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ABSTRACT

REGULATION OF ANGIOTENSINOGEN GENE EXPRESSION BY
TRANSFORMING GROWTH FACTOR-BETAL1 IN LUNG FIBROBLASTS

By

Amal Tawfik Mahmoud Abdul-Hafez

Idiopathic Pulmonary Fibrosis (IPF) is a progressive and usually fatal lung
disease leading to decreased lung volume with distorted architecture and thick walled
airspaces. Local activation of renin angiotensin system (RAS) plays a key role in the
fibrogenic response of the lung tissue. Several studies showed that the octapeptide
angiotensin II (Ang II), the active peptide of RAS, plays an important role in alveolar
epithelial cell apoptosis and hence contributes to fibrosis of the lung. Angiotensinogen
(AGT) is the only known precursor to Ang II, while angiotensin converting enzyme-2
(ACE-2) acts on Ang II peptide to produce the opposing action heptapeptide angiotensin
1-7 (Ang 1-7).

In this study, expression of these two genes (AGT and ACE-2) is investigated in
IPF with focus on AGT gene expression in human lung fibroblasts. Increased AGT gene
expression is detected in the IPF lung tissue and found to co-localize to apoptotic alveolar
epithelial cells and to myofibroblast foci, these are histologic features of IPF with
myofibroblast foci an indicator of worsening of fibrosis. Myofibroblasts originate from
fibroblasts under the influence of the profibrotic cytokine transforming growth factor-
betal (TGF-B1). This transition from fibroblasts to myofibroblasts is found to be
accompanied by an increase in AGT gene expression. In the study presented here,

molecular mechanisms by which TGF-B1 induces AGT gene expression are investigated.



The data show that TGF-B1 stimulates AGT gene expression in human lung
fibroblasts by increasing the binding of two transcription factors, JunD and hypoxia
inducible factor (HIF)-1a, to an AGT promoter domain close to the transcription start
site, suggesting a molecular mechanism linking hypoxia signaling and fibrogenic stimuli
in the lungs. This TGF-B1 responsive domain in AGT promoter contains three single
nucleotide polymorphisms (SNPs). These SNPs are shown here to alter transcription
factor binding to AGT promoter in response to TGF-B1 in human lung fibroblasts. This
suggests that AGT expression in response to TGF-B1 may be dependent on the
individual’s haplotype. On the other hand, gene expression of ACE-2, the Ang II
degrading enzyme, is found to be down-regulated in IPF. Mechanisms for this down-
regulation involve the ACE-2 product Ang 1-7 and the angiotensin receptor AT,. This
suggests impairment of balance between Ang II production and degradation in conditions
promoting pulmonary fibrosis.

In conclusion, this study implies that the haplotype of the individual contributes to
the imbalance between Ang II production and degradation by affecting AGT gene

expression in response to the profibrotic factor TGF-p1.
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CHAPTER 1:

GENERAL INTRODUCTION



RENIN ANGIOTENSIN SYSTEM

Components of Renin Angiotensin System

The renin angiotensin system (RAS) (Figure 1.1) has been traditionally viewed as
an endocrine system “Endocrine RAS” playing a significant role in blood pressure
regulation. The active player of the renin angiotensin system is known as the octapeptide
angiotensin II (Ang II). Angiotensinogen (AGT) is the only known precursor to Ang II.
AGT is produced and secreted into the circulation by liver hepatocytes. It may also be
expressed locally within tissues. In the endocrine RAS, the kidney produced enzyme
“renin” acts on circulating AGT protein. Renin cleaves AGT to produce a fragment of 10
amino acids known as angiotensin I (Ang I) that is converted by angiotensin-converting
enzyme (ACE) to the active octapeptide Ang II. Alternate enzymatic pathways to
generate Ang I and Ang II exist as well, where enzymes other than renin and ACE, such
as tonin or Cathepsin D and trypsin, Cathepsin G or chymase, contribute to the
production of Ang I and Ang II.

Ang II exerts its actions through binding to specific cell surface angiotensin
receptors. Two main receptors to Ang II have been identified; AT, and AT, both belong
to superfamily of seven transmembrane G-protein coupled receptors. The AT, receptor
mediates all of the classical actions of Ang II (vasoconstriction, sodium retention, cell
growth and proliferation), while AT, receptor promotes vasodilatation, cell
differentiation, inhibition of cell growth and apoptosis and may play a counterbalancing

role to the effects of Ang II on AT; receptor (de Gasparo et al. 2000).



