

$
1
.
.,
4

a
v
g
!

.
“
a
!

.
n
fi
z
u
v
c
h
u
H
M
“

..
1
.
3

x
J
.
~
‘
.
A
.
«
.
-
w
.
§
.
s
.
c
u
d
:

‘
4
‘

a
?

i
H
I
L
L
»

3

5
w

4
M

LIBRARY

MiChlga. i State

University

This is to certify that the

dissertation entitled

GRAPH BASED METHODS FOR PATTERN MINING

PhD.

presented by

H. D. K. Moonesinghe

has been accepted towards fulfillment

of the requirements for the

degree in Computer Science

rimWm

Major Professor’s Signature

Oct l9 2 20017

Date

MSU is an affirmative-action, equal-opponumry employer

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

5/08 K.lProj/Acc&Pres/CIRC/DateDue indd

GRAPH BASED METHODS FOR PATTERN MINING

By

H. D. K. Moonesinghe

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science

2007

ABSTRACT

GRAPH BASED METHODS FOR PATTERN MINING

By

H. D. K. Moonesinghe

Pattern mining is the automatic extraction of novel and potentially useful knowledge

fi'om large databases. It plays a major role in many applications, such as intrusion detec-

tion, business intelligence, and bio-medical applications. This thesis explores two impor-

tant pattern mining tasks, namely, frequent pattern mining and anomalous pattern mining.

We illustrate the limitations of existing pattern mining algorithms and develop a class of

algorithms inspired by graph theoretic principles to overcome these limitations.

First, we demonstrate characteristics of existing frequent pattern mining algorithms

that prohibit them from scaling-up to very large databases. We introduce a novel data

structure known as a PrefixGraph to compress crucial information about the database in

order to facilitate fast enumeration of frequent patterns. An efficient pattern search and

pruning algorithm called PGMiner was also developed using principles derived from

network flow analysis.

Second, we investigate a class of anomalies that are difficult to distinguish from nor-

mal observations, resulting in high false alarm rates in many anomaly detection algo-

rithms. To address this problem, we introduce OutRank, a stochastic graph based algo-

rithm for unsupervised anomaly detection. In this method, a graph is constructed using

two approaches: one based on the similarity between objects and the other using shared

neighbors of the object. The heart of this approach uses a Markov chain random walk

model to determine the anomaly score of an object.

Recent years have also witnessed the proliferation of graph-based data, spurred by

advances in application areas such as bioinformatics, chem-informatics, Web 2.0, and

sensor networks. In this thesis, we systematically develop an anomaly detection frame-

work to detect anomalies in graph-based data. First, frequent subgraph patterns are ex-

tracted from the data. We investigate two methods for utilizing the frequent subgraph pat-

terns in graph anomaly detection. The first approach, gRank, is an extension of OutRank

to graph-based data. It uses a substructure-based similarity measure to create a stochastic

graph and then performs random walk to determine the anomaly score of a graph. The

second approach, called gEntropy, creates features based on the frequent subgraph pat-

terns and builds a probability model for the graphs using the maximum entropy principle.

Anomalous graphs are detected based on the probability that such a graph is generated by

the model. Finally, we extend the maximum entropy approach to supervised anomaly de-

tection and show that it produces significant improvements over the unsupervised case.

Graph based methods have been applied in several areas such as machine learning

and networking. In this thesis, we show how graph based methods can be applied suc-

cessfully in pattern mining area. More specifically, we show how graph theoretic ap-

proaches can be utilized to improve the efficiency and the effectiveness of frequent item-

set mining and anomaly detection. With the advances in technology, a huge amount of

data is accumulated everyday and database sizes have grown to Terabyte and Petabyte

scale. We believe the algorithms developed in this thesis are a step forward towards mak-

ing pattern mining more effective for such large and complex data sets.

To

Parents

For their love and affection

iv

ACKNOWLEDGEMENTS

Many people have contributed to this work directly or indirectly. It is an honor to have

come across so many wonderful people.

I express deep gratitude to my advisor Dr. Pang-Ning Tan, for allowing me to pursue

this research and helping me along every step of the way. This thesis would not have

been in its present form without his generous support, motivation, and guidance. I highly

appreciate his periodic feedback and inspirational communication that kept me pointed in

the right direction to achieve this goal.

I am grateful to the late Dr. Moon-Jung Chung for being my academic advisor in the

early days ofmy degree. He was a very caring, understanding, great teacher who exposed

me to the exciting field of data mining.

I am thankful to the members of my thesis committee— Dr. Anthony S. Wojcik, Dr.

Abdol-Hossein Esfahanian, and Dr. Shinhan Shiu. Communication with them has always

brought me cheerful spirits and inspiration.

I would like to thank the faculty of the Department of Computer Science and Engi-

neering at Michigan State University (MSU) for providing an excellent learning, re-

search, and teaching experience. In particular, I would like to thank Dr. George Stock-

man, Dr. Bill Punch, Dr. John Weng, and former faculty member Dr. Jaejin Lee for their

support and encouragement.

I am highly indebted to the Department of Computer Science and Engineering at

MSU for providing me with an Opportunity to pursue graduate studies at this university.

Also, I am grateful to both of the past graduate directors— Dr. Wojcik and Dr. Esfaha-

nian, and present graduate director— Dr. Eric Tomg for approving continued financial

support for my entire Ph.D. education.

I would like to thank all the staff members of the Department of Computer Science

and Engineering for their assistance in administrative tasks. I want to thank Ms. Linda

Moore for her patience, care, and advice during this period. Many thanks to Ms. Kim

Thompson for proof-reading this entire document in such short notice.

I would also like to thank Mr. Mark McCullen for providing valuable teaching tips

and resources that helped me to carryout my teaching duties efficiently, and allowing me

to spend more time on my research. Thanks also go to my students from the Computer

Organization and Architecture class for a good time.

Many thanks to members of the Data Mining research group— Jerry Scripps, Samah

Fodeh, Hamed Valizadegan, and Haibin Cheng, and the members of my previous re-

search group — Yuan Zhang, and Ming Wu for their help and a good time.

I am grateful to all ofmy past teachers at the University of Colombo for providing me

with a sound foundation on all aspects of computer science, which helped me immensely

in achieving my career goals.

I would like to thank all ofmy fiiends both in the US. and Sri Lanka. Although I can-

not name them all here, I appreciate the support they provided and the wonderful time we

had during this period. A special word of thanks goes to my friend Varuni for her sup-

port, patience, and understanding in this period.

These acknowledgements would not be complete without an expression of gratitude

to my parents for their continuous support and encouragement. Their love accompanies

me wherever I go.

vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

1 Introduction 1

1.1 Frequent Pattern Mining and its Challenges... 2

1.2 Anomalous Pattern Mining and its Challenges .. 5

1.3 Graph-based Approaches for Pattern Mining ... 7

1.4 Contributions .. 9

1.5 Organization of the Thesis .. 10

2 Background 11

2.1 Graphs: Basic Concepts .. 11

2.2 Frequent Pattern Mining ... 13

2.2.1 Frequent Itemset Mining ... 13

2.2.2 Frequent Subgraph Mining .. 15

2.2.3 Related Work ... 17

2.3 Mining Anomalous Patterns ... 21

2.3.1 Basic Concepts in Anomaly Detection .. 21

2.3.2 Related Work ... 22

3 PGMiner: Mining Frequent Closed Itemsets 25

3.1 Issues in Frequent Closed Itemset Mining ... 25

3.2 PrefixGraph Representation ... 29

3.2.1 Preliminaries .. 29

3.2.2 PrefixGraph Construction ... 30

3.2.3 Analysis OfPrefixGraph Structure .. 33

3.3 Frequent Closed Itemset Mining .. 35

3.3.1 Intra—Node Closed Itemset Mining .. 36

3.3.2 Inter-Node Pruning .. 39

3.4 Mining Algorithm ... 46

3.4.1 Implementation Techniques .. 47

3.4.2 Memory Management.. 48

3.5 Experimental Evaluation .. 48

3.5.1 Evaluating Environment .. 48

3.5.2 Performance Comparisons ... 49

3.5.3 Memory Usage .. 50

3.5.4 Scalability .. 57

3.5.5 Effectiveness of the Flow Based Pruning .. 58

3.6 Summary... 59

vii

4 OutRank: Mining Anomalous Data 60

4.1 Anomaly Detection and its Issues .. 60

4.2 Modeling Anomalies Using a Graph .. 63

4.2.1 Graph Representation .. 63

4.2.2 Markov Chain Model... 64

4.3 Anomaly Detection Algorithms.. 67

4.3.1 OutRank-a: Using Object Similarity ... 67

4.3.2 OutRank-b: Using Shared Neighbors .. 69

4.4 Experimental Evaluation .. 71

4.4.1 Comparison with Other Approaches ... 72

4.4.2 Effect of the Percentage of Outliers .. 75

4.4.3 Effect of the Shared Neighbor Approach .. 79

4.4.4 Choice of Similarity Measures .. 81

4.4.5 Effect of Threshold on the Quality of Solution 82

4.5 Discussion... 82

5 Mining Anomalous Graphs 85

5.1 Mining Graph Based Data .. 86

5.2 Anomaly Detection in Graphs and its Issues .. 87

5.3 Extending OutRank for Graphs .. 89

5.3.1 gRank. Graph Ranking .. 89

5.3.2 Similarity Measures for Graphs ... 91

5.4 gEntropy: Maximum Entropy Based Unsupervised Anomaly Detection 97

5.4.1 Maximum Entropy Model ... 97

5.4.2 Parameter Estimation... 101

5.4.3 Metropolis Sampling Approach... 101

5.4.4 Feature Vector Generation... 104

5.5 Maximum Entropy Based Supervised Anomaly Detection.............................. 107

5.5.1 Maximum Entropy Model in Supervised Setting 109

5.5.2 Parameter Estimation... 110

5.5.3 gEntropySuper: Classifying Anomalous Graphs 111

5.6 Experimental Evaluation .. 113

5.6.1 Datasets .. 1 13

5.6.2 Evaluating Environment .. 114

5.6.3 Evaluation of the Unsupervised Frameworks 114

5.6.4 Evaluation of the Supervised Frameworks 116

5.7 Discussion... 1 l9

6 Conclusions 122

6.1 Summary of the Thesis ... 122

6.1.1 Mining Frequent Itemsets .. 122

6.1.2 Mining Anomalous Patterns .. 124

6.2 Future Research .. 127

BIBLIOGRAPHY 130

viii

LIST OF TABLES

Table 2.1 Sample database .. 14

Table 3.1. Characteristics of various condensed representations 27

Table 3.2. Sample database ... 30

Table 3.3. Characteristics ofthe databases ..49

Table 3.4. Evaluation of the global closedness techniques ... 59

Table 4.1. Outlier rank for sample 2-D dataset ... 67

Table 4.2. Characteristics of the datasets .. 72

Table 4.3. Experimental results ...73

Table 4.4. Performance comparison with different similarity measures 82

Table 5.1. Characteristics of the datasets .. 114

Table 5.2. Experimental results ... 1 15

Table 5.3. Characteristics ofthe datasets .. 116

Table 5.4. Experimental results (Accuracy and F-Measure) ... 118

Table 5.5. Experimental results with maximal subgraphs ... 119

ix

LIST OF FIGURES

Figure 1.1. Execution time and memory usage for large databases (K=1000) 4

Figure 1.2. Results of applying LOF anomaly detection algorithm on 2D-Data 6

Figure 2.1 Sample graph database and frequent graphs .. 16

Figure 3.1. Different compressed data representations ... 27

Figure 3.2. PrefixGraph construction- a running example.. 31

Figure 3.3. PrefoGraph representation ofthe sample database.. 32

Figure 3.4. Size ofbit vector databases at each node .. 36

Figure 3.5. Itemset enumeration tree (search space) of a node ... 38

Figure 3.6. Transaction flow network for the sample database ...41

Figure 3.7. Execution time (in seconds) for Medical .. 51

Figure 3.8. Execution time (in seconds) for WebView2 ... 51

Figure 3.9. Execution time (in seconds) for Kosarak .. 52

Figure 3.10. Execution time (in seconds) for Chess .. 52

Figure 3.11. Execution time (in seconds) for WebDocs.. 53

Figure 3.12. Execution time (in seconds) for T2018D500K .. 53

Figure 3.13. Execution time (in seconds) for Pumsb .. 54

Figure 3.14. Execution time (in seconds) for T40110D100K .. 54

Figure 3.15. Execution time (in seconds) for T100120D100K.. 55

Figure 3.16. Amount ofmemory (in MB) required for T40110D100K 55

Figure 3.17. Amount ofmemory (in MB) required for Pumsb ... 56

Figure 3.18. Amount ofmemory (in MB) required for Kosarak 56

Figure 3.19. Execution time versus number of transactions (K=1000)............................. 57

Figure 3.20. Memory usage of algorithms for large databases (K=1000) 58

Figure 4.1. Outlier detection with random walk .. 62

Figure 4.2. Sample 2-D data set .. 66

Figure 4.3. Similarity based on the number of shared neighbors 69

Figure 4.4. Precision while varying the % of outliers in Led7 .. 76

Figure 4.5. False alarm rate while varying the % of outliers in Led7 76

Figure 4.6. Precision while varying the % of outliers in KDD ... 77

Figure 4.7. False alarm rate while varying the % of outliers in KDD 77

Figure 4.8. Precision while varying the % of outliers in Diabetic 78

Figure 4.9. False alarm rate while varying the % of outliers in Diabetic 78

Figure 4.10. Precision of algorithms on optical dataset .. 79

Figure 4.11. Connectivity of objects in Austra dataset.. 80

Figure 4.12. Connectivity of objects in Led7 dataset .. 81

Figure 4.13. Precision for different threshold values in Led7 dataset 83

Figure 4.14. Precision for different threshold values in KDD dataset 83

Figure 5.1. AIDS antiviral screening data and its interesting fragments 86

Figure 5.2. Compression based graph similarity ... 89

Figure 5.3. Maximal common frequent subgraph of the two graphs 92

Figure 5.4. Frequent subgraph lattice .. 94

xi

1 Introduction

WITH the growing scale and complexity of data generated in a variety of scien-

tific, engineering, and commercial applications, a key challenge is to automati-

cally process and analyze data to discover potentially useful information. Traditional data

analysis tools are insufficient because they are mostly designed for small-scale problems.

This has led to considerable interest in developing data mining technology for extracting

knowledge buried in the wealth of data. Data mining, as defined by Fayyad et al.

[FPS96], is the non-trivial process of identifying valid, novel, potentially useful, and ul-

timately understandable patterns in large databases. It blends traditional data analysis

tools with sophisticated algorithms for handling a massive amount of data and analyzing

non-traditional complex data types such as sequences and graphs [TSK06].

There are two general classes of techniques in data mining—one aimed at model

building and the other aimed at pattern mining. In model building, the objective is to con-

struct a global representation that summarizes the data or describes the underlying proc-

ess in which the data is generated. Examples of models include decision trees, support

vector machines, ARIMA time series models, and Gaussian mixture models. Model build-

ing, especially for classification and regression tasks, has been predominantly driven by

advances in areas such as statistical learning, machine learning, and pattern recognition.

In contrast, patterns are local structures hidden in the data involving only a subset of

the objects or attributes [H98]. There are two notable types of pattems—frequent patterns

and anomalous patterns. A frequent pattern is a subset of attributes or a substructure of

complex objects that occur frequently in the data. Frequent patterns have been used to

identify products that are frequently sold together for up-sell and cross-sell promotions

[HCH+98], to find motifs in biological sequences [MS99], to discover chemical com-

pound substructures that can be used in drug design [DKN+05], and to detect bugs in

software programs [LYY+05]. Meanwhile, an anomalous pattern is an object whose

characteristics are considerably different than the rest of the data. Anomalous patterns are

useful for a variety of applications such as intrusion detection, fraud detection, and failure

detection in complex systems. Other types of data mining patterns include trends, change

points, subgroups, emerging patterns, etc.

The scope of this thesis focuses on the mining of frequent patterns and anomalous

patterns. The limitations of current approaches will be illustrated, which motivate the

need to develop new ways for mining such patterns. Furtherrnore, the theoretical under-

pinning ofthe methods developed in this thesis is based on concepts from graph theory.

1.1 Frequent Pattern Mining and its Challenges

Frequent pattern mining was originally developed for market basket analysis to discover

items (products) that customers frequently buy together. These patterns are also known as

frequent itemsets in the data mining literature. Each itemset is associated with a quantita-

tive measure called support, which is defined as the fiaction of total transactions that con-

tain the given itemset. Support is a usefiil measure because it can be used to eliminate

spurious patterns that occur simply by chance. Furthermore, it has certain desirable prop-

erties that can be exploited to improve the efficiency of the frequent pattern discovery

process.

We can formally define the frequent pattern mining problem as follows:

DEFINITION 1.1 (Frequent Pattern Mining) Frequent pattern mining is the task of find-

ing all patterns in the database that satisfy a given minimum support threshold.

In addition to the computational challenges of exploring a massive database to find

interesting patterns, the large number of redundant or correlated patterns that can be gen-

erated is also a concern. Redundant patterns exist because many of the frequent itemsets

generated from transaction data have the same support as their supersets. Discarding such

redundant patterns not only helps to reduce the number of generated patterns, it also im-

proves the efficiency of frequent pattern mining algorithms. In the context of binary

transaction data, the non-redundant patterns are known as frequent closed itemsets

[PBT+99a]. Frequent closed itemsets provide a compact yet lossless representation of the

frequent itemsets; i.e., it is possible to derive the complete set of frequent itemsets along

with their support based on the frequent closed itemsets alone. In particular, the number

of frequent closed itemsets can be orders of magnitude fewer than the number of frequent

itemsets. The difference is even more pronounced for dense databases, where the frequent

itemsets tend to be long and enumerating all of them is simply infeasible due to their ex-

ponential number.

Despite these advantages, generating frequent closed itemsets from large transaction

databases is computationally expensive. For example, Figure 1.1 shows the relative per-

formance of two state-of-the-art fiequent closed itemset mining algorithms] when ap-

plied to a database, whose size is increased from 100,000 transactions to 5 million trans-

actions. This experiment was conducted on a 2.8 GHz Pentium 4 machine with 4 GB

memory. Since both of these algorithms store the entire database in memory using a

condensed data representation, they broke down when the database size exceeded a mil-

lion transactions. A more detailed analysis of the scalability issue is presented in Chapter

3.

I Algorithm FPClose has shown to be thefastest algorithm based on the F[M] data mining competition.

-—a— FPciose

—1ar— DCI-Close

100K 500K 1000K 5000K

No. of Transactions

4096

—a— FPclose

3584 ‘7 a DCl-Close “““““““ r "r ----------

3072 ~

2560 -

2048 A

1536 a

M
e
m
o
r
y

S
i
z
e
(
M
B
)

1024 a

512

100K 500K 1000K 5000K

No. of Transactions

Figure 1.1. Execution time and memory usage for large databases (K=1000)

In summary, although there have been numerous algorithms developed for frequent

closed itemset mining, these algorithms have characteristics that prohibit them from scal-

ing-up to very large databases. Developing efficient and scalable frequent closed itemset

mining algorithms is therefore an important research problem that needs to be addressed.

Furthermore, any significant improvement to frequent closed itemset mining algorithms

will have an impact on other frequent pattern mining problems, such as constraint based

mining [HLN99], maximal pattern mining [G203], and top-K pattern mining [HWL+02],

to name a few. In addition to frequent itemsets in transaction databases, frequent pattern

mining has also been adapted to sequences and graphs. As part of this thesis, we will also

illustrate the application of frequent pattern mining to graph anomaly detection.

1.2 Anomalous Pattern Mining and its Challenges

Anomalous patterns or outliers are observations that deviate significantly from the major-

ity of the observations in a dataset. Over the years, many outlier detection algorithms

have been developed, including statistical-based [Esk00][Lew94], depth-based

[JKN98][P888], distance-based [BS03][JTH01][KNT00][RRSOO], and density-based

[BKN+00]. While these approaches have proven to be quite effective in some domains,

they have several fundamental limitations.

First, existing algorithms typically assume that the anomalous patterns are randomly

distributed in the feature space. These algorithms are therefore ineffective when applied

to data sets containing small clusters of anomalies, which are often found in many practi-

cal applications. For example, attacks in intrusion detection are not isolated random

events; they are clustered if they belong to similar classes of intrusions (e.g., variants of a

worm). Figure 1.2 shows a synthetic two-dimensional data set, which consists of two

clusters of normal observations (labeled as C1 and C2) and five clusters of anomalies (la-

beled as 01 through 05). A density-based anomaly detection algorithm called LOF

[BKN+OO] was applied to the data set. The data points identified as anomalies by the al—

gorithm are labeled as “+”. Although LOF shows a much higher detection rate compared

to traditional distance-based anomaly detection algorithms, Figure 1.2 clearly demon-

strates the limitations of the algorithm when applied to data sets containing clusters of

anomalies. This is because LOF defines an anomalous pattern based on the density of its

predefined neighborhood. If the neighborhood contains fewer points than a minimum

threshold, then the observation is declared an anomaly. For data sets with small clusters

of anomalies, defining the appropriate neighborhood size and minimum number ofpoints

in a neighborhood is a non-trivial task, especially when the density of the outlying cluster

is similar to the density of the normal cluster. Therefore, new data mining algorithms are

needed to handle such types of anomalies.

5

05 ++1 C1 C2 + '3'

4 " '3'122132133122122321? :

23222221232322.3222: -*"'+

2 _ +................... +4” 03

04

1 1 I l 1 I 1

0 1 2 3 4 5 6 7

Figure 1.2. Results of applying LOF anomaly detection algorithm on 2D-Data

Second, anomalous pattern detection in complex data is another situation where many

existing algorithms fail. For instance, in real-world graph-based datasets such as AIDS

antiviral screening data, users are interested in anomalous substructures that correspond

to HIV inhibitors, as they help to discover new drugs. Although some of the existing ap-

proaches [DKW+05] attempted to address this type of data, their detection rate is still

very low even in supervised mode.

As anomaly detection is an essential data mining task, developing efficient algorithms

that can achieve significant improvement in detection rate and a lower false alarm rate

across these domains is an important research direction and can help numerous applica-

tions including intrusion detection, credit card fraud detection, and pharmaceutical re-

search.

1.3 Graph-based Approaches for Pattern Mining

As discussed in the preceding sections, there are still many problems with current pattern

mining algorithms. In order to provide efficient and robust pattern mining technology to

potential users, it is necessary to make significant advances in these pattern mining meth-

ods. In this work, our objective is to use a graph based approach for mining such patterns

by addressing these existing challenges.

Graph theory, which is a relatively mature field compared to data mining, began in

the 18th century with the invention of Euler ’3 solution for the Konigsberg Bridge Prob-

lem. Graphs provide a flexible way for modeling complex relationships in data and have

been successfully applied in various fields such as networking [ZCM97], image process-

ing [HIKO6], pattern recognition [PB06], and machine learning [SWH+05][SHR06]

[HCL07]. For example, probabilistic graphical models such as Bayesian networks, Hid-

den Markov Models, and Markov random fields, are widely used model building ap-

proaches in machine learning and pattern recognition. These models are developed as a

confluence of ideas from graph theory and probability theory.

The attractive feature of graph-based methods is that, once the problem at hand has

been abstracted to a relational structure, techniques from graph theory, statistics, and

probability theory can be used for purposes of analysis. Graph based methods such as

flow theory and random walk on graphs are important techniques that are already used in

data mining applications. For instance, the PageRank algorithm used by the Google

search engine employs the random walk model to calculate the authoritativeness of web

pages. Surprisingly, even though graph-based methods have been widely used for model

building, there has been very few works on applying these ideas to pattern mining.

This thesis attempts to address the following question: “Can we improve the effec-

tiveness ofpattern mining tasks by incorporating graph theoretic concepts into the min-

ing process?” Specifically, we attempt to answer this question by examining the applica-

bility of the following graph based concepts:

Flow network: In graph theory, aflow network is a directed graph with each edge

receiving a flow, where the flow must satisfy a set of constraints such as the ca-

pacity of the edges, skew symmetry, and flow conservation. A flow network can

be used to model many real-world systems in which a medium propagates through

a network of nodes. By transforming a real-world problem into a flow network, it

allows us to view the problem from a different viewpoint and enables new theo-

ries satisfying the constraints to be developed. This thesis utilizes ideas from flow

network theory to develop effective strategies for pruning the search space of the

closed itemset mining task, thereby improving both the efficiency and scalability

of the mining algorithm.

Random walk on a graph: Random walk is a special case of a Markov chain proc-

ess that enjoys a property called time-symmetry or reversibility. The basic proper-

ties of a random walk are determined by the transition probability matrix associ-

ated with the graph that provides the probability of moving from one node to its

neighbor. This thesis investigates the effectiveness of using the random walk ap-

proach to detect anomalous patterns, particularly for data sets containing small

clusters of anomalies. The random walk approach can also be extended to finding

anomalies in graph-based data.

Markov Random Fields: Markov Random Field (MRF) is a generalization of

Markov chains to an undirected graphical model, where the vertices correspond to

random variables, and edges represent dependencies between them. Random

fields are very attractive from a theoretical standpoint because they allow us to

define a probability model based on the dependencies of the graph. A probability

distribution over the fields, which corresponds to the Gibbs distribution, is also

consistent with the Maximum Entropy framework. A desirable property of this

framework is that it allows us to build flexible probability models based on fea-

tures derived from the data.

1.4 Contributions

In this work, we develop a class of novel graph based pattern mining techniques. The

main contributions of this work are:

1. We develop a graph-based approach for mining frequent closed itemsets. In par-

ticular, we introduce a novel data representation, called PrefixGraph, containing

variable length bit vectors to compress the database. Also, using efficient pruning

strategies derived from network flow analysis, we develop a novel algorithm

called PGMiner to discover the frequent closed itemsets. Our frequent closed

itemset mining algorithm is highly scalable and space preserving for very large

databases.

In order to discover anomalous patterns, we present a random walk based algo-

rithm called OutRank. Our analysis shows that the technique outperforms tradi-

tional density-based and distance-based approaches in terms of their higher detec-

tion rates and lower false alarm rates.

We systematically develop a graph based framework for mining anomalous pat-

terns in graph datasets. We investigate two different unsupervised approaches.

The first approach, called gRank, is an extension of the previous OutRank algo-

rithm for graph datasets. This method, which is based on substructure similarity,

uses the random-walk model for anomaly detection. The second approach, called

gEntropy, is a probabilistic anomaly detection approach based on the maximum

entropy principle. Each graph is assigned a probability value representing the like-

lihood it is generated from a probability model induced from the graph data. The

smaller the probability, the more likely the graph is an anomaly. Finally, we apply

the maximum entropy approach to the supervised anomaly detection task. The

proposed algorithm, called gEntropySuper, uses a frequent subgraph mining algo-

rithm to extract substructure based descriptors and then apply the maximum en-

tropy principle to build a classification model from the frequent subgraphs.

1.5 Organization Of the Thesis

The rest of the thesis is organized as follows: Chapter 2 illustrates basic concepts, prob-

lem definitions, and related work in frequent itemset mining and anomalous pattern min-

ing. Chapter 3 introduces a graph based approach for fiequent closed itemset mining.

