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ABSTRACT
DEVELOPMENT OF A COMPUTER-AIDED OPTIMIZATION TOOL FOR
CENTRIFUGAL COMPRESSOR IMPELLERS
By
Ying Ma
Development of a fast, automatic and effective computer-aided design and
optimization tool for centrifugal compressor impellers has attracted great attention
and interest both in industry and academia because centrifugal compressors are
widely used and more stringer criteria such as shorter design cycle time and higher
efficiency has been proposed by consumers.

In my study, a centrifugal compressor impellers optimization procedure is
established. A geometry generation tool is developed; a flow solver with streamline
curvature method is modified and linked to this geometry generation tool. This
geometry generation tool with the flow solver is used to generate the geometry cases
and calculate their corresponding performance to form a database. Two types of
Artificial Neural Networks (ANNs): Feed-forward i\leu:al Network (FFNN) and
Radial Basis Function Network (RBFN) are used to create the performance map of
centrifugal compressor impellers based on this database. Genetic Algorithm (GA)
used as the optimization method to search the optimal geometry based on given
desired conditions.

Furthermore, Principle Component Analysis (PCA) or Independent Component
Analysis (ICA) is applied to improve optimization procedure by transforming training
database and make the creating of the performance map in a new coordinate system.
‘The aim of applications of PCA or ICA is to decrease the errors caused by
approximate performance map. In this dissertation, the accuracies of three different

trained ANNs: RBFN, RBFN with PCA, and RBFN with ICA. As well as total



performances of centrifugal compressor impeller optimization procedures using these
three different trained ANNSs are compared.

An online flow solver is also developed to overcome the drawbacks of modeling tools,
in which the flow solver is used directly to evaluate the performances of centrifugal
compressor impellers. This optimization procedure is compared with offline flow
solver optimization procedure Furthermore; influences of GA operators, parameters
and local search algorithm on online and offline flow solver optimization procedure
are also investigated.

Finally, an industrial centrifugal compressor impeller designed by Solar Turbine Inc.
is optimized by using five different types of optimization procedures and new
impeller geometries are evaluated by ANSYS CFX.

Results show that GA has a good performance on this optimization problem and PCA
greatly increase the accuracy of created performance maps and following optimization
performances. It is indicated the developed optimization tool is capable of finding an
impeller geometry, which has the exact desired relative velocity distribution. Online
flow solver and offline flow solver with PCA optimization procedures have best
performance for achieving desired velocity distribution. However, results of CFX
suggest that all online flow solvers, offline flow solver with PCA and RBFN, offline
flow solver with FFNN optimization procedures are capable of reaching the desired

efficiencies.
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CHAPTER 1

FUNDALMENTALS OF CENTRIFUGAL COMPRESSORS

1.1 Introduction

A turbomachine describes a device that transfers energy between a rotor and a fluid.
The turbomachinery are constituted of a large class of machines. Their functions and
application area varies a lot. However, each of these includes several certain elements
including a rotor and a casing. A rotor is the rotating part and the most important
component, through which energy transfers. A casing provides a boundary as guides
to direct the flow. The turbomachinery are used for a wide range and are found
virtually everywhere in this world. The application field of turbomachinery includes
aerospace, automotive, refrigeration and air conditioning, power generation as well as
marine. The design of turbomachinery covers a wide range of subjects including fluid
mechanics, thermodynamics, aerodynamics, solid mechanics and vibration. Generally,
two main categories of turbomachine are identified based on its purpose. Those,
which produce energy by expanding fluid to a lower pressure, are classified as
turbines. Inversely, those that absorb energy to increase the fluid pressure are
classified as compressors or pumps. A pump uses liquids for a working fluid and a
compressor uses gases. For a compressor, three different terms (a fan, a blower, and a
compressor) may be used depending on the pressure ratio or the pressure rise
achieved. Compressors can be classified as axial, mixed flow and centrifugal (or
radial) depending on the discharge flow direction. The inlet and outlet flow directions
of axial, mixed flow and centrifugal compressors are illustrated in Figure 1-1

respectively.



