

This is to certify that the thesis entitled

EFFECTS OF DIKING AND PLANT ZONATION ON INVERTEBRATE COMMUNITIES OF LAKE ST. CLAIR COASTAL MARSHES

presented by

COLE DANIEL PROVENCE

has been accepted towards fulfillment of the requirements for the

Master of Science

degree in

Fisheries and Wildlife

Major Professor's Signature

Date

MSU is an Affirmative Action/Equal Opportunity Employer

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
<u>-</u>		

5/08 K:/Proj/Acc&Pres/CIRC/DateDue.indd

EFFECTS OF DIKING AND PLANT ZONATION ON INVERTEBRATE COMMUNITIES OF LAKE ST. CLAIR COASTAL MARSHES

Ву

Cole Daniel Provence

A THESIS

Submitted to
Michigan State University
In partial fulfillment of the requirements
for the degree of

MASTER OF SCIENCE

Fisheries and Wildlife

2008

ABSTRACT

Effects of Diking and Plant Zonation on Invertebrate Communities of Lake St. Clair Coastal Marshes

By

Cole Daniel Provence

Invertebrate communities from emergent plant zones common to two diked and two undiked marshes were compared during July 2006, in order to document differences in the potential prey base of avian fauna of Lake St. Clair deltaic marshes. Invertebrate samples were taken with a 0.5 mm D-frame dip net from the outer 1-2 m edge of the emergent plant zones dominated by Schoenoplectus acutus, Typha angustifolia, or the invasive form of Phragmities australis. Equal effort consisting of 3 minutes of sweep net collecting per sample was expended in order to quantify catch per unit effort (CPUE) differences in numbers between diked and undiked marshes for each plant zone. A total of 109,649 invertebrates were collected: 93,959 from diked marshes (3,758 per sample, N=25) and 15, 690 from undiked marshes (541 per sample, N=29). Thus, seven times more invertebrates were collected per sample from diked marsh samples than were collected from undiked samples (p=0.03, 2-way ANOVA) suggesting that the prey base for breeding waterfowl and other invertebrate predators is greater in diked marshes than in undiked marshes. I also tested Shannon's Diversity Index, evenness, and taxa richness. Shannon's Diversity and evenness were not significantly different, but taxa richness (p=0.05) was significantly greater in diked marshes compared to undiked marshes. Sorensen Similarity Index revealed that 77% of taxa were similar between diked and undiked marshes. There was no significant difference in the invertebrate community caused by plant zone or location.

To Everyone Who Made This Possible

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. Thomas M. Burton, for his guidance during my M.S. program and for advice, suggestions, and critiques that greatly improved this thesis. I would also like to thank him for his willingness to take me as a graduate student and his many efforts to secure financial support for me. I also thank the other two members of my graduate committee, Dr. Richard W. Merritt, and Dr. R. Jan Stevenson, for guidance on my M. S. program and thesis.

I would especially like to thank Dr. Patrick Brown and Mike Monfils of the Michigan Natural Feature Inventory for providing financial support for field work, student labor to help process invertebrate samples, and for allowing me to piggyback the design of my project on their project on avian use of diked and undiked marshes. I would also like to thank Edi Sonntag who listened to my unending questions and provided encouragement when I needed it. Thanks are due to Diana Lutz for her assistance with processing invertebrate samples and encouragement and to Chris and Brenda Prachiel, Seth Hunt, Julie Heinlein, and Holly Campbell for friendship and for providing feedback on my ideas and questions.

I would also like to extend my appreciation to Ernie Kafcas and John Schafer of the Michigan Department of Natural Resources (MDNR) for allowing me to use their equipment and providing access to the research sites. This project was supported by the Federal Aid in Restoration Act under Pittman-Robertson project W-147-R to the Michigan Natural Features Inventory through the MDNR Wildlife Division.

Partial Funding was also provided by the United States Fish and

Wildlife Service through the Upper Mississippi River and Great Lakes Region Joint Venture and by assistantship support from Michigan State University.

Table of Contents

List of	
Tables	vi
List of	
Figures	viii
Effects of Diking and Plant Zonation on Invertebrates Communities of La	ke St.
Clair Coastal Marshes	
Introduction	1
Methods	4
Study Area	4
Field Sampling	8
Laboratory Identification	
Water Chemistry	
Statistical Analysis	
Results	
Water Chemistry	12
Invertebrate Community Parameters between Diked and Undiked	
Marshes	
Comparison of Invertebrate Community Parameters in Diked and U	
Marshes	
Effects of Plant Zonation on Invertebrate Community Parameters	
Functional Feeding Groups	
Functional Habitat Groups	
Invertebrate Frequency	
Discussion	
Conclusion	
Appendix	55
Literature	
Cited	73

List of Tables

Table 1.	Summary Table of Mean (±Standard Error) Invertebrate Community Characteristics from Diked and Undiked Marshes and Schoenoplectus,
	Typha, and Phragmites Zones
Table 2.	Sorensen Similarity Index with Number of Similar Taxa (% similarity) for Diked and Undiked Marshes from Schoenoplectus, Typha, and Phragmites zones
Table 3.	Total Number per Sample and Percent Total Catch of Dominant taxa in Diked and Undiked Marshes in Schoenoplectus, Typha and Phragmites Zones
Table 4.	Mean Invertebrate Relative Catch > 1% (±Standard Error) in Diked and Undiked Marshes
Table 5.	Percent Invertebrate Frequency (>50%) from Diked and Undiked Marshes in Schoenoplectus, Typha, and Phragmites Zones53

List of Figures

Figure 1.	Location of study areas in the St. Clair River Delta. Diked marshes are indicated with a * (figure from Herdendorf et al. 1986; they adapted it from Raphael and Jaworski 1982)
Figure 2.	Mean Number per Sample (± Standard Error) in Diked and Undiked Marshes from Schoenoplectus, Typha, Phragmites zones. * The total number of invertebrates per sample (p=0.03) were significantly greater in diked wetlands
Figure 3.	Hyalella total number per sample (± standard error) in diked and undiked Schoenoplectus, Typha, and Phragmites zones
Figure 4.	Caenis total number per sample (±standard error) in diked and undiked Schoenoplectus, Typha, and Phragmites zones
Figure 5.	Naididae total number per sample (±standard error) in diked and undiked Schoenoplectus, Typha, and Phragmites zones30
Figure 6.	Gastropoda total number per sample (±standard error) in diked and undiked Schoenoplectus, Typha, and Phragmites zones31
Figure 7.	Tanytarsini total number per sample (±standard error) in diked and undiked Schoenoplectus, Typha, and Phragmites zones
Figure 8.	Crangonyx total number per sample (± standard error) in diked and undiked Schoenoplectus, Typha, and Phragmites zones
Figure 9.	Percent relative catch per sample and * percent total number per sample (>5%) of invertebrates in each of the three vegetation zones in diked and undiked Marshes
Figure 10.	Percent functional feeding groups from diked and undiked Schoenoplectus, Typha, and Phragmites zones
Figure 11.	Percent functional habitat groups from diked and undiked Schoenoplectus, Typha, and Phragmites zones

INTRODUCTION

There are roughly 217,000 hectares of Great Lakes coastal marshes (SOLEC 2004). Marshes in and along connecting waterways are considered to be Great Lake coastal marshes (SOLEC 2004, Albert 2001, Tsanis et al. 1996, Schloesser 1988). The St. Clair River and Lake St. Clair form the northern part of the connecting waterway between Lake Huron and Lake Erie (Thomas et al. 2006). The more than 13,500 hectares of Lake St. Clair marshes are classified as Great Lake coastal wetlands and roughly 13,146 hectares (96%) of these marshes occur in the delta where the St. Clair River empties via distributary channels into Lake St. Clair (Thomas et al. 2006, SOLEC 2004).

Coastal marshes are important habitat for many fish (Jude and Pappas 1992, French III 1988), amphibians (Herdendorf et al. 1986), birds (Prince et al. 1992) and mammals (De Szalay and Cassidy 2001, Herdendorf 1987). Aquatic invertebrates are important food sources for many of these vertebrates (Herdendorf et al 1986, French III 1988, Krull 1970). Recent studies have described invertebrate communities of Great Lakes marshes and related their occurrence to abiotic and biotic factors including anthropogenic stress (Burton et al. 2004, 2002, 1999, MacKenzie et al. 2004, Stricker et al. 2001, Gathman et al. 1999, Cardinale et al. 1998, Bedford 1992, Krieger 1992, McLaughlin and Harris 1990). These factors include temperature, depth and type of sediment, gradients in geochemistry from the shore to the open lake, groundwater inputs, plant community structure, short and long term changes in lake levels, fetch, and wave action (Burton et al. 2004, 2002, Stricker et al. 2001, Cardinale et al. 1998, Bedford 1992, Krieger 1992).

Most studies cited above have been conducted on riverine and lacustrine Great Lake marshes and may not apply to the deltaic marshes that dominate Lake St. Clair. The

marshes in the St. Clair River Delta do not have the characteristic turbidity problems of Green Bay or Saginaw Bay marshes because suspended sediment load is low in the Lake Huron water that is transported by the St. Clair River into the marshes, the rapid exchange of water between the river's distributary channels and the marshes, and the relatively low fetch and exposure to winds in Lake St. Clair compared to marshes of the five larger Great Lakes (Herdendorf et al. 1986). Regardless, there are few studies of the invertebrate community in Lake St. Clair marshes. Instead, most invertebrates studies have been focused on deeper waters of Lake St. Clair (Zanatta et al. 2002, Edsall et al. 2001, 1988, French III 1988, Nalepa and Gauvin 1988, Bricker et al. 1976) or in the St. Clair and Detroit Rivers (Davis et al. 1991, Ciborowski and Corkum 1988, Thornley 1985).

Lake St. Clair marshes have been altered by many different human activities, including diking (Albert 2001, Herdendorf 1987, Herdendorf et al. 1986, Derecki 1985, McCullough 1985, Quinn 1985). Dikes are used to manipulate water levels for waterfowl use and hunter access (Albert 2003, Jude and Pappas 1992, Prince et al. 1992, Herdendorf 1987, Herdendorf et al. 1986). In undiked marshes, natural water levels fluctuate with storm events and wave action (Quinn 1980) and as lake levels rise and fall seasonally and from year to year. The natural water level fluctuations structure the plant and animal communities along Great Lake marshes and lead to dynamic changes in these communities as water levels change from lows to highs (Gathman et al. 2005, Burton et al. 2004, 2002, Herdendorf 1987, Barton and Griffiths 1984).

Diking of coastal marshes has been shown to cause changes in invertebrate (Mclaughlin and Harris 1990, Krieger 1992), fish (Jude and Pappas 1992), and plant

communities (Herrick and Wolf 2005, Thiet 2002). Stabilized water levels in diked marshes lead to dominance by plants tolerant of deeper standing water like narrow leaved cattail (*Typha angustifolia*), hard stem bulrush (*Schoenoplectus acutus*) and the common reed (*Phragmites australis*) (Herrick and Wolf 2005, Thiet 2002, Herdendorf et al. 1986).

The invasive form of common reed, *Phragmites australis* (Cav.) Trin. Ex Steud has invaded marshes throughout North America (Saltonstall et al. 2004). In the Great Lakes region, there is a native, non-invasive form, Phragmites australis subsp. americanus that is limited in distribution and rarely occurs in a monoculture (Saltonstall et al. 2004). The invasive form of *Phragmites australis* is thought to be an import from Europe and is an aggressive invader, particularly of disturbed marshes. Recently, several researchers have documented the occurrence of the exotic *Phragmites* in Great Lake coastal marshes and have examined its effects on wetland communities (Kulesza and Holomuzki 2006, Herrick and Wolf 2005, Wilcox et al. 2003, Thiet 2002). Phragmites has been found in Lake Erie (Wilcox et al. 2003, Thiet 2002, Herdendorf 1987), Lake St. Clair (Albert 2003, Herdendorf et al 1986), Lake Huron (Herrick and Wolf 2005, Albert 2003), and Lake Michigan marshes (Herrick and Wolf 2005). In these studies, *Phragmites* has replaced or altered native plant communities (Herrick and Wolf 2005, Thiet 2002) with Typha communities being particularly susceptible (Wilcox et al. 2003). In addition, Phragmites has been shown to alter food webs in brackish-water marshes by altering benthic microalgae and phytoplankton communities (Wainright et al. 2000). Negative effects have also been documented for aquatic invertebrates (Jivoff and Able 2003, Angradi et al. 2001) and fish (Raichel et al. 2003, Weinstein and Balletto 1999). Parsons

(2003), however suggested that *Phragmites* could have some positive benefits for nesting birds.

The primary objectives of this study were to (1) test the hypothesis that invertebrate community species composition, relative catch, richness, and evenness would differ significantly between diked and undiked coastal marshes; (2) test the hypothesis that the invertebrate parameters listed above would be affected by and correlated with plant zonation in diked and undiked marshes: and (3) document differences in three plant zones common to diked and undiked marshes in order to document changes in the potential prey base for avian fauna in diked and undiked Great Lake coastal marshes.

METHODS

Study Area

The St. Clair River delta is formed in, along, and between distributary channels of the St. Clair River where the river enters Lake St. Clair. It extends along the shoreline away from these channels to form an arcuate wetland in areas where sediments are carried by wind and currents. The St Clair delta is the largest complex of delta marshes in the Great Lakes Basin (Herdendorf et al. 1986). The delta is connected to Lake Huron and Lake Erie and the other Great Lakes via the St. Clair River-Lake St. Clair-Detroit River connecting channel. While the delta shares characteristics with both Lake Huron and Lake Erie, the greatest inputs come from Lake Huron (Thomas et al. 2006, Leach 1980). The Michigan, U.S.A, side of the delta is approximately 16 km long and 24 km wide (Albert 2003, Herdendorf et al. 1986). The delta is formed from eroded shoreline sediments from Lake Huron (Thomas et al. 2006) and the sediments eroded from the St. Clair River Channel by currents and ship traffic. Sandy sediments are generally carried

into bays by wave action and overlay glacial clays (Thomas et al. 2006). The deltaic coastal marshes at the mouth of the river occupy 13,146 ha (SOLEC 2004) along the distributary channels of the St. Clair River, in bays around the low lying margins of islands between channels, and along the shoreline of Lake St. Clair extending away from the St. Clair River in the U.S.A. and Canada. The delta has been altered by residential development along the U.S. shoreline, on islands in the delta, and by dredging of channels and movements of vessels along these channels to support commercial shipping in the Great Lakes (Albert 2003, Ball et al. 2003, Derecki 1985, McCullough 1985, Quinn 1985).

The study area was located in the St. Clair Flats Wildlife Management Area on Harsen's and Dickinson Islands (Figure 1). The St. Clair Flats is managed by the Michigan Department of Natural Resources (MDNR). The two diked marshes were located on Harsen's Island. One of the undiked marshes was located in the Little Muscamoot Bay area of Harsen's Island near the Middle Channel and the other was located in the Goose Bay and Mud Lake area of Dickinson Island between the Middle and North Channels (Figure 1). Dickinson Island is the largest (approximately 1,200 hectares) naturally functioning wetland complex along Lake St. Clair (Herdendorf et al. 1986), and Little Muscamoot Bay is the only area along Harsens Island that has remained an undiked wetland with natural water flow (Herdendorf et al. 1986). The undiked marshes experience natural water level fluctuations caused by storm events, but generally water levels remain stable during the months of June, July, and August (Albert 2001, Herdendorf et al. 1986). Along the shoreline which experiences the most wave action, *Phragmites* has become the most dominant vegetation type and, in areas that are

protected from wave action, dense stands of *Typha angustifolia* often dominate.

Schoenoplectus acutus is the dominant bulrush type in the St. Clair delta and occupies deeper water than either *Typha* or *Phragmites*.