Chapter 4 presents our random walk based anomalous pattern mining algorithm. Chapter

5 discusses our proposed frameworks for mining anomalous patterns in graph datasets.

Finally, Chapter 6 concludes with a summary of the thesis contributions and suggestions

for firture research.

10

2 Background

In this chapter, we illustrate the concepts and terminology used throughout this thesis.

More specifically, we discuss preliminaries and definitions of graphs, frequent itemset

mining, frequent subgraph mining, and anomalous pattern mining. Further, we discuss

related research in both frequent pattern mining and anomalous pattern mining.

2.1 Graphs: Basic Concepts

A graph is a mathematical abstraction useful in solving many kinds of problems across

several domains. More formally, a graph G is a pair (V, E), where V is a finite set of ob-

jects called vertices and E is a set of 2-element subsets of Vcalled edges. Also, V is called

a vertex set whose elements are called as vertices or nodes and E is a collection of edges,

where an edge is a pair (u, v) with u,v in V.

If (u, v) is an edge of a graph G, then we say that u and v are adjacent in G. The edge

(x,x) is called a self-loop. A walk in a graph is a sequence of vertices and edges such that

the vertices and edges adjacent in the sequence are incident. A path is a walk in which no

vertex is repeated. We denote path(u, v) as all the edges composed by the walk from ver-

tex u to v or vice versa, where u,v e V. A cycle is a path that begins and ends on the same

Vertex. A graph with no cycles is called an acyclic graph. Furthermore, a graph is con-

nected if there is a path between every pair of vertices in the graph.

11

The size of a graph is defined as the number of edges that the graph contains.

In a directed graph, edges are ordered pairs, connecting a source vertex tO a target

vertex. Moreover, edge (u, v) is an out-edge of vertex u and an in-edge of vertex v in such

a graph. The number of out-edges of a vertex is its out-degree and the number of in-edges

is its in-degree.

In an undirected graph, edges are unordered pairs and connect the two vertices in

both directions. The number of edges incident to a vertex is called its degree.

A tree is a special type of a connected graph that has no loops. Also, a complete graph

is a graph where every pair of distinct vertices is adjacent.

A graph is called a weighted graph if each edge has a weight assigned to it.

Let G1 and G1 be two graphs and letfbe a function from the vertex set of G1 to the

vertex set of 62. Suppose that the following conditions hold: f is one-to-one and onto,

andf(v) is adjacent tof(w) in GZ if and only ifv is adjacent to win G1. Then we say that

the functionfis an isomorphism and that the two graphs G1 and G2 are isomorphic.

We say that a graph G1 is a subgraph of a graph GZ if G1 is isomorphic to a graph,

all ofwhose vertices and edges are in G2. Note that by this definition a graph is always a

subgraph of itself. Two subgraphs G1, and G2 are said to be edge disjoint if they do not

have any edge in common.

Aflow network is a directed graph G=(V,E) with a source vertex s and a sink vertex t.

Each edge has a capacity function c. Also, there is aflow fimctionf defined over every

vertex pair, which satisfies the following constraints:

1. Capacity constraint: f(u,v) _< c(u,v) 17’(u,v) in Vx V

2. Skew symmetry: f(u,v) = -f(v,u) V(u,v) in VX V

3. Flow conservation: Z, ,-,, Vf(u,v) = 0 Va in V- {s, t}

Theflow Of the network is the net flow entering the sink vertex 1 (which is equal to

the net flow leaving the source vertex 5): [f] = 2;, ,-,, yf(u, t) = Z, ,-,, yf(s,v).

12

2.2 Frequent Pattern Mining

In this section, we describe the concept of frequent itemset mining, frequent subgraph

mining, and related research.

2.2.1 Frequent Itemset Mining

In this section, we present the basic terminology used in the frequent itemset mining.

Let I = {i1, i2, ...,i,,,} be a set of m distinct items. An itemset X is considered as a non-

empty subset of items; i.e. X g; 1. Moreover, an itemset with k items is called a k—itemset.

A transaction t = {tid,X} is a tuple, where tid is the transaction identifier and Xg I is

the itemset. A transaction t = {tid,X} is said to contain an itemset Y if 1’ g X. A transac-

tion database D = {t1, t2, t3, ..., tN} is the set of all transactions.

The support of an itemset X, denoted as 01X), is defined as the fraction of total trans-

actions that contain X. Mathematically, o'OO can be stated as follows:

0(X)=|{t,~ |X_c_t,- Ati eD}|

DEFINITION 2.1 (Frequent Itemset) An itemset X is calledfrequent if 0(1192 if, where if

is a user specified minimum support threshold.

Given a database D and a minimum support threshold 4‘, the problem of mining for

fiequent itemsets is to find all itemsets that pass the support threshold.

In particular, the number of frequent itemsets that can be generated from a given da-

tabase can possibly be very large. In order to address this more compact representation

for frequent itemsets called closed itemsets have been proposed.

DEFINITION 2.2 (Frequent Closed Itemset) An itemset X is called a frequent closed

itemset if o()02 f, where 4" is a user specified minimum support threshold and if there ex-

ists no prOper superset Y :3 Xwith 0019 = 0(Y).

l3

Similar to the problem of frequent itemset mining, the problem of mining for frequent

closed itemsets is to find all closed itemsets that passes the support threshold.

Table 2.1 Sample database

Transaction ID Items

1 a, b, c, d,

2 b, d, a, e, f g

3 d, a, b, c, e

4 a, c, b, d

5 b, c, e

6 b, d, e, h

EXAMPLE 2.1: Consider the sample database D shown in Table 2.1. Here {a, b, c, d, e, j:

g, h} is the set of items. {ab}, {abc}, and {bd} are some of the itemsets. An itemset

{abc} is called a 3-itemset. The support of itemsets {bd}, {abc}, and {abcd} is 5, 3, and

3 respectively. With minimum support threshold 4‘ =3, itemsets such as {abc}, {bd},

{abcd} become frequent. Note that itemset {abce} is not frequent since its support count

(2) < 4‘. Itemset {abd} with support 4 is closed since none of the supersets of {abd} have

support count 4. Note that itemset {abc} is not closed since superset itemset {abcd} has

the same support count (3) as {abc}.

During the fiequent itemset generation, anti-monotone property of frequent itemsets

called the Apriori Principle can be used to reduce the itemset enumeration search space.

THEOREM 2.1 (Apriori Principle) If an itemset X is infrequent, then all of the itemsets Y

3Xcannot be frequent.

PROOF. Let itemset Xbe an infrequent itemset. i.e. it does not support the minimum sup-

port threshold 4‘. Now suppose an item i is added to itemset X to form itemset Y. Then the

resultant itemset (i.e. {i}u X 3 X) cannot occur more frequently than X. Therefore, item-

set Y cannot be frequent. I

14

In other words, if an itemset is fiequent, then all of its subsets become frequent. Using

frequent itemsets (or frequent closed itemsets), association rules can be derived. An asso-

ciation rule can be formally defined as follows.

DEFINITION 2.3 (Association Rule) An association rule is an implication of the form X

=> Y, where Xand Y are itemsets and XnY= Q.

The support of a rule denoted as s(X =>Y) is defined as o(XUY)/N, where N is the to-

tal number of transactions. The confidence of the rule denoted as c(X =>Y) is defined as

OTXUD/OfiO-

Given a transaction database D, a minimum support threshold 6,, and minimum con-

fidence threshold 41., the problem of association rule mining is to find all the association

rules that pass both support thresholds.

The complete set of association rules can be mined in two steps: (1) mining the set of

frequent itemsets using 4‘, (2) derive the association rules on these itemsets using 41. Here

we illustrate this with an example.

EXAMPLE 2.2: Consider the sample database D shown in Table 2.1. For frequent itemset

{abcd}, bd is a subset with support 5 and the confidence of rule R1: bd=>ac is

dabcd)/o(A9 = 3/5=60%. Notice that association rules R1: ac=>bd and R2: abc=>d,

generated from {abcd} have confidence 100%.

2.2.2 Frequent Subgraph Mining

In this section, we present the basic terminology used in frequent subgraph mining.

Let g = (V, E) be a graph, where V is a finite set of objects called vertices (or nodes)

and E is a set of 2-element subsets of V called edges. A labeled graph is represented by a

4-tuple g = (V, E, L, l), where L is a set of labels, and a label function I: Vu E —> L maps

a vertex or an edge to a label.

15

DEFINITION 2.4 (Frequent subgraph) a subgraph g is said to be frequent if the occur-

rence ofg (i.e. o(g)) in a given graph database G = {g,-| i= 0..n} is greater than or equal to

a user specified minimum support threshold 5.

Given a database G and a minimum support threshold 4’, the problem offrequent sub-

graph mining is to find all frequent subgraphs in the graph database G.

3

9.90 a o e
610° 0 o oo o

a) 6 06 0

0 0 o .0 o.

(A) Graph Dataset (B) Frequent Graphs
Figure 2.1 Sample graph database and frequent graphs

EXAMPLE 2.2: Consider the sample database {G1, G2, G3}, shown in Figure 2.1 (A).

With minimum support threshold 5 =2, frequent subgraphs f1 :2, f2z3, f3:3, f4:2, 15:2, and

f6:2, where mzn denotes subgraph m with support count n, become frequent as shown by

Figure 2.1 (B). Here we have six frequent subgraphs of size 1 to 3.

During the frequent subgraph generation, anti-monotone property of frequent patterns

called the Apriori Principle can be used to reduce the subgraph enumeration search

space.

16

2.2.3 Related Work

In this section, we first describe the related research in frequent itemset mining, and then

describe research in frequent subgraph mining.

The frequent itemset mining problem was first introduced by Agrawal et al. in

[AS94b]. Since then, a number of efficient algorithms for mining fi'equent itemsets have

been proposed [I-IPYOO, AIS93, OLP+03]. A popular algorithm is the Apriori algorithm

[AS94b]. However, one of the major drawbacks of this algorithm is that it requires mak-

ing several passes over the database. As an alternative, tree projection algorithms

[HPY00, AAP+98], where transactions in the database are projected to a lexicographic

tree, were proposed. FP-Tree [HPYOO] is one such algorithm, which creates a compact

tree structure and applies partitioned-based, divide and conquer method for mining.

Several concepts have been proposed in the past to address the issue ofredundancy in

frequent itemsets. The concept of frequent closed itemsets was introduced by Pasquier et

al. [PBT+99a]. A level wise algorithm called A-Close [PBT+99b] was developed by Pas-

quier et al., and it employs a breadth first strategy for mining fi'equent closed itemsets.

Since A-Close needs to scan the database several times, its performance is quite poor

compared to other algorithms on large databases. Algorithms such as CLOSET [PHMOO]

and CLOSET+ [WHPO3] are based on the FP-Tree structure. These algorithms. use a min-

ing technique based on recursive conditional projection of the FP—Trees. Non-closed

itemsets are pruned using subset checking with the previously mined result set. However,

this requires all the closed itemsets previously discovered to be present in memory.

Hence the memory usage of these algorithms depends on the number of frequent closed

itemsets. CLOSET+ introduces a new duplicate itemset detection technique—upward

checking that is suitable for handling sparse data sets more efficiently. FPclose [GZO3] is

another algorithm that is based on the FP-Tree structure and uses arrays to efficiently

traverse the FP-Tree structure, thereby gaining significant time savings compared to

17

CLOSET and CLOSET+. FPclose also uses multiple conditional FP-trees for checking

the closure of itemsets and achieves better speedup compared to CLOSET+, which uses a

global tree structure for this task.

The CHARM algorithm, which was proposed by Zaki in [ZH02], uses a vertical TID

representation. For dense databases, it uses a dual itemset-tidlist search tree and adopts

the Difilset technique [ZG03] to store the itemset-tidlist at each node of the tree. Similar to

CHARM, CloseMiner [SSMOS] also uses frequent closed TID sets. Several alternative

algorithms employ the vertical bit vector representation to store the database in a con-

densed manner. MAFIA [BCGOI], and DCI-Close [LOP06a] are key algorithms in this

category. Although they show good performance when mining smaller databases, the

length of the bit vector is quite high for large databases. Also, for sparse databases the bit

vectors contain mostly zeros and these algorithms spend a lot of time intersecting these _

regions. To reduce these costs, MAFIA uses compressed vertical bit map structures. Also,

DCI-Close adopts many optimization techniques to reduce the number of bit wise inter-

sections. DCI-Close uses closure operation for generating closed itemsets. This technique

completely enumerates closed itemsets without duplication and needs no previously

mined closed itemsets.

Frequent itemset mining algorithms such as Apriori, FPgrowth, DCI_Close, CHARM,

and FPclose work well when the main memory Of the computer can hold the entire data-

base. When the support threshold is low or the database is very large, main memory may

not be able to hold the entire representation of the database. A few studies have addressed

this problem and proposed several approaches for mining frequent itemsets out of core,

using the secondary memory. One such early approach is the partitioning [SON95],

where the database is partitioned to many small databases and frequent itemsets are

mined from each such small database. The main problem of this approach is that when

the data structure of the candidate itemsets is larger, disk resident data structures are re-

quired and therefore significant disk U0 is required to access them. To address this issue,

18

Grahne et a1 [GZO4] proposed a recursive projection based partitioning for FPgrowth al—

gorithm. In this approach, they recursively project the database and create FP-trees until

it fits in main memory. Then, these memory resident FP-trees can be mined using an in-

core algorithm. This approach suffers from two major problems: first, they blindly pro-

jects the database to a FP-tree and if it does not fit in memory, the entire FP-tree con-

structed so far needs to be deleted and new set of FP-Trees needs to be built starting fiom

the next level itemsets; second, when the FP-tree for level-1 itemset does not fit in mem-

ory, all combinations of frequent-2 itemsets (level 2) are needed to be projected and this

is very costly. Recently, fast disk based frequent itemset mining algorithm was proposed

by Buehrer et al [BPGO6] for FPgrowth approach using the 64 bit computing capabilities

available.

The problem of mining frequent closed itemsets out of core is even more challenging,

since the closedness of an itemset cannot be decided on the basis of knowledge available

in a single data partition. Lucchess et al. [LOP06b] addressed this issue by proposing the

first out of core closed itemset mining algorithm. In that they proposed a merging strat-

egy to derive the global closed itemsets from the local closed itemsets mined in each par-

tition. However, their partitioning method ofbit vectors is not scalable and incurred many

I/O cost for larger databases.

There have been several parallel fi'equent itemset mining algorithms in the literature

[ZELOI], [SK98a], [AS96], [PCY95], [CHN+96], [HKKOO], [CHX98], [ZPO+98],

[CX98], [SK96]. Most such parallel algorithms are Apriori based [AS94b]. Agrawal et al.

[AS96] presents three different parallel versions of the Apriori algorithm on distributed

memory environment. The count distribution algorithm replicates the generation of the

candidate set and is a straightforward parallelization ofApriori. The other two algorithms

(data distribution and hybrid) partition the candidate set among processors. Park et al.

[PCY95] uses a similar approach by replicating the candidate set on all processors. Sev-

eral parallel mining algorithms were presented in [SK98a] for generalized association

l9

rules, and they addressed the problem of skewed transactional data. Cheung et al. [CX98]

also addressed the effect of data skewness in their FPM (Fast Parallel Mining) algorithm,

which is based on the count distribution approach. A parallel tree projection based algo-

rithm, called MLFPT, based on FP-Tree algorithm is presented in [ZELOl] for a shared

memory environment.

In frequent subgraph mining, the goal is to develop algorithms to discover frequently

occurring subgraphs in the graph database. Although there are many efficient and scal-

able frequent pattern mining algorithms exist for itemset mining and sequence mining,

developing efficient and scalable algorithms for subgraph mining is particularly challeng-

ing because subgraph isomorphism, which is a computationally expensive operation,

plays a key role throughout the mining process. Despite that, several efficient subgraph

mining algorithms such as FSG [KKOI], gSpan [YH02], FFSM [HWP03], Gaston

[NK04], SPIN [HWP04], and CloseGraph [YH03] are available and can be used in many

practical situations.

In this thesis, we use FSG algorithm [KKOl] to generate frequent subgraph patterns,

which are subsequently used to build anomaly detection model. FSG takes a graph data-

base and a minimum support 5 and generates all connected subgraphs that occur in at

least 5% of the graphs. FSG follows an Apriori style level-by-level approach (breadth

first search) to generate subgraph patterns. It starts by enumerating frequent subgraphs

consisting of one edge and proceeds to generate larger subgraphs by joining them. At

each level, sub graphs are grown by adding one edge at a time. Once a subgraph is gener-

ated, its occurrence in the graph database is computed to determine whether it is frequent.

FSG uses a number of optimization techniques to join subgraphs efficiently, and to com-

pute the frequency of the subgraphs. For more information, readers should refer to

[KKOl].

20

2.3 Mining Anomalous Patterns

In this section, we present the basic concepts used in mining anomalous patterns. We dis-

cuss anomaly detection in two types of input data: data that is described by feature vec-

tors and data that has graph based representation. We also discuss the related research.

2.3.1 Basic Concepts in Anomaly Detection

In anomalous pattern mining, the goal is to find objects that have surprising or unusual

occurrence from the majority of objects. Such objects are referred to as anomalies or out-

liers. Although it remains difficult to give a clear definition of what an outlier is, an often

quoted definition of an outlier by Hawkins [Haw80] can be stated as follows.

DEFINITION 2.5 (Outlier) An outlier is an observation that deviates so much fi'om other

observations as to arouse suspicion that it was generated by a different mechanism.

Discovering outlier objects can be performed in a supervised setting or an unsuper-

vised setting. Supervised outlier detection schemes require a training set containing both

anomalies and normal objects and use a training mechanism to learn the discriminating

features of the database. In situations where training data is not available or rare, outlying

objects must be detected by examining the entire dataset. Each object is then considered

as an outlier or normal object based on the degree to which that particular object is

anomalous. This type of scenario is known as unsupervised learning. Unsupervised learn—

ing has both advantages and disadvantages over supervised learning. The major disadvan-

tage is the lack of our known domain lmowledge about the problem for the learning algo-

rithm. Nevertheless, this lack of known knowledge can turn out to be an advantage, as it

lets the learning algorithm look for patterns that have not previously been considered. In

outlier detection this helps to detect unknown anomalies, which is a key challenge for any

outlier detection scheme, regardless of the learning method.

21

To measure the quality of the outlier detection scheme, several metrics can be used.

Precision, recall andfalse alarm rate are the widely used metrics.

TP

Precision =——

TP + FP

TP
Recall=m

FP

FP+TN

where TP (TN) is the number of true positives (negatives) and FF (FN) is the number of

False Alarm =

false positives (negatives).

In the context of outlier detection, precision or the detection rate is the number of ob-

jects detected as outliers from all the objects available. Recall measures the fraction of

outlier objects detected. False alarm rate is the fraction of normal objects predicted as

outlier objects. Obviously, a good outlier detection scheme must have higher preci-

sion/recall and lower false alarm rate.

Precision and recall can be combined into one metric called F-measure, which can be

defined as:

2TP

2TP + FP + FN

F-measure =

In fact, F-measure is the harmonic mean ofprecision and recall.

2.3.2 Related Work

In this section, we discuss related research in anomaly detection. First, we consider data

objects described by feature vectors; i.e. each instance of data is represented by a list of

features or a record (tabular data). Outlier detection for such data has been extensively

studied in the past. These existing approaches can be classified into several categories,

statistical based, depth based, clustering based, distance based, and density based.

22

In the statistical-based approach, they assume a standard distribution model (e.g. nor-

mal) and flag as outliers those objects that deviate from the model [Esk00][Lew94]. One

problem with this approach is that most distribution models apply directly to the feature

space and are univariate, which makes this approach unsuitable even for moderate high-

dirnensional data. Also, for any arbitrary dataset identifying the model that fits well with

it can be difficult and expensive.

Depth-based approach is another category based on computational geometry

[PS88][.IKN98]. Objects are organized in a convex hull so that the outliers are more likely

to occur in the outer region [P888]. However, these approaches suffer from the curse of

dimensionality.

In the clustering approach, outliers are detected using the clustering algorithms. But

these algorithms are not mainly designed for outlier detection and therefore show low

detection rate.

The distance-based approach was originally proposed by Knorr et al. [KNTOO]. In

this approach, an object is considered as an outlier if at least a fi'action r of the objects are

located farther than q of the objects. This notion is extended in [JTHOl], by considering

outliers as the top-n data points whose distances to their k-th nearest neighbor are among

the highest. This approach is not suitable when the dataset has both dense and sparse re-

gions and it is known as the local density problem.

Density-based approach was proposed by Breuning et al. [BKN+00]. It considers the

local density of the object’s neighborhood and computes Local Outlier Factor (LOF) for

each object. The neighborhood is defined by the distance to the k-th nearest neighbor, and

objects with high LOF value are considered as outliers. Although, density based approach

does not suffer from local density problem, selecting the right threshold-k is non-trivial,

and also this approach is very sensitive to the choice of k.

In the above approaches, outlier detection has been done for general data, where each

object is represented as a set of features. Anomaly detection has been extended for ob-

23

jects that are represented by graphs. Very few unsupervised anomaly detection algorithms

have been developed for graph based data. One such state of the art approach is the com-

pression based anomaly detection scheme [NCO3]. Its general idea is as follows: Subdue,

which is an algorithm to discover repetitive graph patterns, is run in multiple iterations on

the graph dataset and after each run, the graph dataset is compressed using the best sub-

structure discovered. Best substructure is determined using the Minimum Descriptor

Length principle (MDL) [CHOO]. Here, every instance of the substructure is replaced by a

single new vertex representing it. Then an anomaly score is computed for each graph in

the dataset based on the percentage of subgraph that is compressed away. A major advan-

tage of this method is because of the compression of the graphs, subsequent mining be-

comes much faster and graphs are easy to manipulate. Also, outlier detection has been

extended to time sequence of graphs in [IKO4]. Here the edge weights vary over time and

this forms a time dependent adjacency matrix.

24

3 PGMiner: Mining Frequent Closed

Itemsets

In this chapter, we introduce a graph based approach for closed itemset mining. The main

aspects of this work are surrunarized below:

0 We present a novel Prefszraph representation of a transaction database.

0 We develop an algorithm called PGMiner (PrefixGraph Miner) that uses pruning

strategies developed from network flow analysis.

0 We perform extensive experiments to compare the performance of PGMiner

against other existing algorithms on a variety ofreal and synthetic data sets.

The rest of the chapter is organized as follows: Section 3.1 discusses issues in the ex-

isting state-of—the-art frequent closed itemset mining algorithms. Section 3.2 introduces

the PrefixGraph representation. Closed itemset enumeration approach is discussed in

Section 3.3. In Section 3.4, we present out PGMiner algorithm. Experimental results are

reported in Section 3.5.

3.1 Issues in Frequent Closed Itemset Mining

Numerous algorithms have been developed to improve the efficiency of the closed item-

set mining task [PBT+99b][PHM00][ZH02][WHPO3][GZO3][SSM05][LOPO6a]. There

are two typical strategies adopted by these algorithms: (1) an effective pruning strategy to

25

reduce the combinatorial search space of candidate itemsets and (2) a compressed data

representation to facilitate in-core processing of the itemsets. Item merging and sub-

itemset pruning are two of the most commonly used strategies employed by current algo-

rithms [WHP03]. These strategies ensure that many ofthe non-closed itemsets will not be

examined when searching for frequent closed itemsets, thereby reducing the runtime of

the algorithms.

Apart from the pruning strategies used, having a condensed representation of the da-

tabase is also vital to achieve good efficiency. Existing algorithms such as FPclose

[G203] and CLOSET+ [WHP03] construct a frequent pattern tree (FP-tree) structure

[HPYOO] to encode the relevant itemsets and fiequency information. In this representa-

tion, each transaction in the database is represented as a path from the root of the FP-tree.

Compression is achieved by merging prefix paths of transactions that share the same

items. A vertical database representation is another popular strategy, in which each item

is associated with a column of values indicating the transactions that contain the item. For

example, algorithms such as CHARM [ZH02] use vertical tid-lists as their data represen-

tation while MAFIA [BCGOl] and DCI-Close [LOPO6a] use vertical bit vectors. Figure

3.1 shows the difference between the data compression techniques used to represent the

database given in Table 3.2.

Although an FP-tree often provides a compact representation of the data, our analysis

shows that there are situations where the storage requirements of the tree may exceed

even the database size, especially when the support threshold is low or when the database

is very sparse. This is because each tree node encodes not only the item label, but also the

support count and pointers to the parent, sibling, and child nodes. As shown in Table 3.1,

the size of the initial FP-tree exceeds the database size for databases such as Chess and

Kosarak. Algorithms that use the FP-tree structure must also recursively build smaller

subtrees and traverse multiple branches of the trees to collect frequency information dur-

26

ing the mining process. The overhead of reconstructing and traversing the FP-trees may

degrade the overall performance of the algorithm [GZO3].

@ [’0 0

I

I

I I

I l’

@l m”

I 0 a

I

#
O
O
N
-
i
m

t
h
-
‘
U
'

O
I
U
I
O
D
N
C
D

(b) Vertical tid-lists

iii“ 9

, 0 11110

® 0 “° 1‘‘rxt 1o 0 11

’ /l 0 11 10 0

00 01101
iifiili

(a) FP-tree (c) Vertical bit vectors

Figure 3.1. Different compressed data representations

Table 3.1 shows that the memory requirements for storing vertical bit vectors are gener-

ally less than that for FP-tree and vertical tid-lists, with the exception of the Kosarak data

set. Vertical bit vectors also allow for fast support counting using simple bitwise AND

Operations. However, when the database is large and sparse, the handling of long bit-

vectors is quite inefficient since there are lots of zeros in the vectors.

Table 3.1. Characteristics of various condensed representations

Database Database Min FP-Tree Biie‘ll‘iiaaiir 333;: Size of

Name Srze Support Num Nodes Size Size Size PrefixGraph

Chess 474.4 Kb 25% 31,812 621 Kb 19.9 Kb 435.3 Kb 239.6 Kb

Pumsb 14.0 MB 45% 183,349 3.5 MB 377.2 Kb 8.58 MB 4.28 MB

WebDocs 1150.4 MB 10% 50,313,644 959.6 MB 52.8 MB 296.5 MB 111.6 MB

Kosarak 36.8 MB 0.08% 3,425,391 65.3 MB 189.3 MB 26.1 MB 9.2 MB

27

Regardless of the representation, current closed itemset mining algorithms must compare

the support of a candidate itemset against the support of its supersets. To perform this

task more efficiently, many algorithms such as CLOSET+ [WHP03], FPclose [GZO3],

and CHARM [ZH02] store their intermediate result set, which contains all the closed

itemsets that have been mined so far, in another data structure (PP-Tree, hash table etc.).

Such a storage method is feasible as long as the number of closed itemsets is small. When

the number of closed itemsets is large, it will consume considerable memory to store and

time to search the itemsets. In fact, our analysis shows that in some cases the amount of

memory occupied by the result set is several orders of magnitude larger than the size of

initial FP-tree or vertical database representation. For example, in the Chess database

with 25% support threshold, storing the result set takes up to 102MB, even though the

size of the initial FP-Tree is only 621Kb! The cost for searching the result set (to deter-

mine whether a candidate itemset is closed) can also be very expensive. Our analysis on

the Chess database shows that FPclose spends about 70% of its overall computation time

searching the result-set.

