

This is to certify that the thesis entitled

BACKCALCULATED SUBGRADE RESILIENT MODULUS DESIGN VALUES FOR THE STATE OF MICHIGAN

presented by

Tyler Allen Dawson

has been accepted towards fulfillment of the requirements for the

Master of Science

Civil Engineering

degree in

Date

MSU is an Affirmative Action/Equal Opportunity Employer

PLACE IN RETURN BOX to remove this checkout from your record.
TO AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

5/08 K /Proj/Acc&Pres/CIRC/DateDue indd

BACKCALCULATED SUBGRADE RESILIENT MODULUS DESIGN VALUES FOR THE STATE OF MICHIGAN

By

Tyler Allen Dawson

A THESIS

Submitted to Michigan State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Civil Engineering

ABSTRACT

BACKCALCULATED SUBGRADE RESILIENT MODULUS DESIGN VALUES FOR THE STATE OF MICHIGAN

By

Tyler Allen Dawson

The resilient modulus (MR) of roadbed soils is an important input required for the design of pavement structures. The MR is a fundamental soil property reflecting the soil response to the applied stresses. The MR of a given roadbed soil is dependent on the soil type, water content, dry density, particle gradation and angularity, and stress states. The latter is a function of the pavement layer thicknesses and stiffness. The implication of the above is that for a given soil type and stress level, the MR of the soil is independent of the type of pavement surface (such as concrete, asphalt, or composite) and the type of testing procedure conducted (triaxial cyclic loading or Falling Weight Deflectometer (FWD) testing).

The Michigan Department of Transportation (MDOT) sponsored this study to characterize the MR of the roadbed soils in the State of Michigan. Laboratory tests were conducted to develop average MR values, by soil type, and correlations to simple tests (Sessions 2008). FWD tests were conducted and pavement layer moduli were backcalculated to determine roadbed soil MR. The MR results were very similar between laboratory and field testing, and between flexible and rigid pavements.

TO EMILY & ZUMAYA

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Gilbert Baladi, for his gracious extension of help and guidance through this study. I would also like to thank the Michigan State University department of Civil & Environmental Engineering, and my advisory committee, Dr. Karim Chatti and Dr. Syed Waqar Haider.

I would also like to thank the Michigan Department of Transportation (MDOT) for sponsoring and funding this study. Thanks also to the MDOT research advisory panel headed by Mr. Dave Weber. Special thanks to my co-researcher and friend Colin Sessions.

The technical, personal, and financial support of the above mentioned as well as my family has made this all possible. Thank you to everyone who has made this possible.

TABLE OF CONTENTS

LIST C	OF TAE	BLES	vii
LIST (OF FIG	URES	ix
CHAP	TER 1		
INTRO	DDUCT	ION	
1.1	Backg	round	1
1.2	Proble	m Statement	2
1.3	Object	ives	2
1.4	Resear	ch Plan	3
1.5	Thesis	Layout	8
CHAP	TER 2		
LITER	ATUR	E REVIEW	
2.1	Review	v of MDOT Practices	9
2.2	Soil C	lassification Systems	.10
2.3	The Ro	ole of Roadbed MR in Pavement Design for the ME-PDG	.15
2.4	Engine	ering Evaluation of Roadbed Soils	.16
	2.4.1	Nondestructive Deflection Tests (NDT)	.16
	2.4	1.1 NDT Devices	17
	2.4	1.2 Falling Weight Deflectometer (FWD) Test	.20
2.5	Backca	alculation of Layer Moduli of Flexible Pavement	.24
	2.5.1	Backcalculation Methods for Flexible Pavement	.24
	2.5	0.1.1 MICHBACK	.27
	2.5.2	Flexible Pavement Temperature Effect on Resilient Modulus	.30
	2.5.3	Depth to Stiff Layer Effect on Resilient Modulus	.31
2.6	Backca	alculation of Layer Moduli of Rigid Pavement	.32
	2.6.1	Backcalculation Methods for Rigid Pavement	.32
	2.6.2	Rigid Pavement Temperature Effect on Resilient Modulus	.34
	2.6.3	Slab Location Selection for NDT	.35
	2.6	5.3.1 Mid-Slab Loading	.35
	2.6	5.3.2 Joint Loading	.35
	2.6	5.3.3 Edge Loading	.35
2.7	Compa	arison of Backcalculated and Laboratory Determined MR Values	.36
2.8	Seasor	nal Changes	38
	2.8.1	Spring Season	38
	2.8.2	Summer Season	.39
2.9	Distrib	oution of Resilient Modulus of Roadbed Soils in the State of Michigan	.40
	2.9.1	State Partitioning	.40
	2.9.2	Soil Sample Collection	.42

CHAPTER 3

	$\frac{1}{2} \frac{1}{2} \frac{1}$
	Introduction 46
3.1	State Partitioning and Soil Sampling 46
3.2	Laboratory Tests and Procedures 47
5.5	2.2.1 Moisture Content Particle Gradation and Atterberg Limits 47
	2.2.2 Cyclic Load Trioxial Test
2 4	S.S.2 Cyclic Load Illaxial Test
5.4	2 4 1 EWD Tests
	2.4.2 Departmention Degisteries and Vane Sheer Test
	5.4.2 Penetration Resistance and valle Shear Test
CHAP	PTER 4
DATA	A ANALYSIS & DISCUSSION
4.1	Analysis of Laboratory Test Data
	4.1.1 Soil Classification
	4.1.2 Cyclic Load Triaxial Test
4.2	Backcalculation of Laver Moduli
	4.2.1 Flexible Pavement
	4.2.1.1 Sensitivity of the Backcalculated Moduli
	4.2.1.2 Analysis of Backcalculated Data from MICHBACK
	4.2.2 Rigid Pavement
	4.2.2.1 Analysis of Backcalculated Data from the AREA Method
4.3	Comparison between Backcalculated Resilient Modulus Values of Roadbed Soils
	Supporting Flexible and Rigid Pavement
4.4	Comparison between Backcalculated and laboratory Determined Resilient
••••	Modulus Values 87
45	Damage 94
	Dunugo
CHAP	PTER 5
SUM	MARY, CONCLUSIONS, & RECOMMENDATIONS
5.1	Summary
5.2	Conclusions
5.3	Recommendations. 98
0.0	
APPE	NDIX A106
APPE	NDIX B141
REFE	RENCES

LIST OF TABLES

Table 2.1 Typical MDOT testing procedures and values for MR10
Table 2.2 Comparison between three soil classification systems (USDA 1992)12
Table 2.3 Typical resilient modulus values for unbound granular and roadbed materials (NCHRP 2004)
Table 2.4 Backcalculation programs
Table 2.5 Regression coefficients for δ_r
Table 3.1 Distribution of old FWD files
Table 3.2 New FWD test locations
Table 4.1 MR Predictive Equations61
Table 4.2 Backcalculated roadbed soil MR supporting flexible pavement
Table 4.3 Regression coefficients for δ_r
Table 4.4 Backcalculated roadbed soil MR supporting rigid pavement
Table 4.5 Backcalculated roadbed soil MR supporting flexible and rigid pavements82
Table 4.6 Laboratory determined and backcalculated roadbed soil MR values
Table 5.1 Summary of predictive equations for each soil type
Table 5.2 Average roadbed soil MR values101
Table A.1 Soil percentages for each area within the 15 clusters (Sessions 2008)109
Table A.2 Pocket penetrometer and vane shear test results
Table A.3 Moisture content, sieving, and Atterberg limit results
Table A.4 Triaxial cyclic load results
Table A.5 MR results
Table B.1 Backcalculated results of flexible pavement

Table B.2 Backcalculated results of rigid pavement	
--	--

LIST OF FIGURES

Figure 2.1 Regional divisions for MDOT9
Figure 2.2 Soil support, structural coefficient, and MR correlations (MDOT)11
Figure 2.3 Soil classification related to strength parameters (NHL 1998)14
Figure 2.4 Benkelman beam18
Figure 2.5 La Croix deflectograph
Figure 2.6 Dynaflect
Figure 2.7 Dynatest Falling Weight Deflectometer20
Figure 2.8 Typical deflections at all sensors23
Figure 2.9 KUAB falling weight deflectometer23
Figure 2.10 Regular and irregular deflection basins
Figure 2.11 Typical pavement deflections illustrating seasonal pavement strength changes (PTC 2008)
Figure 2.12 Formations of ice lenses in a pavement structure (PTC 2008)41
Figure 2.13 Areas and clusters of the State of Michigan42
Figure 3.1 FWD test locations in the State of Michigan51
Figure 4.1 MR versus moisture index for the SM soils60
Figure 4.2 MR versus the SVSM for the SM soils
Figure 4.3 MR versus SCSP2 for the SP2 soils
Figure 4.4 MR versus the degree of saturation for the SC, CL and ML soils63
Figure 4.5 Regular and irregular deflection basins
Figure 4.6 Effect of number of pavement layers
Figure 4.7 Effect of AC layer thickness on MR

Figure 4.8 Effect of base thickness on MR
Figure 4.9 No stiff layer69
Figure 4.10 Stiff layer at shallow depth70
Figure 4.11 Stiff layer at deep location70
Figure 4.12 Soft layer at deep location
Figure 4.13 Effect of stiff layer depth71
Figure 4.14 Effect of stiff layer MR72
Figure 4.15 Effect of roadbed seed MR73
Figure 4.16 MR vs. d_{60} and d_{36}
Figure 4.17 MR vs. deflection75
Figure 4.18 Soil classification related to strength parameters (NHI 1998)79
Figure 4.19 Modulus of subgrade reaction versus California Bearing Ratio (after Huang 2004)
Figure 4.20 Flexible vs. rigid backcalculated roadbed soil MR83
Figure 4.21 Frequency of backcalculated MR of roadbed soils
Figure 4.22 Stiff layer effects on backcalculated k
Figure 4.23 Range of backcalculated MR (SM, SP1, and SP2 soil)86
Figure 4.24 Range of backcalculated MR (SP-SM, SC-SM, SC, and CL soil)86
Figure 4.25 Laboratory determined and backcalculated roadbed soil MR
Figure 4.26 Moisture content affect on MR of ML soils
Figure 4.27 Laboratory obtained resilient modulus versus the cyclic stress level93
Figure 4.28 Range of MR values (SM, SP1, SP2, and SP-SM soil)93
Figure 4.29 Range of MR values (SC-SM, SC, CL, and ML soil)94
Figure 4.30 Partial spring condition FWD testing

Figure 5.1	State of Michigan	n backcalculated MR	distribution	
------------	-------------------	---------------------	--------------	--

CHAPTER 1

INTRODUCTION

1.1 Background

A brief summary of the geography of the State of Michigan is presented below. The detailed geography can be found in (Sessions 2008).

The State of Michigan is geographically located within the glaciated section of North America and most of its soil has developed from glacial deposits. The ice sheet advanced over the state in three lobes, one along Lake Michigan, one along Lake Huron and the third along Lake Erie. A branch from the Lake Huron lobe advanced southwesterly and connected to the other two lobes. During the advance of ice a large amount of soil and bedrock along the path of each ice lobe was pulverized and incorporated into the ice sheet to later be re-deposited. When the Wisconsin ice sheet retreated to the north, these materials (known as glacial drift) were superimposed on sedimentary rock of the Michigan Basin in the Lower Peninsula and the Eastern part of the Upper Peninsula and on igneous and metamorphic rocks in the Western part of the Upper Peninsula. The thickness and composition of the drift varies from one location to another. For example, the thickness of the drift in the Alpena area is only a few inches whereas it is more than 1200 ft thick in the Cadillac area. The glacial drift also varies from clay to gravel; the granular texture may be segregated or mixed heterogeneously with boulders and clays. Because of these complex arrangements, about 165 different soil types were formed and are being used for engineering purposes by the Michigan Department of Transportation (MDOT) (MDSH 1970). The engineering and physical characteristics of these soils vary significantly from those of gravel and sand in the

Western side of the Lower Peninsula, to clay in the Eastern side, and to varved clay in the Western part of the Upper Peninsula.

For a given type of roadbed soil, its mechanical (engineering) properties (the resilient modulus (MR) and the plastic properties) are a function of the physical parameters (moisture content, grain size, grain angularity, Atterberg limits, etc.) of the soil and have a major impact on the performance of pavement structures. In this study, the MR of various roadbed soil types will be determined in the field using Falling Weight Deflectometer (FWD) deflection data and in the laboratory using cyclic load triaxial tests.

1.2 Problem Statement

The roadbed soils in the State of Michigan consist of glacial soils with distinct seasonal stiffness changes due to temperature (possible frozen condition) and moisture levels. MDOT's current pavement design process follows the procedure outlined in the 1993 American Association of State Highway and Transportation Officials (AASHTO 1993) Design Guide. One of the inputs of said procedure is the effective value of the resilient modulus of the roadbed soil, which is a function of seasonal changes. The pending new AASHTO Mechanistic-Empirical Pavement Design Guide (M-E PDG) procedure is even more stringent for defining MR in terms of seasonal effects. Currently, MDOT's various regions provide the "adjusted" MR value used for pavement design. The MR value is derived from either backcalculated deflection data or a correlation with known Soil Support Values (SSV).

1.3 Objectives

The main objectives of this study are to:

- Evaluate the existing processes used by all regions of MDOT for determining the MR value of roadbed soil.
- Determine the needed modifications to make the MR selection process compatible with the new M-E PDG.
- Develop procedures, equations, and values for roadbed soil MR for use in any (1, 2, or 3) level design of the M-E PDG and the current AASHTO design guide.

1.4 Research Plan

To accomplish the objectives, a research plan consisting of five tasks was developed and is presented below.

Task 1— Review and Information Gathering

In this task, the research team will become familiar with MDOT current and historical processes/procedures for selecting MR and k values for the design of flexible and rigid pavements. The information could be obtained from the soil engineers in the various regions. The research team will also obtain information from MDOT that is needed for the other tasks in this study. These include:

- Collection of deflection data from previously conducted FWD tests with known pavement cross-sections.
- 2. Tabulation of the procedures used by the various regions for selecting MR and k values and the basis of such selection.
- Tabulation of the range and typical MR and k values used by the regional soil engineers for the various soil types.
- Assessment of the adequacy and sufficiency of the existing process for estimating MR values to be used in the new M-E PDG.

Task 2— Partitioned State Map

Based on the MDOT Field Manual of Soil Engineering, the information obtained from the various regions in Task 1, the trunkline locations, and the soil maps of the US Soil Conservation Services (USCS), the state will be partitioned into geological zones for the purpose of field testing and soil sampling. The state will be divided into a maximum of 15 coarse clusters where the soil within any given cluster would have a similar range of engineering and physical characteristics. Each coarse cluster will then be further divided into areas to narrow the range of the soil characteristics. A maximum of 99 areas will be produced. The results will be presented to members of the Research Advisory Panel (RAP) for review and possible modification. The main use of the partitioned soil map will be to determine the locations for field testing and soil sampling.

Task 3— Field and Laboratory Testing and Soil Sampling

In this task, the research team will finalize the field sampling locations and the laboratory testing plans based upon the information obtained in Tasks 1 and 2. The total number of tests to be conducted will be based purely on cost and available budget. The field sampling and the laboratory testing plans are presented in three subtasks below.

Subtask 3.1 - Soil Sampling Plan

From each area on the state partitioned map, roadbed soil samples will be obtained. In areas where the roadbed soil is predominantly sand, only disturbed bag samples will be collected. In areas where the roadbed soil is composed of mostly clay, both disturbed and undisturbed (Shelby tube) samples will be obtained.. All samples will be transported to the laboratory at Michigan State University (MSU) for testing as presented in Subtask 3.2 below.

Subtask 3.2 – Laboratory Testing Plan

The laboratory testing plan consists of moisture content, sieve analysis, Atterberg limits, and cyclic load triaxial tests. All tests will be conducted according to MDOT, AASHTO or American Society for Testing and Materials (ASTM) standard test procedures. Results of the laboratory testing will be analyzed (see Task 4) to determine:

- Soil classification For each soil sample the soil will be subjected to sieve analyses to determine its gradation. Plastic and liquid limit tests (Atterberg Limits) will also be conducted on any sample where the fine fraction (passing sieve number 200) is more than seven percent. Results of the sieve analyses and Atterberg limit tests will be used to:
 - Classify the soil according to the USCS and the AASHTO soil classification systems.
 - Develop, if possible, statistical correlations between the resilient modulus of the roadbed soils and the gradation and Atterberg limits of the material.
- 2. Resilient modulus (MR) For each soil sample, at least one triaxial cyclic load test will be conducted to determine the MR. Since, the resilient moduli of roadbed soils are heavily dependent upon the deviatoric stress; the laboratory tests will be conducted at three stress states which will be estimated through mechanistic analyses to simulate the probable in-situ field conditions.

Subtask 3.3 – Field Test Plan

This plan consists of FWD tests. The FWD tests will be conducted at the networkand project-levels. At the network level, one FWD tests will be conducted at 500 foot intervals along the state trunkline. At the project level, 20 FWD tests will be conducted

within \pm 50 ft from all locations where Shelby tubes (undisturbed soil samples) will be extracted.

All FWD tests will be conducted, at the same location, once in the spring and again in the late summer – early fall seasons. For those areas where FWD tests were conducted in the past and the deflection and pavement cross-section data are available from MDOT, the data will be used and the number of FWD tests (to be conducted in those areas in this study) will be reduced depending on the availability of spring and fall deflection data.

It should be noted that analyses of various damage models, including AASHTO, indicate that the two point FWD testing (spring and fall seasons) is adequate to assess the relative pavement damage related to the roadbed soil due to different degrees of saturation.

Task 4 – Data Analyses

The data analysis, in this study, will be accomplished according to the three subtasks presented below. First, it should be noted that for all soil types, the relationship between the MR and k found in the M-E PDG will be used.

Subtask 4.1 – Backcalculation of Pavement Layer Moduli

All deflection data, whether collected during this study or other studies, will be used (depending on the availability of pavement cross-section data) to backcalculate the pavement layer moduli. The MICHBACK computer program will be used for flexible pavements and the AREA method for rigid pavements. Although the moduli of all pavement layers will be backcalculated, only the resilient modulus of the roadbed soils will be subjected to further analyses. The moduli of the other pavement layers will be

reported without further analyses. For each test area on the partitioned map, two sets of moduli will be backcalculated; one set will be based on the spring deflection data and the other on the late summer-early fall data. The two sets will be further analyzed to estimate the seasonal damage factor as presented in task five below.

Subtask 4.2 – Laboratory Test Data

Results of the cyclic load tests conducted on Shelby tube and reconstituted bag samples at various moisture contents will be analyzed to determine the laboratory values of the resilient modulus of the roadbed soil. Results of the analyses will be used to assess the impact of moisture (season) on pavement damage and to compare the values to those obtained from backcalculation.

The Atterberg limits (liquid limit, plastic limit, and plasticity index) and sieve analysis data will be used to classify the soil and to develop correlations to MR whenever possible.

Subtask 4.3 – Backcalculated and Laboratory Determined MR Comparison

MR results of roadbed soil from backcalculated FWD deflection data will be compared with results from cyclic load tests in the laboratory. Any variation between results, by soil type, will be analyzed. A correlation, if possible, will be made between backcalculated and laboratory determined MR results.

Task 5— Damage Assessment Analyses

The damage assessment analyses (noted in subtask 4.1) will be conducted based on the seasonal MR values obtained from the backcalculation of the FWD deflection data. The purpose of the analyses is to determine the effective MR values to be used in the design and rehabilitation of flexible and rigid pavements. The effective roadbed

resilient modulus is an equivalent modulus that would result in the same damage as if the various seasonal resilient modulus values were used (Huang 2004).

The research plan was accomplished in two parts, laboratory testing and analyses and field testing and analyses. The former was presented in (Sessions 2008) whereas the latter is presented in this thesis.

1.5 Thesis Layout

This thesis is composed of six chapters as follows:

Chapter 1 – Introduction

Chapter 2 – Literature Review

Chapter 3 – Laboratory and Field Investigation

Chapter 4 – Data Analysis & Discussion

Chapter 5 – Summary, Conclusions, & Recommendations

Appendix A – Laboratory and field test results

Appendix B – NDT data test results

CHAPTER 2

LITERATURE REVIEW

2.1 Review of MDOT Practices

The Michigan Department of Transportation (MDOT) has divided the State of Michigan into seven autonomous regions as shown in Figure 2.1. Each region has developed its own practice (see Table 2.1) to estimate the resilient modulus (MR) of the roadbed soils. MDOT has its own soil classification system, based on other systems like the USCS to classify soil by grain size and other visual properties. Several MDOT regions use a correlation between soil support values (SSV), AASHTO layer coefficients, and MR based on the USDA soil classification system which can be seen in Figure 2.2.

Figure 2.1 Regional divisions for MDOT

Region	Procedure	Typical MR Values (psi)		
Bay	Soil boring & visual identification	3600		
Grand	FWD data (if available) or soil boring & visual identification	2700 - 8600		
Metro	Soil boring & visual identification	3000 - 4500		
North	North FWD data (if available) or soil boring & visual identification			
Southwest	California Bearing Ratio correlations			
Superior	Soil boring & visual identification	4500 - 7000		
University	Soil boring & visual identification	3000 - 4000		

Table 2.1 Typical MDOT testing procedures and values for MR

2.2 Soil Classification Systems

A brief summary of soil classification systems is presented in this section. A detailed review can be found in (Sessions 2008).

There are several soil classification systems used by various agencies and organizations. The three most popular include; the United States Department of Agriculture (USDA), the Unified Soil Classification System (USCS), and the American Association of State Highway and Transportation Officials (AASHTO) soil classification system (Holtz and Kovacs 1981). MDOT also has its own system, Uniform Field Soil Classification System, which was created to be applicable on site by visual identification. In order for various highway organizations to compare their roadbed soils with other agencies, that use other classification systems, a comparison must be made. Table 2.2 below compares USDA, USCS, and AASHTO.

Figure 2.2 Soil support, structural coefficient, and MR correlations (MDSH)

USDA	Classifi	cation	Percer	Percent Passing Sieve Number			Liquid	Plastic
texture	USCS	AASHTO	4	10	40	200	Limit	Limit
Muck	PT	A-8	100	100	90-100	40-100	0-14	NP
Sand	SP-SM, SM, SP, GP, GP- GM, GM	A-2-4, A- 3, A-1-b, A-2, A-3, A-2	40- 100	25- 100	15-90	0-35	<25	NP
Loamy Sand	SM, SC- SM, ML, CL-ML, SP- SM, SP	A-2, A-4, A-1-b, A- 1, A-2-4, A-3	85- 100	60- 100	30-90	3-55	<30	NP
Silty Loam	ML, CL, CL-ML, SC, SM, CH	A-4, A-6, A-7, A-2	95- 100	85- 100	60-100	30-95	<45	NP/P
Sandy Loam	SM, SC- SM, ML, CL-ML, SC, CL	A-2-4, A- 4, A-2, A- 1, A-1-b, A-6	70- 100	60- 100	35-90	15-75	<35	NP
Clay Loam	CL, CL- ML, SC, SC-SM	A-6, A-4, A-7, A-2	95- 100	75- 100	70-100	35-90	25-45	NP/P
Loam	CL, CL- ML, ML	A-4, A-6, A-7	90- 100	75- 100	70-100	50-90	15-45	NP/P
Mucky Sand	SM, SP, SP- SM	A-1-b, A- 2-4, A-3	95- 100	75- 100	30-70	0-15	0-14	NP
Clay	CH, CL	A-6, A-7- 6	90- 100	85- 100	65-95	45-95	30-65	Р
Silty Clay	CL, SC, CL- ML	A-4, A-6, A-7	85- 100	60- 100	50-100	30-90	25-50	NP/P
NP = non-plastic, plastic limit<10								

Table 2.2 Comparison between three soil classification systems (USDA 1992)

P = plastic soil, plastic limit>10

Several correlations between the soil classification systems and the resilient modulus of roadbed soils can be found. Some regions of MDOT use the correlations found in Figure 2.2 currently. For use with the M-E PDG, Table 2.3 recommends ranges and typical MR values by AASHTO soil classification and USCS. Figure 2.3 also provides estimations of various roadbed soil parameters correlating to the AASHTO classification system and USCS (NHI 1998). The tables and figures previously mentioned only provide ranges and it is up to the engineer to decide upon a value to use in design.

Table 2.3 Typical resilient modulus values for unbound granular and roadbed materials

Classification	Material	pounds/square inch		
System	Classification	MR Range	Typical MR	
	A-1-a	38,500 - 42,000	40,000	
	A-1-b	35,500 - 40,000	38,000	
	A-2-4	28,000 - 37,500	32,000	
	A-2-5	24,000 - 33,000	28,000	
	A-2-6	21,500 - 31,000	26,000	
AASUTO	A-2-7	21,500 - 28,000	24,000	
AASHIO	A-3	24,500 - 35,500	29,000	
	A-4	21,500 - 29,000	24,000	
	A-5	17,000 - 25,500	20,000	
	A-6	13,500 - 24,000	17,000	
	A-7-5	8,000 - 17,500	12,000	
	A-7-6	5,000 - 13,500	8,000	
	СН	5,000 - 13,500	8,000	
	MH	8,000 - 17,500	11,500	
	CL	13,500 - 24,000	17,000	
	ML	17,000 - 25,500	20,000	
	SW	28,000 - 37,500	32,000	
	SP	24,000 - 33,000	28,000	
	SW - SC	21,500 - 31,000	25,500	
	SW - SM	24,000 - 33,000	28,000	
	SP - SC	21,500 - 31,000	25,500	
USCS	SP - SM	24,000 - 33,000	28,000	
0303	SC	21,500 - 28,000	24,000	
	SM	28,000 - 37,500	32,000	
	GW	39,500 - 42,000	41,000	
	GP	35,500 - 40,000	38,000	
	GW - GC	28,000 - 40,000	34,500	
	GW - GM	35,500 - 40,500	38,500	
	GP - GC	28,000 - 39,000	34,000	
	GP - GM	31,000 - 40,000	36,000	
	GC	24,000 - 37,500	31,000	
	GM	33,000 - 42,000	38,500	

(NCHRP 2004)

Figure 2.3 Soil classification related to strength parameters (NHI 1998)

2.3 The Role of Roadbed MR in Pavement Design for the M-E PDG

A brief summary the M-E PDG procedure with regard to roadbed MR is presented in this section. A detailed review can be found in (Sessions 2008).

The M-E PDG allows users to be flexible with the specificity they have in the input data to the design guide. Depending on the resources available and requirements of any given design project, the user can choose how general or specific the input data will be. Structural inputs, such as the roadbed MR, can be selected from any of a three level hierarchy (Coree et. al 2005).

Level one design is the most precise of the levels and requires the most accurate inputs. Roadbed MR must be determined by field or laboratory tests, such as FWD deflection testing or cyclic load triaxial testing. Pavement sections that are of greater importance to the agency, such as high traffic roads or those with economic and social significance, will be designed at level one. This level is more expensive and time consuming, but will lead toward a more dependable result.

Level two and three designs require less specific data. Roadbed MR could be estimated, for level two, from simple soil tests. Typical default values could be used with level three designs. The lower levels will be less expensive to design with but will yield less reliable results. The design level used does not have to stay constant between different inputs; general, traffic, climatic and structural. However, the design process will be the same regardless of the input level (Prozzi and Hong 2006).

In all three levels of design the roadbed MR is a required input to the pavement structural response model. No matter what design level is used, roadbed MR plays a significant role in computing pavement response and dynamic modulus of subgrade

reaction, k-value, which is computed internally by the Design Guide software (NCHRP 2004).

2.4 Engineering Evaluation of Roadbed Soils

The engineering evaluation of roadbed soils can be achieved using several techniques that can be divided, in general, into two categories: destructive and nondestructive. Destructive tests include:

• Coring

• Drilling and/or Shelby tube extraction

Nondestructive tests include:

- Ground penetrating radar (GPR) to estimate the pavement layer thicknesses
- Nondestructive deflection tests (NDT) to measure the pavement response to loads
- Surface wave application to measure pavement response

Literature review regarding NDT and the use of the deflection data in pavement evaluation processes are addressed in the next sections.

2.4.1 Nondestructive Deflection Tests (NDT)

The nondestructive deflection test (NDT) is the most popular test used in pavement evaluation. Relative to destructive testing, NDT are fast and require minimum lane closure time. In recent years, the use of NDT has become an integral part of the structural evaluation and rehabilitation of pavement structures. The NDT results (the pavement deflections at various distances from the center of the load) are used to:

- Backcalculate the pavement layer moduli
- Assess the variability of the pavement response to loads along and across the pavement and hence, the variability of the pavement structural capacity
- Estimate load transfer efficiency of dowel bars
- Evaluate the presence of voids beneath the pavement surface
- Design the thickness of pavement overlays

Various types of NDT devices are available and being used by various State Highway Agencies (SHA). These are presented in the next subsection.

2.4.1.1 NDT Devices

NDT devices are used by state highway agencies to apply patterns of loading and record deflection data along the pavement surface. The deflection data measured along the pavement surface at different distances from the center of the load are typically used to backcalculate the modulus values of the various pavement layers and the roadbed soil. Numerous backcalculation software packages are available either in the public domain or can be purchased. Most of these use more or less the common procedures presented in the next sections.

Various types of NDT equipment are available. A brief summary of the available equipment is presented in this subsection. Details on the equipment can be found in (Mahmood 1993).

Static deflection equipment including: the Benkelman Beam, which can be seen in
Figure 2.4, (Moore et al 1978; Asphalt Institute 1977; Epps et al 1989), the plate
bearing test (Moore et al 1978; Nazarian et al 1989), the Dehlen Curvature Meter
(Gouzheng 1982), the Pavement Deflection Logging Machine (Keneddy et al 1978),
and the C.E.B.T.P. Curviameter (Paquet 1978).

Figure 2.4 Benkelman beam

- Automated deflection equipment including: the La Croix Deflectograph, which can be seen in Figure 2.5, (Hoffman et al 1982; Keneddy 1978), and the California Travelling Deflectometer (Roberts 1977).
- Steady-State dynamic deflection equipment including: the Dynaflect, which can be seen in Figure 2.6, the Road Rater, the Cox Device, the Waterways Experiment Station (WES) Heavy Vibrator, and the Federal Highway Administration (FHWA) Thumper (Scrivner et al 1969; Smith et al 1984; Moore et al 1978).