Diked marshes, located on Harsen's Island, are separated into East and West units (Figure 1) and are managed for migratory waterfowl hunting by the MDNR (Herdendorf et al. 1986). Water levels are controlled and maintained by the MDNR at depths that vary from year to year. During some years, water levels are maintained at high levels throughout the year, as during this study, while in other years, water levels are allowed to drop to expose large mud flats. Most diked marshes during this study were covered with emergent plants, mainly *Typha angustifolia*, with channels cut between stands to allow boat access for hunters. These channels often contained dense growths of water-lily (*Nymphaea*), yellow water-lily (*Nuphar*), hardstem-bulrush (*Schoenoplectus acutus*), and submersed plants. *Phragmites* appeared to have colonized the diked marshes along the edges of hunter access channels and in mud flats. To control *Phragmites* spread, MDNR uses herbicides and controlled burns within diked marshes.

Both diked and undiked marshes in the St. Clair Flats were dominated by three emergent plant zones: bulrush zones dominated by hardstem bulrush, *Schoenoplectus acutus*, cattail zones dominated by *Typha angustifolia* and *Typha X glauca*, and common reed zones dominated by the invasive form of *Phragmites australis* (Albert 2001, Herdendorf et al. 1986). Each of these zones in diked and undiked marshes was sampled.

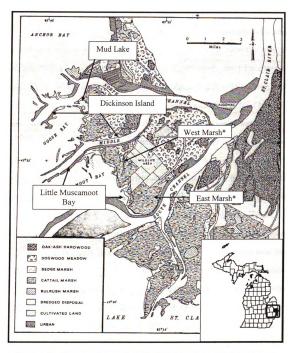


Figure 1. Location of study areas in the St. Clair River Delta. Diked marshes are indicated with a * (figure from Herdendorf et al. 1986; they adapted it from Raphael and Jaworski 1982).

Field Sampling

I selected sites based on two criteria: migratory waterfowl, wading birds, or other wetland dependant birds were observed feeding on-site, or the site was within 10 m of the randomly selected points used for bird counts (M. Monfils, pers.comm.). Placement of invertebrate sampling areas near sites used for bird counts will allow invertebrate results to be related to data on distribution of birds in the marshes collected by Mike Monfils and his crew from the Michigan Natural Feature Inventory. The bird results were not part of this thesis and correlations between bird and invertebrate distribution in the marshes will be published separately. Since birds heavily used areas near the edge of the emergent zones and the open water of the channels, invertebrate sampling was limited to sampling the outer 1-2 m edges of emergent zones. In many places, the density of the vegetation, or the lack of standing water in the middle of vegetation stands would have precluded sampling far enough into the plant stand to avoid edge effects. In most *Schoenoplectus* and *Phragmites* sites, I was able to sample at least 1 meter into the emergent zone. Sites where MDNR had burned or applied herbicide to control *Phragmites* were not sampled.

Invertebrates were collected from July 10 to July 21, 2006 using a standard D-frame dip net with 0.5-mm mesh net. I sampled invertebrates in July to allow the plant community to fully develop and invertebrates to become larger, making it easier to identify them (Burton et al. 2004, 1999, Uzarski et al. 2004, De Szalay and Cassidy 2001, McLaughlin and Harris 1990). The net was swept through the water column in each plant zone at the surface, above the sediments, and along plant stems for a period of 60 seconds per replicate. At the end of 60 seconds, the contents of the net were placed into a whirl pack with 95% ethanol and labeled as one of three replicates taken per sample. Even

though each replicate was sorted and picked separately, data from the three replicates per sample were combined and treated as a single sample for statistical analyses. Thus, each sample consisted of combined data from three 60 second sweeps or a total of 3 minutes of dip net sweeps per sample. Sampling in three separate areas within a 2 meter radius of a sample point and combining data from these 3 sweeps ensured a representative area was sampled. The one minute of sweeping per replicate for 3 replicates per sample standardized effort for each sample so semi-quantitative comparisons could be made in terms of total catch and catch per unit effort (CPUE).

In diked marshes, 13 samples (39 replicates) from East Marsh and 12 samples (36 replicates) from West Marsh were collected (Figure 1). From undiked marshes, 18 samples (54 replicates) were collected from Dickinson Island and 11 samples (33 replicates) were collected from Little Muscamoot Bay (Figure 1). I collected replicates by making the midpoint of the front of the boat the point around which samples were collected. From the mid-point, I collected one replicate left of the point, one replicate right of the point, and one replicate straight ahead of the point. Initially, I planned to take five samples from each of the three vegetation zones so that there would be a total of 15 samples (45 replicates) from each marsh, but I was limited in Little Muscamoot Bay, East Marsh, and West Marsh by the number of available sites. While large areas of East and West marshes were covered with Typha and Phragmites, they remained above the water surface by forming dense floating islands. A minimum of three samples per vegetation zone was collected from each of the four marshes. At Dickinson Island, I increased the number of samples to six from each zone, based on the suggestions of Dr. Thomas Burton and Dr. Patrick Brown to include samples from Mud Lake.

Laboratory Identification

In the laboratory, three invertebrate samples from each of three plant zones from the two diked and two undiked marshes were completely picked and sorted. Since hundreds of invertebrates were picked from each replicate of the diked wetland samples, picking took many hours to complete. To speed up the process, the remaining replicates from the diked marshes were first sieved through a 4-mm sieve to remove larger pieces of organic detritus and then into a 250 micrometer sieve. The invertebrates picked from the larger debris were added to the contents of the 250 micrometer sieve. The contents of the sieve were then split into four sub samples using a Folsom plankton splitter. One sub-sample was picked and the rest were discarded for the 16 samples collected from diked marshes that were not completely picked. Fewer undiked samples were sub-sampled because they were easier to pick than were diked marsh samples because of fewer invertebrates and less debris per sample. Only five samples from undiked marshes were sub-sampled compared to 16 samples from diked marshes. Samples were picked and sorted, under 10x magnification, to the lowest operational taxonomic unit (usually Family or Genus) using a variety of taxonomic keys (Merritt and Cummins 1996, Thorp and Covich 1991, Peckarsky et al. 1990, Burch 1982, Burch and Tottenham 1980, and Wiggins 1978). Insects were assigned to functional feeding and functional habitat groups using Merritt and Cummings (1996). The other invertebrates were assigned to feeding group and habitat group using De Szalay and Cassidy (2001), Thorp and Covich (2001), Clifford (1991) and Peckarsky et al. (1990).

Water Chemistry

Water chemistry was measured in the field between June 17 to August 2, 2006 from sampling stations where invertebrates were collected and points where breeding bird and shore bird surveys took place across all four marshes. Measurements were taken at middepth at each site. Dissolved oxygen (D.O) (mg/L), salinity, specific conductivity (mS/L), pH, and temperature (°C) were measured using a Hydrolab water quality probe (Hydrolab Corporation, Austin, TX). Water depth was measured with a meter stick. Alkalinity (mg CaCO₃/L) was measured with a Hach Test Kit (Model AL-AP, Drop Count Titration), and turbidity was measured in NTU (nephelometer turbidity units) with an Oakton T-100 Turbidimeter.

Statistical Analyses

The mean number of invertebrates per sample (±standard error) was calculated for each plant zone sampled. The number of invertebrates for each of the three replicates was summed to calculate total number per sample. Raw data for each sample was then converted to relative catch (taxon total divided by total number of invertebrates collected per sample) and percent frequency (number of times a taxon occurred in all replicates divided by the number of total replicates per vegetation type). Invertebrates were only reported as frequent if they occurred in >50% of replicates in any of the plant community zones.

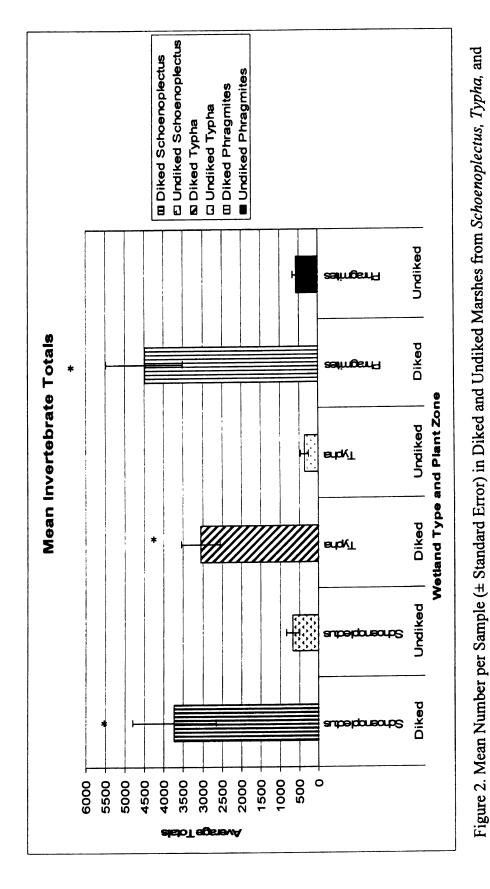
Community composition was evaluated by calculating percent relative catch of taxa, taxa richness, Shannon's diversity index (H'), Simpson's Evenness (J'), Sorensen similarity index, percent frequency of taxa, percent functional feeding group, and percent functional habitat group. Percent functional feeding group and habitat group was the total

in each group of samples divided by the grand total of invertebrates for all samples per zone. Functional feeding groups were restricted to predators, gatherer-collectors, scrapers, shredders, piercers, and filterers. Functional habitat groups were restricted to sprawlers, burrowers, clingers, swimmers, climbers, and skaters.

Total number of invertebrates per sample, Shannon's diversity (H'), species richness, Simpson evenness (J'), and relative catch were determined for each marsh and vegetation zone. To determine if wetland type or vegetation type had an effect on the invertebrate community, I used a (PROC MIXED) two way analysis of variance (ANOVA) (SAS Version 9, SAS Institute Inc., Cary, NC, USA). Bonferroni t-tests were used with pair-wise comparisons to determine whether differences among the three plant community types were statistically different. A majority of data were LOG transformed to correct for variance within the data. Percent invertebrate frequency, percent functional feeding groups, and percent functional habitat groups were also used to determine whether differences occurred. Location was also tested for statistical significance using location (wetland) and plant*location (wetland) as random effects in the Proc Mixed code. Results were considered significant at p<0.05 but were also reported as marginally significant if p<0.10.

RESULTS

Water Chemistry


Because water chemistry was collected at different dates, times of day and only once per site, statistical analysis was not possible. The data were used to broadly characterize the sites where invertebrates were collected and marsh birds were feeding.

Samples were collected from similar depths from all plant zones and diked and undiked

marshes (29-39 cm deep in diked marshes; and 31-42 cm deep in undiked marshes). At the time of collection, water temperature ranged from 25.3-25.6°C in diked marshes and from 24.5-24.9°C for undiked marshes. Alkalinity was lower in undiked marshes ranging from 112-119 mg CaCO₃/L compared to diked marshes at 178-190 mg CaCO₃/L. Dissolved oxygen levels were higher in undiked marshes at 5.3-6.4 mg/L than in diked marshes at 3.9-4.6 mg/L. Even though water was slightly cooler, dissolved oxygen was slightly higher, and alkalinity was lower in undiked marshes than in diked marshes, differences were small compared to levels known to cause major changes in biota (for details, see Appendix C).

Invertebrate Community Parameters between Diked and Undiked Marshes

A total of 109,649 invertebrates were collected: 93,959 from diked marshes (3,758/ sample, N=25) and 15,690 from undiked marshes (541/ sample, N=29) (Figure 2). Therefore the number of invertebrates/ sample (CPUE) was 7 times greater in diked marshes than in undiked marshes. The total number of invertebrates per sample (p=0.03) and species richness (p=0.05) were significantly different between diked and undiked marshes (Table 1). These differences were consistent across all three plant zones with diked marshes consistently having a higher total number of invertebrates per sample in the three plant zones (26,121 to 40,459) compared to the total number of invertebrates/ sample three plant zones in undiked marshes (3,209 to 6,700) (Table 1). The number of species collected from the three diked plant zones was also consistently and significantly higher for the three

Phragmites zones. * The total number of invertebrates per sample (p=0.03) were significantly greater in diked marshes.

plant zones in diked marshes (48 to 52 species) than for the three plant zones in undiked marshes (33 to 36 species). There were no significant differences in total number of invertebrates per sample (p=0.57) or species richness (p=0.88) among the three plant zones in either the diked or undiked marshes (Table 1). Shannon diversity (H') varied from 1.04 to 1.16 in diked and undiked marshes, and differences were not significant (p=0.78). Even though evenness (J') varied between 0.63 to 0.68 in diked marshes and from 0.73 to 0.77 in undiked marshes, these apparently consistent differences between diked and undiked marshes were not significant (p=0.20) (Table 1). Results were consistent between the two diked marshes, the East and the West Management areas, and between the two undiked marshes, Goose Bay/ Mud Lake and Little Muscamoot Bay, so location had no significant effect on results (p=.49).

Comparison of Invertebrate Community Parameters in Diked and Undiked Marshes.

A combined total of 144 taxa were collected from diked and undiked marshes (Appendix A). A total of 113 taxa were collected from undiked marshes, and 121 taxa were collected from diked marshes (Table 2). Ninety taxa were the same in both diked and undiked marshes (Appendix B). There was a 77% similarity in invertebrate communities between diked and undiked marshes based on Sorensen's similarity index (Table 2). Pairwise comparisons of invertebrate communities of the three plant zones in diked marshes showed that they shared 73-78 taxa in common (80-82% similarity) (Appendix B). In undiked marshes, the three plant zones shared 58-62 taxa in common (72-76% similarity) (Appendix B). Comparisons of diked and undiked marshes by plant zones showed that 58-67 taxa were shared in common (68-74% similarity) (Table 2,

Appendix B). Thus, the composition of invertebrate communities was similar overall as well as on a plant zone basis based on Sorenson's similarity index and the number of species shared in common.

Of the 90 taxa shared in common between diked and undiked marshes, 61 were statistically compared (Appendix B). These 61 either comprised >1% of relative catch, occurred at >50% frequency, or were taxa known to be important in diets of foraging waterfowl or wading birds (Appendix B). I also ran comparisons for the Class Gastropoda, Amphipoda, and Oligochaeta and for six Insect orders: Odonata, Hemiptera, Trichoptera, Lepidoptera, Coleoptera, and Diptera, between diked and undiked marshes and between the three plant zones in diked and undiked marshes. Of the 61 taxa compared (52 at the individual operational taxon level, plus summaries for the Class Gastropoda, Amphipoda, Oligochaeta and six insect Orders) based on total numbers of each taxon per sample, 11 taxa were significantly greater (p< 0.05) and 11 taxa were greater (p< 0.10) in diked marshes than in undiked marshes (Table 3). Eleven of 61 is 18% of all possible comparisons, more than 3 that would be expected by chance alone at the p=0.05 level all 11 were significantly greater (p< 0.05) in diked marshes compared to undiked marshes (Table 3).

More than 70% of the 7 fold average increase of 3,217 invertebrates/ sample from undiked and diked marshes was contributed by 4 taxa; *Caenis*, a mayfly, Naididae, a family of segmented worms, Gastropoda, a class of mollusks containing all snails, and *Hyallela azteca*, an amphipod crustacean (Table 1, 3, and Figures 3-6).

An additional 9.3% of the 3,217 increase in invertebrates in diked marshes (300 invertebrates) was contributed by increases in flies (Diptera) with most of this increase

accounted for by increases in Chironomidae (non-biting midges) in the subfamilies, Chironomini, Tanytarsini, and Tanypodinae (e.g., see Figure 7). The remaining 19-20% of the increase was contributed by small but significant increases in *Crangonyx*, another species of Amphipoda (p=0.09, Figure 8), water mites (Hydracarina)(p=0.01), leeches (Hirudinea)(p=0.10), dragon and damselflies (Odonata)(p=0.02), especially Coenagrionidae damselflies, pygmy backswimmers and other true bugs (Hemiptera)(p=0.09), aquatic moths (Lepidoptera)(p=0.05), and aquatic beetles (Coleoptera)(p=0.02) (Tables 1, 3).

