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ABSTRACT

DESIGN PATTERNS FOR DEVELOPING DYNAMICALLY ADAPTIVE

SYSTEMS

By

ANDRES J. RAMIREZ

As applications grow in size and complexity, and computing infrastructure con-

tinues to evolve, it becomes increasingly difficult to build a system that satisfies all

requirements and constraints that might arise during its lifetime. As a result, there

is an increasing need for the software to adapt to new requirements and environmen-

tal conditions after the software has been deployed. Due to their high complexity,

adaptive programs are generally difficult to specify, design, verify, and validate. In

addition, the current lack of reusable design expertise that can be leveraged from one

adaptive system to another further exacerbates the problem. To address this prob-

lem, we have developed adaptation-focused design patterns to support monitoring.

decision—making, and reconfiguration of adaptive systems where the patterns facili-

tate the separate development of the functional logic and the adaptive logic. We have

also extended the template used by Gamma et al. [26] for describing design pat-

terns with Behavioral and Constraints fields to uniformly present and capture each

adaptation design pattern. In addition, the Related Pattern. section is also used to

indicate which adaptation design patterns are commonly used together in adaptive

systems. We present these patterns in the context of a modeling—based development

process, where we focus on supporting the design of adaptive systems. Furthermore,

we provide support for specifying invariant properties of adaptive systems. This the-

sis describes each design pattern and illustrates how they can be used to construct

adaptive and autonomic computing systems. We demonstrate this approach by re-

engineering an adaptive news web server from scratch with our design patterns.
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Chapter 1

Introduction

As applications grow in size, complexity, and heterogeneity in response to grow-

ing computational needs, it is increasingly difficult to build a system that satisfies all

requirements and design constraints that it will encounter during its lifetime. Many

of these systems are required to run continuously, disallowing long downtimes where

humans look for places to modify the code. As a result, it is important to be able to

adapt an applications behavior at run time in response to changing requirements and

environmental conditions [62]. Recently, IBM proposed autonomic computing [50] in

which a system manages itself based on high-level objectives from a systems admin-

istrator that promotes properties such as self-management and self—reconfiguration.

As a result of their high complexity, adaptive programs and autonomic systems are

generally difficult to specify, design, verify, and validate [85]. In addition, the current

lack of reusable design expertise that can be leveraged from one adaptive system to

another further exacerbates the problem. To address this problem, we have identified

design patterns for adaptive and autonomic systems. In order to facilitate their use,

we constructed an adaptation design pattern template, much akin to the template

used by Gamma et al. [26] for design patterns. This thesis describes the adapta-

tion design patterns and how they can be used to construct adaptive and autonomic



systems.

Most adaptive systems, including autonomic systems, comprise three key ele-

ments: monitoring, decision-making, and reconfiguration. Monitoring enables an

application to be aware of its environment and detect conditions warranting recon-

figuration; decision-making determines what set of monitored conditions should trig-

ger a specific reconfiguration response: and reconfiguration enables an application to

change itself in order to fulfill its requirements. Not only must developers design

and implement each of these elements correctly, they must also carefully determine

their interactions. For instance, if the monitoring process fails to report a significant

environmental change. then the decision-making process may incorrectly determine

whether a reconfiguration is warranted or not. Unfortunately, until recently, most

approaches have addressed adaptation in ad hoc manners [34]. To address these con-

cerns, researchers provided adaptation-enabling frameworks [12, 21, 27], middleware

[54, 64], and language-based support [23. 73]. These approaches, however, tend to be

tightly coupled with specific domains or technologies, thus limiting their fitness with

respect to the problem being addressed. Design patterns, on the other hand, work at

the modeling level of abstraction, thereby possibly increasing the amount of design

reuse when compared to other approaches.

Thesis Statement Based on recurring problem-solution pairs, it is possible to

develop adaptation—focused design patterns to support monitoring, decision-making,

and reconfiguration of adaptive systems where the patterns facilitate the separate

development of the functional logic and the adaptive logic.

This thesis presents twelve adaptation—oriented design patterns to facilitate the

reuse of adaptation expertise. In the spirit of the original design patterns by Gamma

et al. [26], each of the adaptation-oriented patterns were developed by generalizing



several existing design solutions. For each design pattern presented in this thesis, we

use platform-independent models to represent the solution. As a result, our approach

does not depend on specific programming languages. In addition, our design patterns

separate the adaptive logic. from the functional logic by focusing on the recurring

challenges fond in monitoring. decision-making, and reconfiguration activities. This

separation of concerns facilitates reusing adaptation designs across multiple applica-

tions and domains. Similarly, we have observed recurring interactions between mon-

itoring, decision-making, and reconfiguration processes while harvesting each design

pattern. This information enables us to suggest. which design patterns should be used

together. Lastly. we extended the design pattern template introduced by Gamma et

al. [26] with a constraints field to specify properties that must be satisfied once the

design pattern is instantiated. Since our approach is compatible with the high assur—

ance model-based development process previously introduced by Zhang and Cheng

[85], automated verification techniques can be used to analyze the instantiated design

patterns against safety critical properties.

Harvesting design patterns is a difficult and subjective task for two main rea-

sons. First, it is impractical to examine all available systems and research projects

associated with adaptation. Second, some of the surveyed systems had little to no

documentation accompanying their design. To ensure that the design patterns har-

vested were sufficiently mature to aid developers in building adaptive systems, we

performed two forms of validation in this work. First, we reviewed previously de-

veloped adaptive systems for similar instances of the design patterns. Information

from the new instances enabled us to further generalize the solutions and refine the

design patterns. Second, we re—engineered an adaptive news web server, originally

presented in [16], from scratch using our design patterns. This case study enabled

11s to evaluate the usefulness of the design patterns in guiding the development of

an adaptive system. In addition, this case study was used to compare and contrast



different development processes and final artifacts between our approach and other

well-established framework—orientcd approaches.

Organization of Thesis The remainder of this ”thesis is organized as follows. Chap-

ter 2 presents background information for this work, including the different types of

adaptation and their semantics, the key objectives of monitoring. decision-making,

and reconfiguration within adaptive systems, an introduction to the Zhang-Cheng

model-based development process [85], and a brief overview of design patterns. Chap-

ter 3 overviews related work for building adaptive systems. Chapter 4 illustrates the

research method used for harvesting and abstracting design patterns. Chapter 5 in-

troduces the adaptation design pattern template, the classification scheme, and the

set of design patterns harvested thus far. Chapter 6 expands the model-based devel-

opment process by illustrating how these design patterns can be integrated into the

development process. Chapter 7 presents a proof of concept case study that applies

monitoring, decision-making, and reconfiguration design patterns in the development

of an adaptive web server. Chapter 8 summarizes our main findings and discusses

future directions of work.



Chapter 2

Background

This chapter provides background information on three topics central to the

research. First, we overview adaptive systems. This includes a description of the

different types of adaptations, the three most common adaptation semantics found

in adaptive systems, and the objectives of monitoring, decision-making, and recon-

figuration processes within adaptive systems. Second, we introduce the model-based

development process previously introduced by Zhang and Cheng [85]. The key ideas,

benefits, and steps of the model-based development process are briefly described.

Third, we overview the area of software design patterns as well as introduce the

design pattern template created by Gamma et al. [26].

2. 1 Adaptation Overview

A system is considered to be adaptive if it can be reconfigtu'ed in response to

changing requirements and environmental conditions [67]. Although many forms of

adaptations are possible, most adaptive systems perform some form of introspection

and intercession [62]. Introspection is the ability for an application to observe its

own behavior. Intercession, on the other hand, is the ability for an application to

reason about these observations and alter its execution. In some adaptive systems,



a systems administrator may perform either introspection or intercession functions.

For instance, a system administrator might be responsible for selecting the appropri-

ate reconfiguration based on the available information. While it is desirable for an

adaptive system to automatically perform the tasks of introspection and intercession.

it is not a requirement.

Autonomic computing systems were proposed by IBM [50] to overcome the

growing complexity of managing systems. While all autonomic systems are adap-

tive in nature, not all adaptive systems are autonomic. Specifically, in an autonomic

computing system, every component is an autonomic element that is capable of in-

trospection and intercession [41]. As a result, an autonomic computing system is

self-managed, guided only by high-level objectives from a systems administrator. To

accomplish these high-level goals, autonomic systems incorporate self—* properties

such as self-configuration, self-healing, self-optimization, and self-protection. Self-

configuration refers to the ability to reconfigure components and their interactions.

Self-healing refers to the ability of automatically discovering and correcting faults.

Self—optimization refers to the ability to optimize behavior based on requirements and

constraints. Self-protection refers to ability to detect and fend-off attacks. Through-

out this thesis, the term adaptive system is used to include autonomic computing

systems unless otherwise noted.

2.1.1 Types of Adaptation

Two general approaches are used to implement software adaptation [62]. The

first approach, parameter adaptation, involves adjusting and fine tuning variables

and strategies to achieve optimal behavior. While parameter adaptation is relatively

simple to implement, the possible range of adaptation scenarios supported by this

approach is limited. Specifically, parameter adaptation can switch between existing

strategies already built into the system but it may not adopt new strategies and com-



ponents after deployment. The second approach, compositional adaptation, involves

adding, removing, and modifying algorithmic and structural components at run time.

While compositional adaptation is difficult. to implement, it provides greater flexibility

in terms of reconfiguration.

The wide spectrum of adaptation techniques developed over the past several years

can be classified as either static or dynamic composition [62]. Static composition

takes place dtu'ing development, compile, or load time. Development time composi—

tion hard codes adaptive behavior into an application, thereby forcing developers to

manually modify the code to incorporate new adaptations. Compile-time composition

adapts an application’s behavior by recompiling or relinking different. components to

suit particular environments. Load time composition delays the decision of which

component to load until run time. Dynamic composition, on the other hand, refers

to tunable and mutable methods applied at run time to alter an application’s be-

havior. Tunable reconfiguration supports the fine-tuning of crosscutting concerns in

response to changing environmental conditions. Mutable reconfiguration, the most

flexible form of adaptation, supports changes to the entire application, including its

functional logic. Sometimes, static composition is referred to as closed—adaptive,

and dynamic composition is referred to as open-adaptive [67]. Dynamic composi-

tion is more powerful than static composition because it can adopt new strategies

at run time that were not available at design time. However, the added flexibility

of dynamic composition increases the difficulty associated with ensuring a system’s

integrity across adaptations. While static composition is simpler to implement and

verify than dynamic composition, it can only support adaptation strategies known at

design time.



2.1.2 Adaptation Semantics

Three types of adaptive behavior are commonly seen in adaptive programs [84]:

one-point adaptation, guided adaptation, and overlap adaptation. As Figure 2.1 illus-

trates, the key difference between the three types of adaptations is when adaptation

can begin and terminate. Zhang and Cheng extended LTL to develop A-LTL (adapt-

operator LTL) that precisely defines the semantics [84]. In one-point adaptation,

a single transition transfers execution from the source program to the target pro-

gram. As a result, at one state during the source program’s execution, the source

behavior terminates and the target behavior commences. In guided adaptation, the

source program must first reach a state in which an adaptive transition can be ap-

plied without leaving the system in an inconsistent state. To reach such a state, also

known as a quiescent state, the source program typically enters a restricted mode in

which some features are disabled. Once the source program reaches a quiescent state,

a one-point adaptation can be applied to transfer execution to the target program.

In overlap adaptation, the source and target behavior may overlap. That is, during

overlap adaptation the target behavior commences even though the source behavior

has not yet terminated. Eventually the source behavior completes and only the target

behavior is observable.

2.1 .3 Monitoring

Two primary types of monitoring can be performed by an application. Internal

monitoring refers to the measuring and information gathering of how the system itself

is performing. External monitoring refers to the measuring and information gathering

of how the environment that surrounds the system is behaving. In general, both inter-

nal and external monitoring are considered to be computationally expensive because

they continuously intrude upon many different portions of an application. Various

researchers [30, 43, 50, 59, 81] have proposed to externalize and orthogonalize moni-
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Figure 2.1: Adaptation Semantics.

 

toring tasks to reduce the cost of monitoring in an application. In these architectures,

sensors can either actively probe for the desired information or passively wait for a

notification that an event of interest has occurred.

As distributed and mobile applications gained interest, researchers began devel-

oping techniques for monitoring components across distributed infrastructures. Gar-

lan et al. identified several reasons for why monitoring across a distributed infras-

tructure is difficult [27, 29, 30]. First, distributed systems comprise heterogeneous

platforms. As a result, no specific standard exists for probing components running



on above different platforms. Second, the set of sensors deployed across a distributed

infrastructure is likely to be developed by third parties. This can lead to possible

interface conflicts between clients. sensors, and components to be monitored. Third,

the set of sensors, components being monitored, and clients utilizing the monitored

information may change dynamically at run-time. In addition, any distributed sen-

sor is susceptible to security risks and network delays that can render the monitored

information useless and possibly even adverse.

2.1 .4 Decision-making

A decisicm-making process is typically responsible for performing two tasks within

an adaptive system. First, decision-making processes must determine when the sys-

tem is not behaving as expected based on the information gathered from the moni-

toring process [59]. Second, decision-making processes must determine which recon-

figuration will yield the desired behavior [29]. Unfortunately, it is usually impossible

to predict all possible reconfigurations that may be required ahead of time. As a

result, designing decision—making processes that are reliable and correct at all times

is a difficult task. For instance, if the monitoring information is delayed in reaching

the decision-making process, then the decision-making process may issue an out of

date or obsolete adaptation request. Fortunately, the artificial intelligence field has

been studying decision-making for many years [70].

Decision-making processes can be classified according to how much knowledge

they possess about the envirormient in which they execute [70]. Full knowledge

decision-making processes know, ahead of time, every possible event that may occur.

Partial knowledge decision-making processes know only a limited subset of every

possible event that may occur. Since uncertainty is present in almost every software

system, most decision-making processes fall into the partial knowledge category. This

lack of complete information implies that in some situations the decision-making

10



process will not be able to correct a fault. To address this concern, decision-making

processes are sometimes enabled with learning capabilities that enable. the adoption

of new strategies not known at design time.

2.1.5 Dynamic Reconfiguration

Dynamic reconfigriration involves adding, removing, and modifying components

at run time. These components may be localized within a single system or may

be distributed across a heterogeneous platform of computing devices. One of the

key enabling technologhs for realizing dynamic reconfiguration is the concept of

component-based design [(52]. Component—based design facilitates dynamic recon-

figuration in two ways. First, third parties can independently develop, deploy, and

compose components. As a result, this increases the number of components avail-

able that can be integrated into a system to either augment or replace functionality.

Second, component-based design encapsulates a component by exposing only its in-

terface. Thus, different con'lponents are interchangeal)le as long as they provide the

same interfzwe.

2.2 Model-based Development Process

Zhang and Cheng [85] previously introduced a model-based development process

with the objective of guiding the rigorous development of adaptive programs. Their

process separates the adaptive behavior and the non-adaptive behavior specifications

of adaptive programs. By doing so, the respective models are easier to specify and

more amenable to automated analysis and visual inspection. As Figure 2.2 illustrates,

the process starts with high-level goals (G) and progresses through design models

(Mi, 1%) to code. The focus of the process was the specification of key properties

at each of the major development phases. While the original work used Petri—nets to
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illustrate the process, the process itself is compatible with other state-based modeling

approaches such as the Unified Modeling Language.
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The model-based development process comprises six key steps (Figure 2.2):

1. Specify global properties, INV, using a high-level specification language such as

temporal logic.
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2. Identify the different domains, D,, or environmental conditions under which a

program with requirements R,- will execute.

3. Using a high—level specification language. specify local properties, (1),, for each

domain identified in step (2).

4. Build state-based models (M, and NJ) of the non-adaptive programs in each

domain. Simulations and verifications can be applied to verify and validate the

models against both the local ((1),, (DJ) and global propertles (INV) prev10usly

specified.

5. Identify the possible. scenarios in which dynamic changes may occur. Build

adaptive models, M211 and AIM, to safely transfer execution from a source pro—

gram to a target program. Specify transitional properties, (bid and (pjj, to

indicate the p1'(')perties that. must be satisfied during the adaptation process.

As with step (4), simulations and verifications can be applied to verify and

validate the adaptive models against global and transitional properties.

6. The state-based models can be used to either generate rapid prototypes or to

guide the development of adaptive programs [85].

2.3 Design Patterns Overview

A design pattern is a general and reusable solution to a commonly recurring

problem in design [26]. Although Christopher Alexander proposed the idea of design

patterns for buildings and towns [2], Gamma et al. were able to extend those prin-

ciples and apply them to the design of object-oriented software. A software design

pattern is not a finished design in the sense that it does not provide code nor can it

be directly transformed into code. Instead, a design pattern names, abstracts, and
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identifies the key aspects of a common design structure that make it useful for creat-

ing a reusable object-oriented design [26]. It is important to note that the purpose

of a design pattern is to facilitate the reuse of successful designs among developers,

not to propose new and innovative approaches that have not been applied in practice.

As a result. the main contribution from Gannna et al. was capturing proven designs

in a. new and accessible format. as a catalog of design patterns having a consistent

format.

Although Gamma et al. did not include any domain-s1.)ecific design patterns in

their pattern catalog [26]. they anticipated the need for domain—specific designs that

could be reused. Each domain tends to be characterized by specific contexts and

requirements, most of Which are learned through experience. Domain—specific design

patterns can leverage and reuse the experience gained from designing and building

similar applications. In recent years, researchers have cataloged design patterns for

a wide range of domains including software architectures [11], resource management

[53], concurrent and distributed systems [10]. embedded systems [55] and so forth.

2.3.1 Template Description

A design pattern has four essential elements [26]. First. a pattern. name is a

handle that can be used to describe a design pattern, its solutions, and consequences.

The pattern name should be as descriptive as possible and ideally limited to one or

two words. Second, the problem describes when to apply the pattern. It provides a

detailed description of the design problem being addressed and its context. Third,

the solution describes the elements that make up the design, their relationships,

responsibilities, and collaborations. The solution should be sufficiently abstract to

be applicable to different situations. Fourth, the conscqmmrcs are the results and

tradeoffs of applying the design pattern. This field is essential for evaluating design

alternatives and determining whether it is beneficial to apply the. design pattern
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or not. The design pattern template fields will contain and organize the relevant

information to describe each of these four essential elements.

The original design pattern template proposed by Gamma et alcomprises four-

teen different fields given below with brief descriptions of each field:

10.

11.

. Pattern Name: Serves as a unique handle to identify the design pattern.

Classification: Facilitates the organization of design patterns based on their

level of abstraction and purpose. Some possible classifications include struc-

tural, behavioral, and creational.

. Intent: Provides a brief description of what the design pattern does.

. Also Known As: Other well-known name identifiers for the pattern.

. Motivation: Presents a scenario that illustrates a design problem and how the

class and object structures in the design pattern solve the problem.

. Applicability: Defines the context under which the design pattern can be

applied.

Structure: Provides a graphical representation of the classes and their rela-

tionships in the design pattern.

. Participants: Describes the responsibilities for each class and object.

Collaborations: Presents how the participants collaborate to accomplish their

responsibilities.

Consequences: Lists the known advantages and disadvantages of applying the

design pattern.

Implementation: Indicates any known pitfalls, hints, or techniques that a

developer should be aware of when instantiating the design pattern.

15



12. Sample Code: Presents code fragments to illustrate how the design pattern

might be implemented.

13. Known Uses: Lists examples of the design pattern found in real systems.

14. Related Patterns: Lists other design patterns that are closely related, as well

as other design patterns that should be used in conjunction with the current

pattern.
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Chapter 3

Related Work

This chapter presents work that is related to building adaptive systems. First,

we describe some of the earliest approaches and attempts to build adaptive systems.

Second, we present some of the efforts by the system’s community at creating mid-

dleware to facilitate the design and construction of adaptive systems. Third, we

overview several software engineering efforts to efficiently build and manage adap-

tive systems. Some of these approaches include architectural description languages,

adaptation frameworks, and aspect-oriented techniques. Finally, we present a few

language-based approaches that support the construction of adaptive systems.

3. 1 Early Approaches

Adaptive computing systems have steadily gained attention throughout the past

several years. Nonetheless, the concept of dynamic reconfiguration has existed since

the earliest days of computing. Some of the first attempts at self-modifying code sup-

ported run-time program optimization and explicit management of physical memory

[62]. These programs were frequently complex and difficult to understand because

developers lacked the proper support to abstract the low-level details of dealing with

adaptation. New approaches and techniques for building adaptive systems eventually
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began to emerge. For instance, developers began applying error detection and error

handling capabilities to render systems self-adaptive [32]. While these types of ap-

proaches helped demonstrate that adaptation was both possible and powerful, they

were tightly coupled with source code, application-specific, and typically applied in an

ad 1106 fashion. As a result, the first generation of adaptive programs were considered

difficult to write, debug, and maintain.

3.2 Systems Approach

The first generation of techniques and tools created to enable both static and dy-

namic adaptive behavior in applications mostly focused on the implementation level.

This strategy proved particularly problematic for adaptive systems in terms of devel-

opment and maintenance. For example, with these approaches, building an adaptive

system required identifying all the corresponding places where a system might need

to reconfigure and manually introducing the changes. Likewise, correcting errors en-

tailed identifying where the problem occurred, what caused it, which changes were

required, and where modifications needed to be performed. These first-generation ad

hoc approaches were not well-suited for efficiently building and maintaining complex

adaptive systems. As a result, research on adaptive systems gradually shifted towards

developing more efficient adaptation schemes that reduced the burden on developers.

3.2.1 Middleware

Recent research by the systems community has focused on extending middleware

approaches to provide adaptation services [18, 64, 36]. Middleware refers to the var-

ious layers of services that separate applications from operating systems and network

protocols [62]. Schmidt [74] decomposed middleware into four layers comprising a

host-infrastructure layer, a distribution layer, a. common layer, and a domain-specific
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layer. In its most basic form, the different service layers of adaptive middleware serve

as a level of indirection by intercepting and modifying messages as needed. One ben-

efit of middleware—based adaptation is that it shields developers from dealing with

resource distribution and platform heterogeneity, thus alleviating tasks previously rel-

egated to developers. However, middleware tends to be highly domain-specific, and

as a result, may not be readily available for many application domains.

The Mobility and ADaptability enAbling l\=‘liddleware (MADAM) [31, 64] project

provides a. general component model and middleware infrastructure that supports

various adaptation styles for mobile applications. Adaptation occurs seamlessly and

without user intervention in reaction to context changes. The MADAM middleware

infrastructure supports three types of functionalities. First, it monitors, detects, and

reasons about context changes. Second, it decides which adaptation to perform in

response through a utility theory approach. Third, it implements the adaptation

choices through dynamic composition. To support these functionalities, MADAM

operates on an architectural model of the application at run time. This provides the

adaptation middleware information about the application structure, its constraints,

and the various context and resource dependencies that exist.

Sadjadi et al. developed the Adaptive CORBA Template (ACT) to enable run-

time improvements to CORBA applications in response to changing requirements

and environmental conditions [72]. ACT transparently weaves adaptive code into an

object request broker (ORB) at run time. The woven code intercepts and modifies

the requests, replies, and exceptions that pass through the ORBs. One of the benefits

of ACT is that it is language and ORB independent. Thus, developers can use ACT

to build an object-oriented framework in any language that supports dynamic loading

of code. Although the ACT infrastructure introduced a slight overhead, experimental

results showed it was insignificant when compared to the highly flexible adaptations

it offered.
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3.3 Software Engineering-Based Approaches

As developers gained experience with these initial approaches they realized that

building adaptive systems from scratch was impractical. The second generation of

tools and techniques for building adaptive systems would have to address the follow-

ing requirements. First, the specifics of adapting a system should be as transparcmt

as possible to developers. Second, adaptation mechanisms should be reused whenever

possible. Third. the adaptive logic should be minimally invasive upon the functional

logic. Finally, these approaches should be applicable to both new systems, as well

as legacy systems. Ideally, developers would be able to create efficient adaptive ap-

plications without explicitly implementing all the required adaptation mechanisms.

Based on these requirements, researchers provided arcl'iitectures, frameworks, and

lamguagt-é-based support for systematically building adaptive systems.

