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ABSTRACT

MODEL-BASED ARTERIAL PRESSURE WAVEFORM ANALYSIS FOR

MONITORING CARDIOVASCULAR FUNCTION

By

Gokul Swamy

Today, the workhorse in hemodynamic monitoring is the continuous (i.e.,

automated) measurement and display of blood pressure (BP) waveforms from peripheral

arteries. In particular, minimally invasive (or non—invasive) catheters are broadly utilized

in clinical practice to measure BP waveforms at these circulatory sites. However, it is

well known that the cardiac output (CO) left ventricular ejection fraction (EF), left atrial

pressure (LAP) and central aortic BP (ABP) are more useful in guiding therapy and more

predictive of patient outcome. The conventional methods for measuring each of these

critical central hemodynamic variables require an operator or an unacceptably high level

of invasiveness. We attempt to bridge this gap by presenting three novel techniques to

estimate the central ABP, CO and EF from mathematical analysis of routinely measured

blood pressure waveforms.

The first technique is based on multi-channel blind system identification in which two

or more measured outputs (peripheral artery pressure waveforms) of a single input, multi-

output system (arterial tree) are mathematically analyzed so as to reconstruct the common

unobserved input (central ABP waveform) to within an arbitrary scale factor. The

technique then invokes Poiseuille’s law to calibrate the reconstructed waveform to

absolute pressure. Proportional estimates of beat—to-beat CO can be estimated from the

reconstructed central ABP waveform by fitting it to a Windkessel model. The second



 

technique aims to estimate EF and proportional left ventricular elastance from a BP

waveform by fitting the waveform to a lumped parameter model of the arterial tree and

subsequently estimating the parameters of this model using an optimization scheme.

Finally, a procedure to quantify wave reflection in the arterial tree and its subsequent

application towards estimating the central ABP waveform from only a single peripheral

artery pressure waveform is discussed. These techniques are validated on data collected

from animal studies in which the hemodynamic parameters were varied over a wide

physiologic range.
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CHAPTER 1

INTRODUCTION

1.1 General

The proportion of the elderly population is projected to grow at the beginning of the

21m century (see Figure (1.1)). This projection can be partly attributed to advances in

biomedical technology, which have increased life expectancy. For example, new medical

devices such as implanted defibrillators and stents have decreased the mortality rate

following a heart attack (but have increased the prevalence of heart failure). Moreover,

the elderly population contributes disproportionately to the overall prevalence of disease

(see, e.g., the age distribution of critically ill patients in Figure (1.2)). Because of the

evolving demographics as well as for other reasons, there is a simultaneous projected rise

in the deficit of needed clinical staff (see, e. g., the nursing shortage projection in Figure

(1.3)). One important implication of these projections is the need for effective and easy-

to-use patient monitoring technologies for the new century.

This need is especially apparent in the context of hemodynamic monitoring of

cardiovascular disease.
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Figure 1.1 Annual percentage of the total population over the age of 60 in the Americas

(Adapted from the US Census Bureau).
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1.2 Current Monitoring Techniques

Today, the workhorse in hemodynamic monitoring is the continuous measurement

and display of BP waveforms. For example, invasive catheters are utilized in about 50-

80% of all critically ill patients to monitor BP waveforms from peripheral arteries,

especially the radial and femoral arteries. Moreover, over the past few decades, totally

non-invasive methods have been developed and refined to measure peripheral ABP

waveforms via finger-cuff photoplethysmography and applanation tonometry. These

non-invasive methods are even available as commercial systems that are simple enough

to potentially be used by patients at home (see, for example, the Finometer and Portapres,

Finapres Medical Systems, The Netherlands and the T-Line Blood Pressure Monitoring

System, Tensys Medical Inc., San Diego, CA). Finally, new systems are continually in

development with much promise for future expansion ofBP waveform monitoring. For

example, it may be possible one day to chronically monitor peripheral ABP waveforms

with simple wearable ring sensors. However, while these systems are continuous and

offer a level of invasiveness suitable for routine clinical use, they are limited in that the

measured and displayed BP levels are not very good indicators of circulatory status.

One reason is that BP levels in the peripheral arteries are not as clinically relevant as

its counterpart in the central aorta. (Note that catheterization of the central aorta is too

invasive and risky for routine clinical practice, as blood clot formation and embolization

here could lead to, for example, a stroke.) In particular, central ABP levels would be

preferred to peripheral ABP levels, as the latter are significantly distorted by highly

complex wave reflections (see below). For example, both systolic pressure and pulse

pressure (PP, systolic minus diastolic pressure) are amplified in peripheral ABP



waveforms, with the extent of the amplification dependent on the particular peripheral

site and circulatory state. Thus, it is the systolic and diastolic pressures measured

specifically in the aorta that truly reflect cardiac afterload and perfusion. Perhaps, as a

result, central measurements of systolic pressure and PP have been shown to be superior

in predicting patient outcome than corresponding measurements made in more peripheral

arteries.

Another reason is that BP levels do not provide an early indicator of changes in

circulatory status. For example, in the early stages of a bleed, the cardiovascular control

system maintains ABP at the expense of other hemodynamic variables (most notably CO)

in order to adequately perfuse all tissue beds of the body (see Figure (1.4)). While frank

hypotension may eventually occur (see Figure (1.4)), it is often too late to intervene at

this point (e.g., irreversible hemorrhagic shock). Thus, ABP levels do not provide as

early an indicator of circulatory changes as CO and, as a result, may not permit sufficient

time for successful therapy.
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Figure 1.4 In the early stages of a bleed, arterial BP (ABP) is maintained even while

cardiac output (CO) is falling due to the cardiovascular control system. Thus, ABP levels

do not provide an early indicator of harmful changes in circulatory status and, as'a result,

may not provide enough time for successful therapy (adapted from [Barcroft 1944]).
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A third reason is that BP levels are dependent on multiple physiologic factors and are

therefore not sufficiently specific to permit diagnosis and direct therapy. For example,

when the cardiovascular control system eventually fails so as to result in hypotension,

this could indicate sepsis (low vascular resistance due to bacterial blood poisoning),

diastolic dysfunction (reduced cardiac filling due to, e.g., tamponade), systolic

dysfunction (weakened cardiac contraction due to, e.g., a heart attack), or hypovolemia

(due to, e.g., an internal bleed). To distinguish amongst these possibilities so as to guide

therapy, it is well known that the CO, LAP, and EF must also be monitored (see Figure

(1.5)). Note that EF has also proven to be a powerful predictor of outcome in heart failure

patients.

The standard clinical method for monitoring CO involves the use of the balloon-

tipped, flow-directed pulmonary artery catheter. CO is specifically estimated via the

bolus thermodilution method. This method involves injecting a bolus of cold saline in

the right atrium, measuring temperature downstream in the pulmonary artery, and

computing the average CO based on conservation laws. The standard clinical method for

monitoring EF (i.e., the ratio of the stroke volume (SV) to the left ventricular end-

diastolic volume (EDV)) is by imaging the left ventricular volume. Commonly employed

imaging methods include echocardiography, radionuclide techniques (first pass or

equilibrium), contrast angiography, ultra-fast computed tomography (CT), and magnetic

resonance imaging. However, these clinical methods generally share the major limitation

of requiring a trained operator for their implementation. While alternative measurement

methods are available, these methods suffer from substantial limitations that have

generally prevented them from supplanting the operator-dependent methods in clinical



practice (see Table (1.1)). Thus, the monitoring of these three critical central

hemodynamic variables is limited today and likely to be even more so in the new century.

10



Table 1.1 Alternative conventional methods for monitoring CO, LAP, and EF. These

methods suffer from substantial disadvantages that have generally prevented them from

supplanting the standard operator-dependent methods employed in clinical practice,

namely bolus thermodilution, pulmonary capillary wedge pressure, and imaging. 1

Hemo-
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1.3 Dissertation layout

To address the above limitations we propose several techniques to mathematically

estimate the central hemodynamic parameters from routinely measured blood pressure

waveforms.

The rest of the dissertation is organized as follows. Chapter 2 describes a technique to

estimate the central ABP from two or more peripheral artery pressure waveforms. The

technique is based on multi-channel blind system identification in which two or more

measured outputs (peripheral artery pressure waveforms) of a single input, multi-output

system (arterial tree) are mathematically analyzed so as to reconstruct the common

unobserved input (central aortic pressure waveform) to within an arbitrary scale factor.

The technique then invokes Poiseuille’s law to calibrate the reconstructed waveform to

absolute pressure. Chapter 3 proposes a refinement to this technique wherein more

efficient representations of arterial tree transfer fimctions are utilized to reduce the

reconstruction error. This reduction in error permits beat-to-beat cardiac output to be

estimated from the reconstructed central ABP waveform with high accuracy. Chapter 4

lays the foundation for wave reflection analysis in which measured aortic and peripheral

artery pressure waveforms are represented in a transmission line model to estimate the

forward and backward pressure and flow waves in the arterial tree. This model in

conjunction with the knowledge that aortic flow is zero during diastole is utilized in

chapter 5 to estimate the central ABP waveform from a single peripheral artery pressure

waveform. Chapter 6 utilizes a Windkessel model for the arterial tree and a variable

capacitance model for the left ventricle to derive the ejection fraction and proportional
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left ventricular elastance from measurement of a central ABP waveform. Finally, some

conclusions and directions for future research are outlined in chapter 7.
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CHAPTER 2

BLIND IDENTIFICATION OF THE CENTRAL AORTIC PRESSURE

WAVEFORM FROM MULTIPLE PERIPHERAL ARTERY PRESSURE

WAVEFORMS

2.1 Introduction

As the arterial pressure wave traverses from the central aorta to the peripheral

arteries, its contour becomes significantly distorted due to complex wave reflections in

the distributed arterial tree [O’Rourke 1991]. For example, both systolic pressure and

pulse pressure usually become amplified with the extent of the amplification dependent

on the particular peripheral site and state of the arterial tree [Soderstrom 2002]. Thus, it is

the systolic and diastolic pressures measured specifically in the central aorta that truly

reflect cardiac afterload and perfusion [Chen 1997]. Perhaps, as a result, central

measurements of systolic pressure and pulse pressure have been shown to be superior in

predicting patient outcome than corresponding measurements made in more peripheral

arteries [Safar 2002, Wadell 2001]. Moreover, since central aortic pressure is not

significantly complicated by the wave reflections [Bourgeois 1976, Noordergraf 1978 ],

the entire waveform clearly reveals the cardiac ejection interval through the dichrotic

notch [Fetics 1999].

The measurement of the central aortic pressure waveform usually involves

introducing a catheter into a peripheral artery and guiding the catheter against the flowing

blood to the central aorta. However, placement of an aortic catheter is not commonly
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performed in clinical practice [Chen 1997] because of the risk of blood clot formation

and embolization. On the other hand, related, but distorted, peripheral artery pressure

waveforms may be measured less invasively and more safely via placement of a catheter

in a distal artery. Indeed, radial and femoral artery catheterizations are routinely

performed in clinical practice [Marino 1998]. Moreover, over the past few decades,

totally non-invasive methods have been developed and refined to continuously measure

peripheral artery pressure based on finger-cuff photoplethysmography [Imholz 1998] and

applanation tonometry [Kenner 1988]. These non-invasive methods are even available as

commercial systems at present (see, for example, the Finometer and Portapres, Finapres

Medical Systems, The Netherlands and the T-Line Blood Pressure Monitoring System,

Tensys Medical Inc., San Diego, CA).

Several techniques have therefore been recently developed to mathematically derive

the clinically more relevant central aortic pressure waveform from less invasively

measured peripheral artery pressure waveforms. Most of these techniques have involved

1) initially obtaining simultaneous measurements of central aortic and peripheral artery

pressure waveforms in a group of subjects; 2) estimating a group-averaged transfer

function relating the measured peripheral artery pressure to the measured central aortic

pressure; and 3) subsequently applying this transfer function to peripheral artery pressure

measured from a new subject in order to predict the unobserved central aortic pressure

waveform [Soderstrom 2002, Chen 1997, Fetics 1999, Karamanoglu 1993]. The

principal assumption underlying these “generalized transfer function” techniques is that

arterial tree properties are constant over all time and between all individuals. Because of

known inter-subject and temporal variability of the arterial tree, a few techniques have
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been more recently proposed towards partial individualization of the transfer function

relating peripheral artery pressure to central aortic pressure through modeling

[Karamanoglu 1997, Sugimachi 2001, Segers 2000].

It would be desirable to be able to estimate the central aortic pressure waveform from

peripheral artery pressure in an entirely patient and time specific manner. One possible

way to do so is with the multi-channel blind system identification (MBSI) approach of

recent interest in signal processing [Abed—Meraim 1997, Xu G 1995]. In this approach,

two or more outputs of a single input, multi-output system are analyzed so as to

reconstruct the common input. To our knowledge, the very recent study by McCombie et

a1. represents the first application of MBSI to the field of hemodynamic monitoring [Mc

Combie 2005]. However, their study specifically aimed to estimate the shape of the

aortic flow waveform from peripheral artery pressure measurements (see Discussion

section).

In this study, we introduce a new technique to reconstruct the central aortic pressure

waveform from multiple peripheral artery pressure waveform measurements without the

need for a generalized transfer function using the MBSI approach. We then demonstrate

the validity of the MBSI technique with respect to four swine in which femoral and radial

artery pressure waveforms and a reference central aortic pressure waveform were

simultaneously measured during diverse hemodynamic interventions.

2.2 MBSI Technique

Our technique, which was initially presented in abbreviated form in [Swamy 2006],

applies standard MBSI algorithms from the signal processing literature [Abed-Meraim

1997, Xu 1995] to two or more peripheral artery pressure waveforms in order to
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reconstruct the central aortic pressure waveform to within an arbitrary scale factor and

then calibrates the reconstructed waveform to absolute pressure based on known

physiology. Below, we describe the technique at a conceptual level while stating its

underlying assumptions. See the next section for the mathematical derivation and the

Discussion section for a justification of its assumptions.

Figure (2.1) (dark lines and fonts) illustrates the single input, multi-output model of

the pressure waveforms in the arterial tree upon which the technique is based. Here, the

m (> 1) measured and sampled peripheral artery pressure waveforms (ppi(t),l _<_ i S m)

are modeled as outputs of m unknown systems or channels driven by the common

unobserved and likewise sampled central aortic pressure waveform (pca(t)) input. Each

of the discrete-time channels coupling the common input to each of the distinct outputs

characterizes the dynamic properties of a different arterial tree path. These channels are

assumed to be linear and time-invariant (LTI) over each one-minute interval of analysis

(see Methods section). The LTI channels are further assumed to be well approximated by

impulse responses (i.e., time-domain version of transfer functions; (hi(t), 1 S i S m) that

are finite in duration and different from each other.
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Figure 2.1 The dark lines and fonts illustrate the single input, multi-output model of the

arterial tree upon which the multi-channel blind system identification (MBSI) technique

introduced herein is based. The gray line and fonts represent a contemporary model [Mc

Combie 2005], where the unobserved aortic flow waveform is regarded as the input.
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Different here precisely means that the finite impulse responses (FIRs) are coprime with

each other (i.e., the Z-transforms of the impulse responses share no common zeros or

roots). In this way, all of the commonality in the measured outputs may be attributed to

the input, and the differences in the measured outputs (see Discussion section) may then

be deciphered so as to estimate the FIRs and ultimately reconstruct the common central

aortic pressure waveform input. Note that it is generally impossible to determine the

scale factor of the FIRs and therefore the common input, because any scaling of the

common input may be offset with a reciprocal scaling of the FIRs. Thus, physiologic

knowledge must also be employed to clarify the ambiguity.

More specifically, first, the Fle are mathematically estimated based on the cross

relations between pairs of measured outputs. These cross relations may be derived from

the fundamental properties of the convolution operation governing LTI input-output

behavior as follows:

Ppi(t)® hj1tl= (Pcalt)® hilt» 8’ hj“) =

hi(t)®(pca(t)®h,-(t»= hirtieppjrt).

where i 1: j and ® denotes the convolution operation. The FIRs are specifically estimated

to within an arbitrary scale factor by solving the homogenous system of equations

resulting from the cross relations using the convenient eigenvector algorithm [Xu 1995].

The implicit assumption here is that the central aortic pressure waveform input is

persistently exciting of high enough order (i.e., containing at least as many frequency

components as the ntunber of estimated FIR samples) [Xu 1995].

Then, the central aortic pressure waveform input is reconstructed to within an

arbitrary scale factor by deconvolving the estimated Fle from the measured peripheral
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artery pressure waveforms. In particular, a single reconstructed waveform is obtained by

employing a multi-channel least squares deconvolution algorithm [Abed-Meraim 1997].

Finally, the reconstructed waveform is calibrated to absolute pressure by sealing it to

have the same mean value as the measured peripheral artery pressure. This scaling step is

well justified, since the paths from the central aorta to peripheral arteries offer very little

resistance to blood flow due to Poiseuille’s law [Noordergraf 1978].

It should be noted that the reconstructed absolute central aortic pressure waveform

will be slightly delayed with respect to the actual central aortic pressure waveform,

because the time delay shared by the FIRs cannot be identified with MBSI. However,

this delay, which is usually < 0.1 sec, is not important for most clinical applications.

2.3 Mathematical Derivation

We outline below the mathematical steps of the MBSI technique for the simplest case

in which two peripheral artery pressure waveforms are analyzed. See [Abed-Meraim

1997, Xu 1995] for a more general mathematical treatment of the employed MBSI

algorithms.

First, the Fle in Figure (2.1) (dark lines and fonts) are mathematically estimated to

within an arbitrary scale factor based on the following cross relation between the two

measured outputs:

L—1

2 h1(k)*pp2(t—k)—k 20h2(k)*pp1(t —k) = e(t), 16 [L —1,N —1]. (2.1)

Here, the convolution sum has been explicitly written (rather than using shorthand

notation as in the initial cross relation equation of the manuscript), and the term e(t) has

been included to account for any measurement noise and/or modeling error. The
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variables L and N in Equation (2.1) respectively represent the number of samples of each

FIR (channel order) and the number of measured peripheral artery pressure waveform

samples. This equation can be expressed in matrix form by stacking each individual

equation corresponding to each time t, one on top of the other, as follows:

 

[p332 3.9“] [32]” (2.2)

h

where

' ppi(0) ppm) ppi(L—1)“

133: pp,(1) ppi:(2) ppifL) . ie[1,2],

_pp;(f‘l-L) ppi(N:-L+1) --: ppi(N—1)_  

are [(N-L+l)xL] Hankel matrices comprising the respective measured output samples;

h-h-(L—1)h~L 2 h-O T ' 12
i_[| |(—)--- Kl]. |E[.].

are [Lxl] vectors specifying the samples or parameters of the two respective FIRs; and

T
e = [e(O) e(1) e(N—L)]

is an [(N-L+1)x1] vector of the noise samples. For a fixed channel order L, the vector h

in Equation (2.2) is estimated to a certain non-trivial constraint by minimizing the energy

in the vector e. This optimization problem is specifically solved in closed-form by

selecting the eigenvector associated with the minimum eigenvalue of the matrix PTP as

a unit-energy estimate of the vector 11. The channel order L is determined by 1) forming

a P matrix of dimension [(N-Lmax +1)><2Lmax], where Lmax =15 is assumed to

encompass the true channel order; 2) computing the eigenvalues of the matrix P1P; and
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3) establishing the Optimal value of L as half the number of eigenvalues (rounded up

when odd) that are at least 5% of the maximum eigenvalue.