H. azteca contributed more of the increase in diked marshes compared to undiked marshes than any other taxon (Figure 3, 9, Table 3). The mean number of H. azteca collected from diked marshes was 1,093/ sample compared to 31/ sample from undiked marshes representing 1,062 (33%) of the mean total increase of 3,217 invertebrates/ sample in diked marshes compared to undiked marshes. The mean total number of H. azteca/ sample was 35 times greater in diked marshes (p=0.02) than in undiked marshes (Table 1, 3, Figure 3). The increase in *H. azteca* numbers in the bulrush (Schoenoplectus) zone from a mean of 38/ sample (6% of the total catch) in undiked marshes to 1717/ sample (46% of total catch) in diked marshes is especially notable but increases in the other two plant zones from 3-7% to 21% (from 11-42 mean total catch/ sample in undiked marshes to 628-942/ sample in diked marshes were also impressive (Table 3, Figures 3, 9). Two other genera of Amphipoda, Gammarus and Crangonyx, were also present (Figure 9) with Crangonyx increasing its dominance along with H. azteca in diked marshes compared to undiked marshes (Figure 8), while Gammarus decreased from being the dominant amphipod in undiked marshes (a mean of 59/ sample

representing 10.9% of total catch) to complete absence in diked marshes (Figure 9).

Overall, mean total number of Amphipoda in diked marshes was 1239/ sample compared to 101/ sample in undiked marshes. Thus, mean total increases in Amphipoda accounted for 1138 invertebrates/ sample or 35% of the total increase in invertebrates/ sample.

Mean increases in diked marshes compared to undiked marshes in Caenis from 41 to 444/ sample, in Naididae from 114 to 399/ sample, and in Gastropoda from 62 to 582/ sample combined accounted for 37.6% (1208) of the average increase of 3,217 invertebrates/ sample in diked marshes compared to undiked marshes (Figures 3-6). The mayfly, Caenis, was 11 times greater in total numbers in diked marshes compared to undiked marshes (p=0.06), and it was also more numerous in *Phragmites* zones compared to Typha or Schoenoplectus zones (p=0.08, Figures 4). Caenis was the only mayfly collected from most marshes, so total numbers for Ephemeroptera and Caenis were almost identical (Table 1). The segmented worm, Naididae, was 3.5 times greater (p=0.06) in diked marshes than in undiked marshes (Figure 5). The total number of snails (Gastropoda) per sample was 9 times greater in diked marshes compared to undiked marshes (p=0.03) (Table 1, 3, Figure 6). Three individual snail taxa increased significantly. Viviparidae snails increased from a mean of 11/sample in undiked marshes to 147/ sample in diked marshes (Table 3). Two other snails, Gyralus and Planorbella, were also more numerous (p=0.06 and p=0.08, respectively) in diked marshes than in undiked ones.

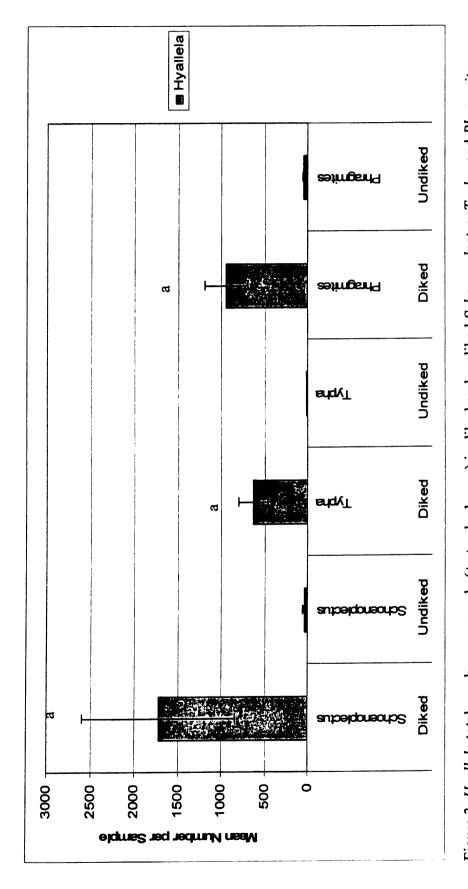
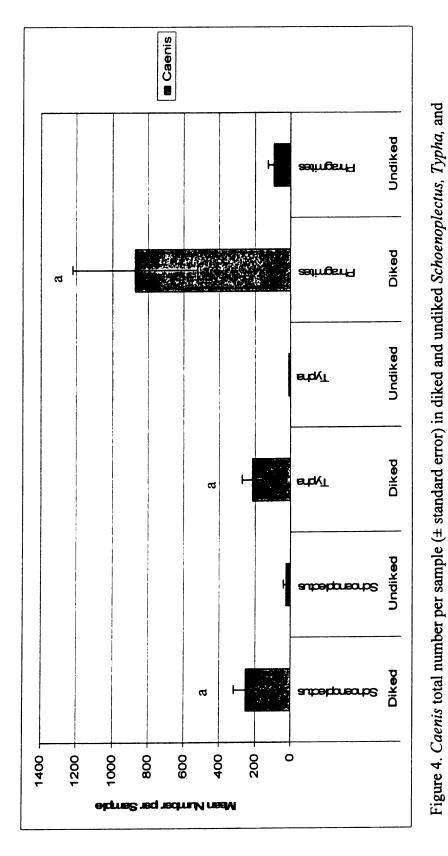



Figure 3. Hyallela total number per sample (± standard error) in diked and undiked Schoenoplectus, Typha, and Phragmites zones. ^a Total number per sample was significantly greater (p=0.02) in diked marshes compared to undiked marshes

19

Phragmites zones. ^a Caenis total number per sample was greater (p=0.06) in diked marshes compared to undiked

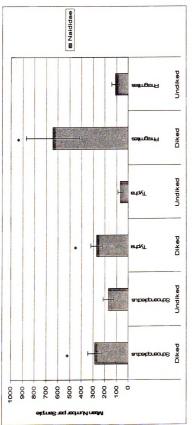
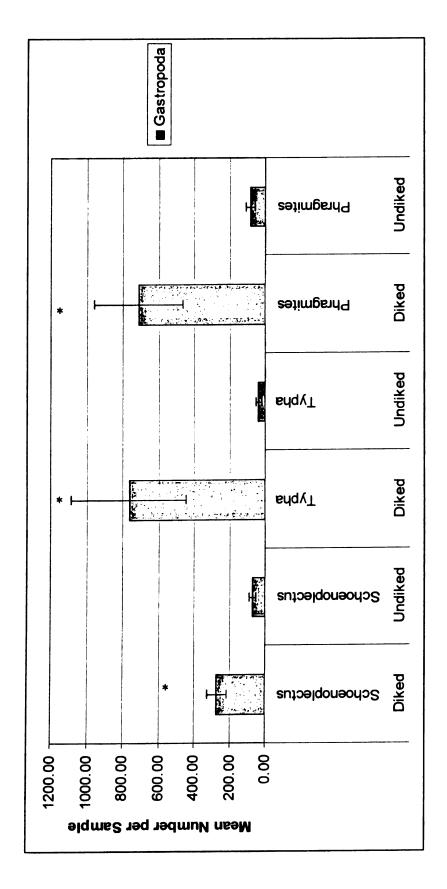



Figure 5. Naididae total number per sample (± standard error) from diked and undiked Schoenoplectus, Typha, and Phragmites

zones. * Naididae total number per sample was greater (p=0.06) in diked marshes compared to undiked marshes.

Phragmites zones. * Total number per sample was significantly greater (p=0.03) in diked marshes compared to undiked Figure 6. Gastropoda total number per sample (±standard error) in diked and undiked Schoenoplectus, Typha, and

ones.

The remaining increases in total invertebrates in diked marshes compared to undiked marshes were contributed by relatively small increases in Hydracarina (aquatic mites), Hirudinea (leeches), and 5 insect orders: Odonata, Hemiptera, Lepidoptera, Diptera, and Coleoptera (Tables 1, 3). The mean number of water mites, *Hydracarina*, per sample varied from 65 to 147/ sample in the plant zones in diked marshes compared to 5-10/ plant zone in undiked marshes. Overall, water mites were 15 times greater in diked marshes than in undiked marshes (p=0.01) (Table 3). There were four times more leeches, *Hirudinea*, per sample in diked marshes than in undiked ones (p=0.10)

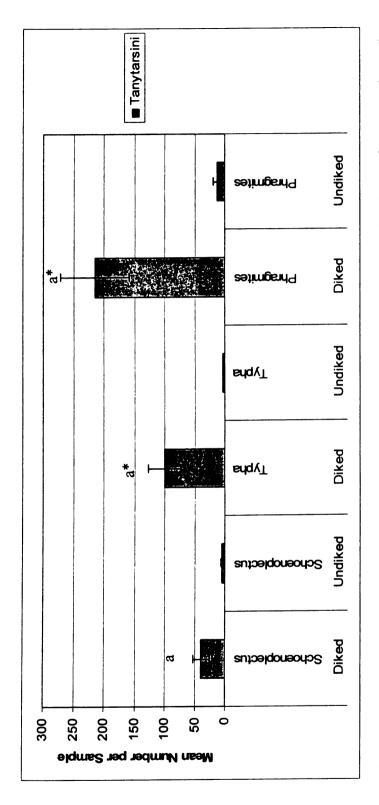
The mean total number of Odonata/ sample (dragon and damselflies) was 9 timer greater in diked marshes (168/ sample) than in undiked marshes (18/ sample, p=0.02) with increases in Coenagrionidae damselflies from 7/ sample to 53/ sample being part of this increase. Mean Coenagrionidae/ sample was 7.5 times greater in diked marshes than in undiked marshes (p=0.07). Odonata richness (p=0.02) was also significantly greater in diked marshes (20 taxa) compared to undiked marshes (9 taxa).

Hemiptera increased from 42/ sample to 125/ sample, a 3 fold increase in diked marshes compared to undiked marshes (Table 1, Table 3). The family of Hemiptera with the greatest increase in total numbers per sample in diked marshes compared to undiked marshes was the pygmy backswimmer family, Pleidae, from 3/ sample in undiked marshes to 48/sample in diked marshes (p=0.05)(Table 1, Table 3). Interaction effects between marsh type (diked and undiked) and vegetation type (*Schoenoplectus, Typha*, or *Phragmites*) were significant for total numbers of Hemiptera (p=0.09) and for the Hemipteran, *Mesovelia* (p=0.08). *Mesovelia* made up nearly 4% of total catch in undiked

marshes but was rare in diked marshes. Thus, this genus of Hemiptera actually responded in the opposite direction to the response of all Hemiptera combined and to Pleidae.

Lepidoptera total numbers increased from 1.2 to 20.6/ sample (p=0.05) in diked marshes compared to undiked marshes (Table 1, Table 3). Lepidoptera diversity (H') (p=0.07) and evenness (J') (p=0.10) also slightly increased in diked marshes compared to undiked ones. The only two taxa that were common enough to be tested statistically were *Acentria* and *Paraponyx*. Taxa richness was 6 in diked marshes and 7 in undiked ones (Appendix B).

The mean total number of aquatic beetles, Coleoptera increased from 10/ sample in undiked marshes to 53/ sample in diked marshes (p=0.02, Table 1, Table 3). Coleoptera richness (18 species) also increased in diked marshes compared to undiked marshes (13 species) (p=0.06). Coleoptera diversity (H')(p=0.10) and evenness (J') (p=0.07) showed significant interaction effects between marsh type (diked and undiked) and plant zone (Schoenoplectus, Typha, or Phragmites). Coleoptera diversity (H') was significantly greater (p=0.03) in diked Typha and Phragmites, compared to diked and undiked Schoenoplectus, and undiked Typha. Coleoptera evenness (J') was slightly greater (p=0.06) in diked Typha and Phragmites, compared to diked and undiked Schoenoplectus and undiked Typha.


The total number of flies, Diptera, was six times greater in diked marshes than in undiked ones increasing from a mean of 66/ sample in undiked marshes to 366/ sample in diked marshes (p=0.03, Table 1, Table 3). Diptera accounted for 300 or 9.3% of the total increase of 3,217 invertebrates in diked marshes compared to undiked marshes. Three of the Chironomidae midge subfamilies increase in diked marshes compared to undiked

ones (Table 1). Chironomini (p=0.02), Tanypodinae (p=0.02), and Tanytarsini (p=0.04) were significantly greater in diked marshes compared to undiked marshes (Table 1, Table 3). Combined mean numbers/ sample for the three midge subfamilies increased from 43/ sample in undiked marshes to 298/ sample in diked marshes, a 255 invertebrate increase representing 7.9% of the total invertebrate increase in diked marshes compared to undiked ones. The mean total number/ sample of Orthocladinae was not significantly different between diked and undiked marshes (Table 1).

The total number of *Caecidotea*, an Isopod, was three times greater in diked marshes than in undiked ones (p=0.10). The total number of caddisflies, Trichoptera, also increased by four fold in diked marshes compared to undiked ones (p=0.07).

The relative contribution to community composition as a mean percent of total catch of common taxa are illustrated in Figure 9. Taxa that made up a greater percentage of the community in diked marshes than in undiked marshes included the amphipod, *H. azteca*. This illustrates that not only did their numbers increase 35 fold as discussed above for *H. azteca* and all Amphipoda combined, but their dominance of the community overall also increased substantially to 21-46% of total catch in diked vegetation zones (p=0.02) compared to the 3-7% in undiked plant zones (Figures 3, 9, Table 3). In contrast, the amphipod, *Gammarus*, was the most common amphipod in undiked marshes contributing 10.9% of total catch/ sample on average (Table 5), but did not occur in diked marshes (Figure 9) suggesting that it had been displaced from the community by *H. azteca* and, perhaps to a lesser extent, by *Crangonyx*. In contrast, the relative contribution of Naididae to community composition in diked marshes decreased compared to undiked marshes (Table 5) even though its actual numbers increased 3.5 fold as discussed above.

Thus, its contribution to community composition decreased from undiked marshes (21%) of total catch) to diked marshes (12% of total catch) (Figure 9). The Order Hemiptera (true bugs) made up a greater percentage of total catch in undiked marshes than in diked marshes (Table 5). This was especially true of *Mesovelia* (Figure 9) which made up (4%) of total catch in undiked marshes compared to (<1%) in diked marshes (Table 5, p=0.01). However, the exception to this trend was Pleidae (Table 5, Figure 5) which increased in total catch/ sample in diked marshes compared to undiked marshes (Figure 9). The Gastropod, Physa, relative catch was greater (p=0.07) in diked Typha (4%) and diked Phragmites (3%) compared to diked Schoenoplectus (1%) (Table 4). The total number of the Odonata, Enallagma, was statistically the same for diked and undiked marshes (Table 3). Tanytarsini relative catch slightly increased (p=0.09) in diked marshes and between diked vegetation zones (p=0.08). These increases were in diked Typha (3%) and Phragmites (6%) zones compared to undiked Schoenoplectus (1%) and Typha (1%) zones. Caenis relative catch increased (p=0.08) in Phragmites dominated zones in diked (16%) and undiked (13%) marshes (Table 4) compared to diked and undiked Schoenoplectus (9% and 3%, respectively) and Typha (6% and 3%, respectively) (Table 4). There were three times more Trichoptera, Oxyethira, in diked marshes but relative catch was greater (p=0.08) in undiked marshes (Table 3, Table 5).

