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ABSTRACT

MODEL-BASED ARTERIAL PRESSURE WAVEFORM ANALYSIS FOR
MONITORING CARDIOVASCULAR FUNCTION

By

Gokul Swamy

Today, the workhorse in hemodynamic monitoring is the continuous (i.e.,
automated) measurement and display of blood pressure (BP) waveforms from peripheral
arteries. In particular, minimally invasive (or non-invasive) catheters are broadly utilized
in clinical practice to measure BP waveforms at these circulatory sites. However, it is
well known that the cardiac output (CO) left ventricular ejection fraction (EF), left atrial
pressure (LAP) and central aortic BP (ABP) are more useful in guiding therapy and more
predictive of patient outcome. The conventional methods for measuring each of these
critical central hemodynamic variables require an operator or an unacceptably high level
of invasiveness. We attempt to bridge this gap by presenting three novel techniques to
estimate the central ABP, CO and EF from mathematical analysis of routinely measured
blood pressure waveforms.

The first technique is based on multi-channel blind system identification in which two
or more measured outputs (peripheral artery pressure waveforms) of a single input, multi-
output system (arterial tree) are mathematically analyzed so as to reconstruct the common
unobserved input (central ABP waveform) to within an arbitrary scale factor. The
technique then invokes Poiseuille’s law to calibrate the reconstructed waveform to
absolute pressure. Proportional estimates of beat-to-beat CO can be estimated from the

reconstructed central ABP waveform by fitting it to a Windkessel model. The second



technique aims to estimate EF and proportional left ventricular elastance from a BP
waveform by fitting the waveform to a lumped parameter model of the arterial tree and
subsequently estimating the parameters of this model using an optimization scheme.
Finally, a procedure to quantify wave reflection in the arterial tree and its subsequent
application towards estimating the central ABP waveform from only a single peripheral
artery pressure waveform is discussed. These techniques are validated on data collected
from animal studies in which the hemodynamic parameters were varied over a wide

physiologic range.
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CHAPTER 1
INTRODUCTION

1.1 General

The proportion of the elderly population is projected to grow at the beginning of the
21" century (see Figure (1.1)). This projection can be partly attributed to advances in
biomedical technology, which have increased life expectancy. For example, new medical
devices such as implanted defibrillators and stents have decreased the mortality rate
following a heart attack (but have increased the prevalence of heart failure). Moreover,
the elderly population contributes disproportionately to the overall prevalence of disease
(see, e.g., the age distribution of critically ill patients in Figure (1.2)). Because of the
evolving demographics as well as for other reasons, there is a simultaneous projected rise
in the deficit of needed clinical staff (see, e.g., the nursing shortage projection in Figure
(1.3)). One important implication of these projections is the need for effective and easy-
to-use patient monitoring technologies for the new century.

This need is especially apparent in the context of hemodynamic monitoring of

cardiovascular disease.
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Figure 1.1 Annual percentage of the total population over the age of 60 in the Americas
(Adapted from the US Census Bureau).
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1.2 Current Monitoring Techniques

Today, the workhorse in hemodynamic monitoring is the continuous measurement
and display of BP waveforms. For example, invasive catheters are utilized in about 50-
80% of all critically ill patients to monitor BP waveforms from peripheral arteries,
especially the radial and femoral arteries. Moreover, over the past few decades, totally
non-invasive methods have been developed and refined to measure peripheral ABP
waveforms via finger-cuff photoplethysmography and applanation tonometry. These
non-invasive methods are even available as commercial systems that are simple enough
to potentially be used by patients at home (see, for example, the Finometer and Portapres,
Finapres Medical Systems, The Netherlands and the T-Line Blood Pressure Monitoring
System, Tensys Medical Inc., San Diego, CA). Finally, new systems are continually in
development with much promise for future expansion of BP waveform monitoring. For
example, it may be possible one day to chronically monitor peripheral ABP waveforms
with simple wearable ring sensors. However, while these systems are continuous and
offer a level of invasiveness suitable for routine clinical use, they are limited in that the
measured and displayed BP levels are not very good indicators of circulatory status.

One reason is that BP levels in the peripheral arteries are not as clinically relevant as
its counterpart in the central aorta. (Note that catheterization of the central aorta is too
invasive and risky for routine clinical practice, as blood clot formation and embolization
here could lead to, for example, a stroke.) In particular, central ABP levels would be
preferred to peripheral ABP levels, as the latter are significantly distorted by highly
complex wave reflections (see below). For example, both systolic pressure and pulse

pressure (PP, systolic minus diastolic pressure) are amplified in peripheral ABP



waveforms, with the extent of the amplification dependent on the particular peripheral
site and circulatory state. Thus, it is the systolic and diastolic pressures measured
specifically in the aorta that truly reflect cardiac afterload and perfusion. Perhaps, as a
result, central measurements of systolic pressure and PP have been shown to be superior
in predicting patient outcome than corresponding measurements made in more peripheral
arteries.

Another reason is that BP levels do not provide an early indicator of changes in
circulatory status. For example, in the early stages of a bleed, the cardiovascular control
system maintains ABP at the expense of other hemodynamic variables (most notably CO)
in order to adequately perfuse all tissue beds of the body (see Figure (1.4)). While frank
hypotension may eventually occur (see Figure (1.4)), it is often too late to intervene at
this point (e.g., irreversible hemorrhagic shock). Thus, ABP levels do not provide as
early an indicator of circulatory changes as CO and, as a result, may not permit sufficient

time for successful therapy.
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Figure 1.5 ABP levels are not sufficiently specific to permit diagnosis and guide therapy.
However, a differential diagnosis may be obtained by also monitoring CO, left atrial
pressure (LAP), and left ventricular ejection fraction (EF).



A third reason is that BP levels are dependent on multiple physiologic factors and are
therefore not sufficiently specific to permit diagnosis and direct therapy. For example,
when the cardiovascular control system eventually fails so as to result in hypotension,
this could indicate sepsis (low vascular resistance due to bacterial blood poisoning),
diastolic dysfunction (reduced cardiac filling due to, e.g., tamponade), systolic
dysfunction (weakened cardiac contraction due to, e.g., a heart attack), or hypovolemia
(due to, e.g., an internal bleed). To distinguish amongst these possibilities so as to guide
therapy, it is well known that the CO, LAP, and EF must also be monitored (see Figure
(1.5)). Note that EF has also proven to be a powerful predictor of outcome in heart failure
patients.

The standard clinical method for monitoring CO involves the use of the balloon-
tipped, flow-directed pulmonary artery catheter. CO is specifically estimated via the
bolus thermodilution method. This method involves injecting a bolus of cold saline in
the right atrium, measuring temperature downstream in the pulmonary artery, and
computing the average CO based on conservation laws. The standard clinical method for
monitoring EF (i.e., the ratio of the stroke volume (SV) to the left ventricular end-
diastolic volume (EDV)) is by imaging the left ventricular volume. Commonly employed
imaging methods include echocardiography, radionuclide techniques (first pass or
equilibrium), contrast angiography, ultra-fast computed tomography (CT), and magnetic
resonance imaging. However, these clinical methods generally share the major limitation
of requiring a trained operator for their implementation. While alternative measurement
methods are available, these methods suffer from substantial limitations that have

generally prevented them from supplanting the operator-dependent methods in clinical



practice (see Table (1.1)). Thus, the monitoring of these three critical central

hemodynamic variables is limited today and likely to be even more so in the new century.
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Table 1.1 Alternative conventional methods for monitoring CO, LAP, and EF. These
methods suffer from substantial disadvantages that have generally prevented them from
supplanting the standard operator-dependent methods employed in clinical practice,
namely bolus thermodilution, pulmonary capillary wedge pressure, and imaging. 1

Hemo- Measurement
dynamic Advantages Disadvantages
. Method
variable
aortic flow probe continuous thorocotomy
accurate
continuous, with
continuous estimates of less accurate than
thermodilution right ventricular  bolus thermodilution
ejection fraction
CcO : .
doppler ultrasound  non-invasive expert operator
expensive
accurate two catheterizations
oxygen fick . .
inexpensive operator
. . . inaccurate,
thoracic non-invasive . .
bioimpedance continuous especially in
critically ill patients
too invasive and
conductance . !
continuous risky
catheter s
repeated calibrations
EF non-imaging non-invasive too difficult to
nuclear monitor continuous position
thorocotomy, with
sonomicrometry continuous crystals sutured to

the ventricle




1.3 Dissertation layout

To address the above limitations we propose several techniques to mathematically
estimate the central hemodynamic parameters from routinely measured blood pressure
waveforms.

The rest of the dissertation is organized as follows. Chapter 2 describes a technique to
estimate the central ABP from two or more peripheral artery pressure waveforms. The
technique is based on multi-channel blind system identification in which two or more
measured outputs (peripheral artery pressure waveforms) of a single input, multi-output
system (arterial tree) are mathematically analyzed so as to reconstruct the common
unobserved input (central aortic pressure waveform) to within an arbitrary scale factor.
The technique then invokes Poiseuille’s law to calibrate the reconstructed waveform to
absolute pressure. Chapter 3 proposes a refinement to this technique wherein more
efficient representations of arterial tree transfer functions are utilized to reduce the
reconstruction error. This reduction in error permits beat-to-beat cardiac output to be
estimated from the reconstructed central ABP waveform with high accuracy. Chapter 4
lays the foundation for wave reflection analysis in which measured aortic and peripheral
artery pressure waveforms are represented in a transmission line model to estimate the
forward and backward pressure and flow waves in the arterial tree. This model in
conjunction with the knowledge that aortic flow is zero during diastole is utilized in
chapter S to estimate the central ABP waveform from a single peripheral artery pressure
waveform. Chapter 6 utilizes a Windkessel model for the arterial tree and a variable

capacitance model for the left ventricle to derive the ejection fraction and proportional
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left ventricular elastance from measurement of a central ABP waveform. Finally, some

conclusions and directions for future research are outlined in chapter 7.
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CHAPTER 2

BLIND IDENTIFICATION OF THE CENTRAL AORTIC PRESSURE
WAVEFORM FROM MULTIPLE PERIPHERAL ARTERY PRESSURE
WAVEFORMS

2.1 Introduction

As the arterial pressure wave traverses from the central aorta to the peripheral
arteries, its contour becomes significantly distorted due to complex wave reflections in
the distributed arterial tree [O’Rourke 1991]. For example, both systolic pressure and
pulse pressure usually become amplified with the extent of the amplification dependent
on the particular peripheral site and state of the arterial tree [Soderstrom 2002]. Thus, it is
the systolic and diastolic pressures measured specifically in the central aorta that truly
reflect cardiac afterload and perfusion [Chen 1997]. Perhaps, as a result, central
measurements of systolic pressure and pulse pressure have been shown to be superior in
predicting patient outcome than corresponding measurements made in more peripheral
arteries [Safar 2002, Wadell 2001]. Moreover, since central aortic pressure is not
significantly complicated by the wave reflections [Bourgeois 1976, Noordergraf 1978 ],
the entire waveform clearly reveals the cardiac ejection interval through the dichrotic
notch [Fetics 1999].

The measurement of the central aortic pressure waveform usually involves
introducing a catheter into a peripheral artery and guiding the catheter against the flowing

blood to the central aorta. However, placement of an aortic catheter is not commonly
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performed in clinical practice [Chen 1997] because of the risk of blood clot formation
and embolization. On the other hand, related, but distorted, peripheral artery pressure
waveforms may be measured less invasively and more safely via placement of a catheter
in a distal artery. Indeed, radial and femoral artery catheterizations are routinely
performed in clinical practice [Marino 1998]. Moreover, over the past few decades,
totally non-invasive methods have been developed and refined to continuously measure
peripheral artery pressure based on finger-cuff photoplethysmography [Imholz 1998] and
applanation tonometry [Kenner 1988]. These non-invasive methods are even available as
commercial systems at present (see, for example, the Finometer and Portapres, Finapres
Medical Systems, The Netherlands and the T-Line Blood Pressure Monitoring System,
Tensys Medical Inc., San Diego, CA).

