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ABSTRACT
DESIGN PATTERNS FOR DEVELOPING DYNANICALLY ADAPTIVE
SYSTEMS
By
ANDRES J. RAMIREZ

As applications grow in size and complexity, and computing infrastructure con-
tinues to evolve, it becomes increasingly difficult to build a system that satisfies all
requirements and constraints that might arise during its lifetime. As a result, there
is an increasing need for the software to adapt to new requirements and environmen-
tal conditions after the software has been deployed. Due to their high complexity,
adaptive programs are generally difficult to specify, design, verify, and validate. In
addition, the current lack of reusable design expertise that can be leveraged from one
adaptive system to another further exacerbates the problem. To address this prob-
lem, we have developed adaptation-focused design patterns to support monitoring,
decision-making, and reconfiguration of adaptive systems where the patterns facili-
tate the separate development of the functional logic and the adaptive logic. We have
also extended the template used by Gamma et al. [26] for describing design pat-
terns with Behavioral and Constraints fields to uniformly present and capture each
adaptation design pattern. In addition, the Related Pattern section is also used to
indicate which adaptation design patterns are commonly used together in adaptive
systems. We present these patterns in the context of a modeling-based development
process, where we focus on supporting the design of adaptive systems. Furthermore,
we provide support for specifying invariant properties of adaptive systems. This the-
sis describes cach design pattern and illustrates how they can be used to construct
adaptive and autonomic computing systems. We demonstrate this approach by re-

engineering an adaptive news web server from scratch with our design patterns.
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Chapter 1

Introduction

As applications grow in size, complexity, and heterogeneity in response to grow-
ing computational needs, it is increasingly difficult to build a system that satisfies all
requirements and design constraints that it will encounter during its lifetime. Many
of these systems are required to run continuously, disallowing long downtimes where
humans look for places to modify the code. As a result, it is important to be able to
adapt an application’s behavior at run time in response to changing requirements and
environmental conditions [62]. Recently, IBM proposed autonomic computing [50] in
which a system manages itself based on high-level objectives from a systems admin-
istrator that promotes properties such as self-management and self-reconfiguration.
As a result of their high complexity, adaptive programs and autonomic systems are
generally difficult to specify, design, verify, and validate [85]. In addition, the current
lack of reusable design expertise that can be leveraged from one adaptive system to
another further exacerbates the problem. To address this problem, we have identified
design patterns for adaptive and autonomic systems. In order to facilitate their use,
we constructed an adaptation design pattern template, much akin to the template
used by Gamma et al. [26] for design patterns. This thesis describes the adapta-

tion design patterns and how they can be used to construct adaptive and autonomic



systems.

Most adaptive systems, including autonomic systems, comprise three key ele-
ments: monitoring, decision-making, and reconfiguration. Monitoring enables an
application to be aware of its environment and detect conditions warranting recon-
figuration; decision-making determines what set of monitored conditions should trig-
ger a specific reconfiguration response; and reconfiguration enables an application to
change itself in order to fulfill its requirements. Not only must developers design
and implement each of these elements correctly, they must also carefully determine
their interactions. For instance, if the monitoring process fails to report a significant
environmental change. then the decision-making process may incorrectly determine
whether a reconfiguration is warranted or not. Unfortunately, until recently, most
approaches have addressed adaptation in ad hoc manners [34]. To address these con-
cerns, researchers provided adaptation-enabling frameworks [12, 21, 27|, middleware
[54, 64], and language-based support [23, 73]. These approaches, however, tend to be
tightly coupled with specific domains or technologies, thus limiting their fitness with
respect to the problem being addressed. Design patterns, on the other hand, work at
the modeling level of abstraction, thereby possibly increasing the amount of design

reuse when compared to other approaches.

Thesis Statement Based on recurring problem-solution pairs, it is possible to
develop adaptation-focused design patterns to support monitoring, decision-making,
and reconfiguration of adaptive systems where the patterns facilitate the separate

development of the functional logic and the adaptive logic.