Phragmites zones. Total number per sample significantly increased (p=0.04) in diked marshes compared to undiked relative catch increased (p=0.08) in diked Typha and diked Phragmites zones, compared to undiked Schoenoplectus Figure 7. Tanytarsini total number per sample (± standard error) in diked and undiked Schoenoplectus, Typha, and marshes. ^a Percent relative catch increased (p=0.09) in diked marshes compared to undiked marshes. * Percent

and Typha zones.

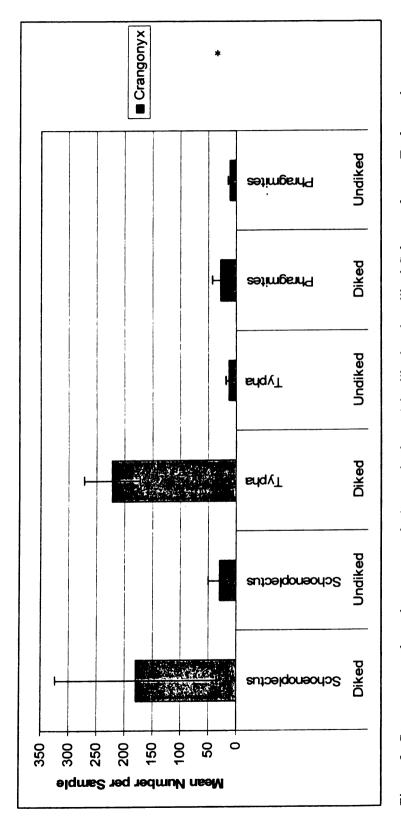


Figure 8. Crangonyx total number per sample (± standard error) in diked and undiked Schoenoplectus, Typha, and

Phragmites zones. * Crangonyx percent relative catch is slightly greater (p=0.09) in diked Typha compared to

diked Phragmites.

Table I. Summary Table of Mean (#Standard Error) Invertebrate Community Characteristics from Diked and Undiked Marshes and Schoenoplectus, Typha, and Phragmites Zones. Values for all taxa are mean number/sample. *= P <0.05, **= P <0.10,

	Phragmites	10	5,781	578.10 ±336.03	1.13 ±0.05	35.6 ±1.77	0.73 ±0.04	6.40 ±3.35	109.30 ±33.75	107.60 ±33.82	82.20 ±26.57	6.20 ±1.79
Undiked	Typha	6	3,209	356.56 ±99.35	1.16 ±0.03	33.00 ±2.35	0.77 ±0.02	2.33	70.56 ±22.81	65.89 ±21.28	35.00 ±14.13	7.11 ±5.53
	Schoenoplectus	10	6,700	670.00 ±172.18	1.11 ±0.03	34.80 ±2.61	0.73 ±0.02	3.60 ±1.76	175.20 ±45.56	168.60 ±44.83	68.40 ±20.55	20.50 ±12.87
	All Undiked	29	15,690	541.03 ±74.30	1.13 ±0.02	34.52 ±1.28	0.74 ±0.02	4.17 ±1.32	120.00 ±21.64	115.69 ±21.27	62.79 ±12.50	11.41 ±4.79
	Phragmites	6	40,459	4, 495.44 ±985.51	1.14 ±0.04	50.89 ±3.02	0.67 ±0.03	14.67 ±3.44	647.78 ±227.61	643.11 ±225.43	709.78 ±249.19	245.89 ±145.15
Diked	Typha	6	27,379	3, 042 ±499.86	1.16 ±0.04	51.89 ±3.86	0.68 ±0.02	22.56 ±9.42	274.33 ±47.54	269.89 ±49.35	765.00 ±318.10	126.22
	Schoenoplectus	7	26,121	3,731.57 ±1079.42	1.04 ±0.07	47.71 ±4.89	0.63 ±0.05	15.29 ±5.91	295.57 ±60.20	285.00 ±59.81	270.00 ±56.91	69.00 ±33.81
	All Diked	25	93,959	3,758.36	1.12 ±0.03	50.36 ±2.16*	0.66 ±0.02	17.68 ±3.88	414.72 ±89.54	408.48 ±89.06	606.52 ±147.23	153.28 ±57.89
Marsh Type	Plant Zone	z	Total#	Mean #/ Sample	Diversity (H')	Richness	Evenness (J')	Hirudinea	Oligochaeta	Naididae	Gastropoda	Viviparidae

Table 1. Cont.

68.57±15.43 269.89 185.00 18.57±3.76 21.20±6.46 10.44 ±1.37.31 ±49.41 18.57±3.76 21.20±6.46 ±44.64	46.14±22.11 54,22 76.11±27,43 3.76±1.64 4.00±1.66 0.78 ±10.55	1896 86 ±856.04 849,67 970.44 102.55 ±20.65 139.60 ±48.62 ±170.98 ±250.44	1717.29±874.21 627.67 941.89 31.17±8.83 38.00±19.75 10.89 ±168.64 ±249.35 ±5.00	179.57±143.76 222.00 28.56±13.95 18.03±6.92 30.10±19.11 13.33 ±50.50 ±50.50	32.57±16.39 55.56 45.00±16.92 16.34±9.84 36.70±28.16 7.67 ±2.03	25.43±17.13 43.11 38.89±16.92 11.62±6.16 25.40±17.38 6.00 ±14.13	147.00 ±48.01 65.44 124.33 7.83 ±1.43 10.00 ±2.50 4.56 ±2.0.53 ±20.53 ±28.94 ±1.55	254.71 ±66.59 212.89 871.11 43.76 ±14.12 24.50 ±14.65 10.11 ±58.55 ±349.43 43.76 ±14.12 24.50 ±14.65 ±2.71	251.14±66.52 211.78 870.22 42.69±14.12 23.20±14.53 9.22 ±2.75	268.43 ±110.64 87.44 150.33 18.62 ±5.04 30.30 ±12.93 9.11 ±19.42	101.14 ±51.30 19.56 39.33 ±10.03 6.83 ±2.76 13.00 ±7.58 2.22
182.96 ±53.27	59.84 ±12.55	1186.36 ±265.74	1045.88 ±269.10	140.48 ±45.62	45.32 ±9.23	36.64 ±9.00	109.48 ±19.01	461.56 ±138.98	459.84 ±139.03	160.76 ±36.80	49.52 ±15.76
Gyralus	Planorbella	Amphipoda	Hyalella	Crangonyx	Isopoda	Caecidotea	Hydracarina	Ephemeroptera	Caenis	Odonata	Coenagrionidae

Table 1. Cont.

44.10 ±6.79	6.60 ±2.11	5.80 ±3.69	27.30 ±9.15	2.50 ±1.24	14.40 ±3.13	64.00 ±12.84	13.70 ±4.60	13.30 ±6.38	5.80 ±1.40
50.56 ±15.06	26.11 ±10.68	2.67 ±2.06	10.56 ±5.65	1.11 ±0.54	5.78 ±1.93	51.33 ±16.92	7.67 ±3.77	2.44 ±0.99	7.33 ±2.54
30.90 ±9.22	9.70 ±3.27	0.30 ±0.21	35.10±13.23	1.00 ±0.47	9.90 ±3.33	82.20 ±24.11	20.50 ±6.58	4.80 ±1.86	13.50 ±4.55
41.55 ±6.08	13.72 ±3.78	2.93 ±1.44	24.79 ±5.93	1.55 ±0.49	10.17 ±1.76	66.34 ±10.67	14.17 ±3.06	7.00 ±2.40	8.93 ±1.87
128.89 ±29.31	2.00 ±0.93	77.56 ±19.62	154.00 ±48.38	16.44 ±4.36	52.22 ±5.83	542.89 ±86.47	158.67 ±45.84	215.00 ±56.90	83.44 ±22.75
72.78 ±17.06	2.78 ±0.55	38.11 ±11.38	45.56 ±13.34	31.67 ±10.35	80.33 ±29.76	365.33 ±72.40	92.78 ±19.71	100.00 ±27.40	90.11 ±48.73
172.43 ±26.63	16.57 ±5.80	89.29 ±32.58	84.43 ±17.58	13.57 ±5.44	26.57 ±8.08	191.00 ±29.59	67.00 ±15.22	39.14 ±13.24	48.29 ±13.47
120.88 ±15.95	6.36 ±2.05	66.64 ±12.49	95.48 ±20.35	21.12 ±4.46	55.16±11.58	380.44 ±49.05	109.28±19.40	124.36 ±26.60	76.00±19.30
Hemiptera	Mesovelia	Pleidae	Trichoptera	Lepidoptera	Coleoptera	Diptera	Chironomini	Tanytarsini	Tanypodinae

Table 2. Sorensen Similarity Index with Number of similar taxa (% similarity) for Diked and Undiked Marshes from Schoenoplectus, Typha, and Phragmites zones.

# of	Type	# of	Type	# Shared
Taxa		Taxa		Taxa
				(Similarity
				%)
121	Diked	113	Undiked	90 (77%)
87	Diked	76	Undiked	58 (71%)
	Schoenoplectus		Schoenoplectus	
101	Diked Typha	77	Undiked Typha	64 (72%)
90	Diked	86	Undiked	65 (74%)
	Phragmites		Phragmites	

Table 3. Total Number per Sample (% Percent Total) of Dominant taxa in Diked and Undiked Marshes in Schoenoplectus, Typha and Phragmites Zones.

s Zones.	Phragmites	578 10	5	6.20 (1%)	42 60 (7%)	107.60	(19%)	8.60 (1%)	15.50 (3%)	4.80 (1%)	44 10 (8%)	F 60 (40%)	9.80 (1%)	2.50 (<1%)	14.40 (2%)	2.10 (<1%)	13.30 (2%)	13.70 (2%)	5.80 (1%)
d <i>Phragmite</i>	Typha	356.56	7.11	(2%)	(3%)	62.89	(18%)	4 .56 (1%)	9.11 (3%)	2.22 (1%)	50.56 (14%)	2.67	1.11	(<1%)	(2%)	1.00 (<1%)	2. 44 (1%)	7.67 (2%)	(2%)
Diked	Schoenoplectus	670.00		20.50 (3%)	38.00 (6%)		168.60 (25%)	10.00 (1%)	30.30 (5%)	13.00 (2%)	30.90 (5%)	0.30 (4.1%)	(8/17) 00:0	1.00 (<1%)	9.90 (1%)	1.90 (<1%)	4.80 (1%)	20.50 (3%)	13.50 (2%)
isiics III <i>Schoer</i>	Phragmites	4, 495.44	245.89	(5%) 9 4 1.89	(21%)	643.11	(14%)	(3%)	150.33 (3%)	39.33 (1%)	128.89 (3%)	77 56 (2%)	16.44	(<1%)	52.22 (1%)	(<1%)	215.00 (5%)	158.67 (4 %)	83.44 (2%)
Diked	Турћа	3, 042.11	126.22	(47º) 627.67	(21%)	269.89	(%6)	65.44 (2%)	87.44 (3%)	19.56 (1%)	72.78 (2%)	38.11 (1%)	(20)	31.67 (1%)	80.33 (3%)	(<1%)	(3%)	92.78 (3%)	90.11 (3%)
	Schoenoplectus	3, 731.57	69 00 0%	02:00 (2 %)	1, 717.29 (46%)		(%8) 00.687	147.00 (4%)	268.43 (7%)	101.14 (3%)	172.43 (5%)	89.29 (2%)	10 67 (710/	(%1.5) /6:51	26.57 (1%)	18.29 (<1%)	39.14 (1%)	67.00 (2%)	48.29 (1%)
Wetland Type	Plant Zone Mean #/	Sample			Hyalella					Imm.						Hydrocanthus	Tanytarsini	Chironomini	Tanypodinae
			Viviparidae	: ·	Hyalella	Naididae				Coenagrionidae		Pleidae				Noteridae	Chironomidae		
			Gastropoda	A	epodilidilid	Oligochaeta		Hydracarina	Odonata		Hemiptera		Lepidoptera		Coleoptera		Diptera		
			Mollusca			Annalida	:	Arachnida	Insecta										

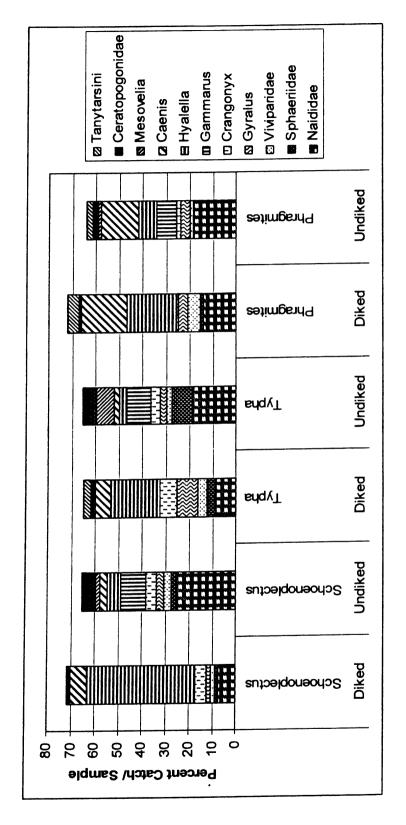


Figure 9. Percent relative catch per sample (>5%) of invertebrates in each of the three vegetation zones in diked and

undiked marshes.

Effects of Plant zonation on Invertebrate Community Parameters

Several taxa were commonly collected from all plant zones in diked and undiked marshes (Figure 9). The dominant groups included the segmented worm, Naididae, the Amphipods, *Hyalella* and *Crangonyx*, and the Ephemeropteran, *Caenis* (Figure 9).

Major differences related to plant zone often involved difference between responses in the Schoenoplectus (bulrush) zone compared to either the Typha (cattail) or Phragmites (common reed) zones. For example, H. azteca made up 46% of total catch in the diked Schoenoplectus zone but only 21% in the other two plant zones in diked marshes (Figure 9, Table 3). Four taxa were typically more abundant in the Schoenoplectus zones of diked and undiked marshes than in the other two zones. Water mites were frequently collected across all plant zones in diked and undiked marshes (Table 6), but total number per sample showed a slightly significant (p=0.09) difference between diked Schoenoplectus and diked and undiked Typha, Phragmites, and undiked Schoenoplectus (Table 3). The grass shrimp, Palaemonetes kadiakensis, comprised 0.5% relative catch in diked marshes and 0.7% in undiked marshes (Table 4) and was collected in 67% of the replicates in diked marshes (Table 6) and 37% of replicates in undiked marshes. Four times more shrimp/ sample were collected in diked marshes than in undiked marshes. While grass shrimp were collected more frequently in Schoenoplectus zones, it was also collected in Typha (30% of replicates in diked marshes, 4% in undiked marshes) and *Phragmites* (26% of replicates in diked marshes, 3% in undiked marshes) replicates. There were ten times more Corixidae, Hemiptera, which were collected in 71% of diked Schoenoplectus replicates compared to 30% of undiked Schoenoplectus

replicates (Table 6). Corixidae made up 2.2% of the diked *Schoenoplectus* zone and was <0.5% in the diked *Typha* and diked *Phragmites* zone (Table 4). The burrowing water beetle, *Hydrocanthus*, comprised 0.8% relative catch in diked marshes and 1.1% in undiked marshes (Table 4), but less than 1% total number per sample in both diked and undiked marshes (Table 3). There were eight times more *Hydrocanthus* in diked marshes and it was collected in 62% of diked replicates, compared to 17% of undiked replicates (Table 3). *Hydrocanthus* was collected in less than 50% of diked and undiked *Typha* (41% and 15% respectively) and *Phragmites* (37% and 32% respectively) replicates.

