 2.60 mmol). 1H NMR (299.8 MHz, CDC13): 7.65 (br s, 1 H, NH), 7.48 (d, 1 H, JHH = 7.5 Hz, 4H—indole), 7.24 (dd, 1 H, JHH = 3.5, 6.2 Hz, 7H—indole), 7.12 — 7.02 (m, 2 H, 5H— and 6H-indole), 2.66 (t, 2 H, JHH = 7.5 Hz, CH3CH2CH2), 2.53 (s, 3 H, 2-CH3), 1.63 (m, 2 H, CH3CH2CH2), 0.93 (t, 3 H, JHH = 7.3 Hz, CH3CH2). I3C{1H} NMR (75.4 MHz, CDC13): 135.3, 130.7, 128.9, 120.7, 118.9, 118.2, 112.3, 110.0, 26.2, 23.8, 14.1, 11.7. Elemental analysis; 74 Experimental (Calc.), C: 83.17 (83.19). H: 8.88 (8.73). N: 8.05 (8.08). MS (EI) m/z = 173 (M+). 75 Synthesis of 2-phenylindole (13) and 3-phenylindole (14) Ph HN HN 5; ‘Ph : \>‘Ph Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.093 g, 0.25 mmol) in toluene (1.2 mL), phenylhydrazine (518 11L, 4.90 mmol), and phenylacetylene (538 11L, 4.90 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 4.5 h. The reaction was then allowed to cool to room temperature, taken inside the box, and excess ZnC12 (3.279 g, 24.50 mmol) was added. The tube then was heated at 120 0C for 24 h. After that, the mixture was allowed to cool to room temperature, diluted with ether, and passed through a pad of silica in a fritted funnel. Volatiles were removed from the filtrate in vacuo. The resulting dark brown oil was subjected to column chromatography on silica gel with 1:1 petroleum ether:ether as eluent. The products62 were isolated as a pale yellow oil in 70% yield (0.660 g, 2.60 mmol). IH NMR (299.8 MHz, CDCl3): 8.40 (br s, 1 H, NH), 8.38 (br s, 1 H, NH), 7.95 (s, 1 H, 2-CH), 7.78-7.15 (m, 9 H, Ph), 7.38-7.18 (m, 9 H, Ph) 6.81 (s, 1 H, 3-CH). l3C{'H} NMR (75.4 MHz, CDC1'3): 137.9, 136.8, 136.6, 135.5, 132.4, 129.3, 129.0- 125.1, 122.4-119.8, 118.4, 113.2, 111.4, 110.9. 100.0 (b). MS (EI) rn/z = 193 (M+). 76 Synthesis of 2-methyl-3-(2-(dimethyl(t-butyl)siloxy)ethyl)indoIe (15) Me HN \ SiMezBut Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.024 g, 0.07 mmol) in toluene (315 uL), phenylhydrazine (124 11L, 1.30 mmol), and went-4-ynyloxy)t-butyldimethylsilane (0.250 g, 1.30 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 16 h. The solution was then allowed to cool to room temperature, taken inside the box, and excess ZnClz (0.506 g, 3.90 mmol) was added. The reaction was heated at 100 °C for 16 h. The mixture was allowed to cool to room temperature, diluted with ether, and passed through a pad of silica in a fitted funnel. Volatiles were removed from the filtrate in vacuo. The resulting dark red oil was subjected to column chromatography on silica gel with 7:3 hexaneszethylacetate as eluent. The product was isolated as pale yellow oil in 62% yield (0.220 g, 0.80 mmol). 1H NMR (499.7 MHz, CDC13): 7.74 (br s, 1 H, NH), 7.52 (d, 1 H, JHH = 7.4 Hz, 7H- indole), 7.28 (d, 1 H, JHH = 6.9 Hz, 4H-indole), 7.17 (m, 2 H, 5H- and 6H-indole), 3.65 (t, 2 H, JHH = 8.9 Hz, OCHz), 2.98 (t, 2 1H, JHH' = 7.4 Hz, OCH2CH2), 2.41 (s, 3 H, 2- CH3), 0.86 (s, 9 H, CCH3), 0.11 (s, 6 H, SiCH3). '3C{'H} NMR (125.7 MHz, CDCl3): 135.2, 131.7, 128.9, 120.9, 119.1, 117.9, 110.1, 108.4, 63.6, 28.2, 26.0, 18.4, 11.7, —5.3. MS (EI) m/z = 289 (M+). 77 Synthesis of 1-phenyl-3-methyl-tetrahydropyridazine(17) Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.139 g, 0.37 mmol) in toluene (1.8 mL), phenylhydrazine (717 11L, 7.30 mmol), and 5- chloropent-l-yne (775 uL, 7.30 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 24 h. The reaction was then allowed to cool to room temperature, diluted with dichloromethane (20 mL), and saturated NaHCO3 solution was added. The organic layer was separated. The aqueous layer was extracted with dichloromethane (3 X 15 mL). The combined organics were washed with water, and the final combined organics were dried over MgSO4, filtered, and dried in vacuo. This yielded a dark brown oil, which was subjected to column chromatography on silica gel using 4:1 petroleum ether:ether as eluent. The product45 was isolated in 32% yield (0.400 g, 2.30 mmol) as yellow oil, which turned to red on standing. 1H NMR (499.7 MHz, CDCl3): 7.29 (t, 2 H, JHH = 4.1 Hz, 8.7 Hz, o-Ph), 7.22 (d, 2 H, JHH= 7.8 Hz, m- Ph), 6.87 (t, 1 H, JHH = 7.4 Hz, p-Ph), 3.51 (t, 2 H, JHH = 6.1 Hz, NCHQ), 2.21 (t, 3 H, JHH = 6.1 Hz, C(=N)CH2), 2.08 (m, 2 H, (=N)CH2CH2), 2.02 (s, 3 H, CH3). l3C{'H} NMR (125.7 MHz, CDCI3): 148.3, 143.6, 128.8, 119.1, 113.5, 42.2, 25.6, 24.3, 19.0. MS + (EI) m/z = 174 (M ). 78 Synthesis of 2-methyltryptamine (20) Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.185 g, 0.49 mmol) in toluene (2.4 mL), phenylhydrazine (964 11L, 9.80 mmol), and 5- chloropent-l-yne (1034 11L, 9.80 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 24 h. The reaction then was allowed to cool to room temperature. The hydrochloride salt (18) of the product precipitated during reaction. The precipitate was washed with ethylacetate (50 mL), which contained crude 17 . To the crude 18 was added NaOH (20%, 25 mL), and the product was extracted with ethylacetate (3 X 20 mL). The combined organic layers were dried over Na2804, filtered, and volatiles were removed under vacuum. To the resulting brown oil was added hexanes (20 mL), and then HCI in ether until it reached pH ~ 2. A brown solid precipitated from the solution. The solid was filtered and volatiles were again removed under vacuum. Next, the solids were dissolved in dichloromethane (20 mL), and saturated NaHCO3 solution was added to the solution (pH ~ 7). The mixture was shaken, and the organic layer was separated. The aqueous layer was extracted with dichloromethane (3 X 15 mL). The combined organic layers were washed with water. The final organic layer was dried over MgSO4, filtered, and volatiles removed in vacuo. This yielded 20 as a brown oil63 in 32% yield (0.400 g, 2.30 mmol). 'H NMR (499.7 MHz, 00013): 7.76 (br s, 1 H, NH), 79 7.85 (d, 1 H, JHH = 8.1 Hz, 7H-indole), 7.26 (d, 1 H, JHH = 5.6 Hz, 4H—indole), 7.18- 7.04 (m, 2 H, k, 5H-indole), 2.96 (t, 2 H, JHH = 6.6 Hz, 3-CH2), 2.84 (t, 2 H, JHH = 6.6 Hz, NHQCHQ), 2.38 (s, 3 H, 2-CH3), 1.74 (br s, 2 H, NHZ). 13C{]H} NMR (125.7 MHz, CDC13): 135.3, 131.8, 128.8, 121.0, 119.2, 118.0, 110.2, 109.0, 42.5, 28.0, 11.8. MS (EI) m/z = 174 (M+). 80 Synthesis of 2,5-dimethyl-3-propyl-NH-indole (21) H N Me n Pr Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.029 g, 0.08 mmol) in toluene (375 uL), p-methylphenylhydrazine (0.183 g, 1.50 mmol), and l-hexyne (175 11L, 1.50 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 16 h. The solution was then allowed to cool to room temperature, taken inside the box, and excess ZnClz (0.602 g, 4.50 mmol) was added. The reaction was heated at 100 °C for 16 h. After that, the solution was allowed to cool to room temperature, diluted with ether, and passed through a pad of silica in a fritted funnel. Volatiles were removed from the filtrate in vacuo. The resulting dark red oil was subjected to column chromatography on silica gel with 1:1 hexaneszethylacetate as eluent. The product was isolated as a red oil in 64% yield (0.180 g, 0.90 mmol). 1H NMR (299.8 MHz, CDCl3): 7.61 (br s, 1 H, NH), 7.26 (s, 1 H, 4H-indole), 7.13 (d, l H, JHH= 8.1 Hz, 6H—indole), 6.91 (dd, 1 H, JHH = 1.4, 8.1 Hz, 7H-indole), 2.61 (t, 2 H, JHH = 7.3 Hz, 3-CH2), 2.43 (s, 3 H, 5-CH3), 2.33 (s, 3 H, 2-CH3), 1.63 (m, 2 H, CH3CH2), 0.94 (t, 3 H, JHH = 7.4 Hz, CHZCH3). l3C{]H} NMR (75.4 MHz, CDC13): 133.5, 130.9, 129.1, 128.0, 122.2, 118.0, 111.9, 109.7, 26.2, 23.8, 21.5, 14.1, 11.7. MS (EI) m/z = 187 (M+). 81 Synthesis of 2-methyl-5-fluoro—3-propyI-NH-indole (22) Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.029 g, 0.08 mmol) in toluene (375 11L), p-fluorophenylhydrazine (0.192 g, 1.50 mmol), and l-hexyne (175 11L, 1.50 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 16 h. The reaction then was allowed to cool to room temperature, taken inside the box, and excess ZnC12 (0.602 g, 4.50 mmol) was added. The mixture was heated at 100 0C for 16 h. After that, the reaction was allowed to cool to the room temperature, diluted with ether, and passed through a pad of silica in a fritted funnel. Volatiles were removed from the filtrate in vacuo. The resulting dark red oil was subjected to column chromatography on silica gel with 2:1 etherzpentane as eluent. The product was isolated as a red oil in 70% yield (0.200 g, 1.05 mmol). 1H NMR (499.7 MHz, CDCl3): 7.61 (br s, 1 H, NH), 7.17-7.15 (dd, 1 H, JHH = 2.5, 9.9 Hz, 4H-indole), 7.14—7.11 (dd, 1 H, JHH = 4.4, 8.6 Hz, 7H-indole), 6.87 — 6.83 (dt, 1 H, JHH = 2.5, 9.0 Hz, 6H—indole), 2.63 (t, 2 11,ng = 7.7 Hz, 3-CH2), 2.35 (s, 3 H, 2-CH3), 1.63 (m, 2 H, CH3CH2), 0.95 (t, 3 H, JHH = 6.5 Hz, CHZCH3). I3C{1H} NMR (125.7 MHz, CDCI3): 158.6, 156.7, 132.9, 129.3 (d, JCF = 9.7 Hz), 112.5 (d, JCF = 4.5 Hz), 110.5 (d, JCF= 9.7 Hz), 108.7 (d, JCF = 26.2 Hz), 103.3, (d, JCF = 23.6 Hz), 26.1, 23.7, 14.0, 11.7. 82 Elemental Analysis; Experimental (Calc.), C: 75.04 (75.36). H: 7.65 (7.38). N: 7.18 (7.32). MS (EI) m/z = 191 (M+). 83 Synthesis of 2-methyl-5-methoxy-3-propyl-NH-indole (23) H N @1211: MeO n Pr Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.057 g, 0.15 mmol) in toluene (750 uL), p-methoxyphenylhydrazine (0.421 g, 3.0 mmol), and l-hexyne (350 uL, 3.0 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 16 h. The reaction then was allowed to cool to room temperature, taken inside the box, and excess ZnC12 (0.602 g, 9.00 mmol) was added. The mixture was heated at 100 °C for 16 h. After that, the reaction was allowed to cool to the room temperature, diluted with ether, and passed through a pad of silica in a fritted funnel. Volatiles were removed from the filtrate in vacuo. The resulting dark brown-red oil was subjected to column chromatography on silica gel with 1:1 hexaneszethylacetate as eluent. The product was isolated as red oil in 76% yield (0.460 g, 2.30 mmol). 1H NMR (499.7 MHz, CDC13): 7.58 (br s, 1 H, NH), 7.25 (d, 1 H, JHH = 8.8 Hz, 7H-indole), 6.94 (d, 1 H, JHH = 2.5 Hz, 4H—indole), 6.76-6.72 (dd, 1 H, JHH = 2.5, 8.5 Hz, 6H- indole), 3.85 (s, 3H, OCH3), 2.62 (t, 2 H.111“ = 7.4 Hz, 3-CH2), 2.32 (s, 3 H, 2-CH3), 1.68-1.59 (m, 2 H, CH3CH2), 0.96 (t, 3 H, JHH = 7.4 Hz, CHZCH3). 13C{]H} NMR (125.7 MHz, CDC13): 153.7, 131.8, 130.4, 129.3, 112.1, 110.6, 110.2, 100.9, 56.0, 26.2, 23.7, 14.1, 11.8. Elemental Analysis; Experimental (Calc.), C: 76.62 (76.81). H: 8.85 (8.43). N: 6.34 (6.89). MS (EI) m/z = 203 (M+). 84 Reaction of 1,4-nonadiyne with phenylhydrazine to synthesize 24 and 25 Q. Q. Bu Nl’ M / Me / Me Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with 5 (0.040 g, 0.11 mmol) in toluene (525 uL), phenylhydrazine (204 1.1L, 2.10 mmol), and nona-1,4-diyne (0.250 g, 2.10 mmol). The tube was sealed and removed from the dry box for heating at 80 °C for 16 h. The reaction was then allowed to cool to room temperature, diluted with ether, and passed through a pad of alumina in a fritted funnel. Volatiles were removed from the filtrate in vacuo. The resulting dark red oil was subjected to column chromatography on alumina. Isomer 24 eluted with 5:1 hexanes:ether as the first fraction. After removing volatiles in vacuo, 24 was isolated in 17% yield (0.080 g, 0.35 mmol). Isomer 25 eluted using 1 :1 hexanes:ether in the second fraction. After removing volatiles in vacuo, 25 was isolated in 42% yield (0.203 g, 0.89 mmol). Isomer 24: 1H NMR (499.7 MHz, CDC13): 7.26-7.19 (m, 4 H, o,m-Ph), 6.83 (t, 1 H, JHH = 7.0 Hz, p-Ph), 6.04 (dd, 1 H, JHH = 6.6, 9.3 Hz, SH-pyridazine), 5.87 (d, 1 H, JHH = 9.9 Hz, 3H—pyridazine), 4.62 (m, 1 H, 6H—pyridazine), 2.06 (s, 3 H, 3-CH3), 1.61-1.47 (m, 2 H, 6-CH2), 1.28 (m, 4 H, CH3CH2 and CH3CH2CH2), 0.84 (t, JHH = 6.9 Hz, 3H, CH3CH2). l3C{'H} NMR (125.7 MHz, CDC13): 146.0, 142.8, 129.0, 127.4, 120.0, 119.6, 113.7, 51.0, 30.6, 26.2, 22.7, 21.2, 14.0. MS (131) m/z = 228 (M+). Isomer 25: 1H NMR (499.7 MHz, CDC13): 7.46-7.32 (m, 5 H, Ph), 6.00 (s, 1 H, 4H—pyrazole), 2.58 (t, 2 H, JHH = 8.0 Hz, 5-CH2), 85 2.29 (s, 3 H, 3-CH3), 1.55 (m, 2 H, CHZCHz), 1.25 (m, 4 H, CH3CH2CH2 and CH3CH2CH2), 0.84 (t, 3 H, JHH = 7.1 Hz, CHZCH3). l3C(1H} NMR (125.7 MHz, CDCl3): 148.9, 144.6, 140.0, 129.0, 127.4. 125.3, 105.2, 31.4, 28.5, 26.2, 22.3, 13.9, 13.6. MS (El) m/z = 228 (M+). X-ray Crystallography Crystals grown from concentrated solutions at room temperature were moved quickly from a scintillation vial to a microscope slide containing Paratone N. Samples were selected and mounted on a glass fiber in wax and Paratone. Data were collected using a Bruker CCD diffractometer equipped with an Oxford Cryostrearn low-temperature apparatus operating at 173 K. The data were processed and reduced utilizing the program SAINTPLUS supplied by Bruker AXS. Data reduction was performed using the SAINT sofiware. Scaling and absorption corrections were applied using SADABS multi-scan technique supplied by George Sheldrick. The structure was solved by the direct method using the SHELXS-97 program and refined by the least squares method on F2, SHELXL- 97, incorporated in SHELXTL-PC V 6.10. 86 2.7 References 1. Kitajima, M. J. Nat. Med. 2007, 61, 14. 2. Sanchez, C.; Mendez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23, 1007. 3. Kitajima, M.; Misawa, K.; Kogure, N.; Said, I. M.; Horie, S.; Hatori, Y.; Murayama, T.; Takayama, H. J. Nat. Med. 2006, 60, 28. 4. Chen, F. E.; Huang, J. Chem. Rev. 2005, 105, 4671. 5. Cao, C. S.; Shi, Y. H.; Odom, A. L. Org. Lett. 2002, 4, 2853. 6. Straub, B. F.; Bergman, R. G. Angew. Chem. Int. Ed. 2001, 40, 4632. 7. Baranger, A. M.; Walsh, P. J.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 2753. 8. Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708. 9. Patel, 8.; Li, Y.; Odom, A. L. Inorg. Chem. 2007, 46, 6373. 10. Tillack, A.; Jiao, H. J .; Castro, 1. G.; Hartung, C. G.; Beller, M. Chem. Eur. J. 2004, 10, 2409. 11. Khedkar, V.; Tillack, A.; Michalik, M.; Beller, M. Tet. Lett. 2004, 45, 3123. 12. Schwarz, N.; Alex, K.; Sayyed, I. A.; Khedkar, V.; Tillack, A.; Beller, M. Synlett 2007, 1091. 13. Khedkar, V.; Tillack, A.; Michalik, M.; Beller, M. Tetrahedron 2005, 61 , 7622. 14. Ackermann, L.; Born, R. Tet. Left. 2004, 45, 9541. 15. Waser, J.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 5676. 16. Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693. 17. Waser, J .; Gonzalez-Gomez, J. C.; Nambu, H.; Huber, P.; Carreira, E. M. Org. Lett. 2005, 7, 4249. 18. Waser, J.; Carreira, E. M. Angew. Chem. Int. Ed. 2004, 43, 4099. 19. Johns, A. M.; Liu, Z. J.; Hartwig, J. F. Angew. Chem. Int. Ed. 2007, 46, 7259. 87 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 2304. Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Org. Lett. 2008, 10, 2377. Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Tet. Lett. 2008, 49, 4607. Robinson, B. The Fischer Indole Synthesis, Wiley & Sons: Chichester, UK, 1982. Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875. Hulcoop, D. G.; Lautens, M. Org. Lett. 2007, 9, 1761. Barluenga, J .; Jimenez-Aquino, A.; Valdes, C.; Aznar, F. Angew. Chem. Int. Ed. 2007, 46, 1529. Patil, S.; Buolamwini, l. K. Curr. Org. Synth. 2006, 3, 477. Lu, B. Z.; Zhao, W. Y.; Wei, H. X.; Dufour, M.; Farina, V.; Senanayake, C. H. Org. Lett. 2006, 8, 3271. Hostyn, S.; Maes, B. U. W.; Van Baelen, G.; Gulevskaya, A.; Meyers, C.; Smits, K. Tetrahedron 2006, 62, 4676. Fayol, A.; Fang, Y. Q.; Lautens, M. Org. Lett. 2006, 8, 4203. Djakovitch, L.; Dufaud, V.; Zaidi, R. Adv. Synth. Catal. 2006, 348, 715. Ambrogio, 1.; Cacchi, S.; Fabrizi, G. Org. Lett. 2006, 8, 2083. Abbiati, G.; Arcadi, A.; Beccalli, E.; Bianchi, G.; Marinelli, F.; Rossi, E. Tetrahedron 2006, 62, 3033. Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873. Ackermann, L.; Kaspar, L. T.; Gschrei, C. J. Chem. Commun. 2004, 2824. Lipinska, T. M. Tetrahedron 2006, 62, 5736. Garg, N. K.; Stoltz, B. M. Chem. Commun. 2006, 3769. Schmidt, A. M.; Eilbracht, P. J. Org. Chem. 2005, 70, 5528. Tietze, L. F.; Modi, A. Med. Res. Rev. 2000, 20, 304. Banerjee, S.; Barnea, E.; Odom, A. L. Organometallics 2008, 27, 1005. 88 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. 56. 57. 58. Kim, I. T.; Elsenbaumer, R. L. Tetrahedron Lett. 1998, 39, 1087. Raines, S.; Kovacs, C. A. J. Heterocycl. Chem. 1970, 7, 223. Herz, W.; Dittmer, K. J. Am. Chem. Soc. 1947, 69, 1698. The zirconium derivative has the geometry described in a structure determined by X-ray diffi'action and is spectroscopically similar. Barnea, E.; Odom, A. L. Dalton. Trans. 2008 4050. Benincori, T.; Brenna, E.; Sannicolo, F. J. Chem. Soc. Perkin Trans. 1. 1991, 2139. Grandberg, I. 1.; Kost, A. N.; Terentev, A. P. Russ. J. Gen. Chem. 1957, 27, 3378. Similar dihydropyridazine compounds are known. For references see: Kaneko, C.; Tsuchiya, T.; Igeta, H. Chem. Pharm. Bull. 1974, 22, 2894. Crosslanl; Kelstrup, E. Acta. Chem. Scand. 1968, 22, 1669. For some examples of similar insertion of alkynes into transition metal-nitrogen bonds see: Katayev, E.; Li, Y. H.; Odom, A. L. Chem. Commun. 2002, 838. Boncella, J. M.; Eve, T. M.; Rickman, B.; Abboud, K. A. Polyhedron 1998, 17, 725. Vanderlende, D. D.; Abboud, K. A.; Boncella, J. M. Inorg. Chem. 1995, 34, 5319. Villanueva, L. A.; Abboud, K. A.; Boncella, J. M. Organometallics 1992, 1 I, 2963. Kemmitt, R. D. W.; Mason, S.; Moore, M. R.; Fawcett, J .; Russell, D. R. J. Chem. Soc. Chem. Commun. 1990, 1535. Hydroamination of alkynes using lanthanides also involved similar insertion. For a review see: Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. Bergman, J .; Carlsson, R. J. Heterocyclic Chem. 1972, 9, 833. Similar Michael type reaction is known with acetic acid. For references see: Ferres, H.; Harndam, M. S.; Jackson, W. R. J. Chem. Soc, Perkin Trans. 1973, 936. Alexande.Cw; Jackson, W. R.; Hamdam, M. S. J. Chem. Soc., Chem. Commun. 1972, 94. Verkruijsse, H. D.; Hasselaar, M. Synthesis 1979, 292. 89 59. 60. 61. 62. 63. Brandsma, L. Preparative Acetylenic Chemistry, Elseim Publishers: Amsterdam- London-New York, 1971, 137. Bradley, D. C.; Thomas, I. M. J. Chem. Soc. 1960, 3859. Jackson, A. H.; Smith, A. E. Tetrahedron 1965, 21, 989. Minakata, S.; Kasano, Y.; Ota, H.; Oderaotoshi, Y.; Komatsu, M. Org. Lett. 2006, 8, 3693. Jackson, A. H.; Smith, A. E. J. Chem. Soc. 1964, 5510. 90 CHAPTER 3 Iminohydrazination of alkynes: scope, mechanistic investigation, and applications towards pyrazole synthesis 3.1 Introduction Iminohydrazination is the conversion of an alkyne to an (LB-unsaturated B- aminohydrazone, making both C~C and C—N bonds in a single step. This is a new multicomponent reaction (MCR) between an alkyne, 1,1-disubstituted hydrazine, and isonitrile in the presence of a catalyst. Multicomponent reactions are valuable tools for the preparation of complex structures from simple starting materials. Multicomponent reactions are well suited for the rapid and highly atom-economical assembly of large compound libraries. As a consequence, the application of MCR to the drug discovery process has drawn . . . . . 1,2 con51derable attention in recent years. A few of the earlier examples are Mannich, Strecker,3-6 Hantzsch,7 and Biginelli8 reactions. In 1959, Ugi and co-workers reported the one-pot condensation of a carbonyl (aldehyde or ketone), amine, carboxylic acid, and isonitrile (Scheme 3.1). This reaction, now referred to as the Ugi 4-comp0nent reaction 91 (Ugi-4CR), provides an efficient method to construct functionalized acylamidoacetamides. Later, this protocol was adopted by Guanti et al. for the synthesis . . . . . . 10 0f a-amino acrd derivatives in a very stereoselective manner. Scheme 3.1 Ugi 4-component reaction 0 o 0 NR1 34k 3»”\ ,R1 2JL H NR1 2k R OH R N 4 + 2 —-——> ¢ R H R H R4NC F,2J\WNHR 0 Further development in this area involves transition metal catalyzed MCR. Transition 11,12 13 14 15 .16 .17-21 22 23 metals such as Pd, Cu, Ag, Zn, N1, T1, Zr, and Rh have been effectively used for different multicomponent transformations. One example of Pd catalyzed MCR is shown in Equation 3.1. T T 1 R2 [R1 '1‘" 5°/ N 0 RZJ de )‘R5 5 ,R imine + O R\r.‘N 2 _ -2 /‘ .b—R 3 -— 4 : /‘\ R __ R . . R4 <31) , 4 atm CO, EtNPr’2 aCId , 3 chlorlde ( R O R5 CI alkyne In the previous chapters, we have shown that Group 4 metal complexes can be widely used in catalytic transformations of organic molecules, e.g., hydroamination and 92 hydrohydrazination reactions. They can be used in MCR as we11.17-22 For example, Odom and co-workers have explored the titanium-catalyzed 3-component coupling reaction between alkyne, amine, and isonitrile to generate 01,13-unsaturated B-iminoamines . 21 (Equation 3.2). \ NMe2 01- 1.11 |_ Ph : Me / ”l/ | e2 100/0 / “"N + \ Me PhNH2 = toluene, 100 °C + l 72% CN-Bu But I HN Ph—N\ /> Me Ph (3.2) As an extension of this work, a new multicomponent reaction has been carried out between alkyne, 1,1-disubstituted hydrazine, and isonitrile to generate (1.13-unsaturated B- . . . . 24 . . . aminohydrazone in the presence of pyrrolyl-based titanium catalysts. This reaction 1S formally the iminohydrazination of the alkyne. The results of this reaction, mechanistic studies, and applications are discussed in detail in the following sections of this chapter. 93 3.2 Results and Discussion 3.2.] Iminohydrazination Results Iminohydrazination is a modification of alkyne hydrohydrazination. In hydrohydrazination reaction, an alkyne is allowed to react with a 1,1-disubstituted hydrazine in the presence of a catalyst to generate a hydrazone. In iminohydrazination, an alkyne is reacted with 1,1-disubstituted hydrazine and isonitrile in the presence of a catalyst to generate 01,0-unsaturated B-aminohydrazones. For this reaction, three different titanium-based catalysts were used: Ti(NMe2)2(dap)2 (1), where dap is 2-(N,N- dimethylaminomethyl)pyrrolyl, Ti(NMe2)3(bap) (28), where bap is bis-2,5-(N,N- dimethylaminomethyl)pyrrolyl, and Ti(NMez)2(SC6F5)20\lHMe2) (29). The Hdap ligand was synthesized by the reaction of one equivalent each of pyrrole, formaldehyde, and dimethylamine hydrochloride. The ligand was isolated in 77% yield (Equation 3.3).25 Catalyst 1 was then synthesized by adding two equivalents of Hdap to Ti(NMe2)4 and isolated in 95% yield (Equation 3.4).26 94 H H U + H H + Me2NH-HCI 77% [)4 (3.3) Hdap NMe2 H N NMez Et20 €Nhl . l’ 1\NM82 Ti(NMe2)4 + 2 [Ly—J 95% M (3.4) 62 M:2N1l:)N;\> The Hbap ligand was synthesized by adding two equivalents each of formaldehyde and dimethylamine hydrochloride to one equivalent of pyrrole and isolated in 82% yield (Equation 3.5).27 C) H H N /U\ RT, 12 11 MezN N Hbap Catalyst 28 was synthesized in 92% yield by adding one equivalent of Hbap to Ti(NMe2)4 (Equation 3.6). The solution NMR spectrum reveals that the two arms of the bap ligand are equivalent to each other. However, as shown in Figure 3.1, the solid state structure shows that only one arm is coordinated. The uncoordinated amine nitrogen is 4.1 A away from titanium. This suggests that the equivalency of the two dimethylamine donors in solution is likely due to fast exchange processes. 95 NMe MeZN (Ti 2)3 / MezN Et20 N \NMeZ Ti(NMe2)4 * \DJNMez 920/ T M (36) I o 28 \ZI Catalyst 29 was synthesized by adding two equivalents of C6F5SH to Ti(NMe2)4 and isolated in 65% yield (Equation 3.7).26 SH / F NM \ 5 e Ti NMe + "'Ti—NMe 3.7 ( 2)4 \, 65% \ S/f 2 ( ) F5 | NHMe2 29 96 Figure 3.1 Solid-state structure of Ti(NMe2)3(bap) (28) from X-ray diffraction. '1 mm ~§”4 «ES . 4% , ‘ \ [Mk V all} {all} it", ' 3 m3) Vii '1 W?‘ t 74, 70,“, M2, NM) , ~ NM) _\\ ' v\‘ \‘ @b 1‘ .7 «a ‘§Illp‘ 33' This new iminohydrazination reaction tolerates a wide range of substrates, including terminal and internal alkynes with aliphatic and aromatic isonitriles (Table 3.1). In all these reactions, 10 mol% catalysts 1 and 28 were used. The reactions are more facile with terminal alkynes and alkyl isonitriles. Interestingly, if diphenylhydrazine is used, only a small amount of the product and a significant amount of diphenylarnine are obtained. Note that in the iminoamination reaction, which is a 3-component coupling of alkyne, amine, and isonitrile, we did not observe the expected 3-component coupling product . . . 21 . . . . when cyclohexyllsomtrlle was used. Immoammation required a quaternary carbon adjacent to the nitrogen atom in the isonitrile. However, in the present study of 97 iminohydrazination, the expected product is formed even with cyclohexylisonitrile. The need for an isonitrile having a quaternary carbon adjacent to the nitrogen atom is eliminated by using hydrazine as a substrate. Therefore, this process can be generalized for a wide range of substrates. The product yields varied from 12—73%. Table 3.1 Examples of alkyne iminohydrazination 3 1 2 R\ 5 10 mol% [Ti] R3\ R5HN R : R + lN—NH2+ CN—R 4v ’N_N\ / 4 R ’—< R R1 R2 [Ti] = Ti(dap)2(NMe2)2 (1) or Ti(NMez)3(bap) (28) Yield Entry R], R2 R3, R4 R5 Conditionsa Product (%) ButHN 1 Bu",H Me, Me Bu’ A, 16h MeZNTN)\ /) 63 Bun 30 M MT TH‘Q fl CyHN m Me N—N 2 Bu",H Me,Me Cyb A,16h 2 \ / 73 EU" 31 ArHN . M N—N 3 Me, Ph Me, Me A,‘ B, 43h 92 \ / 15 Me Ph 32 ButHN 4 Bu”,H Ph, Me Bu’ A,16h WWW—NR /> 27 EU" 33 ButHN t Me2N—N / 5 H, Ph Me, Me Bu C.16h 43 Ph 34 98 Table 3.1 (Cont’d.) ArHN MezN—N > n Me, c \ / 6 Bu ,H Me Ar A,I6h B n 12 u 35 a A = 10 mol% l in toluene at lOO °C, B = 10 mol% I in toluene at I30 °C, C = 10 mol% 28 in b c toluene at 100 °C. Cy = cyclohexyl. Ar = 2,6-dimethylphenyl The catalytic activity of 29 in iminohydrazination reaction was also explored. Unfortunately, 29 did not generate the desired 3-component coupling product except for the substrates in Entry 5 of Table 3.1, where the quite reactive alkyne phenylacetylene was used. The reaction with phenylecetylene produced a significant amount of hydrohydrazinated product, making 29 less effective than 28. In this case, as shown in Equation 3.8, the major product was dimethylhydrazone of phenyl acetaldehyde (anti- Markovnikov product) and the minor product was dimethylhydrazone of acetophenone (Markovnikov product). In addition, 29 also showed some activity for the substrates in Entry I, but produced a 4-component coupling product that corresponds to the mass of two isonitriles, one alkyne, and one hydrazine (Equation 3.9). 