This thesis presents twelve adaptation-oriented design patterns to facilitate the
reuse of adaptation expertise. In the spirit of the original design patterns by Gamma

et al. [26], each of the adaptation-oriented patterns were developed by generalizing



several existing design solutions. For each design pattern presented in this thesis, we
use platform-independent models to represent the solution. As a result, our approach
does not depend on specific programming languages. In addition, our design patterns
separate the adaptive logic from the functional logic by focusing on the recurring
challenges fond in monitoring. decision-making, and reconfiguration activities. This
separation of concerns facilitates reusing adaptation designs across multiple applica-
tions and domains. Similarly, we have observed recurring interactions between mon-
itoring, decision-making. and reconfiguration processes while harvesting each design
pattern. This information enables us to suggest which design patterns should be used
together. Lastly. we extended the design pattern template introduced by Gamma et
al. [26] with a constraints field to specify properties that must be satisfied once the
design pattern is instantiated. Since our approach is compatible with the high assur-
ance model-based development process previously introduced by Zhang and Cheng
[85], automated verification techniques can be used to analyze the instantiated design
patterns against safety critical properties.

Harvesting design patterns is a difficult and subjective task for two main rea-
sons. First, it is impractical to examine all available systems and research projects
associated with adaptation. Second, some of the surveyed systems had little to no
documentation accompanying their design. To ensure that the design patterns har-
vested were sufficiently mature to aid developers in building adaptive systems, we
performed two forms of validation in this work. First, we reviewed previously de-
veloped adaptive systems for similar instances of the design patterns. Information
from the new instances enabled us to further generalize the solutions and refine the
design patterns. Second, we re-engineered an adaptive news web server, originally
presented in [16], from scratch using our design patterns. This case study enabled
us to evaluate the usefulness of the design patterns in guiding the development of

an adaptive system. In addition, this case study was used to compare and contrast



different development processes and final artifacts between our approach and other

well-established framework-oriented approaches.

Organization of Thesis The remainder of this thesis is organized as follows. Chap-
ter 2 presents background information for this work. including the different types of
adaptation and their semantics, the key objectives of monitoring, decision-making,
and reconfiguration within adaptive syvstems, an introduction to the Zhang-Cheng
model-based development process [85]. and a brief overview of design patterns. Chap-
ter 3 overviews related work for building adaptive systems. Chapter 4 illustrates the
research method used for harvesting and abstracting design patterns. Chapter 5 in-
troduces the adaptation design pattern template, the classification scheme, and the
set of design patterns harvested thus far. Chapter 6 expands the model-based devel-
opment process by illustrating how these design patterns can be integrated into the
development process. Chapter 7 presents a proof of concept case study that applies
monitoring, decision-making, and reconfiguration design patterns in the development
of an adaptive web server. Chapter 8 summarizes our main findings and discusses

future directions of work.



Chapter 2

Background

This chapter provides background information on three topics central to the
rescarch. First, we overview adaptive systems. This includes a description of the
different types of adaptations, the three most common adaptation semantics found
in adaptive systems, and the objectives of monitoring, decision-making, and recon-
figuration processes within adaptive systems. Second, we introduce the model-based
development process previously introduced by Zhang and Cheng [85]. The key ideas,
benefits, and steps of the model-based development process are briefly described.
Third, we overview the arca of software design patterns as well as introduce the

design pattern template created by Gamma et al. [26].

2.1 Adaptation Overview

A system is considered to be adaptive if it can be reconfigured in response to
changing requirements and environmental conditions [67]. Although many forms of
adaptations are possible, most adaptive systems perform some form of introspection
and intercession [62]. Introspection is the ability for an application to observe its
own behavior. Intercession, on the other hand, is the ability for an application to

reason about these observations and alter its execution. In some adaptive systems,



a systems administrator may perform either introspection or intercession functions.
For instance, a system administrator might be responsible for selecting the appropri-
ate reconfiguration based on the available information. While it is desirable for an
adaptive system to automatically perform the tasks of introspection and intercession.
it is not a requirement.

Autonomic computing systems were proposed by IBM [50] to overcome the
growing complexity of managing svstems. While all autonomic systems are adap-
tive in nature, not all adaptive systems are autonomic. Specifically, in an autonomic
computing system, every component is an autonomic element that is capable of in-
trospection and intercession [41]. As a result, an autonomic computing system is
self-managed, guided only by high-level objectives from a systems administrator. To
accomplish these high-level goals, autonomic systems incorporate self-* properties
such as self-configuration, self-healing, self-optimization, and self-protection. Self-
configuration refers to the ability to reconfigure components and their interactions.
Self-healing refers to the ability of automatically discovering and correcting faults.
Self-optimization refers to the ability to optimize behavior based on requirements and
constraints. Self-protection refers to ability to detect and fend-off attacks. Through-
out this thesis, the term adaptive system is used to include autonomic computing

systems unless otherwise noted.

