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ABSTRACT

FAST COMPUTATIONAL TECHNIQUES FOR MULTISCALE
ELECTROMAGNETIC SIMULATIONS

By
Vikram Melapudi

Multiscale electromagnetic simulations contain features with multiple length or
frequency scales or both. Multiscale features are characteristic of realitic simulations
as large degrees of freedom (V) are required to capture the minute physical details.
Though integral equation (IE) approaches are well-suited for electromagnetic simu-
lations, they require repeated evaluation of pair-wise potentials - also referred to as
N-body problems. It is well known that the direct computation of these potentials
scales as O(N?2) both in terms of computer memory and time. Even with the rapid
advancements in computer technology, this places severe limitation on the size of the
problem (N) that can be analyzed in a realistic time frame. Further, multiscale sim-
ulations produce badly-conditioned systems of equations that require large number
of iterations when using Krylov-subspace solvers. The main goal of this thesis is to
develop a suite of computational techniques that enables multiscale electromagnetic
simulations in a fast, efficient and stable fashion. In this work, the accelerated Carte-
sian expansion (ACE) algorithm is used to overcome the quadratic cost-scaling of
N-body problems. ACE was intially developed for the fast evaluation of polynomial
potentials and here it is extended to the fast computation of retarded and Helmholtz
potentials. These algorithms are shown to be stable and efficient for computation of
electromagnetic potentials at sub-wavelength or low-frequency scales. Hybrid com-
bination of these algorithms with existing fast methods leads to the development of
multiscale electromagnetic solvers that are stable and efficient across length and fre-
quency scales. Since the fast algorithms only reduce the time spent in each iteration, a

new integral equation formulation is developed that yields better conditioned systems



of equations. This is achieved by reformulating the augmented field integral equations
such that the resulting operators are bounded and compact. Further, the widespread
availability of parallel distributed or cluster computers combined with the memory
and speed restriction of single processor computers necessitates the development of
efficient parallel implementation of the sophisticated fast algorithms. The parallel
algorithms developed in this work are provably scalabale and enables simulation of
problems with several millions of unknowns on large scale clusters, with hundreds
of processors and beyond. In this thesis, ACE algorithm is also extended to rapid

computation of time domain diffusion potentials.
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Chapter 1

Introduction

This chapter provides a comprehensive introduction to the development of fast mul-
tipole methods (FMM) within the context of electromagnetics. Section 1.1 gives a
brief account of the various developments in FMM that are elucidated in greater de-
tail in rest of the chapter. Section 6.2 provides a general introduction to hierarchical
algorithms, which forms the backbone of this thesis work. Section 1.3 and 1.4 details
the development of various versions of FMM for Laplace and Helmholtz equation,
respectively. Section 1.6 gives a preview of the developments made in this thesis work

along with the outline of the thesis.

1.1 Background

The numerical solution of Maxwell’s equations has typically proceeded along two
different paths. The first, and perhaps the more popular, is the direct discretization
of Maxwell’s equations [1, 2]. Finite difference and finite element methods belong to
this class of solvers. Their popularity stems from two salient features; (i) they are
typically simpler to program and (ii) their memory and CPU cost scales as O(N),

where N denotes the number of degrees of freedom. The second methodology for

1



solving Maxwell’s equations are based on developing integral equations (IE) derived by
evoking the Green’s identity/equivalence theorems. While the latter was introduced
in electromagnetics more than four decades ago [3], they were not a popular option
for electromagnetic analysis. The bottlenecks to their adoption was due to both the
memory and CPU complexity, both of which scale as @(N?2). This is despite some
of the inherent advantages of integral equations for analyzing open region problems,
viz., better condition numbers, possibility of using surface integral equations and

incorporation of the radiation boundary condition in the Green’s function.

The introduction of the fast multipole methods (and tree codes) significantly al-
tered the landscape. Both these methods were developed in response to accelerating
pairwise potential evaluations in N-body problems in fields ranging from biophysics
to computational chemistry to astrophysics, etc. Here, it is necessary to compute
long-range Coulombic potentials repeatedly between N randomly distributed parti-
cles. The tree methods [4, 5] and the fast multipole method (FMM) |6, 7, 8, 9] reduced
the computational complexity of computing these pairwise potentials from O(N 2) to
O(N). FMM and tree codes are based on a hierarchical decomposition of the com-
putational domain, and using multipole/local expansions to compute the influence
between sub-domains that are sufficiently separated. The FMM, as introduced in [7],
exploits the representation of the potential in terms of spherical harmonics. As we
shall see, this is a consequence of using addition theorems to represent the potential
as a series wherein each term is a product of two functions. These functions depend
either on the coordinates of the source or the observer only. The separation between
source and observer is crucial to creating a fast scheme. At about the same time,
an algorithm that achieves the same reduction on complexity, albeit using Cartesian
tensors was introduced [10]. This derivation relies on using Taylor expansion of the
potential function to provide the necessary addition theorems [11]. Cartesian expan-

sions have been used extensively in tree codes. More recently, FMM codes based on

2



Cartesian expansions have used recurrence relations to avoid derivatives [12]. Typi-
cally, FMMs derived using the Cartesian expansion are more expensive as spherical
harmonics are optimal in representing Coulombic potentials. However, it was recently
shown that it is possible to develop a FMM using Maxwell-Cartesian harmonics that
are as optimal as using spherical harmonics with one singular advantage; it avoids
the need for special functions [13]. Both FMM and tree codes have revolutionized
analysis in various application domains ranging from molecular dynamics [14], elas-
tostatics [15, 16], elastic wave equations [17], flow problems [18], capacitance [19] and
impedance [20] extraction in micro-electronic circuits, evaluation of splines [21] and
spherical harmonics [22, 23]. The FMM framework has also been extended to the
solution of potentials resulting from parabolic equations [24, 25, 26].

However, direct extension of FMM to the solution of potentials arising from hy-
perbolic equations is not as straightforward. The first solution to this problem was
presented in two dimensions [27, 28], and soon extended to three dimensions [29, 30].
The crux to developing these algorithms was the derivation of a diagonalized form
of the translation operator [30, 31, 32]. Since then, there has been a virtual ex-
plosion in research in application of these methods to various problems in electro-
magnetics; see [33, 34, 35] and references therein. The state of art is such that
problems of the order of tens million spatial degrees of freedom have been solved
[36, 37, 38, 39, 40, 41]. However, the development of FMM based method continues
on many fronts [42, 43, 44, 45, 46, 47, 48, 49, 50]. This paper reviews progress in

FMM technology since its inception and details current trends in FMM research.

1.2 Hierarchical Computation Scheme

The purpose of this section is to outline the structure of fast multipole methods and

introduce notation that will be used in the rest of the paper.
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1.2.1 Preliminaries

Consider a source distribution g(r) such that supp {q(r)} = Q@ C R3. Likewise, it is
assumed that the observers are also distributed in 2. With no loss of generality, it is
assumed that ¢(r) = Zfil ;6 (r — r;), where N is the number of degrees of freedom.

The field due to this source constellation at any point r € R3 is given by

k
#(r) = g(Irl) xq(r) = > _ g(Ir — ril)a; (1.1)
i=1

where g(|r|) is the appropriate Green’s function, and * denotes a spatial convolution.
It is apparent from this expression that the field evaluation scales as O(N?) for N
observation points. Ideas introduced by [4] to ameliorate this cost for static problems
relies on exploiting the fact that the field at a point due to a cluster of sources is
rank deficient, where the rank depends on the distance between the point and the
center of the cluster. In other words, for a given accuracy, potential at an obser-
vation point sufficiently separated from a cluster of sources can be computed with
few multipole expansions. Similarly, for given accuracy, few local expansions can be
used to compute potential at a cluster of observation point due to a well-separated
source. These ideas were cast in a more formal framework as tree-codes [5] and FMM
[6]. At this point, we note that there is rampant confusion in terminology; both
FMM and tree codes are used interchangeably. While the two methods are closely
related, there are subtle but significant differences between the two [51]. Tree codes
compute interactions between source pairs using one of three methods: (i) directly,
(ii) evaluating fields at each observation point using multipole expansion due to a
cluster of sources, or (iii) using local expansion at observation clusters to find fields.
The decision on the operation used depends on which one is computationally efficient.
On the other hand, the algorithmic structure of FMM enables the computation of

potentials in an optimal manner [51]. Two additional operations that permit this are
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aggregation and disaggregation functions. These permit the computation of informa-
tion at coarser (or finer) levels using information at finer (or coarser) levels. Thus,
FMM relies on a hierarchical decomposition of the computational domain. This is
achieved using the following strategy [8]; the computational domain 2 is embedded
in a fictitious cube that is then divided into eight sub-cubes, and so on. This pro-
cess continues recursively until the desired level of refinement is reached; an Nj-level
scheme implies V] — 1 recursive divisions of the domain, see figure 1.1. At any level,
the (sub)domain that is being partitioned is called the parent of all the eight children
that it is being partitioned into. At the lowest level, all source/observers are mapped
onto the smallest boxes. This hierarchical partitioning of the domain is referred to as
a regular oct-tree data structure. Regular oct-tree representations are optimal only
for geometries with uniform distribution [52]; non-uniform distributions can be repre-
sented using compressed oct-trees [51, 39]. In compressed oct-trees, sub-division of a
domain is stopped when number of source/observer in that domain becomes less than
a pre-fixed limit. While many algorithm exist for constructing a tree, the one that
we have found to be efficient is the use of key data-structure to represent the nodes
of a tree. In this approach the root box enclosing the entire geometry is vrepresented
with integer value 1; each of the eight (four) children of a parent is identified with a
three (two) bit code which is appended to the parent box key to obtain their global
unique key. Figure 1.2 shows an example compressed oct-tree where each box is rep-
resented using key-codes. This representation has several advantages: the nodes of
tree at each level automatically follow Morton ordering and it plays an important role
when partitioning the boxes among processors in parallel algorithm, all antecedents
of a box and essential information like size of box, center position, level etc. can be
readily recovered from its key-code using bit manipulations [53, 38, 54]. Mapping the
computational domain onto a tree facilitates partition/classification of interactions

as being either in the near or farfield. This is done using the following rule: at any



level in the tree, all boxes/sub-domains are classified as being either in the near or
far field of each other using the following dictum: two sub-domains are classified as
being in the farfield of each other if the distance between the centers is at least twice
the side length of the domain, and their parents are in the near field of each other;
see figure 1.3 for an illustration of these classification. Once, the interaction list have
been built for all levels, the computation proceeds as follows; at the lowest level,
interaction between the elements of boxes that are in the near-field of each other is
computed directly, i.e., using (1.1). All other interactions are computed using a three
stage algorithm: (i) compute multipoles of sources that reside in each box; (ii) convert
these to local expansion at all boxes that are in its far field; (iii) from the local ex-
pansion, compute the field at each observer. This simple three stage scheme is called
a one-level scheme, and necessitates the development of theorems for (i) computation
of multipoles at leaf (or smallest boxes), (ii) translate multipole expansion to local
expansion and (iii) finally, aggregate the local expansions in a box to compute the
field at all the observers. It is apparent that one can derive a more efficient compu-
tational scheme by embedding this scheme within itself as shown in 1.4. That is, if
two sets of sub-domains that interact with each other are sufficiently far away, then
these clusters may be combined to form large clusters that then interact with each
other at a higher level and so on; this is referred to here as a multilevel scheme. This
implies that it is necessary to develop additional theorems that enable (i) shifting the
origins of multipole so that effects of small clusters can be grouped together to form
larger clusters and (ii) move the origin of local expansion so that expansions at the
origin of the parent may be disaggregated to those of its children. In concert, these
theorems enable one to traverse up and down the tree, and are presented next. This
said the various steps involved in the hierarchical computing are shown in Algorithm

1.

Note that in single level algorithm the upward and downward tree traversal (steps

6



Algorithm 1 Hierarchical tree computation

1: Construct the tree representation for the given geometry (distribution of discrete
points).

2: Build interaction list using the above definition, for all boxes in the tree and the
near-field list for leafless boxes.

3: NF: Use direct method for computation of nearfield potential at observation
points in each leafless box from sources contained in its near-field boxes.

4: S2M: compute multipole expansions for each leafless boxes from sources con-
tained within it.

5: M2M (upward traversal): for all parent boxes compute the multipole expansion
by combining the multipole expansions at their children boxes.

6: M2L (translation): for all boxes in the tree convert the multipole expansions to
local expansions about centers of boxes in their interaction list.

7: L2L (downward traversal): update the local expansion information at a child box
using the local expansion of their parent box.

8: L20: use the local expansions about each leafless box to compute the farfield
potential at its observation points.

5 and 7) are absent. Next, we will detail these operations for different FMMs. Starting
with well known static FMM to those for Helmholtz and finally to those for wideband
FMM. Details are presented for the first two despite the fact that they are well known.
The rationale for doing so is two fold (i) it is important to understand when FMM
for Helmholtz fails and (ii) techniques developed for static FMM and some of the new
FMM approaches find their way into the development of wideband FMM.

1.3 Static fast multipole method

This section provides the appropriate theorems for fast evaluation of potential defined
in terms of g(|r|]) = 1/|r|. Such potentials are commonly used in study of plasma
dynamics, magnetostatic problems, eddy currents etc. While on first glance, one
might be inclined to exclude methods developed for rapid evaluation of the Coulomb
potential but these play an important role in developing fast methods for wideband

problems.



1.3.1 Single level scheme

Consider two domains s € R3 and Q, € R3 that comprises of randomly located
source and observer points, respectively. With no loss of generality, it is assumed
that the number of sources and observers are k, these domains can be embedded in
spheres of radius a. The centers of {25 and €, are denoted by rs and r,, respectively.
It is assumed that Qs C Q5 and Q, C Q, and ;N = 0, and the domains of 5 and
Q, are sufficiently separated. In what follows, the domains 5 and , will be called
parents of Qs and €y, respectively. The parent domains can be embedded in a sphere
of radius 2a, and their center are denoted by rf and r}, respectively. Next, we will
present a single level FMM constructed using two methods; (i) spherical harmonics

and (ii) Cartesian tensors.

Spherical harmonics

The. theorems for a single and multilevel FMMs using spherical coordinates were
introduced in a series of papers (7, 8], and have found extensive application in various
disciplines; a sampling of these can be found in [6, 8, 55, 19, 20, 56, 57]. The genesis

of the method is the well known generating function for Legendre polynomials [58],

1 1 = rn P Lo
= = Hz—zm n(cos ) (1.2)
T¢1—2?COS’Y+(7) n=0

with

cosy = cosf cos @ + sin@sin 8 cos(¢p — ¢') (1.3)

where Pp(u) represents Legendre polynomial of degree n, ¥/ = (r/,¢/,¢') and r =
(r,6,¢). Legendre polynomials in (1.2) can be represented in terms of spherical

8



harmonics Ynm (6, ) using the addition theorem [59],

n(cos7) Z Y (0,0)Y,(¢,¢) (1.4)

m=-—n

where the superscript * represents complex conjugate. Using (1.4) in (1.2) results in

complete separation of source and observation quantities,

123 Y (19

n=0m=-n

These expressions enable the derivation of the following theorems necessary for steps

4, 6 and 8 in Algorithm 1.

Theorem 1.3.1 (Multipole Expansion (S2M): spherical). Let k charges of
strengths {q;,i = 1,...,k} be located at r; € Qg with |r; — rg| < a. Then for any

r € Sy, the potential ¢ is given by,

(o o] n
Y,m(6,

o= 3 MpIi (16)

n=0m=-n r—r
where
k —_—

M =" gilr; — ro[" V(65 ¢5) (1.7)

i=1

where the parameters {0;,¢;} and {0, ¢} are spherical coordinates of r; and r w.r.t

the origin at ry.

In Theorem 1.3.1, M is the multipole expansion at rg constructed from the
source quantities g;(r;). Proofs for the error bounds in the above expressions can be

obtained from [8, 9]. Next, these multipoles are translated from rg to r,.

Theorem 1.3.2 (Multipole to Local Translation operator (M2L): spherical).

Given a multipole ezpansion O] about rg, it can be mapped to local expansion L;? at
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ro using
o 1 om(_\lk—m|—|m|-|k| gm gkym—k 0,
L‘{C = Z Z n( J) n ‘% “i4n ( ¢) (1.8)

n=0m=-—n (—l)nAﬁ-;klrS - rOli-l-'n-}-l

where {0, #} are the spherical coordinates of thers w.r.try, and AN = 7 (n—(;z;')(':z+m)' .

Finally, the local expansions at any leaf node may be mapped onto the observers

using the theorem presented next.

Theorem 1.3.3 (Local expansions to observer (L20): spherical). The potential

at a point r € Qp due to local expansion L' about origin is given by,

o)=Y > L7r—ro|"Y(6,9) (1.9)

n=0m=-n

As before, the parameters {0, ¢} are the spherical coordinates of r with respect to the

origin at r,.

The above theorems, in a one level setting, permit the rapid computation of
potentials at all points in 2, due to sources in §25. It is evident that this scheme can
be embedded within itself to create a multilevel scheme. But prior to doing so, it is

instructive to re-examine the fundamentals of FMM from a Cartesian perspective.

1.3.2 Multilevel FMM algorithm

It is apparent that the O(N 4/ 3) cost of single level algorithm can be further reduced by
embedding this scheme within itself, as is evident from figure 1.4. To implement such
a scheme it is necessary to develop methods that enable one to construct multipole
expansions at a parent level from those at their children. These are effected using the

following theorems.

Theorem 1.3.4 (Multipole to Multipole (M2M): spherical). A multipole ez-
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pansion O about rs can be mapped onto one that erists around r5 using

i n O(c:m(_j)|k|-—|m|—|k—-m|AmA/5t_—m (7.51’)" y'm(g, )
Mzk = Z E = Al_cn = -
i

n=0m=-n

(1.10)

where r¥ = [rF| =rs —rh, and {6, ¢} are the polar coordinates of rs w.r.t. rh.

Theorem 1.3.5 (Local to Local (L2L): spherical). Given a local ezpansion OF

about 15, it can be mapped to one around r, using

Ik = Ep: Z": O’T(“j)lml_lkl_lm_klA?:fAfYﬂ;k(O, é) (rgC)n—i
' (—1)”+’A#

n=itm=—n

(1.11)

where rf° = |t5¢| = |r, — 1b|, and {6, ¢} are the polar coordinates of ro w.r.t. 15.
The equivalent theorems for Cartesian expansion likewise follow.

Theorem 1.3.6 (Multipole to Multipole (M2M): Cartesian). A traceless mul-

tipole tensor O§m) at rg is related to Mgm) that is centered at rh via

m) _ x~ (=)™ Dn (15)" (m—n
Mg = Z ( n!) (2n(— 1;!! 0'(’ ) (1.12)

n=0

where r5° =15 —r;.

Theorem 1.3.7 (Local to Local (L2L): Cartesian). Given a local expansion Og")
that ezist in the domain Qo centered around rh, it can be shifted to the domain Q,
centered at ro, using

TR0 (m). ()7 (1.13)

(m) _
L =)

n=0 m

where rf =r, — 18
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These theorems, in concert, permit traversing up and down the oct-tree, see figure
1.5. While these theorems are the bare-bones presentation of the steps required, there
have been several attempts to make these more efficient [7, 8, 14, 60]. As both methods
are based on Taylor expansions the upperbounds in using these approaches can be
readily derived. Such a derivation is presented in [8, 13]. Alternatively, another
interesting algorithm was introduced in [13] that permits ezact evaluation of the
multipole expansion at the parent given the multipole expansion at the children—this
has been shown both analytically and numerically for different potential functions.
However, in order to get this exact expression, one has to abandon the use of traceless
tensors. It follows that the cost of using exact multipole to multipole translations is
higher. But in our experience, we have found that we need a smaller number of
multipoles for the same precision, and this can significantly affect the total cost,
especially for large data sets [13]. Abandoning the use of traceless operators has
three salient benefits; (i) the algorithms can be used for any potential function whose
Taylor’s series converges rapidly, (ii) it does not depend on special functions and (iii)
only the translation operator depends on the potential function which implies that

multiple potentials may be easily combined [61].