In summary, both FP-Tree and vertical representations have their own strengths and

limitations. A major limitation of the existing approaches is their poor scalability to large

databases. In order to address these limitations, we introduce a novel representation

called PrefixGraph, which leverages some of the positive aspects of existing representa-

tions. From FP-tree, it borrows the idea of projecting a database onto different nodes of a

graph—but without the extra cost of traversing multiple branches of the tree to collect

fi'equency information. A PrefixGraph also uses bit vectors to encode the database pro-

jection at each node. However, the length of its bit vector is considerably shorter than that

used by existing vertical bit vector representations. We will discuss in more details how

the graph is constructed in the next section. From Table 3.1, note that the size of the Pre-

fixGraph structure is moderate compared to other representations. For the Kosarak data

set, it yields the most compact representation.

28

3.2 PrefixGraph Representation

3 2.] Preliminaries

A PrefixGraph consists of a set of nodes and a set of directed edges connecting pairs of

nodes. Any item in the database that satisfies the support threshold is represented as a

node in the PrefixGraph. Each node is also associated with a projected bit vector data-

base (see Figure 3.3 for an overview). Before illustrating the PrefixGraph structure fur-

ther, we give some useful definitions.

Note that here, items in a given itemset are assumed to be sorted according to some

total order, 4. We use the notation x < y to indicate x precedes y according to the total

order.

DEFINITION 3.1 (Prefix 2-Item) At a node k, an item i is called its prefix 2-item if i <k

and {i, k} is a frequent 2-itemset.

DEFINITION 3.2 (Prefix Itemset) Consider an itemset X = {i1, i2, ...,iH, ij, ij+1,...,in}. A

prefix itemset ofXwith respect to node ij is defined as all the items {i1, i2, "-ii-l }.

DEFINITION 3.3 (Suffix Node) Let S be a set of nodes sorted based on frequency de-

scending order. A suffix node with respect to nodej is any node keS such thatj -< k.

DEFINITION 3.4 (Suffix Link) A directed edge between node i and its suffix node k is

called a suffix link.

DEFINITION 3.5 (Farthest-Node) Let S be a set of nodes sorted based on frequency de-

scending order and T(/') be a set of suffix nodes for nodej. Let W(]') g T(/') be a subset of

the suffix nodes such that ‘v’n e W(i),jn is a suffix link in the PrefixGraph and {j, n} is a

frequent 2-itemset. The Farthest-Node ofnodej is defined as the suffix node k, such that

Vn e W(]'), n< k.

29

EXAMPLE 3.1: Consider the PrefixGraph shown in Figure 3.3 for the sample database in

Table 3.2. The total order of the nodes is a -< b -< d < e -< c. The prefix 2-item for node

b is a, while the prefix 2-items for node c are a and b. The nodes d, e, and c are suffix

nodes of b because b precedes these nodes. The edges bd, be, and bc are examples of suf-

fix links associated with node b. Finally, c is the Farthest-Node of b.

3.2.2 PrefixGraph Construction

We now illustrate the construction of the PrefixGraph using the transaction database

given in Table 3.2 with support threshold 2; = 2.

Table 3.2. Sample database

Transaction ID Items Frequent Items

1 a, b, c, d, a, b, d, c

2 b,d,a,e,fg a,b,d,e

3 d, a, e a, d, e

4 i, a, c, b a, b, c

5 b, c, e b, e, c

6 d, e, h d, e

First, we scan the database to identify the set of frequent items and their corresponding

support counts. These frequent items form the nodes of the PrefixGraph. For the sample

database, the list of frequent items are <(a:4), (b:4), (c:3), (d:4), (e:4)>, where (m:n) de-

notes an item m with support count n.

Once the nodes are identified, we order them based on the descending order of sup-

port count as shown in Figure 3.2(a). Next, we scan the database again to identify the pre-

fix 2-items for each node. For example, the frequent 2-itemsets for nodes a, b, d, e, and c

are (ab, ad, ac, ae), (ba, bd, be, be), (da, db, de), (ea, eb, ed), and (ca, cb), respectively.

The prefix 2-items and their corresponding support counts for these nodes are {}, {a3},

30

{a:3, b:2}, {a:2, b:2, d:3}, and {a:2, b:3} respectively. For each node, we store its set of

prefix 2-items in a header table as shown in Figure 3.2(b).

The next stage of the graph construction is to store the transactions as bits in the pro-

jected bit vector database of the nodes. We scan the database, and for each transaction,

infrequent items are removed and the remaining items are sorted based on the frequency

descending order. Let T be the resulting itemset. Now for each item k in T, we select the

corresponding node k and compare its prefix 2-items against the prefix itemset of T. If

there is a match, then these matching items are stored as bits in the projected bit vector

database ofnode k.

...@ G) <9 <9 <9

(9 o . .
Header

Tables a ab abd ab

@ o . a) .

ab abd ab

0

(C)

 11 11

mecca
a ab abd ab

(3.134119 11 111 11

<a,b,d,e> 11

Bit Vector Databases

O

Figure 3.2. PrefixGraph construction- a running example

31

For example, consider the first transaction of the sample database. After removing the

infrequent items, the remaining items are: T= {a, b, d, c}. Since the transaction has 4 fre-

quent items we need to consider the nodes a, b, d, and c. Node a has no prefix 2-items

and therefore nothing is stored. For node b, item a of the transaction matches with its pre-

fix 2-item (i.e. a), and therefore bit <1> is stored in its projected bit vector DB. For node

d, items {a, b} of T match with its prefix 2-items and therefore bits <1 l> are stored in the

projected bit vector DB. Similarly for node c, the bits for items {a, b} of the transaction

are stored in the projected bit vector DB. Figures 3.2(c) and 3.2(d) show the PrefixGraph

alter storing the first two transactions. When storing a transaction such as {d, e} at node

e, we need to store bits <001> in node e, since only item d of the transaction matches

with the prefix 2-items ofnode e.

In the PrefixGraph structure, suffix links are created based on the transactions. For

each item k in the transaction T, a suffix node m is selected such that m e T and Vn e

suffix nodes of k, m < n. A suffix link is then created from node k to node m. For exam-

ple, consider the transaction {a, b, d, c}. For node b we select the suffix node d (out of d

and c) and add a suffix link from b to d. Figure 3.3 shows the complete PrefixGraph

structure after storing all the transactions in the sample database.

Suffix Links

a ab abd ab

Header / 1 11 1 1 1 11

(Prefix 2-items

) 1 11 101 11

1 10 010 01

Q 001

Bit Vector Databases

Figure 3.3. PrefixGraph representation of the sample database

32

Instead of explicitly creating links, the links are incorporated directly into the projected

bit vector database. More specifically, we can group the bit vectors of the transactions

that have the same suffix link together and store them contiguously in the projected bit

vector database of the node. For this purpose, the projected bit vector database of each

node is partitioned into bins, and the set of bit vectors in each bin corresponds to a suffix

link. For example, transactions {a, b, d, e} and {a, d, e} both have the same suffix link

(de) at node d, and thus, can be stored together in a bin. If a transaction has no suffix link

beyond a given node, these transactions are stored in an additional bin called the termi-

nating bin. For example, the transaction {a, d, e} is stored in the terminating bin of node

e. All bins must be arranged contiguously, so that the intersection of bit vectors (item

wise) can be done fast as a one large chunk of words. Also, we need to keep track of the

starting location of each bin in order to identify the suffix links.

A summary ofthe PrefixGraph construction procedure is given in Algorithm 1.

Algorithm 1 (PrefixGraph Construction)

Input: A transaction database D and support threshold 2‘,

Output: PrefixGraph structure

Method:

1: Scan the database D and find the frequent l-itemsets (nodes) and their supports.

2 Sort the nodes in descending order of support.

3: Find the frequent 2-itemsets for each node and create the header tables.

4 For each transaction T:

a. Sort the frequent items in T in descending order of their support.

b. For each item k in T, select node k and match the prefix 2-items of

node k with the items in T and if there is a match, store the matching

items as a bit vector in the bit vector database ofnode k.

3.2.3 Analysis of PrefixGraph Structure

The PrefixGraph construction algorithm requires three scans of the database. The first

two scans are necessary to find frequent l-itemset and 2-itemset, while the third scan is

needed to construct the projected bit vector databases.

33

PROPOSITION 3.1: The size ofthe projected bit vector database ofa node is bounded by

the support count ofthe node times the number ofprefix 2-items ofthat node.

PROOF. Let m be the number of prefix 2-items of a node k. Since the number of transac-

tions that contain item k is equal to the support count o(k), the size of the projected bit

vector database of node k must be equal to l—m x o(k)/ 8] bytes. But in a projected bit

vector database, projected transactions starting with item k are not stored as bit vectors at

that node. Therefore, the size of the projected bit vector database at node k is

Sfm x o(k) / 8] bytes. I

Proposition 3.1 shows an important benefit of the PrefixGraph structure as we use bit

vector intersections during mining. According to Proposition 3.1, the length of the bit

vector is at most equal to the support count of the node. Since the support count of an

item is usually much smaller than the database size, we will have shorter bit vectors and

accordingly faster bit vector intersections.

The size of the projected bit vector database at each node varies as shown in Figure

3.4 for the Chess and T40110D100K databases with minimum support thresholds 30%

and 0.10% respectively. Except for the nodes in the middle, all other nodes have small

projected bit vector databases, which facilitate faster mining of itemsets.

Now let us theoretically analyze the space complexity of the PrefixGraph. Let I be

the number of items in the database and let N be the total number of transactions. The al-

gorithm for PrefixGraph construction has three database scans. First database scan re—

quires O(I) memory space to store the itemset vector for computing the frequent items

(nodes). Suppose IF1] is the number of frequent items (size 1) discovered. Then the sec-

ond database scan requires O(|F,|2/2) to store the upper triangular matrix for frequent 2-

itemset computation. Third scan constructs PrefixGraph in memory. It has]F,| nodes and

each node has a header table and a projected database attached to it. Let m be the maxi-

mum number of prefix 2-items of a node and let s be the maximum support of a node.

34

Now the header tables require mlFll memory space. Also, all of the IF1| projected data-

bases require |F1|(m.s/8) memory space (Proposition 3.1). Since we reclaim memory for

frequent 2-itemset computation (i.e. matrix) before building the projected databases, only

the maximtun size of these two steps should be considered as the space requirement.

Therefore, the total space complexity of PrefixGraph is O(I+ m|F1|+ max((|F1|2/2),

(Films/8))-

We also analyze the time complexity of the PrefixGraph construction algorithm. Let

It] be the maximum size of a transaction t in the database. Now the first scan of the data-

base takes O(Nltl) to construct the frequent l-itemsets. The second scan requires us to

consider all the combinations of size 2 items in t; i.e. it takes O(N(MC») time complexity

for all N transactions. The third scan requires each transaction to be sorted and stored in

the projected database of the nodes. Using of quicksort to sort a transaction takes |t|log |t|

time. In the worst case a transaction may be stored in all the [Fll nodes and the cost is

lF;||t|. Therefore this step takes O(N]t| (log |t|+|F1|)) for all N transactions. Then, the total

time complexity is the sum of the complexities of all these three steps.

3.3 Frequent Closed Itemset Mining

In this section, we will study how to efficiently mine frequent closed itemsets from the

PrefixGraph structure. The algorithm proceeds in two phases: first, we find the fi'equent

closed itemsets for each node (these are known as local closed itemsets). We then check

whether the local closed itemsets are also globally closed using various inter-node prun-

ing techniques. Here we give the formal definitions of local and global closed itemsets.

35

Chess .105 r4011oo1oox
I I

I

S
i
z
e
(
b
y
t
e
s
)

S
i
z
e
(
b
y
t
e
s
)

 0 l I l l l | I

U 10 30 40 50 I30 2m 4m 6]] HI] 111120

Node Node

Figure 3.4. Size ofbit vector databases at each node

DEFINITION 3.6 (Local Closed itemset) An itemset X, derived under node n is defined as

locally closed, if there is no itemset Y (3 X) derived under the same node n with o(l’) =

c(X).

DEFINITION 3.7 (Global Closed itemset) An itemset X, derived under node n is defined

as globally closed, if there is no itemset Y (D X) derived under any node k, (k6 set ofall

nodes) with o(Y) = c(X).

3.3.1 Intra-Node Closed Itemset Mining

In intra-node closed itemset mining we mine the locally closed itemsets fi'om the pro-

jected bit vector database for each node. As shown in the next proposition, itemsets that

are not locally closed are guaranteed to be non-globally closed. Such itemsets can there-

fore be excluded fiom further consideration.

36

PROPOSITION 3.2: For any given itemset X, derived under node n, ifX is not locally

closed then it is not globally closed.

PROOF. Since X is not locally closed, El Y derived under node n, s. t. X c Y and o(Y) =

c(X). Therefore, by the Definition 3.7, Xcannot be globally closed. I

In general, to generate frequent itemsets of a node, bit vectors of all distinct pairs of

the itemsets are intersected and the cardinality of the resulting bit vector is checked. This

is carried out recursively in a depth first manner until all the itemsets are enumerated. For

example, in the itemset enumeration tree given in Figure 3.5, for itemset {a}, we generate

all its combinations ({ab},{ac},{ad}). Then, starting from {ab}, ({abc},{abd}) are gen-

erated. If the support of {ab} is identical to the support for one of its immediate super-

sets, then {ab} will be marked as not closed. Note that any itemset {i1, i2, ...,ik} gener-

ated under a node n must have its node label appended as {i1, i2, ...,ik, n}. We have omit-

ted item n from the set enumeration tree in Figure 3.5 for brevity. Similar to several past

algorithms [BCG01, LOPO6a, PHMOO, ZHOZ], we also use two additional pruning tech-

niques to rapidly identify the local closedness of the frequent itemset once it is generated.

PROPOSITION 3.3: (sub-itemset pruning) For afrequent itemset Xand an alreadyfound

closed itemset Y, ifX c Y and 000 =O(Y), then X and all X’s descendent itemsets in the

set enumeration tree are not closed.

PROOF. Let X and Y be frequent itemsets in the set enumeration tree s.t. Xc Y and ofX) =

o(Y). Since Y is already enumerated according to set enumeration order and found to be

closed, Y can generate itemset Y U X. Since 0'00 = o(Y), tid-semi? = tid-set(Y), and

(YUX) D X itemset X is not closed. Similarly, any descendent itemset X; ofXcan be gen-

erated by Y according to set enumeration order and therefore is not closed. I

PROPOSITION 3.4: (item merging) For a frequent itemset X and an already foundfre-

quent itemset Y, if the tid-set(AO_c tid—set(Y) and Ycz‘X, then X and all X’s descendent

itemsets in the set enumeration tree are not closed.

37

PROOF. Let Y be a frequent itemset already enumerated and let Xbe a frequent itemset in

the set enumeration tree s.t. Y a: X. According to the itemset enumeration order Y’s sub

tree must contain Y U X, which is already enumerated. So, if the tid-setpng tid-setm,

then o(Y U X) = o(X). Since (Y U X) D X, X is not closed by definition of the closed

itemset. Further, any descendent itemset X,- ofX can be enumerated by Y as Y U X; with

the same support count. Thus X’s descendents itemset are also not closed. I

I Level -1 la\ 1

l I

I l

l l
I Leve] -2 l ab\ aC ad bC '

| I

I 1_:s__1 ?_| 13.1w I

I Level -3 abc abd acd bcd |

| l

| l

I l l Depth First Traversal
1—Level —4 m I

Figure 3.5. Itemset enumeration tree (search space) of a node

A direct implementation of sub—itemset pruning requires storing possibly a large set of

closed itemsets and performing subset checking to determine whether an itemset is set-

included in a superset. To reduce these overheads, we limit the applicability of this prun-

ing strategy to itemsets between two successive levels of the depth first search space. For

example, itemset {ab} at level-2 generates its level-3 itemsets ({abc}, {abd}). Based on

Proposition 3.3, if {abc} and {ac} have identical support counts, we can prune {ac} and

its sub—tree.

38

The applicability of the item merging proposition to an itemset Xrequires that we per-

form subset checking of X’s bitmap with the bitmaps of all the processed (i.e. already

mined) local itemsets of level-l down to the parent level of itemset X. For example, if the

itemset is {bcd}, we need to check whether its bitmap is a subset of the bitmap of a. If it

is a subset of bitmap(a), then {bcd} is not closed according to Proposition 3.4. In our ver-

tical bit vector representation, such bitmap subset checking can be performed very fast.

The main advantage of local closed itemset mining is that itemset generation and

support counting are very fast, since the projected database contains short bit vectors.

Unlike FPclose and CLOSET+, the information needed for support counting is locally

available and there is no need to traverse any other nodes.

Application of both propositions ensures that we generate only the complete set of

local closed itemsets for that node. In the next section, we develop an efficient flow based

pruning strategy to verify whether the local closed itemsets are also globally closed.

3 .3 .2 Inter-Node Pruning

In order to develop inter-node closed itemset pruning, we consider PrefixGraph structure

as a network with transactions flowing through the nodes. Therefore, the problem of dis-

covering a global closed itemset can be mapped to a network flow problem.

Let us first analyze the suffix links of the PrefixGraph structure. For a node n in the

PrefixGraph G, we define the out-neighborhood and in-neighborhood of n by N*(n) = {m

e V(G) I (n, m) e E(G)} and N(n) = {m e V(G) | (m, n) e E(G)}, respectively (here

V(G) and E(G) are the set ofnodes and edges respectively).

For an edge (n, m) of the PrefixGraph G, f(n, m)is the flow along the edge and is

considered as the set of transactions that flows through the edge (n, m). Furthermore, we

have, OS|f(n,m)|£ o({nm}), where |f(n, m)| denotes the number of transactions.

39

Based on this, for any node n, its outgoing flow can be defined as 0utF(n)

= U f(n,m) and incoming flow can be defined as InF(n) = U f(m,n)- More

meN+(n)
MEN—(n)

specifically, we denote fX (n,m) as all the transactions containing itemset X that flow

fiom node n to m. Then, for a given itemset X derived under node n, the outgoing flow of

X can be defined as 0utFx(n) = U mem). Similarly, the incoming flow of itemset

meN+(n)

Xderived under node n can be defined as InFX(n) = U fX (m,n)~ Here we give some

MEN—(n)

properties of this flow based representation.

POSTULATE 3.1: Given an itemset X derived under node n, where IX] 2 2, the following

properties hold:

11 000 = llanWl

ii. Ian(n) QOutFx(n)

iii. 17m: OutFx(n) QInFXm(m), where n <m ande = X L/{m}.

EXAMPLE 3.2: Consider the PrefixGraph shown in Figure 3.6, for the database given in

Table 3.2. The out-neighborhood of node b, Ni(b) = {d, e, c} and the in-neighborhood of

node d, N(d) = {b, a}. Transaction flow along edges (b,d) and (dc) are f(b,d)={t1, t2}

and f(d,e)={t2, t3} respectively, where t,- is the transaction ID. The flows can also be de-

fined with respect to a given itemset. For example, fmb} (d1e)= {t2}. The incoming flow for

itemset {a, d, e} at node e, InF{a,d,e)(e) = {t2, t3} and |1nF{a,d,e}(e)| =2 = o(ade).

Under the network flow representation, a closed itemset can be defined as follows.

THEOREM 3.1: An itemset X derived under node n is globally closed if 17’m: InFX(n) ¢

InFXm(m), where n < m andXm = X u{m}.

PROOF. This theorem is simply a re-statement of the definition of closed itemset that no

supersets ofXhave the same support as X. Note that each immediate superset Xm must be

generated at some node m in the PrefixGraph structure and o(Xm) = |InFX,,,(m)|. I

40

f(bfi)

Figure 3.6. Transaction flow network for the sample database

COROLLARY 3.1: Thefollowing conditions hold ifX is not globally closed.

i. 3m: InFX(n) = InFXm(m), where n < m.

ii. 3m: Ian(n) gInF(m), where n< m.

PROOF. Condition (i) follows directly from the contra positive of Theorem 3.1. Condition

(ii) holds because InFXm(m) g InF(m) (from the definition of incoming flow). I

Based on this flow based representation, we develop several theorems that will assist

us in identifying whether a given local closed itemset is globally closed.

THEOREM 3.2: For any itemset Xderived under node n if,

i. X is locally closed and

ii. .5’X' s. t. X CX' and X' is known to be a globally closed itemset under the same

node n then Xmust also be globally closed.

PROOF. To construct the proof, by contradiction, assume that X is not globally closed

even though X’ is globally closed. By Corollary 3.1, Elm: InFX(n) g InF(m). Since X CX',

InFX(n) <_:_ InFX(n). Due to the transitive property of subset relation, InFX(n) _c_ InF(m),

which contradicts the previous statement that X’ is a globally closed itemset. Thus, X

must be globally closed. I

This theorem states that if we have a globally closed itemset derived under some

node, then all locally closed subsets of the itemset are also globally closed (upward clo-

sure property). For example, in the search space given in Figure 3.5, suppose we found

41

itemset {acd} is globally closed; then all of the locally closed subsets of {acd} derived

under node n are guaranteed to be globally closed.

Efficient implementation of this theorem requires keeping all of the globally closed

itemsets of a particular node in memory for subset checking. To avoid this, we devise two

optimization methods: First, when checking the global closedness of local closed item-

sets, we start from the maximal closed itemset (leaf) of the enumeration tree. That way, if

we determine the leaf itemset as globally closed (using other techniques described later),

then all the local closed itemsets in its path (to the root) become globally closed. Second,

based on our analysis, we found that there is temporal locality that can be exploited dur-

ing the search, i.e., most local closed itemsets are subsets of the most recently found

globally closed itemset. Therefore, each time we discovered a new globally closed item-

set, we keep a copy of this itemset in memory. Then, when a new local closed itemset is

found we compare it against this copy.

THEOREM 3.3: For any itemsetXderived under node n if

i. X is locally closed and

ii. IIan(n)| - IOutFx(n)| > 0

then X is a globally closed itemset.

PROOF. To construct the proof, by contradiction, assume that X is not globally closed but

|InFX(n)| > IOutF,\(n)|. By Corollary 3.1, Elm: InFX(n) = InFXm(m). From the third property

of Proposition 3.1, |0utFX(n)| 2 lInFXm(m)|. Putting them together, it follows that |1an(n)|

< |0utFx(n)|, which contradicts our initial assumption. Thus, Xmust be globally closed. I

According to this theorem, if the bitmap of a local closed itemset X, derived under

node n, has at least one transaction that terminates at node n (i.e. those transactions do not

flow to other nodes), then X is globally closed. In our PrefixGraph structure, all we need

to do is to examine the bits in the terminating bin of the corresponding itemset’s bitmap.

If at least one bit is ‘1’ in the terminating bin of the itemset, then that itemset is globally

42

closed. This is a very fast operation that requires checking the itemset’s own bit vector to

determine the global closedness.

THEOREM 3.4: For any itemsetXderived under node n if

i. X is locally closed and

ii. Ian(n) = 0utFX(n) and

iii. Xhas exactly one suffix link to node m

then X is not a globally closed itemset.

PROOF. Let InFX(n) = 0utFX(n). Since X has exactly one suffix link to a node m,

0utFx(n) = InFXm(m). Putting them together, we obtain Ian(n) = InFXm(m), which ac-

cording to Corollary 3.1 means that Xis not globally closed. I

Theorem 3.4 suggests that if all of the transactions that belong to itemset X flow to

exactly one other node, then X is not closed. In the PrefixGraph representation, once an

itemset is generated its links can be analyzed by checking the bins of the bit vector.

Based on the number of links, we can decide whether the itemset is not closed.

For the remaining local closed itemsets in which the previous theorems are inapplica-

ble, we need to test whether they are globally closed. In order to determine the global

closedness of a local closed itemset, we need to visit every suffix node and compare the

support of its corresponding superset, which is a very expensive operation. The following

theorem reduces the number of such nodes that need to be visited. ’

THEOREM 3.5: Let X be any itemset derived under node n and let I be the Farthest-Node

ofn w. r .t. itemset X. Then for any itemset X’ s. t. X’ 3Xderived under node m, n < m<

t, o(X') #001).

PROOF. Let adjx(n) = (n1, n2, ...,nm, t) be the possible set of nodes that itemset X can

have a outgoing flow, with n<n1< n2, <t. Let InFX(n) be the transaction flow for

itemset X. Let X’ be an itemset derived under any node 6 adix(n)\{t}, s. t. X' D X. If

InFX(n) g incoming flow for any node 6 ade(n)\{t} then o(X') = c(X). Since InFX(n) is

43

divided among the edges of nnl, nn2,.., nnm, so is the incoming flow of any X' derived un-

der adjx(n)\{t} i.e.

11an("1)| , 11an('12)| ,...., UHF/V(nm)| < llnFWlN

Therefore, there is no X' with o(X') = c(X), that can be derived under nodes ade(n)\{t} . I

For a given itemset, this theorem identifies the first possible node that can generate a

superset itemset with identical support. So all of the nodes between the current node,

where the itemset is generated, and the farthest node w.r.t. the itemset (excluding the far-

thest node itself) can be ignored. Using this theorem, we can identify the set ofnodes that

can possibly generate a superset itemset with an identical support for a given itemset X,

derived under node n, as: GENX(n)= {m 6 set of nodes | Farthest-Nodex(n) —< m and V

itemsj ofX,j e prefix 2-items(m)}.

COROLLARY 3.2: Let X be an itemset, t be the farthest node ofX and X' be the itemset

derived under node t, s. t. X’ 3X Then the next possible node t' that can generate a su-

perset itemset with identical support to X is the node k = Farthest—Nodex-(t) if k e

GENX(n). Otherwise, t' is the immediate node that precedes t and e GENX(n).

Although Corollary 3.2 can possibly reduce the size of GENX(n), it requires us to

completely generate the bit vector for each local closed itemset under consideration. In

practice this is not very profitable. So, here we design an efficient technique that will ex-

amine only the nodes in GENX(n) and avoid complete regeneration of bit vectOrs at each

node.

In this method, to identify the global closedness of an itemset X, generated under

node n, we visit each node in GENX(n) until we determine its global closedness. Once we

visit a node k e GENX(n), we can generate the itemset Xk using its bit vector database and

compare the support count with X. Here we have used two observations in designing this

technique:

i. Most of the local closed itemsets are globally closed

44

ii. Local closed itemsets that need a global closedness check under this scenario are

mostly the leaves in the search space of the node and therefore they have low

support count (and longer itemset length)

These observations suggest that in most situations itemset X cannot have a superset

itemset in a node k e GENX(n) with an identical support. So, when checking the superset

of the itemset X={i1, i2, ...,ik, n} derived in node n under node k e GENX(n), we first se-

lect item it and i1, and generate the bit vector by intersecting the corresponding bit vectors

in node k. If o(ni1) < c(X) then node k cannot generate itemset X and we stop processing

that node immediately. Otherwise, we intersect each item 6 X in that order, until we de-

termine whether itemset Xcan be generated by node k with an identical support count.

