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ABSTRACT

ON SNR AWARE ANALYSIS AND MODELING OF 802.113 LINK-

LEVEL RESIDUAL ERRORS

By

Utpal M. Prabhu Parrikar

In an 802.11b cross-layer protocol, the utility of a corrupted Medium

Access Control (MAC) frame is dependent on residue error patterns. Previous

attempts at modeling residual errors have been oblivious to the radio-link quality

(SNR oblivious). In this thesis we show that modeling techniques, which take into

consideration the radio link-quality appropriately describe the error behavior

across varied environments and thus perform better. We do so by demonstrating

that the memory length of the error process, the average frequency of bit errors

and thus the useful information content in MAC frame varies significantly with

respect to SNR and hence cannot be appropriately captured by single model.

Hence in this thesis we address the difficult and previously un-addressed task of

characterizing the residue error performance across different environments with

a single model. Firstly we show that the average bit error rate in a MAC frame

has a fixed relationship with the associated SNR across varied environments.

This observation is used to motivate the idea that SNR values can be used to

adapt the model parameters and thus allow a single model to represent the error

process in diverse setups. Therefore, we develop a non-homogenous Markov

model, whose state transition probabilities can be altered as a function of SNR.



In loving memory of my mother...
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Chapter 1

INTRODUCTION

True computing mobility is not the pipe dream it used to be. Smaller and

faster processors, and expanded Operating Systems are paving the way for a

richer mobile computing experience. This increasing availability of the mobile

computing devices has fueled the need for high-speed wireless networks. Once

considered purview of large universities and research labs, these days’ wireless

networks are more and more deployed in everyday home and office

environments. Recent years have seen an increased deployment of 802.11b

based Wireless Local Area Networks (WLANs) through ready availability of the

required wireless hardware in nearby electronic stores. Concurrent with this trend

there has been an increased demand for multimedia applications. The above two

synergistic growths have in turn led to an increased demand for seamless

availability of multimedia content over wireless media. However, often in practical

deployment, the wireless networks suffer from errors and losses in the presence

of network congestion and transmission medium degradation. This decrease in

throughput can adversely affect the performance of network applications,

especially the multimedia applications.

Traditionally the network provides reliability by recovering the

corrupted/lost packet through retransmissions, method which has degrading

influence on the performance of multimedia applications due to their real-time



delay-sensitive nature. However, multimedia applications show some degree of

tolerance to such errors (especially those delivering streaming media)-, and as a

result, some of the recent studies have advocated a cross-layer error-control

strategy that can recover data even from the corrupted packets and improve

throughput. The utility/feasibility of data recovery from corrupted MAC frames is

a function of the residue error patterns observed at the link-Ievel‘, and

consequently they appear within (corrupted) packets at the link-layer and

possibly at other higher layers. This makes it imperative to develop a thorough

understanding of error and loss patterns observed over the network.

This thesis analyzes and models the behavior of the actual residue error

patterns observed at the 802.11b link-level based on crucial parameters and side

information that can be collected at the physical layer. This work focuses on

utilizing the Full State Markov (FSM) Chains for all modeling purposes.

1.1 Motivation

Wireless channels generally exhibit complex behavior with increased

sensitivity to surrounding environment as compared to wired media. It is not

unnatural to presume that residue errors are observed in significant proportions

only when the receiving node is not within the range of the Access Point.

Wireless network is susceptible to phenomenon such as reflection, interference

from nearby network and other wireless devices (cordless phones operating at

2.4 GHz are known to have caused interference in 802.11b networks). Thus a

natural question to ask is whether the information content in a corrupted packet

 

' residue error represents bit errors that are not corrected by the physical layer



received at high Signal-To-Noise Ratio (SNR) is similar to that at low SNR

values? Furthermore, would a cross-layer error control scheme used in low-noise

environments be suitable for more severe conditions too. All such questions

necessitate the need for an analysis that takes the radio-link quality into

consideration.

Previous attempts (specific to 802.11b) at modeling such residue errors

have been oblivious of the radio-link parameters. The stochastic behavior of an

error process can be drastically different in packets received at different SNR-

Ievels. Generating different residue error models for different SNR make the

models more reliable for analysis, simulations and emulations. Later chapters of

this thesis will help establish some of the following observations: (i) Residue

errors are observed over a significant range of SNR values and thus the

variations in behavior of the residue error process over a range of SNR values

should be investigated. (ii) The second order statistics in terms of log-variance

varies significantly from one environment to another and thus there is a need for

a modeling technique that is not environment dependent. (iii) The average bit

error rate in a corrupted MAC frame, when expressed as a function of SNR has

a constant relationship across different environments. In addition it is shown that

the bit error rate varies significantly as a function of SNR Thus an SNR aware

modeling scheme could capture the stochastic behavior of the error process

better than an SNR unaware model and could also be environment independent.