Figure 2.5 La Croix deflectograph

Figure 2.6 Dynaflect

 Impulse deflection equipment including: the Dynatest FWD, which can be seen in Figure 2.7, KUAB FWD, and the Phoenix FWD (Nazarian et al 1989; Hoffman and Thompson 1981; Bohn et al 1972; Crovetti et al 1989; Claessan et al 1976).

Figure 2.7 Dynatest Falling Weight Deflectometer

2.4.1.2 Falling Weight Deflectometer (FWD) Test

Falling Weight Deflectometers (FWD) are used to apply load to the pavement and measure deflection on the pavement surface at several longitudinal distances from the applied load. The FWD is often preferred over laboratory testing for several reasons including: the nondestructive nature of the tests, low operational cost per test, short test duration, tests can be designed to provide more coverage of the pavement network, and the roadbed soils are being tested under in-situ boundary conditions. The disadvantages include the difficulty to determine or control the water content of the roadbed soils, determine the roadbed soil density, and to control the applied normal and shear stress levels (Houston et. al 1992).

The FWD operates on two basic assumptions; the force of impact due to a falling load is considered a static load, and the roadbed soil acts as an elastic body. The weight of the falling mass can be calculated as follows, as presented in (Kim et al 2006).

$$W_1 \left(H + \delta_{\max} \right) - .5 K \delta^2_{\max} = 0 \qquad \text{Equation 2.1}$$

Where,

 W_1 = weight corresponding to the mass M

H = height M was dropped from

 δ_{max} = maximum pavement deflection

K = spring constant

 $\delta_{\text{max}}/\delta_{\text{st}}$ = the impact factor, which can be found by equation 2.2.

$$\delta_{\max} / \delta_{st} = 1 + \left(1 + \left(\frac{2H}{\delta_{st}}\right)\right)^{\frac{1}{2}}$$
 Equation 2.2

Where, $\delta_{st} = static deflection$

The impact load is calculated using equation 2.3, by multiplying the static load by the impact factor.

$$P_{dyn} = W_1 \left(1 + \left(1 + \left(\frac{2H}{\delta_{st}} \right) \right)^{\frac{1}{2}} \right)$$
 Equation 2.3

Due to the difficulty in measuring impact load, force is calculated by multiplying weight by height.

F = WH	Equation 2.4

Where, F = force

The uniformly distributed load can be obtained from equation 2.5.

$$q = \frac{F}{A}$$
 Equation 2.5

Where,

q = applied load to plate

A =loading plate area

A series of FWD tests are usually preformed in order to obtain more accurate results. Consecutive tests are conducted at regular intervals along a pavement surface. At each interval four drops of the weight are conducted. The first drop is not used in analysis, and the following three are averaged to create one set of data for each interval. This allows for average values along the pavement to be calculated. Averages are taken in order to capture the range of deflections as well as the most common values over a pavement section. The variations in deflection are due to non-constant roadbed soils and construction practices which often result in varying densities and thicknesses of the pavement layers. A typical asphalt concrete (AC) surface can range from plus or minus 1 inch of thickness from the design thickness. This can affect MR results because a constant layer thickness and Poisons' ratio is used for the entire pavement section tested. An example of how measured deflections at each sensor vary along a pavement section is shown in Figure 2.8.

The KUAB brand FWD is used by several state agencies, including MDOT and other agencies around the world; the device can be seen in Figure 2.9. The system applies a dynamic impulse load to the pavement surface with a two mass system that simulates a

Figure 2.8 Typical deflections at all sensors

moving tire load. Seismometers set at specific distances along the pavement surface measure acceleration and double integrate to determine vertical deformation or deflection. The entire system is housed in a trailer and can be operated remotely from the truck cab, which allows for quick and easy execution of tests in any weather.

Figure 2.9 KUAB falling weight deflectometer

2.5 Backcalculation of Layer Moduli of Flexible Pavement

Flexible pavement layer moduli are backcalculated using deflection data from FWD tests. Deflection data is analyzed using computer programs to iteratively forward calculate deflection based on layer moduli, Poisson ratios, and thicknesses and load magnitude. Then the layer moduli are incremented until the calculated deflection is very close to the measured deflection. When the absolute or Root Mean Squared (RMS) error between the measured and calculated deflection is minimized results are the most accurate. There are 5 categories of assumptions that have been used to create the various computer programs; linear elastic-static, nonlinear elastic-static, linear-dynamic using frequency domain fitting, linear-dynamic using time domain fitting, and nonlineardynamic (Uzan 1994). Each category utilizes different assumptions and techniques.

2.5.1 Backcalculation Methods for Flexible Pavement

The roadbed soil modulus can be determined by using the pavement surface deflection measured at distances of 48-inches or more from the center of the load. Because of arching effects, at these distances, the pavement surface deflection is influenced mainly by the roadbed soils. Hence, the subgrade MR can be backcalculated from a single deflection measurement. The most widely used routine to backcalculate the subgrade MR from a single deflection measurement is the Boussinesq equation (George 2003).

$$d_{r} = \frac{CP(1-\nu^{2})}{\pi r MR} \text{ or } MR = \frac{CP(1-\nu^{2})}{\pi r d_{r}}$$
Equation 2.6

Where, $d_r =$ the surface deflection (in) at a distance r (in) from the load

P = applied load (lbs)

C = correlation/adjustment factor that accounts for the difference between

the backcalculated and the laboratory obtained MR value

MR = resilient modulus (psi)

v= poison's ratio of the asphalt layer

By assuming a Poisson's ratio of 0.5, equation 2.6 can be reduced to the following equation (AASHTO 1993).

$$MR = \frac{0.24CP}{d_r r}$$
 Equation 2.7

AASHTO recommends the use of a C value no greater than 0.33

The minimum distance (r) in Equations 2.6 and 2.7 is given by the following relationship.

$$r = 0.7 \sqrt{a_2 + \left(D \times \sqrt[3]{\frac{E_p}{MR}}\right)}$$
 Equation 2.8

Where, $a_2 = radius of load plate (in)$

D = total thickness of pavement layers above the roadbed (in)

 E_p = effective modulus of all layers above the roadbed (psi)

 E_p in equation 2.8 can be calculated by using the following equation:

$$\frac{MR \times d_o}{q \times a} = 1.5 \left\{ \frac{1}{\sqrt{1 + \left(\frac{D}{a}\sqrt{\frac{E_p}{MR}}\right)^2}} + \frac{1 - \frac{1}{\sqrt{1 + \left(\frac{D}{a}\sqrt{\frac{2}{MR}}\right)^2}}}{\left(\frac{E_p}{MR}\right)} \right\}$$
Equation 2.9

Where, d_o = deflection measured at the center of the load plate after adjustment to a = temperature of 68 °F

q = pressure on load plate

D = total thickness of pavement layers above the subgrade

 E_p = effective modulus of all layers above the subgrade

The Washington State Department of Transportation (WSDOT) developed, for asphalt pavements, Equations 2.10 through 2.12 and, for concrete pavements, Equation 2.13 to estimate the subgrade modulus from deflection sensors located at various distances from the center of the load (Pierce 1999).

$$MR (psi) = 9000 \frac{0.2892}{24d_{24}}$$
Equation 2.10

$$MR (psi) = -466 + 9000 \frac{0.00762}{d_{36}}$$
Equation 2.11

$$MR (psi) = -198 + 9000 \frac{0.0.00567}{d_{48}}$$
Equation 2.12

And for concrete pavements,

$$MR (psi) = -111 + 9000 \frac{0.00577}{d_{48}}$$
 Equation 2.13

Where, d_{24} , d_{36} and d_{48} are the pavement surface deflections in inches measured

at 24, 36, and 48 inches from the center of the load.

There are several different computer programs that utilize the before mentioned backcalculation methods, each with varying assumptions, routines, and methods. Table 2.4 below lists many of the available backcalculation programs.

Program name	Develop By	Forward calculation method	Forward calculation subroutine	Backcalculation subroutine	Non- linear analysis	Seed modulus	Comments
BISDEF	A. Bush USACE- WES	Mulit-Layer elastic theory	BISAR	ITERATIVE	Non- linear analysis	Required	Sensitive to seed modulus. Uses gradient search method
BOUSEDEF	Zhou, et al.	Equivalent layer thickness	MET	ITERATIVE	Yes	Required	Program logic similar to BISDEF
CHEVDEF	A. Bush USACE- WES	Mulit-Layer elastic theory	CHEVRON	ITERATIVE	Non- linear analysis	Required	Sensitive to seed modulus.
COMDEF	M Anderson	Mulit-Layer elastic theory	DELTA	DATA BASE	Non- linear analysis	Required	For composite pavements only.
DBCONPAS	M. Tia, et al.	Finite element	FEACONSIII	DATA BASE	Yes		For rigid pavements only.
ELMOD	P. Ulditz	Equivalent layer thickness	MET	ITERATIVE	Yes roadbed only	Not required	Fast, but has limitation inherent to MET program
ELSDEF	Texas A&M University	Mulit-Layer elastic theory	ELSYM5	ITERATIVE	No	Required	Sensitive to seed modulus.
EMOD		Mulit-Layer elastic theory	CHEVRON	ITERATIVE	Yes roadbed onlv	Required	

Table 2.4 Backcalculation programs

cont'd)	
Table 2.4 (

Program name	Develop By	Forward calculation method	Forward calculation subroutine	Backcalculation subroutine	Non- lincar analysis	Seed modulus	Comments
EVERCALC	Mahoney, J., et al.	Mulit-Layer elastic theory	CHEVRON	ITERATIVE	Yes	Not required for up to 3 layers	Primarily for flexible pavements.
FPEDDI	W. Uddin	Mulit-Layer elastic theory	BASNIF	ITERATIVE	Yes	Not required	
ISSEM4	P. Ulidtz	Mulit-Layer elastic theory	ELSYM5	ITERATIVE	Ycs	Required	Uses deflections at five point to calculate moduli for three layers.
MICHBACK	Michigan State University	Mulit-Layer elastic theory	CHEVRON	ITERATIVE	No	Required	
MODOMP2	L. Irvin	Mulit-Layer elastic theory	CHEVRON	ITERATIVE	Yes	Required	More oriented for research work.
MODULUS	J. Uzan	Mulit-Layer elastic theory	WESLEA	DATA BASE	Yes	Required	Used in an expert system frame work.
PADAL	S. F. Brown	Finite element		ITERATIVE	Yes	Required	
RPEDDI	W. Uddin	Mulit-Layer elastic theory	BASINR	ITERATIVE	Yes	Not required	For rigid pavements only.
WESDEF	USACE- WES	Mulit-Layer elastic theory	WESLEA	ITERATIVE	No	Required	Sensitive to seed modulus.

2.5.1.1 MICHBACK

The program for backcalculation of layer moduli of flexible pavement used in this report is MICHBACK, developed at Michigan State University (MSU). The MICHBACK uses the Chevronx (a multilayer elastic program) as the forward engine to calculate the pavement deflections for a given set of data (layer moduli and Poisson ratios, layer thicknesses, and load magnitude). The MICHBACK program utilizes a modified Newtonian algorithm to increment the layer modulus values based on the differences between the measured and the backcalculated pavement deflections (George 2003).

A brief summary of the MICHBACK program is presented in below. A detailed flow-sheet can be found in (Mahmood 1993).

- 1) Input initial data (pavement location, file name, layer information, etc...)
- 2) Upload FWD file, or manually input deflection data
- 3) Input modulus seed values and stiff layer depth
- 4) Perform backcalculation
- 5) View or print results

MICHBACK uses a linear-elastic model, as mentioned previously. In order for the program to work correctly, and converge, the deflection basin must be uniform with an elastic system. The main contributing factor leading to non-convergence is the degree of irregularity of the deflection basin. For the backcalculation of layer moduli to be successful, the shape of the deflection basin must be smooth and compatible with the elastic layer theory. Highly irregular measured deflection basins (such as that shown in Figure 2.10) cannot be matched to that calculated using the layer elastic theory. Irregularities in the deflection basins could be caused by an uneven contact between one or more deflection sensors and the pavement surface, debris (such as sand particles) between the deflection sensors and the pavement surface, and/or cracks or other structural distresses in the pavement that adversely impact the continuity of the stress dissipation with depth and distance from the load.

Figure 2.10 Regular and irregular deflection basins

2.5.2 Flexible Pavement Temperature Effect on Resilient Modulus

The Asphalt Concrete (AC) layer MR of a pavement system is greatly affected by temperature. It is common for the temperature of the AC layer to vary by 30° F in a given day. This temperature fluctuation can result in a 500,000 psi variation in AC MR, which will significantly affect the MR of other pavement layers when backcalculating. The ideal AC temperature for FWD testing is between 40° and 100° F. It can be difficult to backcalculate AC stiffness when the MR is above 2 million or below 200,000 psi, therefore flexible pavements should only be FWD tested within the recommended temperatures (Kathleen et al 2001).

A procedure was developed by (the Asphalt Institute 1977) to correct for temperature of AC pavement layers. This process requires the following data: The high and low temperature for the previous 5 days leading up to the NDT, pavement surface temperature at exact time of NDT, frequency of loading and time duration of load impulse, as well as percent asphalt content by weight. If all of this data is available, then AC temperature at the top, middle, and bottom of the layer can be determined, and the mean of the three temperatures is used as the corrected pavement temperature.

2.5.3 Depth to Stiff Layer Effect on Resilient Modulus

Roadbed soil is assumed to be uniformly stiff and infinitely thick, when using linear elastic models such as the one utilized by MICHBACK. This assumption is incorrect as roadbed soil tends to become denser with depth, due to stress increases. At some depth a "stiff layer" will be present, which can be composed of either bedrock or a very dense layer of roadbed soil. To account for this, an additional layer is incorporated in the backcalculation procedure. A stiff layer can be included in several ways:

- Assignment of a very high modulus to the lowest layer in the pavement system; however the depth to this layer will be unknown.
- Assignment of a 20 ft. depth to stiff layer for all FWD analysis (Bush 1980).
- Use of measured velocity of compression waves and frequency of loading (Uddin et al 1986).
- Application of trial and error method carried out until a minimum RMS error is reached (Chou 1989).

The above mentioned methods make various assumptions about depth, which is often unknown. Regression models have also been developed to estimate depth to stiff

layer from deflections and layer thicknesses (Brown 1991). This method is used in MODULUS and EVERCALC, but does not accurately predict depth for medium to deep layers (Rohde and Scullion 1990; Mahoney et al 1993). The MICHBACK program uses a regression equation developed by (Baladi 1993) which iteratively improves the depth as described in (Mahmood 1993).

2.6 Backcalculation of Layer Moduli of Rigid Pavement

The modulus of subgrade reaction (k) can be determined from deflection testing conducted at the center of a Portland Cement Concrete (PCC) slab. An empirical set of equations known as the AREA method can be used to backcalculate k as well as the elastic modulus (E_c) of the concrete. Correlation equations have been developed to convert k to MR (AASHTO 1993).

2.6.1 Backcalculation Methods for Rigid Pavement

The AREA method for calculating the radius of relative stiffness and dynamic foundation k is presented in this subsection. A summary of various other methods can be found in (Sessions 2008).

The method for backcalculation of layer moduli of rigid pavement used in this study is based on (Frabizzio 1998). The method is based on calculating the area of the deflection basin, the radius of relative stiffness (l), the elastic modulus of the concrete (E_c), and the modulus of subgrade reaction using the measured deflection data as shown in equations 2.14 through 2.18.

$$AREA = \left[4 + 6\left(\frac{\delta_8}{\delta_0}\right) + 5\left(\frac{\delta_{12}}{\delta_0}\right) + 6\left(\frac{\delta_{18}}{\delta_0}\right) + 9\left(\frac{\delta_{24}}{\delta_0}\right) + 18\left(\frac{\delta_{36}}{\delta_0}\right) + 12\left(\frac{\delta_{60}}{\delta_0}\right)\right]$$

Equation 2.14

$$l = \left[LN\left(\frac{60 - AREA}{289.708}\right) / (-0.698) \right]^{2.566}$$
Equation 2.15
$$E_c = \frac{12(1 - v^2)Pl^2 \delta_r^*}{\delta_r h^3}$$
Equation 2.16
$$\delta_r^* = \alpha \exp\left[-b \exp^{(-cl)} \right]$$
Equation 2.17
$$k = \frac{E_c h^3}{12(1 - v^2)^4}$$
Equation 2.18
Where, AREA = deflection basin area, inches
$$\delta_r = \text{deflection of the r}^{\text{th}} \text{ sensor, inches}$$
$$l = \text{radius of relative stiffness, in}$$
$$E_c = \text{elastic modulus of the concrete, psi}$$
$$v = \text{Poisson's ratio for concrete} = .15$$
$$P = \text{FWD load, pounds}$$
$$\delta_r^* = \text{ non-dimensional deflection coefficient at distance "r"}$$

- h = concrete slab thickness, inches
- *a*, *b* and c = regression coefficients (see Table 2.5)
- k = modulus of subgrade reaction, pci

AREA is the cross-sectional area of the deflection basin between the center of the FWD load plate and the outer most deflection sensor. The radius of relative stiffness (l) characterizes the stiffness of the slab-foundation system. It should be noted that the final

Radial Distance, r (inches)	а	b	с
0	0.12450	0.14707	0.07565
8	0.12323	0.46911	0.07209
12	0.12188	0.79432	0.07074
18	0.11933	1.38363	0.06909
24	0.11634	2.06115	0.06775
36	0.10960	3.62187	0.06568
60	0.09521	7.41241	0.06255

Table 2.5 Regression coefficients for δ_r

elastic modulus of the concrete slab is the average of the seven elastic modulus values (one for each deflection sensor) obtained from equation 2.17 (Frabizzio 1998).

Equation 2.19 is used in the AASHTO pavement design guide to convert k into MR.

$$MR = k * 19.4$$
 Equation 2.19

2.6.2 Rigid Pavement Temperature Effect on Resilient Modulus

Temperature can play a huge roll in the accuracy of deflection testing of concrete pavements. A concrete slab experiencing a temperature gradient can curl and come out of contact with the underlying material. Curling is more likely to occur on slabs supported by high-strength stabilized bases than those supported by soft bases. To avoid possible slab curling, testing the middle of the slab should be avoided during the day when the surface is hotter than the bottom of the slab and upward curling is taking place. Likewise, testing the corners and edges of the slab should be avoided at night when the slab surface is colder than the bottom of the slab and downward curling is taking place (Kathleen et al 2001).

2.6.3 Slab Location Selection for NDT

Conducting NDT at different positions on a PCC slab can be done to test for different pavement properties and conditions. Discussion of mid-slab, edge, and corner slab loading follows.

2.6.3.1 Mid-Slab Loading

The middle of the slab, in the outer lane, is usually where FWD tests are conducted for backcalculation of roadbed k-values. An infinite horizontal layer is assumed when considering rigid pavements, due to the evenly distributed load under a loaded slab. However, the standard 12-ft highway lane width is smaller than that required for the assumption of an infinite horizontal layer, but this is often ignored. The middle of the slab is tested to create the largest distance from pavement joints and edges, and from any distresses at these locations (Kathleen et al 2001).

2.6.3.2 Joint Loading

Loading near the joint of a concrete slab is usually done to calculate load transfer efficiency (LTE). One sensor can be placed on the loaded slab and all others on the unloaded slab. The ratio between the approach and leave slab deflection is used in calculation of LTE. The deflection measured from the 60-inch sensor can be used for roadbed MR backcalculation (Kathleen et al 2001).

2.6.3.3 Edge Loading

Loading the edge of a concrete slab is done to estimate the slab support to its adjacent structure, shoulder, or lane, as well as the presence of voids underneath the slab. This testing location is not normally used for backcalculation purposes.

2.7 Comparison of Backcalculated and Laboratory Determined MR Values

A brief summary of the comparison between backcalculated and laboratory determined MR value is presented in this section. The detailed comparison can be found in (Sessions 2008).

The primary purpose of establishing relationships between backcalculated and laboratory determined MR values are for pavement overlay design. The MR values are stress dependent. Therefore, in order to compare the different modulus values, the stress state in which the FWD test was performed must be known (George 2003). However, the grain size distribution, water content, saturation, dry unit weight, and other factors are often unknown in FWD testing. For this reason, it is very difficult to compare backcalculated to laboratory determined MR values.

Whether the backcalculated or laboratory determined MR of the roadbed soil is used in the pavement design and analysis depends on the input required for the model being used. For example, the original American Association of State Highway Officials (AASHO) road test was calibrated to the laboratory MR of the soil present at the test, clay. Therefore, when using the 1993 AASHTO pavement design or overlay procedures the appropriate input for the roadbed soil is the laboratory MR (AASHTO 1993).

In many other cases, MR values obtained from laboratory tests may be considerably lower than the backcalculated MR values. This is due largely in part to differences in the magnitudes of the deviatoric stress, confining pressure, and loading rate (George 2003). Similarly, field MR values for fine grained soils, obtained by backcalculation from FWD deflections, have been reported in a number of studies to exceed the laboratory MR values by factors between 3 and 5 (AASHTO 1993).

Several correlations have been developed to compare backcalculated and laboratory determined roadbed MR values. These correlations identify and allow correction for various factors which can lead to inflated or deflated MR values. Another study found similar results when layer theory was employed for the analysis of the stress state under a 9000 pound FWD load. It was found that a reasonable correlation exists between FWD backcalculated moduli and the laboratory moduli based on the in-situ conditions with identical stress states (Ping et al 2002).

$$MR_{FWD} = 1.6539MR_{lab}$$
 Equation 2.20

The FWD backcalculated moduli were about 1.65 times higher than the laboratory MR. This ratio is in agreement with the suggestion by the AASHTO design guide (AASHTO 1993), which suggests that the FWD backcalculated moduli are approximately two to three times higher than the laboratory determined moduli. It must be remembered to consider that the AASHTO relationships were based primarily on clay soils. In addition, for this comparison the FWD tests were performed under in-situ soil conditions and the laboratory determined MR were obtained from the reconstituted soil samples; simulating the in-situ moisture and density conditions under identical stress states. The possible causes for the difference between the lab *MR* and backcalculated values as reported in the study (Ping et al 2002) were:

• The FWD backcalculation program is based on the assumption of linear elastic theory of multiple layer pavement structures, while the pavement materials are not purely elastic.

- The FWD backcalculation method does not lead to a unique solution; therefore, different layer moduli could be obtained from the same FWD data.
- The lab specimens were tested almost immediately after they were compacted, and the confining pressure for the triaxial test was applied by air; the in-situ soil had been there for many years, and the confining pressure was caused by vertical load and soil weight.

Von Quintus and Killingsworth (1998) reported that, for unbound granular materials, the ratio of the backcalculated to the laboratory determined MR ranged from 0.1 to 3.5. They stated that the reasons for the differences between the backcalculated and the laboratory determined MR values are related to the inability to simulate the in-situ boundary conditions in the laboratory.

2.8 Seasonal Changes

Pavement layers have varying properties and characteristics dependant on the time of the year. Pavements residing in areas that undergo freeze-thaw cycles are subject to seasonal effects. A pavement system can become very weak during the spring thaw season, then rapidly recover strength leading into summer, slowly recover over the summer and fall, and then reach a maximum stiffness when frozen during the winter (Shepherd and Vosen 1997). A typical annual range in deflection is shown in Figure 2.11.

2.8.1 Spring Season

During the winter season, un-drained water within the pavement, along with water from shallow water tables, can freeze and create ice lenses. Due to this, the surface can experience frost heave. When the spring season begins, and the lenses start to melt, the pavement layers can become saturated if not properly drained. Also, additional water can

Figure 2.11 Typical pavement deflections illustrating seasonal pavement strength changes (PTC 2008)

enter the system from rain and snow melt. All pavement layers can experience a reduction in bearing capacity as a result of this. It is estimated that 90% of damage to pavements occurs during the spring thaw season (Janoo and Greatorex 2002). A diagram showing the formation of ice lenses can be seen in Figure 2.12.

2.8.2 Summer Season

The summer season is considered to start after the conclusion of the spring-thaw season which is defined by the time when moisture conditions, within the pavement system, return to normal and the ambient temperatures begin to rise. The date when this occurs changes from year to year and from location to location. The summer-fall season ends when the ground starts to freeze, but is often considered to last until the spring-thaw season begins and the ice starts to melt. In Michigan, summer season is typically from May to December.

Figure 2.12 Formations of ice lenses in a pavement structure (PTC 2008)

2.9 Distribution of Resilient Modulus of Roadbed Soils in the State of Michigan

The entire state of Michigan is within the North American glaciated section. This implies that all soils have been deposited by glaciers. The action of the moving glaciers pulverized soil and bedrock while moving south, and then re-deposited the soil upon its melting and retreat. This created the topography of the state as well as the locations and variations of Michigan's soils. Within the state, 165 different soil classifications can be

found. This includes everything from clay to boulders, and combinations throughout (MDSH 1970). All of these various classifications of soil deposited by glacial drifts can have different MR values and need to be classified and distinguished.

2.9.1 State Partitioning

A brief summary of the state partitioning process is presented in this subsection. The detailed process can be found in (Sessions 2008).

To characterize the resilient modulus of the glacial drifts in an economical and practical manner, the State of Michigan was divided into 15 clusters where the soil in each cluster has similar engineering and physical characteristics. The boundaries of the 15 clusters were established based on the 1982 Quaternary Geology map of Michigan, inputs from members of the Research Advisory Panel (RAP) of MDOT, and inputs from the soil engineers in the various MDOT Regions. After establishing the cluster boundaries, each cluster was divided into areas based on the percentages of each soil type found in the Natural Resources Conservation Service (NRCS) Web Soil Survey (Web Soil Survey 2007). Once again, the boundaries of each area were slightly modified based on inputs from the RAP members and from the soil engineers in the various MDOT Regions. The final state divisions consisted of 99 areas within the 15 clusters. Figure 2.13 depicts the boundaries of the clusters shown by the dashed lines and the boundaries of the 99 areas shown by the solid lines. Once again it should be noted that the division between the clusters was based on similar (not the same) soil types whereas the boundaries between the areas were based on narrowing the range of the soil parameters within each cluster.

Figure 2.13 Areas and clusters of the State of Michigan

Figure 2.13 (cont'd)

Figure 2.13 (cont'd)

05 04

Figure 2.13 (cont'd)

After dividing the State of Michigan into 15 clusters and 99 areas, the percent of each soil type (sand, clay, silt, etc) in each area was quantified from the Natural Resources Conservation Service (NRCS) Web Soil Survey (Web Soil Survey 2007). Table A.1, in Appendix A, lists the percentages of each soil type in each of the 99 areas.

2.9.2 Soil Sample Collection

Of the 99 areas listed above, 75 have had disturbed soil samples collected from near the roadway. Areas with similar soils to each other were lumped together, for economic reasons, and only one sample was collected to represent both areas. The soil samples were analyzed at Michigan State University (MSU) for natural moisture content, Atterberg Limits (liquid and plastic limits and plasticity index), grain size distribution (wet and dry sieving and hydrometer analysis), and cyclic load triaxial tests.

CHAPTER 3

LABORATORY & FIELD INVESTIGATION

3.1 Introduction

The objectives of this study were achieved by carrying out several field and laboratory investigations. These investigations include:

- State partitioning
- Soil sampling
- Laboratory tests which consist of:
 - Moisture content
 - Sieve analysis (wet and dry sieving)
 - Hydrometer analysis
 - Atterberg limits (liquid and plastic limits and plasticity index)
 - Cyclic load triaxial test
- Field tests which consist of:
 - Penetration resistance using pocket size penetrometer
 - Shear strength using pocket vane shear tester
 - Deflection using Falling Weight Deflectometer (FWD)

3.2 State Partitioning and Soil Sampling

The state was divided into 15 clusters and 99 areas as discussed in subsection

2.9.1. At every location (75) where a disturbed soil sample was collected, as discussed in subsection 2.9.2, penetration resistance and vane shear tests were conducted on site. The roadbed soil samples were taken to the Geotechnical laboratory at MSU for further testing. In addition to the disturbed soil samples, 10 undisturbed (Shelby tube) samples

were collected by MDOT and taken to the laboratory at MSU for testing. State partitioning and soil sampling is discussed in detail elsewhere (Sessions 2008).

3.3 Laboratory Tests and Procedures

All 81 disturbed soil samples, as well as the 10 Shelby tube samples were analyzed in the Geotechnical Laboratory at MSU. Each sample was subjected to a battery of tests to determine its moisture content, particle gradation, Atterberg limits, soil classification (both USCS and AASHTO soil classification system), and MR. A brief description of each test administered follows, a full explanation of each test can be found in (Sessions 2008).

3.3.1 Moisture Content, Particle Gradation, and Atterberg Limits

All 81 soil samples collected underwent natural moisture content, particle gradation (dry and wet sieve and hydrometer), and Atterberg limit analyses. The following standard test procedures were followed:

- Moisture content analysis ASTM C 29
- Dry sieving ASTM C 117
- Wet sieving ASTM C136
- Hydrometer analysis AASHTO T 88
- Atterberg limit analysis AASHTO T 89

A detailed review of the tests and their effects on the MR values can be found in (Sessions 2008).

3.3.2 Cyclic Load Triaxial Test

Cyclic load triaxial tests were conducted to determine the resilient modulus of laboratory compacted sand and clay samples as well as Shelby tube samples. The sand samples were compacted in a split mold by vibration and static load. The clay samples were compacted according to AASHTO standard proctor test procedure T99 and then trimmed to the correct diameter. Shelby tube samples were simply cut into sections of proper length. All samples were contained within a rubber membrane. All cyclic load triaxial tests were mainly conducted according to the AASHTO T307 standard test procedure. Because of the type of tests and equipment available some modifications to the procedure are detail in (Sessions 2008).

Cyclic load triaxial tests are difficult to conduct and require extreme care and patience. The resulting MR values obtained from the test are typically affected by several test and sample variables including: confining pressure, deviatoric stress, loading frequency, soil type, moisture content, and specimen conditioning.

3.4 Field Tests

Several thousand deflection tests using Falling Weight Deflectometer (FWD) were conducted and analyzed during this study. In addition, all 81 disturbed soil samples were tested in the field using pocket penetration resistance and vane shear testers.