In the *Typha* zone, differences occurred between the taxa in diked and undiked marshes. In undiked marshes, the damselfly, *Ischnura*, the fishfly, *Chauliodes*, and the soldierfly Family, Stratiomyidae, each comprised 1% total number per sample of the invertebrate community but less than 1% of the diked community (Table 4). There were four times the number of Odonata, *Ischnura*, three times *Chauliodes*, and twice the number of Stratiomyidae in diked marshes compared to undiked wetlands. *Ischnura* and *Chauliodes* were infrequently collected in undiked replicates (3-16% and 13-26% respectively) and diked replicates (11-48% and 19-43% respectively). Stratiomyidae was similarly infrequently collected in undiked replicates (19-33%) but was collected in 70% of the diked *Typha* replicates compared to diked *Schoenoplectus* (24%) and *Phragmites* (26%).

In diked *Typha* marshes, the snail, *Gyraulus crista*, the caddisfly, *Polycentropus*, and the moth, *Parapoynx*, each comprised 1% total number of the invertebrate community but less than 1% in undiked marshes. *G. crista* was not found in undiked marshes but was collected in 14% of *Schoenoplectus*, 52% of *Typha*, and 56% of

Phragmites diked replicates. There were 57 times more Polycentropus and 15 times more Parapoynx in diked marshes compared to undiked marshes. Polycentropus and Parapoynx were rarely collected in undiked replicates (3-7% and 3-19%, respectively), but in diked replicates they were frequently collected (48-76% and 52-63%, respectively) (Table 6).

In the *Phragmites* zone, differences also occurred between taxa of diked and undiked marshes. In undiked *Phragmites*, the water-striders, Gerridae, the velvet water bug, Hebridae, the minute moss beetle, Hydraenidae, and dixid midges, Dixidae, each comprised 1% total number of the invertebrate community. There were eight times the number of Hebridae, and ten times the number of Dixidae in undiked marshes compared to diked marshes but there was twice the number of Hydraenidae in diked marshes compared to undiked marshes. The number of Gerridae was the same for diked and undiked wetlands. Generally, all four of these taxa were rarely collected (<25%) in either diked or undiked replicates. The only exception was Hydraenidae which was collected in 41% of diked *Phragmites* replicates.

In diked *Phragmites*, total number of the limpet, Ancylidae, was seven times greater, the immature dragonfly, Libellulidae was 374 times greater, and the caddisfly, *Leptocerus* was 131 times greater, compared to undiked marshes. Each of these taxa comprised 1% of the diked invertebrate community but <1% in undiked marsh community. Ancylidae was collected in 32-37% of undiked replicates and increased to 37-81% of diked replicates (Table 6). Immature Libellulidae were rarely collected in undiked marshes (0-4%), but were frequently collected in diked replicates (76-89%). Immature Leptoceridae and *Leptocerus* were rarely collected in undiked (0-6% and 0-7%,

(0-6% and 0-7%, respectively) replicates and generally were infrequent in diked (0-33% and 4-22%, respectively) replicates.

Table 4. Mean Invertebrate Relative Catch >0.5% (±Standard Error) in Diked and Undiked Marshes.

Taxa			Undiked	Diked
Oligochaeta	Naididae		21.3±2.79	11.7±1.52
-	Tubificidae		1.4±0.69	
Mollusca	Sphaeriidae		1.6±1.05	2.2 ± 0.47
Gastropoda	Viviparidae		2.5±0.96	3.1±0.82
-	Lymnaeidae	Stagnicola	1.5±0.58	0.6 ± 0.33
	Physidae	Physa	1.9 ± 0.36	2.8±0.51
	Planorbidae	Gyraulus	3.0 ± 0.44	5.0±1.07
		Planorbella	0.7 ± 0.23	1.6±0.30
Arachnida	Hydracarina		1.8±0.30	3.0 ± 0.36
Amphipoda	Crangonyctidae	Crangonyx	2.7 ± 0.61	5.3±1.78
	Gammaridae	Gammarus	10.9±2.06	
	Talitridae	Hyalella	5.5±1.51	25.1**±2.79
Isopoda	Asellidae	Caecidotea	1.8±0.59	1.4 ± 0.40
Ephemeroptera	Caenis	Caenis	6.3±1.76	10.3 ± 1.73
Odonata	Coenagrionidae	Imm.	1.2 ± 0.27	1.1±0.21
		Enallagma	1.8**±0.41	
	Libellulidae	Imm.		1.6 ± 0.31
Hemiptera	Belostomatidae	Belostoma	1.4±0.29	
	Mesovelidae	Mesovelia	3.8***±0.87	
	Nepidae	Ranatra	1.1±0.21	
	Pleidae		0.5 ± 0.24	2.0 ± 0.33
Homoptera			1.0 ± 0.31	
Trichoptera	Hydroptilidae	Oxyethira	$1.1*\pm0.32$	0.7 ± 0.23
	Leptoceridae	Cercalea	1.3 ± 0.35	
Diptera	Ceratopogonidae		4.2 ± 1.00	1.1±0.23
	Chironomidae	Chironomini	2.5±0.43	3.2 ± 0.45
		Tanytarsini	1.0 ± 0.27	3.9*±0.89
		Orthocladinae	1.7±0.39	
		Tanypodinae	1.6 ± 0.21	2.0 ± 0.36

^{***} Significant at (p<0.01)

^{**} Significant at (p<0.05)

^{*} Significant at (p<0.10)

Functional Feeding Groups

Gatherer-collectors comprised approximately 60% of invertebrates collected in diked and undiked marshes while predators made up approximately 20% and scrapers approximately 10% (Figure 9). Comparisons between diked and undiked vegetation zones showed similar trends with gatherer-collectors (49 to 70% in diked vegetation zones and 52-62% in undiked vegetation zones) being the most dominant functional group (Figure 9). Gatherer-collectors, which feed mainly on decomposing fine particulate organic material (Merritt and Cummins 1996), have been reported to dominate coastal marshes that are vegetated and accumulate detritus (Merritt et al. 2002) which generally characterize the diked and undiked marshes I was sampling.

Except for diked *Typha* and *Phragmites* zones, in which scrapers made up a greater percentage (25% and 16% respectively) than predators (15% and 13% respectively) (Figure 9), predators were more abundant than scrapers between diked and undiked vegetation zones (Figure 9).

Functional Habitat Groups

There were only minor differences in the percentages of habitat groups between diked and undiked marshes (Figure 10). In undiked marshes, burrowers comprised 28% of the invertebrate community and dominated the *Schoenoplectus* zone (35%) (Figure 10). In diked wetlands, swimmers comprised the greatest percentage of invertebrates (40%) and also dominated the *Schoenoplectus* zone (60%) (Figure 10). Climbers made up a greater percentage of the undiked community (11%) compared to the diked community (4%) (Figure 10).

Sprawlers increased in the *Phragmites* zones of diked and undiked marshes (24% and 26%) compared to the diked and undiked *Schoenoplectus* (13% and 14%, respectively) and *Typha* zones (15% and 13%, respectively) (Figure 10). This difference reflects the fact that *Caenis* contributed a substantial portion of the invertebrate community of *Phragmites* zones (Table 1, Table 3, and Figure 8).

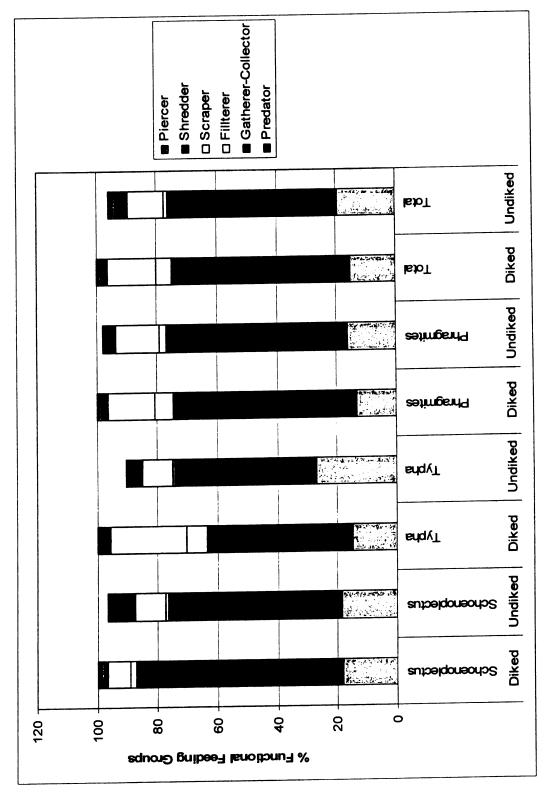


Figure 10. Percent functional feeding groups from diked and undiked Schoenoplectus, Typha, and Phragmites zones.

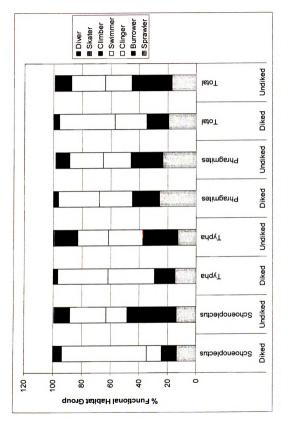


Figure 11. Percent functional habitat groups from diked and undiked Schoenoplectus, Typha, and Phragmities zones.

Invertebrate Frequency

Naididae was the most frequently observed invertebrate (>90%) collected in diked and undiked marshes (Table 6). In undiked marshes, Amphipoda was the second most frequently found taxa but *Gammarus* was the only Amphipod to be frequently caught in all three vegetation zones (77-89%) (Table 6). Hydracarina was also frequently found in all three vegetation zones (67-70%). Four Gastropods were frequently found in the *Schoenoplectus* zone while three were found in the *Phragmites* zone and only one (*Gyraulus*) was found in the *Typha* zone. There were five Dipterans that were found in *Phragmites*, four in *Typha*, and three in *Schoenoplectus* (Table 6). *Mesovelia* was only frequent in *Schoenoplectus* (73%) and *Typha* (81%) zones. *Caenis* was only frequent in *Typha* (52%) and *Phragmites* (77%) zones. *Schoenoplectus* was unique from the other zones in that immature Coenagrionidae (53%), *Enallagma* (70%), and *Oxyethira* (50%) were only caught in that zone at a frequency >50% (Table 6). *Typha* had three unique taxa: *Crangonyx* (59%), *Caecidotea* (56%), and *Belostoma* (59%) (Table 6). *Phragmites* had two unique taxa: *Ranatra* (68%) and Homoptera (58%) (Table 6).

In diked marshes, Gyraulus (95-100%), Hyalella (100%), Caenis (100%), Chironomidae pupae (100%), and Tanypodinae (90-100%) were all found at >90% frequency (Table 6). Hydracarina was found at 100% of replicates collected from Schoenoplectus and Phragmites, but only at 89% in Typha. Hirudinea was frequently found in all three vegetations but was most frequently found in Schoenoplectus (81%). Parapoynx was also frequently found in all three zones (52-63%). Seven Gastropods were frequently found in Schoenoplectus and Phragmites marshes and five were found in Typha.

Table 5. Percent Invertebrate Frequency (>50%) from Diked and Undiked Marshes in Schoenoplectus, Typha, and Phragmites Zones.

v _			,	Diked			Undiked	
	Hirudinea		Schoenoplectus 81	Typha 63	Phragmites	Schoenoplectus	Typha	Phragmites
	Naididae		100	6) [0	6	96	07
	Sphaeriidae		62	68	86		2	
Gastropoda A	ncylidae		52	3	~			
	Viviparidae		19		70	09		52
J.	ymnaeidae	Stagnicola	<i>L</i> 9			}		55
	Physidae	Physa	98	93	93	29		74
<u>a</u>	Planorbidae	Gyraulus	95	96	100	77	59	84
		G. crista		52	98			
		Planorbella	92	70	85			
	Hydracarina		100	68	100	70	29	89
Amphipoda C	Crangonyctidae	Crangonyx	29	93			59	1
9	ammaridae	Gammarus				83	8	7.7
Ţ	Talitridae	Hyalella	100	100	100	53		8
Decapoda Pa	Palaemonidae	Palaemonetes	<i>L</i> 9			:		
Isopoda A	Asellidae	Caecidotea		81	56		26	
		Lirceus	57					
Ephemeroptera C	Caenidae	Caenis	100	100	100		52	77
Odonata C	Coenagrionidae	Imm.	06	63	93	53		
		Enallagma	<i>L</i> 9			70		
<u> </u>	Libellulidae		76	68	81			
	Courduliidae				26			
Hemiptera B	Belostomatidae	Belostoma					59	
S	Corixidae		7.1		59			

Table 5. Cont.								
	Mesovelidae	Mesovelia	9/			73	81	
	Nepidae Notonectidae	Ranatra	62	52	56			89
	Dleidee		ć	i	ć			
	rieidae Veliidae		90 52	4/	93			
Homoptera								85
Trichoptera	Hydroptilidae	Oxyethira	71		59	50		2
	Leptoceridae		92	52	59			
	Polycentropodidae		92		70			
Lepidoptera	Pyralidae		52	63	52			
Coleoptera	Noteridae		62					
Diptera	Ceratopogonidae		<i>L</i> 9	70	81	80	59	65
	Chironomidae	Pupae	100	100	100			
		Chironomini		59		<i>L</i> 9	52	71
		Tanytarsini	71	93	100			55
		Tanypodinae	06	93	100	80	52	58
		Orthocladinae			52		52	52
	Stratiomyidae			70				

Ancylidae and Viviparidae were found in Schoenoplectus (52%) and Phragmites (81%) zones and Gyraulus crista was found in Typha (52%) and Phragmites (56%) zones. Amphipods were found in all three zones but Crangonyx was only frequent in Schoenoplectus (67%) and Typha (93%) zones. There were three Odonata frequently caught in Schoenoplectus and Phragmites zones but only two in Typha. Most Hemiptera that were frequently caught were from the Schoenoplectus zone. Three Trichoptera were frequent in Schoenoplectus and Phragmites zones but only Setodes (52%) was in Typha. Each zone had five Dipterans frequently found. Schoenoplectus had six unique taxa: Stagnicola (67%), Palaemonetes (67%), Lirceus (57%), Enallagma (67%), Mesovelia (76%), Veliidae (52%), and Hydrocanthus (62%) (Table 6). Typha had two unique taxa: Chironomini (59%) and Stratiomyidae (70%) (Table 6). Phragmites had two unique taxa: Corduliidae (56%) and Orthocladinae (52%) (Table 6).

DISCUSSION

My hypothesis that invertebrate community species composition, total catch/
sample, richness, and evenness would differ significantly between diked and undiked
coastal marshes was partially supported. The total number of invertebrates per sample
and taxa richness significantly increased in diked marshes compared to undiked marshes.
The number of invertebrate/ sample was seven times higher in diked marshes than in
undiked marshes increasing from a mean of 541/ sample in undiked marshes to 3,748/
sample in diked marshes. Eighty percent of this unexpectedly large increase was the
result of increases in five taxa that are known to be important in waterfowl and wading
bird diets. They included Amphipoda, especially *H. azteca*, Naididae worms, *Caenis*mayflies, snails (Gastropoda), and non-biting midges (Chironomidae). Marshes have

traditionally been diked for waterfowl management in Great Lakes coastal marshes, and my findings suggest that diking is effective in producing more food for breeding waterfowl, especially when accompanied by maintenance of channels for hunter access. I sampled near the edge of each of the three plant zones, so invertebrates were likely a combination of taxa characteristic of the emergent zone and the adjacent open water channel dominated by submergent, floating and floating-leafed plants. Each area sampled was located in habitat where waterfowl or other water birds had been observed. These results suggest that waterfowl and wading birds feeding in the outer edge of the three plant zones have substantially greater access to invertebrate food resources in diked marshes than they do in undiked marshes.

Taxa richness increased from 33-36 taxa in undiked marshes to 48-52 taxa in diked marshes (Table 1). There were no significant differences in invertebrate diversity (H') or evenness (J') between diked and undiked marshes. Invertebrate communities in diked and undiked marshes shared 90 taxa in common out of a total of 144 taxa collected from Lake St. Clair marshes. Sorenson's percent similarity between diked and undiked communities and among communities in the three dominant plant zones was >70% for most comparisons. Thus, changes in community composition between diked and undiked marshes generally involved less than 30% of the taxa present in both. Of particular note was the substantial increase in dominance by *H. azteca* in diked marshes and its apparent displacement of *Gammarus* as the dominant amphipod in diked marshes compared to undiked marshes.