Second, the common central aortic pressure waveform input in Figure (2.1) (dark

lines and fonts) is determined to within an arbitrary scale factor from the two determined

FIRs (i.e., the estimated vector h) and the two measured outputs through multi-channel

least squares deconvolution. That is, the two measured outputs may be expressed in

terms of their common input via the convolution sum as follows:

L — 1

Ppilt) = Z hi(k)pca(t — k) + ni(t). i e [1.2]. t e [0,N — 1], (2.3)

k = 0

where ni(t)accounts for any noise. This equation may also be expressed in matrix form

by stacking each individual equation for each t and i, one on top of the other, as follows:

P H
p1 3 1 Pca + "1 (2.4)

ppz H2 n .

H
pp "

where

pp, = inspire) ppi<2i 1:pr -1)1T. ie [1,2].

are [N)( 1] vectors of the respective measured output samples;

hi(L—1) hi(0) 0

Hi: 2 s , ie[1,2],

o hi(L—1) hi(0)

are the [Nx(N+L-1)] Toeplitz matrices including the estimated samples of the respective

FIRs;

pca=[pca(_L-1) pca(_L"2) pca(0) pea“) pca(N'—1)]T
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is a [(N+L-1)xl] vector of unmeasured common input samples; and

T .

ni = [ni(0) ni(1) ni(N—1)] , Ie [1,2],

are [le] vectors of the respective noise samples. The vector pca in Equation (2.4) is

then estimated to within an arbitrary scale factor by minimizing the energy in the vector

n. This optimization problem is specifically solved in closed-form using the following

linear least-squares solution:

pca : (HTH)_1HTppv (25)

where the inverse here is computed efficiently as described in [Jain, 1978]. Following

the deconvolution, the reconstructed input is lowpass filtered with a cutoff frequency of

10 Hz.

Third, the reconstructed waveform (i.e., the determine pea vector) is calibrated to

absolute pressure by scaling it to have the same mean value as that of the measured

peripheral artery pressure as follows:

N—1

p80,“): pcam—Li‘,’ - (2'6)
2 pca(t)

t= 0

Here, p3ca is the absolute (scaled) estimated central aortic pressure waveform.

Finally, if the average systolic pressure of the reconstructed central aortic pressure

waveform is greater than that of the measured peripheral artery pressure, then the solution

is considered to be invalid and the above steps are repeated but with the channel order

reduced by one. We note that this technique always resulted in a valid estimate of the

central aortic pressure waveform for every interval of analysis in the present swine study.

23



2.4 Methods

We evaluated the MBSI technique with respect to previously collected hemodynamic

measurements from swine, which are described in detail elsewhere [Mukkamala 2006].

Below, we briefly describe the experimental procedures employed for collecting these

hemodynamic data and then present the methods for data analysis utilized herein.

Hemodynamic Data

Six Yorkshire swine (30-34 kg) were studied under a protocol approved by the MIT

Committee on Animal Care. Following the induction of general anesthesia and

mechanical ventilation, physiologic transducers were placed in each animal as follows. A

micromanometer-tipped catheter was fed retrograde to the thoracic aorta via a femoral

artery for reference central aortic pressure. Fluid-filled catheters were then inserted in the

opposite femoral artery for femoral artery pressure and in an artery as distal as possible to

the brachial artery for “radial” artery pressure. Finally, an ultrasonic flow probe was

placed around the aortic root following a midline stemotomy for cardiac output. In each

animal, a subset of the following interventions was then performed over the course of 75

to 150 minutes to vary arterial pressures as well as other hemodynamic parameters:

infusions of volume, phenylephrine, dobutamine, isoproterenol, esmolol, nitroglycerine,

and progressive hemorrhage. Several infusion rates were implemented followed by brief

recovery periods. The hemodynamic waveforms were continuously recorded throughout

the intervention period at a sampling rate of 250 Hz and 16-bit resolution.

Data Analysis

We discarded two of the six swine datasets from the study due to excessive damping

of the femoral artery pressure waveform in one dataset [Mukkamala 2006] and an
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improperly calibrated reference central aortic pressure waveform in the other dataset. We

then applied the technique to all one-minute, non-overlapping intervals of the femoral

and radial artery pressure waveforms (resampled to 50 Hz) in the remaining four swine

datasets. We evaluated the resulting central aortic pressure waveform estimates with

respect to the measured reference waveforms (likewise resampled to 50 Hz) in terms of

the root-mean-squared-error (RMSE = ([112 +02 , where u is the bias and o is the

precision) of the following parameters: total waveform (i.e., sample-to-sample), beat-to-

beat systolic pressure, beat-to-beat pulse pressure, and beat-to-beat ejection interval. For

comparison, we likewise evaluated the peripheral artery pressure waveforms with respect

to the measured central aortic pressure waveforms in terms of the first three parameters.

(Note that we did not attempt to determine the ejection intervals from the peripheral

artery pressure waveforms, because the dichrotic notch was generally obscured by wave

reflections.) Prior to conducting these evaluations, we advanced the central aortic

pressure waveform estimates so that they were temporally aligned with the measured

central aortic pressure waveforms. To make a fair comparison, we likewise time aligned

the peripheral artery pressure waveforms.

2.5 Results

Tables (2.1) and (2.2) respectively summarize the hemodynamic parameters of the

four analyzed swine datasets and the evaluation results of the MBSI technique with

respect to these datasets. These tables generally indicate that the technique was able to

reliably estimate the central aortic pressure waveform over a wide hemodynamic range
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with a level of accuracy that was far better than no mathematical analysis of the

peripheral artery pressure waveforms.

More specifically, the overall total waveform RMSE of the estimated central aortic

pressure was 4.7 mmHg (after a modest time alignment as described above). For

comparison, the average overall total waveform RMSE between the measured peripheral

artery pressures and the measured central aortic pressure was 8.6 mmHg (after a more

significant time alignment). Thus, the technique was able to effectively reduce the total

wave distortion in the measured peripheral artery pressure waveforms by 45%.

Furthermore, the overall beat-to—beat systolic pressure RMSE and the overall beat-to-beat

pulse pressure RMSE of the estimated central aortic pressure were 7.5 mmHg and 8.2

mmHg, respectively.
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Table 2.1 Hemodynamic parameters of the swine evaluation datasets. The multi-channel

blind system identification (MBSI) technique was experimentally evaluated with respect

to four swine in which femoral artery pressure and radial artery pressure waveforms and a

reference central aortic pressure waveform were simultaneously measured over a wide

hemodynamic range. MAP is mean arterial pressure; SP, systolic pressure from central

aortic pressure; PP, pulse pressure from central aortic pressure; EI, ejection interval from

central aortic pressure; HR, heart rate; and CO, cardiac output.

 

 

MAP SP PP EI HR CO

Animal Range Range Range Range Range Range

immHg] [mmHg] [mmHg] [ms] [beats/min] [L/min]

1 54— 136 70— 168 28—48 237—267 100—223 2.3 —4.1

2 58—117 73-143 19—49 235-337 92—190 1.7—6.0

3 45— 114 60- 140 22—45 204—296 91 -243 2.4—5.7

4 48—119 70—142 22-51 198-261 102—207 1.3—6.2

Total 45—136 60-168 19—51 198—337 91 —243 1.3—6.2
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Table 2.2 Summary of the experimental evaluation results of the MBSI technique with

respect to the four swine datasets. Overall, the MBSI technique (see dark line and fonts in

Figure (1.1)) as applied to the radial and femoral artery pressure waveforms in the four

swine datasets (see Table (2.1)) reliably estimated the central aortic pressure waveform

along with its clinically significant parameters and thereby significantly reduced the wave

distortion in the measured peripheral artery pressure waveforms. RMSE is root-mean-

squared-error; TW, total waveform; SP, systolic pressure; PP, pulse pressure; and EI,

ejection interval. See example results of the MBSI technique in Figure 2.2.

 

Estimated Central Aortic Femoral Artery Radial Artery Pressure

Dog Pressure RMSE Pressure RMSE RMSE

TW SP PP E1 TW SP PP TW SP PP

[mmHg] [ms] [mmHg] [mmHg]

1 4_4 4.7 4.8 82 11.6 19.2 10.5 4.0 5.1 4.9

2 4,3 5,2 6,4 57 7.8 13.5 14.3 10.5 24.5 19.2

3 4_7 62 8.5 55 6.3 12.0 10.2 9.4 16.7 10.3

56 7,8 7,7 67 7.0 10.7 14.3 9.3 22.7 21.6

 

Total 4.7 7.5 8.2 59 8.1 13.7 12.6 9.1 19.7 15.9
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These errors represent an average overall improvement of 57% and 41% with respect

to the corresponding parameters from the measured peripheral artery pressure

waveforms. In addition, the overall beat-to-beat ejection interval RMSE of the estimated

central aortic pressure was 59 msec. Finally, though not shown in the tables, the errors in

the four studied parameters of the estimated central aortic pressure were virtually

uncorrelated with the respective reference values of these parameters.

Figures (2.2a) and (2.2b) provide two visual examples illustrating the significant

differences between the measured peripheral artery pressure waveforms (dash and dot-

dash) and the corresponding measured central aortic pressure waveforms (solid), while

Figures (2.2c) and (2.2d) show the resulting central aortic pressure waveforms estimated

from these peripheral artery pressure waveforms (dash) along with the reference central

aortic pressure waveforms (solid). As is evident in these examples at two different mean

pressure levels, the estimated and reference central aortic pressure waveforms agree very

closely, and much of the wave distortion in the measured peripheral artery pressure

waveforms has been eliminated.
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Figure 2.2 (a, b) Example segments of the measured central aortic pressure (solid),

femoral artery pressure (dash), and radial artery pressure (dot-dash) waveforms fiom the

four analyzed swine datasets (see Table (2.1)). (c, d) Example segments of the central

aortic pressure waveform measured (solid) and estimated (dash) by applying the MBSI

technique (see dark lines and fonts in Figure (2.1)) to the two segments of peripheral

artery pressure waveforms in (a, b).
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2.5 Discussions

In summary, we have introduced a new technique to mathematically reconstruct the

clinically more relevant central aortic pressure waveform from multiple, less invasively

measured peripheral artery pressure waveforms distorted by wave reflections. Our

technique capitalizes on the powerful MBSI approach of recent interest in signal

processing in which the differences in the outputs of a single input, multi-output system

are assessed so as to reconstruct the common input to within an arbitrary scale factor.

Then technique then calibrates the reconstructed waveform to absolute pressure using

Poiseuille’s law. As a result, in contrast to previous, related efforts, our technique neither

employs a generalized transfer function nor requires any training data and is therefore

entirely patient and time specific. We have also presented an experimental evaluation of

the technique in four swine in which radial and femoral artery pressure waveforms and a

reference central aortic pressure waveform were simultaneously measured over a wide

hemodynamic range. Our results show that the technique was able to reliably estimate

the entire central aortic pressure waveform and thereby significantly improve upon the

determinatidn of systolic pressure, pulse pressure, and the ejection interval as compared

to measuring these clinically significant parameters directly from the peripheral artery

pressure waveforms.

Assumptions ofthe MBSI Technique

As stated above, our MBSI technique is based on a set of assumptions. We make

physiologic and empirical arguments to justify each of the underlying assumptions below.

Assumption 1: the channels relating the common input to each distinct output in

Figure 1.1 are LTI over each one-minute interval of analysis. Over such short time

31



intervals, the arterial tree is usually operating in near steady-state conditions in which the

statistical properties of the arterial pressure waveforms vary little over time. Such steady-

state conditions clearly justify the time-invariance approximation. Moreover, these

conditions also support the linearity approximation as argued in [McCombie 2005] and

references therein.

Assumption 2: the LT] channels are characterized with FIRs. Although not widely

appreciated, it is known that arterial pressure waveforms measured from distinct sites

only differ significantly in terms of their high frequency detail while being quite similar

at lower frequencies [Noordergraf 1978, Mukkamala 2006]. Thus, the dynamics of each

of the channels in Figure (2.1) (dark lines and fonts) are fast (e.g., effectively vanishing

within ~0.5 sec [Zhang 2002]), thereby supporting the FIR approximation.

Assumption 3: the FIRs are coprime with each other. If the FIRS were not coprime

with each other, then the non-coprime or common FIR dynamics would be erroneously

attributed to the common input. As discussed above, peripheral artery pressure

waveforms from distinct sites in the arterial tree appear different. Thus, the dynamics of

each channel cannot be the same, and the coprime channel approximation is at least

somewhat tenable.

Assumption 4: the central aortic pressure waveform is persistently exciting of high

enough order. This assumption means that the central aortic pressure waveform contains

at least as many frequency components as the number of estimated FIR samples. As

described above, the channel dynamics are short duration. Thus, the number of FIR

samples to be estimated is small, thereby buttressing the persistence of excitation

approximation.
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Any violation to the four above assumptions in the present swine study may indeed

represent a source of error of our MBSI technique. However, we note that each of the

assumptions must have been at least largely valid here given that the discrepancy

between the estimated and reference central aortic pressure waveforms was relatively

small (see Table (2.2)).

MBSI Technique in the Context ofPrevious Efforts

The MBSI technique that we have introduced herein was inspired by the seminal

contributions of several previous investigations described in the hemodynamic

monitoring literature. In particular, the idea of mathematical deriving central aortic

pressure from measured peripheral artery pressure stems from the body of generalized

transfer function literature [Soderstrom 2002, Chen 1997, Fetics 1999, Karamanoglu

1993, Karamanoglu 1997, Sugimachi 2001, Segers 2000], whereas the idea of employing

MBSI to do so in an entirely patient and time specific manner is based on the very recent

study by McCombie et al. [McCombie 2005].

McCombie et a1. specifically proposed a technique using MBSI to reconstruct the

shape of the common aortic flow waveform input from multiple peripheral artery

pressure waveform outputs and demonstrated its feasibility in a pilot swine experiment.

Figure (2.1) (all lines and fonts) illustrates the single input, multi-output model upon

which their technique was based. As can be seen from this model, the channels coupling

the aortic flow waveform to each peripheral artery pressure waveform include common

dynamics, namely the channel relating the aortic flow waveform to the central aortic

pressure waveform (h0(t)), and are therefore not coprime. As a result, these

investigators had to develop additional signal processing to estimate the common channel
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dynamics, which resulted in a considerably more complicated algorithm than standard

MBSI. Moreover, their framework did not provide an obvious means to determine the

uncontrolled scale factor of the reconstructed input. Thus, the technique cannot be

utilized to monitor relative changes in cardiac output. In contrast, our MBSI technique

aimed to estimate the central aortic pressure waveform input in which the coprime

channel assumption is more tenable (thereby rendering a relatively straightforward

algorithm) and the arbitrary scale factor of the input is conveniently determined by

invoking Poiseuille’s law.

It is not strictly valid to compare the results of the MBSI technique reported here

with those of previous studies employing generalized or partially individualized transfer

functions due to variations in evaluation datasets (both subjects and experimental

conditions) and methods for evaluation. Nevertheless, we find that the total central aortic

pressure waveform error of 4.7 mmHg obtained by our technique (see Table (2.2)) is

somewhat higher than the approximately 2 to 4 mmHg errors reported in four of the

previous studies [Chen 1997, Fetics 1999, Karamanoglu 1993, Karamanoglu 1997].

However, we note that the transfer functions that were utilized in each of these studies

were trained on the same subjects and/or the same experimental conditions that were

subsequently employed for testing. The impetus for the present research is that the MBSI

technique should demonstrate an improved performance when applied to the diverse

population of patients and patho-physiologic conditions seen in clinical practice. On the

other hand, we acknowledge that the cost of this potential improvement in accuracy is the

requirement of more than one peripheral artery pressure waveform for analysis.

However, several convenient methods are currently available for measuring peripheral
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artery pressure waveforms (see above) and new systems are continually in development.

For example, it may be possible one day to chronically monitor peripheral artery pressure

waveforms with wearable ring sensors [Asada 2003].

Future Directions

The present study opens up the possibility of several different avenues of future

investigation. In terms of subsequent mathematical efforts, it would be worthwhile to

attempt to improve upon the accuracy of the MBSI technique by compactly representing

the FIR channels with more appropriate basis functions and thereby alleviate the

persistence of excitation demands. In addition, it would be extremely desirable, from a

clinical point of view, to be able to extend the MBSI technique to also estimate relative

changes in aortic flow through, for example, physical modeling. In terms of subsequent

experimental efforts, it may prove useful to seek correlation between the estimated FIR

channels and phenomena that are local to the respective peripheral artery pressure

measurement sites (e. g., plaque development) so as to further extend the monitoring

capabilities of the technique. Furthermore, while the application of the technique to

femoral and radial artery pressure waveforms may be most suitable for clinical practice

(see above), it would be interesting, from a scientific point of view, to establish the

optimal sites and number of peripheral artery pressure measurements (e.g., the arterial

tree sites that result in the most coprime channels and the smallest number of

measurements that does not significantly compromise estimation accuracy). Finally,

future evaluations of the MBSI technique in humans and with respect to non-invasive

peripheral artery pressure waveforms are certainly warranted.

Potential Applications ofthe MBSI Technique
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Our MBSI technique mathematically derives the clinically more relevant central

aortic pressure waveform from multiple, less invasively measured, but distorted,

peripheral artery pressure waveforms without using any training data. The technique

may easily be implemented in near real time (with a one minute delay) using a standard

home personal computer. With further development and successful testing, the technique

may ultimately be utilized for more precise monitoring and titration of therapy [Chen

1997] in, for example, critically ill patients with invasive catheters installed and

hypertension patients instrumented with non-invasive arterial pressure transducers.

Advancements in arterial pressure monitoring technology hold further promise for the

application of the technique in the context of chronic ambulatory and home monitoring.
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CHAPTER 3

ESTIMATION OF THE AORTIC PRESSURE WAVEFORM AND BEAT-TO-

BEAT CARDIAC OUTPUT FROM MULTIPLE PERIPHERAL ARTERY

PRESSURE WAVEFORM

3.1 Introduction

Blood ejected by the left ventricle initiates pressure and flow waves that propagate

through the arterial tree. These waves are reflected at multiple sites of impedance

mismatch caused by arterial bifurcations, narrowing, and stiffening [Donald 1960],

[Noordergraf 1978]. For example, wave reflections are especially pronounced at the sites

of arterial terminations [Donald 1960, Westerhof 1972]. The pressure waveform

measured at a given site in the arterial tree therefore represents the sum of the forward

and backward traveling pressure waves at that particular site [Westerhof 1972, Berger

1993]. As a result, the arterial pressure waveform becomes progressively distorted as its

site of measurement becomes more distal to the aorta [Donald 1960]. Most notably,

systolic pressure (SP) and pulse pressure (PP) become increasingly amplified [Donald

1960, Soderstrom 2002] and therefore less indicative of cardiac performance [Chen

1997]. Indeed, central measurements of SP and PP have been shown to be superior

predictors of patient outcome than corresponding measurements made in more peripheral

arteries [Safar 2002, Wadell 2001]. In addition, aortic pressure (AP, especially from the

descending thoracic aorta) is less complicated by wave reflections than peripheral artery

pressure (PAP) due in part to attenuation and destructive interference of the reflected
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waves that reach the aorta [Noordergraf 1978, Bourgeois 1974, Bourgeois 1976]. Thus,

the entire AP waveform usually reveals the ventricular systolic ejection interval (SE1)

through the dicrotic notch [Fetics 1999] and may be represented with a lumped parameter

Windkessel model in order to accurately estimate beat-to-beat relative changes in cardiac

output (CO), as convincingly demonstrated in [Bourgeois 1976]. On the other hand, PAP

may be measured more safely than AP through catheterization and even non-invasively

via finger-cuff photoplethysmography [Irnholz 1998] or applanation tonometry [Kenner

1998]. It is therefore PAP waveforms that are routinely monitored in humans [Marino

1998], even though the AP waveform is known to be of greater clinical value.