There are several optimization strategies that can be employed here. We found a tem-

poral locality property that can be exploited during the subsequent generation of itemsets

in a node. In order to facilitate fast subsequent itemset generation, we keep the bit vectors

of the most common subsets of the itemset, once they have been generated under a node

for reuse. Here we keep in memory a 2-bits wide bit vector for each node that needs to be

checked. The first l-bit wide vector always saves the bit vector of itemset {ni1}. In the

second bit vector, we keep the bit vector of the most frequent items. For example, if the

itemsets that come to a node k are {abcden}, {abdfn}, and {abcdgn}, we keep {abdn} in

the second bit vector. So, if another itemset, say {abdmn}, needs to be checked under

node k, we can directly use the bit vector of {abdn}. We found this technique to be very

profitable.

This itemset regeneration based closedness check is efficient because of the following

reasons: first our bit vectors are shorter in length, so that intersection is fast. Second, we

keep track of the bit vectors of most common itemsets in memory, which avoids com-

plete regeneration. Third and more importantly, after applying Theorems 3.2-3.4, the re-

maining percentage of itemsets that needs global closedness is much smaller. We have

analyzed this in Section 3.4.

45

3.4 Mining Algorithm

Based on the above discussion, we have the following algorithm for frequent closed item-

set mining.

A_1gorithm 2 (PGMiner)

Input: PrefixGraph structure G and support threshold é

Output: The complete set of frequent closed itemsets

Method:

1: starting from the node with highest support count call MineNode(n) for each node

n e V(G).

Procedure MineNode (n)

1: use the depth first search paradigm to mine the local closed itemsets at node n in a top

down manner by intersecting its bit vectors. If the support of an itemset is identical to its

immediate supersets, then the itemset is marked as not closed. To improve efficiency, use

Propositions 3.3 and 3.4 to further prune the non-closed local itemsets.

2: once at a leaf itemset X of the search path, use Theorems 3.2, 3.3 and 3.4 to detect global

closedness for the local closed itemset found. If not detected, search the nodes in

GENX(n) (Theorem 3.5) using the regeneration method.

3: if an itemset is globally closed, mark all the local closed itemsets in the search path to the

root as globally closed (by Theorem 3.2). Output any global closed itemset found.

4: stop when all prefix 2-items in the node have been processed, and reclaim memory of the

bit vector DB of that node.

The following theorem proves the correctness of the PGMiner algorithm.

THEOREM 3.6: PGMiner returns only the closedfrequent itemsets.

PROOF. The PGMiner algorithm consists of two parts—intra-node local closed itemset

enumeration and inter-node pruning of non-globally closed itemsets. By Proposition 3.2,

we have shown that all globally closed itemsets must be locally closed, which is why it is

sufficient to check only the locally closed itemsets during inter-node pruning.

The intra-node closed itemset mining step is correct because any non-locally closed

itemset must be pruned in one of the following ways: (1) by checking the support of an

itemset to the support of its immediate superset in the itemset enumeration tree, (2) by

46

by sub-itemset pruning, or (3) by item merging. TO verify that the inter-node pruning step

identifies only the globally closed itemsets, we have previously shown that the theorems

used for checking the global closedness of an itemset (i.e., Theorems 3.2 — 3.4) are cor-

rect. For the remaining local closed itemsets in which the theorems are inapplicable, the

itemset regeneration method is used to test whether they are globally closed. Since this

method explicitly visits every suffix node to determine whether the support of a locally

closed itemset is identical to the support of one of its supersets, the globally closed item-

sets found by itemset regeneration method must be correct. I

The time required by PGMiner depends on the number of nodes in the PrefixGraph

and the cost of mining itemsets at each node (Tnode); i.e. |F1|Tn0de. Let m be the maximum

number of prefix 2-items. So, the maximum number of bit vector intersections performed

at a particular node is equal to the size of its itemset enumeration tree. In the worst case,

this requires 2'"-1 intersections but the optimizations and pruning techniques employed

by the algorithm reduce this significantly. For space complexity, PGMiner needs to store

the projected bit vector database at each node. Since each node contains at most m prefix

2-items, the maximum number of bit vectors to be stored at each node is equal to (m+ m-

1+ m-2+... +1) = m(m+1)/2. Therefore, the maximum size of the projected bit vector da-

tabase at a node is (s/8)m(m+1)/2, where s is the maximum support of the node. Note that

PGMiner reclaims all allocated memory of the current node before mining the next node.

Therefore the total space requirement of PGMiner is equal to that of a node; i.e. O(smz).

3.4.1 Implementation Techniques

The input database format used by our algorithm is in horizontal representation, where

the database is arranged as a set of rows with each row representing a transaction in terms

of set of items. Internally we convert each transaction to bit vectors and construct the bit

vector DB for each node as described earlier.

47

Since we use vertical bit vector representation, we need a fast method to count the

support of an itemset represented by the bit vector (i.e. number of 1’s). We use a lookup

table to store the number of 1’s of each 16-bit value for all 216 possible 16-bit values. For

example, the 16 bit value of ‘5’ has 2 ones, ‘25’ has 3 ones and ’10,000’ has 5 ones. Also,

when intersecting bit vectors we intersect word (32 bits in most architectures) by word.

Once a word is intersected, its support count is determined fi'om the lookup table.

3.4.2 Memory Management

In this algorithm, we always start mining from the node with the highest support count,

i.e. node mining order is from left to right of the PrefixGraph. Once all the closed item-

sets of a node are discovered, we can safely remove the bit vector DB and reclaim mem-

ory space. As shown by Figure 3.4, bit vectors of middle nodes are in general wider and

therefore take more memory space in subsequent mining. So reclaim ofmemory from the

earlier nodes facilitates efficient memory utilization.

3.5 Experimental Evaluation

In this section, we describe the evaluation environment used to execute our algorithms

and the results obtained

3 .5. 1 Evaluating Environment

We compared the performance of PGMiner with existing state of the art algorithms in

each of the 3 data representation categories. In the vertical TID-list category, we chose

CHARM [ZH02], which uses the DiflSet [ZGO3] technique to efficiently compress the

database. In the vertical bit-vector category, we chose the DCI-Close [LOPO6a] algo-

rithm. In the FP-Tree category, we chose the FPclose [GZO3] algorithm, which is a

48

faster algorithm compared to CLOSET [PHMOO] and CLOSET+ [WHP03] under the

same category. FPclose and DCI-Close implementations were obtained from FIMI re-

positoryz, while CHARM implementation with DiflSets was Obtained from its author.

We experimented with wide variety of real and synthetic databases as shown in Table

3.3. The Medical database contains claims and diagnoses for patients and their prescribed

medicine. All other real-world databases were obtained from FIMI repository. Synthetic

databases were generated using the IBM Quest synthetic data generator [Alm].

Our machine environment consists of a 2.8 GHz Intel Pentium 4 processor with 1 GB

ofmemory running Linux. All recorded execution times refer to real time, which includes

CPU time and I/O time.

Table 3.3. Characteristics of the databases

Dataset No. Of. No. of Items

Transactions

Medical3 5,939,734 5,912

WebView2 77,513 3,340

Chess 3,196 75

WebDocs 1,692,082 5,267,656

Pumsb 49,046 2, l l 3

Kosarak 990,002 41,270

T40110D100K 100,000 1,000

T100120D100K 100,000 997

T2018D500K 500,000 8,612

T50110DxK 25,000-50,000,000 25,000

3.5.2 Performance Comparisons

Execution time comparison ofPGMiner against other algorithms is shown in Figures 3.7

— 3.15. When an algorithm took a considerably longer time compared to the rest, it was

eventually terminated. (Also, run time of CHARM for WebDocs and kosarak datasets

could not be recorded, as we had some runtime problems with CHARM).

2 http://fimi.cs.helsinkifi

3 Database contains visitsfor 42 7,214 patients during the period of2001-2005.

49

Our analysis shows that in seven out of nine databases tested, PGMiner shows the

best runtime when compared to all other algorithms at low support thresholds. For the

remaining two databases (Chess and Pumsb), although PGMiner outperforms both

FPclose and CHARM, DCI-Close shows better runtime. This is because their search

space enumeration method seems better suited for these smaller databases. We found that

in some cases, all other algorithms fail to mine databases at low support thresholds, while

PGMiner can still run for even smaller levels of support thresholds.

In smnmary, PGMiner shows better run time performance because it has very low

overhead due to the effectiveness of its flow based pruning strategies. Unlike other algo-

rithms, PGMiner does not need to store the entire result set in memory. The PrefixGraph

structure also has shorter bit vectors and this significantly reduces the bit vector intersec-

tion cost for large databases. Thus, PGMiner has better runtime and can scale to very

lower levels of support thresholds.

3.5.3 Memory Usage

The memory usage for all the algorithms on several databases is shown in Figures 3.16 -

3.18. We found that PGMiner mines all of the databases with low memory usage when

compared with the other algorithms. In all these cases, FPclose shows higher memory

consumption because of its storage based pruning strategy and the large FP-Tree structure

it has to build for larger databases. However, DCI-Close shows better memory usage

when compared with FPclose and CHARM. But, in some cases (e.g. T40110D100K), its

memory consumption gets suddenly high when the threshold is gradually lowered. Note

that the memory usage of PGMiner does not grow quite as rapidly as other algorithms

during the mining process.

50

250 Medical

—x— CHARM

—e— FPclose

__ —A— DCI-Close __________________________________

200 _._ PGMiner

n
u

0.0012 0.0010 0.0008 0.0006 0.0004 0.0002

Support%

Figure 3.7. Execution time (in seconds) for Medical

50 WebView2

45 —x— CHARM

‘” —e— FPclose """"""""""""""""""""

40 q, —A— DCI—Qlose ___________________________________

. PGMiner

0.050 0.040 0.030 0.020 0.010 0.008 0.005

Support%

Figure 3.8. Execution time (in seconds) for WebView2

51

Kosarak

2500

—e— FPclose

——A— DCI-Close

2000 -. _._ PGMiner

31500 —P ---

f»:

E
:1000 ‘--

500 —--

0 r 1 1 : I fin

0.20 0.16 0.12 0.08 0.078 0.076

Support %

Figure 3.9. Execution time (in seconds) for Kosarak

1200 Chess

—x— CHARM n

—e— FPclose

1000 ‘ —A— DCl-Close ---------------------------

. PGMiner

800 . ——

2"

S
v 600 — ——
0)

.E

’- 400 - _________________________ -

200 ~—————————————————————————————,

0 - -—_—_-_-_-"="""'—:———‘e————-—-‘- I 1 . . 1 T

40 35 30 25 20 15

Support %

Figure 3.10. Execution time (in seconds) for Chess

52

1000 WebDocs

—e—FPclose
900 ~— __

+DCI-Close

800 " —-——PGMiner --------------------------------

700-..

3600—--

(D

£3500---------------------------------- 1-----------------

E400------------‘4----------------

3004-";------- ,

200—..

1oo—..

0:'411'.':‘:+:

20 18 16 14 12 10 8

Support%

Figure 3.11. Execution time (in seconds) for WebDocs

T2018D500K

_
L

o o

I

_ —e— FPclose

—x— CHARM

—A— DCl-Close

. PGMiner

0.05 0.01 0.005 0.0025

Support%

0.10

Figure 3.12. Execution time (in seconds) for T2018D500K

53

900

—x— CHARM

800 -. —e— FPclose ----------------------------------

—A— DCl—Olose "

700 -~ _.__ PGMiner ----------------------------------

600 —............................ - - - - . f__________________

0'

$500 ..

E400 — —————————————————————————————————————— " ----------

I‘300 —... ___ _

200 -.. _ _ - _ ,.

_____________________ _ _ /'/_______‘______________100 / ‘

0 £./_ 1 l 1

65 60 55 50 45 42

Support %

Figure 3.13. Execution time (in seconds) for Pumsb

1400 T40I10D100K

—x— CHARM

1200 __ —B— FPCIOSO ________________________________

—A— DCI—Close

—+— PGMiner

1.00 0.50 0.25 0.10

Support %

Figure 3.14. Execution time (in seconds) for T40110D100K

54

T100120D100K

1800

—x—CHARM .

1600 r +9322? --------------------------------

—A— 089

1400 -_ __o—PGMiner ---------------------------------

1200 -___

§1ooo ...

E 800 —--- ,.

’— 600 —..

400 --

200 .------------------------------ z _ ____________

0 -!—.——-—-"'—"—'-'—'i-—-‘"”'. I I

5 4 3 2 1

Support%

Figure 3.15. Execution time (in seconds) for T100120D100K

1000 T4OI1OD100K ‘

8 a

E 100 .. AAAAA A: ————————————

Q) .

.5 ‘

a)

E‘ .

‘5’ .
a, 10 - ..

E

1 r 1 t 4 i 1 4

1.00 0.50 0.25 0.10 0.05

Support%

—><— CHARM —a—— FPclose —A— DCI-Close _.__ PGMiner

Figure 3.16. Amount ofmemory (in MB) required for T40110D100K

55

1000

M
e
m
o
r
y
S
i
z
e
(
M
B
)

Pumsb -9

_
L

O O

1

_
L

O I

65 60 55 50 45 42

Support %

+CHARM —e— FPclose —A— DCl-Close _._ PGMner

Figure 3.17. Amount ofmemory (in MB) required for Pumsb

Kosarak
 1000

.
.
L

O O

I

M
e
m
o
r
y
S
i
z
e
(
M
B
)

3

0.20 0.16 0.12 0.08 0.078

Support %

—e— FPclose + DCI—Close + PGMiner

Figure 3.18. Amount ofmemory (in MB) required for Kosarak

56

3 .5.4 Scalability

We have also measured the execution time of all the algorithms by increasing the number

of transactions gradually. We use the T50110DxK data set, where x is varied from 25,000

transactions (DB size 69th) to 50 million transactions (DB size 13.9GB), with mini-

mum support threshold 0.1%. When experimenting with these databases we used a server

(2 GHz) with 4GB ofmemory, since these databases are of gigabyte size. Execution time

for all of the algorithms is shown in Figure 3.19. The experimental results revealed that

CHARM, FPclose, and DCI-Close could not reach more than 1 million transactions

(1000K) of this database set. FPclose and DCI-Close crashed for the T50110D5000K

dataset, and CHARM did not finish even after 2 hours.

Analysis of memory usage for these algorithms revealed that they consrune high

memory space. In the 5000K dataset, the FPclose algorithm fails because it has con-

sumed all the available memory space and it was killed by the system when trying to al-

locate more memory. See Figure 3.20.

10000

—96—(3HAGUM

—a— FPclose

—A— DCl-Close

1000 —

100 ~

T
i
m
e
(
s
e
c
)

10—

25K 50K 100K 500K 1000K 5000K 50000K

No. of Transactions

Figure 3.19. Execution time versus number of transactions (K=1000)

57

ll.

4096

—e—FPclose I

3584 ,_ +DCl-Close __________________ ,'__________________

—o—PGMner ,’

A 3072 —

m

g 2560 ~
11)

.13

‘g 2048 -

,5, 1536 -

2

1024 -

512 -

0 i , a. J 4 1 r 1 r

100K 500K 1000K 5000K 50000K

No. of Transactions

Figure 3.20. Memory usage of algorithms for large databases (K=1000)

Memory consumption ofDCI-Close is remarkably high even for the 1000K dataset, and it

was also killed by the system when trying to allocate a larger block in the 5000K case.

Note that PGMiner was able to reach 50 million transactions easily showing remarkably

low memory usage. As shown in Figure 3.19, PGMiner shows impressive scalable per-

formance when mining larger databases.

3.5.5 Effectiveness of the Flow Based Pruning

In our algorithm, when a local closed itemset is discovered, we first apply Theorem 3.2

and then if it cannot discover the closedness of the itemset, we apply Theorem 3.3. In Ta-

ble 3.4 we have shown the percentage of itemsets discovered by both these theorems. For

example, In WebDocs dataset we were able to discover 94.1% of the total local closed itemsets

as either globally closed or not by using Theorem 3.2. From the remaining percentage (i.e. 5.9%),

85.4% of itemsets were discovered by Theorem 3.3. Table 3.4 clearly shows that both Theo-

rem 3.2 and Theorem 3.3 are capable of detecting global closedness of many local closed

58

itemsets of the database. Moreover, these two techniques can be easily implemented and

it is one Ofthe key factors to achieve faster performance in our algorithm.

Table 3.4. Evaluation of the global closedness techniques

Data Set (min. sup.) Theorem 3.2 Theorem 3.3

Chess (30%) 91.6% 8.0%

WebDocs (10%) 94.1% 85.4%

Pumsb (45%) 91.9% 30.5%

Kosarak (0.08%) 65.5% 68.1%

T2018D500K (0.01%) 91.7% 26.4%

T40110D100K (0.1%) 67.6% 40.3%

3 .6 Summary

In this chapter, we introduced a novel data representation called PrefixGraph, which lev-

erages some of the positive aspects of existing representations. From FP-tree, it borrows

the idea of projecting a database onto different nodes of a graph—but without the extra

cost of traversing multiple branches of the tree to collect frequency information. A Pre-

fixGraph also uses bit vectors to encode the database projection at each node. However,

the length of its bit vector is considerably shorter than that used by existing vertical bit

vector representations.

The size of the PrefixGraph structure is quite moderate and its memory requirements

do not grow as rapidly as other algorithms. Our proposed algorithm called PGMiner em-

ploys several effective itemset pruning strategies derived from network flow analysis.

These strategies can be adapted to other existing algorithms (such as CLOSET [PHM00])

that use projected databases to prune their non-closed itemsets.

Furthermore, PGMiner outperforms FPclose [GZO3], DCI-Close [LOPO6a] and

CHARM [ZH02], three state-Of-the-art closed itemset mining algorithms, by an order of

magnitude both in time and memory requirements.

59

4 OutRank: Mining Anomalous Data

This chapter explores the use of stochastic graph-based method for anomalous pattern

mining. The main contributions of this work are as follows:

0 We investigate the effectiveness of random-walk approach for anomaly detection

and show that our proposed framework, called OutRank (Outlier Ranking), is ca-

pable of detecting small clusters of outliers, which is hard to detect by the existing

approaches as discussed in Section 1.2.

0 We investigate two different approaches for constructing the graph based repre-

sentation of objects upon which the random walk model is applied.

0 We also analyze different choices of similarity measures on the random walk

model and compare the performance with existing anomaly detection methods.

The remainder of this chapter is organized as follows. In section 4.1, wediscuss is-

sues in the existing anomaly detection methods introduce our solution. Section 4.2 pre-

sents our proposed anomaly detection model. Section 4.3 presents several anomaly detec-

tion algorithms. We perform an extensive performance evaluation in Section 4.4

4.1 Anomaly Detection and its Issues

Anomalies (or outliers) are aberrant observations whose characteristics deviate signifi-

cantly from the majority of the data. Anomaly detection has huge potential benefits in a

60

variety of applications (e.g. computer intrusions, surveillance and auditing, failures in

mechanical structures, to name a few). Many innovative anomaly detection algorithms

have been developed, including statistical-based [Esk00][Lew94], depth-based

[JKN98][PS88], distance-based [BSO3][JTH01][KNT00][RRSOO], and density-based

[BKN+00].

These approaches, however, focus mostly on the efficiency of anomaly detection

rather than the quality of solution. Therefore, when they are applied to real-world appli—

cations across many domains, they show high false alarm rates. For instance, in intrusion

detection [KV03], the small clusters of outliers often correspond to interesting events

such as denial-of-service or worm attacks. Although existing density-based algorithms

show high detection rate over distance-based algorithms for datasets with varying densi-

ties, they can be less effective when identifying small clusters of outliers. This is because

these algorithms consider the density of a predefined neighborhood for anomaly detec-

tion, and in some cases small clusters of outliers with similar density to normal patterns

cannot be distinguished.

This chapter explores the use of random walk models as an alternative to previously

used anomalous pattern mining algorithms. The heart of this approach is to represent the

underlying dataset as a weighted undirected graph, where each node represents an object

and each (weighted) edge represents sinrilarity between objects. By transforming the ad-

jacency matrix of the graph into transition probabilities, we model the problem as a

Markov chain process and find the dominant eigenvector of the transition probability ma-

trix. The values in the eigenvector are then used to determine the outlierness of each ob-

ject.

The random-walk model is designed to find nodes that are most “central” to the

graph. To illustrate, consider graph-A shown on the top left panel of Figure 4.1, which

consists of 4 nodes connected to a central node labeled as node 1. Upon applying the ran-

dom walk model to the transition matrix constructed from graph-A, the probability score

61

of each node is plotted on the right hand panel of Figure 4.1. Clearly, node 1 has the

highest score compared to other remaining nodes. To illustrate the effect of outliers on

the random walk model, consider the graph-B shown in Figure 4.1, which is obtained by

removing the edges between nodes (3,5) and nodes (4,5) of graph-A. Node 5 can be con-

sidered as an outlier (anomaly) of the graph. As can be seen from the probability score

distribution for graph-B, the random walk model assigns the lowest score to the outlying

node.

0.4

Graph A

2 r 3

1 0.35 -

‘1

\\

0.3 - \ -
4 5 ‘

\

\

0254 \

g \

o \

<8 \
02 - \\ a

f g . :

\b-

2 3 ----.\

0.15 ~ \ .

\

\

\

\

\

0.1 " \\-

4 5 -1— Graph A "

-O-- Graph 8

0.05 l l l

1 2 3 4 5

Node number

Figure 4.1. Outlier detection with random walk

A major advantage of using our random walk approach is that it can effectively capture

not only the outlying objects scattered uniformly, but also small clusters of outliers. This

is because random walk based model defines the outliemess of an object with respect to

the entire graph of objects; i.e. it views the outliemess from a global perspective. In con-

trast, existing methods consider a neighborhood to define the outliemess as discussed ear-

62

lier. Nevertheless, one potential challenge of using the random walk approach is to de-

termine the neighborhood graph from which the outliers can be detected. In the next sec-

tion, we will show how objects can be modeled as a graph to apply the random walk ap-

proach.

4.2 Modeling Anomalies Using a Graph

In this section, we develop our framework to discover anomalous objects in a database.

Most anomaly detection schemes adopt Hawkin’s definition [Haw80] of outliers and

thus assume that outliers are isolated points far away from other normal points. As such,

these outliers can be easily detected by existing distance or density based algorithms.

However, in this work we focus on outliers that might be concentrated in certain regions,

thus forming small clusters of outliers.

We take a graph based approach to solve this problem. Here we model objects in the

database as a graph, where each node represents an object and each edge represents a

similarity between them. Each edge is also assigned a weight, which is equal to the simi-

larity between the nodes of the corresponding edge. There are two major issues that need

to be addressed: first, how to determine the link structure of the graph based on the simi-

larity of nodes; second, how to discover the outlying objects using this graph model. The

following sections describe these issues in detail.

4.2.1 Graph Representation

In order to determine the link structure of the graph we compute the similarity between

every pair of objects. Let X = (x1, x2, xd) and Y = (y,, y;, yd) be the vector represen-

tation of any two objects drawn from a d-dimensional space Rd. While there are many

possible choices of similarity measures, we experiment with the following metrics:

63

Cosine Similarity. The similarity betweenXand Y is defined as follows:

10 if X = Y

d x
cosine__similarity(X, Y) = l k=1 kyk otherwise

J21; x1? 'JZ:=1 y’3

L

RBF Kernel. The similarity between X and Y is defined as follows (where 0' is a user

(4.1)

specified kernel width parameter):

0 if X = Y

. . . IlX—YII2
rbf_srmrlar1ty(X, Y) =4 21 2 e - 202 otherwise (42)

J 72'0’

Note that the similarity between an object to itself is set to zero to avoid self loops in the

underlying graph representation. Such loops are ignored since they are common to every

node, and therefore it is not very useful to distinguish normal objects from outliers.

The relationship between all pairs of objects in the database is represented by the nxn

similarity matrix Sim, where n is the number of objects. We use the similarity matrix to

represent the adjacency matrix of the graph. In the graph representation, each node corre-

sponds to an object in the database. Two nodes X and Y are connected by an edge if their

similarity is greater than zero, and the weight of the edge is taken as Sim(X, Y).

4.2.2 Markov Chain Model

Based on the graph representation, we model the problem of outlier detection as a

Markov chain process. The Markov chain modeled here corresponds to a random walk on

a graph defined by the link structure of the nodes. We hypothesize that under this repre-

sentation, if an object has a low connectivity to other objects in the graph, then it is more

likely to be an outlier.

Connectivity is determined in terms of the weighted votes given by other nodes in the

graph. Here higher connectivity nodes convey votes with more weight than that conveyed

by the lesser connectivity nodes. The weight of the vote from any node is scaled by the

number of nodes adjacent to the source node. The connectivity of a node is computed it-

eratively using the following expression.

DEFINITION 4.l (Connectivity) Connectivity c(u) ofnode u is defined as follows:

ra if t = 0

c.(u)=< (43>
Z(c,_1(v)/ | v |) otherwise

Lveadj(u)

where a is its initial value, t is the iteration step, adj(u) is the set of nodes linked to node

u, and M denotes the degree ofnode v.

Given n nodes, v1, v 2, ..., vn, we can initially assign each node a uniform connectivity

value (e.g. co(v,) = I/n , ISiSn) and recursively apply Equation (4.3) to refine its value,

taking into account the modified connectivity values computed for its neighboring nodes.

This iterative procedure is known as the power method and is often used to find the

dominant eigenvector of a stochastic matrix. Upon convergence, Equation (4.3) can be

written in matrix notation as follows:

c = S Tc (4.4)

where S is the transition matrix and c is the stationary distribution representing connec-

tivity value for each object in the dataset. For a general transition matrix, neither the exis-

tence nor the uniqueness Of a stationary distribution is guaranteed, unless the transition

matrix is irreducible and aperiodic. These properties follow from the well-known Per-

ron-Frobenius theorem [IM76].

The transition matrix (S) of our Markov model is Obtained by normalizing the rows of

our similarity matrix (Sim) defined earlier:

65

.-
F
i
fi
-
“
A
E
R

, . Sim i,‘

512.1]: ,, [J] (41,)
ZSim[i,k]

k=I

This normalization ensures that the elements of each row of the transition matrix sum

to 1, which is an essential property of a stochastic matrix. It is also assumed that the tran-

sition probabilities in S do not change over time. In general, the transition matrix S com-

puted from data might not be irreducible or aperiodic. To ensure convergence, instead of

using Equation (4.4), we may compute the steady state distribution for the following

modified matrix equation:

c=d.l+(l—d)STc (4.6)

where S is the row normalized transition matrix, d is known as the damping factor, and 1

is the unit column vector [1 1...1]T. For the proof of convergence of this equation, read-

ers should refer to [S98]. Intuitively, the modification can be viewed as allowing the ran-

dom walker to transit to any nodes in the graph with probability d even though they are

not adjacent to the currently visited node. As an example, consider the 2-dimensional

data with 11 objects shown in Figure 4.2. Clearly object 1 and object 2 are outliers while

the rest of the objects are normal.