Several techniques have therefore been recently developed to mathematically derive
the clinically more relevant central aortic pressure waveform from less invasively
measured peripheral artery pressure waveforms. Most of these techniques have involved
1) initially obtaining simultaneous measurements of central aortic and peripheral artery
pressure waveforms in a group of subjects; 2) estimating a group-averaged transfer
function relating the measured peripheral artery pressure to the measured central aortic
pressure; and 3) subsequently applying this transfer function to peripheral artery pressure
measured from a new subject in order to predict the unobserved central aortic pressure
waveform [Soderstrom 2002, Chen 1997, Fetics 1999, Karamanoglu 1993]. The
principal assumption underlying these “generalized transfer function” techniques is that
arterial tree properties are constant over all time and between all individuals. Because of

known inter-subject and temporal variability of the arterial tree, a few techniques have
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been more recently proposed towards partial individualization of the transfer function
relating peripheral artery pressure to central aortic pressure through modeling
[Karamanoglu 1997, Sugimachi 2001, Segers 2000].

It would be desirable to be able to estimate the central aortic pressure waveform from
peripheral artery pressure in an entirely patient and time specific manner. One possible
way to do so is with the multi-channel blind system identification (MBSI) approach of
recent interest in signal processing [Abed-Meraim 1997, Xu G 1995]. In this approach,
two or more outputs of a single input, multi-output system are analyzed so as to
reconstruct the common input. To our knowledge, the very recent study by McCombie et
al. represents the first application of MBSI to the field of hemodynamic monitoring [Mc
Combie 2005]. However, their study specifically aimed to estimate the shape of the
aortic flow waveform from peripheral artery pressure measurements (see Discussion
section).

In this study, we introduce a new technique to reconstruct the central aortic pressure
waveform from multiple peripheral artery pressure waveform measurements without the
need for a generalized transfer function using the MBSI approach. We then demonstrate
the validity of the MBSI technique with respect to four swine in which femoral and radial
artery pressure waveforms and a reference central aortic pressure waveform were

simultaneously measured during diverse hemodynamic interventions.

2.2 MBSI Technique

Our technique, which was initially presented in abbreviated form in [Swamy 2006],
applies standard MBSI algorithms from the signal processing literature [Abed-Meraim

1997, Xu 1995] to two or more peripheral artery pressure waveforms in order to
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reconstruct the central aortic pressure waveform to within an arbitrary scale factor and
then calibrates the reconstructed waveform to absolute pressure based on known
physiology. Below, we describe the technique at a conceptual level while stating its
underlying assumptions. See the next section for the mathematical derivation and the
Discussion section for a justification of its assumptions.

Figure (2.1) (dark lines and fonts) illustrates the single input, multi-output model of
the pressure waveforms in the arterial tree upon which the technique is based. Here, the

m (> 1) measured and sampled peripheral artery pressure waveforms (pp;(t),1 <i<m)

are modeled as outputs of m unknown systems or channels driven by the common
unobserved and likewise sampled central aortic pressure waveform (pg,(t)) input. Each
of the discrete-time channels coupling the common input to each of the distinct outputs
characterizes the dynamic properties of a different arterial tree path. These channels are
assumed to be linear and time-invariant (LTI) over each one-minute interval of analysis
(see Methods section). The LTI channels are further assumed to be well approximated by

impulse responses (i.e., time-domain version of transfer functions; (h;(t),1 <i < m) that

are finite in duration and different from each other.
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Ppi(t)

Pp2(t)

Pom(t)

Figure 2.1 The dark lines and fonts illustrate the single input, multi-output model of the
arterial tree upon which the multi-channel blind system identification (MBSI) technique
introduced herein is based. The gray line and fonts represent a contemporary model [Mc
Combie 2005], where the unobserved aortic flow waveform is regarded as the input.
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Different here precisely means that the finite impulse responses (FIRs) are coprime with
each other (i.e., the Z-transforms of the impulse responses share no common zeros or
roots). In this way, all of the commonality in the measured outputs may be attributed to
the input, and the differences in the measured outputs (see Discussion section) may then
be deciphered so as to estimate the FIRs and ultimately reconstruct the common central
aortic pressure waveform input. Note that it is generally impossible to determine the
scale factor of the FIRs and therefore the common input, because any scaling of the
common input may be offset with a reciprocal scaling of the FIRs. Thus, physiologic
knowledge must also be employed to clarify the ambiguity.

More specifically, first, the FIRs are mathematically estimated based on the cross
relations between pairs of measured outputs. These cross relations may be derived from
the fundamental properties of the convolution operation governing LTI input-output

behavior as follows:
Ppil @hj(t) = (Pea (N @ hi() @ () =
hi(t) @ (P4 () @h;(1) = hi() @pp 1),

where i # j and ® denotes the convolution operation. The FIRs are specifically estimated
to within an arbitrary scale factor by solving the homogenous system of equations
resulting from the cross relations using the convenient eigenvector algorithm [Xu 1995].
The implicit assumption here is that the central aortic pressure waveform input is
persistently exciting of high enough order (i.e., containing at least as many frequency
components as the number of estimated FIR samples) [Xu 1995].

Then, the central aortic pressure waveform input is reconstructed to within an

arbitrary scale factor by deconvolving the estimated FIRs from the measured peripheral
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artery pressure waveforms. In particular, a single reconstructed waveform is obtained by
employing a multi-channel least squares deconvolution algorithm [Abed-Meraim 1997].

Finally, the reconstructed waveform is calibrated to absolute pressure by scaling it to
have the same mean value as the measured peripheral artery pressure. This scaling step is
well justified, since the paths from the central aorta to peripheral arteries offer very little
resistance to blood flow due to Poiseuille’s law [Noordergraf 1978].

It should be noted that the reconstructed absolute central aortic pressure waveform
will be slightly delayed with respect to the actual central aortic pressure waveform,
because the time delay shared by the FIRs cannot be identified with MBSI. However,

this delay, which is usually < 0.1 sec, is not important for most clinical applications.

2.3 Mathematical Derivation

We outline below the mathematical steps of the MBSI technique for the simplest case
in which two peripheral artery pressure waveforms are analyzed. See [Abed-Meraim
1997, Xu 1995] for a more general mathematical treatment of the employed MBSI
algorithms.

First, the FIRs in Figure (2.1) (dark lines and fonts) are mathematically estimated to
within an arbitrary scale factor based on the following cross relation between the two

measured outputs:
L-1 L-1
] Zoh1(k)*pp2(t—k)~k Zohz(k)"pm(t—k) =e(t), te[lL-1N-1]. @1

Here, the convolution sum has been explicitly written (rather than using shorthand
notation as in the initial cross relation equation of the manuscript), and the term e(t) has

been included to account for any measurement noise and/or modeling error. The
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variables L and N in Equation (2.1) respectively represent the number of samples of each
FIR (channel order) and the number of measured peripheral artery pressure waveform
samples. This equation can be expressed in matrix form by stacking each individual

equation corresponding to each time t, one on top of the other, as follows:

[Pz ~Pon] [:ﬂ=e 22)
P h

where
C @ P e ppyL=)]

P = ppz(1) ppi:(2) ppi:(L) -
PpiN-L) pN-L+1) - py(N=1)

are [(N-L+1)xL] Hankel matrices comprising the respective measured output samples;
h; =[hi(L-1) h(L-2) h-(O)]T ie[1,2]
i i i S ' b
are [Lx1] vectors specifying the samples or parameters of the two respective FIRs; and
T
e= [e(O) e(1) .. e(N- L)]

is an [(N-L+1)x1] vector of the noise samples. For a fixed channel order L, the vector h
in Equation (2.2) is estimated to a certain non-trivial constraint by minimizing the energy

in the vector e. This optimization problem is specifically solved in closed-form by

selecting the eigenvector associated with the minimum eigenvalue of the matrix PTP as
a unit-energy estimate of the vector h. The channel order L is determined by 1) forming

a P matrix of dimension [(N-L.,ay +1)x2Lax], Where Lo =15 is assumed to

encompass the true channel order; 2) computing the eigenvalues of the matrix PTP; and
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3) establishing the optimal value of L as half the number of eigenvalues (rounded up
when odd) that are at least 5% of the maximum eigenvalue.

Second, the common central aortic pressure waveform input in Figure (2.1) (dark
lines and fonts) is determined to within an arbitrary scale factor from the two determined
FIRs (i.e., the estimated vector h) and the two measured outputs through multi-channel
least squares deconvolution. That is, the two measured outputs may be expressed in

terms of their common input via the convolution sum as follows:
L-1 _
Ppil)= T RikPca(t-k)+m(t, ic12). teON-1) 23)

where nj(t)accounts for any noise. This equation may also be expressed in matrix form

by stacking each individual equation for each t and i, one on top of the other, as follows:

pp‘l _ [H1 :| pca . l'l1 :| (24)
Pp2| |H2 N |.

e —
Pp n

where

Ppi =[Ppi®) Ppi(2) - PiN-11T, i€[12]
are [Nx1] vectors of the respective measured output samples;

hL-1) ... h@©) .. 0
Hi=| - ot e,
0 .. h{L-1) ... h(0)

are the [Nx(N+L-1)] Toeplitz matrices including the estimated samples of the respective

FIRs;

Pea =[Pcal-L -1 Pea(-L-2) - Pea(0) Pea® - PeaN-11T
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is a [(N+L-1)x1] vector of unmeasured common input samples; and
T .
n=[m0) m(N) .. mIN-1]", ie[12],

are [Nx1] vectors of the respective noise samples. The vector p.5 in Equation (2.4) is

then estimated to within an arbitrary scale factor by minimizing the energy in the vector
n. This optimization problem is specifically solved in closed-form using the following

linear least-squares solution:
Pca =(HTH) HTp,, 25)

where the inverse here is computed efficiently as described in [Jain, 1978]. Following
the deconvolution, the reconstructed input is lowpass filtered with a cutoff frequency of

10 Hz.

Third, the reconstructed waveform (i.e., the determine pgq vector) is calibrated to

absolute pressure by scaling it to have the same mean value as that of the measured
peripheral artery pressure as follows:

N-1

Pocalt) =Pealthig—— (2.6)

2 Pealt)
t=o

Here, psca is the absolute (scaled) estimated central aortic pressure waveform.

Finally, if the average systolic pressure of the reconstructed central aortic pressure
waveform is greater than that of the measured peripheral artery pressure, then the solution
is considered to be invalid and the above steps ﬁre repeated but with the channel order

reduced by one. We note that this technique always resulted in a valid estimate of the

central aortic pressure waveform for every interval of analysis in the present swine study.
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2.4 Methods

We evaluated the MBSI technique with respect to previously collected hemodynamic
measurements from swine, which are described in detail elsewhere [Mukkamala 2006].
Below, we briefly describe the experimental procedures employed for collecting these
hemodynamic data and then present the methods for data analysis utilized herein.
Hemodynémic Data

Six Yorkshire swine (30-34 kg) were studied under a protocol approved by the MIT
Committee on Animal Care. Following the induction of general anesthesia and
mechanical ventilation, physiologic transducers were placed in each animal as follows. A
micromanometer-tipped catheter was fed retrograde to the thoracic aorta via a femoral
artery for reference central aortic pressure. Fluid-filled catheters were then inserted in the
opposite femoral artery for femoral artery pressure and in an artery as distal as possible to
the brachial artery for “radial” artery pressure. Finally, an ultrasonic flow probe was
placed around the aortic root following a midline sternotomy for cardiac output. In each
animal, a subset of the following interventions was then performed over the course of 75
to 150 minutes to vary arterial pressures as well as other hemodynamic parameters:
infusions of volume, phenylephrine, dobutamine, isoproterenol, esmolol, nitroglycerine,
and progressive hemorrhage. Several infusion rates were implemented followed by brief
recovery periods. The hemodynamic waveforms were continuously recorded throughout
the intervention period at a sampling rate of 250 Hz and 16-bit resolution.