Dominant taxa were similar between diked and undiked marshes at the family or Order level with minimal differences among the three dominant plant zones present

(Schoenoplectus, Typha, and Phragmites). Dominant taxa included segmented worms, Naididae, side-swimmers or scuds, Hyalella and Crangonyx, the mayfly, Caenis, and snails, Gastropoda (Figure 9). These dominant groups are consistent with other researcher's findings for Lake St. Clair and the St. Clair River invertebrate communities (Davis et al. 1991, Ciborowski and Corkum 1988, French III 1988, Herdendorf et al. 1986). Additionally, other researchers have described these taxa as being dominant in Lake Ontario (Barton 1986), Lake Erie (De Szalay and Cassidy 2001, Herdendorf 1987) and Lake Huron coastal wetlands (Burton et al. 2002, Stricker et al. 2001, Barton and Griffiths 1984).

My findings differ from results found by McLaughlin and Harris (1990) for marshes in Green Bay, Wisconsin. They did not find significant differences in total number of invertebrates in diked marshes compared to undiked marshes but suggested that there were more invertebrates in diked marshes than undiked marshes. A possible reason that they failed to find significant differences was that they only sampled emerging insects. This would have excluded Naididae and Amphipoda, which dominated the invertebrate community in diked and undiked marshes in Lake St. Clair marshes (Figure 9).

My second hypothesis was that the invertebrate parameters listed above would be affected by plant zonation in diked and undiked marshes. I did not find significant differences in total number per sample, taxa richness, diversity, or evenness among plant zones in diked or undiked marshes. There were significant differences between the Coleoptera community of diked vegetation zones, and marginally significant differences in the Hemiptera community. Plant zone was marginally significant for seven taxa in

diked marshes, and was marginally significant for the mayfly, *Caenis*, in undiked marshes.

In other studies of Great Lake coastal marshes, vegetation type was correlated with the type of macroinvertebrate community present (Burton et al. 2004, 2002, French III 1988). McLaughlin and Harris (1990) and De Szalay and Cassidy (2001), showed that the largest numbers of invertebrates were found in sparse emergent zones within diked marshes but neither study found a significant difference between emergent vegetation zones and open water zones in diked marshes. Thus, my results are consistent with their studies.

Additionally, Fell et al. (2003) and Kulesza et al (2008) failed to find significant differences between the macroinvertebrate communities in *Typha* and *Phragmites* dominated marshes. I detected marginally significant differences between *Crangonyx* relative catch, *Caenis* total number and *Caenis* relative catch between *Phragmites* dominated zones compared to *Typha*, and *Schoenoplectus* zones but generally the invertebrate community was the most similar between *Typha* and *Phragmites*.

Like De Szalay and Cassidy (2001), the invertebrate community was dominated by invertebrates classified as gatherer-collectors (60%) which included the Oligochaetes, the Amphipods, and mayflies. Scrapers and Predators were abundant in diked and undiked marshes (>10%) and were mainly comprised of snails and mostly Odonates, Hemipterans, ceratopogonids, and chironomids. While De Szalay and Cassidy (2001) failed to collect any Filterers or Shredders, I did find a few but they made up <5% of the invertebrate community.

I documented differences in the three plant zones common to diked and undiked marshes in order to document changes in the potential prev base of avian fauna of diked and undiked Great Lake coastal marshes. Primarily, marsh birds eat immature and adult insects, snails, and crustaceans (Mazak et al. 1997, Kaminski and Prince 1981, Swanson et al. 1974, Krull 1970). Each avian species selectively forages for particular invertebrates, and favors intermediate to large-sized invertebrate families (Mazak et al. 1997, Kaminski and Prince 1981, Swanson et al. 1979, Swanson et al. 1974). I frequently (>50% replicates) caught more large organisms, such as Lepidoptera and Odonata, in diked marshes than in undiked marshes (Table 6). In fact, there were 13 times more Lepidoptera and 9 times more Odonates in diked marshes (Table 3). The Gastropods, Viviparidae, Gyraulus, and Planorbella significantly increased in diked marshes and there were between 8-13 times more in diked marshes. The largest significant increase in diked marshes compared to undiked marshes was the very large 35 fold increase in the amphipod crustaceans, Hyallela and Crangonyx. Amphipods are among the important prey for waterfowl and fish in the Midwest (Anteau and Afton 2008) and are known to reach very high densities in submersed aquatic vegetation. Submersed aquatic vegetation was common in the hunter access channels adjacent to the emergent zones that I sampled in the diked marshes.

Krull (1970) suggested that the vegetation zone-invertebrate interaction is important for foraging avian species. He showed that plants that were poor waterfowl food, typically harbored more invertebrates and that these plants would be indirectly important for waterfowl. Examples of invertebrates which showed changes between plant zone and which may be important to birds in diked and undiked marshes include: the grass shrimp

in Schoenoplectus zones of diked and undiked (Table 3, Table 4) marshes: the moth, Parapoynx in diked (Table 3, Table 4), and damselfly, Ischnura in undiked Typha zones (Table 3, Table 4); and the mayfly, Caenis, which is found in the highest relative catch in the Phragmites zones in diked and undiked marshes (Table 3, Table 4).

Just as McLaughlin and Harris (1990) suggested, diked marshes would seem to be a preferred habitat for foraging marsh birds because of the significant increase in aquatic invertebrates. Preliminary examination of data from bird surveys at randomly selected open water areas at St. Clair Flats indicate higher densities of Canada goose (*Branta canadensis*), wood duck (*Aix sponsa*), and black tern (*Chlidonias niger*) in diked compared to undiked marshes; however, black terns were only observed nesting in undiked marshes and densities varied by site and year (M. Monfils pers. comm.). In undiked coastal marshes, mallard (*Anas platyrhynchos*), American coot (*Fulica americana*), pied-billed grebe (*Podilymbus podiceps*), and Forster's tern (*Sterna forsteri*) were recorded at higher overall densities compared to diked areas, although densities also varied by site and year (M. Monfils pers. comm.) Many of the above avian species eat large amounts of invertebrates during the breeding season (Herdendorf et al. 1986, Kaminski and Prince 1981, Krull 1970)

Conclusion

The St. Clair River delta marshes are highly productive Great Lakes coastal marshes that exhibit high habitat and species diversity (Albert 2003, French III 1988, Herdendorf et al. 1986). Some notable examples of threatened and endangered species include: the king rail (*Rallus elegans*), the spotted turtle (*Clemmys guttata*), and the eastern fox snake (*Elaphe gloydi*) (personal observations). These marshes also support

great numbers of avian fauna that utilize these marshes as important resting and/or breeding areas (Prince et al. 1992, Herdendorf et al. 1986, personal observations). While there is extensive literature on the feeding ecology of waterfowl (Mazak et al. 1997, Prince et al. 1992, Kaminski and Prince 1981, Swanson et al. 1979, Swanson et al. 1974), few studies have looked at the invertebrate community within diked Great Lakes coastal marshes which are managed for waterfowl production (De Szalay and Cassidy 2001, McLaughlin and Harris 1990, Herdendorf et al. 1986)

Studies have demonstrated that diking coastal marshes leads to changes in the aquatic invertebrate, fish and plant communities (Herrick and Wolf 2005, Thiet 2002, Jude and Pappas 1992, McLaughlin and Harris 1990). These studies have shown mixed results as to whether these diked marshes are beneficial or harmful. In general, dikes cutoff water fluctuations that naturally occur in coastal marshes, harbor greater number of invasive plants, and are generally nutrient enriched (Herrick and Wolf 2005, Thiet 2002, McLaughlin and Harris 1990, Herdendorf et al. 1986).

While diked marshes were more productive for the overall invertebrate community, it should not be concluded that diking coastal marshes is beneficial. In fact, diked marshes harbored more invertebrates that are typically collected in inland marshes, such as mosquitoes which were collected in 10-19% of diked replicates compared to 0-4% of undiked replicates. Additionally, there appeared to be taxa that were sensitive to diked marshes, such as the marsh treader, *Mesovelia*, which total number typically was greater in undiked marshes, and the damselfly, *Enallagma*, which uncharacteristically, of the other Odonates, did not increase in total number in diked marshes. The amphipod,

Gammarus, was a dominant invertebrate in undiked marshes but was absent from diked marshes.

I did not find significant effects caused by vegetation zone but I did find seven taxa in diked marshes and one taxon in undiked marshes that were marginally significant between plant zones. This was not surprising due to the fact that I limited sampling to the edges of vegetation zones where marsh birds predominately feed. In other coastal marshes, plant zone and water level fluctuations are important covarying factors that structures invertebrate communities (Burton et al. 2004, 2002, Stricker et al. 2003, Merritt et al. 2002, Cardinale et al. 1998). Future studies of the invertebrate community of the St. Clair deltaic coastal marshes should focus on sampling areas that are further into vegetation zones so as to exclude edge effects if the goal is to describe differences among plant zones. I was more interested in documenting the differences in habitat use at the edge of the three plant zones, since this is where most aquatic birds concentrate their feeding, and in documenting differences between diked and undiked marshes.

Phragmites appears to be expanding its dominance of coastal wetland plant communities throughout the Great Lakes region and may potentially cause significant changes to invertebrate and vertebrate communities in other Great Lake coastal marshes. While my study results may be useful for trying to determine the effects of the Phragmites spread, it should be used with caution. By sampling the edge of Phragmites dominated marshes, I sampled areas that were potentially the newest growth in which the invertebrate community would not have had enough time to redistribute itself. Also, invertebrates from the adjacent channels were likely included in the areas that I sampled. To truly test the effects that the invasion of Phragmites has on marsh invertebrate

communities, samples would have to be collected in mature stands and far enough into the vegetation stand to exclude edge effects.

Appendix A. List of Macroinvertebrate taxa identified from Lake St. Clair Delta Marshes (Little Muscamoot Bay, Dickinson Island, East Marsh, and West Marsh) in July 2006.

Class	Order	Family	Таха		Feeding Group	Habitat Group	
Annelida	Hirudinea				Predator	Sprawler	
Oligochaeta		Naididae			Gatnerer- collector	Burrower	
		: !			Gatherer-		
		Tubificidae			collector	Burrower	
Bivaivia		Sphaeriidae			Filterer	Clinger	
		Unionidae	Dreissena	polymorpha	Filterer	Clinger	
Gastropoda		Ancylidae			Scraper	Clinger	
		Hyrobiidae	Somatogyrus		Scraper	Clinger	
		Lymnaeidae	Acella	haldermani	Scraper	Clinger	
			Fossaria		Scraper	Clinger	
			Pseudosuccinea		Scraper	Clinger	
			Stagnicola		Scraper	Clinger	
		Physidae	Aplexa		Scraper	Clinger	
			Physa		Scraper	Clinger	
			Physella		Scraper	Clinger	
		Planorbidae	Gyraulus	crista	Scraper	Clinger	
			Menetus		Scraper	Clinger	
			Planorbella	exacnons	Scraper	Clinger	
			Promenetus		Scraper	Clinger	
		Viviparidae	Campeloma		Scraper	Clinger	
			Cipangopaludina	japonious	Scraper	Clinger	
		Valvatidae	Pleurocera		Scraper	Clinger	
•			Valata		Scraper	Clinger	
Arachnida	Hydracarina				Predator	Swimmer	
	:				Gatherer-		
	Amphipoda	Crangonycitidae	Crangonyx		collector	Swimmer	
		Gammaridae	Gammarus		Gatherer-	Swimmer	

	Swimmer	Burrower	Swimmer	Burrower	Burrower		Clinger	•	Swimmer		Swimmer		Swimmer		Sprawler		Burrower	Climber	Climber	Climber	Climber	Climber	Sprawler	Sprawler	Sprawler	Sprawler	Sprawler	Burrower	
collector Gatherer-	collector	Shredder	collector	Shredder	Shredder	Gatherer-	collector	Gatherer-	collector	Gatherer-	collector	Gatherer-	collector	Gatherer-	collector	Gatherer-	collector	Predator	Predator	Predator	Predator	Predator	Predator	Predator	Predator	Predator	Predator	Predator	
	azteca		kadiakensis																										
	Hyalella	Crayfish	Palaemonetes	Caecidotea	Lirceus			:	Baetis		Procloeon		Pseudocentroptiloides		Caenis			Aeshna	Boyeria	Basiaeschna	Enallagma	Ischnura	Cordulia	Didymops	Epitheca	Neurocordulia	Somatochlora		
	Talitridae		Palaemonidae	Asellidae					baetidae					:	Caenidae		Ephemeridae	Aeshnidae			Coenagrionidae		Courduliidae					Gomphidae	1 : 10 - 11 - 11 - 11
		Decapoda		Isopoda			Collembola	440	Epnemeroptera									Odonata											

Insecta

		Ladona	Predator	Sprawler
		Libellula	Predator	Sprawler
		Macrothemis	Predator	Sprawler
		Sympetrum	Predator	Sprawler
		Tramea	Predator	Sprawler
	Lestidae		Predator	
Hemiptera	Belostomatidae	Belostoma	Predator	Climber
	Corixidae		Piercer	Swimmer
	Gerridae		Predator	Skater
	Hebridae		Predator	Climber
	Hydrometridae	Hydrometra	Predator	Skater
	Mesovelidae	Mesovelia	Predator	Climber
	Naucoridae		Predator	Clinger
	Nepidae	Ranatra	Predator	Climber
	Notonectidae		Predator	Swimmer
	Pleidae		Predator	Swimmer
	Saldidae		Predator	Climber
	Veliidae		Predator	Skater
Homoptera				
Megaloptera	Corydalidae	Chauliodes	Predator	Clinger
Neuroptera	Sisyridae	Climacia	Predator	Climber
Trichoptera	Helicopsychidae	Helicopsyche	Scrapper	Clinger
	Hydropsychidae	Chematopsyche	Filterer	Clinger
	Hydroptilidae	Agraylea	Piercer	Climber
		Dibusa	Scraper	
		Hydroptila	Piercer	Clinger
			Gatherer-	•
		Orthothrichia	collector	
		Oxyethira	Piercer	Climber
			Gatherer-	
	Leptoceridae	Ceraclea	collector	Sprawler

		Leptocerus	Shredder	Swimmer
			Gatherer-	
		Mystacides	collector	Sprawler
		Nectopsyche	Shredder	Climber
		Oecetis	Predator	Clinger
			Gatherer-	
		Setodes	collector	Sprawler
		Trianodes	Shredder	Swimmer
	Limnephilidae	Limnephilus	Shredder	Climber
	Molannidae	Molanna	Scraper	Sprawler
	Phryganeidae	Fabria	Shredder	Climber
	Polycentropodidae	Neuroclipsis	Filterer	Clinger
:		Polycentropus	Predator	Clinger
Lepidoptera	Arctiidae	Estigmene	Shredder	Burrower
	Nepticulidae		Shredder	Burrower
	Noctuidae	Simyra	Shredder	Burrower
	Pyralidae	(Nymphulinae)	Shredder	Climber
		Acentria	Shredder	Climber
		Crambus	Shredder	Climber
		Parapoynx	Shredder	Climber
		Petrophila	Shredder	Climber
	Tortricidae	Archips	Shredder	Burrower
Coleoptera	Carabidae		Predator	Clinger
	Chrysomelidae		Shredder	Clinger
	Curculionidae		Shredder	Clinger
	Dytiscidae	Agabetes	Predator	Swimmer
		Agabus	Predator	Swimmer
		Celina	Predator	Swimmer
		Cybister	Predator	Swimmer
		Desmopachria	Predator	Swimmer

Predator

Swimmer	Swimmer	Swimmer	Swimmer	Swimmer	Swimmer	Swimmer	Swimmer	Swimmer	Cinger	•	Swimmer		Burrower			Climber		Clinger	Climber	Climber	Clinger	Sprawler			Swimmer		Burrower		Clinger	Sprawler
Predator	Predator	Predator	Predator	Predator	Predator	Predator	Piercer	Piercer	Scrapper	Shredder	Piercer	Gatherer-	collector	Predator	Piercer	Predator			Predator	Scrapper	Predator	Predator	Predator	Gatherer-	collector	Gatherer-	collector	Gatherer-	collector	Predator
Hydrovatus	Illybius	Laccophilus	Laccomis	Matus	Dineutus	Gyrinus	Haliplus	Peltodytes		Hydrochus	Berosus	i	Enochrus	Hydrophilus	Laccobius	Tropisternus		Lutrochus	Hydrocanthus	Cyphon					pupae		Chironomini	:	Orthocladinae	Tanypodinae
				1	Gyrinidae		Haliplidae		Hydraenidae	Hydrochidae	Hydrophilidae						Lampyridae	Lutrochidae	Noteridae	Scirtidae	Staphylinidae	Ceratopogonidae	Chaoboridae	:	Chironomidae					

Diptera

	ı anytarsını	Filterer	Clinger
Culicidae		Filterer	Swimmer
		Gatherer-	
Dixidae		collector	Swimmer
		Gatherer-	
Ephydridae		collector	
Sciomyzidae		Predator	Burrower
		Gatherer-	
Stratiomyidae		collector	Sprawler
Tabanidae	Tabanus	Predator	Sprawler
Tipulidae		Shredder	Burrower

Appendix B. List of Taxa found in Diked and Undiked Marshes from the Three Plant Zones. (X) Denotes Taxa Present and (*) is for taxa used for statistical comparisons.