2.1.1 Types of Adaptation

Two general approaches are used to implement software adaptation [62]. The
first approach, parameter adaptation, involves adjusting and fine tuning variables
and strategies to achieve optimal behavior. While parameter adaptation is relatively
simple to implement, the possible range of adaptation scenarios supported by this
approach is limited. Specifically, parameter adaptation can switch between existing

strategies already built into the system but it may not adopt new strategies and com-



ponents after deployment. The second approach, compositional adaptation, involves
adding, removing, and modifying algorithmic and structural components at run time.
While compositional adaptation is difficult to implement, it provides greater flexibility
in terms of reconfiguration.

The wide spectrum of adaptation techniques developed over the past several years
can be classified as either static or dynamic composition [62]. Static composition
takes place during development, compile, or load time. Development time composi-
tion hard codes adaptive behavior into an application, thereby forcing developers to
manually modify the code to incorporate new adaptations. Compile-time composition
adapts an application’s behavior by recompiling or relinking different components to
suit particular environments. Load time composition dclays the decision of which
component to load until run time. Dynamic composition, on the other hand, refers
to tunable and mutable methods applied at run time to alter an application’s be-
havior. Tunable reconfiguration supports the fine-tuning of crosscutting concerns in
response to changing environmental conditions. Mutable reconfiguration, the most
flexible form of adaptation, supports changes to the entire application, including its
functional logic. Sometimes, static composition is referred to as closed-adaptive,
and dynamic composition is referred to as open-adaptive [67]. Dynamic composi-
tion is more powerful than static composition because it can adopt new strategies
at run time that were not available at design time. However, the added flexibility
of dynamic composition increases the difficulty associated with ensuring a system’s
integrity across adaptations. While static composition is simpler to implement and
verify than dynamic composition, it can only support adaptation strategies known at

design time.



2.1.2 Adaptation Semantics

Three types of adaptive behavior are commonly seen in adaptive programs [84]:
one-point adaptation, guided adaptation, and overlap adaptation. As Figure 2.1 illus-
trates, the key difference between the three types of adaptations is when adaptation
can begin and terminate. Zhang and Cheng extended LTL to develop A-LTL (adapt-
operator LTL) that precisely defines the semantics [84]. In one-point adaptation,
a single transition transfers execution from the source program to the target pro-
gram. As a result, at one state during the source program’s execution, the source
behavior terminates and the target behavior commences. In guided adaptation, the
source program must first reach a state in which an adaptive transition can be ap-
plied without leaving the system in an inconsistent state. To reach such a state, also
known as a quiescent state, the source program typically enters a restricted mode in
which some features are disabled. Once the source program reaches a quiescent state,
a one-point adaptation can be applied to transfer execution to the target program.
In overlap adaptation, the source and target behavior may overlap. That is, during
overlap adaptation the target behavior commences even though the source behavior
has not yet terminated. Eventually the source behavior completes and only the target

behavior is observable.

2.1.3 Monitoring

Two primary types of monitoring can be performed by an application. Internal
monitoring refers to the measuring and information gathering of how the system itself
is performing. External monitoring refers to the measuring and information gathering
of how the environment that surrounds the system is behaving. In general, both inter-
nal and external monitoring are considered to be computationally expensive because
they continuously intrude upon many different portions of an application. Various

researchers [30, 43, 50, 59, 81] have proposed to externalize and orthogonalize moni-
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Figure 2.1: Adaptation Semantics.

toring tasks to reduce the cost of monitoring in an application. In these architectures,
sensors can either actively probe for the desired information or passively wait for a
notification that an event of interest has occurred.