99 Ph : H + 10 mol% 29 Me2NNH2 ; + toluene, 100 °C CN—But 16 h Bun : H + 10 mol% 29 MezNNHZ ; + toluene, 100 °C t 16 h CN—Bu t Bu HN N,NMez Me2N— N\ / A . ph Me Markovnikov Ph A A' product + t + (3.8) Bu HN MezN.N M€2N_N\ / anti-Markovnikov H product P“ 8 Ph 3' 3-component Hydrohydrazinated coupling product product 3.321 [A] / [B] = 0.162 [A'1/[B'] = 0.333 4-component coupling product (3.9) 100 3.3 Mechanistic Investigation 3.3.1 Pathway via l,2-insertion We proposed two possible mechanisms for iminohydrazination. The first one was a l,2-insertion pathway. This involved l,2-insertion of an alkyne into a titanium hydrazido(l—) intermediate, a pathway extensively studied by Marks and co-workers for . 28 . . . . . . . . . . amlde. If the isonitrile traps the resulting vmyl intermediate Vla 1,1-insertion, a 3- component coupling product would result according to Scheme 3.2. Scheme 3.2 Possible l,2-insertion pathway for the iminohydrazination reaction 3 R HN M62N_N\ /> R1 R2 Ti(dap)2(NMez)2 M NNH 6% MezNNHz [Tll—NH n \ / Bu MezN H'T‘JXH “H : Bun Me2N t HN / Tl \IJZN‘ ‘\ H N \NMez rn] [Ti]: U4 Bu NC For the above mechanism, the formation of a hydrazido(1—) intermediate is necessary. If the alkyne inserts into this intermediate, then reactions with trimethylhydrazine should generate an iminohydrazination product similar to Entry I in Table 3.1. To verify this 101 point, a 3-component coupling reaction with I-hexyne, N,N,N'-trimethylhydrazine, and tert-butylisonitrile was attempted (Equation 3.10). However, no reaction was observed when monitored by GC/FID. Therefore, it is unlikely that the iminohydrazination reaction involves a 1,2-insertion pathway. Alternatively, the reaction may involve a hydrazido(2—) intermediate and follow a mechanism similar to the zirconocene-based hydroamination of alkynes established by Bergman which is discussed in the next section. Bun : H .4. Me\ /Me 10 mol% 1 /N-N\ > No reaction (310) H Me 100 °C, 16 h + t CN—Bu 3.3.2 [2 + 2]-cycloaddition mechanism An alternative mechanistic pathway for the iminohydrazination reaction can be .. . . 2930 . ant1c1pated followmg the Bergman mechanism for znrconocene-catalyzed hydroamination as shown in Scheme 3.3. Catalyst 1 forms a titanium hydrazido(2—) intermediate, which undergoes [2 + 2]-cycloaddition with alkyne to form an azatitanacyclobutene. This cycloaddition step is followed by 1,1-insertion of isonitrile forming a new Ti—C bond. The five-membered metallacycle then rearranges to form an isolable intermediate 36. Compound 36 finally undergoes intermolecular protonolysis generating the 3-component coupling product. Scheme 3.3 Possible mechanistic pathway of iminohydrazination by l for Entry 1 in Table 3.] R3H e 2 2 R1 R2 TMez \ N PM” 1 Ti(dap)2(NMe2)2 \ N\||_/N_-‘ 2 100°C NMe2 TI tonol sis ' / \ J) R pro y N XNNH 1 n NMez N" ll. 92 2 R =Bu I 36 [T1]—NH R = MezN 3_ t R - Bu proton transfer 94% room temp [2 + 2]-cycloaddition |:z1—:—R2 /N\Me2 ”Meg room temp HN\Uil’N R1HNMe2 RENM MezNNHZ R2 “"""’2"'<[T\11’\Z’R Hydrohydrazination room temp 1,1-insertion MeZNN 2 R3Nc RJJK/R [Ti] 2 Ti(dap) In an attempt to isolate an intermediate, a reaction was carried out involving 1 with 1 equivalent each of l-hexyne, 1,1-dimethylhydrazine, and tert-butylisonitrile. The reaction was very facile and generated Ti(NNMe2)(dap)[N(But)CHCHC(Bun)N(NMe2)-k2N] l03 (36), at room temperature (Equation 3.11). The compound was isolated in 94% yield with respect to limiting hydrazine. NMez Bun : H NMeZB uI’i Ti(dap)2(NMe2)2+ H2N+NMe2 mluene =QZ>ITI1N< —4 1 O s_l. This suggests that the protonolysis step is the rate determining for the Fe - . . . . . ac tlon. Once again, the plots for the other reactions are in the appendix (Figures 831 to 133-3). 112 Figure 3.7 Representative plot for the reaction of 36 with 1,1-dimethylhydrazine. % yield 100 _ Exp 951 ’ Ti(hydrazido) + 10 MeZNNHZ /’ Jr" 90 -1 .1 ,l' 2"] 80 — I Data: Data1_B ’ Model: myeqn1 7O - /. Weighting: /' y No weighting ,' Chi"2/DoF = 0.29418 60 ‘ 1" R"2 = 0.99914 ," yO 3584991046327 _ F yinf 1190315911 .59389 50 , ,1" k 000651000025 min'1 40 ‘ ' k 1.08E-4 s‘1 l l l l T l l 0 50 100 150 200 250 time (min) 113 Table 3.2 Rate Constants and conditions for kinetic experiments H : Bu" 4. Me\ 10 mol% Ti(dap)2(NMe2)2 (1) ButHN Case A N-NH2 ; Me2N—N / “he 100 °C, Toluene-d8, 10 h \ + Bu" 1‘ 30 CN-Bu H : Bu" 4. Me. 10 mol% 36 Bu’HN Case B N—NH2 = MezN—N / “he 100 °C, Toluene-d8, 10 h \ + Bun t 30 CN-Bu t 36 100 °C, Toluene-d8, 10 h BU HN Case C + 7‘ MezN—N > Me\ \ / 10 equiv. N-NH2 n the B“ 30 H : Bun + 10 mol% 36 t Me\ 10 mol% Hdap Bu HN Case D N—NH2 #1 MezN—N / Me 100 °C, Toluene-de, 10 h \ + Bun t 30 CN-Bu ' concentration (M) Reaction [figs --1 Catalyst Hdap MezNNHz (X 10 s ) Case A 0.06 —— 0.6 1.07 i 0.42 Case B 0.06 — 0.6 0.98 1 0.1 1 Case C 0.06 — 0.6 1.11 1 0.30 Case D 0.06 0.06 0.6 1.19 i- 0.23 ll4 The precatalyst 1 contains two dap ligands. Interestingly, in the intermediate 36, only one dap ligand is present. This suggests that one dap is lost prior to the formation of 36 and was present in the reaction medium. Hence we investigated the effect of excess Hdap on the rate of the catalysis. Kinetic reactions were carried out as shown in Case D, Table 3.2. The plots are shown in Figure 3.8 and Figures 34.1 to 84.3. The value of kobs was found to be (1.19 1 0.23) x 1041 s". This is similar to the kobs value of Case A in Table 3.2 within error, where the catalysis involves precatalyst 1. This indicates that there is essentially no effect of additional Hdap ligand on the reaction rate. Figure 3.8 Representative plot for the catalysis with 10 mol% of 36 and Hdap. 90- Exp 994 10% Ti(hydrazido) + 10% Hdap 80- -i 70- Data: Data1_B Model: myeqn1 1: 60- Weighting: E y u‘ y No weighting \Z‘ ." Chm/06F = 0.09293 ° 50‘ I: R"2 = 0.99949 g yO 28722311019496 40 ,i' yinf 82735391009034 , f k 0007161000005 min'1 30- I k 1.19E-4 s'1 T f‘r V . . fi . 300 400 500 600 time (min) f I ' I 0 1 00 200 ”5 The intermediacy of dinuclear compound 37 in the catalytic cycle was also investigated. The reactions were carried out in a similar way to Case A, Table 3.2. However, compound 37 yielded only 22% of the desired product, and the kobs value for this reaction was 4.8 x 10"6 s“1 (Figure 85.1). This shows that compound 37 is not kinetically competent to be involved in catalysis involving 1. Instead, 37 is perhaps a mode of catalyst deactivation. The dependence of the reaction rate on catalyst concentration was also studied. The reactions were carried out using the conditions in Table 3.3. The progress of the reactions was plotted vs time, and the resulting kobs values are shown in Table 3.3 (Figures B6.l, B62, B63). Next, the individual kobs values were plotted vs catalyst concentration (M). A straight line is obtained with R2 = 0.999 (Figure 3.9), suggesting a first order dependence of kobs on catalyst concentration. 116 Table 3.3 Observed rate constant vs catalyst concentration H : Bun + t - Bu HN Me\ x mol% Ti(da (NMe (1) N—NHZ p)2 22 > MezN—N\ / Me 100 °C, Toluene-d3, 10 h >-—’ + Bun CN-But 3° 0 —4 -1 Entry X mol/o Catalyst conc. (M) kobs (x 10 s ) 1 15 0.09 1.79 2 10 0.06 1.19 3 5 0.03 0.61 4 2.5 0.015 0.34 Figure 3.9 Dependence of kobs on catalyst concentration 2.0 y = 19.37x + 0.037 2 1-6' R =0.999 i“ W 1.2 ~ '1’ O S g 0.8 . O -k 0.4 . 0.0 . . . . 0 0.02 0.04 0.06 0.08 Concentration (M) ”7 3.3.4 Overall mechanism for Iminohydrazination reaction For iminohydrazination, the proposed catalytic cycle begins with the generation of a titanium hydrazido(2—) complex, followed by [2 + 2]-cycloaddition to generate an azametallacyclobutene intermediate, which after protonolysis yields the hydrohydrazination product (Scheme 3.3). Isonitrile insertion forms a 5-membered metallacycle, which, following a proton rearrangement, yields the isolable titanium hydrazido(2—) complex 36. Compound 36 undergoes protonolysis at 100 °C with MezNNHz to yield the product regenerating the active species. 3.3.5 Experimental observations on regioselectivities The multicomponent reaction between phenylacetylene, 1,1 -dimethylhydrazine, and tert—butylisonitrile generated both hydrohydrazination and iminohydrazination products. Moreover, the products were obtained as mixture of regioisomers. The ratios of the isomers were obtained from the GC/FID of the crude reaction mixture (Table 3.4). In all these reactions, the anti-Markovnikov product was the major product with the phenyl group in the 2-position of the 1,3-hydrazonylimine (same as Entry 5, Table 3.1). The reaction was repeated six times using 1 as catalyst. The ratio of iminohydrazination products was found to be 0.453 t 0.117 (99% confidence level, 0:5), with the range from 0.351 to 0.510. In the same experiment, the ratio of hydrohydrazination products was found to be 0.442 i 0.339 (99% confidence level, 1125), with the range from 0.236 to 0.750. The ranges were fairly large; however, the product ratios are sensitive to the 118 structure of the ligand present on the catalyst. For example, anti-Markovnikov product has been obtained exclusively when 28 is used instead of l for the above reaction. Although the errors are relatively large, the mean values are very close. This suggests that the ratio of different isomers is nearly the same for both iminohydrazination and hydrohydrazination reactions. The similar ratios are associated with the regiochemistry prior to the protonolysis or 1,1—insertion, i.e., associated with the [2 + 2]-cycloaddition and/or alkyne coordination step. This is consistent with the recent assertion by the Beller group that titanium hydroamination regioselectivities correlate with the alkyne . . . . . . 42 . . . . coordination regioselectiVities. The eqUilibrium between the two azatitanacyclobutenes forms the regioisomers for both iminohydrazination and hydrohydrazination products. Therefore, the mean values are remarkably close. The relative rates Of trapping for the azatitanacyclobutene by proton (protonolysis) or tert-butylisonitrile (1,1-insertion of isonitrile) are different leading to the slight difference in the ratios of the products (hydrohydrazination vs iminohydrazination). Changing the ancillary ligand set on titanium greatly affects the product ratios. In particular, the anti-Markovnikov product is obtained exclusively when 28 is used instead of 1. But the iminohydrazination and hydrohydrazination products are obtained in the same ratio as obtained for l (the observed ratios between 3-component coupling product and hydrohydrazinated product are 4:1 for 1, and 3.2:1 for 28). This suggests that the [2 + 2]-cycloaddition step is dramatically affected by changing the ancillary ligand set but relative rates of protonolysis or 1,1-insertion of isonitrile are not affected much. “9 Table 3.4 Iminohydrazination of phenylacetylene by different catalysts t Bu HN N’NMez Ph : H MeZN— Nx / )L 1 ph Me Markovnikov 10% catalyst Ph ' product MezNNHz = + A + A + toluene, 100 °C Me N CN_But 16 h ButHN 2 ‘N Me2N-N \ / anti-Markovnikov H product Ph Ph 8 B' 3-component Hydrohydrazinated coupling product product Catalyst [A] / [B] [A'] / [B'] 1 0.453 1- 0.117 0.442 t 0.339 36 0.558 0.364 38 0.478 0.238 We also note that the observed ratios of the regioisomers for iminohydrazination and hydrohydrazination products using 36 as catalyst are 0.558 and 0.364 respectively (Table 3.4). This is comparable to the ratios obtained using 1 (Table 3.4). This suggests that 36 is also an effective catalyst for this iminohydrazination reaction. The structure of 36 reveals that it has one dap ligand attached to the titanium center. So the actual catalytically active species might involve only one dap ligand on titanium. To verify this, a new molecule Ti(dap)(NMe2)3 (38) was synthesized by adding Lidap to Ti(NMe2)3CI (Equation 3.13). The catalytic activity of 38 was compared with 1 by comparing the ratios of the regioisomers for the reactions shown in Table 3.4. The ratios for the iminohydrazination and hydrohydrazination products are found to be 0.478 and 120 0.238. These are again comparable to the product ratios obtained for l as the precatalyst. Therefore, the active species might involve a titanium center carrying only one dap hgand. _ ether _ Ti((NMe2)3Cl + Lidap = Ti(daprMezla (3.13) cold-RT, 12 h 38 80% 3.4 Applications of the Iminiohydrazination reaction towards the synthesis of pyrazoles 3.4.1 Background information The products of iminohydrazination reactions are basically a,B-unsaturated [3- aminohydrazones. Barluenga and co-workers have shown the formation of different heterocycles starting from 4-amino-1-azabutadienes (in other words, a,[3-unsaturated [3- . . . . 43-45 aminOimines) as shown in Scheme 3.4. Scheme 3.4 Synthesis of pyrazole from 4-amino-1-azabutadienes R N“ , 3 R3 + pyrldine = R\/E\NHR1 _____ H{FNR1 -NH4C' 4 \ 5 4 \ 5 H2NNHR5-HCI - _ We have been exploring similar reactions with our iminohydrazination products. 3.4.2 Results and Discussion The isolated 3-component coupling product from iminohydrazination was allowed to react with N2H4-HZO at 150 °C for 24 h in pyridine (Equations 3.14 and 3.15). In these cases only one pyrazole product was obtained in good to excellent yield. NMez Bun 1'4 pyridine H / N’ + N H -H o 1 | (3.14) KNHBUIL 2 4 2 150°C, 24h Bunk) 30 96% 39 NMe l 2 H ,N pyridine N’N t + N H -H o > | (3.15) ph \ NHBU 2 4 2 150°C, 24h / 34 70% Ph 40 To investigate the mechanism of this reaction, we performed the reaction of compound 30 with phenylhydrazine where there is the possibility of forming two different pyrazoles. Both the titanium-catalyzed reaction and the cyclization with phenylhydrazine were carried out in a one-pot procedure (Scheme 3.5). Two different isomers were obtained in 10:1 ratio (usmg Bu NC) under the speCified reaction conditions. Scheme 3.5 Synthesis of N-phenyl-S-n-butylpyrazole and N-phenyl-B-n-butylpyrazole n H : Bu [TIMeZ + n 10% Ti(dap)2(NMe2)2 (1) BU\:N/ Me NNH e E 2 toluene, 100 °C, 16 h \ NHR RNC — RNH2 PhNHNH2 — MezNNHz pyridine, 150 °C, 24 h ll n MB” U EU" 41 42 - t . R - Bu , 10.1 Cy = cyclohexyl R = Cy, 5.1 Mechanistically, the formation of the products can be understood by considering four different modes of attack of the two nitrogen atoms on phenylhydrazine (Scheme 3.6) However, among these four possibilities, pathways (a), and (c) are more likely from the steric point as well as the nucleophilic attack by phenylhydrazine can be considered as 1.4-addition to a,B-unsaturated imine. Scheme 3.6 Possible mechanistic pathways for the pyrazole formation (a) NMe n ' 2 W32 t BUf: Bu NH — Bu NH2> t \ NHBU I fNBut 30 30 + H ) Ph’ ‘NH2 Me N NMez 80,7211?H 3“" ('1‘ H Pb M NNH l :uHPh . ifihHPh _ {N’N fNHNMez ' 92 2; LN \ NH l<9 ”W l " ' J MezN t (I t 30 (N80 NBu H + H2N, ,Ph [3h fl H\ h —ButNH2 N’N 80" /N Bu" ,l‘H EU | NNHZ —Bu’NH2; LNHBU’ | fNBu’ ‘1 Mph 30 H #1 (NHBut Ph’” H2 Bun (EMGZ Ph 7" F“ 9"?“2 ; \N’N) (NlealMez ‘ MeZNNH; NI": \ N‘Ph \ 3” Bu" 42 (d) n 'flMez ,lsh n lfh Bu 5N A Bun N‘NH —M62NNH£ Bu N‘NHZ KNHBut , “181% " 2 7 1.}. 3° MeZN {NB t (lLlBut + H’ U H2N,N,Ph H Bun N?" t 13h _ \ —Bu NH2 _ N’N n ' I ElfH ' U—Bu (NHBut 41 From the observed ratio of the products in Scheme 3.5, it is clear that the major product has been obtained following pathway (a) under the conditions of the reaction. In (a), phenylhydrazine attacks on the carbon atom coming from the isonitrile group as 126 opposed to the other carbon atom adjacent to dimethylhydrazine in the 3-component coupling product (pathway (b)). We further wanted to explore the effect of isonitrile sterics on the mode of attack shown in (a). For this, we carried out reactions with two different isonitriles as shown in Scheme 3.5. Since a cyclohexyl group is smaller in size than a tert-butyl group, the ratio of the pyrazole products should change if steric factor is important. From the experimental data, we observed similar product ratios for both of them. This indicates that there is no obvious effect of isonitrile sterics in the cyclization step. We also carried out experiments to discover how the electronics of the substituents on the phenyl ring affects the regioselectivity. For this, three different para-substituted phenylhydrazines were used, and the ratio of the corresponding pyrazole products was observed by 1H NMR spectroscopy (Table 3.5). Table 3.5 Effect ofp-substituents on arylhydrazine on pyrazole formation _ n H _ Bu HMez n + 10% Ti(dap)2(NMe2)2 (1) Sufi Me NNH > 2 2 toluene, 100 °C, 16 h \ NHBu‘ + 30 ButNC pyridine, 150 °C, 24 h NHNH2 ll 1 X ’N ’N N n N + MB“ ”U Bu azb Entry X Ratio (azb) l H 10:] 2 OMe 2:1 3 F 4.5:] 4 CN 1:6 From the data shown in Table 3.5, it is observed that isomer a is preferred when X = H. This can be explained following pathway (a) in Scheme 3.6. However, when X = OMe, substantial amount of isomer b (minor) is produced along with a (major). This can be explained following pathway (c) in Scheme 3.6, which includes the attack by 01- nitrogen atom of arylhydrazine. This can happen due to the n-donor ability of OMe group. So the observed ratio of the products azb is 2: 1. When X = F, it has both electron withdrawing effect and it-donor ability. This makes (it-nitrogen atom sufficiently nucleophilic so that isomer b can be formed following pathway (c). But the selectivity is more than the case when X = OMe since F also has electron withdrawing effect, which produces isomer a according to pathway (a). When X = CN, which has both electron withdrawing effect and n—accepting ability, formation of isomer b is favored. This can be due to the attack by (ii-nitrogen atom of arylhydrazine following pathway (0). In this case, iii-nitrogen is preferred over B-nitrogen in arylhydrazine because the hydrogen on a- nitrogen is more acidic due to the presence of p-CN group. 3.5 Multicomponent Coupling Reactions of alkynes, monosubstituted hydrazines, and isonitriles After the success of using a tetradentate ligand (Hzenp, 4) on titanium(IV) for hydrohydrazination of alkynes with monosubstituted hydrazines (discussed in Chapter 2), we have attempted application of this ligand framework towards 3-component couplings with isonitriles. Unfortunately, multicomponent coupling reactions of alkynes, monosubstituted hydrazines, and isonitriles did not produce the expected 3—component coupling product using Ti(enp)(NMe2)2 (5) as precatalyst. Instead, only hydrohydrazination products were obtained. Therefore, we have screened other catalysts for this transformation. We have observed (Scheme 3.3) that the active species in the iminohydrazination reaction contains only one dap attached to the metal center. Hence, one dap is protolytically labile under the reaction conditions. The presence of the tetradentate enp is possibly inhibiting the formation of species that would be active for 3-component coupling. The enp ligand on the metal center forms a stable five-membered metallacycle with titanium, and it may be difficult to remove one of the pyrrolyl groups. So, we decided to investigate the effect of the Hdap3-mes ligand on titanium(IV), and its catalytic efficiency for the 3-component coupling reaction with monosubstituted hydrazines. Hdap}mes (43) was synthesized as shown in Scheme 3.7. At first, Boc-pyrrole was borylated at the 3- position using Smith borylation,46 followed by Suzuki coupling47 in the presence of catalytic Pd(PPh3)4 (Boc is Iert-butyloxycarbonyl). The next step was 130 removal of BOC-group by heating the reaction mixture at 100 °C for 24 h in BunOH and excess K3PO4°nHzO (Scheme 3.7). All of these steps were carried out in a single pot. The final product, 3-mesitylpyrrole (43), was isolated in 85% overall yield. An ORTEP representation of the X-ray crystal structure of 43 is shown in Figure 3.10. The next step involved Mannich reaction with formaldehyde and dimethylamine hydrochloride in ethanol at 45 °C. The final product, Hdap}mes (44) was isolated in 89% yield. Scheme 3.7 Synthesis of 3-mesitylpyrrole (43) 1-5 mol% [|r(OMe)(COD)]2 2.5 mol% Pd(PPh3)4 Me 0 / N\ N" BOC poo 3 m°'/° _ \ / soc 1 equiv. Me Br N’ N t t N | / BU 3” Me U = Q ; Me 1.5 equiv. HBpin B in 5 equiv. K3PO4-nH20 Me pentane. 60 °C, 24 h " DME, 100 °C, 24 h Me ii 1‘1 1.1 equiv. HZC=O Me2N N N BunOH, 100°C, 24 h l / MezNH-HCI I / > 1 Me 1.2 equiV- K31394111120 Me ethanol, 45 °C, 24 h Me Me Me Me 43 44 85% 39% I31 Figure 3.10 ORTEP representation of 3-mesity1pyrrole (43). rfl/ C(13l v) .4. Clill “I In the next step, the precatalyst Ti(dap3-mes)2(NMe2)2 (45) was synthesized by me adding two equiv of Hdap} S to Ti(NMe2)4, and the catalyst was isolated in 82% yield (Equation 3.16). Me Me MezN Me NMe2 n ether \\N'l 1|. \\NMe2 Ti(NMe) + 2 1 i"‘ (3.16) 24 i / cold-RT, 12h RIM/l \NMez Me 82% 2” Me ”Me Me Me 45 Complex 45 was also crystallographically characterized as shown in Figure 3.11. One of the amido groups has a pyrrolyl group in the trans-position instead of an amine donor nitrogen as might be expected (donor ability of the ligands are amido > pyrrolyl > amine). This might be due to the sterically bulky substituents present on the pyrrolyl group. Figure 3.11 ORTEP representation of Ti(dap3-mes)2(NMe2)2 (45). Selected bond lengths(A) and bond angles(°) are: Ti(1)—N(5) = 1.9076(15), Ti(l) -N(6) = 1.9156(16), Ti(1)—N(1) = 2.0548(15), Ti(1)—N(3) = 2.1035(15), Ti(l)—N(4) = 2.4276(15), Ti(1)—N(2) = 2.5510(16), N(5)—Ti(1)—N(6) = 100.08(7), N(5)—Ti(1)—N(1) = 9333(6), N(6)—Ti(1)— N(l) = 105.75(6), N(5)—Ti(1)—N(3) = 9326(6), N(6)—Ti(1)—N(3) = 157.45(7), N(1)— Ti(1)—N(3) = 91.41(6), N(5)-Ti(1)—N(4) = 90.41(6), N(6)—Ti(1)—N(4) = 8915(6), N(1)— Ti(1)—N(4) = 163.71(6). ‘A Is Unfortunately, three-component coupling of alkyne with monosubstituted hydrazine and isonitrile was not generally successful using 45 as the catalyst except for where phenylacetylene was used as the alkyne. Using phenylacetylene, two different products were formed; the uncyclized 3-component coupling product and the pyrazole (Equation 3.17). They were obtained in ~ 40% yield as observed by GC/FID. No reaction was 134 observed with l-hexyne or l-phenylpropyne as substrate under the same reaction conditions. Ph : H t Ipn * 10 mol% 45 Ph\ Bu HN N,N PhNHNH = -—N + l (3.17) . t2 toluene, 150 °C, 16h H)“ \\ /<‘ K? CN-Bu 40% Ph Ph 1:1 However, compound 45 was an active catalyst for hydroamination of l-hexyne with aniline at 100 °C in 2—3 h. In addition, 45 was active for hydrohydrazination of 1-hexyne with 1,1-dimethylhydrazine under the same conditions. Three component coupling reactions carried out with both aniline and 1,1-dimethylhydrazine resulted in only 10% multicomponent coupling product. In these cases, the major products were the imine and hydrazone, respectively. 135 3.6 Concluding Remarks Alkynes have been successfully transformed into [LU-unsaturated [l-aminohydrazones through multicomponent coupling of alkyne, 1,1—disubstituted hydrazine, and isonitrile. This reaction has been effectively catalyzed by titanium pyrrolyl-based catalysts. The reaction is quite general in the sense that it tolerates both terminal and internal alkynes with aliphatic and aromatic isonitriles. Mechanistically, the reaction involves a titanium hydrazido(2—) complex 36 as the intermediate (Scheme 3.3). The reaction also involves the formation of a titanium dinuclear species 37, which is not kinetically competent for the iminohydrazination reaction. Consequently, the catalyst concentration may be constantly changing during these catalyses. However, with the available data from the kinetic experiments, the mechanism can be envisioned as follows: the formation of the product involves a hydrazido(2—) intermediate, followed by [2 + 2]-cycloaddition of alkyne to form an azatitanacyclobutene. This cycloaddition is followed by 1,1-insertion of isonitrile forming a new Ti—C bond. The five-membered metallacycle then undergoes intramolecular proton transfer to form the isolable intermediate 36. Compound 36 finally undergoes protonolysis by hydrazine forming the 3-component coupling product (Scheme 3.3). The reaction has also been efficiently applied to the synthesis of different pyrazoles by adding hydrazine to the 3-component coupling product. 136 3.7 Experimental General Considerations All manipulations of air sensitive compounds were carried out in an MBraun drybox under a purified nitrogen atmosphere. All the solvents were purified according to the standard procedure. Hydrazines were purchased from Aldrich Chemical Company and dried by distillation from KOH under dry nitrogen. Alkynes were distilled under dry . 4 2 nitrogen over CaO. Ti(NMe2)4,48 TiCl(NMe2)3, 9 Hdap,25 Hbap, 7 tert-butyl . . . 50 . . . 51 . . isonitrile, and 2,6-xylyl isonitrile were prepared usmg the literature procedures. Lidap was prepared by addition of 1.1 equivalents of LiBun to a toluene solution of Hdap; the Lidap was collected by filtration and washed with pentane to afford the colorless product. Cyclohexyl isonitrile was purchased from Aldrich Chemical Company and distilled under dry nitrogen prior to use. Deuterated solvents were dried over purple sodium benzophenone ketyl (C6D6) or phosphOiic anhydride (CDCl3) and distilled under 3 . nitrogen. 1H and I C spectra were recorded on Inova-300 or VXR—SOO spectrometers. 1H and 13C assignments were confirmed when necessary with the use of two-dimensional l 1 l3 1 . . . H— H and C— H correlation NMR experiments. All spectra were referenced internally . . 