1.2 Objective

The primary objective of this research effort is developing an SNR aware

non-homogeneous Markov model that alters the state transition matrix as a

function of SNR. We measure the performance of the full-state Markov chains

(FSM) in terms of the ability of the synthesized data to replicate the features of

the actual error process. The features are defined in terms of random variables

such as Inter-arrival rate (I), burst-length (B) and the frequency of errors per

packet (p). The model is created by analyzing residue error at MAC layer of

802.11b network. We will evaluate the performance of the models when the

training data and test data are from the same environment and also when the

training data and test data are from varied environments.

We focus on bit-level analysis and modeling but while keeping track of

packet boundaries, i.e. we use packet Frame Check Sequence (FCS) to

determine whether the packet is good or bad, and only perform bit-level

analysis/modeling on corrupted packets. This way we make full use of the FCS,

which is the best indicator to determine if packet is good or bad, and restricting

our model to generate error patterns only for bad packets.

1.3 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 provides

essential background information about 802.11 wireless networks. We discuss

802.11 network in infrastructure (WLAN) mode, access methodology and

associated network functionality. Chapter 3 starts with the discussion about the



environments in which error traces were collected, and the methodology

employed to collect the traces. We perform packet- and bit-level analysis of the

observed error process at 5.5 and 11 Mbps bit-rates of the 802.11b network. We

compare the difference in the observed error process for these two bit-rates.

Chapter 4 proceeds to the modeling aspect of this work. We discuss the

generation of SNR Aware as well as SNR Unaware (conventional) Full State

Markov (FSM) Model from the data collected at the two bit-rates. Performance of

these models is quantified using Entropy Normalized Kullback—Leibler

divergence, a standard Information Theoretic measure. Finally, Chapter 5 offers

a few concluding remarks and suggests areas for future explorations.



Chapter 2

BACKGROUND

2.1 IEEE 802.11 And Wireless Local Area Networks

An 802.11 Wireless Local Area Network (WLAN) is based on cellular

architecture where the system is sub-divided into cells where each cell called

Basic Service Set is controlled by base station called Access Point (AP). Even

though WLAN can be formed by just single BSS with one AP, most installations

are formed by multiple BSS cells connected by some kind of backbone called

Distribution System (DS) typically using Ethernet or in some cases Wireless

itself. The whole interconnected WLAN including the different cells, their

respective Access Points and Distribution System, is seen by the upper layers of

OSI model, as a single 802 network, and is generally called Extended Service

Set (ESS). The figure 2.1 shows an ESS with all its components.



 

 

  

Distribution System

 

'1 Access Polnt Access Point

i 3 HBasic Service 86th“

7 E; Station

Figure 2.1 IEEE 802.11 WLAN Extended Service Set

2.1.1 802.11 Layers

The 802.11b protocol as shown in the figure 2.2 covers the Physical and

Medium Access Control (MAC) layers. The Physical layer can be of three types,

Frequency Hopping Spread Spectrum (FHSS) in 2.4 GHz band, Direct Sequence

Spread Spectrum (0888) in 2.4 GHz band, and Infrared (IR). The MAC layer

besides performing the standard functionality of MAC layers also performs other

functions that typically relate to upper layers protocols, such as Fragmentation,

Retransmission and Acknowledgments. The MAC layer defines two access

methods, the Distributed Coordination Function and the Point Coordination

Function.
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Figure 2.2 IEEE 802.11 OSI Layers

2.1.2 Medium Access Mechanism

The basic access method called Distributed Coordination Function, is

basically a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

mechanism. In CSMA, the station desiring to transmit senses the medium, if the

medium is busy (i.e. if some other station is transmitting) the station will defer its

transmission to a later time, if the medium is sensed free the station is allowed to

transmit. This is effective when the medium is not heavily loaded, but there is

always a chance of stations transmitting at the same time (collision), caused by

the fact that both the stations sensed the medium to be free and decided to

transmit at the same time. This collision needs to be identified so the MAC layer

can retransmit the packet by itself and not rely on upper layer for retransmission

as this would cause significant delay. Ethernet uses Collision Detection and then

goes to retransmission phase based on Exponential Random Back-off algorithm.



While the Collision Detection method is good on Wired LAN, it cannot be used

on Wireless LAN environment because of two main reasons. Firstly,

implementing a Collision Detection mechanism will require Full Duplex radio with

capability of transmitting and receiving at once, an approach that would increase

the price significantly. Secondly, in a wireless environment we cannot assume

that all stations can hear each other (which is the primary . assumption of

Collision Detection scheme). A station which senses the to be medium free

cannot assume that the medium is free around the receiver area. To avoid these

problems, the 802.11 uses Collision Avoidance (CA) mechanism together with

Positive Acknowledgment scheme. A station willing to transmit senses the

medium, if the medium is busy then it differs. If the medium is free for specified

time called Distributed Inter Frame Space (DIFS), the station is allowed to

transmit. The receiving station checks the CRC of the received frame and sends

an acknowledgment packet (ACK). The receipt of the ACK at transmitting station

will indicate that no collision occurred. If the sender does not get the ACK it

retransmits the fragment until it gets the ACK or is thrown away after given

number of retransmissions. In order to reduce the probability of two stations

colliding because they cannot hear each other, the 802.11 standard defines a

Virtual Carrier Sense mechanism. The station willing to transmit will first transmit

a small control packet called Request To Send (RTS), which will include the

source, destination and the duration of the following transmission (i.e. the packet

and the respective ACK). The destination station will respond (if the medium is

free) with Clear To Send (CTS) which will include the same duration information.