In all the above expressions, it was assumed that the number of multipoles used
was infinite. The analytical estimates regarding truncation of this sum for both the
spherical and Cartesian form can be found in (8, 13]. The cost analysis for multilevel
approach is as follows: the total number of boxes in the tree is O(N/s) and the cost
for S2M and L20 operations remains the same; the cost of applying M2L translation
operation across levels scales as O(P4N/s). In addition the cost of applying M2M and
L2L operations for all boxes scales as O(N/sP*). Thus, the overall computational cost
associated with both schemes scales as O(P4N). This cost is largely dominated by the
time for multipole to local translation (M2L) and considerable research effort has been

expended on reducing this cost. A closer examination of the M2L operation reveals
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that (i) the number of translations per box is 189 and (ii) the cost per translation
scales as O(P*%). The latter is due to the fact that this operation is not diagonal.
Greengard et. al. [9] remedied this deficiency by introducing a novel algorithm
that diagonalizes the translation operator. Additional modifications to the overall
algorithm introduced there [42, 62] further reduces the number of translations, making
the “revamped” FMM extremely efficient. Ideas behind this diagonalization can be
exploited by either both varieties of FMM; spherical and Cartesian. It also plays
a key role in FMMs for low-frequency, and consequently, will be presented in some
detail next. An FFT based implementation of above un-diagonalized form results in
a overall cost that scale as O(N P2 log P) [60], but will not be dwelt here.

1.3.3 Diagonalized translation operators

A diagonal translation operator may be derived using a spectral representation of the

Green’s function [9], viz.,
11 /°° ) /27r ) .
= dhe=M* dae—IMz cos(a)+ysin(a) 1.14
R 2m 0 0 ( )

for z > 0. It is apparent that the inner integral is in fact a zeroth order Bessel function.
The computation of potentials using the above expressions hinge on the existence of
an integration rule that is efficient to a given precision and scale invariant if this
formula is to be used at different levels in the FMM tree. Given the existence of such
a rule [63], the potential at any point can be written as [9]
s(e) M(k)
o) = 5" 5" Wik, i)e MzeIAk(zcosaztysina) 4 o) (1.15)
k=1 i=1
where the coefficients W (k,?) are a combination of the charges ¢; and integration

weights wy, s(e) and M (k) denotes the number of integration points for € accuracy.
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Evidently, in above discrete representation, the number of integration points M (k)
for evaluating « integral depends on k to account for the varying bandwidth, A,
of its integrand. The advantages of above scheme are immediately apparent in that
it readily permits translation of the origin; translation of the origin is quite simply
a shift in the exponentials. The similarity between (1.15) and those in Theorems
(1.3.1), and (2.3.3) are readily apparent. The mapping from spherical harmonic

multipole coefficients M];* onto exponential expansions W (k, j) is given as [9],

W(k,i) = % ;o(j)lmle—jmai El;n T nﬁj)f'l(n — (1.16)

and given W (k,1) coefficients the spherical harmonic local expansion L' can be

computed with,

()l s(e) M(k) ‘
Lzl = .} n w k,i e_Jmai .
V(n—m)!(n+m)! k§1( ) g (k, ) (1.17)

The multipole to local translation operation, with diagonalized translation forms, can
be computed as a three stage process: multipole coefficients are mapped to W (k, 1),
translate W (k,1), and then map the translated coefficients back to local expansions,
and then proceed as usual. It is evident that cost of all operators involving exponen-
tial expansions scale as O(P2). Various symmetry considerations in implementation
reduces the number of total translation count from 189 to 40. Additionally, one can
exploit symmetry in the expressions involved to further reduce the overall cost, if
not the asymptotic complexity [56]. Thus, properly modifying and augmenting ei-
ther spherical or Cartesian multipole based algorithms with plane wave translation
operators can considerably ameliorate the cost. However, a couple of issues must be
noted; (i) the plane wave expression is valid for z > 0, this implies that the interaction

list must be modified [9]; (ii) additional operators must be introduced to rotate the
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multipole operators along the required axis; (iii) the operator developed should be
scale invariant for the scheme to be efficient. In implementation the spherical har-
monic multipole coefficient is converted into six plane wave expansions corresponding
to each face of the cube and the interaction list definition is changed accordingly. For
example, exponential expansions corresponding to +2z cube face is valid only for boxes
present above X — Y plane, as illustrated in figure 1.6. Boxes in original interaction
list are divided into six new sets termed as up-list,down-list,north-list,south-list, east-
list and west-list corresponding to +z, —z, +y, —y, +z and —z cube faces respectively
[9]. Overall, the diagonalized version of the translation operator reduces both the to-
tal number of translation operation and per translation cost leading to a much faster
algorithm. This approach is very similar to spectral approaches developed for al-
ternative derivation of Helmholtz FMM [42, 64] and is the crux of many methods
developed for wideband FMM.

1.4 FMM for Helmholtz equations

Thus far, we have seen that cascaded Taylor expansions can be used to develop static
FMM. While these ideas are readily extended to the solution of parabolic equations as
well [24], they are not readily extendable to Helmholtz equation kernels, especially at
high frequencies. Furthermore, as was evident from last section, the scheme developed
should be diagonal. Consider a problem setting that is identical to what was described
in Section 6.2. We shall seek development of methods to accelerate the evaluation
of the potential integral in (1.1) with g(|r|) = exp[—jk|r|]/|r|. One expression that
readily suggests itself is the Gegenbauer addition theorem [59, 65, 31],

JKIX-I-dI

XTda mZ '@+ DjkdhP (= X)P@E-X)  (118)
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where X and d are position vectors such that r = X+d and |X| > |d|, j; and h§2) are

1th order spherical Bessel and Hankel function of second kind, X = |X| and d = |d|.

Augmenting this theorem with another addition theorem for Legendre polynomials

in (1.4) completes the separation between the source and observer coordinates.

—j L l
el—;:f—:" =-ind 3 (h'ers 1)ji(xd)h” (xX)Yien (0, €X)Yim 0 60)

(1.19)

where L is the number of terms used in the summation, {6x, ¢x} and {64, #4} are the

polar coordinates of X and d respectively. It is evident that one may use a sequence

of addition theorems to create hierarchical computational methodology. However, the

principal bottleneck to such a scheme is the fact that the operators involved are not

diagonal. However, diagonal operators are easily developed by recognizing that
b v 2y [ 2io—ikdp iR
tn(=3) ilsd)P@-R) = [ e IR (k- R) (1.20)

where d?k = sinfdfdé and k = k. The relation (1.20) can be derived from well
known orthogonality relation among spherical harmonics and expansion for plane

waves given as.

, . N 4
2
/ LRGPV 0) = 5oty (1.21)
[ o]
eI = %" ji(2)P)(cos) (1.22)
1=0

Substituting (1.20) in (1.18), interchanging the summation and the integral, and

truncating the summation over [ yields the final diagonalized form,

e—iKIX+d|

. L
B / Pke %A C)2 + DAPX)PR-X)  (1.23)
= >, z ; 23)
X +d| 4w =
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Several derivation that result in above diagonalized form exist and are based on
different set of starting formulas [30, 31, 66, 67, 32]. First scheme for diagonalizing
(1.18) was presented in [30] with the use of forward and inverse far field transform

defined as,

00 l
f6.0) = > Y ()6, 0) fim (1.24)
=0 m=-1
fom = / d?k(—7) 1Y) (6, 6) (1.25)

Above definition is a simple spherical harmonic transform from k to {I,m} basis
with direct analogy to Fourier transform. A simpler version of derivation in [30]
is presented in [67, 35]. In [31], the expansion in (1.18) is represented as matrix
vector multiplication which reveals a convolution relation in indices {l,m} . Such
convolutions in {,7} can be computed as one-to-one multiplication in k domain using
the far field transform [31]. A detailed discussion on deriving the above diagonalized
forms from the convolution representation of original multipole expansion for both
Laplace and Helmholtz equation is presented in [31]. An alternate derivation based
on similarity transform and their relation to group theory is presented in [32] to yield

the same expansion in (1.23).

Single Level FMM

As before, assume that 25 and 2, denote the source and observation domain, and it
is necessary to find the fields Vr € Q,. It is further assumed that the domains are
cubes, in keeping with the data structure of oct-tree and that each domain can be
embedded in a sphere of radius a. Furthermore, the clusters are assumed to be well
separated. The separation distance is closely related to error bounds [30, 65|, and

will be dealt with in later part of the paper. Given these conditions, traversal up and
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down the tree is effected using the following set of theorems:

Theorem 1.4.1 (Farfield signature). The far field signature due a set of source

g; fori=1,--- ,k located at r; € Qg is given by

r37 ZM (qt’k rs — )
(1.26)

= Z‘Ii exp [jk - (rs — 1;)]
1=1
Theorem 1.4.2 (Translation operator). If a farfield signature ezists at a point rg
such that it is valid for all points outside the domain g, then the translation operator
that maps this farfield to the local expansion that is centered around r, and valid in

the domain Q, is given by

[o.¢]

T(k,Tos) = ) (- 1)" (28 + 1)A{ (Klros|) Py(k - £o5) (1.27)
1=0

where ros =To — Iy

Finally, the potential at any point r € €, can be constructed using
Jk 22
o(r) = d°AM (1, -k, ro — 1) T(k,ros) M (rs, k) (1.28)

While these equations are readily derived from (1.23). More insight into the derivation
of these equations can be obtained by realizing that the farfield (and local expansions)
can be represented in terms of spherical harmonics. In turn, this interpretation leads
to expressions that reveal convergence rates of these and error bounds as a function
radius a and the separation distance. More importantly, this insight leads to the type

of quadrature rules that must be used to implement these schemes numerically. In
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other words, the continuous integral is evaluated using
= _4J Z Z wpgM (1, —kpq,To — r) T(kpg, Tos) M (rs, kpq) (1.29)
p=1¢=-p

where L is the order of the Gauss Legendre rule, wpq are the integration weights, p

and ¢ are the integration points in § and ¢ axis,

2mq
%= 2041
0p is the (p+ 1)* zero of Pr 1 (cosf)
4m (1 — cos? 6p) (1.30)
qu =

(2L +1) [(L + 1)Pr(cos 0,,)]2

l?pq = 1 sinfp cos ¢g + Jsinbpsin ¢g + Zcos by

As is apparent form the above equations, uniform sampling is used to evaluate the
integral along ¢. Other applicable rules may be found in [68]. We have yet to elaborate
the underlying factors that decide the order of Gauss-Legendre rule that is used along
6. A number of formulae exist for choosing the number of Gauss-Legendre quadrature
point [30, 65, 69]. However, examination of (1.23) yields interesting insight. If only the
exponential terms are considered in this integral, it is apparent that these expressions
can be represented using L = O(kd) = O(2ka) harmonics. This, in turn, implies
that the summation is also truncated using L terms. Though the reasoning here is
based on economical means to discretize the integral a deeper reason, arriving at same
conclusion, exists for choice of L based on original multipole expansion [65]. Choice
of L should be large enough for the series (1.19) to converge, but not too large to
cause numerical instability due to the asymptotic behavior of spherical Bessel and
Hankel functions. Given that only a finite number of terms are being used, one
can explicitly derive error bounds that, in turn, depend on the translation distance

also [30]. Deriving rigorous error bounds has been a focus of considerable work
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[43, 69, 70, 71, 72], and the behavior of error is well understood [73, 74] as are the
means to overcome these. A simple choice for truncation limit L applicable to most
practical problems is,

L = kd + Clog(kd + =) (1.31)

where C is a number that depends on the desired accuracy ¢; typically the choice
of C is {3,5,10} for an accuracy € = {1073,10~%,10~14}, respectively [65, 75]. This
estimate is semi-empirical and assumes that the two boxes are well separated if they
are one box apart. Other estimates [76, 73, 69] based on approximation of Bessel
and Hankel function exists both in two- and three-dimensions and can account for
multiple box separation between interacting boxes [72, 74]. Cost of this scheme can
be computed in the same manner as in the static with P = L and the diagonalized
form of translation operator implies 0(P2) cost per operation. However choice of L
depends on size of box kd, which in turn dictates the number of unknowns per box s
(assuming uniform discretization). It can be show that the optimal cost of the above

scheme scales as O(N3/2) for surface problems.

Multilevel FMM

While the above exposition details the necessary mathematics for implementing a
single level scheme, nesting these in a hierarchical setting is the next logical extention.
The first robust attempts to do so are (77, 78, 79]. Extension to multilevel is different
from that encountered for the Laplace FMM; there, the number of multipoles at all
level of the tree was constant. But as is evident from (1.31) and (1.29) as the size of
the source/receiver boxes increases, the bandwidth increase increases by a factor of
two, which implies that the number of directions increase by a factor of four. This
then creates a need for developing robust methods for going up and down the tree

for the stages of aggregation and disaggregation. These operators can be thought of
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as filters. But before we proceed into intricate details of the methods to implement

these, the theorems that help achieve these are as follows:

Theorem 1.4.3 (Translation of farfield signatures). If the farfield signature
M(rs,k) around the point rs € Qs is known, then the farfield signature M(r5, k)
around the point rf) € QF is given by

M(2, k) = M(rs, k)e"'“‘(’g‘“)

(1.32)

An identical theorem for can be derived for translating local expansion at the
parent level to that of its child. Numerical implementation of these theorems is not
as simple as it seems. To maintain uniform accuracy across levels, employing (1.31),
the L for parent is approximately twice that of its child. This implies that the num-
ber of direction for parent box is approximately four times that of its child; thus
the multipole expansions for the child and parent box are defined on different grids.
This process of computing a higher bandwidth representation from lower bandwidth
farfield signature is referred to as interpolation and anterpolation is its inverse ana-
logue applied during downward tree traversal. Implementing the above theorems calls
for efficient methods to interpolate (or anterpolate). Several methods that exist have
been elaborated upon in [33] and summarized as well in [69]. An efficient and exact
algorithm can be devised using the forward and inverse farfield transform for both
interpolation and anterpolation [79, 23, 80, 35]. This algorithm relies on the fact that
at any level the farfield signature can be represented in terms of spherical harmonics.,
viz.,

M(vk) = Z Z aannm(9,¢) (1.33)

n=0m=-n
As is well known, the farfield signature of a source constellation is bandlimited to

O(ka) harmonics. This implies that the above expression can be truncated. Further-
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more, since an Lth order rule is chosen to evaluate the spectral integral in (1.23), it
follows that the upper limit in the summation over n can be chosen to be L. This said,
direct computation of an,, is expensive. Alternate methods both exact and approx-
imate have been discussed in [23, 81]. Consider the computation of anm from child
farfield signature M (rs, ki) represented using (2L2+1) coefficients, i.e. p=1,---, L
andg=1,---,(2L+1),

Onm = /dsz(rs, k)Y,:m(e, ¢)

= Eprnm(cos 6p) ( Z M (rs,kpq)ejn¢q) (1.34)

p=1 g=1
L

p=1
where wp are numerical quadrature weights. Since, the integration along ¢ is per-
formed using uniform sampling, fast Fourier transform (FFT) can be used for summa-
tion inside the brackets. These coefficients are then used to compute samples along

new polar coordinates 0y, ¢q) withp=1,--- ,Landg=1,---,(2L +1) as,
P ¥q

L . L
M(rs, qu) = Z e_]m¢q z anman(COS 0p) (1.35)

m=—L n=1

Again, FFT can be used to evaluate the outer summation. In interpolation, L>L
to accommodate for the increase in bandwidth and l~(pq represents the discrete direc-
tions of the farfield signature corresponding to the parent. The required multipole

coefficients about parent origin r5 can be obtained using a simple shifting operation,
M(x8, Kpq) = M(rs, kpg)e~7kpa-F5—rs) (1.36)

An inverse procedure is performed when translating local expansions from parent to

22



child where anterpolation is used in place of interpolation. First, the parent local
expansion about r}) is shifted about child origin r,; then in anterpolation, the forward
and inverse farfield transform are performed to reduce the bandwidth in an exact
manner as described above but with L < L, where L represents the number of
harmonics in parent domain. Above procedure for interpolation/anterpolation can be
further accelerated with the use of fast Legendre transform [23] where the coefficients
anm are not computed explicitly. Though this approach scales favorably the break-
even point is large and not suitable for most practical applications [35]. This can
be overcome to some extent using the 1D FMM for fast Legendre transforms [81].
Cost of Interpolation/anterpolation using this approach scales as O(Q log Q), where Q
denotes the number of directions in farfield signature. This said it can be shown that
overall cost of the multilevel algorithm scales as O(N log? N) [35]. Other methods
used for interpolation and anterpolation have been presented in detail in [78, 33,
69]. These include the use of polynomials and approximate prolate spheroidal wave
functions. The singular advantage of these methods is their cost scales linearly with
the number of samples, thus the overall cost scales as O(N log N). However, while
interpolation is sufficiently accurate, one has to be more careful when anterpolating
functions as it is necessary to remove higher order harmonics. While we have not
digressed into implementation of these schemes for vector electromagnetic problems,
we must caution that it is not a trivial extension. It is important to realize that the
farfield component represented in terms of polar components in not bandlimited [82],
whereas they are bandlimited when represented in terms of Cartesian components.
This means that one either uses a fast scheme based on vector spherical harmonics [82]
or converts these to Cartesian before interpolation/anterpolation. Another intriguing
method for interpolation and anterpolation was introduced by Sarvas [48], wherein he

introduced modifications that enabled the use of FFTs. In other words, bandlimited
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farfield signatures can be represented in terms of Fourier basis as

P Q-1
ME) =~ Y Y alp,g)e®*e?) (1.37)
p=—Pg¢=-Q
where,
P Q1
a(p,q) = DFT{M(K)}= Y 3 e imitndp(k,)
m=—Pn=—Q
g— _p2m (1.38)
T 2P+1
-
*=2

where DFT(-) represents forward discrete Fourier transform, 2M and 2N are number
of samples or basis function in @ and ¢ axis respectively. Then the integral over the

surface of sphere can be written as,

s

/d¢0/d05in0U(0,¢) = /dq)_{ df|sin6|U (6, ¢) (1.39)

-7

U

Note that the above modification changes the limit on 6 integral to [—m,n], thus
it can also be evaluated in fast manner using FFT. In single level implementation,
the integrand in (1.19) are first represented in terms of Fourier basis using (1.37)
and then (1.39) is used for fast evaluation of integrals. In multilevel implementation
the interpolation and anterpolation, for varying bandwidth of multipole and local
expansion, can be achieved by zero padding and truncating the Fourier coefficients
respectively. In anterpolation the Fourier coefficients of parent local expansions are
symmetrically truncated before inverse Fourier transform, to obtain the local expan-
sion about child domain with the desired bandwidth. Thus all operations, including

the evaluation of integral, can be evaluated using FFT. Reader is referred to [48]
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for related theorems, proofs and numerical results. Finally, the numerical implemen-
tation of multilevel FMM has been scrutinized in terms of different errors and to
ensure stability. This includes discussion on the relation between truncation and in-
tegration error in (1.29) [71], and interpolation/anterpolation error using Lagrange
interpolation [73] and spherical transform [69]. In addition, errors due to round-off
and evaluation of special-function have been considered along with stability criterion
[74]. Numerical experiments show that truncation error in (1.29) is lower bounded
[43, 73]; thus for applications that routinely demand very high accuracies it is prefer-
able to increase the distance between well-separated boxes. Evidently this amounts

to an increase in number of boxes in near-field interaction.