Object x y

5. O O O 1 4.0 2.0

o o o 2 4.5 1.5

41 O O O 3 2.0 4.0

4 2.0 4.5

3 5 2.0 5.0

l 6 2.5 4.0

21 o 7 2.5 4.5

o 8 2.5 5.0

1. 9 3.0 4.0

10 3.0 4.5

o . 11 3.0 5.0

0 1 2 3 4 5

Figure 4.2. Sample 2-D data set

66

Using uniform probabilities as the initial connectivity vector and after applying Equation

(4.6), the connectivity vector converges to its stationary distribution after 112 iterations

(where d is chosen to be 0.1). The final connectivity values and the rank for each object

are shown in Table 4.1. Note that object-1 and object-2 are correctly identified as the

most outlying objects.

Table 4.1. Outlier rank for sample 2-D dataset

Object Connectivity Rank

1 0.0835 2

2 0.0764 1

3 0.0930 5

4 0.0922 4

5 0.0914 3

6 0.0940 9

7 0.0936 7

8 0.0930 6

9 0.0942 10

10 0.0942 1 1

l 1 0.0939 8

4.3 Anomaly Detection Algorithms

This section describes our proposed algorithm based on the above random walk model

for outlier detection. Two variants of the OutRank algorithms are presented.

4.3.1 OutRank-a: Using Object Similarity

In OutRank-a algorithm, we form the transition matrix for the Markov chain model using

the similarity matrix discussed earlier. We then use the power method to compute the sta-

tionary distribution of its connectivity vector. The connectivity vector is initialized to be a

uniform probability distribution (l/n, where n is the total number of objects) and the

67

damping factor is set to 0.1. The pseudo code for the OutRank-a algorithm is shown be-

low.

Algorithm 3 (OutRank-a)

Input: Similarity matrix Simm with n objects, error tolerances.

Output: Outlier ranks c.

Method:

for i=1 to n do // forms transition matrix S

let totSim=0.0;

for j=1 to 11 do

totSim=totSim+Sim[i][i];

end

for j=1 to 11 do

S[i][j]=Sim[i][j]/totSim;

end

end

: let d=0.1 // damping factor

: let t=0;

: let co =(l/n).1 // arbitrary assignment, 1=colurrm vector

: repeat

c,..= (d/n) .1 +(141)sT c.

8 = 1101+! - ctllr

t= 1+1;

: until (5<s)

: rank cm from min(c,+,) to max(ct+,)

: return cm;

The space complexity of this algorithm depends on the size of the similarity matrix and

the vectors Cm and C1. So, the space requirement with N objects is (N2+2N); i.e. O(NZ)

space complexity. The time complexity of the algorithm depends on the computation of

similarity matrix, matrix vector multiplication in the power method, and the sorting

method used to sort the stationary vector to rank the outliers. Computation of similarity

values takes O(N2/2) time complexity for the upper triangular part of the matrix. Power

method takes O(N3) multiplications and the use of quicksort requires O(Nlog N) time

complexity. Therefore, OutRank has total time complexity O(N3). However, fast compu-

tation of random walk method has been proposed in [TFP06]. These techniques can be

employed instead of using na’r've power method. In this thesis, we focus mostly on the

68

effectiveness of the anomaly detection task and therefore we use the simplest implemen-

tation in our anomaly detection algorithms.

4.3.2 OutRank-b: Using Shared Neighbors

In OutRank—a, nodes are considered adjacent if their corresponding similarity measure is

non-zero. So even nodes with low similarity values might be considered adjacent, and

that similarity value is used as the weight of the link. In this section, we propose an alter-

native algorithm called OutRank-b, which uses a similarity measure defined in terms of

r
H
.
.
.
.
.
.
-
.
.

.

1‘

the number of neighbors shared by the objects. For example, consider two objects, v1 and

v2. Suppose v1 has a set of neighbors { V3, v4, v5, v7} and v; has a set of neighbors { V3, v4,

v6, V7} (see Figure 4.3). The set of neighbors shared by both v1 and v; is {V3, v4, v7}. In

this algorithm, we take the cardinality of this set as the similarity measure.

"\ Sirrr(p1,p2)=3

\
\
s

‘\

\‘

,9

’ I

’ I

I

\

\

\

\ " I

‘ I

I
\

I

I

I

Figure 4.3. Similarity based on the number of shared neighbors

In order to define the shared neighbors we need to find the neighbors of a given object

(i.e. adjacent nodes of the graph representation). Here we limit the neighbors only to a set

of nodes having high similarity values by using a threshold to cutoff low similarity

neighbors. By doing so, outliers will have a fewer number of nodes than the normal ob-

69

jects in general, and this further helps to isolate outliers. In short, the similarity measure

used in OutRank-b corresponds to the number of high-similarity shared neighbors.

Finding a suitable threshold T is vital to achieve a higher outlier detection rate. If the

threshold is too small, many objects including both outliers and normal ones will have a

higher number of shared neighbors, and therefore it will be harder to distinguish outliers.

On the other hand, if the threshold is too high, then even the normal objects might have

fewer shared neighbors and the algorithm will yield a high false alarm rate. In order to

find a suitable threshold, we consider the distribution of similarity values of the corre-

sponding data set. Let X be the set of similarity values. Let ,u and o' be the mean and

standard deviation ofX respectively. Experimentally, we observe that any T value within

the interval [,u - o; p) gives higher detection rate; i.e. T should be chosen to be any value

within one standard deviation below the mean.

As can be seen, the choice of the threshold T depends only on the dataset (i.e. mean

and standard deviation of the corresponding data set) and can be automatically derived.

Existing algorithms such as LOF [BKN+00] and k—dist [JTHOl] use a threshold called

minimum points (k) to define the neighborhood. Selection of threshold k for these ap-

proaches is non-trivial and must be specified by the user. Also, unlike in previous ap-

proaches where detection rate is sensitive to the threshold parameter, the detection rate of

our algorithm is not that sensitive to the value of T. We will demonstrate this firrther in

the experimental section.

The pseudo code for the OutRank-b algorithm is summarized below. The algorithm

forms the transition matrix based on the number of shared neighbors between every pair

of Objects. After computing its transition matrix, the rest of the computation is similar to

that of OutRank—a.

70

3'
]

.
r
-
r
r
:
-

.

Algorithm 4 (OutRank-b)

Input: Cosine similarity matrix Mm, threshold T,

error tolerance 5.

Output: Outlier ranks.

Method:

1: for i=1 to n do // discretize M using T

2: forj=i+l to n do

3: if M[i,j] 2 T

42 M[i][jl= M[i][il=1;

5: else

6: M[illj]= M[illil=0;

7: end

8: end

9: end

10: for i=1 to I) do // compute new similarity scores

11: forj=i+1tondo

12: let X= {M[i][l] to M[i][n]};

13: let Y= {M[j][1] to M[i][n]};

l4: Sim[i][j]=Sim[j][i]=|X n Yl;

15: end

16: Sim[i][i]=0;

17: end

18: call OutRank-a (Sim, s)

The time and space complexities of OutRank-b is similar to those of OutRank-a, since we

change only the similarity measure in OutRank-b compared to OutRank-a.

4.4 Experimental Evaluation

We have performed extensive experiments on both synthetic and real data sets to evaluate

the performance of our algorithms. The experiments were conducted on a SUN Sparc

lGHz machine with 4 GB of main memory. The data sets used for our experiments are

surrrrnarized in Table 4.2. Here D is the dimension of databases and C is the ntunber of

clusters. Thresholds T, KL, and K0 are parameters used with OutRank-b, LOF [BKN+00],

and K-dist [JTHOl] algorithms respectively.

71

2D-Data is the synthetic data set. The rest of the data sets are obtained fiom the UCI

KDD archive. Some of these datasets contain multiple clusters of normal objects. For ex-

ample, dataset Zoo contains 2 normal clusters and a smaller outlier cluster of 13 objects.

We employ several evaluation metrics to compare the performance of our algorithms:

Precision (P), False Alarm rate (FA), Recall (R), and F—measure (F). In all of our ex-

periments, the number of actual outliers is equal to the number of predicted outliers and

therefore P=R=F.

Table 4.2. Characteristics of the datasets

No. of No. of K

Data set D C outlierS inStanceS T eucI-(Lcos euc Dcos

2D-Data 2 2 20 482 0.93 10 20 10 16

Austra 14 2 22 400 0.25 4 2 5 12

ZOO 16 3 13 74 0.45 40 40 20 24

Diabetic 8 2 43 510 0.80 30 40 30 32

Led7 7 5 248 1489 0.55 330 390 330 220

Lymph 1 8 3 4 139 0.90 2 2 2 20

Pima 8 2 15 492 0.70 20 2 10 2

Vehicle 18 3 42 465 0.95 50 56 30 14

Optical 62 8 83 2756 0.65 10 2 20 40

KDD-99 3 8 2 1000 1 1000 0.35 500 500 5 200
The remainder of this section is organized as follows. In subsection 4.4.1, we evaluate

our proposed algorithms against existing approaches, including a distance-based outlier

detection algorithm called K-dist [JTHOl] and a density-based algorithm known as LOF

[BKN+00]. In subsection 4.4.2 we analyze the performance of our algorithms by varying

the percentage of outliers. In subsection 4.4.3, we discuss the effect of the shared

neighbor approach and in subsection 4.4.4 we analyze RBF kernel for outlier detection.

Subsection 4.4.5 presents the effect of threshold selection for OutRank-b.

4.4.1 Comparison with Other Approaches

Table 4.3 shows the results of applying various algorithms to synthetic and real life data

sets. The K-dist algorithm uses the distance between an object to its k-th nearest neighbor

72

3
1

F
m
-

.
4
1
.
.
.
.

to determine the outlier score. The LOF algorithm, on the other hand, computes the out-

lier score in terms Of the ratio between the densities of an object to the density of its k

nearest neighbors. When experimenting with LOF and K—dist, we used 2 different dis-

tance measures: Euclidean distance and (l — cosine) distance. In LOF, we have experi-

mented with various KL threshold values for each dataset and selected the best KL value

that maximizes the precision. We did the same for the K-dist algorithm when choosing

the threshold KD (Table 4.2 shows all such thresholds selected under Euclidean (euc) and

1 — cosine (cos) distance measures). SO the results reported in this work for LOF and K-

dist represent the Optimal precision that these algorithms can achieve.

For OutRank-a, we chose cosine as the similarity measure. We show in subsection

4.3.4 that the choice of similarity measure (cosine or RBF kernel) does not affect the per-

formance significantly. Meanwhile, the threshold T for OutRank-b is determined empiri-

cally from the data using the approach described in Section 3.

Table 4.3. Experimental results

OutRank Euclidean 1 — Cosine

a b lK-dist LOF K-dist LOF

2D_Data5 .9 .5

A

.7727 0.9545 . .l .4 5

Data Set

Austra

ZOO 1.0000

Diabetic 0'813

Led7 :9799

Lymph l :0000

Pima 1 '

Vehicle 0'6428

Optical

KDD-99

0.6024

0.8990

73

.7

.13

0 1

0.0482

 0.3510

First, let us analyze the 2D synthetic dataset, which is designed to view the difference

between existing outlier detection schemes and our random walk based method. This

dataset (see Figure 1.2) has two clusters (C1, C2) of normal patterns and several small

clusters of outlier Objects (01 to Os). Note that cluster C1 has a similar density to some of

the outlying objects. Both our algorithms successfully captured all of the outliers and de-

livered a precision of 1.0. On the other hand, LOF was unable to find some of the outly-

ing clusters. Figure 1.2 shows the outlier Objects detected by LOF (denoted with ‘+’ sym-

bol). Many of the outlying objects in 01, O2, and 03 regions were undetected. Even

worse, it identified some of the normal objects in C1 and C2 as outliers.

We have experimented with various KL values, but LOF always had problems finding

the outliers. When the KL value is less than the maximum size of the outlier clusters, then

LOF may miss some ofthe outlying Objects, and it identifies some Ofthe normal points in

cluster C1 as outliers. This is because LOF computes the outlier score of an object by tak—

ing the ratio between the densities of an object and its KL-th nearest neighbor, and if the

neighborhoods under consideration for an Object in C1 and in some outlying cluster (say

03) have similar densities, then it is difficult to distinguish outliers since in this case the

outlier scores computed by LOF can be similar for both objects. Also, when a larger KL

value is used, it can possibly identify normal objects in cluster C2 as outliers. On the other

hand, distance based algorithms such as K-dist suffer from local density problem as de-

scribed in [BKN+00]. Therefore, they fail to identify outlier clusters such as 04. As a re-

sult, these existing approaches break down and deliver a higher false alarm rate.

When considering the real life data sets such as Optical (hand written data), kdd-99

(intrusion data) and Austra, both density and distance based algorithms performed poorly.

We speculate that there may be many small clusters of outliers in those datasets and since

these algorithms are less effective in identifying such outliers, their performance becomes

low. Our algorithm performed significantly better than both LOF and K-dist with a lower

false alarm rate, since as expected the random walk model can handle this situation well.

74

Also, when analyzing the datasets with several clusters Of objects such as Led7 and

Optical, performance Of density based algorithms became low. In both these datasets, our

algorithm showed better performance. Also, as shown in Figure 4.5, our algorithm shows

a lower false alarm rate in Led7.

When OutRank-b is compared against OutRank-a, we found that, on average, it de-

livers a 20% improvement in precision. Also, a significant reduction in false alarm rate

for datasets such as Austra, Zoo, and Lymph can be seen. In Diabetic dataset OutRank-b

shows somewhat low precision compared to OutRank-a, and it is because ofthe choice of

threshold.

4.4.2 Effect Of the Percentage Of Outliers

In this section, we compare the performance of various algorithms when the percentage

Of outliers is varied. We have compared OutRank-b against both LOF and K-dist with

Euclidean distance on three Of the larger data sets as shown in Figure 4.4 to Figure 4.9.

The performance of K-dist algorithm on kdd-99 dataset was not graphed because its pre-

cision and false alarm rate are considerably worse than that for LOF and OutRank-b. In

general, the precision values for OutRank-b did not change significantly compared to

LOF and K-dist when the percentage of outliers was varied. OutRank-b also shows a

comparably lower false alarm rate, whereas other approaches deliver typically unaccept-

able rate for datasets such as Led7 and kdd-99.

75

P
r
e
c
i
s
i
o
n

Figure 4.4. Precision while varying the % of outliers in Led7

F
a
l
s
e
A
l
a
r
m

Figure 4.5. False alarm rate while varying the % of outliers in Led7

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

'I‘

0' ‘

\

— OutRank ‘v

_ ------- K-Dist \

—--—LOF \

R

\\m -\

0% 4% 8% 12% 16%

% of outliers

Led7

_ OutRank

------- K-Dist I

_. ———-LOF /

Ll

/ _

.h._ ifikmm _/ ___L

I

_____ /

I

-——_._ “m ‘_2_ ’Al %_ ___—4

/

~ -:I——— ,-

0% 4% 8% 12% 16%

% of outliers

76

T
3
1

.
1
1
.
.

4
.
4
“
.

1
‘
9
9
-
'
1
2
!
“
-

P
r
e
c
i
s
i
o
n

KDD-99

0% 2% 4% 6%

% of outliers

8%

Figure 4.6. Precision while varying the % of outliers in KDD

0.08

0.07

0.06

0.05

0.04

0.03

F
a
l
s
e
A
l
a
r
m

0.02

0.01

0.00

KDD-99

OutRank [I

T — — — - LOF ,'

..... 4’

’7

flg—h_ I

I

_ I

I

/ II

//

__ [I _- _ ___— _E

’I

0% 2% 4% 6% 8%

% of outliers

Figure 4.7. False alarm rate while varying the % of outliers in KDD

77

r
fi
'
-
;
?
q
u
_
_
.

A
_

-
7

‘
”

Diabetic

1.0

P
r
e
c
i
s
i
o
n

1 °/o 2% 4% 6% 8%

% of outliers

Figure 4.8. Precision while varying the % of outliers in Diabetic

0.04 Diabetic

OutRank I

"""" K'DISI //

0.03 ‘ ‘ ’ ’ LOF .. if

E u'”

a
o 0.02 I!

.‘L’

10

u.

0.01

0.00

1 % 2% 4% 6% 8%

% of outliers

Figure 4.9. False alarm rate while varying the % of outliers in Diabetic

78

4.4.3 Effect of the Shared Neighbor Approach

Here we analyze the effect of the shared neighbor approach used by OutRank-b on outlier

detection. First, we analyze the precision achieved by the shared neighbor approach. For

this analysis, we use 3 versions of OutRank algorithm. Apart from OutRank a and b, we

design a new algorithm called OutRank-c, which is similar to OutRank-a, but we apply a

threshold T on its similarity matrix to cutoff the low similarity nodes. Note that OutRank-

b computes shared neighbors using this matrix. So, the only difference between OutRank-

b and OutRank-c is that the former uses shared neighbors for outlier detection. This way

we can see whether the performance achieved by OutRank-b results from the threshold

effect or the shared neighbors. Figure 4.10 shows the precision for the three OutRank al-

gorithms on the Optical dataset, while varying the percentage of outliers.

0.7

0.6 '- - A

0.5 - ' T‘r
C

.3 0 4 a

'5 —o—OutRank-a

g 0'3 7 —-—OutRank-b

0.2 . +OutRank-c

0.1 -

0 Y I I I 1 l I

1% 2% 3% 4%

% of outliers

Figure 4.10. Precision of algorithms on optical dataset

In most cases, we can see significant improvement Of precision with OutRank-b over

other algorithms. Furthermore, in situations where the percentage Of outliers is suffi-

ciently large, applying a threshold on the similarity matrix can have an adverse effect as

shown in Figure 4.10 for the 4% case (here, OutRank-c shows a slightly lower precision

79

:1

than OutRank-a), whereas the shared neighbor approach can minimize the thresholding

effect.

TO further understand the effect of using shared neighbor approach, we have also ana-

lyzed the values of the dominant eigenvector (connectivity) produced by the random walk

model. As shown in Figure 4.11 and Figure 4.12, there is a sharp distinction between the

connectivity values of nodes identified as outliers from those identified as normal. The

presence of such a rising slope is vital towards detecting outliers using the random walk

approach. When comparing the connectivity values of OutRank-a to OutRank-b, it is

clear that the shared neighbor approach tends to push down the connectivity values for

outliers and pull them up for normal points. This shows that the shared neighbor ap-

proach helps to improve the distinction between outliers and normal nodes, which makes

this approach more suitable for the outlier detection task.

Austra

0.0035

0.003 « H

0.0025 2

I? 0.002 -

*6
0

C

8 0.0015 —

o

0.001 -

0 0 0 OutRank-a

. 0 5 -

------ OutRank-b

0 l T T I

0 100 200 300 400 500

Object

Figure 4.11. Connectivity Of Objects in Austra dataset

80

Led7

0.0009

0.0008 -

0.0007 -

0.0006 ~

0.0005 «

0...... . 5

C
o
n
n
e
c
t
i
v
i
t
y

0.0003 - '

0.0002 - 5

.1 ——OutRank-a

00°01 ‘ ------ OutRank-b

0 500 1000 1500

Object

Figure 4.12. Connectivity of objects in Led7 dataset

4.4.4 Choice of Similarity Measures

This section examines the choice of similarity measure for our proposed random walk

framework. The cosine similarity measure that we used in most of our experiments can-

not effectively handle outliers that are co-aligned with other normal points. As an altema-

tive, we consider using the RBF kernel function given in Equation 4.2 to define the tran-

sition probabilities of our random walk model. Table 4.4 compares the precision and false

alarm rates of the OutRank-a algorithm using RBF kernel and cosine similarity measures.

When comparing the precision achieved by OutRank-a using RBF, we can see in six

out of nine data sets, its precision is significantly lower than OutRank-a using cosine

similarity. Nevertheless, when comparing the performance of OutRank-a using RBF

against LOF and K-dist (using Euclidean distance), the RBF approach still shows better

performance in most datasets. K-dist shows better performance in Diabetic, Lymph, and

Pima datasets and LOF shows better performance in Austra, Zoo, and Lymph datasets.

Even in these datasets, the performance of the RBF approach is not very low.

81

V
“
7
.
M
n

g
a
n
g
-
7
.
2
.

‘
_
“
-
.
_
'
.

A
.
.
.
.

.
A
.

Table 4.4. Performance comparison with different similarity measures

OutRank-a OutRank-a

(RBF-Kernel) (Cosine)

.l .772

. l

0.7 2 .9

Data Set

0.6511 0.8837

.9597 0.95

Lymph
0.5000

Pima

Vehicle 0.4762

Optical

KDD-99
4.4.5 Effect Of Threshold on the Quality of Solution

Let us analyze the effect of threshold T on OutRank-b. Note that OutRank-a does not use

any threshold. Figure 4.13 and Figure 4.14 show precision for led7 and kdd—99 datasets

when T is varied from 0.00 to 0.90. As expected, for higher and lower T values, precision

becomes low. Notice the interval [,u - o; y), where our algorithm delivers the highest per-

formance. Also, any T e [p - o; ,u) shows similar performance in precision, and therefore

our algorithm does not exhibit any unexpected sensitivity to the choice of threshold T.

4.5 Discussion

This chapter investigated the effectiveness of a stochastic graph based approach for

anomalous pattern mining. Experimental results using both real and synthetic data sets

confirmed that this approach is generally more effective at ranking most understandable

outliers that previous approaches cannot capture.

82

10 Led7

U—O’

P
r
e
c
i
s
i
o
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Threshold

Figure 4.13. Precision for different threshold values in Led7 dataset

P
r
e
c
i
s
i
o
n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Threshold

Figure 4.14. Precision for different threshold values in KDD dataset

83

A key advantage of using our approach is that it can effectively capture not only the

outlying objects scattered uniformly, but also small clusters Of outliers. Although they

show high detection rate over distance-based algorithms for datasets with varying densi-

ties, existing density-based algorithms become less effective when identifying small clus-

ters of outliers. This is because these algorithms consider the density of a predefined

neighborhood for outlier detection, and in some cases small clusters of outliers with simi-

lar density to normal patterns cannot be distinguished. Our approach solves this problem

by defining the outliemess of an object with respect to the entire graph of Objects; i.e. it

views the outliemess from a global perspective.

Also, the results revealed that our outlier detection model tends to do better when the

percentage of outliers is gradually increased. In outlier detection algorithms, false alarm

rate is considered the limiting factor of its performance and the algorithms proposed here

achieved the lowest false alarm rate using an unsupervised learning scheme.

There are several aspects of our framework that can still be improved. First, the co-

sine similarity measure that we used has both advantages and disadvantages. For exam-

ple, it cannot effectively handle outliers that are co-aligrred with other normal points. De-

spite this limitation, both OutRank-a and OutRank-b still outperform standard distance-

based and density-based algorithms. We are currently investigating other similarity

measures, such as those based on Euclidean-based distances, as the transition probabili-

ties of our random walk model. While these measures work well in low dimensional data,

they do not work well in high dimensions.

84

5 Mining Anomalous Graphs

In this chapter, we explore both unsupervised and supervised anomaly detection tech-

niques for graph based data. The main contributions of this work are summarized below:

0 We extend OutRank to graph based data and propose an effective anomaly detec-

tion algorithm, called gRank, to determine anomalous graphs.

0 We develop a probability-based approach for unsupervised anomaly detection in

graphs using the maximum entropy principle. The proposed algorithm is called

gEntropy.

0 We extend the maximum entropy approach to supervised anomaly detection and

propose an effective algorithm, called gEntropySuper for classifying anomalous

graphs.

The rest of the chapter is organized as follows: In Section 5.1, we discuss some po-

tential applications of mining graph based data. In Section 5.2, we discuss the issues of

applying existing anomaly detection methods to graph based data. Section 5.3 presents

the gRank algorithm, which detects anomalous graphs based on subgraph similarity. In

Section 5.4, we present maximum entropy based unsupervised anomaly detection scheme

called gEntropy. Section 5.5 extends the approach to supervised graph anomaly detection.

Experimental results on real-world data sets are reported in Section 5.6.

85

5.1 Mining Graph Based Data

The mining of graph-structured objects have received significant interest due to the

emergence of applications that generate massive amount of data in the form Of graphs.

For example, web click-stream data, program execution traces, chemical compounds, and

secondary structures in proteins are examples of graph-based data. As such, pattern rnin-

ing in this type of data becomes important and will be beneficial to many scientific and

commercial applications.

The aim of graph mining is to discover interesting patterns within the graph database.

For example, patterns derived from the chemical compound database can be used to dis-

cover new drugs for treating diseases. Figure 5.1 illustrates an example chemical com-

pound database consisting of compounds used for evidence of anti-HIV activity.

Q °0
WM

N/lso

0 /l o

if“ 32 {5
JOB 111/k0 0 11:10:11 2 l “ll/k0

o/ 0/

0 Bl)1
/\P/0 N=N=N O o

0/\

0

Hr
O N

O

0
:

AIDS Artlvlral Screering Data Zidovudine (AZT)

Figure 5.1. AIDS antiviral screening data4 and its interesting fragments

4 http://dtp.nci.nih.gov/docs/aids/aids_data.html

86

The chemical compound (AZT) shown in the right-hand side of Figure 5.1 is an inter-

esting fragment that is present in some of the compounds in the database. This compound

has been shown to provide capability to protect human cells from HIV-1 infections. Find-

ing other graph fragments that might have such an effect is an important step in drug de-

sign. Graph mining is one important approach that can be used when mining such data-

sets.

There are two types of pattern mining problems for graph based data: frequent sub-

graph mining and anomalous graph mining. The problem of frequent subgraph mining is

to discover frequently occurring substructures in a given database. Several efficient sub-

graph mining algorithms such as FSG [KKOI], gSpan [YH02], and Gaston [NK04] have

been developed for this task.

In this thesis, we focus on the anomalous graph mining problem and develop several

algorithms for this task.

5.2 Anomaly Detection in Graphs and its Issues

Anomaly detection on graph based data has huge potential benefits in a variety of appli-

cations. For example, detecting spam web pages has become an important research prob-

lem because of the dramatic growth of spam web sites and the adverse effect it causes to

degrade the quality of search results produced by the web search engines. Other examples

Of anomaly detection on graph based data include software bug detection based on pro-

gram execution traces.

Despite its wide applicability, very few unsupervised anomaly detection algorithms

have been developed for graph based data. A state Of the art approach that has been pro-

posed recently is the compression based anomaly detection scheme by Nobel and Cook

[NC03]. Their approach uses an algorithm called Subdue [CHOO] to discover repetitive

graph patterns. More specifically, Subdue is run in multiple iterations on the graph data-

87

set and after each run the graph dataset is compressed using the best substructure discov-

ered (using MDL principle [CH00]). Then, every instance of the substructure is replaced

by a single new vertex representing it and the new vertices are connected to form the

compressed graph. An anomaly score is computed for each graph in the dataset based on

the percentage of subgraphs that is compressed away. A major advantage of this method

is because of the compression of the graphs, subsequent mining becomes much faster and

the compressed graphs are easier to manipulate. Since the vertices need to be connected

to form the compressed graph, it can possibly cause two completely different graphs to

have the same representation after the connection. Situations such as this are likely to re-

turn many false positive answers because Of the loss of important structural information

during the connection phase. The advantage mentioned above for compression based

schemes now becomes a major weak point for detecting anomalous graphs.