Figure 1-1 Illustration of inlet and outlet flow directions of three types of
compressors: axial, mixed flow and centrifugal ones [1]

The fluid flows parallel to the rotation to axial coordinate in axial compressors.
Compared to centrifugal compressors, axial compressors have the large mass flow
capacity and higher efficiency. Therefore they are widely used in gas turbines,
especially jet engines. However, they provide lower pressure rise per state than
centrifugal compressors.

The increase of centrifugal compressor efficiency during last decades has resulted in
the wider industrial application. The centrifugal compressors offer several advantages:
small weight, lower maintenance, higher reliability, simplicity of components and
ease of manufacturing.

Mixed flow centrifugal compressors combine impeller blade features from both the
axial and radial to produce a diagonal unit. The exit mean radius is greater than one at
the inlet, which is similar to centrifugal compressor. However, the flows exit in both
axial and radial direction. Therefore, it eliminates the requirement of the diffuser,
which is another important component in compressors and introduced in the next

section.



1.2 Centrifugal Compressors
A centrifugal compressor, sometimes referred as a radial compressor shown in Figure
1-2, is generally made up from four basic components: an inlet casing, a rotating

impeller, a stationary diffuser of the vaneless or vaned type and a volute (a collector).

Figure 1-2 Components of centrifugal compressors|2]
1.2.1  Inlet Casing
The main purpose of inlet casing is to provide the pre-rotation by using inlet guiding

vanes, which allows circumventing the incidence and extending the flow range. There
are three different pre-rotations, shown in Figure 1-3. The positive pre-rotation leads
to a reduction in mass flow and a slightly less enthalpy rise. On the opposite, the
negative pre-rotation leads to a higher mass flow and an increased pressure ratio. The

comprehensive effects of pre-rotation will be discussed in the chapter 2.
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Figure 1-3 Three types of pre-rotation caused by inlet guiding vanes|2]

1.2.2 Impeller
The purpose of an impeller (rotor) includes: deflecting the flow in axial and radial

direction, increasing the static pressure as well as the kinetic energy of the flow.[3]
The impeller is the most important and complex element in geometry in the

centrifugal compressor. The nomenclature of an impeller is as shown in Figure 1-4.

Trailing edge Pressure side

Suction side

Back face (Disk)
Splitter vane ,mpeller blade
Shroud
,nducer throat
,nducer
Hub .
Leading edge

Figure 1-4 Impeller nomenclature(2]



The hub is the curve surface of revolution of the impeller, forming the inner boundary
to the flow. The shroud is the curved surface, forming the outer boundary to the flow.
At the entry of the impeller, the relative flow has a velocity in radial direction. And
the relative flow is turned into the axial direction since the entry section, which is
defined as inducer section. The inducer generally starts at the eye of impeller and
finishes in the region where the flow is beginning to turn into radial direction.[1] The
side of an impeller with higher pressure is called pressure side or driving face. On the
opposite, the side with lower pressure is called suction face. The pressure side, suction
side, hub and shroud form the four sides of the boundary to the flow. The contours of
them greatly effect the deflection of the flow. The effects of leading edge and trailing
will be discussed in chapter 2. The less the number of the impeller is, the less
blockage effects is. However, decreasing the number of impeller leads to the lager
pressure load, which formed by the pressure gradient between pressure side and
| suction side, and also results in mechanical problems. An alternative solution is that
splitter blades are added to avoid this problem. Inducer throat has the smallest area
in the channel of the flow in the impeller. The maximum impeller inlet mass flow
occurs when the fluid passes through the inducer throat section at sonic speed.
Therefore, the calculation of throat area is required for the calculation of the
maximum mass flow and flow range.