3.4.1 FWD Tests

In this study, all NDT were conducted by MDOT personnel using the MDOT KUAB FWD. The weight and the height of drop for all NDT were adjusted to produce 9000 pound load. For each test, the pavement surface deflections were measured at the distances of 0.0, 8.0, 12.0, 18.0, 24.0, 36.0 and 60.0-inch from the center of the loaded area. To analyze the roadbed soils of the entire state FWD tests must be conducted on the entire state road network. MDOT has been conducting FWD tests for over 20 years and has collected deflection data from most of the state road network. A total of five hundred

five data files were obtained from MDOT and scrutinized for possible inclusion in the backcalculation of the roadbed modulus. All data files were tested relative to the information available in the data file and MDOT records. All files that passed the tests were included in the analysis. The tests consisted of the following:

- The FWD data files contain the proper date and location reference information.
- The pavement type and the pavement cross-section data at the time of the FWD tests are available in (and can be obtained from) the MDOT project files and records.
- The FWD tests were conducted on Interstate (I), United State (US), and/or Michigan (M) roads.
- The FWD tests were conducted on either flexible or rigid pavement types (composite pavements were not analyzed).

One hundred one FWD data files containing six thousand two hundred forty six FWD tests satisfied the above requirements, and therefore they were included in the analyses. These files were examined to determine the NDT test locations (see solid squares in Figure 3.1). The tests were conducted along twenty one roads (eleven M roads, six I roads, and four U.S. roads) spanning twelve clusters and thirty two areas. Table 3.1 shows the distribution of the FWD data files by pavement type (flexible or rigid pavement) and by roadbed soil USCS.

As can be seen from the Figure 3.1, certain areas of the state lack sufficient NDT tests. Hence, 217 additional FWD test sites were requested from MDOT to fill up the gap and to cover different environmental seasons (see open squares and triangles in Figure 3.1). Due to several constraints, the number of requested FWD tests was reduced several times. Finally, 56 additional FWD tests were conducted spanning fifteen roads (four M

		Rigid p	avement	Flex pave	cible ment	Тс	otal
		Files	Tests	Files	Tests	Files	Tests
USCS	Total	295	-	140	-	435	-
	Usable	64	4,684	37	1,562	101	6,246
SM		6	244	1	79	7	323
SP1		9	494	22	1,027	31	1,521
SP2		8	575	2	67	10	642
SP-SM		9	379	0	0	9	379
SC-SM		11	1,967	0	0	11	1,967
SC		19	941	12	389	31	1,330
CL		2	84	0	0	2	84
ML		0	0	0	0	0	0

Table 3.1Distribution of old FWD files

roads, four I roads, and seven U.S. roads) in eleven clusters and nineteen areas by MDOT; the locations of these tests are indicated by the open triangles in Figure 3.1, and detailed in Table 3.2.

The deflection data from the existing FWD files and from the new FWD tests were used to:

- Backcalculate layer moduli of flexible and rigid pavements
- Evaluate the variability in roadbed soil MR along and across the pavement network
- Study roadbed soil MR as a function of soil type
- Assess the seasonal effects on roadbed soil MR

The results of these analyses are presented and discussed in chapter 4.

Analysis of seasonal effects on roadbed soil MR could not be accomplished due to a lack of deflection data reflecting spring conditions. FWD tests were not performed during the spring season in this study due to equipment breakdown and MDOT limited resources.

Figure 3.1 FWD test locations in the State of Michigan

Figure 3.1 (cont'd)

Figure 3.1 (cont'd)

Figure 3.1 (cont'd)

3.4.2 Penetration Resistance and Vane Shear Test

Penetration resistance and vane shear tests were conducted in the field using hand held devices in order to capture in-situ conditions. The tests were conducted by measuring the soils penetration resistance using pocket penetrometer, and the shear strength resistance using pocket size vane shear tester. The results and analyses of these tests are discussed in (Sessions 2008) and can be seen in Table A.2 of Appendix A.

Region	County	Control Section	Control Section BMP	Location	Pavement Type
Bay	Arenac	06073	7.439	Arenac/Osco Co Line South	Composite
Bay	Bay	09035	6.232	North of Beaver Rd	Rigid
Bay	Bay	09101	8.413	2048' West of Mackinaw Rd	Rigid
Bay	Gratiot	29011	13.609	North of Ithaca North City Limit	Rigid
Bay	Isabella	37014		100' North of Vernon Rd	Flexible
Grand	Ionia	34044	5.852	West of Portland	Rigid
Grand	Kent	41024	11.400	West of Ionia/Kent County line	Rigid
Grand	Montcalm	59012	3.592	North of Cannonsville Rd	Composite
Metro	Macomb	50112	4.664	West of Macomb/St. Clair Co Line	Composite
Metro	Macomb	50015	5.642	North of the end of the divided hwy (NB direction)	Flexible
Metro	Macomb	50013	0.807	North of Utica NCL	Rigid
Metro	Oakland	63173	10.282	Oakland/Genesee Co Line South	Composite
-					

Table 3.2 New FWD test locations

Rigid Flexible Rigid

East of Lapeer/St. Clair Co Line 450' West of Wadhams Road North of M-39

0.000 12.536 0.000

77024 77111 82194

St. Clair St. Clair Wayne

Metro Metro Metro

(cont'd)
2
ŝ
e
Tabl

Table 3.2 (cont'd)

ection	Control Sectio
Ъ	
147 B.	4
50	5(
27	5
68	0
1	5
35	in
3 E	\sim
4	
0	
V	
-	
5	
0 10	10

CHAPTER 4

DATA ANALYSIS & DISCUSSION

4.1 Analysis of Laboratory Test Data

A brief summary of the analysis of the laboratory test data is presented in the next two subsections. The detailed analyses can be found in (Sessions 2008).

4.1.1 Soil Classification

For each soil sample, the natural water content, the dry and wet sieve, the hydrometer, and the Atterberg Limits tests data were obtained and are listed in Table A.3 of Appendix A. The data were used to classify the soils according to the USCS and the AASHTO soil classification system. Results of the classification are also listed in Table A.3 of Appendix A. As can be seen in the table, the roadbed soils in the State of Michigan were divided into eight soil types according to the USCS; SM, SP, SC, SP-SM, SP-SC, ML, CL, and GW.

4.1.2 Cyclic Load Triaxial Test

For each disturbed and Shelby tube soil sample, at least one cyclic load triaxial test was conducted. In all tests a confining pressure of seven and a half psi, a sustained load of ten pounds and cyclic stresses of ten and fifteen psi were used. Some of the test parameters and the test results (the resilient modulus at load cycles 100, 200, 500, 800, and 1,000 and the average resilient modulus of at load cycles 500, 800, and 1,000) for each cyclic load are listed in Tables A.4. Table A.5 lists the sample parameters and the average resilient modulus for the ten and fifteen psi cyclic stresses. For each soil type, the average resilient modulus value at load cycles 500, 800 and 1000 was correlated to the soil physical parameters (moisture content, particle gradation, coefficient of uniformity,
coefficient of curvature, liquid limit, plastic limit, plasticity index, dry density, percent passing certain sieves, degree of saturation, penetration resistance, and vane shear strength) using univariate and multivariate statistical analyses. Results of the analyses (the correlation equations) for all eight soil types are listed in Table 4.1.

Three important points should be noted herein are:

- 1. For the SC, CL, and ML soil types; similar trend between their parameters and MR values was found. Therefore, in the analyses they were grouped together.
- 2. For the SP soils, two distinctive trends between the MR values and the soil parameters were found. Hence, the SP soils were divided into two groups SP1 (the soil samples were obtained from the west side of the State of Michigan) and SP2 (the soil samples were obtained from the east side). The main difference between SP1 and SP2 is the course sand content. On average, the SP1 soil contains 90 percent passing sieve number 40 whereas SP2 soil, 50 percent.
- 3. As can be seen from table 4.1, the predictive equations apply to one or more soil types according to USCS. For example, the SP-SM soil has one predictive equation. Since for this soil, the AASHTO soil classification system yields three types of soil (A-1-b, A-2-4, and A-3), the USCS was used throughout the remainder of this thesis.

Two sets of additional cyclic load triaxial tests were conducted. The MR values and the sample parameters of both sets of tests were used to verify the MR predictive equations presented in Table 4.1. The results of the first set of additional tests are shown by the open squares in Figures 4.1 through 4.4. The results of the second set of tests, on the other hand, are shown by the open triangles in the figures. As can be seen from the figures, the results of both sets of tests are located relatively close to the solid curve

	Numbe	r of		
USCS	Clusters	Areas	Predictive equation	Variable equation
SPI	6	8	MR = $89.825(SVSP1)^{2.9437}$	$SVSP1 = \frac{\gamma_d^{1.15}}{\left(P_4^{1.5} - P_{40}^{0.25}\right)^{0.5}}$
SP2	Q	12	$MR = 0.8295(SVSP2)^{3.6006}$	$SVSP2 = \frac{\gamma_d^{1.35} * P^{-0.1}}{\left(P_4^{1.5} - P_{40}^{0.25}\right)^{0.5}}$
SM	11	16	$MR = 0.0303(SVSM)^{4.1325}$	$SVSM = \frac{\gamma_d^{0.8}}{S^{0.15}}$
			MR = 45722exp[(-0.0258)(MI)]	$MI = LL^{1.1} + MC^{1.25}$
SC,CL, ML	10	28	$MR = 650486 \exp{-0.0501(S)}$	$S = \left[\frac{G_s * (MC/100) * \gamma_d}{G_s * \gamma_w - \gamma_d} \right] * 100$
MS-98	7	8	MR = 1749.6exp0.0054(SVSP - SM)	SVSP-SM = $\frac{\gamma_{d}^{1.75}}{MC^{0.5} + LL^{0.6} + (P_{40} - P_{200})^{0.01}}$
SC-SM	5	7	MR = 39638exp - 0.0037(SVSC - SM)	SVSC-SM = $C_{u}^{0.2} * (LL^{1.15} + MC^{1.3})$
$\gamma_d = dry u$ = moistur	nit weight (f	ocf), P4, I s = speci	P_{40} , P_{200} = percent passing sieves number 4, fic gravity of the solid ≈ 2.7 , γ_w = unit weigh	40, and 200, S = saturation (%), LL = liquid limit, MC ht of water = 62.4 pcf, C _u = coefficient of uniformity

Table 4.1 MR Predictive equations

Figure 4.1 MR versus moisture index (see table 4.1) for the SM soils

Figure 4.2 MR versus the SVSM (see table 4.1) for the SM soils

Figure 4.3 MR versus SVSP2 (see table 4.1) for the SP2 soils

soils

representing the predicted MR values. This implies that the MR predictive equations for the SM, SP2, and ML soils are reliable and relatively accurate. It should be noted that the correlation equation and the values of R^2 and standard error (SE) stated in Figures 4.1 through 4.4 were obtained based on the original data. When the additional data from the verification tests were included, the values of the statistical parameters of the equations were changed, and the values of R^2 and SE decreased.

Nevertheless, the results of the second set of additional cyclic load triaxial tests (verification tests) were also used to assess the impact of the applied stress boundary conditions and the sample moisture contents on the MR values of the test samples. These results are discussed in Section 4.4.

4.2 Backcalculation of Layer Moduli

As noted in Chapter 3, all existing FWD data files for flexible and rigid pavements were requested and obtained from MDOT. The locations of these tests were marked on a state map. Additional FWD test locations were then determined to fill the gap. Consequently, MDOT conducted the FWD tests at the new locations. These along with the old FWD tests provided good coverage of the pavement network in the State of Michigan (see Chapter 3).

For each existing FWD data file, the test location reference was obtained and the MDOT project files and records were searched to obtain the pavement cross-section data that existed at the time when the FWD tests were conducted. All FWD test data where pavement cross-section data were not found were eliminated from further analyses.

Each deflection basin in the remaining and new FWD data files was examined for possible irregularities by plotting the pavement surface deflections as a function of

distance from the center of the applied load as shown in Figure 4.5. Irregular deflection basins were removed and stored in different data files and were not included in the backcalculation of layer moduli. For some FWD data files, as much as 75% of the deflection basins were irregular while others didn't contain any irregular basins.

Figure 4.5 Regular and irregular deflection basins

4.2.1 Flexible Pavement

For flexible pavements, the deflection data were used along with the appropriate pavement cross-section data to backcalculate the pavement layer moduli using the MICHBACK iterative computer program. The program, which was developed at Michigan State University, uses the Chevronx computer program (a five layer elastic program) as the forward engine to calculate the pavement deflections for a given set of layer moduli, Poisson ratios, layer thicknesses, and load magnitude. The MICHBACK program utilizes a modified Newtonian algorithm to calculate a gradient matrix by incrementing the estimated layer modulus values and calculating the differences between

the measured and the calculated pavement deflection in three consecutive cycles. When the convergence criteria (specified by the program user) are satisfied, the iteration process stops and the final set of backcalculated layer moduli are recorded. In this study, the following convergence criteria were used:

- Modulus Tolerance Maximum modulus tolerance (the difference between two successive backcalculated modulus values) of 0.2 percent.
- Root Mean Square (RMS) error Maximum RMS error tolerance (the square root of the sum of squared errors between measured and calculated deflections) of 0.2 percent.

The MICHBACK is a user-friendly computer program. The program was used with some of the available default values (such as Poisson's ratios for the various pavement layers) when appropriate. The sensitivity of the backcalculated layer moduli using the MICHBACK computer program to some of the input parameters is presented in the subsection 4.2.1.1. Results of the backcalculations are presented and discussed in subsection 4.2.1.2.

4.2.1.1 Sensitivity of the Backcalculated Moduli

The MICHBACK computer program is sensitive to some of the inputs used in the backcalculation procedure. Several MICHBACK computer program sensitivity analyses were conducted by forward calculating pavement response to applied loads with the Chevronx computer program and then backcalculating layer moduli, from the calculated deflection, with the MICHBACK computer program. The error between the layer moduli used in forward calculation and the backcalculated layer moduli were than studied. The analyses are discussed in this subsection.

Number of Layers - In all backcalculation of layer moduli of flexible pavements, a two layer and roadbed soil system was used. The reason is that the objective of the backcalculation is to determine the roadbed modulus only. The moduli of the asphalt, aggregate base, and sand subbase layers were not included in this study. Hence, the aggregate base and sand subbase layers were combined into one granular base layer. This significantly decreased the number of iterations required to satisfy the convergence criteria, and vet vielded more accurate roadbed modulus values. This procedure was tested by using forward calculation of pavement response to applied loads and backcalculating the layer moduli. It should be noted that a typical flexible pavement section, in the State of Michigan, consists of three layers (asphalt, aggregate base, sand subbase) and the roadbed soil, and the MICHBACK program is capable of handling a total of five layers, including the roadbed soil. However, the accuracy of the backcalculated moduli of a five layer system is questionable. Figure 4.6 illustrates the effects of using three and four layered systems on the value of the backcalculated layer moduli when combining the base and subbase layers. As can be seen in the figure, the MR of the roadbed soil is not affected much when a single granular base layer is used. Therefore, the base/subbase combination is appropriate when backcalculating roadbed soil MR.

Pavement Layer Thickness - The thickness of the pavement layers used in backcalculation can have a significant impact on backcalculated MR values; especially for the AC layer. Constant pavement layer thickness is used for each layer in the backcalculation of layer moduli. However, due to construction practices the AC thickness may vary +/- 1 inch from the average. Figure 4.7 shows that when the AC thickness is

Figure 4.7 Effect of AC layer thickness on MR

varied, to reflect possible conditions, the backcalculated AC MR is drastically affected, while the other layers remain generally constant. The roadbed soil MR is more or less unaffected by changes in the AC layer thickness. Similarly, Figure 4.8 shows that varying base thickness does not have much effect on the backcalculated roadbed soil MR. However, the backcalculated MR of the base and AC layers is affected by varying the base thickness.

Figure 4.8 Effect of base layer thickness on MR

Stiff Layer - The effects of stiff layer depth are accounted for in the MICHBACKcomputer program. In the analyses, the depth to stiff layer was estimated using Equations4.1 and 4.2 of the Boussinesq equivalent modulus procedure.

 $E_{o}(0) = 2 \frac{(1 - \mu^{2})\sigma_{0} \times a}{d(0)}$ Equation 4.1 $E_{o}(r) = \frac{(1 - \mu^{2})\sigma_{0} \times a^{2}}{r \times d(r)}$ Equation 4.2

Where, $E_0(r)$ = surface modulus at a distance r from the center of the FWD loading plate

 μ = Poisson's ratio (0.5 assumed)

 σ_0 = contact stress under the loading plate (82 psi)

d(r) = deflection at a distance r (inch)

a = radius of loading plate (5.91 inch)

By calculating E_0 for each sensor in a deflection basin and plotting them against

the distance between the sensor and the load, four possible outcomes may occur.

Examples of the four outcomes are listed below and shown in Figures 4.9 through 4.12.

a) No stiff layer exists

b) A stiff layer at a shallow depth exists

c) A stiff layer at a deep location exists

d) A soft layer at a deep location exists

Figure 4.9 No stiff layer

Based on the Boussinesq procedure, the depth to stiff layer is estimated and then changed incrementally to minimize the root mean square error between the measured and the calculated deflections. If the depth to stiff layer used in the backcalculation is not relatively close to the actual depth, the MR of the roadbed soil can be greatly affected.

Figure 4.12 Soft layer at deep location

This procedure was tested by using forward calculation of pavement response to applied loads and backcalculating the layer moduli. Figure 4.13 illustrates the effects of errors in the estimated depth to stiff layer on the backcalculated MR values for four true depths to stiff layer (100, 300, 500 and 700-inch). It can be seen that negative errors in the estimates (shallower estimated depths) cause negative errors (decreases) in the MR values and visa versa.

Figure 4.14 illustrates that the MR of the stiff layer has almost no affect on the backcalculated layer moduli. To be considered a stiff layer the MR must be several hundred thousand psi, and anything more stiff has nearly the same effect.

Roadbed Soil Seed Modulus - The MICHBACK begins its iterative process with a seed MR value for each layer. Figure 4.15 shows that variation in the roadbed seed modulus does not have much impact on the backcalculated MR values.

Figure 4.14 Effect of stiff layer MR

Figure 4.15 Effect of roadbed seed MR

The range of MR values specified is important, as the values used must be within a reasonable range for each pavement layer. The minimum, seed, and maximum MR values used in this study were:

- AC = (minimum = 100,000, seed = 1,000,000, maximum = 4,000,000 psi)
- Base = (minimum =10,000, seed = 50,000, maximum = 500,000 psi)
- Roadbed = (minimum = 3,000, seed = 7,500, maximum = 100,000 psi)

4.2.1.2 Analysis of Backcalculated Data from MICHBACK

The accuracy of the backcalculated results were also verified in the following ways:

 After deflection data were backcalculated using the MICHBACK the data was scrutinized to make sure that all results with greater than a 2% RMS error were eliminated. A maximum RMS error of 2% was established for acceptance of the backcalculated MR results because errors above this threshold are much less accurate. • The deflection measured at the sensor 60 inch from the load most closely corresponds to the deflection of the roadbed soil. This is due to the arching effects of soil as stress is distributed downward and away from an applied load. The deflection measured at sensors closer to the load (36 inch and less) are not as closely related to the MR of roadbed soils. This is illustrated in Figure 4.16 where the open triangles represent the measured deflection at d_{60} and the open squares represent the deflection measured at d_{36} . The R² of the correlation between MR and d_{60} is much greater than that of d_{36} , as can be seen in the figure. Due to this relationship, the accuracy of the MICHBACK results can be scrutinized based on the accuracy of the correlation between d_{60} and the MR of roadbed soils.

Figure 4.16 MR vs. d_{60} and d_{36}

• The deflection measured at the sensor 60 inch from the load is inversely proportionate to the backcalculated roadbed soil MR. An increase in measured deflection

corresponds to a decrease in backcalculated MR and vise versa, as illustrated by Figure 4.17. Due to this relationship, the accuracy of the MICHBACK results can be scrutinized based on an observation of this trend.

Results - Only the backcalculated results of roadbed soil MR were further analyzed. The raw results of base/subbase and AC MR are listed in Table B.1 of Appendix B, and will be further discussed as part of the upcoming unbound material MR project. The average, maximum, minimum, and standard deviation of MR of backcalculated roadbed soil supporting flexible pavements are listed in Table 4.2, and the detailed results are listed in Table B.1. The full set of NDT data and backcalculated results of flexible pavements is available on the accompanying compact disc.

Figure 4.17 MR vs. deflection

Roadbed type USCS	MR results (psi)						
	Average	Maximum	Minimum	Std.			
SM	22,976	32,319	16,115	3,373			
SP1	30,707	70,138	13,154	7,562			
SP2	23,042	28,602	19,243	3,036			
SP-SM	21,292	30,666	15,623	3,740			
SC-SM	18,989	31,218	7,088	6,541			
SC	24,704	67,793	11,728	6,695			
CL	20,100	28,849	11,996	4,326			
ML	15,976	31,279	8,711	6,394			

Table 4.2 Backcalculated roadbed soil MR supporting flexible pavement

4.2.2 Rigid Pavement

The rigid pavements layer moduli were backcalculated using the measured deflection data and the empirical AREA method. The method uses the measured deflection at 7 sensors and Equation 4.3 to estimate the parameter "AREA", Equation 4.4 to calculate the radius of relative stiffness (I) of the concrete slab, Equations 4.5 and 4.6 to calculate the elastic modulus of the concrete (E_c), and Equation 4.7 to calculate the modulus of subgrade reaction (k) which can be converted into MR value using Equation 4.8 (AASHTO 1993). The following equations were repeated from subsection 2.6.1 for the reader's convenience.

$$AREA = \left[4 + 6\left(\frac{\delta_8}{\delta_0}\right) + 5\left(\frac{\delta_{12}}{\delta_0}\right) + 6\left(\frac{\delta_{18}}{\delta_0}\right) + 9\left(\frac{\delta_{24}}{\delta_0}\right) + 18\left(\frac{\delta_{36}}{\delta_0}\right) + 12\left(\frac{\delta_{60}}{\delta_0}\right)\right]$$

Equation 4.3

$$l = \left[LN\left(\frac{60 - AREA}{289.708}\right) / (-0.698) \right]^{2.566}$$
 Equation 4.4

$$\delta_r^* = \alpha \exp^{\left[-b \exp^{\left(-cl\right)}\right]}$$
Equation 4.5

$$E_c = \frac{12\left(1-\nu^2\right)Pl^2\delta_r^*}{\delta_r h^3}$$
Equation 4.6

$$k = \frac{E_c h^3}{12\left(1-\nu^2\right)^4}$$
Equation 4.7

$$MR = 19.4k$$
Equation 4.7

$$MR = 19.4k$$
Equation 4.8
Where, AREA = deflection basin area, inches

$$\delta_r = deflection of the r^{th} sensor, inches$$

$$l = radius of relative stiffness, inches$$

$$E_c = elastic modulus of the concrete, psi$$

$$\nu = Poisson's ratio for concrete = .15$$

$$P = FWD load, pounds$$

$$\delta_r^* = non-dimensional regression coefficient at distance "r"$$

$$h = concrete slab thickness, inches (use 9" if unknown)$$

$$a, b, and c = regression coefficients (see Table 4.3)$$

$$k = modulus of subgrade reaction, pci$$

$$MR = resilient modulus, psi$$

Equation 4.8 was developed based on k values backcalculated from plate load bearing tests. The tests were conducted to simulate a pavement system where the slab is placed directly on top of the subgrade. The FWD tests in this study were conducted on a

Radial distance, r (inches)	а	b	с
0	0.12450	0.14707	0.07565
8	0.12323	0.46911	0.07209
12	0.12188	0.79432	0.07074
18	0.11933	1.38363	0.06909
24	0.11634	2.06115	0.06775
36	0.10960	3.62187	0.06568
60	0.09521	7.41241	0.06255

Table 4.3 Regression coefficients for δ_r^* (Smith et al 1997)

pavement system consisting of concrete slabs, granular base/subbase and roadbed soil. When Equation 4.8 was used, the resulting MR values were substantially lower than the backcalculated resilient modulus of the same roadbed soils under flexible pavements. Hence, Equation 4.8 was modified by adding a correction factor (CF), as a multiplier, as shown in Equation 4.9.

$$MR = (CF)$$
19.4k Equation 4.9

The value of the correction factor (CF) of Equation 4.9 was estimated using the three step procedure enumerated below.

In the first step, Figure 4.18 was used to estimate the values of the modulus of subgrade reaction (k) corresponding to California Bearing Ratio (CBR) values from 1 to 100. The estimates were then plotted and the best fit curve and equation were obtained as shown in Figure 4.19 and stated in Equation 4.10.

$$k = 51.495(CBR)^{0.5835}$$
 Equation 4.10

II. In this step, Equation 4.11 (a known correlation between MR and CBR) was divided by Equation 4.10, which resulted in Equation 4.12 as follows:

Figure 4.18 Soil classification related to strength parameters (NHI 1998)

Figure 4.19 Modulus of subgrade reaction versus California Bearing Ratio (after NHI

1998)

$$MR = 1500(CBR)$$
 Equation 4.11

$$\frac{MR}{k} = \frac{1500}{51.495} \frac{CBR}{CBR^{0.584}} = 29.13 (CBR)^{0.41}$$
 Equation 4.12

III. Since the CBR value of each roadbed soil type in the State of Michigan is not known, an average value of 11 (MR of 16,500 psi, which is slightly lower than the average backcalculated or the average laboratory measured MR values) was assumed.
Substituting CBR of 11 in Equation 4.12, arranging terms, and substituting in Equation 4.9, yielded Equation 4.13, which was used throughout this study for the backcalculation of roadbed modulus under concrete pavements.

$$MR = (CF)(19.4)(k) = (29.13)(2.67)(k) = (4)(19.4)(k)$$
 Equation 4.13

4.2.2.1 Analysis of Backcalculated Data from the AREA Method

All deflection basins which had a d_0 of 10 mils or greater were not included in the analyses. This threshold was set because rigid pavements FWD tested at mid-slab should not experience more than 10 mils of deflection under the center of a 9,000 pound load. **Results -** Only the backcalculated results of roadbed soil MR were further analyzed. The average, maximum, minimum, and standard deviation of MR of backcalculated roadbed soil supporting rigid pavements are listed in Table 4.4, and the detailed results are listed in Table B.2. The full set of NDT data and backcalculated results of rigid pavements is available on the accompanying compact disc. It should be noted that no ML soil supporting rigid pavements was FWD tested.

Roadbed	MR results (psi)						
USCS	Average	Maximum	Minimum	Std. dev.			
SM	26,637	55,200	14,292	8,033			
SP1	20,731	37,209	11,811	4,240			
SP2	25,393	41,941	9,495	7,364			
SP-SM	20,317	38,035	10,226	5,879			
SC-SM	20,435	47,655	3,875	6,647			
SC	23,034	35,830	11,662	4,147			
CL	24,964	37,358	16,431	4,399			
ML	-	-	-	-			

Table 4.4 Backcalculated roadbed soil MR supporting rigid pavement

4.3 Comparison between Backcalculated Resilient Modulus Values of Roadbed Soils Supporting Flexible and Rigid Pavements

The resilient modulus (MR), for a given soil classification, is a fundamental soil property reflecting its response to the applied stresses. The resilient modulus of roadbed

soils is more or less constant regardless if the soils are supporting flexible or rigid pavements. The MR of roadbed soils is dependent only on the soil type, water content, dry density, particle gradation, Atterberg limits, and stress states. Roadbed soil response to load is dependent on the stress level applied to the roadbed soil and the thickness, not the type of the pavement layers.

For each soil classification, the average values of the backcalculated MR of the roadbed soils supporting flexible and rigid pavements as well as the average between flexible and rigid pavements are listed in Table 4.5. The average value was calculated by giving each NDT conducted equal weight, as opposed to simply using the average between flexible and rigid pavements. The number of NDT for each pavement and soil type is also given in the table. Please note that no NDT were conducted on rigid pavements supported on ML roadbed soils.

The average ratio of backcalculated roadbed soil MR supporting flexible pavements to rigid pavements was 1.02. The distribution of this ratio by soil type can be seen in Figure 4.20. The frequency of the backcalculated MR values of roadbed soils supporting both flexible and rigid pavements are shown in Figure 4.21.

As indicated by Figure 4.20, for all soil types except the SP1 roadbed soils, the backcalculated resilient modulus is roughly the same regardless if the soils are supporting flexible or rigid pavement sections. This was expected because, for the same soil classification, the resilient modulus is a fundamental soil property reflecting its response to the applied stresses. Such a response is dependent on the stress level applied to the roadbed soil, not the type of the pavement layers. For the SP1 roadbed soils, the flexible pavement sections that were FWD tested are located mainly on the western side of the

Roadbed	Pavement	Number	MR results (psi)				Ratio
USCS	Туре	of NDT	Average	Maximum	Minimum	Std. dev.	rigid)
	Flexible	86	22,976	32,319	16,115	3,373	
SM	Rigid	218	26,637	55,200	14,292	8,033	0.86
	Combined	304	25,602	55,200	14,292	6,715	
	Flexible	1,053	30,707	70,138	13,154	7,562	
SP1	Rigid	446	20,731	37,209	11,811	4,240	1.48
	Combined	1,499	27,739	70,138	11,811	6,573	
	Flexible	67	23,042	28,602	19,243	3,036	
SP2	Rigid	496	25,393	41,941	9,495	7,364	0.91
	Combined	563	25,113	41,941	9,495	6,849	
SP-SM	Flexible	31	21,292	30,666	15,623	3,740	
	Rigid	333	20,317	38,035	10,226	5,879	1.05
	Combined	364	20,400	38,035	10,226	5,697	
	Flexible	34	18,989	31,218	7,088	6,541	
SC-SM	Rigid	1,838	20,435	47,655	3,875	6,647	0.93
	Combined	1,872	20,409	47,655	3,875	6,645	
	Flexible	393	24,704	67,793	11,728	6,695	
SC	Rigid	884	23,034	35,830	11,662	4,147	1.07
	Combined	1,277	23,548	67,793	11,662	4,931	
	Flexible	18	20,100	28,849	11,996	4,326	
CL	Rigid	79	24,964	37,358	16,431	4,399	0.81
	Combined	97	24,062	37,358	11,996	4,386	
	Flexible	23	15,976	31,279	8,711	6,394	
ML	Rigid	-	-	-	-	-	-
	Combined	23	15,976	31,279	8,711	6,394	
Average							1.02

Table 4.5 Backcalculated roadbed soil MR supporting flexible and rigid pavements

state where the sand deposit varies from more than 500 feet in the Cadillac area to about 200 feet in the Grand Rapid area. On the other hand, the SP1 roadbed soils under the rigid pavement along I-75 is located in the Upper Peninsula and the northern part of the Lower Peninsula of the State of Michigan where the bedrock is located at shallow depths (in some locations rock outcrop can be seen on both sides of I-75). The significant point is that the AREA method algorithm doesn't account for shallow stiff layer or bedrock.