3.3.1 Architectural-based Techniques

Separating the adaptive logic from the functional logic simplified the development

and maintenance of adaptive systems while promoting software reuse. Researchers

presented several architectures for cleanly separating concerns in adaptive systems

[6, 27, 42, 67]. In particular, Oreizy [67] proposed an infrastructure that supported

two sinmltaneous processes in self-adaptive software. While the first process dealt

with the evolution of the system, the second process dealt with the cycle of detecting

changing circumstances and plamling responsive modifications. Meanwhile, other

researchers [22, 30, 32] explored the tasks of monitoring and decision-making and

how they interacted within adaptive systems. Garlan and Shaw [27, 75] further

subdivided the architecture of adaptive. systems by applying control theory approaches

to adaptive systems. More recently, new approaches [6] have further extended these

architectures by decentralizing each process across distributed infrastructures. As
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a result, the most common architecture found in adaptive systems today comprises

monitoring, decision—making, and reconfiguration processes.

Another area of software engineering adaptive research has focused on using ar-

chitectural description languages (ADL) to capture and manage system evolution and

system adaptation. Architecture-based approaches for self-adaptive software usually

view systems as networks of concurrent components bound together by connectors

[67]. Architectural-based representations of a system shift focus away from source

code to coarse-grained components and their interconnections. In these representa-

tions, a component is responsible for implementing application behavior and main-

taining state information. Connectors, on the other hand, offer transport and routing

services for messages or objects. In architectural—based approaches, dynamic recon—

figuration involves not only adding, removing, or modifying components and their

connections, but also managing the evolution of the system and the consistency of

the component-connector representations. Recently, Kramer and Magee proposed

a three—layer architecture-based model for self-adaptive systems [58]. The lowest

layer, the component control layer, is responsible for the creation, interconnection,

and deletion of components. The change management layer comprises a predefined

set of reconfiguration plans that can be applied to repair the application at run time.

The highest layer, the goal management layer, creates new change management plans

as needed, thus facilitating the overall evolution of the system and its reconfiguration

mechanisms.

Three examples of architectural-based approaches at self-adaptive software in-

clude Taylor et al.‘s C2 [67], Gorlick’s Weave [35], and Garlan et al.’s Rainbow

[29]. C2 [67] composes systems as a hierarchy of concurrent components bound to-

gether by connectors such that a component within the hierarchy can only be aware

of components residing at the same level or beneath it. VVeaves, on the other hand, is

a dynamic, object—fiow-centric architecture targeted towards applications with large
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volumes of data flow and real-time constraints [35]. One interesting characteristic

of Weaves is that no component in a network knows the sources of its input objects

or the destination of its output objects. While this approach provides a large de-

gree of flexibility. it is also susceptible to security risks. For instance, a component

may not be able to authenticate the origins of a particular message if it does not

know the source of its inputs. Lastly, Rainbow [29] is an adaptation framework that

uses models not only to represent the systems architecture, but also to select which

reconfiguration will yield the desired behavior.

3.3.2 Frameworks

Adaptive software research has also focused on creating and using frameworks

for building adaptive systems [12, 27, 49]. A framework is a set of cooperating

classes that make up a reusable design for a specific class of software [26]. Among

other things, the framework dictates the overall architecture of the application and its

thread of control. This often leads to an inversion of control in which developers write

code that gets called by the framework. One of the major benefits of frameworks is

that it provides large amounts of reusable code, thereby enabling developers to build

applications faster. Nevertheless, some creative freedom is lost because many design

decisions have already been made by the framework developers [26]. Additionally,

framework-based applications are sensitive to changes in the framework’s interface.

Garlan et al.’s Rainbow is an architecture-based self-adaptation framework with

reusable infrastructure [27]. Their approach uses external adaptation mechanisms

for two reasons. First, it facilitates the application of their reusable infrastructure to

legacy applications without being invasive upon the functional logic. Second, it allows

developers to specify and reuse adaptation strategies for multiple system concerns.

Rainbow supports distributed component monitoring, probe and gauge deployment,

architectural-based system representation and adaptation strategies, and effectors to
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reconfigure the system.

Rainbow’s adaptation infrastructure incorporates control theory concepts [75].

First, probes monitor the system and report values to gauges and gauge consmners.

These values are then related to properties of the architectural model. Each time an

architecture property is updated, the architecture is analyzed to ensure no constraint

is violated. If a constraint has been violated, then the architecture must be recon-

figured. Rainbow uses utility theory—based approaches to select a reconfiguration

plan. Finally, through Rainbow’s infrastructure and effectors, the reconfiguration is

executed on the system’s architecture.

3.3.3 Aspect-oriented Programming

Another interesting approach for building adaptive systems is based on the

aspect-oriented programming (AOP) paradigm introduced by Kiczales [51]. AOP

provides abstraction techniques and language constructs to manage crosscutting con-

cerns [62]. AOP defines an aspect. as code that implements a crosscutting concern.

Using an aspect weaver, AOP inserts aspects into specific code locations, called point-

cuts, during compilation. As a result, not only does AOP decouple crosscutting con-

cerns from the functional logic, it also localizes them. This separation facilitates the

consistent maintenance of an application as it evolves.

Dynamic recomposition can exploit the AOP paradigm because most adapta-

tions are crosscutting in nature. Yang et al. [82] introduced a systematic two-step

process that defined where, when, and how adaptations would be incorporated into

an application. First, aspects are used to extend a program with an adaptation infras-

tructure and entry points into the adaptation kernel. Then the adaptation kernel uses

a rule—based engine to determine if an adaptation should be performed and executes

the corresponding actions if necessary.
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3.3.4 Software Reconfiguration Design Patterns

Gomaa et al. proposed several design patterns for reconfiguring software ar-

chitectures at runtime [34]. The four design patterns they introduced specify the

behavior required to dynamically reconfigure specific types of architectures. In par-

ticular, the design patterns describe the reconfiguration of master/slave, centralized,

server/client, and decentralized architectures. For each design pattern, Gomaa et al.

identify when it. is safe to perform a reconfiguration and provide hierarchical UML

state diagrams illustrating the necessary behavior. Although these reconfiguration

design patterns are helpful to developers implementing dynamically adaptive systems

from scratch, their contents are not organized in template format and they do not

address safety and assurance.

3.4 Language-based Approach

Sadjadi et al. proposed a transparent reflective aspect programming (TRAP)

technique for enabling adaptive behavior on legacy applications [73]. TRAP was

designed around the four techniques of aspect-oriented programming, behavioral re—

flection, component-based design, and adaptive middleware. Briefly, TRAP works

as follows. First, developers identify potential points of adaptation (hook points.)

Adaptive infrastructure is then woven into the legacy system at the corresponding

hook points. The hook points are then monitored for adaptation conditions. If a

condition that requires an adaptation arises, then a rule-based decision-making pro-

cess determines the appropriate code to swap in or out. As a result, TRAP could be

used to enhance legacy code with adaptive behavior without explicitly altering the

functional logic. TRAP/J was a specific incarnation of TRAP based on the Adaptive

Java Language [48].
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Chapter 4

Process Used for Developing

Design Patterns

This chapter introduces the research methods designed to harvest, evaluate, and

refine the adaptation design patterns presented throughout this thesis. First, we

motivate why it is important to have a methodology that is able to systematically

select, analyze, and abstract recurring solutions as design patterns. Second, we state

the goals for this methodology and how they relate to the thesis statement. Third,

we present the sequence of steps that were used to develop each adaptation design

pattern. We describe and each of the key steps in this iterative process, and, if

applicable, we also indicate any limitations they may have.

4. 1 Motivation

The survey conducted on background and related work indicate two particular

trends in the software engineering community with respect to adaptive and autonomic

systems. First, the software engineering community has begun to address adapta-

tion concerns by providing frameworks [27], middleware [64], and language—based

support [73] for enabling applications with adaptive and autonomic behavior. The
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majority of these approaches deal with adaptation at the implementation phase, thus

making the assumption that the requirements, designs, and constraints are already

understood. Second, with the exception of a few projects [10, 34], little attention

has been given to reusing adaptation expertise at the modeling level through the use

of design patterns. Compared to other approaches, design patterns promote creative

freedom by imposing fewer initial constraints on design decisions [26].

This thesis combines the key ideas of specializing design patterns [34] and orga-

nizing their contents through templates [10, 26]. First, the design patterns presented

by Gomaa [34] are focused solely on reconfiguring different types of software archi-

tectures at run time. Instead of providing design patterns for general problems in

reconfiguration. their design patterns address very specific problems that arise dur-

ing reconfiguration. Second, the design patterns presented in [10, 26] make explicit

use of a design pattern template for structuring and presenting relevant information.

Synthesizing concepts from both approaches, this thesis proposes to harvest design

patterns that are specific to recurring problems encountered in adaptive applications

and structuring their contents with the use of a template. As a result, these design

patterns may be combined according to specific requirements and constraints in order

to yield customized adaptive applications.

Harvesting design patterns is a difficult and subjective process because there

is no existing set of metrics that quantify the quality of a design pattern. Those

who harvest design patterns, for instance, must address many subjective questions

while generalizing solutions to a recurring problem. For instance, exactly when does

a problem get classified as being recurrent in a given domain? Which data sources

should be used to find the desired design patterns? Are the solution models sufli—

ciently abstract to be applicable to a wide range of systems yet, at the same time,

specific enough to guide developers throughout the implementation phase? Since the

answers to these questions will vary between developers, it is important to have an
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iterative process that documents and justifies each decision taken while harvesting

design patterns. The feedback loop will enable the refinement of both the results and

the process itself.

4.2 Goals

Recall that the objective of this thesis is to investigate recurring problems en-

countered in adaptive and autonomic systems and promote the reuse of successful

solutions. In order to make progress towards this objective and produce design pat-

terns that are valuable to both experienced and inexperienced developers working

with adaptive and autonomic systems, the process used for harvesting design pat-

terns must:

0 Look for good solutions and attempt to generalize them.

0 Incorporate the use of a template to organize the information contained in the

design pattern.

0 Produce specific design patterns for monitoring, decision-making, and reconfig-

uration.

o Analyze interactions between monitoring, decision-making, and reconfiguration

design patterns.

0 Evaluate and gradually refine the resulting collection of design patterns.

0 Facilitate the use of formal analysis tools for determining whether a solution

model satisfies certain properties.
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4.3 Harvesting Process

A data flow diagram of the iterative process used to harvest and refine the adap-

tation design patterns is shown in Figure 4.1. This data flow diagram illustrates how

information is gradually processed and transformed into an adaptation design pat—

tern. To start the process. developers must identify and define a recurring problem

that is related to adaptation. One possible way to identify recurrent problems is to

analyze research publications with common topics related to monitoring, decision-

making, and reconfiguration. Based on the recurrent problem identified, developers

must also determine what is the intent, context, and motivation for addressing the

problem. A clear definition of these fields will narrow the search for existing solutions

to the recurring problem.

Next. developers need to select the relevemt data sources that will be analyzed

and generalized into design patterns. Three types of data sources are available for this

task: commercial applications, open-source implementations, and research projects.

In general, some data sources are better suited than others for harvesting design pat-

terns. For instance, commercial applications typically incur problems related to high

costs and proprietary rights. Likewise, open—source implementations typically have

little, if any, documentation. Research publications on the other hand are accessible,

well documented, and peer reviewed for quality purposes. As a result, the solutions

gathered from research publications typically bear more weight in the overall adap—

tation design patterns than commercial and open-source projects do.

Many research areas in computer science address issues related to monitoring,

decision-making, and reconfiguration. For example, monitoring is frequently en-

countered in distributed systems and safety critical research communities. Likewise,

decision-making techniques are practically ubiquitous throughout the artificial intel-

ligence field. Additionally, reconfiguration techniques are now starting to emerge in

new research communities that focus on safely adapting applications at run time.
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Figure 4.1: Harvesting process data flow diagram.
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Although this approach manually selects data sources, it is conceivable to automate

some parts of this process by incorporating techniques from domains such as data

mining.

Generalize Solutions. The process of abstracting and unifying different solutions

into one representative design pattern is similar to the process of model fitting found

in mathematics. Specifically, given a set of points, a mathematician derives a line that

will best represent those points and, at the same time, predict where future points

may lie with some degree of certainty. Similarly, recurring instances of the solution

are scattered throughout different research projects and implementations. Design

patterns are meant to generalize these instances while simultaneously guiding the

development of future instances. As with model fitting in mathematics, some points

may be of more interest than others. This results in two complimentary approaches

for abstracting and unifying different solutions into a design pattern.

The conceptual difference between the two approaches can be seen in Figure

4.2. The first approach exploits the discovery of a particularly good solution to the

problem being addressed. Specifically, a developer creates a preliminary draft of a

design pattern based on a good solution 1 and then refines it as further instances are

found. As a result, that solution bears more weight on the finalized design pattern

than the other solutions do. The second approach, on the other hand, considers a

suite of solutions all at once. Thus, while the first approach is biased towards one

particular solution instance, the second approach weighs every solution more equally.

Regardless of which conceptual approach is undertaken, several steps must be

performed to abstract and unify various solutions into a design pattern. First, devel-

opers must determine the similarities and differences between the different solutions

being abstracted. That is, both structural and behavioral diagrams need to be an-

alyzed to discover important classes, the types of associations between them, their

 

1We consider a good solution to be one that has been applied several times with positive results.
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Figure 4.2: Abstraction Process Diagram

 

multiplicity, their responsibilities, how they interact, and what the constraints are.

If these diagrams are not available, then developers can either manually derive them

by studying the code or automatically generate them by applying reverse engineer-

ing techniques. The similarities and differences between these diagrams will help

developers determine when to add or remove details in the design pattern.

Validation. Two forms of validation are used to estimate the quality of the resulting

design patterns. The first form of validation consists of searching for additional

instancas of the design pattern in previously unexamined data sources. This validation

is performed in the early stages of design pattern development. Each new instance

encountered strengthens the validity of the solution as well as provides additional

information for refining the design pattern. The second form of validation consists of

applying matured design patterns to a case study application. As the design patterns

are instantiated, the resulting models can be formally analyzed through tools such

as Hydra [63] and the Spin model checker [47]. If errors are found, then the design

pattern can be revised accordingly.
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Lastly, the analysis gathered from the two forms of validation can be used to

refine the process for harvesting design patterns. To facilitate the fine-tuning of

this methodology and improve its results, there are three feedback points within the

process. First, if the respective designs cannot be generalized to a common solution,

it might indicate that the problem definition is too broad. As such, it may need to be

narrowed towards a more specific recurring problem instead. Second, other research

disciplines could be explored while searching for solutions. For instance, instead of

focusing solely on intelligent systems, the scope of resources used to harvest a decision-

making design pattern could be broadened to include biologically-inspired systems as

well. Finally, case studies can refine the observations gathered with respect to how a

set of design patterns interact with one another.

32



Chapter 5

Adaptation Design Patterns

This chapter introduces the template used to describe adaptation design patterns,

enumerates the list of patterns, and presents a criteria for organizing, classifying, and

using the patterns. In addition, this chapter contains the complete description of all

adaptation design patterns identified thus far.

5.1 Adaptation Design Pattern Template

This thesis uses a template similar in style to that used by Gamma et al. [26]

in order to facilitate the understanding and application of the adaptation design

patterns. We have modified the original design pattern template in a few aspects to

address the needs of adaptive systems. Table 5.1 overviews the adaptation design pat-

tern template. First, the Known As, Implementation, and Sample Code sections have

been removed. The Known As section is irrelevant as, to the best of our knowledge,

the majority of the design patterns presented in this thesis have not been previously

documented. The Implementation and Sample Code sections are too specific for the

design patterns presented in this thesis. Second, the template has been extended with

a Behavior and Constraints sections. The Behavior section presents either sequence

and/or state diagrams that illustrate sample behavior. The Constraints section uses
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Linear Temporal Logic (LTL) and A-LTL [84] and textual descriptions to specify

properties that must be satisfied by the instantiated design patterns. Note that in

some instances the LTL and A-LTL formula contain specific function invocations as

“boolean operators”. When these operators are referenced, they implicitly encode

an predicate assertion that returns a boolean value corresponding to whether the

function has been invoked or not. Lastly, although Gamma et al. used the Object

Modeling Technique (OMT) [69] to represent structural and behavioral diagrams, we

used the Unified Modeling Language (UML) to give structural and behavioral infor-

mation about each design pattern. Specifically, structural diagrams are represented

through UML class diagrams (for monitoring and decision-making patterns) and UML

component diagrams (for reconfiguration patterns). Likewise, UML statecharts are

used depict a pattern’s behavior.

5.2 Adaptation Design Patterns Catalogue

Overview

Table 5.2 gives an enumeration of the twelve adaptation design patterns har-

vested thus far along with their intentions. These design patterns have been identi-

fied from analyzing several adaptive systems and related projects. It is important to

consider the following when evaluating these design patterns. First, these patterns

capture only a fraction of what an adaptation expert might know. Other areas related

to monitoring, decision-making, and reconfiguration could use design patterns as well.

Second, this thesis includes only designs that have been applied more than once in

different systems. Third, although most of the design patterns are applicable to a

wide range of adaptive systems, some are applicable only to a specific set of adaptive

systems. The Intent section can be used to determine the applicability of each design

pattern. In addition, the Related Pattern section can be used to determine which
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Pattern Name The pattern name uniquely identifies and describes

the pattern.
 

Classification: The classification facilitates the organization of pat-

terns based on the purpose of the pattern.
 

Intent: A brief description of the problem(s) that the pattern

addresses.
 

Context: Describe the conditions and context in which the pat-

tern may be applied.
 

Motivation: A description of sample goals and objectives of a sys-

tem that motivate the use of the pattern. Use-cases

and use-case—diagrams describe goals of the pattern

application.
 

Structure: A representation of the classes and their relationships

depicted in terms of UML class diagrams (for moni-

toring and decision-making patterns) and UML com—

ponent diagrams (for reconfiguration patterns).
 

Participants: Itemizes the classes and objects that are included in

the adaptation design pattern and lists their respon—

sibilities.
 

Behavior: Provides an illustrative representation of scenarios for

class and object interaction. Also gives a description

of the behavior of the pattern by using sample or high-

level, abstract UML state and sequence diagrams.
 

Consequences: Describes how objectives are supported by a given pat-

tern and gives the trade-offs and outcomes of the pat-

tern application.
 

Constraints: Contains LTL templates and a prose description of

constraints that must be satisfied by a given design

pattern implementation.
 

Related Patterns: Additional design patterns that are connnonly used in

conjunction.
  Known Uses: Lists the sources where the design pattern was har-

vested from.

 

Table 5.1: Adaptation Design Pattern Template
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design patterns are commonly used t(;)gether. More details for each design pattern is

provided in Section 5.5.

 

 

 

Name Description

Sensor-Factory (41): Deploy sensors across a distributed i11-

frastructure and probe components.

Reflective Monitoring (50): Perform introspection on a component

and dynamically alter a sensor’s behav-

101'.
 

Content-based Routing (59): Route monitoring information based on

the content of the message.

Case-based Reasoning (68): Rule-based approach to selecting a re—

configuration plan.

Divide and Conquer (‘78): Systematically decompose a complex re-

configuration plan into simpler reconfig—

uration plans.

Adaptation Detector (88): Interpret monitoring data and deter-

mine when an adaptation is required.

Architecture-Based (97): Provide an architecture-based approach

for selecting reconfiguration plans.

TradeQfi-Based (106): Systematically select a reconfiguration

plan that best balances multiple objec-

tives.

Component Insertion (115): Safely insert and initialize a component

at run time.

Component Removal (125): Safely remove a component at run time.

Server Reconfiguration (135): Safely reconfigure a server - client com-

ponent architecture at run time.

Decentralized Reconfiguration Safely insert and remove components

(145): from a decentralized component archi-

tecture at run time.

 

 

 

 

 

 

 

 

   
 

Table 5.2: Current list of adaptation design patterns

5.3 Classifying Adaptation Design Patterns

It is important to classify and organize design patterns in order to facilitate

their use. Our adaptation design patterns can be classified using two orthogonal

classification S(‘.ll(‘.II1(.‘,S. The first option is to classify the patterns according to their
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purpose: creational, structln‘al. or behavioral [26]. Creational patterns focus on

objcct creation. Structural. patterns focus on describing the composition of classes

or objects. Behavioral patterns depict the method of interaction and distribute the

responsibility of classes or objects. Thus far, we have only identified structural and

behavioral adaptation design patterns.

The second option is to classify the patterns according to their adaptation func-

tions: monitoring. decision-making, and reconfiguration. Monitoring patterns focus

on probing components and distributing the information across a network to inter—

ested clients. Decision—making patterns focus on identifying when a reconfiguration

is needed and selecting a reconfiguration plan that. will yield the desired behavior.

Reconfiguration patterns focus on safely adding, ren'loving, or modifying components

at run time to adapt a program. Thus far. we have identified several design patterns

for each area.

Monitoring and decision-making patterns are what we consider to be adaptation-

enabling design patterns. These design patterns provide the necessary infrastructure

to perform introspection and intercession. Although monitoring and decision-making

design patterns do not reconfigure an application, without these, a developer would

have to manually perform these tasks at run time. Therefore, reconfiguration patterns

depend upon monitoring and decision-making design patterns.

These design patterns can also be used to aid in the design and construction

of autonomic computing systems comprising some number of autonomous elements.

Each autonomous element is instrumented with monitoring, decision-making, and

reconfiguration processes (see Figure 5.1.) To build an autonomic element, at least

one design pattern from each category must be applied.
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5.4 Adaptation Design Pattern Roadmap

In order to develop an adaptive system using our approach, developers must

carefully integrate several of the design patterns presented in this thesis. We have

observed how different patterns interact together while harvesting the individual de-

sign patterns. Based on these observations, we recommend certain sets of design

patterns to be used together. To determine which design patterns work well together,

developers can refer to either the Related Patterns section of each design pattern or

to Figure 5.2. For instance, all monitoring and decision-making design patterns use

the Adaptation Detector (88) pattern to interpret the data and determine when a

reconfiguration is warranted. Likewise, every decision-making design pattern can use

any of the reconfiguration design patterns presented in this thesis.

5.5 Adaptation Design Pattern Repository

This section gives a detailed description of the adaptation design patterns dis-

covered thus far. The names of the design patterns are denoted in italics, and the

fields of each design pattern are given in a san serif font. Method names and messages

are denoted in italics.
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5.5.1 Sensor-Factory (41) Pattern

Classification:

Structural - Monitoring.

Intent:

Systematically deploy software sensors across a network to probe distributed

components.

Context:

The Sensor-Factory (41) Pattern may be used when:

0 the components to be monitored are distributed.

0 each component provides an interface that can be probed for the required in-

formation.

Motivation:

External adaptation mechanisms must effectively collect information about the

running system to properly evaluate a system’s operational status [30]. The ob-

jective of the Sensor-Factory (41) design pattern is to manage distributed sensors

across a networked environment such that they may probe distributed components.

The Sensor-Factory (41) design pattern captures the structural relationship between

sensors, clients, and components. By decoupling sensors from clients and components,

the monitoring infrastructure is flexible and more amenable to change.

Figure 5.3 shows a use-case diagram of the Sensor-Factory (41) Pattern. Two

goals of this pattern are to deploy a software sensor across a network and to probe a

distributed component.

 

Use-Case: Request sensor

Actors: Client

Description: A client requests a sensor to monitor some component.

Includes: Search registry, Add sensor   
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Figure 5.3: UML use-case diagram of the Sensor-Factory (41) Pattern

 

 

 

 

Use-Case: Search registry

Actors: -

Description: Determine whether any deployed sensor already provides the needed information.

Includes: Register usage, Check resources

Use-Case: Check resources

Actors: -

Description: The system determines if an existing sensor can be shared between more than

one client or whether a new sensor can be deployed across the network

without violating any QoS constraint.

Includes: -
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Use-Case: Register usage

 

 

 

  

Actors: -

Description: Records the relationship between a sensor, the component it is monitoring. and

the clients it is servicing.

Includes: -

Use-Case: Add sensor

Actors: -

Description: Creates a new instance of a sensor in the network. Both a client and a

component are assigned to this sensor.

Includes: Register usage. Check resources.

Use-Case: Start sensor

Actors: Client

Description: A sensor is initialized and activated before it begins transmitting data.

Includes: -

Use-Case: Receive data

Actors: Client

Description: A client. receives data from the sensor. This service supports both push and pull

actions on a sensor.

Includes: -

Structure:

A UML class diagram for the Sensor-Factory (41) Pattern can be found in Figure

There are two different types of sensors that can be found in this design pattern.

Simple Sensors can handle booleans, integers, and real data types. Complex Sensors,

on the other hand, are capable of either reporting more complex data types or of

aggregating the outputs of a Simple Sensor. Regardless of their specific type, Simple

Sensor and Complex Sensor both inherit the interface from the Abstract-Sensor abstract

class. As a result, they should provide an interface with basic functionalities such as
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pushing and polling for data.