1.4.1 Other FMMs

The above exposition presented FMMs that are apt for analyzing very general prob-
lems. However, for certain problems it is possible to develop FMM schemes that take
advantage of topological features of scatterer to reduce the asymptotic complexity.
The first of such algorithm was the fast steepest descent path algorithm [83] that
exploited spectral representation of the Green’s function. The next incarnation of
this was the steepest descent FMM. It was developed following realization that when
alialyzing scattering from objects whose height is considerably lesser that its lateral
dimension, it is not particularly useful to expand the fields using the complete spec-
trum. In other words, SDFMM can be interpreted to be a windowed FMM, and
results in a method whose complexity scales as O(N). In SDFMM, it is achieved
naturally using the Sommerfeld integral representation of the Green’s function and

evaluating this integral using a combination of two-dimension FMM and steepest
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descent. More specifically,

e—ikR
R

—q [©0 .
-3 / dhye %=V HO) (00 - o))
—00
i koo ..
) Y wnkp Hy (rplp — p'l) e77F2(=2)
n=1

where Ng4 is quadrature rule along the integration path, wy, is the integration weight,
nf,n) = Kksinay and k; = Kcosay, and « is defined along steepest descent path. It is
immediately apparent that the summation over Hankel functions can be accelerated
using a generalization of the two-dimensional FMM, and as before, this algorithm can
be cast within a multilevel framework. Another algorithm along these lines was the
fast inhomogeneous plane wave algorithm (FIPWA) [62, 47]. This algorithm follows
directly from Weyl’s identity
e~ j&kR —j 2m

== [ d¢ df'sin ge—JKR 1.41
R 2 Jo SIP (141)

The path of integration yields contributions from both homogeneous and inhomo-
geneous plane waves. As written, the above integral is slowly converging, but the
contour can be deformed along the steepest descent path. This integral is evaluated
numerically. However, values of the radiation pattern for complex @ is obtained us-
ing interpolation/extrapolation. Manipulation of the requisite equations results in a
diagonal translation operator. This method has been extended for analysis of scat-
tering from objects above a layered medium [45, 47]. Additionally, they have been
modified for developing stable algorithms for broadband applications [84]. However,
we shall describe these algorithms and others [42] for rapidly computing potentials

for wideband applications in the next section.

Finally, other variants of FMM exist that exploit the fact that between well sep-

arated boxes, one may construct windowed translation operators to lower the cost.
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One such method is the ray propagation FMM (RPFMM) [85, 66]. Other windowed
translation operators have been used in two-dimensions for the analysis of scattering
from bianisotropic objects [86]. However, it follows from complexity analysis that
these methods will be fruitful only when the objects are sufficiently far away from
each other. This implies that the algorithm is most useful when used in a one-level

setting and may not be effective with a multilevel implementation.

1.4.2 Wideband FMM

In above discussion, a significant highlight is the restrictive choice of L used to trun-
cate the expansions. This choice, based on the asymptotic behavior of Bessel and
Hankel function, reveals the behavior of above expansions when applied to low fre-
quency problems where k is very small. It is well known that Hankel function is
singular at origin and as kK — 0 the expansion in (1.23), though valid, becomes nu-
merically unstable. This breakdown is referred to as low-frequency breakdown [43, 42].
Consequently for fixed x the size of source domain, which also defines the transla-
tion distance, cannot be made arbitrarily small. This issue becomes significant when
the geometry is densely discretized, much more than the conventional A/10 criterion,

mostly to represent intricate structural details.

Scaled expansions

At low frequencies the numerical instability can be averted by using a normalized
form of the original expansion (1.23) [44, 46]. This approach is motivated by the
asymptotic behaviour of spherical Bessel and Hankel function for small argument.

Let t be a normalization constant such that ¢ = O(kd) then the multipole expansions
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in (1.23) can be written as,

L l
X+ a) = =56 Y D (V'@ +) [Tl Vim0 0|

=0 m=-1

(1.42)
B (6X)Yim 0, 6x)

In above expression, terms inside the square brackets are the new normalized mul-
tipole coefficients. As x — 0, using small argument approximation for spherical
functions and with ¢ = «, it is a straightforward exercise to show that the normalized
expansions reduces to the expansions (1.2) used in static case. While the normalized
forms ensures numerical stability, the low-frequency nature of the problem implies
that one can choose the number of multipoles to be same at every level. This in turn
implies that the multilevel version of this approach scales as O(N) [46]. A constant
normalization factor is sufficient when the geometry is uniformly discretized. How-
ever to accommodate wide variation in domain sizes and maintain the stability of
expansion different normalization factor should be chosen in different parts [33]. This
approach has been successfully used in integral equation solution for scattering from

sub-wavelength structures 46, 87].

Spectral representation based plane wave expansions

An alternate approach, inspired by the diagonalized form for static FMM, was in-
troduced in [42] and later implemented in [84, 49, 50]. It is based on the following

well-known spectral representation of solution to Helmholtz equation [88],

—j&R 2
eI _ 1 ooe—VA§—n2z/ We—j/\(zcosa+ysina) A dad) (1043)
0

R~ or 0 VAZ — k2

this relation is valid for z > 0. Further it is straight-forward to identify the purely

propagating part of spectrum as 0 < A < k and the evanescent part as kK < A < 00;
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with simple change of variables, above expression can be written as [42],

e—JKR (e—jnR) (e—jnR)
= + (1.44)
R R evanescent R propagating
where,

e—jnR 1 00 \/2—5 2r .

— __/ e~ VA*—kK z/ e—]z\(a:cosa+ysma)
R evanescent 2m K 0
A

———dad)\
VAT = K2

— i /00 e~ 0% /271’ e—j\/a§+fc§(zcosa+ysina)dado.
2w 0 0

—ikR 2
(e 9" ) — _1_/‘Ic e—v/\i—niz)/ "e—jz\(zcosa+ysina)
k propagating 2m Jo 0

A
VAZ K2

ik [T/2 . 2r :
_JK e—]ncosﬂf e—Jrsinf(zcosatysina) g, 19
2m 0 0

dad)

Notice that with k — 0 the propagating part vanishes and the evanescent part reduces
to the diagonalized form (1.14) used in static FMM. Now it remains to discretize the
above integrals for numerical evaluation and generalized Gaussian quadratures can
be employed for this. However, unlike in static case, the integrand cannot be ren-
dered scale independent and this means quadrature points and weights should be
pre-computed for all possible translation distances at all levels. It is worthwhile to
recount that the multipole and local expansions are computed and stored as they
appear in original spherical harmonics expansion (1.23); they are converted to ex-
ponential expansions back and forth during multipole to local translation only and
these relations can be found in [50]. This approach avoids the floating point over-
flow as all the computed quantities and operations are regular and numerically sta-

ble. Other approaches based on above spectral representation have been presented
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[84, 49, 89, 90] and they differ significantly in their numerical implementation and
structure. In all these methods the multipole and local expansion are represented
directly in terms of exponential expansion coefficients; hence they require new inter-
polation/anterpolation operators for multilevel implementation. In [84], an extension
of FIPWA as introduced for multi-layered structures, the integrand is sampled along
the steepest descent path (SDP) and extrapolation techniques to estimate the evanes-
cent portion of the spectrum from samples of the propagating portion. However, one
has to treat “shallow” evanescent waves differently from “deep” evanescent waves.
In [49], the evanescent integrand is sampled along the traditional Sommerfeld inte-
gral path (SIP) and singular value decomposition (SVD) of the integrand is used to
obtain expressions for multipole coefficient and multilevel translation operators. An
interpolation matrix approach is presented in [90] to relate exponential expansions at
different levels. Using sample points in child and parent domain an overdetermined
system of equation is formed and solved for the interpolation matrix entries in a least
square sense. The advantage of latter approaches is that they avoid the spherical

harmonic to exponential expansion and reverse mapping operations.

1.5 Applications

This section provides an overview on application of above discussed algorithms in
different contexts. As mentioned in introduction, FMM and other fast methods, e.g.
FFT and tree code based, were developed primarily to accelerate the evaluation of
potential or field in N body problems. Integral equation solutions, a common choice
in simulation of many electromagnetic applications, sought through iterative solvers
requires repeated evaluation of potential or field at source points itself. Thus fast
algorithms play a significant role in solving real world problems within realistic time

duration. The literature referenced here is only selective and not exhaustive as the
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use of these algorithms have become more common during recent years. Also, only
topics related to electromagnetics are listed here; for applications in other research

field refer to introduction.

First, electromagnetic application of static or Laplace FMM was evaluation of
electrostatic potential in 2D [6, 91]. The extension to 3D has seen lot of applications,
particularly, in plasma dynamics [8, 92]. FMM based FastCap and FastHenry are
widely popular tools for extraction of equivalent capacitance and impedance among
multi-connects in micro-electronic components [19, 20]. Static FMM is also used in
integral equation solution of magnetostatic problems predominantly for analysis and
design of electric machines [93]. Simulations with non-linear materials have benefited
much as they demand multiple solution before attaining stability [94, 95, 56]. It
has also been applied to quasi-static case especially in simulation of eddy-current

phenomena [96, 97] and micro-magnetics is another area of practical interest [98, 99].

The recently published book on fast methods in electromagnetics is a virtual
treasure house of FMM methods and their applications to various problems in high
frequency electromagnetics [33]. As is to be expected, Helmholtz FMM has been
applied to accelerate iterative solution of surface and volume integral equations. The
means to modify Helmholtz equation such that they are applicable to vector elec-
tromagnetics problems was first presented in [78]. More detailed description can be
found [100, 75, 33]. Since their introduction, they have been applied extensively to
scattering and radiation problems of different flavors; for instance, scattering from
perfect electrically conducting surfaces [28, 65, 78, 100, 69, 101, 102, 103, 104, 105],
scattering from dielectric/composite bodies [106, 107, 108, 109, 110, 111], volume
integral equations [112, 70, 113, 114], anisotropic objects [115, 116}, scattering from
rough surfaces [117, 118, 119], application to microstrips [120], EMC/EMI analy-
sis [121, 122, 123], antennas [124, 125, 126]. Efficient implementation of FMM in

solvers with higher order geometry and basis function representations have led to the
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development of fast and accurate solvers [107, 127, 128]. [129, 130]

Multipole accelerated algorithms have also been employed in various hybrid meth-
ods where solution is obtained with use of moment method combined with one or more
of following techniques: to impose global radiation boundary conditions in finite el-
ement solvers 131, 132, 133], ray tracing and diffraction methods [134], multi-grid
methods [135] and physical optics [136, 137]. These techniques are primarily used in
applications with multi-scale scatterers like antenna interactions [138] and field pre-
dictions for urban mobile communications [139]. Implementation of FMM was also
modified to accommodate perfectly matched layer (PML) assisted integral equation
methods used in simulation of monolithic microwave integrated circuit (MMIC) and
photonic crystals [140, 141, 142]. Fast inhomogeneous plane wave (FIPWA) method
and other forms of FMM have been used to accelerate solution of scattering simu-
lations involving layered media structures with applications in design of microstrip
antennas {129, 130, 143, 144, 145, 146, 147, 148] and geophysical investigations for
sub-surface scatterers [64, 149, 150, 151, 152, 153, 154, 155, 156, 157]. A combined
FMM-FFT algorithm [158, 159] and SDFMM have been used in electromagnetic
analysis of general quasi-planar structures with applications to rough surface scat-
tering, grating structure design in quantum devices and radiation from microstrip
patch antenna [118, 160, 161, 162]. The principle of FMM has also been extended
to accelerate potential employed in time domain integral equations. Plane wave time
domain (PWTD) is the time domain analogue of Helmholtz-FMM that has been used
to accelerate time domain IE (TDIE) [163, 82, 164].

1.6 Thesis Objectives and Outline

As mentioned in the preceding exposition, the primary downside of conventional

FMM is that they are specific to the form of Green’s function. In other words, one is
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required to develop new set of FMM formulaes for each form of the Green'’s function.
The Helmholtz FMM, as detailed in Section 1.4.2, suffers from numerical instability
for low excitation frequency. Analogously, plane wave time domain (PWTD), the time
domain counterpart of Helmholtz FMM, also suffers from a similar breakdown when
large number of unknowns are concentrated in small size domains. Consequently,
the existing state of the art fast methods face severe limitations when applied to
multiscale problems. These are realistic problems where certain regions are very
densely discretized to accurately capture the physical details. The main goal of this
thesis is develop mathematical techniques to overcome the limitations of the existing
fast methods for electromagnetic simulation of multiscale problems. This is achieved
with the aid of accelerated Cartesian expansion (ACE) algorithm. ACE is a recently
developed, hierarchical tree computation algorithm in the vein of FMM. Unlike FMM,
ACE algorithm relies on Cartesian harmonics and Taylor series expansion to derive
FMM like algorithm for arbitrary, non-oscillatory potentials. In this thesis, different
aspects of ACE algorithm are exploited to develop fast algorithms to overcome the

low-frequency breakdown in both time and frequency domain.

Parallelization of FMM can be classified as a fairly recent work, with most of
the literature concentrated in the last decade. The hierarchical framework of FMM
qualifies it as one of the difficult algorithms to parallelize. Most of the existing
algorithms are based on heuristics. Such algorithms, though successful, provide only
modest scalability with maximum at 64 processors. This is a severe limitation of
the FMM algorithm when considering the ever growing size of cluster computers. In
this work, a parallel version of FMM algorithm is introduced that is scalable up to
hundreds of processors and beyond. The proposed algorithm is provably scalable and
hence allows for large scale parallelization. This work leads to the development of the

state of art parallel multiscale electromagnetic solver for very large scale simulations.

The rest of the thesis is organized as follows:
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Chapter 2, provides a detailed review of ACE algorithm. Here the definitions
and theorems of ACE algorithm are presented in a kernel independent fashion for
easy reference in later chapters. Also presented here is a detailed overview of the

multi-level tree computation scheme along with the proposed modifications.

Chapter 3, addresses the sub-wavelength breakdown of PWTD method, the time
domain counterpart of Helmholtz FMM. The smallest domain size used in PWTD is
restricted for reasons of numerical stability. Thus, when large number of unknowns
are concentrated within a sub-wavelength structure, the computational advantage
offered by the PWTD algorithm is overshadowed by the direct computation cost.
Here, the almost kernel independent framework of ACE algorithm is exploited to
develop an algorithm that is stable and efficient for evaluation of retarded potentials

within sub-wavelegnth structures.

Chapter 4, addresses the low-frequency breakdown of Helmholtz FMM. Here the
FMM algorithm is presented in sufficient detail to identify the root cause of the
breakdown. ACE expansions of the Helmholtz kernel is developed and the stability
and convergence of these expansions at low-frequency limits is shown in a rigorous
manner. This leads to the development of a wideband FMM algorithm, obtained by
seamlessly combining the ACE and FMM algorithms. This hybrid algorithm, that
is stable and efficient across length and frequency scales, is then augmented with an
existing electromagnetic solver for simulation of multiscale geometries.

Chapter 5, take a slight detour from fast methods and explores the possibility of
developing a new integral equation formulation that yields well conditioned systems of
equations for multiscale simulation. Here the augmented electric field integral equa-
tions (AEFIE), an existing IE formulation, is considered for modification. Included
here is a succinct review of the operator theory analysis of EM integral equations.
These tools are used to establish the behaviour of the new formulation when applied

to low-frequency and multiscale problems. The new formulation is first developed for
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2D problems and then extended, with appropriate modifications, to 3D problems.

Chapter 6, presents the development of parallel implementation of above hierar-
chical tree computation algorithms on distributed computers using message passing
interface (MPI). Here the emphasis is laid on developing a parallel framework that is
provably scalable on large number, in orders of thousands, of processors. The novel
schemes developed here results in a implicitly load balanced parallel algorithm. The
resulting framework can be viewed as a seamless combination of different schemes
already in existence. Detailed description on development of a parallel electromag-
netics solver is also provided and its high efficiency is demonstrated on hundreds of
processors and beyond.

Chapter 7, summarizes the various contributions of this thesis work in a succinct
manner. Several possible future works are also mentioned here.

Appendix A details the development of a ACE based algorithm for rapid compu-
tation of time domain diffusion potentials and Appendix B provides a quick review of
the comprehensive exam problem “Integral equation methods to model eddy current

inspection of plates ”.
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Figure 1.1: Hierarchical decomposition of a 2D computational geometry
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Figure 1.2: Representation of 2D computational geometry using quad-trees. Boxes
at different levels and corresponding nodes in tree are represented using binary keys.
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Figure 1.3: Illustration of interaction list; dark boxes are contained in the interaction
list of source box.
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Figure 1.4: Illustration of computational load in single- and multi-level FMMs. Dark
nodes correspond to actual sources while light shaded nodes represent centers of
multipole and local expansions.
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Figure 1.5: Various operators involved in a multilevel FMM
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Figure 1.6: Re-grouped boxes in original interaction list, in figure 1.3, for application
of diagonal translation operator (1.15)
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Chapter 2

Accelerated Cartesian Expansions

(ACE)

This Chapter, provides a detailed treatment of the accelerated Cartesian expansion
(ACE) algorithm and a general framework for hierarchical computations. Though
ACE is not the primary development of this thesis work, it is lays the foundations for
the advancements made in this thesis. Section 2.1, provides a brief overview of the
ACE algorithm. Section 2.2, presents the requisite introduction to definitions and
notations of Cartesian tensors used in rest of this thesis. In Section 2.3, the defini-
tions and theorems of ACE algorithm are stated. Section 2.4, provides the details of
the different procedures involved in a hierarchical tree computation algorithm. Sec-
tion 2.5 describes some of the algorithmic developements introduced to reduce the

computational cost by half.

2.1 Introduction

Accelerated Cartesian Expansion (ACE) is a fast computational technique, in the

vein of FMM, in the sense that it employs tree structure for hierarchical computation
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and derives rigorous error and cost estimates. A common feature of these hierarchical
computational scheme is the use of divide and conquer strategy to offer the computa-
tional advantage with a prescribed loss in accuracy. This loss of precision is justified
by the fact that the numerical simulation are constrained to finite precision by other
factors; and evaluation of potentials beyond this limit does not offer any advantage.
Further, these schemes accelerate the computation of far-field potentials only. The
dominant contribution to the total potentials arise from the near-field interactions

that are evaluated ezactly using direct computation.

ACE is the mathematical engine behind the fast method discussed in this thesis.
It employs Taylor’s series expansion to derive addition theorem for arbitrary, non-
oscillatory functions. It is worth noting that the use of Taylor expansion for fast
computation have been developed earlier also [10, 11, 12]. Typically, these FMMs
derived using the Cartesian expansions were more expensive as spherical harmonics
are optimal in representing Coulombic potentials. However, it was recently shown
that it is possible to develop a FMM using Maxwell-Cartesian harmonics that are as
optimal as using spherical harmonics with one singular advantage; it avoids the need
for special functions [13]. Here, the entire algorithm is cast within the framework of
Cartesian tensors and exploits the fact that these tensors are totally symmetric to
provide an optimal representation of Cartesian harmonics. Another salient feature of
ACE algorithm is that it derives exact formulaes for traversing up and down the tree,
which in turn implies lesser source of error. The use of Taylor’s expansion implies
that the potential or its modified form be non-oscillatory for rapid convergence of
these expansions. This technique, as presented here, was introduced for kernels of
the form RY. ACE has been extended to several other forms of potentials, some
of them as part of this thesis work, for e.g. Helmholtz potential [165], Yukawa (or
shielded Coulomb) potentials, retarded potential, diffusion potentials, solutions to

Klein-Gordon and lossy wave equations.
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2.2 Cartesian Tensors

Tensor analysis is an integral tool used in development of ACE algorithm. A Cartesian
tensor of rank n is denoted by A(M orin component notation by Ag;)...an, and is an
array of 3" components, for points in R3. A totally symmetric tensor is one that is
independent of the permutation of indices a7 - - - @, and in compressed form it contains
(n + 1)(n + 2)/2 independent components. Alternatively, they can be represented in
compressed form as Aln) (n1,n2,n3) where nj +ng +n3 = n, and n; is the number of
times the index ¢ is repeated. An n-fold contraction between two tensors Am+m) apq
B(™) is represented using c(m) = A(n+m)  B(™) The contraction of two totally
symmetric Cartesian tensors can be written using the compressed notation as

c(m) (my,mg,m3) = Z LA(n*_m)(nl + my, ng + mg, ng + mg3)

ni!nging!
ni,n9,n3 1*n2:13 (21)

B™(ny,ng,n3)

An extensive exposition of theorems and formulae pertinent to the properties of com-

pressed tensors, their application to the ACE algorithm, can be found in [166].