1 l3 . to res1dual protiosolvent ( H) or solvent ( C) resonances. Many common coupling constants are not listed. Chemical shifts are quoted in ppm and coupling constants in Hz. 137 Synthesis and characterization of Ti(bap)(NMe2)3 (28) NMe MezN ( Ti 2’3 N' \NMez ' / Under an atmosphere of dry nitrogen, a solution of Ti(NMe2)4 (2.000 g, 8.9 mmol) in ether (20 mL) was frozen in a liquid nitrogen cooled cold well. The solution was allowed to warm enough to be stirred. Then, a cold solution of Hbap (1.610 g, 8.900 mmol) in 10 mL ether was added to the above solution dropwise over a period of 20 min. It was allowed to warm up to room temperature and stir overnight. The volatiles were removed under vacuum. The solid was purified by crystallization as orange-red crystals from pentane (2.950 g, 8.200 mmol) in 92% yield. 1H NMR (299.8 MHz, CDC13): 6.34 (s, 2 H, 3H—pyrrole), 3.48 (s, 4 H, CH2), 3.13 (s, 12 H, CH2N(CH3)2), 2.07 (s,‘ 18 H, N(CH3)2). l3c1111} NMR (75.4 MHz, CDC13): 137.9, 106.9, 60.0, 47.1, 45.8. Elemental analysis; Experimental (Calc.), C: 53.19 (53.33). H: 10.09 (10.07). N: 22.82 (23.32). M.p. 118-120 °C. 138 Synthesis of compound 30 ,C(CH3)3 MezN—N\ / Me Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with toluene (6000 UL), Ti(dap)2(NMe2)2 (0.458 g, 1.200 mmol), 1,1-dimethylhydrazine (910 EL, 12 mmol), l-hexyne (1399 BL, 12 mmol), and tert-butyl isocyanide (1355 BL, 12 mmol). The tube was sealed with a Teflon cap and heated at 100 °C for 16 h. The solvent was removed under vacuum. The product was isolated by distillation under vacuum (~65 °C, 0.65 torr) in 63% yield (1.702 g, 7.564 mmol) as red oil. 1H. NMR (299.8 MHz, CDCI3): 9.82 (br s, 1 H, NHC), 6.88 (d, l H, JHH = 8.1 Hz, HNCH), 4.68 (d, l H, JHH = 8.1 Hz, HNCHCH), 2.71 (m, 8 H, N(CH3)2 and N=CCH2), 1.77 (m, 2 H, N=CCH2CH2), 1.64 (m, 2 H, N=CCH2CH2CH2), 1.52 (s, 9 H, CCH3), 1.17 (t, 3 H, JHH = 8.0 Hz, C(CH3)3). 13C{ 111} NMR (75.4 MHz, CDC13): 171.5, 139.6, 89.5, 51.5, 48.9, 47.5, 31.2, 30.4, 23.1, 13.9. Elemental analysis; Experimental (Calc.), C: 69.41 (69.33). H: 12.35 (12.00). N: 18.85 (18.67). MS (EI) m/z = 225(M+). 139 Synthesis of compound 31 Q HN M __ €2N N\ / Me Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with toluene (6000 UL), Ti(dap)2(NMe2)2 (0.457 g, 1.200 mmol), 1,1-dimethylhydrazine (910 uL, 12 mmol), l—hexyne (1399 UL, 12 mmol), and cyclohexyl isocyanide (1790 11L, 14.400 mmol). The tube was sealed with a Teflon cap and heated at 100 °C for 16 h. The solvent was removed under vacuum. The product was isolated by distillation under vacuum (~110 0C, 0.65 torr) in 73% yield (2.205 g, 8.785 mmol) as brown oil. 1H NMR (299.8 MHz, CDC13): 9.61 (br s, 1 H, NH), 6.74 (d, l H, JHH = 8.1 Hz, HNCH), 4.61 (d, 1 H, 11111 = 8.1 Hz, HNCHCH), 2.68 (m, 8 H, N(CH3)2 and N=CCH2), 2.09-1.93 (m, 11 H, cyclohexyl), 1.73 (m, 2 H, N=CCH2CH2), 1.57 (m, 2 H, N=CCH2CH2CH2), 1.14 (t, 3 H, JHH = 7.1 Hz, CH3). 13C{1H} NMR (75.4 MHz, coc13): 171.9, 142.5, 89.9, 56.0, 49.8, 47.9, 34.8, 31.5, 26.2, 24.9, 23.0, 13.9. Elemental analysis; Experimental (Calc.), C: 71.71 (71.71). H: 11.96 (11.55). N: 16.80 (16.73). MS (EI) m/z = 251(M+). 140 Synthesis of compound 32 Me HN Me M92N*N\ / Me Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with toluene (4500 UL), Ti(dap)2(NMe2)2 (0.344 g, 0.900 mmol), 1,1-dimethylhydrazine (1024 11L, 13.500 mmol), 1-phenylpropyne (1078 11L, 9 mmol), and xylyl isocyanide (1.769 g, 13.500 mmol). The tube was sealed with a Teflon cap and heated at 130 °C for 43 h. The volatiles were removed under vacuum. The product was then isolated by column chromatography on Florisil. The impurities were removed as the first fraction using 1:] pentane:ethyl acetate mixture. The product was then isolated with pure ethyl acetate in 14% yield (0.401 g, 1.306 mmol) as a dark brown viscous oil. 1H NMR (299.8 MHz, CDC13): 11.31 (br s, 1 H, NH), 7.35 — 6.69 (m, 8 H, Ph), 6.82 (d, 1 H, JHH = 7.3 Hz, HNCH), 2.66 (s, 6 H, N(CH3)2), 2.43 (s, 6 H, 2,6-(CH3)2C6H3), 2.23 (s, 3 H, N=CCH3). 13C{1H} NMR (75.4 MHz, CDC13): 166.3, 142.7, 143.0, 142.0, 141.8, 131.0, 129.0, 128.1, 126.8, 125.9, 123.9, 108.3, 48.2, 19.5, 17.9. Elemental analysis; Experimental (Calc.), C: 77.88 (78.17). H: 8.33 (8.14). N: 13.49 (13.68). MS (EI) m/z = 307(M+). Synthesis of compound 33 141 Me Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with toluene (4500 UL), Ti(dap)2(NMe2)2 (0.344 g, 0.900 mmol), l-methyl-l—phenylhydrazine (1059 11L, 9 mmol), 1-hexyne (1119 UL, 9 mmol), and tert-butyl isocyanide (1018 1.1L, 9 mmol). The tube was sealed with a Teflon cap and heated at 100 °C for 13 h. The solvent was removed under vacuum. The product was isolated by distillation under vacuum (~110 °C, 0.65 torr) in 27% yield (0.693 g, 2.414 mmol) as dark brown oil. 1H NMR (299.8 MHz, CDC13): 9.69 (br s, 1 H, NH), 7.27-6.83 (m, 5 H, Ph), 6.93 (m, 1 H, HNCH), 4.57 (d, l H, JHH =8.l Hz, HNCHCH), 3.11 (s, 3 H, N(CH3)2), 2.36 (t, 2 H, JHH = 7.7 Hz , N=CCH2), 1.50 (m, 2 H, N=CCH2CH2), 1.39 (m, 2 H, N=CCH2CH2CH2), 1.29 (s, 9 H, CH3), 0.89 (t, 3 H, JHH = 7.2 Hz, C(CH3)3). 13C{ 1H} NMR (75.4 MHz, CDCI3): 176.3, 152.2, 140.9, 128.5, 118.0, 113.9, 89.1, 51.0, 42.8, 32.0, 30.3, 30.1, 22.8, 1.3.8. Elemental analysis; Experimental (Calc.), C: 75.29 (75.26). H: 10.49 (10.10). N: 14.72 (14.63). MS (EI) m/z = 287(M+). Synthesis of compound 34 142 C(CH3)3 I l NI M82N_N\ / Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with toluene (4900 UL), Ti(bap)(NMe2)3 (0.353 g, 0.980 mmol), 1,1—dimethylhydrazine (743 uL, 9.800 mmol), phenylacetylene (1075 UL, 9.800 mmol), and tert-butyl isocyanide (1107 11L, 9.800 mmol). The tube was sealed with a Teflon cap and heated at 100 °C for 16 h. The solvent was removed under vacuum. The product was isolated by distillation under vacuum (~125 °C, 0.65 torr) in 43% yield (1.030 g, 34.204 mmol) as a red oil. 1H NMR (299.8 MHz, CDCl3): 9.03 (br d, 1 H, 11111 = 13.0 Hz, NH), 7.65 (s, l H, N=CCH), 7.40—7.15 (m, 5 H, Ph), 6.89 (d, 1 H, JHH = 2.3 Hz, HNCH), 2.83 (s, 6 H, N(CH3)2), 1.36 (s, 9 H, C(CH3)3). 13C{1H} NMR (75.4 MHz, CDC13): 143.0, 142.0, 136.0, 128.5, 125.0, 124.0, 102.9, 50.9, 42.0, 30.0. Elemental analysis; Experimental (Calc.), C: 73.58 (73.47). H: 9.26 (9.39). N: 17.05 (17.14). MS (EI) m/z = 245(M+). 143 Synthesis of compound 35 Me Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with toluene (60001]L), Ti(dap)2(NMe2)2 (0.4319 g, 1.200 mmol), 1,1-dimethylhydrazine (910 11L, 12 mmol), 1-hexyne (1399 UL, 12 mmol), and xylyl isocyanide (1.573 g, 12 mmol). The tube was sealed with a Teflon cap and heated at 100 °C for 16 h. The volatiles were removed under vacuum. The product was then isolated by column chromatography on Florisil. The impurities were removed as the first fraction using 1:1 dichloromethane:ethyl acetate mixture. The product was then isolated with ethyl acetate as the eluent in 12% yield (0.401 g, 1.469 mmol) as a viscous oil. 1H NMR (299.8 MHz, CDC13): 10.89 (br s, 1 H, NH), 7.15 - 6.85 (m, 3 H, 0, m-CH), 6.78 (d, 2 H, JHH = 7.8 Hz, HNCH), 4.62 (d, 1 H, JHH = 8.0 Hz, N=CCH), 2.58 (m, 8 H, N(CH3)2 and N=CCH2), 2.38 (s, 6 H, 2,6-(CH3)2C6H3), 1.59 (m, 2 H, N=CCH2CH2), 1.41 (m, 2 H, N=CCH2CH2CH2), 0.99 (t, 3 H, 13):] = 7.3 Hz, CHZCH3). 13C{1H} NMR (75.4 MHz, CDC13): 170.4, 143.1, 141.8, 131.7, 128.7, 128.6, 124.1, 1.22.1, 117.9, 92.0, 48.8, 46.6, 31.4, 23.0, 19.3, 14.0. High Resolution MS (EI) m/z = 273.2200, calc. 2 273.2205. 144 Synthesis of Ti(NNMez)(daP)[N(But)CHCHC(Bun)N(NMe2)-k2N] (36) All the manipulations were done inside the glove-box filled with nitrogen. 1,1- MeZNNHz (91 11L, 1.2 mmol) was added to Ti(dap)2(NMe2)2 (0.4538 g, 1.2 mmol) dissolved in 600 11L of toluene in a vial. It was then cooled in the cold well filled with liquid nitrogen. To this were added cold solutions of 1-hexyne (0.1 g, 1.2 mmol) and I Bu NC (136 11L, 1.2 mmol). It was then allowed to warm up to the room temperature and stir for 12 h. It was then kept at —35 °C for overnight. The solvent was then pumped down and the reddish-brown residue was crystallized from pentane as orange-red colored plate-shaped crystals in 94% yield (0.256 g, 0.565 mmol) with respect to limiting hydrazine. 1H NMR (499.7 MHz, c6136): 7.09 (d, 1 H, i), 6.73 (t, 1 H, JHH = 2.1 Hz, r), 6.59 (t,1 H, JHH = 2.3 Hz, q), 6.47 (m, 1 H, p), 4.67 (d, 1 H, JHH = 12.4 Hz, 11), 4.56 (d, 1 H, JHHZ 7.4 Hz, i), 3.34 (d, 2 H, JHH = 12.4 Hz, 11), 3.09 (m, 1 H, d), 2.87 (br s, 6 H, a), 2.60 (br s, 3 H, 1 or m), 2.56 (s, 6 H, b), 2.29 (m, 1 H, d), 1.74 (br s, 3 H, l or m), 1.51 (m, 2 H, e), 1.31 (s. 9 H, k), 1.29 (m, 2 H, 1), 0.89 (t, 3 H, JHH= 7.3 Hz, g). l3C{'H} NMR (125.7 MHZ. C6D6): 166.7, 146.9, 136.2, 126.8, 107.1, 104.1, 93.2. 63.3, 56.9, 145 50.1, 49.7, 49.1, 33.7, 32.0, 31.7, 31.5, 23.3, 14.2. Elemental analysis; Experimental (Calc.), C: 57.83 (58.27). H: 9.25 (9.56). N: 21.36 (21.62). M.p. decomp. 230 °C. Structural details: (Monoclinic, P2(1)/c, Formula: C22H43N7Ti, a = 9.180(1), b = 19.161(3), c = 15.043(2), 13 = 102.598(3)°, Z = 4, Dcajc = 1.167 g/mL, p. = 0.353 mm_], F(000) = 984, 0 range = 1.75 to 23.33°, total ref = 22066, unique ref = 3737, parameters = 272, (101‘ = 1.012, s = 0.020(2), largest peak and hole = 0.414 and —0.398 eA_3, R (I > 26(1)) = 0.0436, sz (1 > 26(1)) = 0.1040.) 146 Synthesis and characterization of Ti2(dap)3(NHNMe2)(NNMe2)2 (37) C} I p a r Me (1 s 0 \Me ,NMe All the manipulations were done inside a nitrogen filled glove-box. In a vial, Ti(dap)2(NMez)2 (0.200 g, 0.500 mmol) was dissolved in toluene (250 pL). It was then cooled in a liquid nitrogen-cooled cold we11. To this solution was added 1,1-Me2NNH2 (76 1.11., 1.000 mmol). Then, the solution was allowed to warm up to room temperature and stir for 1 h. The solution was kept in the refrigerator at —35 °C overnight. The volatiles were removed in vacuo, and the yellow-brown residue was crystallized from a 1:1 dichloromethane2pentane to obtain 37 as yellow plates in 61% yield (0.195 g, 0.305 mmol). 1H NMR (499.7 MHz, C6D6): 7.68 (br, 1 H, c), 6.89 (br, 1 H, r or x), 6.56 (t, l H, JHH = 2.7 Hz, q or w), 6.40 (t, 2 H, JHH = 2.5 Hz, q or w and r or x), 6.34 (br, 1 H, p or v), 6.22 (br, 1 H,j), 6.17 (t, l H, JHH = 2.6 Hz, 1), 6.08 (br, 1 H, p or v), 5.77 (br, 1 H, h), 3.99 (d, 1 H, JHH = 13.8 Hz, f), 3.87 (d, 1 H, JHH = 13.8 Hz, n or t), 3.78 (d, 1 H, JHH = 13.4 Hz, 11 or t), 3.57 (d, 1 H, JHH = 13.4 Hz, 11 or t), 3.52 (d, 1 H, n or t, JHH = 13.8), 3.12 (d, 1 H, f, JHH = 13.8), 2.95 (br, 3 H, a or b or k or I), 2.85 (br, 6 H, m or s), 2.68 (br, 3 H, a or b or k or I), 2.42 (br, 6 H, d), 2.32 (br, 3 H, a or b or k or 1), 2.29 (br, 3 147 H, a or b or k or 1), 2.26 (br, 6 H, m or s), 1.86 (br, 6 H, e). 13C{1H} NMR (125.7 MHz, C6D6): 137.2, 136.1, 133.5, 130.6, 129.5, 108.0, 107.3, 106.7, 102.1, 101.8, 101.4, 65.5, 63.0, 62.9, 54.4, 54.3, 51.0, 50.6, 50.3, 49.8, 49.4. Elemental analysis; Experimental (Calc.), C: 50.93 (50.64). H: 8.48 (8.12). N: 26.07 (26.25). M.p. decomp. 230 °C. 148 Synthesis and characterization of Ti(dap)(NMe2)3 (38) Under an atmosphere of dry nitrogen, Ti(NMe2)3(Cl) (0.200 g, 0.9 mmol) was dissolved in 15 mL ether in a filter flask. Lidap (0.121 g, 0.9 mmol) was dissolved in 5 mL ether in a vial. Both of them were cooled in the cold well. Then Lidap solution was added to the solution of Ti(NMe2)3Cl and allowed to warm up to the room temperature and stir overnight. Then it was filtered, and the solvent was pumped down. The product was isolated by crystallization from 1:1 ether: pentane as reddish-brown crystals in 80% yield (0.218 g, 0.7 mmol). 1H NMR (299.8 MHz, CDCI3): 6.80 (q, 1 H, S-pyrrolyl), 6.02 (t, 1 H, JHH = 2.6 Hz, 4H-pyrrolyl), 5.82 (m, 1 H, 3H—pyrrolyl), 3.51 (s, 2 H, CH2), 3.22 (s, 18 H, amido CH3), 2.36 (s, 6 H, amine CH3). l3C{1H} NMR (75.4 MHz, CDC13): 142.9, 133.3, 122.0, 107.5, 65.2, 53.3, 51.6. M.p. 148-150 0C. Attempted reaction of l-hexyne, N,N,NU-trimethylhydrazine, and tert-butylisonitrile in presence of Ti(dap)2(NMe2)2 (1) Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with toluene (300 11L), Ti(dap)2(NMe2)2 (1) (0.023 g, 0.06 mmol), N,N,ND-tiimethylhydrazine (0.044 g, 0.6 mmol), l—hexyne (0.050 g, 0.6 mmol), and tert-butyl isocyanide (68 UL, 0.6 mmol). The tube was sealed with a Teflon cap and heated at 100 °C for 16 h. The residue was analyzed with GC—FID. Only starting materials were observed, and no product was detected under these reaction conditions. 149 Synthesis of 3-n-butylpyrazole (39) A pressure tube was loaded with 30 (0.100 g, 0.4 mmol), hydrazine (0.0156 g, 0.4 mmol), and pyridine (1 mL). The solution was heated at 150 °C for 24 h. The tube was allowed to cool to room temperature. CH2C12 (25 mL) was added, and the solution was extracted with water. The organic layer was dried over Na2SO4, filtered, and dried under vacuum. This yielded the pure product52 in 96% (0.0476 g, 0.380 mmol) yield. lH NMR (499.7 MHz. coc13): 8.60 (br s, i H, NH), 7.46 (d, 1 H, JHH= 2.0 Hz, NCHC), 6.06 (d, 1 H, JHH = 1.9 Hz, NC(Bun)CH), 2.66 (t, 2 H, JHH = 7.6 Hz, NCCHZ), 1.62 (m, 2 H, NCCHZCH2). 1.35 (m, 2 H, CHZCH3). 0.91 (t. 3 H, JHH = 7.4 Hz, CH3). 13c {'H} NMR (125.7 MHz, CDC13): 147.9, 135.1, 103.4, 31.5, 26.3, 22.3, 13.8. MS (EI) m/z = 124 (M+). 150 Synthesis of 4-phenylpyrazole (40) N’N A pressure tube was loaded with 34 (0.05 g. 0.200 mmol), hydrazine (0.0064 g, 0.200 mmol), and pyridine (1 mL). The mixture was heated at 150 °C for 24 h. The solution was allowed to cool to room temperature. CH2C12 (25 mL) was added, and the solution was extracted with water. The organic layer was dried over NazSO4, filtered, and dried under vacuum. This resulted in a white solid. The product was isolated by crystallization from 3:1 methanolzethylacetate at 5 °C. The product53 was isolated as colorless crystals in 70% (0.02 g, 0.14 mmol) yield. ]H NMR (499.7 MHz, DMSO): 12.9 (br s, 1 H, NH), 7.65 (m, 2 H, ortho-CH), 7.39 (tt, 2 H, JHH = 1.21, 7.55 Hz, meta-CH), 7.22 (tt, 1 H, JHH = 1.20, 7.35 Hz. para-CH). '3c {1H} NMR (125.7 MHz, CDC13): 133.9, 129.7, 126.7, 126.0, 122.1. MS (E1) m/z = 144 (M+). M.p. 230-232 °C. 151 Synthesis of 5-n-butyl-l-phenylpyrazole (41) and 3-n-butyl-1-phenylpyrazole (42) / I / 41 42 Inside a glove box, a pressure tube was loaded with Ti(dap)2(NMe2)2 (0.2326 g, 0.609 mmol), MezNNHg (462 uL, 6.09 mmol), l-hexyne (699 uL, 6.09 mmol), tert- butylisonitrile (688 11L, 6.09 mmol), and toluene (610 11L). The tube was taken outside the box and heated at 100 °C for 16 h. The volatiles were removed under vacuum. This resulted in a dark brown semisolid. To this solid was added PhNHNH2 (60 11L, 6.09 mmol) in pyridine (2 mL). The solution was heated at 150 °C for 24 h. The solution was then allowed to cool to room temperature, and the volatiles were removed under vacuum. This resulted in a dark brown semisolid which was dissolved in CH2C12 (30 mL) and extracted with water (2X25 mL). The organic layer was collected, dried over NazSO4, and filtered. The volatiles were removed from the filtrate under vacuum. This resulted in . . 1 . a brown mass, which was characterized by H NMR spectroscopy. This showed that the products were formed in 10:1 ratio (41:42). The products were then subjected to column chromatography on alumina using 20% ethyl acetatezhexanes. Compound 41 was isolated in the first fraction as a red-yellow oil. Compound 42 was isolated in the second fraction as a dark red oil. The mixture of products was obtained in 64% (0.78 g, 3.9 mmol) overall isolated yield. Compound 41: 1H NMR (299.8 MHz, coc13): 7.57 (d, l H, JHH = 1.7 Hz, 3H—pyrazole), 7.56-7.36 (m, 5 H, Ph), 6.19 (td, l H, JHH = 0.7, 1.7 Hz, 4H- pyrazole), 2.63 (t, 2 H, JHH = 7.6 Hz, NCCHZ), 1.53 (m, 2 H, NCCHZCHz), 1.29 (m, 2 H, CHZCH3), 0.85 (t, 3 H, JHH = 7.3 Hz). 13C {'H} NMR (75.4 MHz, CDC13): 143.8, 140.1, 139.8. 129.0, 127.8, 125.4, 105.3, 30.9, 25.9, 22.3, 13.7. MS (EI) m/z = 200 (M+). Compound 42: IH NMR (299.8 MHz, CDC13): 7.80 (d, 1 H, JHH = 2.5 Hz, 5H- pyrazole), 7.64 (d, 2 H, JHH = 8.2 Hz, o-CH-phenyl), 7.47 (t, 2 H, JHH = 7.6 Hz, m- CH—phenyl), 7.23 (t, 1 H, JHH = 7.0 Hz, p-CH-phenyl). l3C {1H} NMR (75.4 MHz, CDC13): 155.4, 129.3, 127.2, 125.9, 125.6, 118.9, 106.4, 31.8, 28.1, 22.5, 13.9. MS (EI) m/z = 200 (M+). 153 Synthesis of 3-mesity1pyrrole (43) \2I Me Me Inside a glove box, a Schlenk tube (100 mL) was loaded with [lr(OMe)(COD)]2, (0.1786 g, 0.264 mmol), HBPin (3.4486 g, 26.946 mmol), 4,4'-di-tert-butyl-4,4'- bipyridine (0.1446 g, 0.538 mmol), BOC—pyrrole (3.0 g, 17.960 mmol), and pentane (3 mL).The tube was taken outside the box, and heated at 60 °C for 18 h. The tube was then taken inside the box, and the volatiles were removed under vacuum. This resulted in a . . . . 1 brown solid. The crude reaction mixture was characterized by H NMR spectroscopy to ensure that the reaction was complete. To this mixture was added Pd(PPh3)4 (0.5189 g, 0.449 mmol), mesityl bromide (3.5757 g, 17.960 mmol), K3PO4-nHZO (23.8688 g, 89.980 mmol), and DME (6 mL). The solution was refluxed at 100 °C for 24 h. After the reaction was over, the solution was allowed to cool to room temperature. The volatiles were removed under vacuum. This resulted in a brown solid. To this solid was added K3PO4-nH20 (5.7285 g, 21.552 mmol) and BunOH (6 mL). The solution was then refluxed at 100 0C for 24 h. The solution was allowed to cool to room temperature, and 1:1 etherszO (50 mL) was added. The solution was stirred for 15 min. The organic layer was separated, dried over Na2SO4, and filtered. The volatiles were removed under 154 vacuum. This resulted in a dark brown solid, which was subjected to column chromatography on silica gel with 4:1 etherzpentane solution. The product was isolated from the first fraction as a pale brown solid in 85% (2.824 g, 15.3 mmol) yield. 1H NMR (499.7 MHz, CDC13): 8.22 (br s, 1 H, NH), 6.92 (s, 2 H, CH—Ph), 6.85 (q, 1 H, JHH‘ 2.7 Hz, 4H—pyrrole), 6.61 (q, 1 H, JHH = 2.3 Hz, lH-pyrrole), 6.11 (m, 1 H, 4H—pyrrole), 2.30 (s, 3 H, 4-CH3-phenyl), 2.14 (s, 6 H, 2.6-CH3-phenyl). 13C {‘H} NMR (125.7 MHz, CDC13): 5 = 137.9, 136.1, 133.7, 128.1, 122.3, 117.6, 116.5, 110.3, 21.4, 21.2). MS (EI) m/z = 185 (M+). Elemental analysis; Experimental (Calc.), C: 84.42 (84.28). H: 8.02 (8.16). N: 7.23 (7.56). M. p. 96-98 °C. 155 3-mes Synthesis of 3-Hdap (44) MezN \ZI Me Me A round bottom flask (250 mL) was charged with 3-mesityl pyrrole (2.2231 g, 12 mmol), formaldehyde (0.9739 g, 13.2 mmol, 37% solution), N,N-dimethylamine hydrochloride The solution was allowed to cool to room temperature. 10% NaOH solution (100 mL) was added, and the reaction stirred for 30 min. The reaction was then extracted with ether (3X100 mL). The combined organic layers were washed with water (100 mL). The final organic layer was dried over Na2SO4, filtered, and the volatiles were removed under vacuum. This resulted in a dark brown oil, which was subjected to column chromatography on alumina using 10% methanolzethyl acetate. The product was isolated as brown oil in 89% yield (2.600 g, 10.7 mmol). IH NMR (499.7 MHz, CDC13): 9.78 (br s, 1 H, NH), 6.98 (s, 2 H, CH—Ph), 6.57 (s, 1 H, 2H—pyrrole), 5.98 (s, 1 H, 4H- pyrrole), 3.62 (s, 2 H, CH2), 2.41 (s, 6 H, N(CH3)2), 2.39 (s, 3 H, 4-CH3-phenyl), 2.19 (s, 6 H, 2,6-CH3-phenyl). '3C {'11} NMR (125.7 MHz, CDC13): 8 = 137.4, 135.5, 133.6, 127.7, 126.9, 121.3, 116.8, 110.1, 56.3, 44.3, 21.2, 20.9. MS (EI) m/z = 242 (M+). M.p. 62-64 0C. 156 Synthesis of Ti(dap3'mes)2(NMe2)2 (45) Me Me Me TMez \ Nit . .ii\NM62 Tl' N/l \NMez Me2 N \ / Me [Me Me All manipulations were carried out inside the glove box. A filter flask (100 mL) was loaded with Ti(NMe2)4 in ether (1.5 mL) (0.4668 g, 2.08 mmol) and cooled inside the cold-well. To this solution was added cold ether solution of ligand (1.0092 g, 4.2 mmol). The solution was allowed to warm up to room temperature and stir overnight. The solution changed to red with an orange-red precipitate. The mixture was filtered, and the precipitate was dried under vacuum. Suitable X-ray quality crystals were grown from 1:1 dicholoromethane:pentane at -35 °C as red plates (1.0552 g, 1.71 mmol). ]H NMR (499.7 MHz, CDC13): 6.88 (s, 4 H, CH—Ph), 6.56 (d, 2 H, JHH = 1.5 Hz, 2H-pyrrole), 5.67 (d, 2 H, JHH = 1.5 Hz, 4H-pyrrole), 3.58-3.42 (br, 4 H, CH2), 3.32 (s, 12 H, N(CH3)2), 2.46 (s, 12 H, N(CH3)2), 2.28 (s, 6 H, phenyl-4-CH3), 2.18 (s, 12 H, phenyl-3,5-(CH3)2). 13C {1H} NMR (125.7 MHz, CDC13): 137.6, 135.7, 135.3, 134.6, 127.6, 127.1, 120.6, 104.2, 63.0, 51.9, 49.1, 48.7, 21.4, 20.9. M. p. 158-160 °C. 157 Experimental for Table 3.5 Entry 2, Table 3.5: Inside a glove box, a pressure tube was loaded with Ti(dap)2(NMe2)2 (0.0458 g, 0.119 mmol), MezNNHz (92 11L, 1.190 mmol), l-hexyne (140 uL, 1.190 mmol), tert- butylisonitrile (136 11L, 1.190 mmol), and toluene (600 uL). The tube was taken outside the box and heated at 100 °C for 16 h. The volatiles were removed under vacuum. This resulted in a dark brown semisolid. To this solid was added p-OMeC6H4NHNH2-HC1 (0.2021 g, 1.190 mmol) in pyridine (2 mL). The solution was heated at 150 °C for 24 h until the conversion was complete. The solution was then allowed to cool to room temperature, and the volatiles were removed under vacuum. This resulted in a dark brown semisolid which was dissolved in CH2C12 (30 mL) and extracted with water (2X25 mL). The organic layer was collected, dried over NazSO4, and filtered. The volatiles were removed from the filtrate under vacuum. This resulted in a brown mass, which was characterized by 1H NMR spectroscopy. It produced the two isomers in 2:1 ratio. 1H NMR (299.8 MHz, CDC13): 7.57 (d, 1 H, JHH = 1.7 Hz, 3H—pyrazole), 7.56-7.36 (m, 5 H, Ph), 6.19 (td, 1 H, JHH = 0.7, 1.7 Hz, 4H—pyrazole), 2.63 (t, 2 H, JHH = 7.6 Hz, NCCHz). 1.53 (m, 2 H. NCCHZCHz), 1.29 (m, 2 H. CH2CH3), 0.85 (t, 3 H, JHH = 7.3 Hz). 158 Entry 3, Table 3.5: Inside a glove box, a pressure tube was loaded with Ti(dap)2(NMe2)2 (0.0458 g, 0.119 mmol), MezNNHz (92 11L, 1.190 mmol), l-hexyne (140 uL, 1.190 mmol), tert- butylisonitrile (136 11L, 1.190 mmol), and toluene (600 uL). The tube was taken outside the box and heated at 100 °C for 16 h. The volatiles were removed under vacuum. This resulted in a dark brown semisolid. To this solid was added p-FC6H4NHNH2 (0.1537 g, 1.22 mmol) in pyridine (2 mL). The solution was heated at 150 0C for 24 h until the conversion was complete. The solution was then allowed to cool to room temperature, and the volatiles were removed under vacuum. This resulted in a dark brown semisolid which was dissolved in CH2C12 (30 mL) and extracted with water (2X25 mL). The organic layer was collected, dried over NazSO4, and filtered. The volatiles were removed from the filtrate under vacuum. This resulted in a brown mass, which was characterized by 1H NMR spectroscopy as a mixture of isomers. It produced the two isomers in 4.5:] ratio. ]H NMR (299.8 MHz. CDC13): 8.02-6.62 (m, 14 H, pyrazole, Ph), 6.24 (d, 0.46 H, JHH = 1.7 Hz, 4H-pyrazole. minor), 6.19 (td, 1 H, JHH = 0.7, 1.7 Hz, 4H-pyrazole, major), 3.86-3.76 (m, 7 H, OCH3), 2.79-2.56 (m, 4 H, NCCHZ), 1.83-1.55 (m, 4 H, NCCHZCHz), 1.53-1.21 (m, 4 H, CHZCH3), 0.99-0.89 (m, 5 H, CH3). 159 Entry 4, Table 3.5: Inside a glove box, a pressure tube was loaded with Ti(dap)2(NMe2)2 (0.0458 g, 0.119 mmol), MezNNHz (92 11L, 1.190 mmol), l-hexyne (140 1.1L, 1.190 mmol), tert- butylisonitrile (136 11L, 1.190 mmol), and toluene (600 uL). The tube was taken outside the box and heated at 100 °C for 16 h. The volatiles were removed under vacuum. This resulted in a dark brown semisolid. To this solid was added p-CNC6H4—NHNH2-HC1 (0.2068 g, 1.220 mmol) in pyridine (2 mL). The solution was heated at 150 °C for 24 h until the conversion was complete. The solution was then allowed to cool to room temperature, and the volatiles were removed under vacuum. This resulted in a dark brown semisolid which was dissolved in CH2C12 (30 mL) and extracted with water (2X25 mL). The organic layer was collected, dried over NazSO4, and filtered. The volatiles were removed from the filtrate under vacuum. This resulted in a brown mass, which was . 1 . . . characterized by H. NMR spectroscopy as a mixture of two different isomers. It produced the two isomers in 1:6 ratio. 1H NMR (299.8 MHz, CDC13): 7.62 (d, 1 H, JHH = 1.7 Hz, 3H—pyrazole), 7.78-7.36 (m, 10 H, Ph, pyrazole), 6.41-6.01 (m, 3 H, Ph), 6.31 (d, 1 H, JHH = 1.7 Hz, 4H—pyrazole. major), 6.25 (td, 0.1 H, JHH = 0.7, 1.7 Hz, 4H- pyrazole, minor) 2.72 (m, 3 H, NCCHZ), 1.73-1.62 (m, 4 H, NCCHZCHg), 1.42-1.34 (m, 4 H, CHQCH3), 0.85 (t. 5 H, JHH = 7.3 Hz, CH3). 160 Experimental for kinetic reactions Representative procedurefor the catalysis with 10% Ti(dap)2(NM82)2 (Case A, Table 3. 2) Under an atmosphere of dry nitrogen, a vial was loaded with Ti(dap)2(NMe2)2 (1) (0.0229 g, 0.060 mmol), toluene-d8 (500 11L), 1,1-Me2NNH2 (46 pL, 0.600 mol), 1- hexyne (70 uL, 0.6 mmol), tert-butylisonitrile (68 uL, 0.600 mmol), and hexamethyldisiloxane (0.0486 g. 0.300 mmol). The volume was adjusted to 1 mL with toluene-d8 in a volumetric flask, and the solution was transferred to a J-Young tube. The progress of the reaction was monitored over time at 100 °C by ]H NMR spectroscopy. The yields were calculated with respect to internal standard (hexamethyldisiloxane). A graph of percent yield was then plotted vs time (in min). The value of the rate constant was calculated using OriginPro 7.5. kobs values: 101,, = 0.84 x 10"4 s—l, R2 = 0.997 k0,, = 0.92 x 10‘4 s_l, R2 = 0.992 k0,, = 1.32 x 10‘4 s_1, R2 = 0.991 kobs= 1.18 ><10_4 s_l, R2 =0.994 Average kobs = (1.07 1 0.42) x 10’4 s—l 161 Representative procedure/er the catalysis with 10% 36 (Case B, Table 3. 2) Under an atmosphere of dry nitrogen, a vial was loaded with 36 (0.0276 g, 0.060 mmol), toluene-d8 (500 pL), 1,1-Me2NNH2 (46 11L, 0.600 mmol), 1-hexyne (70 11L, 0.6 mmol), tert-butylisonitrile (68 11L, 0.600 mmol), and hexamethyldisiloxane (0.0486 g, 0.300 mmol). The volume was adjusted to 1 mL with toluene-d8 in a volumetric flask, and the solution was transferred to a J-Young tube. The progress of the reaction was monitored over time at 100 °C by 1H NMR spectroscopy. The yields were calculated with respect to the internal standard (hexamethyldisiloxane). A graph of percent yield was then plotted vs time (in min). The value of the rate constant was calculated using OriginPro 7.5. kobs values: kobs = 0.99 x 10’4 5.], R2 = 0.999 101,, = 1.01 x 10‘4 {1,le = 0.999 10),, = 0.89 x 10’4 s—], R2 = 0.999 101,, = 1.01 x 10’4 {1,112 = 0.999 Average kobs = (0.98 i: 0.11) X 10—4 s—1 Representative procedure for the reaction of 36 with 10 equivalent Me 2NNH 2 (Case C, Table 3. 