As distributed and mobile applications gained interest, researchers began devel-
oping techniques for monitoring components across distributed infrastructures. Gar-
lan et al. identified several reasons for why monitoring across a distributed infras-
tructure is difficult [27, 29, 30]. First, distributed systems comprise heterogeneous

platforms. As a result, no specific standard exists for probing components running



on above different platforms. Second, the set of sensors deployed across a distributed
infrastructure is likely to be developed by third parties. This can lead to possible
interface conflicts between clients. sensors, and components to be monitored. Third,
the set of sensors, components being monitored, and clients utilizing the monitored
information may change dynamically at run-time. In addition, any distributed sen-
sor is susceptible to security risks and network delays that can render the monitored

information useless and possibly even adverse.

2.1.4 Decision-making

A decision-making process is typically responsible for performing two tasks within
an adaptive system. First, decision-making processes must determine when the sys-
tem is not behaving as expected based on the information gathered from the moni-
toring process [59]. Second, decision-making processes must determine which recon-
figuration will yield the desired behavior [29]. Unfortunately, it is usually impossible
to predict all possible reconfigurations that may be required ahead of time. As a
result, designing decision-making processes that are reliable and correct at all times
is a difficult task. For instance, if the monitoring information is delayed in reaching
the decision-making process, then the decision-making process may issue an out of
date or obsolete adaptation request. Fortunately, the artificial intelligence field has
been studying decision-making for many years [70].

Decision-making processes can be classified according to how much knowledge
they possess about the environment in which they execute [70]. Full knowledge
decision-making processes know, ahead of time, every possible event that may occur.
Partial knowledge decision-making processes know only a limited subset of every
possible event that may occur. Since uncertainty is present in almost every software
system, most decision-making processes fall into the partial knowledge category. This

lack of complete information implies that in some situations the decision-making

10



process will not be able to correct a fault. To address this concern, decision-making
processes are sometimes cenabled with learning capabilities that enable the adoption

of new strategies not known at design time.

2.1.5 Dynamic Reconfiguration

Dynamic reconfiguration involves adding, removing. and modifying components
at run time. These components may be localized within a single system or may
be distributed across a heterogencous platform of computing devices. One of the
key enabling technologies for realizing dynamic reconfiguration is the concept of
component-based design [62]. Component-based design facilitates dynamic recon-
figuration in two wavs. First. third parties can independently develop, deploy, and
compose components. As a result, this increases the number of components avail-
able that can be integrated into a system to either augment or replace functionality.
Second, component-based design encapsulates a component by exposing only its in-
terface. Thus, different components are interchangeable as long as they provide the

same interface.

2.2 Model-based Development Process

Zhang and Cheng [85] previously introduced a model-based development process
with the objective of guiding the rigorous development of adaptive programs. Their
process separates the adaptive behavior and the non-adaptive behavior specifications
of adaptive programs. By doing so, the respective models are easier to specify and
more amenable to automated analysis and visual inspection. As Figure 2.2 illustrates,
the process starts with high-level goals (G) and progresses through design models
(M, M;) to code. The focus of the process was the specification of key properties

at each of the major development phases. While the original work used Petri-nets to

11



illustrate the process, the process itself is compatible with other state-based modeling

approaches such as the Unified Modeling Language.

(C))
M.
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Y M |
' v
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Figure 2.2: Model-based Development Process.

The model-based development process comprises six key steps (Figure 2.2):

1. Specify global properties, INV, using a high-level specification language such as

temporal logic.

12



2. Identify the different domains. D;, or environmental conditions under which a

program with requirements R; will execute.

3. Using a high-level specification language. specify local properties, ®;, for cach

domain identified in step (2).

4. Build state-based models (Af; and Afj) of the non-adaptive programs in each
domain. Simulations and verifications can be applied to verify and validate the
models against both the local (®;. ®;) and global properties (INV) previously

specified.

5. Identify the possible scenarios in which dynamic changes may occur. Build
adaptive models. A ; and Aj;, to safely transfer execution from a source pro-
gram to a target program. Specify transitional properties, ®;; and ®;;. to
indicate the properties that must be satisfied during the adaptation process.
As with step (4). simulations and verifications can be applied to verify and

validate the adaptive models against global and transitional properties.

6. The state-based models can be used to either generate rapid prototypes or to

guide the development of adaptive programs [85].