2.3 ACE: Definitions and Theorems

In this section the theorems and definitions that permit the fast evaluation of functions
are outlined briefly. To this end, assume that domains €25 and , are sufficiently
separated, and comprise of sources and observers, respectively. Also, 23 C Q5, Q, C
0P and Q2 N Q5 = 0. The centers of the domains Qg, Qp, N and N are denoted by
I's, To, Io and rh, respectively. Further, denote the potential function that maps the
effects of these sources on the observation points as ¥(R), where R = ||[r — /|| and k
sources exist in 2. Here, the function ¢(R) can stand for any interpolation function

T(t) convolved with the retarded potential and observed at time ¢t = 0. An addition
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theorem for this function may be obtained using Taylor’s expansion.

Theorem 2.3.1 (Taylor Expansion). The function ¥ (r —1’) can be ezpressed

about the origin using

'™ .n. V™(r) (2.2)

¢(r _ rl) — Z (_ll)n
n=0 )

n
wherer > 1’

This theorem gives rise to the following corollary.

Corollary 2.3.2. The function 1(r — r’) takes the form

00 (n) n.v"
b (e— r') _ YR oM™ 0, Vry(r) forr>Tr 23)
© r*.n.LM fort >r

where M(") and L(™) are the multipole and local expansions. These theorems may
be used in concert to derive/prove the following five theorems that form the crux of

ACE [166).

Theorem 2.3.3 (Multipole Expansion). The total potential at any point r € Q,

due to k sources q;, 1 =1,--- ,k located at points r; € Qg is given as

P(r) = E M®™ . . V(1)

n=0

N (2.4)
M® = 3 (1) E (- r)”
i=1

n!
where M(™) is the multipole tensor.

Theorem 2.3.4 (Multipole to Multipole Expansion). Given a multipole ezpan-
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sion of k sources about rg

k
0" = 3 (1) H(r; - xo)" (2.52)
1=1 )

then the multipole expansion about the point r§ can be ezpressed in terms of (2.5a) as

M™ = Z( 1)"ﬁ(r, )" = Z > |(r”—r3" mom)  (2.5b)

=1 m=0 P(m,n)

It is evident that one can repeatedly use this theorem to translate the multipole

expansion from rs to ry. This expression is exact [166].

Theorem 2.3.5 (Multipole to Local Translation). Assume that the domains QF
and ¥ are sufficiently separated, and the distance between their centers rhg = |rhs| =
[rh — rb| is greater that diam {Qg} and diam {Qg} If a multipole ezpansion M(™)
is located at x5, then another ezpansion L™ that produces the same field Vr € QB is

given by

P(r) = Zp" .n.LM

1 — om
L™ = 3 HM(m ) . (m — n) « V™ (rD)
m=n

where p=r1 — 1} and V is the derivative with respect to rh.

Theorem 2.3.6 (Local to Local Expansion). A local ezpansion O(™) that erists
in the domain Q5 centered around rf) can be shifted to the domain Q, centered at ro

using
e m
L™ = Z o™, (m —n). ()™ " (2.7)
m=n\ m—n

It can be shown that this expression is exact as well. Finally, the fields at a set of
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observation points can be computed using the following theorem.

() =Y L .n. (py)" (28)

n=0

Proofs for these theorems for 1(R) = RY can be found in [166] and may be trivially
extended to functions of the form ¥(R) = span{R™Y} for v = —-1,0,1,--- , K, or
any other non-oscillatory function. Note, that when ¢)(R) = R™Y, evaluating the
multipole to local expansion using Theorem 2.3.5 implies the computation of VPR~V

which can be efficiently effected through

EIREANEY

19 AN 1 —on— n2
P (5) = RS Y o
m1=0mg=0mg=0 my m2
(2.9)
n3 x R2‘mf (U, n—m— 1) xn1—2m1yn2—2m2zn3—2m3
m3

where R% = z2 + y2 + 22. As was pointed out in [166], a computation scheme based

on these theorems have the following characteristics:

1. The multipoles are independent of the function being translated. Only the
translation operator depends on v. This fact will be of use in developing fast

methods for evaluating the retarded potential.

2. The multipole to multipole expansion (or the local to local expansion) is exact.

This implies that the errors obtained do not depend on the height of the tree.

3. The formulation in terms of totally symmetric tensors permits the realization

of CPU cost savings of a factor of 1/720 over a simplistic implementation.

4. Finally, since only the translation function depends on the potential function

being used, it follows that the proposed methodology can be readily altered,
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with very little change in the overall algorithm, for other potential functions.

2.4 Multi-level Tree Computational Framework

These theorems permit rapid evaluation of potential using either a standard or com-
pressed oct-tree decomposition of the domain. A standard oct-tree is constructed by
first embedding the entire domain in a fictitious cube that is then divided into eight
sub-cubes, and so on. This process continues recursively until the desired level of
refinement is reached; an Nj-level scheme implies N; — 1 recursive divisions of the do-
main. At any level, the domain that is being partitioned is called the parent of all the
eight children that it is being partitioned into. At the lowest level, all source/observers
are mapped onto the smallest boxes, leaf bozes. This hierarchical partitioning of the
domain is referred to as a regular oct-tree data structure. At any level in the tree,
all boxes/domains are classified as being either in the near or far field of each other
using the following dictum: two subdomains are classified as being in the far field of
each other if the distance between the centers is at least twice the sidelength of the
domain, and their parents are in the near field of each other. This definition will be
used unless it is specially stated that an alternate definition is necessary.

The interactions between all source and observation points are now computed
using traversal up and down the tree structure in the following manner. First the
multipole expansions are computed at the lowest level for leaf boxes. Parent box
multipoles, at all levels, are computed from its children multipoles using multipole-
to-multipole translation operator, theorem 2.3.4. This process is called upward tree
traversal. Second, local expansions are computed at every box from multipole expan-
sion of the boxes in its far-field using multipole-to-local translation operator, theorem
2.3.6. Next, the local expansions of all child boxes are updated with the local ex-

pansion of its parent using local-to-local translation operator, theorem 2.3.6. This
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procedure is referred to as downward tree traversal. Finally the potential at observer
points are computed from the local expansion of leaf boxes using theorem 2.8. This
the far-field potentials that accounts for contribution from all sources except from
the sources in near-field region of the corresponding leaf box. The total or complete
potentials is obtained by accounting for contributions from near-field sources for leaf

boxes only through direct evaluation.

Cost of this scheme can be computed in the following manner. The cost associated
with each operation will be denoted by Cop where op € {NF,C2M, M2M, M2L,L2L}
that stand for (i) near field (ii) charge to multipole (iii) multipole to multipole (iv)
multipole to local (v) local to local and (vi) local to observer. In the following analysis
the total number of interaction pairs is denoted by N, number of harmonics by P,
total number of levels in the tree by N;. Let Njp; denote the number of boxes at
each level and assume that the number of unknowns in each leaf boxes, on average,
is 5. It follows that Ny = N/s, Npj_1 = 8Ny, and Ynly Ny; o< N/s. With these

preliminaries the cost of each operation can be computed in the following manner.

1. Near field evaluation, Cjyp: This computation is carried out only at the lowest

level I = 1, at leaf boxes. The cost of direct evaluation between two leaf boxes
scales as s2 and for each leaf boxes can atmost have 27 boxes in its near-field.

The total cost of this operation can be written as

Cnp x N/s x 2752
(2.10)

x 27Ns

2. Multipole expansion, Coops: In this operation multipoles expansion in form

of totally symmetric Cartesian tensors are computed from s charges per leaf

box. The distinct elements in a totally symmetric Cartesian tensor of rank p is
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(p+ 1)(p+ 2)/2. The cost of evaluating multipole tensors up to Pt? rank is,

N P
Coam =7 xsx ) _(p+1)(p+2)/2
p=0 (2.11)
NP3

6

. Multipole to multipole expansion translation, Cpsops: The multipoles of parent

boxes, at any level, is computed from its eight children multipoles. The number

of operations to translate all P + 1 multipole from a child to its parent is
6

II (P +1)/i. Since the total number of boxes in the tree scales as N/s the cost

i=1
for this operation can be expressed as

6 :

N P+i

Cmam = — % IT ( - ) (2.12)
i=1

. Multipole to local translation, Cpsor: This operation is performed on all boxes

of the tree. For any box the maximum number of far-field boxes is 189. The

cost of translation between two tensors is same as in previous case.

(P+1)

: (2.13)

N 6
CymoaL = 189?,-—1_[1

. Local to local expansion translation, Cror: As mentioned before this operation

is exactly the same as multipole-to-multipole translation operation i.e. Crar =

Cumam-

. Local to observer, Cro0: cost of this operation is exactly the same as that for

mapping charges to multipole expansion i.e. Cr20 = Ccoapr-
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The total cost of the scheme is the sum of all individual cost,

Ctotal = CNF + Ccam + Cyam + Curar, + Crar + Croo

NP NP3
=27Ns + 191:% +——

(2.14)

It is readily apparent that optimal number of unknowns per box is s « P3 /10.

2.5 Algorithmic Improvements

The above discussion pertains to the classical multi-level computational framework
introduced in [167]. Since its introduction several modifications and additions have
been suggested to reduce the computational time and extend its applicability to
general geometric distributions. Following are some of the developed in this research

work for optimal implementation of ACE algorithm.

2.5.1 Reduced Interaction List

From the cost estimate of ACE algorithm it is evident that C)so1,, cost of multipole-to-
local translation operation, is the dominant part. Both the per-translation evaluation
cost and number of interaction pairs (typically 189) are very high. This observation is
common to all FMM like methods [168, 169]. In FMM based on expansions in terms of
spherical harmonics both the factors can be reduced with the use of plane wave basis
representation and exploiting the resulting symmetry. Alternatively, in this work a
new definition is introduced to classify far-field pairs: if box a (at level I +1) interacts
with all the children of box b (at level ) and boz a, boz b are in far-field of each other
then boz a interacts with boz b. Interaction between boxes at two consecutive levels
is easily effected using Cartesian tensors. In fully populated oct-tree this results in

a reduction in the number of translation operations by half with minimal increase in
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error. Numerical results that support this claim is presented in chapter 3.

2.5.2 Compressed Oct-tree

Classical multi-level FMM loses its O(N;) scaling when applied to geometries with
non-uniformly distributed sources/observers. The root cause of this breakdown is the
use of uniform or regular oct-trees where all branches of tree is grown till the lowest
level. This implies that the number of source/observer per leaf box varies drastically
between regions of low and high source/observer concentrations. For leaf boxes with
very low number of unknowns, evaluation of potential at its far-field boxes through
{C2M, M2L, L20} operaion can be costlier than direct evaluation. To overcome this
shortcoming an adaptive version of the multi-level computational scheme was pre-
sented in [169] with compressed oct-tree representation for non-uniform geometries.
In compressed oct-tree representation only boxes, at any level, with source/observer
pairs greater than a pre-determined number is sub-divided into child boxes. Further,
in adaptive version always the optimal form of FMM is used based on the number of
points in a leaf box. The implementation of ACE algorithm closely follows the work
in [169], the main deviation is that the smallest box is used to enclose some pre-fixed
number of points per box, s. While this approach is not significantly different in terms
of cost when compared with [169], it does provide the possibility of improving error
with certain geometries as the error in multipole evaluation is reduced. On downside
this method may produce large number of single child parent which in turn increases
the number of tree traversal operations, however this can be remedied by eliminating
these redundant parent boxes. With the elimination of single child parent nodes, the
resulting oct-tree would have the same structure as in [169] except the leaf box size

would be smaller here as shown in Figure 2.1.
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Figure 2.1: An example of compressed-quadtree with binary key representation used
to label the tree nodes.
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Chapter 3

Fast Evaluation of Time Domain
Retarded Potential in

Sub-Wavelength Structures

In this chapter, a computational scheme is presented for fast evaluation of time do-
main retarded potentials in sub-wavelength structure, whose principle dimension is
less than or only a few orders of the maximum wavelength. Section 3.1 provides a
brief review of the existing fast algorithms for evaluation of retarded potentials and
their limiations when applied to sub-wavelength structures. Section 3.2 describes the
problem of computing retarded potentials. Here these computation are reduced to
evaluation of polynomial potentials of different orders. Section 3.3 details a fast algo-
rithm when principal dimension of the domain is less than the maximum wavelength
and Section 3.4 generalizes this to arbitrary size domains. Section 3.5 presents re-
sults and discussion of the proposed method when applied to arbitrary uniform and

non-uniform geometry distributions.
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3.1 Introduction

Time domain solutions to scattering problems is preferred over frequency domain
methods when the analysis spans a wide range of frequencies. Examples of such anal-
ysis include characterization of wideband antennas and analysis radar signatures. In-
tegral equation based methods for scattering from electrically large objects in time do-
main has been made possible via the development of acceleration techniques like plane
wave time domain (PWTD) and time domain adaptive integral method (TDAIM).
These methods ameliorate the computational cost when the size of overall object is
several wavelengths long and the smallest feature scale is a fraction of the wavelength.
However, analysis of structures that contain a mix of feature scales, poses problems
for acceleration techniques in both frequency and time domain. Here, it is the geo-
metric constraint that dictate the computational complexity. For instance, to model
fine features, it is necessary to discretize that domain at a considerably higher rate
than that is dictated by the smallest wavelength to capture the geometric details.
These features occur in the analysis of practical problems in applied electromagnet-
ics, ranging from EMI/EMC applications to antenna topologies to feed structures to
signal integrity analysis in high speed interconnects, etc. The solution to this problem
is typically sought by devising a methodology that works at sub-wavelength scales,
and developing a transition to higher frequencies so that it can be integrated with

existing acceleration methodologies.

The problem encountered herein is not very different from those addressed in
the frequency domain fast multipole method (FMM). The PWTD algorithm is a
time domain analogue of FMM, with one significant difference; the field due to a
quasi-time limited and bandlimited source can be reconstructed to arbitrary accuracy
using a discrete set of propagating plane waves provided certain separation conditions

between the source and observers are met [170]. The separation criterion ensures that
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time gating can be employed to yield causal results. Unlike in the frequency domain,
the cause of breakdown is not the expansions used in the algorithm; all functions
used in the expansion are regular at zero. The breakdown occurs because domains
that interact with each other via the PWTD algorithm are determined indirectly by
the time step size. As the time step depends only on the maximum frequency of
excitation and not on the smallest discretization, it implies that PWTD breaks down
as an acceleration tool because most of the interactions would fall under the “near”
field classification. However, these arguments suggest an approach for overcoming this
hurdle; develop an acceleration procedure using adaptive time stepping. The main
advantage of this procedure is the seamless manner in which it can be integrated with
the classical PWTD scheme for high frequencies, resulting in an acceleration scheme
that is valid at all length scales [171, 172]. Alternatively, one can modify existing
frequency domain low frequency algorithm to construct time domain information
[173]. This implies that one needs to develop the mechanism to transition from
frequency to time domain and vice versa such that the resulting system can still be
cast within the framework that permits transient analysis within a marching on in
time framework. It has been shown that the latter approach is considerably faster
than the former [173].

This work presents an alternate method to arrive at the same objective and is
founded on using Taylor expansions in a Cartesian framework, detailed in previous
chapter. More specifically, the methodology presented herein will rely on the recently
developed fast kernels for evaluating potential of the form RY for v € R, and is very
competitive in terms of speed for a given accuracy with the other two methods that
exist [171, 172, 173]. integrated with PWTD. Thus, the main contribution in this

work are

e Development of an acceleration technique to compute retarded potentials in

the sub-wavelength regime. The method presented relies on representing the
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retarded potential as a function of potentials of the form RY, and then acceler-
ating this function. The presented method can be extended to other functional

representations as well.

e Development of the requisite algorithmic structure to seamlessly extend this
(with very little cost overhead) to multiple time steps. Extension to multiple

time steps is done with the sole aim of integrating with the PWTD algorithm.

e Application to sub-wave legnth problems with non-uniform geometric distribu-

tions

3.2 Problem Statement

Consider a set of Ng sources that are randomly distributed in a domain 2. The
location of these sources will be denoted using ry, and their time signatures by fy, (rn, t)
forn=1,---,Ns. It is assumed that these functions are bandlimited to an angular
frequency wmaz and all sources are approximately quiescent for ¢ < 0. As in all time
domain solvers, the source functions fn(rp,t) are known only at evenly spaced time
steps ty = kA¢fork =1,--- , Nt where A¢ = 7/(xwmaz), NtAt is the total simulation
time and x is an oversampling factor. Typically, x > 1 and chosen between 5 to 20
to accurately reconstruct functions fn(rn,t) from its samples. The field at any point

r due to these sources is given by

Ng
o(r,t)=3 W % faltn, ) (3.1)
n=1

where c is the speed of light, » denotes convolution in time and R, = ||r — ry||. It
is apparent that the cost of computing (3.1) scales as O(N;N2). Finally, in keeping
with the definition of sub-wavelength regime, the size of domain is diam(Q2) = O(cAy).

Given the size of the domain, it is apparent that the PWTD scheme cannot be readily
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used; it has to be substantially modified in order to evaluate these potentials efficiently

[172).

In developing this scheme, it is necessary that the source signatures in (3.1) be
known so as to facilitate the integration of the proposed algorithm with existing
marching-on-in-time solvers for time domain integral equations. The starting point
of the proposed method arises from the representation of the source signal. Assume
that the source function can be represented in terms of fn(rn,t) = Y p IxTi(2),
where Ti(t) = T(t — t;) is a time basis function and I are the samples of the
function at the discrete time step t. It follows from this representation that

N,
B(r, t) = % th In,kw (3.2)
n=1k=0
This implies that to realize a fast algorithm, one needs to rapidly compute functions of
the form T (t — Rp/c). To illustrate the development of a fast algorithm the temporal
basis functions are chosen to be backward Lagrange polynomials. Note, however, that
the methodology presented herein is not restricted to polynomials. To this end, the

K*h order basis functions is defined as

hre(t)9k—k(t) for (k—1)A¢ <t <kAy k=0,--- K

T(t) = (3.3a)
0 otherwise
where,
1 k=0
he®)=9q k t—in, (3.3b)
- k+#0
il_;Il —ZAt #
and Kk
- t+ il
_r(t) = - 3.3¢c
9K —k(t) g i (3.3c)

It follows, from the above equation that T'(t) = 0 for ¢t & (—A¢, KA¢), T(0) =1 and
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T(t) =0fort = —Ayg, Ay, 20, -+ , (K —1)A¢. Using the functions in (3.2), and point
testing in time, results in the potential function that is a polynomial of R,,. It means
that one can directly exploit acceleration methods developed for kernels of the form

RY [166].