1.2.3 Diffuser
As mentioned before, the fluid is drawn in through the inlet casing into the eye of the

impeller parallel to the axis of rotation. In order to add angular momentum, the
impeller whirls the fluid outwards and turns it into a direction perpendicular to the
rotation axis. As a result, the energy level is increased, resulting in both pressure ;md
velocity. In centrifugal compressors, energy is transferred to the fluid by the impeller.

Even though centrifugal impellers are designed for good diffusion within the blade

5



passage, approximately half of the energy imparted to the fluid remains as kinetic
energy at the impeller exit. Therefore, for an efficient centrifugal stage, this kinetic
energy must be efficiently converted into the static pressure. Thus, a diffuser, which is
stationary and is located downstream of the impeller, is a very important element in a
centrifugal compressor.

Since over the years the demands on the centrifugal compressors increased for higher
pressure ratios and efficiency, different types of radial diffusers have been developed.
These different types of radial diffusers can be classified as the vaneless diffusers, the
vaned diffusers, and the low solidity vaned diffusers.

Vaneless diffusers consist of two radial walls that may be parallel, diverging, or
converging. The flow entering a vaneless diffuser has a large amount of swirl. Thus,
the tangential component of momentum at low flow rates can be more than twice the
radial component. The radial component of the flow diffuses due to the area increase
(conservation of mass), and the tangential component diffuses inversely proportional
to the radius (conservation of angular momentum). The vaneless diffuser is widely
used in automotive turbochargers because of the broad operating range it offers. It is
also cheaper to manufacture and more tolerant to erosion and foulfng than the vaned
diffusers. However, the vaneless diffuser needs a large diameter ratio because of its
low diffusion ratio. The flow in a vaneless diffuser follows an approximate
logarithmic spiral path. The flow in a vaneless diffuser with a radius ratio of 2 and an
inlet flow angle of '6 degrees makes a full revolution before leaving the diffuser. This
will result in high friction loss due to viscous drag on the walls and accordingly its
pressure recovery is significantly lower than is found with vaned diffusers.

Generally the vaneless diffuser demonstrates lower pressure recovery by as much as

20% and lower stage efficiency by 10% compared to a vaned diffuser.



The role of vanes in a vaned diffuser is to shorten the flow path by deswirling the
flow, allowing a smaller outlet diameter to be used. A vaneless space precedes the
vaned diffuser to help reduce flow unsteadiness and Mach number at the leading edge
of the vanes so as to avoid shock waves. Boundary layer develops and generates
appreciable blockage at the vane leading edge. In order to reduce this blockage, the
vaneless space should be minimized until it doesn’t give any unfavorable effects such
as increase in noise level or pressure fluctuations due to interaction of the impeller
and diffuser. The flow exiting the impeller follows an approximate logarithmic spiral
path to the vane leading edge and is guided by the diffuser channels. The
semi-vaneless space follows the vaneless space, ending in a passage throat, which
may limit the maximum flow rate in a compressor. The number of diffuser vanes
has a direct bearing on the efficiency. With large number of vanes, the angle of
divergence is smaller and the efficiency rises until friction and blockage overcomes
the advantage of more gradual diffusion.

Although the vaned diffuser typically exhibits higher pressure recovery, the flow
range is limited at low flow rate due to vane stall. At high flow rates, flow choking at
the throat may also limit flow range.

1.2.4 Volute
Outside the diffuser is a scroll or volute whose function is to collect the flow from the

diffuser and deliver it to the discharge pipe. It is possible to gain a further deceleration
and thereby additional pressures rise. Volute plays an important role in influencing
the overall performance of the centrifugal compressor. The flow leaving the impeller
has the logarithmic spiral path. Therefore the volute has to be designed to match with
the flow of the impeller. Thé volute affects the circumferential pressure distribution
downstream the impeller, and then influence the impeller efficiency, off-design

operation, static and dynamic pressure and flow range.[4]

7



1.3 Objectives of Research
The conventional design, which is based on trial and error and still greatly depends on

the expertise of designers and existed database of companies, is widely used in the
industrial compressor companies.