2.3 Design Patterns Overview

A design pattern is a general and reusable solution to a commonly recurring
problem in design [26]. Although Christopher Alexander proposed the idea of design
patterns for buildings and towns [2], Gamma et al. were able to extend those prin-
ciples and apply them to the design of object-oriented software. A software design
pattern is not a finished design in the sense that it does not provide code nor can it

be directly transformed into code. Instead, a design pattern names, abstracts, and
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identifies the key aspects of a common design structure that make it useful for creat-
ing a reusable object-oriented design [26]. It is important to note that the purpose
of a design pattern is to facilitate the reuse of successful designs among developers,
not to propose new and innovative approaches that have not been applied in practice.
As a result. the main contribution from Gamma et al. was capturing proven designs
in a new and accessible format. as a catalog of design patterns having a consistent
format.

Although Gamma et al. did not include any domain-specific design patterns in
their pattern catalog [26]. they anticipated the need for domain-specific designs that
could be reused. Each domain tends to be characterized by specific contexts and
requirements, most of which are learned through experience. Domain-specific design
patterns can leverage and reuse the experience gained from designing and building
similar applications. In recent years. researchers have cataloged design patterns for
a wide range of domains including software architectures [11], resource management

[53]. concurrent and distributed systems [10]. embedded systems [55]. and so forth.

2.3.1 Template Description

A design pattern has four essential elements [26]. First. a pattern name is a
handle that can be used to describe a design pattern, its solutions, and consequences.
The pattern name should be as descriptive as possible and ideally limited to one or
two words. Second. the problemn describes when to apply the pattern. It provides a
detailed description of the design problem being addressed and its context. Third,
the solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations. The solution should be sufficiently abstract to
be applicable to different situations. Fourth, the consequences are the results and
tradeoffs of applying the design pattern. This field is essential for evaluating design

alternatives and determining whether it is beneficial to apply the design pattern
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or not. The design pattern template fields will contain and organize the relevant

information to describe each of these four essential elements.

The original design pattern template proposed by Gamma et al.comprises four-

teen different fields given below with brief descriptions of each field:

10.

11.

. Pattern Name: Scrves as a unique handle to identify the design pattern.

Classification: Facilitates the organization of design patterns based on their
level of abstraction and purpose. Some possible classifications include struc-

tural. behavioral, and creational.

. Intent: Provides a brief description of what the design pattern does.

Also Known As: Other well-known name identifiers for the pattern.

Motivation: Presents a scenario that illustrates a design problem and how the

class and object structures in the design pattern solve the problem.

. Applicability: Defines the context under which the design pattern can be

applied.

Structure: Provides a graphical representation of the classes and their rela-

tionships in the design pattern.

. Participants: Describes the responsibilities for each class and object.

Collaborations: Presents how the participants collaborate to accomplish their

responsibilities.

Consequences: Lists the known advantages and disadvantages of applying the

design pattern.

Implementation: Indicates any known pitfalls, hints, or techniques that a

developer should be aware of when instantiating the design pattern.
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12. Sample Code: Presents code fragments to illustrate how the design pattern

might be implemented.

13. Known Uses: Lists examples of the design pattern found in real systems.

14. Related Patterns: Lists other design patterns that are closely related, as well
as other design patterns that should be used in conjunction with the current

pattern.
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Chapter 3

Related Work

This chapter [.)I‘(‘.S(‘.Ilts work that is related to building adaptive systems. First,
we describe some of the earliest approaches and attempts to build adaptive systems.
Second, we present some of the efforts by the system’s community at creating mid-
dleware to facilitate the design and construction of adaptive systems. Third, we
overview several software engineering efforts to efficiently build and manage adap-
tive systems. Some of these approaches include architectural description languages,
adaptation frameworks, and aspect-oriented techniques. Finally, we present a few

language-based approaches that support the construction of adaptive systems.

3.1 Early Approaches

Adaptive computing systems have steadily gained attention throughout the past
several years. Nonetheless, the concept of dynamic reconfiguration has existed since
the earliest days of computing. Some of the first attempts at self-modifying code sup-
ported run-time program optimization and explicit management of physical memory
[62]. These programs were frequently complex and difficult to understand because
developers lacked the proper support to abstract the low-level details of dealing with

adaptation. New approaches and techniques for building adaptive systems eventually
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began to emerge. For instance, developers began applying error detection and error
handling capabilities to render systems self-adaptive [32]. While these types of ap-
proaches helped demonstrate that adaptation was both possible and powerful, they
were tightly coupled with source code, application-specific, and typically applied in an
ad hoc fashion. As a result, the first generation of adaptive programs were considered

difficult to write. debug, and maintain.