3.3 Single Time Step Geometries

The field at any observation point r € §2, at time instance iA¢, due to sources at

rp € Qforn=1,---,Ng can be obtained from (3.1)

A
Ns ©t
@(iAt,r) = z / M‘fn(rn,iAt - T)dT (3.4)
n=1 Rn,
0
where Ry, = ||r —ryp|| and fn(rn,t) is the transient source strength at the nth spatial
point. The limits [0, A¢], on above time integral is possible because Rp/c € [0,Ay].
Employing time-domain basis function from (3.2) and evaluating the time integral in

(3.4) results in,

' Ng T . .
sirer) = 3 3 Il —J)ﬁf, = Bn/c) (3.5)
n=1j=i—K
Ns K .
— E Z In,i—j T(JAt};an/c) (36)
n=1j=0

where, K is the order of temporal basis function T'(t). Since T'(t) is chosen to be a

backward Lagrange polynomial, (3.6) can be expressed in terms of powers of R, /c as

Ns K K

(A1) =Y Y > Ini_jo(h,j)R! 3.7)

n=1;=0h=0
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In (3.7), a(h,j) is the coefficient corresponding to the polynomial of degree (h —
1) for the basis function at (i — j)-th time step, they also depend on A; and c.
Evaluating these polynomials of form RY can be performed at O(N;) cost using the
ACE algorithm. Thus, the overall cost of this scheme scales as O(K'Ng). Error
bounds for using ACE to evaluate (3.7) can be obtained from the bounds derived in
[166] and it can be proven that the upper bound of the error is determined by that for
R~1. Note, that the above derivation is not specific to using polynomials as temporal
basis functions. Other basis functions may be dealt with in one of two ways; either
by finding the appropriate translation functions, or by mapping these onto a space of
polynomials. Using polynomials is fairly trivial as the framework for the RY kernel is
readily available [166).

The O(K Ns) reduction in cost, specified above, is for brute force implementa-
tion of the ACE algorithm. It is important to recognize that the above formula-
tion demands evaluation of the kernel R~V for different v’s. However, most of the
steps in the proposed algorithm are kernel independent. In that, Theorems 2.3.3 and
2.3.4 (multipole expansion and multipole-to-multipole translation) do not depend on
the kernel. Similar observation holds for local-to-local translation and evaluation of
potential from local expansion, Theorem 2.3.6 and equation (2.8). Thus, only the
multipole-to-local translation, Theorem 2.3.5, depends on the kernel and requires the
evaluation of V"R for different v values. Therefore, evaluation of polynomials of
form " ¢, RY involves (almost) one tree traversal (up and down) irrespective of the
kernel, only the multipole-to-local translations need to be done separately for each
kernel or polynomials of different degrees. Thus, a careful implementation of the ACE
algorithm results in an adaptable and significantly lower cost algorithm. Applying
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the multipole to local translation (Theorem 2.3.5) in (3.7),

Ns K K
O(iAsr) = 3 D> Inija(h, )Ry

n=1;j=0h=0
Ns K K P

= 233 higetni) Y VPR pe RLD)
n=1j=0hh=0 p=0
P K K Ng

=¥y (Z a(h,j)vmgh-”) P (Z In,i—ﬂﬁ.(”’)
p=03j=0 \h=0 n=1
K P

= 227 MP 9
j=0p=0

where R, = ||r — ro||, R}, = ||[ro — ry|| and r, is the center of sphere enclosing

all sources. 73(”) and Mgp) are the optimal tensor representation of multipoles and
translation operation of the ACE algorithm. Equation (3.8) implies that upward
tree traversal, i.e., multipole-to-multipole translation and multipole-to-local transla-
tion should be performed K times. This is to preserve the transient information,
I, i ; associated with each basis function for every source. However, downward tree-
traversal which include local-to-local translation and potential evaluation needs to be

performed only once.

3.4 Multiple time step interaction

The above exposition was geared towards developing a scheme for computing inter-
actions when diam(2) < cA¢. Next, the generic case of diam$Q > cA; is approached
through modifications to above methodology. Consider two domains 2; and €23 such
that,Vry; € Q; andry € Qp satisfies (N — 1)A; < ||r; — ra||/c < NA¢, where N

is any positive integer. Then, the field at any point ry at i-th time step, ®(iA¢, 1),
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due to N, q, sources at rn € {2y can be written as

392

O(iAg,1ry) = E / Rn/c) ———— fn(iA¢ — 7, ry)drdr (3.9)
n=1 (N 1)A
where R, = ||r; — rp||. Repeating the derivation presented for single time step

interaction,

Ns K .
O(iA¢,r1) = Z ZIn,i—j—(N—l)T((] +N —};:At — Rn/c) (3.10)

n=1j5=0

When N = 1, (3.10) reduces to the case for interaction within one time step (3.6). It
is important to preserve R/c argument of the basis function in (3.10), as a polynomial
representation is necessary for acceleration using the ACE algorithm. Thus, the key
in multiple time step interaction is to identify groups 2; and €29, and it can be done

using the following argument;
find dp,in > NA: and dmazr < (N +1)A; (3.11)

where, dmqz and d;,;, are the maximum and minimum distance between any two
points in ©; and €9, see Figure 3.2. For example, consider spherical domains of
radii r; and 79 whose centers are separated by Ro; then dmez = Ro + 71 + 2 and
dmin = Ro — r1 — ro. From (3.10) and (3.8) it can be inferred that the number
of upward tree traversals (multipole-to-multipole and multipole-to-local translations)
equals Nyaz K, where NpjqazcA¢ is the diameter of the sphere encompassing the entire
low-frequency region 2. These constraints mandate a new definition be used when

developing the interaction list in the oct-tree as follows:

Definition Interaction list rule: Consider two child boxes whose parent boxes are in

near-field. They are in each other’s far-field if the distance between their centers is
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at least twice the sidelength of the domain and they satisfy (3.11). Otherwise, they

are in each other’s near-field.

Some boxes may be well-separated in space and still not satisfy the temporal
constraint in (3.11). For example, consider two spheres of radius 7y = r9 = cAs/8
whose centers are separated by R, = NcAg, now dmaz = ¢(N + 1/2)A; and dpin =
¢(N —1/4)A¢ which do not satisfy (3.11). In such cases one can choose either of the
following options: (i) sub-divide the domains and perform interaction at next level
(with smaller domain size); (ii) consider the domains to be in near-field of each other
and use direct evaluation. Sub-dividing the domain without limit has two disadvan-
tages. First, the number of unknowns per smallest box, with increasing levels, can fall
below the limit for optimal computational cost. Second, sub-division into smaller size
boxes does not always ensure compliance with constraint in (3.11); it can be shown
that boxes who’s centers are separated by multiples of cA¢ (NcA¢), without regard to
their size, will not follow the temporal constraint (3.11) and interaction between such
boxes should be evaluated using direct methods. Further, using the second option on
short trees can increase the total number of near-field interactions and dominate the
overall computational cost. In this work, an optimal implementation is obtained by
combining both, i.e., sub-dividing up-to a certain level and beyond this level domains
violating (3.11) are placed in near-field interaction of each other. It is essential to
note that the number of levels up-to which sub-division is used can be geometry de-
pendent. In essence, this procedure overcomes the multiple time step interaction with
a slight cost overhead that should be optimized. Further observations are presented

in next section.
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3.5 Results and Discussion

In this section results presented will substantiate the above claims and demonstrate
the efficacy of the algorithm presented herein. As in all illustration of FMM meth-
ods, the goal is to demonstrate considerable speed-up with predetermined accuracy.
Consequently, the results presented will demonstrate convergence as well as O(Nj)
per time step CPU cost scaling. In all numerical experiments, the source/observer
locations are randomly distributed. The corresponding standard/compressed oct-tree
data structures (including interaction lists) are generated using the algorithmic pro-
cedure outlined in the Appendix. The accuracy of the proposed algorithm is validated
against analytical data for all cases where the unknown count is numerically small.

The relative error at nt" observer is evaluated as

d ,t)— @ ; ,t
Errm'far(n)= | fast,far(n ) analytzcal,far(n M2 (3.12)

“q)analytical,far(n, t)ll2

where, ||-||2 represents Lo-norm, ® o4 f4r(t) and @anaiytical, far (t) represent the time
history of the fields produced by the sources evaluated using proposed algorithm and
analytical procedure, respectively. The error reported in this work is the average error
over all observers [172] when the number of observers Ny < 32,000. For larger number
of unknowns, the analytical data (and hence the error) is computed for randomly
distributed unknowns (approximately 150). Hence, the reported data is an estimate
of the expected error. These value are denoted using a . Finally, as is usually done
for all fast algorithms, analytical data is computed only for the source/observation
pairs that are in the far-field of each other, and is consequently representative of an
upper bound or worst-case error. The CPU timings (in seconds) are those taken for
evaluating the field at a single time step using a 2.3 GHz Intel Pentium processor

with 2GB RAM running Linux OS. In all experiments that follow, the time signature
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that is associated with the nth source is given by (A.16)
29,2
fa(t,rn) = Kne~(ttp)"/20 (3.13)

where k5, is the magnitude of the source randomly chosen between [0, 1], 0 = 6.366 x
10-8 s and tp = 60 s. The effective highest frequency and minimum wavelength
associated with these signal parameters are fmqz = 3/70 = 15MHz and A\, =
20m, respectively. As prescribed in MOT solvers, the time step is chosen as A; =
1/(20fmaz) = 3.334 ns and is independent of geometric feature size and only a func-
tion of frmaz. The above parameters are chosen such that cA; = 1m, thus, all
geometric features smaller than 1 m would fall in the sub-wavelength category. In
rest of the section, P denotes the number of ACE harmonics used and K denotes the

order of the time basis function.

The first set of numerical simulation is performed to demonstrate the validity
of the improvements made in the kernel that reduce the number of translations by
approximately a factor of two without significantly affecting the order of the error (see
Appendix 2.5.1 for details). The numerical experiment performed is as follows; source
points were randomly distributed within a cube of side-length 0.5 m, i.e., all points
interact within one time step. The number of source/observation points is varied (as is
the height of the tree), the number of unknowns at a leaf box is approximately 64, and
error is obtained for the “Old” and “New” schemes. The results presented in Table
3.1 indicate what is expected, viz., the computational cost is reduced approximately
by a factor of two while the increase in error is almost always marginal (the order of

magnitude of the error is unchanged).

Next, set of results demonstrate that the multipole-to-multipole and local-to-local
operations are exact. An important ramification of this is that the error is independent

of the height of the tree. This experiment is effected as follows: consider two cubical
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domains Q; = (0,1/4) x (0,1/4) x (0,1/4) m3 and Qg = (1/2,3/4) x (0,1/4) x (0,1/4)
m3. Each domain contains 4000 randomly distributed source and observation points.
In constructing interaction lists, it is ensured that only sources/observers in 2; and
Q9 interact, all others are ignored. Thus, as the number of levels in the tree are
increased, the change in the error norm can be attributed solely to the multipole-to-
multipole and local-to-local operations. Table A.1 shows error computed for different
{P, K} pairs and different levels in tree, where dz is the size (in meters) of smallest
box. It is evident from Table A.1 that, for a given {P, K} pair, the variation in error
obtained from using different levels in the tree is accurate to double precision. This is
a consequence of the fact that Theorems 2.3.4 and 2.3.6 are exact, i.e., they produce
the multipole (or local) expansion had the box size at that level been the leaf box.
Consequently, the error bounds are much tighter. Details and proofs can be found in

[166).

Next, results are presented for distribution wherein all source/observation pairs
are distributed within a domain < cA; and distribution sizes ranging from 8000
to 4,000,000 points. The number of unknowns per leaf box, on average, is chosen to
lie between 60 and 70. From Table 3.1, it can be inferred that number of harmonics
and order of time basis function are closely coupled, i.e., for a given K, arbitrarily
increasing P does not improve the error and vice-versa. This is true because the
two sources for error (A.17) reported here are (a) approximation of a time signal
with polynomial basis function of order K, and (b) error in evaluating a polynomial
through ACE (limited P) due to far-field approximation. Hence, the results for time
comparison are presented only for the optimal pairs {P,K}. For example, {4,2}
indicates simulation run with 4t* order harmonic in ACE and 2"* order temporal
basis functions. In general first, second and third order temporal basis function
can provide up to @(10™%), ®(10~°) and O(10~7) accuracies respectively, for the

given source signal parameters (A.16). Table 3.3 shows the relative error for different
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{P, K} pairs and distribution sizes, Ns. It can be seen that for increasing {P, K}
combination the error decreases consistently. Table 3.4 presents the per-time-step
computation time involved in both direct and proposed algorithm, the order of error

corresponding to different {P, K} pairs can be inferred from Table 3.3.

Similar results are presented for multiple time step interaction in Tables 3.5 and
3.6, where N denotes the number of distinct time step interactions and Cs denotes the
sidelength of cube enclosing all sources/observers in meters. In Tables 3 to 6 empty
entries, pertaining to large Ng and {P, K} values, are due to insufficient computer
memory on the chosen computer platform. Figure 3.6 shows N vs. T, graph in log
scale for data in Table 3.4. The lines plotted in the graph corresponds to a least square
error linear fit for different { P, K'} pairs. Slope of these line for different { P, K'} values
was approximately 1.06, thus, validating the O(Njy) scaling of algorithm presented

here.

The evident mismatch between timings in Tables 3.6 and 3.4 is explained as fol-
lows. In the case of single-time-step interaction, the size of smallest box was chosen
to accommodate 60 to 70 unknowns per box on average. However the largest box, at
top of the tree (level 1), is within cA; dimensions; therefore, the height of the tree
increases as distribution size is increased. In case of multiple time-step interactions
one can keep the leaf box size constant and increase the level-1 box size for higher
distribution size, to achieve ~ 64 unknowns per leaf box. However, this does not
imply a direct increase in tree height because the interactions at larger boxes also
need to obey (3.11). For example, for two spheres of radius rs to interact, the limit-
ing condition based on (3.11), is rs < cA;/4. Boxes greater than this size interact
only through their child. This is the only limitation of the algorithm presented here,
however, in practice the algorithm can be strictly used to compute field interacting

in few time steps only and PWTD will interface with this method when |R/(cAy)]

is beyond a certain number of time steps. Thus, an ideal algorithm should switch
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between the proposed algorithm and PWTD seamlessly.

Finally, results for an adaptive version of the algorithm introduced here is shown
on two types of non-uniformly distributed geometries. The first closely resembles
interconnects in electronic chips as shown in Figure 3.4. The distribution of points
between top and bottom planes and two interconnects were approximately the same.
In applying the adaptive version, the number of unknowns per leaf node was ap-
proximately 64, was tested for source/observer distributions ranging from 8,000 to
1,000,000. Table 3.7 presents the error obtained using the proposed algorithm, and
was generated for different combinations of ACE harmonics (P) and order of time
basis function (K). The rate of error convergence exhibited here is fast in compar-
ison to those in Tables 3.3 and 3.5. This outcome is primarily attributed to the
consideration of smallest box enclosure and stricter enforcement of error criteria in
building the interaction list; see previous chapter. The timing result for this geometry
configuration is presented in Table 3.8. As explained above in uniform distribution,
the timing results are presented only for certain combinations of {P, K'}, each pair
corresponding to different orders of accuracy given in Table 3.7. Figure 3.7 shows
N vs. Tjqy graph in log scale. The slope of the linear fit was approximately 1.06
for different pairs of {P, K}, exhibiting the O(Njs) scaling produced by the adaptive
version of the algorithm. The second geometry configuration considered is made of
three circles with points non-uniformly distributed in each of them as shown in Figure
3.5. Each circle is 0.15 m in radius and the points were distributed so that density of
points is inversely proportional to the radius. The adaptive version is applied on five
different distribution sizes varying from 9,600 to 1,000,000 and the results are shown
in Table 3.9. As before, it can be verified that the time scaling is O(N5).
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Figure 3.1: Example of antenna feed geometry with low- and high-frequency regimes
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Figure 3.2: Definition for domains interacting over multiple time steps
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Figure 3.3: Map of N in equation 3.11 for an example single level interaction.

Table 3.1: Comparison between Old and New (reduced) scheme for interaction list
for different distribution sizes (Ns) and {P, K} pairs.

Ns [ {P,K} | Olderror | Newerror | Oldtime | Newtime | Oldtime/Newtime
12000 | {3,1 3.40E-4 | 5.96E-4 0.21 0.11 1.96
2 4,2 6.94E-5 | 1.43E-4 0.54 0.23 2.4
9 5,2 2.73E-5 | 4.87TE-5 1.00 0.42 2.37
a 9,3 2.37E-6 | 4.52E-6 9.49 3.6 2.63
4 13,3} | 8.00E-7 | 1.62E-6 53.47 18.5 2.89
32000 | {3,1 2.36E-4 | 3.55E-4 0.67 0.38 1.75
4 4,2 3.61E-5 | 6.54E-5 1.97 0.91 2.16
i 5,2 1.70E-5 | 2.59E-5 3.65 1.68 2.17
B 9,3 1.38E-6 | 2.31E-6 28.54 14.42 1.98
64000 | {3,1 2.86E-4 | 6.38E-4 1.56 0.79 1.98
& 4,2 6.42E-5 | 1.74E-4 3.94 1.9 2.07
2 5,2 1.82E-5 | 4.01E-5 7.17 3.18 2.26
4 9,3 4.02E-6 | 8.00E-6 66.02 27.95 2.36
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Figure 3.4: Non-uniform geometry configuration 1, resembling interconnect in elec-
tronic chips (Ns=12000).

Table 3.2: Exact multipole to multipole and local to local operators of ACE

dxg {P , K }
A=0.0625 | Levels {1,1} {4,2}

A 4 1.8800972191556 69E-2 | 7.03463843261 4828E-4
A/2 5 1.8800972191556 66E-2 | 7.03463843261 3739E-4
A/8 7 1.8800972191556 70E-2 | 7.03463843261 3831E-4
A/32 9 1.8800972191556 70E-2 | 7.03463843261 3819E-4
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Figure 3.5: Non-uniform geometry configuration 2 (Nz=9600).
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Figure 3.6: log(N;) vs. log(Tq,) for single interaction case and uniform geometry
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Figure 3.7: log(N;) vs. log(T't,,) for single interaction case and non-uniform geome-
try

Table 3.3: Error,, in single time step interaction case (Cs = 0.5), for various N
and {P, K} pairs.

N,

8000

12000

32000

640007

5000007

levels

4

4

4

5

6

{P.K}

Errorg,,

{1,1}

0.00581

0.00995

0.00474

0.00808

0.0015

{2,1}

0.000938

0.00155

0.000637

0.000944

0.00176

{3,1}

0.000341

0.000596

0.000355

0.000638

0.00118

{4,2}

7.87E-05

0.000143

6.54E-05

0.000174

0.000406

{5,2}

2.09E-05

4.87E-05

2.59E-05

4.01E-05

2.48E-05

{9,3}

4.97E-06

4.52E-06

2.31E-06

8E-06

8.34E-06

{13,3}

8.85E-07

1.62E-06

1.03E-06

2.43E-06

Table 3.4: Comparison of run-time in single time step interaction case (Cs = 0.5).

T_fasta {pP,K}

N, Tpirect {lal} {2,1} {4v2} {9’3} {13’3}
8000 447 | 1.40E-2 | 3.18E-2 | 0.14 2.17 10.96
12000 11.02 || 2.27E-2 | 4.61E-2 | 0.23 3.60 18.50
32000 97.59 | 8.87E-2| 0.18 0.91 14.42 85.2
64000 - 0.20 0.44 1.90 2795 |173.38

500000 - 1.94 3.82 15.67 | 245.37 -
1000000 - 3.78 7.19 30.98 | 498.03 -
2000000 - 7.71 13.33 | 60.18 | 742.21 -
4000000 - 16.06 27.46 | 121.72 | 1940.15 -
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Table 3.5: Erroryg, in multiple time step interaction case, for various combination
of Ng, N and {P, K} pairs. N is the number of distinct time steps involved.