					Diked			Undiked	
				Schoenoplectus	Typha	Phragmites	Schoenoplectus	Typha	Phragmites
Order	Family	Таха							
Hirudinea*				×	×	×	×	×	×
	Naididae*			×	×	×	×	×	×
	Tubificidae*			×	×	×	×	×	×
	Sphaeriidae*			×	×	×	×	×	×
	Unionidae	Dreissena	polymorpha						×
Gastropoda*	Ancylidae*			×	×	×	×	×	×
	Hyrobiidae	Somatogyrus				×			
	Lymnaeidae	Acella	haldermani				×	×	×
		Fossaria							×
		Pseudosuccinea		×	×	×		×	×
		Stagnicola*		×	×	×	×	×	×
	Physidae	Aplexa		×	×				
		Physa*		×	×	×	×	×	×
		Physella			×				
	Planorbidae	Gyraulus*		×	×	×	×	×	×
		Gyraulus	crista*	×	×	×			
		Menetus		×	×	×	×		
		Planorbella*		×	×	×	×	×	×
		Promenetus	exacnons	×	×	×	×	×	
	Viviparidae*	Сатреюта		×					
		Cinendonaludina	iaponious			×			

					: ×														×									×
×					: × : ×		: × ×							× ×		×	× ×			× ×							×	
		×	×		×	×	×	×	×	×				×		×			×	×	×	×	×		×	×	×	
		×	×		×	×	×	×	×	×			×	×		×	×	×	×	×	×		×			×		
	×	×	×		×	×	×	×	×				×	×		×	×		×	×	×		×	×				
							kadiakensis*																					
Pleurocera	Valata		Crangonyx*	Gammarus	Hyalella*	Crayfish*	Palaemonetes	Caecidotea*	Lirceus*		Baetis	Procloeon	Pseudocentroptiloides	Caenis*		Aeshna	Boyeria	Basiaeschna	Enallagma⁴	Ischnura*	<i>lmm</i> ⁴	Cordulia	lmm	Didymops	Epitheca	Neurocordulia	Somatochlora	
Valvatidae			Crangonycitidae	Gammaridae	Talitridae		Palaemonidae	Asellidae			Baetidae			Caenidae	Ephemeridae	Aeshnidae			Coenagrionidae			Courduliidae						Gomphidae
		Hydracarina*	Amphipoda		Appendix B Cont.	Decapoda		Isopoda		Collebola	Ephemeroptera					Odonata*												

×	:		×			×	:	×	×	×	×	×	×		×	×	×	×	×	×	×				×		×		×	×
×					×			×	×	×	×		×	×	×	×	×		×	×	×	×	×		×		×		×	×
					×			×	×	×			×	×	×	×	×	×	×	×	×			×	×				×	×
×			×		×	×		×	×	×			×	×	×	×	×		×	×	×	×			×			×	×	×
×	×	×	×		×	×	×	×	×	×			×		×	×	×		×		×	×			×				×	×
×			×	×	×	×		×	×	×	×		×	×	×	×	×		×	×	×	×			×	×		×	×	×
	6			is				•_				gs	•								*5		he	che			•	iia	•	
lmm*	Erythemis	Ladona	Libellula	Macrothemis	Sympetrum	Tramea		Belostoma'				Hydrometra	Mesovelia		Ranatra*						Chauliodes*	Climacia*	Helicopsyche	Chematopsy	Agraylea	Dibusa	Hydroptila	Orthothrichia	Oxyethira*	Ceraclea*
Libellulidae							Lestidae	Belostomatidae	Corixidae*	Gerridae	Hebridae	Hydrometridae	Mesovelidae	Naucoridae	Nepidae	Notonectidae*	Pleidae⁴	Saldidae	Veliidae⁴		Conydalidae	Sisyridae	Helicopsychidae	Hydropsychidae Hydropsychidae	Hydroptilidae					Leptoceridae
								Hemiptera*												Homoptera	Megaloptera	Neuroptera	Trichoptera*							

	×	×	;	×	: ×	: ×	:	>	<	×	;		×	×	×		×	;		×		×	×				×		×	
	×	×	×			×	: ×	;		×					×		×		×			×						×	×	
×	×		×	×	×	×	×	•	×	×	×	×			×	×	×					×	×				×	×	×	
×				×				×	:	×					×	×	×				×		×		×		×	×	×	×
×	×			×		×		×		×		×	×		×	×	×	×	×			×		×	×	×	×	×	×	×
×				×	×					×					×	×	×								×			×	×	×
Leptocerus	Mystacides	Nectopsyche	Oecetis	Setodes*	Trianodes	Limnephilus	Molanna	Fabria	Neuroclipsis	Polycentropus*	Estigmene		Simyra	(Nymphulinae)	Acentria⁴	Crambus	Parapoynx*	Petrophila	Archips				Agabetes	Agabus	Celina	Cybister	Desmopachria	Hydroporus	Hydrovatus*	Hygrotus
						Limnephilidae	Molannidae	Phryganeidae	Polycentropodidae		Arctiidae	Nepticulidae	Noctuidae	Pyralida e					Tortricidae	Carabidae	Chrysomelidae	Curculionidae	Dytiscidae*							
											Lepidoptera*									Coleoptera*										

×	:		×	×	< >	:		×	ζ	×	: ×	:		×		×	: ×		×	: ×	:	×	×	×	×	×		×		×
										×			×	×	×		×	,	×	×	:	×	×	×	×	×	×	×		
					×												×			×	:	×	×	×	×	×				
×		×	×	×	×	×	×	×		×				×			×		×	×		×	×	×	×	×	×	×		×
×	×		×	×	×	×	×	×		×		×	×	×	×		×	×	×	×		×	×	×	×	×	×		×	×
			×	×	×	×		×	×			×		×			×			×	×	×	×	×	×	×	×		×	×
Illybius	Laccophilus	Laccomis	Matus*	Dineutus	Gyrinus	Haliplus	Pettodytes		Hydrochus	Berosus	Enochrus	Hydrophilus	Laccobius	Tropistemus*		Lutrochus	Hydrocanthus*	Cyphon				pupae	Chironomini*	Orthocladinae*	Tanypodinae*	Tanytarsini*				
				Gerinidae		Haliplidae		Hydraenidae	Hydrochidae	Hydrophilidae					Lampyridae	Lutrochidae	Noteridae	Scirtidae	Staphylinidae	Ceratopogonidae*	Chaoboridae	Chironomidae					Culicidae	Dixidae	Ephydridae	Sciomyzidae

Diptera*

××

××

×××

× ×

××

××

Tabanus

Stratiomyidae* Tabanidae Tipulidae*

Appendix C. Mean (±Standard Error) Water Chemistry for Diked and Undiked Marshes in Schoenoplectus, Typha and Phragmites.

Wetland Type		Diked			Undiked	
Plant Zone	Schoenoplectus	Typha	Phragmites	Schoenoplectus	Турћа	Phragmites
Z	12	29	15	29		81
Depth (cm)	36.38 ±6.99	29.71	38.50	39.10 ±3.86	41.73	30.69 ±3.61
		±4.00	±5.94		±7.56	
Temperature	25.45 ±1.10	25.63	25.25	24.46 ±0.73	24.50	24.85 ±1.12
(aC)		±0.82	±1.13		≠0.65	
Hd	7.38 ±0.26	7.41	7.33 ±0.26	7.95 ±0.14	8.10	7.73 ±0.25
		±0.12			±0.17	
Dissolved	4.63 ±1.18	3.85	3.97 ±1.00	6.25 ±0.46	6.40	5.32 ±0.61
Oxygen (mg/L)		78.0∓			±0.64	
Salinity (PPT)	0.10 ±0.03	90.0	0.09 ±0.03	0.03 ±0.01	90.0	0.05 ±0.02
		±0.05			±0.05	
Turbidity	7.88 ±4.36	20.12	7.13 ±3.93	4.92 ±1.45	66.9	5.30 ±1.27
(NTU)		±7.92			±2.33	

11.11	0.20 ±0.06	0.11	0.11 0.18 ±0.06	0.05 ±0.02	0.12	$0.12 0.10 \pm 0.04$
Conductivity		±0.04			±0.04	
(SpC) (mS/L)						
Alkalinity 1	175.00 ±9.44	190.0	178.00	119.23 ±3.31	112.00	118.75
(mg/L)		0	±12.36		±4.78	±5.14
		±9.58				

Appendix D. Mean Hemiptera Shannon's Diversity (H'), Taxa Richness, Evenness (J') for Diked and Undiked Marshes, from Schoenoplectus, Typha, and Phragmites Zones.

Marsh Type	Vegetation Zone	Diversity (H')	Richness	Evenness (J')
Undiked		0.60±0.03	5.97±0.36	0.81±0.02
	Schoenoplectus	0.57±0.04	5.4±0.65	0.81±0.03
	Typha	0.60±0.07	6.33±0.69	0.77±0.04
	Phragmites	0.65±0.04	6.20±0.55	0.84±0.02
Dike		0.51±0.03	5.56±0.39	0.72±0.04
	Schoenoplectus	0.50±0.06	6.29±0.84	0.66±0.08
	Турһа	0.56±0.05	5.11±0.45	0.83±0.05
	Phragmites	0.46±0.06	5.44±0.75	0.66±0.05
	rnragmites	0.40±0.06	3. 44 ±0./3	0.00±0.03

Appendix E. Mean Odonata Shannon's Diversity (H'), Taxa Richness, and Evenness (J') for Diked and Undiked from Schoenoplectus, Typha, and Phragmites Zones.

Marsh Type	Vegetation Zone	Diversity (H')	Richness	Evenness (J')
Undiked		0.27±0.04	2.31±0.24	0.62±0.07
	Schoenoplectus	0.29±0.06	2.60±0.48	0.67±0.12
	Typha	0.26±0.07	2.11±0.42	0.61±0.15
:	Phragmites	0.26±0.06	2.20±0.39	0.57±0.13
Diked		0.57±0.04	6.28±0.47	0.76±0.02
	Schoenoplectus	0.52±0.06	5.71±0.84	0.73±0.05
	Typha	0.64±0.06	6.78±0.72	0.81±0.03
	Phragmites	0.55±0.06	6.22±0.92	0.74±0.05

Appendix F. Mean Trichoptera Shannon's Diversity (H'), Taxa Richness, Evenness (J') for Diked and Undiked Marshes from Schoenoplectus, Typha, and Phragmites Zones.

Marsh Type	Vegetation Zone	Diversity (H')	Richness	Evenness (J')
Undiked		0.34±0.04	3.17±0.41	0.61±0.07
	Schoenoplectus	0.31±0.08	3.70±0.91	0.55±0.09
	Typha	0.31±0.10	2.44±0.82	0.57±0.19
	Phragmites	0.38±0.06	3.30±0.60	0.72±0.09
Diked		0.46±0.03	4.28±0.34	0.77±0.04
	Schoenoplectus	0.48±0.06	4.57±0.72	0.77±0.06
	Typha	0.41±0.06	3.56±0.58	0.76±0.10
	Phragmites	0.50±0.05	4.78±0.49	0.77±0.05

Appendix G. Mean Lepidoptera Shannon's Diversity (H'), Taxa Richness, Evenness (J') for Diked and Undiked Marshes from Schoenoplectus, Typha, and Phragmites Zones.

Marsh Type	Vegetation Zone	Diversity (H')	Richness	Evenness (J')
Undiked		0.03±0.02	0.59±0.13	0.10±0.06
	Schoenoplectus	0.03±0.03	0.50±0.22	0.10±0.10
	Typha	0.03±0.03	0.67±0.24	0.11±0.11
	Phragmites	0.03±0.03	0.60±0.22	0.09±0.09
Diked		0.18±0.03	1.84±0.19	0.46±0.08
	Schoenoplectus	0.23±0.06	1.86±0.40	0.63±0.17
	Typha	0.15±0.05	1.89±0.35	0.39±0.13
	Phragmites	0.17±0.05	1.78±0.28	0.39±0.14

Appendix H. Mean Coleoptera Shannon's Diversity (H'), Taxa Richness,

Evenness (J') for Diked and Undiked Marshes from Schoenoplectus, Typha, and

Phragmites Zones.

Marsh Type	Vegetation Zone	Diversity (H')	Richness	Evenness (J')
Undiked		0.37±0.04	3.10±0.32	0.67±0.07
	Schoenoplectus	0.31±0.07	2.70±0.45	0.66±0.12
	Typha	0.29±0.10	2.33±0.62	0.52±0.16
	Phragmites	0.51±0.05	4.20±0.44	0.83±0.04
Diked		0.57±0.07	6.48±0.91	0.70±0.06
	Schoenoplectus	0.23±0.12	3.14±1.14	0.32±0.14
	Typha	0.71±0.10	8.56±2.03	0.86±0.02
	Phragmites	0.71±0.06	7.00±0.67	0.84±0.04

Appendix I. Mean Gastropoda Shannon's Diversity (H'), Taxa Richness, and Evenness (J') for Diked and Undiked Marsh from Schoenoplectus, Typha, and Phragmites Zones.

Marsh Type	Vegetation Zone	Diversity (H')	Richness	Evenness (J')
Undiked		0.52±0.03	5.10±0.36	0.75±0.03
	Schoenoplectus	0.56±0.03	5.80±0.55	0.78±0.04
	Typha	0.45±0.08	4.22±0.74	0.69±0.09
	Phragmites	0.54±0.04	5.20±0.51	0.77±0.02
Diked		0.61±0.03	7.28±0.38	0.72±0.02
	Schoenoplectus	0.66±0.06	7.57±0.92	0.77±0.05
	Typha	0.56±0.05	6.89±0.63	0.68±0.05
	Phragmites	0.63±0.03	7.44±0.50	0.73±0.02

Literature Cited

Albert, D. A. 2003. Between land and lake: Michigan's Great Lakes coastal wetlands. Michigan Natural Features Inventory, Michigan State University Extension, East Lansing, Mich.: Extension Bulletin E-2902. 96p.