As a result, over the past 15 years, there has been considerable interest in estimating

the AP waveform from measured PAP waveforms using generalized transfer function

techniques [Soderstrom 2002, Chen 1997, Fetics 1999, Karamanoglu 1993, Karamanoglu

1996]. These techniques essentially involve: 1) initially obtaining simultaneous

measurements of AP and PAP waveforms in a group of subjects; 2) estimating a group-

averaged transfer function relating the measured PAP to the measured AP; and 3)

subsequently applying this transfer function to PAP measured from a new subject in

order to estimate the AP waveform. However, these techniques do not account for

known inter-patient and temporal variability of arterial tree properties (e.g., [Hallock

1937, Guyton 1996]) and may therefore be prone to significant estimation error when

applied to the diverse patient population encountered in clinical practice.
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Figure 3.1 Single input, multi-output model of the arterial tree providing the basis for the

technique introduced herein to estimate the clinically more relevant aortic pressure (AP)

waveform from multiple, less invasively measured peripheral artery pressure (PAP)

waveforms distorted by wave reflections.
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We have recently developed a patient and time specific technique for estimating the

AP waveform from multiple PAP waveforms by capitalizing on the powerful multi-

channel blind system identification (MBSI) approach [Swamy 2007]. The technique

specifically involves: 1) modeling two or more measured PAP waveforms as outputs of

distinct finite impulse response (FIR) channels driven by the common AP waveform

input (see Figure (3.1)); 2) estimating the FIRs to within an arbitrary scale factor by

applying the standard eigenvector method to the cross relations between pairs of

measured outputs (see Equations (3.1) and (3.2)); 3) reconstructing the AP waveform to

within an arbitrary scale factor by deconvolving the estimated Fle from the measured

waveforms; and 4) scaling the reconstructed waveform to absolute pressure by invoking

Poiseuille’s law. In this way, the technique is able to estimate the AP waveform from

PAP waveforms without the need for a generalized transfer function. We have tested this

technique with respect to four swine datasets consisting of simultaneous measurements of

two PAP waveforms from the femoral and radial arteries and a measured reference AP

waveform during diverse hemodynamic interventions [Swamy 2007]. Our results

showed that the technique provided more accurate AP waveform estimates than a

generalized transfer function developed from a subset of the same datasets. In this paper,

we introduce an improved technique for estimating the AP waveform as well as beat-to-

beat relative changes in CO from multiple PAP waveforms. The technique specifically

involves: l) estimating the AP waveform based on our new MBSI method in which the

Fle are represented with more efficient basis functions than the impulse basis functions

assumed by the standard eigenvector method in order to reduce the number of parameters

to be estimated and therefore enhance the estimation accuracy; and 2) estimating beat-to-
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beat relative changes in CO by fitting a Windkessel model to the estimated AP waveform

in which wave distortion should be greatly attenuated. We show that this new technique

is able to estimate the AP waveforms in the four aforementioned swine datasets with

greater accuracy than our initial technique. We further show that this enhanced accuracy

permits reliable estimation of beat-to-beat relative changes in CO as compared to gold

standard reference aortic flow probe measurements also available in the swine datasets.

3.2 Technique

Our technique applies a new MBSI method that we have developed to two or more

PAP waveforms to estimate the AP waveform and then fits a Windkessel model to the

estimated waveform to estimate beat-to-beat relative changes in CO. We fully describe

the technique below for the simplest case in which two PAP waveforms are available for

analysis. Generalization of the technique to more than two measured waveforms readily

follows analogous to [Xu 1995].

First, two measured and sampled PAP waveforms (ppi(t), i e [1, 2]) are modeled as

individual outputs of two unknown channels driven by the common unknown and

likewise sampled AP waveform (pa(t)) input as shown in Figure 1 with m = 2. The two

discrete-time channels coupling the common input to the two distinct outputs represent

the dynamic properties of a different path in the arterial tree. A principal assumption

underlying the model is that the channels may be well characterized by coprime FIRs

(hi(t) , i e [1, 2]) over each one-minute interval of analysis (see below). Over such short

time intervals, the arterial tree is usually operating in near steady-state conditions, thereby

clearly supporting the implicit time invariance assumption as well as buttressing the
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implicit linearity assumption as argued in [McCombie 2005] and references therein.

Moreover, since pressure waveforms measured from distinct sites in the arterial tree only

differ significantly over short time scales (e. g., within a cardiac cycle) while being quite

similar over longer time scales (e. g., mean values as described below) [Noordergraf 1975,

Zhenwei 2006], the FIR assumption is also well justified. Finally, the coprime

assumption, which is needed to subsequently estimate the FIRs [Xu 1995], may be

largely valid due to the significant differences in PAP waveforms measured from distinct

arterial sites.

Then, by applying the fundamental properties of convolution to the single input,

multi-output model of Figure (3.1), the two FIRs may be estimated based on the resulting

cross relation between the two measured outputs:

L —1 L —1

Z h1(t)*pp2(t—t)— z h2(t)*pp1(t— r) = e(t), te [L —1,N—1]. (3.1)

T = 0 I = 0

Here, e(t) accounts for any measurement and/or modeling error, and the variables L

and N respectively represent the maximum duration of the Fle (channel order) and the

number of measured PAP waveform samples in a one-minute interval of analysis [Xu

1995]

The standard method for estimating the FIRs in Equation (3.1) is to first

determine the channel order through eigenvalue analysis and then to estimate the FIR

samples or parameters to within an arbitrary scale factor by least squares minimization of

e(t) via the eigenvector method [Xu 1995]. More specifically, Equation (3.1) may be

expressed in matrix form by stacking each individual equation, corresponding to each t,

one on top of the other as follows:
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[9,2 41,1] [Mint (3.2)

 

. , n,

P T

where

' ppi(0) ppi(1) ppi(L—1)'

ppi— pp:(1) ppile ppif") ,ie[1,2], (3.3)

3ppitfil-L) ppi(N;L+1) --: ppi(N—1)_  

are [(N-L+l)><L] Hankel matrices comprising the respective measured output samples;

hi=[hi(L—1) hi(L—2) hi(0)]T, ie[1,2], are [Lxl] vectors specifying the

parameters of the two respective FIRs; and e = [8(0) 6(1) e(N-L)]T is an [(N-

L+l)><1] vector consisting of the error samples. The channel order L may then be

determined by 1) forming a matrix P of dimension [(N—Lmax +1)x2Lmax], where

Lmax is assumed to encompass the true channel order; 2) computing the eigenvalues of

the matrix PTP; 3) identifying the number of insignificant eigenvalues nie; and 4)

selecting the optimal value of L as Lopt = Lopt —(nie —1). Then, the least squares, unit

two-norm estimate of the vector h may be conveniently obtained by selecting the

eigenvector associated with the minimum eigenvalue of the matrix PTP, where P is of

dimension [(N "Lopt +1)x 2Lopt]- The implicit assumption of this standard eigenvector

method, which was employed by our initial MBSI technique [Swamy 2007], is that the

AP waveform contains at least as many frequency components as the number of

eStimated FIR parameters 2Lopt [Xu 1995].
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To reduce the number of parameters to be estimated so as to alleviate the frequency

content demands on the AP waveform and thereby improve the estimation accuracy, the

Fle are instead compactly represented with damped sinusoidal basis firnctions as

follows:

n t . .

hi(t) = '31). (aik cos(mikt) + bik s1n(mikt)), 1 e [1, 2], (3.4)

where {k'aik'bik'wikhs a set of unknown parameters and n is an unknown number of

basis functions. These basis functions were chosen empirically based on our swine

datasets (see section 3.5). Thus, only a small number of basis functions should be needed

to represent the FIRs, thereby resulting in a significant reduction in the parameters to be

estimated. Then, for a fixed number of basis functions 11, the set of parameters is

estimated based on least squares minimization of e(t) in the following cross relation

equation resulting from substitution of Equation (3.4) into Equation (3.1):

n Lopt'1 3 l-opt"' I .

2 31k 2 A. COS(0)1kT)pp2 (I - 1’) + b1k Z A SII'I((D1k‘IZ)pp2 (i - I)

k=1 1:0 1:0

L —1 L -1
n opt opt

_ 2 32k 2 At COS((1)2kT)pp1(I- I) + b2k 2 X1: Sin(w2kt)pp1(t— T) (3.5)

k =1 1: = O T = 0

= e(t), te [Lopt — 1,N — 1],

where Lopt is established through eigenvalue analysis as described above with Lmax=

15. To estimate the coefficient parameter sets {aikwbik} uniquely (rather than to within

an arbitrary scale factor), one FIR is constrained to have unity gain as follows:

11 I-opt '1 n Lopt ‘1

2 31k 2 At COS(C01kt) + Z b1k 2 At SID((1)1kt) =1. (3.6)

k =1 1: O k =1 1: 0
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The constraint here is well justified, as the paths from the aorta to the peripheral

arteries offer very little resistance to blood flow due to Poiseuille’s law (i.e., the mean

values of pressure waveforms from different sites in the arterial tree are nearly the same)

[Noordergraf 1978]. To simplify this constrained optimization problem, the damping

parameter )1. is set to exp(-—3 / Lopt ) so that the FIRs approximately decay to zero, while

the frequencies in the parameter set 0)", are allowed to take on only discrete values

according to the Fourier Series (i.e., 27t|l Lopt for l=0,l,..., CBII((Lopt —1)/ 2)), where

ceil(x) is the smallest integer 2 x). For each set of frequency parameters {wik}

considered (see below), the corresponding coefficient parameter sets are estimated

through the linear least squares solution. More specifically, similar to Equation (3.1),

Equations (3.5) and (3.6) may be expressed in matrix form as follows:

 

      

a1 0

b M[P31 I,32 _P11 4312] a1 = 0 +9, (3.7)

m fl , 2

A -b2_ L1-

;, b

P. KLoptAIUI-opt-ly‘l’n) ALOPt"1f((Lopt—1)*min)

c tonomn) Naomi")
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Ppiis defined in Equation (3) with L = Lopti (p is a [1x Lopt] vector whose elements are

all zeros for i = l and all ones for i = 2; and a'=[ai1 ain1T and

b- = b- b- T, IE [1,2], are [nxl] vectors specifying the coefficient parameters
I 11 In

of the two respective FIRs. Then, the least squares estimate of the vector x in Equation

(7) is obtained asx = (ATA)—1ATb. Amongst all of the linear least squares solutions

computed for each considered set of frequency parameters {orik }, the one that minimizes

the two-norrn of the vector e in Equation (7) is selected so as to provide the optimal

estimate of the parameter set {A’aiktbikvmiki- Finally, the number of basis functions 11 is

determined iteratively by starting with a single basis function representation and then

adding one basis function at a time until the two-nonn of the vector e becomes < 10% of

the two-norm of the vector (pm + sz ) I 2 , where Ppi is defined in Equation (3.10). For

further simplicity, in the kth iteration, the frequency parameters are only estimated for

the newly added basis function with the frequency parameters of the previous (k-l) basis

functions set to the estimates obtained from the (k -1 iteration. In the kth iteration,

the number of sets of frequency parameters considered is

specifically(ceil((Lopt—1)/2))—k+2)2. Thus, the two Fle are assumed to be

represented by the same number of basis functions but of generally different frequencies.

Next, with the set of basis function parameters {A’aikvbikvmik} estimated and the two

Fle fully defined through Equation (4), the common AP waveform input of the model of

Figure (3.1) is estimated through multi-channel least squares deconvolution [Abed-
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Meriarn 1997]. That is, the two measured outputs may be expressed in terms of their

common input via convolution as follows:

tom—1

Ppi(t)= 32 hiik)Pa(t—k)+ni(t), ie[1,2], te[0,N—1], (3.8)

where ni (t) accounts for any noise. The common input is then estimated by least squares

minimization of ni(t), ie[1,2] [Donald 1960, Noordergraf 1978]. More specifically,

Equation (3.8) may also be expressed in matrix form by stacking each individual equation

corresponding to each t and i, one on top of the other as follows:

”in _ H1 "1 (3.9)

lelUwU
pp H n

where

ppi=1pp,(0) ppm) ppi<N-1>1T.ie[12]. (3.10)

are [N>< l] vectors of the respective measured output samples;

'hirtopt—l) hi(0) 0 ‘

H.= 3 = ,ie[1,2],

0 11,833, —1) hi(0)3

  h

are the [Nx(N+Lopt-1)] Toeplitz matrices including the estimated parameters of the

respective FIRs;

pa=rpa(-Lopt—1) pa(—Lopt—2) paw) p30) pa(N—1)1T

is a [(N+ Lopt -l)><l] vector of the unknown common input samples; and
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T .

ni =[ni(0) ni(1) ni(N—1)] , Ie[1,2],

are [le] vectors of the respective noise samples. The least squares estimate of the

vector pa in Equation (3.9) is then obtained through the following linear least squares

solution with Tikhonov regularization [Hansen 1987]:

pa = (HTH + uI)—1HTpp. (3.1 1)

The matrix (HTH+ pl) here is relatively large ((> 3000)><(> 3000)) for one-minute

analysis intervals and a sampling frequency of 50 Hz), and standard computation of its

inverse is therefore very expensive requiring O(N3) operations. However, by exploiting

the Toeplitz structure of this matrix, its inverse is instead computed efficiently in

0(N log N) operations using the fast circular decomposition method described in [Jain

1978]. The estimated AP waveform is then lowpass filtered with a cutoff frequency of 15

Hz in order to further attenuate any high frequency noise generated in the deconvolution

process. This cutoff frequency is well justified, as the relevant waveform features

generally fall within this frequency range [Chen 1997]. It should be noted that the

estimated AP waveform will be slightly delayed (< 0.1 s) with respect to the actual AP

waveform, because the time delay shared by the Fle cannot be identified with MBSI.

Finally, beat-to-beat relative changes in C0 are estimated from the determined AP

waveform by employing the Windkessel model of Figure (3.2a), which accounts for the

lumped arterial compliance (Ca) of the large arteries and the total peripheral resistance

(Ra) of the small arteries, as described in [Bourgeois 1976]. That is, since Ca may be

nearly constant over a wide pressure range and on the time scale of months [Bourgeois
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1974, Hallock 1937, Zhenwei 2006], proportional CO for each cardiac cycle is calculated

through the following governing model equation:

1 1tes

COoc? pa(tes)‘pa(tbs)+;ti pa(t)dt , (3.12)

bs

where pa(t) is again the estimated AP waveform, andtbs,tes,T, and t = RaCa are

timing parameters that are determined from this waveform as shown in Figure (3.2b).

More specifically, tbs , which denotes the beginning time of the SEI, is identified as the

time of the local minimum that immediately precedes the time of peak SP for the cardiac

cycle; tes’ which indicates the ending time of the SEI, is identified as the time of the

minimum of the derivative of the estimated waveform over the interval from the time of

peak SP to the tbs of the next cardiac cycle; T, which signifies the cardiac cycle

duration, is determined as the difference between the tbs of successive cardiac cycles;

and 1:, which is the time constant of the Windkessel model, is estimated by least squares

fitting of a single exponential decay to the reconstructed waveform over an interval

between tes and tbs of the next cardiac cycle, in accordance with the model prediction.

Since the time constants governing Ra changes are significantly longer than the cardiac

cycle duration [Berger 1989], the t estimates are actually averaged over five cardiac

cycles to attenuate any noise.
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Figure 3.2 Lurnped parameter Windkessel model providing the basis for the technique to

estimate beat-to-beat relative changes in cardiac output (CO) from the estimated AP

waveform (pa(t)) in which the wave distortion should be greatly attenuated (see Figure

(3.1)). (b) Illustration generally indicating how the unknown timing parameters in

Equation (3.12), namely tbs (beginning time of the systolic ejection interval (SEI)),

tes (ending time of the SEI), T (cardiac cycle duration), and ‘l.’ = RaCa (time constant of

the Windkessel model), are determined from the estimated AP waveform.
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3.3 Methods

We evaluated the technique with respect to experimental datasets that were originally

collected to address related but different specific aims [Mukkamala 2006] and previously

utilized to investigate our initial MBSI technique for estimating the AP waveform using

the standard eigenvector method [Swamy 2007]. Briefly, these datasets consist of

various hemodynamic recordings obtained from four swine (30-34 kg) under general

anesthesia and mechanical ventilation. The hemodynamic recordings include femoral

artery pressure (PAP) and radial artery pressure (RAP) waveforms measured with fluid-

filled catheters, a reference AP waveform measured from the descending thoracic aorta

with a high frequency response micromanometer-tipped catheter, and gold standard

reference beat-to—beat CO measured with an aortic flow probe. These hemodynamic

recordings are available at a sampling frequency of 250 Hz for a total of 253 minutes

during infusions of volume, phenylephrine, dobutamine, isoproterenol, esmolol,

nitroglycerine, and progressive hemorrhage. Table (3.1) shows that these interventions

imposed a wide hemodynamic parameter range for each of the four swine datasets.

We applied the technique to all one-minute, non-overlapping intervals of the FAP and

RAP waveforms resampled to 50 Hz. We evaluated the resulting AP waveform estimates

with respect to the measured reference waveforms (likewise resampled to 50 Hz) in terms

of the root-mean-squared-error (RMSE) of the following parameters: total waveform

(i.e., sample-to—sample), beat-to-beat SP, beat-to-beat PP, and beat-to-beat SEI. For

comparison, we likewise evaluated the PAP waveforms (with respect to the measured AP

waveforms) as well as the AP waveform estimates from our initial MBSI technique and

an autoregressive exogenous input (ARX)-based generalized transfer fimction [Fetics,
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1999] developed on a subset of the swine datasets as described in [Swamy 2007]. (Prior

to conducting these evaluations, we advanced the AP waveform estimates and the PAP

waveforms so that they were temporally aligned with the measured AP waveforms.)

Since it is customary to report CO errors in percent, we evaluated the resulting beat—to—

beat proportional CO estimates with respect to the reference aortic flow probe

measurements in terms of the root-mean—squared-normalized-error (RMSNE). This

quantity was specifically computed by 1) scaling the proportional CO estimates to have

the same mean value as the reference CO in each animal; 2) normalizing each calibrated

CO error with the reference CO value; and 3) computing the RMS of the normalized,

calibrated CO errors. For comparison, we likewise evaluated the beat-to-beat

proportional CO estimates obtained by fitting the Windkessel model directly to the PAP

and RAP waveforms as well as to the AP waveforms estimated by our initial technique

and the generalized transfer function.
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Table 3.1 The new technique (see Figures (3.1) and (3.2)) as well as alternative

peripheral artery pressure (PAP) waveform analysis techniques were evaluated with

respect to four swine datasets consisting of simultaneous measurements of femoral artery

pressure (FAP) and radial artery pressure (RAP) waveforms, a reference aortic pressure

(AP) waveform, and reference aortic flow probe cardiac output (CO) during diverse

interventions. MAP is mean arterial pressure; SP, systolic pressure from AP; PP, pulse

pressure from AP; SEI, systolic ejection interval from AP; and HR, heart rate.

 

Hemodynamic Animal

Parameter 1 2 3 4 Total

MAPRange 54—136 58—117 45—114 48—119 45—136
[mmHg]

SP Range
62—182 70—148 55—144 58—157 55—187

[mmHg]

PP Range

17—54 17—52 20—62 19—57 17—62
[mmHg]

SElfii'i‘ge 160 — 400 160 — 340 120 - 240 140 — 300 120 — 400

HR Range 100—223 92 — 190 91 —243 102—207 91 —243
[beats/nun]

CO Rtnge 2.3 — 4.1 1.7 — 6.0 2.4 — 5.7 1.3 — 6.2 1.3 — 6.2
[L/rrun]
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3.4 Results

Table (3.2) includes the evaluation results for the AP waveforms estimated by the

technique introduced herein, which employs our new MBSI method, for each of the four

swine datasets as well as the corresponding results for the measured PAP waveforms.