Figure 4.20 Flexible vs. rigid backcalculated roadbed soil MR

Figure 4.21 Frequency of backcalculated MR of roadbed soils under flexible and rigid

pavements

The 1993 AASHTO pavement design guide suggests modifying k values when a stiff layer is present within ten feet from the pavement surface. Figure 4.22 depicts the modified k value due to three stiff layer depths versus the k value for an infinite stiff layer depth and the equation of each trend line. The data in the figure were developed based on the 1993 AASHTO Guide for Design of Pavement Structures. The noteworthy observation is that the affect of a stiff layer on the k values increases as the depth to stiff layer decreases. The implication of this is that the backcalculated k values for rigid pavements are artificially low for those cases where the stiff layer is located at shallow depths; the AREA method assumes an infinite depth to stiff layer.

Figure 4.22 Stiff layer effects on backcalculated k

The difference between the backcalculated MR values of the SP1 roadbed soils supporting flexible and rigid pavements is mainly related to the effects of the depths to stiff layer. To account for the presence of a shallow stiff layer under the rigid pavements supported by SP1 soil the equations shown in Figure 4.21 were utilized to modify the average MR value for SP1 soil supporting rigid pavement sections. Two and five foot depth to stiff layer were assumed and the average resultant was 30,303 psi. This results in the ratio between backcalculated roadbed soil MR supporting flexible pavements to rigid pavements of 1.01.

Ranges - The maximum, minimum and the average backcalculated MR values roadbed soils supporting flexible and rigid pavements are shown in Figures 4.23 and 4.24. It can be seen that the ranges of the backcalculated MR of soils supporting flexible pavements are, for most soil types, less than those of the same soils supporting rigid pavements. This is mainly due to the dates (month and year) when the FWD tests were conducted. For most rigid pavements, the FWD tests were conducted over several year period and from early summer to late fall. Whereas, most of the FWD tests on flexible pavement were conducted during the same year and within few months.

Figure 4.23 Range of backcalculated MR for SM, SP1, and SP2 soils

Figure 4.24 Range of backcalculated MR (SP-SM, SC-SM, SC, and CL soil)

The significance of the above scenario is that, for most rigid pavements, the range in the roadbed soil moisture contents is likely higher than that for flexible pavements. The larger variation in water content resulted in a larger variation in the backcalculated MR values. Further, for pavements supported by SP1 soils, the FWD tests conducted on flexible pavement sections were conducted over more environmental seasons and years than those on rigid pavements. Therefore, the range of the backcalculated MR values for the flexible pavement sections is larger than that for the rigid sections. Finally, it should be noted that no FWD tests were conducted on rigid pavements supported by ML soil.

4.4 Comparison between Backcalculated and Laboratory Determined Resilient Modulus Values

For a given soil classification, the resilient modulus is a fundamental soil property controlling its response to the applied stresses. However, this property changes with

changing soil type, water content, dry density, particle gradation, Atterberg limits, and stress states. Therefore, in order to compare the backcalculated and the laboratory measured MR values special care must be taken to match the conditions of the soils in question. In this study, all laboratory tests were conducted under a stress state that is compatible to that experienced by the soils in the field during the FWD tests. These conditions are discussed later in this section.

For each soil classification, Table 4.6 provides a list of the average MR value obtained in the laboratory and the average backcalculated MR value using the measured deflection data. The two sets of MR values and the line of equality between the two average values are plotted in Figure 4.25.

USCS AASHTO		Laboratory results		Backcalculation results		Average of backcalculated to
	AASIITO	Number of tests	Average MR (psi)	Number of tests	Average MR (psi)	average laboratory MR
SP1	A-1-a A-3	16	28,942	1,499	27,739	0.96
SP2	A-1-b A-3	10	25,685	563	25,113	0.98
SP- SM	A-1-b A-2-4 A-3	8	21,147	364	20,400	0.96
SC- SM	A-2-4 A-4	7	23,258	1,872	20,409	0.88
SM	A-2-4 A-4	17	17,028	304	25,602	1.50
SC	A-2-6 A-6 A-7-6	16	18,756	1,277	23,548	1.26
CL	A-4 A-6 A-7-6	9	37,225	97	24,062	0.65
ML	A-4	4	24,578	23	15,976	0.65
Average						1.03

Table 4.6 Laboratory determined and backcalculated roadbed soil MR values

Figure 4.25 Laboratory determined and backcalculated roadbed soil MR

The data in Table 4.6 and Figure 4.25 indicate that the ratio of the two averages of the MR values for the SP1, SP2, SP-SM, and SC-SM are close to one. Whereas the ratios for the other four soil types (SM, SC, CL, and ML) vary from 1.5 to 0.65. These values were expected because:

• For the SM and SC soils, the average laboratory MR values were obtained as the average MR values of soil samples compacted at water contents corresponding to degrees of saturation from about 25 to about 99 percent (which simulate the water contents throughout one year period). The FWD tests were mainly conducted in the summer and fall seasons where the water contents of roadbed soils are on the dry side of optimum. Hence, the backcalculated values are expected to be higher than the laboratory obtained values as shown in Table 4.6 and Figure 4.25.

• For the CL and ML soils on the other hand, the majority of the laboratory tests were conducted on soil samples that were on the dry side or near the optimum water content. The water contents of only four out of thirteen test samples were near or above the optimum water content, whereas the water contents of the other nine test samples were well below the optimum water content. Therefore, the average laboratory MR should be expected to be high. Since, the FWD tests were conducted in the summer and fall (the water content of the roadbed soil is near the optimum) the backcalculated MR value is relatively low. Hence, the average MR value obtained from the laboratory tests is higher than the average backcalculated value.

The two reasons are related to the effects of moisture contents of the test samples on the MR values. To explore such relationship for the ML soils, four cyclic load tests were conducted on ML soils using four different moisture contents. The test results are plotted in Figure 4.26. As can be seen from the figure, increasing the water content from about 11 percent (dry of optimum) to about 24 percent (wet of optimum) causes decreases in the MR value from about 40,000 to less than 2,000 psi. This more or less agrees with most results reported in the literature.

Once again, the test results in this research indicate that, if the roadbed soil samples were tested in the laboratory at similar water contents as the field water contents at the time when the FWD tests were conducted, then the ratios of the backcalculated to the laboratory obtained modulus values are close to unity. This finding contradicts those reported in the literature where the ratio between the backcalculated and the laboratory determined MR values vary from almost 1.6 to almost 5.0. The discrepancy between the finding in this study and the literature can be mainly related to the stress boundary

Figure 4.26 Moisture content affect on MR of ML soils

conditions used in this study. Most laboratory test data reported in the literature are based on stress ratio (the ratio between the axial cyclic stress and the confining pressure) of 2.0 or higher. Two stress ratios were used in the laboratory testing program of this research study, 1.33 and 2.0. However, all analyses were conducted on the resilient modulus values obtained from a stress ratio of 1.33. This ratio was obtained by conducting analyses of the stresses and strains delivered to the roadbed soil of a 25-inch thick pavement section due to 9000 pound wheel load (half the standard single axle load of 18000 pounds). The MICHPAVE finite element computer program, which is based on layered elastic theory, was used in the analyses. Results of the MICHPAVE computer program indicate that the roadbed soil is subjected to 8 psi vertical stress and to about 7.5 psi lateral stress. It should be noted that, in the analyses, a lateral earth pressure coefficient of 2.0 was used to simulate the locked-in lateral stress due to compaction. As stated earlier, for all soil types, the laboratory resilient modulus values obtained from cyclic stress of 10 psi and confining pressure of 7.5 psi were used in the analyses. Increasing the cyclic stress while keeping the confining pressure at a constant level yields higher stress ratio and lower resilient modulus values. In this study, the effects of the stress ratio on the resilient modulus values were analyzed by conducting tests at different stress ratios. Results of said tests are depicted in Figure 4.27. The figure shows the resilient modulus value as a function of the stress ratio. It can be seen, from the figure, that increasing stress ratios result in lower MR values. This in turn would yield higher ratios between the backcalculated and the laboratory determined MR values. The important point herein is that the resilient modulus test should be conducted at similar boundary conditions as those expected in the field. That is, the applied stresses in the laboratory should resemble those delivered to the roadbed soil due to 9000 pound load traveling over the pavement section in question. Higher stress ratios should be used when testing the base and subbase materials.

Figure 4.27 Laboratory obtained resilient modulus versus the cyclic stress level

Ranges – For each soil type, the ranges of the backcalculated and the laboratory determined MR values are shown in Figures 4.28 and 4.29. The backcalculated ranges of MR represent the variability in the soil moisture contents from early summer to late fall over several years. The ranges in the laboratory determined MR values, on the other hand, reflect variability in the water content of the soils and the compacted density. As it was expected, for fine soils (CL, ML, and SC), the effect of the water contents of the laboratory compacted test samples is higher than the variability in the density of the soils. For granular samples (e.g., SP1, SP2 and so forth), the effect of the density is higher than that of the water content.

Figure 4.28 Range of MR values (SM, SP1, SP2, and SP-SM soil)

Figure 4.29 Range of MR values (SC-SM, SC, CL, and ML soil)

4.5 Damage

A brief summary of seasonal effects on roadbed soil is presented in the next two subsections. The detailed analyses can be found in (Sessions 2008).

The State of Michigan is located in the AASHTO wet-freeze region. The average annual rainfall and snowfall in the State varies from one location to another. In the Lansing area, the average annual rainfall is about 32-inch and the average annual snowfall is about 56-inch. Further, the frost depth varies from about 7-feet in the Upper Peninsula to about 3-feet in the Lower Peninsula. These climatic data affect the behavior of the paving materials and roadbed soils. Because of the variability of the climatic conditions, the resilient modulus of any given soil is dynamic in nature and changes seasonally with changing water content and temperatures fluctuating below and above the freezing point.
One of the objectives of this study was to investigate the affects of seasonal variations on roadbed soil MR. In order to study the affects; FWD tests were to be conducted once in the summer/fall season and once during the spring season. The factor between backcalculated roadbed soil MR during the summer/fall and spring seasons would be the seasonal damage factor. However, due to MDOT budget and equipment restraints only two sets of FWD tests were conducted during both seasons. Figure 4.30 indicates that the data represents partial spring conditions with only 40% and 15% reductions in MR respectively. The closed symbols represent the summer/fall tests and the open symbols represent the spring like conditions, while the arrows indicate the reduction in roadbed soil MR. No reasonable conclusions can be drawn based on the limited data.

Figure 4.30 Partial spring condition FWD testing

CHAPTER 5

SUMMARY, CONCLUSIONS, & RECOMMENDATIONS

5.1 Summary

The resilient modulus of roadbed soil plays an integral role in the design of pavement systems. Currently, the various regions of MDOT use different procedures to determine the MR. Most of these procedures are applicable to M-E PDG level 3 designs. Therefore, a consistent, uniform, and implementable procedure that meets the requirements of M-E PDG for level 1, 2, and 3 designs, must be developed.

To do this in this study, the State of Michigan was divided into fifteen clusters where the physical and engineering characteristics of the soil were similar. The clusters were then divided into ninety nine areas to narrow down the ranges of the engineering and physical characteristics of the soils. Disturbed roadbed soil samples were collected from seventy five areas, and twelve undisturbed soil samples (Shelby tubes) were collected from areas with CL and SC roadbed soils. The soil samples were then tested to determine their moisture contents, grain size distributions, Atterberg limits (when applicable), and resilient modulus using cyclic load triaxial tests. Correlation equations (see Table 5.1) were then developed to estimate the MR values of the roadbed soil based on the results of the moisture content, degree of saturation, Atterberg limits, dry unit weight, specific gravity, and grain size distribution data.

Deflection data from FWD tests conducted throughout the state were obtained from MDOT. The test database consisted of hundreds of FWD tests from previous projects spanning the last 20+ years as well as fifty six tests conducted as part of this

96

0/011	Numbe	r of		
chen	Clusters	Areas		v anable equation
SP1	Q	8	$MR = 89.825(SVSP1)^{2.9437}$	$SVSPI = \frac{\gamma_a^{1.15}}{\left(P_4^{1.5} - P_{40}^{0.25}\right)^{0.5}}$
SP2	Q	12	$MR = 0.8295(SVSP2)^{3.6006}$	$SVSP2 = \frac{\gamma_{d}^{1.35} * P_{200}^{-0.1}}{\left(P_{4}^{1.5} - P_{40}^{0.25}\right)^{0.5}}$
SM	11	16	$MR = 0.0303(SVSM)^{4.1325}$	$SVSM = \frac{\gamma_a^{0.8}}{S^{0.15}}$
			MR = 45722exp[(-0.0258)(MI)]	$MI = LL^{1.1} + MC^{1.25}$
SC,CL, ML	10	28	$MR = 650486 \exp{-0.0501(S)}$	$S = \left[\frac{G_s * (MC/100) * \gamma_d}{G_s * \gamma_w - \gamma_d} \right] * 100$
MS-4S	7	8	MR = 1749.6exp0.0054(SVSP-SM)	SVSP-SM = $\frac{\gamma_d^{1.75}}{MC^{0.5} + LL^{0.6} + (P_{40} - P_{200})^{0.01}}$
SC-SM	5	2	MR = 39638exp - 0.0037(SVSC - SM)	SVSC-SM = $C_{u}^{0.2} * (LL^{1.15} + MC^{1.3})$
γ _d = dry u = moistur	init weight (J	ocf), P ₄ ,] _s = speci	P_{40} , P_{200} = percent passing sieves number 4, fic gravity of the solid ≈ 2.7 , γ_w = unit weig	40, and 200, S = saturation (%), LL = liquid limit, MC ht of water = 62.4 pcf, C _u = coefficient of uniformity

Table 5.1 Summary of predictive equations for each soil type

study. FWD data files with sufficient accompanying data were analyzed to backcalculate the roadbed soil MR.

5.2 Conclusions

Based on the field and laboratory investigations and the data analyses, the following conclusions were drawn:

- Most of the roadbed soils in the State of Michigan can be divided into the following eight soil types:
 - Gravelly sand (SG)
 - Poorly graded sand (SP), which can be divided into two groups SP1 and SP2 based on the percent fine contents.
 - Silty sand (SM)
 - Poorly graded sand silty sand (SP-SM)
 - Clayey sand silty sand (SC-SM)
 - Clayey sand (SC)
 - Low plasticity clay (CL)
 - Low plasticity silt (ML)
- 2. In general, the backcalculated MR values of roadbed soil supporting flexible pavement sections are similar to those of the same soil type supporting rigid pavement sections.
- 3. In general, the backcalculated MR values of roadbed soil are similar to those of the same soil type obtained from triaxial cyclic load laboratory testing.
- 4. The backcalculated MR values, in this thesis, satisfy the M-E PDG requirements for level 1, 2, and 3 design.

- 5. Relatively accurate correlation equations between the laboratory obtained resilient modulus values and some of the soil parameters were developed and are summarized in Table 5.1.
- MR values obtained from the correlation equations listed in Table 5.1 satisfy the M-E
 PDG requirements for level 2 and 3 design.
- 7. An average resilient modulus value for each soil type, except the SG, and for the two SP groups were developed and are listed in Table 5.2 and presented in Figure 5.1.
- 8. The MR values in Figure 5.1 satisfy the M-E PDG requirements for level 3 design.
- 9. The AREA method does not account for the effects of shallow stiff layers.
- 10. Equation 5.1 should be used when converting k, backcalculated from the AREA method, to MR of roadbed soils.

$$MR = (4)(19.4)k$$
 Equation 5.1

R	Roadbed type	Average	MR (psi)
USCS	AASHTO	Laboratory Determined	Backcalculated
SM	A-2-4, A-4	17,028	25,602
SP1	A-1-a, A-3	28,942	27,739
SP2	A-1-b, A-3	25,685	25,113
SP-SM	A-1-b, A-2-4, A-3	21,147	20,400
SC-SM	A-2-4, A-4	23,258	20,409
SC	A-2-6, A-6, A-7-6	18,756	23,548
CL	A-4, A-6, A-7-6	37,225	24,062
ML	A-4	24,578	15,976
SC/CL/ML	A-2-6, A-4, A-6, A-7-6	25,291	23,459

Table 5.2 Average roadbed soil MR values

olor Roadbed soil MR (psi	17,028	28,942	25,685	21,147	23,258	25,291
Soil	SM	SPI	SP2	SP-SM	SC-SM	C/CL/ML

Figure 5.1 (cont'd)

5.3 Recommendations

Based on the results and conclusions of this study, it is strongly recommended that:

- Additional deflection data should be collected during spring conditions and used to calibrate the seasonal damage factors that were developed based on laboratory data.
- MDOT implements the findings of this study by using deflection data collected at the project level to backcalculate the resilient modulus of the roadbed soil to meet the requirements of M-E PDG design levels 1, 2, and 3.
- MDOT implements the findings of this study by adopting the correlation models presented in Table 5.2 for M-E PDG design levels 2 and 3.
- MDOT implements the findings of this study by adopting the data presented in Figure
 5.1 for M-E PDG design level 3.
- For rigid pavements, MDOT uses Equation 5.1 to convert backcalculated k of roadbed soil to MR and vice versa.
- Backcalculated MR needs not be converted to laboratory MR values, the two are the similar if the laboratory test boundary conditions are similar to those under FWD in the field.

APPENDICES

APPENDIX A

Laboratory and field test results

This appendix houses the laboratory and field test results arranged in table format as follows:

- For each of the 15 clusters, Table A.1 provides a list of the various percentile of soil types found in each area within the clusters.
- .Table A.2 provides a lists of the results of pocket penetrometer and vane shear tests for each of the 99 areas within the 15 clusters.
- Table A.3 provides a list of the moisture content, sieve analyses, and Atterberg limit test results for each soil type within the 99 areas.
- Table A.4 lists the results of the triaxial cyclic load tests.
- Table A.5 lists the MR results for each triaxial cyclic load test.

Table A.1 Soil percentages for each area within the 15 clusters (Sessions 2008)

Proposed	Sampung	Х	Х		Х		Х	~	<	X	~	<	~	<	Х	Х	Х	Х
Silty Clay	(0/0)																	
Clay	(0/)																	
Mucky Sand	(%)												10					
Loam*	(0/)																	14.5
Clayey Loam	(%)	ATA		9.1	18.3	12.5	ATA	11.3	14.8									
Sandy Loam	(%)	NO D.	6	13.4	24.9	28.1	NOD	6.7	5.3			16	37.4			6.5	28.4	59.9
Silty Loam	(%)		18.7	3	9.3	5.6		7.3	12.2	63	13	11.5		16.2		10		
Loamy Sand	(%)		38	12	9.4	15.3		9.2	8.6	16	33.1	9.4	9.4	34.4	4.1	4.4		
Sand	(0/)		18.6	30.6	12	12.8		37	29.1	8	37	29.6	13.2	15.2	33.3	35	50	
Muck	(0/)		12.8	24.3	24.2	25		21	20	9.2	14.8	29.2	20	25	58.4	37.4	16.1	24.8
Area		01	02	03	04	05	01	01	02	04	05	03	90	02	01	05	03	04
Cluster		01	01 02							03					10	5		

Note: empty cells indicate 0 percent of that soil type.

Proposed Sampling	x		x		x	×	x	x	x	>	<	x	x	x	х	>	<
Silty Clay (%)																	
Clay (%)																	
Mucky Sand (%)													25.1				
Loam* (%)						39.2				26	17.1	65.3		48		10.1	7.1
Clayey Loam (%)																	
Sandy Loam (%)			2			13	9.3	8.2	4.7	8	12.2	11.4		7.9	12.7	10	7.5
Silty Loam (%)																	
Loamy Sand (%)	72.4	39.3	7.8	17.4	1.7	25.2	30.4	7.5	5.9	39.5	41.6	6.8	7	18.6	26.3	28.6	36.6
Sand (%)	5	41.5	74.7	51.4	97.9	14.4	53.5	71.8	75.6	25.7	23.6	14.9	63.2	18.4	53.9	32.1	34.3
Muck (%)	22	13.1	14.3	26.3		4.4	3.3	8.1	8.1					2	6.2	15.1	13
Area	10	02	03	04	05	90	01	02	03	04	05	04	02	05	03	01	90
Cluster	0								90					10	10		

Table A.1 (cont'd)

Note: empty cells indicate 0 percent of that soil type.

ont'd)	
0 1.1 0	
ble A	
Tal	

Proposed Sampling	Х	Х	~	<	Х	Х	Х	Х	Х	Х	Х	>	<		X	
Silty Clay (%)																
Clay (%)																
Mucky Sand (%)																
Loam* (%)	72.1	86.8	58.8	49.7	21.1	8	33.4	7.3	62.8	83	21.4	12.4	9.6	52	32.9	41.9
Clayey Loam (%)							9.6					6.3				
Sandy Loam (%)		2.6	11.3	6.1		11	3.2	3.3	3.4	6.4	18.1	10.1	22.4	23.2	28.3	44.5
Silty Loam (%)							43.3									
Loamy Sand (%)	24.9	8.6	15.6	29.2	44.9	22.2	8.2	64.4	19.1		19.4	40.5	43.3	11.2	22.5	8.6
Sand (%)	2	2	12.4	15	29.8	39.4		6.7	12.1			22.8	14.8	3		
Muck (%)						19.2		16		8.9	33.4		4.3	4.8	12.2	2.2
Area	03	04	01	05	02	90	10	01	08	05	03	02	60	07	04	90
Cluster			00	90							00	60				

Note: empty cells indicate 0 percent of that soil type.

* Loam contains sand, silt and clay. The breakdown of the loam is unknown at this point.

110

T 50															-	
Proposec Samplin _§	>	<	Х	>	<	x	X	X	×			x	x	×	>	<
Silty Clay (%)																
Clay (%)																
Mucky Sand (%)																
Loam (%)	94.8	75.8	73.8	60.9	55	11.1	48.5	38.1	57.5	46.1	48.4	15.6	25.3	10.3	30.5	18.5
Clayey Loam (%)			11.8													
Sandy Loam (%)	4.1	12.7	13.2	15.3	29.3	29.8	31.3	34.4	34.4	39.9	40.6	27.6	54.8	65.4	67.2	72.6
Silty Loam (%)																
Loamy Sand (%)		8.5		11.5	11.4	27.6		11.1	6.2	8		34.5	5.8	11.6		
Sand (%)																
Muck (%)				10.8	3.7	30.1	16.7	10.6		3.2	7.1	17	6.9	11.4		9
Area	80	10	11	90	05	60	64	03	01	07	02	01	02	05	03	6
Cluster						10								11		

Note: empty cells indicate 0 percent of that soil type.

	-
ŝ	ਰ
	· ·
	=
	5
	Ξ.
	2
	_
1	-
	-
1	<.
	<u> </u>
	0
1	~
è	

Proposed Sampling	A	¢	х	Х	Х	^	х		A	v	Х	Х	Х	Х	Х
Silty Clay (%)															
Clay (%)															
Mucky Sand (%)															
Loam (%)	24.7	9.4		37.6	84	17.7	19	14.8	5.8	4.4	55.5	60	34.3		4.8
Clayey Loam (%)			17.9	26.5				39.8	28.8	17.9	37.8	14.2		24.9	
Sandy Loam (%)	36.4	53.2	34.3	16.5	7	56.5	62.5	28.1	30.5	34.3	6.6		37.1	20	44
Silty Loam (%)		11.4										13.6		28.6	
Loamy Sand (%)	18.2	5.6		12			5.8	5.7	28.5	36.2		4	11.6	4.3	31.4
Sand (%)	3.9	9.2	17.4					4.4	5.1	7.2					
Muck (%)	9.2	7.9	22.7	5.4	6.2	18.5	9.2					6.2	12	13.1	12.4
Area	01	02	90	64	07	03	05	08	07	90	05	04	02	03	01
Cluster				12								2			

Note: empty cells indicate 0 percent of that soil type.

	_
1	3
•	
•	-
	-
	-
_ 0	-
	ъ.
	۰.
~	-
	•
-	~
- 2	ч.
- 0	D.
-	-
-	=
- 6	τ.

lty Proposed lay Sampling	X	х	X	Х	X	>	<	2.5 X	×	х	x	Х	Х	~	<	х	~	<
Cla (%								2										
Mucky Sand (%)																		
Loam (%)	14.8		3.5	50	12.9	50.9	64.3				17.7	62.8	33.1	39.1	31	8.5	37	10
Clayey Loam (%)	18.7	35.5	53.2	13.2	13.5			57	ATA	ATA	33.7							
Sandy Loam (%)	20.3	21.4			28.9	36.7	16.2	6	NOD	NO D.	4.9	7	15.3	16.2	23.5	23.9	37.5	206
Silty Loam (%)			25.5	28.4	12.3			4.6			22.5	3.8	14.9			60.3	10.4	
Loamy Sand (%)	29	28.4	11		7.2	6	3.5	5.8			6.1	13.8	5.5	36	28	4.8	7.8	
Sand (%)		3			21.4		11.2				7.4	5.1	6.4		15			
Muck (%)	8.2	9.5	5.2										20.9					
Arca	01	02	03	04	07	08	60	10	05	90	04	90	02	07	01	03	80	20
Cluster					1	<u>+</u>								31	CI			

Note: empty cells indicate 0 percent of that soil type.

Sample number	Location	Vane shear test (Kg/cm ²)	Pocket penetrometer (Kg/cm ²)
M-045-S (01-01)	405 feet South of Ontonagon River	didn't fail	didn't penetrate
U-002-E (02-01)	385 feet East of M-45	2	2.3
M-028-W (02-02)	~1000 feet West of M-141	4	3.5
M-028-W (02-03)	~2000 feet East of M-35	0.25	1.4
U-002-E (02-04)	765 feet East of Spalding Rd	didn't fail	didn't penetrate
U-002-E (03-01)	400 feet East of Hwy 13	0.26	0.4
M-028-W (03-02)	1500 feet North of M-77	0.5	0.7
M-028-W (03-03)	500 feet West of Basnau Rd	0.25	3
U-002-E (03-03)	200 feet East of M-117	1	1.3
I-075-N (03-04)	mile marker 380	0.25	0.4
I-075-N (03-05)	mile marker 368	didn't fail	didn't penetrate
U-023-S (04-01)	320 feet North of F 05 Co Rd	0.5	0.9
M-068-W (04-02)	180 feet West of US-23	0.5	2
M-068-W (04-03)	150 feet West of Little Ocqueoc River	0.5	0.9
M-065-S (04-04)	160 feet South of Elm Hwy	didn't fail	didn't penetrate
M-032-W (04-05)	220 feet East of Herron Rd	3	5.1
U-131-N (05-01)	200 feet South of Michigan Fisheries Visitor Center	0.25	-
U-127-N (05-04)	120 feet North of Co Rd 300	0.25	0.4
M-033-S (05-05)	750 feet South of Peters Rd	didn't fail	didn't penetrate
M-072-W (05-06)	330 feet West of M-32	9	3.7
M-132-N (06-01)	1000 feet North of Addis Rd (paved rd)	0.75	1.4

Table A.2 Pocket penetrometer and vane shear test results

-
· ·
-
5
~
Ο.
\sim
~
C.4
-
<.
٥.
-
0
-
-

		Vane shear	Pocket
Sample number	Location	test (Kg/cm ²)	penetrometer (Kg/cm ²)
I-075-N (06-02)	160 feet North of Co Rd 662	0.25	1.8
U-031-N (06-03)	307 feet North of M-46		
I-196-N (06-05)	110 feet North of Schmuhl Rd	1	3.3
M-020-W (07-02)	\sim .5 mile East of 13 Mile Rd		
M-020-E (07-03)	~500 feet East of Cottonwood Ave		
U-127-N (07-04)	100 feet North of Jefferson Rd	didn't fail	didn't penetrate
U-127-N (07-05)	65 feet North of Vernon Rd	5	3.6
M-061-E (07-06)	420 feet East of left hand turn on M-61 (off US- 127)		
M-061-E (08-02)	165 feet West of Hockaday	0.5	0.6
U-010-W (08-03)	65 feet West of bridge before Stark Rd	didn't fail	2.3
U-010-W (08-04)	145 feet West of Mackinaw Rd	didn't fail	didn't penetrate
I-075-S (08-05)	115 feet South of Prevo Rd	didn't fail	didn't penetrate
I-075-N (08-06)	80 feet North of bridge after exit 195	1.7	2.1
U-131-S (09-01)	160 feet South of Lake Montcalm Rd		
I-096-W (09-02)	141 feet West of Morse Lake Ave		
U-131-S (09-03)	105 feet South of 110th Ave	0.5	1.1
U-131-S (09-05)	60 feet South of 'Reduce Speed 55 MPH' sign right where it turns from interstate to freeway	0.5	1.1
M-044-E (09-07)	Station 137+10	-	
I-075-S (09-08)	650 feet South of Wadsworth Rd	1	
M-024-S (09-09)	20 feet North of Burley Rd	1.25	1.9

-	r penetrometer (Kg/cm ²)	1	4	1.3	4	3.2	3.1	didn't penetrate	2.6	•	2.5	5.5		2.6	1.5	6	3.5	0.0	5	
	Vane shea test (Kg/cm	0.5	ŝ	-	1.75	2.5	2.7	didn't fai	3		1.5	3	•	1	-	didn't fai	3	0.5	3.5	
	Location	172 feet East of Grand River Rd	75 feet North of Base Line Hwy	210 feet West of bridge before exit 97	150 feet North of Island Hwy	100 feet North of Five Points Hwy	140 feet West of Dietz Rd	120 feet East of Britton Rd	800 feet East of Shepards Rd	160 feet North of mile marker 42	132 feet West of exit 110 on ramp	135 feet West of Southbound I-69 overpass	95 feet South of Bridge after exit 10	95 feet West of 29 Mile Rd	36 feet West of bridge after exit 135	100 feet East of Emarld Rd	53 feet West of Mt Hope Rd	120 feet West of Person Hwy	250 feet North of Best Rd	
	Sample number	I-069-E (09-10)	I-069-N (10-01)	I-096-W (10-03)	I-069-N (10-04)	I-069-N (10-05)	I-096-W (10-09)	I-069-E (10-10)	M-021-E (10-11)	I-069-N (11-01)	I-094-W (11-02)	M-060-W (11-03)	I-069-S (11-05)	I-094-W (12-01)	I-094-W (12-03)	U-012-E (12-04)	I-094-W (12-06)	U-012-E (12-07)	M-024-S (13-01)	