8000

12000

32000

32000

1280007

4

4

4

5

6

1

1

1

2

2

2

2

2

3

3

Errorfg,

2.92E-03

2.97E-03

3.50E-03

2.11E-03

3.80E-03

5.79E-04

5.42E-04

7.06E-04

4.07E-04

3.33E-04

3.15E-04

3.07E-04

4.53E-04

3.22E-04

3.30E-04

6.27E-056

5.67E-05

8.14E-05

5.03E-05

7.19E-05

2.67E-05

2.45E-05

2.99E-05

1.54E-05

1.62E-056

1.97E-06

1.90E-06

3.32E-06

9.15E-07

Table 3.6: Comparison of run-time in multiple time step interaction case

Trqst; {P, K}

N, Cs [N TDirect {1’1} {2’1} {4,2} {9’3}
8000 (1.0 2 2.02 0.03 | 0.06 | 0.31 4.85
12000 |1.0| 2 4.69 0.04 | 0.10 | 0.49 7.68
32000 (1.0 2| 61.93 || 0.19 | 0.44 | 2.52 | 43.97
32000 (2.0 3 | 34.31 0.17 | 0.32 | 1.67 | 28.49
64000 (20| 3 - 0.67 | 1.52 | 8.76 | 165.45

500000 | 2.0 4 - 27.89 | 55.47 | 294.06 -
1000000 | 1.0 | 2 - 45.52 | 83.37 | 433.34 -

Table 3.7: Error o for non-uniform geometry configuration 1.

Ng 8000 12000 | 32000
levels 4 5 6
{P,K} Error¢a,
{1,1} | 3.81E-3 | 3.58E-3 | 3.23E-3
{2,1} |9.46E-4 | 8.62E-3 | 6.75E-4
{3,2} |[1.83E-4 | 1.64E-4 | 1.14E-4
{4,2} | 3.78E-5 | 3.43E-5 | 2.69E-5
{5,2} | 1.62E-5 | 1.51E-5 | 1.32E-5
{6,3} | 3.06E-6 | 2.59E-6 | 2.02E-6
{8,3} |[1.18E-6 1.10@-7 9.46Ei
{9,3} | 7.52E-7 | 7.27E-7 | 6.93E-7
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Table 3.8: Comparison of run-time for non-uniform geometry configuration 1.
Tpost, {P, K}

N, ({11} {21} | {4,2} | {63}
8000 0.03 { 0.05 | 0.14 | 0.49
16000 | 0.05 | 0.09 | 0.32 | 1.03
32000 | 0.11 | 0.20 | 0.63 | 2.28
64000 0.25 | 0.43 | 142 4.8

250000 | 1.19 | 1.75 | 5.33 | 18.86
500000 | 2.61 | 3.58 | 10.86 | 40.08
1000000 | 6.11 | 7.8 |23.25 | 79.63

Table 3.9: Comparison of run-time for non-uniform geometry configuration 2.
Trast, {P, K}

N, [ {11} [ {21} | {4,2} | {6,3}
9600 0.03 | 0.05 | 0.19 { 0.51
38400 | 0.13 | 0.23 | 0.79 | 2.88

105000 | 0.4 | 0.72 | 2.35 | 8.42
450000 | 2.16 | 3.18 | 10.52 | 37.34
1000000 | 5.17 | 7.07 | 24.33 | 82.46
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Chapter 4

Wideband FMM and Multiscale
Electromagnetic Solver in

Frequency Domain

This chapter addresses the development of a fast algorithm for electromagnetic sim-
ulation of multiscale structures in frequency domain. Section 4.1 provides a brief
review of the multiscale problem in electromagnetics and the limitation of the ex-
isting fast algorithms. Section 4.2 presents a general problem setting followed by a
brief exposition on the sub-wavelength breakdown of FMM algorithm. In Section
4.3, ACE algorithm is employed for fast evaluation of Helmholtz potential in sub-
wavelength scenarios; rigorous proofs are provided to establish the stability of these
expansions. Section 4.4 describes the details of the hybrid algorithm, combining ACE
and FMM, that is applicable to multiscale problems. Section 4.5 presents results on
error and timing of the proposed schemes to demonstrate their numerical stability and
efficiency. The hybrid algorithm was also integrated with an EM solver to analyze

scattering from electrically large structures.
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4.1 Introduction

Integral equation based methods are used extensively in scattering analysis. However,
it is well known that they produce dense matrices that increase the cost and limit the
size of the problem that can be solved. In past two decades, significant research effort
has been dedicated to the development of efficient and accurate techniques to amor-
tize this cost. These advances have had a widespread impact in variety of applications
ranging from scattering and radiation analysis to micro-electronic packaging; an in-
complete compendium of applications is presented in [88, 174]. The increased power
and availability of computational resources and acceleration schemes have enabled so-
lution of problems with very large number of unknowns, varying from few thousands
to few millions [37, 40]. Another class of problems arise when analyzing structures
which require a high local density of unknowns to capture geometric features. This
class of problems, hereafter, referred to as multiscale problems exhibit multiple scales
in frequency or length or both. For example, small length scale discretizations are
required to capture sharp geometric features that are embedded within large and
smooth geometries discretized at a coarser length scale. Similarly, multiple frequency
scales is vital to analysis and design of ultra wideband (UWB) antennas embedded
in structures [175]. In general the characteristics of a multiscale problem is the con-
centration of large number of unknowns in electrically small domains. Akin to the
breakdown of time domain fast mathods for wave equation, existing techniques for
Helmholtz equations also face limitations when applied to multiscale problems as their
cost scaling is poor [46, 42] and mixed discretization also lead to badly-conditioned
matrix systems (176, 177, 178, 179, 175]. The development of a fast algorithm that is
stable and efficient for multiscale structures is addressed in this chapter. The latter
problem of badly-conditioned system is remedied with the use of an alternate integral

equation formulation, whose development is detailed in Appendix A.
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As mentioned in Chapter 1, FMM has become an indispensable for large scale
electromagnetic analysis [174, 34]. However, FMM becomes numerically unstable
and inefficient when applied to multiscale problems [42]. This is a consequence of the
fact that Helmholtz FMM does not smoothly transition to Laplace FMM as frequency
tends to zero. This was first remedied by introducing a suitable scaling factor [46] that
ensures the computed quantities are stable and the transition is smooth. However
this approach is not suitable for problems with multiple length scales. An alternative
approach based on spectral representation of free space Green’s function in terms of
propagating and evanescent plane waves was proposed in [42] . This approach seam-
lessly transitions from high to low frequency kernel for both spatial and frequency
scaling [50], but it requires the evaluation of an infinite integral in k—space; general-
ized Gaussian quadratures [50] and other approaches based on contour integration in

complex plane [84, 49, 180] have been explored for this purpose.

The main contributions of this chapter are,

e development of a low frequency fast method based on Accelerated Cartesian

Expansion (ACE) algorithm

e development of a hybrid scheme by combining ACE with FMM for multiscale

problems

e derivation of convergence proofs and bounds

e integrating the hybrid scheme with integral equation solvers and demonstrate

its application to practical problems.

Though the overall structure of the hybrid algorithm developed here bears some

similarity with [50], it should be emphasized that they are two different algorithms.
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4.2 Integral Equation and FMM for Helmholtz

Equations

Let S denote the surface of a closed PEC object that resides in free-space. This
surface is excited by a plane wave characterized by {E*(r), H(r)} with wavelength
A. The scattered fields are denoted by {E®(r), H*(r)} and are radiated by equivalent
currents J(r) on the surface S. Let S~ denote a surface that is conformal and just
inside S and let Ef(r) = E5(r) + Ei(r) and H(r) = H*(r) + Hi(r) denote the
total electric and magnetic fields, respectively. The combined field integral equation
(CFIE) formulation for solution of J(r) is,

o x A xEYr)+ (1-a)a x H(r)=0Vre S~ (4.1)

where 1 is the outward pointing normal and « is an arbitrary scalar constant chosen
between 0 and 1. The scattered electric and magnetic fields are related to J(r) through
the dyadic Green’s function,

nxnaxE’(r) = L4I(r)} (4.2)
= N XNX /Sds—ﬁ,c(r, r')-J(r)
nx H(r) = Kn{J()} (4.3)
A 1 - ! /

= nxﬁ Sdst[G,g(r,r)-J(r)]

Cutrt) = —iwn (T+ 37 ) av) (44)
, e—Jnlr—r|

g(r,r') = e (4.5)

In above relations k is the wavenumber, 7 is the characteristic impedance of free space

and T is the identity dyad. The CFIE formulation is chosen to eliminate spurious
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solutions corresponding to interior resonance problem. As is normally done, the
current J(r) is represented using a space of local vector basis functions f,(r) [181].

Using Galerkin testing results in a system of equations that may be expressed as

ZI=V (4.6)
where,
Zam = (fa(r), —ale{fm(r)} + (1 — &)Kim{fm(r)}) (4.7)
(En(e), LelEn(®)) = ~Go0Ea(e), gbm(e)) + 2V - fn(r), 6V - £a(e)) (48)
(fn(r), Km{fm(r)}) = (fa(r) x £, Vg X fin(r)) (4.9)

Vi = (fu(r),0n x i x E{(r) + (1 — a)h x HY(r))  (4.10)

As is evident from these equations, the evaluation of each element may be recast in
terms of evaluation of scalar potentials. Thus, to better analyze the problem, it can
be reposed as follows. Find the potential 1(r) due to a set of N sources

N e—jK'Ir_ril

Y(r) = Z Ir_—rilwnwi (4.11)

=1

where wy, and w; represent the appropriate testing and source strengths, respectively,
that include numerical quadrature weights and other constants. It is evident that a
direct evaluation of potential at N observation points yields an O(N 2) method. FMM
reduces this cost to O(N log N) by utilizing spherical harmonic expansion [30, 65] of
the scalar Green’s function. Very briefly, the classical FMM algorithm proceeds as
follows: the computational domain is embedded in a fictitious cube that is then used
to construct an oct-tree. At the lowest level, interaction between the elements of boxes

that are in the nearfield of each other is computed directly. All other interactions
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are computed using a three stage algorithm: (i) compute multipoles M from sources
that reside in each box; (ii) convert these to local expansion £, using the translation
operator 7, at all boxes that are in its far field; (iii) from the local expansions compute
the field at observer points within the box. This simple three stage scheme is called
a single-level algorithm and suffices to discuss the limitation of these expansions.
While multilevel variants of this scheme exist [35, 69], the limitations of FMM are
best understood by examining (6.8). Consider K closely spaced sources located at r;

that are well-separated from the testing point r,

Y(r) = :Z;—K d2&M(rs, K)T (ro — rg, K)wne 7K (Fo=T)  (412a)
- _TJWE / Pkwpe % Fo~T) £(r, k) (4.12b)
K .

M(rg, k) = Zw,-e_]k'(r-’_ri) (4.12¢)
i=1

T(r,k) = 3 (-1 + 1) (ke Pi(k - £) (4.12d)
=0

L(ro, k) = M(rs,k)T(ro —rs, k) (4.12¢)

where |ro — rg| > 2d, |r — ro| < d, k = Kk, rs (ro) is the center of multipole (local)
expansion for source (observation) cluster, 7 is the translation operator, hl(2) and P
denotes an order [ spherical Hankel function of second kind and Legendre polynomial,

respectively.

4.2.1 Sub-wavelength breakdown of Helmholtz FMM

In FMM the interaction between source and observation clusters is evaluated using
the translation operator 7 in (6.8d) that contains a spherical Hankel function. The
singular behaviour of spherical Hankel function implies restrictions on the size of its

argument k|r|. For numerical stability, neither the translation distance |r| nor the
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wavenumber k can be arbitrarily small [73, 76]. Limitations on these parameters
has been reported in detail in [74]. As a result, FMM is inefficient when applied to
sub-wavelength problems where the principal dimension of the domain is less than
or order of a wavelength only. In such problems, some of the leaf boxes have a very
high density of unknowns and the overall computational complexity is dominated by
the nearfield cost. Thus FMM algorithm is inefficient when applied to multiscale

problems where the discretization rate is either non-uniform or uniformly dense.

4.3 ACE translation operator for Helmholtz po-

tential

In ACE, the translation operator is the only kernel dependent quantity. The analytical

form of the translation function in case of Helmholtz potential can be written as,

iR L7 1) L
F(Lngng) = D0 3

43

]

\vil € (_1)n+mR2m—2n-1

]

m1=0mg9=0m3z=0
ny no ng (4.13)
X
m] m2 m3

Z"1—2m yn2—2m22n3—2m3g(n —m, K,R)
where

G(n,kR) = \/2/7(jsR) "9 K, . 05(jxR)

n n!
© 2mml(n — 2m)!

m

In above expressions, n = nj + ng + ng, m = m; + mg + mg, Kn(-) represents the

modified Hankel function of order n, R = |r| and || is the floor operation. It is well
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known that above Taylor’s series expansion is convergent when either the domain
size or frequency is small. Consider the limiting case of low frequencies or small
translation distance i.e. kR — 0. Using the small argument asymptotic expansion
for modified Hankel function [59] and comparing with the translation operator for

1/R potential given in [13], (6.14) can be written as,

GnnB) ~ afn(inm)r0n L0 )(J,;R)

for 0<z<2n+1

~ (2n+ 1) (4.14)
m Ve _ gl (4.15)
kR—0 R N R '

where (n)!! denotes a double factorial. Above relation shows that at low frequen-
cies ACE translation operator for Helmholtz kernel tends to that of Laplace kernel
[13]. Next, the relation between spherical and Cartesian expansions for low-frequency
Helmbholtz kernel is derived. Consider the spherical expansion of Helmholtz potential

[65]
x|

X anZ( '@+ DikdhP xX)P@E-X)  (4.16)

=0

where d and X are the location of source and observation points respectively, d = |d|,
= |X| and d << X. The following relation between Legendre polynomial and

Cartesian tensors is well known [182, 13]
P(X-d)= %&(n) .n.DpX (4.17)

where D is the detracer operator, using this (4.16) can be written as,

e—Jn|X+d|

= i-—l 21 + 1), (k) (£X) (a9.1.pX)  (418)
=0
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Replacing spherical Bessel function j; with its small argument approximation reduces

above relation to a form similar to that prescribed in ACE (6.14) ,

l

. x .
Jilz) = m for small z (4.19)
DX = (CpXHVX (4:20)
e—jﬁlx+d| o] —ll _11+1 . \ i
X +d| ~D Td(l) i (21__1)Jnh§ )k X)(X) VX (4.21)
=0 \ ~ !

Above relation shows that the translation operator of ACE algorithm is an appropri-
ately scaled version of FMM'’s such that it is stable for small translation distances

and low frequencies.

4.4 Hybrid algorithm for multiscale problems

Though ACE algorithm is efficient for sub-wavelength problems, Cartesian expan-
sions in (6.14) breakdown when applied to problems with high-frequency or domains
spanning multiple wavelengths. Numerically it was observed that ACE algorithm is
efficient when domain size is confined to 2\. Thus, the features of ACE algorithm are
complementary to that of FMM, i.e. , ACE algorithm is stable for sub-wavelength
(low-frequency) problems where FMM breakdown, whereas FMM algorithm is stable
and efficient for large-wavelength problems where ACE algorithm breakdown. In mul-
tiscale problems both sub- and large-wavelength problems exists simultaneously and
neither of the algorithms will be efficient individually. Consequently, it follows that
to efficiently analyze these structures, it is necessary to hybridize both algorithms to

reap their respective advantages while not inheriting their disadvantages.
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4.4.1 Combining ACE and FMM

The transition from ACE to FMM is readily realized by using the Taylor series ex-

pansion of the FMM multipoles. Examination of (6.8a) leads to

M(l‘s, k) = Ew, Z g — rz)(p) D VPe—jk-(rs—rA)

=1 =0
= S MO (rp).p. T8 (ks — r4) (4.22)
p=0

where r4 denotes the center of ACE multipole expansion M) and the mapping
operator Trqp is given as,
Tr(r?a)P(ky r)(n1,ng, n3) = 851928, 3e kT
_ (4.23)
= (—j)"kz! Ky "2y 3e kT
In above expressions n = nj +ng+n3 and k = kzZ + Ky + K, 2. A similar derivation
follows for computation of ACE local expansion from FMM’s. Consider the evaluation

of potential using FMM local expansion (6.8b),

Pr) = D wn(rg —1)P.p.LO(ry) (4.24)
p=0
where
L) (r,) = / d2RTE) (k, ro — T4) L (K, To) (4.25)

Notice that the same mapping operator Tpqp is used for ACE-to-FMM multipole
and FMM-to-ACE local expansion translations. In addition the translation of local

expansions requires the evaluation of spectral integral.

Truncation of Taylor series expansion in (6.15) and (6.16) to P terms introduces

mapping error. Let Re{y} denote the real part of y, the error in real part of FMM
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multipoles computed from Pth order ACE harmonics can be written as,

P
5£ap = |Re{M} - Re {E ﬁ(rA - r)(p) P Vpe—jk.(rs—rA)} (4.26)
p=
— 1
= | X 0a-0)®p-VPeos(—k- (rs —r4))
p=P+1 P
—~ 1
< Y o |@a-0®-p VPoos(—k- (r—14)) |
p=P+1
o0
< —(ax)P
p=§l—l p ( )
where a = maz(|r4 — r|). For P > 2 above error can be written as
00 -2
R 9 3 p
emap < D, sra—e—(ar) (4.27)
p 1 2345
(o ]
32 (3\P
< — | = p .
< > 2(3) @ (128)
p=P+1

Above geometric series converges when 3ax/4 < 1 and the mapping error can be

P+1
¢R Sac\"T0_ 11 (4.29)
map =\ 4 1 - 3ax/4

written as,

Above bound shows that the mapping error e,},zwp decreases with increasing number of
ACE harmonics P or with decreasing size of ACE domain d. Now consider the error

in imaginary part of FMM multipoles computed from Pth order ACE harmonics,

P
Lo = |ImiMy—Im {%ﬁm -n)®.p. V”e"""(rs_m)} (430)
p=
S |
< Z = | (rqg— r)(”) -p-VPsin(—k- (rs—ry)) I
p=P+1 P
= Erl;zzap
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Since both real and imaginary parts satisfy same error bound, the Ti4p operator
preserves both the amplitude and phase of FMM multipoles to desired precision. The
error bound for FMM-to-ACE local expansion translation operation is identical to
ACE-to-FMM multipole translation as they use the same mapping operator Tyqp.
Furthermore, let d be the side length of the cube where ACE harmonics are defined.
Then in (4.29), @ = v/3d and for convergent error d < A/2.65. This limit is within the
range [0.2,2.0]\ where both ACE and FMM expansions are stable, hence the error in

transition from ACE to FMM and vice versa can be controlled to arbitrary accuracy.

4.4.2 Implementation details

As shown in figure 4.1 the multiscale geometry is mapped onto a non-uniform oct-
tree. This ensures that the number of unknowns per leaf-level box is approximately
same [50, 61]. In figure 4.1(b), the dark and light nodes indicate ACE and FMM
computational domains respectively. This classification of tree-nodes is based on the
size of the domain they represent and introduces a transition level such that nodes at
and above this level are of FMM type and nodes below this level are of ACE type. The
hierarchical tree code computation starts with the evaluation of appropriate multipole
expansion at leaf boxes. During upward tree traversal the parent multipoles are
computed from their children multipoles using the multipole-to-multipole translation
operator. At transition level alone the parent box FMM multipoles are computed
from their children ACE multipoles using the mapping operator in (4.23). Next the
appropriate multipole-to-local expansion translation operation is performed. Then
the children local expansions are updated with their parent local expansion using
the local-to-local expansion translation operator. Again at the transition level, the
child box ACE expansion is updated with its parent box FMM local expansion using
the mapping operation in (6.16). Finally the local expansion coefficients at leaf-

level boxes are used to compute the farfield potential at their respective observation
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points. As in all tree algorithms the complete potential is obtained after the near-field

contributions are accounted through direct evaluation.