The overall total waveform RMSE of the AP waveform estimates was 3.5 mmHg (after a

modest time alignment), whereas the average overall total waveform RMSE between the

PAP waveforms and the measured AP waveforms was 8.6 mmHg (after a more

significant time alignment). Thus, the technique effectively reduced the wave distortion

in the measured PAP waveforms by 59%. As a result, the technique also reduced the

average overall SP and PP RMSEs by 71% and 61%, respectively. However, the

technique did not improve upon the surprisingly small, overall SEI RMSE obtained from

the FAP waveforms. Figure (3.3a) provides a visual example illustrating the significant

differences between the PAP waveforms and the measuredAP waveform, while Figure

(3.3b) shows that the AP waveform estimated from these PAP waveforms closely agrees

with the directly measured reference waveform.

Table (3.2) also provides a comparison of the evaluation results for the AP

waveforms estimated by our new technique, our initial MBSI technique, which employs

the standard eigenvector method, and a previous ARX—based generalized transfer

function for each of the four swine datasets. The overall total waveform RMSE of the

AP waveform estimates from our initial technique was 4.6 mmHg, while the average

overall total waveform RMSE from the generalized transfer function was 5.4 mmHg.

Thus, both MBSI techniques provided more accurate AP waveform estimates than the

conventional generalized transfer function even though it was developed on a subset of
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the swine datasets. However, the new technique enhanced the estimation accuracy of our

initial technique by 24%. As a result, the new technique provided similar improvements

in the estimation of SP and PP (but yielded similar results in the estimation of the SEI).

In addition, a more significant advantage of the new technique over the initial technique

is indicated below.

Table (3.3) includes the evaluation results for the beat-to-beat proportional CO

estimated by the new technique via fitting the Windkessel model of Figure (3.2a) to the

estimated AP waveform for each of the four swine datasets as well as the corresponding

results obtained by directly fitting the model to each of the PAP waveforms. The overall

beat—to-beat CO RMSNE from the AP waveform estimates was 12.9%, whereas the

average overall beat-to-beat CO RMSNE from the PAP waveforms was 26%. Thus, the

technique enhanced the beat-to-beat CO estimation accuracy by 50%. Interestingly, the

overall beat-to-beat CO RMSNE from the PAP waveforms was 49% smaller than the

corresponding RMSNE from the RAP waveforms but still 33% larger than the analogous

RMSNE obtained with the technique. Figure (3.4) provides a visual illustration of the

close agreement between the estimated and once calibrated beat-to-beat CO from the

technique and the gold standard reference aortic flow probe measurements for each of the

four swine datasets.

Table (3.3) also provides a comparison of the evaluation results for the beat-to-beat

proportional CO estimated by the new technique and via fitting the Windkessel model to

the AP waveform estimates from our initial technique and the generalized transfer

function. The overall beat-to-beat CO RMSNE from the AP waveforms estimated by our

initial technique was 36.3%, while the average overall beat-to-beat CO RMSNE from the
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waveforms estimated by the generalized transfer function was 20.2%. Thus, the new

technique increased the beat-to-beat CO estimation accuracy of the former technique by

63% and the latter technique by 36%. Note that the beat-to-beat CO RMSNE obtained

with our initial technique was even larger than the corresponding RMSNEs from the PAP

waveforms. As discussed in Section 3.5, this result was mainly due to outliers in the AP

waveform estimation.
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Table 3.2 Quantitative summary of the aortic pressure waveform estimation results in

terms of root-mean-squared-error. The new technique resulted in more accurate AP

waveform estimates in the four swine datasets (see Figure (3.3)) than those obtained from

alternative PAP waveform analysis techniques including the conventional generalized

transfer function (GTF). The root-mean-squared-errors are in units ofmmHg for the total

waveform (TW), SP, and PP parameters and ms for the SEI parameter.

 

 

 

 

 

 

Arterial Pressure IArterial Animal

Waveform P “55"“ 1 2 3 4 Total
arameter

Estimated AP TW 2.5 3.9 3.4 3.4 3.5

(New Techn. ) SP 1.9 5.1 5.0 5.6 4.8

““16 PP 2.8 5.4 6.4 6.1 5.6

SE1 22 14 21 22 19

TW 11.6 7.8 6.3 7.0 8.1

FAP SP 19.2 13.5 12.0 10.7 13.7

PP 10.5 14.3 10.2 14.3 12.6

SEI 22 19 19 20 19

TW 4.0 10.5 9.4 9.3 9.1

RAP SP 5.1 24.5 16.7 22.7 19.7

PP 4.9 19.2 10.3 21.6 15.9

$131 20 38 18 48 33

. TW 4.4 4.4 3.8 5.7 4.6

EStZfi’ifiAP SP 4.1 5.0 5.0 9.4 6.1

Techni ue) PP 4.3 5.9 7.1 9.9 7.1

‘1 SEI 23 14 22 22 20

. rw 4.8 5.2 6.9 5.6 5.8

$5.??pr SP 7.4 7.7 12.4 9.6 9.7

( AP "’ PP 8.6 9.4 13.4 11.2 11.0

) SEI 24 28 46 42 35

Estimated AP TW 4.2 4.6 6.0 5.1 5.0

(GTF, RAP SP 5.3 6.6 8.7 6.5 7.1

AP " PP 4.8 6.3 8.5 6.8 7.0

) SEI 22 26 35 37 29
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Figure 3.3 (a) Example segments of the measured AP (solid), femoral artery pressure

(dash), and radial artery pressure (dot-dash) waveforms from one of the four swine

datasets (see Table (3.1)). (b) Example segments of the AP waveform measured (solid)

and estimated (dash) by applying the technique to the two segments of the PAP

waveforms (see Figure (3.1)). See Table (3.2) for a complete quantitative summary of

the AP waveform estimation results.
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Figure 3.4 Beat-to-beat CO estimated (and once calibrated) by applying the technique to

the estimated AP waveforms (see Figure (3.2)) plotted against the gold standard reference

aortic flow probe CO measurements for each of the four swine datasets (see Table (3.1)).

The solid line in each plot is the identity line. See Table (3.3) for a complete quantitative

summary of the beat-to-beat proportional CO estimation results.
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Table 3.3 Quantitative summary of the beat-to-beat proportional cardiac output

estimation results in terms of root-mean-squared-normalized-error. The new technique

(see Figure (3.2)) also resulted in more accurate beat-to-beat proportional CO estimates

in the four swine datasets (see Figure (3.4)) than those obtained from alternative PAP

waveform analysis techniques. The root-mean-squared-normalized-errors are in units of

percent.

 

 

Arterial Pressure Animal

Waveform for Wrndkessel 1 2 3 4 Total

modelrng

Estimated AP

(New Technique) 11.8 12.3 15.5 10.5 12.9

FAP 16.6 14.8 17.7 19.6 17.2

RAP 39.0 25.6 22.6 48.6 33.9

Estimated AP

(Initial Technique) 44 7 37 8 28.0 37 l 36 3

Estimated AP

(GTF: FAP _) AP) 11.6 14.1 26.6 16.0 17.6

Estimated AP

(GTF: RAP—)AP) 20.0 25.0 19.9 26.0 22.8
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3.5 Discussions

The present study represents a follow-up to our initial efforts in developing a patient

and time specific technique for mathematically estimating the clinically more relevant AP

waveform from less invasively measured PAP waveforms distorted by wave reflections

[Swamy 2007]. In our initial study, we developed a technique to estimate the AP

waveform from two or more PAP waveforms by employing MBSI rather than using the

conventional generalized transfer function or any training data for that matter. In

particular, the technique models the measured waveforms as individual outputs of

coprime FIR channels driven by the common AP waveform input (see Figure (3.1)) and

then analyzes the differences in the measured outputs, while invoking Poiseuille’s law, so

as to estimate the FIRS through the standard eigenvector method and ultimately

reconstruct the common input via multi-channel least squares deconvolution. We applied

the technique to FAP and RAP waveforms measured from four swine during diverse

hemodynamic interventions, and our results showed superior agreement to

simultaneously measured AP waveforms than a generalized transfer firnction developed

on a subset of the swine data. The main contributions of the present study are in: 1)

introducing a new MBSI method to more accurately estimate the FIRs and therefore the

AP waveform; 2) proposing to estimate beat-to-beat proportional CO by fitting a lumped

parameter Windkessel model to the estimated AP waveform in which the wave distortion

should be greatly attenuated (see Figure (3.2)); and 3) testing the resulting new technique

for estimating both the AP waveform and beat-to-beat relative changes in CO, while

comparing it to several alternative techniques, based on our four previous swine datasets,
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which also included gold standard reference aortic flow probe CO measurements (see

Table (3.1)).

The basic idea of our new MBSI method is to represent the FIRS with more efficient

basis functions than the standard impulse basis functions assumed by the eigenvector

method. In this way, the number of parameters to be estimated will be reduced thereby

potentially resulting in a marked decrease in the precision component of the FIR

estimation error. We specifically chose damped Sinusoidal basis functions to compactly

represent the FIRS (see Equation (3.4)). This choice was made empirically by observing

that the estimated impulse responses relating the measured AP waveforms to each of the

PAP waveforms in one of the swine datasets generally appeared as damped sinusoids.

Thus, the bias component of the FIR estimation error may only increase modestly with

this choice of basis functions. For simplicity, we assumed that 1) the damping could be

represented with a single parameter whose values was set according to the estimated

channel order; 2) the frequencies of the sinusoids could take on only discrete values

according to the Fourier Series; and 3) each of the FIRS could be represented with the

same number of basis functions. Even with these simplifications, the complexity in the

least squares estimation of the parameters of the basis functions increases considerably

with the number of basis functions. Thus, to render a real-time technique (with a one

minute delay), the parameter estimation was designed to only be optimal for a single

basis function representation and sub-optimal for a multiple basis function representation.

We acknowledge that an orthogonal basis set could permit both optimal and practical

parameter estimation. However, it turned out that only one basis function was needed to

represent the FIRS in about three-quarters of the one-minute intervals in the swine
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datasets. As a result, only six parameters were generally estimated by the new method,

whereas ten parameters were, on average, estimated by the standard eigenvector method.

In addition to reducing the number of parameters to be estimated, the new method is also

advantageous in terms of accommodating larger channel orders (by simply redefining the

definition of an insignificant eigenvalue), which are more congruent with the estimated

impulse responses mentioned above. Such channel orders would result in large

estimation errors with the eigenvector method due to the limited frequency content of the

AP waveform.

Our new technique was able to reliably estimate the AP waveform from the FAP

and RAP waveforms in the four swine datasets with an overall total waveform RMSE of

3.5 mmHg (see Table (3.2) and Figure (3.3)). This error effectively represents a 59%

reduction in wave distortion in the measured PAP waveforms. As a result, the technique

was able to similarly reduce the RMSEs of SP and PP, whiCh are perhaps the two most

clinically significant parameters of the AP waveform. Significantly, the aforementioned

overall total AP waveform RMSE represents a 24% improvement with respect to our

initial technique and a 35% improvement with respect to a generalized transfer function

developed on a subset of the swine datasets. The former improvement is likely due to a

reduction in the FIR estimation error variance, while the latter improvement is

presumably a result of accounting for the changes in arterial tree properties induced by

the interventions as well as any inter-subj ect variability.

As a result of greatly attenuating the wave distortion, our new technique was also able

to reliably estimate beat-to-beat relative changes in CO in the four swine datasets with an

overall RMSNE of 12.9% (see Table (3.3) and Figure (3.4)). This result is consistent
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with a compelling, previous study in which beat-to-beat proportional stroke volume was

shown to be impressively estimated over a wide hemodynamic range by simply fitting the

Windkessel model to the AP waveform (measured specifically from the descending

thoracic aorta) [Bourgeois, 1976]. Significantly, the aforementioned overall beat-to-beat

CO RMSNE of our new technique represents an improvement of Z 25% with respect to

fitting the Windkessel model directly to each of the PAP waveforms and to the AP

waveforms estimated by our initial technique and the generalized transfer function.

Counter to intuition, the beat-to-beat proportional CO estimates obtained from the AP

waveforms estimated by our initial technique were the least accurate. As mentioned

above, this result is mainly due to outliers in the AP waveform estimation. These outliers

may have been caused by an insufficient number of frequency components in the AP

waveform and have essentially been eliminated by the new technique, which required

fewer parameters for estimation.

As an interesting aside, the beat-to-beat CO RMSNE obtained by direct fitting of the

Windkessel model to the FAP waveforms is nearly half that obtained by direct model

fitting to the RAP waveforms (see Table (3.3)). This result may be due to the

surprisingly accurate SEI estimates obtained from the FAP waveforms (see Table (3.2))

and their relatively consistent morphology throughout the interventions. It is unclear

whether these features hold. in human FAP waveforms. On the other hand, the beat-to-

beat CO RMSNE obtained from the RAP waveforms was reduced by nearly a third afier

the generalized transfer function was applied to these waveforms (see Table (3.3)). To

our knowledge, this result of the generalized transfer firnction has not been shown before.

However, application of the generalized transfer function to the FAP waveforms did not

64



further reduce the already relatively low beat-to-beat CO RMSNE (see Table (3.3))

perhaps because the AP waveform estimates here were not as accurate (see Table (3.2)).

Our new technique (as well as our initial technique) was inspired by the recent efforts

of McCombie et al. who we believe were the first to apply MBSI in the field of

hemodynamic monitoring [McCombie 2005]. These investigators specifically proposed a

technique to estimate the morphology of the common aortic flow waveform input from

multiple PAP waveform outputs and showed its feasibility in a single swine. Figure (3.5)

illustrates the Single input, multi-output model upon which their technique was based. As

can be seen from this model, the channels coupling the aortic flow waveform to each

PAP waveform include common dynamics, namely the channel relating the aortic flow

waveform to the AP waveform, and are therefore not coprime. As a result, these

investigators had to develop additional signal processing to estimate the common

channel, which resulted in a considerably more complicated technique than standard

MBSI. Moreover, since their technique does not provide the scale factor of the estimated

input, it cannot be utilized to monitor relative changes in CO. In contrast, our new

technique first estimates the AP waveform input in which the coprime channel

assumption is more tenable and the arbitrary input scale factor is conveniently determined

through Poiseuille’s law and then estimates beat-to-beat relative changes in CO by fitting

the Windkessel model to the estimated waveform in which the wave distortion is greatly

attenuated. We note that it is also possible to estimate the aortic flow waveform by

applying the governing Windkessel model differential equation to the AP waveform

estimated by our technique. However, the aortic flow waveform estimated in this manner
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did not closely agree with the reference aortic flow probe waveform in our swine datasets

perhaps due to noise arising from implementing the required derivative operation.

Our new technique is related to a previous technique that we have developed for

automated and less invasive monitoring of average relative changes in CO by long time

interval analysis of a single PAP waveform [Zhenwei 2006]. The basic idea of this

technique is to circumvent the highly complex wave reflections by effectively applying

the Windkessel model to the waveform variations occurring over time scales greater than

a cardiac cycle in which the distributed arterial tree appears to be lumped [Noordergraf

1978]. In contrast, the technique introduced herein aims to essentially remove the wave

reflections through MBSI and then apply the Windkessel model. The advantage of this

technique is in providing AP waveform estimates as well as beat-to-beat rather than

average proportional CO estimates. The obvious disadvantage is in requiring more than

one waveform for analysis. (Note that the CO RMSNE that we reported earlier for our

previous technique in [Zhenwei 2006] is not directly comparable to the results of this

study, as the swine evaluation data utilized herein represent only a subset of the data

employed in our earlier study.)

The new technique introduced herein permits both automated and less invasive

central hemodynamic monitoring through estimation of the AP waveform and beat-to-

beat relative changes in CO by mathematical analysis of multiple PAP waveforms. In

addition, the technique may possibly prove useful for local hemodynamic monitoring at

each PAP waveform measurement site through the corresponding estimated FIR. The

technique could potentially be applied to non-invasive PAP waveforms measured from

patients with various cardiovascular diseases (e. g., hypertension, heart failure, shock) in a

66



number of different settings (e. g., emergency rooms, intensive care units, homes) as well

as to invasive PAP waveforms obtained from critically ill patients. While only one PAP

catheter is commonly used in the latter patients, a subset of these patients is also

instrumented with the more risky pulmonary artery catheter for operator-required

measurements of average CO via the standard thermodilution method [Marino 1998].

For this patient population in particular, the technique as applied to two invasive PAP

waveforms (e. g., measured from the routinely cannulated femoral and radial arteries

[Marino 1998]) may be preferred. Future investigations of the technique with respect to

invasive and non-invasive PAP waveforms measured from humans are needed to

eventually realize these potential applications.
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Figure 3.5 Single input, multi-output model of the arterial tree providing the basis for a

previous MBSI technique to estimate the shape of the aortic flow waveform from

multiple PAP waveforms. In contrast to the model of Figure (3.1), the common input to

be estimated is the aortic flow waveform (q(t)). However, the channels coupling the

aortic flow waveform input to the PAP waveform outputs are not coprime, as they share

the channel relating the aortic flow waveform to the AP waveform. Since common

charmel dynamics cannot be estimated with MBSI methods [Xu 1995], the previous

technique required additional complicated signal processing. In addition, this technique

did not provide the scale factor of the aortic flow waveform and therefore cannot be

utilized to monitor relative changes in CO.

68



CHAPTER 4

CONTINUOUS LEFT VENTRICULAR EJECTION FRACTION MONITORING

BY AORTIC PRESSURE WAVEFORM ANALYSIS

4.1 Introduction

Left ventricular ejection fraction (EF) — the ratio of the stroke volume (SV) to the

end-diastolic volume (EDV) of the left ventricle — is widely recognized as one of the

most clinically significant indices of cardiac function. This recognition is largely due to

its ability to predict mortality in patients with heart failure and coronary artery disease

(see, e.g., [Bosch 2005, Curtis 2003] and references therein) as well as to readily

distinguish between systolic and diastolic dysfunction [Katz 1992]. Serial changes in EF

at rest and transient rate of changes in EF during exercise may offer additional prognostic

value [Cintron 1993, Sridhara 1993].

The standard clinical method for measuring EF is through imaging the left ventricular

volume via echocardiography, radionuclide techniques, contrast angiography, ultra-fast

computed tomography, or magnetic resonance imaging [Rumberger 1997]. Each of these

imaging methods offers certain advantages over the others in terms of, for example, level

of accuracy, invasiveness, and radiation exposure. However, they generally share the

major disadvantages of requiring a trained operator to make each individual measurement

and expensive capital equipment. While sonomicrometry, the conductance catheter, and

the non-imaging nuclear monitor are currently available for automated and continuous

monitoring of lefi ventricular volume [Burkhoff 1990, Dellegrottaglie 2002, Rushmer

1956] these alternative methods suffer from significant practical disadvantages (e. g., high
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level of invasiveness) that have prevented them from supplanting or even complementing

imaging methods in clinical practice.

Thus, there is a need for a practical method capable of automated and continuous EF

monitoring. Indeed, this need may be regarded as urgent due to the rapidly growing

population with chronic heart disease [Ansari 2001] together with the projected shortage

of clinical staff.