The following example illustrates the disadvantage of this approach. Consider a sam—

ple dataset of three graphs shown in Figure 5.2 (1). As one can see graphs (i) and (ii) are

more similar and hence graph (iii) should be the anomalous graph. Based on the MDL

principle [CHOO], subgraph is the best substructure that can be used

to compress this dataset. The graph dataset after the compression is shown in Figure 5.2

(2); i.e. each instance of the best substructure is replaced by a new vertex (x). Now

graphs (ii) and (iii) have the same structure although originally they were significantly

different. Therefore, compression based methods will never identify graph (iii) as anoma-

lous.

The above analysis shows the problems with compression based unsupervised meth-

ods. In order to address these issues, we believe a solution should consider the maximal

substructure similarity among the graphs. For example graphs (i) and (ii) have a large

common substructure which makes them more similar to each other than to graph (iii). In

section 5.3, we discuss such an approach to detect anomalous graphs by addressing these

existing issues.

88

(1) Graph Dataset

111

U
"

0
'

(2) After Compression

®=® ®=®

Figure 5.2. Compression based graph similarity

5.3 Extending OutRank for Graphs

In this section, we present an anomaly detection fiamework, called gRank that extends

our previous OutRank approach for tabular data.

5.3.1 gRank: Graph Ranking

A major challenge in extending OutRank for graph based data is to determine the similar-

ity between the graph objects. Unlike tabular data, where each object is a record, graphs

are complex data objects with varying sizes. Therefore, it is difficult to directly compare

two graph Obj ects to determine their similarities. In order to address this, we use a feature

based scheme to represent each graph object. In feature based schemes, a set of features

or invariants is extracted from the graph structures and then used to define the feature

vectors. The similarities among graph objects are then computed by applying a similarity

measure on their respective feature vectors.

89

In this method, we apply a frequent subgraph mining algorithm [KK01][YH02]

[HWP03][NK04] to generate frequent subgraphs for a given minimum support threshold.

Once the frequent subgraphs are generated, we build a frequent subgraph based feature

vector (FV) for each graph in the dataset. Each component Of this feature vector corre-

sponds to the presence or absence (1 or 0) of that feature (frequent subgraph) in the

graph. Now the graph database is represented by a set ofbinary feature vectors.

Once the feature vectors are built, a similarity measure such as cosine similarity can

be used to Obtain the similarities among graph objects. Subsequently, we use the random

walk approach described in Chapter 4 to determine their anomaly scores. The following

algorithm, gRank, gives an outline of our anomaly detection framework for graphs:

gorithm 5 (gRank)

Input: Graph database G, error tolerance a

Output: Outlier ranks.

Method:

1: construct features using frequent subgraph rrrining on G

2: construct the similarity matrix — Sim // use graph similarity

3: call OutRank (Sim, s)

The space complexity ofgRank depends on the space required by the underlying frequent

subgraph mining algorithm, feature vectors, and the OutRank algorithm. Let Sf be the

space requirement of the underlying subgraph mining method for storing intermediate

subgraphs in order to generate frequent patterns. Let IFII be the frequent subgraphs gener-

ated. Then with a graph database of N Objects, it takes |F,|N memory space to store fea-

ture vectors. Moreover, OutRank has O(N2+2N) space complexity. Therefore, the space

complexity of the algorithm is O(max(Sf, [F1|N+(N2+2N)).

The time complexity of this algorithm depends on the time to generate frequent sub-

graphs, construction of similarity matrix, and the OutRank method. Let I} be the time

complexity of any existing subgraph mining method. In order to construct binary feature

90

1
1
“
"
‘
1
2
3
'
?
?
?
’
a
;

vectors it requires T, = N1F2| isomorphism checks, where subgraph isomorphism has ex-

ponential time complexity. Algorithm OutRank has O(N3) time complexity. Therefore,

the total time complexity can be stated as O(Tf,+ T, + N3).

In the next section, we discuss feature vector construction and the different similarity

measures used to define the similarities among graphs.

5.3.2 Similarity Measures for Graphs

In this section, two variants of the gRank algorithm are presented based on the choice of

similarity measure for graphs. The first approach, gRank-cos, uses cosine similarity while

the second approach, gRank-cg, introduces a new similarity measure based on the con-

cept ofmaximal common frequent subgraphs.

5.3.2.1 gRank-cos

Let g; = (x1, x2, xd) and g2 = (y,, y2, yd) be any two feature vectors of the graphs

drawn from a d-dimensional feature space Rd. The similarity between g, and g2 is defined

by the cosine between two corresponding vectors:

r0 if 81:82

22:10”

112:..4722’44

cosine_similarity(g1 , g 2) = < otherwise (5 . 1)

Note that the similarity between a graph Object to itself is set to zero to avoid self

loops in the underlying representation. Such loops are ignored since they are common to

every node, and therefore it is not very useful to distinguish normal objects from outliers.

91

fl
“
?
!
t
:
'
.
:
m
'
-

"
a
n

5.3.2.2 gRank-cg: using maximal common frequent subgraphs

In this section, we develop a new graph similarity measure that uses maximal common

frequent subgraphs as an alternative to the previously defined similarity measure. A

maximal common frequent subgraph can be defined as follows:

DEFINITION 5.1 (Maximal Common Frequent Subgraph) Let g1, g2 e G be any two

graphs and F be the set of frequent subgraphs discovered in G. Let F3mg be the set of

frequent subgraphs contained in both g1, g2. The maximal common frequent subgraph

ngg2 _c_ Fgmg2 such that iff, e ngg2 then there is nof2 6 531032, wheref, gf2.

Note that each maximal common frequent subgraph of the two graphs under consid-

eration contains frequent subgraph components that are edge disjoint and can be discon-

nected. For example, Figure 5.3 shows two graphs and maximal common frequent sub-

graph (highlighted edges) for each ofthem.

Figure 5.3. Maximal common fi'equent subgraph of the two graphs

In this method, the key idea is to capture approximately a maximal common frequent

subgraph between the graphs being compared. Use of frequent subgraphs allows us to

discriminate the anomalous graphs as they cannot have very many frequent components.

92

A
r
i
:

3
:
5
3

On the other hand, discovering maximal common frequent subgraphs allows us to deter-

mine the structural similarity between the graphs more accurately than the previous

method based on cosine similarity. In that method every feature has the same weight on

similarity computation whether it is a larger substructure or a one-edge subgraph. But, as

we know, if graphs have a large common substructure then they should have high simi-

larity when compared to graphs having lots ofcommon one-edge substructures.

In order to determine maximal common fiequent subgraph, we develop an efficient

methodology based on the frequent subgraph lattice that can be generated by existing

graph mining algorithms, such as FSG [KKOI]. In the following sections, we will discuss

this in detail for the two types Of graph datasets: graphs containing unique vertex labels,

and graphs with repeating vertex labels.

Graphs with Unique Vertex Labels: Here we consider graphs with unique vertex labels.

Some Of the real world examples containing such a graph data includes web click stream

data and program execution traces. In web click stream data, vertices correspond to

unique web pages and edges correspond to the navigation pattern Of the user, whereas in

program execution data, vertices corresponds to functions and procedures in the program

and the control transfer between them represents edges.

In our method, we use a frequent subgraph mining algorithm to generate frequently

occurring subgraphs. These subgraphs can be arranged in a lattice structure, where the

nodes represent the subgraphs and edges represent the subgraph and super graph relation-

ship of the nodes. For example, consider the lattice of frequent subgraphs shown in Fig-

ure 5.4. Here subgraph 3-1 (here l-i denotes subgraph i at level I) is a superset of sub-

graphs 2-1 and 2-2.

A lattice L, generated using frequent subgraphs, has several properties that can be il-

lustrated as follows:

i- Vs 6L 01g) 26

93

ii. If:7 e=(g,-,g,) EL such that |g,-| 5|ng then g,- cgj 0< i, j fill

where N is the number Of subgraphs in L and g, g,-, and g,- are frequent subgraphs.

We define subgraph g as a common ancestor of two graphs g1 and g2 if g is a sub-

graph Of both g, and g2. For example, subgraph 1-2 is a common ancestor of both sub-

graphs 3-1 and 2-3.

Theorem 5.1. For any given two subgraphs g2, g2 EL ifthere is no common ancestor be-

tween them, then g, and g2 are edge disjoint subgraphs.

PROOF. Let g2, g2 e L be any given two subgraphs with a common ancestor g; i.e. there

is at least one edge e that is common to both of these graphs. If such an edge exists, by

the definition Of edge disjoint of two graphs, g2 and g2 become non edge-disjoint, which

is a contradiction. I

0 GO

Level1

Level4

 (000

Figure 5.4. Frequent subgraph lattice

This theorem is used to build the maximal common frequent subgraphs in our anomaly

detection framework. In this approach, for a given graph g and a set F of frequent sub-

graphs present in g, we can easily identify the edge disjoint frequent subgraph in g by

94

‘
4
’
?
“
7
2
3
1
f
T
T
"
T
fl

simply checking the common ancestor between each of them in lattice L. Algorithm 6

summarizes the process for finding maximal common frequent subgraphs between two

given graphs.

A_Igorithm 6 (MaxCommonFrequentSubgraph_unique)

Input: Feature vectors FVgr, and Fng, Lattice L

Output: Max common frequent subgraph S

Method:

1: let C = set of all common frequent subgraphs FVg, n FVg2

2: let km = maxlgl {g e C}

3: for k = km, down to 1 do

4: iffis edge disjoint with all of the graphs in S // using Theorem 5.1

5: S = S U {f}

6: return S

In this algorithm, we first determine the set Of all common frequent subgraphs (C) be-

tween g], and g2 by intersecting their corresponding feature vectors. Then the graphs are

selected from C in the decreasing order of their size and inserted into the maximal com-

mon frequent subgraph S, if they are edge disjoint to each other. The set S represents the

maximal common frequent subgraph between g2 and g2.

Graphs with Repeating Vertex Labels: Now let us consider how to determine the

maximal common frequent subgraphs in graphs with repeated vertex labels. Since the

vertex labels for this type of graphs can be repeated, it is possible that a frequent sub-

graph occurs more than once in a given graph. Therefore, our previous method is not di-

rectly applicable here as the lattice does not provide any frequency information of the oc-

currence of frequent subgraphs. On the other hand, searching the graph for determining

the existence of frequent subgraphs is costly since it involves a subgraph isomorphism

test, which is NP complete. Therefore, in this work we propose an approximate method

that can be used to find a maximal common frequent subgraph between any given two

graphs.

95

’
A
‘
~
.
_
m
.
v

:
4
?

-
I

In this method, we determine the maximal common frequent subgraph S between any

given two graphs in such a way so that S covers maximum number of frequent subgraphs

of size 1 (in the graph database, denoted as set L1). In order to do this, we first find the

set of all frequent subgraphs (C) common to both g1 and g2 by intersecting their corre-

sponding feature vectors (FVs). Then, the subgraphf(EC) with the maximum size is se-

lected and S is initialized to containf Then,fbecomes the first component of the maxi-

mal common frequent subgraph. Also, an edge cover (COVER) is initialized to contain all

the fi'equent subgraphs of size 1 that belong to f. When selecting the next frequent sub-

graph that needs to be added into S, we pick the best graph that covers the maximal nurn-

ber of frequent subgraphs (edges) in L1\COVER; i.e. we always select the subgraph with

highest edge coverage to be added into S, thus making this method an approximate

method to discover maximal common frequent subgraphs.

The complete method for generating a maximal common frequent subgraph for any

given two graphs is presented in Algorithm 7.

gorithm 7 (MaxCommonFrequentSubgrapLrepeating)

Input: feature vectors Fng, and FVg2, Set of frequent subgraphs F, lattice L,

set Of frequent subgraphs Of size =1 Ll

Output: Maximal common frequent subgraph S

Method:

: let C = set Of all frequent subgraphs OfF belongs to FVg, nFVg2

letf= maximum size subgraph in C and let S = {I}

let COVER = {frequent subgraphs of size =1 present inf}

repeat

remove subgraphs offfrom C // use lattice L to determine subgraphs

select frequent subgraphffrom C s.t. it covers maximum number of

edges in L1\COVER

7: COVER = COVER U {edges off}

8: S = S U {f}

9

l

9
5
9
.
9
3
8
1
?
“

: until COVER=LI or |C| = 0

0: return S

Next, we will describe how the similarity between two graphs can be computed using the

maximal common frequent subgraph.

96

F
W
—

“
“
1
5

Common Subgraph Similarity: Let F ={f,,f2,. . ., fk} be the k fiequent subgraph compo-

nents of the maximal cormnon frequent subgraph between any given two graphs g, and

g2. Then, the similarity between g, and g2 can be defined as:

[iNUfl-CJZ

i=1

N(g1).N(g2)

where N(g) denotes the sum of the number of vertices and edges of a graph g, and C is

CG _Similarity (g1,g2) = (5-2)

the number ofvertices that may possibly be in common among the subgraphs in F.

5.4 gEntropy: Maximum Entropy Based Unsupervised

Anomaly Detection

In the preceding section, we discussed an anomaly detection framework using substruc-

tures to define the similarity measure for graphs. In this section, we use substructures to

build a probability model and use this model to determine the anomaly score of graphs.

Our probability model is developed based on the maximum entropy principle.

5.4.1 Maximum Entropy Model

Maximum entropy modeling synthesizes a set of local patterns into a global model by

choosing a probability model that is consistent with the constraints imposed by the local

patterns, but otherwise, it is as uniform as possible. Mathematically, the approach corre-

sponds to finding a probability model P that minimizes the Kullback-Leibler divergence

D(P||Q), subject to a set Of constraints 9, with Q chosen to be a uniform probability dis-

tribution. The resulting model can be shown to be equivalent to a model P* that maxi—

mizes the entropy:

97

H

P* = arg maxH(P) (5.3)

P

where H(P) is the entropy ofP.

Maximum entropy modeling has been used in a variety of areas such as machine

learning and Natural Language Processing (NLP). For example, it is used tO build lan-

guage translation models [BPP96, ZROl]. Khudanpur and Wu [KW99] have used the

maximum entropy principle to conversational speech recognition. On the other hand,

Mannila et al. [MS99] have applied the principle to query selectivity and protein se-

quence modeling applications. In [NLM99] Nigarn et al. illustrated how the maximum

entropy principle could be used for text classification.

Unlike the previous works, this thesis employs the maximum entropy principle to

build a probability model for anomalous graph detection. Once the model has been de-

rived, it can be used to detect anomalies by examining the probability assigned by the

model to each graph in the database. This probability represents how likely the graph is

generated from the same random process that generates the majority of the graphs in the

database; the lower the probability, the more anomalous the graph is.

We first introduce the notations used throughout this section. Let G = {g1, g2, ...,gN}

be the set of N graphs in the graph database and X = {x1, x2, ...,x,,,} be the set of m fi'e-

quent subgraphs discovered in G for a given support threshold 5. Furthermore, let S = {s1,

s2, ...,s",} be the support count of each frequent subgraph. To apply the maximum entropy

principle we define a set of features F = {f1, f2, ..., fm} from the fi'equent subgraphs,

wheref,(gj) = 1 if the graph g,- contains the frequent subgraph xi. Now, our objective is to

derive a probability model p(g) that satisfies the following two constraints:

i. p(g) should maximize entropy - z p(g') log p(g')

g'eG

ii- 2.00,”) fr(g') = Si

g

98

.
~

"
f
l

E
m
u
—
a
r
r
.

where s,- is the support count of frequent subgraph x; Observed in the graph database G.

Note that constraint (ii) ensures that the expected value for every feature to be identical to

the support of its corresponding subgraph. It can be shown that the model that solves the

constrained Optimization problem has the following exponential distribution:

m

P(g)=%exp[z4ifi(g)] (5.4)
i=1

where Z = [23x13

g

m

2,11)”,- (9] is the normalization factor and 2’s are the parameters to

i=1

be estimated from the graph database.

Once the parameters (,1) have been estimated the model can be used to compute the

anomaly score of a graph, Ag, in the following way:

Ag = —log P(g) (5.5)

m

= Earl-(g) (5.6)

i =1

where the lower the probability, the higher the anomaly score. The graphs are then ranked

in increasing order of their anomaly score.

The first step of the anomaly detection algorithm is to generate frequent subgraphs

using any available frequent subgraph mining algorithm. Once the frequent subgraphs

have been generated, binary feature vectors are constructed for each graph in the graph

database. The graph anomaly detection process has two major steps: (1) learn the model

by estimating the optimal weight-set (,1); (2) rank the graphs according to their anomaly

score. The following algorithm (gEntropy) describes the procedure we used to detect

anomalies.

99

A_Igorithm 8 (gEntropy)

Input: Graph database G, min support threshold 5

Output: Outlier ranks

Method:

I: generate features1},f2,. . ., fl, using a frequent subgraph mining algorithm

construct set of feature vectors FV for each graph g EG

initialize the parameter set {21,— | V i e {1, 2,..., n}}

repeat // learn 21’s

generate a graph sample of size k with Metropolis(G,FV, /l, k)

for i = l to n do

update ,1,- by solving Equation (5.7)

until convergence of 2’s

. for each graph g in G do

10: compute Ag by solving Equation (5.6)

11: rank graphs from max(Ag) to min(Ag)

12: return the rank ofthe graphs

9
9
9
$
9
‘
5
0
9
3
t
’
5
‘
.
’

The time complexity Of this algorithm has 4 components: generation of frequent sub-

graphs, construction of feature vectors, calculation of Optimal model, and the calculation

of anomaly score. Let bee the time complexity of frequent subgraph generation, which

depends on a number of factors such as support threshold, database size, the number of

database scans, the data structures used by the mining algorithm as well as the pruning

strategies used. Constructing m binary feature vectors for N graph objects requires T, =

mN subgraph isomorphism checks, where subgraph isomorphism has exponential time

complexity. Optimal model computation takes (T2.1+ mN)T,,,p,, where T,,,p, is the maxi-

mum number Of iterations required for model convergence and TM is the time require-

ment for Metropolis sampling approach. Once the parameters have been determined,

computing the anomaly scores for the graphs takes O(N) and sorting their scores takes

O(N log N). Therefore, the overall time complexity is O(Tf+ mN+ (TM+mN)T,,,p, + N +

Nlog N). According to this Metropolis sampling will be the dominant term.

Similarly, space complexity of these four steps can be analyzed. Let Sf be the space

requirement of the underlying subgraph mining method. The storage requirement for the

binary feature vectors is mN. Also, the optimal parameter set require m memory space

100

and let SM be the space requirement of MetrOpolis sampling approach. Finally, N spaces

are needed to store the anomaly score of each graph. Therefore, the overall space com-

plexity Of the algorithm is O(max(Sf, (nN +n+ SM+N))).

5 .4.2 Parameter Estimation

We will estimate parameter k’s using the the Generalized Iterative-Scaling (GIS) algo-

rithm [DR72], which is a well known iterative technique that converges to the solution

p(g) for problems of the form (5.3). To find the parameter set, the GIS algorithm will it-

eratively adjust each parameter 2,- by an amount as described below:

1:41 = 4i +f13-10g 5: Zp(g)fi(g) (57)

g

where s,- is the support of subgraph i in G, C is a constant (maximum count of frequent

subgraphs present in g), and Zp(g)f,- (g) is the expected support. When the expected

g

support is equal to s,-, ,1,- will not change and the solution is said to converge.

However, computation of Zp(g)f,- (g) over all g is a challenge since it requires us

g

to consider all the possible graphs. In this approach, we compute the expected value using

the Metropolis sampling approach. The approach generates a sample Of graphs that sat-

isfy the probability model p(g) and will be discussed in the next section.

5.4.3 Metropolis Sampling Approach

The Metropolis sampling algorithm is used to generate a sample Of graphs according to

some probability model p(g). In this algorithm, we first select a graph g EG randomly

and modify it in such a way that each modification generates a new graph g'. A modifica-

tion ofg may involve any Of the following operators:

i. ADD__EDGE: add an edge between any two vertices Ofg.

101

ii. ADD_VERTEX: add a vertex and connect it to an existing vertex of g by add-

ing an edge between them.

iii. DEL_EDGE: remove an existing edge e attached to any two vertices Of g in

such a way so that the resultant graph g' does not become disconnected. Fur-

thermore, if any of the vertices attached to c has degree equals to 1, then the

vertex and its edge will be removed.

The selection Of the Operator is carried out according to the distribution of vertices

and edges in each graph of G. We assume that the distribution of vertices and edges in G

have a Poisson distribution. We calculate the average number of vertices (A) and average

number of edges (2,) of the graphs in G. Then, the probability that there is exactly k ver-

tices corresponds to p(V=k) = (e‘lv 15)/k!. Similarly, p(E=k) = (e’le 21’;)/k! corre-

sponds to the probability of exactly k edges. For a graph with n vertices and m edges we

define the probabilities of the three Operators as follows:

i. p(ADD_VERTEX) = p(V=n+1) x p(E=m-l-1) (5.8)

ii. p(ADD_EDGE) = p(V=n) x p(E=m+I) (5.9)

iii. p(DEL_EDGE) = p(V=n) x p(E=m-I) (5.10)

Once the individual probabilities are computed, they are normalized to 1 and an Op-

erator is selected with its corresponding probability. Once an Operator is selected, graph g

can be modified by applying the underlying Operation to form a candidate graph g’. How-

ever, the acceptance of g' as the next graph is decided in a probabilistic manner (using

Metropolis algorithm). Given g’, we calculate the following ratio a between g’ and cur-

rent graph g.

exp[2 410(9)]

_ P(g') _ '_ _ l

P(g)

 (5.11)

614312 4ifi(8)]

i

102

.1
2
:
—
4
4
4
.
4
4

Note that the constant Z cancels out. Now if a 2 1 we accept the candidate g’. If a < l

we accept g’with probability or, else we reject the candidate and generate a new candi-

date graph starting fiom g by applying the Operators. Once g’is accepted it becomes the

current graph g and this process is repeated to generate more graphs.

This process generates a Markov chain (g’o, g’I, ...g’k...) as the transition probabilities

fiom g’, to gm depend only on g’, and not (g’o, g’,, ...g?.,). In order to generate a sample

of graphs using this method, we initially allow a sufficient number of graphs to be gener-

ated (say k) during the burn-in period. Following this burn-in period the chain approaches

its stationary distribution and samples from the vector (giu, gin") are samples fiom

our probability distribution p(g). To further distinguish the graphs generated, once g 1+; is

generated we allow a smaller burn-in interval (k’ < k) before selecting the next graph

gig. We can carryout this process a given number (nxk’) of times to generate a sample

of n graphs. Based on the above discussion, we present our sample generation algorithm,

called Metropolis.

florithm 9 (Metropolis)

Input: Graph database G, feature vectors FV, parameter set ,1 ’3, size of the sample k

Output: set ofk graphs and corresponding FVs

Method:

1: select a graph g randorrrly from database G and its W3

2: let initial burn-in period = const-l and subsequent burn-in period = const-2

3: fori=ltokdo

4 repeat

5: compute probability of each Operator using Equations (5.8)-(5.10)

6: select the operator op (ADD_EDGE/ADD_VERTEX/DEL_EDGE)

7' call GenNextGraph (g, FVg, op) to get a new graph g’and its feature vector FV,,

8. compute aby solving Equation (5.11)

9: if a Z 1 let g = g’ // accept or reject g’

10: else if a < 1 let g = g’with probability a

11: until end ofburn-in period

12: add the graph g and its FV

13: return the set of k graphs and corresponding FVs

103

This algorithm has two burn-in periods as described earlier. In general, the initial burn-in

period (const-l) is set to high value (c. g. 100 iterations) and the subsequent burn-in peri-

ods (const-2) can be set to lower value (e. g. 20 iterations). At the end of each burn-in pe-

riod the graph is picked to be inserted into the sample. In the next section, we discuss

how the feature vector is generated for newly generated graph (Algorithm Gen-

NextGraph).

5.4.4 Feature Vector Generation

A key challenge in the sampling process is compute the feature vector, fig) associated

with each frequent graph i, of the newly generated graph g’. Since g has been modified its

feature vector may no longer be valid for g’.

A trivial solution to find the affected frequent graphs once an operator is applied to g

can be easily determined. In the case Of ADD_EDGE (or ADD_VERTEX), we can con-

sider all the non-present frequent graphs of g (i.e. an={graph i | f,(g)=0}), and search

whether they are in g’, after applying the operator to g. Similarly, we can consider all the

frequent graphs Ofg (i.e. Fp ={graph i |fi(g)=1}), and search whether they are in g’after

applying the Operator DEL_EDGE. However, when we analyze the relationship between

a graph and the number Of frequent subgraphs not present in it (i.e. WWI), Obviously that

number is quite large when compared to the number of frequent subgraphs present (i.e.

|Fp|). Since searching g ’involves sub-graph isomorphism testing and because [anl is quite

large, this method can possibly be computationally expensive for Operators like

ADD_EDGE, and ADD_VERTEX. We therefore propose a more efficient technique to

compute the feature vectorfig) for these operators without incurring a significant cost.

In this approach, we use the subgraph lattice (L) that is generated during subgraph

mining. This lattice contains information such as subgraph-supergraph relationship for

104

each frequent subgraph discovered. Since |Fp| is smaller, we start with the graphs in Fp.

instead ofFup as in the trivial case, and construct the new feature vector gradually.

Here, for each frequent graph in Fp we obtain its super graph f’ fi'om L st. [,8 E F ,

and checks whether f’ is contained in g’. Iff’ is present, we set the corresponding bit of

the feature vector to 1, and it will be added to F,, so that subsequently its super graphs

will also be checked. Using the lattice information, we give the following set of proposi-

tions that will speedup the existence check off’ in g’ by pruning many unnecessary

checks.

PROPOSITION 5.1: Given the operator DEL_EDGE, a graph g and its modified graph g:

along with a frequent subgraphf iffis not present in g, then all ofits super graphs in L

will not bepresent in g’and therefore can bepruned.

PROOF. Sincefis not present in g all of its super graphs in L cannot be present in g. Since

the subgraph g’is generated fiom g by the operator DEL_EDGE (i.e. g’ Cg) and there-

fore none ofthe super graphs should not be present in g’and can be pruned. I

PROPOSITION 5.2: Given the operator ADD_EDGE, a graph g and its modified graph gt

afiequent subgraphf e" g along with its super graphf’ (lag) in L, ifthe number ofverti-

ces off’ is greater than that off then subgraphf’can be pruned.

PROOF. Since the Operator ADD_EDGE only adds an edge between any given two verti-

ces ofg to generate g’, the number of vertices ofg’is equal to g. Sincef’does not present

in g and has extra vertices thanf,f’cannot be present in g ’and therefore can be pruned. I

PROPOSITION 5.3: Given the operator ADD_VERTEX, a graph g and its generated graph

gf afrequent subgraphf eg along with its super graphf’ (6g) in L, ifthe number ofver-

tices off’ is equal to that off then subgraphf’can be pruned.

105

E
:

(
T
E
N
-
s
y
n

-_

PROOF. The operator ADD_VERTEX only adds a vertex to g in order to generate g’; i.e.