Due to the wide applications of centrifugal compressors, only a small improvement on
centrifugal compressor performances will result in the significant savings in
expenditure. Furthermore, more stringent criteria such as higher efficiency, wider
flow operating range and shorter design cycle are required by consumers. Fortunately,
as the increase of computing c.apacity and the application of Computational Fluid
Dynamics (CFD) software, simulations has been widely applied, become a useful
designing tool and substitute experiments to a large extent. This greatly decreases the
design cycle time and makes the computer-aided design become possible. Therefore,
developing of a design and optimization tool or methodology for centrifugal
compressor impellers has attracted great attention and interest.

The conventional design process widely used in industry is a very complex procedure
and can be broadly divided into three loops: One Dimensional (1D) Preliminary
Design and Analysis, Two Dimensional (2D) Design and Aerodynamic Analysis, and
Three Dimensional (3D) Design and Aerodynamic/Mechanical Analysis. Actually,
these three steps are also closely related each other. 1D design is essential and a good
1D design can fasten the following 2D and 3D design. Defective 2D design cannot be
expected to obtain the good 3D performance. If the performance of 2D or 3D design
is unsatisfied, designers probably need to make modifications not only on 2D or 3D
design but also on 1D design.

E;'en for experienced designers, it will still take several weeks or months to modify
and analyze geometry to achieve customers’ requirements. Therefore, it will not be

realistic to expect that one automatic numerical optimization method can substitute
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designers and be applied on total design and optimization procedure. In this study, an
optimization tool, working as a fast assistant tool aimed at improving 2D design and
analysis of industrial centrifugal compressor impellers is developed using quasi-3D
flow solver and Genetic Algorithm (GA). The objectives of the present research are to
improve the conventional design method procedure for the centrifugal compressor
impellers and the project is accomplished systematically with the following steps:

1) Developing a geometry generation tool (BladeCAD) including the following
functions:

a) Creating a new centrifugal compressor design, including an inlet casing, an
impeller, and a diffuser. All the geometric variables can be edited.

b) Loading existed centrifugal compressor design files and also geometry files, e.g.
geometry files in meridional plane or blade-to-blade plane.

¢) Generating 3D model, which allow the designers to visually observe the impeller
modeling.

2) Revising and linking the codes of Quasi-three dimensional (3D) flow solvers
MERIDL and TSONIC to the geometry generation tool BladeCAD. Comparing the
calculating results between Quasi-3D flow solvers and commercial software ANSYS
CFX using Naiver-Stroker equations to evaluate the accuracies of MERIDL and
TSONIC.

3) Developing an optimization procedure for centrifugal compressor impellers.
Creating a performance map by using an Artificial Neural Network (ANN) and
employing a Genetic algorithm (GA) as the optimization method.

4) Combing a Principle Component Analysis (PCA) and an Independent Component

Analysis (ICA) with the ANN and studying their influences on the ANN. Presenting



an improved centrifugal compressor impeller optimization procedure using the PCA
and GA.

5) Presenting a new online flow solver optimization procedure, in which the flow
solvers are directly used to eliminate the errors caused by created performance map.
Comparing this new one with the traditional optimization procedure which is called
offline flow solver optimization procedure in this study.

6) Using developed fast optimization procedures to find the optimal and ANSYS

CFX to evaluate the optimum as well as these optimization procedures eventually.



CHAPTER 2

THEORY OF CENTRIFUGAL COMPRESSORS

2.1 Introduction

Before introducing centrifugal compressor optimization, some basic theories on
evaluating the centrifugalt compressors have to be introduced firstly. There are
hundreds of formulas have been developed and used during decades of years of work
for design and performance analysis of centrifugal compressors. Only the theory and
equations related to the present research were presented here. Because of the complex
process happened in compressor, these formulas remains relative accurate. To bring
better accuracy, complex equations and practical interpretations have to be applied.
Besides, the combination of gases and operating conditions are also required to
consider.[2]