2) Under an atmosphere of dry nitrogen, a vial was loaded with 36 (0.0276 g, 0.060 mmol), toluene-d8 (500 uL), 1,1-Me2NNH2 (46 11L, 0.600 mmol), and hexamethyldisiloxane (0.0098 g, 0.600 mmol). The volume was adjusted to 1 mL with toluene-d8 in a volumetric flask, and the solution was transferred to a J-Young tube. The progress of the reaction was monitored over time at 100 °C by 1H NMR spectroscopy. The yields were calculated with respect to the internal standard (hexamethyldisiloxane). A graph of percentage yield was then plotted vs time (in min). The value of the rate constant was calculated using OriginPro 7.5. kobs Values: kobs = 1.08 x 10‘4 s_], R2 = 0.999 10),, = 0.94 x 10’4 s", R2 = 0.999 k0,, = 1.09 x 1074 s—], 112 = 0.998 kobs = 1.32 x 10‘4 s—l, R2 = 0.994 Average tab, = (1 .11 1 0.30) x 10‘4 s_1 163 Representative procedure for reaction with 10% 36 and 10% Hdap (Case D, Table 3. 2) Under an atmosphere of dry nitrogen, a vial was loaded with 36 (0.0276 g, 0.060 mmol), toluene-11,6,> (500 11L), 1,1-Me2NNH2 (46 11L, 0.600 mmol), l-hexyne (70 11L, 0.6 mmol), tert-butylisonitrile (68 uL, 0.600 mmol), Hdap (0.0076 g, 0.060 mmol), and hexamethyldisiloxane (0.0486 g, 0.300 mmol). The volume was adjusted to 1 mL with toluene-d8 in a volumetric flask, and the solution was transferred to a J-Young tube. The progress of the reaction was monitored over time at 100 °C by 1H NMR spectroscopy. The yields were calculated with respect to the internal standard (hexamethyldisiloxane). A graph of percent yield was then plotted vs time (in min). The value of the rate constant was calculated using OriginPro 7.5. kobs Values: kobs = 1.19 1.10—4 s_], R2 = 0.999 kobs = 1.04 x 10‘4 5—1, R2 = 0.999 10),, = 1.19 ><1074 s—], R2 = 0.999 kobs = 1.34 x 10‘4 {1,112 = 0.999 Average kobs = (1.19 1 0.23) x 10’4 s—1 164 Represtative procedurefor the reactions shown in Table 3.3 The reactions were carried out following the procedure shown in Case A (Table 3.2) for the kinetics experiment with 1. Only the amount of the catalyst was varied. For Entry 1, Table 3.3. Catalyst (1) loading: (0.0349 g, 0.900 mmol) For Entry 2, Table 3.3. Catalyst (1) loading: (0.0229 g, 0.600 mmol) For Entry 3, Table 3.3. Catalyst (1) loading: (0.01 15 g, 0.300 mmol) For Entry 4, Table 3.3. Catalyst (1) loading: (0.0058 g, 0.150 mmol) X-ray Crystallography Crystals grown from concentrated solutions at -—35 °C were moved quickly from a scintillation vial to a microscope slide containing Paratone N. Samples were selected and mounted on a glass fiber in wax and Paratone. The data collections were carried out at a sample temperature of 173 K on a Bruker AXS platform three-circle goniometer with a CCD detector. The data were processed and reduced utilizing the program SAINTPLUS supplied by Bruker AXS. The structures were solved by direct methods (SHELXTL v5.1, Bruker AXS) in conjunction with standard difference Fourier techniques. 165 3.8 References 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. Arend, M.; Westermann, B.; Risch, N. Angew. Chem. Int. Ed. 1998, 37, 1044. Cortes, E.; Martinez, R.; Avila, J. G.; Toscano, R. A. J. Heterocycl. Chem. 1988, 25, 895. Li, J.; Jiang, W. Y.; Han, K. L.; He, G. 2.; Li, C. J. Org. Chem. 2003, 68, 8786. Yet, L. Angew. Chem. Int. Ed. 2001, 40, 875. Sigman, M. S.; Vachal, P.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2000, 39, 1279. Strecker, A. Ann. Chem. Pharm. 1850, 75, 27. Dondoni, A.; Massi, A.; Minghini, B.; Bertolasi, V. Tetrahedron 2004, 60, 231 l. Shimokawa, J .; Shirai, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Angew. Chem. Int. Ed. 2004, 43, 1559. Domling, A.; Ugi, I. Angew. Chem. Int. Ed. 2000, 39, 3169. Basso, A.; Banfi, L.; Riva, R.; Guanti, G. J. Org. Chem. 2005, 70, 575. Xi, C. J.; Chen, C.; Lin, J .; Hong, X. Y. Org. Lett. 2005, 7, 347. Dhawan, R.; Amdtsen, B. A. J. Am. Chem. Soc. 2004, 126, 468. Bae, 1.; Han, H.; Chang, S. J. Am. Chem. Soc. 2005, 127, 2038. Bon, R. S.; van Vliet, B.; Sprenkels, N. B.; Schmitz, R. F.; de Kanter, F. J. J.; Stevens, C. V.; Swart, M.; Bickelhaupt, F. M.; Groen, M. B.; Orru, R. V. A. J. Org. Chem. 2005, 70, 3542. ‘ Bazin, S.; Feray, L.; Vanthuyne, N.; Bertrand, M. P. Tetrahedron 2005, 61 , 4261. Hratchian, H. P.; Chowdhury, S. K.; Gutierrez-Garcia, V. M.; Amarasinghe, K. K. D.; Heeg, M. J .; Schlegel, H. B.; Montgomery, J. Organometallics 2004, 23, 4636. Vujkovic, N. F ., J. L.; Ward, B. D.; Wadepohl, H.; Mountford, P.; Gade, L. H. Organometallics 2008, 2518. Aneetha, H.; Basuli, F .; Bollinger, J .; Huffman, J. C.; Mindiola, D. J. Organometallics 2006, 25, 2402. Ghosh, A. K.; Xu, C. X.; Kulkami, S. S.; Wink, D. Org. Lett. 2005, 7, 7. 166 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. Basuli, F.; Bailey, B. C.; Huffman, J. C.; Mindiola, D. J. Organometallics 2005, 24, 3321. Cao, C. S.; Shi, Y. H.; Odom, A. L. J. Am. Chem. Soc. 2003, 125, 2880. Ruck, R. T.; Zuckerman, R. L.; Krska, S. W.; Bergman, R. G. Angew. chem. int. ed. 2004, 43, 5372. Nair, V.; Mathai, S.; Nair, S. M.; Rath, N. P. Tet. Lett. 2003, 44, 8407. Banerjee, S.; Shi, Y. H.; Cao, C. S.; Odom, A. L. J. Organomet. Chem. 2005, 690, 5066. Herz, W.; Dittmer, K.; Cristol, S. J. J. Am. Chem. Soc. 1947, 69, 1698. Cao, C. S.; Shi, Y. H.; Odom, A. L. Org. Lett. 2002, 4, 2853. Kim, I. T.; Elsenbaumer, R. L. Tet. Lett. 1998, 39, 1087. Li, Y. W.; Marks, T. J. Organometallics 1996, 15, 3770. Baranger, A. M.; Walsh, P. J .; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 2753. Walsh, P. J.; Baranger, A. M.; Bergman, R. G. J. Am. Chem. Soc. 1992, 114, 1708. Li, Y.; Shi, Y.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794. Gordon, A. J ., Ford, R. A. The Chemist’s Companion 1972, John Wiley & Sons: New York. Here the parentheses denote estimated standard deviations from model used in the X-ray diffraction experiment, and the :t denotes standard deviation from the average found from multiple experiments. Mahy, J. P.; Battioni, P.; Mansuy, D.; Fisher, J .; Weiss, R.; Mispelter, J .; Morgenstembadarau, 1.; Gans, P. J. Am. Chem. Soc. 1984, 106, 1699. Allman, R., Structural Chemistry. In The Chemistry of the Hydrazo, A20, and Azoxy Groups, Saul, P., Ed. John Wiley and Sons: London, 1975; Vol. 1, p 23. Kahlal, S.; Saillard, J. Y.; Hamon, J. R.; Manzur, C.; Carrillo, D. J. Chem. Soc., Dalton Trans. 1998, 1229. Parsons, T. B.; Hazari, N.; Cowley, A. R.; Green, J. C.; Mountford, P. Inorg. Chem. 2005, 44, 8442. Walsh, P. J.; Carney, M. J.; Bergman, R. G. J. Am. Chem. Soc. 1991, 113, 6343. 167 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. Alvarez, S.; Llunell, M. J. Chem. Soc, Dalton Trans. 2000, 3288. Zabrodsky, H.; Peleg, S.; Avnir, D. J. Am. Chem. Soc. 1992, 114, 7843. Basuli, F.; Aneetha, H.; Huffman, J. C.; Mindiola, D. J. J. Am. Chem. Soc. 2005, 127, 17992. Espenson, J. H. Chemical Kinetics and Reaction Mechanisms, McGraw-Hill: New York, 1995. Tillack, A.; Jiao, H. J .; Castro, 1. G.; Hartung, C. G.; Beller, M. Chem. Eur. J. 2004, 10, 2409. Barluenga, J .; Rubio, E.; Rubio, V.; Muniz, L.; Iglesias, J .; Gotor, V. J. Chem. Res. (S) 1985, 124. Barluenga, J .; Jardon, J.; Rubio, V.; Gotor, V. J. Org. Chem. 1983, 48, 1379. Barluenga, J .; Rubio, V.; Gotor, V. J. Org. Chem. 1982, 4 7, 1696. Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R. Science 2002, 295, 305. Suzuki, A. J. Organomet. Chem. 1999, 576, 147. Bradley, D. C.; Thomas, I. M. J. Chem. Soc. 1960, 3857. Benzing, B.; Komicker, W. Chem. Ber. 1961, 94, 2263. Gokel, G. W.; Widera, R. P.; Weber, W. P. Org. Synth. 1979, 55, 96. Walborsk.Hm; Niznik, G. E. J. Org. Chem. 1972, 3 7, 187. Heuisgen, R.; Koszinowski, J .; Ohta, A.; Schiffer, R. Angew. Chem. Int. Ed. 1980, 19, 202. Reger, D. L.; Gardinier, J. R.; Grattan, T. C.; Smith, M. R.; Smith, M. D. New J. Chem. 2003, 2 7, 1670. 168 CHAPTER 4 Synthesis of Vanadium(V) hydrazido(2—) thiolate imine alkoxide complexes 4.] Introduction Metal hydrazido(2—) complexes are well known intermediates in dinitrogen activation to produce NH3.]-3 Hydrazido(2—) complexes have been synthesized for a 9 i10-17 . . . 4- 18-20 large variety of metal centers including Mo and W, T r 21-24 Z , Re, 25-32 33 34 35-37 38 39 .40 41 42 V, Nb, Ta, Os, Pt, Au, Li, U, and Te. Among these, molybdenum-based hydrazido complexes have been studied extensively due to their . . 43 . . . . . presence in nitrogenase enzymes. Similarly, there has been consrderable interest in vanadium hydrazido(2—) complexes since the discovery of vanadium in the active . . . 44-46 . . . . Sites of Similar enzymes. The reduction of dinitrogen by these nitrogenase enzymes is believed to involve metal-bound (Fe, Mo, V) hydrazine and hydrazido . . 47.48 . . intermediates. The F eMoco enzyme has been studied extensrvely and was shown by X-ray crystallography to contain a cluster with the molybdenum atom ligated by . 43 . . one nitrogen, three sulfurs, and two oxygen atoms. It is generally believed that . . . . . . . 49 . . . vanadium in nitrogenase enzymes occupies a Similar Site. Since vanadium, like 169 molybdenum, may be the coordinating site for N2, it is important to understand the hydrazido(2—) chemistry of vanadium with ligands containing S, N, and O atoms. In particular, reduction of N2 to NH3 by these enzymes might involve the intermediate ' . 4 , spec1es N2Hm and NH" (m = 0—4, n = 0_3) bound to Vanadium. 7 48 In terms of mode of action for vanadium-containing nitrogenase, it has been demonstrated that S3-1igated vanadium in cluster anions such as [Fe3S4X3V(DMF)3]_ (X = Cl, Br, or 1) binds hydrazines50 and imides,5] and catalyzes their reduction. Examples and syntheses of a few vanadium hydrazido(2—) complexes will be discussed in the following sections. For comparison, hydrazido(2—) chemistry of adjacent titanium will be briefly reviewed. 170 4.2 Hydrazido versus isodiazene bonding in MNNRZ complexes The degree of donation of the B—N lone pair into the M=N 11* orbital in terminal M—N—N ligands determines participation of the two different resonance forms. Cases where N13 is strongly donating with weak n-donation from the metal center results in an N—N bond order ~ 2.0. This is represented as the isodiazene form (Figure 4.1, . 52,53 . . . . . . . right). This 1S favored in metal complexes With a low formal ox1dation state. This is analogous to a singlet Fischer-type carbene complex, where the metal center is present in a relatively low formal oxidation state. Conversely, in the cases where the lower oxidation state of the metal is very reducing, e.g. titanium(II), the hydrazido(2— . . 54-56 . ) resonance form predominates (Figure 4.1, left). Here the metal center is present in a higher formal oxidation state, and the M—N bond order is between 2 and 3. This situation is reminiscent of the triplet Schrock-type carbene complex where the metal center is present in a relatively high formal oxidation state. Different reactivities have been observed depending on the nature of the bonding in M—N—N moiety. Figure 4.1 Hydrazido(2—) vs isodiazene resonance forms. (9 MeeN,Me Me\w,Me I 9 N N Mn+ M(n-2)+ hydrazido(2—) isodiazene 171 Most often, N13 is planar in hydrazido(2—) complexes. This is observed in the complexes where phenyl groups are present on the N13 atom in M—N—N 13,20,56 moiety. This occurs due the the conjugation of the B-nitrogen with the phenyl ring. However, in the complexes where NB has only alkyl groups as substituents, the . . . . . 3 geometry around the B-nitrogen atom is very different. In this case, NB lS sp - hybridized, and the sum of the angles around it can be ~ 328.0°. Only a few examples of hydrazido(2—) ligands with pyramidalized B-nitrogens have been structurally . 12,14 . . . . . characterized. In the isodiazene complexes, consrderable contribution from N13 into M=N 11* orbital results in significant delocalization of electrons in M—N—N moiety. This results in a planar N13’ and the sum of the angles around that atom is ~36OO57,58 172 4.3 Vanadium(V) hydrazido(2—) complexes Vanadium(V) hydrazido(2—) complexes with different ligands are known in the literature”.31 A vanadium(V) hydrazido(2—) complex with aryloxide ligands, MezNNV(OAr) , where Ar = 2,6-Pr12C6H has been reported (Equation 4.1).28 This 3 3 compound was very stable to reduction by zinc or Na/Hg. The hydrazido(2—) group can not be protonated by anhydrous HCI. However, it undergoes metathesis with N(CHZCHZSH)3 to give [V(NNMe2){N(CH2CHZS)3}], (Equation 4.2).30 This is the first example of Vanadium(V) hydrazido(2—) complex with sulfur-donor atoms as the ancillary ligand. lltle\l N/Me CH2C|2 (NH2Me2)21{VC|3}2(lt-NNM62)31 reflux = (4.1) + 6 Li(DlPP) 85% Fri rI G) . 0 . _ Pr’ Pr, DIPP - + 6 LiCl + H2NNMe2 + 2 NHMez Alternatively, MezNNV(OAr)3 can be prepared from the corresponding vanadium(V) oxo compound by treating with Me3SiNHNMe2 as shown in Equation 30 . . 4.3. From the X-ray crystal structure of this compound, the V—N distance was found to be 1.681(3) A. The N-N distance was 1.305(5) A, and the V—N-N angle was 173 l73.9(4)°. The N—N bond distance of 1.295(17) A is similar to that observed in [vc12(NH2NMePh)2(NNMePh)]‘.3‘ Me\ /Me Me\ /Me - i Pr’ )1; Pr H E 1.5 N(CHZCHZSH)3 /v\ .0 l O , Hexane, 20 °C,9h Pr’i O 0’ 87°/ Pr r ° _” Me3SiNHNMe2 S— \ (4.2) so 8 Keg/NJ CHZClz, 20 °C T’ S_ \ 4.3 Rail S ( 1 Vanadium(V) hydrazido(2—) complexes with different B-nitrogen substituents have been reported (Equation 4.4).27 Here, the N—N bond distances in the corresponding NNPhMe and NNHPh complexes are 1.305(5) A and 1.310(3) A, respectively. 174 II S— \ . (so 3 <14) CNJ 1 2 R =Ph,R =H,88% R1 = Ph, R2 = Me, 65% Hydrazido(2—) complexes were also synthesized using [O(SCH2CH2)2]2— (0S2) as the ancillary ligand on vanadium(V).27 For example, the reaction of V(O)(OPri)3 with 2,6-di-iso-propylphenol and O(CH2CH2SH)2 generated V(OSZ)O(OAr), which was then treated with MezNNHz to form V(OS2)(NNMe2)(OAr) as the final product (Scheme 16 4.1). Scheme 4.1 Synthesis of a vanadium hydrazido(2—) complex with O(SCH2CH2)22— as co-ligand V(0)(0Pr’)3 + . 0H . l I Pr Pr hexane M NNH e V(O)(osz)(OAr) e2 2: V(NNMe2)(Osz)(OAr) 82% CH3CN + 55% HS/\/0\/\SH Ar = 2,6-Pr’206H3 In a more recent example, V(NS3)(NNC5H10) was synthesized using 1- aminopiperidine to introduce the hydrazido(2—) moiety (Equation 4.5).26 It was synthesized by reaction of [V(NS3)O] with l-aminopiperidine at 140 °C. The V—N distance was 1.677(2) A; the N—N distance was 1.324(3) A. The V—N—N(hydrazido) angle is almost linear at 177.0(2)°. A derivative from benzophenone hydrazone (Ph2C=NNH2) to give V(NS3)(NNCPh2) was also prepared (Equation 4.6).26 175 l excess < :N‘NHZ hl 140 °C, neat is/ l S 78% CNV Ph\ ,Ph 1? Ph\ N C=N-NH2 N Ph’ 3 ll (4 6) —> _ \ . diglyme, 160 °C, 30 min XS—h S 45% K/ 176 4.4 Titanium hydrazido(2—) complexes A handful of examples of terminal Group-4 hydrazido(2—) complexes are known in the literature. The first example of a terminal titanium hydrazido(2—) complex, e.g. Cp2Ti{NN(SiMe3)2}, was reported in 1978 by Wiberg and co-workers.17 In 1999, Mountford’s group reported tetraazamacrocycle-supported titanium and zirconium hydrazido(2—) complexes and their reactions with carbon dioxide, isocyanide, and isocyanates.l6 Woo and Thorrnan developed porphyrin-based hydrazido(2—) complexes of titanium.‘5 The first crystallographically characterized terminal titanium hydrazido(2— ) complex, Ti(NNMe2)(dpma)(But-bpy), where dpma = N,N-di(pyrrolyl-a-methyl)-N- methylamine, and But-bpy = 4,4'-di-tert-butyl-2,2’-bipyridine, was reported by our group in 2004 (Equation 4.7).14 \ NMez 01 NM / NI/l 32 t NMez / \ | Me \ N l @‘l’li‘imN ~_/ But * T / Nfl‘""‘ 3“ “'7’ N N— o / I“ \ / \ \ / 72/o Me But But + Me2NNH2 I77 Another example of a structurally characterized titanium hydrazido(2—) complex from our group was Ti(NNMe2)(dap)(nacnac), where dap = 2-(dimethylaminomethyl)pyrrolyl and nacnac = [N(But)CHCHC(Bun)N(NMe2)-k2N] (Equation 4.8). Complex (36) was prepared as a possrble intermediate in iminohydrazmation of alkynes (the supra). TMez n _ NMez BU :— H _ N [L Bun ll -«, Ti(dap)2(NMe2)2+ H2NNMe2 = \ ”\Ti/ 2 (4.8) 1 . toluene, RT N/ \N'J _ t 94% M92 ’ CN Bu But 36 More recently, a series of terminal titanium(IV) hydrazido(2—) complexes were reported.” The complexes were synthesized by the addition of bpy, where, bpy = 2,2'- bipyridine, to a solution of Ti(dpma)(NMe2)2 followed by substituted hydrazines (Equation 4.9). In contrast to the normal yellow to red color of titanium(IV) complexes, these complexes are blue to green. This is due to an unusual low-energy ligand to ligand charge transfer (LLCT) transition from the hydrazido(2—) ligand to an empty 11* orbital of bipyridine. In 2005, Mountford described the synthesis and bonding analysis of both terminal and bridging hydrazido(2—) complexes of titanium. The terminal complex was 178 synthesized by reacting Ti(NMez)2C12 with thNNHz (Scheme 4.2).13 In contrast, sterically smaller substituents on the hydrazines, such as MezNNHZ or N- aminopiperidine, yielded bridging hydrazido(2—) complexes as shown in Scheme 4.2. \ NMez 01- NM / 1"- e / ”I l 2 / II.,N\ Me 2 3 + R\N/R | N N_ ‘ N 1 / \ = @‘Jl-liumN ‘—/ R1 (49) _ \ / ether / er‘N ’—\ R R1 R1 33—72% / N Me 4. R2\ R1 =H, Me, Ph, But NNH2 2 | =H, Me 3 3 R R =Me,Ph,p-tol,p-FC6H4 I79 Scheme 4.2 Synthesis of titanium hydrazido(2—) complexes Ph2NNH2 MezNNHz Ti(NMeg)2C|2 ll Ph. ,Ph '1 N l}. MezHN’s '\\NHMe Cl CI 2 Meg N / MeZHNI Tii-‘\/N\\T “Cl MezHN’T \ N//I\ CI N Me2 2% MeZHNI (Ti/N/\\Tit‘ (\CI MeZHN’ \ N//T \Cl 33 Ti(NNPh2)C12(NHMe2)2, synthesized according to Scheme 4.2, has been used to synthesize a variety of hydrazido(2—) complexes by metathesis with a fac-N3 donor ligands as shown in Scheme 4.3.13 180 Scheme 4.3 Synthesis of titanium hydrazido(2—) complexes with different fac-N3 donor ligands Me Me VN N /N/\-_ jN— Me C—Q Me /T' — 2'” N - N N/ ”\C lCl Me] ‘2 / Me Ph\ T , N /N// \‘Cl \ Pth Cl / Ph \ Ph M6319]aneN3 PhsN’Ph Me3[6]aneN3 l N u. Me2HN’s '\\NHMe2 Cl CI HC(4-Bu"pz)3 HC(Me292)3 H (2 Me flg\{\fleMe 441 11141181] Cl .11 Me ‘ /Me Me ;Ti-../ "Cl //Ti""'Cl N \ \ Ph\N‘/N/ Cl N 1 Ph Ph In additon, both sandwich and half-sandwich complexes of titanium carrying hydrazido(2—) ligands have been reported. They were synthesized from the corresponding imido complexes by reacting with hydrazine as shown in Scheme 4.4.]0 181 Scheme 4.4 Synthesis of titanium hydrazido(2—) complexes from imido complexes RQR R'2NNH2 . R R R I. R > I R l. R waTl§ Pr\ /TI\ Ll ”\But )NSN/ \ ‘NR2 Me ‘ i R=HorMe;n=1or0 Pr . R=Me L = CI, MeC(NPr’)2 or C5H5 R' = Ph, Me Ph2NNH2 182 Ph2NNH2 R: g. R '. R PWT'SN Cl \Nth 4.5 Aim of the current project Although different types of vanadium(V) hydrazido(2—) complexes are known in the literature, no examples of vanadium hydrazido(2—) complexes are known where all of the elemental connections found in the enzyme, e.g., S, N, and O, are in the same coordination sphere. As part of our ongoing interest in the study of transition ll,lZ,l4 . we pursued the syntheses of vanadium(V) metal hydrazido(2—) complexes, hydrazido(2—) complexes with a chelating ligand containing a thiolate, alkoxide, and donor imine, 2-((2-thiol-pheny1imino)methylene)phenol HZTIP, Equation 4.10.25 The synthesis of different vanadium(V) hydrazido complexes with this ancillary ligand will be discussed in the following sections.59 OH 0 SH ©:NH ethanol, reflux, 4 h ( ) 2 31% H H2TIP l83 4.6 Results and Discussion In order to synthesize vanadium(V) hydrazido(2—) complexes with the TIP ancillary, we initially attempted direct reaction of HZTIP with V(NNMez)(OAr)3,28 where Ar = 2,6-Pri2C6H3. Unfortunately, these reagents did not result in the elimination of 2 ArOH and the synthesis of V(NNMe2)(OAr)(TIP) (47). However, we were able to readily synthesize (Me3Si)2TIP (46) which on reaction with V(NNMe7_)(OAr)3 produced 47 in good yield (Scheme 4.5). Scheme 4.5 Synthesis of V(NNMe2)(OAr)(TlP) (46) (where Ar = 2,6-Pr’2C6H3) SiMe3 @SH excess ISiMe3 as 4 NEt ‘ N OH 3 ~ N o’S'Me3 V toluene, cold—RT, 12 h H 87% H H2T|P ’ (SiMe3)2TIP (46) Me2NNV(OAr)3 toluene, 120 °C, 2 d 74% lTlMez N |,\S i /\'Q Pr 0 NW\ .\ r: 47 I84 In order to explore the chemistry of the V(NNMe2)(TIP) framework further, we exchanged the aryloxide ligand in 47 with iodide. Treatment of 47 with ISiMe3 in toluene eliminated Me3SiOAr and produced V(NNMe2)(TIP)(I) (48) in 95% crude yield (Equation 4.11). The iodide complex was quite insoluble in most solvents but was effective as a starting material without further purification. 1'1 'SiMGB "v NNM I TIP " 411 V(NNMe2) ( . > 47 95% crude yield 48 A brown suspension of 48 in CHzClz reacted with dmpe, l,2- (dimethylphosphino)ethane, to generate a dark red solution (Scheme 4.6). The new complex, [V(NNMe2)(TIP)(dmpe)]I (49), was isolated in 62% yield. Similarly, treatment of 48 with 4,4'-tert-butyl-2,2'-bipyridine (Butbpy) and triflate or hexafluoroantimonate silver(l) salts formed cationic, hexacoordinate complexes in good yields (Scheme 4.6). I85 Scheme 4.6 Synthesis of cationic hydrazido(2—) complexes e - NMe2 7 f—\ M62111 Me2P PMe2 p“ II ,S 9 "V(NNMe2)(I)(TIP)" T Cp’)" \0 1 01-12012 N(\\ 48 Nl 62% M92 V Butbpy,AgX 49 CHZCIZ _ e NMez " But Nu, $fo 6) But N/l N(\\0 [x] g v© 50 = x” = ‘SbF6, 30% 51 = x‘ = ‘OTf, 31% The dmpe complex 49 was characterized by single crystal X-ray diffraction, and an ORTEP representation is shown in Figure 4.2. Unlike the titanium dimethylhydrazido(2— ) complexes reported, H 12 M this hexacoordinate complex has a planar Me—N—Me moiety, which is common for hydrazido(2—) complexes of most metals.56 This cationic complex has a short N—N bond of 1.293(3) A. The shortest hydrazido N—N distance was found in an iron porphyrin complex, and was measured as ~1.232(5) A.53 The metric parameters in the hydrazido ligand are similar to a related cationic vanadium complex reported by Dilworth and co-workers.“ The short N—N bond is indicative of a double bond, and the NNMez ligand in this case may be I86 better described as an isodiazene (Figure 4.3, (a)). However, the metric parameters of V—N—N moiety in 49 are different from the known vanadium bis(isodiazene) complex, [(Cng8N2)2(OSiMe3)2(OSiMe3)2V(u-O)V(O)(OSiMe3)2] (52) (Figure 4.3, (b)). The selected bond lengths and bond angles in 52 are as follows: V—N = 1.725(2) — 1.781(3) A, N—N = 1.285(3) — 1.245(4) A, V—N—N = 176.4(2)°, 174.3(2)°.34 Thus compound 49 can not be unambiguously described as an isodiazene complex. While quite different from hydrazido(2—) ligands of titanium in many respects, the short V=N bond in 49 of 1.698(2) A suggests a significant contribution from the hydrazido(2—) resonance form as well. Figure 4.2 ORTEP representation of the cationic part in 49. Hydrogens and iodide ion are not shown. Ellipsoids are drawn at the 50% probability level. Selected bond lengths (A) and angles (°): V(1)—N(1) 1.698(2), N(1)—N(2) 1.293(3), V(1)—O(1) 1.908(2), V(1)—N(3) 2.162(2), V(1)-S(1) 2.3383(8), V(1)—P(1) 2.5078(8), V(1)—P(2) 2.5079(8), N(2)—N(1)—V(1) 168.5(2), O(l)—V(l)—S(l) 119.53(6). ‘,I l.__\ \ I“: 187 Figure 4.3 (a) Hydrazido(2—) vs isodiazene resonance forms in vanadium complex. (b) Structure of 52. M \ ’M \®/ (a) e N e Me h. Me (6) 9N 1' <—> ‘ V5+ V3+ hydrazido(2—) isodiazene 188 M e e Me // \ I e3 /N 0 N e \\//<0 Me | OSiMe3 'M 52 OSI 63 4.7 Concluding Remarks Using readily prepared V(NNMe2)(OAr)3 as a starting material, an example of a hydrazido(2—) TIP complex, V(NNMe2)(OAr)(TIP) (46) where Ar = 2,6-Pr’2C6H3, can be prepared. Replacement of the OAr ligand with iodide proceeds smoothly with lSiMe3. While iodide 48 was not fully characterizable due to very low solubility in common solvents, it served as starting material for cationic hydrazido complexes. An X-ray diffraction study on one of the cationic vanadium complexes, [V(NNMe2)(TIP)(dmpe)]I (49), revealed a quite short N—N bond. This short N—N bond is indicative of the V(llI) cation having poor backbonding into the N=N 7t* orbital of the isodiazene. 189 4.8 Experimental General Considerations All manipulations of air sensitive compounds were carried out in an MBraun drybox under a purified nitrogen atmosphere. Pentane (Spectrum Chemical Mfg. Corp.), toluene (Spectrum Chemical Mfg. Corp.), ether (Columbus Chemical Industries Inc.), dichloromethane (EM Science), acetonitrile (Spectrum Chemical), and tetrahydrofuran (JADE Scientific) were sparged with nitrogen to remove oxygen then dried by passing through activated alumina. VC13(THF)3 was purchased from Strem Chemical Co. and used as received. 1,1-dimethylhydrazine was purchased from Aldrich Chemical Co. and distilled from KOH prior to use. 4,4'-di-tert-buty1-2,2’- bipyridine (Butbpy) was purchased from Aldrich Chemical Co. and used as received. H2TIP25 and V(NNMe2)(OAr)328 were synthesized according to the literature procedures. Deuterated solvents were dried over purple sodium benzophenone ketyl (C6D6) or phosphoric anhydride (CDC13) and distilled under nitrogen. 1H and 13C NMR spectra were recorded on lnova 300 or VXR-SOO spectrometers. 1H and 13C NMR spectral assignments were confirmed, when necessary, with the use of 2-D 1H— 1 13 1 . . . . . 