In addition to Ang I and Ang II peptides, a number of bioactive peptides, such as
angiotensin III (Ang III), angiotensin IV (Ang IV) and angiotensin 1-7 (Ang 1-7) can be
generated by alternative enzymes including angiotensin converting enzyme 2 (ACE-2),
aminopeptidase A, endopeptidase and aminopeptidase B/N. Ang III and Ang IV are
thought to play a major role in the brain and blood pressure control. Ang 1-7, also a
bioactive peptide in RAS, is considered to play a role of opposing effects to Ang II and is
thought to represent a negative feedback mechanism controlling Ang II actions in tissue
and cardiovascular functions. (Filippatos et al. 2001, Montani & Van Vliet 2004, Ferrario

et al. 2004, Chansel & Ardaillou 1998, Banegas ef al. 2006, Pan et al. 2008).

Local Renin Angiotensin System (Local RAS)

More recently, RAS components expression has been detected in variety of
tissues such as heart, kidney, liver, lung, brain, pancreas and adipose tissue as well as
nervous, reproductive and digestive systems, introducing the concept of “Local RAS”
(Filippatos & Uhal 2003, Strazzullo & Galletti 2004, Leung & Carlsson 2005, Paul e al.
2006). This local system can operate in an autocrine, paracrine and/or intracrine manner
in response to various physiological or pathophysiological stimuli. The local RAS exerts
both hemodynamic functions as well as multiple and novel functions where brain and
intrarenal RAS are thought to contribute to salt balance and blood pressure control; heart
and vascular RAS are involved in cardiovascular pathology; while novel actions of
locally generated angiotensin peptides include regulation of cell growth, differentiation,

proliferation and apoptosis, reactive oxygen species (ROS) generation, hormonal



secretion, tissue inflammation and fibrosis (Leung 2004, 2007, Montani & Van Vliet

2004, Li et al. 2004a).

Local RAS and Fibrosis

Local RAS is believed to play a key role in fibrogenesis. Fibrogenesis studies
have utilized inhibitors of the RAS, angiotensin converting enzyme inhibitors (ACEi’s)
and angiotensin receptor antagonists (ARAs), to show the role of RAS in the initiation
and progression of fibrous tissue accumulation. These RAS inhibitors have shown to
prevent fibrogenesis of the heart (Weber & Sun 2000), liver (Yoshiji et al. 2001), kidney
(Klahr & Morrissey 1997), pancreas (Ko et al. 2006) and lung (Wang et al. 2000a,
Marshall et al. 2004, Uhal et al. 2007a). This suggests that the local activation of RAS
plays a key role in fibrogenic response of these tissues by mechanisms independent of the
blood-derived RAS as shown by in vitro and tissue explants studies (Li et al. 2003b,

2004a) for pulmonary fibrosis.

ANGIOTENSINOGEN
Angiotensinogen Gene

The human angiotensinogen (AGT) gene is located on chromosome 1q42-q43 and
contains 5 exons/4 introns showing organization similar to other serine protease
inhibitors (serpins) superfamily to which AGT belongs. The human AGT gene encodes
the human angiotensinogen molecule, an a,-globulin protein (485 amino acid), with a

molecular weight of about 61 kDa. Exon 1 of the human AGT gene encodes for a short



37bp 5' untranslated tract, with the second exon encoding the initiation methionine, signal

peptide, and the majority of the mature protein (Jeunemaitre 2004, Brasier et al. 1999).

A large number of single nucleotide polymorphisms (SNPs), over 140 SNPs, have
been described in the 5’ flanking region, exons, introns, and 3' region of the AGT gene

(www.ncbi.nlm.nih.gov/SNP, AGT gene ID:183). Among these SNPs, two

polymorphisms; the coding SNP (M235T) in exon 2 and the 5' flanking region SNP G-
6A, occurring almost at the same frequency and are in complete linkage disequilibrium,
have been most frequently studied (Jeunemaitre et al. 1997). The M235T polymorphism
has been associated with increased plasma angiotensinogen levels, while the G-6A
polymorphism has been associated with increased expression of the AGT gene in vitro
using luciferase assays suggesting transcriptional regulation as a possible explanation for
increased plasma angiotensinogen with the M235T polymorphisms (Inoue et al. 1997).
However, the effects of polymorphisms on AGT gene expression may be more complex,
since other polymorphisms, C-532T, A-217G, C-18T, A-20C, T+31C, are also in linkage
disequilibrium with G-6A and M235T, and may affect AGT transcription (Jeunemaitre

2004).