All the stations either receiving RTS and/or CTS, will set their Virtual Carrier



Sense indicator called Network Allocation Vector (NAV) with this duration.

Stations, which are not the RTS sender, will refrain from using the medium for

this duration, thus reducing the probability of collision. Also, since RTS and CTS

are small frames, it also reduces overhead of collisions since these are

recognized faster. So the standards allow for direct transmission of smaller

packets whose size is controlled by a RTS Threshold parameter set at each

station. Figure 2.3 shows the transaction between two stations A and B and the

NAV setting of their neighbors.

  

 

RTS {DATA-
~ * Time
  

Data

     
SIFS SIFS 3'”
 

 
 

RTSszSIFS + DATA + ACK

NAV ” ' ‘ I: “"79

 

Figure 2.3 802. 11 Packet Transaction

2.1.3 MAC Layer Acknowledgment, Fragmentation and

Reassembly

As mentioned earlier the MAC layer expects acknowledgments from the

receiving station for each transmitted frame to perform Collision Detection.

Exceptions to this are frames transmitted to multiple destinations (Multicast).

Besides acknowledgments the MAC layer performs fragmentation and

10



reassembly of the packets. Typical LAN protocols use packets of several

hundreds of bytes, on a WLAN environment it would be preferable to use

packets of smaller size. The reasons being, that the higher bit error rate of radio

link causes the probability of packet to get corrupted increase with packet size. In

case of packet corruption, smaller the packet, lesser the overheads to retransmit

it. In a frequency hopping system the medium is interrupted periodically for

hopping, so the smaller the packet, the smaller the chance that the transmission

will be postponed to after the dwell time. On the other hand it does not make

sense to introduce new LAN protocol which cannot deal with existing larger size

packets of the current wired LANs, so a simple Fragmentation/Reassembly

scheme is introduced. A large packet is broken down into many smaller

fragments and a simple send and wait algorithm is followed, where a station is

not allowed to transmit a new fragment until either, it receives an ACK for the

said segment, or decides that fragment was transmitted too many times and

drops the whole frame. A station is allowed to transmit to a different address in

between retransmissions of a fragment.

2.2 Entropy of a Random Experiment

Entropy is a measure of average information contained in a random

variable X. If X is a discrete random variable on a finite set X = {xl,x2...,xn} , with

probability distribution function p(x) = Pr(X=x). The entropy H(X) of X is defined

as,

11



(2.1)

H(X)=-Zp(x)10g(P(x))

where p(x) is the probability mass function used to represent the random

experiment.

The logarithm is usually taken to the base 2, in which case the entropy is

measured in “bits," or to the base e, in which case H(X) is measured in “nats.”

The Entropy can be also seen as uncertainty removed after the actual outcome

of X is revealed.

2.3 The Kullback-Leibler Distance (Relative Entropy)

If p and q be the two probability distribution function on the random

variable X. Then the Kullback-Leibler distance2 is the statistical measure that

quantifies the difference between p and q and is defined as,

D(puq) =zp(x)log[fl—))] (2.2)

Thus the Kullback-Leibler distance provides a non-negative statistical

divergence measure which is zero if and only if p=q. But since 13(1) H q) ¢ D(q II P)

that is, it is non symmetric and violates the triangle inequality, it is not a true

metric. Also, it can be seen that the Kullback-Leibler distance depends on the

choice of the random variable, or in other words, choice of probability distribution

function, and hence a proper random variable should be selected to represent

 

2 The Kullback-Leibler distance or Relative Entropy is also known as Information Divergence.
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the random observation.

The Kullback—Leibler distance is one of the most important tool for this

work, as it will help quantify the performance of the SNR aware, as well as, SNR

unaware models developed. From a source coding viewpoint, assume p

represents the probability distribution function of the actual source, and let q

represent the distribution of the model approximating the source. Then the

divergence d = 13(1) II q), quantifies the statistical divergence between the actual

source and the approximating model. It also represents the overhead incurred by

using an approximation instead of the actual source. Hence, Relative Entropy

can be used to measure the performance of different models developed.

However, since the relative entropy measures overhead in bits, it is better to

weigh this measure in accordance with entropy. For example, the model having

overhead of few extra bits for high entropy source might be better than the model

with less overhead with low entropy source. Hence, both entropy and the

Kullback-Leibler distance should be taken into consideration.

2.4 Entropy Normalized Kullback-Leibler distance (ENK)

The entropy function provides a measure of average number of bits

required to represent a source. Also, as seen earlier, the Kullback-Leibler

distance provides a measure of extra bits required due to use of an

approximating model instead of the actual source. Both these measures can be

used collectively to indicate the level of overhead incurred by a particular model.

We define a new measure called Entropy Normalized Kullback-Leibler measure

13



(ENK), as the ratio of Kullback-Leibler distance and the entropy, i.e.,

ENK( pll 6])=M (2-3)

H (P)

We will use this measure, ENK, to evaluate the performance of different

models developed in this work.