13 H and C— H correlation NMR experlments. Routlne couplmg constants 1n C NMR spectra are not reported. All spectra were referenced internally to residual protiosolvent (111) or solvent (13C) resonances. Chemical shifts are quoted in ppm and coupling constants in Hz. 190 Synthesis of (Me3Si)2TIP (46) SiMe3 S CEN O,SIMe3 HJK© All the manipulations were carried out inside an inert atmosphere glove box. An Erlenmeyer flask (100 mL) was loaded with H2TIP (1.00 g, 4.36 mmol) and toluene (1.5 mL). The solution was cooled in a liquid nitrogen cooled cold well inside the box. Triethylamine (1.78 g, 17.6 mmol) in toluene (0.5 mL) was added to the solution. Trimethylsilyl iodide (3.52 g, 17.6 mmol) in toluene (0.5 mL) then was added. After the additions, the reaction was then allowed to warm to room temperature and stir overnight. The reaction mixture became pale yellow with a white precipitate. The precipitate was filtered with a fritted funnel, and the volatiles were removed in vacuo. The product was collected as a viscous, pale yellow oil in 87% yield (1.43 g, 3.9 mmol). 1H NMR (299.8 MHz, C6D6): 7.56 (d, J = 7.48 Hz, 1 H, imine-CH), 7.01-6.61 (m, 8 H, aryl), 0.23 (s, 9 H, SiCH3), 0.15 (s, 9 H, SiCH3). ‘3C{‘H} NMR (125.7 MHz, C6D6): 150.7, 147.9, 136.1, 128.3, 128.0, 126.2, 124.8, 122.5, 121.4, 120.0, 118.0, 110.7, 64.9, 0.69, 0.23. 191 Synthesis of V(NNMe2)(TlP)(OAr) (47) NMez N HAS i /\'o Pr 0 {,0 ,V rI Under an atmosphere of dry nitrogen, a threaded pressure tube was loaded with V(NNMe2)(OAr)3 (1.50 g, 2.30 mmol) and (SiMe3)2TIP (0.87 g, 2.30 mmol) in toluene (9 mL). The pressure tube was taken outside the box and heated at 120 °C for 2 d. After cooling the tube to room temperature, the reaction mixture was filtered using a fritted funnel. Volatiles were removed from the brown filtrate in vacuo. This resulted in a dark brown solid. The brown solid was washed with cold pentane, and the residue was dried in vacuo. Finally, the product was crystallized as a dark brown solid from 1:1 etherzpentane in 74% yield (0.87 g, 1.70 mmol). 1H NMR (499.7 MHz, C6D6): 9.21 (S, 1 H, imine-CH), 7.82 — 6.76 (m, 11 H, aryl-CH), 3.08 (s, 6 H, NCH3), 2.80 (m, 2 H, CHMez), 0.84 (d, 6 H, JHH = 6.9 Hz. CHCH3), 0.81 (d, 6 H, JHH = 6.8 Hz. CHCH3). '3C{'H} NMR (75.4 MHz, CDC13): 167.2, 159.5, 147.8, 145.4, 134.8, 134.3, 134.0, 128.0, 127.2, 124.3, 122.3, 121.6, 120.7, 119.5, 119.4, 116.7, 43.8, 26.2, 22.9, 22.5. 51v NMR (131.6 MHz, CDC13): 215.2 (DI/2 = 1813 Hz). Elemental analysis: Exp. (Calc.), C: 63.47 (63.17); H: 6.44 (6.24); N: 8.00 (8.19). M.p.: 152-154 °C. 192 Synthesis of V(NNMe2)(TlP)(I) (48) Under an atmosphere of dry nitrogen, a threaded pressure tube (20 mL) was loaded with V(NNMe2)(TIP)(OAr) (0.76 g, 1.50 mmol) and ISiMe3 (0.33 g, 1.70 mmol) in toluene (6 mL). The solution was then heated at 45 °C overnight. A brown precipitate appeared from the reaction mixture. The precipitate was filtered using a fritted funnel. The solid was dried in vacuo. The product was isolated as brown powder in 95% crude yield (0.66 g, 1.40 mmol). Several attempts to purify this compound were unsuccessful as it was highly insoluble, and the compound was used without further purification. M.p. 216-218 °C. 193 Synthesis of [V(NNMe2)(TIP)(dmpe)]l (49) —- / “o Under an atmosphere of dry nitrogen, a vial (20 mL) was loaded with V(NNMe2)(TIP)(l) (0.18 g, 0.39 mmol), and the powder was suspended in CHZCIZ (1.9 mL). To the stirred suspension was added dmpe (0.058 g, 0.39 mmol). The mixture was stirred overnight. The brown suspension gradually turned into a bright red solution. The volatiles were removed in vacuo. The product was crystallized from 1:1 CHzClzzTHF in 62% yield (0.15 g, 0.24 mmol). 1H NMR (499.7 MHz, CDC13): 9.47 (S, 1 H, imine-CH), 8.19 (s, 1 H, aryl-CH), 7.93 (d, 1 H, JHH= 7.6 Hz, aryl-CH), 7.70 (t, 1 H, JHH = 4.5 Hz, aryl-CH), 7.65 (t, 1 H, JHH = 7.6 Hz, aryl-CH), 7.34 (q, 2 H, JHH = 2.4 and 3.0 Hz, aryl-CH), 7.28 (d, 1 H, JHH = 8.34 Hz, aryl-CH), 7.18 (t, 1 H, JHH = 6.8 Hz, aryl-CH), 3.69 (s, 6 H, NCH3), 2.11-2.03 (br s, 2 H, CH2), 1.78- 1.75 (dd, 6 H, J = 1.7 and 10.3 Hz, PCH3), 1.78-1.66 (br s, 2 H, CH2), 0.54-0.37 (dd, 6 H, J= 9.9 and 10.3 Hz. PCH3). 13C{1H} NMR (125.7 MHz, CDCI3): 165.6, 164.7, 149.8, 144.1, 144.1, 134.9, 134.7, 129.2, 127.3, 126.1, 121.7, 121.2, 119.2, 44.2, 29.3 (dd, JCP = 12.5 and 27.5 Hz, CH2), 25.2 (dd, JCp = 9.6 and 26.8, CH2). 18.9 (dd, JCp = 3.0 and 27.8, PCH3), 14.6 (dd, JCP = 17.2 and 22.2, PCH3). 3‘P('H} NMR (200 194 MHz): 39.2 (br s). 5'v NMR (131.6 MHz, CDC13): —21.7 (01/2 = 1382 Hz). Elemental analysis: Exp. (Calc.), C: 41.11 (41.12); H: 5.15 (5.09); N: 6.77 (6.85). M.p.: 179-181°C. 195 Synthesis of [V(NNMe2)(TIP)(Butbpy)][SbF6] (50) _ _ (+3 NMez N But \_,Nn,,'_\“/‘,\§ 9 But:\_§N/fil(|\\\o [NMe2l e® — -_ Under an atmosphere of dry nitrogen, a filter flask (125 mL) was loaded with 2 (0.30 g, 0.65 mmol) and CH2C12 (30 mL). The filter flask was cooled inside a liquid nitrogen cooled cold well. Two separate vials (20 mL) were loaded with Bu’bpy (0.17 g, 0.65 mmol) and AngF6 (0.21 g, 0.61 mmol). To each reagent vial was added CHzClz (0.5 mL). Both the vials were cooled inside the cold well. The cold solution of Butbpy was added to the filter flask. The mixture was allowed to stir for 10 min followed by addition of the AngF6 suspension. The reaction mixture then was allowed to warm up to room temperature, sealed, and stirred overnight. The dark brown suspension gradually turned into a reddish-purple solution. The volatiles were removed in vacuo. Then solid products were stirred with THF (25 mL), and Ag] separated as a grey solid. The solid was filtered using a fritted funnel. The volatiles were removed in vacuo from the filtrate resulting in a reddish-purple solid containing the crude product. The product was crystallized from 1:1 CHzClzzpentane in 80% yield (0.34 g, 0.48 mmol). IH NMR (299.8 MHz, CDC13): 8.82 (d, 1 H, JHH = 6 Hz, bpy-CH), 8.77 (d, 1 H, JHH = 6 Hz, bpy-CH), 8.73 (s, 1 H, imine CH), 7.84-6.83 (m, 196 12 H, aryl-CH and bpy-CH), 3.76 (s, 6 H, NCH3), 1.22 (s, 9 H, CCH3), 1.20 (s, 9 H, CCH3). '3C{'H} NMR (75.4 MHz, CDC13): 166.2, 165.9, 164.7, 163.0, 155.8, 153.2, 152.3, 150.4, 149.1, 147.6, 134.7, 134.1, 127.08, 127.06, 125.7, 122.7, 122.3, 121.7, 121.5, 119.5, 119.1, 118.2, 117.7, 43.6. 35.5, 29.99, 29.92. 51V NMR (131.6 MHz, CDC13): 423.8 (01/2 = 2832 Hz). Elemental analysis: Exp. (Calc.), C: 47.74 (47.16); H: 4.82 (4.68); N: 8.01 (8.33). M.p.: 186-188 °C. 197 Synthesis of [V(NNMe2)(TlP)(Butbpy)][OSOZCF3] (51) _ _ Er) NMez But \_’ N11,,“\IN}.\\§ e But:\—.;N/ 1E0 [OTf] N I \s — —l Under an atmosphere of dry nitrogen, a filter flask (125 mL) was loaded with 3 (0.30 g, 0.65 mmol) and CH2C12 (30 mL). The filter flask was cooled inside a liquid nitrogen cooled cold well. To the suspension was added a cold solution of Butbpy (0.17 g, 0.66 mmol) in CH2C12 (10 mL) followed by a cold suspension of AgOTf (0.17 g, 0.65 mmol) in CH2C12 (5 mL). The reaction mixture was allowed to warm up to room temperature and stir overnight. The brown suspension gradually turned into a dark purple solution. The volatiles were removed in vacuo resulting in a dark purple solid. The solid was stirred in THF (25 mL) for 5 h. Agl separated as a grey solid, which was filtered away using a fritted funnel. The volatiles were removed in vacuo from the filtrate. The product was crystallized from 1:1 THszentane in 81% yield (0.31 g, 0.49 mmol). 1H NMR (299.8 MHz, CDCl3): 8.87 (d, 1 H, JHH = 8 Hz, bpy- CH), 8.80 (d, l H, JHH = 8 Hz, bpy-CH), 8.79 (s, 1 H, imine-CH), 7.96—6.84 (m, 12 H, bpy-CH and Ph-CH), 3.75 (s, 6 H, H3CN), 1.27 (S, 9 H, CCH3), 1.23 (s, 9 H, CCH3). 13C{'H} NMR (75.4 MHz, CDC13): 166.3, 166.0, 164.8, 163.2, 155.9, 153.1, 152.3, 150.6, 149.1, 1.47.6, 134.6, 134.3, 127.2, 125.6, 122.7, 122.3, 121.5, 119.9, 198 119.4. 118.4, 117.7, 43.6, 35.6, 30.1, 30.0. ”1? NMR (282.4 MHz, CDC13): 5 = —79.4. 51v NMR (131.6 MHz, CDC13): 423.6 (1)1/2 = 2046 Hz). Elemental analysis: Exp. (Calc.), C: 54.43 (54.18); H: 5.07 (5.22); N: 9.18 (9.29). M.p.: 178-180 °C. Crystal Structure Determination of [V(NNMe2)(TIP)(dmpe)]I (49): A red needle crystal with dimensions 0.28 X 0.12 X 0.10 mm was mounted on a Nylon loop using paratone oil. Data were collected using a Bruker CCD diffractometer equipped with an Oxford Cryostream low-temperature apparatus operating at 173 K. Data were measured using (0 and (11 scans of 0.5°/frame for 10 s. The total number of images was based on results from the program COSMO6O where redundancy was expected to be 4.0 and completeness of 100% out to 0.83 A. Cell parameters were retrieved using APEX 11 software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software. Scaling and absorption corrections were applied using SADABS multi-scan technique supplied by George Sheldrick. The structure was solved by the direct method using the SHELXS-97 program and refined by the least squares method on F2, SHELXL-97, incorporated in SHELXTL-PC V 6.10. The structure was solved in the space group Pbca. All non- hydrogen atoms are refined anisotropically. Hydrogens were calculated by geometrical methods and refined as a riding model. Crystal Data: C21H3IIN3OPZSV, M: 613.33, orthorhombic, a = 10.8685(2) A, b = 18.3385(3) A, c = 26.2108(5) A, U = 5224.13(16) A3, space group Pbca, Z = 8, 67170 reflections were collected, 6199 were unique (Rim = 0.0556) which were all used in calculations. The 199 final R1 = 0.0566 and wR(F2) = 0.0701 for all data. The final R] = 0.0325 and wR(F2) = 0.0627 for all data 1 > 26(1). 200 4.9 References 1\) 10. ll. 12. 13. 14. 15. 16. 17. 18. 19. Yandulov, D. V.; Schrock, R. R. Inorg. Chem. 2005, 44, 1103. Yandulov, D. V.; Schrock, R. R.; Rheingold, A. L.; Ceccarelli, C.; Davis, W. M. Inorg. Chem. 2003, 42, 796. Yandulov, D. V.; Schrock, R. R. Science 2003, 301, 76. Greco, G. E.; Schrock, R. R. Inorg. Chem. 2001, 40, 3861. Carrillo, D. Org. Organometallic Synth. 2000, 3, 175. Gouzerh, P.; Proust, A. Chem. Rev. 1998, 98, 77. Niemoth-Anderson, J. D.; Debord, J. R. D.; George, T. A.; Ross, C. R.; Stezowski, J. J. Polyhedron 1996, 15, 4031. Sutton, D. Chem. Rev. 1993, 93, 995. Einstein, F. W. B.; T., J.; Hanlan, A. J. L.; Sutton, D. Inorg. Chem. 1982, 21, 2585. Selby, J. D.; Manley, C. D.; Feliz, M.; Schwarz, A. D.; Clot, E.; Mountford, P. Chem. Commun. 2007, 4937. Patel, 8.; Li, Y.; Odom, A. L. Inorg. Chem. 2007, 46, 6373. Banerjee, S.; Odom, A. L. Organometallics 2006, 25, 3099. Parsons, T. B.; Hazari, N.; Cowley, A. R.; Green, J. C.; Mountford, P. Inorg. Chem. 2005, 44, 8442. Li, Y. H.; Shi, Y. H.; Odom, A. L. J. Am. Chem. Soc. 2004, 126, 1794. Thorrnan, J. L.; Woo, L. K. Inorg. Chem. 2000, 39, 1301. Blake, A. J .; Mclnnes, J. M.; Mountford, P.; Nikonov, G. 1.; Swallow, D.; Watkin, D. J. J. Chem. Soc, Dalton Trans. 1999, 379. Wiberg, N.; Haring, H. W.; Huttner, G.; Friedrich, P. Chem. Ber. 1978, 111, 2708. Herrmann, H.; Wadepohl, H.; Gade, L. H. Dalton Trans. 2008, 21 1 1. Herrmann, H.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Angew. Chem. Int. Ed. 2007, 46, 8426. 201 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. Walsh, P. J.; Carney, M. J.; Bergman, R. G. .1. Am. Chem. Soc. 1991, 113, 6343. Kettler, P. B.; Chang, Y.; Zubieta, J. Inorg. Chem. 1994, 33, 5864. Dilworth, J. R.; Jobanputra, P.; Parrott, S. J .; Thompson, R. M.; Povey, D. C.; Zubieta, J. A. Polyhedron 1992, 1 I, 147. Nicholson, T.; Lombardi, P.; Zubieta, J. Polyhedron 1987, 6, 1577. Dilworth, J. R.; Harrison, S. A.; Walton, D. R. M.; Schweda, E. Inorg. Chem. 1985, 24, 2594. El-Ansary, A. L.; Soliman, A. A.; Sherif, O. B.; Ezzat, J. A. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 2002, 32, 1301. Davies, S. C.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. Dalton Trans. 2002, 2811. Davies, S. C.; Hughes, D. L.; Janas, Z.; Jerzykiewicz, L. B.; Richards, R. L.; Sanders, J. R.; Silverston, J. B.; Sobota, P. Inorg. Chem. 2000, 39, 3485. Henderson, R. A.; Janas, Z.; Jerzykiewicz, L. B.; Richards, R. L.; Sobota, P. Inorg. Chim. Acta 1999, 285, 178. Kahlal, S.; Saillard, J. Y.; Hamon, J. R.; Manzur, C.; Carrillo, D. J. Chem. Soc., Dalton Trans. 1998, 1229. Davies, S. C.; Hughes, D. L.; Janas, Z.; Jerzykiewicz, L.; Richards, R. L.; Sanders, J. R.; Sobota, P. Chem. Commun. 1997, 1261. Bultitude, J .; Larkworthy, L. F.; Povey, D. C.; Smith, G. W.; Dilworth, J. R.; Leight, G. J. J. Chem. Soc., Chem. Commun. 1986, 1748. Veith, M. Angew. Chem. Int. Ed. 1976, 15, 387. Green, M. L. H.; James, J. T.; Chemega, A. N. J. Chem. Soc, Dalton Trans. 1997, 1719. Danopoulos, A. A.; Hay-Motherwell, R. S.; Wilkinson, G.; Sweet, T. K. N.; Hursthouse, M. B. Polyhedron 1997, I6, 1081. Huynh, M. H. V.; Lee, D. G.; White, P. S.; Meyer, T. J. Inorg. Chem. 2001, 40, 3842. Huynh, M. H. V.; El-Samanody, E. S.; Demadis, K. D.; White, P. S.; Meyer, T. J. Inorg. Chem. 2000, 39, 3075. 202 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. Coia, G. M.; Devenney, M.; White, P. S.; Meyer, T. J .; Wink, D. A. Inorg. Chem. 1997, 36, 2341. Xia, A. B.; Sharp, P. R. Inorg. Chem. 2001, 40, 4016. Ramamoorthy, V.; Wu, Z. D.; Yi, Y.; Sharp, P. R. J. Am. Chem. Soc. 1992, 114, 1526. Noth, H.; Sachdev, H.; Schmidt, M.; Schwenk, H. Chem. Ber. 1995, 128, 105. Roussel, P.; Boaretto, R.; Kingsley, A. J .; Alcock. N. W.; Scott, P. J. Chem. Soc., Dalton Trans. 2002, 1423. Nicholson, T.; Devries, N.; Davison, A.; Jones, A. G. Inorg. Chem. 1989, 28, 3813. Rees, D. C.; Chan, M. K.; Kim, J. Adv. Inorg. Chem. 1993, 40, 89. Eady, R. R. Chem. Rev. 1996, 96, 3013. Malinak, S. M.; Demadis, K. D.; Coucouvanis, D. J. Am. Chem. Soc. 1995, 117, 3126. Eady, R. R. Adv. Inorg. Chem. 1991, 36, 77. Richards, R. L. Coord. Chem. Rev. 1996, I54, 83. Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115. Eady, R. R. Polyhedron 1989, 8, 1695. Le Floch, C .; Henderson, R. A.; Hitchcock, P. B.; Hughes, D. L.; Janas, Z.; Richards, R. L.; Sobota, P.; Szafert, S. J. Chem. Soc., Dalton Trans. 1996, 2755. Preuss, F.; Noichl, H.; Kaub, J. Z. Naturforsch 1986, 4] B, 1085. Danopoulos, A. A.; Wilkinson, G.; Williams, D. J. J. Chem. Soc., Dalton Trans. 1994, 907. Mahy, J. P.; Battioni, P.; Mansuy, D.; Fisher, J .; Weiss, R.; Mispelter, J .; Morgenstembadarau, 1.; Gans, P. J. Am. Chem. Soc. 1984, 106, 1699. Kahlal, S.; Saillard, J. Y.; Hamon, J. R.; Manzur, C.; Carrillo, D. New J. Chem. 2001, 25, 231. DuBois, D. L.; Hoffmann, R. Nouv. J. Chim. 1977, 1, 479. 203 56. 57. 58. 59. 60. Kahlal, S.; Saillard, J. Y.; Hamon, J. R.; Manzur, C.; Carrillo, D. J. Chem. Soc., Dalton Trans. 1998, 1229. Nicholson, T.; Kramer, D. J .; Davison, A.; Jones, A. G. Inorg. Chim. Acta. 2003, 353, 177. Nicholson, T.; Hirsch-Kuchma, M.; Davison, A.; Jones, A. G. Inorg. Chim. Acta 1998, 271,191. Banerjee, S.; Odom, A. L. Dalton Trans. 2008, 2005. (a) COSMO V1.56, Software for the CCD Detector Systems for Determining Data Collection Parameters. Bruker Analytical X-ray Systems, Madison, WI (2006); (b) APEX2 V 1.2-0 Software for the CCD Detector System; Bruker Analytical X-ray Systems, Madison, WI (2006); (c) SAINT V 7.34 Software for the Integration of CCD Detector System Bruker Analytical X-ray Systems, Madison, WI (2001); (d) SADABS V2.10 Program for absorption corrections using Bruker-AXS CCD based on the method of Robert Blessing; Blessing, R.H. Acta Cryst. A51, 1995, 33-38; (e) SHELXTL 6.14 (PC-Version), Program library for Structure Solution and Molecular Graphics; Bruker Analytical X-ray Systems, Madison, WI (2000). 204 TlTANIUM-CATALYZED ADDITIONS OF SUBSTITUTED HYDRAZINES TO ALKYNES: CATALYST DESIGN, MECHANISTIC STUDIES, AND APPLICATIONS IN HETEROCYCLE SYNTHESIS VOLUME 11 By Sanj ukta Banerjee A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chemistry 2008 APPENDIX A Crystallographic information Table Al.1 Crystal data of Hzenp (4) Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected eyb011_0m C14 H22 N4 246.36 173(2) K 0.71073 A Triclinic P -1 a = 8.5225(2) A alpha: 109.2960(10)°. b = 9.2895(2) A beta= 104.2810(10)°. c = 9.5622(2) A gamma = 93.0310(10)°. 684.91(3) A3 2 1.195 Mg/m3 0.074 mm—1 268 0.23 x 0.20 x 0.18 mm3 2.35 to 27.49°. —10<=h<=11,—12<=k<=12,—12<=l<=12 9850 205 Independent reflections 3074 [R(int) = 0.023 7] Completeness to theta = 25.00° 99.8 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.9868 and 0.9833 Full-matrix least-squares on F 2 3074/0/165 Refinement method Data / restraints / parameters Goodness-of-fit on F2 1.060 R1 = 0.0446, wR2 = 0.1155 R1 = 0.0545, wR2 = 0.1223 Final R indices [I>23igma(l)] R indices (all data) Largest diff. peak and hole 0.274 and -0.209 e.A’3 Table A1.2 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for Hzenp. U(eq) is defined as one third of the trace of the orthogonalized Uil tensor x y 2 U(eq) N(I) 28(1) 2531(1) 5468(1) 27(1) N(2) 3391(1) 3502(1) 5086(1) 21(1) C(l) —1417(2) 1539(2) 4869(2) 32(1) C(2) -2009(2) 1334(2) 3349(2) 31(1) C(3) -874(2) 2229(2) 2997(2) 28(1) C(4) 375(2) 2964(2) 4327(2) 23(1) C(5) 1847(2) 4074(2) 4607(2) 26(1) C(6) 3536(2) 2092(2) 3887(2) 31(1) C(7) 4826(2) 4699(2) 5615(1) 24(1) N(3) 4296(1) 2663(1) 7863(1) 23(1) N(4) 1139(1) 3479(1) 8872(1) 22(1) C(8) 5483(2) 1730(2) 7740(2) 26(1) C(9) 5963(2) 1424(2) 9074(2) 27(1) 206 C(10) C(11) C(12) C(13) C(14) 5026(2) 4006(2) 2850(2) 508(2) 93(2) 2203(2) 2965(1) 4032(2) 2067(2) 4694(2) 10043(2) 9273(1) 9800(2) 9039(2) 9178(1) 25(1) 22(1) 24(1) 33(1) 25(1) Table Al.3 Bond lengths (A) and angles (°) for Hzenp N(1)-C(4) N(1)—C(l) N(1)-H(1) N(2)-C(6) N(2)-C(5) N(2)-C(7) C(1)-C(2) C(1)-H(1A) C(2)-C(3) C(2)-H(2) C(3)-C(4) C(3)-11(3) C(4)-C(5) C(5)-H(5A) C(5)-H(5B) C(6)-H(6A) C(6)-H(6B) C(6)-H(6C) C(7)-C(7)#1 C(7)-H(7A) 1.3692(17) 1.3703(18) 0.8800 1.4624(17) 1.4704(16) 1.4721(16) 1.360(2) 0.9500 1.414(2) 0.9500 1.3771(18) 0.9500 1.4916(18) 0.9900 0.9900 0.9800 0.9800 0.9800 1.541(2) 0.9900 207 C(7)-H(7B) N(3)-C(8) N(3)-C(1 1) N(3)-H(3A) N(4)-C(13) N(4)-C(12) N(4)-C(14) C(8)-C(9) C(3)-11(8) C(9)-C(10) C(9)-H(9) C(10)-C(1 1) C(10)-H00) C(1 1)-C(12) C(12)-H(12A) C(12)-H(12B) C(13)-H(13A) C(13)-H(13B) C(13)-H(13C) C(14)-C(14)#2 C(14)-H(14A) C(14)-H(14B) C(4)-N(1)-C(1) C(4)-N(1)-H(1) C(1)-N(1)-H(1) C(6)-N(2)-C(5) C(6)-N(2)-C(7) C(5)-N(2)-C(7) C(2)-C(1)-N(1) C(2)-C(1)-H(1A) 0.9900 1.3679(16) 1.3706(16) 0.8800 1 .4632(17) 1.4691(16) 1.4740(15) 1.3671(19) 0.9500 1.4158(19) 0.9500 1.3757(17) 0.9500 1.4920(17) 0.9900 0.9900 0.9800 0.9800 0.9800 1.536(2) 0.9900 0.9900 109.16(11) 125.4 125.4 111.37(11) 112.87(10) 112.3700) 108.78(13) 125.6 208 N(l)-C(1)-H(1A) C(1)-C(2)-C(3) C(ll-C(2)-H(2) C(3)-C(2l-H(2) C(4)-C(3)-C(2) C(4)-C(3)-H(3) C(2)-C(3)-H(3) N(ll-C(4)-C(3) N(ll-C(4)-C(5) C(3)-C(4)-C(5) N(2)-C(5)-C(4) N(2)-C(5)-H(5A) C(4)-C(5)-H(5A) N(2)-C(5)-H(5B) C(4)-C(5)-H(5B) H(5A)-C(5)-H(5B) N(2)-C(6)-H(6A) N(2)-C(6)-H(6B) H(6A)-C(6)-H(6B) N(2)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)—C(6)-H(6C) N(2)-C(7)-C(7)#1 N(2)-C(7)-H(7A) C(7)#1-C(7)—H(7A) N(2)-C(7)-H(7B) C(7)#l-C(7)-H(7B) H(7A)-C(7)—H(7B) C(8)-N(3)-C(1 1) C(8)-N(3)-H(3A) C(1 1)-N(3)-H(3A) 125.6 106.8503) 126.6 126.6 107.9302) 126.0 126.0 107.2802) 122.740 1) 129.9602) 1 12.8200) 109.0 109.0 109.0 109.0 107.8 109.5 109.5 109.5 109.5 109.5 109.5 115.970 3) 108.3 108.3 108.3 108.3 107.4 109.470 1) 125.3 125.3 209 C(13)-N(4)-C(12) 1 1 1.3700) C(13)-N(4)-C(14) 1 12.9600) C(12)-N(4)-C(14) 1 12.0600) C(9)-C(8)-N(3) 108.4602) C(9)-C(8)-H(8) 125.8 N(3)-C(8)-H(8) 125.8 C(8)-C(9)—C(10) 106.8602) C(8)-C(9)—H(9) 126.6 C(10)-C(9)-H(9) 126.6 C(1 1)-C(10)-C(9) 107.9402) C(1 1 )-C(10)-H(10) 126.0 C(9)-C(10)-H(10) 126.0 N(3)-C(11)-C(10) 107.2701) N(3)-C(11)-C(12) 122.5201) C(10)-C(1 1)-C(12) 130.0802) N(4)-C(12)-C(1 1) 113.3800) N(4)-C(12)-H(12A) 108.9 C(11)-C(12)-H(12A) 108.9 N(4)-C(12)-H(IZB) 108.9 C(11)-C(12)-H0213) 108.9 H(12A)-C(12)-H023) 107.7 N(4)-C(13)-H(13A) 109.5 N(4)-C(13)-H(13B) 109.5 H(I3A)-C(13)-H(13B) 109.5 N(4)-C(13)-H(13C) 109.5 H(l3A)—C(13)—H(13C) 109.5 H(13B)-C(l3)—H(13C) 109.5 N(4)-C(14)-C(14)#2 1 16.1203) N(4)-C(14)-H(14A) 108.3 C(14)#2-C(14)-H(14A) 108.3 N(4)-C(14)-H(14B) 108.3 210 C(14)#2-C(l4)-H(14B) 108.3 H(14A)-C(14)-H(14B) 107.4 Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+l,-z+1 #2 -x,-y+1,-z+2 Table Al.4 Anisotropic displacement parameters (A2 X 103)for Hzenp. The anisotropic displacement factor exponent takes the form: -2 pi2 [ h2a*2 U11 + + 2 h k a* b* U12 ] ull u22 u33 u23 ul3 ul2 N(l) 21(1) 34(1) 24(1) 9(1) 6(1) 0(1) N(2) 18(1) 22(1) 24(1) 8(1) 7(1) 1(1) C(1) 24(1) 37(1) 37(1) 14(1) 13(1) -2(1) C(2) 23(1) 31(1) 33(1) 4(1) 7(1) -2(1) C(3) 25(1) 32(1) 25(1) 8(1) 8(1) 3(1) C(4) 20(1) 24(1) 26(1) 9(1) 9(1) 5(1) C(5) 22(1) 24(1) 34(1) 12(1) 9(1) 4(1) C(6) 31(1) 25(1) 38(1) 7(1) 17(1) 4(1) C(7) 21(1) 30(1) 21(1) 10(1) 4(1) -3(1) N(3) 21(1) 27(1) 26(1) 13(1) 9(1) 6(1) N(4) 19(1) 23(1) 23(1) 7(1) 8(1) 6(1) C(8) 21(1) 29(1) 32(1) 9(1) 13(1) 6(1) C(9) 21(1) 27(1) 35(1) 12(1) 8(1) 6(1) C(10) 23(1) 29(1) 26(1) 12(1) 7(1) 4(1) C(11) 18(1) 23(1) 24(1) 6(1) 7(1) 2(1) C(12) 20(1) 26(1) 25(1) 4(1) 7(1) 4(1) C(13) 30(1) 28(1) 44(1) 10(1) 19(1) 5(1) C(14) 25(1) 32(1) 23(1) 10(1) 10(1) 13(1) 211 Table Al.5 Hydrogen coordinates (>< 104) and isotropic displacement parameters (A2 X 103) for Hzenp x y z U(eq) H( 1) 636 2841 6432 32 H(IA) -1923 1072 5425 38 H(2) 2995 708 2656 37 H(3) -957 2309 2017 33 H(SA) 1805 4285 3650 31 H(SB) 1822 5059 5418 31 H(6A) 2697 1259 3757 46 H(6B) 4624 1802 41 90 46 H(6C) 3386 2272 2912 46 H(7A) 5 803 4281 6039 29 H(7B) 4675 5584 6471 29 H(3A) 3797 3015 7148 28 H(8) 5902 1358 6874 32 H(9) 6772 807 9306 33 H(10) 5090 2200 I 1048 30 H(12A) 2926 4176 10889 29 H(I2B) 3188 5050 9759 29 H(13A) 689 2233 10137 49 H(13B) 1080 1225 8580 49 H(13C) -667 1797 8513 49 H(14A) -1011 4287 8446 30 H(14B) 543 5572 8955 30 Table Al.6 Torsion angles (°) for Hzenp C(4)-N(1)-C(1)-C(2) N(1)-C(1)-C(2)-C(3) C(1)-C(2)-C(3)-C(4) C(1)-N(1)-C(4)-C(3) C(1)-N(1)-C(4)-C(5) C(2)-C(3)-C(4)-N(1) C(2)-C(3)-C(4)-C(5) C(6)-N(2)-C(5)-C(4) C(7)-N(2l-C(5)-C(4) N(l)-C(4)-C(5)—N(2) C(3)-C(4)-C(5)—N(2) C(6)-N(2)-C(7)-C(7)#1 C(5)-N(2)-C(7)-C(7)#1 C(1 1)-N(3)-C(8)-C(9) N(3)-C(8)—C(9)-C(10) C(8)-C(9)-C(10)-C(1 1) C(8)-N(3)-C(1 1)-C(10) C(8)-N(3)-C(1 1)-C(12) C(9)-C(10)-C(1 1)-N(3) C(9)-C(10)-C(1 1 )-C(12) C(13)-N(4)—C(12)-C(1 1) C(14)-N(4)-C(12)-C(1 1) N(3)-C(1 1)-C(12)-N(4) C(10)-C(1 1)-C(12)-N(4) C(13)-N(4)-C(14)-C(14)#2 C(12)-N(4)-C(14)-C(14)#2 —0.24(16) 0.4106) —0.42(16) —0.03(15) 1783702) 0.2805) —177.96(12) 62.0804) —170.17(10) 63.4206) —118.58(15) 61.9808) —64.97(18) 0.0405) 0.1005) -0.2005) —0.1705) 176.0201) 023(15) —175.57(13) 65.5104) -166.86(10) 65.2606) —119.50(15) 62.8909) —63.89(19) Table Al.7 Hydrogen bonds (A) angles (°) for Hzenp D-H...A d(D-H) d(H...A) d(D...A) <(DHA) N(1)-H(1)...N(4) 0.88 2.13 2.960605) 156.7 N(3)-H(3A)...N(2) 0.88 2.12 2.945005) 156.6 214 Table A2.1 Crystal data for Ti(bap)(NMe2)3 (28) Identification code Empirical formula Formula weight Temperature Wavelength Crystal system, Space group Unit cell dimensions Volume Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 23.28 Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) Largest diff. peak and hole sbllt C16 H36 N6 Ti 360.41 446(2) K 0.71073 A Monoclinic, P2(1)/c a = 9.3023(11) A alpha = 90° b = 11.190704) A beta = 93.075(3)° c = 19.610(2) A gamma = 90° 2038.4(4) A3 4, 1.174 Mg/m3 0.429 mm-1 784 0.32 x 0.68 x 0.71 mm 2.08 to 23.28 deg. —10<=h<=10, —12<=k<=12, —21<=1<=21 17217 / 2937 [R(int) = 0.0782] 99.9 % None Full-matrix least-squares on F3 2937 / 0 / 208 1.049 R1 = 0.0592, wR2 = 0.1566 R1 = 0.0894, wR2 = 0.1718 0.543 and —0.474 e.A-3 215 Table A2.2 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for Ti(bap)(NMe2)3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor x y Z U(CQ) Ti 2808(1) 8439(1) 8492(1) 23(1) N( 1) 2428(4) 673 7(3) 8030(2) 26(1) C(32) 1536(7) 8458(6) 9865(3) 56(2) C(11) 1968(5) 6683(4) 7352(2) 25(1) N(l 1) 2325(4) 8824(4) 7363(2) 26(1) N(4) 3007(4) 10153(4) 8674(2) 32(1) N(2) 4745(4) 8088(4) 8808(2) 29(1) N(14) 2153(4) 5233(4) 9445(2) 29(1) C(14) 2714(5) 5581(4) 8231(2) 25(1) C(141) 3269(5) 5291(5) 8942(2) 30(1) N(3) 1393(4) 8229(4) 9142(2) 33(1) C(1 13) 3762(5) 8843(5) 7073(3) 34(1) C(1 12) 1599(6) 9984(5) 7204(3) 36(1) C(22) 5461 (6) 8570(5) 9424(3) 52(2) C(1] 1) 1465(5) 7831(4) 7041(2) 32(1) C(13) 2464(5) 4824(5) 7686(3) 33(1) C(42) 1845(6) 10916(5) 8875(3) 47(2) C(142) 1286(6) 4171(5) 9336(3) 47(2) C(41) 4254(6) 10880(5) 853 8(3) 46(2) C(143) 2839(7) 5214(6) 10128(3) 54(2) C(12) 1980(5) 5530(5) 7120(3) 34(1) C(31) 1 1(6) 7685(5) 8942(3) 47(2) C(21) 5739(5) 7353(5) 8442(3) 33(1) 216 Table A2.3 Bond lengths (A) and angles (°) for Ti(bap)(NMe2)3 Ti-N(3) 1.894(4) Ti-N(2) 1.915(4) Ti-N(4) 1.958(4) Ti-N(1) 2.131(4) Ti-N(11) 2.277(4) N(l)-C(l4) 1.374(6) N(l)-C(11) 1.375(6) C(32)—N(3) 1.440(7) C(11)-C(12) 1.368(7) C(11)-C(1 11) 1.487(7) N(l l)-C(1 13) 1.480(6) N(11)-C(1 12) 1.488(6) N(l 1 )-C(1 1 1) 1.490(6) N(4)-C(42) 1.448(7) N(4)-C(41) 1.454(7) N(2)-C(22) 1.452(6) N(2)-C(21) 1.455(6) N(l4)—C(142) 1.445(6) N(14)-C(143) 1.451(6) N(14)-C(14l) 1.471(6) C(14)-C(13) 1.373(7) C(14)-C(141) 1.497(7) N(3)-C(31) 1.457(7) C(13)-C(12) 1.415(7) N(3)-Ti-N(2) 1 15.6608) N(3)-Ti-N(4) 93.5207) N(2)-Ti-N(4) 93.6507) N(3)-Ti-N(1) 94.0106) 217 N(2)-Ti-N(l) 94.9506) N(4)-Ti-N(1) 164.8106) N(3)-Ti-N(11) 124.730 7) N(2)—Ti-N(1 1) 119.080 6) N(4)-Ti-N(11) 90.1906) N(1)-Ti-N(1 1) 74.6804) C(14)-N(l)-C(1 1) 106.3(4) C(14)-N(1)—Ti 134.0(3) C(1 1)-N(1)-Ti 119.1(3) C(12)-C(1 1)-N(1) 110.8(4) C(12)-C(11)-C(111) 133.3(4) N(1)-C(11)-C(111) 115.6(4) C(113)-N(l 1)-C(112) 108.4(4) C(113)-N(11)-C(111) 108.9(4) C(1 12)-N(11)-C(111) 109.5(4) C(1 13)-N(1 1)-Ti 104.0(3) C(1 12)-N(1 1)-Ti 115.6(3) C(111)-N(11)-Ti 110.1(3) C(42)-N(4)-C(41) 109.5(4) C(42)-N(4)-Ti 124.2(3) C(41)—N(4)-Ti 125.7(3) C(22)-N(2)-C(21) 1 10.2(4) C(22)-N(2)-Ti 125.1(3) C(21)-N(2)—Ti 124.6(3) C(142)-N(14)-C(143) 109.8(4) C(142)-N(14)-C(141) 110.1(4) C(143)-N(14)-C(l4l) 109.1(4) C(13)-C(14)-N(l) 109.6(4) C(13)-C(14)-C(141) 128.8(5) N(1)-C(14)-C(141) 121.5(4) N(14)-C(141)-C(14) 114.4(4) C(32)-N(3)-C(31) 1 1 1.8(4) C(32)-N(3)-Ti 127.6(4) C(31)-N(3)-Ti 120.4(3) C(11)-C(111)-N(11) 108.7(4) C(14)-C(13)-C(12) 107.4(5) C(11)-C(12)-C(13) 105.9(4) Table A2.4 Anisotropic displacement parameters (A2 X 103) for Ti(bap)(NMe2)3. The anisotropic displacement factor exponent takes the form: —2 pi2 [ h2 a"‘2 U11 + + 2 h k a* bat: U12 ] 1111 1122 1133 1123 1113 1112 Ti 24(1) 26(1) 21(1) 0(1) 3(1) 1(1) N(l) 23(2) 31(3) 25(2) 1(2) 1(2) -1(2) C(32) 62(4) 67(4) 41(4) -6(3) 21(3) -3(4) C(11) 21(3) 37(3) 18(3) 2(2) 1(2) -2(2) N(l 1) 24(2) 30(2) 25(2) 4(2) 1(2) -1(2) N(4) 32(2) 26(2) 36(2) 0(2) 6(2) -2(2) N(2) 27(2) 32(2) 26(2) -4(2) -3(2) 0(2) N(14) 35(2) 27(2) 25(2) 5(2) —3(2) 1(2) C(14) 20(3) 28(3) 27(3) 0(2) 1(2) 0(2) C041) 25(3) 31(3) 34(3) 5(2) -1(2) 1(2) N(3) 34(3) 30(2) 35(3) 0(2) 1 1(2) 1(2) C013) 29(3) 43(3) 31(3) 6(2) 5(2) 1(2) C012) 36(3) 40(3) 32(3) 9(3) 1(2) 7(3) C(22) 51(4) 52(4) 50(4) -16(3) -16(3) 7(3) C011) 28(3) 41(3) 26(3) 1(2) —2(2) -3(2) C(13) 29(3) 32(3) 38(3) -7(3) 7(2) -1(2) 219 C(42) C(142) C(41) C(143) C(12) C(31) C(21) 51(4) 50(4) 55(4) 56(4) 33(3) 34(3) 27(3) 35(3) 44(4) 38(3) 73(5) 43(3) 56(4) 40(3) 54(4) 48(4) 46(4) 32(3) 24(3) 51(4) 33(3) -4(3) 3(3) 2(3) 5(3) -9(3) 1 1(3) 4(3) -1(3) 5(3) 2(3) -2(3) 4(2) 13(3) 3(2) 12(3) -16(3) -11(3) 1(3) -5(3) 7(3) 3(2) Table A2.5 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 220 103) for Ti(bap)(NMe2)3 x y z U(eq) H(32A) 646 8272 10068 84 H(3213) 1765 9285 9941 84 H(32C) 2291 7969 10068 84 H(14A) 3762 4527 8936 36 H(14B) 971 5891 9089 36 H0 1A) 3656 9003 6592 51 H0 113) 4222 8083 7146 51 H(l 1C) 4340 9458 7292 51 H(l 11)) 1440 10064 6719 54 H(l 1E) 2196 10628 7376 54 H0 1F) 692 10007 7415 54 H(22A) 6426 8265 9471 78 H(22B) 4943 8338 9813 78 H(22C) 5488 9426 9395 78 H(l 1(1) 452 7947 7115 38 H01H) 1586 7818 6553 38 1u13A) IK42A) FK4ZB) H(42C) EH14C) rK14E» 1K14E) 1H41A) FK41B) EH41C) IK14F) hul4cn PK14PD H(12A) 1H31A) FK3IB) EH31c» 1H21A) 1K21B) PKZIC) 2590 2194 1492 1081 558 1888 838 4083 4417 5084 2115 3397 3457 1723 -572 I65 -469 6645 5880 5347 4000 11718 10631 10904 4145 3476 4187 11691 10856 10575 5173 5929 4530 5265 7648 6892 8157 7309 7701 6564 7688 8935 9296 8526 9664 9387 8883 8672 8059 8792 10458 10201 10176 6681 9331 8774 8590 8699 8003 8382 39 70 70 70 71 71 71 69 69 69 81 81 40 70 70 70 50 50 50 1x) Ix) Table A3.1 Crystal data for Ti(NNMe2)(dap)(nacnac) (36) Identification code Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions Volume Z, Calculated density Absorption coefficient F(000) Crystal size Theta range for data collection Limiting indices Reflections collected / unique Completeness to theta = 23.33 Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F 2 Final R indices [I>23igma(l)] R indices (all data) Extinction coefficient Largest diff. peak and hole sb2t C22 H43 N7 Ti 453.53 446(2) K 0.71073 A Monoclinic, P2(1)/c a = 9.1796(14) A alpha = 90 deg. b = 19.161(3) A beta = 102.598(3) deg. c = 15.043(2) A gamma = 90 deg. 2582.3(7) A3 4, 1.167 Mg/m3 0.353 mm‘1 984 0.42 X 0.45 X 0.54 mm 1.75 to 23.33 deg. -10<=h<=10, -21<=k<=21, —16<=1<=16 22066 / 3737 [R(int) = 0.1467] 99.7 % Empirical 0.2484 and 0.1016 Full-matrix least-squares on F2 3737 / 0 / 272 1.012 R1 = 0.0436, wR2 = 0.1040 R1 = 0.0742, wR2 = 0.1300 0.019908) 0.414 and —0.398 e. A-3 Table A3.2 Atomic coordinates ( X 104) and equivalent isotropic displacement parameters (A2 X 103) for Ti(NNMe2)(dap)(nacnac). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor x y z U(eq) Ti 1167(1) 6109(1) 2069(1) 28(1) N(l) 2126(3) 5174(1) 1708(2) 34(1) N(2) 2461(3) 6550(1) 2859(2) 34(1) N(3) -37(3) 5533(1) 2834(2) 28(1) N(4) -799(3) 663 8(1) 1609(2) 30(1) N(ll) 2128(3) 6396(1) 810(2) 35(1) N(21) 3629(3) 6791(2) 3555(2) 46(1) N(31) 190(3) 5362(1) 3798(2) 33(1) C(1) -4943(4) 4169(2) 3948(2) 54(1) C(2) -3660(4) 4044(2) 3488(2) 40(1) C(3) -3147(3) 4699(2) 3081(2) 31(1) C(4) -1852(3) 4551(2) 2624(2) 32(1) C(5) -1 159(3) 5192(2) 2302(2) 28(1) C(6) -1758(3) 5459(2) 1420(2) 32(1) C(7) -1735(4) 6153(2) 1173(2) 34(1) C(1 1) 1996(4) 4468(2) 1831(2) 38(1) C(12) 2941(4) 4103(2) 1417(2) 44(1) C(13) 3704(4) 4601(2) 998(2) 43(1) C(14) 3180(3) 5241(2) 1187(2) 35(1) C(15) 3513(4) 5970(2) 943(2) 41(1) C(40) -1380(4) 7375(2) 1557(2) 39(1) C(41) -177(4) 7825(2) 2134(3) 52(1) C(42) -2759(4) 7392(2) 1976(3) 54(1) C(43) -1777(5) 7647(2) 579(3) 61(1) C(1 1 1) 1083(4) 6180(2) -44(2) 47(1) C(112) 2518(4) 7140(2) 736(3) 50(1) C(211) C(212) C(311) C(312) 4977(4) 3912(4) 1708(4) -41(4) 6364(2) 7525(2) 5106(2) 6007(2) 3606(3) 3475(3) 4120(2) 4266(2) 52(1) 55(1) 47(1) 49(1) Ti-N(2) Ti-N(4) Ti-N(3) Ti-N(1) Ti-N(1 1) Ti-C(7) N(1)-C(1 1) N(l)-C(l4) N(2)-N(21) N(3)-C(5) N(3)-N(31) N(4)-C(7) N(4)-C(40) N(11)-C(112) N(ll)-C(111) N(l 1)-C(15) N(21)-C(212) N(21)-C(21 1) N(31)-C(31 1) N(31)-C(312) C(1)-C(2) 1.709(3) 2.055(3) 2.077(2) 2.1 19(3) 2.323(3) 2.713(3) 1.373(4) 1.377(4) 1.403(4) 1.330(4) 1.457(3) 1.337(4) 1.504(4) 1.480(4) 1.485(4) 1.487(4) 1.440(4) 1.471(4) 1.457(4) 1.460(4) 1.510(4) 224 Table A3.3 Bond lengths (A) and angles (°) for Ti(NNMe2)(dap)(nacnac) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(5)-C(6) C(6)-C(7) C(1 1)-C(12) C(12)-C(13) C(13)-C(14) C(14)-C(15) C(40)-C(41) C(40)-C(43) C(40)-C(42) N(2)-Ti-N(4) N(2)-Ti-N(3) N(4)-Ti-N(3) N(2)-Ti-N(1) N(4)-Ti-N(1) N(3)-Ti-N(1) N(2)-Ti-N(1 1) N(4)-Ti-N(1 1) N(3)-Ti-N(1 1) N(1)-Ti-N(1 1) N(2)-Ti-C(7) N(4)-Ti-C(7) N(3)-Ti-C(7) N(1)-Ti-C(7) N(l l)-Ti-C(7) C(11)-N(1)-C(14) C(1 1)-N(1)-Ti C(14)-N(1)-Ti 1.516(4) 1.524(4) 1.510(4) 1.418(4) 1.382(4) 1.366(4) 1.41 1(5) 1.370(4) 1.493(4) 1.516(5) 1.529(5) 1.533(5) 1 14.6102) 104.5101) 85.0800) 109.3801) 135.6100) 89.65(10) 96.89(11) 94.0200) 156.8600) 74.8300) 142.0401) 2853(9) 73.0500) 108.4800) 9536(9) 105.2(3) 138.1(2) 1 16.7(2) N(21)-N(2)—Ti 169.6(2) C(5)-N(3)-N(31) 1 14.3(2) C(5)-N(3)-Ti 11 1.3509) N(31)-N(3)-Ti 133.8609) C(7)-N(4)-C(40) 1 16.4(3) C(7)-N(4)-Ti 104.2(2) C(40)-N(4)-Ti 139.1(2) C(112)-N(11)-C(111) 109.0(3) C(112)-N(1 l)-C(15) 108.9(3) C(1] 1)-N(1 1)-C(15) 109.6(2) C(112)-N(11)-Ti 115.5109) C(111)—N(11)-Ti 110.5509) C(15)-N(11)-Ti 103.050 8) N(2)-N(21)-C(212) 112.4(3) N(2)-N(21)-C(21 1) 110.7(3) C(212)-N(21)-C(21 1) 1 12.5(3) N(3)-N(31)-C(31 1) 109.0(2) N(3)-N(3l)-C(312) 106.6(2) C(311)-N(31)-C(312) 110.7(3) C(1)-C(2)-C(3) 113.3(3) C(2)-C(3)-C(4) 1 1 1.7(3) C(5)-C(4)-C(3) 1 14.8(2) N(3)-C(5)-C(6) 1 18.5(3) N(3)-C(5)-C(4) 122.1(3) C(6)-C(5)-C(4) 1 19.3(3) C(7)-C(6)-C(5) 125.0(3) N(4)-C(7)-C(6) 125.6(3) N(4)-C(7)-Ti 47.2405) C(6)-C(7)-Ti 84.6709) C(12)-C(11)-N(1) 111.1(3) C(11)-C(12)-C(13) 106.5(3) 226 C(14)-C(13)-C(12) C(13)-C(14)-N(1) C(13)-C(14)-C(15) N(l)-C(l4)-C(15) N(l 1)-C(15)-C(14) N(4)-C(40)-C(41) N(4)-C(40)-C(43) C(41)-C(40)-C(43) N(4)-C(40)-C(42) C(41)-C(40)-C(42) C(43)-C(40)-C(42) 106.3(3) 110.9(3) 133.4(3) 115.8(3) 109.4(3) 107.4(3) 112.2(3) 110.3(3) 108.3(3) 108.4(3) 110.1(3) Table A3.4 Anisotropic displacement parameters (A2 X 103) for Ti(NNMe2)(dap) (nacnac). The anisotropic displacement factor exponent takes the form: —2pi2[h2a*21111+...+2hka*b*1112] 1111 1122 U33 U23 1113 1112 Ti 29(1) 31(1) 25(1) -10) 7(1) -10) N(l) 34(2) 37(2) 32(2) 0(1) 7(1) 1(1) N(2) 31(2) 36(2) 33(2) -3(1) 6(1) -50) N(3) 29(2) 31(2) 23(2) 1(1) 4(1) 0(1) N(4) 32(2) 29(2) 31(2) 2(1) 8(1) -30) N(ll) 37(2) 40(2) 30(2) -10) 12(1) -20) N(21) 40(2) 53(2) 43(2) -9(2) 2(2) -10(2) N(31) 33(2) 46(2) 20(2) 4(1) 6(1) 2(1) C(1) 44(2) 75(3) 44(2) 4(2) 14(2) -17(2) C(2) 39(2) 43(2) 40(2) -1(2) 10(2) -7(2) C(3) 29(2) 35(2) 28(2) 0(2) 1(2) 2(1) C(4) 36(2) 28(2) 33(2) -3(2) 7(2) -1(2) C(5) C(6) C(7) C(11) C(12) C(13) C(14) C(15) C(40) C(41) C(42) C(43) C011) C012) C(211) C(212) C(311) C(312) 28(2) 37(2) 35(2) 45(2) 52(2) 35(2) 27(2) 37(2) 36(2) 47(2) 43(2) 65(3) 55(2) 64(3) 36(2) 61(3) 37(2) 61(3) 30(2) 33(2) 41(2) 37(2) 40(2) 61(2) 50(2) 55(2) 29(2) 31(2) 41(2) 49(2) 57(2) 45(2) 68(3) 49(2) 69(3) 56(2) 28(2) 23(2) 24(2) 31(2) 35(2) 30(2) 29(2) 34(2) 52(2) 81(3) 82(3) 68(3) 30(2) 50(2) 50(2) 52(3) 31(2) 30(2) 412) -4(2) 5(2) 0(2) -7(2) -9(2) -6(2) -6(2) 7(2) -9(2) 2(2) 22(2) 1(2) 2(2) 0(2) 44(2) 15(2) -9(2) 1 1(2) 2(2) 4(2) 5(2) -1(2) 4(2) 4(2) 17(2) 1 1(2) 21(2) 24(2) 12(2) 13(2) 32(2) 3(2) 6(2) 2(2) 15(2) 3(1) 4(2) 1(2) 3(2) 12(2) 13(2) 2(2) -6(2) 3(2) -2(2) 2(2) 10(2) -1 (2) -10(2) -5(2) 44(2) 1(2) -7(2) Table A3.5 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for Ti(NNMe2)(dap)(nacnac) x y z U(eq) H(1A) -5217 3737 4191 81 H03) -5781 4350 3513 81 H(lC) -4646 4500 4434 81 H(2A) -3961 3701 3009 48 H(2B) -2827 3851 3929 48 FK3A0 FK3B) 1H4A0 EK4B) EH6A) 1H7A) FKIIAJ rule) 1H13A) 1H1sA) 1H1SB) 1H41A) EK4IB) 1u41c» 1H4zA) H(42B) H(42C) H(43A) H(43B) H(43C) EKIIB) 1x111» 11(111» PKIIE) PKIIF) PK11CD 1H21A) FKZIB) 1H21c» PKZIED PKZIE) -2840 -3974 -1085 -2203 -2201 -2431 1350 3058 4421 4274 3887 696 70 -535 -2498 -3527 -3114 -907 -2130 -2543 1496 144 934 2903 3262 1643 4735 5725 5352 3004 4274 5043 4893 4301 4248 5143 6295 4266 3621 4513 6171 5969 7820 7646 8295 7221 7104 7863 7635 8119 7360 6302 6413 5684 7208 7273 7422 5881 6501 6432 7781 7607 229 38 38 39 39 38 41 46 53 51 49 49 78 78 78 81 81 81 92 92 92 70 70 70 76 76 76 78 78 78 83 83 H(21F) H(31A) H(31B) H(31C) H(3 1 D) H(31E) H(3 1 F) 4647 1839 1882 2403 -1046 645 125 7676 4684 5015 5452 6167 6356 5921 3995 3804 4762 4006 4046 4152 4909 83 70 70 70 73 73 73 230 Table A4.1 Crystal data for Ti2(dap)3(NNMe2)2(NHNMe2) (37) Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.00° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) sbfinal C28 H54 C12 N12 Tiz 725.53 173(2) K 0.71073 A Monoclinic P 21/n a=11.9144(3)A a= 90°. b = 9.9855(3) A b= 93.951(2)°. c = 30.2370(9) A g = 90°. 35887808) A3 4 1.343 Mg/m3 0.632 mm-1 1536 0.26 x 0.18 x014 mm3 1.80 to 25.39°. -14<=h<=14, -9<=k<=12, —36<=l<=36 42331 6579 [R(int) = 0.0376] 100.0 % Semi-empirical from equivalents 0.9162 and 0.8530 Full-matrix least-squares on F2 6579 / 0 / 409 1.031 R1 = 0.0334, wR2 = 0.0782 R1 = 0.0449, wR2 = 0.0840 231 Largest diff. peak and hole 0.508 and -0.489 e.A"3 Table A4.2 Atomic coordinates ( X 104) and equivalent isotropic displacement parameters (A2 X 103) for sbfinal. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor x y z U(eq) Ti(l) 10152(1) 2884(1) 1459(1) 17(1) Ti(2) 8010(1) 1758(1) 1306(1) 17(1) N(l) 11129(1) 1347(2) 1222(1) 22(1) N(2) 11578(1) 2361(2) 2052(1) 24(1) N(3) 10214(l) 4753(2) 1774(1) 21(1) N(4) 1 1292(1) 4449(2) 1010(1) 26(1) N(5) 9179(1) 1957(2) 1795(1) 18(1) N(6) 8354(1) 1249(2) 2008(1) 21(1) N(7) 9058(1) 2918(2) 993(1) 19(1) N(8) 8192(1) 2771(2) 658(1) 22(1) N(9) 6943(1) 3341(2) 1476(1) 22(1) N(10) 6151(1) 884(2) 1242(1) 25(1) N(l 1) 8472(1) 27(2) 1070(1) 23(1) N(12) 8059(2) -1217(2) 886(1) 27(1) C(29) 1 1292(2) 842(2) 808(1) 30(1) C(30) 12077(2) -159(2) 836(1) 38(1) C(31) 12433(2) -301(2) 1289(1) 36(1) C(32) 11836(2) 619(2) 1514(1) 25(1) C(33) 1 1779(2) 908(2) 1993(1) 28(1) C(34) 11216(2) 2607(3) 2503(1) 33(1) C(35) l2647(2) 3083(2) 201 1(1) 32(1) 232 C(36) C(37) C(38) C(39) C(40) C(41) C(42) C(43) C(44) C(45) C(46) C(47) C(48) C(49) C(50) C(51) C(52) C(53) C(54) C(55) C10) C1(2) C(56) 9647(2) 9972(2) 10789(2) 10919(2) 1 1724(2) 10494(2) 12243(2) 7881(2) 8745(2) 8561(2) 7619(2) 7136(2) 6144(2) 5281(2) 5795(2) 5379(2) 5811(2) 6016(2) 8429(2) 8490(2) 4135(1) 5747(1) 5460(2) 5248(2) 6536(2) 6879(2) 5779(2) 5527(2) 5066(2) 3907(3) 2013(2) -88(2) 2056(2) 4028(2) 4689(2) 5362(2) 4393(2) 3182(2) 1781(2) 863(3) -478(2) 4413(3) 2309(2) 7291(1) 6659(1) 6622(3) 2120(1) 2220(1) 1922(1) 1661(1) 1314(1) 678(1) 774(1) 2368(1) 2162(1) 266(1) 514(1) 1540(1) 1566(1) 1520(1) 1468(1) 1471(1) 763(1) 1425(1) 440(1) 1170(1) 631(1) -190) 539(1) 23(1) 26(1) 26(1) 22(1) 27(1) 36(1) 40(1) 29(1) 29(1) 32(1) 29(1) 23(1) 28(1) 35(1) 27(1) 34(1) 37(1) 34(1) 42(1) 42(1) 55(1) 66(1) 52(1) Table A4.3 Bond lengths (A) and angles (°) for T12(dap)3(NNMe2)2(NHNMe2) Ti(l )-N(5) 1.84250 5) Ti(1)-N(7) 1.851606) Ti(1)-N(1) 2.083306) 233 Ti(l)-N(3) Ti(1)-N(2) Ti(1)-N(4) Ti(1)-Ti(2) Ti(2)-N(l 1) Ti(2)-N(5) Ti(2)-N(7) Ti(2)-N(9) Ti(2)-N(6) Ti(2)-N(8) Ti(2)-N(10) N(1)-C(29) N(l)-C(32) N(2)-C(35) N(2)-C(34) N(2)-C(33) N(3)-C(36) N(3)-C(39) N(4)-C(41) N(4)-C(42) N(4)-C(40) N(5)-N(6) N(6)-C(43) N(6)-C(44) N(7)-N(8) N(8)-C(45) N(8)-C(46) N(9)-C(50) N(9)-C(47) N(10)-C(52) N(10)-C(53) 2.093607) 2.439907) 2.5259(17) 2.7971(5) 1.9631(17) 1.970706) 1.988806) 2.1 1500 7) 2.193707) 2.228607) 2.376807) 1.376(3) 1.382(3) 1.477(3) 1.480(3) 1.483(3) 1.376(2) 1.383(3) 1.472(3) 1.483(3) 1.484(3) 1.402(2) 1.475(3) 1.479(3) 1.404(2) 1.475(3) 1.480(3) 1.375(3) 1.377(3) 1.479(3) 1.481(3) 234 N(10)-C(51) N(l 1)-N(12) N(11)-H(1 1) N(12)-C(55) N(12)-C(54) C(29)-C(30) C(29)-H(29) C(30)-C(31) C(30)-H(30) C(31)-C(32) C(31)-H(31) C(32)-C(33) C(33)-H(33A) C(33)-H(33B) C(34)-H(34A) C(34)-H(34B) C(34)-H(34C) C(35)-H(35A) C(35)-H(3SB) C(35)-H(35C) C(36)-C(37) C(36)-H(36) C(37)-C(38) C(37)-H(37) C(38)-C(39) C(38)-H(38) C(39)-C(40) C(40)-H(40A) C(40)-H(4OB) C(41)-H(41A) C(41)-H(4IB) 1.488(3) 1.434(2) 0.8800 1.458(3) 1.461(3) 1.367(3) 0.9500 1.414(3) 0.9500 1.371(3) 0.9500 1.485(3) 0.9900 0.9900 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.370(3) 0.9500 1.414(3) 0.9500 1.367(3) 0.9500 1.491(3) 0.9900 0.9900 0.9800 0.9800 235 C(41)-H(41C) C(42)-H(42A) C(42)-H(4ZB) C(42)-H(42C) C(43)-H(43A) C(43)-H(43B) C(43)-H(43C) C(44)-H(44A) C(44)-H(44B) C(44)-H(44C) C(45)-H(45A) C(45)-H(45B) C(45)-H(45C) C(46)-H(46A) C(46)-H(46B) C(46)-H(46C) C(47)-C(48) C(47)-H(47) C(48)-C(49) C(48)-H(48) C(49)-C(50) C(49)-H(49) C(50)-C(51) C(51)-H(51A) C(51)-H(51B) C(52)-H(52A) C(52)-H(SZB) C(52)-H(52C) C(53)-H(53A) C(53)-H(53B) C(53)-H(53C) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.367(3) 0.9500 1.412(3) 0.9500 1.369(3) 0.9500 1.485(3) 0.9900 0.9900 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 236 C(54)-H(54A) C(54)-H(54B) C(54)-H(54C) C(55)-H(55A) C(55)-H(SSB) C(55)-H(55C) C10)-C(56) C1(2)-C(56) C(56)-H(56A) C(56)-H(56B) N(5)-Ti(1)-N(7) N(5)-Ti(1)-N(1) N(7)-Ti(1)-N(l) N(5)-Ti(1)-N(3) N(7)-Ti(1)-N(3) N(1)-Ti(l)-N(3) N(5)-Ti(1)-N(2) N(7)-Ti(1)-N(2) N(1)-Ti(1)—N(2) N(3)-Ti(1)-N(2) N(5)-Ti(1)-N(4) N(7)-Ti(1)-N(4) N(1)-Ti(1)-N(4) N(3)-Ti(l)—N(4) N(2)-Ti(l)—N(4) N(5)-Ti(l)—Ti(2) N(7)-Ti(l)—Ti(2) N(1)—Ti(1)-Ti(2) N(3)-Ti(1)-Ti(2) N(2)-Ti(1)-Ti(2) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.753(3) 1.744(3) 0.9900 0.9900 8957(7) 101.95(7) 9765(7) 101.58(7) 109.32(7) 144.05(7) 8540(6) 168.66(7) 7356(6) 81.69(6) 171.46(7) 8751(6) 8640(6) 7191(6) 9885(6) 4463(5) 4521(5) 9991(5) 1 1592(5) 128.07(4) 237 N(4)-Ti(l)—Ti(2) 132.68(4) N(l 1)—Ti(2)—N(5) 9922(7) N(l 1)-Ti(2)-N(7) 9803(7) N(5)-Ti(2)-N(7) 8218(6) N(l 1)-Ti(2)-N(9) 159.23(7) N(5)-Ti(2)-N(9) 9845(7) N(7)-Ti(2)-N(9) 9509(7) N(l 1)-Ti(2)-N(6) 9624(7) N(5)-Ti(2)-N(6) 3889(6) N(7)-Ti(2)-N(6) 120.88(6) N(9)-Ti(2)-N(6) 9071(6) N(l 1)-Ti(2)-N(8) 9196(7) N(5)-Ti(2)-N(8) 120.53(6) N(7)—Ti(2)-N(8) 3836(6) N(9)-Ti(2)-N(8) 8838(6) N(6)-Ti(2)-N(8) 158.89(6) N(l 1)-Ti(2)-N(10) 8600(6) N(5)-Ti(2)-N(10) 134.74(6) N(7)-Ti(2)-N(10) 141.99(7) N(9)-Ti(2)-N(10) 7380(6) N(6)-Ti(2)-N(10) 9595(6) N(8)-Ti(2)-N(10) 104.02(6) N0 1)-Ti(2)-Ti(1) 9798(5) N(5)-Ti(2)-Ti(1) 4106(4) N(7)-Ti(2)—Ti(1) 4136(5) N(9)-Ti(2)-Ti(1) 102.49(5) N(6)-Ti(2)-Ti(1) 7995(4) N(8)-Ti(2)-Ti(1) 7966(4) N(10)-Ti(2)-Ti(1) 174.53(4) C(29)-N(1)-C(32) 105.6507) C(29)-N(l)-Ti(1) 134.3805) 238 C(32)-N(1)-Ti(l) C(35)-N(2)-C(34) C(35)-N(2)-C(33) C(34)-N(2)-C(33) C(35)-N(2)-Ti(1) C(34)-N(2)-Ti(1) C(33)-N(2)-Ti(1) C(36)-N(3)-C(39) C(36)-N(3)-Ti(1) C(39)-N(3)-Ti(1) C(41)-N(4)-C(42) C(41)-N(4)-C(40) C(42)-N(4)-C(40) C(41)-N(4)-Ti(1) C(42)-N(4)-Ti(l) C(40)-N(4)-Ti(l) N(6)-N(5)-Ti(1) N(6)-N(5)-Ti(2) Ti(l)—N(5)-Ti(2) N(5)-N(6)-C(43) N(5)-N(6)-C(44) C(43)-N(6)-C(44) N(5)-N(6)-Ti(2) C(43)-N(6)-Ti(2) C(44)-N(6)-Ti(2) N(8)-N(7)-Ti(l) N(8)-N(7)-Ti(2) Ti(l)—N(7)-Ti(2) N(7)-N(8)-C(45) N(7)-N(8)-C(46) C(45)-N(8)-C(46) 119.9403) 107.6507) 108.6706) 109.3807) 113.3203) 114.2202) 103.4202) 105.0006) 131.4903) 123.4903) 107.5507) 107.4107) 108.62(16) 106.2602) 119.4104) 107.0501) 173.4904) 79.18(10) 9431(7) 113.1705) 112.6105) 111.2406) 6193(9) 122.6903) 123.2503) 172.3803) 80.1000) 9343(7) 112.6406) 115.1706) 109.3806) 239 N(7)-N(8)-Ti(2) C(45)-N(8)-Ti(2) C(46)-N(8)—Ti(2) C(50)-N(9)—C(47) C(50)-N(9)-Ti(2) C(47)-N(9)-Ti(2) C(52)-N(10)-C(53) C(52)-N(10)-C(51) C(53)-N(10)-C(51) C(52)-N(10)-Ti(2) C(53)-N(10)-Ti(2) C(51)-N(10)-Ti(2) N(12)-N(1 1)-Ti(2) N(12)-N(11)-H(11) Ti(2)-N(1 1)-H(1 1) N(1 l)-N(12)-C(55) N(l 1 )-N(12)-C(54) C(55)-N(12)-C(54) C(30)-C(29)-N(1) C(30)-C(29)-H(29) N(l)-C(29)-H(29) C(29)-C(30)-C(31) C(29)-C(30)-H(30) C(31)-C(30)-H(30) C(32)-C(31)-C(30) C(32)-C(31)—H(31) C(30)-C(31)-H(31) C(31)-C(32)-N0) C(31)-C(32)-C(33) N(1)-C(32)-C(33) N(2)-C(33)-C(32) 6153(9) 122.5103) 124.9703) 105.7907) 121.5704) 131.8103) 108.88(l7) 109.1408) 107.0306) 105.9603) 115.5803) 110.1202) 143.7203) 108.1 108.1 108.7907) 110.8807) 109.0609) 110.6(2) 124.7 124.7 106.9(2) 126.6 126.6 106.4(2) 126.8 126.8 110.5009) 132.5(2) 1169607) 1089707) 240 N(2)-C(33)-H(33A) ‘C(32)-C(33)-H(33A) N(2)-C(33)-H(33B) C(32)-C(33)-H(33B) H(33A)—C(33)-H(33B) N(2)-C(34)—H(34A) N(2)-C(34)-H(34B) H(34A)-C(34)-H(34B) N(2)-C(34)-H(34C) H(34A)—C(34)-H(34C) H(34B)-C(34)-H(34C) N(2)-C(35)-H(35A) N(2)-C(35)-H(3SB) H(35A)-C(35)-H(3SB) N(2)-C(35)-H(35C) H(35A)-C(35)-H(35C) H(3SB)-C(35)-H(35C) C(37)-C(36)-N(3) C(37)-C(36)—H(36) N(3)-C(36)-H(36) C(36)-C(37)-C(38) C(36)-C(37)-H(37) C(38)-C(37)-H(37) C(39)-C(38)-C(37) C(39)-C(38)-H(38) C(37)-C(38)-H(38) C(38)-C(39)-N(3) C(38)-C(39)-C(40) N(3)-C(39)-C(40) N(4)-C(40)-C(39) N(4)-C(40)-H(40A) 109.9 109.9 109.9 109.9 108.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 111.0608) 124.5 124.5 106.4708) 126.8 126.8 106.4208) 126.8 126.8 111.0407) 130.2009) 118.620 8) 110.2406) 109.6 241 C(39)-C(40)-H(40A) N(4)-C(40)-H(4OB) C(39)-C(40)-H(4OB) H(40A)-C(40)-H(4OB) N(4)-C(41)—H(41A) N(4)-C(4I)-H(41B) H(4lA)-C(41)-H(4IB) N(4)-C(41)-H(41C) H(41A)-C(41)-H(41C) H(4lB)-C(4l)—H(41C) N(4)-C(42)-H(42A) N(4)-C(42)-H(4ZB) H(42A)-C(42)-H(4ZB) N(4)-C(42)-H(42C) H(42A)-C(42)-H(42C) H(4ZB)-C(42)-H(42C) N(6)-C(43)-H(43A) N(6)-C(43)-H(43B) H(43A)-C(43)-H(43B) N(6)-C(43)-H(43C) H(43A)-C(43)-H(43C) H(43B)-C(43)-H(43C) N(6)-C(44)-H(44A) N(6)-C(44)-H(44B) H(44A)—C(44)-H(44B) N(6)-C(44)—H(44C) H(44A)-C(44)-H(44C) H(44B)-C(44)-H(44C) N(8)-C(45)-H(45A) N(8)-C(45)-H(4SB) H(45A)-C(4S)—H(45B) 109.6 109.6 109.6 108.1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 242 N(8)-C(45)-H(45C) H(45A)-C(45)-H(45C) H(45B)-C(45)-H(45C) N(8)-C(46)-H(46A) N(8)-C(46)-H(46B) H(46A)-C(46)-H(46B) N(8)-C(46)—H(46C) H(46A)-C(46)-H(46C) H(46B)-C(46)-H(46C) C(48)-C(47)-N(9) C(48)-C(47)-H(47) N(9)-C(47)-H(47) C(47)-C(48)-C(49) C(47)-C(48)-H(48) C(49)-C(48)-H(48) C(50)-C(49)-C(48) C(50)-C(49)-H(49) C(48)-C(49)-H(49) C(49)-C(50)-N(9) C(49)-C(50)-C(51) N(9)-C(50)-C(51) C(50)-C(51)-N(10) C(50)-C(51)-H(51A) N(10)-C(51)-H(51A) C(50)-C(51)-H(51B) N(10)-C(51)-H(51B) H(SlA)-C(51)-H(51B) N(10)-C(52)-H(52A) N(10)-C(52)-H(5213) H(52A)-C(52)-H(SZB) N(10)-C(52)-H(52C) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 110.600 9) 124.7 124.7 106.5009) 126.7 126.7 106.7209) 126.6 126.6 1 1039(19) 132.7709) 116.1208) 110.2907) 109.6 109.6 109.6 109.6 108.1 109.5 109.5 109.5 109.5 243 H(52A)—C(52)-H(52C) H(52B)-C(52)-H(52C) N(10)-C(53)-H(53A) N(10)-C(53)-H(53B) H(53A)-C(53)-H(53B) N(10)-C(S3)-H(53C) H(53A)-C(53)-H(53C) H(53B)-C(53)-H(53C) N(12)-C(54)-H(54A) N(12)-C(54)-H(54B) H(54A)-C(54)-H(54B) N(12)-C(54)—H(54C) H(54A)-C(54)-H(54C) H(S4B)—C(54)-H(S4C) N(12)-C(55)-H(55A) N(12)—C(55)-H(SSB) H(SSA)-C(55)-H(SSB) N(12)-C(55)-H(55C) H(55A)-C(55)-H(55C) H(SSB)-C(55)-H(55C) Cl(2)-C(56)-Cl(1) Cl(2)-C(56)-H(56A) C1(1)-C(56)-H(56A) Cl(2)-C(S6)-H(56B) Cl(1)-C(56)-H(56B) H(56A)-C(56)-H(56B) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 112.54(15) 109.1 109.1 109.1 109.1 107.8 Table A4.4 Anisotropic displacement parameters (A2 X 103) for Ti2(dap)3(NNMe2)2(NHNMe2) (37). The anisotropic displacement factor exponent takes the form: —2 p2 [ h2a"‘2U11 + + 2 h k a* b* U12] ull U22 {)3 U23 (113 {112 Ti(l) 15(1) 18(1) 18(1) 0(1) 3(1) 0(1) Ti(2) 17(1) 16(1) 19(1) 0(1) 2(1) 0(1) N(l) 22(1) 22(1) 24(1) -1(1) 3(1) 2(1) N(2) 21(1) 28(1) 22(1) -1(1) 1(1) 2(1) N(3) 19(1) 22(1) 23(1) -2(1) 4(1) -2(1) N(4) 25(1) 28(1) 24(1) 2(1) 8(1) -1(1) N(5) 19(1) 19(1) 17(1) 1(1) 4(1) 0(1) N(6) 21(1) 20(1) 22(1) 3(1) 6(1) -2(1) N(7) 20(1) 20(1) 18(1) 1(1) 2(1) 0(1) N(8) 24(1) 22(1) 19(1) 0(1) -3(1) 1(1) N(9) 19(1) 21(1) 26(1) -I(1) 2(1) 0(1) N(10) 21(1) 22(1) 32(1) -3(1) 2(1) -2(1) N(ll) 23(1) 20(1) 27(1) -4(1) 1(1) -1(1) N(12) 31(1) 19(1) 32(1) -4(1) 1(1) 1(1) C(29) 31(1) 33(1) 26(1) -6(1) 4(1) 4(1) C(30) 37(1) 39(2) 39(1) -14(1) 6(1) 11(1) C(31) 30(1) 31(1) 47(2) —3(1) 0(1) 12(1) C(32) 20(1) 22(1) 34(1) 1(1) 2(1) 3(1) C(33) 24(1) 28(1) 31(1) 4(1) 1(1) 6(1) C(34) 30(1) 44(2) 25(1) -3(1) -3(1) 5(1) C(35) 22(1) 37(1) 36(1) 1(1) -4(1) -4(1) C(36) 18(1) 28(1) 24(1) -2(1) 4(1) 1(1) C(37) 24(1) 26(1) 26(1) -7(1) 0(1) 2(1) C(38) 27(1) 20(1) 32(1) -2(1) -2(1) -5(1) C(39) 20(1) 22(1) 25(1) 0(1) 1(1) -2(1) 245 C(40) C(41) C(42) C(43) C(44) C(45) C(46) C(47) C(48) C(49) C(50) C(51) C(52) C(53) C(54) C(55) C10) C1(2) C(56) 24(1) 43(1) 40(1) 31(1) 35(1) 44(1) 32(1) 24(1) 33(1) 19(1) 19(1) 22(1) 29(1) 28(1) 54(2) 53(2) 35(1) 54(1) 44(2) 25(1) 37(1) 41(2) 33(1) 23(1) 31(1) 26(1) 22(1) 20(1) 36(1) 28(1) 30(1) 42(2) 26(1) 34(1) 22(1) 60(1) 98(1) 74(2) 32(1) 27(1) 41(1) 24(1) 29(1) 20(1) 28(1) 24(1) 30(1) 50(2) 34(1) 51(2) 39(1) 49(2) 39(1) 51(2) 72(1) 46(1) 39(2) 1(1) 11(1) -70) 0(1) 9(1) -2(1) 6(1) -1(1) -3(1) -7(1) -3(1) -7(1) -1(1) 0(1) -16(1) -2(1) -200) 8(1) -5(1) 6(1) 5(1) 24(1) 10(1) 3(1) -1(1) 4(1) -1(1) 2(1) 4(1) 3(1) 10(1) -3(1) 6(1) 10(1) -8(1) 5(1) 9(1) -2(1) -50) -100) -6(1) 1(1) -1(1) 3(1) 7(1) -2(1) 6(1) 5(1) 0(1) -3(1) -5(1) -7(1) -5(1) 2(1) 10(1) 14(1) 26(2) 246 Table A4.5 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for Ti2(dap)3(NNMe2)2(NHNMe2) x y z U(eq) H01) 9212 6 1081 28 H(29) 10912 1 147 541 36 H(30) 12333 -663 596 46 H(31) 12979 -912 1413 43 H(33A) 11161 387 2113 34 H(33B) 12493 645 2157 34 H(34A) 10510 2130 2541 50 H(34B) 1 1 102 3569 2545 50 H(34C) 1 1797 2284 2723 50 H(35A) 13212 2753 2236 48 H(3SB) 12529 4043 2055 48 H(35C) 12911 2931 1716 48 H(36) 9103 4762 2270 28 H(37) 9700 7089 2445 31 H(38) 11173 7711 1906 32 H(40A) 1 1827 6358 1 143 32 H(40B) 12464 5263 1456 32 H(41A) 9868 5463 826 53 H(4IB) 10204 4381 467 53 H(41C) 10878 5765 518 53 H(42A) 12627 4643 632 59 H(4ZB) 1 1956 3268 547 59 H(42C) 12774 3453 986 59 H(43A) 8479 2219 2597 43 H(43B) 7297 1480 2498 43 H(43C) 7552 2849 2249 43 247 H(44A) EK44B) 1H44cn H(45A) EK4SB) PK45CD H(46A) PK46ED IK46CD 1u47) IK48) PK49) IKSIAQ £0513) H(52A) PKSZB) ruszcn 1u53A) ru53rn H(53C) H(54A) PK54B) 1H54c» H(55A) PKSSB) PKSSCD H(56A) IK56B) 9159 8095 9241 9053 7902 8974 7409 6942 8128 7859 6053 4495 4616 5330 6332 5828 5047 5220 6280 6459 8077 8209 9249 9314 8233 8213 6046 5495 -518 -641 2639 1807 1246 4528 3816 4573 5094 6298 4550 1736 1479 298 1777 502 -734 -486 -1115 -738 -2309 -1324 -2285 -3166 -2209 7137 5684 1931 2224 2432 105 72 362 774 325 347 1563 1608 1525 1320 1781 609 645 717 1394 1739 1262 240 334 447 1192 1042 1466 714 645 44 44 44 48 48 48 44 44 44 28 33 42 41 41 56 56 56 51 51 51 63 63 63 63 63 63 63 63 248 Table A4.6 Torsion angles (°) for T12(dap)3(NNMe2)2(NHNMe2) N(5)-Ti(1)-Ti(2)-N(11) N(7)-Ti( 1 )-Ti(2)-N(1 1) N(l)-Ti(1)-Ti(2)-N(1 1) N(3)-Ti(1)-Ti(2)-N(11) N(2)-Ti(1 )-Ti(2)-N(l 1 ) N(4)-Ti(1)-Ti(2)-N(1 1) N(7)-Ti(l)-Ti(2)-N(5) N(1)-Ti(l )-Ti(2)-N(5) N(3)-Ti(l)-Ti(2)-N(5) N(2)-Ti(l)-Ti(2)-N(5) N(4)-Ti(l)-Ti(2)-N(5) N(5)-Ti(1)-Ti(2)-N(7) N(l )-Ti(1)-Ti(2)-N(7) N(3)-Ti(l)-Ti(2)—N(7) N(2)-Ti(l)—Ti(2)-N(7) N(4)-Ti(l)-Ti(2)-N(7) N(5)-Ti( 1 )-Ti(2)-N(9) N(7)-Ti(1)-Ti(2)-N(9) N(l)-Ti(1)-Ti(2)-N(9) N(3)-Ti(1)-Ti(2)-N(9) N(2)-Ti(1)-Ti(2)-N(9) N(4)-Ti(l)-Ti(2)-N(9) N(5)-Ti(1)-Ti(2)-N(6) N(7)-Ti(l)-Ti(2)—N(6) N(1)—Ti(1)-Ti(2)-N(6) N(3)-Ti(1)-Ti(2)-N(6) N(2)-Ti(l)-Ti(2)-N(6) N(4)-Ti(l)—Ti(2)-N(6) N(5)—Ti(l)-Ti(2)-N(8) 9490(9) 9310(9) 213(7) -174.85(7) -74.68(7) 9639(7) 472.0000) 9703(8) -79.95(9) 2022(9) -168.71(9) 172.0000) -90.97(8) 9206(9) -167.78(9) 329(9) 8856(8) -83.45(8) -174.42(7) 861(7) 108.78(7) -80.15(7) 007(8) -171.93(8) 9710(6) -79.88(7) 2029(7) —168.64(7) 174.56(8) 249 N(7)-Ti(l)-Ti(2)—N(8) N(1)-Ti(l)-Ti(2)-N(8) N(3)-Ti(1)-Ti(2)-N(8) N(2)-Ti(1)-Ti(2)-N(8) N(4)-Ti(l)-Ti(2)-N(8) N(5)-Ti(l )-Ti(2)-N(10) N(7)-Ti(l)-Ti(2)—N(10) N(1)-Ti(1)-Ti(2)-N(10) N(3)-Ti(l)-Ti(2)-N(10) N(2)-Ti(1)-Ti(2)-N(10) N(4)-Ti(1 )-Ti(2)-N(10) N(5)-Ti(1)-N(l)-C(29) N(7)-Ti(1)-N(l)-C(29) N(3)-Ti(l)—N(1)-C(29) N(2)-Ti(l)-N(1)—C(29) N(4)-Ti(1)-N(1)-C(29) Ti(2)-Ti(l)-N(1)-C(29) N(5)-Ti(l)-N(l)-C(32) N(7)-Ti(1)-N(l)-C(32) N(3)-Ti(l)-N(1)—C(32) N(2)-Ti(l)-N(1)—C(32) N(4)-Ti(1)-N(l)-C(32) Ti(2)-Ti(1)-N(l)-C(32) N(5)-Ti(l)-N(2)-C(35) N(7)-Ti(1)-N(2)-C(35) N(1)-Ti(1)-N(2)-C(35) N(3)-Ti(1)-N(2)-C(35) N(4)-Ti(l)—N(2)-C(3S) Ti(2)-Ti(l)-N(2)-C(35) N(5)-Ti(l)-N(2)-C(34) N(7)-Ti(1)-N(2)-C(34) 255(8) -88.42(6) 9461(7) -165.22(7) 585(7) 41.7(5) 430.3(5) 138.8(5) -38.2(5) 62.0(5) 427.0(5) 116.0(2) 24.8(2) 414.1(2) 462.5(2) -62.2(2) 70.5409) -66.32(16) 457.5105) 63.5809) 15.1704) 115.490 5) 41 1.7804) 470.2004) 125.9(3) 85.8904) -67.76(14) 234(14) 175.7102) -46.43(15) 4 103(3) 250 N(1)-Ti(1)—N(2)-C(34) N(3)-Ti(1)-N(2)-C(34) N(4)-Ti(1)-N(2)-C(34) Ti(2)-Ti(1)-N(2)-C(34) N(5)-Ti(1 )-N(2)-C(33) N(7)-Ti(1)-N(2)-C(33) N(1)-Ti(1)—N(2)-C(33) N(3)-Ti(l)-N(2)-C(33) N(4)-Ti(1)-N(2)-C(33) Ti(2)-Ti(1)-N(2)-C(33) N(5)-Ti(l)-N(3)—C(36) N(7)-Ti(l)-N(3)-C(36) N(1)-Ti(1)—N(3)-C(36) N(2)-Ti(1)-N(3)-C(36) N(4)-Ti(1)-N(3)-C(36) Ti(2)-Ti(1)-N(3)-C(36) N(5)-Ti(1)-N(3)-C(39) N(7)-Ti(1)-N(3)-C(39) N(1)-Ti(1)-N(3)-C(39) N(2)-Ti(1)-N(3)-C(39) N(4)-Ti(l)—N(3)-C(39) Ti(2)-Ti(1)-N(3)-C(39) N(5)-Ti(1 )-N(4)-C(41) N(7)-Ti(l)—N(4)-C(41) N(l)-Ti(1)-N(4)-C(4l) N(3)-Ti(1 )-N(4)—C(4 1) N(2)-Ti(1)-N(4)-C(41) Ti(2)-Ti(1)-N(4)-C(41) N(5)-Ti(1 )-N(4)-C(42) N(7)-Ti(1)-N(4)-C(42) N(1)-Ti(1 )-N(4)-C(42) 251 450.3406) 56.0005) 126.1105) -60.53(16) 7234(12) 84(4) 31.5702) 174.7802) 115.1202) 58.2503) 3.9509) 89.70(19) 433.9507) -87.48(18) 170.3209) 40.9709) 174.5905) -91.76(16) 44.6(2) 91.0606) 41.1305) 440.4904) -50.5(5) l9.63(14) 1 1745(14) 91.6304) 469.8203) 1729(16) 472.2(4) 402.0406) -4.21(l6) N(3)-Ti(1 )-N(4)—C(42) N(2)-Ti(l )-N(4)-C(42) Ti(2)-Ti(l)—N(4)-C(42) N(5)-Ti(1)-N(4)-C(40) N(7)-Ti(1)-N(4)-C(40) N(1)-Ti(l )-N(4)-C(40) N(3)-Ti(l)-N(4)-C(40) N(2)-Ti(1)-N(4)-C(40) Ti(2)-Ti(1)-N(4)-C(40) N(7)-Ti(l)-N(5)-N(6) N(l)-Ti(1)-N(5)-N(6) N(3)-Ti(1)-N(5)-N(6) N(2)-Ti(l)-N(5)-N(6) N(4)-Ti(1)-N(5)-N(6) Ti(2)-Ti(l)-N(5)-N(6) N(7)-Ti(1)-N(5)-Ti(2) N(1)-Ti(l)-N(5)-Ti(2) N(3)-Ti(l)—N(5)—Ti(2) N(2)-Ti(1 )-N(5)-Ti(2) N(4)-Ti(1)-N(5)-Ti(2) N(l 1)-Ti(2)-N(5)-N(6) N(7)-Ti(2)-N(5)—N(6) N(9)-Ti(2)-N(5)-N(6) N(8)-Ti(2)-N(5)-N(6) N(10)-Ti(2)—N(5)—N(6) Ti(1)-Ti(2)-N(5)-N(6) N(l l)-Ti(2)—N(S)-Ti(1) N(7)-Ti(2)-N(S)-Ti(1) N(9)-Ti(2)-N(5)-Ti(1) N(6)-Ti(2)-N(5)-Ti(1) N(8)-Ti(2)-N(5)-Ti(1) 146.7107) 6852(16) 404.3706) 64.1(5) 134.1703) 428.0003) 22.9202) 55.2703) 131.84(11) 4.702) 93.002) 114.402) -165.1(12) 74.703) 4.0(11) 5.67(7) -92.06(7) 115.31(7) 464.16(7) 75.6(5) -88.51(10) 174.5700) 80.5400) 173.67(9) 5.0104) 179.8903) 91.60(7) 532(7) 9935(7) 479.8903) -6.22(9) N(10)-Ti(2)-N(5)-Ti(1) Ti(1)-N(5)-N(6)-C(43) Ti(2)-N(5)-N(6)-C(43) Ti(1)-N(5)-N(6)-C(44) Ti(2)-N(5)-N(6)-C(44) Ti(1)-N(5)-N(6)-Ti(2) N(I l)-Ti(2)—N(6)-N(5) N(7)-Ti(2)-N(6)-N(5) N(9)-Ti(2)-N(6)-N(5) N(8)-Ti(2)-N(6)-N(5) N(10)—Ti(2)—N(6)-N(5) Ti(1)-Ti(2)-N(6)-N(5) N(l 1)-Ti(2)-N(6)-C(43) N(5)-Ti(2)-N(6)-C(43) N(7)-Ti(2)-N(6)-C(43) N(9)-Ti(2)-N(6)-C(43) N(8)-Ti(2)-N(6)-C(43) N(10)-Ti(2)-N(6)-C(43) Ti(1)-Ti(2)-N(6)-C(43) N(l 1)-Ti(2)-N(6)-C(44) N(5)-Ti(2)—N(6)-C(44) N(7)-Ti(2)-N(6)-C(44) N(9)-Ti(2)-N(6)-C(44) N(8)-Ti(2)-N(6)-C(44) N(10)-Ti(2)-N(6)-C(44) Ti(l)—Ti(2)-N(6)-C(44) N(5)-Ti(1)-N(7)-N(8) N(1)-Ti(1)-N(7)-N(8) N(3)-Ti(1)-N(7)-N(8) N(2)-Ti(l )-N(7)-N(8) N(4)-Ti(1 )-N(7)-N(8) 253 474.88(6) 415.001) 415.9505) 117.8(11) 116.8005) 1.0(11) 96.96(10) -6.27(12) 402.6400) 453(2) 476.4200) -0.07(9) 462.2205) 100.8208) 94.5406) 4.8205) 85.5(2) -75.60(15) 100.7505) -2.91(16) 99.8708) 406.1505) 157.4905) 415.2(2) 83.7005) 99.9505) 37.300) 64.700) 439.4(10) 26.3(12) 150.8(10) Ti(2)-Ti(l)-N(7)-N(8) N(5)-Ti(1)-N(7)-Ti(2) N(1)-Ti(1)-N(7)-Ti(2) N(3)-Ti(1)-N(7)-Ti(2) N(2)-Ti(1)-N(7)-Ti(2) N(4)-Ti(1)-N(7)-Ti(2) N(l 1 )-Ti(2)-N(7)-N(8) N(5)-Ti(2)-N(7)-N(8) N(9)-Ti(2)-N(7)-N(8) N(6)-Ti(2)—N(7)-N(8) N(10)-Ti(2)-N(7)-N(8) Ti(l)-Ti(2)-N(7)-N(8) N(l 1)-Ti(2)-N(7)-Ti(1) N(5)-Ti(2)-N(7)-Ti(1) N(9)-Ti(2)-N(7)-Ti(1) N(6)-Ti(2)-N(7)-Ti(1) N(8)-Ti(2)-N(7)-Ti(l) N(10)-Ti(2)-N(7)—Ti(1) Ti(l)-N(7)-N(8)-C(45) Ti(2)-N(7)-N(8)-C(45) Ti(l)-N(7)-N(8)—C(46) Ti(2)-N(7)-N(8)-C(46) Ti(1)-N(7)-N(8)-Ti(2) N(l 1)-Ti(2)-N(8)-N(7) N(5)-Ti(2)-N(8)-N(7) N(9)-Ti(2)-N(8)-N(7) N(6)-Ti(2)-N(8)-N(7) N(10)-Ti(2)-N(8)-N(7) Ti(1)-Ti(2)-N(8)-N(7) N(l 1)-Ti(2)—N(8)-C(45) N(5)-Ti(2)-N(8)-C(45) -31.7(9) -5.61(7) 9640(7) 407730) 57.9(3) 477.58(7) 82.96(10) 478.7600) -80.90(10) 474.79(9) 4083(15) 175.9503) 9299(7) 529(7) 103.150) 9.2600) 475.9503) 173.22(7) -83.7(10) 415.8705) 149.9(9) 1 17.7405) 32.100) -100.48(10) 1.4302) 100.2900) 12.5(2) 173.1500) -2.72(9) -0.47(16) 101.4406) 254 N(7)-Ti(2)-N(8)-C(45) N(9)-Ti(2)-N(8)-C(45) N(6)-Ti(2)-N(8)-C(45) N(10)-Ti(2)-N(8)—C(45) Ti(1)-Ti(2)-N(8)-C(4S) N(l 1)-Ti(2)-N(8)-C(46) N(5)-Ti(2)-N(8)-C(46) N(7)—Ti(2)-N(8)-C(46) N(9)-Ti(2)-N(8)—C(46) N(6)-Ti(2)-N(8)-C(46) N(10)-Ti(2)-N(8)-C(46) Ti(l)—Ti(2)-N(8)-C(46) N(1 1)-Ti(2)-N(9)-C(50) N(5)-Ti(2)-N(9)-C(50) N(7)-Ti(2)-N(9)-C(50) N(6)-Ti(2)-N(9)-C(50) N(8)-Ti(2)-N(9)-C(50) N(10)-Ti(2)-N(9)-C(50) Ti(1)-Ti(2)-N(9)-C(50) N(l l)-Ti(2)-N(9)-C(47) N(5)-Ti(2)-N(9)-C(47) N(7)-Ti(2)-N(9)—C(47) N(6)-Ti(2)-N(9)-C(47) N(8)-Ti(2)-N(9)-C(47) N(10)-Ti(2)-N(9)-C(47) Ti(1)-Ti(2)-N(9)-C(47) N(I 1)-Ti(2)—N(10)-C(52) N(5)-Ti(2)-N(10)—C(52) N(7)-Ti(2)-N(10)-C(52) N(9)-Ti(2)-N(10)-C(52) N(6)-Ti(2)—N(10)—C(52) 255 100.0108) -159.70(16) 112.5(2) -86.84(16) 97.2905) 157.3306) 400.7606) 402.1909) 490(16) -89.7(2) 7096(16) -104.91(16) 12.8(3) 435.3106) 141.8706) -97.04(16) 104.0606) 4.0505) 476.9005) 455.1809) 56.7209) -26.10(19) 94.99(18) -63.92(18) 469.0209) 15.1209) -72.76(14) 471.7903) 25.1608) 102.3604) 468.6304) N(8)-Ti(2)-N(10)-C(52) Ti(l)-Ti(2)-N(10)-C(52) N(l 1 )-Ti(2)-N(10)-C(53) N(5)-Ti(2)-N(10)-C(53) N(7)-Ti(2)-N(10)—C(53) N(9)-Ti(2)-N(10)-C(53) N(6)-Ti(2)-N(10)-C(53) N(8)-Ti(2)-N(10)-C(53) Ti(1)-Ti(2)-N(10)-C(53) N(11)-Ti(2)-N(10)-C(51) N(5)-Ti(2)-N(10)-C(51) N(7)-Ti(2)-N(10)-C(51) N(9)-Ti(2)—N(10)-C(51) N(6)-Ti(2)-N(10)-C(51) N(8)-Ti(2)-N(10)-C(51) Ti(1)-Ti(2)-N(10)-C(51) N(5)-Ti(2)-N(1 1 )-N(12) N(7)-Ti(2)-N(1 1)-N(12) N(9)-Ti(2)-N(1 1)-N(12) N(6)-Ti(2)-N(1 1)-N(12) N(8)-Ti(2)-N(1 1 )-N(12) N(10)-Ti(2)-N(I 1)-N(12) Ti(l )-Ti(2)-N(1 1)-N(12) Ti(2)-N0 1)-N(12)-C(55) Ti(2)-N(l 1)-N(12)-C(54) C(32)-N(1)-C(29)-C(30) Ti(1)-N(1)-C(29)-C(30) N(1)-C(29)-C(30)-C(31) C(29)-C(30)-C(31)—C(32) C(30)-C(31)-C(32)-N(1) C(30)-C(31)-C(32)-C(33) 1826(14) 150.2(4) 47.9105) 51.1207) 145.8304) -136.97(15) -47.96(15) 138.9304) -89.1(5) 169.3305) 70.3007) 92.7507) 45.5504) 73.4605) 99.6505) 32.3(6) 141.2(2) 435.5(2) -6.8(4) 102.0(2) 974(2) 65(2) 477.3(2) 420.2(2) 119.9(2) 050) 177.4606) 00(3) 0.5(3) -0.8(3) 175.9(2) 256 C(29)-N(1)-C(32)-C(31) Ti(1)-N(1 )-C(32)-C(31) C(29)-N(1)-C(32)-C(33) Ti(1)-N(1)-C(32)-C(33) C(35)-N(2)-C(33)-C(32) C(34)-N(2)-C(33)-C(32) Ti(l)-N(2)-C(33)-C(32) C(31)-C(32)-C(33)-N(2) N(1)-C(32)-C(33)-N(2) C(39)-N(3)-C(36)-C(37) Ti(1)-N(3)-C(36)-C(37) N(3)-C(36)-C(37)-C(38) C(36)-C(37)—C(38)-C(39) C(37)-C(38)-C(39)-N(3) C(37)-C(38)-C(39)-C(40) C(36)-N(3)-C(39)-C(38) Ti(1)-N(3)-C(39)-C(38) C(36)-N(3)-C(39)-C(40) Ti(l)—N(3)-C(39)-C(40) C(41)-N(4)-C(40)-C(39) C(42)-N(4)-C(40)-C(39) Ti(1)-N(4)-C(40)-C(39) C(38)-C(39)-C(40)—N(4) N(3)-C(39)-C(40)-N(4) C(50)-N(9)-C(47)-C(48) Ti(2)-N(9)-C(47)-C(48) N(9)-C(47)—C(48)—C(49) C(47)-C(48)-C(49)-C(50) C(48)-C(49)-C(50)-N(9) C(48)-C(49)-C(50)-C(51) C(47)-N(9)-C(50)-C(49) 257 0.8(2) 477.4905) -176.46(18) 5.3(2) 47.90) 164.8707) 42.80(17) 147.5(2) -36.0(2) 05(2) 179.2504) 01(2) 04(2) 08(2) 475.0(2) -0.8(2) -179.66(14) 175.5008) 540) 83.0(2) -160.95(18) -30.76(19) 458.8(2) 25.7(3) -0.6(2) 168.80(14) 04(2) 91(3) -03(3) 169.3(2) 0.5(2) Ti(2)-N(9)-C(50)—C(49) C(47)-N(9)-C(50)-C(51) Ti(2)-N(9)-C(50)-C(51) C(49)-C(50)-C(51)—N(10) N(9)-C(50)-C(51)-N(10) C(52)-N(10)-C(51)—C(50) C(53)-N(10)-C(51)-C(50) Ti(2)-N(10)-C(51)-C(50) 470.1805) 470.9909) 183(3) 159.6(2) 512(3) 875(2) 154.8209) 284(2) 258 Table A5.1 Crystal data for 3-mesitylpyrrole (43) Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 2500" Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>23igma(l)] R indices (all data) Largest diff. peak and hole Sb1076 C13 H15 N 185.26 173(2) K 0.71073 A Orthorhombic Pbca a = 10.4998(18)A 01 = 90° b = 10.8656(17) A [3: 90° c=17.915(3)A y=90° 2043.9(6) A3 8 1.204 Mg/m3 0.070 mm-1 800 0.37 x 0.34 x 0.23 mm3 2.27 to 27.49°. -13<=h<=13, -13<=k<=13, —21<=l<=21 20550 2284 [R(int) = 0.0253] 99.4 % Semi-empirical from equivalents 0.9839 and 0.9750 Full-matrix least-squares on F2 2284/0/130 1.056 R1 = 0.0462, wR2 = 0.1306 R1 = 0.0520, wR2 = 0.1366 0.327 and -0.336 e.A-3 259 Table A5.2 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for 3-mesitylpyrrole. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor x y z U(eq) N(l) 6987(1) 415(1) 1433(1) 30(1) C(1) 7831(1) -260(1) 1026(1) 28(1) C(2) 8902(1) 436(1) 926(1) 25(1) C(3) 8708(1) 1593(1) 1288(1) 22(1) C(4) 7508(1) 1539(1) 1598(1) 27(1) C(5) 9639(1) 2626(1) 1309(1) 21(1) C(6) 10160(1) 3077(1) 640(1) 23(1) C(7) 11104(1) 3984(1) 665(1) 26(1) C(8) 11533(1) 4482(1) 1331(1) 26(1) C(9) 10970(1) 4069(1) 1992(1) 24(1) C(10) 10033(1) 3153(1) 1992(1) 21(1) C(11) 9726(1) 2631(1) -117(1) 33(1) C(12) 12593(1) 5424(1) 1339(1) 34(1) C(13) 9481(1) 2744(1) 2728(1) 28(1) 260 Table A5.3 Bond lengths (A) and angles (°) for 3-mesitylpyrrole N(1)-C(1) 1.3623(18) N(1)-C(4) 1.3694(17) C(1)-C(2) 1.3672(17) C(2)-C(3) 1.429207) C(3)-C(4) 1.3775(17) C(3)-C(5) 1.488506) C(5)-C(6) 1.406807) C(5)-C(10) 1.412107) C(6)-C(7) 1.3990(17) C(6)-C(1 1) 1.509508) C(7)-C(8) 1.3852(19) C(8)-C(9) 1.3973(18) C(8)-C(12) 1.512108) C(9)-C(10) 1.3998(17) C(10)-C(13) 1.508207) C(1)-N(1)-C(4) 109.60(1 1) N(1)—C(1)-C(2) 107.87(11) C(1)-C(2)-C(3) 108.070 1) C(4)-C(3)-C(2) 105.960 1) C(4)-C(3)-C(5) 128.490 1) C(2)-C(3)-C(5) 125.540 1) N(1)-C(4)-C(3) 108.5002) C(6)-C(5)-C(10) 1 18.91(11) C(6)-C(5)-C(3) 1 19.730 1) C(10)-C(5)-C(3) 121.3500) C(7)-C(6)-C(5) 1 19.5501) C(7)-C(6)-C(11) 1 17.950 1) C(5)-C(6)-C(11) 122.5001) 261 C(8)-C(7)-C(6) C(7)-C(8)-C(9) C(7)-C(8)-C(12) C(9)-C(8)-C(12) C(8)-C(9)-C(10) C(9)-C(10)-C(5) C(9)-C(10)-C(13) C(5)-C(10)-C(13) 122.2602) 117.8202) 120.8402) 121.3302) 121.7302) 119.6201) 118.6701) 121.7101) Table A5.4 Anisotropic displacement parameters (A2 X 103) for 3-mesitylpyrrole. The displacement factor exponent takes the form: -2 pi2 [ h2 3*2 U11 + + 2 h k a* b* U12 1 ull u22 U33 u23 ul3 U12 N(l) 21(1) 29(1) 40(1) 7(1) -1(1) -6(1) C(1) 30(1) 21(1) 31(1) 3(1) -7(1) -3(1) C(2) 25(1) 22(1) 28(1) 0(1) _ -2(1) 0(1) C(3) 21(1) 19(1) 25(1) 3(1) -2(1) 1(1) C(4) 23(1) 24(1) 36(1) 2(1) 2(1.) 0(1) C(5) 18(1) 18(1) 26(1) 1(1) 0(1) 2(1) C(6) 24(1) 19(1) 26(1) -1(1) 2(1) 1(1) C(7) 27(1) 24(1) 28(1) 3(1) 7(1) -l(1) C(8) 20(1) 21(1) 37(1) 0(1) 2(1) 0(1) C(9) 21(1) 23(1) 27(1) -3(1) -3(1) 1(1) C(10) 18(1) 20(1) 25(1) 1(1) 1(1) 3(1) C(11) 45(1) 29(1) 24(1) —l(1) 2(1) -6(1) C(12) 27(1) 32(1) 44(1) -2(1) 4(1) -8(1) C(13) 26(1) 33(1) 24(1) 2(1) 0(1) -2(1) 263 Table A5.5 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for 3-mesitylpyrrole X y 2 U(CQ) H0) 6224 168 1570 36 H(IA) 7699 4071 844 33 H(2) 9645 194 661 30 H(4) 7110 2173 1878 33 H0) 1 1463 4268 210 32 H(9) 1 1230 4420 2453 29 H0 1A) 9862 3281 488 49 H0 13) 8819 2423 97 49 H(11C) 10217 1900 -258 49 H02A) 13404 5013 1445 52 H023) 12422 6039 1727 52 H(12C) 12641 5830 852 52 H(13A) 9964 3119 3138 42 H033) 9532 1846 2767 42 H(13C) 8588 3002 2760 42 Table A5.6 Torsion angles (°) for 3-mesitylpyrrole C(4)-N(1)-C(1)-C(2) N(l)-C(l)-C(2)-C(3) C(1)-C(2)-C(3)-C(4) C(1)-C(2)-C(3)-C(5) C(1)-N(1)-C(4)-C(3) C(2)-C(3)-C(4)-N(1) C(5)-C(3)-C(4)-1\l(1 ) C(4)-C(3)-C(5)-C(6) C(2)-C(3)-C(5)-C(6) C(4)-C(3)-C(5)-C(10) C(2)-C(3)-C(5)—C(10) C(10)-C(5)-C(6)-C(7) C(3)-C(5)-C(6)-C(7) C(10)-C(5)—C(6)-C(1 1) C(3)-C(5)-C(6)-C(1 1) C(5)-C(6)-C(7)-C(8) C(1 1)-C(6)—C(7)-C(8) C(6)-C(7)—C(8)-C(9) C(6)-C(7)-C(8)-C(12) C(7)-C(8)-C(9)-C(10) C(12)-C(8)—C(9)-C(10) C(8)-C(9)-C(lO)-C(5) C(8)-C(9)—C(10)—C(13) C(6)-C(5)-C(10)-C(9) C(3)-C(5)-C(lO)-C(9) C(6)-C(5)-C(10)-C(13) C(3)-C(5)-C(10)-C(l3) -02105) 0.0405) 0.1404) 479.5601) 031(15) -02704) 179.4201) 426.6104) 53.0207) 54.6708) 425.7003) 3.5107) 475.2401) -175.6l(11) 5.6408) 4.4309) 177.7302) 4.4109) 1774702) 2.1708) 4767002) -0.08(18) 179.2701) -2.78(17) 175.9600) 177.8901) -3.38(17) 265 Table .46.] Crystal data for T1(dap3 ’mes)2(NMe2)2 (45) Identification code Empirical formula F orrnula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.00° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>2sigma(l)] R indices (all data) sbfinal C365 H55 Cl N6 Ti 661.22 173(2) K 0.71073 A Monoclinic P 21/n a=12.8140(4)A 01=90° b = 18.4577(7) A [3 = 105.887(2)o c = l6.0983(6) A y = 90° 3662.1(2) A3 4 1.199 Mg/m3 0.340 mm—1 1420 0.41 x 0.23 x 0.22 mm3 2.1210 25.38°. -15<=h<=15, —22<=k<=22, —19<=1<=19 46233 6730 [R(int) = 0.0301] 100.0 % Semi-empirical from equivalents 0.9290 and 0.8719 Full-matrix least-squares on F2 6730 / 0 / 420 1.032 R1 = 0.0393, wR2 = 0.1005 R1 = 0.0473, wR2 = 0.1063 266 Largest diff. peak and hole 0.686 and —0.746 e.A"3 Table A6.2 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for Ti(dap3_mes)2(NMe2)2. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor X y Z U(CQ) Ti(l) 2071(1) 104560) 3218(1) 22(1) N(l) 3101(1) 9706(1) 2923(1) 24(1) N(2) 1799(1) 104620) 1588(1) 28(1) N(3) 784(1) 9707(1) 2941(1) 26(1) N(4) 476(1) 110790) 3392(1) 29(1) N(5) 2497(1) 102220) 4418(1) 26(1) N(6) 2776(1) 113740) 3244(1) 29(1) C(1) 3915(1) 9307(1) 3463(1) 25(1) C(2) 4307(1) 8788(1) 3015(1) 24(1) C(3) 3702(1) 8877(1) 2134(1) 26(1) C(4) 2978(1) 9429(1) 2108(1) 25(1) C(5) 2061(2) 9711(1) 1392(1) 28(1) C(6) 2607(2) 109500) 1384(1) 39(1) C(7) 719(2) 106460) 1021(1) 43(1) C(8) 5153(1) 8245(1) 3401(1) 24(1) C(9) 5041(1) 7802(1) 4085(1) 26(1) C(10) 5872(2) 7322(1) 4477(1) 29(1) C(1 1) 6810(2) 7256(1) 4209(1) 29(1) C(12) 6901(2) 7685(1) 3523(1) 28(1) C(13) 6096(1) 8170(1) 3114(1) 25(1) C(14) 6256(2) 8612(1) 2373(1) 34(1) C(15) 4036(2) 7820(1) 4401(1) 33(1) C(16) 7685(2) 6724(1) 4631(1) 43(1) C(17) 703(2) 8988(1) 2682(1) 27(1) C(18) 442(2) 8651(1) 2894(1) 28(1) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36) C1(1S) C0S) -615(2) -29(2) -28(2) 529(2) 703(2) 492(1) 4225(2) 4577(2) 4215(2) 479(2) 4 13(2) 4620(2) 4568(2) 692(2) 3966(2) 2491(2) 23 18(2) 3067(2) 1075(1) 276(5) 9183(1) 9806(1) 105060) 113090) 117040) 7884(1) 7687(1) 6970(1) 6441(1) 6643(1) 7352(1) 8243(1) 5661(1) 7539(1) 113320) 121110) 9507(1) 106800) 5300(1) 4747(3) 3318(1) 3337(1) 3799(1) 2591(1) 3992(2) 2725(1) 1935(1) 1801(1) 2425(1) 3198(1) 3359(1) 1234(1) 2270(2) 4210(1) 3588(1) 2953(2) 4744(1) 5142(1) 5394(1) 4637(4) 33(1) 28(1) 31(1) 41(1) 42(1) 28(1) 29(1) 33(1) 34(1) 32(1) 30(1) 38(1) 49(1) 42(1) 38(1) 41(1) 34(1) 37(1) 91(1) 62(2) 268 Table A6.3 Bond lengths (A) and angles (°) for Ti(dap3—mes)2(NMe2)2 Ti(1)-N(5) Ti(l)—N(6) Ti(1)-N(1) Ti(1)-N(3) Ti(l)-N(4) Ti(1)-N(2) N(1)-C(1) N(1)-C(4) N(2)-C(7) N(2)-C(6) N(2)-C(5) N(3)-C(20) N(3)-C(17) N(4)-C(22) N(4)-C(21) N(4)-C(23) N(5)-C(35) N(5)-C(36) N(6)-C(34) N(6)-C(33) (3(1)-C(2) C(1 )-H( 1) C(2)-C(3) C(2)-C(8) C(3)-C(4) C(3)-H(3) C(4)-C(5) C(5)-H(5A) C(5)-H(5B) 1.9076(15) 1.9156(16) 2.054805) 2.103505) 2.427605) 2.551006) 1.375(2) 1.377(2) 1.474(3) 1.477(3) 1.480(2) 1.375(2) 1.387(2) 1.476(3) 1.483(2) 1.483(3) 1.462(2) 1.463(2) 1.454(3) 1.474(3) 1.375(2) 0.9500 1.428(2) 1.482(2) 1.371(3) 0.9500 1.496(3) 0.9900 0.9900 C(6)-H(6A) C(6)-H(6B) C(6)-H(6C) C(7)-H(7A) C(7)-H(7B) C(7)-H(7C) C(8)-C(9) C(8)-C(13) C(9)-C(10) C(9)-C(15) C(10)-C(1 1) C(10)-H(10) C(1 1)-C(12) C(1 1)-C(16) C(12)-C(13) C(12)-H(12) C(13)-C(14) C(14)-H(14A) C(14)-H(14B) C(14)-H(14C) C(15)—H(15A) C(15)-H(lSB) C(15)-H(15C) C(16)-H(16A) C(16)—H(16B) C(16)-H(16C) C(17)-C(18) C(17)-H(17) C(18)-C(19) C(18)-C(24) C(19)—C(20) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.41 1(3) 1.414(2) 1.396(3) 1.508(3) 1.388(3) 0.9500 1.390(3) 1.506(3) 1.388(3) 0.9500 1.505(3) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.370(3) 0.9500 1.422(3) 1.489(3) 1.370(3) 270 C(19)-H(19) C(20)-C(21) C(21)-H(21A) C(21)-H(213) C(22)-H(22A) C(22)-H(22B) C(22)-H(22C) C(23)-H(23A) C(23)-H(23B) C(23)-H(23C) C(24)-C(29) C(24)-C(25) C(25)-C(26) C(25)-C(30) C(26)-C(27) C(26)-H(26) C(27)-C(28) C(27)-C(31) C(28)-C(29) C(28)-H(28) C(29)-C(32) C(30)-H(30A) C(30)-H(3OB) C(30)-H(30C) C(31)-H(31A) C(31)-H(3IB) C(31)-H(31C) C(32)-H(32A) C(32)-H(3ZB) C(32)-H(32C) C(33)-H(33A) 0.9500 1.490(3) 0.9900 0.9900 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.402(3) 1.406(3) 1.396(3) 1.507(3) 1.385(3) 0.9500 1.391(3) 1.509(3) 1.391(3) 0.9500 1.512(3) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 C(33)-H(33B) C(33)-H(33C) C(34)-H(34A) C(34)-H(34B) C(34)-H(34C) C(35)-H(35A) C(35)-H(353) C(35)-H(35C) C(36)-H(36A) C(36)-H(36B) C(36)-H(36C) Cl(lS)-C(IS) C1(IS)-C(1S)#1 C(IS)-Cl(1S)#1 C(IS)-C(IS)#1 C(IS)-H(1SA) C(1S)-H0SB) N(5)-Ti(1)-N(6) N(5)-Ti(1)-N(1) N(6)-Ti(1)-N(1) N(5)-Ti(1)-N(3) N(6)-Ti(1)-N(3) N(1)-Ti(1)-N(3) N(5)-Ti(l)—N(4) N(6)-Ti(l)-N(4) N(1)—Ti(1)-N(4) N(3)-Ti(l)-N(4) N(5)-Ti(l)-N(2) N(6)-Ti(l)-N(2) N(1)-Ti(1)-N(2) 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.701(6) 1.721(6) 1 .721(6) 1.78700) 0.9601 0.9600 100.08(7) 9333(6) 105.75(6) 9326(6) 15745(7) 91 .41(6) 9041(6) 8915(6) 163.71(6) 7254(6) 164.48(6) 87.] 1(6) 7139(5) N(3)-Ti(1)-N(2) N(4)-Ti(l )-N(2) C(1)-N(1)-C(4) C(1)-N(1)—Ti(l) C(4)-N(1)-Ti(1) C(7)-N(2)-C(6) C(7)-N(2)-C(5) C(6)-N(2)-C(5) C(7)-N(2)-Ti(1) C(6)-N(2)-Ti(l) C(5)-N(2)-Ti(1) C(20)-N(3)-C(17) C(20)-N(3)-Ti(1) C(17)-N(3)-Ti(l) C(22)-N(4)-C(21) C(22)-N(4)-C(23) C(21)-N(4)-C(23) C(22)-N(4)-Ti(1) C(21)-N(4)-Ti(l) C(23)-N(4)-Ti(l) C(35)-N(5)-C(36) C(35)-N(5)-Ti(1) C(36)-N(5)-Ti(1) C(34)-N(6)-C(33) C(34)-N(6)-Ti(1) C(33)-N(6)-Ti(l) N(1)-C(1)-C(2) N(1)-C(1)-H(l) C(2)-C( 1 )-H( 1) C(1)-C(2)-C(3) C(1)-C(2)-C(8) 8461(6) 103.53(5) 105.8404) 129.7002) 123.8402) 108.5706) 108.2505) 108.0605) 1 1863(12) 108.93(11) 103.9200) 105.2605) 117.6302) 133.0602) 107.87(16) 108.09(16) 107.3605) 1 1647(12) 101.2601) 115.0202) 109.2305) 122.5302) 128.2103) 108.25(l6) 138.2604) 113.2303) 111.3905) 124.3 124.3 105.3206) 125.5606) 273 C(3)-C(2)-C(8) C(4)-C(3)-C(2) C(4)-C(3)—H(3) C(2)-C(3)-H(3) C(3)-C(4)-N(1) C(3)-C(4)-C(5) N(1)-C(4)-C(5) N(2)-C(5)-C(4) N(2)-C(5)-H(5A) C(4)-C(5)-H(5A) N(2)-C(5)-H(5B) C(4)-C(5)-H(5B) H(5A)-C(5)-H(SB) N(2)-C(6)-H(6A) N(2)-C(6)—H(6B) H(6A)-C(6)-H(6B) N(2)-C(6)-H(6C) H(6A)-C(6)-H(6C) H(6B)-C(6)-H(6C) N(2)-C(7)-H(7A) N(2)-C(7)-H(7B) H(7A)-C(7)-H(7B) N(2)-C(7)-H(7C) H(7A)-C(7)-H(7C) H(7B)-C(7)-H(7C) C(9)-C(8)-C(13) C(9)-C(8)-C(2) C(13)-C(8)-C(2) C(10)—C(9)-C(8) C(10)-C(9)-C(15) C(8)-C(9)-C(15) 129.0906) 107.1505) 126.4 126.4 110.2906) 131.5806) 117.8305) 109.6905) 109.7 109.7 109.7 109.7 108.2 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 118.5006) 119.9906) 121.49(16) 1 1950(16) 118.5307) 121.9707) C(1 1)-C(10)-C(9) C(1 1)-C(10)-H(10) C(9)-C(10)-H(10) C(10)-C(1 1)-C(12) C(10)-C(1 1)-C(16) C(12)-C(1 1)-C(l6) C(13)-C(12)-C(11) C(13)-C(12)-H(12) C(11)-C(12)-H(12) C(12)-C(13)—C(8) C(12)-C(13)-C(14) C(8)-C(13)-C(14) C(13)-C(14)-H(14A) C(13)-C(14)-H(14B) H(14A)-C(14)-H(14B) C(13)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14B)-C(14)-H(14C) C(9)-C(15)—H(15A) C(9)-C(15)-H(15B) H(15A)-C(15)-H(ISB) C(9)-C(15)-H(15C) H(15A)-C(15)-H(15C) H(153)-C(15)-H05C) C(1 1)-C(16)-H(16A) C(1 1)-C(16)-H(168) H(16A)-C(16)-H(16B) C(1 1)-C(16)-H(16C) H(l6A)-C(16)-H(16C) H(16B)-C(16)-H(16C) C(18)-C(17)-N(3) 122.250 7) 118.9 118.9 117.710 7) 121.2708) 121.0008) 122.0707) 119.0 119.0 1 1993(17) 118.76(16) 121.30(16) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 110.980 6) C(18)—C(17)-H(17) N(3)-C(17)-H(17) C(17)-C(18)-C(19) C(17)-C(18)-C(24) C(19)-C(18)-C(24) C(20)-C(19)-C(18) C(20)-C(19)-H(19) C(18)-C(19)-H(19) C(19)-C(20)-N(3) C(19)-C(20)-C(21) N(3)-C(20)-C(21) N(4)-C(21)-C(20) N(4)-C(21)-H(21A) C(20)-C(21)-H(21A) N(4)-C(21)—H(ZlB) C(20)-C(21)-H(213) H(21A)-C(21)-H(213) N(4)-C(22)-H(22A) N(4)-C(22)-H(ZZB) H(22A)-C(22)-H(ZZB) N(4)-C(22)-H(22C) H(22A)—C(22)—H(22C) H(223)-C(22)-H(22C) N(4)-C(23)—H(23A) N(4)-C(23)—H(23B) H(23A)-C(23)—H(23B) N(4)-C(23)-H(23C) H(23A)-C(23)-H(23C) H(23B)-C(23)-H(23C) C(29)-C(24)-C(25) C(29)-C(24)—C(18) 124.5 124.5 106.0807) 127.2007) 126.7106) 106.6906) 126.7 126.7 110.97(l6) 131.6407) 1 1676(16) 109.7405) 109.7 109.7 109.7 109.7 108.2 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 119.330 7) 120.420 7) 276 C(25)-C(24)-C(18) C(26)-C(25)-C(24) C(26)-C(25)-C(30) C(24)-C(25)-C(30) C(27)-C(26)-C(25) C(27)-C(26)-H(26) C(25)-C(26)-H(26) C(26)-C(27)-C(28) C(26)-C(27)-C(31) C(28)-C(27)-C(31) C(27)-C(28)—C(29) C(27)-C(28)-H(28) C(29)-C(28)-H(28) C(28)-C(29)-C(24) C(28)-C(29)—C(32) C(24)-C(29)-C(32) C(25)-C(30)—H(30A) C(25)-C(30)-H(30B) H(30A)-C(30)-H(3OB) C(25)-C(30)-H(30C) H(30A)-C(30)-H(30C) H(3OB)-C(30)-H(30C) C(27)-C(31)—H(3 1A) C(27)-C(31)-H(3 13) H(31A)-C(31)-H(3IB) C(27)-C(31)—H(31C) H(31A)-C(31)-H(31C) H(3lB)-C(31)-H(31C) C(29)-C(32)-H(32A) C(29)-C(32)-H(323) H(32A)-C(32)-H(3ZB) 120.2307) 119.45(18) 120.1408) 120.4008) 121.7708) 119.1 119.1 118.02(18) 121.7909) 120.1609) 122.0309) 119.0 119.0 119.3908) 119.7108) 120.9008) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 277 C(29)-C(32)-H(32C) H(32A)-C(32)-H(32C) H(323)-C(32)-H(32C) N(6)-C(33)-H(33A) N(6)-C(33)-H(33B) H(33A)-C(33)-H(33B) N(6)-C(33)-H(33C) H(33A)—C(33)-H(33C) H(33B)-C(33)-H(33C) N(6)-C(34)-H(34A) N(6)-C(34)-H(34B) H(34A)—C(34)-H(34B) N(6)-C(34)-H(34C) H(34A)—C(34)-H(34C) H(34B)-C(34)-H(34C) N(5)-C(3S)-H(35A) N(5)-C(35)-H(353) H(35A)-C(35)-H(35B) N(5)-C(35)-H(35C) H(35A)-C(35)-H(35C) H(3SB)-C(35)-H(35C) N(5)-C(36)—H(36A) N(5)-C(36)-H(36B) H(36A)-C(36)-H(36B) N(5)-C(36)-H(36C) H(36A)-C(36)-H(36C) H(36B)-C(36)-H(36C) C(IS)-C1(1S)-C(1S)#l C1(IS)-C(1S)-CI(IS)#1 C1(IS)-C(IS)-C(IS)#1 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 629(3) 117.1(3) 591(3) C1(IS)#l—C(lS)-C(IS)#I 58.0(3) 278 Cl(lS)-C(1S)-H(1SA) 108.0 C1(IS)#1-C(1S)-H(ISA) 108.0 C(1S)#1-C(lS)-H(ISA) 126.4 C1(IS)-C(1S)-H(1SB) 108.0 Cl(1S)#1-C(1S)-H(ISB) 108.0 C(1S)#1-C(IS)-H(ISB) 126.4 H(ISA)-C(1S)-H(1SB) 107.3 Table A6.4 Anisotropic displacement parameters (A2 X 103) for Ti(dap3-mes)2(NMe2)2. The anisotropic displacement factor exponent takes the form: —2 pi2 [ h2 a"‘2 U11 + + 2 h k a* 15* 1112 ] ull u22 u33 U23 ul3 1112 Ti(l) 22(1) 22(1) 23(1) -2(1) 7(1) 0(1) N(l) 24(1) 26(1) 22(1) -3(1) 6(1) 1(1) N(2) 31(1) 26(1) 27(1) 1(1) 7(1) 4(1) N(3) 25(1) 27(1) 28(1) -2(1) 9(1) -1(1) N(4) 31(1) 25(1) 33(1) -2(1) 11(1) 3(1) N(5) 27(1) 28(1) 25(1) -3(1) 8(1) 0(1) N(6) 31(1). 26(1) 31(1) -3(1) 11(1) -1(1) C(1) 23(1) 29(1) 22(1) —1(1) 5(1) 1(1) C(2) 24(1) 24(1) 25(1) -2(1) 8(1) -2(1) C(3) 29(1) 26(1) 24(1) —3(1) 9(1) 1(1) C(4) 27(1) 25(1) 23(1) -2(1) 8(1) -l(1) C(5) 32(1) 29(1) 23(1) -2(1) 6(1) 2(1) C(6) 55(1) 32(1) 34(1) 2(1) 20(1) -5(1) C(7) 42(1) 48(1) 34(1) 2(1) 3(1) 17(1) C(8) 25(1) 23(1) 24(1) -5(1) 5(1) -1(1) C(9) 28(1) 26(1) 24(1) -4(1) 7(1) -2(1) 279 C(10) C(1 1) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(27) C(28) C(29) C(30) C(31) C(32) C(33) C(34) C(35) C(36) C1(1S) C(lS) 37(1) 30(1) 25(1) 27(1) 33(1) 35(1) 45(1) 27(1) 26(1) 28(1) 24(1) 29(1) 38(1) 48(1) 25(1) 27(1) 31(1) 34(1) 32(1) 26(1) 42(1) 61(2) 42(1) 32(1) 50(1) 39(1) 40(1) 102(1) 86(4) 26(1) 26(1) 28(1) 23(1) 35(1) 35(1) 42(1) 28(1) 31(1) 37(1) 31(1) 32(1) 40(1) 30(1) 30(1) 33(1) 36(1) 31(1) 33(1) 35(1) 40(1) 33(1) 46(1) 39(1) 28(1) 35(1) 41(1) 106(1) 51(3) 24(1) 28(1) 31(1) 26(1) 39(1) 33(1) 39(1) 27(1) 27(1) 38(1) 30(1) 35(1) 44(1) 52(1) 32(1) 30(1) 32(1) 41(1) 34(1) 30(1) 31(1) 51(1) 34(1) 44(1) 49(1) 28(1) 27(1) 72(1) 57(3) 1(1) -4(1) -5(1) -4(1) 7(1) 3(1) 6(1) -4(1) -1(1) -2(1) -2(1) -1(1) 3(1) 40(1) -3(1) -2(1) -70) -5(1) 4(1) -2(1) 0(1) 5(1) 0(1) 9(1) -2(1) 4(1) -3(1) -8(1) 8(3) 7(1) 3(1) 8(1) 7(1) 17(1) 14(1) 7(1) 9(1) 7(1) 15(1) 10(1) 14(1) 10(1) 24(1) 13(1) 12(1) 8(1) 16(1) 14(1) 10(1) 9(1) 12(1) 2(1) 13(1) 18(1) 10(1) 5(1) 35(1) 35(3) 4(1) 2(1) 2(1) -2(1) 4(1) -1(1) 13(1) -1(1) 5(1) -20) 1(1) 3(1) 11(1) 2(1) -3(1) 0(1) -30) -3(1) 1(1) 4(1) 0(1) 40(1) -2(1) -9(1) -4(1) 1(1) -3(1) -240) 25(3) Table A6.5 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for T1(dap3 'mes)2(NMe2)2 x y z U(eq) H(l) 4174 9381 4069 30 H(3) 3785 8604 1656 31 H(5A) 2268 9702 842 34 H(53) 1416 9398 1324 34 H(6A) 2586 10898 774 58 H(6B) 3333 10825 1746 58 H(6C) 2439 11453 1498 58 H(7A) 547 1 1 150 1 120 65 H(7B) 173 10325 1 150 65 H(7C) 719 10584 416 65 H00) 5794 7031 4943 35 H02) 7534 7645 3327 33 H(14A) 7034 8673 2437 51 H043) 5918 9089 2371 51 H(14C) 5919 8363 1828 51 H(15A) 3953 7354 4667 50 H053) 3399 7910 3912 50 H(15C) 4103 8208 4828 50 H(16A) 7573 6559 5178 64 H063) 8396 6959 4741 64 H(16C) 7658 6308 4248 64 H07) 1171 8759 2395 32 H09) 4219 9118 3545 40 H(21A) -782 10645 3776 37 H(213) 384 10451 4413 37 H(22A) 559 10889 2213 61 H(223) 4 1 1672 2294 61 281 1K22C) r0234) r8233) FK23C) 1K26) 1H28) 1H3OA) PK30B) 1K30C) 1K3LA) PK31B) 1H31C) 1K32A) 1K32B) IK32C) IK33A) 10333) 1K33C) IK34A) 1u343) 1K34C) 1K35A) 13353) 1K35C) 1K36A) IK368) IK36C) IKISA) 1H1SB) -961 963 1259 37 -2077 -219 -1024 ~1875 -2218 -957 -2167 -1808 761 436 1400 4306 4172 4209 2629 1721 2932 3008 2022 1803 2648 3151 3784 573 324 11520 12113 11569 11844 6841 6285 8378 8674 8039 5367 5626 5482 7129 7966 7644 11441 10842 11683 12435 12132 12263 9313 9180 9547 10704 11169 10474 4267 4903 2735 3715 4520 4138 1269 3630 991 1476 777 2207 1741 2760 4608 4459 4114 3127 3809 4058 3453 2635 2573 5100 4257 5093 5567 4931 5413 4728 4080 61 62 62 62 40 39 57 57 57 73 73 73 63 63 63 57 57 57 62 62 62 51 51 51 55 55 55 74 74 1‘0 00 1Q Table A6.6 Torsion angles (°) for Ti(dap3-mes)2(NMe2)2 N(5)-Ti(1)-N(1)-C(1) N(6)-Ti(l)—N(1)-C(l) N(3)-Ti(1)-N(1)-C(1) N(4)-Ti(1)-N(1)-C(1) N(2)-Ti(1 )-N(1 )-C( 1) N(5)-Ti(1)-N(1)-C(4) N(6)-Ti(l)-N(1)-C(4) N(3)-Ti(1)-N(l)-C(4) N(4)-Ti(1)-N(1)-C(4) N(2)-Ti(1)-N(1)-C(4) N(5)-Ti(l)-N(2)-C(7) N(6)-Ti(1)-N(2)-C(7) N(1)-Ti(1)-N(2)-C(7) N(3)-Ti(1)-N(2)-C(7) N(4)-Ti(1)-N(2)-C(7) N(5)-Ti(1)-N(2)-C(6) N(6)-Ti(1)-N(2)-C(6) N(1)-Ti(1)-N(2)-C(6) N(3)-Ti(1)-N(2)-C(6) N(4)-Ti(1)-N(2)-C(6) N(5)-Ti(1)-N(2)-C(5) N(6)-Ti(1)-N(2)-C(5) N(1)-Ti(1)-N(2)-C(5) N(3)-Ti(1)-N(2)-C(5) N(4)-Ti(1 )-N(2)-C(5) N(5)-Ti(1)-N(3)-C(20) N(6)-Ti(1)-N(3)-C(20) N(1)-Ti(1)-N(3)-C(20) N(4)-Ti(l)-N(3)-C(20) -10.30(l6) 91.1606) 403.6506) 413.3(2) 172.5107) 159.2804) 99.2604) 65.93(14) 563(3) 47.9103) 139.2(2) 402.6005) 149.71(16) 5640(15) 44.1705) 960(2) 22.2103) 85.4803) -l78.79(13) 110.64(12) 19.0(3) 137.2102) 29.5301) 53.7901) 4 34.360 1) 61.4804) 550(2) 1549004) -279203) 283 N(2)-Ti(l)-N(3)-C(20) N(5)-Ti(1)-N(3)-C(17) N(6)-Ti(1)-N(3)-C(17) N(l)-Ti(1)-N(3)-C(17) N(4)-Ti(l)-N(3)-C(17) N(2)-Ti(1)-N(3)-C(17) N(5)-Ti(1)-N(4)-C(22) N(6)-Ti(1)-N(4)-C(22) N(1)-Ti(l)-N(4)-C(22) N(3)-Ti(l)-N(4)-C(22) N(2)-Ti(l)—N(4)-C(22) N(5)-Ti(l)-N(4)-C(21) N(6)-Ti(l)-N(4)-C(21) N(l)-Ti(l)-N(4)-C(21) N(3)-Ti(1)-N(4)-C(21) N(2)-Ti(l)-N(4)-C(21) N(5)-Ti(l)-N(4)-C(23) N(6)-Ti(1)-N(4)-C(23) N(1)-Ti(1)-N(4)-C(23) N(3)-Ti(l)-N(4)—C(23) N(2)-Ti(1)-N(4)-C(23) N(6)-Ti(l)-N(5)-C(3S) N(1)-Ti(1)-N(5)-C(35) N(3)-Ti(1)-N(5)-C(35) N(4)-Ti(l)—N(5)-C(35) N(2)-Ti(1)-N(5)-C(35) N(6)-Ti(1)-N(5)-C(36) N(1)-Ti(1)-N(5)-C(36) N(3)-Ti(l)-N(5)-C(36) N(4)-Ti(1)-N(5)-C(36) N(2)-Ti(1)-N(5)-C(36) 4339404) 92.1207) 141.4108) 1.3007) 178.48(18) 72.4606) 470.9704) 8895(14) 57.6(3) -77.68(14) 2.1305) 5430(12) 454.3802) 491(3) 38.99(11) 118.8001) 61.0704) -39.0l(14) 164.4709) 154.3605) 425.8303) -l69.64(14) 52.9904) 2861(15) 101.1504) 53.0(3) 7.8007) 114.4506) 453.9506) 81.4106) 124.5(2) 284 N(5)-Ti(1)-N(6)-C(34) N(1)-Ti(1)-N(6)—C(34) N(3)-Ti(1)-N(6)-C(34) N(4)-Ti(1)-N(6)-C(34) N(2)-Ti(1)-N(6)-C(34) N(5)-Ti(1)-N(6)-C(33) N(1)-Ti(1)-N(6)-C(33) N(3)-Ti(1)-N(6)-C(33) N(4)-Ti(1)-N(6)-C(33) N(2)-Ti(1)-N(6)-C(33) C(4)-N(1)-C(1)-C(2) Ti(1)-N(1)-C(1)-C(2) N(1)—C(1)-C(2)-C(3) N(1)-C(1)-C(2)-C(8) C(1)—C(2)-C(3)—C(4) C(3)-C(2)-C(3)-C(4) C(2)-C(3)-C(4)-1\l(1 ) C(2)-C(3)-C(4)-C(5) C(1)-N(1)-C(4)-C(3) Ti(1)-N(1)-C(4)-C(3) C(1)-N(1)-C(4)-C(5) Ti(l)—N(1)-C(4)-C(5) C(7)-N(2)-C(5)-C(4) C(6)-N(2)-C(5)-C(4) Ti(l)-N(2)-C(5)-C(4) C(3)-C(4)-C(5)-N(2) N(1)-C(4)-C(5)-N(2) C(1)-C(2)-C(3)-C(9) C(3)-C(2)-C(8)-C(9) C(1)-C(2)—C(8)-C(13) C(3)-C(2)-C(8)-C(13) 426.0(2) 137.6309) 06(3) 5570) 679(2) 60.8204) -35.59(14) 473.8205) 151.0803) 405.3303) 010) 170.9202) 07(2) 477.3506) 4.0(2) 176.9207) 1.0(2) 472.4209) -0.6(2) 472.2802) 173.8706) 2.2(2) 463.6306) 78.96(18) -36.66(16) 458.9309) 280(2) 529(3) 424.7(2) 425.7(2) 567(3) C(13)-C(8)-C(9)-C(10) C(2)-C(8)-C(9)—C(10) C(13)-C(8)-C(9)-C(15) C(2)-C(8)-C(9)-C(15) C(8)-C(9)-C(10)-C(1 1) C(15)-C(9)-C(10)-C(1 1) C(9)-C(10)-C(1 1)-C(12) C(9)-C(10)-C(1 1)-C(16) C(10)-C(1 1)-C(12)-C(1 3) C(16)-C(l 1)-C(12)-C(13) C(1 1)-C(12)-C(13)—C(8) C(1 1)-C(12)-C(13 )-C(14) C(9)-C(8)-C(13)-C(12) C(2)-C(8)-C(13)-C(12) C(9)-C(8)—C(13)-C(14) C(2)-C(8)-C(13)-C(14) C(20)-N(3)-C(17)—C(18) Ti(1)-N(3)-C(17)-C(I8) N(3)-C(17)—C(18)—C(19) N(3)-C(17)-C(18)-C(24) C(17)—C(18)—C(19)-C(20) C(24)-C(18)-C(19)-C(20) C(18)-C(19)—C(20)—N(3) C(18)—C(19)-C(20)-C(21) C(17)-N(3)-C(20)-C(19) Ti(l)-N(3)—C(20)-C(19) C(17)-N(3)-C(20)-C(21) Ti(l)-N(3)-C(20)-C(21) C(22)-N(4)—C(21)-C(20) C(23)-N(4)-C(21)-C(20) Ti(1)-N(4)-C(21)-C(20) 286 2.2(3) 4763306) 4767707) 4.7(3) 4.0(3) 178.08(17) .040) 478.8008) 04(3) 1788508) 09(3) 479.7407) -2.2(3) 176.3406) 178.44(17) -3.0(3) 1.0(2) 156.88(14) -0.6(2) 180.00(17) 00(2) 179.4108) 0.6(2) 469.8(2) 59(2) 461.2703) 171.00(16) 107(2) 77.4209) -166.31(16) 4538(16) C(19)-C(20)—C(21)—N(4) N(3)-C(20)-C(21)-N(4) C(17)-C(18)-C(24)-C(29) C(19)-C(l8)-C(24)-C(29) C(17)-C(18)-C(24)-C(25) C(19)-C(18)-C(24)-C(25) C(29)-C(24)-C(25)-C(26) C(18)-C(24)-C(25)-C(26) C(29)-C(24)-C(25)-C(30) C(18)—C(24)-C(25)-C(30) C(24)-C(25)-C(26)—C(27) C(30)-C(25)-C(26)—C(27) C(25)-C(26)-C(27)-C(28) C(25)-C(26)-C(27)-C(31) C(26)-C(27)-C(28)-C(29) C(31)-C(27)-C(28)-C(29) C(27)-C(28)-C(29)—C(24) C(27)-C(28)-C(29)-C(32) C(25)-C(24)-C(29)-C(28) C(18)-C(24)-C(29)-C(28) C(25)-C(24)-C(29)-C(32) C(18)-C(24)-C(29)-C(32) C(IS)#1-C1(lS)-C(IS)-CI(IS)#1 -161.7(2) 28.4(2) 94.3(2) 849(2) 871(2) 93.7(2) 1.0(3) 4 7752(17) 478.2107) 3.2(3) 55(3) 1787208) 5.20) -178.08(19) 05(3) 178.3909) 0.0(3) 479.7008) -0.8(3) 177.7907) 178.9108) -2.5(3) 0.0 Table A7.1 Crystal data for V(NNMe2)(TIP)(dmpe)(I) (49) Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Z Density (calculated) Absorption coefficient F (000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 2500" Absorption correction Refinement method Data / restraints / parameters Goodness-of-fit on F2 Final R indices [I>23igma(l)] R indices (all data) Largest diff. peak and hole odomsb920_0m C21H311N3 OP2SV 613.33 173(2) K 0.71073 A Orthorhombic Pbca a = 10.8685(2) A a= 90°. b = 18.3385(3) A b= 90°. c = 26.2108(5) A g = 90°. 