Angiotensinogen Gene Expression

AGT abundance is regulated at the transcriptional level through hormonal and
cell-type specific regulators. Constitutive human AGT gene transcriptional control has
been studied extensively in liver (Brasier et al. 1999). The human angiotensinogen core
promoter element 1 (AGCE]) site, located between the TATA box and transcription

initiation site, was shown to be a critical regulator of AGT transcription by binding to



human angiotensinogen core promoter binding factor 1(AGCF1) in the human hepatoma
cell line HepG2 cells (Yanai et al. 1996). USF1 has been identified as a component of
AGCF1 (Yanai et al. 1997a). AGCE1 was also shown to be required for the activity of an
upstream AGT enhancer, ATF-like element (ALE) (Yanai ef al. 1997b). In addition to
AGCE], Yanai also describes two AGCE?2 sites, located upstream and downstream of the
transcription initiation site and show a possible cell type-dependent function (Yanai ef al.
1997c). Other cell type-dependent elements controlling AGT transcription are; direct
repeat sequences (DR) in AGT promoter that contribute 50 or >95% to AGT transcription
in liver or kidneys respectively, whereas same sequences are not required in the heart and
brain (Shimizu et al. 2005), and a 3'-downstream enhancer that binds an AP-3-related
factor and human angiotensinogen enhancer factor-1 (hAEF-1) (Nibu et al. 1994).

Inducible human AGT transcription has been studied in response to several
factors. In HepG2 cells, interleukin (IL)-6 induces AGT transcription via STAT3 binding
to one of three acute phase response elements (APREs) present between -350 to —122
upstream of transcription start site (Ray ef al. 2005). Recently, Jain et al. suggested that
three transcription factors giucocorticoid receptor (GR), STAT-3, and HNF-1a bind to
the APREs region of the hAGT gene promoter and are responsible for IL-6 induced
promoter activity of this gene in liver cells (Jain et al. 2007). Upregulation of human
AGT gene transcription in Hep3B hepatocytes by interferon-gamma was shown to
involve STATI1-binding motif in the AGT promoter between -271 and -279 in a
mechanism separate from IL-6 upregulation of AGT by STAT3 (Jain et al. 2006).

Other inducers of AGT transcription include estrogen, through an estrogen

responsive element near TATA box of the promoter (Morgan et al. 2000). In a study



suggesting relation between adipose AGT secretion in obesity and elevated blood
pressure, AGT gene expression and secretion in adipose tissue were found to be
stimulated by cyclic AMP via increased DNA cyclic AMP responsive element (CRE)
binding activity (Serazin et al. 2004).

Repression of AGT gene transcription was described by Date et al., where Finb,
a multiple zinc finger protein, was reported to repress transcription of the human
angiotensinogen gene via binding of two elements in the 5' flanking region of the human
AGT promoter (Date et al. 2004). Expression of AGT gene was also shown to be
repressed in HepG2 cells in response to bile acids via the small heterodimer partner
(SHP) acting on the binding site of hepatocyte nuclear factor-4 (HNF-4) on the AGT
gene promoter (Shimamoto et al. 2004).

AGT gene expression control in the lung has been studied in pulmonary epithelial
cells, where the cardiovascular drug “amiodarone” induced AGT transcription through
the AP-1 site present between the TATA box and transcription start site (Uhal et al.
2007b). Data in support of these findings will be discussed in detail in chapter 2 and

appendix B.

Polymorphisms and Angiotensinogen Expression

The AGT promoter region between TATA box and transcription start site has
three identified SNPs, G-6A, C-18T and A-20C. These SNPs have shown variations in
the AGT promoter — driven transcription and in transcription factor binding to variant
DNA sequences (Inoue et al. 1997, Yanai et al. 1997a) indicating the role of this

promoter region in controlling the level of AGT expression. Among the SNPs that affect



transcription factors binding is the A-20C, where estrogen receptor and the orphan
receptor Arp-1, were shown to bind the AGT promoter in HepG2 cells when nucleotide
A is present (Zhao et al. 1999, Narayanan et al. 1999). The G-6A SNP showed specific
interaction with the nuclear factor YB1 where co-transfection experiments of YBI
reduced basal AGT promoter activity in a dose-dependent manner. Although these
observations suggested a possible role for YB1 in modulating AGT expression, this
function is likely to occur in the context of complex interactions involving other nuclear
factors (Nakajima et al. 2002).

The AGT gene promoter SNP A-217G, was also reported to play a role in AGT
gene expression. The nucleotide sequence of this region of the AGT gene promoter was
shown to bind strongly to CAAT/enhancer-binding protein (C/EBP) family transcription
factors and glucocorticoid receptor (GR) when nucleotide A was present at -217. In
addition, reporter constructs containing the human AGT gene promoter with nucleotide A
at -217 had increased basal and interleukin-6 stimulated transcriptional activity compared
with nucleotide G at -217 (Jain et al. 2002, 2005).