3.2 Systems Approach

The first generation of techniques and tools created to enable both static and dy-
namic adaptive behavior in applications mostly focused on the implementation level.
This strategy proved particularly problematic for adaptive systems in terms of devel-
opment and maintenance. For example, with these approaches, building an adaptive
system required identifying all the corresponding places where a system might need
to reconfigure and manually introducing the changes. Likewise, correcting errors en-
tailed identifying where the problem occurre(i, what caused it, which changes were
required, and where modifications needed to be performed. These first-generation ad
hoc approaches were not well-suited for efficiently building and maintaining complex
adaptive systems. As a result, research on adaptive systems gradually shifted towards

developing more efficient adaptation schemes that reduced the burden on developers.

3.2.1 Middleware

Recent research by the systems community has focused on extending middleware
approaches to provide adaptation services [18, 64, 36]. Middleware refers to the var-
ious layers of services that separate applications from operating systems and network
protocols [62]. Schmidt [74] decomposed middleware into four layers comprising a

host-infrastructure layer, a distribution layer, a common layer, and a domain-specific
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layer. In its most basic form, the different service layers of adaptive middleware serve
as a level of indirection by intercepting and modifying messages as needed. One ben-
efit of middleware-based adaptation is that it shields developers from dealing with
resource distribution and platform heterogeneity, thus alleviating tasks previously rel-
egated to developers. However, middleware tends to be highly domain-specific, and
as a result, may not be readily available for many application domains.

The Mobility and ADaptability enAbling Middleware (MADAM) [31, 64] project
provides a general component model and middleware infrastructure that supports
various adaptation styles for mobile applications. Adaptation occurs seamlessly and
without user intervention in reaction to context changes. The MADAM middleware
infrastructure supports three types of functionalities. First, it monitors, detects, and
reasons about context changes. Second, it decides which adaptation to perform in
response through a utility theory approach. Third, it implements the adaptation
choices through dynamic composition. To support these functionalities;, MADAM
operates on an architectural model of the application at run time. This provides the
adaptation middleware information about the application structure, its constraints,
and the various context and resource dependencies that exist.

Sadjadi et al. developed the Adaptive CORBA Template (ACT) to enable run-
time improvements to CORBA applications in response to changing requirements
and environmental conditions [72]. ACT transparently weaves adaptive code into an
object request broker (ORB) at run time. The woven code intercepts and modifies
the requests, replies, and exceptions that pass through the ORBs. One of the benefits
of ACT is that it is language and ORB independent. Thus, developers can use ACT
to build an object-oriented framework in any language that supports dynamic loading
of code. Although the ACT infrastructure introduced a slight overhead, experimental
results showed it was insignificant when compared to the highly flexible adaptations

it offered.
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3.3 Software Engineering-Based Approaches

As developers gained experience with these initial approaches they realized that
building adaptive systems from scratch was impractical. The second generation of
tools and techniques for building adaptive systems would have to address the follow-
ing requirements. First, the specifics of adapting a system should be as transparent
as possible to developers. Second, adaptation mechanisms should be reused whenever
possible. Third. the adaptive logic should be minimally invasive upon the functional
logic. Finally, these approaches should be applicable to both new systems, as well
as legacy systems. Ideally, developers would be able to create efficient adaptive ap-
plications without explicitly implementing all the required adaptation mechanisms.
Based on these requirements, researchers provided architectures, frameworks, and

language-based support for systematically building adaptive systems.

3.3.1 Architectural-based Techniques

Separating the adaptive logic from the functional logic simplified the development
and maintenance of adaptive systems while promoting software reuse. Researchers
presented several architectures for cleanly separating concerns in adaptive systems
[6, 27, 42, 67]. In particular, Oreizy [67] proposed an infrastructure that supported
two simultaneous processes in self-adaptive software. While the first process dealt
with the evolution of the system, the second process dealt with the cycle of detecting
changing circumstances and planning responsive modifications. Meanwhile, other
researchers [22, 30, 32] explored the tasks of monitoring and decision-making and
how they interacted within adaptive systems. Garlan and Shaw [27, 75] further
subdivided the architecture of adaptive systems by applying control theory approaches
to adaptive systems. More recently, new approaches [6] have further extended these

architectures by decentralizing each process across distributed infrastructures. As
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a result, the most common architecture found in adaptive systems today comprises
monitoring, decision-making, and reconfiguration processes.