Albert, D. A. 2001. Natural community abstract for Great Lakes marsh. Michigan Natural Features Inventory. Lansing, MI. 11 pp.

Angradi, T.R., S.M. Hagan, and K.W. Able. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: *Phragmities* vs. *Spartina*. *Wetlands*. 21: 75-92.

Anteau, M. J. and A. D. Afton. 2008. Amphipod densities and indices of water quality across the Midwest, USA. Wetlands. 28(1):184-196.

Barton D. R. 1986. Nearshore benthic invertebrates of the Ontario waters of Lake Ontario. J. Great Lakes Res. 12(4):270-280.

Barton D. R. and M. Griffiths. 1984. Benthic invertebrates of the nearshore zone of Eastern Lake Huron, Georgian Bay, and North Channel. *J. Great Lakes Res.* 10(4): 407-416.

Bedford, K.W. 1992. The physical effects of the Great Lakes on tributaries and wetlands. J. Great Lakes Res. 18(4):571-589.

Bricker, K.S., F. J. Bricker and J. E. Gannon. 1976. Distribution and abundance of zooplankton in the U. S. waters of Lake St. Clair, 1973. *J. Great Lakes Res.* 2(2): 256-271.

Burch, J.B. 1982. North American freshwater snails: Identification keys, generic synonymy, supplemental notes, glossary, references, index. Walkerana. 1(4):217-365.

Burch, J.B. and J.L. Tottenham. 1980. North American freshwater snails: Species list, ranges, and illustrations. *Walkerana*. 1(3):81-215.

Burdick, D.M. and R.A. Konisky. 2003. Determinants of the expansion for *Phragmites australis*, common reed, in natural and impacted coastal marshes. *Estuaries*. 26(2B):407-416.

Burton, T.M., C.A. Stricker, and D.G. Uzarski. 2002. Effects of plant community composition and exposure to wave action on invertebrate habitat use of Lake Huron coastal wetlands. Lakes & Reservoirs: Research and Management. 7:255-269.

- Burton, T.M., D.G. Uzarski, and J.A. Genet. 2004. Invertebrate habitat use in relation to fetch and plant zonation in northern Lake Huron coastal wetlands. *Aquatic Ecosystem Health & Management*. 7(2):249-267.
- Burton, T.M., D.G. Uzarski, J.P. Gathman, J.A. Genet, B.E. Keas, and C.A. Stricker. 1999. Development of a preliminary invertebrate index of biotic integrity for Lake Huron coastal wetlands. *Wetlands*. 19(4): 869-882.
- Cardinale, B.J., V.J. Brady, and T.M. Burton. 1998. Changes in the abundance and diversity of coastal wetlands fauna from the open water/ macrophyte edge towards shore. *Wetlands Ecology and Management*. 6:59-68.
- Chadde, S. W. 2002. A Great Lakes Wetland Flora: A complete guide to the aquatic and wetland plants of the upper Midwest. 2nd Ed. PocketFlora Press. Laurium, MI.
- Ciborowski, J. J. H. and L. D. Corkum. 1988. Organic contaminants in adult aquatic insects of the St. Clair and Detroit Rivers, Ontario, Canada. *J. Great Lakes Res.* 14(2): 148-156.
- Clifford, H.F. 1991. Aquatic Invertebrates of Alberta. University of Alberta. Edmonton, Alberta.
- Davis, B. M., P. L. Hudson and B. J. Armitage. 1991. Distribution and abundance of caddisflies (Trichoptera) in the St. Clair-Detroit River system. *J. Great Lakes Res.* 17(4): 522-535.
- Derecki, J. A. 1985. Effect of channel changes in the St. Clair River during the present century. J. Great Lakes Res. 11(3): 201-207.
- De Szalay, F.A. and W. Cassidy. Effects of muskrat (*Ondatra zibethicus*) lodge construction on invertebrate communities in a Great Lakes coastal wetland. *Am. Midl. Nat.* 146:300-310.
- Edsall, T. A., R. C. Haas, and J. V. Adams. 2001. Annual production of burrowing mayfly nymphs (*Hexagenia* spp.) in U.S. waters of Lake St. Clair. *J. Great Lakes Res.* 27(4): 449-456.
- Edsall, T.A., B.A. Manny, and C.N. Raphael. 1988. The St. Clair River and Lake St. Clair, Michigan: an ecological profile. U.S. Fish and Wildlife Service, Biological Report 85(7.3).
- Fell, P.E., R.S. Warren, J.K. Light, R.L. Rawson, Jr., and S.M. Fairley. 2003. Comparison of fish and macroinvertebrate use of *Typha angustifolia*, *Phragmites australis*, and treated *Phragmites* marshes along the lower Connecticut River. *Estuaries*. 26(2B):534-551.

French III, J. R. Effect of submersed aquatic macrophytes on resource partitioning in yearling rock bass (*Ambloplites rupestris*) and pumpkinseeds (*Lepomis gibbosus*) in Lake St. Clair. J. Great Lakes Res. 14(3): 291-300.

Gathman, J.P., T.M. Burton, and B.H. Armitage. 1999. Coastal wetlands of the upper Great Lakes: distribution of invertebrate communities in response to environmental variation. p. 949-94. *In* D.P. Batzer, R.B. Rader, and S.A. Wissinger (eds.) Invertebrates in Freshwater Wetlands of North America. John Wiley & Sons, Inc, New York, NY, USA.

Grothues, T.M., and K.W. Able. 2003. Response of juvenile fish assemblages in tidal salt marsh creeks treated for *Phragmites* removal. *Estuaries*. 26(2B):563-573.

Havens, K.J., H. Berquist, and W. I. Priest, III. 2003. Common reed grass, *Phragmites australis*, expansion into constructed wetlands: Are we mortgaging our wetland future? *Estuaries*. 26(2B):417-422.

Herdendorf, C.E., C. N. Raphael, and E. Jaworski. 1986. The ecology of Lake St. Clair wetlands: a community profile. U.S. Fish Wildl. Serv. Biol. Rep. 85(7.7). 187p.

Herdendorf, C.E. 1987. The ecology of the coastal marshes of western Lake Erie: a community profile. U.S. Fish Wildl. Serv. Biol. Rep. 85(7.9). 171p.

Herrick, B.M., and A.T. Wolf. 2005. Invasive plant species in diked vs. undiked Great Lakes wetlands. J. Great Lakes Res. 31:277-287.

Jivoff, P.R. and K.W. Able. Blue crab, *Callinectes sapidus*, response to the invasive common reed, *Phragmites australis*: abundance, size, sex ratio, and molting frequency. *Estuaries*. 26(2B):587-595.

Jude, D.J. and J. Pappas. 1992. Fish utilization of Great Lakes coastal wetlands. J. Great Lakes Res. 18(4):651-672.

Kaminski, R.M. and H. H. Prince. 1981. Dabbling duck activity and foraging response to aquatic macroinvertebrates. *The Auk.* 98(1): 115-126.

Krieger, K.A. 1992. The ecology of invertebrates in Great Lakes coastal wetlands: current knowledge and research needs. *J. Great Lakes Res.* 18(4):634-650.

Krull, J. N. 1970. Aquatic plant-macroinvertebrate associations and waterfowl. *J. Wildlife Management.* 34(4): 707-718.

Kulesza, A.E., J.R. Holomuzki, and D.M. Klarer. 2008. Benthic community structure in stands of *Typha angustifolia*, and herbicide-treated and untreated *Phragmites australis*. Wetlands. 28(1): 40-56.

Kulesza, A.E. and J.R. Holomuzki. 2006. Amphipod performance responses to decaying leaf litter of *Phragmites australis* and *Typha angustifolia* from a Lake Erie coastal marsh. *Wetlands*. 26(4):1079-1088.

Leach, J.H. 1980. Limnological sampling intensity in Lake St. Clair in relation to distribution of water masses. J. Great Lakes Res. 6(2): 141-145.

MacKenzie, R.A., J.L. Kaster, and J.V. Klump. 2004. The ecological patterns of benthic invertebrates in a Great Lakes coastal wetland. *J. Great Lakes Res.* 30(1):58-69.

Mazak, E. J., H. J. MacIsaac, M. R. Servos, and R. Hesslein. 1997. Influence of feeding habits on organochlorine contaminant accumulation in waterfowl of the Great Lakes. *Ecological Applications*. 7(4): 1133-1143.

McCullough, G.B. 1985. Wetland threats and losses in Lake St. Clair. *Coastal Wetlands*. Proc. First Great Lakes Coastal Wetlands Coll. Nov. 5-7, 1984. East Lansing, MI. Prince, H.H. and F. M. D'Itri, ed. Pp. 201-208.

McLaughlin, D.B. and H.J. Harris. 1990. Aquatic insect emergence in two Great Lakes marshes. Wetlands Ecology and Management. 1(2):111-121.

Merritt, R. W. M. E. Benbow and P. L. Hudson. 2002. Wetland macroinvertebrates of Prentiss Bay, Lake Huron, Michigan: diversity and functional group composition. *The Great Lakes Entomologist*. 35(2): 149-160.

Merritt, R.W. and K.W. Cummins. (eds). 1996. An introduction to the aquatic insects of North America, 3rd ed. Dubuque, IA: Kendall/Hunt Publishing Co.

Mitch, W.J. and J.G. Gosselink. 2000. Wetlands, third edition. John Wiley& Sons, Inc., New York, NY, USA.

Nalepa, T. F. and J. M. Gauvin. 1988. Distribution, abundance, and biomass of freshwater mussels (Bivalvia: Unionidae) in Lake St. Clair. *J. Great Lakes Res.* 14(4): 411-419.

Parsons, K.C. 2003. Reproductive success of wading birds using *Phragmites* marsh and upland nesting habitats. *Estuaries*. 26(2B): 596-601.

Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin, Jr. 1990. Freshwater Marcoinvertebrates of Northeastern North America. Comstock Publishing Associates. Cornell University Press. Ithaca, NY.

Prince, H.H., P.I. Padding, and R.W. Knapton. 1992. Waterfowl use of the Laurentian Great Lakes. J. Great Lakes Res. 18(4):673-699.

Quinn, F. H. 1985. Temporal effects of St. Clair River dredging on Lakes St. Clair and Erie water levels and connecting channel flow. *J. Great Lakes Res.* 11(3):400-403.

Quinn, F. H. 1980. Note: Wind stress effects on Detroit River discharges. J. Great Lakes Res. 6(2): 172-175.

Raichel, D.L., K.W. Able, and J.M. Hartman. 2003. The influence of *Phragmites* (common reed) on the distribution, abundance, and potential prey of a resident marsh fish in the Hackensack Meadowlands, New Jersey. *Estuaries*. 26(2B):511-521.

Rooth, J.E., J.C. Stevenson, and J.C. Cornwell. 2003. Increased sediment accretion rates following invasion by *Phragmites australis*: the role of litter. *Estuaries*. 26(2B):475-483.

Ruiz, G.M., P. Fofonoff, A.H. Hines, and E.D. Grosholz. 1999. Non-indigenous species as stressors in estuarine and marine communities: Assessing invasion impacts and interactions. *Limnol. Oceanogr.* 44(3, part 2):950-972.

Saltonstall, K., P.M. Peterson, and R.J. Soreng. 2004. Recognition of *Phragmites australis subsp. Americanus (Poaceae: Arundinoideae*) in North America: evidence from morphological and genetic analysis. *SIDA*. 21(2):683-692.

SAS Institute Inc. 2006. Version 9.1. Cary, NC, USA.

Schloesser, D.W. 1988. Zonation of mayfly nymphs and caddisfly larvae in the St. Marys River. J. Great Lakes Res. 14(2): 227-233.

State Of the Lakes Ecosystem Conference (SOLEC). 2004. Environment Canada and U.S. Environmental Protection Agency. ISBN 0-662-42425-5. EPA 905-R-06-001.

Stricker, C.A. 2003. The influence of water level fluctuations on water chemistry and invertebrate community composition in a Great Lakes coastal wetland. Dissertation, Michigan State University. 160p.

Stricker, C.A., T.M. Burton, V.J. Brady, B.J. Cardinale, and J.P. Gathman. 2001. Invertebrate communities of Great Lakes' coastal wetlands, Saginaw Bay, Lake Huron. *Verh. Internat. Verein. Limnol.* 27:3440-3443.

Swanson, G.A., G. L. Krapu, and J. R. Serie. 1979. Foods of laying female dabbling ducks on the breeding grounds. *Waterfowl and Wetlands: An Integrated Review.* Proc. 1977 Symp., Madison, WI, NC Sect., The Wildlife Society, T.A. Brookhout, ed. Pp 47-55.

Swanson, G.A., M. I. Meyer, and J. R. Serie. 1974. Feeding ecology of breeding bluewinged teals. J. Wildlife Management. 38(3): 396-407.

Tsanis, I. K., H. Shen, and S. Venkatesh. 1996. Water currents in the St. Clair and Detroit Rivers. J. Great Lakes Res. 22(2): 213-223.

Thiet, R.K. 2002. Diversity comparisons between diked and undiked coastal freshwater marshes on Lake Erie during a high-water year. *J. Great Lakes Res.* 28(2):285-298.

Thomas, R. L. M. D. Christensen, E. Szalinska and M. Scarlat. 2006. Formation of the St. Clair River delta in the Laurentian Great Lakes system. *J. Great Lakes Res.* 32: 738-748.

Thornley, S. 1985. Macrozoobenthos of the Detroit and St. Clair Rivers with comparisons to neighbouring waters. *J. Great Lakes Res.* 11(3): 290-296.

Thorp, J.H. and A.P. Covich. 1991. Ecology and Classification of North American Freshwater Invertebrates. Academic Press, Inc. San Diego, Ca.

Uzarski, D.G., T.M. Burton, and J.A. Genet. 2004. Validation and performance of an invertebrate index of biotic integrity for Lakes Huron and Michigan fringing wetlands during a period of lake level decline. *Aquatic Ecosystem Health and Management*. 7(2): 269-288.

Wainright, S.C., M.P. Weinstein, K.W. Able, and C.A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the dentritus of smooth cordgrass *Spartina alterniflora* and the common reed *Phragmites australis* to brackish-marsh food webs. *Mar. Ecol. Prog. Ser.* 200:77-91.

Weinstein, M.P. and J.H. Balletto. 1999. Does the common reed, *Phragmites australis*, affect essential fish habitat? *Estuaries*. 22(3B):793-802.

Weinstein, M.P., J.R. Keough, G.R. Guntenspergen, and S.Y. Litvin. 2003. Preface. *Phragmites australis:* A sheep in wolfs clothing? *Estuaries*. 26(2B):397.

Wiggins, G.B. 1977. Larvae of the North American Caddisfly Genera (Trichoptera). University of Toronto Press. Toronto, Canada.

Wilcox, K.L., S.A. Petrie, L.A. Maynard, and S.W. Meyer. 2003. Historical distribution and abundance of *Phragmites australis* at Long Point, Lake Erie, Ontario. *J. Great Lakes Res.* 29(4):664-680.

Windham, L. and R.G. Lathrop, Jr. 1999. Effects of *Phragmites australis* (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica river, New Jersey. *Estuaries*. 22(4):927-935.

Windham, L., J.S. Weis, and P. Weis. 2001. Patterns and processes of mercury release from leaves of two dominant salt marsh macrophytes, *Phragmites australis* and *Spartina alterniflora*. *Estuaries*. 24(6A):787-795.

Zanatta, D. T., G. L. Mackie, J. L. Metcalf-Smith, and D. A. Woolnough. 2002. Note: A refuge for native freshwater mussels (Bivalvia: Unionidae) from impacts of the exotic zebra mussel (Dressena polymorpha). J. Great Lakes Res. 28(3): 479-489.

Zar, J.H. 1999. Biostatistical Analysis. 4th Edition. Prentice-Hall, Englewood Cliff, New Jersey.