Participants:

0 Abstract-Sensor: Simple Sensor and Complex Sensor both inherit from this ab-

stract class. As a result, these sensors share an interface to common operations

such as pushing and pulling data.

0 Client: This class is used to represent any component that needs to perform

either internal or external monitoring.

0 Complex-Sensor: This type of sensor contains greater computing resources on-

board than a Simple Sensor does. As a result, a Complex Sensor is capable of

reporting complex data types, aggregating various Simple Sensor data feeds, and

performing on-board computations.

0 Registry: This class is responsible for tracking deployed sensors across the net—

work. Each entry should at least record the sensor name, the sensor type, the

Client it is providing data to, and the component it is monitoring. Additionally,

this class provides a search functionality based on the available fields.

0 ResourceManager: This class has two responsibilities. First, it determines if an

existing sensor can be shared with one or more clients. A sensor can be shared

as long as it does not violate any existing constraint. Second, it determines if

the system has enough resources to deploy a new sensor across the network.

0 Sensor—Factory: Clients must interact with this class in order to gain access to

a sensor. It regulates the dynamic access and management of sensors across a

network.

0 Simple-Sensor: The most basic sensor available. It is capable of reporting

boolean, integer, and real data types. Additionally, it can be configured to
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 Figure 5.4: UML class diagram of the Sensor-Factory (41) Pattern
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poll a component at different intervals and periods.

Behavior:

Figure 5.5 shows a UML sequence diagram for an example of the Sensor-Factory

(.41) Pattern in a distributed monitoring system. The Client requests a Simple Sensor

(an active networked sensor) from the Sensor-Factory. The Sensor-Factory first deter-

mines whether an existing Simple Sensor is already providing the desired information.

If not, then Sensor-Factory checks the Resource Manager to determine if another Simple

Sensor can be deployed across the network without breaking any quality of service

constraints. If so, then Sensor-Factory creates a new instance of Simple Sensor and

initializes it to some default sensor setting. Sensor-Factory then notifies the Client

that the Simple Sensor is ready for use. Client polls the Simple Sensor until it is done

monitoring.

Consequences:

1. This design pattern reuses the provided functionality and interface of a dis-

tributed component to extract the desired attributes. However, if a component’s

interface is excessively polled, then it could interfere and alter the component’s

behavior.

2. Different types of sensors can be systematically deployed at run time while

providing a flexible monitoring infrastructure that is amenable to adaptation.

3. This design pattern ensures system integrity by accessing a component’s at-

tributes through its interface.

4. The Registry and Resource Manager share existing sensors whenever possible.

This avoids wasting resources in the form of duplicated sensors.
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This design pattern introduces a management layer between a Client and a

sensor. This additional overhead may degrade performance.

6. l\=lonitoring is only supported for those components with an interface to the

required attributes.

Constraints:

0 Property 1:

Globally, it is always the case that if Resource Manager denies a Client request

for a sensor, then Sensor-Factory does not create a sensor for the Client.

E] ((ResourceManager.deny(Client) —>

-: Sensor-Factory. createSensor (Client) )

This safety property ensures that Sensor Factory obeys the recommendations

provided by the Resource Manager. Otherwise, if the system’s resources are not

properly maintained, then the entire application may suffer as a result.

0 Property 2:

Globally, it is always the case that if Client requests a sensor to Sensor-Factory,

then Sensor-Factory will eventually grant access to a sensor.

El ( (Client . request (sensor) ) —+

0 (Sensor- Factory . grant (Client) )

This livencss property guarantees that a Client will eventually get access to a

SCHSOI‘.

Related Design Patterns:
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o Adapter Design Pattern [26]:

This pattern can enable the interaction between a Client and a sensor whenever

their interfaces are incompatible.

o Reflective Monitoring (50) Design Patterns:

This pattern can be used whenever a component does not provide an interface

to the required attributes. Such values may be accessible through Introspection.

o Adaptation Detector (88) Design Pattern:

This pattern is responsible for interpreting the results provided by a sensor and

determining when an adaptation is required.

Known Uses:

REsource MOnitoring for network—zm'are applications [20].

Rainbow Adaptation Framework [27, 30].

o A Distributed l\lonitori1'1g Service Architecture (MonALISA) - via SNMP [66].

SNl\IP4J—Agent [24].

49



5.5.2 Reflective Monitoring (50) Pattern

Classification:

Structural - Monitoring.

Intent:

Provide mechanisms to observe the internal state of a component and to change

the monitoring scheme dynamically.

Context:

The Reflective Monitoring (50) Pattern may be used when:

0 a component needs to be monitored and it does not provide an interface to the

desired attributes.

a monitoring schemes need to be dynamically altered.

Motivation:

An external adaptation mechanism must be able to observe a component’s in-

ternal state to properly evaluate its operational status [30]. Observing the internal

state of a component may be difficult due to visibility constraints imposed by en-

capsulation techniques. Specifically, the only way to access private attributes in a

component is through a predefined interface. The Reflective Monitoring (50) design

pattern instruments components with introspection capabilities such that monitoring

processes can probe a component’s internal attributes. In addition, through the use

of proxies and indirection, the Reflective Monitoring (50) design pattern facilitates

the dynamic reconfiguration of monitoring schemes transparently.

Figure 5.6 shows a use-case diagram of the Reflective Monitoring (50) Pattern.

Two goals of this pattern are to observe the internal state of a component and to

dynamically reconfigure the monitoring scheme.
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Figure 5.6: UML use-case diagram of the Reflective Monitoring (50) Pattern

 

 

Use-Case: Submit. Component

Actors: Client

Description: A client notifies the system it wants to monitor a specific component.

Includes: Create proxy.

 

 

Use-Case: Create proxy

Actors: -

Description: Creates a proxy object that supports the interface and functionality of the

specified component and returns it to the Client transparently. This proxy

also supports probing for internal attributes.

Includes: Register proxy.

 

51

 



 

Use-Case: Int rospect

Actors: Client

Description: A client probes the proxy through its interface.

Includes: -

 

Use-Case: Register proxy

Actors: -

Description: Registers and tracks proxies across the system.

 

Includes: -

Use-Case: Add proxy

Actors: Client

Description: Adds a monitoring proxy to a specified proxy chain in the system. Specifically,

it augments monitoring functionality.

 

Includes: Register proxy.

Use-Case: Remove proxy

Actors: Client

Description: Removes a proxy from the system.

Includes: Register proxy.   
Structure:

A UML class diagram for the Reflective Monitoring (50) Pattern can be found

in Figure 5.7.

A reflective monitoring approach must overcome encapsulation techniques that

hide private attributes from external entities. Two important constructs are required

for reflective monitoring. First, the monitoring process must have access to a meta-

data construct that provides structural and behavioral information about a particular

object. Second, the monitoring process must have a transparent mechanism to in-

tercede during an object’s normal behavior and introduce additional behavior. The

Reflective Monitoring (50) Design Pattern achieves reflective behavior through the



Metaobject and Proxy constructs. A Proxy can be created to supersede a Target object

through the information contained in a Metaobject. The Proxy will provide the same,

functionality and interface to a Client as the Target did. In addition, the Proxy will

provide trapping mechanisms such that additional behavior can be introduced at run

time without affecting a Client.

Note. many programming languages now provide support for meta-objects and

proxies [19]. Typically. these constructs will facilitate reflective programming. It is

inmortant, however, to check any constraints that might be imposed by such con-

structs.

Participants:

0 Client: This class is used to represent any component that needs to perform

either internal or external monitoring.

0 InvocationHandler: This interface must be supported by the Proxy object. This

enables a Proxy to perform computations before and after a specific method is

invoked 011 the Target object without affecting the functional logic.

0 Manager: Creates a Proxy object in response to a Client’s request to monitor a

Target object. It is responsible for adjusting the necessary permissions so that

the Proxy is able to retrieve a Target’s attributes.

o Meta-object: Provides information about a particular type of object such as

its structure, attributes, modifiers, and interfaces. The Meta-object must be

regularly updated to reflect the most recent information.

0 Monitor: This class represents different monitoring schemes that can be invoked

on a particular Target by a Proxy. For instance, a more complex monitoring

scheme might include a chain of Proxy objects that first retrieve the attribute,
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Figure 5.7: UML class diagram of the Reflective Monitoring (50) Pattern
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encrypts the information, adds signal noise (covert monitoring), and then re-

ports the value.

0 Proxy: This class supports the Target object’s functionality and interface. It

is instrumented to introspect a Target’s attributes but not to alter them. In

addition, the Proxy object also supports probing information so the desired

attributes can be retrieved transparently.

0 Target: This is the object that will be monitored by a Client. It does not provide

an interfare to the desired attributes.

Behavior:

Figure 5.8 shows a UML sequence diagram for an example of the Reflective

Monitoring (50/ Pattern in a covert monitoring system. Specifically, Target does not

provide any interface to the attribute that Client wishes to observe. A Monitoring Proxy

object that supports the same interface as Target uses introspection to periodically

check whether the attribute has changed or not. If the attribute has changed, then

Monitoring Proxy invokes another proxy, Covert Proxy to add signal noise. This inserts

random values into the channel to disguise possibly valuable information. After noise

has been sent, the Monitoring Proxy returns the attribute value to the Client.

Consequences:

1. Dynamic proxies can be used to monitor components, even those that might

not have been known during design and compile—time.

2. Proxies can be chained together at run time to compose new monitoring behav-

ior without intruding upon the functional logic.

3. Many programming languages (C++, Java, Lisp. Prolog, Python, Smalltalk)
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 Figure 5.8: UML sequence diagram example of the Reflective Monitoring (50) Pattern
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already support reflection mechanisms, thereby reducing the amount of effort

required to implement reflective monitoring [19].

4. Dynamic proxies incur a performance penalty for the extra level of indirection.

Constraints:

0 Property 1:

Globally. it is always the case that if Client requests to monitor a Target, then

eventually Manager returns a Proxy object.

[:1 ((Client.requestMonitor(Target)) —+

0 Manager. createProxy (Target) )

This liveness property ensures that if a Client requests a proxy, then eventually

one will be returned by the Manager object.

Property 2:

Globally. it is never the case that Proxy modifies an attribute value.

Cl ((Proxy. serviceP(attr) —> O Target.serviceT(attr’)) —>

attr == attr’ )

This safety property ensures that at no moment does a Proxy alter a value

in Target. The Reflective Monitoring (50) pattern is not allowed to perform

intercession upon the component it is monitoring.

Related Design Patterns:

0 Sensor-Factory (41) Design Pattern:

This design pattern can enable the monitoring of distributed components across

a network.



o Content-based Routing (59) Design pattern:

This design pattern can submit the monitoring information to a common repos-

itory where interested cmnponr—‘nts can retrieve such information.

o Indicator Design Pattern:

This pattern is responsible for interpreting the results provided by a sensor and

determining when a reconfiguration is required.

Known Uses:

Reflection Design Pattern [11].

o InsECTJ (A generic instrumentation framework for collecting dynamic infor-

mation) [15].

0 Adaptive Exception Monitor [19].

0 Java Reflection In Action [25].
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5.5.3 Content-based Routing (59) Pattern

Classification:

Structural - Monitoring.

Intent:

Route messages across a distributed monitoring infrastructure based on the con-

tent of the message.

Context:

The Content-based Routing (59) Pattern may be used when:

0 Multiple clients need access to the same monitoring information.

o The predominant monitoring scheme is passive monitoring (notifications are

sent when a change occurs.)

Motivation:

Adaptive systems may contain heavily monitored components. If multiple mon-

itors are requesting the same information from a given component, then a significant

overhead may be incurred at the component. To decrease this impact, a single monitor

can be deployed to observe a component and then submit the gathered information

to a repository that is accessible to multiple clients. This approach reduces the mon-

itoring burden placed on any given component while ensuring that clients still gain

access to the required information.

Figure 5.9 shows a use-case diagram of the Content-based Routing (59) Pattern.

The goal of this pattern is to publish the monitoring information into a repository

that can be accessed by different clients.

 

Use-Case: Probe data

Actors: Monitor

Description: A monitor retrieves information from a given component.

Includes: Publish data   
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System

Probe data

Monitor
Publish data

/

@

Figure 5.9: UML use-case diagram of the Content-based Routing {59) Pattern

   
 

 

Use-Case: Publish data

Actors: Monitor

Description: Submits the monitoring data to a repository that is accessible to clients.

 

 

Includes: -

Use-Case: Subscribe

Actors: Client

Description: A client submits a request to be notified when new monitoring information

is available about a particular component.

Includes: -
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Use-Case: Unsubscribe

Actors: Client

Description: A client submits a request to disable further notifications when new

monitoring information becomes availal’fle for a particular component.

 

Includes: -

Use-Case: Retrieve data

Actors: Client

Description: A client pulls the published data from the repository once it has been

notified of its availability.

Includes: -    
Structure:

A UML class diagram for the Content-based Routing (59) Pattern can be found

in Figure 5.10.

The Content—based Routing (59) design pattern adds a level of indirection be—

tween a Client and a Monitor. As a Monitor gathers information about a specific

component, it sends it to a Server that is accessible to Clients. Each time new infor-

mation is published by a Monitor, a Notification is generated to inform Clients that

data is available. A Client retrieves the desired information from the EventService

instead of continuously polling the monitored component.

Participants:

0 Client: This class represents any component that needs to perform monitoring

on some other component.

0 Entry: This class holds a unique identifier and the address of the Monitor that

published the data. EventService can use this information to authenticate the

validity of an entry.
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Figure 5.10: UML class diagram of the Content-based Routing (59) Pattern  
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EventService: Mediates the communication between Monitors and Clients.

Specifically. it manages the service by notifying a Client when a Monitor has

published new information.

Filter: Clients submit a Filter that indicates specific Monitors they want to ob-

serve. The Filter is applied to different patterns and those that match contain

the monitoring information desired.

Forwarding Table: Holds a listing of every Client in the system and the monitoring

feeds to which they are subscribed. The EventService uses the Forwarding Table

to send notifications when new monitoring information has been gathered.

Monitor: Represents any simple or complex sensor that is currently probing a

component.

Notification: A Monitor sends a Notification to the EventService whenever it

publishes any new information. Likewise, a Notification is forwarded to a Client

when new information is published on the Server.

Pattern: Represents a signature that can be used to associate data with a par-

ticular Sensor. The EventService applies Filters to Patterns to determine which

data is of interest to a Client.

Server: This class comprises a Forwarding Table and various Entry objects. Es—

sentially, a Server holds the monitoring information for Clients to retrieve.

Behavior:

Figure 5.11 shows a UML sequence diagram for an example of the Content-based

Routing (59) Pattern in a monitoring system. The Client object first sends a subscrip-

tion notice to the Event Service. This subscription indicates which monitoring feed

the Client is interested in receiving. Meanwhile, the Monitor gathers observations and
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publishes them to the Event Service. To make the information available to Clients, the

Event Service writes the monitoring i1’1formation to an Entry on the Server. Once the

information is stored, the Event Service creates a Notification and it alerts interested

Clients that new information from Monitor is available. The Client then informs the

Event Service to pull the relevant information from the Server. Finally, the Event

Service returns the requested information to the Client.

Consequences:

1. Clients and the components being monitored are decoupled from each other.

This separation facilitates the evolution of the monitoring infrastructure without

affecting the functional logic.

2. The number of clients can change dynamically without affecting the component

being monitored.

3. Network transparency enables various monitoring protocols to be incorporated.

4. Scalability issues may arise. Specifically, the repository where monitoring in-

formation is placed can become a bottleneck.

5. Security concerns may need to be addressed. For instance, authentication might

need to be performed on the content on the message rather than on its origins.

Constraints:

0 Property 1:

If a Monitor publishes data of interest to a Client, then the Client should even-

tually be notified.

Cl (( Monitor.publish(Notification) /\ Client.subscribe(id,Monitor))
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 Figure 5.11:

Pattern

UML sequence diagram example of the Content-based Routing (59)
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OEventService . not ify (Client) )

This liveness property guarantees that if a monitor publishes data and at least

one client is subscribed to that monitor, then eventually a notification will be

sent. Although this is a desirable property, currently it does not specify any

timing constraints.

0 Property 2:

Globally, it is always the case that if a Client receives a Notification, then the

Client will eventually retrieve the information.

D ((EventService.notify(Client)) —+

O (Client.retrieve(Entry))

This liveness property guarantees that if a client receives a notification from

the event service, then it will eventually retrieve the updated information. This

property ensures that a client retrieves new information whenever it is updated

by a sensor.

Related Design Patterns:

0 Observer Design Pattern:

The Content-based Routing (59) pattern can be considered an extension of the

Observer design pattern [26]. Specifically, the Observer design pattern pro—

vides a one-to—many notification mechanism. The Content-based Routing (59)

pattern, on the other hand, provides a many-to—many notification mechanism.

a Sensor-Factory (41) Design Pattern:

This design pattern can enable the monitoring of distributed components across

a network.
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o Adaptation Detector (88) Design Pattern:

This pattern is responsible for interpreting the results provided by a sensor and

determining when a reconfiguration is required.

Known Uses:

0 Rainbow Adaptation Framework [30].

o Siena Renting [43].

e JAMM lV‘Ionitoring System [77].

o Rebeca [83].
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5.5.4 Case-based Reasoning (68) Pattern

Classification:

Structurz-il - Decision-Making.

Intent:

Apply rule—based decision-making to (.letermine how to reconfigure the system.

Context:

The Case-based Reasoning (68) Pattern may be used when:

0 The system must determine which adaptation to perform automatically.

0 The criteria for reconfiguration is not complex and can be expressed through

if-then-else statements.

Motivation:

Dealing with decision-n‘iaking internally through constructs that trap errors at

the implementation level is undesirable for two main reasons [27]. First, the overall

context of what triggered the adaptation event is usually lost at such fine—grained

levels. Second, evolving or correcting such a decision-making process is difficult to

accomplish because the cause-effect relationships for triggers and events are tightly

coupled to the functional logic. The Case-based Reasoning (68) design pattern sep-

arates the decision-making logic from the functional logic of the application. Specif-

ically, it centralizes all the conditions and responses for reconfiguring a system such

that. they do not crosscut the functional logic. This separation of concerns results in

an external and flexible decision-making architecture that facilitates change.

Figure 5.12 shows a use-case diagram of the Case-based Reasoning (68) Pattern.

The main goal of the Case-based Reasoning (68) design pattern is to determine which

reconfiguration to perform.
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Figure 5.12: UML use-case diagram of the Case-based Reasoning (68) Pattern
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Use-Case: Select Reconfiguration

Actors: Inference Engine

Description: Determine which available reconfiguration will yield the desired behavior in

the system.

Includes: Apply rules.

Use-Case: Apply rules

Actors: -

Description: Determine which cause and effect relationship holds true within the set. of rules.

Includes: Select action.
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Use-Case: Select Action

Actors: -

Description: Chooses a reconfiguration plan based on what triggered the adaptation and the

rule that describes the cause and effect relationship.

Includes: -

Use-Case: Store trigger

Actors: Inference Engine

Description: Stores the cause of the adaptation request and the reconfiguration plan that was

selected. The Inference Engine can use this information to learn new rules in the

future.

Includes: -

Use-Case: Learn rules

Actors: Inference Engine

Description: Reviews previous adaptation causes and reconfiguration responses to

discover new rules to apply in the future.

Includes: -

Structure:

A UML class diagram for the Case-based Reasoning (68) Pattern can be found

in Figure 5.13.

The Case-based Reasoning (68) design pattern separates the decision-making

logic from the monitoring, reconfiguration, and functional logic. During execution,

some monitoring event (not shown in this design pattern, refer to Adaptation Detector

(88) for more information) will generate a Trigger and forward it to the Inference

Engine. The Inference Engine comprises a set of Fixed Rules, a Trigger Repository, and

a Learner algorithm. A Trigger is applied to a Fixed Rules set, a Decision is generated,

and the result is stored in a Log so the Inference Engine can learn new rules. Since

the Case-based Reasoning (68) design pattern centralizes all conditions and rules
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regarding a reconfiguration plan, a Rule can be readily added, modified, or removed.

Participants:

Decision: This class represents a reconfiguration plan that will yield the desired

behavior in the system.

Fixed Rules: This class contains a collection of Rules that guide the Inference

Engine in producing a Decision. The individual Rules stored within the Fixed

Rules can be changed at run time.

Inference Engine: This class is responsible for applying a set of Rules to either a

single Trigger or a history of Triggers and producing an action in the form of a

Decision.

Learner: Applies on-line and statistical-based algorithms to infer new Rules in

the system. This is an optional feature of the Case-based Reasoning (68) design

pattern.

Log: This class is responsible for recording which reconfiguration plans have

been selected during execution. Each entry is of the form Trigger-Rule-Decision.

Rule: Represents a relationship between a Trigger and a Decision. A Rule eval-

uates to true if an incoming Trigger matches the Trigger contained in the Rule.

Trigger: This class contains relevant information about what caused the adap-

tation request. A Trigger should at least provide information about the error

source, the timestaan at which the error was observed, the type of error ob-

served and whether it has occurred before or not. Additional information may

be included as required. A Trigger is invoked by the Adaptation Detector (88)

design pattern.
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 Figure 5.13: UML class diagram of the Case-based Reasoning (68) Pattern
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o Trigger Repository: Contains a history of Triggers. This history can be used by

the Learner class to identify trends that may warrant further reconfigurations.

Behavior:

Figure 5.14 shows a UML sequence diagram for an example of the Case-based

Reasoning (68) Pattern in a simple adaptive system. A Trigger alerts the Inference

Engine that an adaptation request has been submitted (see Adaptation Detector (88)

Pattern for more information.) The Inference Engine uses the information provided

by the Trigger to decide which reconfiguration plan will yield the desired results in

the system. The Inference Engine applies a set of rules stored in the Fixed Rules object

until a matching rule is found. Inference Engine then creates a Decision that includes

the selected reconfiguration plan. The Inference Engine then logs the resulting action

in the Log. In addition, the Inference Engine also stores the Trigger in the Trigger

Repository for further analysis.

Consequences:

1. The decision-making logic is separate from the monitoring logic, the reconfigu-

ration logic, and the functional logic. thereby facilitating the evolution of rules

and actions at run time.

2. New rules can be learned dynamically to accommcxlate new reconfiguration

scenarios.

3. If many reconfiguration scenarios are possible, then scalability issues such as

overlapping rules may arise.

4. Rule-based decision-making can only select reconfigurations that are known

prior to the current execution point.



tern

Figure 5.14: UML sequence diagram example of the Case-based Reasoning (68) Pat-
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Constraints:

0 Property 1:

Globally. it is always the case that if a Trigger is received. then Inference Engine

eventually produces a Decision.

D ( InferenceEngine.trigger<Trigger) ——>

O |nferenceEngine.action() )

This liveness property ensures that a decision is eventually produced by the

rule-based decision making process. One way to ensure this property holds is

by creating a default conditional-action pair. At the very least, this default

conditional could notify the system administrator that an event occurred and

no matching reconfiguration plan was found.

0 Property 2:

Globally, it is always the case that if Inference Engine produces a Decision, then

Log will eventually record the events.

[:1 ( InferenceEngine.action() —>

O Log.log(Trigger, Rule, Decision) )

This liveness property ensures that every reconfiguration selected by the rule-

based decision-making process is eventually logged. This property is desirable

because it would enable developers to keep track of how the system is executing

at run time in response to changing requirements and environmental conditions.

Related Design Patterns:

0 Adaptation Detector (88) Design Pattern:
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This design pattern can be used to interpret monitoring information and deter—

mine when a reconfiguration is required. The notification can be used by the

Inference Engine to select a reconfiguration plan.

0 Component Insertion (115) Design Pattern:

This design pattern can be used to safely insert a component at run time ac-

cording to the. reconfiguration plan selected by the rule-based decision-making

process.

0 Component Removal (125) Design Pattern:

This design pattern can be used to safely remove a component at run time

according to the reconfiguration plan selected by the rule-based decision-making

process.

a Server Reconfiguration (135) Design Pattern:

This design pattern can be used to safely reconfigure a server architecture at run

time. The specific reconfiguration plan to enact those changes can be selected

by the rule-based decision-making process.

0 Decentralized Reconfiguration (145) Design Pattern:

This design pattern can be used to safely reconfigure a decentralized architecture

at run time. The specific reconfiguration plan to be enacted by a particular

component can be selected by the rule—based decision-making process.

Known Uses:

a Decentralized self-adaptive component-based system [6].