Table A.2 (cont'd)

Pocket penetrometer (Kg/cm ²)	P	didn't penetrate	1.6	3.5	3.5	3.5	5	0.5	1	4.3	4.5	1	3	4	2.3	0.7	didn't penetrate	2.8	2.2	2.7
Vane shear test (Kg/cm ²)	I	didn't fail	0.75	didn't fail	3	4.5	4.5	0.25	•	3.5	didn't fail	I	2.5	didn't fail	2	0.5	didn't fail	1.5	1.3	1.5
Location	Station 75+02	Between Maple Rd and Industrial Ave	60 feet North of Sherman	Station 38+00	60 feet South of Gaynier Rd	40 feet South of Nadeau Rd	~1000 feet South of Ready Rd	150 feet North of Pardee	Station 23+00	300 feet West of Monroe Blvd	~800 feet East of Greenfield Rd	1500 feet South of Canal Rd	350 feet West of Wadhams Rd	227 feet West of Palms Rd	300 feet South of M-46	210 feet East of Murray Rd	200 feet East of Bobcock St 37 feet East of Village Limit sign	200 feet North of Day Rd	170 feet North of North Huron Dr	650 feet South of Thompson Rd
Sample number	I-094-W (13-04)	U-012-E (13-05)	U-023-N (13-07)	M-010-E (13-08)	I-075-S (14-01)	I-075-S (14-02)	U-024-S (14-03)	U-024-S (14-04)	I-075-S (14-04)	I-094-W (14-05)	M-153-E (14-06)	M-053-S (14-07)	I-094-W (14-09)	I-094-W (14-10)	M-053-S (15-02)	M-090-E (15-03)	M-090-E (15-04)	M-025-S (15-05)	M-25-N (15-06)	M-019-S (15-07)

		Natural	Sample			Percent	passing	sieve #			Atte	erberg	limits				Cu =	$C_{C} =$	Classifi	cation
Sample number	Shelby tube	water content	weight (g)	3/8 inch	4	10	20	40	100	200	LL	PL	PI	D ₁₀	D ₃₀	D ₆₀	D ₆₀ / D ₁₀	$\begin{array}{c c} D_{30}^{2} \\ (D_{60}) \\ (D_{10}) \end{array}$	AASHTO	USCS
M-045-S (01-01)		11.5	298.8	99.5	99.3	98.9	96.8	96.7	77.2	66.7	26	16	10	0.0030	0.006	0.040	13.33	0.30	A-6	CL
U-002-E (02-01)		16.8	303.3	99.1	97.8	96.6	92.3	68.1	46.4	39.2	18	-	NP	0.008	0.040	0.300	37.50	0.67	A-4	SM
M-028-W (02-02)		21.0	200.0	100.0	99.4	98.0	93,4	83.2	64.5	56.1	23	-	NP	0.0080	0.024	0.110	13.75	0.65	A-4	ML
M-028-W (02-03)		6.6	535.8	100.0	99.3	97.2	92.1	81.8	23.4	6.1	16	-	NP	0.091	0.175	0.285	3.13	1.18	A-1-b	SP-SM
U-002-E (02-04)		10.8	200.0	100.0	99.4	98.0	93.4	83.2	64.5	54.1	19	-	NP	0.0100	0.050	0.110	11.00	2.27	A-4	ML
U-002-E (03-01)		5.0	525.3	100.0	99.8	99.6	98.5	92.6	15.8	6.5	13	-	NP	0.130	0.190	0.275	2.12	1.01	A-3	SP-SM
M-028-W (03-02)		3.1	519.1	99.9	99.6	99.3	97.9	89.7	14.0	3.0	NA	NA	NP	0.150	0.190	0.280	1.87	0.86	A-3	SP
U-002-E (03-03)		13.1	222.9	100.0	96.8	93.7	88.7	77.8	31.7	25.1	15	-	NP	0.002	0.120	0.300	150.00	24.00	A-2-4	SM
M-028-W (03-03)		4.8	520.2	94.1	87.5	82.6	71.2	45.5	11.1	6.4	21	-	NP	0.140	0.285	0.600	4.29	0.97	A-3	SP-SM
I-075-N (03-04)		9.4	549.2	99.9	99.8	99.5	98.4	91.3	10.0	1.5	NA	NA	NP	0.160	0.200	0.280	1.75	0.89	A-3	SP
I-075-N (03-05)		21.2	197.8	100.0	99.9	94.1	92.4	80.9	60.3	48.2	55	22	33	0.001	0.002	0.150	150.00	0.03	A-7-6	SC
U-023-S (04-01)		22.0	547.2	98.8	98.8	98.5	96.4	90.3	10.3	4.3	NA	NA	NP	0.170	0.200	0.280	1.65	0.84	A-3	SP
M-068-W (04-02)		4.0	205.0	99.9	98.6	91.0	51.3	25.2	16.0	14.1	18	12	6	0.040	0.500	1.000	25.00	6.25	A-2-4	SC-SM
M-068-W (04-03)		33.3	515.6	100.0	100.0	99.7	98.7	89.8	14.3	3.7	NA	NA	NP	0.160	0.190	0.280	1.75	0.81	A-3	SP
M-065-S (04-04)		8.1	201.5	99.3	95.4	91.3	87.5	72.7	30.4	21.5	30	-	NP	0.001	0.150	0.300	300.00	75.00	A-2-4	SM
M-032-W (04-05)		9.6	203.4	100.0	99.8	99.6	99.0	95.0	64.6	48.7	19	12	7	0.001	0.006	0.130	130.00	0.28	A-4	SC-SM
U-131-N (05-01)		13.1	199.4	99.8	99.2	96.4	95.0	78.7	43.5	29.2	14	-	NP	0.016	0.140	0.280	17.50	4.38	A-2-4	SM
U-127-N (05-04)		8.9	527.6	91.8	84.4	79.1	73.3	53.6	6.4	3.7	NA	NA	NP	0.180	0.260	0.500	2.78	0.75	A-3	SP
M-033-S (05-05)		3.5	525.7	63.1	57.5	45.4	35.7	26.7	7.8	4.6	NA	NA	NP	0.185	0.510	6.000	32.43	0.23	A-1-a	SG
M-072-W (05-06)		14.3	201.0	100.0	99.6	98.8	97.3	91.4	56.1	39.9	22	11	11	0.0070	0.035	0.160	22.86	1.09	A-6	SC
M-132-N (06-01)		15.0	521.7	99.5	99.0	98.5	96.8	78.7	8.8	4.2	NA	NA	NP	0.160	0.220	0.320	2.00	0.95	A-3	SP
I-075-N (06-02)		3.4	518.0	95.1	93.7	92.8	90.4	63.4	5.8	4.1	NA	NA	NP	0.170	0.260	0.400	2.35	0.99	A-3	SP
U-031-N (06-03)		5.8	1060.3	99.5	99.1	98.4	97.4	87.2	7.9	0.5	NA	NA	NP	0.170	0.210	0.300	1.76	0.86	A-3	SP
I-196-N (06-05)		10.5	1085.6	99.6	98.4	96.2	91.2	84.4	26.5	5.9	15	-	NP	0.089	0.160	0.275	3.09	1.05	A-2-4	SP-SIVI
M-020-W (07-02)		4.2	1003.7	99.6	99.3	98.7	97.9	88.0	2.1	0.8	NA	NA	NP	0.180	0.220	0.300	1.07	0.90	A-3	SF
М-020-Е (07-03)		4.5	513.3	99.2	97.9	96.8	94.5	89.6	21.2	3.3	NA	NA	NP	0.110	0.190	0.280	2.55	1.17	A-3	SC
U-127-N (07-04)		10.9	200.8	100.0	98.8	96.6	95.4	90.3	38.3	26.9	22	12	10	0.001	0.100	0.230	172 72	43.40	A-6	SC
U-127-N (07-05)	X	11.2	203.9	100.0	98.3	92.6	87.3	79.9	53.7	40.5	23	14	9	0.0011	0.006	0.190	210.00	0.17	A-6	SC
U-127-N (07-05)		14.4	213.7	99.8	98.2	85.2	81.0	74.8	52.1	43.7	24	14	10	0.0010	0.008	0.210	210.00	0.50	A-0	00

Table A.3 (cont'd)

		Matural				Dercent	naccino	cieve #			A tt.	erberg	limite	1	1	T	T	C -	Closeif	iontion
	Shelby	water	Sample	2/9		1 creent	passing	510 00 #		1	710	Interg		-			C _U =	D_{cc}^{2}	Classii	
Sample number	tube	content	weight	inch	4	10	20	40	100	200	LL	PL.	PI	D ₁₀	D ₃₀	D ₆₀	D ₆₀ /	(D ₆₀)	AASHTO	USCS
		(%)	(g)	9.500	4.750	2.000	0.850	0.425	0.150	0.075	1	1					D ₁₀	(D ₁₀)		0000
M-061-E (07-06)		22.1	198.5	100.0	98.8	93.3	84.7	59.3	23.7	17.9	19	-	NP	0.040	0.190	0.430	10.75	2.10	A-2-4	SM
M-061-E (08-02)		20.3	223.1	100.0	99.7	93.9	77.8	51.9	26.1	23.2	11	-	NP	0.050	1.000	0.520	10.40	38.46	A-2-4	SM
U-010-W (08-03)		21.4	200.2	100.0	100.0	99.8	99.7	97.6	61.0	55.2	32	14	18	0.001	0.002	0.140	140.00	0.02	A-6	CL
U-010-W (08-04)		8.2	200.1	99.9	99.9	98.8	96.6	84.5	48.8	36.7	29	13	16	0.001	0.011	0.200	200.00	0.61	A-6	SC
U-010-W (08-04)	X	15.0	205.1	98.0	98.9	96.5	95.8	80.3	42.5	33.3	27	13	14	0.0009	0.018	0.200	222.22	1.80	A-6	SC
I-075-S (08-05)		8.9	201.0	100.0	99.9	97.7	94.5	69.4	40.3	33.5	25	12	13	0.001	0.011	0.300	300.00	0.40	A-2-6	SC
I-075-N (08-06)		11.8	201.5	100.0	99.2	96.8	93.7	85.4	36.6	26.2	17	10	7	0.001	0.011	0.270	270.00	0.45	A-2-4	SC- SM
U-131-S (09-01)		4.6	1056.3	99.0	98.0	97.4	97.0	83.7	2.5	0.5	NA	NA	NP	0.180	0.220	0.300	1.67	0.90	A-3	SP
I-096-W (09-02)		9.9	206.2	100.0	99.0	97.3	93.8	82.7	40.9	30.5	17	13	4	0.001	0.075	0.240	240.00	23.44	A-2-4	SC- SM
U-131-S (09-03)		1.9	530.4	100.0	100.0	99.9	99.8	97.2	6.0	0.4	NA	NA	NP	0.180	0.200	0.290	1.61	0.77	A-3	SP
U-131-S (09-05)		3.6	1025.6	97.5	90.2	80.8	69.5	45.8	3.1	1.3	NA	NA	NP	0.185	0.295	0.605	3.27	0.78	A-3	SP
M-044-E (09-07)		8.7	206.5	100.0	99.5	97.7	94.1	85.5	37.7	26.7	14	-	NP	0.020	0.110	0.250	12.50	2.42	A-2-4	SM
I-075-S (09-08)		20.2	216.1	99.1	96.1	91.8	89.7	85.5	62.3	45.8	31	14	17	0.001	0.004	0.140	140.00	0.11	A-4	SC
M-024-S (09-09)		13.3	198.6	100.0	99.6	97.6	95.4	93.2	45.0	24.1	20	-	NP	0.012	0.090	0.200	16.67	3.38	A-2-4	SM
I-069-E (09-10)		7.1	527.8	98.3	93.4	83.0	66.3	36.8	5.2	3.1	NA	NA	NP	0.190	0.340	0.700	3.68	0.87	A-3	SP
I-069-N (10-01)		10.1	534.1	94.9	88.7	81.1	67.6	49.2	16.7	8.0	16	11	5	0.093	0.230	0.600	6.45	0.95	A-3	SP-SM
I-096-W (10-03)		14.7	199.7	100.0	98.4	93.9	90.1	82.0	29.5	17.5	29	14	15	0.0600	0.150	0.280	4.67	1.34	A-2-6	SC
I-069-N (10-04)		11.1	198.5	100.0	99.3	94.1	86.4	74.9	30.1	17.6	16	-	NP	0.010	0.150	0.200	20.00	11.25	A-2-4	SM
I-069-N (10-05)		24.0	204.0	100.0	100.0	97.8	87.6	54.9	43.2	37.3	19	-	NP	0.010	0.070	0.500	50.00	0.98	A-2-4	SM
I-096-W (10-09)		15.1	200.9	100.0	99.6	93.7	91.0	61.1	38.0	30.4	19	-	NP	0.006	0.075	0.410	68.33	2.29	A-2-4	SM
I-069-E (10-10)		12.8	204.9	98.0	96.1	92.4	90.5	84.7	57.2	37.7	26	15	11	0.001	0.009	0.170	170.00	0.48	A-6	SC
M-021-E (10-11)		15.0	230.2	99.4	92.1	85.9	79.5	72.2	46.3	33.8	23	14	9	0.001	0.030	0.270	270.00	3.33	A-2-4	SC
I-069-N (11-01)		9.1	1032.9	90.3	87.1	83.0	77.8	63.9	15.9	6.9	14	-	NP	0.120	0.210	0.390	3.25	0.94	A-3	SP-SM
I-094-W (11-02)		7.1	1022.7	95.0	91.7	87.1	77.5	51.2	6.2	2.7	NA	NA	NP	0.170	0.270	0.510	3.00	0.84	A-3	SP
M-060-W (11-03)		10.5	199.3	99.7	99.0	97.4	90.6	67.0	37.6	31.1	22	15	7	0.004	0.025	0.330	82.50	0.47	A-2-4	SC- SM
I-069-S (11-05)		6.6	201.1	100.0	99.1	93.9	86.9	77.3	49.3	38.6	15	11	4	0.002	0.034	0.210	105.00	2.75	A-4	SC- SM
I-094-W (12-01)		8.6	199.8	100.0	95.2	81.8	73.9	51.8	26.5	20.0	16	12	4	0.038	0.180	0.560	14.74	1.52	A-2-4	SC- SM
L004 W (12.02)		13.2	527.4	97.4	95.4	91.6	83.0	68.3	18.7	7.4	16	-	NP	0.095	0.195	0.345	3.63	1.16	A-3	SP-SM
IL-012 E (12.04)		49	200.4	99.9	98.9	94.2	89.4	73.7	36.6	23.0	16	-	NP	0.003	0.110	0.300	100.00	13.44	A-2-4	SM

Table A.3 (cont'd)

		Natural	Sample			Percent	. passing	, sieve #			Att	erberg	limits				Cu=	C _C =	Classifi	cation
Sample number	Shelby tube	water content	weight (g)	3/8 inch	4	10	20	40	100	200	LL	PL	PI	D ₁₀	D ₃₀	D ₆₀	D ₆₀ /	$\begin{array}{c c} D_{30}^{2/} \\ (D_{60}) \end{array}$	AASHTO	USCS
		(%)	(6)	9.500	4.750	2.000	0.850	0.425	0.150	0.075	4	4				4	1010	(D ₁₀)		
I-094-W (12-06)		12.1	213.7	100.0	99.8	92.2	90.5	86.0	35.2	23.8	15	-	NP	0.005	0.130	0.250	50.00	13.52	A-2-4	SM
U-012-E (12-07)		7.0	513.8	67.5	57.0	42.2	25.8	16.0	10.0	8.1	18	-	NP	0.160	1.000	6.000	37.50	1.04	A-1-a	SG
M-024-S (13-01)		10.6	196.0	100.2	98.4	93.4	90.2	85.2	59.4	45.1	18	15	3	0.001	0.013	0.150	150.00	1.13	A-4	SM
M-059-W (13-02)		11.6	1033.3	99.4	97.9	95.1	91.2	65.7	8.9	1.7	NA	NA	NP	0.160	0.220	0.380	2.38	0.80	A-3	SP
M-014-W (13-03)		9.3	198.1	100.0	99.1	94.0	90.0	85.7	62.7	49.2	22	13	9	0.001	0.006	0.130	130.00	0.28	A-4	SC
I-094-W (13-04)		8.0	1005.6	98.1	95.8	90.5	82.8	65.9	13.1	3.5	NA	NA	NP	0.140	0.210	0.390	2.79	0.81	A-3	SP
U-012-E (13-05)	<u> </u>	14.9	205.0	100.0	99.9	99.0	97.8	95.5	65.6	56.7	33	17	16	0.001	0.002	0.100	111.11	0.04	A-6	CL
U-023-N (13-07)		9.8	529.5	94.1	83.4	66.2	53.5	43.3	12.0	5.7	13	-	NP	0.130	0.280	1.350	10.38	0.45	A-3	SP-SM
M-010-E (13-08)		14.0	201.0	100.0	99.7	98.1	95.0	90.8	74.3	59.9	24	14	10	0.0010	0.003	0.075	75.00	0.12	A-6	CL
М-010-Е (13-08)	X	12.3	207.0	100.0	98.0	95.6	93.5	88.3	72.6	54.8	23	14	9	0.0009	0.015	0.090	100.00	2.78	A-6	CL
I-075-S (14-01)	X	18.4	204.5	100.0	99.9	89.4	87.9	67.6	54.2	48.2	42	21	21	0.0090	0.015	0.250	27.78	0.10	A-7-6	SC
I-075-S (14-01)		25.4	200.6	100.0	96.9	78.9	76.2	68.4	47.8	41.2	45	19	26	0.0007	0.003	0.270	385.71	0.05	A-7-6	SC
I-075-S (14-02)		18.7	201.0	100.0	98.3	97.6	92.6	85.5	64.1	46.1	41	19	22	0.001	0.003	0.190	211.11	0.06	A-7-6	SC
U-024-S (14-03)		19.2	202.3	100.0	99.4	98.8	91.8	79.7	55.3	41.4	40	13	27	0.001	0.003	0.190	271.43	0.07	A-6	SC
I-075-S (14-04)		15.8	200.8	100.0	99.9	99.8	99.7	96.4	59.4	46.9	34	17	17	0.001	0.003	0.260	288.89	0.04	A-6	SC
U-024-S (14-04)		22.2	543.7	100.0	100.0	99.8	99.6	96.3	23.3	2.5	NA	NA	NP	0.100	0.170	0.255	2.55	1.13	A-3	SP
I-094-W (14-05)		21.6	199.0	99.7	97.6	97.5	89.7	78.0	56.7	46.7	34	21	13	0.001	0.013	0.160	160.00	1.06	A-6	SC
M-153-E (14-06)	X	26.0	209.4	100.0	99.8	99.0	98.3	92.7	70.1	51.1	51	19	32	0.0090	0.018	0.100	11.11	0.36	A-7-6	SC
M-153-E (14-06)		21.6	202.9	100.0	100.0	98.4	98.1	94.1	64.4	49.9	52	20	32	0.0007	0.001	0.140	200.00	0.02	A-7-6	SC
M-053-S (14-07)		5.9	529.1	93.1	87.5	81.5	70.3	55.0	9.3	4.7	NA	NA	NP	0.170	0.240	0.500	2.94	0.68	A-3	SP
I-094-W (14-09)	X	26.3	205.1	100.0	100.0	98.5	97.9	85.2	59.8	55.8	42	23	19	0.0010	0.010	0.150	150.00	0.67	A-7-6	CL
I-094-W (14-09)		21.9	197.3	99.7	99.2	97.7	96.6	90.8	66.8	60.9	44	21	23	0.0010	0.002	0.075	75.00	0.05	A-7-6	CL
I-094-W (14-10)		21.5	198.9	100.0	99.5	93.3	91.6	80.3	65.2	56.3	42	19	23	0.001	0.002	0.100	166.67	0.07	A-7-6	CL
M-053-S (15-02)		17.2	200.4	100.0	99.5	96.8	94.4	87.5	42.8	26.2	14	-	NP	0.008	0.100	0.210	26.25	5.95	A-2-4	SM
М-090-Е (15-03)		38.0	204.1	100.0	99.9	98.8	96.1	90.7	73.1	55.8	35	20	15	0.001	0.005	0.088	88.00	0.28	A-6	CL
M-090-E (15-04)		12.4	199.6	100.0	99.7	97.4	95.0	90.6	67.4	52.8	24	15	9	0.0010	0.006	0.100	100.00	0.36	A-4	CL
M-025-S (15-05)		4.4	532.8	99.3	98.7	98.2	97.3	84.4	1.9	1.1	NA	NA	NP	0.180	0.210	0.300	1.67	0.82	A-3	SP
M-25-N (15-06)		16.4	206.4	100.0	98.9	94.0	90.8	85.1	54.2	42.3	24	13	11	0.001	0.007	0.190	190.00	0.26	A-4	SC
M-010 S (15 07)	1	11.4	199.4	99.9	95.1	83.9	76.4	61.5	29.0	17.2	14	-	NP	0.065	0.160	0.400	6.15	0.98	A-2-4	SM

Table A.4 Triaxial cyclic load results

							Cyclic stress ((psi)			
]	10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	31.6	2.304	35,043		49.0	3.740	31,266	
			200	32.1	2.202	36,823		50.3	3.774	31,862	
M-045-S (01-01)	A-6	CL	500	32.2	2.262	36,639	36,543	50.1	3.663	31,747	31,503
			800	32.5	2.205	37,056		50.1	3.817	31,297	
			1000	32.8	2.227	35,934		50.4	3.872	31,465	
			100	32.5	3.729	13,894		50.3	5.850	12,872	
			200	32.9	3.592	14,285		50.1	5.727	13,150	
U-002-E (02-01)	A-4	SM	500	32.7	3.442	15,044	15,352	50.4	5.551	13,686	13,818
			800	32.7	3.325	15,708		50.4	5.496	13,826	
			1000	33.3	3.415	15,305		49.9	5.364	13,942	
			100	32.0	1.741	48,422		50.7	2.777	45,310	
		F	200	32.5	1.650	50,092		51.0	2.801	44,090	
M-028-W (02-02)	A-4	ML	500	32.7	1.569	53,892	53,824	51.3	2.969	42,510	41,516
	· · ·		800	32.7	1.600	53,350		51.3	3.047	41,331	
		F	1000	33.0	1.598	54,230		51.3	3.087	40,707	
			100	33.9	2.675	19,996		51.4	4.042	16,997	OUNDEL.
		F	200	33.8	2.698	20,013		51.4	3.956	16,510	
M-028-W (02-03)	A-1-h	SP-	500	33.7	2.821	19,057	19,195	52.6	3.873	17,649	17,845
M-020-W (02-05)	1110	SM -	800	33.8	2.796	19,502		51.7	3.733	17,942	VER
		F	1000	34.0	2.792	19,025		51.5	3.774	17,945	
			100	32.8	2.499	31,653		50.0	3.944	29,991	
		H	200	32.8	2.471	33,225		49.8	3.855	30,881	
11.002 E (02-04)	Δ_4	ML.	500	33.7	2.322	36,319	37,012	50.0	3.724	31,614	33,191
U-002-E (02-04)		-	800	33.1	2.219	36,874		50.1	3.560	33,569	
		-	1000	33.1	2.207	37,843		50.5	3.516	34,390	
			100	33.3	2.393	22,822		51.0	4.295	18,193	1 1. 7
		F	200	33.9	2.412	23,466		50.2	4.135	18,644	
U 002 E (03.01)	A-3	SP-	500	33.9	2.441	23,426	22,830	51.6	4.005	19,685	19,629
0-002-E (05-01)	11.0	SM -	800	34.1	2.522	22,465		52.0	4.114	19,323	
		-	1000	34.6	2.560	22,598		51.7	3.990	19,880	

							Cyc	lic stress (psi)			
	Soil T	уре				10			15		
Sample number	AASHTO	USCS	number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	33.1	2.429	22,556		50.3	3.861	20,301	
			200	33.3	2.428	22,706		50.9	3.783	21,157	
M-028-W (03-02)	A-3	SP	500	34.1	2.460	23,286	23,003	51.3	3.731	21,613	22,536
			800	33.9	2.374	23,167		51.3	3.644	22,811	
			1000	33.8	2.483	22,555		52.0	3.582	23,185	
			100	32.7	3.357	15,294		49.8	5.258	14,150	
		an	200	33.4	3.283	16,085		50.3	5.113	14,855	
M-028-W (03-03)	A-3	SP- SM	500	33.0	3.059	16,876	16,911	50.5	4.774	15,866	15,956
		SIVI	800	33.8	3.094	16,885		50.9	4.876	15,840	
			1000	33.9	3.175	16,971		50.9	4.722	16,162	
			100	31.7	3.230	15,364		50.3	5.163	14,590	
			200	32.2	3.208	15,857		50.5	5.056	15,302	
U-002-E (03-03)	A-2-4	SM	500	32.7	3.167	16,240	15,984	50.3	4.973	15,412	15,833
			800	32.7	3.251	15,919		51.1	4.873	15,966	
			1000	32.6	3.286	15,793		51.0	4.793	16,120	
			100	33.8	2.198	25,827		51.4	3.419	24,035	
			200	33.8	2.255	25,821		51.9	3.423	24,209	
I-075-N (03-04)	A-3	SP	500	34.0	2.203	25,887	26,140	51.7	3.456	24,040	24,401
			800	34.3	2.156	26,592		52.3	3.402	24,474	
			1000	34.2	2.263	25,940		52.3	3.348	24,689	
			100	33.6	2.390	23,852		51.5	3.757	21,584	
		-	200	33.9	2.392	24,136		51.7	3.775	21,768	
U-023-S (04-01)	A-3	SP	500	33.7	2.472	23,456	23,060	51.5	3.807	21,526	21,735
0 0 0 0 (0 1 0 1)			800	33.8	2.440	22,395		51.7	3.700	21,852	
		-	1000	33.7	2.508	23,330		51.7	3.814	21,828	
			100	34.1	2.034	29,159		51.3	3.595	22,151	
		F	200	33.0	2.006	28,338		52.3	3.505	23,435	
M-068-W (04-02)	A-2-4	SC-	500	34.1	1.883	30,987	30,958	52.1	3.377	24,481	24,764
(01 02)		SM -	800	34.4	1.861	30,960		51.6	3.383	24,598	1
		-	1000	34.6	1.980	30,927		51.9	3.299	25,212	

122

Table A.4 (cont'd)

							Cyclic	stress (psi)				
	Soil T	уре				10		15				
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	
			100	29.4	5.139	8,572		46.6	8.078	8,440		
			200	30.7	4.944	9,491		47.1	7.723	8,966		
M-068-W (04-03)	A-3	SP	500	31.3	4.879	9,725	9,979	48.6	7.368	9,822	10,013	
			800	31.7	4.685	10,215		48.8	7.052	10,308		
			1000	31.6	4.806	9,996		48.5	7.166	9,910		
			100	31.7	4.463	10,722		48.7	6.850	10,728		
			200	31.5	4.383	10,903		49.7	6.524	11,210		
M-065-S (04-04)	A-2-4	SM	500	32.1	4.101	11,945	11,943	50.0	6.427	11,637	11,909	
			800	32.3	4.157	11,833		50.3	6.268	11,995		
			1000	32.5	4.190	12,050		49.6	6.038	12,096		
		SC- SM	100	32.5	2.880	17,806		50.5	4.474	16,758		
			200	32.3	2.805	17,979		50.7	4.478	17,269		
M-032-W (04-05)	A-4		500	32.9	2.739	18,915	19,255	50.6	4.283	18,002	18,161	
			800	33.2	2.725	19,303		50.9	4.267	18,269		
			1000	33.1	2.708	19,546		50.7	4.208	18,211		
		SM	100	32.1	2.263	23,769		51.4	3.311	24,414	25,604	
			200	32.2	2.284	23,491		51.3	3.281	24,858		
U-131-N (05-01)	A-2-4		500	33.3	2.257	24,948	24,651	51.4	3.239	26,201		
0-151-11 (05 01)			800	33.6	2.314	24,548		50.9	3.247	25,241		
			1000	33.8	2.266	24,456		51.9	3.298	25,370		
			100	34.1	1.757	35,135		52.6	2.846	29,879		
		-	200	34.3	1.708	36,388	[51.9	2.861	29,921		
U 127 N (05 04)	Δ-3	SP	500	34.5	1.687	37,843	37,158	52.9	2.866	30,325	29,949	
0-12/-14 (05-04)	11.5	01	800	35.3	1.727	36,438		51.9	2.901	29,588		
		-	1000	35.2	1.766	37,194		52.6	2.850	29,935		
			100	30.6	3.211	22,916		48.9	4.652	24,395		
		ł	200	31.3	3.095	24,442		49.0	4.593	25,076		
M 072 W (05.06)	A-6	SC	500	31.7	2.941	26,104	26,492	49.8	4.403	26,622	27,193	
IVI-072- VV (05-00)	11.0	SC	800	31.9	2.888	27,204	49.8	4.321	27,183			
		-	1000	31.2	2.958	26,168		50.2	4.252	27,774		