Data Analysis
We discarded two of the six swine datasets from the study due to excessive damping

of the femoral artery pressure waveform in one dataset [Mukkamala 2006] and an
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improperly calibrated reference central aortic pressure waveform in the other dataset. We
then applied the technique to all one-minute, non-overlapping intervals of the femoral
and radial artery pressure waveforms (resampled to 50 Hz) in the remaining four swine
datasets. We evaluated the resulting central aortic pressure waveform estimates with

respect to the measured reference waveforms (likewise resampled to 50 Hz) in terms of

the root-mean-squared-error (RMSE = \/p,z + 02 , where p is the bias and o is the

precision) of the following parameters: total waveform (i.e., sample-to-sample), beat-to-
beat systolic pressure, beat-to-beat pulse pressure, and beat-to-beat ejection interval. For
comparison, we likewise evaluated the peripheral artery pressure waveforms with respect
to the measured central aortic pressure waveforms in terms of the first three parameters.
(Note that we did not attempt to determine the ejection intervals from the peripheral
artery pressure waveforms, because the dichrotic notch was generally obscured by wave
reflections.) Prior to conducting these evaluations, we advanced the central aortic
pressure waveform estimates so that they were temporally aligned with the measured
central aortic pressure waveforms. To make a fair comparison, we likewise time aligned

the peripheral artery pressure waveforms.

2.5 Results

Tables (2.1) and (2.2) respectively summarize the hemodynamic parameters of the
four analyzed swine datasets and the evaluation results of the MBSI technique with
respect to these datasets. These tables generally indicate that the technique was able to

reliably estimate the central aortic pressure waveform over a wide hemodynamic range
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with a level of accuracy that was far better than no mathematical analysis of the
peripheral artery pressure waveforms.

More specifically, the overall total waveform RMSE of the estimated central aortic
pressure was 4.7 mmHg (after a modest time alignment as described above). For
comparison, the average overall total waveform RMSE between the measured peripheral
artery pressures and the measured central aortic pressure was 8.6 mmHg (after a more
significant time alignment). Thus, the technique was able to effectively reduce the total
wave distortion in the measured peripheral artery pressure waveforms by 45%.
Furthermore, the overall beat-to-beat systolic pressure RMSE and the overall beat-to-beat
pulse pressure RMSE of the estimated central aortic pressure were 7.5 mmHg and 8.2

mmHg, respectively.
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Table 2.1 Hemodynamic parameters of the swine evaluation datasets. The multi-channel
blind system identification (MBSI) technique was experimentally evaluated with respect
to four swine in which femoral artery pressure and radial artery pressure waveforms and a
reference central aortic pressure waveform were simultaneously measured over a wide
hemodynamic range. MAP is mean arterial pressure; SP, systolic pressure from central
aortic pressure; PP, pulse pressure from central aortic pressure; El, ejection interval from
central aortic pressure; HR, heart rate; and CO, cardiac output.

MAP SP PP EI HR Cco

Animal Range Range Range Range Range Range
[mmHg] [mmHg] [mmHg] [ms] [beats/min] [L/min]

1 54-136 70 - 168 28-48 237 - 267 100 — 223 23-41

2 58-117 73 -143 19-49 235 -337 92 -190 1.7-6.0

3 45-114 60 — 140 22-45 204 - 296 91 -243 24-5.7

4 48 -119 70 - 142 22-51 198 — 261 102 —207 1.3-6.2
Total 45-136 60 — 168 19-51 198 — 337 91 -243 1.3-6.2
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Table 2.2 Summary of the experimental evaluation results of the MBSI technique with
respect to the four swine datasets. Overall, the MBSI technique (see dark line and fonts in
Figure (1.1)) as applied to the radial and femoral artery pressure waveforms in the four
swine datasets (see Table (2.1)) reliably estimated the central aortic pressure waveform
along with its clinically significant parameters and thereby significantly reduced the wave
distortion in the measured peripheral artery pressure waveforms. RMSE is root-mean-
squared-error; TW, total waveform; SP, systolic pressure; PP, pulse pressure; and EI,
ejection interval. See example results of the MBSI technique in Figure 2.2.

Estimated Central Aortic Femoral Artery Radial Artery Pressure
Dog Pressure RMSE Pressure RMSE RMSE
™ Sp PP EIl ™ SP PP ™ SP PP
[mmHg] [ms] [mmHg] [mmHg]

1 44 47 48 gy 116 192 105 40 51 49
) 43 52 64 s7 78 135 143 105 245 192
X 47 62 85 ss 63 120 102 94 167 103

56 78 77 7 70 107 143 93 227 216

Total 4.7 7.5 8.2 59 8.1 13.7 12.6 9.1 19.7 15.9
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These errors represent an average overall improvement of 57% and 41% with respect
to the corresponding parameters from the measured peripheral artery pressure
waveforms. In addition, the overall beat-to-beat ejection interval RMSE of the estimated
central aortic pressure was 59 msec. Finally, though not shown in the tables, the errors in
the four studied parameters of the estimated central aortic pressure were virtually
uncorrelated with the respective reference values of these parameters.

Figures (2.2a) and (2.2b) provide two visual examples illustrating the significant
differences between the measured peripheral artery pressure waveforms (dash and dot-
dash) and the corresponding measured central aortic pressure waveforms (solid), while
Figures (2.2¢c) and (2.2d) show the resulting central aortic pressure waveforms estimated
from these peripheral artery pressure waveforms (dash) along with the reference central
aortic pressure waveforms (solid). As is evident in these examples at two different mean
pressure levels, the estimated and reference central aortic pressure waveforms agree very
closely, and much of the wave distortion in the measured peripheral artery pressure

waveforms has been eliminated.
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Figure 2.2 (a, b) Example segments of the measured central aortic pressure (solid),
femoral artery pressure (dash), and radial artery pressure (dot-dash) waveforms from the
four analyzed swine datasets (see Table (2.1)). (c, d) Example segments of the central
aortic pressure waveform measured (solid) and estimated (dash) by applying the MBSI
technique (see dark lines and fonts in Figure (2.1)) to the two segments of peripheral
artery pressure waveforms in (a, b).
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2.5 Discussions

In summary, we have introduced a new technique to mathematically reconstruct the
clinically more relevant central aortic pressure waveform from multiple, less invasively
measured peripheral artery pressure waveforms distorted by wave reflections. Our
technique capitalizes on the powerful MBSI approach of recent interest in signal
processing in which the differences in the outputs of a single input, multi-output system
are assessed so as to reconstruct the common input to within an arbitrary scale factor.
Then technique then calibrates the reconstructed waveform to absolute pressure using
Poiseuille’s law. As a result, in contrast to previous, related efforts, our technique neither
employs a generalized transfer function nor requires any training data and is therefore
entirely patient and time specific. We have also presented an experimental evaluation of
the technique in four swine in which radial and femoral artery pressure waveforms and a
reference central aortic pressure waveform were simultaneously measured over a wide
hemodynamic range. Our results show that the technique was able to reliably estimate
the entire central aortic pressure waveform and thereby significantly improve upon the
determination of systolic pressure, pulse pressure, and the ejection interval as compared
to measuring these clinically significant parameters directly from the peripheral artery
pressure waveforms.

Assumptions of the MBSI Technique

As stated above, our MBSI technique is based on a set of assumptions. We make
physiologic and empirical arguments to justify each of the underlying assumptions below.

Assumption 1: the channels relating the common input to each distinct output in

Figure 1.1 are LTI over each one-minute interval of analysis. Over such short time
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intervals, the arterial tree is usually operating in near steady-state conditions in which the
statistical properties of the arterial pressure waveforms vary little over time. Such steady-
state conditions clearly justify the time-invariance approximation. Moreover, these
conditions also support the linearity approximation as argued in [McCombie 2005] and
references therein.

Assumption 2: the LTI channels are characterized with FIRs. Although not widely
appreciated, it is known that arterial pressure waveforms measured from distinct sites
only differ significantly in terms of their high frequency detail while being quite similar
at lower frequencies [Noordergraf 1978, Mukkamala 2006]. Thus, the dynamics of each
of the channels in Figure (2.1) (dark lines and fonts) are fast (e.g., effectively vanishing
within ~0.5 sec [Zhang 2002]), thereby supporting the FIR approximation.

Assumption 3: the FIRs are coprime with each other. If the FIRs were not coprime
with each other, then the non-coprime or common FIR dynamics would be erroneously
attributed to the common input. As discussed above, peripheral artery pressure
waveforms from distinct sites in the arterial tree appear different. Thus, the dynamics of
each channel cannot be the same, and the coprime channel approximation is at least
somewhat tenable.

Assumption 4: the central aortic pressure waveform is persistently exciting of high
enough order. This assumption means that the central aortic pressure waveform contains
at least as many frequency components as the number of estimated FIR samples. As
described above, the channel dynamics are short duration. Thus, the number of FIR
samples to be estimated is small, thereby buttressing the persistence of excitation

approximation.
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Any violation to the four above assumptions in the present swine study may indeed
represent a source of error of our MBSI technique. However, we note that each of the
assumptions must have been at least largely valid here given that the discrepancy
between the estimated and reference central aortic pressure waveforms was relatively
small (see Table (2.2)).

MBSI Technique in the Context of Previous Efforts

The MBSI technique that we have introduced herein was inspired by the seminal
contributions of several previous investigations described in the hemodynamic
monitoring literature. In particular, the idea of mathematical deriving central aortic
pressure from measured peripheral artery pressure stems from the body of generalized
transfer function literature [Soderstrom 2002, Chen 1997, Fetics 1999, Karamanoglu
1993, Karamanoglu 1997, Sugimachi 2001, Segers 2000], whereas the idea of employing
MBSI to do so in an entirely patient and time specific manner is based on the very recent
study by McCombie et al. [McCombie 2005].

McCombie et al. specifically proposed a technique using MBSI to reconstruct the
shape of the common aortic flow waveform input from multiple peripheral artery
pressure waveform outputs and demonstrated its feasibility in a pilot swine experiment.
Figure (2.1) (all lines and fonts) illustrates the single input, multi-output model upon
which their technique was based. As can be seen from this model, the channels coupling
the aortic flow waveform to each peripheral artery pressure waveform include common
dynamics, namely the channel relating the aortic flow waveform to the central aortic

pressure waveform (ho(t)), and are therefore not coprime. As a result, these

investigators had to develop additional signal processing to estimate the common channel
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dynamics, which resulted in a considerably more complicated algorithm than standard
MBSI. Moreover, their framework did not provide an obvious means to determine the
uncontrolled scale factor of the reconstructed input. Thus, the technique cannot be
utilized to monitor relative changes in cardiac output. In contrast, our MBSI technique
aimed to estimate the central aortic pressure waveform input in which the coprime
channel assumption is more tenable (thereby rendering a relatively straightforward
algorithm) and the arbitrary scale factor of the input is conveniently determined by
invoking Poiseuille’s law.

It is not strictly valid to compare the results of the MBSI technique reported here
with those of previous studies employing generalized or partially individualized transfer
functions due to variations in evaluation datasets (both subjects and experimental
conditions) and methods for evaluation. Nevertheless, we find that the total central aortic
pressure waveform error of 4.7 mmHg obtained by our technique (see Table (2.2)) is
somewhat higher than the approximately 2 to 4 mmHg errors reported in four of the
previous studies [Chen 1997, Fetics 1999, Karamanoglu 1993, Karamanoglu 1997].
However, we note that the transfer functions that were utilized in each of these studies
were trained on the same subjects and/or the same experimental conditions that were
subsequently employed for testing. The impetus for the present research is that the MBSI
technique should demonstrate an improved performance when applied to the diverse
population of patients and patho-physiologic conditions seen in clinical practice. On the
other hand, we acknowledge that the cost of this potential improvement in accuracy is the
requirement of more than one peripheral artery pressure waveform for analysis.

However, several convenient methods are currently available for measuring peripheral
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artery pressure waveforms (see above) and new systems are continually in development.
For example, it may be possible one day to chronically monitor peripheral artery pressure
waveforms with wearable ring sensors [Asada 2003].