2.1.1 Gas Properties

The ideal equation of state for the perfect gas is:
pv=RT @-1)

If the fluid is perfect gas, the enthalpy can be expressed as a linear function of

temperature 7" :

h=C,T (2-2)

The relationship between specific heat at a constant pressure C p and specific gas

constant Ris:
‘R ,
Cp= rx 2-3)

fan—y

y—



However, the real equation of state is preferred to use in the industry for better
accuracy in the industry in Eqn. (2-4). And the deviation from perfect gases counts on

the compressibility fact Z.
pv=ZRT (2-4)

One simple and approximate equation for calculating compressibility factor Z is:

~S5Tr
7n 1+[ 0.188_0.468 0887 ) 29

Ir Tr2 Tr2

Besides Eqn. (2-5), there are many methods have been proposed to calculate the
compressibility factor. please see reference [6] for others formulas.

2.1.2 The First Law of Thermodynamics
The first law of thermodynamics is introduced in Eqn. (2-6).
J(@w -dg)=0 (2-6)

dQ denotes the heat supplied by the system to the surrounding, while dW denotes the

work done to the system. For a centrifugal compressor, the first law of

thermodynamics can be rewritten into:

o c? c?
W=0=m(hy=h)+| == +(g:2-&21) @7

The fluid in the centrifugal compressor is gas; therefore the potential energy gz is
negligible. Most turbomachinery processes are or very close to adiabatic process,
therefore the heat transfer is zero. The Eqn. above can be rewritten into as a function

of stagnation enthalpy:



2 2
W=nm (hz +C72)—[hl +-C21—] =m(hgy —ho1) (2-8)

Work done in Eqn. (2-8) is from the surrounding to the fluid.

2.1.3 The Second Law of Thermodynamics

Tds = dh -2 2-9)
P

The definition of isentropic process is:

pv? = constant (2-10)

Therefore, by combining Eqns. (2-1) and (2-10), the relationship among pressure,

temperature and density in the isentropic process, which mean ds =0, are give as in

the Eqns. (2-11) and (2-12):

7
L I [-Tl)%_l @-11)

rp, \I2
L (ﬁ)l/(r_l) (2-12)
Py I :

2.14 Compressible Gas Flow Relations
The stagnation enthalpy (total enthalpy) is defined by combined static enthalpy /and
2

kinetic energy % :

2
ho=h+c7 | (2-13)

If the fluid is a perfect gas, combining Eqns. (2-2), (2-3) and (2-13) gives the
relationship between stagnation temperature and static temperature:

13



2 2 _
B4 & C1i(p-1)E 1 (77D 2 2-14)
T 2C,T 27RT 2

Where the Mach number M is defined by:

M=c/a=c/\yRT (2-15)
If the flow rest adiabatically and isentropically, combining Eqns. (2-1), (2-2), (2-3)

and (2-9) gives Eqns. (2-16) and (2-17):

e r
L’g:(_Tg)r—l =[1+ (7—1)M2}7—1 2-16)
p T 2
1 1
.@. =(ZQ)7’1 :|:1+ (7_1) MZ}y_l (2_17)
P T 2

2.2 Basic Theories for Centrifugal Compressors

2.2.1 Velocity Triangle

Both inlet and outlet velocity triangles play an important role on the performance of
centrifugal compressors. Therefore, they are paid great attention and carefully
designed.

The blade velocity is calculated from:

U=NR (2-18)
Therefore the blade velocity at inducer tip is:

Uis =NRis (2-19)
The relative velocity W of the fluid is a very important factor in analyzing the

performance of the centrifugal compressor. The relationship between relative velocity

W , blade velocity U and absolute velocity C is expressed by:

C=U+W (2-20)



C,U,W are velocity vectors. Because inlet casings and diffusers are stationary,
U =0. Therefore, relative velocity Wis equivalent to absolute velocity Cin inlet
casing and diffusers.
2.2.2 Mass Flow

The mass flow can be calculated by using of the integral form:

= [ pCpdd (2-21)
A

If the inlet mass flow is uniform with a constant pre-rotation, and the meridional flow

velocity is normal to the blade leading edge, the then the mass flow at the inducer

inlet is defined by:

i =p17(Ris + Ry )|2is = 21| Com (2-22)

The volume flow is defined by:

0==2 (2-23)
P :

However, the equation above needs to be revised because of the effect of blade
blockage, which is introduced in Section 2.6.2.