Another area of software engineering adaptive research has focused on using ar-
chitectural description languages (ADL) to capture and manage system evolution and
system adaptation. Architecture-based approaches for self-adaptive software usually
view systems as networks of concurrent components bound together by connectors
[67]. Architectural-based representations of a system shift focus away from source
code to coarse-grained components and their interconnections. In these representa-
tions, a component is responsible for implementing application behavior and main-
taining state information. Connectors, on the other hand, offer transport and routing
services for messages or objects. In architectural-based approaches, dynamic recon-
figuration involves not only adding, removing, or modifying components and their
connections, but also managing the evolution of the system and the consistency of
the component-connector representations. Recently, Kramer and Magee proposed
a three-layer architecture-based model for self-adaptive systems [58]. The lowest
layer, the component control layer, is responsible for the creation, interconnection,
and deletion of components. The change management layer comprises a predefined
set of reconfiguration plans that can be applied to repair the application at run time.
The highest layer, the goal management layer, creates new change management plans
as needed, thus facilitating the overall evolution of the system and its reconfiguration
mechanisms.

Three examples of architectural-based approaches at self-adaptive software in-
clude Taylor et al.’'s C2 [67], Gorlick’s Weave [35], and Garlan et al’s Rainbow
[29]. C2 [67] composes systems as a hierarchy of concurrent components bound to-
gether by connectors such that a component within the hierarchy can only be aware
of components residing at the same level or beneath it. Weaves, on the other hand, is

a dynamic, object-flow-centric architecture targeted towards applications with large
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volumes of data flow and real-time constraints [35]. One interesting characteristic
of Weaves is that no component in a network knows the sources of its input objects
or the destination of its output objects. While this approach provides a large de-
gree of flexibility. it is also susceptible to security risks. For instance, a component
may not be able to authenticate the origins of a particular message if it does not
know the source of its inputs. Lastly, Rainbow [29] is an adaptation framework that
uses models not only to represent the system’s architecture, but also to select which

reconfiguration will yield the desired behavior.

3.3.2 Frameworks

Adaptive software research has also focused on creating and using frameworks
for building adaptive systems [12, 27, 49]. A framework is a set of cooperating
classes that make up a reusable design for a specific class of software [26]. Among
other things, the framework dictates the overall architecture of the application and its
thread of control. This often leads to an inversion of control in which developers write
code that gets called by the framework. One of the major benefits of frameworks is
that it provides large amounts of reusable code, thereby enabling developers to build
applications faster. Nevertheless, some creative freedom is lost because many design
decisions have already been made by the framework developers [26]. Additionally,
framework-based applications are sensitive to changes in the framework’s interface.

Garlan et al.’s Rainbow is an architecture-based self-adaptation framework with
reusable infrastructure [27]. Their approach uses external adaptation mechanisms
for two reasons. First, it facilitates the application of their reusable infrastructure to
legacy applications without being invasive upon the functional logic. Second, it allows
developers to specify and reuse adaptation strategies for multiple system concerns.
Rainbow supports distributed component monitoring, probe and gauge deployment,

architectural-based system representation and adaptation strategies, and effectors to
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reconfigure the syvstem.

Rainbow’s adaptation infrastructure incorporates control theory concepts [75].
First, probes monitor the system and report values to gauges and gauge consumers.
These values are then related to properties of the architectural model. Each time an
architecture property is updated. the architecture is analyzed to ensure no constraint
is violated. If a constraint has been violated, then the architecture must be recon-
figured. Rainbow uses utility theory-based approaches to select a reconfiguration
plan. Finally, through Rainbow’s infrastructure and effectors, the reconfiguration is

executed on the system’s architecture.

3.3.3 Aspect-oriented Programming

Another interesting approach for building adaptive systems is based on the
aspect-oriented programming (AOP) paradigm introduced by Kiczales [51]. AOP
provides abstraction techniques and language constructs to manage crosscutting con-
cerns [62]. AOP defines an aspect as code that implements a crosscutting concern.
Using an aspect weaver, AOP inserts aspects into specific code locations, called point-
cuts, during compilation. As a result, not only does AOP decouple crosscutting con-
cerns from the functional logic, it also localizes them. This separation facilitates the
consistent maintenance of an application as it evolves.