4.5 Results

This section presents plethora of results that exhibit the accuracy and efficiency of the
hybrid scheme when applied to multiscale problems. First few set of results pertain
to evaluation of Helmholtz potential given a set of random points. Later the hybrid
scheme is integrated with an existing solver and it effectiveness, over FMM-only

algorithm, is shown for several problems.

4.5.1 Helmholtz potential evaluation

First, the accuracy and stability of of ACE-only algorithm when applied to sub-
wavelength problems is demonstrated. Consider the evaluation of Helmholtz potential
at N source/observation pairs that are randomly distributed within a domain of size
A/2. The error incurred in computing only the far-field potentials using ACE are
listed in Table 4.1. As is evident, the error decreases uniformly with increase in the
number of harmonics. Note, that the error presented here does not include nearfield
contributions; in general the total error including the nearfield contribution, that are
computed exactly, is less by two orders of magnitude.

Next, the convergence of the mapping operators ACE to FMM (FMM to ACE
is reciprocal) prescribed in (4.23) is demonstrated. Given some arbitrary number of
points confined within a domain of size A, the FMM multipoles for a given box size are
computed both directly and from their children’s ACE harmonics using the mapping
operator Tmap. Let 2d be the side-length of the FMM box, Table 4.2 shows the
relative error in computation of FMM multipoles for various values of d and number

of Cartesian harmonics P used in mapping. As expected the mapping error uniformly

85



decreas

Tod
biring -
rndom |
300,00
Mol
structed
of doma
points i
corfigus
the cen
average
ACE a
This w,
dOm]y 5
of far-
Pemim

LFM hY
distri'm
Figure
distrib1
Wifor,
Scheme
teijn
distrip,
the h\b

1 hoy



decreases to double precision as P increases or as d decreases.

To demonstrate the efficiency of the proposed algorithm, the hybrid scheme com-
bining ACE and FMM is applied to both uniformly and non-uniformly distributed
random points. In both cases the number of unknowns N is varied from 64,000 to
8,000,000. In case of uniform distributions the size of the domain is increased from
2\ to 12) as the number of unknowns is increased. The non-uniform geometry is con-
structed of three overlapping thin disks, as shown in figure 4.1(a), and the overall size
of domain was fixed at 12\. In each disk the points were distributed so that density of
points is inversely proportional to radius and linear in z-axis. Note that this geometry
configuration closely resembles a multiscale scenario as the discretization rate, near
the centers of disk, can be as high as A\/1000. In all cases it was ensured that the
average number of points per leaf-level box is approximately 64 and the number of
ACE and FMM harmonics were chosen so as to maintain an accuracy of @(10™4).
This was verified by performing direct computation on few, typically 50 to 100, ran-
domly selected points. Table 4.3 shows the time taken, in seconds, for computation
of far-field potential using the hybrid algorithm on a desktop computer with 2.3 GHz
Pentium IV processor 4GB RAM running Linux. In uniform distribution L 4o and
Lppym denotes the number of ACE and FMM levels respectively. In non-uniform
distribution L4cg and Lppsps were constant at 5 and 3 respectively for all cases.
Figure 4.2 shows the Log-Log plot of time vs. N for both uniform and non-uniform
distributions. The linear line fit with slope one, indicated inside the figure, for both
uniform and non-uniform case shows that the cost scaling of the proposed hybrid
scheme is irrespective of how the points are distributed. It is important to draw at-
tention to the overlapping linear line fits corresponding to uniform and non-uniform
distribution of points. This, in particular, highlights the fact that the time taken by
the hybrid algorithm depends purely on the number of unknowns N without regard

to how the points are distributed.
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4.5.2 Multiscale scattering problems

Next, the performance of integral equation solver augmented with ACE+FMM with
that augmented with only FMM. The solvers employs RWG basis functions for surface
currents J(r). GMRES iterative solver with a restart value of 30 was used with

tolerance and maximum number of iteration fixed at 1E-3 and 1000, respectively.

In these numerical experiments geometries with different overall size and number
of discretizations were considered along with different excitation frequencies. In rest
of the results FMM harmonics were used when the box size is greater than or equal
to A\/4 and ACE harmonics for rest of the domains. For each configuration, of chosen
geometry and frequency, the CFIE solver was executed in two modes (i) FMM-only:
where the leaf-level box size is fixed at A/4 to ensure that only FMM harmonics are
utilized (ii) ACE+FMM: the non-uniform tree is constructed such that the average
number of unknowns per leaf-level box was approximately 10 to 20. Note that in
ACE+FMM runs the smallest domain size can be as small as A\/40. In all cases
FMM harmonics were used when box size was equal to or greater than A/4 and ACE
harmonics for rest of the domains - this defines the transition level in the hybrid algo-
rithm. The ACE and FMM harmonics were chosen such that they yield an accuracy
of O(1E — 3). The maximum run time for each simulation was limited to 6 days and
any unfinished data is denoted by *. The following values are reported in table for
each simulation: near-time and solve-time are the time, in seconds, for computation
of sparse near-field matrix and iterative solution respectively, speed-up is the ratio of
total time spent by the solver using FMM-only and ACE+FMM algorithms, Avg/boz
and Maz denotes the average and maximum number of source/observer pairs per leaf-
level box respectively. The ratio of maximum to minimum edge length serves as good
measure of the multiscale nature of the problem as it is close to one for uniformly

discretized geometries and high for discretization with multiple length scales.

87



First multiscale problem considered here is the cone-sphere geometry. Here the
cone’s tip is densely discretized in comparison to the smooth sphere part of the
structure. Table 4.4 shows the results of solver using FMM-only and ACE+FMM
algorithm when applied to three different cases. The geometry fits within a cuboid
with aspect ratio 1 : 1 : 5 and the maximum dimension for each case is given in
terms of the incident wavelength in table 4.4. Let Z be the axis of rotation of cone-
sphere. The propagation direction of incident plane wave Et = :i:e‘j"f"r was k = i
for first two runs and k = 2 for Run 8, as shown in figures 4.4 and 4.3. As is evident
the solver with hybrid scheme offers speed-up as high as 7 times over that using
FMM-only algorithm. Essentially this speed-up is achieved by reducing the number
of near-field interactions as indicated by the near-time in table. This is due to the
fact that ACE+FMM algorithm allows domain size to be as small as A\/40 which in
turn reduces the average number of unknowns per box considerably in comparision to
FMM-only case. As expected, the speed-up offered by ACE+FMM algorithm reduces
as the problem size increases as most interactions fall under FMM; only few number
of interactions exist in sub-wavelength domains and ACE algorithm does not offer
much advantage over their direct computation. Figure 4.3 and 4.4 shows the bi-static
RCS corresponding to Run 8 and Run 2 in table 4.4. The RCS computed using both

solvers exhibit excellent match to given order of accuracy.

Table 4.5 shows results from second multiscale problem - NASA almond. The
entire structure fits within a cuboid with aspect ratio 1 : 6 : 4 and the maximum
dimension is given in terms of incident wavelength for each case in the table 4.5. In
all cases the direction of incident plane polarized along Z was k = 2 as shown in figure
4.5. Three different meshes were considered with the number of unknowns varying
from 62,000 to 250,000, the increasing multiscale nature of the problem is indicated
by the max/min edge length. Here again the hybrid scheme offers speed-up as high as
7 times over FMM-only approach. Notice that in Run 38 the solver with ACE+FMM
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has completed its run while the large number of near-field interactions in FMM-only
consumes almost the entire computational time. Figure 4.5 shows the bi-static RCS
computed using both the solvers for Run 2 in table and they agree with each other.

Table 4.6 shows results from third multiscale problem which is a toy-aircraft ge-
ometry with many sharp features. The structure fits within a cuboid with aspect ratio
3:1.5:1 and the maximum dimension in terms of incident wavelength is reported in
table. In all cases the direction of incident plane wave polarized along & was k = 2
as shown in figure 4.6. The number of unknowns was varied from few thousands to
millions as the maximum dimension was increased from 1.5 to 20 A\. The maximum
to minimum edge length ratio for this geometry was appréxima.tely 20 in all cases,
indicative of a uniformly dense discretization. The solver with ACE+FMM exhibits
speed-up as high as 14 times over the solver with FMM-only algorithm. Notice that
in Run 8 with 1.7 million unknowns, the large number of unknowns per box, indi-
cated by average and maximum unknowns per box in table, in FMM-only case results
in large number of near-field interactions which consumes the entire computational
time. In comparision, with smaller domains in ACE+FMM algorithm the number of
unknowns per box is considerably smaller and entire computation is completed within
the limited time. Figure 4.6 shows the bi-static RCS corresponding to Run 2 in table
4.6.
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Figure 4.1: An example non-uniform (a) point distribution and (b) its tree represen-

tation.

Table 4.1: Error convergence of ACE algorithm with random points within a A/2 size

domain

(b)

P

1

3

5

7

9

12

Error

1.172E-2

4.804E-4

3.936E-5

1.236E-5

4.380E-6

7.029E-7
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Figure 4.2: Time vs. no. of unknown in log-log plot when hybrid scheme is applied
to uniform and non-uniform (fig 4.1) geometries.
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Figure 4.3: Bi-static RCS of cone-sphere geometry, corresponding to Run 8 in table
4.4. Inset figure shows the incident excitation and magnitude of surface current.
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Figure 4.4: Bi-static RCS of cone-sphere geometry, corresponding to Run 2 in table
4.4. Inset figure shows the incident excitation and magnitude of surface current.
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Figure 4.5: Bi-static RCS of NASA fat almond (multiscale geometry 2) corresponding

to Run 2 in table 4.5. Inset figure shows the incident excitation and magnitude of
surface current
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Figure 4.6: Bi-static RCS of Toy-aircraft geometry (multiscale geometry 3) corre-
sponding to Run I in table 4.6. Inset figure shows the incident excitation and mag-
nitude of surface current

Table 4.2: Error in FMM multipoles computed from ACE multipoles using Tpqp in

(4.23)
ACE harmonics
d P=3 P=6 P=9 P=12
0.5 2.13 5.58E-3 | 9.62E-6 | 5.90E-09
0.25 || 2.58E-2 | 8.04E-6 | 1.51E-9 | 1.27E-13
0.125 | 3.49E-4 | 1.30E-8 | 1.55E-13 | 2.24E-15
0.0625 || 1.04E-5 | 5.34E-11 | 1.41E-15 | 1.41E-15

93







Table 4.3: Time for hybrid algorithm as applied to uniform and non-uniform geome-
tries

Uniform Non-uniform
N Size(A\) | Time | Lacg | Lrmm Time
64,000 2 3.77 3 5 7.48
125,000 2 6.29 3 5 8.13
250,000 2 14.39 3 5 13.93
500,000 4 34.57 3 6 35.71
1,000,000 4 68.7 3 6 79.53
2,000,000 4 125.26 3 6 135.43
4,000,000 8 310.22 3 7 263.7
8,000,000 10 588.94 3 7 484.02

Table 4.4: Multiscale problem 1 : Cone-sphere geometry

Near-Time | Solve-Time | Speed-up | Avg/box | Max

Run 1 800 MHz, Size = 2\ with 19,000 basis
ACE+FMM 832.47 449.87 6.21 14 2,288
FMM 7843.59 117.87 1,329 3,424

Run 2 76 MHz, Size ~ 7\ with 19,000 basis
ACE+FMM 593.56 344.96 1.39 17 1,666
FMM 1028 277.13 100 1,926

Run 3 10 GHz, Size = 21\ with 72,000 basis
ACE+FMM | 1100.28 1107.1 0.79 3 2,084
FMM 1440.7 300.28 41 2,224
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Table 4.5: Multiscale problem 2: Almond

Near-Time

Solve-Time | Speed-up | Avg/box | Max
Run 1 1 GHz, Size = 5\ with 62,550 basis
Max/min edge len.= 160.34
ACE+FMM | 1063.88 795.31 7.71 ) 270
FMM-only 13532 800 i 242 6,118
Run 2 1.5 GHz , Size = 8\ with 107,400 basis
Max/min edge len.= 193.42
ACE+FMM | 1569.43 6713.38 2.66 4 256
FMM-only | 20548.77 1475.01 175 5,464
Run 3 2 GHz , Size = 10.6) with 269,100 basis
Max/min edge len.= 474.61
ACE+FMM | 22247.25 26428.42 * 11 2180
FMM-only | 96297.28 * 265 13,110
Table 4.6: Multiscale problem 3: Toy-aircraft
Near-Time | Solve-Time | Speed-up | Avg/box | Max
Run 1 76.2 MHz , Size = 1.53\ with 9,727 unknowns
ACE+FMM | 196.15 286.07 14.29 7 36
FMM-only | 6491.35 400.66 2,784 | 5,178
Run 2 300 MHz, Size = 6.06\ with 26,145 unknowns
ACE+FMM 62.54 1343.4 6.4 2 12
FMM-only | 7800.79 1203.73 697 2,646
Run 3 1 GHz, Size = 20.27)\ with 1,754,814 unknowns
ACE+FMM | 237767.37 | 58500.89 * 98 1,174
FMM-only * * 691 4,508
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Chapter 5

A Well Conditioned Formulation of
Augmented Electric Field Integral
Equation (AEFIE)

This chapter addresses the development of integral equation (IE) formulations that
lead to well conditioned systems of equations. Typically iterative solvers, like Krylov-
subspace solvers, are used for solution of large systems of equation and well condi-
tioned systems of equation require fewer number iterations for solution. Thus the
developments presented here are complementary to the discussions in previous chap-
ters where the focus was on reducing the cost of a single iteration. Section 5.1 provides
a concise account of the recent research work on the theory and development of well
conditioned formulation for electromagnetic simulations. Section 5.2 introduces some
of the analysis tools and the insights they provide in understanding the IE operators
of EM. Section 5.3 introduces a new formulation of the augmented electric field IE
(AEFIE) that leads to both better conditioned systems of equation and unique so-
lutions at all frequencies. The new formulation is first developed for 2D and then

extended to 3D case with appropriate modifications. Section 5.4 presents plethora of
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results that exhibit the well-conditioned nature of the new formulation.

5.1 Introduction

Computational electromagnetic (CEM) is the field of research that concerns with
numerical solution of Maxwell’s equation. The rapid development in this field can
be primarily attributed to the simultaneous development in power and availability
of computers along with the advancements in mathematical research. This chapter
focuses on the latter aspect, the mathematical developments in the past decade that
have considerably altered the landscape of CEM research.

Integral equations (IE) is one of the widely adopted numerical techniques for sim-
ulation of electromagnetic problems [183]. The distinct advantage of IE approach for
electromagnetic simulations over their differential equation counterparts have been
detailed in the previous chapters. Typically, the IE formulations result in a set of
linear system of equation, which are solved using an iterative solver. It is well known
that the convergence rate of an iterative solver, the number of iterations for solution,
depends directly on the condition number of the numerical system of equation. Elec-
tric field IE (EFIE) is one the most widely used formulation as it is valid for both open
and closed problems. It is well known that EFIE is an integral equation of first kind
and the condition number of these numerical system is not assured to be bounded
[184, 185]. Further, EFIE also suffers from the low-frequency breakdown where the
formulation is inherently ill-conditioned for low excitation frequencies. The physical
reasons for this breakdown of EFIE at low-frequencies is well known [176]. Consider
the electric field produced by an arbitrary electric current source, there exists a sig-
nificant disparity in the magnitude of electric field produced by the solenoidal and
non-solenoidal part of the current source. Thus, using the electric field equations,

only some parts of the source can be computed in a stable and robust fashion. It
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can be analytically shown that the disparity increases as the frequency tends to zero
and this is known as the low-frequency breakdown of EFIE. Several computational
strategies, based on quasi-Helmholtz decomposition of surface electric currents, have
been proposed to overcome this limitation of EFIE. Loop-star, loop-trée and tree/co-
tree are different forms of the same type of solution approach [179, 178, 87, 186).
Apart from this, recent mathematical analysis of boundary integral equations in EM
have lead to the development of analytical preconditioners that modifies the EFIE
into a well conditioned, second kind integral equations [187, 188, 189]. However, the
resulting formulation suffers from the interior resonance problem and hence produce
non-unique solution at resonance frequencies. Conventional techniques, like combined
field IE (CFIE), also fail when applied to these new formulations. Further, the nu-
merical implementation of these modified formulation demands careful considerations

that has been the focus of several recent research works [190, 191, 192, 193].

This work explores the development of a new IE formulation for electromagnetic
simulation that is both well-conditioned and resonance free. This formulation is based
on the augmented field integral equations (AFIE), which were initially proposed to
overcome the interior resonance problem [194]. AFIE, as originally proposed, re-
quires the solution of an over-determined system of equations using a least-square-
error approach. In this work, both the electric charges and currents are considered
as unknowns and the resulting new AFIE formulation is amenable to conventional
iterative solvers. However, this requires that the imposition of continuity and charge
conservation conditions separately. Based on operator theory analysis, these addi-
tional constraints are imposed in a manner such that the operators in the resulting
formulation are bounded and compact; leading to well-conditioned systems of equa-
tions. The validity of these formulation is shown both analytically and numerically
for 2D problems. Since some of the observations in 2D case does not hold good for

3D problems, the relevant modifications are also discussed here.
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5.2 Preliminaries

Let S denote the surface of a closed PEC object that resides in free-space. This
surface is excited by a plane wave characterized by {E*(r), H'(r)} with wavelength
A. The scattered fields are denoted by {E*(r), H%(r)} and are radiated by equivalent
currents J(r) on the surface S. The electric field integral equation (EFIE) formulation

for solution of J(r) is,
fi X i X (Ei(r) + Es(r)) =0VresS (5.1)

Let S~ denote a surface that is conformal and just inside S, then the magnetic field

integral equation (MFIE) is written as
fi x (H’(r) + Hi(r)) =0VreS™ (5.2)

In above equations, i is the outward pointing normal on surface S. The scattered

electric and magnetic fields are related to J(r) through the dyadic Green’s function,

hx A xE(r) = LfI(r)} (5.3)
= A XX / dsac(r, r')-J(r') (5.4)
S
-Aax H(r) = Ki{J(r)} (5.5)
. 1 = / ’

= nxﬁ Sdst [G,;(r,r)-J(r)]

Cutrir) = =ion (T+ 57 ) o) (5:5)
, e—jnlr—r’]

g(r,r) = o | (5.7)

In above relations k = w/c is the wavenumber, w is the angular frequency, c is the

speed of light in free space, 7 is the characteristic impedance of free space and I is the
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identity dyad. Since the above formulations are based on the boundary conditions
on tangential fields, the IE operators £; and K; are referred to as tEFIE and tMFIE,
respectively. Typically, in numerical solutions, the current J(r) is represented using a
space of local vector basis functions fy,(r) [181]. Galerkin testing results in a system

of equations that may be expressed as

ZI=V (5.8)

For example, in case of tEFIE, the elements of Z and V can be written as

Zam = (fn(e), ~Le{fm(r))) (5.9)
(£a(r), Le{fm(D)}) = —3an(Ea(r), gfm(r) + 2V - fm(r), 97 - fa(x)) (5.10)
Vo = (fa(r),h x i x E(r)) (5.11)

5.2.1 Interior Resonance and Augmented IE

It is well known that, for closed geometries, both tEFIE and tMFIE operators have
non-empty null space at excitation frequencies corresponding to interior resonance.
Thus, at these frequencies the solution of the equations (5.1,5.2) is not unique [195].
Combined field IE (CFIE) is a popular alternative, where both EFIE and MFIE
are solved simultaneously. Other proven approaches to overcome interior resonance
problems are combined source IE (CSIE) [196] and dual surface IE [197]. All these
alternatives demand additional computation in one form or the other, for e.g. CFIE
requires computation of magnetic field, and CSIE doubles the number of unknowns.
Augmented field integral equations (AFIE), proposed by Yaghjian [194], is an alter-
native approach to overcome the interior resonance problem with the computation
of either electric or magnetic field only. In AFIE, a unique solution to currents J(r)

is obtained by simultaneously satisfying both the tangential and normal boundary
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condition of electric or magnetic field. Consider the augmented EFIE (AEFIE)

L{J} = —-AxAxE(r)Vres (5.12)

La{J} = f;’: —fA-Eir)Vres (5.13)

LI} = & / dsGx(r, ') - 3(r') (5.14)
S

Similarly, the augmented MFIE (AMFIE) can be written as,

Kif{J} = J-axHY(r)Vre S (5.15)

Ko{J} = —ha-Hi(r)VresS (5.16)
A 1 = / ’

Kald} = Ao | dsV x [G,C(r,r )-J(r )] (5.17)

In the above equations £,, and K, are the nEFIE and nMFIE operators that cor-
respond to the boundary condition on electric and magnetic fields normal to the
boundary surface S, respectively. It has been rigorously shown that both AEFIE and
AMFIE produce unique solutions for any closed geometry except spheres. Moreover,
it is evident that discretization of both the formulations lead to an overdetermined
system of equations, which can be solved only in a least squares sense. Hence this
approach has been relatively less popular when compared to CFIE or CSIE. A dis-
tinct feature of AFIE, also noted in the seminal work of Yaghjian [194], is that the
AFIE formulation is similar to a second kind IE. However, exploiting this advantage

is not trivial and forms the main focus of the work presented here.