123

				Cyclic stress (psi)										
						10				15				
Sample number	AASHTO	AASHTO USCS		Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000			
			100	33.8	2.004	27,798		52.1	3.079	26,746				
			200	33.9	2.055	29,008		52.7	3.027	27,574				
M-132-N (06-01)	A-3	SP	500	34.1	1.984	30,874	31,741	52.6	2.977	28,591	28,997			
			800	34.4	1.960	31,899		53.2	2.989	29,341				
			1000	0 34.0 1.857 32.449 52.0	52.0	2.917	29,059							
			100	33.4	1.616	26,603		51.6	2.882	26,762				
			200	33.3	1.535	28,072	32,450	51.9	2.855	28,300				
I-075-N (06-02)	A-3	SP	500	33.8	1.461	32,068		52.3	2.552	31,485	31,187			
1 0/0 11 (00 02)			800	34.5	1.499	32,023		52.1	2.508	31,026				
			1000	34.4	1.417	33,260		52.7	2.450	31,049				
			100	34.1	1.933	30,572		52.5	2.814	29,633				
			200	33.8	1.884	31,084		52.1	2.832	29,692				
U-031-N (06-03)	A-3	SP	500	34.6	1.808	32,659	31,867	52.6	2.897	29,123	29,636			
0-051-11 (00-05)			800	35.0	1.908	31,347		52.9	2.861	30,084	-7/C 2203 10			
			1000	35.4	1.937	31,594		52.6	2.842	29,701				
			100	33.5	2.456	22,276		51.9	3.650	21,630				
			200	33.7	2.428	23,097		51.7	3.641	21,694				
L106-N (06-05)	Δ_2_4	SP-	500	34.2	2.386	23,190	23,030	51.5	3.618	22,017	21,985			
1-190-14 (00-05)	1121	SM	800	33.6	2.395	22,525		51.7	3.675	21,801				
			1000	33.9	2.371	23,375		52.1	3.637	22,136				
			100	33.6	2.112	26,636		51.2	3.135	25,897				
			200	33.8	2.001	29,046		51.6	3.012	27,403				
M 020 W (07 02)	A 3	SP	500	34.3	1.969	30,442	31,489	51.8	2.891	28,918	31,766			
M-020-W (07-02)	11-5		800	34.0	1.902	31,795		52.5	2.649	33,296				
			1000	34.1	1.893	32,230		52.7	2.550	33,084				
			100	32.8	2.029	27,192		50.6	3.326	23,445	1 1 1			
			200	33.6	2.032	28,722		50.5	3.436	23,201				
M 020 W (07 02)	A 3	SP	500	33.8	1,969	30,147	722 147 30,272 271	51.7	3.361	25,035	24,896			
WI-020-W (07-02)	A-5	SP	800	34.0	1.971	30,271		51.7	3.315	24,950	Var / mark			
			-	-	-	1000	33.9	1.965	30,399	19	51.6	3.408	24,702	

							Cycl	ic stress (psi)			
	C. 1 T					10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	33.7	2.016	28,992		51.2	3.080	25,785	
			200	33.9	2.064	28,380	29,446	51.3	3.000	27,443	
M-020-W (07-02)	A-3	SP	500	33.9	1.961	29,237		51.4	2.948	28,001	28,593
			800	34.0	2.042	29,357		51.6	2.893	28,741	
			1000	34.3	1.984	29,743		51.7	2.938	29,037	
			100	33.2	1.883	19,618		51.0	3.025	16,754	
			200	33.1	1.884	19,462		51.0	2.949	18,301	
M-020-W (07-02)	A-3	SP	500	33.6	1.901	20,010	19,693	52.1	2.779	19,917	20,257
			800	33.8	1.922	19,736		52.0	2.722	20,529	
			1000	33.6	1.876	19,334		51.7	2.723	20,325	
		SP	100	31.7	2.516	20,521		49.5	4.178	17,679	
			200	32.8	2.321	22,926		50.3	3.959	19,876	
M-020-W (07-02)	A-3		500	33.1	2.329	24,360	24,320	51.4	3.364	23,953	24,552
			800	33.3	2.344	24,091		51.3	3.310	24,799	
			1000	33.8	2.284	24,508		51.4	3.307	24,904	1
		SP	100	33.9	1.963	29,497		52.6	3.106	27,496	28,182
			200	34.0	1.935	30,737		52.2	2.999	27,797	
М-020-Е (07-03)	A-3		500	34.4	1.881	32,158	32,696	51.9	2.992	28,321	
			800	34.3	1.941	31,958		52.3	3.019	27,995	
			1000	34.2	1.810	33,972		51.9	3.081	28,230	
			100	42.5	11.329	3,466		72.2	15.047	4,432	
			200	43.7	10.944	3,698		73.5	7.386	4,716	
U-127-N (07-05)	A-6	SC	500	44.3	10.593	3,897	3,984	75.1	6.798	5,246	5,481
			800	44.4	10.260	4,015		75.4	6.602	5,455	
			1000	44.2	10.170	4,041		75.4	12.596	5,742	
			100	52.0	2.068	47,427		82.9	3.013	49,924	
			200	51.7	1.926	50,103		82.3	2.944	50,430	
U-127-N (07-05)	A-6	SC	500	52.8	1.878	53,735	5 54,737 2 4	81.6	2.806	51,951	53,030
0.271(0.35)			800	51.5	1.860	54,842		82.5	2.821	53,516	
			1000	52.3	1.860	55,634		82.0	2.761	53,623	

							Cyclic str	ess (psi)			
	Soil T	vpe			1	10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	46.3	6.202	7,133		75.8	10.783	6.642	
			200	46.7	6.185	7,244		76.7	10.605	6.765	
U-127-N (07-05)	A-6	SC	500	46.7	6.248	7,223	7,323	77.2	10.557	6.875	6 925
			800	47.2	6.196	7,353		77.5	10.534	6,936	0,725
			1000	47.9	6.195	7,395		77.9	10.543	6,965	
			100	44.7	9.544	4,319		74.4	14.108	4.852	
			200	45.8	9.458	4,487		75.7	13.880	5.081	
U-127-N (07-05)	A-6	SC	500	46.2	9.290	4,651	4,713	75.8	13.294	5,339	5,358
			800	46.5	9.278	4,718		75.7	13.131	5,338	
			1000	46.4	9.113	4,770		76.4	13.119	5,398	
			100	30.4	2.658	31,474		47.9	4.349	28,993	
			200	30.9	2.535	33,999		48.7	4.299	30,151	1000
U-127-N (07-05)	A-6	SC	500	31.5	2.333	36,628	36,054	49.1	4.290	27,523	27,729
			800	31.6	2.285	36,290		49.0	4.221	27,851	
			1000	32.5	2.231	35,243		50.2	4.333	27,814	
		SM	100	28.0	7.229	10,631	_	41.8	12.878	11,660	
			200	28.6	7.191	10,855		42.3	12.581	11,834	
M-061-E (07-06)	A-2-4		500	29.3	6.855	11,362	11,483	43.2	12.189	13,155	12,907
			800	29.6	6.630	11,709		44.2	11.636	12,831	1.000
			1000	28.8	6.826	11,377		44.2	11.476	12,736	
			100	33.1	1.937	29,999		51.2	2.807	30,104	
		L	200	32.9	1.864	30,417		51.7	2.743	30,517	
M-061-E (08-02)	A-2-4	SM	500	33.8	1.897	32,344	32,231	52.1	2.713	31,551	31,763
		L	800	33.8	1.930	32,106		51.9	2.701	31,719	
			1000	34.0	1.875	32,242		52.3	2.728	32,020	
		L	100	41.4	10.662	3,592		70.9	14.499	4,516	
		L	200	42.3	10.310	3,829		71.7	13.972	4,771	
U-010-W (08-04)	A-6	SC	500	42.9	9.824	4,076	4,134	72.8	13.214	5,099	5,268
			800	43.2	9.691	4,164		73.7	12.850	5,323	And and a second second
			1000	42.9	9.608	4,163		73.8	12.675	5,382	

				Cyclic stress (psi)									
						10				15			
Sample number	Soil Ty AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000		
			100	43.2	7.759	5,212		71.7	13.897	4,831			
			200	44.4	7.585	5,439	5,873	72.2	13.671	4,937			
U-010-W (08-04)	A=6	SC	500	45.6	7.430	5,791		73.0	13.508	5,049	5,106		
	A-0	50	800	45.9	7.266	5,946		73.6	13.342	5,130			
			1000	46.1	7.252	5,884		73.4	13.283	5,138			
			100	32.4	3.493	14,265		51.1	4.992	15,346			
			200	32.9	3.499	14,932		50.9	4.807	15,758			
1 075 N (08 06)	A 2-4	SC-	500	33.3	3.406	15,448	15,798	51.4	4.785	16,290	16,577		
I-0/5-N (08-00)	M-2-4	SM	800	33.3	3.297	15,986		51.2	4.676	16,606			
			1000	33.1	3.263	15,960		51.3	4.594	16,836			
			1000	33.8	2.123	26,881		52.3	3.220	26,018			
			200	33.9	2.126	27,797		52.8	3.183	26,982			
TT 121 C (00 01)	1 2	SP	500	34.5	2.127	29,155	28,793	52.8	3.200	27,204	27,732		
U-131-5 (09-01)	A-5	51	800	34.3	2.052	29,674		52.6	3.078	27,868			
			1000	34.6	2.152	27,550		53.2	3.081	28,124			
		SC-	1000	33.5	2.694	20,127		52.0	4.254	18,607	19,597		
			200	33.8	2.624	21,049		51.6	4.205	18,942			
	1.2.4		500	33.7	2.566	21,588	22,163	51.5	4.164	19,295			
I-096-W (09-02)	A-2-4	SM	800	34.0	2.530	22,509		52.0	4.085	19,756			
			1000	33.8	2.473	22,392		51.2	3.999	19,740			
			1000	33.9	1.997	28,736		51.1	3.381	23,393			
			200	34.3	2.019	29,283		51.9	3.341	24,843	20.022		
		CD	500	34.9	1.990	30,848	30,368	52.1	3.006	27,525	28,022		
U-131-S (09-03)	A-3	Sr	800	34.0	1.948	30,648		52.4	3.010	27,615			
			1000	34.4	1.983	29,608		52.6	2.953	28,925			
			1000	34.0	2.036	36,835		52.5	2.817	33,838			
			200	33.9	2.070	37,497		52.0	2.833	34,449	25.200		
		CD	500	34.5	1.978	38,818	38,498	52.5	2.776	35,389	35,390		
U-131-S (09-05)	A-1-b	SP	800	34.9	1.943	38,902		52.5	2.796	35,440			
			1000	34.8	2.007	37,773		52.5	2.856	35,340			

							Cyclic	stress (psi)			
	Soil T	una				10		15				
Sample number	AASHTO	AASHTO USCS		Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	
			100	33.4	2.943	17,969		51.4	4.275	18,433		
			200	33.5	2.928	18,261		52.0	4.175	19,068		
M-044-E (09-07)	A-2-4	SM	500	33.9	2.948	18,534	18,434	51.6	4.086	19,511	19,654	
			800	33.7	2.841	18,744		51.6	4.043	19,663		
			1000	34.0	3.046	18,023		51.9	4.041	19,788		
			100	33.1	3.415	15,148		50.4	5.279	14,639		
			200	33.1	3.421	15,097		50.5	5.143	15,004		
M-024-S (09-09)	A-2-4	SM	500	33.6	3.458	15,204	15,156	50.6	4.889	15,786	15,854	
			800	32.9	3.427	14,945		50.8	4.853	15,880		
			1000	33.3	3.378	15,318		51.0	4.891	15,897		
		SP	100	34.0	1.985	29,263		52.2	3.321	25,428		
			200	34.1	2.074	29,172		52.2	3.248	25,709		
I-069-E (09-10)	A-3		500	34.4	2.071	28,746	28,663	52.3	3.163	26,255	26,095	
			800	34.3	2.079	29,232		51.9	3.231	25,802		
		Ī	1000	34.8	2.160	28,012		52.4	3.192	26,227	24	
			100	33.5	3.483	14,917		51.2	4.732	16,473	A COLESS	
			200	33.5	3.542	14,864		51.1	4.694	16,512		
I-069-N (10-01)	A-3	SP- SM	500	33.1	3.344	15,551	15,873	51.3	4.485	17,528	17,394	
		SIM	800	33.8	3.457	15,312		50.8	4.533	17,144		
			1000	34.0	3.162	16,756		51.7	4.526	17,509		
			100	32.9	2.180	41,549		50.1	3.266	40,469		
			200	33.4	2.210	42,092	_	50.5	3.275	41,776		
I-096-W (10-03)	A-2-6	SC	500	33.8	2.175	43,219	43,824	51.5	3.167	42,767	37,712	
			800	34.1	2.196	44,499		49.2	3.779	34,806		
			1000	34.1	2.203	43,754		48.7	2.686	35,563		
			100	33.4	2.846	18,890		51.4	4.400	18,049		
			200	33.5	2.771	19,221	_	51.8	4.330	18,293	and Re	
I-069-N (10-04)	A-2-4	SM	500	33.5	2.839	19,530	19,190	51.0	4.232	18,653	18,963	
		-	800	33.4	2.862	19,049	9	51.5	4.107	18,952		
			1000	33.9	2.802	18,990		51.6	4.076	19,284		

				Cyclic stress (psi)									
						10				15			
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000		
			100	25.4	8.607	4,273		37.6	15.895	3,469			
			200	25.9	8.326	4,542		41.3	12.494	4,766			
I-069-N (10-05)	A-2-4	SM	500	27.0	7.715	5,123	5,295	43.1	11.611	5,377	5,646		
			800	27.2	7.630	5,241		43.7	11.104	5,712			
			1000	27.6	7.381	5,521		43.8	11.027	5,850			
			100	30.1	5.580	8,027		47.9	.7.602	9,168			
			200	30.9	5.176	8,832		48.1	7.430	9,504			
I-096-W (10-09)	A-2-4	SM	500	31.2	5.002	9,361	9,518	49.5	6.721	10,908	11,394		
(800	31.0	4.917	9,419		49.5	6.363	11,495			
			1000	31.6	4.875	9,775		49.8	6.307	11,778			
			100	32.9	1.119	30,534		51.7	1.595	29,788			
			200	33.8	1.119	32,960		52.0	1.567	30,484			
I-069-N (11-01)	A-3	SP-	500	34.0	1.063	30,406	30,733	52.0	2.994	28,203	28,147		
		SM	800	34.0	1.119	30,967		52.2	2.974	28,154			
		Ī	1000	34.8	1.119	30,827		51.9	2.995	28,083			
			100	33.6	1.694	36,073		51.2	3.205	25,752	27,372		
			200	33.3	1.627	37,965		52.2	3.144	26,314			
I-094-W (11-02)	A-3	SP	500	34.1	1.487	45,141	44,521	52.8	3.102	27,442			
1 05 1 11 (11 0-)		-	800	32.6	1.432	42,908		51.9	3.136	26,857			
			1000	34.1	1.453	45,513		52.6	3.020	27,817			
			100	31.9	2.614	19,615		50.2	4.354	17,216			
			200	31.3	2.561	19,255		50.7	4.426	17,262			
M-060-W (11-03)	A-2-4	SC-	500	32.0	2.553	19,808	19,812	50.8	4.481	16,817	16,639		
M-000-w (11-03)		SIM	800	32.4	2.561	19,861		50.7	4.560	16,601			
		F	1000	32.2	2.563	19,768		50.9	4.669	16,498			
			100	33.7	2.252	23,451		52.3	3.358	24,923			
		-	200	33.8	2.220	24,393		52.6	3.317	25,291			
I-069-S (11-05)	A-4	SC-	500	34.0	2.095	25,903	27,303	52.5	3.274	25,489	25,645		
1005 5 (11 05)		SM -	800	34.2	2.014	26,908		51.6	3.267	25,632			
			1000	34.3	1.931	29,098		52.2	3.245	25,814			

							Cyclic :	stress (psi)			
	Soil T	VDe				10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	33.3	1.963	28,024		51.3	3.519	22,990	
			200	32.5	2.028	27,129		52.0	3.594	23,024	
I-094-W (12-01)	A-2-4	SC-	500	34.1	2.041	28,985	27,636	51.8	3.438	23,554	23,872
		DIVI	800	33.6	2.129	26,615		52.0	3.414	24,001	
			1000	33.9	2.113	27,308		52.4	3.534	24,060	
			100	33.6	2.783	19,527		50.8	4.851	15,566	
I-094-W (12-03) A-3	CD	200	33.6	2.766	19,827		50.9	4.881	15,796		
	SP- SM	500	33.4	2.814	18,886	18,139	50.4	4.789	16,090	15,977	
		SIVI	800	33.9	3.021	17,820		50.8	4.831	15,893	
			1000	34.1	3.066	17,711		50.8	4.798	15,947	
			100	33.3	2.862	18,848		50.8	4.340	18,416	
		an	200	33.3	2.930	19,047		51.3	4.323	18,683	
U-012-E (12-04)	A-2-4	SM	500	33.6	2.781	19,237	19,234	51.2	4.264	18,191	18,343
			800	34.1	2.881	19,210		51.4	4.312	18,324	
			1000	34.1	2.766	19,255		51.3	4.266	18,515	1,224
			100	.33.9	2.675	19,996		51.4	4.042	19,797	21,382
			200	33.8	2.698	20,013		51.4	3.956	20,110	
I-094-W (12-06)	A-2-4	SM	500	33.7	2.821	19,357	19,425	52.6	3.873	21,249	
			800	33.8	2.796	19,802		51.7	3.733	21,552	
			1000	34.0	2.792	19,115		51.5	3.774	21,346	
			100	34.4	3.172	17,093		51.9	5.000	15,746	
			200	34.0	3.101	17,359		50.0	4.846	15,814	
M-024-S (13-01)	A-4	SM	500	34.8	3.149	17,853	17,950	51.5	4.878	16,213	16,175
. ,			800	34.6	3.049	17,891		51.6	4.844	16,042	
			1000	35.1	3.052	18,106		51.8	4.844	16,271	
			100	33.6	2.042	28,216		51.7	3.362	23,959	
			200	33.5	2.112	27,648		51.9	3.351	24,234	
M-059-W (13-02)	A-3	SP	500	33.9	2.186	26,464	24,863	52.1	3.478	23,699	23,810
			800	33.9	2.368	24,623		51.7	3.453	23,882	
			1000	33.8	2.439	23,502		51.9	3.436	23,849	

130
							Cyclic s	tress (psi)			
	Soil T	vne				10				15	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000
			100	32.8	2.693	20,399		51.2	4,441	17.533	
			200	32.5	2.615	20,565		50.7	4.353	17.856	
I-094-W (13-04)	A-3	SP	500	33.2	2.592	21,384	21,470	50.8	4.245	18,355	18,859
			800	33.5	2.589	21,598		50.8	4.133	18,836	
			1000	33.4	2.648	21,427		51.2	4.040	19,387	
			100	34.0	2.515	22,197		51.6	3.907	20,649	
		an	200	33.8	2.443	23,009		51.4	3.846	20,641	
U-023-N (13-07)	A-3	SP- SM	500	34.0	2.573	22,214	22,629	51.2	3.961	20,201	20,593
		SIVI	800	33.9	2.428	22,768		52.4	3.910	20,900	
			1000	34.7	2.477	22,904		52.2	3.952	20,678	
			100	29.7	4.124	16,710		45.5	6.531	16,006	
			200	30.1	4.182	16,898		46.1	6.637	15,991	
M-010-E (13-08)	A-6	CL	500	30.2	4.256	16,855	17,012	46.3	6.562	16,218	16,345
			800	30.7	4.226	16,995		46.5	6.433	16,417	
			1000	30.5	4.202	17,186		46.6	6.492	16,399	
			100	48.6	3.375	14,374		77.7	7.441	9,934	
			200	49.6	3.334	15,053		78.1	7.453	9,867	
М-010-Е (13-08)	A-6	CL	500	49.6	3.271	15,423	15,561	78.2	7.743	9,627	9,553
			800	49.8	3.258	15,631		78.2	7.779	9,528	
			1000	49.8	3.257	15,629		78.3	7.849	9,504	
			100	51.5	1.331	31,968		83.3	1.796	36,929	
			200	51.8	1.291	36,534		82.8	1.731	38,488	
М-010-Е (13-08)	A-6	CL	500	52.7	1.218	43,564	44,641	82.5	1.808	40,155	41,989
			800	52.3	1.211	45,089		82.2	1.629	42,399	
			1000	51.8	1.152	45,271		82.4	1.793	43,414	
			100	39.6	7.658	8,407		46.6	8.078	8,440	
			200	<u>41.3</u> 7.157 9,399		47.1	7.723	8,966			
M-010-E (13-08)	A-6	CL	500	42.2	6.971	9,004	9,713	48.6	7.368	8,822	8,280
		6 CL 500 800		43.5	6.971 9,004 9,713 48.6 6.473 9,818 48.8 48.8	7.052	8,822 8,280 8,108 7.910				
			1000	44.0	6.376	10,317		48.5	7.166	7,910	

							Cycli	c stress (psi)					
	Soil T	Soil Type		Soil Type				10]	.5	
Sample number	AASHTO	USCS	Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000		
			100	30.3	2.283	11,369		48.9	3.899	14,813			
			200	31.0	2.259	13,560		48.7	3.804	15,893			
I-075-S (14-01)	A-7-6	SC	500	31.3	2.074	17,389	18,221	48.9	3.721	16,938	17,842		
			800	31.7	1.971	18,449		49.6	3.586	18,253			
			1000 32.0 2.067 18,825 49.6		3.573	18,336							
			100	51.3	2.172	32,901		82.3	2.390	32,808			
			200	51.2	1.994	36,098		82.8	2.299	31,287			
I-075-S (14-01)	A-7-6	SC	500	52.3	1.815	31,799	32,510	82.7	2.045	29,226	29,860		
			800	52.3	1.481	32,377		82.4	1.858	30,295			
			1000	51.7	1.417	33,354		82.3	1.668	30,060			
			100	35.0	10.936	5,114		61.1	14.155	6,907			
			200	35.9	9.896	5,982		61.6	13.624	7,285			
I-075-S (14-01)	A-7-6	SC	500	36.6	9.349	7,441	7,187	62.5	12.617	7,928	8,386		
			800	36.7	8.808	7,284		63.5	12.002	8,545			
			1000	37.3	8.616	6,835		64.1	11.896	8,685			
			100	32.7	2.313	21,994		51.7	3.526	19,968			
			200	33.0	2.337	22,227		52.0	3.540	20,296			
U-024-S (14-04)	A-3	SP	500	33.5	2.305	22,633	22,765	52.3	3.336	21,874	21,913		
			800	33.6	2.300	22,813		52.1	3.396	21,707	/ 1/ 1- 1		
			1000	33.6	2.297	22,849		52.4	3.329	22,159			
			100	42.5	10.621	3,715		65.6	19.895	3,023			
			200	42.7	10.593	3,736		65.4	19.906	3,021			
M-153-E (14-06)	A-7-6	SC	500	42.8	10.681	3,717	3,732	66.4	20.023	3,036	3,015		
			800	42.9	10.628	3,745		66.4	20.120	3,014			
			1000	43.1	10.729	3,733		66.0	20.123	2,995			
			100	29.2	13.397	3,483		65.6	19.995	4,023			
			200	30.3	12.818	3,798		65.4	19.996	3,821	5.12		
M-153-E (14-06)	A-7-6	SC	500	32.1	12.062	4,285	4,430	66.4	20.017	3,936	3,915		
		-	800	32.8	11.875	4,471		66.4	21.120	3,814	1		
			1000	33.0	11.708	4,535		66.0	21.123	3,995			

							Cyclic	stress (psi))			
	0.17	Soil Type				10				15		
Sample number	AASHTO USCS		Cycle number	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	Average cyclic load (lbs)	Average deformation (mils)	Average resilient modulus (psi)	Average MR (psi) at load cycles 500, 800 and 1000	
			100	33.8	2.378	38,348		51.2	3.050	42,427		
			200	34.4	2.254	39,970		51.5	2.964	42,728		
M-153-E (14-06)	A-7-6	SC	500	34.5	2.223	40,365	40,902	51.4	3.004	43,684	44,483	
			800	34.0	2.119	41,453		51.5	2.965	44,394		
			1000 33.7 2.120 40,889 52.2	52.2	2.876	45,372	1					
			100	33.6	2.237	25,772		51.5	3.727	21,646		
			200	33.6	2.150	25,870		51.5 51.7	3.731	21,643		
M-053-S (14-07)	A-3	SP	500	33.9	2.249	26,465	25,738	51.9	3.688	22,217	22,296	
			800	34.0	2.258	25,493		52.0	3.646	22,403		
			1000	33.7	2.315	25,255		51.8	3.622	22,268		
			100	49.1	5.308	8,870		77.2	9.347	7,782		
			200	49.1	5.217	9,211		77.2	9.253	7,846		
I-094-W (14-09)	A-7-6	CL	500	49.2	4.966	9,690	9,955	77.1	9.107	7,995	8,080	
1 05 1 10 (11 05)			800	48.8	4.777	9,943		77.8	9.010	8,089		
			1000	49.2	4.675	10,234		77.8	8.918	8,156		
			100	51.2	2.114	45,953		81.9	2.609	57,985		
		F	200	51.1	1.853	52,917		82.8	2.466	61,580		
I-094-W (14-09)	A-7-6	CL	500	52.2	1.602	67,009	73,344	82.5	2.327	67,663	70,094	
1051 (1103)		-	800	52.7	1.426	75,719		82.2	2.190	70,504		
			1000	51.2	1.383	77,304		81.8	2.205	72,116		
			100	33.0	1.604	53,229		50.7	2.211	57,722		
		F	200	32.7	1.585	55,517		51.7	2.228	59,950		
I-094-W (14-09)	A-7-6	CL	500	33.8	1.530	60,326	60,217	51.7	2.152	60,448	60,303	
10)1 ((110))		-	800	34.1	1.462	60,280		51.8	2.104	60,142		
		F	1000	34.2	1.459	60,046		52.3	2.044	60,318		
			100	33.3	2.923	18,400		51.1	4.424	18,022		
		-	200	33.2	2.914	18,486		51.0	4.470	18,018		
M-053-S (15-02)	A-2-4	SM	500	33.4	2.921	18,171	6 1 18,342	51.4	4.471	17,918	18,060	
WI-055-5 (15-02)		-	800	33.4	2.963	18,372		51.3	4.416	18,113	Section 1	
			1000	33.4	2.894	18,483		51.0	4.372	18,149		

133

	1						Cyc	lic stress (pa	si)		
						10				15	
Sample number	Soil T	ype	Cycle number	Average cyclic	e Average deformation (mils)	Average resilient modulus	Average MR (psi) at load cycles 500	Average cyclic load	Average deformation	Average resilient modulus	Average MR (psi) at load cycles 500,
	AASHTO	USCS		(lbs)		(psi)	800 and 1000	(lbs)	(mils)	(psi)	800 and 1000
			100	34.6	1.494	65,657		51.5	2.170	60,204	
			200	34.2	1.492	65,191		51.9	2.192	61,455	
M-090-E (15-04)	A-4	CL	500	34.6	1.487	67,087	67,841	51.7	2.159	61,666	62,065
M-025-S (15-05)			800	34.6	1.510	68,335		51.7	2.128	62,105	
			1000	34.5	1.398	68,102		52.0	2.212	62,423	
	A-3		100	34.0	1.585	37,971	40,152	52.6	2.503	35,506	
			200	34.0	1.601	38,716		52.2	2.445	35,369	
		SP	500	34.1	1.588	39,705		51.7	2.500	35,195	35,481
			800	34.9	1.643	40,506		52.3	2.468	35,680	
			1000	35.0	1.595	40,246 52.	52.0	2.437	35,567		
			100	34.3	2.740	19,702		51.3	4.328	18,630	
			200	35.7	2.770	20,960		51.9	4.203	18,904	
M-019-S (15-07)	A-2-4	SM	500	35.0	2.584	21,859	22,233	51.7	4.118	19,310	19,500
M-019-S (15-07)			800	35.2	2.539	22,379		51.4	4.096	19,441	
			1000	34.6	2.572	22,462		53.2	4.183	19,750	

results
MR
A.5
Table

	Samo	le tune	Classifi	cation	Dev unit	Water		Average	e MR at
Samule number	dumo.	۰، به به			weight	content for	Saturation	cyclic sti	ress (psi)
	Shelby tube	Disturbed	AASHTO	USCS	$(1b/ft^3)$	cyclic test		10.0	15.0
M-028-W (02-03)		Х	4-1-b	SP-SM	113.4	8.5	47.3	19,195	17,845
U-002-E (03-01)		Х	A-3	SP-SM	108.7	4.5	22.1	22,787	19,592
M-028-W (03-03)		Х	A-3	SP-SM	105.5	2.0	9.0	16,895	15,941
I-196-N (06-05)		Х	A-2-4	SP-SM	111.5	3.7	19.5	23,009	21,964
I-069-N (10-01)		Х	A-3	SP-SM	116.1	6.6	59.2	15,858	15,682
I-069-N (11-01)		Х	A-3	SP-SM	118.0	7.0	44.2	30,701	28,120
I-094-W (12-03)		Х	A-3	SP-SM	121.6	11.4	79.8	18,122	15,961
U-023-N (13-07)		Х	A-3	SP-SM	115.4	6.5	38.2	22,608	20,574
M-068-W (04-03)		Х	A-3	SP	100.9	20.0	80.6	696'6	10,004
M-020-W (07-02)		Х	A-3	SP	110.5	11.5	59.2	29,418	28,566
M-059-W (13-02)		Х	A-3	SP	107.7	9.0	43.1	24,840	23,788
U-127-N (05-04)		Х	A-3	SP	112.6	6.9	37.5	37,123	29,921
I-075-N (03-04)		Х	A-3	SP	111.7	6.9	36.6	26,115	24,378
I-094-W (11-02)		Х	A-3	SP	116.7	6.2	37.7	44,479	27,346
I-094-W (13-04)		Х	A-3	SP	114.3	6.0	34.2	21,449	18,842
U-024-S (14-04)		Х	A-3	SP	108.2	10.0	48.5	22,768	21,924
M-020-W (07-02)		Х	A-3	SP	109.2	5.3	26.4	30,244	24,872
I-069-E (09-10)		Х	A-3	SP	116.9	5.1	31.2	28,636	26,070
M-132-N (06-01)		X	A-3	SP	112.9	4.7	25.8	31,711	28,970
M-053-S (14-07)		Х	A-3	SP	113.9	3.9	22.0	25,714	22,275

Table A.5 (cont'd)