2.5 Mutual Information

Let (Q,F,p ) be a discrete probability space, and let X and Y be discrete

random variables on Q. The mutual information I[X,'Y], read as “the mutual

information of X and Y," is defined as,

 

IlX:Yl =ZZMX=M = y)log {#5}:ij(1)”) (2.4)

D(#(x,y) |l #(x)#(y)) (25)

where D denotes the relative entropy.

The most obvious characteristic of mutual information is that it depends

on both X and Y. There is no information in a vacuum i.e.«information is always

about something. In this case, I[X;Y] is the information in X about Y. As its name

suggests, mutual information is symmetric, i.e. I[X;Y] = I[Y;X], so any information

X carries about Y, Y also carries about X. The definition in terms of relative

entropy gives a useful interpretation of I[X,'Y] as a kind of “distance" between the

14



joint distribution p(x,y) and the product distribution p(x)|.r(y). However, the

relative entropy is not a true distance, but just a conceptual tool, and it does

capture another intuitive notion of information. It is important to note that for X, Y

to be independent, p(x,y)=p(x)p(y). Thus the relative entropy “distance" goes to

zero, and we have I[X;Y]=0 as one would expect for independent random

variables.

2.6 Markov Chains

Markov chains are extensively employed in modeling various processes in

queuing theory and statistics. In particular Markov chains are effective at state

estimation and pattern recognition. Consider a stochastic process, X". where

value of X" is the state of the process at time n. So if the process is in state i,

i.e. X" = i , there is a fixed probability that the next state of the process is j, i.e.

X" H = j . If this probability can be expressed as,

P{Xn+1=J|XO,X, ......,Xn}=P{X
n+1=j|Xn:i} (2'6)

for all states i0,i1,...,in_1,i,j and n 2 0 then such a stochastic process is known

as Markov Chain.

A simple way to visualize a specific type of Markov chain is through a finite

state machine. If you are in state y at time n, then the probability that you will

move on to state x at time n+1 does not depend on n, and only depends on the

15



current state y that you are in. Hence at any time n, a finite Markov chain can be

characterized by a matrix of probabilities, called transition probability matrix,

whose (i,j) element is given by P X = j I X =i and is independent of the
n+1 n

time index n. Also, the number of states from which probabilities are defined to

the next state is defined as Order of the Markov chain.

The lnforrnation Theoretic measures describe in this chapter would be

used in next chapters to analyze, model and evaluate the performance of the

work.

16



Chapter 3

DATA COLLECTION AND ANALYSIS

In this chapter we first discuss the simulation setup that we have

envisaged to collect error traces over 802.11b WLAN. The 802.11b standard

specifies data transmission at three bit-rates viz, 2 Mbps, 5.5 Mbps and 11

Mbps. We will focus on collecting data at 5.5 Mbps and 11 Mbps, bit rates that

are more useful for multimedia applications, along with the per-packet Signal-To-

Noise Ratio. The retransmission based method for corrupted/lost packet

recovery requires the 802.11b standard to perform check on the 32 bit checksum

of each received frame. We will use this same method to identify and store

corrupted packets for residue error analysis and modeling.

3.1 Experimental Setup

The wireless trace collection setup envisaged collecting 802.11b frames in

various work environments. The setup as shown in the figure 3.1, consisted of

802.11b Access Point (AP) operating in Distributed Coordination Function mode

with RF output power set at 18 dBm (The output power is transmission power of

Linksys WRT54G Wireless router). A station is connected to the AP using 100

Mbps Ethernet and acts like a server, while a wireless station serves as a Line

Of Sight (LoS) client. It is essential for this wireless client to be Line Of Sight to

17



avoid any packet drops, otherwise the’AP can reduce the transmission bit rate. A

third wireless station serves as a highly mobile sniffer machine. We used DWL

122 wireless card based on lntersil Prism 2.5 chipset with modified linux-wlan-

ng-O.2.1 device driver for all sniffer machines, to avoid any fluctuations due to

receiver sensitivity. The Prism based card enables operation in monitor mode

which enables delivery of all the MAC frames, irrespective of the receiver

address in the frame. With modification to the device driver we were able to

receive frames even with failed Frame Check Sequence (FCS). This allowed us

to capture wireless trace with inherent residue error information.

 

   

 

LoS Client

 

Mobile "Sniffer"

Figure 3. 1 Experimental Setup showing Server, LoS Client and the Sniffer
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Figure 3.2 Dlfierent Trace Collection Environments

For the trace collection, the AP transmits packets over the wireless

medium to the LoS client at 11 / 5.5 Mbps and the sniffer sniffs these

transmissions from various locations with different link quality. The Prism2.5

device also measures received signal strength indication (RSSI) value and

silence value at the antenna of the radio hardware. The RSSI is measured for

10ps while receiving the frame and provides total power observed, including

signal, interference and background noise. The silence value measures total

power before the start of the frame. Both these values, one byte each, are

collected per-frame basis and reported as Signal-to-Noise ratio of that particular

frame. In this work all references to SNR imply the RSSI to silence value ratio.