Future Directions

The present study opens up the possibility of several different avenues of future
investigation. In terms of subsequent mathematical efforts, it would be worthwhile to
attempt to improve upon the accuracy of the MBSI technique by compactly representing
the FIR channels with more appropriate basis functions and thereby alleviate the
persistence of excitation demands. In addition, it would be extremely desirable, from a
clinical point of view, to be able to extend the MBSI technique to also estimate relative
changes in aortic flow through, for example, physical modeling. In terms of subsequent
experimental efforts, it may prove useful to seek correlation between the estimated FIR
channels and phenomena that are local to the respective peripheral artery pressure
measurement sites (e.g., plaque development) so as to further extend the monitoring
capabilities of the technique. Furthermore, while the application of the technique to
femoral and radial artery pressure waveforms may be most suitable for clinical practice
(see above), it would be interesting, from a scientific point of view, to establish the
optimal sites and number of peripheral artery pressure measurements (e.g., the arterial
tree sites that result in the most coprime channels and the smallest number of
measurements that does not significantly compromise estimation accuracy). Finally,
future evaluations of the MBSI technique in humans and with respect to non-invasive
peripheral artery pressure waveforms are certainly warranted.

Potential Applications of the MBSI Technique
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Our MBSI technique mathematically derives the clinically more relevant central
aortic pressure waveform from multiple, less invasively measured, but distorted,
peripheral artery pressure waveforms without using any training data. The technique
may easily be implemented in near real time (with a one minute delay) using a standard
home personal computer. With further development and successful testing, the technique
may ultimately be utilized for more precise monitoring and titration of therapy [Chen
1997] in, for example, critically ill patients with invasive catheters installed and
hypertension patients instrumented with non-invasive arterial pressure transducers.
Advancements in arterial pressure monitoring technology hold further promise for the

application of the technique in the context of chronic ambulatory and home monitoring.
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CHAPTER 3

ESTIMATION OF THE AORTIC PRESSURE WAVEFORM AND BEAT-TO-
BEAT CARDIAC OUTPUT FROM MULTIPLE PERIPHERAL ARTERY
PRESSURE WAVEFORM

3.1 Introduction

Blood ejected by the left ventricle initiates pressure and flow waves that propagate
through the arterial tree. These waves are reflected at multiple sites of impedance
mismatch caused by arterial bifurcations, narrowing, and stiffening [Donald 1960],
[Noordergraf 1978]. For example, wave reflections are especially pronounced at the sites
of arterial terminations [Donald 1960, Westerhof 1972]. The pressure waveform
measured at a given site in the arterial tree therefore represents the sum of the forward
and backward traveling pressure waves at that particular site [Westerhof 1972, Berger
1993]. As a result, the arterial pressure waveform becomes progressively distorted as its
site of measurement becomes more distal to the aorta [Donald 1960]. Most notably,
systolic pressure (SP) and pulse pressure (PP) become increasingly amplified [Donald
1960, Soderstrom 2002] and therefore less indicative of cardiac performance [Chen
1997]. Indeed, central measurements of SP and PP have been shown to be superior
predictors of patient outcome than corresponding measurements made in more peripheral
arteries [Safar 2002, Wadell 2001]. In addition, aortic pressure (AP, especially from the
descending thoracic aorta) is less complicated by wave reflections than peripheral artery

pressure (PAP) due in part to attenuation and destructive interference of the reflected

37



waves that reach the aorta [Noordergraf 1978, Bourgeois 1974, Bourgeois 1976]. Thus,
the entire AP waveform usually reveals the ventricular systolic ejection interval (SEI)
through the dicrotic notch [Fetics 1999] and may be represented with a lumped parameter
Windkessel model in order to accurately estimate beat-to-beat relative changes in cardiac
output (CO), as convincingly demonstrated in [Bourgeois 1976]. On the other hand, PAP
may be measured more safely than AP through catheterization and even non-invasively
via finger-cuff photoplethysmography [Imholz 1998] or applanation tonometry [Kenner
1998]. 1t is therefore PAP waveforms that are routinely monitored in humans [Marino
1998], even though the AP waveform is known to be of greater clinical value.

As a result, over the past 15 years, there has been considerable interest in estimating
the AP waveform from measured PAP waveforms using generalized transfer function
techniques [Soderstrom 2002, Chen 1997, Fetics 1999, Karamanoglu 1993, Karamanoglu
1996]. These techniques essentially involve: 1) initially obtaining simultaneous
measurements of AP and PAP waveforms in a group of subjects; 2) estimating a group-
averaged transfer function relating the measured PAP to the measured AP; and 3)
subsequently applying this transfer function to PAP measured from a new subject in
order to estimate the AP waveform. However, these techniques do not account for
known inter-patient and temporal variability of arterial tree properties (e.g., [Hallock
1937, Guyton 1996]) and may therefore be prone to significant estimation error when

applied to the diverse patient population encountered in clinical practice.
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Figure 3.1 Single input, multi-output model of the arterial tree providing the basis for the
technique introduced herein to estimate the clinically more relevant aortic pressure (AP)
waveform from multiple, less invasively measured peripheral artery pressure (PAP)
waveforms distorted by wave reflections.
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We have recently developed a patient and time specific technique for estimating the
AP waveform from multiple PAP waveforms by capitalizing on the powerful multi-
channel blind system identification (MBSI) approach [Swamy 2007]. The technique
specifically involves: 1) modeling two or more measured PAP waveforms as outputs of
distinct finite impulse response (FIR) channels driven by the common AP waveform
input (see Figure (3.1)); 2) estimating the FIRs to within an arbitrary scale factor by
applying the standard eigenvector method to the cross relations between pairs of
measured outputs (see Equations (3.1) and (3.2)); 3) reconstructing the AP waveform to
within an arbitrary scale factor by deconvolving the estimated FIRs from the measured
waveforms; and 4) scaling the reconstructed waveform to absolute pressure by invoking
Poiseuille’s law. In this way, the technique is able to estimate the AP waveform from
PAP waveforms without the need for a generalized transfer function. We have tested this
technique with respect to four swine datasets consisting of simultaneous measurements of
two PAP waveforms from the femoral and radial arteries and a measured reference AP
waveform during diverse hemodynamic interventions [Swamy 2007]. Our results
showed that the technique provided more accurate AP waveform estimates than a
generalized transfer function developed from a subset of the same datasets. In this paper,
we introduce an improved technique for estimating the AP waveform as well as beat-to-
beat relative changes in CO from multiple PAP waveforms. The technique specifically
involves: 1) estimating the AP waveform based on our new MBSI method in which the
FIRs are represented with more efficient basis functions than the impulse basis functions
assumed by the standard eigenvector method in order to reduce the number of parameters

to be estimated and therefore enhance the estimation accuracy; and 2) estimating beat-to-

40




beat relative changes in CO by fitting a Windkessel model to the estimated AP waveform
in which wave distortion should be greatly attenuated. We show that this new technique
is able to estimate the AP waveforms in the four aforementioned swine datasets with
greater accuracy than our initial technique. We further show that this enhanced accuracy
permits reliable estimation of beat-to-beat relative changes in CO as compared to gold

standard reference aortic flow probe measurements also available in the swine datasets.

3.2 Technique

Our technique applies a new MBSI method that we have developed to two or more
PAP waveforms to estimate the AP waveform and then fits a Windkessel model to the
estimated waveform to estimate beat-to-beat relative changes in CO. We fully describe
the technique below for the simplest case in which two PAP waveforms are available for
analysis. Generalization of the technique to more than two measured waveforms readily

follows analogous to [Xu 1995].

First, two measured and sampled PAP waveforms (ppi(t), i € [1, 2]) are modeled as

individual outputs of two unknown channels driven by the common unknown and
likewise sampled AP waveform (p4(t)) input as shown in Figure 1 with m = 2. The two
discrete-time channels coupling the common input to the two distinct outputs represent
the dynamic properties of a different path in the arterial tree. A principal assumption
underlying the model is that the channels may be well characterized by coprime FIRs
(hy(t), 1 € [1, 2]) over each one-minute interval of analysis (see below). Over such short

time intervals, the arterial tree is usually operating in near steady-state conditions, thereby

clearly supporting the implicit time invariance assumption as well as buttressing the
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implicit linearity assumption as argued in [McCombie 2005] and references therein.
Moreover, since pressure waveforms measured from distinct sites in the arterial tree only
differ significantly over short time scales (e.g., within a cardiac cycle) while being quite
similar over longer time scales (e.g., mean values as described below) [Noordergraf 1975,
Zhenwei 2006], the FIR assumption is also well justified. Finally, the coprime
assumption, which is needed to subsequently estimate the FIRs [Xu 1995], may be
largely valid due to the significant differences in PAP waveforms measured from distinct
arterial sites.

Then, by applying the fundamental properties of convolution to the single input,
multi-output model of Figure (3.1), the two FIRs may be estimated based on the resulting

cross relation between the two measured outputs:
L-1

hq(t)*Ppa(t-1)- Zohz(t)'pp1(t —1)=e(t), te[L-1,N-1). (3.1
T=

Here, e(t) accounts for any measurement and/or modeling error, and the variables L
and N respectively represent the maximum duration of the FIRs (channel order) and the
number of measured PAP waveform samples in a one-minute interval of analysis [Xu
1995].

The standard method for estimating the FIRs in Equation (3.1) is to first
determine the channel order through eigenvalue analysis and then to estimate the FIR
samples or parameters to within an arbitrary scale factor by least squares minimization of
e(t) via the eigenvector method [Xu 1995]. More specifically, Equation (3.1) may be
expressed in matrix form by stacking each individual equation, corresponding to each t,

one on top of the other as follows:
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[sz - p1] [:1]=e, (3.2)

Tr

where
[ o Ppi) e PRill=D)]

P - ppz(1) ppi:(2) ppi:(L) - 63)
_ppi(ﬁ—u ppi(NiL+1> - ppi<N—1)_

are [(N-L+1)xL] Hankel matrices comprising the respective measured output samples;
h; =[hi(L-1) h(L-2) hi(0 T iep2 Lx1 ifying th
i =M\ hilk—e) ey ):| ., 1€[12], are [Lx1] vectors specifying the

parameters of the two respective FIRs; and e=[e(0) e(1) - e(N—L)]T is an [(N-
L+1)x1] vector consisting of the error samples. The channel order L may then be

determined by 1) forming a matrix P of dimension [(N—Lyax +1)x2Lpax], Where

Lmax is assumed to encompass the true channel order; 2) computing the eigenvalues of

the matrix PTP; 3) identifying the number of insignificant eigenvalues nig; and 4)
selecting the optimal value of L as Lopt =Lgpt —(Njg —1). Then, the least squares, unit
two-norm estimate of the vector h may be conveniently obtained by selecting the

eigenvector associated with the minimum eigenvalue of the matrix PTP, where P is of

dimension[(N—Lopt +1)x 2L4pt]. The implicit assumption of this standard eigenvector

method, which was employed by our initial MBSI technique [Swamy 2007], is that the
AP waveform contains at least as many frequency components as the number of

©stimated FIR parameters 2Lopt [Xu 1995].
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To reduce the number of parameters to be estimated so as to alleviate the frequency
content demands on the AP waveform and thereby improve the estimation accuracy, the
FIRs are instead compactly represented with damped sinusoidal basis functions as

follows:
h'(t) = E 7\.t (alk COS((Dikt) + blk sin(mikt)), ie [1, 2], 3.4)
k=1

where {A,aik,bik,mik}is a set of unknown parameters and n is an unknown number of

basis functions. These basis functions were chosen empirically based on our swine
datasets (see section 3.5). Thus, only a small number of basis functions should be needed
to represent the FIRs, thereby resulting in a significant reduction in the parameters to be
estimated. Then, for a fixed number of basis functions n, the set of parameters is
estimated based on least squares minimization of e(t) in the following cross relation

equation resulting from substitution of Equation (3.4) into Equation (3.1):

Lopt =1 Lo —1
n opt opt )
> a1k > At COS(O)1k‘C)pp2 (t - ‘t) + b1k > }\.‘c sm(co1kt)pp2 (t - ‘t)
k = 1 T= T= 0
Lopt —1 Lont —1
n opt opt
- Y |ag X AT cos((:)2k‘t)pp1 (t-t)+by = AT sin(m2kt)pp1 (t-7)| (3.5
k=1 t=0 =0

=eft), te [Lopt -1N-1],
where Lgpt is established through eigenvalue analysis as described above with Ly ax=

15. To estimate the coefficient parameter sets {a;,bjc} uniquely (rather than to within

an arbitrary scale factor), one FIR is constrained to have unity gain as follows:

I-opt -1 n Lopt -1

E a1k > lt COS(CO1kt) + X b1k > lt Siﬂ((l)1kt) =1. (3.6)

k=1 t=0 k=1 t=0
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The constraint here is well justified, as the paths from the aorta to the peripheral
arteries offer very little resistance to blood flow due to Poiseuille’s law (i.e., the mean
values of pressure waveforms from different sites in the arterial tree are nearly the same)
[Noordergraf 1978]. To simplify this constrained optimization problem, the damping

parameter A is set to exp(-3/ Lopt )so that the FIRs approximately decay to zero, while
the frequencies in the parameter set o are allowed to take on only discrete values
according to the Fourier Series (i.e., 2nl/Lgy for 1=0,1,..., ceil((Lopt —1)/2)), where
ceil(x) is the smallest integer > x). For each set of frequency parameters { oy }

considered (see below), the corresponding coefficient parameter sets are estimated
through the linear least squares solution. More specifically, similar to Equation (3.1),

Equations (3.5) and (3.6) may be expressed in matrix form as follows:

211 o
b M
|:P21 P22 -P11 -P12] a1 = 0 +e, (3.7
L < y | a2
A by | L1
x b
where
[ Lopt =1 Loy —1 7
opt * opt *
el [P F((Lopt=D*wn) - 2 P! H(WLopt—1" ojn)
Pij= . . . ,
? A%1(0* wyy) 2210 o;))
fix) ={%0%%) I=1,
sin(x) j=2
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Ppi is defined in Equation (3) with L = Lypo¢; @ is a [IxLgpt] vector whose elements are

all zeros for i = 1 and all ones for i = 2; and a-=[ai1 ain:IT and

T . s .
bi =[bi1 bin:l , 1€[1,2], are [nx1] vectors specifying the coefficient parameters
of the two respective FIRs. Then, the least squares estimate of the vector x in Equation

(7) is obtained asx = (ATA)_1ATb. Amongst all of the linear least squares solutions
computed for each considered set of frequency parameters { wj, }, the one that minimizes

the two-norm of the vector e in Equation (7) is selected so as to provide the optimal

estimate of the parameter set {A,a;,b;,w;}. Finally, the number of basis functions n is

determined iteratively by starting with a single basis function representation and then

adding one basis function at a time until the two-norm of the vector e becomes < 10% of

the two-norm of the vector (pp1 +Pp2 ) /2, where py; is defined in Equation (3.10). For

further simplicity, in the kth iteration, the frequency parameters are only estimated for

the newly added basis function with the frequency parameters of the previous (k-1) basis

functions set to the estimates obtained from the (k -1)th iteration. In the k' iteration,

the number of  sets of  frequency parameters considered is
speciﬁcally(ceil((Lopt—1)/ 2))—k+2)2. Thus, the two FIRs are assumed to be

represented by the same number of basis functions but of generally different frequencies.

Next, with the set of basis function parameters {A,a;,,bj,®; } estimated and the two

FIRs fully defined through Equation (4), the common AP waveform input of the model of

Figure (3.1) is estimated through multi-channel least squares deconvolution [Abed-
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Meriam 1997]. That is, the two measured outputs may be expressed in terms of their
common input via convolution as follows:

Lopt =1
Ppit) = kzo h(K)pg(t—K)+ni(t), ie[12], te[ON-1], (3.8)

where n;(t) accounts for any noise. The common input is then estimated by least squares
minimization of n;(t), ie[1,2] [Donald 1960, Noordergraf 1978]. More specifically,

Equation (3.8) may also be expressed in matrix form by stacking each individual equation

corresponding to each t and i, one on top of the other as follows:

Pp1| |H n (3.9)
oo b s

L

where

Ppi =[Ppi(®) Ppi() - pi(N-IT, ie[12], (3.10)

are [Nx1] vectors of the respective measured output samples;

hi(Lopg =1 h@© - 0

H, = : o, iem2),

0 hi(Lopt -1) hi(O)

are the [Nx(N+Lopt-1)] Toeplitz matrices including the estimated parameters of the

respective FIRs;
pa = [pa(_Lopt - 1) pa(_Lopt _2) pa(o) pa(1) pa(N-1)]T

isa[(N+ Lopt -1)x1] vector of the unknown common input samples; and
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L
ni =|:n|(0) n|(1) nl(N—1):| , € [1’2]’
are [Nx1] vectors of the respective noise samples. The least squares estimate of the

vector p in Equation (3.9) is then obtained through the following linear least squares

solution with Tikhonov regularization [Hansen 1987]:

T 1,7
Pa=(H H+u)'H'py, (3.11)

The matrix (HTH+ pl) here is relatively large ((> 3000)x(> 3000)) for one-minute

analysis intervals and a sampling frequency of 50 Hz), and standard computation of its

inverse is therefore very expensive requiring O(N3) operations. However, by exploiting
the Toeplitz structure of this matrix, its inverse is instead computed efficiently in
O(NlogN) operations using the fast circular decomposition method described in [Jain
1978]. The estimated AP waveform is then lowpass filtered with a cutoff frequency of 15
Hz in order to further attenuate any high frequency noise generated in the deconvolution
process. This cutoff frequency is well justified, as the relevant waveform features
generally fall within this frequency range [Chen 1997]. It should be noted that the
estimated AP waveform will be slightly delayed (< 0.1 s) with respect to the actual AP
waveform, because the time delay shared by the FIRs cannot be identified with MBSI.
Finally, beat-to-beat relative changes in CO are estimated from the determined AP
waveform by employing the Windkessel model of Figure (3.2a), which accounts for the

lumped arterial compliance (C a) of the large arteries and the total peripheral resistance
(R a) of the small arteries, as described in [Bourgeois 1976]. That is, since C q may be

nearly constant over a wide pressure range and on the time scale of months [Bourgeois
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1974, Hallock 1937, Zhenwei 2006], proportional CO for each cardiac cycle is calculated

through the following governing model equation:

1 1tes
COoc? pa(tes)‘pa(tbs)*’;tf Po(t)ar |, (3.12)
bs

where p,(t) is again the estimated AP waveform, andtyg,tes,T, and T = R,Cyare
timing parameters that are determined from this waveform as shown in Figure (3.2b).
More specifically, t,g, which denotes the beginning time of the SEI, is identified as the

time of the local minimum that immediately precedes the time of peak SP for the cardiac

cycle; tog, which indicates the ending time of the SEI, is identified as the time of the

minimum of the derivative of the estimated waveform over the interval from the time of

peak SP to the t,g of the next cardiac cycle; T, which signifies the cardiac cycle
duration, is determined as the difference between the tygof successive cardiac cycles;

and t, which is the time constant of the Windkessel model, is estimated by least squares
fitting of a single exponential decay to the reconstructed waveform over an interval

between tgg and t,¢ of the next cardiac cycle, in accordance with the model prediction.
Since the time constants governing R, changes are significantly longer than the cardiac

cycle duration [Berger 1989], the 1 estimates are actually averaged over five cardiac

cycles to attenuate any noise.
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Figure 3.2 Lumped parameter Windkessel model providing the basis for the technique to
estimate beat-to-beat relative changes in cardiac output (CO) from the estimated AP

waveform (p,(t)) in which the wave distortion should be greatly attenuated (see Figure

(3.1)). (b) Illustration generally indicating how the unknown timing parameters in
Equation (3.12), namely t,¢ (beginning time of the systolic ejection interval (SEI)),

tes (ending time of the SEI), T (cardiac cycle duration), and t = R,C, (time constant of
the Windkessel model), are determined from the estimated AP waveform.
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3.3 Methods

We evaluated the technique with respect to experimental datasets that were originally
collected to address related but different specific aims [Mukkamala 2006] and previously
utilized to investigate our initial MBSI technique for estimating the AP waveform using
the standard eigenvector method [Swamy 2007]. Briefly, these datasets consist of
various hemodynamic recordings obtained from four swine (30-34 kg) under general
anesthesia and mechanical ventilation. The hemodynamic recordings include femoral
artery pressure (FAP) and radial artery pressure (RAP) waveforms measured with fluid-
filled catheters, a reference AP waveform measured from the descending thoracic aorta
with a high frequency response micromanometer-tipped catheter, and gold standard
reference beat-to-beat CO measured with an aortic flow probe. These hemodynamic
recordings are available at a sampling frequency of 250 Hz for a total of 253 minutes
during infusions of volume, phenylephrine, dobutamine, isoproterenol, esmolol,
nitroglycerine, and progressive hemorrhage. Table (3.1) shows that these interventions

imposed a wide hemodynamic parameter range for each of the four swine datasets.

We applied the technique to all one-minute, non-overlapping intervals of the FAP and
RAP waveforms resampled to 50 Hz. We evaluated the resulting AP waveform estimates
with respect to the measured reference waveforms (likewise resampled to 50 Hz) in terms
of the root-mean-squared-error (RMSE) of the following parameters: total waveform
(i.e., sample-to-sample), beat-to-beat SP, beat-to-beat PP, and beat-to-beat SEI. For
comparison, we likewise evaluated the PAP waveforms (with respect to the measured AP
waveforms) as well as the AP waveform estimates from our initial MBSI technique and

an autoregressive exogenous input (ARX)-based generalized transfer function [Fetics,
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1999] developed on a subset of the swine datasets as described in [Swamy 2007]. (Prior
to conducting these evaluations, we advanced the AP waveform estimates and the PAP
waveforms so that they were temporally aligned with the measured AP waveforms.)
Since it is customary to report CO errors in percent, we evaluated the resulting beat-to-
beat proportional CO estimates with respect to the reference aortic flow probe
measurements in terms of the root-mean-squared-normalized-error (RMSNE). This
quantity was specifically computed by 1) scaling the proportional CO estimates to have
the same mean value as the reference CO in each animal; 2) normalizing each calibrated
CO error with the reference CO value; and 3) computing the RMS of the normalized,
calibrated CO errors. For comparison, we likewise evaluated the beat-to-beat
proportional CO estimates obtained by fitting the Windkessel model directly to the FAP
and RAP waveforms as well as to the AP waveforms estimated by our initial technique

and the generalized transfer function.
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Table 3.1 The new technique (see Figures (3.1) and (3.2)) as well as alternative
peripheral artery pressure (PAP) waveform analysis techniques were evaluated with
respect to four swine datasets consisting of simultaneous measurements of femoral artery
pressure (FAP) and radial artery pressure (RAP) waveforms, a reference aortic pressure
(AP) waveform, and reference aortic flow probe cardiac output (CO) during diverse
interventions. MAP is mean arterial pressure; SP, systolic pressure from AP; PP, pulse
pressure from AP; SEI, systolic ejection interval from AP; and HR, heart rate.

Hemodynamic Animal
Parameter 1 2 3 4 Total
MAP Range 54-136 58117 45-114 48-119 45 - 136
[mmHg]
SP Range
62— 182 70 — 148 55144 58 - 157 55187
[mmHg]
PP Range
17— 54 17-52 20 - 62 1957 17 -62
[mmHg]
SEI[rI;:]“ge 160 — 400 160 — 340 120 — 240 140 - 300 120 — 400
HR Range 100-223 92190 91 — 243 102-207 91— 243
[beats/min]
CO Range 23-41 17-6.0 24-5.7 13-6.2 13-62
[L/min]
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3.4 Results

Table (3.2) includes the evaluation results for the AP waveforms estimated by the
technique introduced herein, which employs our new MBSI method, for each of the four
swine datasets as well as the corresponding results for the measured PAP waveforms.
The overall total waveform RMSE of the AP waveform estimates was 3.5 mmHg (after a
modest time alignment), whereas the average overall total waveform RMSE between the
PAP waveforms and the measured AP waveforms was 8.6 mmHg (after a more
significant time alignment). Thus, the technique effectively reduced the wave distortion
in the measured PAP waveforms by 59%. As a result, the technique also reduced the
average overall SP and PP RMSEs by 71% and 61%, respectively. However, the
technique did not improve upon the surprisingly small, overall SEI RMSE obtained from
the FAP waveforms. Figure (3.3a) provides a visual example illustrating the significant
differences between the PAP waveforms and the measured AP waveform, while Figure
(3.3b) shows that the AP waveform estimated from these PAP waveforms closely agrees
with the directly measured reference waveform.