0 Rainbow Adaptation Framework [27].

0 Architectural Approach to Autonomic Computing [41].
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0 Earth Management Application (Ontology-based mobile agents) [71].

o Kinesthetics eXtreme (KX) Framework [79].
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5.5.5 Divide and Conquer (78) Pattern

Classification:

Structural - Decisitm—h'laking.

Intent:

Systematically decompose a complex reconfiguration plan into simpler reconfig-

uration plans.

Context:

The Divide and Conquer (78) Pattern may be used when:

0 multiple reconfiguration plans need to be applied to achieve the desired behav—

ior.

o a reconfiguration plan involves dependencies between distributed components.

Motivation:

Adaptive systems often comprise distributed components. Each component im-

plements a part of the desired behavior of the system. Some of these components may

include fragments, or parts of the component that are associated with different pro-

cesses in the distributed system [8]. While adding or removing components, not all

fragments of a component are added or removed simultaneously. This asynchronous

behavior may lead to situations in which some processes have added/removed the

component fragments while some have yet to do so [9]. To avoid problems, depen-

dency relationships among the fragments should be handled correctly While adding

and removing fragments. In other situations, multiple reconfigurations need to be per-

formed in succession to achieve the overall desired behavior. To avoid these problems,

dependency relationships between the different reconfiguration plans must be handled

carefully. The Divide and Conquer (78) design pattern first determines dependency

relations between different component fragments and then creates an ordering that

will safely reconfigure the system by preserving the dependency relationships.
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Figure 5.15 shows a use-case diagram of the Divide and Conquer (78) Pattern.

The main goal of this design pattern is to decompose a complex reconfigtu‘ation plan

into simpler reconfiguration plans that can be applied by the adaptive system.
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Figure 5.15: UML use-case diagram of the Divide and Conquer {78) Pattern

 

 

Use-Case: Determine reconfiguration plan

Actors: Decision-making process

Description: Find a sequence of reconfigurations that will yield the desired behavior. The

reconfiguration plan must specify the sequencing of each step.

Includes: Interpret task, Calculate dependencies, Order reconfiguration   
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Use-Case: Interpret task

 

 

 

  
A UML class diagram for the Divide and Conquer (78) Pattern can be found

in Figure 5.16. The Divide and Conquer (78) design pattern provides an approach

for systematically decomposing tasks.

of reconfigurations to determine the specific sequence of reconfiguration steps that

will safely yield the desired behavior in the application. The overall approach is

split into two main tasks. First, various sets of existing reconfiguration plans are

searched and analyzed to determine if they can be combined to reconfigure the system

as needed. Second, if a combination of existing reconfiguration plans satisfy the

adaptation requirements, then any dependencies between the reconfiguration plans

Actors: -

Description: Analyze the reconfiguration plan goal, its constraints, and requirements.

Includes: -

Use-Case: Calculate dependencies

Actors: -

Description: Determine if there are any specific dependencies between reconfiguration plans.

Includes: -

Use-Case: Order reconfiguration

Actors: -

Description: Creates a sequence of steps that will safely reconfigure the system in order

to provide the desired behavior.

Includes: -

Use-Case: Select goal

Actors: Decision-making process

Description: Choose a reconfiguration plan to analyze.

Includes: -

Structure:
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This design pattern analyzes combinations



are determined. The reconfiguration plans are then combined in a specific sequence

of reconfiguration steps to yield the overall system adaptation.

Participants:

0 Dependency Analysis: Determines which Tasks are dependent upon other Tasks.

This information can be used by the Planner to generate a sequence of Tasks

that will accomplish the main Goal.

0 Goal: This represents the adaptation requirements that must be satisfied by

applying a set of recoiifigurations.

o Inference Engine: The Inference Engine is responsible for resolving how a given

Goal can be decomposed into a set of Tasks that satisfy the adaptation require—

ments. This class makes use of the Knowledge Base (KnowledgeBase) and Rule

Base (RuleBase) to perform either Informed or Uninformed forms of resolution

and searching.

o Informed: A set of informed heuristics that can guide the resolution process

carried out by the Inference Engine.

0 KnowledgeBase: The Knowledge Base represents axioms known to the system.

These axioms are used by the Rule Base to perform resolution tasks.

0 Lexer: This optional class is responsible for convertng data into a sequence of

tokens. Specifically, both adaptation requirements and reconfiguration plans

are stored in the system in various formats such as text, models, and so forth.

The Lexer converts otherwise meaningless data into tokens recognizable by the

system.

0 Parser: This optional class analyzes the sequence of tokens produced by the

Lexer. It is responsible for transforming Goals into data that can be directly
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 Figure 5.16: UML class diagram of the Divide and Conquer (78) Pattern
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used by Solver and Inference Engine.

Planner: Takes a set of dependencies between Tasks and applies an ordering that

will safely solve the Goal without violating dependencies.

RuIeBase: Represents conditionals and actions known by the system that can be

used to evaluate and select Tasks to solve a Goal. Note, this class is not related

to the set of rules in Case-based Reasoning {68).

Solver: This class is responsible for organizing the overall task decomposition

process. It invokes the Lexer and Parser classes to interpret Goals. It also invokes

the Inference Engine and fine-tunes the search procedure until a sequence of Tasks

that solve the Goal is found.

Task: This class is used to represent a reconfiguration plan. Ideally, by applying

a series of Tasks the Goal will be satisfied.

Uninformed: A set of uninformed approaches that exhaustively search the solu-

tion space. These approaches do not exploit any particular knowledge that may

optimize the search.

Behavior:

Figure 5.17 shows a UML sequence diagram for an example of the Divide and

Conquer (78) Pattern. The Solver coordinates the process of task decomposition by

first invoking the Inference Engine. The Inference Engine proceeds to retrieve known

facts about Goals and Tasks from the Knowledge Base (KB). In addition, the Inference

Engine also retrieves a set of rules from the Rule Base (RB). The Inference Engine then

proceeds to resolve the known facts with the available rules. Once a set of Tasks have

been identified, the Inference Engine invokes the Dependency Calculator to determine

an ordering. The Dependency Calculator uses the Planner object to create a sequence

of steps in which the Tasks must be solved.
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Consequences:

1.
C
W

More complex adaptation requirements can be satisfied by reusing and compos-

ing multiple reconfiguration plans.

Reconfiguration plans that are not dependent upon each other can be paral-

lelized to enhance performance.

Dependencies among the reconfiguration plans will not be violated by the gen-

erated sequence.

. It may not be possible to satisfy all adaptation requirements by decomposing

them into sequences of reconfiguration plans.

There is an increased overhead in determining how to reconfigure the system.

Constraints:

0 Property 1:

Globally, it is always the case that a proposed set of Tasks satisfies the Goal.

Cl ((DependencyCalculator. constraintChecker (Tasks) = ’ True ’) —>

0 (Goal . completed= ’ True ’ ))

A set of reconfiguration plans must correctly reconfigure the system without

violating any dependencies. If such a plan is found, then eventually the goal

should be satisfied.

Related Design Patterns:

0 Architecture-Based (.97) Design Pattern:

This design pattern can be used to represent a system and its reconfiguration

plans as architectural models. Models that satisfy the adaptation requirements

indicate how the system should be reconfigured.
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 Figure 5.17: UML sequence diagram example of the Divide and Conquer (78) Pattern
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TradeOfi-Based (106) Design Pattern:

This design pattern can be used to select a reconfigm‘ation plan that best bal-

ances multiple objectives. Complex reconfiguration plans can be decomposed

by the Divide and Conquer (78) pattern.

Component Insertion (115) Design Pattern:

This design pattern can be used to safely insert a component at run time.

Component Removal (125) Design Pattern:

This design pattern can be used to safely remove a component at run time.

Server Reconfiguration (135) Design Pattern:

This design pattern can be used to safely reconfigure a server architecture at

run time. If the reconfiguration plan is complex, it can be decomposed by the

Divide and Conquer {78) pattern.

Decentralized Reconfiguration (145) Design Pattern:

This design pattern can be used to safely reconfigure a decentralized architecture

at run time. Any component can decompose a complex reconfiguration plan

through the use of the Divide and Conquer (78) pattern.

Known Uses:

Task Decon'iposition [1].

Rainbow Adaptation Framework [27, 29].

Care-O-Bot II (uses metric-FF) [40, 45].

An Architectural Approach to Autonomic Computing [41].

Simple Hierarchical Ordered Planner (SHOP‘Z) [65].
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o Pro-(urtive Control, Monitoring and lVIaintenance (PCMM) lV’Iodules for Au-

tonomous Systems [78].

0 Task Control Architec-ture (TAC) for Mobile Robots I76].
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5.5.6 Adaptation Detector (88) Pattern

Classification:

Structural - Decisi()n-I\Iaki11g.

Intent:

Interpret monitoring data and determine when an adaptation is required.

Context:

The Adaptation Detector (88) Pattern may be used when:

0 A11 adaptive system must automatically determine when an adaptation is re-

quired.

Motivation:

Adaptive systems need to determine when an adaptation is required. Usually,

adaptive systems employ monitors to observe both the system’s internal behavior as

well as its environment. Simple sensors typically provide raw data feeds that must be

interpreted by the system to be of any use. Once interpreted, this information can be

used to identify situations where observed behavior deviates from expected behavior.

If the components are distributed across a network, accomplishing this task becomes

increasingly difficult because the system must track where the problem originated

[30]. The Adaptation Detector (88) design pattern retrieves and analyzes relevant

data from one or more sensors and generates a health indicator value. The health

indicator value is determined by comparing the observed behavior versus the expected

behavior. As soon as a deviation is identified, the decision-making process is notified

with all the relevant information available so it may determine which reconfiguration

plan to apply.

Figure 5.18 shows a use-case diagram of the Adaptation Detector {88) Pattern.

The main goal of this design pattern is to determine when an adaptation is required.
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Figure 5.18: UML use-case diagram of the Adaptation Detector (88) Pattern

 

 

Use-Case: Interpret information

Actors: Decision-making process

Description: Assign meaning to almonitoring feed.

Includes: Pull information, Listen for information

 

 

Use-Case: Pull information

Actors: -

Description: Actively retrieve the monitoring information from a passive sensor.

Includes: -
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Use-Case: Listen for information

Actors: -

Description: Passively wait for a mitification that an event has occurred.

 

Includes: -

Use-Case: Assess situation

Actors: Decision-making process

Description: Evaluates the monitored values against certain thresholds. If the values exceed

those thresholds, then an adaptation is required.

Includes: -

 

Use-Case: Send trigger

Actors: Decision-making process

Description: Notify the decision-making process that an adaptation is required. The trigger

should include information about what triggered the adaptation request.

Includes: -    
Structure:

A UML class diagram for the Adaptation Detector (88) Pattern can be found in

Figure 5.19.

Adaptive systems must determine when observed behavior deviates from ex-

pected behavior. These situations typically require some form of adaptation. The

Adaptation Detector (88) Design Pattern acts as a gateway between the monitor-

ing and decision-making processes. Specifically, the Adaptation Detector (88) Design

Pattern is responsible for interpreting monitoring values and deciding when a recon-

figuration is needed. To accomplish this objective, a Health Indicator is associated

with a specific Sensor. The Health Indicator can be used with either passive or active

Sensors. Once the Analyzer determines that a Threshold has been exceeded, the Health

Indicator generates a Trigger to issue an adaptation request.

Participants:
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 Figure 5.19: UML class diagram of the Adaptation Detector (88) Pattern
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o Analyzer: This class is respmisible for deciding when observed behavior deviates

from expected behavior. Specifically, the Analyzer compares the interpreted

values from a Sensor against discrete values stored in a Threshold. An adaptation

is warranted when observed values exceed a given threshold.

0 Data: Represents the values reported by a Sensor. The basic data types sup-

ported include integers. doubles, and booleans. Other data types may be used

as well in conjunction with a complex Sensor.

0 Health Indicator: Coordinates the process of interpreting a Sensor’s values and

determining whether an adaptation is retuiired.

o Observer: Interacts with a specific Sensor. The Observer is responsible for inter-

preting Data produced by a Sensor. This process is required before the Analyzer

can evaluate the monitoring information against certain Thresholds.

0 Sensor: This class represents any type of simple or complex Sensor that is capable

of reporting integers. booleans, or floats. Complex Sensors that produce other

types of values can be used with the Adaptation Detector (88) Design Pattern,

but may need further customization according to the computational resources

provided.

0 Threshold: Stores discrete values that represent the boundaries between normal

and abnormal behavior.

0 Trigger: This class contains relevant information about what caused the adap-

tation request. A Trigger should at least provide information about the error

source, the timestamp at which the error was observed, the type of error ob-

served and whether it has occurred before or not. Additional information may

be included as required.
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Behavior:

Figure 5.20 shows a UML sequence diagram for an example of the Adaptation

Detector (88) Pattern in an adaptive system. The Health Indicator first invokes the

Observer to gather and interpret data from the Sensor. A Sensor periodically produces

Data. which may contain information about the systems internal behavior or the en-

vironment surrounding the application. The Observer pulls Data from the Sensor and

interprets it. Once the information has been interpreted. the Health Indicator invokes

the Analyzer to compare those values against some Thresholds. In this particular sce-

nario. the Threshold is exceeded and the Health Indicator generates and sends a Trigger

to notify the decision—making process that an adaptation is required.

Consequences:

1. This design pattern separates the monitoring and decision-making processes

from each other. Changes in one process should not affect the. other.

2. The specific threshold ralues used to represent the boundaries between normal

and abnormal behavior are kept within the Adaptation Detector (88) design

pattern and not dispersed throughout the source code. This facilitates evolving

the system at run time.

3. If many monitoring probes are deployed, then scalability issues may arise.

Specifically, this design pattern adds a level of indirection between monitor-

ing and decision-making processes which could add a considerable time delay.

Constraints:

0 Property 1:

Globally, it is always the case that if Observer obtains monitoring information,

then Analyzer will eventually compare the data against a specific Threshold.
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 Figure 5.20: UML sequence diagram example of the Adaptation. Detector {88) Pattern
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El ( Observer.getData(Sensor) —>

O Analyzer. compare (Data , Threshold) )

This property is desirable because it guarantees that values reported by the

monitoring process will be compared against thresholds that define what con-

stitutes normal 'bel'lavior from abnormal behavior. Some application domains

may want to further strengthen this property by imposing a timing constraint.

0 Property 2:

Globally, it is always the case that if a Threshold is exceeded, then eventually a

Trigger will be sent to the decision-making process.

CI ( Analyzer.compare (Data) . ’True’ —+

O Healthlndicator.send(Trigger) )

This property is desirable because it ensures that whenever a constraint viola-

tion is detected, the decision-making process will be notified so it may select an

appropriate reconfiguration plan.

Related Design Patterns:

0 Sensor-Factory (41) Design Pattern:

This pattern can be used to deploy sensors across a distributed environment

and probe components.

0 Reflective Monitoring (50) Design Pattern:

This design pattern can be used to determine when a monitored attribute ex-

ceeds a specific constraint.

0 Content-based Routing (59) Design Pattern:
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The Adaptation Detector (88) pattern could subscribe to the Content-based

Routing (59) pattern notification service. Whenever a monitoring value is pub-

lished. the Adaptation Detector (88) pattern is notified of the update.

Case-based Reasoning (68) Design Pattern:

This pattern can be applied to satisfy simple adaptation requirements that

tyI.)ically involve only one reconfiguration plan.

Architecture-Based (97) Design Pattern:

This design pattern can be used to represent a system and its reconfiguration

plans as architectural models. Models that satisfy the adaptation requirements

indicate how the system should be reconfigured.

TradeOfi-Based (106) Design Pattern:

This design pattern can be. used to select a reconfiguration plan that best bal-

ances multiple objectives at run time. The Adaptation Detector (88) pattern

could be used to detect changes that warrant an adaptation.

Known Uses:

SmartEvents (part of XUES) [37].

PBX - Design Patterns for Software Health l\'Ionitoring [59].

Java Agents for Monitoring and Management (J .Al\"Il\'I) - event gateway [77].

Kinesthetics eXtreme (KX) I79].

96



5.5.7 Architecture-Based (97) Pattern

Classification:

Structural - Decision-hrlaking.

Intent:

Provide an architecture-based approach for selecting reconfiguration plans.

Context:

The Architectare-Based (97) Pattern may be used when:

0 Reconfiguration plans are expected to change regularly.

o Reconfiguration plans should be reused.

Motivation:

Low-level adaptation mechanisms that are tightly coupled with application code

present two major challenges to developers [29]. First, it is difficult to correctly de-

termine the true source of the problem and the remedial action at such detailed levels

of abstraction. Second, adaptation policies are not localized, thereby hindering their

evolution. Architectural perspectives, on the other hand, shift focus away from source

code to coarse grained components and their interconnections [67]. Architectural ap—

proaches externalize adaptation and facilitate the reuse of reconfiguration plans. As

an application adapts and evolves, however, preserving an accurate and consistent

model of the system and its constituent parts becomes increasingly difficult. The

Architecture-Based (97) Design Pattern manages the evolution of an architectural

model while preserving a correspondence between the model and the implementa—

tion. Specifically, architectural models are used to represent both the current state

of the system as well as the possible target systems after a reconfiguration has been

applied.

Figure 5.21 shows a use-case diagram of the Archttectare-Based (97) Pattern.
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The main goal of this design pattern is to manage the evolution of a system’s archi-

tectural model.

 

 

  

 

Evolution

Manager

Remove

model

Figure 5.21: UML use-case diagram of the Architecture-Based (97) Pattern

 

  
 

 

 

Use-Case: Reflect

Actors: Evolution manager

Description: Update the architectural model representation of the system such that it is

consistent with the system implementation.

Includes: -  
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Use-Case: Select model

Actors: Evolution manager

Description: Select an architectural model of the system that satisfies the adaptation

requirements.

Includes: Differentiate

Use-Case: Add model

Actors: Evolution manager

Description: Insert a new architectural model of the system into the repository.

Includes: Differentiate

Use-Case: Differentiate

Actors: -

Description: Determine the difference between two architectural models. This can be used

to either build a reconfiguration plan or avoid duplicate architectural models

in the repository.

Includes: -

Use-Case: Remove model

Actors: Evolution manager

Description: Delete an architectural model from the repository.

Includes: -

Structure:

A UML class diagram for the Archz'tectare-Based (97) Pattern can be found in

Figure 5.22.

Architecture-based approaches for self-adaptive systems typically perform two

key tasks when selecting a reconfiguration strategy [29, 67]. First, the architectural

models must be kept consistent with respect to the system‘s current implementation.

Second, candidate reconfiguration plans must be evaluated against specific constraints

to determine if they satisfy the adaptation requirements. The Architecture-Based (97)

Design Pattern accomplishes the first task by introducing an Evolution Manager that
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updates the current architectural model in response to the applications evolution.

To accomplish the second task, a Repair Engine searches through a collection of archi-

tectural models and checks whether any of them satisfy the adaptation requirements.

If a model that satisfies the specified requirements is found, then the key differences

between the source and target architectural models are identified. Identifying these

differences will facilitate the development of a reconfiguration plan that will adapt

the application as needed.

Behavior:

Figure 5.23 shows a UML sequence diagram for an example of the Architecture-

Based (97) Pattern in an adaptive system. In this specific scenario, the Evolution

Manager updates its architectural model of the implemented system. The Evolution

Manager begins the reconfiguration selection process by first invoking the Repair En-

gine to search for an architectural model that satisfies the adaptation requirements.

The Repair Engine retrieves architectural models from the ArchitecturalRepository and

then uses the Constraint Checker to determine whether that architectural model satis-

fies the required properties. Once an architectural model is found, the Repair Engine

determines what are the key differences between the source and target architectural

models. With this information, the Evolution Manager can suggest a reconfiguration

plan that will correctly adapt the application.

Participants:

0 Architectural Model: Each model represents a specific configuration of the entire

application. The overall observable behavior results from the different configu-

rations of both Components and Connectors.

0 ArchitecturalRepository: Provides access to a collection of Architectural Models.

0 Component: These are responsible for implementing an application’s behavior.
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 Figure 5.22: UML class diagram of the Architecture-Based (97) Pattern
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 Figure 5.23: UML sequence diagram example of the Archttecture-Based (97) Pattern
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o Connector: These represent the various intercormections between Components

in the system.

c Constraint Checker: The main function of this class is to evaluate whether a

particular Architectural Model satisfies a set of specific adaptation requirements.

0 Evolution Manager: This class oversees the two primary goals of the Architecture-

Based (97) Design Pattern. First, monitoring information provided by the

system (see Adaptation Detector (88) Design Pattern for more information) is

used to update the current architectural model representation of the system.

Second, the Evolution Manager guides a constraint—based approach at selecting

the appropriate reconfiguration plan.

0 Repair Engine: This class is responsible for searching and extracting Architectural

Models from the Model Repository. It also supports the addition and removal of

Architectural Models, thus facilitating the evolution of reconfiguration plans.

Searches and extracts Architectural Models from the ArchitecturalRepository. It

also supports the addition and removal of Architectural Models at run time. To

differentiate between different Architectural Models, the Repair Engine employs

graph-based algorithms to identify structural differences.

Consequences:

1. Reconfiguration plans are localized, thus facilitating the evolution of reconfigu-

ration strategies at run time.

‘2. In general, architectural models are not application specific, thereby facilitating

the reuse of reconfiguration plans between different systems [29].

3. A computational overhead is introduced by searching and evaluating potential

reconfiguration models when adapting the system.

103



Constraints:

0 Property 1:

Globally, it is always the case that if a particular model does not satisfy some

requirement, then that model is never selected for execution.

El ( ConstraintChecker.checkConstraints(m,reqs) . ’False’ —>

-1 RepairEngine.selectModel (m) )

This safety property guarantees that the system will not select a reconfiguration

plan that violates a specific property.

Related Design Patterns:

0 Adaptation Detector (88) Design Pattern:

This pattern can be applied to determine when a reconfiguration is required. It

can also localize the source of the problem and guide the search for a reconfig-

uration plan.

0 Divide and Conquer (78) Design Pattern:

This pattern can be applied to decompose a complex reconfiguration plan into

simpler tasks.

0 Component Insertion (115) Design Pattern:

This pattern can be used to safely insert. a component at run. time.

0 Component Removal (125) Design Pattern:

This pattern can be used to safely remove a component at run time.

0 Server Reconfiguration (135) Design Pattern:
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This pattern can be used to safely reconfigure a server architecture at run

time. The A'I'chitecture-Based (97) pattern can be used to represent the server

architecture.

Decentralized Reconfiguration (145) Design Pattern:

This pattern can be used to safely reconfigure a decentralized architecture at

run time. The Architecture—Based (97) pattern can be used to represent the

overall system configuration.

Known Uses:

Rainbow Adaptation Framework [27, 29].

MADAM [31].

Distributed Configuration Routing (DCR) [42].

C2 [67].

Kinesthetics eXtreme (KX) [79].



5.5.8 Haderf-Based (106) Pattern

Classification:

Structm‘al - Decision-Making.

Intent:

Systematically select a reconfiguration plan that best balances multiple objec—

ti ves.

Context:

The TradeOfl-Based (106) Pattern may be used when:

0 more than one dimension must be considered for adaptation.

a multiple reconfiguration plans satisfy the adaptation requirements.

Motivation:

Rule-based approaches are inadequate for expressing the adaptation expertise

involved in trade-off decisions in the presence of multiple objectives [16]. Main-

taining consistency between the trade-off preferences becomes unmanageable as the

number of cases grow. In addition, these approaches require policy makers to be inti-

mately familiar with low-level details of system function, a requirement antagonistic

to adaptive and autonomic principles [80]. Utility functions map each possible state

of an entity into a real scalar value, thus providing an objective function for selecting

reconfigurations. The TradeOfl-Based (106) design pattern supports multiple hetero—

geneous services by encapsulating differences at a local level and providing a uniform

mean of communicating requirements to an arbiter.

Figure 5.24 shows a use-case diagram of the TradeOfi-Based (106) Pattern. The

main goal of this design pattern is to evaluate reconfiguration plans during an adap-

tation and select the best plan that balances multiple objectives.
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Figure 5.24: UML use-case diagram of the TradeOfi-Based (106) Pattern

 

 

Use-Case: Specify function

Actors: Strategy selector

Description: Select the utility function to be used.

 

 

Includes: -

Use-Case: Select reconfiguration

Actors: Strategy selector

Description: Select the reconfiguration plan with the highest utility value.

Includes: Calculate utility.
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Use-Case: Calculz-Ite utility

Actors: -

Description: Apply the utility function to various reconfiguration plans.

Includes: Aggregate data.