2.2.3 Dimensionless Variables and Similitude

The dimensionless variables are very useful in the analysis of turbomachinery

performance, The important variables in turbomachine performance included volume
flow Q,angularspeed N and rotor diameter D .

The flow coefficient is defined as:

o=-2. (2-24)
ND
The head coefficient is defined as:

gH
v= (2-25)
N2D2




The specific speed is defined as:

1

1 0 )2 1
92\ ND3 NQ*
Ns = —3 = 3= 3 (2-26)
4 gH J4 4
v H
(NZD2 (&#)

The equality of dimensionless groups resulting from similitude plays an important
role in analysis of compressor performances. The similarity velocity triangle gives

equal flow coefficient:

Q__ & (2-27)

MD}  NyD3
While the similar force triangle gives equal head coefficient:

Hy Hy

= (2-28)
22 22
NiDy  Ny;Dy

For same compressor with different running speed, Eqns. (2-27) and (2-28) can be

rewritten into:

9_2 (2-29)
N N
H _ _’3% (2-30)
N N

For the trimmed diameter D, from the original diameter D, while keeping the

rotating speed, Eqns. (2-27) and (2-28) can be rewritten into:

G _O (2-31)
D3 D3

i D3
H _H (2-32)

2- 2
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2.3 Head and Efficiency

2.3.1 Rise of Stagnation Enthalpy

ha 02 fo2 o4 Pos
c?
2
g
2
y
Ry
01
0(()) y C]2
P 1 Y A
Is : :
Inlet ~ Vaneless . ;
Casing : Impeller space . Diffuser R
S

Figure 2-1 h-s diagram for the centrifugal compressor stage[5]

The contribution of each element of the compressor is as shown in Figure 2-1. In

Figure 2-1, in the inlet casing, the fluid is accelerated from velocity cyto ¢ while

the static pressure decreased from py to p;. Since there is no shaft works in inlet

casing. The loss in the inlet casing is small and negligible compared to others

elements. Therefore the stagnation enthalpy is constant in adiabatic flow:

2 2
() |
hoo =ho +—"=h +—-=hoy (2-33)
In the impeller, the rise of stagnation enthalpy is equivalent to:
2 2
) o
Ah = hyp —hoy =[hz +7]—(’n +7} (2-34)

——



The flow is decelerated adiabatically from c4to c5 in the diffuser. The static
pressure rises from p4to ps (Figure 2-1). The stagnation enthalpy in steady

adiabatically flows without shaft work is constant. However, in the real situation, the

stagnation enthalpy decreases because of the losses in the diffusers.

% _p .
h04=h4+-?=h5+—2—=h05 (2'35)
2.3.2 Specific Work and Head

The specific energy transfer can be derived from the velocity triangle at inlet and

outlet from the impeller as shown in Figure 2-2 and Figure 2-3.

W1 ’Bl al C‘| CI‘1
Cmi

U1 CU1

Figure 2-2 Velocity triangle at inlet




Figure 2-3 Velocity diagram at outlet
The rate of change of angular momentum will equal the sum of the moments of the

external forces 7,. When applied angular momentum theorem to an impeller, the

torque 7, is given by:

T, = m(rCyuz ~nCy1) (2-36)

Multiplying compressor rotating angular velocity N on both sides of Eqn. (2-28) gives
work of rotor done on the fluid per unit of time is:

W= NIy = Nm(ryCyp —nCy1) = m(UzCy2 ~U1Cy1) (2-37)
Applying the law of trigonometry to the velocity triangles of exit and inlet of the
impeller yields