V(g) > V(g). Sincef’does not present in g and has same number of vertices asf,f’cannot

be present in g ’and therefore can be pruned. I

PROPOSITION 5.4: Given a graph g and its generated graph gfi a frequent subgraph f

along with its complete set of immediate super graphs S= {f’, ’2, f1. f’w} in L, if

there is a super graph f1, known to be present in gf then the rest ofthe super graphs in S

cannot bepresent in g ’and thus can bepruned.

PROOF. Suppose two super graphs,f7, andf1,, e S are present in g’. Since bothf1, andf1,.

are immediate super graphs off, they can be considered as generated by operators and

since f1, ¢f1,. , both these operators should be different. But graph g’is generated from g

by applying only a single operator. Therefore, f1, and f1,, cannot be present in g’at the

same time. Therefore, if one super graph- ipresent in g ’then all the graphs in S\{f1,} can

be pruned. I

Proposition 5.1 is useful since a set of super graphs can be eliminated completely fi'om

the isomorphism check if its parent subgraph is not contained in g. Propositions 5.2 and

5.3 are useful to eliminate some of the frequent subgraphs when using ADD operation.

Proposition 5.4 is also beneficial and avoids many isomorphism checks if a super graph

of a frequent subgraphfis found to be present in g’, as the rest of the super graphs do not

need to be checked in g’. Also, this proposition can be used to eliminate more super

graphs. For example, suppose frequent subgraph f, has a super graph f’ found to be pre-

sent in g’. Now if there is another frequent subgraphf2 that happens to have the samef’as

its super graph, there is no need to check it again, and also all the super graphs off2 can

be safely pruned. This makes this proposition highly effective at reducing the amount of

isomorphism check. Based on this discussion, we present the algorithm for generating a

graph and a feature vector below:

106

#
C
H
I
-
1
"
.
m
i
.
"

'

.
I

A

Algorithm 10 (GenNextGraph)

Input: Graph g, frequent feature vector FVg, Operator op

Output: Generated graph g’and corresponding feature vector FVg:

Method:

1 let W, = FVg

2 if op = ADD_EDGE or op = ADD_VERTEX

3 select edge (v1,v2) to be added // v2 is a new vertex in op ADD_VERTEX

4 modify g by adding (v1,v2) to form g’

5: for each graphf e FVg

6‘ select immediate super graphf’in subgraph lattice L

7 prunef’using Propositions 5.1-5 .4

8: if not pruned check iff’is isomorphic to g’ //checkpresence off’

9: update FVg’to reflect the presence off’ in g’

10: else if 0 = DEL_EDGE

l 1: select edge e e g s.t. g will not become disconnected when e is removed

12: if edge e exists

13: modify g by removing e to form g’

14: for each graphf 6 W8

15: check iffis isomorphic to g’ //checkpresence off

16: update FVg ’tO reflect the presence Off’ in g’

17: else let g’= g // op DEL_EDGE is not successfid

18: return g’and the feature vector FV,,

Algorithm GenNextGraph is used to generate a new graph g’fiom the current graph g by

applying the operators as described in the previous section. Also, the feature vector is up-

dated for g ’ to reflect the presence of frequent subgraphs. In the case of Operator

DEL_EDGE, edges are deleted in such a way so that the resultant graph does not become

disconnected. If such an edge is not present, then the original graph g is not modified.

5.5 Maximum Entropy Based Supervised Anomaly De-

tection

Over the years, several innovative supervised classification algorithms for graph-based

data have been developed [DKN+05][WK06][HGW04][KMM04][LYY+05] [BB02].

Most of the algorithms are based on the underlying assumption that the intrinsic proper-

ties of a graph are rendered by its underlying substructures (nodes, edges, paths, strongly

connected components, trees, subgraphs, etc). These substructure-based algorithms iden-

107

V
‘
h
n
fi
h
.

.
-
.

tify the important components present in each graph and subsequently use them to dis-

criminate graphs from different classes. Most of the early works in graph-based classifi-

cation have focused on the use of heuristic based search techniques to discover such dis-

criminative components present in the graph database [BB02]. More recently, however,

fi‘equent subgraph based approach was proposed in which frequent subgraph mining al-

gorithms are employed to generate all the subgraphs that occur a sufficiently large num-

ber of times in the graph database and to construct feature vectors based on the extracted

subgraphs [DKN+05]. By transforming each graph into its corresponding feature vector,

we can subsequently apply any Of the existing classification algorithms to build a classi-

fication model for the graph database.

Among the state of the art classification algorithms includes support vector machines

(SVM) [J99], Adaboost [SS99] [FHTOO] [W05], and maximum entropy model. The

SVM approach has been widely applied to the classification of graph objects. Cai et al.

use SVM to classify protein sequences [CWS+03]. Dobson et a1. applied SVM to distin-

guish enzyme from non-enzyme proteins [DD03]. Much of the recent work on applying

SVM to graph-based application focuses on how to build efficient and valid kernel firnc-

tions for graphs. Most of these approaches are based on constructing a feature space by

decomposing a graph into its underlying subgraphs and counting the number of occur-

rences of these subgraphs. Watkins [W99] shows that the scores produced by certain dy-

namic alignment algorithms can be considered as valid kernel firnctions. Kashima et a1.

[KTIO3] use the counts ofpaths produced by random-walks on graph to generate the ker-

nel. Borgwardt et al. in [BOS+05] construct the kernel by combining the similarity meas-

ures based on different data types for different source Of information including sequen-

tial, structural, and chemical.

In this section, we present a principled approach for building a global classification

model from the local patterns using the maximum entropy principle. The idea behind this

approach is to learn a conditional probability distribution of the class for a graph given its

108

underlying features (i.e., frequent subgraphs) by using the support of the features as con-

straints imposed on the probability model. Using an iterative technique known as the im-

proved iterative-scaling algorithm [B97], the parameters of the probability model can be

estimated from the data. While the idea of using the maximum entropy principle for con-

structing a global model based on its underlying local patterns is not new [MS99], to the

best of our knowledge, this approach has not been applied to graph-based data.

5.5.1 Maximum Entropy Model in Supervised Setting

In Section 5.4.1, we discussed how maximum entropy can be used in an unsupervised set-

ting. Here we discussed the supervised case, where each graph is assigned a class label, y,

chosen from a set of discrete labels Y. In this work, we assume that the classes are bi-

nary, even though the approach can be generalized to multi-class problems using one—

versus-one, one-versus—all, or error correcting output coding (ECOC) methods.

Our Objective is to find a global probability model P(y| Xg) using the maximum en-

tropy principle. To apply the maximum entropy principle, we first define a set of features

constructed from the frequent subgraphs. We then create a database of binary transac-

tions, where each transaction corresponds to a graph g e G. Each transaction also con-

tains a set ofbinary features, also called items, each ofwhich is defined as follows:

fg(X"y)—{0 otherwise ()

As previously noted, the maximum entropy principle seeks to find a probability model

P* that maximizes the following Objective function:

P*=max — zP(y|Xg)logP(y|Xg) (5.13)

geG

subject to the following constraints:

109

F
'
.
)
.
'
.
'
.
'
-
‘
.
‘

A
‘

.
—
.

I
.
.
A

ZP(y|Xg)fg(XiaY)=Si
(5.14)

g

where s,- corresponds to the support of the subgraph X, in the database G. Note that Equa-

tion (5.14) states that the expected value for every feature is constrained to be identical to

the support of the corresponding subgraph. It can be shown that the probability model

that maximizes Equation (5.13) subject to the linear constraints in Equation (5.14) has the

following exponential form:

P*(YIXg)=T)1(-g—)exp[Z/iifg(Xi,y):| (5-15)

I

where Z(Xg) is a normalization factor, and 1’s are the parameters to be estimated.

5 .5 .2 Parameter Estimation

Let A = {M, 2.2, ..., M} be the set of parameters to be estimated. The A vector can be

interpreted as the significance or weight of the corresponding features and can be esti-

mated using the maximum likelihood approach. Specifically, the likelihood function for

the training data G is:

L(A) = HP“ (y I X)E‘X'y’ (5.16)
geG

where p(x, y) is the estimated counts of (X,y) in the training data G.

The conditional maximum likelihood model above is solved using the Improved It-

erative Scaling algorithm (115') [BPP96]. US can be designed to prevent overfitting in the

resulting model P*(y/X), by incorporating a Gaussian Prior. Here, instead ofmaximizing

the likelihood function we maximize the function:

L<A>=HP*(y,. IX.)’B"”X’><P(A) (5.17)
g. 60

110

F

where the parameters A are assumed to have a Gaussian Prior with zero mean and vari-

ance 02:

2,2

P(A) = H 1 exp|:— l (5.18)

i V27t0‘2 20'2

To maximize the likelihood, we initialize A = {,11 ,32,33,,,,,1m}with some arbitrary

values. The algorithm then seeks for a new set of parameters that will yield a higher log

likelihood.

L’(A)= L(A+A)—L(A) (5.19)

Solving the equation above gives us a model in terms of A , so taking the derivative

with respect to a certain 5,. yields:

2ammo,» —2 E20012 *(y/X)f.(X.y)exp(6.-f“(x,y» = o (5.20)
gEG gEG

n

wheref (X.y) = ZfiM’J) for a particular graph g. We solve this for each 5,. and in-

i=1

crement the corresponding 1,- iteratively. We continue with this search procedure until a

stationary point of the vector A is found.

5.5.3 gEntropySuper: Classifying Anomalous Graphs

This section describes our proposed algorithm (gEntropySuper) based on the above

framework for classifying graphs in a given graph dataset. In our approach, we first gen-

erate frequent subgraphs for a given minimum support threshold (5) using a frequent

subgraph mining algorithm. Once the frequent subgraphs are generated, binary feature

vectors are constructed for each graph in the graph database. The ith entry of the feature

vector is set to one if that feature (frequent sub graph) occurs in the graph, and it is set to

zero if the feature is not present.

111

$4

Using these feature vectors, we repeatedly compute the model described in Equation

(5.20) until it converges to a stationary point. The following algorithm describes the pro-

cedure we used to classify graphs.

igorithm 12 (gEntropySuper)

Input: Graph database G, min support threshold 4‘

Empirical distribution p(X, y)

Output: Optimal parameters set ([1,) V i e {1, 2,. . ., 11}

Optimal model p*

Method:

1: generate feature firnctionsf1,f2,. . .,fi, for G

construct binary feature vector for each g eG

initialize li= 0 V i e {1, 2,.., n}

repeat

for i = l to it do

compute 8., by solving Equation (20)

update kg— ki+ 6,

V g eG compute P*(yIX) using A.

until convergence

>
9
9
9
fl
9
‘
f
f
‘
f
f
t
’
3
‘
9

The time complexity of the algorithm depends on three components: generation of fre-

quent subgraphs, construction of feature vectors, and calculation of optimal model. Let T;

be the time complexity of any existing fi'equent subgraph mining method. In order to

construct binary feature vectors using n features with N graph objects it requires Ts = nN

isomorphism checks, where subgraph isomorphism has exponential time complexity. Op-

timal model computation takes nNTs,ep,, where Tmp, is the number of steps required to

converge the model. Therefore, the total time complexity can be stated as OH} + nN+

nNTmp,). Similarly, space complexity of the three steps can be analyzed. Let Sf be the

space requirement of the underlying subgraph mining method. Let n be the frequent sub-

graphs generated. Then it takes nN computations to generate feature vectors. Also, the

optimal parameter set require n memory space. Therefore, the space complexity of the

algorithm is O(max(Sf, (nN +n))).

112

I
n
.
W
’
M
4
m
-

f
I,

5.6 Experimental Evaluation

In this section, we describe the experimental environment used to evaluate our algorithms

and the results obtained.

5.6.1 Datasets

We used four different real world datasets to evaluate the algorithms.

The first dataset, Predictive Toxicology Data -PTC’, contains 417 chemical com-

pounds evaluated on four types of laboratory animals: male mouse (MM), female mouse

(FM), male rat (MR), and female rat (FR). Each compound is assigned a class label indi-

cating the toxicity (positive or negative) of the compound for that animal. Therefore, in

this dataset we have four binary classification problems corresponding to each laboratory

animal (MM/FM/MR/FR).

The second dataset, Aids‘, contains 42,682 chemical compounds evaluated for evi-

dence of anti HIV activity. We have formulated a binary classification problem, where a

compound is labeled as active if it can provide protection to the human CEM cells from

HIV infection, and as inactive otherwise.

The third dataset, Cancer7, contains 42,247 chemical compounds evaluated for evi-

dence of the ability to inhibit the growth of hmnan tumor cell lines. We have formulated

a binary classification problem using this dataset.

The fourth dataset is the WebSpam" dataset containing 4,188 graphs generated for our

purpose. This dataset contains a web graph, whose nodes correspond to hostnames, and

edges correspond to the directed links between hosts. We first discretized this data set by

calculating the average number of links between the nodes and applying a threshold to

5 http.'//www.predictive-toxicology.org/ptc/

6 http://dtp.nci.nih.gov/docs/aids/aids_data.html

7 http://dtp. nci. nih.gov/docs/cancer/cancer_data. html

8 http://wwwyr-bcn. es/webspam/datasets/

113

form new edges. Then, for each node, its neighborhood is determined, and each such

node and its corresponding neighborhood are used to form a single graph. This way we

were able to generate multiple graphs and each graph is classified as normal or spam.

5.6.2 Evaluating Environment

In this section, we describe the machine environment used to evaluate our algorithms. We

have performed extensive experiments on both synthetic and real data sets to evaluate the

performance of our algorithms. The experiments were conducted on a SUN Spare lGHz

machine with 4 GB ofmain memory running Linux.

5.6.3 Evaluation of the Unsupervised Frameworks

In this section, we describe the performance of our unsupervised anomaly detection algo-

rithm — gRank, using the datasets discussed in Section 5.4.1. From these datasets, we se-

lected a set of graphs randomly as shown in Table 5.1. Also, note that the anomalous

graphs are also selected randomly from these datasets. We used FSG [KKOl] frequent

subgraph mining algorithm to generate fi'equent subgraphs using the minimum support

thresholds as shown in Table 5.1 for each of the dataset.

Table 5.1. Characteristics of the datasets

Num. Num. Min.

Dataset .
Instances Anomalies Support

MNI 215 1 5 10%

MR 210 20 10%

FM 215 15 10%

FR 245 20 10%

Aids 1,050 50 20%

Cancer 8,400 400 15%

WebSpam 1,050 50 30%

114

Table 5.2 shows the average precision (P) and averagefalse Alarm rate (FA) obtained

by each algorithm. Here algorithm gRank-cos uses cosine similarity of fiequent sub-

graphs to define the similarity between graphs (Section 5.1.1.1), and gRank-cg uses

maximal common frequent subgraphs to define the similarity between graphs (Section

5.1.1.2). Algorithm- gEntropy is the probabilistic approach based on the maximum en-

tropy. We also compared our approaches with the existing anomaly detection scheme

Subdue [NC03].

Table 5.2. Experimental results

Dataset gRank-cos gRank-cg gEntropy Subdue

P FA P FA P FA P FA

MM 0.13 0.065 0.1 1 0.066 0.13 0.065 0.07 0.070I

PM 0.05 0.071 0.16 0.062 0.16 0.062 0.05 0.071

MR 0.10 0.085 0.10 0.085 0.10 0.085 0.05 0.090

FR 0.05 0.084 0.05 0.084 0.05 0.084 0.05 0.084

Cancer 0.01 0.049 0.10 0.045 0.02 0.050 0.02 0.049

Aids 0.01 0.049 0.15 0.043 0.02 0.049 0.02 0.049

WebSpam 0.18 0.041 0.18 0.041 0.16 0.042 0.07 0.047
When analyzing the results ofgRank-cg algorithm, it shows better precision than Subdue

in all of the cases except for FR dataset, where the results are comparable. gRank-cos

shows better precision than gRank-cg only in MM dataset. Furthermore, gRank-cg shows

higher precision in Aids and Cancer datasets when compared with all other algorithms,

including gRank-cos. Precision ofgEntropy is comparable to that ofgRank-cos but better

than Subdue. In the PTC datasets, it showed better performance compared to gRank-cg.

But gRank-cg shows better performance in all other cases. This shows the effectiveness

of maximal common subgraph based features. When considering the complexity of these

real-world data, the results we obtained from an unsupervised technique such as gRank is

highly satisfactory.

115

,
p
‘
m
:
m
:
~
g
r

5.6.4 Evaluation of the Supervised Frameworks

In this section, we describe the performance of our supervised anomaly detection algo-

rithm — gEntropySuper, when compared with the existing methods. We analyze the per-

formance using two different descriptor spaces: frequent subgraphs, and maximal fre-

quent subgraphs.

In order to generate feature vectors, we used a frequent sub graph mining algorithm -

FSG [KKOI], and generated frequent subgraphs for a given minimum support threshold.

Table 5.3 shows the selected minimum support threshold for each of the datasets. Then,

binary feature vectors are constructed for each graph in the graph database as discussed in

Section 5.3.2. Once the feature vectors are built, any of the existing classification algo-

rithms (SVM, Adaboost) can potentially be used for classification.

Table 5.3. Characteristics of the datasets

Num. Min.

Dataset

Instances Support

MM 417 10%

MR 417 10%

FM 417 10%

FR 417 10%

Aids 42,682 20%

Cancer 42,247 10%

WebSpam 4,188 25%

In this work, classification is done by performing 5-fold cross validation on the dataset;

that is, we divide the datasets into five equal sized subsets and in each round we choose

one subset as the test set and the remaining four subsets as the training set and report the

average accuracy.

We used two state-of-the-art classification techniques for comparison. The first

method, known as SVM (Support Vector Machine), chooses a maximum margin linear

116

classifier among all the existing linear classifiers. The margin is defined as the distance of

the linear classifier to its nearest training samples, known as support vectors. This idea

can be developed to non-linear case by mapping the samples to a high dimension space

where they can be classified linearly. This mapping is performed by kernel function,

which defines the distance between all pairs of samples in the new high dimensional

space. Unlike traditional approach to classification, SVM rrrinirrrizes the empirical classi-

fication error and maximizes the geometric margin at the same time and it has been

shown that this increases the generalization power of the model (decreases the classifica-

tion error ofunseen examples).

The second method, known as Adaboost, constructs a series of weak classifiers and

uses a linear combination of these classifiers as the final model. Adaboost uses an itera-

tive process during which the error rate of the model decreases gradually. Given the

model created from the linear combination of the current series of weak classifiers, it

makes a new weak classifier by concentrating on the areas with many wrongly labeled

samples. This is performed with a sampling procedure from a weighted training sample

set with high weight for wrongly labeled samples and low weight for correctly labeled

samples.

5.6.4.1 Comparison with other approaches

We compared the performance of our algorithm (gEntropySuper) against two existing

methods: Adaboost and SVM. For the SVM classifier, we used the SVMLightg package de-

scribed in [J99]. For Adaboost, we used the MATLAB10 package. We set the number of

iteration for Adaboost as 20. Table 5.4 shows the accuracy (Acc) and F-Measure (F) of

each of these methods.

9 http://svmlightjoachims. org/

‘0 http.°//research.graphicon.ru/machine-learning/gml—adaboost-matlab-toolbox.km]

117

r
—
T
.
_
.
’
—
V
_

_
"
7
“

5
1
4
'

l

1

.
1

Table 5.4. Experimental results (Accuracy and F-Measure)

Dataset Adaboost SVM gEntropySuper

Acc F Acc F Acc F

MM 0.584 0.58 0.561 0.50 0.582 0.59

FM 0.567 0.56 0.547 0.46 0.558 0.57

MR 0.585 0.53 0.569 0.42 0.586 0.63

FR 0.558 0.61 0.565 0.64 0.578 0.54

Cancer 0.654 0.59 0.669 0.60 0.661 0.58

Aids 0.974 0.00 0.964 0.00 0.965 0.07

WebSpam 0.935 0.68 0.906 0.00 0.934 0.67

As can be seen from the results, the gEntropySuper approach achieved a reasonably bet-

ter accuracy compared to other approaches. In MR and FR datasets it shows the best per-

formances. Overall, it achieved better performance than SVM in all of the datasets except

in Cancer data. In the WebSpam dataset, performance of gEntropySuper is better than

that of SVM and is comparable to Adaboost. Adaboost shows better performance in MM,

FM, and Aids datasets when compared with gEntropySuper.

We have conducted a paired t-test to determine whether the performance of gEntro-

pySuper differs from Adaboost in a significant way. For the t-test our null hypothesis is

that the mean difference between paired observations is zero.

When comparing Adaboost and gEntropySuper, paired t-test gives t =-0.262 with de—

grees of freedom = 6. The probability of this result, assuming the null hypothesis, is

0.802. The 95% confidence interval for mean is -1.0326E-02 thru 8.3260E-03. Therefore,

we conclude that the accuracy ofgEntropySuper is comparable to Adaboost.

On the other hand, when comparing SVM against gEntropySuper, paired- t test gives t

=2.58 with degrees of freedom = 6. The probability of this result, assuming the null hy-

pothesis, is 0.042. Also, 95% confidence interval for mean is 6.2490E-04 thru 2.3089E-

02. Therefore, a null hypothesis of no difference between the means can be rejected; the

confidence interval is away from including zero. Based on this result SVM is different

from gEntropySuper and as discussed earlier, it shows lower performance.

118

5.6.4.2 Classification using maximal subgraph-based

descriptors

In the previous section, we used frequent subgraph based descriptor space for defining

feature vectors. Instead of frequent subgraphs, here we analyze maximal frequent sub-

graphs as descriptors. For this analysis, we used 4 datasets (MM, FM, MR, FR) and gen-

erated maximal frequent subgraphs with the same support threshold (10%) used in the

previous case. Table 5.5 shows the classification accuracy and F-Measure for each of the

algorithms.

Use of maximal subgraph based descriptors changes the performance of different al-

gorithms dramatically. However, while it improves the performance of SVM in terms of

both accuracy and F-Measure, it reduces the performance of Adaboost and gEntropySu-

per. As the number of frequent subgraphs generated for these datasets is always higher

than the number of maximal frequent subgraphs, these extra features provided by fi'e-

quent subgraphs can be very effective for classification. gEntropySuper approach can

automatically choose the best features for classification and thus it shows better perforrn-

ance with frequent subgraphs based descriptors than the maximal ones.

Table 5.5. Experimental results with maximal subgraphs

Adaboost SVM gEntropySuper

Acc F Acc F Acc F

MM 0.577 0.58 0.602 0.61 0.565 0.55

Dataset

FM 0.553 0.54 0.547 0.49 0.542 0.54

MR 0.568 0.51 0.561 0.38 0.554 0.57

FR 0.603 0.63 0.592 0.68 0.563 0.50

5.7 Discussion

In this chapter, we investigated both unsupervised and supervised approaches for detect-

ing anomalies in graph-based datasets.

119

First, we presented an unsupervised fiamework, called gRank, to determine the an-

omalousness of the graphs. We discussed two similarity measures to determine the simi-

larity between graphs: (1) cosine similarity measure with frequent subgraph based fea-

tures; (2) common subgraph based similarity measure with maximal common frequent

subgraphs, utilizing an efficient lattice based approach for fast computation. Once the

similarity between graphs is computed, a random walk model is used to assign an anom-

aly score to each graph object. Empirical studies conducted on both real and synthetic

data sets showed that our proposed methods outperform previously developed anomaly

detection schemes for graph based data and can effectively address the inherent problems

of such schemes. Further, when analyzing the similarity between graphs, common sub-

graph similarity seems to be a viable solution. However our common subgraph similarity

measure for graphs with repeating vertex labels is an approximation and still needs irn-

provement to make it suitable for any graph database, such as graphs with many repeat-

ing vertices.

We have also proposed a maximum entropy based unsupervised anomaly detection

framework, called gEntropy, to detect anomalies in graph based data. In this method, we

assign each graph a probability value, which is then used to determine its anomalousness.

The probability of a graph is determined by the weighted sum of its features in the corre-

sponding feature vector. Using the Generalized Iterative Scaling algorithm optimal

weights are calculated from the samples of graphs generated by Metropolis sampling.

Experimental results using real-world data confirmed the effectiveness of this method for

graph based data.

We also investigated a maximum entropy based supervised approach for the problem

of graph classification. Similar to some of the existing methods, our algorithm is based on

the frequent subgraph patterns extracted from the graph database. Instead of using these

patterns directly to build feature vectors, we combined them into a coherent global model

that can be used for prediction. This method, which is relatively unexplored in the context

120

of graphs, has the advantage of providing better accuracy and efficiency. Also, it offers

coherent and consistent method for predicting the class of the graph objects.

Experimental results using real-world data sets confirmed that this approach is gener-

ally more effective at classifying most understandable graph objects. Also, the results re-

vealed that the precision of our approach does not depend heavily on the support thresh—

old used to generate frequent subgraph patterns, which makes our approach stable com-

pared to existing SVM based graph classifiers.

121

6 Conclusions

In this chapter, we summarize the research contributions of this work and discuss some

future research directions.

6.1 Summary of the Thesis

This thesis focuses on two kinds of pattern mining tasks: frequent itemset mining and

anomalous pattern mining. Specifically, we developed a class of novel graph based algo-

rithms.

6.1.1 Mining Frequent Itemsets

Mining frequent itemsets in databases has been studied extensively. But existing ap-

proaches have various characteristics that prohibit them from scaling-up to very large da-

tabases. In order to address this problem, we developed a graph-based approach for min-

ing frequent closed itemsets. The main contributions of this work are:

0 We introduced PrefixGraph, a new graph based data representation for storing

compressed, important information about frequent itemset generation. This new

representation has several advantages over the existing approaches: First, Prefix-

Graph uses prefix 2-item based bit vector projections to compress a large database

122

.
.
c

'.
“
"
-
1
:
'
~

into a compact representation that avoids costly, repeated database scans. Second,

a partitioned-based, divide—and-conquer technique decomposes the whole mining

task into a set of smaller subtasks in such a way so that the information for fre-

quent itemset generation is available locally, which avoids costly data structure

traversals, especially when the database is very large. Finally, the variable length

nature of the bit vectors, which enables fast bit vector intersections to generate

frequent itemsets, makes PrefixGraph an effective data representation for fast fre-

quent itemset mining.

We also developed an efficient PrefixGraph based mining algorithm, PGMiner,

for mining the closed set of frequent itemsets. In frequent closed itemset enumera-

tion, checking the closedness of a newly generated frequent itemset is a major

cost, since it requires searching the pattem-set already generated, which is in gen-

eral a highly time consuming operation. To address this cost, PGMiner employs a

graph based method, known as networkflow theory, to efficiently detect the clos-

edness of a frequent itemset. Unlike other existing approaches, this network flow

based closedness check does not require us to store in memory the entire set of

frequent closed iterrrsets that have been mined so far in order to check whether a

candidate frequent itemset is closed. This dramatically reduces the memory usage

of our algorithm, especially for low support thresholds. Also, {our closedness

check has minimal computational overhead when determining the closedness of a

frequent itemset. The use of network flow theory with the link structure of the

graph has enabled PGMiner to incorporate new, efficient ways of determining the

closedness of frequent itemsets that would otherwise be costly, as can be seen in

the existing approaches. For instance, following the suffix-links of the Prefix-

Graph we can easily determine the possible candidate patterns for closedness

check, which is quite difficult for existing approaches without such link informa-

tion. Our performance study shows that the memory usage for PGMiner does not

123

g
m
m
w

.
.
I
'
L

.
.