Along with RSSI and silence values, the exact frame reception time provided by

the hardware as four byte value is measured. Since we also collect the corrupt

frames, the frame size cannot be determined just by length field which may be

corrupted. As each frame is received, we add certain meta-data to it as shown in

the figure 3.3 along with RSSI, silence and the time values. This helps to

19



differentiate the frames during analysis later. The first five bytes of this meta-data

correspond to ascii string UTPAL and is used for identifying frame start, the next

four bytes is the frame receive time, followed by one byte RSSI value and one

byte silence value. This is followed by two bytes of OxAA if the frame is good, or

two bytes of 0x88 if the frame is bad. This entire modified frame, i.e. meta-data

followed by the 802.11 frame is passed up the standard network stack to be

received by tools like ethereal. The figure 3.3 shows the frame as received by

ethereal3. We then save all the frames collected by ethereal for analysis at later

time.
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Standard 802.11b frame

  
 

  4.bytes
Signal Value

Trmestamp

I Noise Value
- xdfgggfld’ 33 for

Figure 3.3 Modified Meta Frame captured by Ethereal

 

3 Appendix A shows 802.11 frame format in detail.
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3.2 Packet- And Bit-level Analysis

To achieve our objective of developing SNR aware Full State Markov

model, we first need to develop a thorough understanding of the relationship

between SNR, loss and error patterns observed in the wireless traces. Good

understanding of this relationship should allow us to anticipate significant

improvement on account of employing a better SNR aware modeling technique.

Although, we use observed bit-level error patterns to develop the Markov

models, since each packet provides us with information on packet being good or

bad with high degree of confidence using the FCS, we will utilize this packet-level

information while generating the data from our models.

3.2.1 Packet-level Analysis (S-Curve)

Packet-loss due to either corruption, or loss when transmitting station is at

a large distance, represents one of the key performance measure for any

communication network. Also, since this work envisages developing a SNR

aware model, it is necessary to understand the relationship between the SNR

value and the packet-loss. Here, we will provide the MAC layer throughput

statistics as a function of Signal-To—Noise Ratio. This corresponds to percentage

of good packets reaching the link-layer at each SNR levels. Since the 802.11

MAC layer drops the packet, irrespective of the number and location of the bit-

errors, this adversely affects the throughput.

The figure 3.4 shows the percentage of good packets received as a
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function of Signal-To—Noise Ratio (dB). The figure shows four traces, two

collected at different locations from the Access Point (AP) in 11 Mbps bit-rate

mode. The Trace 1 at both the bit rates belongs to Home environment, whereas

Trace 2 belongs to Office Environment (See figure 3.2). The other two traces

were collected with AP in 5.5 Mbps bit-rate mode. As seen in the figure, both the

11 Mbps and 5.5 Mbps traces match each other very closely. This establishes

the fact that the % of good packets as a function of SNR does not change much

with respect to change in the environment. Based on this figure we have divided

the Signal-To-Noise Ratio span into three distinct regions, i.e. Bad (% good

packets <= 10%, 9dB and below), Good (% good packet >= 90%, 15dB and

above), and the Transition region ( > 9dB and < 15dB).

To see how reducing the bit-rate affects this curve, we can see the curve

generated by 5.5 Mbps trace. As can be clearly seen, this curve has been shifted

towards left by at least 5dB. The figure 3.5 shows the corresponding shift in the

three regions.

Figure 3.4 Good Packets (%) V/S Signal-To-Noise Ratio (dB)
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Figure 3.5 Transition Regions for 5.5 and 11 Mbps traces

3.2.2 Bit-level Analysis (U-Curve)

Since this work focuses on modeling residue error patterns, it is necessary

to understand the relationship between residue error and the Signal to Noise

Ratio. To establish this relationship we will consider only the packets with error,

i.e. the corrupt packets. We do not consider the good packets as we have

explained earlier that the best check for good packets is FCS itself. We have

thus based the model in this work on those packets where FCS has failed. For

each of the three traces, we analyzed the bad packets for the residue errors, and

were able to establish the relationship between residue error and SNR as shown

in the figure 3.6.

As seen from the figure, we can see that for all the three traces, the curve

decreases as the signal level increases, i.e. the probability of the bit errors in the
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bad packets decrease as the signal level increases, and this is on par with the

expectation. But this is only true below certain SNR level (12 dB for 5.5 Mbps

and 13 dB for 11 Mbps). As the signal level increases further, it was seen that

the probability of bit errors in a bad packet increases. Although this behavior is

counter intuitive, there is a simple logical explanation. This is due to the fact that

the bit errors are caused in the packets due to two primary reasons, first, low

signal levels compared to the background noise/interference and second, packet

collision when more than one station transmits at the same time. We can see

that at lower SNR values, the probability of error in the bad packets is dominantly

due to low signal levels and this represents the drop in probability of error with

increasing signal levels. But after a certain point the bad packets are present no

longer due to low signal levels, but due to the second factor i.e. collisions. The

probability of error in a collided packet is generally higher, this causes the curve

to turn upward as the SNR values increase.