U,C,, = h(U; +C; -W7) (2-38)
UcC,= KU +CF=WP) (2-39)

Then by combing Eqns. (2-28) and (2-39), Eqn. (2-39) can be rewritten into:

: m 2 2 2 2 2 2
W=—i—|:(U2 -v2)+(c3 - )-(wF -, )} (2-40)
The work done on the fluid per unit mass or specific work per unit time is:
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W _mUyCyy ~U1Cy1)
m .

w= =(U2Cy2 -U1Gy1)
m
4[58+t )- (ot )
The head is defined as:

2 2 2 2 2 2
oty (Vi-Ui)H (e -a)-{ws -w?)
g g 2g
2.3.3 Conservation of Rothalpy

(2-42)

In the centrifugal compressor, the specific work done on the fluid per unit time equals

to the rise of the stagnation enthalpy. Therefore combining Eqns. (2-34) and (2-41)

gives:
2 2

) |
Ahy = hop —hoy =[h2 +7]{h1 +7]=(U2Cu2 ~U1Cu1) (2-43)
The Eqn. (2-43) can be also rewritten into:
ho2 =U2Cy2 = o1 —U1Cy (2-44)
or:

U2 W2 U2 W2

T (249

In the Eqns. (2-44) and (2-45), the sum of all the variables in the left side are at the
entry equals to that in the right side at the exit of impeller. Therefore, a new function
rothalpy 7 is introduced. And value of rothalpy / is unchanged between the entry and
the exit of the impeller. However, some researchers found that an increase in rothalpy
was possible for steady, rothalpy flow without heat transfer or body forces. And the
increased rothalpy is because of the fluid friction acting on the stationary wall, such as
the shroud of centrifugal compressors. Therefore, a revised equation for rothalpy has

been proposed [6]:
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hog —UzCya = hgy ~UiCyy + Wy I 1 (2-46)

Where Wf denotes the power loss due to the fluid friction on the stationary shroud.
2.3.4 Efficiency

The overall efficiency of an adiabatic compressor is defined as the ratio of minimum
adiabatic work input per unit time to actual adiabatic work input to rotor per unit time,

or one of the isentropic head to actual head:

— hoss — oy — Hy (2-47)
hos —ho1  Hgey

The Eqn. (2-47) can be rewritten into:

s

h
CPTOI[—°5S —1)

e _hoss —ho1 _ hoss —hoy _ To1
hos—hor  hoa—hgr  UzCy2 -UiCy
r-1
Cplor [h_lj (_R)i] Y
T;
_ 01 _\ A 2.48
’7c - - T —T ( )
CpT05 ) 05 —{o1
To)

The efficiency of an impeller is defined as the same overall efficiency of a
compressor:

n,=—"—"——-

" ho2—hot
The efficiency of a diffuser is defined as ratio of the actual enthalpy change to the
isentropic enthalpy change.

ny = hss —ha (2-50)
hs —hy
For steady and adiabatic flow in stationary diffusers, the stagnation enthalpy remains
62 c2
constant h04+74=h05s +%; therefore the efficiency of a diffuser can be also

rewritten into:
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2_2

¢y —c
ny =42 (2-51)
2.3.5 Pressure Ratio
The overall pressure ratio is defined by:
Y
Rs _ (Toss )7—1 o5
1 \ Tn
Combine Eqns. (2-48) and (2-52) and get the overall pressure ratio
7
Pos _ |y, (r=0nc (UaCy2 ~UiCut) |77
05 _ 5 (2-53)
For ag,