 

Use-Case: Aggregate data

Actors: -

Description: Aggregate the different reconfiguration objectives so they may be uniformly input

to the utility function.

 

Includes: Get requirements.

Use-Case: Get requirements

Actors: -

Description: Elicit different recrmfiguration objectives.

 

Includes: -

Use-Case: Forecast demand

Actors: Strategy selector

Description: Delete an architectural model from the repository.

Includes: -    
Structure:

A UML class diagram for the TradeOfl-Based (106) Pattern can be found in

Figure 5.25.

It is important to evaluate all objectives when selecting a reconfiguration strategy,

even if the objectives are heterogeneous in nature. The TradeOfi-Based (106) Design

Pattern provides an approach to integrate the various objectives and select the best

reconfigtu'ation plan that balances those objectives. This design pattern provides

mechanisms to collect reconfiguration objectives and aggregate them into a format

suitable. for a utility function. The Utility Function provides the means to normalize

all demands and the utility they provide to the system so they may be compared

108



objectively. This particular approach incorporates not only what a reconfiguration

plan proposes to be its utility value to the system, but also provides a means to

incorporate a predictive factor based on previous reconfigurations. The Inference

Engine selects the Objective that provides the maximum numeri :al utility value.

Participants:

0 Arbiter: l\'lediates the interaction between multiple Objectives. This class pre-

processes multiple Objectives so they can be input to the Utility Function.

0 Client: Represents a stakeholder in the system. Each Client has a set of objec-

tives it wants to satisfy.

0 Data Aggregator: Combines and pie-processes Objectives so they can be input

to a Utility Function.

0 Decision: This class represents the reconfiguration plan with the maximum util-

ity value.

0 Demand Forecaster: Predicts the utility gained by a specific Objective. This

prediction is determined based on previous knowledge about Objectives.

0 Inference Engine: This class is responsible for coordinating two major steps of

the reconfiguration plan selection process. First, it calculates the utility value

for each Objective. Second, it selects the Objective that produces the maximal

utility value.

0 Objective: Represents any reconfiguration goal in the system. For instance,

two Objectives could be “increase bandwidth” and another could be “increase

latency” .

0 Utility Function: Represents any function that objectively compares multiple

Objectives in terms of utility gain. These functions should return a numerical
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 Figure 5.25: UML class diagram of the TradeOfi-Based (106) Pattern
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value in the range of [0,1] for each Objective.

Behavior:

Figure 5.26 shows a UML sequence diagram for an example of the TradeOfl-

Based (106) Pattern in an adaptive system.

In this specific scenario, the Inference Engine first retrieves the various Objectives

that will be considered when selecting a reconfiguration plan. The Arbiter retrieves

each Objective from the various Clients requesting an adaptation. The Arbiter also

processes this information so it can be input to a utility function. The Inference

Engine also invokes a Demand Forecaster to determine, based on prior reconfiguration

experiences. what the estimated utility will be from a specific reconfiguration plan.

Meanwhile, the Inference Engine applies the Utility Function to each Objective. Once

the maximum utility value is determined, the Inference Engine creates a Decision that

contains the selected reconfiguration plan.

Consequences:

1. Multiple dimensions of reconfiguration and its outcomes can be evaluated uni-

formly at run time.

2. The selected reconfiguration plan provides the maximum utility (desired out-

come) for the entire system.

3. Developers must express a utility function to normalize each objective and its

outcome. Since each utility function is application-specific, the reuse of utility

functions is limited.

Constraints:

0 Property 1:
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Figure 5.26: UML sequence diagram example of the TradeOfiBased (106) Pattern  
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Globally, it is always the case that if Arbiter receives Objectives, then the lnfer-

enceEngine will eventually select the optimal reconfiguration plan.

[:1 (( Arbiter.get0bj ective(0bjective) —>

OlnferenceEngine. selectOptima1() )

This liveness property ensures that the reconfiguration plan with maximum

utility is eventually selected whenever an Objective is obtained. This specific

property can be strengthened by specifying an additional timing constraint.

0 Property 2:

Globally, it is always the case that if lnferenceEngine calculates the utility of a

particular Objective, then lnferenceEngine applies the selected utility function as

well as estimates the probable utility based on past observations.

D(( lnferenceEngine. calculateUtilities(Objective) ) ——>

(UtilityFunction . apply (Obj ective) /\ Demand Fore-

caster . estimate (Objective) ) )

This safety property ensures that whenever the lnferenceEngine calculates the

utility of a given Objective, it does so by applying the selected utility function

and by estimating the probable utility value based on previous observations.

Related Design Patterns:

0 Sensor-Factory (41) Design Pattern:

This pattern can be used to deploy sensors across a distributed environment and

probe components. The monitoring information gathered from this approach

can be used to maintain consistency between the architectural model and the

implementation.
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o Adaptation Detector (88) Design Pattern:

This pattern can be applied to determine when a reconfiguration is required. It

can also localize the source of the problem and guide the search for a reconfig-

uration plan.

Known Uses:

0 Rainbow Adaptation Framework [16].

0 Unity (Autonomic Prototype by IBM) [17].

o MADAM [31].

0 Utility Based Allocation [80].
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5.5.9 Component Insertion (115) Pattern

Classification:

Behavioral - Reconfiguration.

Intent:

Safely insert and initialize a component at run time.

Context:

The Component Insertion (115) Pattern may be used when:

0 components need to be added at run time.

o the application disallows downtimes.

o the functional logic has been instrumented with an interface to guide compo-

nents into active, passive. and quiescent states.

Motivation:

Inserting components into an executing system presents some subtle challenges.

In many circumstances it is not enough to load a new component into memory and

immediately begin its execution process as this may leave the system in an inconsistent

state [46]. A new component must be given the chance to initialize itself, either to a

default. state or to a previously preserved state. In addition, the new component must

be properly linked with the rest of the system so it. may communicate and process

information as intended. The Component Insertion (115) design pattern controls the

operational status of the system such that components can be safely inserted at run

time.

Figure 5.27 shows a use-case diagram of the Component Insertion (115) Pattern.

The goal of this design pattern is to guide the insertion of a new component at run

time.
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Figure 5.27: UML use-case diagram of the Component Insertion (115) Pattern.

 

 

Use-Case: Load component

Actors: Adaptation Driver

Description: Load a new component into the executing system.

Includes: -

 

 

Use-Case: Add link

Actors: Adaptation Driver

Description: Create a connection between two components in the system.

Includes: Passivate dependents.

 

116

 



 

Use—Case: Passivate dependents

Actors: -

Description: Guide every component that. will share a connection with the new component

to a state in which it cannot initiate new transactions and it is not currently

engaged in a transaction that it initiated.

 

Includes: -

Use-Case: Activate component

Actors: Adaptation Driver

Description: Instruct a component to resume its normal behavior.

Includes: -   
Structure:

A UML component diagram for the Component Insertion (115) Pattern can be

found in Figure 5.28.

The Cornponent Insertion (115) design pattern coordinates the sequence of steps

required to safely insert a component at run time. Components participating in the

reconfiguration process must realize the States interface. The States interface can

be used by the Adaptation Driver to issue commands that will drive Components into

active, passive, or quiescent states. A Change Manager interacts with the executing

environment and provides support for basic reconfiguration primitives and rules for

loading and unloading components. The Adaptation Driver uses the Change Manager

component to effect the necessary changes throughout. the system as specified by the

Reconfiguration Rules.

Participants:

0 Adaptation Driver: Oversees the reconfiguration process of inserting a new Com-

ponent into the system.

0 Change Manager: Provides support for loading and unloading Components and
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 Figure 5.28: UML component diagram of the Component Insertion (115) Pattern

 
 

 

 

C
o
m
p
o
n
e
n
t

4  
 

I |

_
I

<
<
I
n
c
l
u
d
e
s
>
>

\I
/
 

<
<
i
n
t
e
r
f
a
c
e
>
>

S
t
a
t
e
s
 

a
c
t
i
v
a
t
e
(
)

i
n
i
t
(
)

l
i
n
k
(
)

p
a
s
s
i
v
a
t
e
(
)

q
u
i
e
s
c
e
n
t
(
)

u
n
l
i
n
k
(
)

A
d
a
p
t
a
t
i
o
n
D
r
i
v
e
r

C
h
a
n
g
e
M
a
n
a
g
e
r

 
 
 

 

n
I I

r
\

I

\
<
<
i
n
c
l
u
d
e
s
>
>

I
\

I

I
\

I

'
I
I
d

\
I

<
<
I
n
c

u
e
s
>
>

\

I
x

\I
/
 

I
\

R
e
c
o
n
fi
g
u
r
a
t
i
o
n

I
\

R
u
l
e
s
  

I
\

\
j
/

<
<
i
n
c
l
u
d
e
s
>
>

\

 

  
1% I I I I I I

 
D
r
i
v
e
r

\
 

a
c
k
s
R
e
c
v

:
b
o
o
l
e
a
n

\

a
d
a
p
t
R
e
q

:
b
o
o
l
e
a
n

\

c
h
e
c
k
C
o
m
p

:
b
o
o
l
e
a
n
 

 

C
o
m
p
o
n
e
n
t
 

a
c
t
i
v
e

:
b
o
o
l

p
a
s
s
i
v
e

:
b
o
o
l

q
u
i
e
s
c
e
n
t

:
b
o
o
l

n
e
i
g
h
b
o
r
s

:
C
o
m
p
o
n
e
n
t
*
  

 
 

a
c
t
i
v
a
t
e
C
o
m
p
o
n
e
n
t
O

:
v
o
i
d

N

 

 

a
l
l
o
c
a
t
e
(
c
:
C
o
m
p
o
n
e
n
t
)

:
b
o
o
l
e
a
n

R
e
c
o
n
fi
g
u
r
a
t
i
o
n
P
l
a
n
 

d
e
a
l
l
o
c
a
t
e
(
c
:
C
o
m
p
o
n
e
n
t
)

:
b
o
o
l
e
a
n

p
l
a
n

:
S
t
r
i
n
g

 

f
o
r
c
e
Q
u
r
e
s
c
e
n
t
O

:
v
o
r
d

0
1
1
0

:
S
t
r
i
n
g

  
l
i
n
k
(
)

:
v
o
i
d

I
0
a
d
P
I
a
n
(
)

:
v
o
i
d

I
o
a
d
C
o
m
p
o
n
e
n
t
O

:
v
o
i
d

p
a
s
s
i
v
a
t
e
C
o
m
p
o
n
e
n
t
O

:
v
o
i
d

u
n
l
i
n
k
(
)

:
v
o
i
d

u
n
l
o
a
d
C
o
m
p
o
n
e
n
t
(
)

:
v
o
i
d

 
 

 

 

 



their interconnections.

Component: Represents any executable component that can be deployed

throughout the system. Each Component that may be involved in a reconfigu-

ration must realize the States interface. Note that each Component maintains

a pointer to its neighboring Components (this holds for all remaining reconfig-

uration patterns).

Driver: Manages the operational states of components involved in a reconfigu-

ration through the States interface. Specifically, it can guide a Component to

active, passive, and quiescent states.

Reconfiguration Plan: Stores the specific sequence of instructions for reconfigur-

ing the system at rtm time.

Reconfiguration Rules: Contains rules and instructions for specifying how basic

reconfiguration operations are carried out in the system. Some basic reconfigu-

ration operations include component insertion, removal, and swapping.

States: This interface forces a Component to define which functional states

correspond to active, passive, and quiescent states. An Adaptation Driver can

control a Component’s behavior through this interface.

Behavior:

A UML statechart diagram for the Component Insertion (115) pattern is shown

in Figure 5.29. Specifically, this statechart models the possible behavior of the Driver

class found in the Adaptation Driver component. First the object loads the reconfig-

uration plan that must be applied. At this step, we assume that a component must

be inserted into the application at run time, otherwise this reconfiguration pattern

would not be applicable. Thus, the new Component is dynamically loaded into the
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system. Before the Component becomes operational, however, it must first be prop-

erly initialized to either a default state or some previously preserved state. After the

Component has been initialized, it is set to a passive state. The reconfiguration plan

is analyzed once more to determine which Components will share a connection with

the new Component. These neighboring Components are sent passivate commands.

After the Driver receives all pending acknowledgments that neighboring Components

are passive. then the new Component can be linked by the Driver. Lastly, activate

conunands are sent to the affected components so they may resume their normal

behavior.

Consequences:

1. Components can be inserted at run time without leaving the system in an

inconsistent state.

2. Components are properly initialized to a consistent state before becoming ac-

tive.

3. Several components may become passive during the reconfiguration process.

These components may not initiate any new transactions while they are passive,

thereby inducing a processing delay across the system until the reconfiguration

process is complete.

4. Components must provide an interface to reach active, passive, and quiescent

states. This interface can be either built—in during development or inserted

through techniques such as AOP.

Constraints:

0 Property 1:
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 Figure 5.29: UML state diagram example of the Component Insertion (115) Pattern
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During adaptation, neighboring components that will be linked with :I: must

first be guided to a passive state. To achieve this, a restricted condition, RCond

must be established such that the system may safely reconfigure in bounded

time.

Rcond = Cl(fiCorr'iponent.neighbor.active() /\ fiComponentlinkO).

This restricted state, Ram; prevents neighboring components from being acti-

vated by the Adaptation Driver until the new component has been linked to them.

Likewise, RCond also prevents :1: from being linked to active components. This

restricted space can be enforced by preventing neighboring components from

accepting new transaction requests until the reconfiguration is complete.

The complete guided-adaptation property in A-LTL is given by:

true

((Component.neighbors 2: null) /\ (0(adaptReq) tfle RCondII —‘

(Componentneighbors! = null).

This A-LTL property ensures that when a component is inserted into the sys-

tem at run time, it does not get linked to any other component that is currently

active. Thus, when AReq is received the corresponding neighbors must first be

guided to a passive state before links can be established between these com-

ponents. Links can be created once the new component’s neighbors are in a

passive state.

Property 2:

If a Component has not been initialized, then it is never the case that the

Component is linked to its neighboring components.

122



Cl ( fl Component.initialize() —> p Component.link())

This safety property guarantees that if a component has not been initialized,

then it will not be connected to any other components.

Related Design Patterns:

0 Case-based Reasoning (68) Design Pattern:

This pattern can be used to select a reconfiguration plan based on the available

monitoring information. If the reconfiguration plan involves adding components

at run time, then the Component Insertion (115) design pattern can perform

this task.

0 Divide and Conquer (78) Design Pattern:

This pattern can be used to determine the specific sequence of steps required to

safely perform a reconfiguration. Whenever a step requires that a component

be inserted, it can be carried out by the Component Insertion (115) Pattern.

o Architecture-Based (97) Design Pattern:

This pattern can be used to select a reconfiguration plan. Any reconfiguration

that. involves adding components to the system can use the Component Insertion

(115) Pattern.

o 'IYadeOff-Based (106) Design Pattern:

This pattern can be used to select a reconfiguration plan that best balances the

overall set of objectives that various stakeholders may have. If the reconfigura—

tion plan includes inserting components, then the Component Insertion (115)

Pattern can be used.

0 Server Reconfiguration (135) Design Pattern:
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This pattern can be used to reconfigure an application structured as a server

- client architecture. Components can be inserted into the server architecture

through the Corrrponerrt Insertion {115) Pattern.

Known Uses:

Znews.com - Rainbow framework [16].

Software Reconfiguration Patterns [34].

Monitor — Dynamic Reconfiguration in Distributed Systems [46].

Evolving Philosophers - Dynamic Change Management [57].
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5.5.10 Component Removal (125) Pattern

Classification:

Behavioral — Reconfiguration.

Intent:

Safely remove a component at run time.

Context:

The Component Removal (125) Pattern may be used when:

0 compmtents need to be removed at run time.

o the application disallows downtimes.

o the functional logic has been instrumented with an interface to guide compo-

nents into active, passive, and quiescent states.

Motivation:

Safely removing a component from a system at run time is a difficult task. If

a component is removed without first preparing the application for such a change,

then the entire application may be left in an inconsistent state [57]. For instance,

if a component is removed arbitrarily, then some previously initiated transactions

may not terminate properly. The Component Removal (125) design pattern safely

removes a component at run time by explicitly controlling the operational status of

components that are directly connected to the component being removed. As a result,

the Component Removal (125) design pattern ensures all transactions have completed

before a component is removed.

Figure 5.30 shows a use-case diagram of the Component Removal (125) Pattern.

The goal of this design pattern is to guide the removal of a component at run time.



 

Figure 5.30: UML use-case diagram of the Component Removal {125) Pattern
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Use-Case: Remove component

Actors: Adaptation Driver

Description: Unload a component from the executing system.

Includes: -

Use-Case: Remove link

Actors: Adaptation Driver

Description: Remove a connection between two components in the system.

Includes: Passivate dependents, Force quiescent.
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Use-Case: Passivate dependents

Actors: -

Description: Guide every component that shares a connection with the component to be

removed to a state in which it cannot initiate new transactions and it is

not currently engaged in a transaction that it initiated.

Includes: -

 

Use-Case: Force quiescent

Actors: -

Description: Instruct a component to reach a quiescent state.

 

Includes: -

Use-Case: Activate component.

Actors: Adaptation Driver

Description: Instruct a component. to resume its normal behavior.

Includes: -   
Structure:

A UML component diagram for the Component Removal (125) Pattern can be

found in Figure 5.31.

The Component Removal (125) design pattern coordinates the sequence of steps

required to safely remove a component at run time. Components participating in

the reconfiguration process must realize the States interface. The States interface

can be used by the Adaptation Driver to issue commands that will drive Components

into active, passive, or quiescent states. No Component will be removed until every

affected component has reached their required state. A Change Manager interacts with

the executing environment and provides support for basic reconfiguration primitives

and rules for unloading and tmlinking a component. The Adaptation Driver uses the

Change Manager component to effect the necessary changes throughout the system as

specified by the Reconfiguration Rules.
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Figure 5.31: UML component diagram of the Component Removal (125) Pattern
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Participants:

0 Adaptation Driver: Oversees the reconfiguration process of removing a Compo-

nent from the system.

0 Change Manager: Provides support for loading and removing Components and

their intercormections.

0 Component: Represents any executable component that can be deployed

throughout the systerrr. Each Component that may be involved in a recon—

figuration nnrst realize the States interface.

0 Driver: Manages the operational states of components involved in a reconfigu-

ration tlrrouglr the States interface. S1,)ecifically, it can guide a Component to

active, passive. and quiescent states.

0 Reconfiguration Plan: Stores the specific sequence of instructions for reconfigur-

ing the system at run time.

o Reconfiguration Rules: Contains rules and instructions for specifying how basic

reconfiguration operations are carried out in the systenr. Some basic reconfigu-

ration operations include component insertion. removal, and swapping.

0 States: This interface forces a Component to define which functional states

correspond to active, passive, and quiescent states. An Adaptation Driver can

control a Component’s behavior through this interface.

Behavior:

A UML statechart diagram for the Component Removal (125) pattern is shown

in figure 5.32. Specifically, this statechart models the possible behavior of the Driver

class formd in the Adaptation Driver component. First the object loads the reconfig-

uration plan that. must be applied. At this step we. assume that a component rmrst
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be removed from the application at run time, otherwise this reconfiguration pattern

would not be applicable. Thus, the target Component is sent a quiescent command.

Before the Component becomes quiescent, however, it must first complete any pend-

ing transactions and, if necessary, preserve its state. After the Component becomes

quiescent, the Driver sends passivate commands to neighboring Components. After

the Driver receives all pending acknowledgments that neighboring Components are

passive, then the target Component can be unlinked from its neighbor Components

by the Driver. The target Component can then be unloaded from the system. Lastly,

actuiate commands are sent to the affected components so they may resume their

normal behavior.

Consequences:

1. Components can be removed at run time without leaving the system in an

inconsistent state.

2. Components can preserve state before they are removed from the system. This

facilitates replacing components at run-time.

3. Removing a central component from the system may cause many other com-

ponents to become passive until the reconfiguration process is complete. Since

passive components cannot initiate new transactions, a significant processing

delay may be incurred by the system until the reconfiguration process termi-

nates.

4. Components must provide an interface to reach active, passive, and quiescent

states. This interface can be either built-in during development or inserted

through techniques such as AOP.

Constraints:
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Figure 5.32: UML state diagram example of the Component Removal (125) Pattern
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0 Property 1:

During adaptation, neighboring components that will be unlinked from a: must

first be guided to a passive state. To achieve this, a restricted condition, RCond

must be established such that the system may safely reconfigure in bounded

time.

RC'ond = l:l(fiComponent.neighbors.active /\ -1C'0mponentunlink()).

This restricted state, Room; prevents neighboring components from being acti-

vated by the Adaptation Driver until the component has been unlinked from them.

Likewise, Ram, also prevents :1: from being unlinked from active components.

This restricted space can be enforced by preventing neighboring components

from accepting new transaction requests until the reconfiguration is complete.

The complete guided—adaptation property in A-LTL is given by:

((Component.neighbors! = null) /\ (<>(adaptReq) tfle RCond))

true .

—\ (Componentnezghbors 2: null).

This A-LTL property ensures that once a source program receives an adaptation

request (adaptReq), it enters a restricted condition RCond- In this restricted

source. program, no component may be unlinked as long as any of its neighbors

are. active. ()nce neighboring components enter a passive state, links can be

safely removed.

0 Property 2:

If a Component is not in a quiescent state, then it is never the case that the

Component is unloaded from the system.
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D ( fl Component.isPassive() —> a unloadComponent(Component)

This safety property guarantees that a component will not be removed from the

system unless it is in a quiescent state.

Related Design Patterns:

Case-based Reasoning (68) Design Pattern:

If the reconfiguration plan selected by the Case-based Reasoning (68) pattern

involves removing a component. this step can be performed by the Component

Removal (125) Pattern.

Divide and Conquer (78) Design Pattern:

This pattern can be used to determine the specific sequence of steps required to

safely perform a reconfiguration. Whenever a step requires that a component

be removed. it can be carried out by the Component Removal (125) Pattern.

Architecture-Based (97) Design Pattern:

This pattern can be used to select a reconfiguration plan. Any reconfiguration

that involves removing components from the system can use the Component

Removal (125) Pattern.

TradeOff-Based (106) Design Pattern:

This pattern can be used to select a reconfiguration plan that best balances the

overall set of objectives that various stakeholders may have. If the reconfigura-

tion plan includes removing components, then the Component Removal (125)

Pattern can be used.

Server Reconfiguration (135) Design Pattern:
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This pattern can be used to reconfigure an application structured as a server -

client architecture. Components can be removed from the server architecture

through the Component Removal (125) Pattern.

Known Uses:

0 Znews.com - Rainbow framework [16].

0 Software Reconfiguration Patterns [34].

o Evolving Philosophers - Dynamic Change Management [57].
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5.5.11 Server Reconfiguration (135) Pattern

Classification:

Behavioral - Reconfiguration.

Intent:

Safely reconfigure a server — client component architecture at run time.

Context:

The Server Reconfiguration (135) Pattern may be used when:

0 a server architecture needs to be reconfigured at run time.

o the application disallows downtimes.

0 multiple client require services provided by the server component.

Motivation:

Client and server architectures are scalable in terms of the number and functions

of clients that interact with the system [34]. Reconfiguring a server at run time

is a difficult task for two specific reasons. First, while the presence or absence of

a particular client does not affect the overall availability or behavior of the system,

the presence of a server is crucial in the continued availability of the system. As a

result, it is undesirable to reconfigure a server offline. Second, incoming client requests

may continue to arrive while the server is being reconfigured. As a result, to ensure

the reconfiguration process is transparent to clients, no requests may be lost during

this period. The Server Reconfiguration (135) design pattern provides a behavioral

template that describes how a server may be reconfigured at run time without losing

client requests in the process.

Figure 5.33 shows a use—case diagram of the Server Reconfiguration (135) Pattern.

The goal of this pattern is to safely reconfigure a server architecture at run time.
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Figure 5.33: UML use-case diagram of the Server Reconfiguration (135) Pattern

 

 

 

 

Use-Case: Add a component

Actors: Adaptation Driver

Description: Insert a component into the server architecture at run time.

Includes: Queue requests.

Use-Case: Queue requests

Actors: -

Description: Store incoming client requests so they may be serviced once the reconfiguration

is complete.

Includes: Insert data structure.
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Use-Case: Insert data structure

Actors: -

Description: Insert a data structure that will store incoming client requests so they may

be processed after the reconfiguration process terminates.

 

Includes: -

Use—Case: Remove component

Actors: Adaptation Driver

Description: Unload a specific component from the server.