																				-
(ISd)	15.0	21,715	29,609	28,156	35,447	27,706	31,187	35,319	22,494	27,995	28,705	20,267	24,552	13,818	15,818	11,898	23,092	12,958	31,733	19,636
stress	10.0	23,039	31,870	32,666	40,115	28,766	32,457	38,423	22,959	30,340	31,460	19,692	24,319	15,352	15,969	11,932	24,627	11,480	32,200	18,416
Saturation		20.7	17.4	17.6	15.4	13.9	10.2	23.3	5.7	2.4	1.0	0.9	1.0	47.4	40.7	26.3	29.6	60.8	35.3	66.6
content for	cyclic test	3.3	3.3	3.2	3.0	2.7	2.0	1.0	1.3	0.5	0.2	0.2	0.2	9.5	7.7	7.6	5.4	17.0	5.5	7.6
weight	(lb/ft ³)	117.8	111.5	113.0	110.3	110.6	110.2	117.3	104.0	108.6	109.1	104.1	107.6	109.3	111.5	94.6	112.9	96.0	118.6	128.8
	USCS	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SP	SM	SM	SM	SM	SM	SM	MS
	AASHTO	A-3	A-3	A-3	A-3	A-3	A-3	A-3	A-3	A-3	A-3	A-3	A-3	A-4	A-2-4	A-2-4	A-2-4	A-2-4	A-2-4	A-2-4
;	Disturbed	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	x
•	Shelby tube																			
Sample number	4	U-023-S (04-01)	U-031-N (06-03)	M-020-E (07-03)	M-025-S (15-05)	U-131-S (09-01)	I-075-N (06-02)	U-131-S (09-05)	M-028-W (03-02)	U-131-S (09-03)	M-020-W (07-02)	M-020-W (07-02)	M-020-W (07-02)	U-002-E (02-01)	U-002-E (03-03)	M-065-S (04-04)	U-131-N (05-01)	M-061-E (07-06)	M-061-E (08-02)	M-044-E (09-07)
	Sample number Stress (psi)	Sample numberShelbyDisturbedAASHTOUSCSweightcontent forSaturationstress (psi)tubeDisturbedDisturbed10.015.0	Sample numberShelbyAASHTOUSCSweightcontent forSaturationstress (psi) $tubetubeDisturbedAASHTOUSCS(lb/ft^3)cyclic test10.015.0U-023-S (04-01)XXA-3SP117.83.320.723,03921,715$	Sample number bample numberShelby ShelbyAASHTOUSCSweight (lb/ft)content for cyclic testSaturationstress (psi) 10.0 10.0 10.0 15.0 $10.023-S (04-01)$ XA-3SP 117.8 3.3 20.7 $23,039$ $21,715$ $10.031-N (06-03)$ XA-3SP 111.5 3.3 17.4 $31,870$ $29,609$	Sample number Shelby tubeShelby DisturbedAASHTOUSCSweight (lb/ft)content for saturationSaturation suress (psi)U-023-S (04-01)XXA-3SP117.83.320.723,03921,715U-031-N (06-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP113.03.217.632,66628,156	Sample number bubeShelby bubeDisturbed bubeAASHTOUSCSweight (lb/ft)content for cyclic testSaturation suress (psi)U-023-S (04-01)XXA-3SP117.83.320.723,03921,715U-031-N (06-03)XA-3SP111.53.320.723,03921,715M-020-E (07-03)XA-3SP111.53.317.431,87029,609M-025-S (15-05)XA-3SP110.33.015.440,11535,447	Sample number bubeShelby tubeDisturbedAASHTOUSCSweight (lb/ft ³)content for saturationSaturationsuress (psi) $U-023-S (04-01)$ X X $A-3$ SP 117.8 3.3 20.7 $23,039$ $21,715$ $U-023-S (04-01)$ X $A-3$ SP 117.8 3.3 20.7 $23,039$ $21,715$ $U-031-N (06-03)$ X $A-3$ SP 111.5 3.3 17.4 $31,870$ $29,609$ $M-020-E (07-03)$ X $A-3$ SP 113.0 3.2 17.6 $32,666$ $28,156$ $M-020-E (07-03)$ X $A-3$ SP 110.3 3.2 17.6 $32,666$ $28,156$ $M-020-E (07-03)$ X $A-3$ SP 110.3 3.2 17.6 $32,666$ $28,156$ $M-025-S (15-05)$ X $A-3$ SP 110.3 3.0 15.4 $40,115$ $35,447$ $U-131-S (09-01)$ X $A-3$ SP 110.6 2.7 13.9 $28,766$ $27,706$	Sample number bubeShelby bubeDisturbed bubeAASHTOUSCSweight ($1b/f1^3$)content for cyclic testSaturation suress (ps)U-023-S (04-01)XXA-3SP117.83.320.723,03921,715U-031-N (06-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP110.33.015.440,11535,447M-025-S (15-05)XA-3SP110.33.015.440,11535,447U-131-S (09-01)XA-3SP110.62.713.928,76628,76628,766I-075-N (06-02)XA-3SP110.22.713.923,45731,187	Sample number bubeShelby tube $AASHTO$ $USCS$ weight (lb/ft)content for cyclic testSaturationstress (psi)U-023-S (04-01)XXA-3SP117.83.320.723,03921,715U-031-N (06-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP111.53.217.632,66628,156M-020-E (07-03)XA-3SP110.33.015.440,11535,447M-025-S (15-05)XA-3SP110.33.015.440,11535,447M-025-S (15-05)XA-3SP110.33.015.440,11535,447U-131-S (09-01)XA-3SP110.22.713.928,76627,706I-075-N (06-02)XA-3SP110.22.010.232,45731,187U-131-S (09-05)XA-3SP110.22.010.232,45731,187U-131-S (09-05)XA-3SP117.31.023.335,319	Sample number bubeShelby bubeAASHTOUSCSweight (lb/ft ³)content for cyclic testSaturationstress (psi)U-023-S (04-01)XXA-3SP117.83.320.723,03921,715U-031-N (06-03)XA-3SP111.53.317.431,87029,609U-031-N (06-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP110.33.217.632,66628,156M-020-E (07-03)XA-3SP110.33.217.632,66628,156M-020-E (07-03)XA-3SP110.33.217.632,66628,156M-020-E (07-03)XA-3SP110.33.217.632,66628,76627,706M-020-E (07-03)XA-3SP110.22.713.928,76627,706M-025-S (15-05)XA-3SP110.22.713.928,76731,87U-131-S (09-01)XA-3SP110.22.713.928,47335,319U-131-S (09-05)XA-3SP110.22.723.338,42335,319U-131-S (09-05)XA-3SP104.01.35.722,95922,494	Sample number lubeSample number lubbeSample number lbisturbedASHTOUSCSweight (lb/ft)content for cyclic testSaturationstress (psi)U-023-S (04-01)XXA-3SP117.83.320.723,03921,715U-031-N (06-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP110.33.217.431,87029,609M-020-E (07-03)XA-3SP110.33.217.431,87029,609M-025-S (15-05)XA-3SP110.33.217.431,87029,609M-025-S (15-05)XA-3SP110.33.217.431,87029,609M-025-S (15-05)XA-3SP110.33.217.431,87028,76627,706U-131-S (09-01)XA-3SP110.22.713.928,76627,706M-028-W (03-02)XA-3SP110.22.713.928,76627,706M-028-W (03-02)XA-3SP110.22.713.928,76627,706M-028-W (03-02)XA-3SP104.01.35.722,95922,994M-028-W (03-02)XA-3SP104.01.35.720,99224,94M-028-W (03-0	Sample number bubbeSample numberSaturationstress (psi) $ShelbyDisturbedU-023-S (04-01)XA-3SP117.83.320.723,03921,715U-023-S (04-01)XA-3SP111.53.320.723,03921,715U-031-N (06-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP111.53.317.431,87029,609M-020-E (07-03)XA-3SP110.33.015.440,11535,447M-020-E (07-03)XA-3SP110.33.015.440,11535,447M-020-E (07-03)XA-3SP110.33.015.440,11535,447M-020-E (07-03)XA-3SP110.22.713.928,76627,706M-020-E (07-02)XA-3SP110.22.010.232,45731,187M-025-N (06-02)XA-3SP110.22.010.232,45731,187M-025-N (06-02)XA-3SP110.22.010.222,45431,187M-025-N (05-02)XA-3SP106.01.32.431,187M-025-N (05-02)XA-3SP107.32.430,34027,959M-025-N (05-03)XA-3SP108.60.52.430,340M-028-W (03-02)$	Sample number bulbeASHTO tubeUSCS ($1b/ft$)weight cyclic testcontent for sturationsturation stress (psi)U-023-S (04-01)XXA-3SP 117.8 3.3 20.7 $23,039$ $21,715$ U-021-S (04-03)XA-3SP 111.5 3.3 20.7 $23,039$ $21,715$ U-031-N (06-03)XA-3SP 111.5 3.3 17.4 $31,870$ $29,609$ M-020-E (07-03)XA-3SP 111.6 3.2 17.6 $32,666$ $28,156$ M-021-S (15-05)XA-3SP 110.3 3.2 17.6 $28,766$ $28,766$ M-025-S (15-05)XA-3SP 110.6 3.2 17.6 $28,766$ $28,766$ M-025-S (15-05)XA-3SP 110.6 2.7 13.9 $28,766$ $28,766$ M-025-S (15-05)XA-3SP 110.6 2.7 13.9 $28,766$ $28,766$ M-025-S (15-05)XA-3SP 110.6 2.7 13.9 $28,766$ $28,766$ M-025-N (06-02)XA-3SP 110.6 2.7 13.9 $28,766$ $28,766$ $28,766$ M-025-N (06-02)XA-3SP 110.6 2.7 13.9 $28,766$ $28,766$ $28,766$ M-025-N (06-02)XA-3SP 110.6 2.7 23.9 $22,996$ $22,996$ M-028-W (03-02)XA-3SP <td< td=""><td>Sample number bubeSample numberstress (ps)$V-023-S (04-01)$ShelbyDisturbedUSCS$(lb/f1^3)$cyclic teststurationstress (ps)$U-023-S (04-01)$XA-3SP$117.8$$3.3$$20.7$$23,039$$21,715$$U-031-N (06-03)$XA-3SP$111.5$$3.3$$17.4$$31,870$$29,609$$M-020-E (07-03)$XA-3SP$111.5$$3.3$$17.4$$31,870$$29,609$$M-020-E (07-03)$XA-3SP$110.3$$3.2$$17.6$$32,666$$28,156$$M-020-E (07-03)$XA-3SP$110.3$$3.2$$17.6$$32,666$$28,156$$M-020-E (07-03)$XA-3SP$110.3$$3.2$$17.6$$32,666$$28,156$$M-020-E (07-03)$XA-3SP$110.3$$3.2$$17.6$$32,666$$28,156$$M-025-S (15-05)$XA-3SP$110.3$$3.2$$17.6$$32,666$$28,156$$M-025-N (06-02)$XA-3SP$110.2$$2.7$$13,97$$28,766$$28,766$$M-025-N (06-02)$XA-3SP$110.2$$2.7$$13,97$$23,497$$31,187$$M-025-N (06-02)$XA-3SP$100.2$$2.7$$23,939$$27,959$$27,949$$M-025-N (05-02)$XA-3SP$108.6$$0.5$$2.4$$30,340$$27,996$$M-025-N (05-02)$</td></td<> <td>Sample number bubbeAshtro blobUSCSweight ($Ib/f1^3$)content for cyclic testSaturation stress ($Ps1$)stress ($Ps1$)$U-023-S(04-01)$XA-3SP$I17.8$$3.3$$20.7$$23,039$$21,715$$U-023-S(04-01)$XA-3SP$I11.5$$3.3$$17.4$$31,870$$29,609$$U-031-N(06-03)$XA-3SP$I11.5$$3.3$$17.4$$31,870$$29,609$$M-025-S(15-05)$XA-3SP$I11.5$$3.3$$17.4$$31,870$$29,609$$M-025-S(15-05)$XA-3SP$I10.3$$3.2$$17.6$$32,666$$28,156$$M-025-S(15-05)$XA-3SP$110.3$$3.2$$17.4$$31,870$$29,609$$M-025-S(15-05)$XA-3SP$110.3$$3.2$$17.6$$32,666$$28,156$$M-025-S(15-05)$XA-3SP$110.3$$3.2$$17.6$$32,666$$28,156$$M-025-S(15-05)$XA-3SP$110.3$$3.2$$17.6$$32,666$$28,156$$M-025-N(06-02)$XA-3SP$110.6$$2.7$$13,187$$U-131-S(09-03)$XA-3SP$110.2$$2.0$$12.3$$38,423$$35,494$$M-028-W(03-02)$XA-3SP$108.6$$0.5$$2.4$$27,996$$27,996$$M-020-W(07-02)$XA-3SP$109.1$$0.2$$10.4$</td> <td>Sample number bubeShelby bube$iube$$ASHTO$$USCS$$weight$ (b/ft^3)content for cyclic testSaturation attractionstress (psi)$U-023.S (04-01)$$X$$X$$A-3$$SP$$117.8$$3.3$$20.7$$23,039$$21,715$$U-023.S (04-01)$$X$$X$$A-3$$SP$$111.5$$3.3$$20.7$$23,039$$21,715$$U-031.N (06-03)$$X$$X$$A-3$$SP$$111.5$$3.3$$17.4$$31,870$$29,609$$M-020-E (07-03)$$X$$X$$A-3$$SP$$110.3$$3.30$$17.6$$32,666$$28,156$$M-020-E (07-03)$$X$$A-3$$SP$$110.3$$3.0$$15.4$$40,115$$35,447$$M-025-S (15-05)$$X$$A-3$$SP$$110.3$$3.0$$15.4$$40,115$$35,447$$M-025-S (15-05)$$X$$A-3$$SP$$110.3$$2.7$$110.2$$23,795$$24,766$$M-025-S (15-05)$$X$$A-3$$SP$$110.2$$2.7$$13,87$$23,766$$27,706$$M-025-N (06-02)$$X$$A-3$$SP$$110.2$$2.7$$13,87$$23,766$$27,706$$U-131-S (09-03)$$X$$A-3$$SP$$110.2$$2.7$$13,97$$23,745$$27,456$$M-028-W (03-02)$$X$$A-3$$SP$$104.0$$1.3$$28,762$$27,456$$M-028-W (03-02)$$X$$A-3$$SP$$109.0$<</td> <td>Sample numbersitelyinterest pairinterest pairSample numberShelbyDisturbedUSCSUSCSweightcontent forSaturationstress (psi)$U-023.S (04-01)$XXA-3SP117.83.320.723,03921,715$U-031.N (06-03)$XA-3SP111.53.317.431,87029,609$M-025.S (15-05)$XA-3SP111.53.317.431,87029,606$M-025.S (15-05)$XA-3SP110.33.015.440,11535,447$M-025.S (15-05)$XA-3SP110.62.713.928,76628,756$M-025.S (15-05)$XA-3SP110.62.713.928,76628,766$M-025.S (15-05)$XA-3SP110.23.015.440,11535,447$U-131.S (09-03)$XA-3SP110.22.713.928,76627,706$U-131.S (09-03)$XA-3SP110.22.713.928,76627,706$U-131.S (09-03)$XA-3SP110.22.713.928,76627,706$U-131.S (09-03)$XA-3SP104.00.21.023.338,42335,318$U-131.S (09-03)$XA-3SP104.00.21.023.338,42335,318$U-131.S (09-03)$XA-3</td> <td>Sample numberstructurestr</td> <td>Sample number JunctSaturationstress (ps1)Sample number lubeShelby lubeDisturbed$ASHTO$USCSweight (b/f¹)content for cyclic testSaturationstress (ps1)U-023-S (04-01)XA-3SP111.53.317.431.87029.609U-031-N (06-03)XA-3SP111.53.317.431.87029.609M-020-E (07-03)XA-3SP111.53.317.431.87029.609M-020-E (07-03)XA-3SP110.33.217.632.66628.156M-020-E (07-03)XA-3SP110.33.015.440.11535.447U-131-S (09-01)XA-3SP110.62.713.928.76627.706U-131-S (09-05)XA-3SP110.22.013.923.45731.187U-131-S (09-05)XA-3SP110.22.013.927.95927.949M-028-W (03-02)XA-3SP109.10.21.023.338.42335.319M-028-W (03-02)XA-3SP109.00.21.023.45731.187U-131-S (09-03)XA-3SP109.00.21.023.45731.487U-131-S (09-03)XA-3SP109.00.22.49427.95827.949M-020-W (07-02)XA-3SP109.1<td>Sample number Shelby$\frac{1000}{100}$</td></td>	Sample number bubeSample numberstress (ps) $V-023-S (04-01)$ ShelbyDisturbedUSCS $(lb/f1^3)$ cyclic teststurationstress (ps) $U-023-S (04-01)$ XA-3SP 117.8 3.3 20.7 $23,039$ $21,715$ $U-031-N (06-03)$ XA-3SP 111.5 3.3 17.4 $31,870$ $29,609$ $M-020-E (07-03)$ XA-3SP 111.5 3.3 17.4 $31,870$ $29,609$ $M-020-E (07-03)$ XA-3SP 110.3 3.2 17.6 $32,666$ $28,156$ $M-025-S (15-05)$ XA-3SP 110.3 3.2 17.6 $32,666$ $28,156$ $M-025-N (06-02)$ XA-3SP 110.2 2.7 $13,97$ $28,766$ $28,766$ $M-025-N (06-02)$ XA-3SP 110.2 2.7 $13,97$ $23,497$ $31,187$ $M-025-N (06-02)$ XA-3SP 100.2 2.7 $23,939$ $27,959$ $27,949$ $M-025-N (05-02)$ XA-3SP 108.6 0.5 2.4 $30,340$ $27,996$ $M-025-N (05-02)$	Sample number bubbeAshtro blobUSCSweight ($Ib/f1^3$)content for cyclic testSaturation stress ($Ps1$)stress ($Ps1$) $U-023-S(04-01)$ XA-3SP $I17.8$ 3.3 20.7 $23,039$ $21,715$ $U-023-S(04-01)$ XA-3SP $I11.5$ 3.3 17.4 $31,870$ $29,609$ $U-031-N(06-03)$ XA-3SP $I11.5$ 3.3 17.4 $31,870$ $29,609$ $M-025-S(15-05)$ XA-3SP $I11.5$ 3.3 17.4 $31,870$ $29,609$ $M-025-S(15-05)$ XA-3SP $I10.3$ 3.2 17.6 $32,666$ $28,156$ $M-025-S(15-05)$ XA-3SP 110.3 3.2 17.4 $31,870$ $29,609$ $M-025-S(15-05)$ XA-3SP 110.3 3.2 17.6 $32,666$ $28,156$ $M-025-S(15-05)$ XA-3SP 110.3 3.2 17.6 $32,666$ $28,156$ $M-025-S(15-05)$ XA-3SP 110.3 3.2 17.6 $32,666$ $28,156$ $M-025-N(06-02)$ XA-3SP 110.6 2.7 $13,187$ $U-131-S(09-03)$ XA-3SP 110.2 2.0 12.3 $38,423$ $35,494$ $M-028-W(03-02)$ XA-3SP 108.6 0.5 2.4 $27,996$ $27,996$ $M-020-W(07-02)$ XA-3SP 109.1 0.2 10.4	Sample number bubeShelby bube $iube$ $ASHTO$ $USCS$ $weight$ (b/ft^3)content for cyclic testSaturation attractionstress (psi) $U-023.S (04-01)$ X X $A-3$ SP 117.8 3.3 20.7 $23,039$ $21,715$ $U-023.S (04-01)$ X X $A-3$ SP 111.5 3.3 20.7 $23,039$ $21,715$ $U-031.N (06-03)$ X X $A-3$ SP 111.5 3.3 17.4 $31,870$ $29,609$ $M-020-E (07-03)$ X X $A-3$ SP 110.3 3.30 17.6 $32,666$ $28,156$ $M-020-E (07-03)$ X $A-3$ SP 110.3 3.0 15.4 $40,115$ $35,447$ $M-025-S (15-05)$ X $A-3$ SP 110.3 3.0 15.4 $40,115$ $35,447$ $M-025-S (15-05)$ X $A-3$ SP 110.3 2.7 110.2 $23,795$ $24,766$ $M-025-S (15-05)$ X $A-3$ SP 110.2 2.7 $13,87$ $23,766$ $27,706$ $M-025-N (06-02)$ X $A-3$ SP 110.2 2.7 $13,87$ $23,766$ $27,706$ $U-131-S (09-03)$ X $A-3$ SP 110.2 2.7 $13,97$ $23,745$ $27,456$ $M-028-W (03-02)$ X $A-3$ SP 104.0 1.3 $28,762$ $27,456$ $M-028-W (03-02)$ X $A-3$ SP 109.0 <	Sample numbersitelyinterest pairinterest pairSample numberShelbyDisturbedUSCSUSCSweightcontent forSaturationstress (psi) $U-023.S (04-01)$ XXA-3SP117.83.320.723,03921,715 $U-031.N (06-03)$ XA-3SP111.53.317.431,87029,609 $M-025.S (15-05)$ XA-3SP111.53.317.431,87029,606 $M-025.S (15-05)$ XA-3SP110.33.015.440,11535,447 $M-025.S (15-05)$ XA-3SP110.62.713.928,76628,756 $M-025.S (15-05)$ XA-3SP110.62.713.928,76628,766 $M-025.S (15-05)$ XA-3SP110.23.015.440,11535,447 $U-131.S (09-03)$ XA-3SP110.22.713.928,76627,706 $U-131.S (09-03)$ XA-3SP110.22.713.928,76627,706 $U-131.S (09-03)$ XA-3SP110.22.713.928,76627,706 $U-131.S (09-03)$ XA-3SP104.00.21.023.338,42335,318 $U-131.S (09-03)$ XA-3SP104.00.21.023.338,42335,318 $U-131.S (09-03)$ XA-3	Sample numberstructurestr	Sample number JunctSaturationstress (ps1)Sample number lubeShelby lubeDisturbed $ASHTO$ USCSweight (b/f ¹)content for cyclic testSaturationstress (ps1)U-023-S (04-01)XA-3SP111.53.317.431.87029.609U-031-N (06-03)XA-3SP111.53.317.431.87029.609M-020-E (07-03)XA-3SP111.53.317.431.87029.609M-020-E (07-03)XA-3SP110.33.217.632.66628.156M-020-E (07-03)XA-3SP110.33.015.440.11535.447U-131-S (09-01)XA-3SP110.62.713.928.76627.706U-131-S (09-05)XA-3SP110.22.013.923.45731.187U-131-S (09-05)XA-3SP110.22.013.927.95927.949M-028-W (03-02)XA-3SP109.10.21.023.338.42335.319M-028-W (03-02)XA-3SP109.00.21.023.45731.187U-131-S (09-03)XA-3SP109.00.21.023.45731.487U-131-S (09-03)XA-3SP109.00.22.49427.95827.949M-020-W (07-02)XA-3SP109.1 <td>Sample number Shelby$\frac{1000}{100}$</td>	Sample number Shelby $\frac{1000}{100}$

P
•
<u> </u>
-
1
\sim
0
0
<u> </u>
\sim
Ś
-
<
~
U U
_
0
<u> </u>
L '

																		- 1
cyclic	(bsi)	15.0	15,839	18,945	5,641	11,383	18,377	19,305	16,160	18,043	19,482	24,740	18,161	16,562	19,579	16,639	25,621	23,849
MR at	stress	10.0	15,142	19,172	5,290	9,509	19,152	19,406	17,933	18,325	22,213	30,928	19,255	15,783	22,142	19,812	27,276	27,610
	Saturation		41.5	63.6	93.9	88.7	18.8	75.7	48.6	48.0	51.6	13.7	37.4	87.7	5.8	39.5	63.9	74.5
Water	content for	cyclic test	9.8	8.4	23.7	14.1	3.9	10.3	9.5	8.5	9.2	2.2	8.1	9.2	1.2	8.4	6.4	8.5
Drv unit	weight	(lb/fl^3)	102.9	124.2	100.2	117.9	108.0	123.2	110.3	114.0	113.7	117.5	106.3	131.3	108.0	107.0	132.6	128.8
cation		USCS	SM	SM	SM	SM	SM	WS	SM	SM	SM	SC-SM						
Classifi		AASHTO	A-2-4	A-2-4	A-2-4	A-2-4	A-2-4	A-2-4	A-4	A-2-4	A-2-4	A-2-4	A-4	A-2-4	A-2-4	A-2-4	A-4	A-2-4
e tyme	~46.~	Disturbed	x	Х	Х	Х	Х	Х	Х	Х	Х	×	Х	Х	Х	Х	Х	×
Samul	-dumo	Shelby tube																
	Samule number		M-024-S (09-09)	I-069-N (10-04)	I-069-N (10-05)	I-096-W (10-09)	U-012-E (12-04)	I-094-W (12-06)	M-024-S (13-01)	M-053-S (15-02)	M-019-S (15-07)	M-068-W (04-02)	M-032-W (04-05)	I-075-N (08-06)	I-096-W (09-02)	M-060-W (11-03)	I-069-S (11-05)	I-094-W (12-01)

.

D
2
Ē
0
୍ପ
\sim
S
Ą.
စ
P
b]
F

	Campl	e tune	Classific	ation	Dev unit	Water		MR at	cyclic
Samule number	dumor	s type			weight	content for	Saturation	stress	(isd)
	Shelby tube	Disturbed	AASHTO	USCS	(lb/ft ³)	cyclic test		10.0	15.0
M-045-S (01-01)		Х	A-6	CL	120.8	10.2	69.8	36,543	31,503
M-010-E (13-08)	Х		A-6	CL	118.8	15.0	96.8	9,714	8,235
M-010-E (13-08)		Х	A-6	CL	122.1	10.4	73.9	17,150	16,572
M-010-E (13-08)	Х		A-6	CL	128.5	5.7	49.5	44,634	41,942
M-010-E (13-08)	Х		A-6	CL	122.3	12.3	88.0	15,561	9,553
I-094-W (14-09)	Х		A-7-6	CL	101.7	10.5	43.2	73,444	70,095
I-094-W (14-09)		Х	A-7-6	CL	101.6	11.3	46.3	60,247	60,327
I-094-W (14-09)	Х		A-7-6	CL	96.4	26.3	95.0	9,955	8,080
M-090-E (15-04)		Х	A-4	CL	109.5	10.6	53.1	67,778	62,006
M-072-W (05-06)		Х	A-6	SC	116.2	10.7	64.2	26,492	27,193
U-127-N (07-05)	Х		A-6	SC	120.5	11.2	75.9	7,323	6,925
U-127-N (07-05)	Х		A-6	SC	117.5	14.2	88.4	4,713	5,338

_	
•	
_	
0	
- 5	
3	
_	
S	
•	
~	
CD	
Α	
r	
abl	

	Camel	a tune	Classific	ation	Devinnit	Water		MR at	cyclic
Sample number	1 dillipc	به دیالید			weight	walu content for	Saturation	stress	(isd)
	Shelby tube	Disturbed	AASHTO	USCS	(lb/ft ³)	cyclic test		10.0	15.0
U-127-N (07-05)	х		9-V	SC	126.7	6.7	54.9	54,737	53,030
U-127-N (07-05)	×		A-6	SC	115.3	16.6	97.2	3,984	5,382
U-127-N (07-05)		Х	A-6	SC	117.7	10.3	64.5	36,047	27,746
U-010-W (08-04)	Х		A-6	SC	111.5	15.0	79.3	5,879	5,105
U-010-W (08-04)	Х		A-6	SC	113.8	16.7	93.8	4,134	5,268
I-096-W (10-03)		Х	A-2-6	SC	108.3	11.6	56.4	43,783	37,688
I-075-S (14-01)	Х		A-7-6	SC	115.7	8.8	52.1	32,569	29,839
I-075-S (14-01)	Х		A-7-6	SC	108.7	18.4	90.3	7,187	8,386
I-075-S (14-01)	Х		A-7-6	SC	106.2	20.9	96.2	6,069	4,007
I-075-S (14-01)		Х	A-7-6	SC	99.8	18.8	73.8	18,147	17,831
M-153-E (14-06)	X		A-7-6	SC	96.6	26.0	99.1	3,731	3,015
M-153-E (14-06)	Х		A-7-6	SC	92.5	30.4	99.9	4,430	3,921
M-153-E (14-06)		Х	A-7-6	SC	101.8	10.7	44.1	40,864	44,442
M-028-W (02-02)		Х	A-4	ML	106.2	11.0	50.6	53,824	41,516
U-002-E (02-04)		Х	A-4	ML	113.0	10.7	58.8	37,012	33,191

_

APPENDIX B

NDT data test results

This appendix contains two tables; Table B.1 provides a list of the results of backcalculated layer moduli of roadbed soils supporting flexible pavements. Table B.2, on the other hand, provides the results of the backcalculated layer moduli of roadbed soils supporting rigid pavements

Location				EWD File Information	Paveme	ent layer		Backca	lculatio	n	p :1:		())
		1	Roadbed	T WB The mormation	thickn	ess (in)	Error	Conv	erged?	Depth to	Resilio	ent modulu	is (psi)
Region	Road	Cluster- area	USCS	File title	Asphalt concrete	Base/ subbase	RMS (%)	Yes	No	stiff layer (in)	Asphalt concrete	Base/ subbase	Roadbed
North	US-131	07-01	SM	flex-N-US131-CS67017-05-01-2002	7.25	22	0.63	79	14	700	1696003	26912	23263
Superior	US-2	02-01	SM	flex-Su-US2-CS27022-05-20-2008	3.5	26.5	1.47	7	4	250	972815	45256	21132
Grand	M-57	09-01	SP1	flex-G-M57-CS41122-8-23-1994	3	26	1.20	81	27	700	2446547	44131	29428
Grand	M-57	09-01	SP1	flex-G-M57-CS28021-5-23-1995	3	26	1.38	20	63	700	3871662	33601	32384
Grand	M-57	09-01	SP1	flex-G-M57-CS59021-08-23-1994	3	26	1.21	40	13	700	2756285	42908	29943
Grand	M-57	09-01	SP1	flex-G-M57-CS59021-08-23-1994-(2)	3	26	1.27	43	10	700	2680244	43546	29965
Grand	M-57	09-01	SP1	flex-G-M57-CS59021-08-23-1994-(3)	3	26	1.32	34	20	700	2657574	44229	32430
Grand	M-57	09-01	SP1	flex-G-M57-CS59021-08-23-1994-(4)	3	26	1.27	33	20	700	2663880	43749	28829
Grand	US-131	07-03	SP1	flex-G-US131-CS54013-08-18-1994	7.25	24	1.13	43	22	700	370266	38527	27557
Grand	US-131	07-03	SP1	flex-G-US131-CS54013-08-18-1994-(2)	7.5	22	1.49	16	16	700	372701	38341	31242
Grand	US-131	07-03	SP1	flex-G-US131-CS54013-08-18-1994-(3)	7.5	22	1.51	18	15	700	351947	38155	30740
Grand	US-131	07-03	SP1	flex-G-US131-CS54013-08-18-1994-(4)	7.5	22	1.15	47	18	700	354711	37817	27911
Grand	US-131	07-03	SP1	flex-G-US131-CS54013-08-18-1994-(5)	7.5	22	1.52	18	15	700	351862	38153	30744
0 1	14.100	06-03	SP1	G. C. M120 CS(1012 07 22 1008	7	24	1.42	20	10	700	101/05	20026	10570
Grand	M-120	07-02	SP1	nex-G-M120-CS01012-07-23-1998	/	24	1.45	28	40	/00	191005	28830	18572
Grand	US-131	09-01	SP1	flex-G-US131-CS59012-06-25-1998	8	24	1.46	20	5	700	529653	38384	29069
Grand	M-37	07-03	SP1	flex-G-M37-CS62032-05-18-2000	8	25	1.28	25	15	700	433004	21019	20953
Grand	US-131	07-02	SP1	flex-G-US131-CS54013-08-18-1994	7.25	22	1.26	130	51	700	937313	30697	34067
Grand	M-20	07-03	SP1	flex-G-M20-CS54041-04-09-2002	6	24	1.09	48	20	700	592526	24492	25668
North	I-75	06-02	SP1	flex-N-I75-CS69014-11-12-1997	6.25	24	1.09	61	36	700	1073344	37124	30358
North	I-75	06-02	SP1	flex-N-I75-CS69014-08-03-1999	6.25	24	1.34	62	28	700	460044	49111	31074
North	I-75	06-02	SP1	flex-N-I75-CS69014-08-03-1999-(2)	6.25	24	1.36	61	29	700	516468	55316	40422
North	I-75	06-02	SP1	flex-N-I75-CS69014-11-23-1997	6.25	24	1.09	71	22	700	976787	38138	30700
North	I-75	06-02	SP1	flex-N-I75-CS69014-08-04-1999	6.25	24	1.36	65	27	700	364430	48793	30134
North	I-75	06-02	SP1	flex-N-I75-CS69014-08-04-1999-(2)	6.25	24	1.53	63	48	700	440817	52962	40183
North	M-55	05-04	SP2	flex-N-M55-CS77022-8-20-2001	7	23	1.75	32	44	700	253762	29680	23140