2.4 The Choking Mass Flow

When the flow velocity in a passage reaches at the sonic speed at some cross-section,
the flow chokes. Once the flow chokes, the mass flow cannot be increased further
either by decreasing the backpressure or increasing the rotational speed. For
centrifugal compressors, the behavior of chokiﬁg can happen in an impeller or a
diffuser. However, the theories are different for rotating component and stationary
component. In the rotating component, choking occurs when the relative velocity is
equivalent to sonic speed at some cross-section, while when absolute velocity reaches
to speed of sound in the stationary component. An Eqn. is used to calculate in choking

mass flow is proposed in [1]:
My, = PeyWen Agh (2-54)
And when W, reaches the sound of speed, the choking occurs. This equation is only

approximate equation to calculate choking mass flow. Because the actual choking
may occur at lower mass flows because the whirl of the flow cannot provide the

uniform velocity for the throat section. Therefore the supersonic part of the throat may

22



result in a choking mass flow while the left part still remain subsonic, which leads to
the actual choking mass flow is below the theoretical maximum value. A revised

equation for calculating choking mass flow has been supposed [3]:

My = Igt:; Pen (Ren ) Wen (Rep ) Do (Rep ) ARy (2-55)
2.5 The Influences of Inlet Guidancing Vanes (IGV)

The IGV has several important functions. The first function is to modify the Mach
number. The supersonic Mach number will lead to strong shock losses. Moreover,
supersonic Mach number will also induce early flow separation as well as higher
losses. Reducing the rotating speed is one possible method for this problem, which is
as shown in Figure 2-4. However, a lot of variables were required to redesign if the
designed speed changed. Another possibility is to induce preswirl vanes, which is as
shown in Figure 2-5 . The increase of turning of the flow results in a lower relative
velocity W and also lower Mach number. Besides, the increase of turning of the

flow from zero to positive prerotation results in the gradual increase of

Cul obviously. The Eqns. (2-43) and (2-53) explained that this also decreases the

enthalpy rise as well as the specific work.
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U1

C1(Cm1)

Figure 2-4 Illustration of influence of rotation speed on C,,

U1
C1(Cm1 Wi
* U1
C'm1 W'1

Figure 2-5 Illustration of influence of preswirl on C,,
The second important function of IGV is to modify the mass flow. Mass flow

variation is limited by choking losses, incidence. The C] m varies as the change of

preswirl shown in the figure 2.4, which can change mass flow based on Eqn. (2-22).
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The third influence of IGV is on the pressure ratio. The increase of prerotation

Cul decreased the overall pressure ratio based on Eqn. (2-53).

2.6 The Influences of Inducer

2.6.1 Influences of Blade Blockage

The inducer plays a very important role in the impeller performance. The good design
of an inducer should minimize the inlet relative Mach number and keep it subsonic if
possible.

The effect of leading edge blade angle on throat area is as shown in Figure 2-6.

Smaller value of leading edge blade angle ,61 leads to the larger throat area and

larger operating flow range.

. . R2 _ R2
When the flows enter the inducer, the real free area is not 7 1S 1H |, but

smaller than this value because of the blockage by the presence of the blades.

ﬂ 1 // \ IBI

Figure 2-6 Influence of leading blade angle on throat area

The calculation of the zero loading incidence i kp has been proposed: [7]

tan(i ): g’fb sin By
) 1=y, sin By, tan By,

(2-56)

Where the relative blade blockage &gy is defined by:



c _Z-Tn
kb= 5xR

Ry, of the inducer is much smaller than R; . Therefore the large value of zero loading

(2-57)

incidence at the hub occurs due to the larger value of the relative blade blockage £y, .

It was supposed the lower value at the shroud because of the lower value of &y at
shroud. However, fjat shroud is larger than pjat hub, which results in the large

zero loading incidence. The influence of By ,V,, ,Tjand B were discussed as
following;:

The relationship between new blade angle due to blockage and the designed blade
angle is:

By = B — kb (2-58)
Assume there is no work done on the leading edge, therefore the tangential velocity
remains the same, which means the tangential component of relative velocity is

unchanged which is as shown in Figure 2-7.

Figure 2-7 Influence of blade blockage on velocity triangle
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Therefore the new relative velocity is:

Wikb =_Wf1 sin /i (2-59)
sin ﬂl kb
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