 

Includes: Queue requests.

Use-Case: Modify parameter

Actors: Adaptation Driver

Description: Adjusts a specific parameter that will fine—tune the server’s behavior.

Includes: -  
 

Structure:

A UML component diagram for the Server Reconfiguration (135) Pattern can be

found in Figure 5.34.

The Server Reconfiguration (135) design pattern coordinates the reconfiguration

of a server architecture at run time. Every Component that is involved in the re-

configuration process must realize the States interface. The Adaptation Driver uses

the States interface to guide a Component to its active, passive, and quiescent states.

During the reconfiguration process, Clients may continue to submit requests to the

Server component. For safety and operational reasons, however, incoming requests

will be stored in a Request Buffer until the reconfiguration process terminates. The

Adaptation Driver uses the Change Manager component to interact with the executing

environment and effect the reconfiguration steps.

Participants:
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Figure 5.34: UML class diagram of the Server Reconfiguration (135) Pattern  
 



Adaptation Driver: Oversees the reconfiguration process for the Server. This

component is responsible for ensuring that incoming Client requests are queued

for further processing and that a Server completes unfinished transactions before

the reconfiguration begins.

Change Manager: Provides support for loading and unloading Components and

their interconnections.

Client: Represents any component that requires services provided by the Server.

Component: Represents any executable component that can be deployed

throughout the system. Each Component that may be involved in a recon-

figuration must realize the States interface.

Driver: Manages the operational states of components involved in a reconfigu-

ration through the States interface. Specifically, it can guide a Component to

active, passive. and quiescent states.

Reconfiguration Plan: Stores the specific sequence of instructions for reconfigur-

ing the system at run time.

Reconfiguration Rules: Contains rules and instructions for specifying how basic

reconfiguration operations are carried out in the system. Some basic reconfigu-

ration operations include component insertion, removal, and swapping.

Request Buffer: This is a data structure for storing Client requests while a re-

configuration takes place.

Server: Represents a set of components that provides services to multiple Clients.

States: This interface forces a Component to define which functional states

correspond to active, passive, and quiescent states. An Adaptation Driver can

control a Component’s behavior through this interface.
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Behavior:

A UML statechart diagram for the Server Reconfiguration (135) pattern is shown

in figure 5.35. Specifically, this statechart models the possible behavior of the Driver

class found in the Adaptation Driver component. First the Driver loads the reconfigu-

ration plan that must be applied. Two possible reconfigurations are possible at this

stage, either a component needs to be inserted or removed. Notice that to perform

a swap operation we would first perform a removal followed by an insertion. De-

pending on whether a component needs to be inserted or removed, the Driver can

perform either an insertion through the Component Insertion (115) pattern or a re-

moval through the Component Removal (125) pattern. Two options are possible after

this operation is complete. Either more structural changes need to be performed or

the queued requests need to be serviced. If no more structural changes need to be

performed, then the queued requests can be serviced until the Request Buffer is empty.

At this point, the server reconfiguration is complete.

Consequences:

1. Pending transactions arevcompleted before the reconfiguration process begins.

This ensures the server is in a consistent state before it is reconfigured.

2. No incoming request is lost during the reconfiguration process.

3. The system can be transparently reconfigured at run time with respect to a

client.

4. Latency can increase significantly during the reconfiguration process depending

on the complexity of the reconfiguration. Specifically, numerous components

may be driven to a passive state during the reconfiguration procedure. Until

the reconfiguration is complete, these components will not be able to initiate

new transactions with other components.
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 Figure 5.35: UML state diagram example of the Server Reconfiguration (135) Pattern
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Constraints:

0 Property 1:

During adaptation, Clients will continue to submit transaction requests. If the

Server keeps servicing incoming requests, then it may not reach a quiescent state

in bounded time. To guide the Server to a quiescent state, the AdaptationDriver

forwards all incoming Client requests to a RequestBuffer during the reconfigu-

ration phase. Once the reconfiguration is complete, the Server may proceed to

service all the Client requests until the message queue is empty. To achieve this,

a restricted condition, RCond must be established such that the system may

safely reconfigure in bounded time.

Room, 2 D(-IServer.accept() /\ RequestBuffer.active).

This restricted state, RCond prevents a Server from accepting any new incom-

ing connections during the reconfiguration phase. Likewise, Ream; also ensures

that the Ada ptation Driver queues incoming requests for further processing. This

restricted state can be enforced by redirecting all incoming connections to a

message buffer. As a result, the Server will be able to complete any pending

transactions that were already started before AR“, was received.

The complete guided-adaptation property in A-LTL is given by:

((AdaptationDriver.qu
euelncoming() /\ (0(adaptReq) tfle

RCO,,d)) tfle (RequestBuffer.empty).

This A-LTL property ensures that when an active server needs to be dynam-

ically reconfigured. it will first be allowed to reach a passive state in bounded
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time. Specifically, once an adaptation request, adaptReq is received, the Adap-

tationDriver blocks any incoming requests from being delivered to the server.

Instead, incoming requests are stored in a RequestBuffer for further processing.

A server will reach a quiescent state once it completes all pending transactions.

At. this point, the server can be safely reconfigured. Once the server becomes ac-

tive again, it must first service all pending requests stored in the RequestBuffer.

The. reconfiguration process is complete once the RequestBuffer is empty.

0 Property 2:

Globally, it is always the case that if a message is stored in RequestBuffer, then

it; will be eventually serviced.

Cl ((RequestBuffer.queue (request)) —+

O (RequestBuffer . retrieve (request) )

This liveness property guarantees that if a message is queued, then it will even-

tually be retrieved and processed. This property ensures that messages are

always processed at. some point.

Related Design Patterns:

0 Case-based Reasoning Design Pattern:

This pattern can be used to select a reconfiguration plan to be performed by

the Adaptation Driver in Server Reconfiguration (135).

0 Task Decomposition Design Pattern:

This pattern can be used to determine the specific sequence of steps required

to safely perform a reconfiguration. These steps can be carried out in Server

Reconfiguration (135) if the application is structured as a server - client archi-

tecture.
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o Architecture-Based (97) Design Pattern:

The Archit(-'(.'ture-Based (97) pattern can be used to determine the reconfigura—

tions that. need to be performed on a server architecture. The Server Reconfig-

uration (135) pattern can then perform these changes at run time.

o TradeOff-Based (106) Design Pattern:

This pattern can be used to select a reconfiguration plan that best balances the

overall set of objectives that various stakeholders may have. If the application

is structured as a server. then the Server Reconfiguration (135) design pattern

can perform the necessary reconfigurations.

a Component Insertion (115) Design Pattern:

This pattern can be used to safely insert a new component at run time.

a Component Removal (125) Design Pattern:

This pattern can be used to safely remove a component at run time.

Known Uses:

0 Z.com - Rainbow Adaptation Framework [16]

0 Server/Client Reconfiguration Pattern [34].
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5.5.12 Decentralized Reconfiguration (145) Pattern

Classification:

Behavioral - Reconfiguration.

Intent:

Safely insert and remove components from a decentralized component architec-

ture at run time.

Context:

The Component Insertion {115) Pattern may be used when:

0 components need to be added and removed at run time.

o the application disallows downtimes.

o no single component coordinates the activities of the distributed components.

Motivation:

Decentralized applications function without any single component coordinating

the activities of the distributed components [34]. The lack of a centralized coordi-

nator implies that every component is responsible for the collective reconfiguration

of the entire application. If components do not adhere to a reconfiguration proto-

col when they are inserted or removed from the system, then the entire distributed

application may be left in an inconsistent state. The Decentralized Reconfiguration

(14 5) design pattern provides a behavioral template that every component in the

distributed application should follow to properly engage and disengage from other

components during a reconfiguration.

Figure 5.36 shows a use-case diagram of the Decentralized Reconfiguration (14 5)

Pattern. The goal of this design pattern is to guide the insertion and removal of

components in a distributed application at run time.



 

 

System

   

   

Passivate

/

<<includes>> I

1’ I

   

I

Component

Disengage    
Figure 5.36: UML use-case diagram of the Decentralized Reconfiguration (145) Pat-

tern.

 

 

Use-Case: Engage

Actors: Component

Description: Initiate a transaction with another component.

 

Includes: -

Use-Case: Activate

Actors: Component

Description: Start requesting and servicing transactions with other components.

Includes: -    

146



 

Use-Case: Passivate

Actors: Component.

Description: Terminate pending transactions while not initiating new transactions.

Includes: -

 

Use-Case: Stop

Actors: COII’IPOI'It’Ilt

Description: Terminate the component.

 

Includes: Force quiescent.

Use-Case: Force quiescent

Actors: -

Description: Terminate all pending transactions and await for every neighboring component

to acknowledge the component’s departure from the system.

 

Includes: Disengage.

Use-Case: Disengage

Actors: Component

Description: Notify neighboring components of intention to go quiescent.

Includes: -    
Structure:

A UML component diagram for the Decentralized Reconfiguration (145) Pattern

can be found in Figure 5.37.

The Decentralized Reconfiguration (145) design pattern provides a behavioral

template for reconfiguring decentralized components at run time. Components are

rcs1')(‘)nsible for safely reconfiguring the overall application. Each Component must

realize the States interface so they may autonomously cooperate with other Compo-

nents during a reconfiguration. Components can notify each other of their intentions

through the States interface. This enables a Component to properly engage and dis-

engage other Components without leaving the system in an inconsistent state.
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 Pattern

Figure 5.37: UML component diagram of the Decentralized Reconfiguration (145)
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Participants:

0 Change Manager: Provides support for loading and unloading Components and

their interconnections.

0 Component: Represents any executable component that can be deployed

throughout the system. Each Component that may be involved in a recon-

figuration must realize the States interface.

a Driver: l\Ianages the operational states of components involved in a reconfigu-

ration throngh the States interface. Specifically, it can guide a Component to

active, passive, and quiescent states. Additionally, a Driver may issue engage

and disengage commands to other Components to notify its intentions.

o Reconfiguration Plan: Stores the specific sequence of instructions for reconfigur-

ing the system at run time.

o Reconfiguration Rules: Contains rules and instructions for specifying how basic

reconfiguration operations are carried out in the system. Some basic reconfigu-

ration operations include component insertion, removal, and swapping.

0 States: This interface forces a Component to define which functional states

correspond to active. passive, and quiescent states. In addition, it provides a

negotiation protocol that specifies whether a Component wants to engage or

disengage from other Components.

Behavior:

Explain 3 possible sequences. First, we can load another component and activate

it. After that, each component is responsible for its own connections. Second, we

can create a connection (link) between two components. Third, we can remove a

connection (link) between two components. If there are no more links remaining and
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the component needs to be removed (die), then the component unloads itself from

the system. Otherwise it just remains in the system until a component requests a

connection.

A UML statechart diagram for the Decentralized Reconfiguration (145) pattern

is shown in Figure 5.38. Since there is no Component to organize the reconfigura-

tion process. each Component is responsible for reconfiguring the entire application.

Specifically, this statechart models the possible behavior of the Driver class found in

a Component. First the Driver loads the reconfiguration plan that must be applied.

Two possible reconfigurations are possible at this stage, either a component needs to

be inserted or the Component determines it should unload itself from the system. If a

Component must be inserted, then it is loaded into the system and initialized. How-

ever, every Component is responsible for engaging and disengaging other Components

in the system on .its own. If the Component determines it must remove itself from the

system, then it initiates disengage transactions with its neighboring Components. Af-

ter the Component receives acknowledgments from its neighboring Components, then

it can unlink itself from them. Finally, with no pending transactions, a Component

can unload itself from the system.

Consequences:

1. Components are responsible for the overall reconfiguration of the entire system.

This facilitates the evolution of the system at run time.

2. Components must receive engagement acknowledgments from components it

will interact with before it commences any transactions with them. This ensures

that the insertion of a component does not leave the system in an inconsistent

state.

3. Components must receive disengagement acknowledgments from neighboring
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 {145) Pattern

Figure 5.38: UML sequence diagram example of the Decentrali
N

N- ed Reconfiguration
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components before. it can be removed. This ensures the removal of a component

does not. leave the system in an inconsistent state.

4. Each component is responsible for reconfiguring the entire application. This

complicates verifying and analyzing that a reconfiguration plan is correct.

5. Components must provide an interface to reach active, passive, and quiescent

states. This interface must also provide a protocol to notify other components

of engaging and disengaging intentions. This interface can be either built-in

during development or inserted through techniques such as AOP.

Constraints:

0 Property 1:

During adaptation, neighboring components that will be linked with :1: must

first be guided to a passive state. To achieve this, a restricted condition, RCond

must be established such that the system may safely reconfigure in bounded

time.

RCond = Cl(fiComponentneighbors.actiue() /\ fiCornponentlinkO)

This restricted state, Room, prevents neighboring components from becoming

active until the new component has been linked to them. Likewise, RCond also

prevents :1: from being linked to active components. This restricted space can be

enforced by preventing neighboring components from accepting new transaction

requests until the reconfiguration is complete.

The complete guided-adaptation property in A-LTL is given by:

((Component.neighbors == null) /\ (0(adaptReq) tfle RC0,,d)) "—146



(Component.neighbors! = null).

This A-LTL property ensures that when a component enters the system, it does

not. establish any communication links with active components. Specifically, the

system must first enter a restricted condition, Rama, in which neighboring com-

ponents will eventually reach a passive state. Links between the new component

and its neighbors can be created once the component and its neighbors are in

a passive state.

Property 2:

During adaptation. neighboring components that will be unlinked from a: must

first be driven to a passive state. To achieve this, a restricted condition, RCond

must be established such that the system may safely reconfigure in bounded

time.

RCond = Cl(fiComponent.neighborsactive /\ fiComponentunlinkO)

This restricted state, RCond prevents neighboring components from becoming

active until the component has been unlinked from them. Likewise, RCond also

prevents a: from being unlinked from active components. This restricted space

can be enforced by preventing neighboring components from accepting new

transaction requests until the reconfiguration is complete.

The complete guided-adaptation property in A—LTL is given by:

((Componentneighbors! = null) /\ (<>(adaptReq) tfle RC0.,,_d))

tfl‘xe (Componentneighbors == null).
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Where SSpec are the specifications that must be satisfied in the source program

before the adaptation request, AReq is received and TSpec is the specification

that must be satisfied after the component has been removed.

o Property 3:

If a Component is not in a quiescent state, then it is never the case that the

Component is unloaded from the system.

El ( a Component.quiescent ——> o Driver.unloadComponent() .

This safety property guarantees that a component will not be removed from the

system unless it is already in a quiescent state.

Related Design Patterns:

0 Case-based Reasoning (68) Design Pattern:

A component participating in the Decentralized Reconfiguration (145) pattern

can use case-based reasoning mechanisms to determine which reconfigurations

are necessary.

0 Divide and Conquer (78) Design Pattern:

A component participating in the Decentralized Reconfiguration (145) pattern

can use the Divide and Conquer (78) pattern to determine the specific sequence

of steps required to safely perform a reconfiguration.

o Architecture-Based (97) Design Pattern:

A component participating in the Decentralized Reconfiguration (14 5) pattern

can use architectural models to determine which reconfigurations are necessary.

0 'I‘radeOff-Based (106) Design Pattern:

154



A component participating in the Decentralized Reconfiguration (145) pattern

can use the TradeOfi-Based (106) pattern to select a reconfiguration plan that

best balances the overall set of objectives that various stakeholders may have.

0 Component Insertion (115) Design Pattern:

The Component Insertion (115) design pattern can be used to safely insert a

component. into the system at run time.

0 Component Removal (125) Design Pattern:

The Component Removal (125) design pattern can be used to safely remove a

component. from the system at run time.

Known Uses:

0 Unity — IBM Autonomic System [17].

0 Software Reconfiguration Patterns [34].

e Evolving Philosophers - Dynamic Change l\-’Ianagement [57].



Chapter 6

Process

This chapter presents two ideas to facilitate the modeling and formal analysis

of adaptive systems. First, we provide more details on how to accomplish several of

the modeling steps briefly mentioned in the model-based development process [85].

In particular, we explain how the design patterns in this thesis can be leveraged

by the model-based development process when building adaptive systems. Second,

we illustrate how UML state diagrams can be used to model the behavioral aspects

of the adaptive logic. Specifically, we introduce an iterative process that leverages

automated formal analysis tools and techniques for analyzing the models against

certain safety properties.

6.1 Model-based Development Process

It is increasingly important to be able to adapt an application’s behavior at run

time in response to changing requirements and environmental conditions. As a result

of their high complexity, adaptive programs are generally difficult to specify, design,

verify, and validate [85]. In order to leverage the benefits of model—driven engi—

neering, including code generation, it is advantageous to address adaptation early in

the development process, starting with requirements, progressing to design and then
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eventually to code in a systematic fashion. Previously, Zhang and Cheng introduced

a model—based development process to model and analyze adaptive systems [85]. In

particular, the process focused on the assurance of the adaptations at each step of the

development process. This thesis extends that work to focus on the creation of the

design models that can be used as part of the design phase of the overall development

process.

We assume steps (1) through (4) of the model-based development process have

been completed (see Figure 6.1). Requirements R,- have been specified for a given

domain D,- that satisfy the overall system goal C. These requirements are opera—

tionalized in the form of design models Mi. Furthermore, non-adaptive models M,-

and .7in have been created and verified against their respective local ((1),- and (DJ) and

global global properties (INV), specified in terms of formal specification languages

such as linear temporal logic. Nonetheless, at this stage, the resulting models lack

the infrastructure required for self-adaptation. Each of these models must be in-

strumented with monitoring and decision-making capabilities in order to automate

the tasks of introspection and intercession. To provide the required monitoring and

decision—making functionality, step (4) of the model-based development process has

been extended to incorporate the design patterns presented in this thesis.

Developers must analyze the specific domains, requirements, and constraints of

the non-adaptive models M,- and Mj to determine which monitoring and decision-

making design patterns are suitable. Once the domain and its requirements are

understood, developers can browse the available design patterns for reusable solutions

tl.1at address their needs. A design pattern’s Context field is particularly helpful at

this stage as it identifies under what circumstances should the pattern be applied.

Once an initial set of design patterns have been identified, developers should consult

the Related Patterns field to review other design patterns commonly used together.

This helps identify alternative approaches that were previously unforeseen during the
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Figure 6.1: Adaptation Design Patterns Within Model-Based Development Process.
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design phase. If various design patterns are applicable, then developers should analyze

the Consequences field to determine the tradeoffs incurred by applying the particular

pattern. After a set of design patterns is selected, the patterns can be instantiated,

integrated with the non-adaptive models M,- and Mj and formally analyzed against

safety critical properties.

Although the non—adaptive models M,- and Mj are now instrumented with mon-

itoring and decision-making capabilities, these models are still incapable of reconfig-

uration. Step (5) of the model-based development process focuses on the creation

of models to represent the adaptive logic (e.g., Mz‘J and Mid) and verifies them for

correctness. The reconfiguration design patterns presented in this thesis can be in-

corporated at step (5) to guide the development of the adaptive models. These

reconfiguration design patterns should be selected according to the reconfiguration

scenarios that are possible as well as the overall architecture of the self-adaptive sys-

tem. Analyzing a system’s architecture helps determine the different interactions

between components as well as any dependencies that might exist between them.

This is important as it guides developers in identifying the quiescent states in 114,-,

the starting states in Al], and the integration of these states with the adaptive model

AIL)"-

6.2 Modeling Adaptive Logic

To fully leverage model-driven development technology for adaptive systems,

such as systematic refinement of abstract models to more concrete models, it is nec-

essary to model both the structural and behavioral portions of an adaptive system.

\K-"liile several approaches focus on the modeling and analysis of the architectural

(structural) dimension of an adaptive system [16, 29], it is also important to model

and analyze the behavioral portion of an adaptive application. Model checking has
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been I'n'eviously used to verify properties of adaptive software [3, 13, 56] and cor-

rect errors before the system is implemented and deployed. By analyzing the design

models against functional and adaptation properties, we minimize the potential to

propagate errors from the design to the implementation and maintenance phases.

Despite the formal analysis capabilities, the combination of the functional logic in—

tertwined with the adaptive logic makes the maintenance and analysis of the overall

adaptive system models challenging.

Previously. we presented an iterative approach to constructing and analyzing

UML design models for adaptive systems, where we separate the modeling of the

fui'ictional logic from the adaptive logic [68]. For the purposes of this thesis, we

consider an adaptive system P to comprise n steady-state programs, where a steady-

state program is a state machine that is non-adaptive. We consider adaptation to

be the transition from one steady-state source program to another target program.

Thus, while it is possible for P to transfer execution between any of the n programs,

only one stemlg-state program may be executing at any given time. In general, our

approach decomposes large adaptive programs by first separating the steady-state

program verification from the adaptive logic verification. Our approach verifies three

key types of properties. Local properties are those that must hold within a particular

domain. Global properties or invariants are those that must hold at all times. Once

each steady-state program is verified against their local and global properties, they

do not. need to be verified again if involved in a different adaptation scenario. Thus,

by separating concerns at the model level, the complexity of verifying the model

correctness of adaptive programs is decreased.

Our iterative approach is as follows (see Figure 6.2):

1. Create UML statecharts for objects that are involved between target model AI]-

and source model A1,.

2. Use Hydra [63] to automatically translate the resulting collection of statecharts
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that constitute the adaptive logic into Promela code.

3. Analyze the adaptive model for adherence to the global and transitional proper-

ties using SPIN [47], and the adaptive propreties through the AMOEBA model

checker [86]. If any global proprety is violated,’ return to (1).

4. Identify quiescent states in source model M, and add transitions from these

states to adaptive model AIM.

5. Identify starting states in target model M]- and add incoming transitions to

these states from adaptive model MM.

In order to complete step (1), developers should refer to the source and target

models. Examining the structural differences between these models will help identify

which objects were affected by the adaptive logic. Unfortunately, just examining the

structural differences‘will not identify all the objects involved in the adaptive logic.

Some objects exist only within the scope of the adaptive logic and will not show up in
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either set of diagrams. For instance, a temporary buffer in the adaptive infrastructure

that holds data while the system initializes the target steady-state program will not

show up in either source or target models since it is not present in either of them.

These objects, however, will become apparent as the adaptive logic is modeled since

they bridge the gap between the source and target models.

Steps (2) and (3) of this iterative modeling process rely on automated tools

for formally verifying programs. Specifically, step (2) uses Hydra, a tool based on a

UML formalization framework developed by McUmber and Cheng that automatically

translates UML state diagrams into Promela code [63]. Step (3) uses the SPIN model

checker [47]. SPIN takes Promela code as input and can be run in either simulation

or verification mode. Simulation mode is helpful for visualizing sample executions

of the system. Nonetheless, verification mode is required to state any claims about

satisfying or violating specific properties. If a property is not satisfied, SPIN produces

a trace output showing where the error occurred. One of the main advantages of using

Hydra and SPIN together is that enables automated formal analysis of development

models. That is. the same models that are used to guide development are used in the

verification and analysis process.

Step ( 5) involves identifying several application-specific states. Several re—

searchers [34, 57, 46] advocate that a component is quiescent when it has com-

pleted all pending transactions and is not engaged in communications with any other

component. Currently, developers manually identify which states conform to those

requirements in an application. As a result, the identification of quiescent states is

application-specific. Likewise, when a component is loaded at run time it might need

to be initialized to a particular configuration.
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Chapter 7

Case Study

This chapter presents a “proof of concept” case study that applies several adap-

tation design patterns in the construction of a self—adaptive application. First, we

describe the application domain. We then list the specific functional and adaptation

requirements that must be satisfied by the resulting application. Next, we present

our design and implementation. Finally, we present a comparison between a pattern-

oriented approach and a framework-oriented approach at constructing an adaptive

system.

7.1 Application Description

The Z.com case study was originally described in [16]. Z.com is a fictional news

site that is planning to use adaptation to address the “slashdotting effect” where

news sites when listed on slashdot (or brought to the wider public’s attention through

some other means) are unable to deal with the larger number of requests for content

and either suffer from high latency or else are unable to serve content altogether.

For instance, on “Black Friday 2006”, the Wal-Mart website was inaccessible into

late afternoon costing the store millions and the day before Amazoncom traffic was

problematic due to the demand for the Xbox 360 [16].
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Garlan et al. modeled the Z.com system as a set of clients and servers with the

overall constraint that latency must fall within a given threshold. Nonetheless, adap-

tation concerns for this application are multi—faceted. Some of the utility concerns

that must be balanced at run time include cost, latency, and fidelity. Cost is incurred

by the company whenever it runs a server. Latency measures the amount of time

it takes for a server to provide the requested content to a client. Fidelity represents

the content format, either graphical or textual. The purpose of the adaptive Z.com

system is to optimally balance the costs incurred by running servers while providing

quality content at a low latency.