Table (3.2) also provides a comparison of the evaluation results for the AP
waveforms estimated by our new technique, our initial MBSI technique, which employs
the standard eigenvector method, and a previous ARX-based generalized transfer
function for each of the four swine datasets. The overall total waveform RMSE of the
AP waveform estimates from our initial technique was 4.6 mmHg, while the average
overall total waveform RMSE from the generalized transfer function was 5.4 mmHg.
Thus, both MBSI techniques provided more accurate AP waveform estimates than the

conventional generalized transfer function even though it was developed on a subset of
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the swine datasets. However, the new technique enhanced the estimation accuracy of our
initial technique by 24%. As a result, the new technique provided similar improvements
in the estimation of SP and PP (but yielded similar results in the estimation of the SEI).
In addition, a more significant advantage of the new technique over the initial technique
is indicated below.

Table (3.3) includes the evaluation results for the beat-to-beat proportional CO
estimated by the new technique via fitting the Windkessel model of Figure (3.2a) to the
estimated AP waveform for each of the four swine datasets as well as the corresponding
results obtained by directly fitting the model to each of the PAP waveforms. The overall
beat-to-beat CO RMSNE from the AP waveform estimates was 12.9%, whereas the
average overall beat-to-beat CO RMSNE from the PAP waveforms was 26%. Thus, the
technique enhanced the beat-to-beat CO estimation accuracy by 50%. Interestingly, the
overall beat-to-beat CO RMSNE from the FAP waveforms was 49% smaller than the
corresponding RMSNE from the RAP waveforms but still 33% larger than the analogous
RMSNE obtained with the technique. Figure (3.4) provides a visual illustration of the
close agreement between the estimated and once calibrated beat-to-beat CO from the
technique and the gold standard reference aortic flow probe measurements for each of the
four swine datasets.

Table (3.3) also provides a comparison of the evaluation results for the beat-to-beat
proportional CO estimated by the new technique and via fitting the Windkessel model to
the AP waveform estimates from our initial technique and the generalized transfer
function. The overall beat-to-beat CO RMSNE from the AP waveforms estimated by our

initial technique was 36.3%, while the average overall beat-to-beat CO RMSNE from the
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waveforms estimated by the generalized transfer function was 20.2%. Thus, the new
technique increased the beat-to-beat CO estimation accuracy of the former technique by
63% and the latter technique by 36%. Note that the beat-to-beat CO RMSNE obtained
with our initial technique was even larger than the corresponding RMSNEs from the PAP
waveforms. As discussed in Section 3.5, this result was mainly due to outliers in the AP

waveform estimation.
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Table 3.2 Quantitative summary of the aortic pressure waveform estimation results in
terms of root-mean-squared-error. The new technique resulted in more accurate AP
waveform estimates in the four swine datasets (see Figure (3.3)) than those obtained from
alternative PAP waveform analysis techniques including the conventional generalized
transfer function (GTF). The root-mean-squared-errors are in units of mmHg for the total
waveform (TW), SP, and PP parameters and ms for the SEI parameter.

Arterial Pressure }‘;\rterial Animal

Waveform Par:;i‘;:r 1 2 3 4 Total

. T™W 2.5 3.9 3.4 3.4 3.5
a\iivt“;:;if‘ﬁ o SP 1.9 5.1 5.0 5.6 48
9 PP 2.8 54 6.4 6.1 56

SEI 22 14 21 22 19

™W 11.6 738 6.3 7.0 8.1
FAP SP 192 135 120 107 137
PP 105 143 102 143 126

SEI 22 19 19 20 19

W 4.0 10.5 9.4 9.3 9.1
RAP SP 5.1 245 167 227 197
PP 4.9 192 103 216 159

SEI 20 38 18 48 33

. W 4.4 4.4 3.8 5.7 46
Es“(’;‘n“iﬁ:l” SP 4.1 5.0 5.0 9.4 6.1
Technique) PP 43 5.9 71 9.9 71
q SEI 23 14 22 22 20

. W 48 5.2 6.9 5.6 5.8
ggpma;fpﬁ SP 74 77 124 96 97
s PP 8.6 9.4 134 112 110

SEI 24 28 46 42 35

. T™W 42 46 6.0 5.1 5.0
(???%Ai sp 3 66 87 65 11
o) PP 438 6.3 8.5 6.8 7.0

) SEI 22 26 35 37 29
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Figure 3.3 (a) Example segments of the measured AP (solid), femoral artery pressure
(dash), and radial artery pressure (dot-dash) waveforms from one of the four swine
datasets (see Table (3.1)). (b) Example segments of the AP waveform measured (solid)
and estimated (dash) by applying the technique to the two segments of the PAP
waveforms (see Figure (3.1)). See Table (3.2) for a complete quantitative summary of
the AP waveform estimation results.
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Figure 3.4 Beat-to-beat CO estimated (and once calibrated) by applying the technique to
the estimated AP waveforms (see Figure (3.2)) plotted against the gold standard reference
aortic flow probe CO measurements for each of the four swine datasets (see Table (3.1)).
The solid line in each plot is the identity line. See Table (3.3) for a complete quantitative
summary of the beat-to-beat proportional CO estimation results.
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Table 3.3 Quantitative summary of the beat-to-beat proportional cardiac output
estimation results in terms of root-mean-squared-normalized-error. The new technique
(see Figure (3.2)) also resulted in more accurate beat-to-beat proportional CO estimates
in the four swine datasets (see Figure (3.4)) than those obtained from alternative PAP
waveform analysis techniques. The root-mean-squared-normalized-errors are in units of
percent.

Arterial Pressure Animal
Waveform for Wmdkessel 1 ) 3 4 Total
modeling
Estimated AP
(New Technique) 11.8 12.3 15.5 10.5 12.9
FAP 16.6 14.8 17.7 19.6 17.2
RAP 39.0 25.6 22.6 48.6 33.9
Estimated AP
(Initial Technique) 44.7 37.8 28.0 37.1 36.3
Estimated AP

(GTF: FAP — AP) 1.6 141 266 160 176

Estimated AP

(GTF: RAP > AP) 200 250 199 260 228
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3.5 Discussions

The present study represents a follow-up to our initial efforts in developing a patient
and time specific technique for mathematically estimating the clinically more relevant AP
waveform from less invasively measured PAP waveforms distorted by wave reflections
[Swamy 2007]. In our initial study, we developed a technique to estimate the AP
waveform from two or more PAP waveforms by employing MBSI rather than using the
conventional generalized transfer function or any training data for that matter. In
particular, the technique models the measured waveforms as individual outputs of
coprime FIR channels driven by the common AP waveform input (see Figure (3.1)) and
then analyzes the differences in the measured outputs, while invoking Poiseuille’s law, so
as to estimate the FIRs through the standard eigenvector method and ultimately
reconstruct the common input via multi-channel least squares deconvolution. We applied
the technique to FAP and RAP waveforms measured from four swine during diverse
hemodynamic interventions, and our results showed superior agreement to
simultaneously measured AP waveforms than a generalized transfer function developed
on a subset of the swine data. The main contributions of the present study are in: 1)
introducing a new MBSI method to more accurately estimate the FIRs and therefore the
AP waveform; 2) proposing to estimate beat-to-beat proportional CO by fitting a lumped
parameter Windkessel model to the estimated AP waveform in which the wave distortion
should be greatly attenuated (see Figure (3.2)); and 3) testing the resulting new technique
for estimating both the AP waveform and beat-to-beat relative changes in CO, while

comparing it to several alternative techniques, based on our four previous swine datasets,
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which also included gold standard reference aortic flow probe CO measurements (see
Table (3.1)).

The basic idea of our new MBSI method is to represent the FIRs with more efficient
basis functions than the standard impulse basis functions assumed by the eigenvector
method. In this way, the number of parameters to be estimated will be reduced thereby
potentially resulting in a marked decrease in the precision component of the FIR
estimation error. We specifically chose damped sinusoidal basis functions to compactly
represent the FIRs (see Equation (3.4)). This choice was made empirically by observing
that the estimated impulse responses relating the measured AP waveforms to each of the
PAP waveforms in one of the swine datasets generally appeared as damped sinusoids.
Thus, the bias component of the FIR estimation error may only increase modestly with
this choice of basis functions. For simplicity, we assumed that 1) the damping could be
represented with a single parameter whose values was set according to the estimated
channel order; 2) the frequencies of the sinusoids could take on only discrete values
according to the Fourier Series; and 3) each of the FIRs could be represented with the
same number of basis functions. Even with these simplifications, the complexity in the
least squares estimation of the parameters of the basis functions increases considerably
with the number of basis functions. Thus, to render a real-time technique (with a one
minute delay), the parameter estimation was designed to only be optimal for a single
basis function representation and sub-optimal for a multiple basis function representation.
We acknowledge that an orthogonal basis set could permit both optimal and practical
parameter estimation. However, it turned out that only one basis function was needed to

represent the FIRs in about three-quarters of the one-minute intervals in the swine
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datasets. As a result, only six parameters were generally estimated by the new method,
whereas ten parameters were, on average, estimated by the standard eigenvector method.
In addition to reducing the number of parameters to be estimated, the new method is also
advantageous in terms of accommodating larger channel orders (by simply redefining the
definition of an insignificant eigenvalue), which are more congruent with the estimated
impulse responses mentioned above. Such channel orders would result in large
estimation errors with the eigenvector method due to the limited frequency content of the
AP waveform.

Our new technique was able to reliably estimate the AP waveform from the FAP
and RAP waveforms in the four swine datasets with an overall total waveform RMSE of
3.5 mmHg (see Table (3.2) and Figure (3.3)). This error effectively represents a 59%
reduction in wave distortion in the measured PAP waveforms. As a result, the technique
was able to similarly reduce the RMSEs of SP and PP, which are perhaps the two most
clinically significant parameters of the AP waveform. Significantly, the aforementioned
overall total AP waveform RMSE represents a 24% improvement with respect to our
initial technique and a 35% improvement with respect to a generalized transfer function
developed on a subset of the swine datasets. The former improvement is likely due to a
reduction in the FIR estimation error variance, while the latter improvement is
presumably a result of accounting for the changes in arterial tree properties induced by
the interventions as well as any inter-subject variability.

As aresult of greatly attenuating the wave distortion, our new technique was also able
to reliably estimate beat-to-beat relative changes in CO in the four swine datasets with an

overall RMSNE of 12.9% (see Table (3.3) and Figure (3.4)). This result is consistent
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with a compelling, previous study in which beat-to-beat proportional stroke volume was
shown to be impressively estimated over a wide hemodynamic range by simply fitting the
Windkessel model to the AP waveform (measured specifically from the descending
thoracic aorta) [Bourgeois, 1976]. Significantly, the aforementioned overall beat-to-beat
CO RMSNE of our new technique represents an improvement of > 25% with respect to
fitting the Windkessel model directly to each of the PAP waveforms and to the AP
waveforms estimated by our initial technique and the generalized transfer function.
Counter to intuition, the beat-to-beat proportional CO estimates obtained from the AP
waveforms estimated by our initial technique were the least accurate. As mentioned
above, this result is mainly due to outliers in the AP waveform estimation. These outliers
may have been caused by an insufficient number of frequency components in the AP
waveform and have essentially been eliminated by the new technique, which required
fewer parameters for estimation.

As an interesting aside, the beat-to-beat CO RMSNE obtained by direct fitting of the
Windkessel model to the FAP waveforms is nearly half that obtained by direct model
fitting to the RAP waveforms (see Table (3.3)). This result may be due to the
surprisingly accurate SEI estimates obtained from the FAP waveforms (see Table (3.2))
and their relatively consistent morphology throughout the interventions. It is unclear
whether these features hold in human FAP waveforms. On the other hand, the beat-to-
beat CO RMSNE obtained from the RAP waveforms was reduced by nearly a third after
the generalized transfer function was applied to these waveforms (see Table (3.3)). To
our knowledge, this result of the generalized transfer function has not been shown before.