~
.

1
.

A

grow quite as rapidly as other existing approaches during the mining process. Fur-

thermore, PGMiner is efficient and scalable to very large databases, and it outper-

forms existing state—of—the-art frequent closed itemset mining algorithms by an

order ofmagnitude both in time and memory requirements.

We believe the frequent itemset mining approach developed in this thesis is a step

forward towards making frequent pattern mining more scalable for large databases and it

will be beneficial to many real world applications.

6.1.2 Mining Anomalous Patterns

Anomalous pattern mining is an important data mining problem with broad applications.

Despite its importance, a major drawback of using anomaly detection algorithms in real-

world applications is their high false alarm rate, which makes this an interesting research

area. In this section, we discuss both unsupervised and supervise anomaly detection

frameworks developed for efficient and effective mining of anomalies. The main contri-

butions of this work are:

We proposed OutRank, a stochastic-graph based model for anomalous pattern

mining in an unsupervised setting for data objects that is described by a set of fea-

tures. A distinct feature of this model is the representation of data as a graph. This

representation has a key advantage over existing anomaly detection schemes, be-

cause with a graph based representation, we can consider the outliemess of an ob-

ject with respect to the entire graph of objects. When detecting clusters of anoma-

lies, viewing the outliemess from such a global perspective is crucial for the per-

formance of the algorithm. We consider two approaches for constructing a graph

representation of the data, based on the object similarity and number of shared

neighbors between objects. The heart of this approach is the Markov chain model

124

‘
W
‘

*
3

(or random walk) that is built upon this graph, which assigns an anomaly score to

each object. A major advantage of using this random walk on graph approach is

that it can effectively capture not only the anomalous objects scattered uniformly,

but also small clusters of anomalies. Using this framework, we showed that our

algorithm is more robust than the existing anomaly detection schemes and can ef-

fectively address the inherent problems of such schemes. A performance study

conducted on both real and synthetic data sets show that significant improvements

in detection rate and a lower false alarm rate are achieved using the proposed

framework.

In many practical situations, data are not simply represented as sets of features,

instead data can have more complex forms such as graphs. In this thesis, we sys-

tematically develop an anomaly detection framework to detect anomalies in such

graph-based data. Existing algorithms for this task are based on the compression

of frequently occurring substructures of the graph database. Such structural modi-

fications can cause important information presents in the graph to be modified or

even lost, which makes these algorithms show high false alarm rate. Instead, we

believe a solution to this problem should consider the structural similarity among

the graphs and therefore we developed an anomaly detection framework called

gRank to detect anomalous graphs. The general idea is to use frequently occurring

subgraphs to determine the maximal commonfrequent subgraph components pre-

sent in the graphs and use them to compute the similarity between graph objects.

Using these similarities, a graph representation of objects is constructed and mod-

eled as a Markov chain, which assigns an anomaly score for each graph object.

Use of frequent subgraphs enables us to discriminate normal objects from anoma-

lous ones, since anomalous graphs are less common than the majority of the nor-

mal graphs. Also, we proposed an efficient subgraph lattice based technique that

does not involve a costly isomorphism test to compute the maximal common fre-

125

quent components among graph objects. Empirical studies conducted on real-

world graph data sets showed that our proposed anomaly detection framework

based on maximal common frequent subgraphs outperforms previously developed

anomaly detection schemes based on compression of substructures, by achieving

higher detection rate. Furthermore, the results revealed that the maximal common

fi'equent subgraph based similarity measure is a viable measure to determine the

similarity between graphs.

We have also studied a novel maximum entropy based unSupervised anomaly de-

tection framework for graph based data. In this framework, anomalousness of a

graph is determined by assigning a probability value for each graph in the data-

base. Here, each graph is represented by a binary feature vector, where each fea-

ture corresponds to a presence or absence of a fi'equent subgraph discovered from

the graph database. Then, the probability of a graph is computed based on the

weighted sum of these features. The optimal weight-set is calculated using the

Generalized Iterative-Scaling algorithm from the samples of data obtained by the

Metropolis sampling approach. An efficient anomaly detection algorithm called

gEntropy is proposed for this task. An experimental evaluation conducted using

real—world datasets shows the effectiveness of this approach for anomaly detec-

tion. Also, when compared to the trivial case, gEntropy dramatically reduces the

computational time.

In some situations, unsupervised anomaly detection is difficult to perform and

may result in lower precision. To address these situations, we proposed a prob-

abilistic substructure-based supervised approach— gEntropySuper, for classifying

graph based data. In this method, we use a frequent subgraph mining algorithm to

extract frequent substructure based descriptors and apply maximum entropy prin-

ciple to build a global classification model from these frequent subgraphs. This

method, which is relatively unexplored in the context of graphs, has the advantage

126

of providing better accuracy and efficiency. Empirical studies conducted on real

world data sets showed that the maximum entropy substructure-based approach

ofien outperforms existing feature vector methods using AdaBoost and Support

Vector Machine.

We believe our graph-based anomaly detection framework will address the typical

grievances voiced by users when applying existing anomaly detection techniques, and it

will be beneficial to many applications in the real world.

6.2 Future Research

In this section, we present some of the related problems and extensions that can be tar-

geted in the firture:

Mining Sequential Patterns: Sequential pattern mining is to find frequent se-

quences in a sequential database. Unlike mining frequent closed itemsets, there

are very few methods (CloSpan [YHO3] & BIDE [WH04]) proposed for mining

closed sequential patterns. This is mainly due to the complexity of the problem.

Our experiments with existing algorithms confirm that none of the methods are

scalable when mining long sequences, such as bio-sequences. The PrefixGraph

approach we proposed has some interesting features: first, it is a partitioned based

divide and conquer algorithm built to improve scalability; second, it is a bit-vector

based data structure that enables fast pattern generation. These advantages open

the possibility of extending PrefrxGraph for sequence mining. However, several

issues need to be addressed when mining for long sequences. The projection of

sequences to nodes of the graph should be modified so that the nodes at the far

end of the PrefixGraph do not contain a larger database. Also, the use of flow-

127

based pruning strategy to prune the non-closed sequential patterns is an interest-

ing issue to be addressed in future research.

Mining Very Large Disk Resident Databases: The scalability of any in-core algo-

rithm, such as PGMiner, is limited by the available memory capacity and, when

mining large databases of hundreds of gigabytes, different approaches are needed.

Therefore, it is interesting to develop closed itemset mining methods that can

scale to very large databases using secondary memory. When developing a disk

based mining approach for a closed itemset mining task, the following two key is-

sues need to be addressed: (1) Partition strategy: Partitioning method involves

partitioning of the database such that each such partition can be held in available

memory. When designing a partitioning strategy, the number ofpartitions and the

cost of search space enumeration for mining must be balanced. Otherwise, disk

I/O cost can become high and will be a major bottleneck that affects the perform-

ance of the underlying algorithm; (2) Closed itemset enumeration: As mentioned

earlier closedness of an itemset cannot be decided based on the knowledge avail-

able in a single partition. Therefore, efficient closed itemset enumeration from the

local closed itemsets of each partition is an issue that needs to be addressed.

PGMiner can be a good choice for this task because of the partitioned based na-

ture ofthe PrefixGraph, and the independence nature of itemset enumeration task.

Mining Anomalous Substructures: Real world graph datasets are not always a col-

lection of graphs. Instead, the whole database can be a single large graph. The

anomalous substructure detection is to examine the entire graph and mine anoma-

lous substructures contained in it. These anomalous substructures are not simply

the substructures occurring infrequently, since very large substructures occur once

or twice. For instance, the entire graph can be considered as a substructure that

occurs once in it. What we need to look for when mining such a large graph is the

patterns that have an unusual occurrence inside the graph. Such patterns that devi-

128

ate fiom the majority of the substructures can be considered as anomalous. Care

should be taken not to identify the large substructures as unusual. These chal-

lenges need to be addressed by any effective anomaly detection algorithm. Fur-

thermore, graph based methods need to address the complexity of handling such a

large graph, as the real-world graphs of this nature can have millions of nodes

(e.g. telephone networks or social networks). Substructure similarity based tech-

niques introduced in gRank open new opportunities when addressing these chal-

lenges.

Mining Anomalous Graphs by Incorporating Labeled Samples: We have intro-

duced an unsupervised framework for anomaly detection in graph based data.

This method does not use any previous known knowledge about the dataset when

detecting anomalies. However, if we have prior knowledge about that data, then

the anomaly detection algorithm can be guided to detect normal and abnormal

graphs in the data. This not only improves the detection rate, but also reduces the

false alarm rate. In semi-supervised anomaly detection, a small amount of labeled

data is mixed with a large amount of unlabeled data to obtain an improvement.

With labeled information, some of the drawbacks present in the current unsuper-

vised frarnework can be minimized. Determining the similarity of a small graph

against a large graph and selecting the best discriminative substructures are some

of the situations that can really be improved with labeled information. How to in-

corporate such information is a challenge that needs to be addressed in the future.

This type of semi-supervised framework can also be extended to mining anoma-

lous substructures present in a large graph.

129

[AAP+98]

[AIS93]

[Alml

[AS94b]

[AS96]

[AW06]

[B97]

[3302]

[BCGOl]

[BKN+00]

[BOS+05]

[BPGO6]

BIBLIOGRAPHY

R. Agarwal, C. Aggarwal, V. Prasad, and V. Crestana. A tree projection al-

gorithm for generation of large itemsets for association rules. IBMResearch

Report, RC21341, November 1998.

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between

sets of items in large databases. In Proc. of the ACM SIGMOD conference

on management ofdata. pages 207-216, 1993.

IBM Almaden. Synthetic Data Generation Code for Associations and Se-

quential Patterns. http://www.ahnaden.ibm.com/cs/quest/syndata.html

R. Agrawal and R. Srikant. Fast Algorithms for mining Association rules. In

Proceedings of VLDB, September, 1994.

R. Agrawal and J. C. Shafer. Parallel mining of association rules. IEEE

Trans. 0n Knowledge and Data Engineering, 8:962-969, 1996.

R. Angelova and G. Weikurn. Graph-based text classification: learn from

your neighbors. In Proceedings ofthe 29th annual international ACMSIGIR

conference on Research and development in information retrieval, 2006.

A. Berger. The Improved Iterative Scaling Algorithm: A gentle Introduc-

tion. Technical report, Carnegie Mellon University, 1997.

MR. Berthold and C. Borgelt. Mining Molecular Fragments: Finding Rele-

vant Substructures of Molecules, In Proc. Int ’1 Conf on Data Mining, 2002.

D. Burdick, M. Calirnlim, and J. Gehrke. MAFIA: A Maximal Frequent

Iterrrset Algorithm for Transactional Databases. In Proc. ofICDE, 2001.

M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identifying

density-based local outliers. In Proc. ofthe 2000 ACMSIGMOD Int ’1 Conf

on Management ofdata, pages 93—104, 2000.

K.M. Borgwardt, C.S. Ong, S. Sch"onauer, S. Vishwanathan, A.J. Smola,

and HP. Kriegel. Protein fiinction prediction via graph kernels. Bioinfor—

matics 21(1), 2005.

G. Buehrer, S. Parthasarathy, and A. Ghoting. Out-of-core Frequent Pattern

Mining on a Commodity PC. In Proceedings ofthe ACMInternational Con-

ference on Knowledge Discovery and Data Mining (SIGKDD), August

2006.

130

[BPP96]

[13303]

[CHOO]

[CHN+96]

[CHX98]

[CWS+03]

[CX98]

[DDO3]

[DKN+05]

[DKW+05]

[DR72]

A.L. Berger, V.J. Della Pietra, and SA. Della Pietra. Maximum Entropy

Approach for Natural Language Processing. Computational Linguistics.

22(1) P: 39 — 71,1996.

S. D. Bay and M. Schwabacher. Mining distance-based outliers in near lin-

ear time with randomization and a simple pruning rule. In Proc. ofthe ninth

ACM SIGKDD Int ’1 Conf on Knowledge discovery and data mining, pages

29—3 8, 2003.

D. J. Cook , L. B. Holder, Graph-Based Data Mining, IEEE Intelligent Sys-

tems, v.15 n.2, p.32-41, 2000.

D. Cheung, J. Han, V. T. Ng, A. W. Fuan, and Y. Fu. A Fast Distributed A1-

gorithm for Mining Association Rules. In Proc. of1996 Int'l Conf on Paral-

lel and Distributed Information Systems (PDIS'96), Miami Beach, Florida,

USA, December, 1996.

D. Cheung, K. Hu and S. Xia. Asynchronous Parallel Algorithm for Mining

Association Rules on a Shared-memory Multi-processors. In Proc. of the

Tenth Annual ACM Symposium on Parallel Algorithms And Architectures

(SPAA98), Puerto Vallarta, Mexico, June, 1998.

C.Z Cai., W.L. Wang, L.Z. Sun, and Y.Z. Chen. Protein function classifica-

tion via support vector machine approach. Math. Biosci., 185, 111-122,

2003.

D. Cheung and Y. Xiao. Effect of Data Skewness in Parallel Mining of As-

sociation Rules. In Proc. of the Pacific-Asia Conf Knowledge Discovery

and Data Mining, Lecture Notes in Computer Science, Vol. 1394, Springer

Verlag, New York, 1998.

PD. Dobson and A.J. Doig, Distinguishing enzyme structures from non-

enzyrnes without alignments. J. Mol. Biol, 330, 771—783, 2003.

M. Deshpande, M. Kuramochi, Nikil Wale, and G. Karypis, Frequent Sub-

structure-Based Approaches for Classifying Chemical Compounds, IEEE

Transactions on Knowledge and Data Engineering, vol. 17, no. 8, pp.

1036-1050, 2005.

M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis. Frequent Sub-

structure-Based Approaches for Classifying Chemical Compounds. IEEE

Transactions on Knowledge and Data Engineering, 2005.

IN. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear

models. Ann. Math. Statist., 43:1470--1480, 1972.

131

[EskOO]

[FHTOO]

[FPS96]

[GZO3]

[GZO4]

[H98]

[Haw80]

[HCL07]

[HCH+98]

[HGWO4]

[HIK06]

[HKK00]

[HLN99]

E. Eskin. Anomaly detection over noisy data using learned probability dis-

tributions. In Proc. ofthe I 7th Int ’1 Conf on Machine Learning, pages 255-

262, 2000.

J. Friedman, T. Hastie, and Robert Tibshirani. Additive logistic regression:

A statistical view of boosting. The Annals of Statistics, 38(2):337—374,

2000.

U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, Advances in Knowledge

Discovery and Data Mining, AAAI/MIT Press, 1996.

G. Grahne, J. Zhu. Efficiently Using Prefix-trees in Mining Frequent Item-

sets. In Proc. ofFIMI'03, 2003.

G. Grahne, and J. Zhu. Mining Frequent Itemsets from Secondary Memory.

In Proc. ofIEEE International Conference on Data Mining, 2004.

D. J. Hand. Data mining: statistics and more?, The American Statistician,

52, 112--119,1998.

D. Hawkins. Identification ofoutliers. Chapman and Hall, London, 1980.

J. He, J. Carbonell, and Y. Liu. Graph-Based Serni-Supervised Learning as a

Generative Model, In Proc. ofInternational Joint Conference on Artificial

Intelligence, 2007.

R.J. Hilderman, C.L. Carter,H.J. Hamilton, and N. Cercone. Mining market

basketdata using share measures and characterized itemsets, In Proc ofPa-

cific-Asia Conference on Knowledge Discovery and Data Mining, pp. 159—

170, 1998.

T. Horvath, T. Grtner, and S. Wrobel. Cyclic pattern kernels for predictive

graph mining. In Proc. of the 10th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 158-167, 2004.

Y. Haxhimusa, A. Ion, and W. G. Kropatsch. Evaluating Hierarchical

Graph-based Segmentation. In Proc of the 18th International Conference on

Pattern Recognition (ICPR’06), 2006.

E. H. Han, G. Karypis, and V. Kurnar. Scalable parallel data mining for as-

sociation rules. IEEE Transactions on Knowledge and Data Engineering,

Vol. 12, No. 3, 2000.

J. Han, V.S. Lakshmanan, and R. T. Ng. Constraint-Based, Multidimen-

sional Data Mining, Computer, IEEE Computer Society ,vol. 32, no. 8, pp.

46-50, August, 1999.

132

[HPYOO]

[HWL+02]

[HWP03]

[HWP04]

[11(04]

[IM76]

[J99]

[JKN98]

[JTHOl]

[Karl

[KI-IK99]

[KKOl]

[KMMO4]

J. Han, J. Pei, and Y. Yin. Mining Frequent Pattems without Candidate

Generation. In proc. ofACMSIGMOD, 2000.

J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining Top-K Frequent Closed

Patterns without Minimum Support, In Proc. ofInt. Conf on Data Mining

(ICDM'02), Maebashi, Japan, Dec. 2002.

L. Huan, W. Wang, J. Prins. Efficient Mining of Frequent Subgraphs in the

Presence of Isomorphism. In Proceedings ofthe 2003 International Confer-

ence on Data Mining (ICDM2003), 2003.

L. Huan, W. Wang, and J. Prins. SPIN: Mining Maximal Frequent Sub-

graphs from Graph Databases. In Proceedings of the 2004 Conference on

Knowledge Discovery and Data Mining (SIGKDD2004), 2004.

T. Ide and H. Kashima. Eigenspace-based Anomaly Detection in Computer

Systems. In Proc. 10th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining (KDD2004), 2004.

D. L. Isaacson and R.W. Madsen, Markov chains: theory and applications,

Wiley, New York, 1976.

T. Joachims. Making large-Scale SVM Learning Practical. Advances in

Kernel Methods - Support Vector Learning, B. Scholkopf and C. Burges and

A. Smola (ed.), MIT Press, 1999.

T. Johnson, I. Kwok, and R. T. Ng. Fast computation of 2-dimensional

depth contours. In Proc. ofthe Fourth Int ’1 Conf. on Knowledge Discovery

and Data Mining, pages 224—228, 1998.

W. Jin, A. K. H. Tung, and J. Han. Mining top-n local outliers in large data-

bases. In Proc. ofthe Seventh ACMSIGKDD Int ’1 Conf. on Knowledge dis-

covery and data mining, pages 293—298, 2001.

G. Karypis. Synthetic Data Generation Code for graphs. ihttp://glaros.dtc.

umn .edu/gkhome/software.

G. Karypis, E.-H. Han, and V. Kumar. Chameleon: A Hierarchical Cluster-

ing Algorithm using Dynamic Modeling. IEEE Computer: Special Issue on

Data Analysis and Mining, 32(8):68--75, 1999.

M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Proc of

IEEE International Conference on Data Mining (ICDM), 2001.

T. Kudo, E. Maeda, and Y. Matsumoto. An Application of Boosting to

Graph Classification, NIPS 2004.

133

[KNTOO]

[KTIO3]

[KV03]

[KW99]

[Lew94]

[LOPO6a]

[LOP06b]

[LYY+05]

[M899]

[NC03]

[NK04]

[NLM99]

[OLP+O3]

E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers: Algorithms

and applications. VLDB Journal, 8(3-4):237—253, 2000.

H. Kashima, K. Tsuda, and A. Inokuchi, Marginalized kernels between la-

beled graphs. In Proceedings of20th International Conference on Machine

Learning (ICML 2003),Washington, DC, 2003.

C. Kruegel and G. Vigna. Anomaly Detection of Web-Based Attacks. In

Proc. of10th ACM Conf Computer and Comm. Security (CCS ’03), pp. 251-

261, Oct. 2003.

S. Khudanpur, and J. Wu. A Maximum Entropy Language Model Integrat-

ing N- Grams and Topic Dependencies for Conversational Speech Recogni-

tion. In Proc. ofICASSP, 1999.

V. B. T. Lewis. Outliers in statistical data. John Wiley & Sons, Chichester,

1994.

C. Lucchese, S. Orlando, and R. Perego. Fast and Memory Efficient Mining

of Frequent Closed Itemsets. TKDE, 2006.

C. Lucchese, S. Orlando, and R. Perego. Mining Frequent Closed Itemsets

Out-Of-Core. In Proceedings of the SIAM International Conference on

Data Mining, 2006.

C. Liu, X. Yan, H. Yu, J. Han, and P. S. Yu. Mining Behavior Graphs for

Backtrace of Noncrashing Bugs. In Proc. ofSIAM Int. Conf on Data Min-

ing (SDM'05), 2005.

H. Mannila, and P. Smyth. Prediction with Local Patterns using Cross-

Entropy. In Proc. of the fifth ACM SIGKDD, P: 357 —- 361, ISBNzl-58113-

143-7, 1999.

C. Noble and D. J. Cook, Graph-Based Anomaly Detection. In Proceedings

of the Ninth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, 2003.

S. Nijssen and Joost N. Kok. A quick start in frequent structure mining can

make a difference. In Proceedings ofthe tenth ACM SIGKDD international

conference on Knowledge discovery and data mining, 2004.

K. Nigarn, J. Lafferty, and A. Maccallurn. Using Maximum Entropy for

Text Classification. IJCAI-99 Workshop on Machine Learningfor Informa-

tion, 1999.

S. Orlando, C. Lucchese, Paolo Palrnerini, Raffaele Perego, and Fabrizio

Silvestri: kDCI: a Multi-Strategy Algorithm for Mining Frequent Sets. In

Proc ofFIMI, 2003.

134

[PB06]

[PBM+98]

[PBT+99a]

[PBT+99b]

[PCY95]

[PI-IMOO]

[PS88]

[RRSOO]

[S98]

[SHRO6]

[SK98a]

[SK96]

[SON95]

A. Pozdnoukhov, and S. Bengio. Graph-based transformation manifolds for

invariant pattern recognition with kernel methods, In 18th International

Conference on Pattern Recognition (ICPR’06), 2006.

L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation rank—

ing: Bringing order to the web. Technical report, Stanford University, 1998.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent

closed itemsets for association rules. In ICDT'99, 1999.

N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of asso-

ciation rules using closed itemset lattices. Information Systems, 24(1):25-46,

1999.

J. S. Park, M. Chen, and P. S. Yu. Efficient parallel data mining for associa-

tion rules. In ACM Intl. Conf. on Information and Knowledge Management,

1995.

J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining

Frequent Closed Itemsets. In Proc. ofDMKD'00, 2000.

F. Preparata and M. Shamos. Computational Geometry: an Introduction.

Springer, 1988.

S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining

outliers from large data sets. In Proc. of the ACM SIGMOD Int ’1 Conf on

Management ofdata, pages 427—438, 2000.

G. Strang. Introduction to Linear Algebra. Wellesley—Cambridge Press, 3rd

edition, 1998.

H. Shin, N. J. Hill and G. Ratsch. Graph Based Semi-Supervised Learning

with Sharper Edges. Lecture Note on Artificial Intelligence (LNAI) 4212,

401-412, Springer-Verlag, 2006.

T. Shintani and M. Kitsuregawa. Parallel mining algorithms for generalized

association rules with classification hierarchy. In Proc. ofACM SIGMOD

Int’l Conf on Management ofData, pages 25--36, 1998.

T. Shintani, and M. Kitsuregawa. Hash based parallel algorithms for mining

association rules. In Proc. of 4th Int. Conf. on Parallel and Distributed In-

formation Systems, 1996.

A. Sarasere, E. Omiecinsky, and S. Navathe. An efficient algorithm for min-

ing association rules in large databases. In Proc. let International Confer-

ence on Very Large Databases (VLDB), Zurich, Switzerland, Also Gatech

Technical Report No. GIT-CC-95-04., 1995.

135

[SS99]

[SSMOS]

[SWH+05]

[TFP06]

[TSKO6]

[W05]

[W99]

[WH04]

[WHP03]

[WKO6]

[YH02]

[YH03]

[YHA03]

[ZCM97]

R.E. Schapire and Y. Singer Improved boosting algorithms using confi-

dence-rated predictions. Machine Learning, 37(3):297-336, December 1999.

N. G. Singh, S. R. Singh, and A. K. Mahanta. CloseMiner: Discovering Fre-

quent Closed Itemsets Using Frequent Closed Tidsets. In Proc. of ICDM,

2005.

L. K. Saul, K. Q. Weinberger, J. H. Ham, F. Sha, andD. D. Lee, Spectral

methods for dimensionality reduction. In Semi-Supervised Learning, 0.

Chapelle, A. Zien, and B. Sch"olpkopf, Eds. MIT Press, 2005.

H. Tong, C. Faloutsos, and J.-Y Pan. Fast Random Walk with Restart and Its

Application. In Proc ofICDM, 2006.

P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, Addison

Wesley, 2006.

A. Vezhnevets, and V. Vezhnevets. Modest AdaBoost - Teaching AdaBoost

to Generalize Better. In Proc of Graphicon, Novosibirsk Akademgorodok,

Russia, 2005.

C. Watkins. Dynamic Alignment Kernels, Department of Computer Science,

Royal Holloway, University of London, Technical Report, CSD-TR-98-l l,

1999.

J. Wang and J. Han. Bide: Efficient mining of frequent closed sequences. In

Proc. ofICDE, 2004.

J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the Best Strategies for

Mining Frequent Closed Itemsets. In Proc ofACMSIGKDD, 2003.

N. Wale and G. Karypis. Acyclic Subgraph-based Descriptor Spaces for

Chemical Compound Retrieval and Classification. In Proc ofIEEE Interna-

tional Conference on Data Mining (ICDM), 2006.

X. Yan, and J. Han. gSpan: Graph-based substructure pattern mining. In

Proc. ofInt'l Conf on Data Mining (ICDM), 2002.

X. Yan, J. Han. CloseGraph: Mining Closed Frequent Graph Patterns. In:

Proceedings of the 2003 Conference on Knowledge Discovery and Data

Mining (SIGKDD2003), 2003.

X. Yan, J. Han, and R. Afshar. CloSpan: Mining Closed Sequential Patterns

in Large Databases. In Proc. ofSDM’03, San Francisco, CA,2003.

E. W. Zegura, K. L. Calvert, M.J. Donahoo. A quantitative comparison of

graph-based models for Internet topology. IEEE/ACM Trans. Networking,

1997.

136

[ZELou

[ZGO3]

[ZH02]

[ZPO+98]

[ZROl]

O. R. Za‘iane, M. El-Hajj, and P. Lu. Fast Parallel Association Rule Mining

Without Candidacy Generation In Proc. of the IEEE 2001 International

Conference on Data Mining (ICDM'2001), San Jose, CA, USA, November,

2001.

M. J. Zaki, and K. Gouda. Fast vertical mining using diffsets. In Proc. of

ACMSIGKDD, 2003.

M. J. Zaki, and C. J. Hsiao. CHARM: An Efficient Algorithm for Closed

Iterrrset Mining. In Proc ofSDM'02, 2002.

M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithms for

discovery of association rules. Data Mining and Knowledge Discovery,

pages 343--373, 1998.

X. Zhu and R. Rosenfeld. Improving Trigrarn Language Modeling with the

World Wide Web. In Proc ofICASSP, P:533—536, 2001.

137

 IIWIHHIINWIIWWH
3 1293 03062