This case study uses the adaptation design patterns presented in this thesis to

re-engineer the Z.com adaptive web server previously presented in [16]. Although our

adaptive system is implemented using a notably different approach, it exhibits similar

behavior to the one Cheng et al. created using the Rainbow framework. Specifically,

our version of the Z.com application provides the same reconfiguration capabilities as

Z.com provided. Having two implementations of the same adaptive system enables

us to perform a more comprehensive comparison of the key differences between the

approaches.

7.2 Requirements

Since this case study is aimed at replicating Rainbow’s Z.com adaptive news

server [16], their same functional and adaptive requirements apply to our case study.

Specifically, there are conflicting requirements between operational costs and quality

of service constraints. The following requirements were identified by Garlan et al. for

Z.com:

o The news server will provide basic HTML functionality to requesting clients.
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o The operational cost may not be exceeded at any time. Specifically, Z.com has

a maximum monetary budget for providing its services. Being a company, it

will attempt to maximize its profits by not exceeding its allocated budget.

0 The quality of the content should be the best one possible. Specifically, when-

ever possible, service client’s requests in graphical content mode.

0 The system will avoid losing customers due to a high response time if it can

somehow provide faster content. Specifically, if the server’s average response

time is too high, the content may be switched to textual mode in order to

reduce transmitting large file sizes.

Even though Rainbow uses a utility-based approach for selecting which recon-

figuration to apply depending on different stakeholder’s needs, it must first quantify

conditions that warrant adaptations. The Z.com application requirements and its

implementation define several macros to represent these operational boundaries at a

high level of abstraction. For instance, cost is expressed as being within budget or

exceeding budget. Likewise, the three possible values for latency include low, middle,

and high. Each macro is replaced during compilation with the specific numerical val-

ues that developers consider to represent different operational levels. This facilitates

the task of evolving and fine-tuning the adaptation requirements as needed.

Given the three objectives of minimizing operational costs and latency and pro-

viding graphical news content whenever possible, Garlan et al. reasoned about the

possible adaptation scenarios that might arise for Z.com. For instance, Z.com will

increment its server pool by one integral amount if the response time is high and the

budget will not be exceeded. Otherwise, Z.com will switch to textual content mode

if it is not already in that mode. Additionally, when the response time is low, Z.com

will decrement its server pool size by one integral amount if it is near budget limit. If

the response time is low, then the servers will be switched to graphical mode if they
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are not already in that mode. Lastly, when the response time is in the medium range,

Z.com will switch to graphical mode if the mode is textual, while the server pool size

may either be incremented to decrease response time or decremented to reduce cost.

As an example, consider the following reconfiguration scenario for Z.com. Under

normal conditions, Z.com is hosted in one active server. Breaking-news are issued

at Z.com’s homepage and many clients start connecting to the server and requesting

the HTML web page. Gradually, the latency increases to a high level. Two possible

reconfigurations are available. First, Z.com could add another server and split the

load from incoming users while maintaining graphical content delivery. Second, Z.com

could switch to textual delivery mode without adding any servers. Since the current

budget at Z.com allows at least two servers to be executing without exceeding the

allocated budget, the first reconfiguration plan is selected. This provides the best user

experience without exceeding cost limitations. The reconfiguration plan is applied, a

new server is initialized and the latency drops back to a low level.

7.3 Application Design

We re-engineered the Z.com application in three major stages. First, we mod-

eled and implemented the functional logic according to the functional requirements

identified in [16]. Next, we identified a set of monitoring and decision-making design

patterns that were applicable to our version of Z.com and we proceeded to instanti-

ate them. To ensure our design satisfied certain properties, we analyzed the resulting

models against local properties and invariants before we implemented them. Lastly,

we modeled and implemented the adaptive logic responsible for reconfiguring the

server architecture.
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7.3.1 Non-Adaptive Design

Our Z.com application is modeled after a multi-threaded server-client architec-

ture (see Figure 7.1). Specifically, our design comprises a Gateway, a Gateway Thread,

a Load Balancer, a Server, a Server Thread, and a Stats class. The Gateway, Load Bal-

ancer, and Gateway Thread classes are responsible for taking incoming HTML requests

from different web browsers, determining which available Server currently has the low-

est average response time, and redirecting the web browser to that Server, respectively.

The Server and Server Thread classes are responsible for servicing common HTML re-

quests such as retrieving a file across a network. The Stats class follows the Singleton

design pattern [‘26] and enables the Load Balancer to keep track of usage rates for

each Server.

We implemented the design models in the JAVA programming language. Any

web browser capable of displaying HTML content can readily connect to the applica-

tion and retrieve web content. This interface also facilitated the use of a simple script

to test parts of the application. The script performs a basic load test by repeatedly

requesting a web page at various intervals. For instance, running the load'test on

a single server with no adaptation capabilities quickly showed an average latency of

over 500 miliseconds. This simple test facilitated the analysis of our Z.com application

under different configurations and usage rates.

We selected a set of monitoring and decision—making design patterns based on

the context of the Z.com application. We chose to apply the Sensor-Factory (41)

design pattern to periodically monitor the average latency for two reasons. First, a

distributed monitoring scheme is required for Z.com’s networked architecture. Second,

our functional logic already provides an interface to the attributes that need to be

monitored at run time. Although this might seem impractical, the same approach

was followed in [16]. Garlan et al. noted that system administrators would have
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 Figure 7.1: UML class diagram example of the Z.com functional logic
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access to monitoring information from the application’s interface. Since the objective

of Z.com is to automate tasks performed by a system administrator, it makes sense

to provide an interface to these attributes that can be remotely probed by a sensor.

The instantiated version of the Sensor-Factory {41) pattern is shown in Figure

7.2. Our Z.com application uses Simple-Sensors to probe active Servers for their av-

erage latency. Given the nature of our application, the instantiated Sensor-Factory

(4]) pattern does not include Complex-Sensors. In addition, since our Simple-Sensors

realize the Abstract Sensor interface, there is no need for an Adapter pattern [26] to

facilitate the communication between a Client and a Simple—Sensor with incompatible

interfaces.

We used Hydra [63] to automatically convert several state-based models of Re-

source Manager, Sensor—Factory, and Simple-Sensor into Promela code. A constraint

violation was found when we attempted to verify the Promela models in the SPIN

model checker [47]. The violated property stated that if a Resource Manager denies

a sensor request, then Sensor-Factory would not deploy that sensor. However, an

earlier version of the Sensor-Factory (41) allowed the existence of multiple Resource

Managers across the system. Although this did not seem problematic at first sight,

it enabled the following scenario: “the same sensor request is granted by instance

at of Resource Manager and denied by instance y of Resource Manager.” Since our

focus is not on distributed consistency. we resolved the problem by permitting only

one Resource Manager in the system. Notice that if distributed resource management

techniques are applied, then this constraint can be lifted.

Two decision-making design patterns were applied to Z.com, Adaptation Detector

(88) and Case-based Reasoning (68). The Adaptation Detector (88) pattern was

selected to interpret the monitoring data supplied by the Sensor-Factory (41) pattern

and detect when a reconfiguration was required. Figure 7.3 shows the instantiated
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 Figure 7.2: UML class diagram of the Sensor-Factory (41) Pattern applied to Z.com
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version of the Adaptation Detector (88) design pattern. The key participants in this

design pattern are Observer and Analyzer. A single Observer interacts with a Simple-

Sensor (not shown) to obtain the monitored attributes. The Observer interprets the

data by casting it to whichever type it expects to receive from the Simple-Sensor

data feed. This data is then compared against three specific value boundaries by the

Analyzer. If the boundaries are exceeded, then a Trigger is created and sent to the

Inference Engine of the Case-based Reasoning (68) pattern.

As with the Sensor-Factory {41) pattern, we used Hydra to automatically convert

UML state-based models of Health Indicator, Analyzer, and Observer into Promela

code. We then used the SPIN model checker to analyze the two properties previously

specified for the Adaptation Detector (88) design pattern. Specifically, we wanted to

ensure that if Observer received any monitoring value, then it would eventually be

compared against the Threshold. Likewise, we wanted to ensure that if a Threshold

was exceeded, then a Trigger would be created. The SPIN model checker did not find

any violations for these two properties.

The Case-based Reasoning (68) pattern was selected to determine which reconfig-

uration plan should be applied based on the monitoring information available. Garlan

et al. used a utility-based approach for selecting reconfiguration plans in their ver-

sion of Z.com [16]. Nonetheless, the reconfiguration scenarios for this application are

simple enough that they can be efficiently captured in a set of “if-then” rules. Figure

7.4 shows the instantiated version of the Case-based Reasoning (68) design pattern.

Though the instantiated version is similar to the Case-based Reasoning (68) pattern,

there are slight differences between the two. Specifically, the case-based reasoning

decision-making process for Z.com does not support any learning capabilities. As a

result, Z.com will only support reconfiguration scenarios that are known ahead of

time.
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 Figure 7.3: UML class diagram of the Adaptation Detector {88) Pattern applied to
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 Z.com

Figure 7.4: UML class diagram of the Case-based Reasoning {68) Pattern applied to
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We used Hydra to automatically convert UML state—based models of Inference

Engine and Fixed Rules into Promela code. These Promela models were then analyzed

with the SPIN model checker against two properties. First, we want to ensure that

if a Trigger is received, then it is always the case that a Decision is produced. Our

application design includes a default rule and decision pair to enforce this constraint

in the event that no other pair matches at run time. Second, we want to ensure

that if a decision is produced, then it is always the case that it is logged. Logging

the reconfiguration decision and why it was selected will help developers understand

how their system is behaving at run time. The SPIN model checker did not find any

instances of property violations for either of these two properties.

7.3.2 Adaptive Design

At this stage we have augmented the Z.com application with monitoring and

decision-making capabilities. Specifically, we can periodically observe the average 1a-

tency, detect when a reconfiguration is required, and select a reconfiguration plan that

will yield the desired behavior. Figure 7.5 shows the resulting class diagram of inte—

grating the monitoring and decision-making processes with the functional logic of the

Z.com application. This class diagram also includes an Adaptation Driver that over-

sees the specific reconfiguration steps of the entire system. The Inference Engine from

the Case-based Reasoning (68) pattern notifies the Adaptation Driver that a specific

reconfiguration plan needs to be applied. The Adaptation Driver then performs recon-

figurations drawn from the behavioral templates found in the Component Insertion

(115), Component Removal {125), and Server Reconfiguration (135) patterns.

Previously, we identified four possible reconfigurations for our version of the

Z.com adaptive news server. Two of those reconfigurations involve tuning param-

eters to alternate between content delivery mode. The two other reconfigurations
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 Figure 7.5 UML class diagram of the Z.com applicatlOIl
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involve either adding or removing a Server at run time. In contrast to the parameter

reconfiguration, we must first prepare the system before a server is added or removed.

Specifically, incoming client requests need to be queued so they may be processed af—

ter the reconfiguration is complete. Otherwise, client requests may be lost during the

reconfiguration process.

We used the Server Reconfiguration (135) pattern to safely reconfigure the Z.com

application in scenarios that involved the addition or removal of a server. The Server

Reconfiguration (1.95) pattern, in turn, reuses the Component Insertion (115) and

Component Removal (125) reconfiguration design patterns to safely add and remove

components, respectively. For instance, to add a server at run time, the Adaptation

Driver first loads and initializes a new Server and Load Balancer. The Adaptation Driver

then inserts a Request Buffer to store incoming requests during the reconfiguration

procedure. Then the Adaptation Driver sends passivate commands to both the Servers

and Load Balancer so they can be safely reconfigured. Once these components are

passive, the Load Balancer can be driven to a quiescent state so it can be removed

from the system. Notifications are then sent by the Adaptation Driver to activate

the affected components. Finally, once all the queued requests are serviced, the

reconfiguration is complete and the system continues to operate as normal.

At this stage, the Z.com application comprised instantiations of one monitoring

pattern, two decision-making patterns, and three reconfiguration patterns. This set

of six design patterns rendered our Z.com application with self-adaptive behavior.

That is, sensors periodically probed the servers for the average latency, and whenever

a substantial change was detected, an adaptation request was issued. The decision-

making determined which reconfiguration plan to apply based on the monitoring

information. The reconfiguration plan was then applied by the Adaptation Driver and

either switched between content delivery modes or added or removed servers at run

time. When compared to the Rainbow version of Z.com, our application provides
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similar functionality and reconfiguration capabilities.

7.4 Results

fie—engineering the Z.com application originally presented by Garlan et al. in [16]

enables us to compare the advantages and disadvantages of both approaches. Our

design pattern approach has several advantages over a framework-oriented approach

at developing dynamically adaptive systems. For instance, design patterns impose

few initial constraints on the system being developed. As a result, patterns provide a

flexible approach that can be readily customized to specific systems. Frameworks, on

the other hand, incorporate many design decisions already made by the framework

developers. Likewise, design patterns do not entail a steep learning curve in order

to apply them successfully. To properly use a framework, however, a developer must

understand the underlying framework mechanisms and how they relate to the appli-

cation being built. Additionally, instantiated versions of the design patterns can be

analyzed through formal verification tools and techniques to ensure a design satisfies

certain key properties before it is implemented. Attempting to verify the correctness

of a framework is. at best, impractical. Lastly, with our design pattern approach,

developers select only those adaptation mechanisms their application will require. As

a result, adaptive applications built with our adaptation patterns contain only those

features it needs. rather than including many features that may not be necessary.

Framework-miented approaches, on the other hand, have several major advan-

tages over our design patterns for building dynamically adaptive systems. For in-

stance, adaptation-enabling frameworks provide large amounts of code that can be

directly reused when building adaptive applications. If the application and the frame-

work share the same context and domain, then a large section of development over-

head can be avoided by reusing the framework’s code. Design patterns, however, offer
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no code at all. After the system is designed and the patterns are instantiated, they

must be implemented by developers. Likewise, adaptation-enabling frameworks, such

as Rainbow, tend to support a wide range of adaptation approaches and techniques.

Each desired functionality must be carefully integrated and implemented into the ap-

plication with a pattern-oriented approach. Lastly, adaptation-enabling frameworks

hide the internals of dealing with specific reconfiguration scenarios from developers.

In contrast, design patterns must be instantiated and customized for the particular

application being developed. As a result, developers have to deal with the details and

complexities of reconfiguring applications at run time.

178



Chapter 8

Conclusions

Our work with adaptation design patterns has yielded three main contributions:

an adaptation design pattern template that assists developers in understanding and

designing adaptive systems; a set of twelve adaptation-focused design patterns to

promote the reuse of successful design decisions; and extensions to the model-based

development process introduced by Zhang and Cheng [85] that incorporate the use of

adaptation design patterns and state-based modeling techniques. We describe these

contributions in more detail below.

First, we developed an adaptation—focused design pattern template for the de-

velopment of adaptive systems. We extended the pattern template used by Gamma

et al. for describing design patterns [26] with the Behavioral and Constraints fields.

Developers can use the Behavioral field to analyze the interactions between different

objects in the design pattern. Likewise, developers can use the Constraints field to

ensure their instantiated design pattern satisfies the specified properties. In addition,

we modified the Related Pattern field such that it indicates which other adaptation

design patterns are commonly used together when building an adaptive system. The

information provided in the template enables developers to understand the conse-

quences and trade-offs incurred by applying a pattern. Furthermore, the use of a
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design pattern template enforces the uniform organization of every adaptation design

pattern, thus facilitating their use.

Second, we introduced twelve design patterns to support monitoring, decision-

making, and reconfiguration of adaptive systems where the patterns facilitate the

separate development of the functional logic and the adaptive logic. Each design

pattern was harvested from at least two successful design solutions and generalized so

that they may be applied across different adaptive domains. To assess their maturity,

we validated each design pattern against instances in adaptive systems that were not

used in the harvesting process. In addition, we successfully applied a subset of the

patterns in the development of an adaptive news web server. This example helped

illustrate how various design patterns could be combined to construct self-adaptive

and autonomic computing systems.

Finally, we extended the model—based development process previously introduced

by Zhang and Cheng [85] in two key ways. First, we developed concrete guidelines for

using set of adaptation design patterns to realize the design modeling steps of their

process. Specifically, we incorporated the monitoring and decision-making patterns

into the creation of the non-adaptive models and the reconfiguration patterns into the

creation of the adaptive models. Second, we incorporated the use of UML state-based

models to represent the adaptive logic within the model-based development process.

Using UML state—based models to represent the adaptive logic facilitates the visual

inspection and formal verification of the instantiated design pattern models against

specified properties through the use of automated tools such as Hydra [63] and the

SPIN model checker [47]. This verification step enables deveIOpers to ensure a design

satisfies specific constraints before the implementation phase.

Several directions for future work are possible. First, additional design patterns

for adaptation could be identified and integrated with the set of design patterns

presented in this thesis. Second, we could examine how these design patterns can be
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inserted into a non-adaptive application through the use of aspect-oriented techniques

[38. 82]. Third, we could explore the use of digital evolution techniques to automati-

cally identify the points of an application to insert the monitoring patterns. Lastly,

we could explore the use of digital evolution techniques to determine how adaptation

design patterns can be evolved and instantiated to satisfy new sets of properties [33].
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Appendix A

Sample Instantiations

This chapter presents sample original implementations that were used to harvest

the twelve adaptation-oriented design patterns presented in this thesis. In particu-

lar, for each adaptation design pattern, at least two sample original implementation

sources are presented and compared against the resulting design pattern. It is impor-

tant to note, however, that while there may be some similarities between each design

pattern and its corresponding original implementations, there will not be a one-to-

one correlation between them. Specifically, each design pattern provides a generalized

solution based on these original implementations (as well as others). Each original

implementation is presented through UML class diagrams, component diagrams, ob-

ject diagrams, or state diagrams. Furthermore, for clarity, each model presented in

this section has been elided from its original version to include only those elements

relevant to the design pattern being considered.
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A.1 Sensor-Factory (41) Pattern

Rainbow Adaptation Framework [16, 27, 30]. The Rainbow adaptation

framework provides a reusable infrastructure for probing components, determining

when an adaptation is warranted, and then effecting the necessary changes. Figure

A.1 shows an elided UML class diagram of the probing mechanisms employed in Rain-

bow. Various similarities can be observed between Rainbow’s probing infrastructure

and the Sensor-Factory (41) design pattern. Specifically, both define explicit inter-

faces to which RegularPatternGauges (probes, sensors) must adhere. This interface

facilitates the creation of various types of interchangeable probes across the system.

The Sensor-Factory (4]) pattern follows a similar approach by defining an interface to

which every Sensor must adhere. Moreover, in the Rainbow probing framework, each

RegularpatternGauge is associated with some GaugelnstanceDescription, which defines

the type and configuration of the gauge. Likewise, both Rainbow and the Sensor-

Factory (41) pattern employ objects to create, deploy, manage, and remove probes.

The GaugeCoordinator is responsible for creating, configuring and deleting instances

of RegularPatternGauges. Notice that this functionality is provided by both Sensor-

Factory and Registry in Sensor-Factory (41) Nonetheless, there is no explicit use of a

ResourceManager to oversee the allocation and deallocation of probes in the Rainbow

framework.
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Figure A.1: UML class diagram of the Rainbow Adaptation Framework [16].
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SNMP4J-Agent [24]. SNMP4J [24] is an enterprise class (open-source, com-

mercial) SNMP implementation for the JAVA language. In particular, the SNMP4J-

Agent is capable of periodically polling various SNMP—conforming entities across the

network. Figure A.2 shows a UML object diagram of the SNMP4J-Agent [24], which

is similar in structure and behavior to the Sensor-Factory (4]) pattern. In SNMP4J,

a user enters commands through a CommandProcessor, which then submits each re-

quest to the RequestFactory. Likewise, various Clients in the Sensor-Factory (41)

pattern submit their monitoring requests to the Sensor-Factory. Once the Request-

Factory receives a request in SNMP4J, both a SnmpRequest and a RequestStatus are

created. These two constructs facilitate the tracking of requests as they get processed

through the system. Once a SnmpRequest is granted, then the RequestHandler creates

a Snmpv2MlB, which is an interface through which the user can obtain the monitoring

information he desires. Likewise, in the Sensor-Factory (41) pattern, when a request

for a Sensor is granted by the ResourceManager, then the Sensor-Factory returns the

requested object to the Client.
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Figure A.2: UML object diagram of the SNMP4J-Agent [24].
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A.2 Reflective Monitoring (50) Pattern

Adaptive Exception Monitor [19]. The Adaptive Exception Monitor im-

plemented in [19] is based on the JAVA reflection package [25]. This exception

monitor exploits the intercessional processing capabilities of the JAVA language and

runtime system to transparently inspect each exception generated by pre—specified

objects. Each exception is logged into a knowledge-based of the autonomic element

for further processing and analysis. Figure A.3 shows an elided UML class diagram

of the Adaptive Exception Monitor [19]. Strong similarities can be observed be-

tween the Adaptive Exception Monitor and the Reflective Monitoring (50) design

1')attern. In. particular, both make explicit use of MetaObjects, Proxies, and Invoca-

tion Handlers. MetaObjects provide information about a particular type of object such

as its structure, attributes, modifiers, and interfaces. Proxies make use of the infor-

mation provided by the MetaObject to provide a functional and transparent wrapper

around some specific object. The InvocationHandler is then able to intercede when-

ever a targeted method of a Proxy is invoked. Specifically, application-specific data is

logged before and after these methods are invoked by the Proxy. Furthermore, Invoca-

tion Handlers can link various monitoring Proxies together to construct more complex

forms of monitoring. One notable difference between this sample instantiation and

the Reflective Monitoring (50) pattern is that in the Adaptive Exception Monitor,

the equivalent of Manager is implemented by Controller. Although similar in respon-

sibilities, the Controller is decentralized in the sense that each InvocationHandler has

its own Controller. Thus, instead of there being one centralized Manager that tracks

the various monitoring Proxies, there are several of them interspersed throughout the

implementatit‘m.
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 Figure A.3 UML class diagram of the Adaptive Exception Monitor [19].
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Reflective Monitoring of Real-Time Systems [5]. Monitoring mechanisms

in real-time systems must not introduce a significant overhead since the process of

monitoring is already computationally expensive. One approach to monitor the exe-

cution of a real—time system is to exploit reflective programming through the use of

meta—level objects. Figure A.4 shows a reflective monitoring approach for monitor-

ing real-time systems [5], which is similar in structure and behavior to the Reflective

Monitoring (50) pattern. Specifically, both approaches separate base-level objects

from meta-level objects, which contain information about base-level objects. In the

reflective monitoring approach presented in [5], every object that will be monitored,

such as Task, must realize a MetaProgram interface. It is through this interface that

other objects are able to probe for the desired information. This approach is simi-

lar to the one found in the Reflective Monitoring (50) pattern, in which MetaObjects

provide an interface to base-level objects, such as Target, so they may be probed by

other objects. Note that there is no explicit use of a Proxy in this approach since

every monitored object directly implements the MetaProgram class. Nonetheless, the

monitoring procedure works similarly. Whenever a predetermined event occurs, such

as a method call, the Monitor collects the necessary information from the MetaPro—

gram. This process is paralleled by the lnvocationHandler in the Reflective Monitoring

(50) pattern.
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 terns [5].

Figure A.4: UML object diagram for Reflection-based Monitoring of Real-Time Sys-
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A.3 Content-based Routing (59) Pattern

Rebeca Notification Infrastructure [83]. Rebeca is a content-based pub-

lisher/subscriber service that has been extended to support mobile computing [83].

Their middleware-based approach enables existing applications to be adapted from a

static to a mobile scenario without having to adapt client applications. Figure A.5

shows a UML class diagram of Rebeca as it relates to the Content-based Routing

(59) pattern. Figure A.5 shows a simplified UML class diagram of Rebeca as it

relates to the Content-based Routing (59) pattern. The specific UML class diagram

was obtained from Rebeca’s documentation. Although Rebeca is a sophisticated

content-based publisher/subscriber implementation, strong similarities can be seen

with reijx‘tt to the Content—based Routing (59) pattern. In Rebeca, an EventBroker

acts as an access point to the publish/subscribe system. It is defined as an interface

so that different EventBrokers can be swapped in or out as necessary. In terms of

the Content-based Routing (59) pattern, the EventBroker maps to the Manager class.