However, application of the generalized transfer function to the FAP waveforms did not
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further reduce the already relatively low beat-to-beat CO RMSNE (see Table (3.3))
perhaps because the AP waveform estimates here were not as accurate (see Table (3.2)).
Our new technique (as well as our initial technique) was inspired by the recent efforts
of McCombie et al. who we believe were the first to apply MBSI in the field of
hemodynamic monitoring [McCombie 2005]. These investigators specifically proposed a
technique to estimate the morphology of the common aortic flow waveform input from
multiple PAP waveform outputs and showed its feasibility in a single swine. Figure (3.5)
illustrates the single input, multi-output model upon which their technique was based. As
can be seen from this model, the channels coupling the aortic flow waveform to each
PAP waveform include common dynamics, namely the channel relating the aortic flow
waveform to the AP waveform, and are therefore not coprime. As a result, these
investigators had to develop additional signal processing to estimate the common
channel, which resulted in a considerably more complicated technique than standard
MBSI. Moreover, since their technique does not provide the scale factor of the estimated
input, it cannot be utilized to monitor relative changes in CO. In contrast, our new
technique first estimates the AP waveform input in which the coprime channel
assumption is more tenable and the arbitrary input scale factor is conveniently determined
through Poiseuille’s law and then estimates beat-to-beat relative changes in CO by fitting
the Windkessel model to the estimated waveform in which the wave distortion is greatly
attenuated. We note that it is also possible to estimate the aortic flow waveform by
applying the governing Windkessel model differential equation to the AP waveform

estimated by our technique. However, the aortic flow waveform estimated in this manner
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did not closely agree with the reference aortic flow probe waveform in our swine datasets
perhaps due to noise arising from implementing the required derivative operation.

Our new technique is related to a previous technique that we have developed for
automated and less invasive monitoring of average relative changes in CO by long time
interval analysis of a single PAP waveform [Zhenwei 2006]. The basic idea of this
technique is to circumvent the highly complex wave reflections by effectively applying
the Windkessel model to the waveform variations occurring over time scales greater than
a cardiac cycle in which the distributed arterial tree appears to be lumped [Noordergraf
1978]. In contrast, the technique introduced herein aims to essentially remove the wave
reflections through MBSI and then apply the Windkessel model. The advantage of this
technique is in providing AP waveform estimates as well as beat-to-beat rather than
average proportional CO estimates. The obvious disadvantage is in requiring more than
one waveform for analysis. (Note that the CO RMSNE that we reported earlier for our
previous technique in [Zhenwei 2006] is not directly comparable to the results of this
study, as the swine evaluation data utilized herein represent only a subset of the data
employed in our earlier study.)

The new technique introduced herein permits both automated and less invasive
central hemodynamic monitoring through estimation of the AP waveform and beat-to-
beat relative changes in CO by mathematical analysis of multiple PAP waveforms. In
addition, the technique may possibly prove useful for local hemodynamic monitoring at
each PAP waveform measurement site through the corresponding estimated FIR. The
technique could potentially be applied to non-invasive PAP waveforms measured from

patients with various cardiovascular diseases (e.g., hypertension, heart failure, shock) in a
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number of different settings (e.g., emergency rooms, intensive care units, homes) as well
as to invasive PAP waveforms obtained from critically ill patients. While only one PAP
catheter is commonly used in the latter patients, a subset of these patients is also
instrumented with the more risky pulmonary artery catheter for operator-required
measurements of average CO via the standard thermodilution method [Marino 1998].
For this pétient population in particular, the technique as applied to two invasive PAP
waveforms (e.g., measured from the routinely cannulated femoral and radial arteries
[Marino 1998]) may be preferred. Future investigations of the technique with respect to
invasive and non-invasive PAP waveforms measured from humans are needed to

eventually realize these potential applications.
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Figure 3.5 Single input, multi-output model of the arterial tree providing the basis for a
previous MBSI technique to estimate the shape of the aortic flow waveform from
multiple PAP waveforms. In contrast to the model of Figure (3.1), the common input to
be estimated is the aortic flow waveform (q(t)). However, the channels coupling the
aortic flow waveform input to the PAP waveform outputs are not coprime, as they share
the channel relating the aortic flow waveform to the AP waveform. Since common
channel dynamics cannot be estimated with MBSI methods [Xu 1995], the previous
technique required additional complicated signal processing. In addition, this technique
did not provide the scale factor of the aortic flow waveform and therefore cannot be
utilized to monitor relative changes in CO.
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CHAPTER 4

CONTINUOUS LEFT VENTRICULAR EJECTION FRACTION MONITORING

BY AORTIC PRESSURE WAVEFORM ANALYSIS

4.1 Introduction

Left ventricular ejection fraction (EF) — the ratio of the stroke volume (SV) to the
end-diastolic volume (EDV) of the left ventricle — is widely recognized as one of the
most clinically significant indices of cardiac function. This recognition is largely due to
its ability to predict mortality in patients with heart failure and coronary artery disease
(see, e.g., [Bosch 2005, Curtis 2003] and references therein) as well as to readily
distinguish between systolic and diastolic dysfunction [Katz 1992]. Serial changes in EF
at rest and transient rate of changes in EF during exercise may offer additional prognostic
value [Cintron 1993, Sridhara 1993].

The standard clinical method for measuring EF is through imaging the left ventricular
volume via echocardiography, radionuclide techniques, contrast angiography, ultra-fast
computed tomography, or magnetic resonance imaging [Rumberger 1997]. Each of these
imaging methods offers certain advantages over the others in terms of, for example, level
of accuracy, invasiveness, and radiation exposure. However, they generally share the
major disadvantages of requiring a trained operator to make each individual measurement
and expensive capital equipment. While sonomicrometry, the conductance catheter, and
the non-imaging nuclear monitor are currently available for automated and continuous
monitoring of left ventricular volume [Burkhoff 1990, Dellegrottaglie 2002, Rushmer

1956] these alternative methods suffer from significant practical disadvantages (e.g., high
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level of invasiveness) that have prevented them from supplanting or even complementing
imaging methods in clinical practice.

Thus, there is a need for a practical method capable of automated and continuous EF
monitoring. Indeed, this need may be regarded as urgent due to the rapidly growing
population with chronic heart disease [Ansari 2001] together with the projected shortage
of clinical staff.

Based on our previous work in the field of hemodynamic monitoring [Lu 2006,
Mukkamala 2006, Swamy 2007, Swamy 2008] our hypothesis is that EF may be
accurately estimated by deciphering the information embedded in the temporal variations
of blood pressure waveforms. In this way, EF may be continuously monitored in various
inpatient settings with routinely employed invasive catheter systems [Marino 1998] as
well as automatically measured in outpatient clinics and at home with commercial non-
invasive transducers (see, €.g., the Finometer and Portapres, Finapres Medical Systems,
The Netherlands and the T-Line Blood Pressure Monitoring System, Tensys Medical,
San Diego, CA). As an initial step towards this ultimate end point, in this study, we
specifically developed a technique to continuously estimate beat-to-beat EF as well as
relative changes in beat-to-beat EDV and other important hemodynamic variables by
model-based analysis of the aortic pressure waveform. We then performed experiments
in six dogs in order to evaluate the technique with respect to intermittent reference EF
and EDV measurements via standard trans-thoracic two-dimensional echocardiography
during various pharmacological and volume interventions. Our results demonstrate,
perhaps for the first time, the feasibility of estimating EF from only blood pressure.

Preliminary versions of this work have been reported [Mukkamala 2006, Swamy 2007].
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4.2 Model Based Analysis Technique

Our model-based analysis technique is generally implemented in three steps. First,
the aortic pressure waveform is represented with a circulatory model. Second, the model
is fitted to each beat of the waveform so as to estimate its parameters to within a constant
scale factor. Third, the proportional parameter estimates are utilized to compute beat-to-
beat absolute EF by cancellation of the scale factor as well as monitor other beat-to-beat
proportional hemodynamic variables. We describe the details of these steps below while
stating the underlying assumptions and justify the major assumptions in the Discussion
section.

First, the measured and sampled aortic pressure waveform is assumed to be well
represented with the lumped parameter model of the left ventricle (lv), aortic valve, and
arteries (a) shown in Fig. la in electrical analog form. Here, voltage is analogous to
pressure (P), charge, to volume (V), and current, to flow rate. In particular, the left
ventricle is represented with the variable capacitance or compliance (C) model whose
elastance (E = 1/C) oscillates over time (t) so as to drive the flow of blood [Sagawa 1977,
Suga 1974]. The aortic valve is modeled by an ideal diode (i.e., Ry (t) = P4(t)) during the
systolic ejection interval wherein the valve is opened) thereby making aortic stenosis a
contraindication of the technique. The arteries are represented with a two-parameter
Windkessel model accounting for the compliance of the large arteries and the resistance
(R) of the small arteries [Noordergraaf 1978]. In addition to compliance, the left
ventricle (and large arteries) is parameterized with a zero-pressure (0) filling volume (i.e.,

unstressed volume). Finally, C, is assumed to be constant over a monitoring period
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(e.g., days to weeks), whereas the remaining parameters are assumed to be constant only
over each cardiac cycle.
Thus, the pressure-volume relationship of the left ventricle model and the differential

equation governing the entire model during the systolic ejection interval are given as

follows:
Pat) 0
__4a
|V(t) m*’\/‘v, tbs<tSteS’ 4.1)
d Pa(t) a( )
_d 5N P.(t)+ o <t<tge, 42)
dtE, (t) Ca dt a’m R, bs ="~ es

where the term P,(t)/E;, (t)is the stressed left ventricular volume during the systolic
ejection interval, and the subscripts bs and es respectively stand for the beginning and
end of the systolic ejection interval. Integrating Equation (4.2) from t,5 to some time t
within the systolic ejection interval, while dividing by the constant scale factorC,, yields

the following equation:

Pa(tbs) _ P,(t)
CaElv(tbs) CaElv(t)

=P,(t)-P (tbs)"' j Pa(h)ydd,  tpg <t<t (4.3)

tbs

es’

where 1=R_,C, is the Windkessel time constant. Note that the left-hand side of this

equation is proportional to the volume of blood that has been ejected by the left ventricle
by time t in the systolic ejection interval, while the right-hand side is proportional to the

volume of blood that has entered the arteries by this time. Thus, whent = to¢, both sides
of the equation indicate proportional SV orSV/C,. Further note that the term

P,(t)/ C4E () here is proportional to the stressed volume that is remaining in the left
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ventricle at time t in the systolic ejection interval. Thus, the terms Py (tyg)/ CoE) (ths)
and P,(teg)/ C,E), (tes) respectively represent proportional stressed left ventricular

volume at the beginning time of the systolic ejection interval wherein ejection has yet to
commence (i.c., proportional stressed EDV or stressed EDV/C,) and at the end time of
the systolic ejection interval wherein ejection has ceased (i.e., proportional stressed left

ventricular end-systolic volume (ESV) or stressed ESV / C,).

Second, to fit the model to the samples of the aortic pressure waveform so as to
estimate its parameters, Equation (4.3) is discretized by replacing t with nT, where T is
the sampling period and n denotes discrete-time, and approximating the integral via the

trapezoidal formula as follows:

PalmpsT)  Py(nT)
CaEiv(MpsT)  CaEyy (nT)

(4.4)
Py -PypsD+ - 3 (PykT)+Py(k=1T)),  npg <n<nge.
2t k= nbs +1

Here, T and P,(nT)for n,g <n<ngg (i.e., aortic pressure samples within the
systolic ejection interval) are known, while T (i.e., proportional total peripheral
resistance) and C4E;, (nT) for np,g <N <ngg (i.e., proportional left ventricular elastance

samples within the systolic ejection interval) are unknown. It is evident that Equation
(4.4) does not provide a basis for uniquely determining these unknown proportional
model parameters and thus the proportional stressed left ventricular volume terms, as it

represents an underdetermined set of equations with ngg —Npgequations and

Ngs — Nps + 2unknowns (Where Ngg —Npg~ 80 for T = 4 msec).
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To arrive at a solvable (i.e., overdetermined) set of equations, a parametric function is
assumed to succinctly characterize the temporal evolution of E, (t)over each cardiac

cycle. In particular, the following, previously proposed parametric raised cosine function

is employed:

Emin + —E-anz—-Em—m{1 - COS(MJ}, tbi <t< tbi + TS (4.5)
S

21'tt(t - (tbi + TS ))

S

Elv(t)"—‘ﬁ Emin +Emax2_m{1+008( )}, tbi+TS St<tbi+1.5Ts

Eminr tbi +1 5Ts <t

\

where E.,, and E 5, respectively represent the minimum and maximum ventricular
elastances over a cardiac cycle; Tg indicates the time duration to reach Eq,5, from

Emax ; and the subscript bi stands for the beginning of the isovolumic contraction phase

(see solid line in lower panel of Figure (4.1b)) [Heldt, 2002]. Substitution of Equation
(4.5) into Equation (4.4) reduces the number of unknowns to five, namely 1, C_Eqax >
CaEmins Ts, and C,E;, (npsT) (i.e., proportional left ventricular elastance at the
beginning time of the systolic ejection interval). Further, C,Eiy is assumed to be equal
to 0.05-C,Eax SO as to reduce the number of unknowns to four (see gray font in Figure

(4.1b)). The four unknowns are then estimated for each beat in two steps.