Based on our previous work in the field of hemodynamic monitoring [Lu 2006,

Mukkamala 2006, Swamy 2007, Swamy 2008] our hypothesis is that EF may be

accurately estimated by deciphering the information embedded in the temporal variations

of blood pressure waveforms. In this way, EF may be continuously monitored in various

inpatient settings with routinely employed invasive catheter systems [Marino 1998] as

well as automatically measured in outpatient clinics and at home with commercial non-

invasive transducers (see, e.g., the Finometer and Portapres, Finapres Medical Systems,

The Netherlands and the T-Line Blood Pressure Monitoring System, Tensys Medical,

San Diego, CA). As an initial step towards this ultimate end point, in this study, we

specifically developed a technique to continuously estimate beat-to-beat EF as well as

relative changes in beat-to-beat EDV and other important hemodynamic variables by

model-based analysis of the aortic pressure waveform. We then performed experiments

in six dogs in order to evaluate the technique with respect to intermittent reference EF

and EDV measurements via standard trans-thoracic two-dimensional echocardiography

during various pharmacological and volume interventions. Our results demonstrate,

perhaps for the first time, the feasibility of estimating EF from only blood pressure.

Preliminary versions of this work have been reported [Mukkamala 2006, Swamy 2007].
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4.2 Model Based Analysis Technique

Our model-based analysis technique is generally implemented in three steps. First,

the aortic pressure waveform is represented with a circulatory model. Second, the model

is fitted to each beat of the waveform so as to estimate its parameters to within a constant

scale factor. Third, the proportional parameter estimates are utilized to compute beat-to-

beat absolute EF by cancellation of the scale factor as well as monitor other beat-to-beat

proportional hemodynamic variables. We describe the details of these steps below while

stating the underlying assumptions and justify the major assumptions in the Discussion

section.

First, the measured and sampled aortic pressure waveform is assumed to be well

represented with the lumped parameter model of the left ventricle (1v), aortic valve, and

arteries (a) shown in Fig. 1a in electrical analog form. Here, voltage is analogous to

pressure (P), charge, to volume (V), and current, to flow. rate. In particular, the left

ventricle is represented with the variable capacitance or compliance (C) model whose

elastance (E = 1/C) oscillates over time (t) so as to drive the flow of blood [Sagawa 1977,

Suga 1974]. The aortic valve is modeled by an ideal diode (i.e., Plv (t) = Pa(t)) during the

systolic ejection interval wherein the valve is opened) thereby making aortic stenosis a

contraindication of the technique. The arteries are represented with a two-parameter

Windkessel model accounting for the compliance of the large arteries and the resistance

(R) of the small arteries [Noordergraaf 1978]. In addition to compliance, the left

ventricle (and large arteries) is parameterized with a zero-pressure (0) filling volume (i.e.,

unstressed volume). Finally, Ca is assumed to be constant over a monitoring period
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(e.g., days to weeks), whereas the remaining parameters are assumed to be constant only

over each cardiac cycle.

Thus, the pressure-volume relationship of the left ventricle model and the differential

equation governing the entire model during the systolic ejection interval are given as

follows:

P (t) o_ a__
\/IV (I)— Elv(t) + VIV’ tbs < t S tes' (4.1)

CI F’a(t)_ cl Pa(t)
t+ t t s t , 4.2

—d—tE—I—_v(t)= CadtP+a() bs < es ( )

Ra

where the term Pa(t)/ Elv(t)is the stressed left ventricular volume during the systolic

ejection interval, and the subscripts bs and es respectively stand for the beginning and

end of the systolic ejection interval. Integrating Equation (4.2) from tbs to some time t

within the systolic ejection interval, while dividing by the constant scale factor Ca , yields

the following equation:

F’ (t ) F’ (t) 1 t
a bS _ a _

CaEIVItbs) CaEMt) Pa“) Paubsh: I P8W“ the <t5tes' (4-3)

tbs

 

where t = Race is the Windkessel time constant. Note that the left-hand side of this

equation is proportional to the volume of blood that has been ejected by the left ventricle

by time t in the systolic ejection interval, while the right-hand side is proportional to the

volume ofblood that has entered the arteries by this time. Thus, whent = tes , both sides

of the equation indicate proportional SV or SV / Ca . Further note that the term

Pa (t)/ CaE|v(t) here is proportional to the stressed volume that is remaining in the left
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ventricle at time t in the systolic ejection interval. Thus, the terms Pa(tbsll CaEIv (tbs)

and Pa(tes)/CaElv(tes) respectively represent proportional stressed left ventricular

volume at the beginning time of the systolic ejection interval wherein ejection has yet to

commence (i.e., proportional stressed EDV or stressed EDV/Ca) and at the end time of

the systolic ejection interval wherein ejection has ceased (i.e., proportional stressed left

ventricular end-systolic volume (ESV) or stressed ESV / Ca ).

Second, to fit the model to the samples of the aortic pressure waveform so as to

estimate its parameters, Equation (4.3) is discretized by replacing t with nT, where T is

the sampling period and n denotes discrete—time, and approximating the integral via the

trapezoidal formula as follows:

Pa(nbsT) _ Pa(nT)

CaElv(anT) CaElv(“T)

n

Pa(nT) — Pa(anT) +L 2 (Pa(kT) + Pa ((k —1)T)), nbs < n S n .
es

211<.—.an+1

 

(4.4)

Here, T and Pa(nT)for nbs SnSneS (i.e., aortic pressure samples within the

systolic ejection interval) are known, while I (i.e., proportional total peripheral

resistance) and CaElv(nT) for ”be S n S nes (i.e., proportional left ventricular elastance

samples within the systolic ejection interval) are unknown. It is evident that Equation

(4.4) does not provide a basis for uniquely determining these unknown proportional

model parameters and thus the proportional stressed left ventricular volume terms, as it

represents an underdetermined set of equations with rteS ’nbs equations and

nes - nbs + 2unknowns (where nes — nbs z 80 for T = 4 msec).

73



To arrive at a solvable (i.e., overdetermined) set of equations, a parametric function is

assumed to succinctly characterize the temporal evolution of Elv(t)over each cardiac

cycle. In particular, the following, previously proposed parametric raised cosine function

is employed:

r

 
Emin + Emax ; Emin {1- COS(2%)}, tbl S t < tbl + T5 (4.5)

S

27tt(t - (tbl + T8 ))

TS

  
EN“) =t Emin + EmaXZ—Emin {1+ COS{ J}, tbl + T8 S t < tbl +1'5TS

Emin! tbl +1.5Ts St

 l
where Emin and Emax respectively represent the minimum and maximum ventricular

elastances over a cardiac cycle; TS indicates the time duration to reach Emax from

Emax ; and the subscript bi stands for the beginning of the isovolumic contraction phase

(see solid line in lower panel of Figure (4.1b)) [Heldt, 2002]. Substitution of Equation

(4.5) into Equation (4.4) reduces the number of unknowns to five, namely 1, CaEmax ,

CaEmins TS , and CaEIv (nbsT) (i.e., proportional left ventricular elastance at the

beginning time of the systolic ejection interval). Further, CaEmin is assumed to be equal

to 0.05- CaEmax so as to reduce the number of unknowns to four (see gray font in Figure

(4.1b)). The four unknowns are then estimated for each beat in two steps.

In the initial step, 1' is estimated from the diastolic interval of the aortic pressure

waveform (i.e., from the time of the minimum of the first difference of the waveform

between the time of the peak systolic pressure and the time of the local minimum

immediately preceding the subsequent peak systolic pressure (defined as nesT of the
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beat) to this latter time (defined as nbsT of the next beat)). In particular, since the

lumped parameter model predicts that aortic pressure should decay like a pure

exponential during the diastolic interval, 1 is estimated by least squares fitting of an

exponential to this interval (see Figure (4.1b)). Optimal fitting is achieved in closed-form

after log transformation of aortic pressure. Since the time constants governing

Ra changes are significantly longer than the cardiac cycle duration [Berger 1989], the t

estimates are then averaged over ten successive cardiac cycles to attenuate any noise.
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Figure 4.1 Model-based analysis technique for monitoring EF. (a) Lurnped parameter

model of the left ventricle and arteries upon which the technique is based. (b) Elv (t) 'in

the model is assumed to vary over time according to a parametric raised cosine function

(solid line in the lower panel).
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In the subsequent step, the estimated 1: is substituted into Equation (4.4), and the

remaining unknowns in this equation, CaEmax ,Ts , and CaElv(nbsT), are estimated by

least squares fitting of the equation to the systolic ejection interval of the aortic pressure

waveform (i.e., the remainder of the beat). Optimal fitting is achieved by numerical

search over the following physiologic range of the three unknowns: l) 0 (physical

minimum value) < CaEmax S 15 (3 times the nominal value reported in the literature

[20], [24], [25], [26]; 2) % QT s T8 3 % QT, where the QT interval is obtained from a

simultaneous ECG measurement (with the underlying assumption that the electrical QT

interval is a rough approximation of the mechanical time interval between the start of the

upstroke to the end of the downstroke of Elv(t); and 3) CaElvltbi +TS—Teje) S

CaElv(nbsT) S CaElv(tbi +Ts), where Teje is the duration of the systolic ejection

interval (to ensure that the end time of the systolic ejection interval does not occur prior

to the time of Emax ). With the estimated CaEmax , Ts , and CaElv (nbsT), CaE.v(nT) is

computed for nbs S n S nes through Equation (4.5).

Third, beat-to-beat absolute EF is computed from the resulting CaElv(nT) for

nbs S n S nes and the measured P(t) by cancellation of the Ca scale factor as follows:

SV Pa(nbsT) _ Pa(nesT)

Ca = CaElv (nbsT) CfiaEIV (nesT)

(46)

EDV Pa(nbsT) +Y§

Ca CaEIVInbsT) Ca

  

EF  

 
 

where V19 /Ca (i.e., proportional unstressed left ventricular volume), in contrast to the

other terms in the right-hand side of this equation, is neither estimated nor measured but
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rather assumed to take on a nominal value (see below). Note that the term

Pa("esT)/CaElv(nesT) (i.e., proportional stressed ESV) should correspond to the

minimum value of Pa(nT) / CaEIV(nT)over nbs S n S nes (i.e., proportional stressed left

ventricular volume samples within the systolic ejection interval). However, such

correspondence may not always hold due to imperfect identification of the end time of

the systolic ejection interval (or, equivalently, the beginning time of the diastolic

interval). In these instances, Pa (nesT)/ CaElv (nesT) in Equation (4.6) is replaced with

the minimum value of Pa(nT) / CaElv (nT) over nbs S n S "as-

Note that by-products of the above three steps are beat-to-beat proportional estimates

of EDV, SV, cardiac output (CO = HR-SV, where HR is heart rate), Ra, and Emax

(which is known to be a relatively specific index of ventricular contractility [Sagawa

1977, Suga 1974]. Thus, relative changes in these important hemodynamic variables

may be monitored as well.

4.3 Materials and Methods

Experimental Procedures

To evaluate the model-based analysis technique, experiments were performed in

six normal adult beagles (10-15 kg). All experimental procedures were reviewed and

approved by the MSU All-University Committee on Animal Use and Care.

In one dog, a sterile surgical procedure was employed for implanting chronic

recording transducers as follows. General anesthesia was induced with an intravenous

injection of propofol (2.2 — 6.6 mg/kg) and maintained with inhaled isoflorane (1.5 —

2.5%), and mechanical ventilation was instituted. A left lateral thorocotomy was
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performed. An ultrasonic flow probe was placed around the ascending aorta for gold

standard reference SV and CO (Transonic Systems, Ithaca, NY), while a tygon catheter

was placed in the left atrial appendage for unrelated purposes. The chest was evacuated

and closed in layers, with the cable and catheter tunneled subcutaneously and exteriorized

between the scapulae. The dog was then allowed ten days for recovery.

The chronically instrumented dog and the remaining five dogs were then studied

as follows. General anesthesia was induced and maintained as described above but

mechanical ventilation was not employed. A micromanometer-tipped catheter was

inserted into a femoral artery and positioned under fluoroscopic guidance in the

descending thoracic aorta (see below) for the aortic pressure waveform (Millar

Instruments, Houston, TX). A similar catheter was also placed in the opposite femoral

artery of half the dogs for future studies. A catheter was inserted into a cephalic vein for

drug and isotonic fluid administration, and surface electrodes were placed for two frontal

ECG leads. All of the analog transducer outputs were interfaced to a personal computer

through an A/D conversion system (DataQ Instruments, Akron, OH). The cardiovascular

measurements were then recorded in each dog at a sampling rate of 400-1000 Hz over the

course of 50—170 minutes during a subset of the following interventions to alter EF and

other hemodynamic variables: infusions of dobutamine, esmolol, verapamil,

phenylephrine, nitroprusside, and volume as well as progressive hemorrhage. Various

infusion rates were employed followed by brief recovery periods. During the recording

session, trans-thoracic two-dimensional echocardiography (GE Vivid 7, Horton, Norway)

was intermittently used for four-chamber left apical imaging in order to calculate

reference EF and EDV. (This single plane method was shown to be nearly equivalent to

79



a biplane method in terms of measuring absolute EF and relative changes in EDV and

ESV [Sutton, 1998].) A 5-10 beat cine echocardiographic recording at > 90 flames/sec

was obtained at a time for the chronically instrumented dog, whereas 5-10 beat cine

echocardiographic recordings at the same frame rate were obtained in triplicate for the

five acutely studied dogs.

Data Analysis

The model-based analysis technique was applied off-line to the aortic pressure

waveforms resampled to 250 Hz with the QT interval automatically detected from the

surface ECGS using a previously introduced. wavelet-based method [Maetinez 2004] and

v.8 / Ca set to the nominal canine value of 15 mmHg as prescribed in [Suga 1974,

Bourgeois 1976]. The resulting beat-to-beat EF and proportional EDV and Emax

estimates were then averaged over multiple beats for evaluation against the reference

measurements and known drug effects (see below).

Reference EDV and ESV, and thus EF, were established by manually tracing the

endocardial border of the single plane images, excluding papillary muscles, at end.-

diastole and end-systole and then applying Simpson’s rule [Schiller 1991]. This method

was performed for two beats of each cine echocardiographic recording, and the resulting

values were then averaged over the two beats. For the five acutely studied dogs, the

values were further averaged over each set of triplicate cine echocardiographic

recordings. Thus, in these dogs, the reference EF and EDV represent six beat averages.

For the chronically instrumented dog, the reference echocardiographic values were

validated in part by noting a tight correspondence between the echocardiographic SV and

the gold standard aortic flow probe SV (p = 0.92).
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To compare the average proportional EDV estimates with the corresponding absolute

reference values, the estimates were first scaled to have the same mean as the reference

values in each dog. The average EF and average calibrated EDV estimates were then

evaluated against their corresponding reference values through 1) standard Bland-Altrnan

analysis for a comprehensive illustration of the estimation errors as a function of the

reference values (rather than the average of the estimated and reference values) and an

indication of the bias [1 and precision o of the estimation errors [Bland 1986] and 2) the

root-mean-square of the estimation errors (RMSE=\/u2+02) for a simple scalar

metric indicating the overall error size. For the chronically instrumented dog, the

resulting beat—to-beat proportional CO estimates were likewise calibrated and then

compared to the corresponding absolute reference aortic flow probe values through the

RMSNE (i.e., RMS of the estimation errors normalized (N) by the reference values), as

CO errors are customarily reported in percent [Crtichley 1999]. Finally, the average

proportional Emax estimates were qualitatively evaluated in terms of whether they

changed in the physiologically expected manner in response to the positive inotrope

dobutamine and the negative inotrope esmolol. (Note that veraparnil acted more like a

vasodilator in our study.)

4.4 Results

Figure (4.2) illustrates exemplary segments of the aortic pressure waveform measured

from one of the dogs during baseline, dobutamine, and volume infusion conditions. Note

that the aortic pressure waveform consistently exhibited a smooth upstroke during the

systolic ejection interval and an exponential decay during the diastolic interval despite
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large variations in EF and mean aortic pressure (MAP). This result generally held for the

entirety of the waveform as well as for the waveforms of the remaining five dogs. Thus,

the lumped parameter model of Figure (4.1a), which accounts for smooth dynamics, was

representative of the measured aortic pressure waveforms.

The Table and Figure (4.3) summarize the results of applying the model-based

analysis technique to the measured aortic pressure waveforms. In particular, the Table

includes the hemodynamic range and average EF and calibrated EDV RMSEs for each

dog, while Figure (4.3) illustrates Bland-Altman plots of all of the average EF and

calibrated EDV errors for the six dogs. As can be seen, the employed interventions

imposed a wide spectrum of hemodynamic conditions but did not result in a state of

severe systolic dysfirnction. The average EF RMSE was 5.6% over all the dogs and was

generally consistent in each dog, deviating most in dog 1 with a value of 8.5%. Further,

the average EF RMSE showed only a small bias component of ~1%. While the average

EF errors did show a negative correlation with the corresponding reference

echocardiographic EF values (p = -0.61), removal of the few large errors in the very high

reference EF range (> ~80%; see below) substantially reduced this correlation. The

average calibrated EDV RMSE was 4.1 ml over all the dogs and was likewise generally

consistent in each dog, except for dog 1 with a value of 8.6 ml. The average calibrated

EDV RMSE has no bias component due merely to the calibration step. Further, the

average calibrated EDV errors were uncorrelated with the corresponding reference

echocardiographic EDV values (p = 0.06).

Figure (4.4) illustrates the results from all six dogs in terms of a plot of the average

EF estimates versus the corresponding reference echocardiographic values. (Note that an
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analogous plot of the calibrated EDV results may misleadingly reveal strong correlation

simply due the calibration step.) Figures (4.5) and (4.6) illustrate the results from dogs 2

and 5 in terms of trends in the EF, calibrated EDV, and CaEmax estimates (dark lines) as

a function of time, along with the corresponding intermittent reference echocardiographic

values (gray circles) and the employed interventions (underlines). These figures not only

further reveal the correspondence between the model-based analysis technique and

echocardiography but also demonstrate the advantage of the new technique in providing

continuous hemodynamic monitoring. In addition, consistent with expectation, CaEmax

increased during dobutamine and decreased during esmolol.
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Figure 4.2 Exemplary segments of the aortic pressure waveform measured from the

descending thoracic aorta in dog 2 during baseline, dobutamine, and volume infusion

conditions.
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Table 4.1 Summary of the hemodynamic range and results of the model-based analysis

technique for each dog. EF is left ventricular ejection fraction; EDV, left ventricular end-

diastolic volume; HR, heart rate; MAP, mean aortic pressure; and RMSE, root-mean-

squared-error. The BF and EDV ranges were established with the reference

echocardiographic measurements.

 

 

Dog Number of EF EDV MAP EF EDV

Comparis Range Range Range RMSE RMSE

ons [%] [ml] [mmHg] [%] [ml]

1 7 53 - 90 28 - 46 67 - 156 8.5 8.6

2 9 33-84 17-29 60-94 6.1 1.9

3 10 56-74 21 -25 58—118 4.1 4.5

4 1O 52 - 69 18 - 23 42 - 82 3.4 4.3

5 17 37-74 10-15 36-116 5.5 1.4

6 9 43-74 13-18 53-128 5.8 3.3

Total 62 33 - 90 10 - 46 36 - 156 5.6 4.1
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Figure 4.3 Results for all six dogs in terms of Bland-Altman plots of the average EF and

average calibrated EDV errors as a fiinction of the corresponding reference
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Figure 4.5 Results for dog 2 in terms of the trends in the EF, calibrated EDV, and

CaEmax estimates (dark lines) as a function of time, along with the corresponding

intermittent reference echocardiographic values (gray circles) and the employed

interventions (underlines).
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Finally, the beat-to-beat calibrated CO RMSNE was 10.0% for dog 1. This RMSNE

had no bias component again because of the calibration step.