Mathematically, this can be easily proved as follows. Consider corrupted

packets due to decaying signal levels to be D, and corrupted packets clue to

collisions to be C, such that, N = C + D, where N is total number of corrupted

packets. We can assume that the number of collisions remain constant with the

change in Signal-To—Noise ratio, as the collisions are caused due to external

factors such as transmissions from some other station. In this case the

probability of error is given by,

D x Pa’ x PacketSize + C x PC x PacketSize

P.E. . . =
Conditional (D + C) x Packet (3'1 )

Size
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D x Pd + C X PC 3 2

P'E'Conditional = D + C ( I )

 

Where Pd and PC are probability of bit errors due to decaying signal and

collisions respectively. We also know that both the D and the Pd are inversely

proportional to the SNR. Hence as the SNR increases, D and Pd both decrease

rapidly and beyond a certain point, no longer dominate the equation. Thus

probability of error starts increasing more and more towards PC.
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3.2.3 Mutual Information

As we have already seen in section 2.5, Mutual Information between two

random variables X and Y, given as l[X;Y], is the information in X about Y. We

can use this measure as a function of lag(77), to quantify the memory in the

residue errors of the corrupted packets. We can calculate the sample mutual

information by considering sequence of errors in a packet {in and then

evaluating the mean frequency f {xi,xi +17} of each possible combination of

{15,161. + ”I. The frequency f {in is nothing but the probability of error 17. Thus

the mutual information is then calculated using the standard formula, i.e.,

fIXi’an) (3.3)

1(0)=Zf(xi’xi+n)l°g2 f(x)of(x I
i i+n

Figures 3.7 and 3.8 show Mutual Information calculated as a function of lag(77)

for 11 Mbps and 5.5 Mbps respectively. In the figures, the mutual information is

calculated independently for packets belonging to different SNR values (6 dB, 8

dB and 13 dB in the figures). It can be seen that for both the traces collected at

11 and 5.5 Mbps, the mutual information decays at different rates for different

SNR values. Thus ideally the length of the model should be varied as a function

of SNR. This length can be optimized for different SNR values,
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Figure 3.8 Mutual Information as a function of lag (77) for 5.5 Mbps trace

In order to simplify the analysis and make a fluent presentation in this work, we

will develop a model having equal memory length for all SNR values. We will

however develop a number of models with different memory lengths. Thus unlike

the traditional approach of modeling, where the memory length of the process is

identified before choosing a model, we choose a specific memory length and

then try to evaluate the utility of the model. Thus the utility of Markov model may

vary as function of SNR.
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Chapter 4

MODELING AND PERFORMANCE

MEASUREMENT

The previous chapter dealt with the collection and the analysis of the

802.11b WLAN data at two different bit-rates. In this chapter, we will discuss the

use of this data to build the SNR Aware and the SNR Unaware (Conventional)

Full State Markov models, and generation of data from these two types of mod-

els. We will use some of the information theoretic tools described in Chapter 2 to

measure the performance of both these types of models and see how SNR infor-

mation helps improve the performance.

4.1 Full State Markov Models

For a memory length k , the bit errors 3‘_‘=["‘1”‘2”"‘k] have 2" possible

error patterns. The states of the Markov model we employ here are described by

the bit error pattern of the previous k bits. Since we formulate a distinct state for

each possible error pattern, the markov model used in this thesis can be referred

to as a full-state Markov (FSM) chain. The markov chain we employ is auto-

regressive in nature, such that for each state transition [x1,x2---xk]—->[x2,-~xk,xk +1]

the output is a single error bit xk+1 . Thus the state transition probabilities provide

us with the probability of error at a particular bit location, conditioned on the error
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pattern of the previous k bit locations. Such a modeling approach is particularly

useful in practical setups.

 

Stt /$

.o\~

Figure 4. 1 Transition possibilities for sliding window with k=3

In this work, a sliding window was used to compute the transition

probability matrices. Figure 4.1 shows one such sliding window of width 3, i.e.

the states of the markov model in this example are described by bit error pattern

of previous 3 bits. The first window in the figure shows current state ,(011)2 and

as the window slides towards right, the most significant position bit will be

dropped, and a new bit added at the least significant position. Since the data is

binary (bit error present or not), the chain can either transit to (110)2 or (111)2.

That is the current state can jump only to two possible next states. We thus

compute the probability with which the current state will jump to either of the two

possible subsequent states, and we obtain a transition probability matrix,
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computed for all the possible current states.

The conventional model is simply obtained by computing the transition

probability matrix for all the corrupt packets taken together. In the proposed SNR

Aware Markov Model, we compute different transition probability matrices for

each SNR interval. For example, for SNR values going from 0 to 25, we will have

26 distinct transition probability matrices, each computed from corrupted packets

having the corresponding SNR values. Hence the proposed model, is referred to

as SNR Aware model, as it is not oblivious to SNR values at which each corrupt

packet was received.