In the initial step, t is estimated from the diastolic interval of the aortic pressure
waveform (i.e., from the time of the minimum of the first difference of the waveform
between the time of the peak systolic pressure and the time of the local minimum

immediately preceding the subsequent peak systolic pressure (defined as nggT of the
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beat) to this latter time (defined as npgT of the next beat)). In particular, since the

lumped parameter model predicts that aortic pressure should decay like a pure
exponential during the diastolic interval, T is estimated by least squares fitting of an

exponential to this interval (see Figure (4.1b)). Optimal fitting is achieved in closed-form

after log transformation of aortic pressure. Since the time constants governing

R, changes are significantly longer than the cardiac cycle duration [Berger 1989], the t

estimates are then averaged over ten successive cardiac cycles to attenuate any noise.
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Figure 4.1 Model-based analysis technique for monitoring EF. (a) Lumped parameter
model of the left ventricle and arteries upon which the technique is based. (b) E,(t) in

the model is assumed to vary over time according to a parametric raised cosine function
(solid line in the lower panel).
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In the subsequent step, the estimated T is substituted into Equation (4.4), and the
remaining unknowns in this equation, C;Eq 45y, Ts, and CEy, (npsT), are estimated by
least squares fitting of the equation to the systolic ejection interval of the aortic pressure
waveform (i.e., the remainder of the beat). Optimal fitting is achieved by numerical
search over the following physiologic range of the three unknowns: 1) 0 (physical

minimum value) < C,E,, < 15 (3 times the nominal value reported in the literature
[20], [24], [25], [26]; 2) Y4 QT < Tg < 44 QT, where the QT interval is obtained from a

simultaneous ECG measurement (with the underlying assumption that the electrical QT

interval is a rough approximation of the mechanical time interval between the start of the
upstroke to the end of the downstroke of E,(t); and 3) CE, (ty + Ts - Teje) <
CaE(MpsT) < CaEyy (i + Ts), where Tgje is the duration of the systolic ejection
interval (to ensure that the end time of the systolic ejection interval does not occur prior
to the time of Ep,5,). With the estimated C,E 55, T, and C4E), (NpsT), CaE (nT)is
computed for Npg < N < Nggthrough Equation (4.5).

Third, beat-to-beat absolute EF is computed from the resulting C,E;, (nT)for
Nps <N <nNgg and the measured P(t) by cancellation of the C, scale factor as follows:

SV Pa(npsT) _ Pa(nesT)
_Ca _CaEy(MpsT) CgEp(nesT)

EDV Pa(npsT) +_\ﬁ

Ca CaEv(npsT) Cq

EF

(4.6)

where \/,3 / C4 (i.e., proportional unstressed left ventricular volume), in contrast to the

other terms in the right-hand side of this equation, is neither estimated nor measured but
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rather assumed to take on a nominal value (see below). Note that the term

Pa(nesT)/C,E (NgsT) (i.e., proportional stressed ESV) should correspond to the
minimum value of P,(nT)/C,E, (nT)over n,g <n<ngg (i.c., proportional stressed left

ventricular volume samples within the systolic ejection interval). However, such
correspondence may not always hold due to imperfect identification of the end time of
the systolic ejection interval (or, equivalently, the beginning time of the diastolic

interval). In these instances, P,(nggT)/ C,E), (NegT) in Equation (4.6) is replaced with
the minimum value of P,(nT)/ C4E,, (nT) overnyg <n<ngq.

Note that by-products of the above three steps are beat-to-beat proportional estimates

of EDV, SV, cardiac output (CO = HR:SV, where HR is heart rate), R,, and Ep, 54

(which is known to be a relatively specific index of ventricular contractility [Sagawa
1977, Suga 1974]. Thus, relative changes in these important hemodynamic variables

may be monitored as well.

4.3 Materials and Methods

Experimental Procedures

To evaluate the model-based analysis technique, experiments were performed in
six normal adult beagles (10-15 kg). All experimental procedures were reviewed and
approved by the MSU All-University Committee on Animal Use and Care.

In one dog, a sterile surgical procedure was employed for implanting chronic
recording transducers as follows. General anesthesia was induced with an intravenous
injection of propofol (2.2 — 6.6 mg/kg) and maintained with inhaled isoflorane (1.5 —

2.5%), and mechanical ventilation was instituted. A left lateral thorocotomy was
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performed. An ultrasonic flow probe was placed around the ascending aorta for gold
standard reference SV and CO (Transonic Systems, Ithaca, NY), while a tygon catheter
was placed in the left atrial appendage for unrelated purposes. The chest was evacuated
and closed in layers, with the cable and catheter tunneled subcutaneously and exteriorized
between the scapulae. The dog was then allowed ten days for recovery.

The chronically instrumented dog and the remaining five dogs were then studied
as follows. General anesthesia was induced and maintained as described above but
mechanical ventilation was not employed. A micromanometer-tipped catheter was
inserted into a femoral artery and positioned under fluoroscopic guidance in the
descending thoracic aorta (see below) for the aortic pressure waveform (Millar
Instruments, Houston, TX). A similar catheter was also placed in the opposite femoral
artery of half the dogs for future studies. A catheter was inserted into a cephalic vein for
drug and isotonic fluid administration, and surface electrodes were placed for two frontal
ECG leads. All of the analog transducer outputs were interfaced to a personal computer
through an A/D conversion system (DataQ Instruments, Akron, OH). The cardiovascular
measurements were then recorded in each dog at a sampling rate of 400-1000 Hz over the
course of 50-170 minutes during a subset of the following interventions to alter EF and
other hemodynamic variables: infusions of dobutamine, esmolol, verapamil,
phenylephrine, nitroprusside, and volume as well as progressive hemorrhage. Various
infusion rates were employed followed by brief recovery periods. During the recording
session, trans-thoracic two-dimensional echocardiography (GE Vivid 7, Horton, Norway)
was intermittently used for four-chamber left apical imaging in order to calculate

reference EF and EDV. (This single plane method was shown to be nearly equivalent to
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a biplane method in terms of measuring absolute EF and relative changes in EDV and
ESV [Sutton, 1998].) A 5-10 beat cine echocardiographic recording at > 90 frames/sec
was obtained at a time for the chronically instrumented dog, whereas 5-10 beat cine
echocardiographic recordings at the same frame rate were obtained in triplicate for the
five acutely studied dogs.
Data Analysis

The model-based analysis technique was applied off-line to the aortic pressure
waveforms resampled to 250 Hz with the QT interval automatically detected from the

surface ECGs using a previously introduced wavelet-based method [Maetinez 2004] and
V|e / C, set to the nominal canine value of 15 mmHg as prescribed in [Suga 1974,

Bourgeois 1976]. The resulting beat-to-beat EF and proportional EDV and Ea

estimates were then averaged over multiple beats for evaluation against the reference
measurements and known drug effects (see below).

Reference EDV and ESV, and thus EF, were established by manually tracing the
endocardial border of the single plane images, excluding papillary muscles, at end-
diastole and end-systole and then applying Simpson’s rule [Schiller 1991]. This method
was performed for two beats of each cine echocardiographic recording, and the resulting
values were then averaged over the two beats. For the five acutely studied dogs, the
values were further averaged over each set of triplicate cine echocardiographic
recordings. Thus, in these dogs, the reference EF and EDV represent six beat averages.
For the chronically instrumented dog, the reference echocardiographic values were
validated in part by noting a tight correspondence between the echocardiographic SV and

the gold standard aortic flow probe SV (p = 0.92).
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To compare the average proportional EDV estimates with the corresponding absolute
reference values, the estimates were first scaled to have the same mean as the reference
values in each dog. The average EF and average calibrated EDV estimates were then
evaluated against their corresponding reference values through 1) standard Bland-Altman
analysis for a comprehensive illustration of the estimation errors as a function of the
reference values (rather than the average of the estimated and reference values) and an

indication of the bias p and precision o of the estimation errors [Bland 1986] and 2) the

root-mean-square of the estimation errors (RMSE=\/p2 +02) for a simple scalar

metric indicating the overall error size. For the chronically instrumented dog, the
resulting beat-to-beat proportional CO estimates were likewise calibrated and then
compared to the corresponding absolute reference aortic flow probe values through the
RMSNE (i.e., RMS of the estimation errors ﬁormalized (N) by the reference values), as
CO errors are customarily reported in percent [Crtichley 1999]. Finally, the average
proportional E,,, estimates were qualitatively evaluated in terms of whether they
changed in the physiologically expected manner in response to the positive inotrope
dobutamine and the negative inotrope esmolol. (Note that verapamil acted more like a

vasodilator in our study.)

4.4 Results

Figure (4.2) illustrates exemplary segments of the aortic pressure waveform measured
from one of the dogs during baseline, dobutamine, and volume infusion conditions. Note
that the aortic pressure waveform consistently exhibited a smooth upstroke during the

systolic ejection interval and an exponential decay during the diastolic interval despite
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large variations in EF and mean aortic pressure (MAP). This result generally held for the
entirety of the waveform as well as for the waveforms of the remaining five dogs. Thus,
the lumped parameter model of Figure (4.1a), which accounts for smooth dynamics, was
representative of the measured aortic pressure waveforms.

The Table and Figure (4.3) summarize the results of applying the model-based
analysis technique to the measured aortic pressure waveforms. In particular, the Table
includes the hemodynamic range and average EF and calibrated EDV RMSEs for each
dog, while Figure (4.3) illustrates Bland-Altman plots of all of the average EF and
calibrated EDV errors for the six dogs. As can be seen, the employed interventions
imposed a wide spectrum of hemodynamic conditions but did not result in a state of
severe systolic dysfunction. The average EF RMSE was 5.6% over all the dogs and was
generally consistent in each dog, deviating most in dog 1 with a value of 8.5%. Further,
the average EF RMSE showed only a small bias component of ~1%. While the average
EF emrors did show a negative correlation with the corresponding reference
echocardiographic EF values (p = -0.61), removal of the few large errors in the very high
reference EF range (> ~80%; see below) substantially reduced this correlation. The
average calibrated EDV RMSE was 4.1 ml over all the dogs and was likewise generally
consistent in each dog, except for dog 1 with a value of 8.6 ml. The average calibrated
EDV RMSE has no bias component due merely to the calibration step. Further, the
average calibrated EDV errors were uncorrelated with the corresponding reference
echocardiographic EDV values (p = 0.06).

Figure (4.4) illustrates the results from all six dogs in terms of a plot of the average

EF estimates versus the corresponding reference echocardiographic values. (Note that an
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analogous plot of the calibrated EDV results may misleadingly reveal strong correlation
simply due the calibration step.) Figures (4.5) and (4.6) illustrate the results from dogs 2

and 5 in terms of trends in the EF, calibrated EDV, and C_E,,5, estimates (dark lines) as

a function of time, along with the corresponding intermittent reference echocardiographic
values (gray circles) and the employed interventions (underlines). These figures not only
further reveal the correspondence between the model-based analysis technique and
echocardiography but also demonstrate the advantage of the new technique in providing

continuous hemodynamic monitoring. In addition, consistent with expectation, CoEax

increased during dobutamine and decreased during esmolol.
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Figure 4.2 Exemplary segments of the aortic pressure waveform measured from the
descending thoracic aorta in dog 2 during baseline, dobutamine, and volume infusion
conditions.
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Table 4.1 Summary of the hemodynamic range and results of the model-based analysis
technique for each dog. EF is left ventricul<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>