4.5 Discussions

In summary, we have developed a novel technique to estimate EF by model-based

analysis of the aortic pressure waveform (see Figure (4.1)). First, the aortic pressure

waveform is represented with a lumped parameter model comprising a three-parameter

variable elastance model of the left ventricle connected via a one-way, non-viscous valve

to a Windkessel model of the arteries accounting for Ra and the nearly constant Ca.

Then, this circulatory model is fitted to each beat of the waveform so as to estimate its

lumped parameters to within a scale factor equal to Ca- Finally, these proportional

parameter estimates along with a nominal value for v.8 / C8 are utilized to compute beat-

to-beat absolute EF by cancellation of the Ca scale factor. In this way, in contrast to

conventional imaging methods, EF may be continuously monitored without making any

assumptions about the left ventricular geometry. In addition, with the proportional

parameter estimates, relative changes in EDV, SV, CO, Ra, and Emax may also be

monitored on a beat-to-beat basis. Note that the traditional method for determining

Emax , in particular, is much more cumbersome, requiring simultaneous measurements of

left ventricular pressure and volume during alterations to the preload and/or afterload

[Sagawa 1977, Suga 1974]. To evaluate the technique, we measured aortic pressure

waveforms, intermittent average reference EF and EDV via standard echocardiography,

and other cardiovascular variables from six dogs during various pharmacological and

volume interventions (see Figure (4.2)). Our results showed overall RMSES in average
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EF and average calibrated EDV of 5.6% and 4.1 ml, respectively, as well as reliable

estimation of relative changes in average Emax and beat-to-beat CO (see Table (4.1) and

Figures (4.3)-(4.6)). This study is notable in that it may be the first to demonstrate the

feasibility of estimating EF from only blood pressure.

Assumptions ofthe Model-Based Analysis Technique

Our model-based analysis technique is based on four major assumptions. We

defend each of these assumptions below using known physiology and previous

experimental findings.

Assumption 1: lumped parameter model representation of the aortic pressure

waveform. It is well known that the arteries are not simply a lumped system but rather a

complicated distributed system with impedance mismatches throughout due to vessel

tapering, bifurcations, and caliber changes. As a result, peripheral artery pressure

waveforms are heavily corrupted by wave reflections and generally require a distributed

model for their representation. However, aortic pressure waveforms are less complicated

by wave reflections due to destructive interference and attenuation of the reflected waves

reaching the aorta [Noordergraaf 1978] as well as significant time delays between

forward and backward waves in the aorta [Albaladejo 2001]. Thus, aortic pressure

waveforms may be more amenable to a lumped parameter model representation. Indeed,

consistent with the prediction of the lumped parameter model utilized herein (see Figure

(4.1a)), Bourgeois et al. showed that aortic pressure waveforms measured Specifically

from the descending thoracic aorta exhibit pure exponential diastolic decays over a wide

hemodynamic range [Bourgeois 1974]. We therefore placed the aortic catheter in the
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descending thoracic aorta in this study, and the resulting aortic pressure waveforms

generally confirmed their finding (see Figure (4.2)).

Assumption 2: constant arterial compliance. To estimate EF and relative changes in

other hemodynamic variables including EDV and CO, the assumption is precisely that

C8 is constant over a monitoring period (e.g., days to weeks) in a given subject. Note

that this assumption is relaxed in terms of estimating just EF, as Ca must be invariant

only within each cardiac cycle (see Equation (4.6)). Indeed, it is well known that

Ca decreases gradually over the course of years in a subject (e.g., [Hallock 1937]).

However, previous studies have indicated that Ca tends to decrease with increasing

arterial pressure [Hallock 1937, Li 1994]. If this inverse relationship were strongly

present in the dogs studied herein, EF would be significantly and consistently

underestimated, while EDV would be grossly overestimated at high arterial pressures and

underestimated at low arterial pressures. However, the EF error bias was small (see

Figure (4.3)), and the EDV error was only mildly correlated with MAP (p = 0.28). Thus,

Ca may have been sufficiently constant in our study even though MAP was varied over

a wide range (see Table (4.1)), which is consistent with previous studies including those

by Bourgeois et a1. [Bourgeois 1974, Bourgeois 1976] (see below) and us [Lu 2006,

R.Mukkamala 2006, Swamy 2008].

Assumption 3: three parameter raised cosine function representation of left

‘ ventricular elastance during the systolic ejection interval. In a surprising but compelling

study, Senzaki et al. showed that experimentally measured Elv (t), normalized both in

amplitude and time, were remarkably consistent in 87 patients despite extremely wide

variations in their ventricular states (see discrete values in the lower panel of Figure
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(4.1b)) [Senzaki 1996]. Heldt et al. then showed that these normalized data could be well

fitted, especially during the systolic ejection interval (i.e., the higher elastance range), by

a raised cosine function with three unknown parameters, Emin: Emax, and TS (see

Figure (4.1b) and Equation (4.5)) [Heldt 2002]. Further, Emin may be simply

approximated as 0.05-Emax as suggested by the data of Senzaki et al (see Figure (4.3) in

[Senzaki 1996]). Thus, Elv (1) during the systolic ejection interval may indeed be well

represented using a raised cosine function with three unknown parameters, Emax: Ts,

and Elv(nbsT)- Note that independent estimation of (proportional) Emin here would

likely be unreliable anyhow, as it would essentially amount to an extrapolation. That is,

Emin is not directly “seen” by aortic pressure, as the aortic valve is closed during

diastole. Further note that attempts to represent Elv(t) with a Gaussian, trapezoidal,

exponential or sinusoidal function (see [Guarini 1998]) and/or allow the ratio of the time

period of the downstroke of Elv(t) to T$ to vary (rather than be fixed to 0.5 as assumed in

Equation (4.5)) did not improve our EF estimation results. Finally, it should be

emphasized that, while the assumption here constrains the shape of the left ventricular

elastance function, its amplitude and width are allowed to vary in order to account for any

changes that may occur in cardiac functioning.

Assumption 4: nominal value for proportional unstressed left ventricular volume. It

is generally appreciated that v.8 is usually much smaller than EDV. Thus, in many

subjects including the healthy dogs studied herein, v.8 / Ca may indeed be set to a

nominal value or even neglected (i.e., no calibration) without substantially sacrificing the
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EF estimation accuracy. In fact, varying VIE), / Ca from 10 to 20 mmHg in this study only

altered the EF RMSE by 2%. Alternatively, V's / Ca may be determined by obtaining an

independent measurement of EF via imaging and then finding the value of v.8 / Ca that

equalizes the EF estimated by aortic pressure waveform analysis to the independent EF

measurement (i.e., single calibration). This alternative approach would be preferred in

subjects with cardiac dilatation. Further, for these subjects, large changes in the EF

estimated by aortic pressure waveform analysis with the determined V13 / Ca may, in

turn, be utilized as a cue to re-image the heart (i.e., multiple calibrations). Finally, note

that it is possible that the ratio of SV to stressed EDV (i.e., V18 / C8 = 0) could prove to

be a valuable indicator of left ventricular function.

Potential Sources ofError

Any violation to the four above assumptions certainly represents a source of the

errors reported herein. Another source of the errors is likely imperfect reference

echocardiographic measurements due to, for example, individual variations in the trans-

thoracic imaging window [Rumberger 1997], inaccuracies in endocardial contour

definition [Hof 1998], and violation to the underlying ventricular geometry assumptions

[Nosir 1996]. Indeed, we suspect that the relatively large EF errors at reference EF

values > ~80% (see Fig. 3) were a result of the ventricular geometry assumptions of

echocardiography breaking down at the very small ESVs. In addition, we surmise that

the EF and EDV RMSEs were largest for dog 1 (see Table (4.1)), because the reference

values were established by averaging over fewer beats than the other dogs (see above).

On the other hand, we do not believe that measurement inaccuracies in the aortic pressure
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waveforms were a major source of the errors, as high fidelity, micromanometer-tipped

catheters were employed.

Computational Speed

Our implementation of the model-based analysis technique included a brute force

search over a physiologic range to estimate the three parameters of the raised cosine left

ventricular elastance function during the systolic ejection interval (see above). However,

the technique may be implemented much more efficiently by exploiting the fact that the

parameters usually do not change much from one beat to the next. For example, we

estimated the parameters for one beat using the brute force search and then estimated the

parameters for subsequent beats using a local simplex method with the parameter

estimates of the previous beat specified as its initial seed. We actually implemented the

brute force search for every tenth beat rather than for just the initial beat in order to

attenuate any propagation of error due to, for example, ventricular ectopy. This

implementation produced almost the same average EF estimates as the original brute

force search and was ten times faster than real time when executed on MATLAB with a

standard PC.

Previous Related Techniques

We find no techniques in the literature aiming to likewise monitor EF from only

blood pressure waveforms. However, we are aware of two closely related, previous

techniques.

Bourgeois et al. developed a technique to monitor relative changes in beat-to-beat SV

by analysis of the aortic pressure waveform using a two-parameter Windkessel model of

the arteries (see Figure (4.1a)) [Bourgeois 1976]. Their technique specifically involved
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estimating SV to within a constant l/Ca scale factor for each beat using the right-hand

side of Eq. (3) with t = tes and 1 determined by fitting an exponential to each diastolic

interval of the waveform. These investigators applied their technique to canine aortic

pressure waveforms measured from the descending thoracic aorta wherein pure

exponential diastolic decays are visually apparent (see above). As a result, they were

able to show excellent agreement between their technique and the gold standard aortic

flow probe over a wide hemodynamic range. Our study builds upon the seminal work of

Bourgeois et a1. by modeling the left ventricle in addition to the arteries so as to also

permit the monitoring of beat-to-beat absolute EF and proportional EDV and Emax-

Guarini, Urzua, and co-workers developed a technique to monitor beat-to-beat

ventricular and arterial parameters based on analysis of the radial artery pressure

waveform [Guarini 1998, Urzua 1998]. Their technique specifically involved

representing the waveform with a parametric variable elastance model of the left ventricle

in series with a third-order lumped parameter model of the arteries and then estimating

the model parameters for each beat using a two-step procedure conceptually similar to

one utilized herein. However, since these investigators desired the absolute values of the

model parameters rather than EF, their technique also necessitated an operator-dependent

thermodilution CO measurement. Thus, the technique is not automated and continuous.

Moreover, unlike the aortic pressure waveform, the radial artery pressure waveform is

heavily corrupted by wave reflections and is therefore generally unsuitable for

representation with lumped parameter models, particularly those of low order (see

above). Indeed, these investigators did not experimentally verify their technique against

reference methods.
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Potential Applications and Future Directions

Our model-based analysis technique may potentially be utilized in lieu of, or as a

complement to, imaging methods so as to permit continuous monitoring of EF as well as

other important proportional hemodynamic variables in subjects without aortic stenosis

and instrumented with an aortic catheter. Examples of such subjects include animals in

the context of research and patients undergoing cardiac catheterization or with intra-

aortic balloon pumps. To eventually realize these applications, we plan to conduct

fiirther testing of the technique in both animals and humans, especially with severe

systolic dysfunction.

In addition, we intend to adapt the technique to peripheral artery pressure waveforms,

which, in contrast to aortic pressure waveforms, are routinely available in clinical

practice via invasive catheters and can be measured non-invasively (see above).

However, as we have discussed, analysis of peripheral artery pressure waveforms is

technically more difficult due to significant distortion by wave reflections. To overcome

this difficulty, we propose to first mathematically reconstruct the aortic pressure

waveform from measured peripheral artery pressure waveforms using our multi-channel

blind system identification technique [Swamy 2007, Swamy 2008] or possibly even the

conventional generalized transfer function (e. g., [Chen 1997, Soderstrom 2002]) and then

apply the model-based analysis technique to the reconstructed waveform.

Our hope is that these future directions ultimately lead to widespread automated and

continuous EF monitoring by arterial pressure waveform analysis in various inpatients

and outpatients as well as heart failure patients at home so as to help meet the increasing

patient monitoring demands.
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CHAPTER 5

QUANTIFICATION OF FORWARD AND BACKWARD ARTERIAL WAVES BY

MODEL BASED ANALYSIS OF AORTIC AND FEMORAL ARTERY

PRESSURE WAVEFORM

5.1 Introduction

It is well appreciated that arterial pressure and flow waveforms represent the sum and

difference of forward and backward traveling waves in the arterial tree. The relative

magnitude and timing of the backward or reflected wave likely play an important role in

health and disease. For example, a wave reflected at the periphery that reaches the

ascending aorta during systole would increase the cardiac afterload and thereby reduce

the stroke volume. On the other hand, a reflected wave that [arrives at the ascending aorta

during diastole would enhance myocardial perfusion. It is therefore important to be able

to quantify the wave reflections in order to obtain an improved understanding of

circulatory pathophysiology and potentially develop more effective indices for

monitoring cardiovascular health.

To this end, several techniques have been proposed to separate measured arterial

waveforms into their forward and backward wave components. Westerhof et a1.

[Westerhof, 1972] modeled the arterial tree as a uniform frictionless tube in which the

forward and backward pressure waves are equal to the product of the corresponding flow

waves and the characteristic impedance of the tube. These investigators obtained

simultaneous measurements of aortic pressure and flow waveforms in order to first

determine the tube characteristic impedance from the high frequency regime of the
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arterial input impedance (i.e., the ratio of the Fourier Transforms of the aortic pressure

and flow waveforms) and then calculate the forward and backward waves from the

measured waveforms and characteristic impedance by adding pressure waves and

subtracting flow waves. Lee et al. [Lee, 1993] developed a more accurate technique to

determine the tube characteristic impedance by measuring the arterial pressure and flow

response to a single cardiac contraction using vagal stimulation. They were then able to

likewise calculate the forward and backward waves. Burattini et a1. [Burratini, 1989]

employed a similar tube model but also represented its terminal load with a three-

parameter Windkessel model. These researchers then estimated the model parameters by

nonlinear least squares fitting between the aortic pressure waveform predicted from the

model in response to a measured aortic flow waveform input and a simultaneously

measured aortic pressure waveform. They were then able to calculate the forward and

backward waves from the estimated model parameters.

As described above, the initial techniques all involved the measurement of an arterial

flow waveform, which either requires surgery to place a flow probe around a blood vessel

or an expert operator to stabilize an ultrasound transducer. Thus, the applicability of

these techniques is limited. Recently, Westerhof et a1. [Westerhof, 2006] proposed a

technique to compute the forward and backward waves from aortic pressure alone by

approximating the aortic flow waveform with a triangular pulse. However, this

approximation could introduce significant error in the calculated waves for at least some

pathophysiologic conditions.

In this study, we developed a technique to quantify forward and backward arterial

waves by model-based analysis of only aortic and femoral artery pressure waveforms,
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without making any assumptions about flow morphology. Furthermore, in contrast to

most previous related efforts, we validated the forward and backward waves through a set

of canine experiments by specifically showing that the waves accurately predicted a third

arterial pressure waveform measurement and changed in the physiologically expected

manner to interventions of known effect. Finally, we calculated the forward and

backward waves during nine different hemodynamic conditions.

5.2 Technique

Our model-based analysis technique for quantifying forward and backward arterial

waves is conceptually similar to that of Burattini et al. but with three major differences.

Firstly, the model input and output are measured ascending aortic and femoral artery

pressure waveforms instead of ascending aortic flow and pressure waveforms. Secondly, .

the tube load is effectively represented with a pole-zero model whose order is data-

determined rather than being set to first-order a priori. Thirdly, the model parameters are

determined using linear least squares estimation, which affords a convenient and reliable

closed-form solution, in contrast to nonlinear least squares estimation, which requires a

difficult and often imperfect numerical search.
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Figure 5.1 Arterial tube model upon which our technique is based.
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More specifically, the technique is based on the arterial model of Figure (5.1) in

which a distributed uniform tube is terminated by a lumped load. The tube represents the

arterial conduit starting from the ascending aorta and passing through a femoral artery.

Similar to previous studies, this tube is frictionless and therefore has constant

characteristic impedance (ZC ). As a result, mean pressure is the same along the tube.

The terminal load represents the arterial bed distal to the femoral artery. This load has a

frequency-dependent impedance (Z(F), where F is frequency).

According to this model, the forward and backward waves at the terminal load

(pf (t) and pb(t)) are related as follows:

prI) = WWW“). (5-1)

where ® is the convolution operation, and P(t) is the inverse Fourier Transform of

P(F) = (Z(F) — Zc ) / (Z(F) + Zc ) , which is the frequency-dependent reflection coefficient

at the terminal load. The ascending aortic and femoral artery pressure waveforms

(pasc(t)and pfem(t)) may then be expressed as the sum of appropriately shifted forward

and backward waves as follows:

pasc(t) = pf(t + T1+ T2)+ F(t)® pf(t-T1—T2) (5.2)

pfemm = pf(t+T2)+F(t)®pf(t—T2), (5.3)

where T, is the measured time for the arterial wave to travel between the ascending aorta

and the femoral artery, while T2 is the unknown time for the arterial wave to travel

between the femoral artery and the terminal load. Substitution of Equation (5.3) into

Equation (5.2) gives the following equation:
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[’fem(t + T1)‘ pasc (I? =

ylt)

1“(t — 2T2 ) ® Spasc (t) — pfem (t — T1ll+ 6(t),

fit)

 

(5.4)

 

where the term e(t) has been included to account for measurement and/or modeling error.

The unknown P(t) and T2 are calculated in Equation (5.4) from the measured “input”

x(t) and “output” y(t) by least squares minimization of e(t). This optimization problem is

specifically solved using standard autoregressive exogenous input (ARX) identification

and the MDL criterion 0. In this way, P(t—2 T2) is efficiently represented with a pole-zero

model whose unknown parameters are estimated with the linear least squares solution and

whose unknown order and delay are determined from the measured waveforms. Then,

the computed P(t) and T2 are substituted into Equations (5.2) and (5.3), and pf (t) is

calculated fi'om the measured pasc(t),pfem(t) and T1 by way of deconvolution. Rather

than applying conventional deconvolution to Equations (5.2) and (5.3) to arrive at two

versions of pf(t), a single, optimal pf(t) is specifically obtained from these equations

using multi-channel linear least squares deconvolution as described in [Abed-Meriam,

1997]

Note that, with the calculated pf (t) and pb(t) along with T2, the arterial pressure

waveform at any point along the tube (pa(t,T)) of the model of Figure (5.1) may be

computed using the following equation:

pa(t,T) = pf(t+T+T2)+pb(t —T—T2), (5.5)

where T is the measured time for the arterial wave to travel between the point of interest

and the femoral artery. Similarly, the arterial flow waveform at any point along the tube
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(qa(t,T)) may be computed to within a proportionality constant equal to1/Zc through

the following equation:

1

However, because of branching between the ascending aorta and the femoral artery,

the proportional qa(t,T) calculated at a given point in the tube does not have any

correspondence to anatomy, except at the point of the femoral artery (i.e., T = 0). Here,

the waveform specifically represents relative changes in femoral artery flow. Finally,

note that, since F(t) and T2 are computed from zero-mean x(t) and y(t) in Equation (5 .4),

the mean value of proportional qa(t,T) may not be reliably determined. (However, the

mean value of pa(t,T) should always be accurately determined, as it is effectively set to

the mean value of the measured arterial pressure.)