Although Manager is not defined as an interface, it provides the same functionality

as EventBroker. Rebeca also defines a Filter and two subclasses Subscription and Ad-

vertisement. These correspond to Filter and Pattern in Content-based Routing (59),

respectively. Specifically, an Advertisement is used to identify the origin of the data

being published to the EventBroker. A Filter, on the other hand, is used to select a

specific event in the EventBroker. Finally, notice that Case-based Reasoning (667’s

Server and Forwarding Table provide similar functionality as EventTransport and Rout-

ingTable, respectively, in Rebeca.
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Figure A.5: UML class diagram of the Rebeca Notification Infrastructure [83].
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Siena Routing Infrastructure. The second Sample Instantiation is taken from

the Siena Routing Infrastructure [14, 43]. Siena is a wide-area event notification

service based on a publisher / subscriber architecture. Siena routes messages across

a network based on their contents. Specifically, clients send a Subscription to the

Siena service. A Packet Receiver stores the incoming Subscription. Although the

Content-based Routing (59) does not have a Packet Receiver, Clients still submit their

Subscriptions to the EventService. After some event occurs, a Notification is sent to

the Siena service. Since the Content-based Routing (59) pattern is oriented towards

monitoring processes, Notifications are explicitly sent from Sensors. This restriction,

however, is not evident in Siena. Both Content-based Routing (59) and Siena use a

series of Patterns and Filters to map notifications to Clients. Specifically, each update

is characterized by a Pattern that identifies the update source. The Event Service

then applies a Filter to the update to determine which Clients should be notified. The

PacketSender then proceeds to send a Notification to those Clients.
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Figure A.6: UML object diagram of the Siena Notification Infrastructure [14].
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A.4 Case-based Reasoning (68) Pattern

ForkLift Agent [4]. The ForkLift Agent application is a simulated multi-agent

system that uses case-based reasoning as the main inference engine for task planning.

Specifically, autonomous forklift agents unload, transport, and stack crates from a

truck to a determined location in a warehouse. Agents are equipped with sensors to

interact with their environment and communication channels to relay important in-

formation to other agents. Figure A.7 shows the UML class diagram for the ForkLift

agent and its case-based reasoning constructs provided by the FraMaS framework [4].

The case-based reasoning used by the ForkLift agent is similar to the one presented in

the Case-based Reasoning (68) design pattern. Specifically, both accept some form of

event input from the environment and match it against predetermined conditionals.

In the ForkLift agent, this task is performed by the Matching class, which searches

through the CaseLibrary for a conditional that satisfies the triggered event. Addition-

ally, the ForkLift agent attempts to assimilate similar, yet previously not encountered

events. to those found in the CaseLibrary through the Ranking class. The Ranking class

takes some event and produces an ordered list of the most applicable cases stored in

the CaseLibrary. Once a matching pair of events-case is found, then the appropriate

plan is loaded by the CaseAgent. Note, however, that the ForkLift agent is not able

to learn new pairs of cases and actions as Case-based Reasoning (68) does. As a

result, the Learner and Log found in Case-based Reasoning (68) is not applicable to

the ForkLift agent.
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 Figure A.7: UML class diagram of the ForkLift Agent [4].
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UM-PRS [60]. The Procedural Reasoning System (PRS) is a generic case-based

reasoning system that can be applied in domains where procedures are available for

handling predetermined situations [60]. Figure A.8 shows an object diagram of

the UM—PRS system being used to control a real outdoor vehicle that changes its

behavior based on what it senses from the environment. UM-PRS is similar in both

structure and function to the Case-based Reasoning (68) pattern. Specifically, as

new inforn‘iation is obtained by a Monitor, the Database searches for any particular

matches. If an event is matched in the Database, then the Interpreter obtains the

corresptmding plan from the KALibrary. Likewise, the Case-based Reasoning (68)

pattern receives notifications, in the form of Triggers. Each Trigger is processed by

the lnferenceEngine in which it attempts to match the Trigger against a particular

Rule in the FixedRules object. If a Rule matches the Trigger, then the lnferenceEngine

produces a Decision which contains the appropriate response plan. Note, however,

that the UM-PRS does not have any mechanisms present to facilitate the discovery

of new rules once the system is deployed.
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Figure A.8: UML object diagram of the UM-PRS [60].
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A.5 Adaptation Detector (88) Pattern

XUES Event Distiller Package [37]. XUES (XML Universal Event Service)

is an event manipulation system that forms part of the Kinesthetics eXtreme (KX)

project and interfaces with the SmartEvents service [79]. XUES comprises three key

components to interpret monitoring data, an event packager, an event distiller, and

an Event Notifier. The Event Distiller (ED) is a flexible event pattern—recognition

and gauge architecture. The ED obtains values reported by probelets and supports

multiple-event pattern recognition, time-based validation, and wildcard event match-

ing. Specifically, the ED interprets the monitoring values against specific patterns,

or constraints, and submits event notifications. Figure A.9 shows the UML class di-

agram of the XUES Event Distiller package. Although XUES utilizes state machines

to represent the various patterns that can be matched, functionally it is very similar

to the Adaptation Detector (88) design pattern. For instance, the EDStateMachine is

functionally analogous to the Analyzer found in the Adaptation Detector (88) pattern.

Each EDStateMachine comprises a set of EDStates and EDConsts. The EDStateMa-

chine compares a particular EDState and EDConst against the values reported by the

probelets. Likewise, in the Adaptation Detector (88) pattern, the Analyzer compares

Data produced by sensors against Thresholds. Whenever an event matches a partic-

ular pattern or threshold, then a Notification (or Trigger in the Adaptation Detector

(88) pattern) is generated and sent to the EDBus, which is serviced by the Siena

publisher/subscriber infrastructure [14].
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Figure A.9: UML class diagram of the XUES Event Distiller [37].
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Software Health Monitor [59]. Figure A.1(') shows a UML object diagram of the

software health monitor presented in [59]. This software health monitor is responsible

for processing monitoring information. Specifically, as a Sensor provides information

about a particular entity in the system, the Indicator determines whether those values

are within zu'ceptable bounds or not. Information from the Sensor is obtained either

through the Observer, when the Sensor pushes new information out, or by polling

the. Sensor directly whenever the Timer determines that a timeout has occurred. If

the values reported by the Sensor are deemed unacceptable by the Indicator, then

a notification is sent to the HealthMonitor. A similar structure and functionality is

provided by the Adaptation Detector (88) pattern. In the Adaptation Detector (88)

pattern. an Observer is responsible for both receiving and polling the Sensor for Data.

Once Data has been obtained, the Healthlndicator invokes an Analyzer to compare the

monitored values against specific Thresholds. If any value exceeds its corresponding

Threshold, then a Trigger is created by the Healthlndicator and fowarded to an entity

responsible for determining how the system must be reconfigured.
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Figure A.10: UML object diagram of the Software Health Monitor [59].
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A.6 Divide and Conquer (78) Pattern

Care-O-Bot II [39, 40]. Gare-O-Bot II is an experimental robot that provides

human assistance such as fetching and carrying items around a room. Robots such as

Gare-O-Bot II need an appropriate control system that achieves high-level complex

goals while interacting with a complex and often dynamic environment. For instance,

a seemingly simple goal such as “fetch cup” might entail loading an updated map

of the environment, calculating the robot’s current position and the cup’s position,

generating a navigation plan, moving towards the cup while probing the environment

(to avoid collisions), managing battery power consumption, and so forth. Task de-

composition. is a commonly used approach to decompose complex goals into simpler

goals that can be readily solved. Care—O-Bot II incorporates the metric-FF task de-

composition module based on the Planning Domain Description Language(PDDL)

[45].

Figure A.11 shows the metric-FF task decomposition module [45] that is used

by Gare—O-Bot II. In metric-FF, Main sequences the process of task decomposition.

Essentially, Main combines the functionality of Solver and Inference Engine from the

Divide and Conquer (78) pattern. Iex-fct-pddl uses the scan-fct-pddl.y, scan-ops—pddl.y,

lx-ops-pddl.l and Ix-fct-pddl.l files to perform lexing tasks. Main begins by lexing and

parsing various files through the Iex-fct—pddl and Parse classes. These two classes

correspond to the Lexer and Parser classes in Divide and Conquer (78), respectively.

To represent goals, metric-FF uses the State class. Metric-ff then uses the Search

class to perform an enforced hill-climbing with deletion heuristic search. Likewise,

the Divide and Conquer (78) pattern uses the Informed class to employ heuristic-

based searches. Both Divide and Conquer {78) and metric-FF rely on known facts

(KB and Fct, respectively) to guide the search process. After the search process yields

a solution, metric-FF invokes the Orderings class to produce a sequence of tasks that
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 Figure A.11: UML class diagram of the metric-FF (Care-O-Bot II) [39, 40].
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will satisfy the overall goal. Likewise, Divide and Conquer {’78) employs the use of

a Dependency Calculator and a Planner to organize the tasks. Finally, metric-FF an

Output class to format the solution in terms of Actions.
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Rainbow Adaptation Hamework [16, 27]. The Rainbow framework incorpo-

rates a task decomposition approach when selecting a reconfiguration plan to apply

at run time. Figure A.1‘2 shows an object diagram of the various entities that make

up Rainbows task decomposition approach and how they each map with respect to

the Divide and Conquer (78) pattern. First, in Rainbow, a Goal is represented as

an architectural constraint that must remain true throughout execution. The Stitch

Language. Interpreter [16] is used to translate the utility formula, tactics, and strate-

gies provided by the developer into an internal representation used by Rainbow at

run time. The Stitch Language Interpreter provides a Lexer and Parser to provide these

functions. Rainbow’s Inference Engine is utility-based (described in TradeOfi-Based

(106)). The Dependency Calculator and Planner from Divide and Conquer {78) are

implemented in Rainbow as Strategies. A Strategy is used to group different tactics

(Tasks in Divide and Conquer (78)) together into sequences and alternatives that

work together to repair the system after a constraint has been violated. Lastly, the

Solver class found in Divide and Conquer (78) does not exist. in Rainbow per se.

Rather. this capability is handled by the Rainbow framework as a whole.
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Figure A.12: Object Model for the Task-Decomposition Pattern in Rainbow [16, 27].  
 



A.7 Architecture-Based (.97) Pattern

Rainbow Adaptation Framework [16, 27]. The Rainbow adaptation frame—

work uses architectural models [28] as part of its decision—making process in two key

ways. First, Rainbow analyzes probing data against architectural model constraints

to determine if any properties have been violated during execution. If a property

has been violated, then Rainbow triggers a reconfiguration request in order to restore

the system to safety. Second, Rainbow uses architectural models to determine which

reconfiguration plan to apply. Specifically, various architectural models are evalu-

ated and if they satisfy the adaptation requirements, then they are executed. Figure

A.13 shows a UML class diagram of the various entities in Rainbow that provide

architecture—based reconfiguration, which are similar in both structure and function

to the Architecture-Based (97) design pattern. For instance, in Rainbow, the Adapta-

tion Manager is akin to the EvolutionManager in the Architecture-Based (9’7) pattern.

Both are responsible for overseeing the safe reconfiguration of the application when-

ever a property is no longer satisfied. To determine when a property has been violated,

both Rainbow and the Architecture-Based (97) pattern rely on architectural models,

model repositories and utility functions to evaluate the effects of a model before it is

applied. Rainbow wraps Acme constructs (components and connectors) with Rain—

bowModeIs, which implement the interfaces of Model and ModelRepository. Although

the Architecture-Based (97) pattern does not explicitly include Acme models, similar

component-connector models are encapsulated Within ArchitecturaIModels. Given the

amount of architectural models possible, both Rainbow and the Architecture—Based

(97) pattern include some entity to manage the set of models. This management func-

tionality is provided in Rainbow by the ModelManager and by ArchitecturalRepository

in the Architecture-Based (97) pattern. Lastly, the ArchEvaluator in Rainbow evalu-

ates whether a specific architectural model satisfies a set of properties or not. The

same functionality is provided by the ConstraintChecker in the Architecture-Based (97)
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pattern. Thus, when a property is violated, the decision-making process searches for

some architectural model that corrects the problem and propagates the structural

changes.
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 Figure A.13: UML class diagram of Rainbow’s ‘ laptation manager [16, 27].
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MADAM [64]. The Mobility and Adaptation Enabling Middleware (MADAM)

uses componerit-connector models to represent all different configurations, or con-

texts, that the system can adopt during execution. Figure A.14 shows an elided UML

class diagram of the various entities responsible for managing the different forms of

components and their connections in MADAM. Although MADAM is a complex mid-

dleware that comprises several key components for automatically managing dynamic

rcconfigurations, it shares several key similarities with the Architecture-Based (97)

pattern. In particular, in both MADAM and the Architecture-Based (97) pattern,

every entity in the system is rejn'esented as both a set of components and a set of con-

nections through which they can communicate. In MADAM, an InstanceManagement

tracks all the component-connector models that have been instantiated in the system.

Likewise, in MADAM, a ComponentManagement is responsible for storing, searching,

and evaluating all the different models. In the Architecture-Based (97) pattern, these

finictionalities are provided by both the ArchitecturalRepository and the RepairEngine.

Although not shown in Figure AM, in MADAM, every component-connector model

is associated with a specific set of properties, which can be verified by the Adaptation-

Management. Likewise, in the Architecture-Based (97) pattern, a ConstraintChecker

evaluates each ArchitecturalModel to determine whether it satisfies any given property.
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Figure A.14: UML class diagram of MADAM’s Core [64].
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A.8 TradeOfi-Based (106) Pattern

Mobility and Adaptation Enabling Middleware (MADAM) [64]. The Mo-

bility and Adaptation Enabling h-‘Iiddleware (MADAM) system uses utility theory

in its decision-making process to select specific reconfiguration plans [64]. Figure

A15 shows an elided UML class diagram of the classes responsible for utility-based

decision-making in MADAM. Although MADAM is a complex middleware that com—

prises several key components for automatically managing dynamic reconfigurations,

it shares several key similarities with the TradeOfi-Based (106) design pattern. Specif-

ically. an AdaptationManager is responsible for reasoning on the impact of context

reconfigurations across the system. To select a particular reconfiguration and execute

it, the Adaptation Manager invokes the AdaptationCoordinator. The AdaptationCoor-

dinator uses various EvaluatorAdapters and ConstProperties to quantify the effects of

different reconfiguration plans. The reconfiguration plan that yields the best utility

gain is selected by the AdaptationCoordinator and then effected throughout the sys-

tem. Although not shown in Figure A.15, MADAM also comprises a component that

arbitrates different context reconfiguration requests. Likewise, in the TradeOfi-Based

(106) pattern, a Arbiter oversees the different requests for context reconfigurations.

The lnferenceEngine then determines whether any of the reconfiguration plans would

yield better system performance than the current configuration. To maximize utility,

UtilityFunctions are employed by the lnferenceEngine to quantify the effects of a recon-

figuration plan. Notice that MADAM makes no use of DemandForecaster to predict

the utility outcome of different reconfiguration plans based on previous knowledge.
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 Figure A.15 UML component diagr' n of MADAM [64].
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Rainbow Adaptation Hamework [16]. The Rainbow framework incorporates

an approach that maximizes utility gain when selecting a reconfiguration plan to ap-

ply at run time. Figure A.12 shows an object diagram of the various entities that

make up Rainbow’s utility—based decision-making approach and how they each map

with respect to the TradeCfi-Based {106) pattern. First, in Rainbow, a Goal is rep-

resented as an architectural constraint that must remain true throughout execution.

The Stitch Language Interpreter [16] is used to translate the utility formula, tac-

tics, and strategies provided by the developer into an internal representation used by

Rainbow at run time. Rainbow’s Inference Engine is utility-based in the sense that it

evaluates a set of different reconfiguration plans (Strategies) and selects the one that

yields the maximum utility gain. Likewise, in the TradeOfi-Based (106) pattern, an

lnferenceEngine applies a set of UtilityFunctions to quantify the effects of applying a

reconfiguration plan. Whichever reconfiguration plan yields the maximum value in

terms of utility gain is selected by the lnferenceEngine. Note that in Rainbow there

are no DemandForecaster and Arbiter objects. Instead, Rainbow’s lnferenceEngine is a

centralized process that selects a reconfiguration plan only to repair a violated con-

straint. In contrast, the TradeOfl-Based (106) pattern provides functionality support

for users to submit different Objectives to the lnferenceEngine.
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 Figure A.16: Object Model for Rainbow’s Utility Decision-Maki11g [16].
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A.9 Component Insertion (115) Pattern

Monitor Reconfiguration [7]. Figure A.17 shows the component diagram for

the reconfiguration driver. This simplified component diagram is similar to the one

presented in Component Insertion {115). Driver is the key component that oversees

the reconfiguration process. To enact some of the changes across the system, however,

Driver invokes the functionality of Change Manager.

The reconfiguration consists of inserting a logging component between the Net-

work (Network-comp) and Link (Link-comp) layers at run time (see Figure A.18).

Their component insertion approach is similar in behavior to the one presented in the

Component Insertion (115) pattern. First, both approaches load the respective com-

ponent into the executing environment. In this specific application, the load command

dynamically allocates memory to hold the logging component. Once the component

has been allocated into memory, the component is then instantiated to either a default

state or some previously stored configuration. Next, the Network—comp and Link-comp

are unlinked from each other so the logging component can be inserted between them.

The process of unlinking two components from each other is handled by the ArchMM.

Specifically, to unlink the components, the system must first passivate Network-comp

and Link-com p. This passivating step is accomplished by sending a message to each

component, in this case Network-comp and Link-comp, such that they stop producing

output and accepting input from each other. Links are then prepared between the

newly loaded component and the system. In particular, the logging component will

be connected to both the Network-comp and Link-comp components. Again, this step

is performed by the ArchMM by redirecting the Network-comp’s output to logging and

setting Iogging’s output to Link-comp’s input. Once the links are in place, the Ioggingl

component is activated.
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Figure A.17: UML component diagram of the Monitor Reconfiguration [7].  
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Figure A. 18: UML state diagram of inserting a logging component at run time [7].
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Conic [61]. Figure A.19 illustrates how components can be inserted at run time

with the use of Conic [(51]. Specifically, a new display screen is added to the system

at run time. The system must reconfigure its input and output displays to properly

(’lisplay data on both screens. Behaviorally, the component insertion reconfiguration is

similar to the one presented in Component Insertion (115) However, in this particular

example. there is no need to either initialize a screen nor to passivate other screens

in the system. As a result, the first step of the reconfiguration process is to create

an instance of the display screen, screenl, to represent the new component loaded at

sunl. Next, links are created to connect the two screens together. In particular, the

output of screenl is connected to the input of screen2 and the output of screen2 is

connected to the input of screenl. For instance, to set up screenl’s output to screen2,

its output address is set to that of screenl and vice versa. Since every display

screen remained active during the reconfiguration process, no activation commands

are needed to terminate the reconfiguration process.
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Conic [61].

Figure A.19: UML state diagram of inserting a logging component at run time with
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A.1O Component Removal (125) Pattern

Mobility and Adaptation Enabling Middleware (MADAM) [64]. The Mo-

bility and Adaptation Enabling Middleware (MADAM) [64] is capable of inserting,

removing, and modifying components at runtime whenever a context change occurs.

Figure A.20 shows an elided UML component diagram of MADAM. Figure A.21

shows a UML state diagram of how MADAM removes a component from the system

at runtime. When a reconfiguration is required, the AdaptationManagement is notified

of a context change. The AdaptationManagent then invokes the AdaptationCoordinator

to evaluate and select the appropriate reconfiguration plan, which in this case is a

cmnponent removal. One of the key steps in removing a component is first placing it

in a quiescent state. AdaptationManagement accomplishes this by sending a suspend

notification to the corresponding component, which must implement the Configurator

interface. The suspend function is implemented independently by every component

that is managed by MADAM and it ensures that the component will not initiate any

new transactions and that it will terminate any transactions that may be pending.

Once the component is in a quiescent state, the AdaptationManagement proceeds to

unbind the component from other components in the system. The unbind operation

essentially disconnects the component from the system. Lastly, once all connections

have been severed. the AdaptationManagement issues a command for the core system

to unload the component.



Figure A.20: UML component diagram of MADAM [64].
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 [64].

Figure A.21: UML state diagram of removing a component at run time with MADAM
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Mobility and Adaptation Enabling Middleware (MADAM) [64]. Figure

A20 shows an elided UML component diagram of MADAM [64]. The Configurator

component defines the interface that must be implemented by all components in the

MADAM system. This interface explicitly defines all the possible execution states

for a given component. Figure A.22 shows a UML state diagram of all the possible

states that a component may undergo Within MADAM. More importantly, this UML

state diagram also shows the specific sequence of execution states that a component

must undergo when being inserted and removed from the system. In particular, notice

that. when a component is in the active status, it must enter the suspended status

before MADAM may remove it from the system. In MADAM, when a component

enters the suspended status, it may no longer communicate and collaborate with other

components.
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Figure A22: UML state diagram of a component’s states in MADAM [64].
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A.11 Server Reconfiguration (135) Pattern

Reconfiguring Servers in Equus [52]. Kindberg described how to safely recon-

figure a server architecture at runtime in [52]. Figure A.23 shows a UML component

diagram with the key entities responsible for reconfiguring a server architecture at

runtime. Figure A.24 shows a UML state diagram illustrating the process of recon-

figuring a server architecture through the use of proxies. Specifically, the solution is

centered around a generic server Proxy such that it interacts with both Clients and

Servers during the reconfiguration process. That is, during normal operation, the

Proxy forwards all incoming Client messages directly to the active Server. When a

reconfiguration is required, however, the Proxy queues incoming Client messages into

a Buffer. l\-’Ieanwhile, the system waits for the active Server to finish servicing all

pending transactions and then enter a quiescent state. Once the Server is quiescent,

it is deactivated and unloaded from the Equus distributed system. A new Server can

then be loaded by the environment and initialized. After the new Server is activated,

it will proceed to service all pending Client messages until the Buffer is empty. Lastly,

the Proxy will reorganize connections such that new incoming messages are forwarded

directly to the new Server. Thus, in this manner, the client/server architecture is

reconfigured transparently by means of a proxy. The same behavior can be found

in the Server Reconfiguration (1‘25) pattern. Although the design pattern does not

involve a Proxy, the steps required to safely reconfigure an active server are similar.

Specifically, incoming requests must be stored somewhere so they are not lost during

the reconfiguration process. While incoming messages are queued, the Server will

eventually reach a quiescent state. Likewise, after the reconfiguration is complete,

the queued requests are serviced by the new Server.
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Figure A.23: UML component diagram of the Equus distributed environment [52].
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 Equus distributed environment [52].

Figure A.24: UML state diagram of removing a server component at run time in the
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A.12 Decentralized Reconfiguration (145) Pat-

tern

OpenRec Reconfiguration [44] . Figure A25 shows a UML component diagram

for OpenRec, a framework for managing dynamic reconfiguration [44]. The UML

component diagram highlights two key components in the framework, the OpenRec

component and the Algorithm component. The OpenRec component manages the

various interactions between components and connectors in the OpenRec system at

any time. The Algorithm component is responsible for dynamically reconfiguring the

components and connectors managed by the OpenRec component. Figure A26 shows

a UML state diagram for a typical component removal in a decentralized environment.

Specifically. the component that wants to disengage and terminate will first commence

the reconfiguration process by blocking incoming transaction requests. In addition,

the component is given enough time to terminate any pending transactions it may

be currently servicing. These two actions enable a component to reach a quiescent

state in bounded time. Once the component is in a quiescent state, it disconnects

itself from other components. Lastly, once all connections have been removed, the

component proceeds to call its terminate function, which cleans 11p any allocated

memory and finishes execution.
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 Figure A25: UML component diagram of OpenRec [44].
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Figure A26: UML state diagram of a decentralized component being removed in
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OpenRec Reconfiguration [44]. Figure A25 shows a UML component diagram

for OpenRec, a framework for managing dynamic reconfiguration [44]. The UML

component diagram highlights two key components in the framework, the OpenRec

cmnponent and the Algorithm component. The OpenRec component manages the

various interactions between components and connectors in the OpenRec system at

any time. The Algorithm component is responsible for dynamically reconfiguring

the components and connectors managed by the OpenRec component. Figure A27

shows a UML state diagram for a typical component insertion in a decentralized

environment. The first task is to create and allocate the necessary resources for the

new component. Then, the component that wants to engage will first commence

the reconfiguration process by adding connections to other components it wants to

communicate with. Lastly, once all connections have been established, the component

proceeds to operate normally.

234

 



 OpenRec [44].

Figure A27: Ul\lL state. diagram of a decentralized component being removed in
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