5224.13(16) A3 8 1.560 Mg/m3 1.782 mm-1 2464 0.28 x 0.12 x 0.10 mm3 2.22 to 2790°. —12<=h<=14, —24<=k<=24, —31<=l<=33 67170 6199 [R(int) = 0.0556] 100.0 % None F ull-matrix least-squares on F2 6199 / 0 / 277 1.019 R1 = 0.0325, wR2 = 0.0627 R1 = 0.0566, wR2 = 0.0701 0.689 and 5.471 e.A-3 288 Table A7.2 Atomic coordinates (X 104) and equivalent isotropic displacement parameters (A2 X 103) for V(NNMe2)(TIP)(dmpe)(I). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor x y z U(eq) v0) 7765(1) 4141(1) 3509(1) 22(1) s0) 8030(1) 5259(1) 3094(1) 29(1) P(1) 7387(1) 4955(1) 4262(1) 29(1) 3(2) 7751(1) 3304(1) 4266(1) 29(1) 0(1) 8064(2) 3256(1) 3147(1) 26(1) N(l) 6231(2) 4125(1) 3388(1) 25(1) N(2) 5130(2) 4083(1) 3203(1) 36(1) N(3) 9749(2) 4223(1) 3497(1) 23(1) C(1) 9483(2) 5494(1) 3342(1) 26(1) C(2) 9885(3) 6216(1) 3371(1) 33(1) C(3) 10986(3) 6381(2) 3606(1) 37(1) C(4) 11702(3) 5833(2) 3814(1) 33(1) C(5) 11327(2) 5111(1) 3782(1) 28(1) C(6) 10222(2) 4945(1) 3544(1) 24(1) C(7) 10530(2) 3710(1) 3392(1) 25(1) C(8) 10208(2) 2978(1) 3250(1) 24(1) C(9) 11147(3) 2458(1) 3188(1) 33(1) C(10) 10898(3) 1769(1) 3015(1) 35(1) C(11) 9693(3) 1584(1) 2891(1) 32(1) C(12) 8754(3) 2080(1) 2941(1) 29(1) C(13) 8990(2) 2786(1) 3121(1) 24(1) C(14) 4677(3) 3368(2) 3052(1) 51(1) C(15) 4278(3) 4683(2) 3263(2) 54(1) C(16) 6605(4) 4428(2) 4757(1) 57(1) C(17) 7287(4) 3746(2) 4857(1) 65(1) C(18) 6357(3) 5716(2) 4177(1) 57(1) 289 C(19) C(20) C(21) 1( 1) 8688(3) 6690(3) 9183(3) 1920(1) 5351(2) 2558(2) 2858(2) 8379(1) 4581(1) 4189(1) 4440(1) 4394(1) 49(1) 43(1) 52(1) 36(1) Table A7.3 Bond lengths (A) and angles (°) for V(NNMe2)(TIP)(dmpe)(I) V(1)-N(1) V(1)-0(1) V(1)-N(3) v0)-s0) V(1)—P(2) V(1)-P(1) 8(1)-C(1) P(1)-C(19) P(l)-C(18) P(l)—C(16) P(2)-C(20) P(2)-C(21) P(2)-C(17) 0(1)-C(13) N(1)-N(2) N(2)-C(15) N(2)-C(14) N(3)-C(7) N(3)-C(6) C(1)-C(6) C(1)-C(2) C(2)-C(3) 1.698(2) 1.9081(17) 2.162(2) 2.3383(8) 2.5079(8) 2.5078(8) 1.761(3) 1.796(3) 1.803(3) 1.827(3) 1.801(3) 1.817(3) 1.820(3) 1.328(3) 1.293(3) 1.447(4) 1.455(4) 1.298(3) 1.425(3) 1.393(4) 1.396(4) 1.380(4) 290 C(2)-H(2) C(3)-C(4) C(3)-H(3) C(4)-C(5) C(4)-H(4) C(5)-C(6) C(5)-11(5) C(7)-C(3) C(7)-H(7) C(8)-C(9) C(8)-C(13) C(9)-C(10) C(9)-H(9) C(10)-C(1 1) C(10)-H(10) C(1 l)-C(12) C(1 1 )-H(l 1) C(12)-C(13) C(12)-H(12) C(14)-H(14A) C(14)-H(14B) C(14)-H(14C) C(15)-H(15A) C(15)-H(ISB) C(15)-H(15C) C(16)-C(17) C(16)-H(16A) C(16)—H(16B) C(17)—H(17A) C(17)-H(17B) C(18)-H(18A) 0.9300 1.382(4) 0.9300 1.389(4) 0.9300 1.387(4) 0.9300 1.437(3) 0.9300 1.405(3) 1.41 1(4) 1.370(4) 0.9300 1.392(4) 0.9300 1.373(4) 0.9300 1.402(4) 0.9300 0.9600 0.9600 0.9600 0.9600 0.9600 0.9600 1.477(5) 0.9700 0.9700 0.9700 0.9700 0.9600 C(18)-H083) 0.9600 C(18)-H(18C) 0.9600 C(19)-H(19A) 0.9600 C(19)-H(19B) 0.9600 C(19)-H(19C) 0.9600 C(20)-H(20A) 0.9600 C(20)-H(203) 0.9600 C(20)-H(20C) 0.9600 C(21)-H(21A) 0.9600 C(21)-H(213) 0.9600 C(21)-H(21C) 0.9600 N(l)-V(1)-O(1) 9340(9) N(1)-V(1)-N(3) 167.99(9) O(1)-V(1)-N(3) 8322(8) N(1)-V(1)—S(1) 9279(8) 0(1)-v0)—s0) 119.53(6) N(3)-V(1)-S(1) 7903(6) N(1)-V(1)-P(2) 9755(8) O(1)-V(1)-P(2) 8274(6) N(3)-V(1)-P(2) 9346(6) S(1)-V(1)-P(2) 154.89(3) N(1)-V(1)-P(1) 8981(8) 0(1)-v0)4>0) 15776(6) N(3)-V(1)-P(l) 9769(6) S(1)-V(1)-P(l) 8223(3) P(2)-V(1)-P(1) 7502(3) C(1)-S(1)-V(1) 9882(9) C(19)-P(1)-C(18) 103.56(17) C(19)—P(1)—C(16) 104.4708) C(18)-P(1)-C(16) 102.0808) 292 C(19)-P(1)—V(1) C(18)-P(1)—V(1) C(16)-P(1)-V(1) C(20)-P(2)-C(21) C(20)-P(2)-C(17) C(21)-P(2)-C(17) C(20)-P(2)-V(1) C(21)-P(2)-V(1) C(17)-P(2)-V(1) C(13)-O(1)-V(1) N(2)-N(1)-V(1) N(1)-N(2)-C(15) N(1)-N(2)-C(14) C(15)-N(2)—C(14) C(7)-N(3)-C(6) C(7)-N(3)-V(1) C(6)-N(3)-V(1) C(6)-C(1)—C(2) C(6)-C(1)-S(1) C(2)-C(1)-S(l) C(3)-C(2)—C(1) C(3)-C(2)-H(2) C(1)-C(2)-H(2) C(2)-C(3)-C(4) C(2)-C(3)-H(3) C(4)-C(3)-H(3) C(3)-C(4)-C(5) C(3)-C(4)-H(4) C(5)-C(4)-H(4) C(6)-C(5)-C(4) C(6)-C(5)-H(5) 118.510 1) 117.69(11) 108.6201) 103.5606) 104.8507) 102.9009) 112.3901) 117.9900) 113.7301) 135.0106) 168.5(2) 120.3(2) 118.0(2) 119.9(2) 117.1(2) 127.2507) 115.0506) 119.0(2) 1 18.70(19) 122.2(2) 120.3(3) 119.9 119.9 120.3(3) 119.9 119.9 120.3(3) 119.8 119.8 119.4(3) 120.3 293 C(4)-C(5)-H(5) C(5)-C(6)-C(1) C(5)-C(6)-N(3) C(1)-C(6)-N(3) N(3)-C(7)-C(8) N(3)-C(7)-H(7) C(8)-C(7)-H(7) C(9)-C(8)-C(13) C(9)-C(8)-C(7) C(13)-C(8)-C(7) C(10)-C(9)-C(8) C(10)-C(9)-H(9) C(8)-C(9)-H(9) C(9)-C(10)—C(l 1) C(9)-C(10)-H(10) C(1 1)-C(10)-H(10) C(12)-C(11)-C(10) C(12)-C(11)-H(1 1) C(10)-C(11)-H(11) C(11)-C(12)-C(13) C(11)-C(12)-H(12) C(13)-C(12)-H(12) O(l)-C(13)-C(12) O(1)-C(13)-C(8) C(12)-C(13)-C(8) N(2)-C(14)-H(14A) N(2)-C(14)-H(14B) H(14A)-C(14)-H(14B) N(2)-C(14)-H(14C) H(14A)-C(14)-H(14C) H(14B)-C(l4)—H(14C) 120.3 120.8(2) 123.7(2) 115.5(2) 125.0(2) 117.5 117.5 119.0(2) 119.1(2) 121.6(2) 121.4(3) 119.3 119.3 119.2(3) 120.4 120.4 121.0(3) 119.5 119.5 120.5(3) 119.7 119.7 118.6(2) 122.5(2) 118.9(2) 109.5 109.5 109.5 109.5 109.5 109.5 N(2)-C(15)-H(15A) N(2)-C(15)-H(ISB) H(15A)-C(15)-H(15B) N(2)-C(15)-H(15C) H0 5A)-C(15)-H(15C) H0 SB)-C(15)-H(15C) C(17)-C(16)-P(1) C(17)-C(16)-H(16A) P(1)-C(16)-H(16A) C(17)-C(16)-H(16B) P(1)-C(16)-H(16B) H(16A)-C(16)-H(16B) C(16)-C(17)-P(2) C(16)-C(17)-H(17A) P(2)-C(17)-H(17A) C(16)—C(17)-H(17B) P(2)-C(17)-H(17B) H(17A)-C(17)—H(17B) P(l)-C(18)-H(18A) P(1)-C(18)-H(18B) H(18A)-C(18)-H(ISB) P(1)-C(18)-H(18C) H(18A)-C(l8)-H(18C) H(18B)-C(18)-H(18C) P(1)-C(l9)-H(19A) P(1)-C(l9)-H(I9B) H(l9A)-C(19)-H(19B) P(1)-C(19)-H(19C) H(19A)-C(19)-H(19C) H(19B)-C(19)-H(19C) P(2)-C(20)-H(20A) 109.5 109.5 109.5 109.5 109.5 109.5 1 10.0(2) 109.7 109.7 109.7 109.7 108.2 111.4(2) 109.4 109.4 109.4 109.4 108.0 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 295 P(2)-C(20)-H(ZOB) 109.5 H(20A)-C(20)-H(203) 109.5 P(2)-C(20)-H(20C) 109.5 H(20A)-C(20)-H(20C) 109.5 H(203)-C(20)-H(20C) 109.5 P(2)-C(21)-H(21A) 109.5 P(2)-C(21)-H(ZIB) 109.5 H(21A)-C(21)-H(2IB) 109.5 P(2)-C(21)-H(21C) 109.5 H(21A)-C(21)-H(21C) 109.5 H(21B)-C(21)—H(21C) 109.5 Table A7.4 Anisotropic displacement parameters (A2 X 103) for V(NNMe2)(TIP)(dmpe)(I). The anisotropic displacement factor exponent takes the form: -—2 p12[h2a*2U11 +...+2hka* 11* 1112] ull u22 {133 {123 1113 ul2 V(l) 19(1) 24(1) 23(1) 0(1) 1(1) 1(1) 8(1) 26(1) 29(1) 33(1) 7(1) 0(1) 4(1) P(l) 31(1) 29(1) 27(1) -2(1) 4(1) 4(1) P(2) 36(1) 27(1) 25(1) 2(1) 1(1) —5(1) 0(1) 21(1) 29(1) 28(1) -4(1) 0(1) 2(1) N(l) 23(1) 29(1) 23(1) 1(1) 1(1) 1(1) N(2) 19(1) 44(2) 44(2) -3(1) -5(1) -1(1) N(3) 22(1) 23(1) 25(1) 1(1) 0(1) 0(1) C(1) 25(1) 29(1) 24(1) 1(1) 7(1) 1(1) C(2) 39(2) 24(1) 35(2) 3(1) 7(1) 3(1) C(3) 45(2) 24(1) 41 (2) -2(1) 9(2) -9(1) C(4) 29(2) 36(2) 35(2) -4(1) 1(1) -6(1) 296 C(5) C(6) C(7) C(8) C(9) C(10) C(1 1) C(12) C(13) C(14) C(15) C(16) C(17) C(18) C(19) C(20) C(21) 1(1) 25(2) 25(1) 21(1) 23(1) 26(2) 39(2) 42(2) 31(2) 26(1) 44(2) 31(2) 74(3) 130(4) 63(2) 37(2) 42(2) 40(2) 41(1) 28(1) 22(1) 28(1) 23(1) 29(1) 25(2) 23(1) 30(2) 26(1) 67(2) 55(2) 49(2) 35(2) 57(2) 74(2) 35(2) 70(2) 40(1) 32(2) 26(2) 26(2) 27(2) 42(2) 40(2) 31(2) 25(2) 20(1) 41(2) 76(3) 47(2) 30(2) 50(2) 37(2) 51(2) 46(2) 28(1) -1(1) -2(1) 1(1) O( 1) 2(1) 4(1) -2(1) -2(1) 2(1) 82(2) 23(2) -7(2) 0(2) 81(2) 81(2) 5(2) 34(2) 3(1) 5(1) 5(1) -3(1) -1(1) 4(1) 1(1) 4(1) 3(1) 2(1) 0(2) 42(2) 32(2) 27(2) 41(2) 0(2) 0(2) -6(2) 0(1) 0(1) -2(1) 0(1) 1(1) 4(1) 9(1) -2(1) -5(1) 1(1) 49(2) 7(2) -5(2) 4(2) 31(2) 0(2) -8(1) -7(2) 41(1) Table A7.5 Hydrogen coordinates (X 104) and isotropic displacement parameters (A2 X 103) for V(NNMe2)(TIP)(dmpe)(I) y 2 U(€61) H(2) 9410 6587 3230 39 H(3) 1 1247 6863 3626 44 H(4) 12438 5949 3975 40 H(5) 11812 4742 3919 34 H0) 11363 3824 3410 30 H(9) H00) H0 1) H02) H(14A) H(14B) H(14C) H(15A) H053) H(15C) H(16A) H063) H(17A) H073) H(18A) H083) H(18C) H(19A) H093) H09C) H(20A) H(203) H(20C) H(21A) H(213) H(21C) 11953 11528 9521 7955 5348 4068 4317 3815 3726 4727 6554 5775 6772 8012 6279 5564 6679 9032 9298 8430 6735 6900 5869 9072 9816 9418 2584 1429 1117 1946 3080 3423 3129 4618 4695 5133 4713 4313 3416 3854 5977 5540 6036 5729 4981 5553 2244 2286 2745 2596 3218 2524 3267 2980 2772 2854 2924 2790 3341 3572 2977 3280 5068 4647 5052 5059 4492 4072 3919 4372 4640 4901 4481 3888 4156 4754 4483 4176 39 42 38 35 76 76 76 81 81 81 68 68 78 78 85 85 85 74 74 74 64 64 64 78 78 78 298 Table A7.6 Torsion angles (°) for V(N'NMe2)(TIP)(dmpe)(I) N(1)-V(1)-S(1)-C(l) O(1)-V(1)-S(1)—C(1) N(3)-V(1)-S(1)-C(1) P(2)-V(1)-S(1)-C(1) P(1)-V(l)-S(l)-C(1) N(1)-V(1)-P(l)—C(19) O(l)-V(1)-P(1)-C(l9) N(3)-V(1)-P(l)—C(l9) S(1)—V(1)-P(1)-C(19) P(2)-V(l)-P(1)—C(19) N(1)-V(1)-P(l)-C(18) O(1)-V(l)-P(1)-C(18) N(3)-V(1)-P(1)—C(18) S(1)-V(1)—P(I)-C(18) P(2)-V(1)-P(l)-C(18) N(1)-V(1)-P(1)—C(16) O(1)-V(1)-P(1)-C(16) N(3)-V(1)—P(1)-C(16) S(1)-V(l)—P(1)-C(16) P(2)-V(l)-P(l)-C(16) N(1)-V(1)-P(2)-C(20) O(l)-V(1)-P(2)—C(20) . N(3)-V(1)-P(2)-C(20) S(1)-V(1)-P(2)-C(20) P(1)-V(1)-P(2)-C(20) N(1)—V(1)-P(2)-C(21) O(1)-V(1)-P(2)-C(21) N(3)-V(1)-P(2)-C(21) S(1)-V(1)-P(2)-C(21 ) 163.5201) 400.9901) -25.34(11) 49.0602) 7410(9) 471.6106) 899(2) 4.0205) -78.77(14) 9052(14) 45.7107) 444.2(2) 124.8706) 47.1305) 443.5806) 69.5106) 890(2) 419.9005) 162.3504) 8836(14) 3893(14) -53.56(13) -l36.27(13) 152.4103) 126.6902) 159.3406) 6685(15) 45.8605) -87.18(16) P(1 )-V( 1 )-P(2)-C(2 1) N(l)-V(1)-P(2)-C(17) O(l)-V(1)-P(2)-C(17) N(3)-V(1)-P(2)-C(17) S(1)-V(l)-P(2)-C(17) P(1)-V(l)-P(2)-C(17) N(1)-V(1)-O(1)-C(13) N(3)-V(1)—O(1)-C(13) S(1)-V(l)-O(1)-C(l3) P(2)-V(1)-0(1)-C(13) P(1)-V(l)-O(1)-C(l3) O(1)-V(1)-N(1)-N(2) N(3)-V(1)-N(1)-N(2) S(1)-V(l)-N(l)—N(2) P(2)-V(1)-N(1)-N(2) P(1)-V(1)-N(1)-N(2) V(l)-N(1)-N(2)-C(15) V(l)-N(1)-N(2)-C(14) N(1)-V(1)-N(3)-C(7) O(l)-V(1)-N(3)-C(7) S(1)-V(1)-N(3)-C(7) P(2)—V(1)-N(3)-C(7) P(1)-V(1)-N(3)-C(7) N(l)-V(1)-N(3)-C(6) O(1)-V(1)-N(3)-C(6) S(1)-V(1)-N(3)-C(6) P(2)-V(1)—N(3)-C(6) P(1)-V(1)-N(3)—C(6) V(1)-S(1)-C(1)—C(6) V(1)-S(l)-C(1)-C(2) C(6)-C(1)—C(2)-C(3) 4 12.9004) -80.01(18) -172.49(18) 104.8008) 3348(19) 776(17) 465.1(2) 265(2) 99.8(2) 579(2) 573(3) 45.9(10) 27.3(13) 74.000) 429.0(10) 156.2(10) 425.5(9) 69.5(11) 894(5) 45.1(2) 437.0(2) 671(2) 142.5(2) 81.6(5) 155.8508) 3394(16) 421.8907) 4656(17) 203(2) 455.8(2) 4 5(4) 300 S(1)-C(1)-C(2)-C(3) C(1)-C(2)-C(3)-C(4) C(2)-C(3)-C(4)-C(5) C(3)-C(4)-C(5)-C(6) C(4)-C(5)-C(6)-C(1) C(4)-C(5)-C(6)-N(3) C(2)-C(1)-C(6)-C(5) S(1)-C(1)-C(6)-C(5) C(2)-C(1)-C(6)-N(3) S(1)—C(1)-C(6)-N(3) C(7)-N(3)-C(6)-C(5) V(1)-N(3)-C(6)-C(5) C(7)-N(3)-C(6)-C(1) V(1)-N(3)-C(6)-C(1) C(6)-N(3)-C(7)-C(8) V(1)-N(3)-C(7)-C(8) N(3)-C(7)-C(8)-C(9) N(3)-C(7)-C(8)-C(13) C(13)-C(8)-C(9)-C(10) C (7)-C(8)-C(9)-C(1 0) C(8)-C(9)-C(lO)—C(1 1) C(9)-C(10)-C(1 1)-C(12) C(10)-C(11)-C(12)-C(13) V(1)-O(1)-C(13)—C(12) V(l)-O(1)-C(13)-C(8) C(11)-C(12)-C(13)-O(1) C(1 1 )-C(12)-C(13)-C(8) C(9)-C(8)-C(13)-O(1) C(7)-C(8)-C(13)-O(1) C(9)-C(8)-C(13)-C(12) C(7)-C(8)-C(13)-C(12) 174.6(2) 03(4) 07(4) 5.5(4) 5.7(4) 479.1(2) 1.7(4) 474.5(2) 479.7(2) 4.1(3) 404(4) 147.7(2) 141.1(2) -30.8(3) 169.3(2) 15(4) 474.6(3) 1 1.7(4) 4 0(4) 474.9(3) 08(4) 5.1(4) 5.3(4) 160.1 1(19) 825(4) 177.7(2) 02(4) 4769(2) 52(4) 05(4) 174.2(2) 301 C(19)—P(1)-C(16)-C(17) C(1 8)-P(l)-C(16)-C(17) V(l)-P(1)-C(16)-C(l7) P(l)-C(16)-C(17)-P(2) C(20)-P(2)-C(17)-C(16) C(21)-P(2)-C(17)-C(16) V(1)-P(2)—C(17)-C(16) 45.9(3) 176.4(3) 515(3) -44.8(4) 403.4(3) 148.6(3) 198(3) 302 APPENDIX B Kinetic reaction plots Figure B1.1 Kinetic plot for Run 1 with 10% Ti(dap)2(NMe2)2 (l). 601 1 Exp 918 J 50- 10% Ti(dap)2(NMe2)2 W 1" 4O ‘ a Data: Data1_B . If" Model: myeqn1 _ .X‘ Weighting: 17.”, 3O 7 y No weighting 3. - " Chi"2/DoF = 0.91855 5° 20_ n!" R42 = 0.99695 9’ yO 0301921057604 ,‘ yinf 56955621061079 1° ‘ ‘4 k 0005041000017 min'1 0 I‘ k 0.84E-4s'1 ' 1 ' 1 ' I ' t ' I ' lfi' 0 100 200 300 400 500 600 time (min) 303 Figure 81.2 Kinetic plot for Run 2 with 10% Ti(dap)2(NMe2)2 (l). 10% Ti(dap)2(NMe2)2 , 50- Data: Data1_B Model: myeqn1 45 _ Weighting: U /- . . T2 /' y No welghtlng '3 40 1,..-' Chl42/ool: =O.36175 o\ ‘ .9 R42 = 0.99186 .6 yo 28343171040379 35 If yinf 556821025831 _ / _ 4 q” k 000552100002 min 1 I1" -1 30_ k 0.9254 s l I I l I I r I 0 100 200 300 400 500 600 time (min) Figure B1.3 Kinetic plot for Run 3 with 10% Ti(dap)2(NMez)2 (l). 55- Exp 929 50 _ 10% Ti(dap)2(NMe2)2 45- ‘ Data: Data1_B 40 ‘ Model: myeqn1 ' Weighting: 2 35‘ f. y No weighting .g ‘ II Chi"2/DoF = 0.72942 05 30‘ n" R42 = 0.99145 ‘ .1 yo 15.186 :10 25' ,_ yinf 50987571020852 20 .. ". k 000791000017 min”1 . -1 - k 1. E 15_ I 32 -4 s 10 I I I I ' I I ' I 1 0 100 200 300 400 500 600 time (min) 304 Figure B2.l Kinetic plot for run 1 with 10% 36. 70: Exp 934 65 _ 10% Ti(htdrazido) 60 ~ 1 55 1 , Data: Data1_B . I. Model: myeqn1 % 50- I. Weighting: '5. 1 f y No weighting °\° 45 - Chi"2/DoF = 0.05563 ‘ I’ R"2 = 0.99958 40 7 ." yO -1.37066 1051344 ‘ p” yinf 71.6871 10.16031 35 - i _1 ~ i k 0.00606 min 10.00007 30: ' l< 1.01E-4 s'1 25 I r I I I ' 1 1 00 200 300 400 500 600 time (min) Figure 82.2 Kinetic plot for run 2 with 36. 80 - Exp 938 10% Ti(htdrazido) 70 - 60 - Data: Data1_B Model: myeqn1 % 50- 1' Weighting: '3 y No weighting o\° Chi"2lDoF = 0.05563 40 - R"2 = 0.99967 :1 y0 2.52643 10.39247 .i yinf 76.58863 10.17972 30 ' .1" k 0.00534 min'1 10.00005 k 0.89E-4 s'1 20 I T I I I j 0 100 200 300 400 500 600 time (min) 305 Figure 32.3 Kinetic plot for run 3 with 10% 36. 65 ‘ Exp 941 60 _ 10% Ti(hydrazido) 55 - 50 _ Data: Data1_B . Model: myeqn1 E 45 - Weighting: .1; . F. y No weighting °\o 40 - Chi"2/DOF = 0.03185 - R"2 = 0.99975 35 - F yO -1 .19282 10.3297 30 . ." yinf 88.20252 10.11031 . .r' k 0.00606 min'1 10.00005 25 ' " k 1.01E-4 s‘1 20 1 I l I I I I 0 100 200 300 400 500 600 time (min) Figure B3.1 Kinetic plot for run 1 with 36 + 10 MezNNHz reaction. % yield Exp 953 100 ' Ti(hydrazido) + 10 MezNNHZ ;/. 1 /. /,x 90 "" .//. 1 I”. Data: Data1_B 80 _ .r ’ Model: myeqn1 / u / Weighting: 1 p y No weighting )- Chi"2/DoF = 010573 70 ‘ / R"2 = 0.99951 yO 51740181031915 r.” yinf 132.385551277365 6° ‘ / / k 000582100003 min'1 I k 0.94E-4 s'1 50 I I ' I f I ' I ' I ' I ' I 1 I ' I o 20 4o 60 80 100 120 140 150 180 time (min) 306 Figure B3.2 Kinetic plot for run 2 with 36 + 10 MeZNNHz reaction. 100 - EXP 954 a Ti(hydrazido) + 10 MeZNNHz yu} 9” 90 - ,,r’ ,I A i ’ Data: Data1_B 80 " _/ Model: myeqn1 % ,l ' Weighting: ‘3. /' No weighting . Y e" 70 - /' chi42/ooF = 0.60629 f R42 = 0.99778 [I yO 4500011069602 50 1 gr yinf 120664621283257 ,5 k 0006561000046 min‘1 50 - a k 1.09E-4 s‘1 I ' I ' I ' I ' I o 50 100 150 200 time (min) Figure 83.3 Kinetic plot for run 3 with 36 + 10 MeZNNHz reaction. 100 Exp 957 90 -1 l’yi y Data: Data1_B A" Model: myeqn1 1?; 8° 7 ./ Weighting: '5. . .4 ‘ y No weighting °\° ./ Chi"2/DoF = 1.03214 70 - ./ R42 = 0.9936 yO 57.28210 /' yinf 11008981174162 6° ‘ _ k 0007891000047 min‘1 k 1.32E-4 s'1 50 I ' I ' I - I ' I I j 0 50 100 150 200 250 time (min) 307 Figure 84.1 Kinetic plot for run 1 with 36 + 10% Hdap reaction. 80— 70- Exp 966 10% Ti(hydrazido) + 10% Hdap Data: Data1_B Model: myeqn1 ‘, Weighting: p y No weighting ." Chi"2/DoF = 1.43309 . :’ R42 = 0.99431 . yO 14.44110 .5 yinf 75628391032089 5 k 0007161000013 min'1 1 ' k 1.19E-4 s' r ' I ' I I ' I I r 7 o 100 200 300 400 500 600 time (min) Figure 84.2 Kinetic plot for run 2 with 10% 36 + 10% Hdap reaction. ' Exp 989 50 _ 10% Ti(hydrazido)+10%Hdap 50 ‘ Data: Data1_B Model: myeqn1 Weighting: 2 40 ' y No weighting 31; .d Chi"2/DoF = 0.12058 o\° ii R42 = 0.99922 30 - .1 y0 13589641021135 5' yinf 62368391012546 I 20 ,5 k 0006251000006 min”1 ." k 1.04E-4 s' 10 I I r I I I I I fi 0 100 200 300 400 500 600 time (min) 308 Figure 34.3 Kinetic plot for run 3 with 10% 36 + 10% Hdap reaction. 309 - Exp 996 70 _ 10% Ti(hydrazido) + 10% Hdap 60 - Data: Data1_B 5o _ Model: myeqn1 If Weighting: % y No weighting '5. 40- i. Chi"2/DoF = 0.30651 5° ,5 R42 = 0.99854 1'- yO -24.5461111.08498 30 7 [,1 yinf 6938436101769 5." k 0008021000011 min'1 20- .- -1 q k 1.34E-4 s 10 r I I I I I I fl 0 100 200 300 400 500 600 time (min) Figure 85.1 Kinetic plot for run 1 with 10% 37. 25 - Exp 978 10% 37 20- ,4" a“. 15 ' fin; Data1_B I .0 Model: myeqn1 E; Weighting: 3; 10 - y No weighting °\ Chi"2/DoF = 0.04691 R42 = 0.99894 5 - _- y0 -11.8033210.44029 ff.- yinf 199.2360716462531 0 .. k 000029100001 min'1 k 4.8E-6 s'1 I I I I I j 200 300 400 500 600 time (min) Figure 86.1 Kinetic plot with 15% Ti(dap)2(NMe2)2. 7 _ 0 Exp 1017 . 15% Ti(dap)2(NMe2)2W 60 ‘ n’i 5- .5,- Data: Data1_B 50 _ ' Model: myeqn1 p, Weighting: ‘2 u . . ,1, . u y No welghtlng f; .1 Chi"2/DoF = 0.54438 °\ 40 - y” R"2 = 0.99457 y" yo 23.5 10 i yinf 66038711017799 30 - k 0010711000018 min"1 . R 1.7954 s'1 20 I ' l I I I t r 0 100 200 300 400 500 time (min) Figure 86.2 Kinetic plot with 5% Ti(dap)2(NMe2)2. 50- Exp 973 5%) Ti(dap)2(NMe2)2 4o- 30 _ Data: Data1_B '0 Model: myeqn1 E9 Weighting: > y No weighting a" 20- Chi"2lDoF =0.16589 1" R42 = 0.99877 -' yO 3072311021002 10_ "l yinf 49633841033007 j k 0003651000007 min'1 k 0.61E-4s-1 O I ' I I I ' I I ' I fl 0 100 200 300 400 500 600 time(min) 310 Figure 86.3 Kinetic plot with 2.5% Ti(dap)2(NMe2)2. 22 - Exp 975 20 - 2.5% Ti(dap)2(NMe2)2 18 - 16 j Data: Data1_B U 14 _ Model: myeqn1 E , Weighting: ‘5. 12 _ y No weighting 8° . Chi"2/DoF = 0.01994 10 1 R42 = 0.99923 1 yo 1.530831009715 8 7 yinf 29313431039405 6 - I k 0002051000005 min‘1 4; , k 0.34E-4 s'1 I ' I . I I ' I fl 0 100 200 300 500 600 time (min) 31] APPENDIX C Figure C.1 1H and 13C NMR spectra of compound 2. O x0 N Up N— / z n J I l 1 -. II ‘I"'TIfT"T‘—r"I'"'I""I"fi'Ir'firI""I'rT'I 9 8 7 6 5 4 3 2 100m 0.95 1.05 3.00 4.20 9.01 [.40 240 220 200 I80 I60 I40 120 100 80 6O 4O 20 0 ppm 312 Figure C.2 1H and 13C NMR spectra of compound 4. /—\ ~—— / NH \ NH / .1 lLil -.....ipt l I I T I 1I I I‘r' I I'IIIFrI'IT I 7IT I 7 ll 10 9 8 7 6 S 4 3 2 1 ppm [.55 1.93 1.97 3.86 6.0I L78 3.95 ~--— / NH \ NH / e. I . I , , , , . , . , “1--.... ”W,“ .....,.W....,.........,.... 200 I 80 I60 I 40 120 I 00 80 60 40 20 ppm Figure C.3 ]H and 13C NMR spectra of compound 5. I I! I I. I! ll 1 1 I II 1. W I 77 Ijj I I jrr I ll"'I"'_'_I" I I 'I""I""I""I 12 10 8 6 4 2 0 ppm 1.97 1.85 2.02 2.24 2.07 6.00 L93 12.12 2.11 \ NM62 \ N \ \\\ N M62 IIIIIfiTTIITYITIY—T—l—TIIIIII[I'VIIIIIIITII[11rTIUY]IIIYIIITrlYITIIIIleUTVVIYIIIITYIIlIIUIITrFIIIIVIl'lIllllTr 200 I 80 I 60 I 40 I 20 I 00 80 60 40 20 ppm 314 Figure C.4 1H and 13Cctra of compound 7. HN. 11' /C\/\/ l # __A,__ _1 ,_ .1 FT 1 [IITIIIIIIIYIfiII’IIITITTTTTI I 1:,“in 1 IIr I | I 12 IO 8 6 4 2 0 ppm 3.10 0.91 0.98 2.12 3.00 3.68 I.04 2.43 2.54 HN. i? 240 220 200 I80 I60 I40 120 I00 80 60 40 20 0 ppm 3I5 Figure C.5 1H and 13C NMR spectral data of compound 13 and 14. 21 i O O 10 9 8 7 6 5 4 3 ppm 0.89 0.92 420123335 100 057 3.34 1.12 1.24 3.39 13 14 II .1 “Ii-”,5. , [v I in.” 240 220 200 I 80 I60 140 120 100 80 60 40 20 0 ppm \ZI .11]. i,....,....,. "I , I I ,nul 3I6 Figure C.6 1H and 13c NMR spectral data of compound 15. H N / l 1111 l l ‘ mm...”w...m”....,....,....,T...,...mm“...,..r.T....,.........,..... 'l2 10 8 6 4 2 0 ppm 0.82 0.86 1.95 2.78 5.21 0.911.79 1.96 9.00 H N / l 240 220 200 180 I60 140 l20 100 80 60 40 20 0 ppm 3I7 Figure C.7 1H and 13C NMR spectral data of compound 17. 1...,1..-...,...........-..,.........,.........,e....e..1,... I211l0987654321ppm 2.15 0.94 2.14 2.15300 1.95 2.20 ,N N W1. 71.... we fl ” 1 ‘ .3::t,._ .0 7.1 42:” WTVI'IIIIIYITII'TIITrIIII'IIIIIIIIIIII'TWT—II'TWTITTIIIIIII I I l I I ‘IIIIIITTITI—YFIT‘IIITI ] I I I I l 3l8 Figure C.8 1H and 13C NMR spectra of compound 20. Z]: NH2 III II Ii 11 1. A1 IIII IIII IT IIII IIIIIIIII II 12 ll 10 9 8 7 6 5 4 2 ppm 0.92 1.09 2.02 2.98 l.04 2.36 2.04 2.25 NH2 240 220 200 180 I60 I40 120 I00 80 60 40 20 ppm 3I9 Figure C.9 1H and 13C NMR spectra of compound 21. H N / H3O -1. . .1 "'I"“l"r'1""I""l""I""l' l""l""I I' I"" 12 ll 10 9 8 7 6 5 4 3 2 1 ppm 0.73 0.96 1.92 3.00 3.10 0.890.90 3.00 2.25 H N / H3C l ’ ..Jh l - l l""l""l""l I l I I I l 'lll'l' 'l'l 'l"""'|' ""l""' "I‘ I I I' l 240 220 200 I80 160 140 120 100 80 6O 40 20 320 Figure C.10 1H and 13C NMR spectra of compound 24. N,N l/ Il I ' LL l . . . ”HUM.,.ra.r.....m..,....,....,.........,.........1....,....,.........,...r, l2 IO 8 6 4 2 0 ppm 4.07 0.53 1.00 3.00 4.0] 3.34 0.94 0.53 1.07109 N,N I/ 32] Figure C.11 ]H and 13C NMR spectra of compound 25. N,N I / J I 12 10 8 6 4 2 0 ppm 401 0.92 2.99 4.12 1.08 1.95 2.02 2.92 N/N 240 220 200 I80 160 I40 120 100 80 60 40 20 0 ppm 322 Figure C.12 1H and 13C NMR spectra of compound 35. IIIIIrrrTIIIIIIIIIIITIIITIWIIfiIrIIIIIIIITII'IIIIIITITIIIIIIIIIIIIIIIIIIIIIIIIIIII 121ll09876543210-l ppm 1.811.09 0.75 7.32 2.26 2.87 l.2l 6.42 2.51 3.00 II].IIFTIIIIIII’IITI’IIIII‘II‘IIII|IIIIITIITrYIIIIIIIIIIIIIIIIIIIIITIIIIIIIITWWITIIIIIIITIIIIIIIIIIII'IIIIIII'IIIIIIIIIIIIIIIIYII 323 Figure C.13 1H and 13C NMR spectra of compound 38. .1101 LimLLJL -_ rIlI[IITI'IfiTITIIIIIITIIIIIIITITjiniTTrjIIIIIIIIIIIITjTTIIIIlrfi l 0 9 8 7 6 5 4 3 2 l -0 ppm 1.08 l.04 1.07 3.513.28 3.15 3.51 3.2] 3.02 3.59 3.35 -1 -14 1 A- 21in MIW .1 LIL-1_.L. I l _ -2. fi-Y f“ fl r. rv—v v-v- V —r r r.—- 'TVV IIFTTIIIIIIIIIII]IIIIIITI—IITIIIIIIII[IIWTIIIIIIIT‘I‘IT—III—IITIIIIITITTWWTT'IfiIIIIIIIIIIIIIIrIjllIIlfiTI 200 I 80 I60 I40 120 I 00 80 60 40 20 ppm 324 Figure CM 111 and 13C NMR spectra of compound 39. T FTW’II T} I] lYl’TI TrT I]! VT 1]! [I If TT' 1' TI YT IV 1! Fri 171’]! 11 Ill TT‘rTjiTT I] T] '1] TV Y1 III II] 1.20 LII 0.97 2.20 2.47 3.94 2160 IllYIIITIITTIIllIIY]YIFIITIYU]ITTII‘IIYIIIII]IYYY]IYYYIYTYI[IIII]YIYI1IYFFIrY'IITFIIITTTVIIIIIIITTTTTTWTIYTTTTTT77TTYIIIIIIU 1‘11 '11! 240 220 200 I80 I60 I40 120 100 80 60 40 20 325 Figure C.15 1H and 13C NMR spectra of compound 40. A All‘ -1- IIITYTT 11" VIII IrTYIIYIIT'WIFIIr' WW I I l ‘I“"l""l""T‘H'IHHIH‘T l4|31211|0987654321ppm 0.91 2041.03 1.86 2.05 N’N I/ 240 220 200 180 I60 I40 l20 I 00 80 60 40 20 326 Figure C.16 1H and 13C NMR spectra of compound 41. N,N ' / ’ I H_ L l I TI Th I I I I ‘IFIfI I l""IrrT Fr II 10 9 s 7 6 5 4 3 2 1 0 ppm 0.92 1.00 2.37 2.64 3.51 5.07 2.62 N’N I / n l W A W W 200 I80 I60 140 120 100 80 60 4o 20 ppm 327 Figure C.17 1H and 13C NMR spectra of compound 42. w If I 'FI I'III'IIIHII'I'II'I'III'I'ITIIII'I'II'IHI'fIII'If ll 10 9 8 7 6 5 4 3 2 I 0 ppm 0.76062 2.53 1.84 3.08 1.521.13 0.72 2.22 3.15 JIIJJLILHHJJJL[1:11.I..su.n1ub.~h m.“- m.£u1md 1]: Ii .11 1t.IL1..~L._uI.I . u ' .. .. . ..L1 p. . I 200 1 80 160 140 120 100 80 60 40 20 ppm 328 Figure C.18 1H and 13C NMR spectra of compound 44. MezN \ZI A I 1 1: . L. .....,..I .....l. ...I..... .1......H.1.r.ry,. l I 10 9 8 7 6 5 4 3 ppm 0.80 1.02 0.98 2.01 6.02 3.15 2.04 6.28 M62N \ZI llllII]lll!]llll|vllll1lvv[IVIIIVIIIIYIIVIIIll1IIIIIIIII|IIIV1IIIIIIIIIIIIIIlllvIIIInl|ll|llllII|llllllllllvvvtlllrvIYl11T 220 200 180 160 140 120 100 80 60 40 20 0 ppm 329 Figure C.19 1H and 13C NMR spectra of compound 45. Me Me 1 Me NMez \ NII...1|.i‘.\HNMeZ N/1\NMe M82 N \ / Me Me II 4 Me 2, [1 ,1 .mr-.. ,.........,.WTW..,....,...-,....T....”my...”..........,....,.-... 12 10 8 6 4 2 0 ppm 3.90 1.89 12.00 6.15 1.95 3.71 115612.19 Me Me Me NMe; \ NII.,..'|.i,.\I\NMez N/|\NMe2 M82 N \ / Me Me Me Wuflww fiiVI1111]]IIIllYthTYTTjrYYrTYTTITIYYTIIIIIYIIIIIYTTIIIIII1IIllIYTI[YITITTWTTITTIYIIIIYITVIYIYIIUIIYTTIIIIYTIIII]IIII]VIIYIYIVU]I'll] 240 220 200 180 160 140 120 100 80 60 40 20 0 ppm 330 Figure C.20 IH and 13C NMR spectra of compound 46. S|iMe3 CES ,SiMe N o 3 H I .1../ 4 LL“ __ A _._ ‘1JJ YIYIIjIIIIIIIIYTIYIYIIIIj'II'U'IIYIIlj'UIIIIIYIUIYIltTTIrI'rTll'IIIIYIYrI' 12 11 10 9 8 7 6 5 4 3 2 1 0 ppm 0.78 2.092.05 8.98 2.112.07 9.00 220 200 180 160 140 120 100 80 60 40 20 0 ppm 331 ”'111111111119111111111111111111?