5.3 Methods

A. Experimental Procedures

Experiments were performed in three normal adult beagles (10-12 kg). Each dog was

studied under a protocol approved by the MSU All-University Committee on Animal Use

and Care as follows. General anesthesia was induced with an intravenous injection of

propofol (2.2-6.6 mg/kg) and maintained with inhaled isoflorane (1.5-2.5%). A

micromanometer-tipped catheter (Millar Instruments, Houston, TX) was inserted into a

either femoral or carotid artery and positioned via fluoroscopic guidance for

measurement of the ascending aortic pressure waveform. A similar catheter was placed

for measurement of the femoral artery pressure waveform. A catheter was introduced
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into a cephalic vein for drug and isotonic fluid administration, and electrodes were placed

for measurement of surface ECGS. In the third dog, a micromanometer—tipped catheter

was also inserted into a femoral artery and placed for measurement of the abdominal

aortic pressure waveform (pabd(t)) as confirmed with fluoroscopy. In addition, a bipolar

electrode catheter was advanced through the jugular vein of this dog into the right atrium

via fluoroscopic guidance for atrial pacing using an external pulse generator (Medtronic,

Minneapolis, MN). The analog transducer outputs were interfaced to a personal

computer through an A/D conversion system (DataQ Instruments, Akron, OH). The

cardiovascular measurements were then recorded at a sampling frequency of 1000 Hz

during a baseline condition and following infusions of dobutamine and esmolol in the

first dog; infusions of volume and hemorrhage in the second dog; and infusions of

phenylephrine, nitroglycerin, and verapamil as well as atrial pacing in the third dog.

B. Data Analysis

The technique was applied to all lS-second segments of the ascending aortic and

femoral artery pressure waveforms resampled to 250 Hz, with T1 measured for each

segment as the time delay between the onsets of upstroke of the two waveforms. Then,

similar to the study of Burattini et al.[Burratini, 1989], the abdominal aortic pressure

waveform was predicted (pa(t,T)) for the 15-second segments from the calculated

quantities, with T measured for each segment as the time delay between the onsets of

upstroke of the measured abdominal aortic and femoral artery pressure waveforms. The

predicted waveform was quantitatively evaluated with respect to the measured reference

waveform through the root-mean-squared-error (RMSE). For comparison, the ascending

aortic and femoral artery pressure waveforms were likewise evaluated with respect to the
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measured abdominal aortic pressure waveform. In addition, the computed magnitude

spectrum of the reflection coefficient (|F(F)|) and proportional femoral artery peak-to-

peak flow were assessed during the phenylephrine and nitroglycerin conditions and

baseline, dobutamine, esmolol, vaSOpressin and HIS-pacing conditions respectively.

Finally, the computed forward and backward waves at the ascending aorta

(pa (1 + T1 + T2 ) and pa (1 - T1 — T2 )) were examined during the baseline, phenylephrine

and nitroglycerin conditions.

5.4 Results

The overall RMSE of the abdominal aortic pressure waveform predicted by the

forward and backward waves, which were calculated from the ascending aortic and

femoral artery pressure waveforms, was 2.4 mmHg. For comparison, the overall RMSE

of the ascending aortic and femoral artery pressure waveforms with respect to the

measured abdominal aortic pressure waveform was 5.9 and 4.5 mmHg, respectively.

Figure (5.2) illustrates an example of the measured ascending aortic and femoral artery

pressure waveform segments and the predicted abdominal aortic pressure waveform

segment, along with the measured reference abdominal aortic pressure waveform

segment.

Figure (5.3) illustrates the magnitude spectrum of the reflection coefficient calculated

during the baseline, phenylephrine, and nitroglycerin conditions. Consistent with known

physiology, this spectrum was amplified under the intense vasoconstrictor

(phenylephrine) and blunted under the strong vasodilator (nitroglycerin). Figure (5.4)

shows the reference (solid line) and predicted (dashed line) peak-peak femoral artery

flow (solid line) for one of the dogs.
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Figure 5.2 Example segments of the (a) measured ascending aortic pressure waveform,

(b) measured femoral artery pressure waveform, and (c) predicted abdominal aortic

pressure waveform (dash), along with the measured abdominal aortic pressure waveform

(solid).
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Figure 5.3 Computed magnitude spectrum of the reflection coefficient.
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Figure 5.4 Predicted proportional femoral artery flow.
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Figure 5.5 Measured ascending aortic and femoral artery pressure waveforms and

calculated zero-mean forward and backward waves at the ascending aorta.
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Figure (5.5) illustrates the measured ascending aortic and femoral artery pressure

waveforms and the calculated zero-mean forward and backward waves at the ascending

aorta during each of the nine experimental conditions. The magnitude of the backward

wave relative to the forward wave appeared smallest during nitroglycerin and dobutamine

and largest during phenylephrine and hemorrhage, while the time delay between the two

waves was smallest during atrial pacing and about the same during the remaining eight

conditions. Overall, the backward waves generally appeared like a time shifted and

scaled version of the forward waves. This result is congruent with those of Lee et al.

who, as described above, computed the waves using aortic pressure and flow

measurements during vagal stimulation [Lee, 1993].

5.5 Discussions

In a companion study [Swamy, 2008], we modeled an arterial conduit with a tube

model terminated by a first-order load and then utilized a numerical search to estimate the

model parameters from only a femoral artery pressure waveform by exploiting the fact

that aortic flow is zero during diastole. While the forward and backward arterial waves

could be calculated from the estimated parameters, the main aim of that study was to

estimate the aortic pressure waveform from a peripheral artery pressure waveform via an

adaptive transfer function. In contrast, in this study, we aimed to accurately calculate the

forward and backward waves by analysis of aortic and femoral artery pressure

waveforms. By including both waveforms in the analysis, a higher order terminal load

could be conveniently and accurately calculated in closed-form. We verified the forward

and backward waves computed here by showing that these waves accurately predicted a

third arterial pressure waveform measurement and changed in the physiologically
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expected manner to interventions of known effect. We then examined the forward and

backward waves during various hemodynamic conditions. In the future, we plan to

continue the evaluation of the technique by quantitatively comparing the predicted

proportional femoral artery flow with a corresponding independent reference

measurement. With such future successful testing, the technique may ultimately be used

to enhance the understanding of arterial wave phenomena in health and disease.
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CHAPTER 6

ADAPTIVE TRANSFER FUNCTION FOR DERIVING THE AORTIC PRESSURE

WAVEFORM FROM A PERIPHERAL ARTERY PRESSURE WAVEFORM

6.1 Introduction

Since its introduction by O’Rourke and co-workers in 1993 [Karamanoglu, 1993], the

generalized transfer function has received attention for providing a convenient and safe

means for monitoring central aortic pressure (AP) by mathematical transformation of a

peripheral artery pressure (PAP) waveform. The basic premise of the transformation is

that a single, universal transfer function exists that can faithfully relate the PAP

waveform to the AP waveform of all individuals for all time. However, the transfer

function linking PAP to AP would ideally be able to adapt to the inter-subject and

temporal variability of the arterial tree due to, for example, age-related arterial

compliance differences, baro- and thermo-regulatory modulation of peripheral resistance

in response to physiologic perturbations, progression of peripheral vascular disease, and

therapeutic administration of vasoactive agents. To this end, Sugimachi et a1. [Sugimachi

2001] and Westerhof et al. [Westerhof 2007] have previously proposed a technique to

partially adapt the transfer function by defining it through an arterial tube model with a

personalized value for a model parameter reflecting the wave propagation delay time and

population averages for the remaining parameters. We recently introduced perhaps the

first entirely adaptive technique for mathematically deriving the AP waveform by
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exploiting the commonality in multiple PAP waveforms through the powerful multi-

channel blind system identification approach [Swamy 2007, Swamy 2008]. However, the

requirement of more than one PAP waveform is a practical disadvantage of this

technique.

In this study, we conceived a fully adaptive technique for deriving the AP waveform

from only one PAP waveform. The new technique similarly defines the transfer function

relating PAP to AP through a parallel tube model of pressure and flow in the arterial tree

but then estimates all of its parameters by capitalizing on pre-knowledge of aortic flow

with the model. The parameters are periodically re-estimated for each subject so as to

derive an adaptive transfer function (ATF). We performed canine experiments in order to

evaluate the ATF technique as well as compare it to previous transfer function techniques

over a broad array of controlled and significant hemodynamic perturbations. A

preliminary version of this study has been reported in abbreviated form [Swamy 2008].

6.2 Methods

Adaptive Transfer Function (A TF) Technique

Figure (6.1) illustrates the ATF technique. As shown in the top panel of this figure,

the arterial tree is modeled as a parallel arrangement of m uniform tubes in series with

terminal loads. The ith tube represents the path between the aorta and the ith peripheral

artery. Each tube is frictionless and therefore has constant characteristic impedance

(Zci = ,/(Ii ’91) , where Ii and Ci are the tube’s total inertance and compliance) and

allows waves to propagate with constant velocity and delay time from one end of the tube

to the other (Tdi = ,/(Iici) ). Thus, consistent with Poiseulle’s law, mean pressure is
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identical throughout the tubes. The ith terminal load signifies the arterial bed distal to the

ith peripheral artery. Like the studies of Sugimachi et a1 [Sugimachi 2001] and

Westerhof et al. [Westerhof 2007], each terminal load has a frequency-dependent

impedance (Zi(co), where 00 is frequency) characterized by two parameters that are

dependent on the peripheral resistance and compliance (Al and Bi , where 0 < Ai < Bi)

as well as the characteristic impedance of the corresponding tube (i.e., Zci)- Thus, the

wave reflection coefficient at each terminal load is also frequency-dependent

(17(0)) = (Zi((D) - ZOO/(21(0)) + ZCI) ).
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Figure 6.1 Adaptive transfer function (ATF) technique for deriving the aortic pressure

(AP) waveform from a peripheral artery pressure (PAP) waveform.
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Generally speaking, pressure and flow waves propagate along each tube without

distortion and are proportional to each other through the tube characteristic impedance.

Waves traveling in the forward direction (left to right) are reflected in the opposite or

backward direction at the terminal load with relative magnitude and phase based on the

frequency according to the wave reflection coefficient. The actual pressure (or flow)

waveform at any point along a tube may therefore be expressed as the sum (or difference)

of the forward and backward traveling pressure (or flow) waves appropriately shifted in

_ time based on the distance between the point and the tube end. In this way, the model is

able to mimic the well-known progressive distortion that experimental arterial pressure

and flow waveforms undergo with increasing distance from the aorta. Further, from

these expressions, a transfer function relating the arterial pressure or flow waveform at

any point along a tube to the arterial pressure or flow waveform at any other point on the

tube may be established in terms of the model parameters. '

More specifically, according to the arterial tree model, a PAP waveform (ppi(t)) is

related to the AP waveform (pa(t)) through the transfer function shown in the middle

panel of Figure (6.1) (“pressure—>pressure transfer function”) with unknown model

parameters (see detailed derivation in [Stergiopulos 1998]). Thus, this transfer function

may be applied to a measured PAP waveform so as to derive the AP waveform, if its

parameters, namely Tdi , Ai and Bi , could be determined.

To this end, Tdi the wave propagation delay time between the aorta and peripheral

artery measurement site, is first measured non-invasively (see Discussion section). Only

one Tdi measurement is made for a subject during a monitoring period (e. g., on order of

days), as arterial inertance and compliance may not greatly vary over this time period.
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Thereafter, the three parameters are determined from each 15 sec segment of the

measured PAP waveform and initial Tdi value by exploiting the fact that aortic flow is

negligible during each diastolic interval due to aortic valve closure (in absence of aortic

regurgitation). Thus, as indicated in the top panel of Figure (6.1), the arterial flow at each

tube entrance in the arterial tree model (“arterial entry flow”) may likewise be small

during these time intervals. In particular, according to this model, the PAP waveform is

related to the arterial entry flow waveform to the corresponding peripheral artery (qai(t))

through the transfer function shown in the bottom panel of Figure (6.1) (“pressure—>flow

transfer function”) with the same unknown model parameters as the pressure—>pressure

transfer function. The common parameters are then estimated by finding the

pressure—>flow transfer function, which when applied to the PAP waveform segment,

minimizes the energy (sum-of-squares) of the arterial entry flow waveform (scaled by

qai(t)) output over its diastolic intervals. In other words, as indicated in the bottom

panel of Figure (6.1), the parameters are selected so as to map the PAP waveform to an

arterial entry flow of zero during diastole. The detailed steps of the technique are given

as follows.

First, since the mean or DC value of pa(t) is already known (i.e., approximated as

the corresponding value of ppi(t)due to Poiseuille’s law), the DC value of ppi(t) is

removed in order to focus the mapping on the unknown zero—mean or AC components.

Then, AC qai(t) is calculated to within a 1/Zci scale factor by applying the

pressure—>flow transfer function to AC ppi(t) for a set of Ai and Bi values over a

physiologic range with the Tdi value as measured. Next, the end of each diastolic
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interval in each candidate AC proportional qai(t) is determined by identifying the

minimum preceding the peak amplitude of a cardiac cycle, and the start of each

corresponding diastolic interval is approximated based on Malik’s formula [Malik 1996]

relating the cardiac cycle length to the systolic interval length. Then, the values of A] and

Bi are selected that provide the minimum variance of AC proportional qai(t) over its

diastolic intervals and yield physiologically reasonable pressure and flow waveforms

(i.e., AC proportional qai(t) exhibits an undershoot during diastole as typically seen in

experimental waveforms [McDonald 1974] and pa(t), computed as described below,

does not reveal double peaks). In the event that none of the Ai and Bi values in the set

result in physiologically reasonable waveforms, Tdi is successively incremented when

mean pressure decreases relative to the Tdi measurement period or decremented when

mean pressure increases relative to this period (as Tdi tends to have an inverse

relationship with mean pressure for significant changes [Gribbin 1976]) until the criterion

is satisfied. Finally, the pressure—>pressure transfer function, with the selected values

for Ai, Bi, and Tdi , is applied to ppi(t) (including its DC value) so as to derive pa (t).

(Note that the DC value of proportional qai(t) may be determined by shifting the

diastolic intervals of the AC waveform to zero amplitude.)

Data Collection

Data were collected from six healthy adult beagles (10-12 kg) under an experimental

protocol approved by the MSU All-University Committee on Animal Use and Care. For

each dog, general anesthesia was induced by an intravenous injection of propofol (2.2-6.6

mg/kg) and maintained with an inhaled mixture of oxygen and isoflorane (1.5-2.5%). A
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micromanometer-tipped catheter (Millar Instruments, Houston, TX) was placed in a

femoral artery for the PAP waveform for analysis. A similar catheter was inserted in the

opposite femoral artery or a carotid artery and positioned in the ascending aorta for the

reference AP waveform. A catheter was also placed in a cephalic vein for drug and

isotonic fluid administration, and electrodes were positioned for standard ECG

measurements. In the fifth dog, a bipolar electrode catheter (EP Technologies, Boston

Scientific, Sunnyvale, CA) was inserted into a jugular vein and advanced to the right

atrium for high rate pacing with an external pulse generator (Medtronic, Minneapolis,

MN). In the sixth dog, a quadrapolar ablation catheter (EP Technologies) was inserted

into a femoral vein and positioned to ablate the AV node and then apply bipolar electrical

stimulation to the His bundle as previously described [Sanders 2004] for low rate pacing

with the external pulse generator. (Additional instrumentation was also installed in the

fifth and sixth dogs to address different specific aims.) Placement of all central catheters

was accomplished using single-plane lateral projection fluoroscopic guidance. The

analog transducer outputs were interfaced to a personal computer (DataQ Instruments,

Akron, OH). The arterial pressure waveforms and ECG measurements were recorded at

a sampling rate of 1000 Hz during a baseline period and following infusions of

phenylephrine and nitroglycerin in the first dog; dobutamine and esmolol in the second

dog; norepinephrine and xylazine in the third dog; saline and progressive hemorrhage in

the fourth dog; verapamil and high rate pacing in the fifth dog; and vasopressin (prior to

AV node ablation) and low rate pacing in the sixth dog. Several infusion and pacing

rates were employed followed by recovery periods.

Data Analysis
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The ATF technique was applied off-line to approximately 300 min of recorded PAP

waveforms re-sampled to 250 Hz, with Tdi measured for each dog as the time interval

between the onsets of upstroke of the AP and PAP waveforms during the initial beats of

the baseline period. The resulting derived AP waveforms were lowpass filtered with a

cutoff frequency of 15 Hz as previously justified [Fetics 1999] and then quantitatively

evaluated against the (unfiltered) reference AP waveforms in terms of the sample-to-

sample (total waveform, TW), beat-to-beat systolic pressure (SP), and beat-to-beat pulse

pressure (PP) root-mean-squared-error (RMSE) values. The unprocessed PAP

waveforms were likewise assessed with respect to the reference AP waveforms after

time-aligning the two waveforms to eliminate error due merely to the wave propagation

delay. For further comparison, AP waveforms were also derived by an autoregressive

exogenous input-based generalized transfer function (GTFARX) technique [Fetics 1999]

(which was shown to be the most accurate amongst three generalized transfer function

techniques) and the tube model-based partially adaptive transfer function (PATFTUBE)

technique [Sugimachi 2001, Westerhof 2007] (i.e., the transfer function shown in the top

panel of Figure (6.1) with Tdi measured for each dog as described above and the same

values for the Ai and Bi parameters for all dogs). More specifically, the two previous

transfer functions were established by averaging over set of transfer functions computed

from each 15 sec segment of the PAP and AP waveforms of one dog and then applied to

the PAP waveforms of the remaining dogs (see Discussion section). The resulting

derived AP waveforms were then similarly lowpass filtered and evaluated. This

procedure was repeated for each dog in order to avoid any bias, and the results were

averaged.
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6.3 Results

Table (6.1) illustrates the AP and heart rate (HR) levels during each of the

experimental conditions. Table (6.2) shows the TW, SP, and PP RMSE values of the PAP

waveforms after time-alignment and the AP waveforms derived by the new ATF

technique as well as the previous GTFARX and PATFTUBE techniques for each condition

and overall. Figure (6.2) provides visual examples of the measured AP and PAP

waveform segments and the corresponding derived AP waveform segments during the

dobutamine and nitroglycerin conditions.

The AP and HR levels (meaniSD) varied widely over the different experimental

conditions. Mean arterial pressure (MAP) ranged from 62i3 to 134i15 mmHg, SP, from

7818 to 162i22 mmHg, PP, from 183:1 to 552t11 mmHg, and HR, from 73120 to 197i16

bpm.

In general, the PAP waveforms were significantly different from the reference AP

waveforms, especially in terms of SP and PP. The overall TW, SP, and PP RMSE values

of the time-aligned waveforms were 8.6, 16.9, and 19.9 mmHg, respectively. The level

of discrepancy between the unprocessed PAP and reference AP waveforms likewise

varied over the different experimental conditions. The RMSE values were by far the

smallest during the nitroglycerin condition (average of 2.7 mmHg) and largest during the

norepinephrine condition (average of 26.4 mmHg).

Table (6.1) illustrates the AP and heart rate (HR) levels during each of the

experimental conditions. Table (6.2) shows the TW, SP, and PP RMSE values of the

PAP waveforms after time-alignment and the AP waveforms derived by the new ATF

technique as well as the previous GTFARx and PATFTUBE techniques for each condition
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and overall. Figure (6.2) provides visual examples of the measured AP and PAP

waveform segments and the corresponding derived AP waveform segments during the

dobutamine and nitroglycerin conditions.
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Table 6.1 Aortic pressures (AP) and heart rate (HR) levels. Values are expressed as

mean-LSD. MAP is mean arterial pressure; SP, systolic pressure; and PP, pulse pressure.

 

 

Candle... [mfl @3191 Mme] [1.251.]