Dynamic recomposition can exploit the AOP paradigm because most adapta-
tions are crosscutting in nature. Yang et al. [82] introduced a systematic two-step
process that defined where, when, and how adaptations would be incorporated into
an application. First, aspects are used to extend a program with an adaptation infras-
tructure and entry points into the adaptation kernel. Then the adaptation kernel uses
a rule-based engine to determine if an adaptation should be performed and executes

the corresponding actions if necessary.
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3.3.4 Software Reconfiguration Design Patterns

Gomaa et al. proposed several design patterns for reconfiguring software ar-
chitectures at runtime [34]. The four design patterns they introduced specify the
behavior required to dynamically reconfigure specific types of architectures. In par-
ticular, the design patterns describe the reconfiguration of master/slave, centralized,
server/client, and decentralized architectures. For each design pattern, Gomaa et al.
identify when it is safe to perform a reconfiguration and provide hierarchical UML
state diagrams illustrating the necessary behavior. Although these reconfiguration
design patterns are helpful to developers implementing dynamically adaptive systems
from scratch. their contents are not organized in template format and they do not

address safety and assurance.

3.4 Language-based Approach

Sadjadi et al. proposed a transparent reflective aspect programming (TRAP)
technique for enabling adaptive behavior on legacy applications [73]. TRAP was
designed around the four techniques of aspect-oriented programming, behavioral re-
flection, component-based design, and adaptive middleware. Briefly, TRAP works
as follows. First, developers identify potential points of adaptation (hook points.)
Adaptive infrastructure is then woven into the legacy system at the corresponding
hook points. The hook points are then monitored for adaptation conditions. If a
condition that requires an adaptation arises, then a rule-based decision-making pro-
cess determines the appropriate code to swap in or out. As a result, TRAP could be
used to enhance legacy code with adaptive behavior without explicitly altering the
functional logic. TRAP/J was a specific incarnation of TRAP based on the Adaptive

Java Language [48].

24



Chapter 4

Process Used for Developing

Design Patterns

This chapter introduces the research methods designed to harvest, evaluate, and
refine the adaptation design patterns presented throughout this thesis. First, we
motivate why it is important to have a methodology that is able to systematically
select, analyze, and abstract recurring solutions as design patterns. Second, we state
the goals for this methodology and how they relate to the thesis statement. Third,
we present the sequence of steps that were used to develop cach adaptation design
pattern. We describe and each of the key steps in this iterative process, and, if

applicable, we also indicate any limitations they may have.

4.1 Motivation

The survey conducted on background and related work indicate two particular
trends in the software engineering community with respect to adaptive and autonomic
systems. First, the software engineering community has begun to address adapta-
tion concerns by providing frameworks [27], middleware [64], and language-based

support 73] for enabling applications with adaptive and autonomic behavior. The



majority of these approaches deal with adaptation at the implementation phase, thus
making the assumption that the requirements, designs, and constraints are already
understood. Second, with the exception of a few projects [10, 34], little attention
has been given to reusing adaptation expertise at the modeling level through the use
of design patterns. Compared to other approaches, design patterns promote creative
freedom by imposing fewer initial constraints on design decisions [26].

This thesis combines the key ideas of specializing design patterns [34] and orga-
nizing their contents through templates [10, 26]. First, the design patterns presented
by Gomaa [34] are focused solely on reconfiguring different types of software archi-
tectures at run time. Instead of providing design patterns for general problems in
reconfiguration. their design patterns address very specific problems that arise dur-
ing reconfiguration. Second, the design patterns presented in [10, 26] make explicit
use of a design pattern template for structuring and presenting relevant information.
Synthesizing concepts from both approaches, this thesis proposes to harvest design
patterns that are specific to recurring problems encountered in adaptive applications
and structuring their contents with the use of a template. As a result, these design
patterns may be combined according to specific requirements and constraints in order
to vield customized adaptive applications.

Harvesting design patterns is a difficult and subjective process because there
is no existing set of metrics that quantify the quality of a design pattern. Those
who harvest design patterns, for instance, must address many subjective questions
while generalizing solutions to a recurring problem. For instance, exactly when does
a problem get class