In this work we will generate models having memory length ranging from

k=1, i.e. 2 States, to memory length k=12, i.e. 2k States. We will then observe

performance of these models using some of the lnforrnation Theory tools

described in Chapter 2, as function of memory length k.

4.2 Data Generation

We first generate the models based on a subset of data from the 5.5 and

11 Mbps traces, called the training data. We will then use these models to

predict data based on the remaining data called the test data In case of SNR

Unaware model, we first parse through the test data and if the packet has no

error, we will replicate this packet as it has no error, We are more interested in

modeling the bit-level residue error patterns only. If the packet has error, then we

will refer to the transition probability matrix of the model in use, and generate an

approximated packet. In this way we get the approximated data using a model,
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instead of the actual source. In the SNR Aware case, we repeat the same steps,

but for a corrupted packet, we use the transition probability matrix of the same

SNR value as that of the packet. This again reflects the SNR Aware nature of

the model. That is, as the SNR values changes our proposed model dynamically

changes the transition probability matrix. We then use this generated data for

performance evaluation of the different models used.

4.3 Performance Evaluation

We measure the performance of the full-state Markov chains (FSM) in

terms of the ability of the synthesized data to replicate the features of the actual

error process. The features are defined in terms of random variables such as

Inter-arrival rate I, burst length B and the frequency of errors per packet p. The

performance of the model is quantified in terms of Entropy Normalized Kullback-

Leibler (ENK) Divergence between the probability distributions of the above-

mentioned random variables.

4.3.1 Inter-arrival rate I

This feature of the error process captures the distance between two error

bits in terms of non-error bits. That is we measure number of times two error bits

arrive with separation i. Figure 4.2 shows the ENK computed for data synthesized

from 11mbps and 5.5 mbps models as a function of memory length k.
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Figure 4.2 ENK for Inter-Arrival of errors for 11Mbps(Top) and 5.5 Mbps (Bottom)

The ENK in the figure measures how close the approximated data is with the test

data. Figure 4.3 shows the ENK for the same generated data but computed with

respect to error traces collected in some other (Office) environment.
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Data

The ENK results computed for I-arrival feature, shows that the SNR Aware model

performance better than the SNR Unaware model for all memory lengths.

4.3.2 Burst Length
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This feature measures the number of times a sequence of error bits

occurs. That is, it computes the frequency of occurrence of each burst of error

bits. Figure 4.4 shows the ENK computed for data synthesized from 11mbps and

5.5 mbps models as a function of memory length k.
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The figure 4.5 shows the ENK for the same generated data but computed with

respect to error traces collected in some other (Office) environment.
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Office Data

It can be seen that both the SNR aware as well as the SNR unaware

model are capable of maintaining the burst error characteristics of the source.
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4.3.3 Frequency Of Errors per Packet p

This feature computes the frequency of occurrence of packet with n errors.

That is, it measures the number of times a cormpt packet arrives with certain

number of bit errors. Figure 4.6 shows the ENK computed for data synthesized

from 11mbps and 5.5 mbps models as a function of memory length k.
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The figure 4.7 shows the ENK for the same generated data but computed

with respect to error traces collected in some other (Office) environment. The

ENK results shows that the SNR Aware model performance much better than the

SNR Unaware model for all memory lengths.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this work we provide analysis and modeling of residue bit errors of the

802.11b Wireless Local Area Network, and also propose an alternate SNR Aware

Markov Modeling scheme. First we present the packet-level analysis of the data

collected over 802.11b WLAN at 11 and 5.5 Mbps bit-rates. We see how the

throughput varies as a function of Signal-To—Noise Ratio (SNR) and also the bit-

rate. That is, reducing the bit rate from 11 Mbps to 5.5 Mbps makes the

percentage of good packets (S-Curve) shift left, i.e. it registers increase in good

packets at lower SNR values with decrease in the bit rate.

Primary focus of this work was bit-level analysis and modeling. We have

analyzed the residue errors in a corrupted packet as a function of SNR, and

displayed it using the ‘U-Curve’. The probability of bit error decreases rapidly as

the signal level increases, but beyond certain point, the value starts increasing as

events like collisions etc., play a more dominant role in packet corruption. We

also show that memory in the channel varies as function of SNR by using

Infomlation Theoretic measures such as Mutual Information.

Continuing our work at bit-level, we first employed conventional Full State

Markov model. We synthesized data for 11 and 5.5 Mbps bit-rates. We then

developed the proposed SNR Aware model for the same data, and synthesized
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data by using the model. Using information theory measures defined in Chapter

2, over different features (burst length, inter-arrival rate, frequency of errors per

packet) of the synthesized and source data, we showed that the proposed SNR

Aware model has significantly better performance. Thus, it has been shown that

the 802.11b 11Mbps link-level can be greatly enhanced by making them SNR

aware and using the ability of Markov models to characterize the residue errors.

We Show that the overall behavior of link-level residue errors is a function of the

environment in which the wireless traces are collected. SNR aware Markov

model were shown to provide excellent performance in foreign environments

also; and thus should prove useful for developing future error control,

simulation/emulation applications.