In a recent study comparing the expression driven by eight haplotypes of the
human AGT promoter in human astrocyte, proximal tubule, and hepatocyte cell lines,
showed that the -20 and -217 polymorphisms have the largest influence on
angiotensinogen transcription with other polymorphisms having a smaller impact on
angiotensinogen transcription, and the transcriptional influence of the promoter

polymorphisms may act cell specifically (Dickson et al. 2007).



Angiotensinogen and Disease
Hypertension and Cardiovascular Disease

Due to the key role that RAS plays in blood pressure regulation, many studies
investigate AGT polymorphisms association with essential hypertension. A large number
of case-control studies have tested the association of M235T polymorphism and
hypertension. Meta-analyses of white Caucasian case-control studies showed significant
association of the 235T allele with hypertension and the risk of elevated blood pressure
(Kunz et al. 1997, Staessen et al. 1999). In a study conducted on Japanease population,
analysis of the AGT polymorphisms confirmed that the G-6A, T+31C, and M235T
polymorphisms are in absolute linkage disequilibrium and that the -6A, +31C and 235T
haplotype is associated with hypertension (Sato et al. 2000). In addition, several studies
demonstrated association of AGT gene G-6A, T174M, and M235T polymorphisms with
increased angiotensinogen plasma levels with -6A, 174T or 235T alleles presence or
homozygosity (Jeunemaitre et al. 1992, Bloem et al. 1995, 1997, Schunkert et al. 1997,
Azizi et al. 2000, Sethi et al. 2001, 2003). Recently, meta-analysis of the AGT
polymorphisms association with hypertension showed dual role for the A-20C SNP,
where the -20C allele, which was associated with a decreased risk of hypertension in
populations of mixed and European ancestries, but with a 24% increase in the odds of
hypertension in Asian subjects (Pereira et al. 2008). In African-American population
study A-217G polymorphism of the AGT gene was associated with hypertension, where
the frequency of allele A was significantly increased in the genomic DNA of African-
American hypertensive patients (Kumar et al. 2005). Consistent with its association with

hypertension, the TT genotype of the AGT gene M235T polymorphism was associated



with an increased risk of coronary heart disease and myocardial infarction in several

studies (Ludwig et al. 1997, Rodriguez-Pérez et al. 2001, Buraczynska et al. 2003).

Fibrotic Disease

Studies of AGT gene polymorphisms in fibrotic diseases of certain tissues
revealed association of these SNPs with development and/or progression of fibrosis.
Liver fibrosis caused by chronic viral hepatitis or fatty liver showed association with
AGT polymorphisms. In chronic hepatitis B significant relationship was seen between
polymorphisms of the core promoter region of the AGT gene (-20 and -6) and liver
cirrhosis (Xiao et al. 2006). In patients with chronic hepatitis C, statistically significant
relationship was also seen between AGT G-6A SNP and the stage of hepatic fibrosis
Individuals with the A/A homozygous genotype were more likely to have high severity of
hepatic fibrosis compared with individuals inheriting the A/G or the G/G homozygous
genotype. In the same study, transforming growth factor-betal (TGF-B1) gene (codon 25:
Arg/Pro) polymorphism showed relationship with the stage of fibrosis with Arg/Arg
genotype being profibrotic. The patients who inherited both of the profibrotic genotypes
for AGT and TGF-B1 genes correlated with highest progression of fibrosis (Powell et al.
2000). Similar results were obtained when the same profibrotic genotypes (AGT -6 A/A
and TGF-B1 gene 25 Arg/Arg) were investigated in advanced hepatic fibrosis obese
patients with non alcoholic fatty liver disease, where patients who inherited both
profibrotic genotypes appeared to be at greater risk of advanced fibrosis (Dixon et al.

2003). Similarly, AGT and TGF-B1 gene polymorphisms were associated with stricturing
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Crohn's disease, a complication of Crohn's disease that involves development of a fibrotic

intestinal stricture (Hume et al. 2006).

Kidney Disease

Polymorphisms of the AGT gene are involved in renal pathophysiology and
progression of renal disease. Many studies showed the association between M235T (T
allele) or G-6A (A allele) and renal diseases, such as; end-stage renal disease,
development of interstitial nephritis (Buraczynska et al. 2002, 2006), and chronic kidney

disease progression through induction of tissue growth and fibrosis (Hsu et al. 2006).
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Figure 1.1.

Schematic diagram of the Renin Angiotensin System (RAS). The diagram illustrates
enzymatic cleavage of angiotensinogen protein to yield angiotensin I (Ang I), angiotensin
IT (Ang II), angiotensin 1-9 (Ang 1-9), angiotensin 1-7 (Ang 1-7), angiotensin III (Ang
III, Ang 2-8), and angiotensin IV (Ang IV, Ang 3-8) peptides. Shown are k<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>