Baseline 88:20 104124 34:9 12717

Phenylephrine 132:14 158:19 49:9 98:9

Nitroglycerin 62:3 79:3 27:1 96:1

Dobutamine 89:2 1 16:3 51 :2 172:8

Esmolol 71 :3 85:3 24:0 1 13:1

Norepinephrine 134:15 162:22 55:1 1 117:13

Xylazine 65:8 78:8 25:1 1 00:10

Saline 98:1 119:1 45:1 137:1

Hemorrhage 66:5 80:5 25:1 105:4

Verapamil 74:10 90:1 1 33:3 115:10

High Rate Pacing 75:3 85:2 18:1 197:16

Vasopressin 94:1 5 108:16 28:3 103:4

Low Rate Pacing 73:7 95:5 42:6 73:20
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Table 6.2 Peripheral artery pressure (PAP) and derived AP waveform errors. ATF is

adaptive transfer fiinction; GTFARX, autoregressive exogenous input-based generalized

transfer function; PATFTUBE, tube model-based partially adaptive transfer function; TW,

total waveform (i.e., sample-to-sarnple); and RMSE, root-mean-squared-error.

 

Time Aligned PAP ATF errW PATFTUBE

Condition TW sP PP TW sP PP TW sP PP TW SP PP

RMSE[mmHg] RMSE [mmHg] RMSE[mmHg] RMSE[mmHg]

 

Baseline 10.3 20.0 21.8 6.3 10.2 8.8 5.1 5.9 4.9 5.4 8.5 7.1

Phenrfiepl‘” 10.6 19.8 22.6 3.3 4.8 4.4 5.4 6.5 6.1 7.9 4.7 4.2

Ni"°%'yce" 3.1 1.9 2.0 3.8 6.9 6.6 5.3 9.4 8.2 4.4 8.0 7.8

D°buéamin 7.7 12.5 16.7 5.2 3.0 3.0 8.2 12.8 15.9 6.6 5.3 7.7

Esmolol 5.0 11.0 11.3 2.0 0.7 1.4 2.8 2.2 3.2 2.4 3.6 2.3

””3323” 14.0 30.6 34.7 5.4 8.0 7.9 7.3 6.2 6.0 9.1 11.0 10.7

Xylazine 6.1 12.9 13.5 2.5 4.0 3.3 3.2 2.7 2.0 2.9 4.7 4.1

Saline 11.5 20.9 24.7 3.7 3.5 3.6 4.8 4.7 5.7 4.6 6.5 7.0

Hemorrhag

e

Verapamil 7.9 15.0 16.4 3.7 6.5 6.5 2.6 2.5 3.2 3.3 4.7 4.6

6.5 15.5 15.9 2.4 2.6 1.2 2.7 3.6 3.0 3.0 6.2 5.2

High Rate 7.6 13.3 21.2 4.0 2.7 4.3 2.6 2.6 4.7 3.8 6.0 6.5
Pacrng

V35°§ress' 6.9 13.7 16.6 3.7 3.4 5.5 3.6 3.0 2.4 2.7 4.0 4.6

“Willa“; 6.9 15.4 16.7 4.0 2.7 4.9 3.0 2.3 2.1 2.5 3.8 3.8
Paelng
 

Overall 8.6 16.9 19.9 4.1 5.3 5.3 4.8 6.2 6.9 5.1 6.5 6.5
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Figure 6.2 Example segments of the reference AP (solid), measured PAP (dot), and

derived AP (dash) waveforms by the new ATF technique and previous autoregressive

exogenous input-based generalized transfer function (GTFARX) and tube model-based

partially adaptive transfer function (PATFTUBE) techniques during the dobutamine and

nitroglycerin conditions.
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The AP and HR levels (meaniSD) varied widely over the different experimental

conditions. Mean arterial pressure (MAP) ranged from 622+:3 to 134i15 mmHg, SP, from

782t8 to 162:1:22 mmHg, PP, from 18i1 to 55511 mmHg, and HR, from 735:20 to l97d:16

bpm.

In general, the PAP waveforms were significantly different from the reference AP

waveforms, especially in terms of SP and PP. The overall TW, SP, and PP RMSE values

of the time-aligned waveforms were 8.6, 16.9, and 19.9 mmHg, respectively. The level

of discrepancy between the unprocessed PAP and reference AP waveforms likewise

varied over the different experimental conditions. The RMSE values were by far the

smallest during the nitroglycerin condition (average of 2.7 mmHg) and largest during the

norepinephrine condition (average of 26.4 mmHg).

All three techniques were able to derive the AP waveform with considerably greater

accuracy than merely time aligning the PAP waveform over all the experimental

conditions. Each of the techniques also afforded improved accuracy over the

unprocessed PAP waveforms for each condition, except for nitroglycerin in which the

measured PAP and AP waveforms were already in close agreement and dobutamine for

the GTFARX technique only. The ATF technique was the most accurate over all the

conditions. The overall TW, SP, and PP RMSE values of the AP waveforms derived by

the new technique were 4.1, 5.3, and 5.3 mmHg, respectively. The corresponding RMSE

values for the GTFARX and PATFTUBE techniques were similar to each other and, on

average, 5.0, 6.4, and 6.7 mmHg. The ATF technique achieved its most significant

improvements in accuracy over the two previous techniques during the conditions of

dobutamine (average reduction in TW, SP, and PP RMSE values by 5.7 mmHg), saline
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(2.0 mmHg), hemorrhage (1.9 mmHg), phenylephrine (1.6 mmHg), nitroglycerin (1.4

mmHg), esmolol (1.4 mmHg), and norepinephrine (1.3 mmHg). However, the GTFARX

and PATFTUBE techniques did derive the AP waveform with similarly greater accuracy

than the new technique during the conditions of baseline (average reduction in TW, SP,

and PP RMSE values by 2.3 mmHg) and verapamil (2.1 mmHg).

6.4 Discussion

Pressure waveforms simultaneously measured from the central aorta and a peripheral

artery show striking differences in both morphology and level (see, e.g., Figure (6.2)).

Most importantly from a clinical point of view, peripherally measured SP and PP are

generally larger than their centrally measured counterparts. This counter-intuitive

amplification of the pressure waveform with increasing distance from the central aorta

arises from wave reflections in the arterial tree. It is therefore the pressure in the central

aorta that truly indicates cardiac afterload and myocardial perfusion. Perhaps, as a

consequence, previous studies have shown that centrally measured arterial pressure can

offer superior clinical information to more distally measured pressure [Safar 2009,

Wadell 2001]. Even so, the PAP waveform is much more commonly measured in

practice due to the relative ease and safety of its measurement.

In this study, we developed a technique to mathematically transform a PAP waveform

so as to obtain the AP waveform conveniently and safely. The technique was inspired by

the following investigators: l) Stergiopulos et a1. [Stergiopulos 1998] who proposed a

physical basis for the transfer fimction relating PAP to AP through an arterial tube model;

2) Sugimachi et a1. [Sugimachi, 2001] and Westerhof et al. [Westerhof 2007] who

employed the tube model to establish a partially adaptive transfer function for deriving
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the AP waveform, and 3) Cohen who thought to compute the total aortic flow waveform

from a PAP waveform by finding a black-box, rather than physical model-based, transfer

function that maps the PAP waveform to zero during diastole (personal communication in

2000 and now described in [Cohen 2008] as a result of this study). Our technique

similarly defines the transfer function relating PAP to AP through a tube model and then

estimates the unknown model parameters fi'om the PAP waveform as well as a one-time

non-invasive measurement of the wave propagation delay time between the aorta and

peripheral artery measurement site by likewise exploiting the fact that aortic flow is

negligible during diastole (see Figure (6.1)). In this way, in contrast to the conventional

generalized transfer function and perhaps all other previous techniques for

mathematically deriving the AP waveform, the new technique is able to fully adapt to the

inter-subject and temporal variability of the arterial tree with only a single PAP

waveform available for analysis.

To demonstrate the feasibility of the new ATF technique, we measured a PAP

waveform from a femoral artery and the reference AP waveform from the ascending

aorta of six healthy beagles of similar size during twelve different hemodynamic

interventions (see Table (6.1)). Thus, unlike most previous related efforts, we were able

to assess the efficacy of the technique over a diverse set of significant perturbations of

known effect. On the other hand, our measurements did not allow us to investigate the

technique in the context of a diverse population of subjects.

Our results (see Table (6.2) and Figure (6.2)) showed that the average of the overall

TW, SP, and PP RMSE values of the AP waveforms derived by the ATF technique was

4.9 mmHg. This error effectively amounted to a 68% reduction in wave distortion in the
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PAP waveforms. The corresponding RMSE values for the GTFARX and PATFTUBE

techniques were each about 22% higher than the new technique, despite the fact that both

of these previous techniques had the unfair advantage of being developed with or

“seeing” the entire reference AP waveform from one of the six homogenous dogs (i.e., a

baseline condition and two of the interventions). Note that, even under the most

favorable scenario for the GTFARX and PATFTUBE techniques in which the reference AP

waveforms from all six dogs were utilized for both development and testing, the RMSE

values for these techniques still remained larger than the ATF technique by about 7% on

average (results not shown). While the previous techniques would indeed be developed

in practice with data from many more subjects (e.g., hundreds), they would be applied to

an even greater number of subjects (e.g., all patients). In other words, the previous

techniques would be developed with data from a much smaller fraction of the subject

population in practice than the one-sixth proportion employed herein. We therefore

believe that the new technique will show even greater than 22% improvement in accuracy

over the previous techniques in actual practice.

Not surprisingly, the ATP technique was able to derive the AP waveform with

appreciably better accuracy than the GTFARX and PATFTUBE techniques specifically

during the conditions wherein the arterial tree was directly perturbed. The one exception

was the vasopressin condition, which resulted in a relatively small hemodynamic change

(see Table (6.1)). However, the new technique actually offered by far its greatest

improvement in accuracy over the two previous techniques during the dobutamine

condition. Evidently, intense vasodilation occurred during this positive cardiac inotropic

condition, as centrally measured PP and HR markedly increased relative to the baseline
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condition without a change in MAP (see Table (6.1)). For the remaining conditions in

which the heart was primarily influenced, the three techniques showed similar overall

accuracy, with the ATF technique affording notably greater accuracy during the esmolol

condition but particularly less accuracy during the veraparnil condition. The new

technique was also equally less accurate than the previous techniques during the baseline

condition. It is unclear why the ATF technique was not as effective during these two

conditions.

The parallel tube model upon which the ATF technique is based (see top panel of

Figure (6.1)) neglects arterial tapering and stiffening, as the dominant wave reflection

sites appear to be at the arterial terminations due to their high resistance [McDonald

1974, Westerhof 1972]. The model also ignores the inertance of the distal arterial bed,

since it is well appreciated that inertial work is small compared to viscous work in the

high-pressure systemic arterial tree. Nevertheless, such modeling inaccuracies as well as

imperfect parameter estimation represent the sources of error of the technique. To

determine the relative contributions of the modeling and parameter estimation errors to

the derived AP waveform error, we first found the “actual” parameter values using the

measured PAP and AP waveforms. We specifically established the actual parameter

values for each individual segment of analysis by finding the pressure—>pressure transfer

function (see middle panel of Figure (6.1)), which when applied to the PAP waveform

segment, best fits the measured AP waveform segment in the least squares sense. We

then applied the transfer function with the actual parameter values to the PAP waveform

segment so as to derive the AP waveform segment. The TW RMSE value of the derived

AP waveforms therefore represents the lower bound for the ATF technique due only to its
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modeling error. Table (6.3) shows the resulting TW RMSE values, along with the SP and

PP RMSE values (which do not represent lower bounds), for each condition and overall.

The overall TW RMSE value was 3.0 mmHg, which indicates that most (73%) of the

corresponding value for the ATF technique is due to modeling error. Finally, as a related

comment, note that the GTFARX and PATFTUBE techniques derived the AP waveform with

similar average overall RMSE values (see Table (6.2)) perhaps as a result of the

modeling error offsetting the partial individualization of the latter tube model-based

technique.

For this demonstration study, we obtained the single measurement of the wave

propagation delay time between the aorta and the peripheral artery measurement site

(Tdi) for each dog using a few beats of the measured AP and PAP waveforms during the

baseline period. In practice, Tdi may be measured non-invasively by, for example,

placing a handheld tonometer on the carotid artery and determining the time between the

onsets of upstroke of the waveform that it measures and the recorded PAP waveform

[Sugimachi 2001]. For continuous monitoring applications, such an operator-required

measurement would likely need to be made periodically (e.g., every few days).

Alternatively, Tdii may be continuously approximated through, for example, a

simultaneously recorded ECG or phonocardiogram.

It is claimed that the generalized transfer function is justified when applied to a PAP

waveform from the upper limb but not the lower limb [O’Rourke 2008]. Despite this

claim, we measured the PAP waveform from a femoral artery in this study due to

experimental convenience, the observation that this waveform appears significantly

different from the AP waveform (see Figure (6.2) and Table (6.2)), and the fact that this
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peripheral artery is commonly cannulated in clinical practice. Our study may therefore

be amongst, if not, the first to demonstrate the feasibility of mathematically transforming

a PAP waveform from a lower limb to the AP waveform. In principle, due to its ability

to adapt to arterial tree changes, our technique should be applicable to pressure

waveforms obtained from any peripheral artery including the readily accessible radial

artery (but excluding distal arteries in the coronary circulation for which arterial entry

flow is significant during diastole). However, while we believe that our technique will

also reveal improved accuracy over the generalized transfer function when applied to a

PAP waveform from the upper limb, we do acknowledge the possibility that the overall

difference in accuracy may not be as significant.
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Table 6.3 Derived AP waveform errors using actual tube model parameter values. TW

RMSE values represent lower bound for the ATP technique.

 

 

 

 

Condition TWRMSE [:r:H 1 PP

Baseline 4.1 5.8 3.8

Phenylephrine 2.9 3.0 2.2

Nitroglycerin 2.9 3.6 3.0

Dobutamine 4.8 2.6 3.5

Esmolol 1.6 2.1 0.9

Norepinephrine 3.7 2.6 2.2

Xylazine 1.9 2.9 1.4

Volume 3.5 1.5 1.3

Hemorrhage 2.1 3.6 1.7

Verapamil 2.7 2.2 1.3

High Rate Pacing 3.1 3.9 5.3

Vasopressin 1.5 1.4 1.5

Low Rate Pacing 1.8 1.2 2.1

Total 3.0 3.2 2.9
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In summary, we have developed perhaps the first fully adaptive technique for

mathematically deriving the AP waveform from one PAP waveform and have

demonstrated its feasibility in animals over a wide range of physiologic conditions. In

the fiiture, it would be worthwhile to explore refinements to the parallel tube model upon

which the technique is based (e.g., the inclusion of additional parameters to more

accurately represent the terminal loads) as well as continuous approximation of the wave

propagation delay time from simultaneously recorded non-invasive measurements. In

addition, validation of the technique as applied to invasive and non-invasive PAP

waveforms from the upper and lower limbs of humans is a must. If such follow-up

studies prove successful, then the technique could be employed for more precise arterial

pressure monitoring and titration of therapy in inpatient settings wherein PAP catheters

are inserted and other clinical environments such as outpatient clinics and home in

conjunction with non-invasive PAP devices. Finally, subsequent combination of the

technique with an AP waveform analysis technique that we have also recently developed

[Swamy 2009] may ultimately permit continuous monitoring of cardiac output and left

ventricular ejection fraction in addition to AP from just a single PAP waveform.
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CHAPTER 7

CONCLUSIONS

In this dissertation we have presented several techniques to estimate clinically

relevant hemodynamic parameters from routinely measured blood pressure waveforms.

In chapter 2 we introduced a technique to estimate the clinically more relevant

central aortic pressure waveform from multiple, less invasively measured peripheral

artery pressure waveforms distorted by wave reflections. The technique is based on

multi—channel blind system identification in which two or more measured outputs

(peripheral artery pressure waveforms) of a single input, multi-output system (arterial

tree) are mathematically analyzed so as to reconstruct the common unobserved input

(central aortic pressure waveform) to within an arbitrary scale factor. Consequently, in

contrast to previous, related efforts, the technique does not utilize a generalized transfer

function or any training data and is therefore entirely patient and time specific. We have

evaluated the technique with respect to four swine in which peripheral artery pressure

waveforms from the femoral and radial arteries and a reference central aortic pressure

waveform were simultaneously measured during diverse hemodynamic interventions.

We report that the technique was able to reliably estimate the entire central aortic

pressure waveform with an overall root-mean—squared-error of 4.7 mmHg. This error

effectively represented a reduction in the total wave distortion in the measured peripheral

artery pressure waveforms by 45%. As a result, the technique was also able to provide
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similar improvements in the estimation of systolic pressure, pulse pressure, and the

ejection interval.

In chapter 3 we proposed a refinement to the MBSI technique wherein the transfer

function characterizing the path between the aorta and the peripheral arteries is

represented using damped sinusoidal functions. This representation effectively lowered

the number of estimation parameters and therefore helped in reducing the reconstruction

error. This improvement facilitated fitting of the reconstructed waveform to lumped

element Windkessel models for continuous estimation of beat-to-beat cardiac output.

With further successful testing, the new technique may ultimately be employed for

automated and less invasive monitoring of central hemodynamics in places where

multiple catheter systems are employed.

In the next chapter we outlined a technique to estimate left ventricular ejection

fraction (EF) by model-based analysis of the aortic pressure waveform. In this way, in

contrast to conventional imaging, EF may be continuously monitored without making any

assumptions about the left ventricular geometry. Moreover, with the proportional

parameter estimates, relative changes in left ventricular end-diastolic volume (EDV),

cardiac output (CO), total peripheral resistance, and maximum left ventricular elastance

(Emax) may also be monitored on a beat-to-beat basis. To evaluate the technique, we

measured aortic pressure waveforms, intermittent reference EF and EDV via standard

echocardiography, and other cardiovascular variables from six anesthetized dogs during

various pharmacological and volume interventions. Our results showed overall EF and

calibrated EDV root-mean-squared-errors of 5.6% and 4.1 ml, respectively, as well as

reliable estimation of relative changes in Em,x and beat-to-beat CO. These results
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demonstrate, perhaps for the first time, the feasibility of estimating EF from only blood

pressure. With further successful testing, the technique may potentially be employed for

continuous EF monitoring in subjects instrumented with an aortic catheter such as

animals in research and patients undergoing cardiac catheterization. Future work involves

extending the technique to estimate EF and other left ventricular parameters from

measurements ofperipheral artery pressure waveforms.

In subsequent chapters we utilized a transmission line representation of the

arterial path between the aorta and the peripheral arteries to derive the wave reflection

characteristic of the reflection path. This model was then extended to estimate aortic

pressure waveform from a single peripheral artery pressure waveform based on the

knowledge that aortic input flow is zero during diastole. To demonstrate the feasibility of

this adaptive transfer fimction technique, we performed experiments in six healthy dogs

in which peripheral artery and aortic pressure waveforms were simultaneously recorded

during twelve different hemodynamic interventions. Our results showed that the aortic

pressure waveforms derived by the technique were in superior agreement to the reference

aortic pressure waveforms (average overall error of 4.9 mmHg) than the unprocessed

peripheral artery pressure waveforms (average overall error of 15.1 mmHg) and the aortic

pressure waveforms derived by two previously proposed transfer functions developed on

a subset of the same canine data (average overall error of 6.0 mmHg).

Future work involves validating these techniques on data from human subjects

and exploring more sophisticated models for arterial tree representations. With such

further successful testing the techniques may ultimately be employed in the clinical
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settings for continuous monitoring of cardiovascular status and also in home and

ambulatory environments with the use of non-invasive measurement devices.
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