Based on this work we can identify some future directions, especially

toward Network Simulators. In a network simulator, the SNR values can be

obtained from the physical layer emulator. A simple two-state Markov model

used to imitate the packet drop in a conventional setup can be used to model

frame corruptions. The bit errors inside a corrupted packet can then be modeled

on the basis of the SNR values obtained from the physical layer emulator and

the SNR aware markov models proposed in this paper. Incorporating such a

setup in some popular network simulators can significantly improve their

performance.

We are also investigating use of SNR in dual/multiple antenna systems.

The SNR information can be used to improve the throughput by making use of

smart cross-layer strategies in these systems. Multimedia applications over

wireless can benefit immensely from any such schemes. However, any work in
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this area is beyond the scope of this thesis, and will be part of future work.

41



Appendix A

802.11 FRAME FORMATS

All the 802.11 frames have the following6format,

We: 2 2 6 2 6 0-2312 4
 

Durattoni

Control 

bits 2 2 4 1 1

Protocol To rent More

version [Type '3qu DS [FDSI F

 

 

  

 

Figure A. 1 802. 11 Frame Format

The Frame Control field can be further divided into sub-fields as shown in the

figure.

Protocol Version: This field has 2 bits, which represent the version of 802.11

Standard. All current versions have default value 0.

Type And Sub-Type: These fields together indicate type of the frame being

transmitted. Following figure shows all the possible types of frames.
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TrypTe value T T Type Desert-{nor} T T TsobtypeTvane T7 sfilrypéfiscaption T

T To oT T T T TlleanaTgement TT 0000 TTT TTKssTrEationTrentstT '

o 0 J vegan”TTT T o 0 01* T. AsTsoclatlcEeTsoonse I

T 00 T T T TTMaTagenrentT T To 0T10 T TTITTTREQetEtlon EqT Tl

‘ T To 0T T T ManagementT T T o oT1T1T’ ‘ REsTéofiionTreTsT

I 7 7 O 0 , W . iManagement 7 A 01 0 077 7 ‘ Wflolarequeft— ‘1

0 0 ‘ Management 0 1 0 1 Probe response

‘T TT 0? T IT ManageEent T To176— ofiT 1 T T magma; TI

I O 0 1 Management 1 0 0 0 Beacon I

I 0 0 Management 1 0 0 1 ATIM I

' T—TOTT fig Management T T1T0T107T TT DisassociationT—T

0 0 I Management 1 0 1 1 Authentication

0 0 Management 1 1 0 0 Deauthentication

0 0 Management 1 1 0 1 —— 1 1 1 1 Reserved

0 1 Control 0 0 0 O — 1 O O 1 Reserved

0 1 Control 1 0 1 0 1 Power Save Poll

r 01 Control 1 01 1 1 RTS I

T o 1TTT TT Control T T TTT T 1 10 0 TT T CTST TT T

1 01 I Control 1 1 01 ACK I

(T 01 ' Control 1 1 1 o Contention Free End I

TO 1 TT ContrOTlT TTTTTTT T 1 1 T1T1TT TT CFTETnd + CIR-ETA.

‘ 1T0: T T T I Data T o 0 0 0 I TTTlE T‘

I 10 II Data 7 0001 I Data+g=-ACK “i

‘ 1 0 Data 0 0 1 0 I Data + CF-POLL 41

1 0 Data 0 0 1 1 Data + CF-Ack + CF- I

Poll I

r #7 1 o I Data/ 7 WW A0 1 0 o Null Function J

1 o I Data 0 1 01 CF-Ack I

1 0 Data 01 1 o 3 CF-Poll j

1 o I Data 01 1 1 E CF-Ack+CF-Poll '

10 I Data 10 0 0—1111 I Reserved

I 1 1 I Reserved 0 0 o o — 1 1 1 1 I Reserved I  
Table A-1 Type And Sub-Type Field Values

To DS: This bit is set to 1 if the frame is addressed to AP for forwarding to

Distribution System (DS).
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From 08: This bit is set to 1 when frame is coming from the Distribution System.

Address Fields: Address1, Addressz, Address3 and Address4 fields indicate

various hardware addresses.

Following table shows the use of To 08 and From DS fields and Address fields.

 

Table A-2 ToDS And FromDS Values

More Fragments: Set to 1 when there are more fragments belonging to this

same frame.

Retry: This bit set to 1 indicates fragment is the retransmission of previously

attempted transmission of a segment.

Power Management: This indicates that the station would be in power

management mode after transmission of this frame.

More Data: This is also used by the power management and is used by AP to

indicate that there are more frames buffered for the station.

WEP: Set to 1 when WEP encryption is used.
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Order: This set to 1 indicates the station is using Strictly-Ordered service set’.

Duration IID: This field has two meaning depending on frame types. In Power-

Save poll messages, this is station ID. In other frames this is the NAV duration.

Sequence Control: Used to determine sequence of different fragments of the

same frame.

CRC: This field contains the 32-bit Cyclic Redundancy Check

 

The Strictly-Ordered Service Class is defined for users who cannot accept Change of ordering

between Unicast frames and Multicast frames. The only known protocol to use this is DEC’s

LAT.
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