Table B.1 Backcalculated results of flexible pavement

	Location			EWD File Information	Paveme	ent layer		Backca	lculatio	n	Davili		
			Roadbed		thickn	ess (in)	Error	Conv	erged?	Depth to	Resine	int modulu	is (psi)
Region	Road	Cluster- area	USCS	File title	Asphalt concrete	Base/ subbase	RMS (%)	Yes	No	stiff layer (in)	Asphalt concrete	Base/ subbase	Roadbed
North	M-55	05-04	SP2	flex-N-M55-CS77022-8-20-2001-(2)	7	23	1.74	35	41	700	250435	29872	22953
Superior	M-28	03-01	SP-SM	flex-Su-M28-CS75061-05-21-2008	5.5	24.5	0.65	11	0	700	1719937	27402	21272
Superior	US-2	03-01	SP-SM	flex-Su-US2-CS75021-05-22-2008	5.5	24.5	1.28	10	1	300	3987549	60149	20953
Superior	M-28	03-03	SP-SM	flex-Su-M28-CS17061-05-22-2008	5	25	0.66	10	0	700	2255609	23293	21652
North	US-23	04-02	SC-SM	flex-N-US23-CS4032-06-03-2008	5	25	1.49	9	- 2	150	2126531	59749	14388
North	US-23	04-02	SC-SM	flex-N-US23-CS71073-06-04-2008-(2)	5.5	24.5	1.60	8	3	300	2175426	63071	23691
North	US-23	04-02	SC-SM	flex-N-US23-CS71073-06-04-2008	6.5	23.5	0.87	11	0	700	540464	32021	20721
North	US_23	04-02	SC-SM	flex-N-US23-CS1052-06-03-2008	3.5	26.5	1.77	6	5	200	1292560	62082	16445
Bay	M-57	09-08	SC	flex-B-M57-CS29022-08-30-1994	5.5	25	1.41	43	23	700	278977	26637	26310
Bay	M-57	09-08	SC	flex-B-M57-CS29022-08-30-1994-(2)	5.5	25	1.39	41	25	700	278587	26544	26385
Bay	M-57	09-08	SC	flex-B-M57-CS29022-08-30-1994-(3)	5.5	25	1.70	25	42	700	265828	27872	29292
Bay	M-57	09-08	SC	flex-B-M57-CS29022-08-30-1994-(4)	5.5	25	1.69	24	43	700	266435	27982	29611
Bay	M-57	09-08	SC	flex-B-M57-CS29022-01-28-1993	5.5	26	1.41	65	69	700	269243	26067	25798
Bay	M-84	09-08	SC	flex-B-M84-CS9011-10-03-2005	4	25	1.52	8	8	200	412843	35590	22034
Bay	M-84	09-08	SC	flex-B-M84-CS9011-05-17-2005	4	25	1.07	30	9	300	1058438	24543	19099
Bay	M-84	09-08	SC	flex-B-M84-CS9011-05-17-2005-(2)	4	25	1.15	52	17	400	1224141	23099	20129
Bay	M-84	09-08	SC	flex-B-M84-CS9011-10-10-2005	4	25	0.97	16	0	275	1179156	34888	25923
Bay	M-84	09-08	SC	flex-B-M84-CS9011-09-11-2005	4	25	1.40	30	2	160	2959369	47342	19575
Bay	M-84	09-08	SC	flex-B-M84-CS9011-09-13-2005-(2)	4	25	0.91	16	0	250	774323	32298	27322
Superior	I-75	03-05	SC	flex-Su-I75-CS49025-05-22-2008	7.5	22.5	1.41	4	7	150	783951	35186	55215
University	M-52	10-10	SC	flex-U-M52-CS33051-11-13-2002	6	24	1.14	39	5	250	776627	23650	23582
Metro	M-53	14-08	CL	flex-M-M53-CS50015-04-04-2008	8	24	1.07	9	2	300	1122329	16031	22259
Metro	I-94	14-09	CL	flex-M-I94-CS77111-04-02-2008	4.2	17.5	1.78	5	19	100	1937770	11660	4763
Superior	M-38	01-01	CL	flex-Su-M28-CS66042-05-20-2008	3.5	26.5	1.58	10	1	350	1468878	32573	18372
Superior	US-41	02-04	ML	flex-Su-US41-CS7013-05-19-2008	2.5	27.5	1.28	11	0	150	2059728	29874	10531
Superior	US-141	02-02	ML	flex-Su-US141-CS7022-05-19-2008	4.5	25.5	1.10	12	1	700	1075462	16677	21265

Table B.1 (cont'd)

Table B.2 Backcalculated results of rigid pavement

	Location		Roadbed		F	WD File Information	Concrete slab	Number	(11 (F))	Roadbed	Roadbed MR
Region	Road	Cluster- area	USCS	Season	Date	File title	thickness (in)	of tests	Slab (Ec)	K (pci)	(psi)
Bay	US-23	09-09	SM	Summer	10/21/1998	rigid-B-US23-CS25031-10-21-1998	9	34	4,320,980	437	33,920
Bay	US-23	09-09	SM	Summer	5/30/2001	rigid-B-US23-CS25031-05-30-2001	9	46	2,748,666	351	27,250
Bay	US-23	09-09	SM	Summer	8/23/2005	rigid-B-US23-CS25031-08-23-2005-(2)	9	17	1,792,001	392	30,384
Bay	I-475	09-09	SM	Summer	6/26/1997	rigid-B-I475-CS25132-06-26-1997	9	60	3,104,905	283	21,958
Bay	I-475	09-09	SM	Summer	6/24/2001	rigid-B-I475-CS25132-06-24-2001	9	66	2,263,476	307	23,832
Grand	I-96	09-07	SM	Summer	6/27/2001	rigid-G-I96-CS34044-06-27-2001	9	21	1,268,974	347	26,950
University	I-69	10-04	SM	Summer	9/10/2007	rigid-U-I69-CS23063-09-10-2007	10	30	2,199,553	298	23,132
Grand	US-131	07-03	SP1	Summer	4/9/1998	rigid-G-US131-CS59012-04-09-1998	9	22	782,808	338	26,229
North	I-75	05-02	SP1	Summer	9/17/2001	rigid-N-I75-CS16091-09-17-2001	9	69	1,501,914	259	20,106
North	I-75	05-02	SP1	Summer	10/26/2001	rigid-N-I75-CS16091-10-26-2001	9	53	1,779,633	267	20,708
North	I-75	05-02	SP1	Summer	9/18/2001	rigid-N-I75-CS16092-09-18-2001	9	98	1,283,968	289	22,414
North	I-75	05-02	SP1	Summer	9/27/2001	rigid-N-I75-CS160992-09-27-2001	9	86	1,370,042	273	21,186
Superior	M-28	03-04	SP1	Summer	5/8/2001	rigid-Su-M28-CS17062-05-08-2001	8	80	1,874,921	235	18,226
Superior	I-75	03-04	SP1	Summer	5/31/2000	rigid-Su-I75-CS17033-05-31-2000	9	49	1,199,440	218	16,931
Superior	I-75	03-04	SP1	Summer	5/25/2000	rigid-Su-I75-CS17034-05-25-2000	9	16	1,330,163	247	19,141
Superior	I-75	03-04	SP1	Summer	5/22/2000	rigid-Su-I75-CS17034-05-22-2000	9	21	1,523,738	224	17,367
Bay	US-23	09-10	SP2	Summer	8/30/2005	rigid-B-US23-CS25031-08-30-2005	10	19	1,371,563	407	31,592
Bay	US-23	09-10	SP2	Summer	8/23/2005	rigid-B-US23-CS25031-08-23-2005	10	27	1,487,442	386	29,920
Bay	US-23	09-10	SP2	Summer	11/15/2005	rigid-B-US23-CS25031-11-15-2005	10	68	1,082,723	339	26,345
Bay	US-23	09-10	SP2	Summer	11/16/2005	rigid-B-US23-CS25031-11-16-2005	10	31	1,025,612	234	18,134
Bay	US-23	09-10	SP2	Summer	11/16/2005	rigid-B-US23-CS25031-11-16-2005-(2)	10	48	958,993	259	20,107
North	I-75	05-04	SP2	Summer	8/30/1997	rigid-N-I75-CS65041-08-30-2001	9	20	1,333,695	304	23,622
North	I-75	05-04	SP2	Summer	9/14/2001	rigid-N-I75-CS65041-09-14-2001	9	29	1,159,426	245	19,038
University	I-94	13-04	SP2	Summer	11/19/2006	rigid-U-I94-CS82021-11-19-2006	10	333	2,764,869	311	24,146
Southwest	I-94	12-05	SP-SM	Summer	11/18/2002	rigid-So-I94-CS11081-11-18-2002	9	84	1,402,982	216	16,759
Southwest	I-94	12-05	SP-SM	Summer	10/28/2004	rigid-So-I94-CS11081-10-28-2004	9	66	1,285,711	223	17,299
Southwest	I-94	12-05	SP-SM	Summer	10/30/2001	rigid-So-I94-CS11081-10-30-2001	9	12	1,247,204	192	14,871
Southwest	US-31	06-05	SP-SM	Summer	10/9/2001	rigid-So-US31-CS11057-10-09-2001	9	28	819,421	194	15,028
Southwest	US-31	06-05	SP-SM	Summer	10/30/2001	rigid-So-US31-CS11057-10-30-2001	9	27	1,909,724	192	14,879
Southwest	US-31	06-05	SP-SM	Summer	6/6/2003	rigid-So-US31-CS11057-06-06-2003	9	16	1,398,211	240	18,636
Southwest	US-31	06-05	SP-SM	Summer	4/18/2008	rigid-So-US31-CS11057-05-14-2008	9	33	3,943,545	218	16,897

Table B.2 (cont'd)

Location		Roadbed		F	WD File Information	Concrete slab	Number		Roadbed	Roadbed MR	
Region	Road	Cluster- area	USCS	Season	Date	File title	thickness (in)	of tests	Slab (Ec)	K (pci)	(psi)
Southwest	US-31	06-05	SP-SM	Summer	11/9/2007	rigid-So-US31-CS3032-11-09-2007	10	33	2,444,743	390	30,295
Southwest	I-196	06-04	SP-SM	Summer	5/14/2008	rigid-So-I196-CS3033-05-14-2008	9	33	7,774,538	303	23,527
Southwest	I-196	06-04	SP-SM	Summer	9/11/2007	rigid-So-I196-CS3033-11-09-2007	9	36	5,170,572	445	34,562
Superior	M-28	03-01	SP-SM	Summer	8/23/2001	rigid-Su-M28-CS02041-08-23-2001	10	21	1,288,074	259	20,073
Superior	M-28	03-01	SP-SM	Summer	8/23/2001	rigid-Su-M28-CS02041-08-23-2001-(2)	10	46	1,006,652	209	16,199
University	US-23	13-06	SP-SM	Summer	9/14/2006	rigid-U-US23-CS58034-09-14-2006	10	79	931,042	365	28,310
Bay	I-75	08-06	SC-SM	Summer	9/13/2001	rigid-B-I75-CS6111-09-13-2001	9	57	1,617,746	286	22,182
Grand	US-131	09-02	SC-SM	Summer	11/7/1996	rigid-G-US131-CS41131-07-11-1996-(2)	9	9	2,055,282	313	24,279
Grand	M-6	09-02	SC-SM	Summer	9/15/2004	rigid-G-M6-CS41064-09-15-2004	10	57	2,657,345	392	30,406
Grand	M-6	09-02	SC-SM	Summer	9/8/2004	rigid-G-M6-CS41064-09-29-2004	10	653	6,913,721	262	20,344
Grand	M-6	09-02	SC-SM	Summer	9/8/2004	rigid-G-M6-CS41064-09-08-2004	10	665	6,929,648	262	20,329
Grand	M-6	09-02	SC-SM	Summer	11/15/2001	rigid-G-M6-CS41064-11-15-2001	10	159	3,091,380	253	19,654
Southwest	I-69	11-03	SC-SM	Summer	9/11/2001	rigid-So-I69-CS12034-09-11-2001	9	39	2,551,331	384	29,825
Southwest	I-69	11-03	SC-SM	Summer	10/8/1998	rigid-So-I69-CS12034-10-08-1998	9	7	1,224,345	342	26,522
Southwest	I-69	11-03	SC-SM	Summer	10/9/1998	rigid-So-I69-CS12034-10-09-1998	9	7	1,385,348	313	24,319
Southwest	I-69	11-05	SC-SM	Summer	12/18/2001	rigid-So-I69-CS12033-12-18-2001	9	65	2,286,690	253	19,637
University	US-127	10-02	SC-SM	Summer	6/15/1998	rigid-G-US27-CS19033-06-15-1998	10	249	3,688,356	222	17,215
University	US-127	10-02	SC-SM	Summer	11/7/2007	rigid-U-US127-CS19034-11-07-2007	10	31	7,943,405	379	29,442
Bay	US-127	09-08	SC	Summer	6/27/2008	rigid-B-US127-CS29011-06-27-2008	9	33	5,013,736	255	19,785
Bay	I-75	09-08	SC	Summer	8/15/2001	rigid-BI75-CS73101-08-15-2001	9	47	1,249,188	244	18,953
Bay	I-75	09-08	SC	Summer	11/30/1999	rigid-BI75-CS73101-11-30-1999	9	19	2,514,512	257	19,970
Bay	I-75	08-04	SC	Summer	7/2/2008	rigid-B-I75-CS3035-07-02-2008	9	36	4,624,514	272	21,138
Bay	I-675	09-08	SC	Summer	10/24/2003	rigid-B-I675-CS73101-10-24-2003	9	72	1,298,419	291	22,548
Bay	I-675	09-08	SC	Summer	5/26/2004	rigid-B-I675-CS73101-05-26-2004	9	49	1,322,471	285	22,091
Bay	I-675	09-08	SC	Summer	10/14/2004	rigid-B-I675-CS73101-10-14-2004	9	75	986,784	225	17,439
Bay	I-675	09-08	SC	Summer	12/5/2005	rigid-B-I675-CS73101-12-05-2005	9	63	1,634,031	281	21,767
Bay	US-10	08-04	SC	Summer	12/18/2007	rigid-B-US10-CS9101-12-18-2007	7.3	36	4,976,290	290	22,537
Bay	US-127	07-05	SC	Summer	12/19/2007	rigid-B-US127-CS37014-12-19-2007	8	45	2,490,183	475	36,844
Metro	M-5	13-03	SC	Summer	11/29/2006	rigid-M-M5-CS00000-11-29-2006	10	69	2,378,364	304	23,566
Metro	M-10	14-06	SC	Summer	10-3-2007	rigid-M-M10-CS82111-10-03-2007	10	44	2,770,674	663	51,486
Metro	I-94	14-05	SC	Summer	10/6/2005	rigid-M-I94-CS82022-10-06-2005	10	37	2,104,643	340	26,411

Table B.2 (cont'd)

	Location		Roadbed		F	WD File Information	Concrete	Number		Roadbed	Roadbed MR
Region	Road	Cluster- area	USCS	Season	Date	File title	thickness (in)	of tests	Slab (Ec)	K (pci)	(psi)
Metro	I-94	14-05	SC	Summer	10/13/2005	rigid-M-I94-CS82022-10-13-2005	10	38	2,104,704	327	25,381
Metro	I-94	14-05	SC	Summer	10/26/2005	rigid-M-I94-CS82022-10-26-2005	10	49	2,226,098	320	24,813
Metro	I-94	14-05	SC	Summer	10/31/2005	rigid-M-I94-CS82022-10-31-2005	10	34	2,289,527	354	27,468
Metro	I-94	14-05	SC	Summer	9/30/2005	rigid-M-I94-CS82022-09-30-2005	10	64	2,240,000	303	23,523
Metro	I-94	14-05	SC	Summer	11/1/2005	rigid-M-I94-CS82022-11-01-2005	10	79	1,980,028	258	20,003
Superior	I-75	03-05	SC	Summer	6/13/2000	rigid-Su-I75-CS49025-06-13-2000	9	63	1,751,835	278	21,555
Superior	I-75	03-05	SC	Summer	6/2/2000	rigid-Su-I75-CS49025-06-02-2000	9	40	1,115,443	240	18,646
University	I-75	14-03	SC	Summer	10/6/2006	rigid-U-I75-CS58152-10-06-2006	10	21	1,085,465	228	17,695
University	I-75	14-01	SC	Summer	12/4/2007	rigid-U-I75-CS58151-12-04-2007	9.3	83	4,002,494	297	23,071
University	I-69	10-08	SC	Summer	6/25/2001	rigid-U-I69-CS19043-06-25-2001	9	14	1,163,467	217	16,805
University	I-69	10-08	SC	Summer	5/14/2002	rigid-U-I69-CS19043-05-14-2002	9	98	1,895,200	326	25,285
University	I-69	10-08	SC	Summer	9/18/1998	rigid-U-I69-CS19042-09-18-1999	9	10	1,687,833	339	26,277
University	I-75	14-01	SC	?	3/31/2008	rigid-U-I75-CS58151-03-31-2008	10	57	4,346,544	175	13,580
Metro	I-94	14-05	SC	Summer	9/16/2008	rigid-M-I94-CS82022-09-16-2008	12.25	78	2,982,552	310	24,056
Metro	I-94	14-06	SC	Summer	9/16/2008	rigid-M-I94-CS82022-09-16-2008-(2)	12.5	66	3,536,866	373	28,945
Metro	I-75	14-06	SC	Summer	9/16/2008	rigid-M-I75-CS82194-09-16-2008	12	62	3,246,240	300	23,300
Metro	M-14	13-08	CL	Summer	11/29/2006	rigid-M-M14-CS82102-11-29-2006	10	66	4,335,070	335	25,963
Metro	I-69	14-09 15-03	CL	Summer	7/2/1997	rigid-M-I69-CS77023-07-02-1997	9	18	2,283,001	233	18,107
Metro	I-69	15-03	CL	?	4/2/2008	rigid-M-I69-CS77024-04-02-2008	10	39	2,442,439	118	9,181

REFERENCES

REFERENCES

- AASHTO (1993). "American Association of State Highway and Transportation Officials, Guide for Design of Pavement Structures." Washington, D. C.
- Asphalt Institute (1977). "Research and Development of the Asphalt Institutes' Thickness Design Manual (MS-1) Ninth Edition." Research report No. 82-2, The Asphalt Institute. Lexington, Kentucky.
- Baladi, G.Y. (1993). "Statistical Model for Predicting Stiff Layer Depth and Layer Moduli for Different Paving Layers." Unpublished Data, Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan.
- Bohn, A., Ullidtz, P., Stubstad, R., and Sorensen, A. (1972). "Danish Experiment with the French Falling Weight Deflectometer." <u>Proceedings</u>, Third International Conference on the Structural Design of Asphalt Pavements, University of Michigan, Ann Arbor, Michigan.
- Brown, J. L. (1991). "The Mechanistic Analysis of Pavement Deflections on Subgrades Varying in Stiffness with Depth." Draft Report No. 1159, Texas Transportation Institute, College Station, Texas.
- Bush, A. J. III. (1980). "Nondestructive Testing for Light Aircraft Pavements: Phase II, Development of Nondestructive Evaluation Methodology." Report No. FAA-RD-80-9-II, Department of Transportation, Federal Aviation Administration, Washington, D.C.
- Chou, Y. (1989). "Development of an Expert System for Nondestructive Pavement Structural Evaluation." PhD. Dissertation, Texas A&M University, College Station, Texas.
- Claessen, H. I. M., Valkerning, c. P., and Ditsmarsch, R. (1976). "Pavement Evaluation with the Falling Weight Deflectometer." <u>Proceedings</u>, Association of Asphalt Paving Technologists, Minneapolis, Minnesota.
- Coree, B., Ceylan, H. and Harrington, D. (2005), "Implementing the mechanistic empirical pavement design guide." Technical Report, IHRB Project TR-509, Center for Transportation Research and Education, Iowa State University, Ames, Iowa.
- Crovetti, J. A., Shahin, M.Y., and Touma, B.E. (1989). "Comparison of Two Falling Weight Deflectometer Devices, Dynatest 8000 and KUAB 2M-FWD." Nondestructive Testing of Pavements and Backcalculation of Moduli. ASTM STP 1026, A. J. Bush III, and G. Y. Baladi, Eds., American Society for Testing and Materials. Philadelphia, Pennsylvania.

- Epps, J. A., and Monismith, C.L. (1989). "Equipment for Obtaining Pavement condition and Traffic Loading Data." National cooperative Highway Research Program (NCHRP) Report No. 126. Transportation Research Board, National Research Council, Washington, D.C.
- Frabizzio, Michael A. (1998). "Field Investigation of Transverse Cracking in Jointed Concrete Pavements (JCP's)," MS. Thesis, Michigan State University, East Lansing, Michigan.
- George, K. P. (2003). "Falling Weight Deflectometer for Estimating Subgrade Resilient Moduli." FHWA/MS-DOT-RD-03-153, The Mississippi Department of Transportation. Jackson, Mississippi.
- Guozheng, Y. (1982). "The Radius of Curvature and the Fatique Design of Bituminous Pavement." <u>Proceedings</u>, Bearing Capacity of Roads and Airfields, The Norwegian Institute of Technology, Trondheim, Norway.
- Hoffman, M. S., and Thompson, M. R. (1981). "Nondestructive Testing of Flexible Pavements Field Testing Program Summary." Civil Engineering Studies, Transportation Engineering Series No. 31, Dept. of Civil Engineering, University of Illinois at Urbana-Champaign, Illinois.
- Hoffman, M. S., Mario, S., and Thompson, M. R. (1982). "Comparative Study of Selected Nondestructive Testing Devices." Transportation Research Record No. 852, Transportation Research Board, National Research Council, Washington, D. C.
- Holtz, Robert D., Kovacs, William D. (1981). An Introduction to Geotechnical Engineering, Prentice Hall, Upper Saddle River, New Jersey.
- Houston, W. N., Mamlouck, M. S., Members, ASCE, and Perera, R. W. S. (1992).
 "Laboratory versus Nondestructive Testing for Pavement Design." Journal of Transportation Engineers, Vol. 118(2). Reston, Virginia.
- Huang, Y. H. (2004). *Pavement Analysis and Design*, Pearson Prentice Hall, Upper Saddle River, New Jersey.
- Janoo, V., and Greatorex, A. (2002). "Performance of Montana Highway Pavements During Spring Thaw." FHWA/MT-02-006/8155. Federal Highway Administration (FHWA), Washington, D.C.
- Kathleen, T. H., Carlos, E. C., Samuel, H. C., and Robert, P. E. (2001). "Rehabilitation Strategies for Highway Pavements." NCHRP Web Document 35 (Project C1-38): Contractor's Final Report, National Cooperative Highway Research Program (NCHRP). Transportation Research Board, National Research Council, Washington, D.C.

- Keneddy, C. K., Ferve, P., and Clarks, C. S. (1978). "Pavement Deflection: Equipment for Measurement in the United Kingdom." TRRL Report 834, Transportation and Research Laboratory, United Kingdom.
- Kim, J. R., Kang, H. B., Kim, D., Park, D. S., and Kim, W. J. (2006). "Evaluation of In-Situ Modulus of Compacted Subgrades Using Portable Falling Weight Deflectometer as an Alternative to Plate Bearing Load Test." TRB 2006 Annual Meeting: Soil and Rock Properties Committee (AFP30), Transportation Research Board, National Research Council, Washington, D.C.
- Mahmood, T. (1993). "Backcalculation of Pavement Layer Properties from Deflection Data", Ph. D. Thesis, Michigan State University, East Lansing, Michigan.
- Mahoney, J. P., Winters, B. C., Jackcon, C., and Pierce, L.M. (1993). "Some Observations about Backcalculation and Use of a Stiff Layer Condition." Transportation Research Record No. 1384, Transportation Research Board, National Research Council, Washington, D.C.
- Michigan Department of State Highways (MDSH). (1970). "Field Manual of Soil Engineering." State Highway Commision. Lansing, Michigan.
- Moore, W. M., Chas R., Hanson, D.I., and Hall, W. J. Jr. (1978) "An Introduction to Nondestructive Structural Evaluation of Pavements," Transportation Research Circular No 189, Transportation Research Board, National Research Council, Washington, D.C.
- Nazarian, S., and Stoke II, K. H. (1989). "Nondestructive Evaluation of Pavements by Surface Wave Method." Nondestructive Testing of Pavements and Backcalculation of Moduli, ASTM STP 1026, American Society for Testing and Materials, Philadelphia, Pennsylvania.
- NCHRP (2004). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures. Final Report. National Cooperative Highway Research Program (NCHRP) Project 1-37A, Washington, D.C.
- NHI Course No 131008 (1998). "Techniques for Pavement Rehabilitation", Reference manual, US Department of Transportation, Federal Highway Administration, National Highway Institute (NHI), publication number FHWA NHI-98-033. Washington, D.C.
- Paquet, J. (1978). "The CEBPT Curvimeter, A New Instrument for Measuring Highway Pavement Deflections." C.E.B.P.T., Paris, France.
- Pavement Tools Consortium (PTC) (2008). "Pavement Guide Interactive" [Online] available at <u>http://training.ce.washington.edu/PGI</u>. Washington, D.C.

- Pierce, L. M. (1999). "Development of a Computer Program for the Determination of the AREA Value and Subgrade Modulus using Dynatest FWD." Washington State Department of Transportation. Olympia, Washington.
- Ping, W. V., Yang, Z., and Gao, Z. (2002). "Field and Laboratory Determination of Granular Subgrade Moduli." *Journal of Performance of Constructed Facilities*, Vol. 16(No. 4). Reston, Virginia.
- Prozzi J.A and F. Hong. (2006). "Seasonal Time Series Models to Support Traffic Input Data for Mechanistic-Empirical Design Guide." *Transportation Research Record* (1947), Transportation Research Board, National Research Council, Washington, D.C.
- Roberts, D. V. (1977). "Evaluation for the Cox Deflection Devices." FHWA-CA-TL-3150-77-14, Federal Highway Administration (FHWA). California Department of Transportation, Sacramento, California.
- Rohde, G. T., and Scullion, T. (1990). "MODULUS 4.0: Expansion and Validation of the MODULUS Backcalculation System." Research Report 1123-3, Texas Transportation Institute, Texas A&M University, College Station, Texas.
- Scrivner, F. H., Poehl, R., Moore, W. M., and Phillips, M.B. (1969). "Detecting Seasonal Changes in Load-Carrying Capabilities of Flexible Pavements." National Cooperative Highway Research Program (NCHRP) Report No. 76. Washington, D.C.
- Sessions, Colin P. (2008). "Laboratory Subgrade Resilient Modulus Design Values for the State of Michigan," MS. Thesis, Michigan State University, East Lansing, Michigan.
- Shepherd, K.L., and Vosen J. L. (1997). "Spring Thaw Weakening: design impact and load restriction impact. Montana Department of Transportation (MDT). Helena, Montana.
- Smith, R. E., and Lytton, R. L. (1984). "Synthesis Study of Nondestructive Devices for use in Overlay Thickness Design of Flexible Pavement." Report No FHWA/RD-83/097, Federal Highway Administration (FHWA), Washington, D.C.
- Smith, K. D., Yu, H. T., Wade, M. J., Peshkin, D. G., and Darter, M. I. (1997). Performance of Concrete Pavements, Volume I – Field Investigation. Report FHWA-RD-94-177. Federal Highway Administration (FHWA), U.S. Department of Transportation, Washington, D.C.: USA.
- Uddin, W., Meyer, A.H., and Hudson, W.R. (1986). "Rigid Bottom Considerations for Nondestructive Evaluation of Pavements". Transportation Research Record No. 1070, Transportation Research Board, National Research Council, Washington, D.C.

- United States Department of Agriculture. (1992). "Soil Survey of Ingham County, Michigan." National Cooperative Soil Survey. Washington D.C.
- Uzan, J. (1994). "Advanced Backclculation Techniques," Nondestructive Testing of Pavements and Backcalculation of Moduli (Second Volume), ASTM STP 1198, Harold L. Von Quintus, albert J. Bush, III, and Gilbert Y. Baladi, EDS., American Society for Testing and Materials (ASTM), Philadelphia, Pennsylvania.
- Von Quintus, H., and Killingsworth, B. (1998). "Analyses Relating to Pavement Material Characteriztions and Their Effects on Pavement Performance." *FHWA-RD-97-*085, Federal Highway Administration (FHWA). Washington D.C.
- Web Soil Survey. (2007). "Natural Resources Conservation Services" [Online] available <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>. United States Department of Agriculture (USDA). Washington D.C.