5.2.2 Operator and Eigenvalue Analysis

In the past decade, rigorous mathematical analysis techniques have been employed
to study the different boundary integral equation formulations used in computational

electromagnetics. These theoretical analysis of boundary IE operators depend on the
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form and size of the computational geometry and they are restricted to the study of
canonical geometries such as circular cylinder and sphere in 2D and 3D, respectively.
Though analytical solution exist for these geometries, the theoretical analysis have
provided valuable insights that led to a better understanding of the behaviour of these
IE operators. It is well known that an IE operator with finite and bounded spectrum,
when discretized, yields a well-conditioned system of equations [185, 191]. In formal
terms, a formulation is well-conditioned if all its operators take the form (Z + M) ,
where 7 is the identity operator and M is a compact operator. Intuitively, compact
operators have bounded spectrum and the presence of identity operator ensures that
the spectrum of overall operator is offset from origin . Hence, the spectral radius of
these operators are finite and bounded, see [184, 185] for rigorous treatment on these
topics. In rest of this section, for the sake of completion and clarity, these recent
developments are presented in requisite detail for the 2D case. Similar observations
hold for 3D case also, however with more involved derivations beyond the scope of

this thesis, and these are just stated with ample references.

Consider the 2D problem of traverse electric (TEz) scattering from a PEC circular
cylinder of radius a, with axis of rotation aligned along the Z-axis. The tEFIE

formulation (5.1) for this problem can be written as,
2r o
—jKnf X / adg/ (T+ 7) HP(kR)-3,(¢) = —ExEi(¢) (5.18)
0

where H(()z) is the Hankel function of second kind, R = a||r—r’||, r = a cos ¢Z+asin ¢g
and I’ = acos ¢’'E+asin ¢'g. For this canonical case, it is well known that {¢e/"®, n =

0,1,...} forms a complete set of eigenfunctions for the surface current J [183]. Then
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the unknown surface current J4 can be represented as sum of these eigenfunctions,

o0
Jg= Inge™® (5.19)
n=0
where I, are the unknown coefficient to be solved for. Using the orthogonality of the

eigenfunctions, the eigenvalues of operator £; are given as
1 /
ALEAEFIE _ E(nwna)J,:,(na)Hn(z)(na) (5.20)

The plot of few of these eigenvalues for different orders n and size of the object
a is shown in figure 5.1. Evidently, these eigenvalues are zero whenever JJ,(ka) =
0, indicating the non-trivial, finite dimension null space of the TE-tEFIE operator.
These are also the frequencies corresponding to the interior resonance. Further, from
figure 5.1, it is seen that the spread between eigenvalues is large , especially, for small

values of ka. Consider the asymptotic limits when ka — 0,

TE(EFIE __ .TKG
TEGEFIE . jolnl | sy (5.22)
2Ka

This suggests that the tEFIE operator is unstable for electrically small scatterer. The
widely spread eigenvalue spectrum also suggests that tEFIE operator is an unbounded
operator. This is particularly a consequence of the double derivatives in (5.18) that

leads to hyper-singular terms.

The same eigenvalue analysis can be extended to tMFIE operators. The tMFIE

for 2D TEz scattering from a PEC cylinder of radius a can be written as,

| 2m Pl nrr(2)
Ke{3g(@)} = g+ 5 /0 add' 3(¢)3 5(¢)HD (xR) (5.23)
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As in the case of tEFIE, {q@ej"¢} form a complete set of eigenfunctions and the

corresponding eigenvalues are given as,
1 ’
ATEAMFIE _ 5(jmm)Jn(m)Hn@)(m) (5.24)

Samples of these eigenvalues are plotted in figure 5.2 for different values of n and ka.
Here, the eigenvalues are zero whenever Jy,(ka) = 0 and the corresponding eigenfunc-
tions form the finite, non-trivial null space of the tMFIE operator. Notice that the
null space of tEFIE and tMFIE are not the same, in other words, the interior reso-
nance for both operators occur at different frequencies. Performing the asymptotic

analysis for ka — 0,

AJEAMFIE ~1 (5.25)

ATEMFIE 1 .n 20 (5.26)

Thus the spectrum of tMFIE operator is bounded and for n — oo the eigenvalues
accumulate at (0.5+j0.0).

Similar analysis can be carried out in 3D for the canonical problem of scattering
from a PEC sphere of radius a. Here, the vector tesseral harmonics Xy, and Uy,
form the complete set of eigenfunctions for representation of the vector current fields
on surface of the sphere. These are also known as the surface Helmholtz decomposition

[187] on sphere and given by,

Xam(0,6) = £ x VY(0,9) (5.27)

Unm(8,6) = % Xnm(6, ) (5.28)

where Y;™(,$) = P™(cosf)e’™? is the spherical harmonics and P™ denotes the

associate Legendre function of order {n,m}. The eigenvalues of tEFIE and tMFIE
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operator in 3D can be derived as,

( ) 4
X 2, (1) Unm
Lig T =S - J"(m)hf'in(m) (5.29)
LUnrn ) \ (Ka)zj:l(na)hn (Ka)x,-,m
( \ (
Xn —j(xa)2j) (ka hS;l) ka)Unm
e X b i 530
\ Unm ) \ j(Ka)2jn(ra)hn ™ (ka)Xnm

Similar to 2D case, the spectrum of tEFIE operator is widespread, indicating an
unbounded operator and the spectrum of tMFIE operator is bounded and accumulate
about (0.5 + j0.0). Here again, the interior resonance frequencies, corresponding to
zero eigenvalues, are not same for tEFIE and tMFIE operators.

The above eigenvalue analysis offers more insight than just understanding the
interior resonance problem and analytic nature of the IE operators. Since practical
problems cannot be approximated as above canonical problems, discretized version of
these IE operators are employed. In such cases, the above eigenvalue analysis can be
extended as follows: assuming a uniform discretization of the geometry, increasingly
fine discretization size corresponds to better representation of higher order eigenfunc-
tions. Thus, employing a dense discretization with tEFIE operator leads to larger
spread of eigenvalues and hence results in a badly-conditioned system of equations.
The same geometry, when considered with tMFIE operator would lead to a well con-
ditioned system of equation as their eigenvalues are bounded at all frequencies, except
at interior resonance. These insights are used in development and investigation of the

modified AEFIE formulation presented in the next section.

5.3 Well-conditioned Formulation for AEFIE

In this section, the AEFIE (5.12) is posed in a manner such that it results in a well

conditioned system of equations; that is amenable for use with conventional iterative
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solvers. The particular case of AEFIE was chosen so that the formulation, in future,
can be extended to open geometries as well. Similar to the discussion in previous
section, an eigenvalue analysis of the proposed formulation is presented in detail for

the 2D problem. Extension to 3D is not trivial and requires careful consideration.

As mentioned before, if N basis function are used to represent the current, AEFIE
requires the solution to satisfy 2/V contraint equations of tEFIE and nEFIE. In this
work, electric charges are also considered as unknowns so that there are 2N unknowns
to be solved with 2N equations. Charge unknowns have been previously employed
in MOM formulations to overcome the low-frequency breakdown of EFIE. Here we

consider this choice specifically to re-formulate AEFIE as

Ay AL J f x E¢
- - _ (5.31)
A} AZ p n-E*
Ay = Ax / dr'g(r, ) 3(r') (5.32)
S
Y / dr'g(r, ) 3(r') (5.33)
S
A = —iix /S dr'Vg(r, ) ps(r') (5.34)
A= -2y / dr'Vg(r, t')ps(r') (5.35)
€0 S

Another motivation for employing charge unknowns is that the scalar basis function
used to represent charges forms a suitable set of testing function for nEFIE. In nu-
merical implementation, the vector basis function for currents and scalar charge basis
function are used to test the tangential and normal electric field boundary conditions,
respectively. However, considering both currents and charges as unknowns demands

development of methodologies to impose the continuity and total-charge conservation
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conditions,

Vv.J

—Jwps (5.36)

Y ps =0 (5.37)

Here, the continuity condition is imposed as an external constraint using the penalty
function method. In this approach, the discretized form of the differential equation is
multiplied by a scalar factor a and added to the tangential field boundary condition.
Here, a is a pre-determined constant chosen to be as large as possible, as per the
theory of penalty functions, but within the range of available numerical precision.
This causes a obvious numerical imbalance between the two equations of (5.31), hence
the normal field boundary condition is also scaled by a to ameliorate this disparity.
Thus, the AEFIE formulation satisfying the continuity condition is given as,

Af, + aV- .Aﬁ, + ajw Js _ i X E’ (5.38)

aAf]‘ a.A;,‘ Ps an-E'

Finally, the charge conservation can be ensured either through a penalty function
approach or through the deflation procedure. Since penalty function is already used
to impose the continuity condition, employing it to impose charge conservation can
lead to numerical overflow. Further, note that the constant current and charge vector
is the only non-trivial element in the null space of the AEFIE operator in (5.31).
This observation favors the use of deflation technique as it requires an approximate
knowledge of the null space. Deflation is a well known procedure used in the solu-
tion of badly conditioned numerical systems. Consider an arbitrary matrix M with
eigenvectors {e,} and corresponding eigenvalues {\p}. M is a badly conditioned
system of equation if one of the eigenvalues , say Ag, is very small. However, with

the knowledge of corresponding eigenvector, one can consider a modified system of
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equations M’ that is a rank one update of the original system
M’ =M + (¢ — Ag)eped (5.39)

where q is the average eigenvalue of the original system. Notice that ¢ becomes the

new eigenvalue of eigenvector ey and all other eigenvalues are unchanged.

M'eg = (M+ (g— Ao)epeo)eo (5.40)
= qgeg (5.41)
Me, = Mepn#0 (5.42)
= Anen (5.43)

Thus the defective eigenvalue is deflated from the original system using the rank one
update. Multiple deflations or rank one updates can be used to improve the condition
number of an arbitrary system with more than one defective eigenvalues. However,
the deflation procedure requires the knowledge of eigenvectors corresponding to these
defective eigenvalues. Also, additional evaluations need to be performed on solution
of modified system to remove the effects of deflation and obtain the correct solution.
Since the null space of the AEFIE operator (5.31) is known, the deflation technique
is employed to impose the charge conservation condition. At the limiting case of
w — 0, the above AEFIE equations reduces to solving the currents and charges
using the normal electric field boundary condition while imposing the zero divergence
constraint on currents. It is well known that nEFIE is equivalent to tMFIE and hence
is well conditioned at low-frequencies also. Also, the zero divergence is the required
and physically correct behaviour of currents at low-frequencies. Hence the proposed
AEFIE formulation does not suffer from the low-frequency breakdown and is expected

to be well conditioned across the frequency range.
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5.3.1 Eigenvalue analysis in 2D

An immediate observation, looking at (5.31), is that none of the AEFIE operators
contain double derivatives, which is the reason for hypersingularity that leads to
unbounded operators. The following theoretical analysis is perfofmed to investigate
the analytic nature of each of the AEFIE operators. Consider the evaluation of
electric field, using the above operators, produced by the current and charge sources
residing on the surface of a circular cylinder of radius a. As mentioned in previous
section, {<f>ej "¢} form a complete set of eigenfunctions for vector surface currents J .
Similarly, {e/™?} forms a complete set of eigenfunctions for the scalar surface charges
ps. Thus the mixed set {¢e/™?, eI} is a complete set of basis functions for the
AEFIE operator (5.31). It is a fairly straight-forward exercise to obtain the following

result,

i x E? _ Zn Z peind
_ o _ wénra Z: ZZ ijmb (5.44)
Zn = 5(nsa(a) HE (k) — Jno1(sa) B (ka)) — o (5.45)
Zia = —Jn(na)H 2(ka) — jak (5.46)
Zn = ( Un () (50) + Tt (s0) B (s0) ) (547
Zyy = a(;Jn(na)Hn(2)(na)+ﬁ) (5.48)

Note that the eigenvalues of the above operator can be obtained through numerical
solution only. Instead, the behaviour of the four individual operators can be studied
separately. Comparing with (5.24), it can be concluded that the spectrum of the
operator .Az is similar to that of tMFIE and hence it is bounded and compact.
Figure 5.3 shows the evaluation of function Jy,(ka)Hy(ka) for different values of xa

and n. It is evident that the spread of eigenvalues is bounded and accumulates at
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origin for large values of n. Thus the remaining three AEFIE operators - A%, U Afp

are also bounded. Notice that the addition of continuity condition as penalty term,
to Af,, shifts the eigenvalues away from origin and hence acts as a preconditioner.
Thus, this analysis shows that the operators forming the diagonal sub-matrices of
the new AEFIE formulation are bounded and compact. Which in turn implies that
the resulting numerical system of equations from the new AEFIE formulation is well

conditioned.

5.3.2 3D Problems

The AEFIE formulation, developed above for 2D, can be extended to 3D problems
also. One of the important observations in the 2D case is that the constant vector
current is the only null space of the divergence D operator. This observation is spe-
cific for 2D closed geometries and is crucial to application of the deflation technique
discussed above. In general, all solenoidal currents are elements of null space of the
divergence operator D and there is no restriction on number of these solenoidal cur-
rents in 3D. It is well known that the surface vector field on a triangular discretization
of a closed 3D surface, with N nodes and M triangles, can be represented with 3M/2
vector basis functions. Further, these basis functions can be separated into N purely
solenoidal and 3M/2 — N non-solenoidal vector basis functions. Hence, in the case of
triangular discretizations, the dimension of the null space of the discretized operator
D is N. This implies that one needs to perform multiple deflations, which can be
costly and tedious. Instead, a domain decomposition framework is adopted in the
3D case. This approach relies on the fact that, given a set of basis function, the
solenoidal and non-solenoidal contribution to the total surface current J can be read-
ily identified. This decomposition of surface currents is well known in literature as
loop-star, tree-co-tree, loop-tree decomposition and is not unique for a given surface

triangulation. Testing functions are also decomposed in this manner. The resulting
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discretized AEFIE formulation can be written as

)
Zt, A J :
LL A12 Ll _ ~z., (5.49)
A9 Ago J ‘ E?
- T
Az = | Zt, zgp] (5.50)
- T
An = | Zk, Z;;L] (5.51)
Zt—aV- Zt —al
Ay = T Te ' (5.52)
aZjr aZpp
~. - . T
E* = {Eﬁ" aE';,} (5.53)
) T

where the subscripts J;, and Jp represent the solenoidal (loop or co-tree) and non-
solenoidal (tree or star) parts of the total current J, Z%,,, and Z7,, is the respective
discretized form of the tangential and normal field IE operator representing the contri-
bution from source type n = {L, T, p} and testing function of type m = {L, T, p}. As
expected, the differential operator D preconditions the matrix elements corresponding
to non-solenoidal source and testing basis functions only. Hence, in the above equa-
tion, the sub-matrix Agg is expected to be well conditioned with bounded spectrum
and Zyt is only bounded. Schur complement is a well known method to solve such
decoupled system of equations. Here the Schur complement, inverse of the smaller
sub-matrix, is computed and used in the iterative solution. In AEFIE, assume that
the inverse of Z [ is explicitly computed, then the Schur complement solution can
be written as

J= [A22 - AzlzZEAlz] - (E" - Azlzngi) (5.55)
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Here it cannot be guaranteed by any means that Z;; will be a considerably small
matrix. Since Zp 1, is guaranteed to be well conditioned, the inverse in above equation
can be replaced with an iterative solution. Thus the Schur complement solution
offers a reasonable means of exploiting the well conditioned nature of the diagonal

sub-matrices.

5.4 Results

In this section, results are presented to validate the well-conditioned nature of the
proposed AEFIE formulation in both 2D and 3D. In both 2D and 3D, different ge-
ometrical configuration were considered and condition number was computed for a
wide range of incident frequencies.

The 2D AEFIE formulation with deflation is first validated by comparing the nu-
merical solution for surface currents on a circular cylinder with the analytical solution,
as shown in figure 5.4. There is an excellent match between the two solutions and
hence validates the numerical implementation of the proposed AEFIE formulation.
Figure 5.5 shows the singular values of AEFIE system before and after application of
deflation. As discussed in previous section, the deflation techniques successfully elim-
inates the defective singular values to improve the condition number of AEFIE formu-
lation. The 2D AEFIE formulation was applied to cylindrical objects of various shapes
as the frequency was varied from 3Hz to 30 GHz for each geometry. In each case, the
chosen discretization rate corresponds to A/10 at 30 GHz and the same discretization
was used across the frequency range. Figure 5.6 shows the condition number of 2D
AEFIE formulation and that of a conventional tEFIE approach (5.1) for circular ge-
ometry. As expected, the condition number of the tEFIE formulation monotonously
increases as the frequency reduces. The condition number of AEFIE stays constant

across the entire frequency range, complementing the theoretical arguments in above
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section. Next, the condition number of AEFIE formulation is computed for elliptical
cylinders of different aspect ratio. As expected, the condition number of AEFIE for-
mulation remain constant across the wide range of frequencies, while that of tEFIE
increases monotonously as frequency reduces. The elliptical surface were formed by
nodes located {zn,yn} = {Asin(nAy)+cos(nAy), Acos(ndy)+sin(ndy)} where Ay
controls the discretization rate and A denotes the aspect ratio. Thus the variation in
discretization size is large for ellipse with larger aspect ratio. As seen from the figure
5.7, though the condition number of AEFIE increases with aspect ratio the variation
is negligible and are within the same order of magnitude. With regard to tEFIE
formulation, the behaviour of condition number with frequency was almost the same
for different aspect ratios. Figure 5.8, presents the condition number of a singular
geometry formed by an intersection of triangle and half-circle. Again, the discretiza-
tion points were generated at constant angles and this geometry is representative of a
multiscale structu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>