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ABSTRACT

THREE ESSAYS ON ROBUST INFERENCE FOR LINEAR PANEL MODELS WITH MANY
TIME PERIODS

By

Yu Sun

This dissertation consists of three chapters. The first chapter is a critique on the two-way cluster-

robust standard errors. In the presence of both cross-sectional correlation and serial correlation,

traditional one-way cluster-robust standard errors are not valid. A new robust variance estima-

tor called two-way cluster-robust standard errors is proposed by Thompson (2011) and Cameron

et al. (2011) to conduct accurate inference when double clustering exists. However, this approach

does not allow for correlation across different firms in different time periods. If such correlation

exists, then the two-way cluster-robust standard errors will fail to work. Monte Carlo simulation

results demonstrate that using two-way cluster-robust standard errors may lead to unreliable in-

ference even when there is a simple AR(1) time effect. One solution to address this problem is

proposed by Thompson (2011). He has improved the original formula for the two-way cluster-

robust standard errors to account for correlation across different firms in different time periods.

An alternative solution is the standard errors proposed by Driscoll and Kraay (1998) that are ro-

bust to cross-sectional correlation of general and unknown form as well as heteroskedasticity and

serial correlation under covariance stationarity and weak dependence. The Driscoll and Kraay,

1998 (DK) standard errors perform well when firm dummies are included. Interestingly, without

removing the firm effect, the DK standard errors do not behave well. Simulations results illustrate

these interesting findings.

The second chapter provides an analysis of the standard errors proposed by Driscoll and Kraay

(1998) in linear Difference-in-Differences (DD) models with fixed effects and individual-specific

time trends. The analysis is accomplished within the fixed-b asymptotic framework developed by

Kiefer and Vogelsang (2005) for heteroskedasticity and autocorrelation (HAC) robust covariance



matrix estimator based tests. For the fixed-N, large-T case, it is shown that fixed-b asymptotic

distributions of test statistics constructed using the DD estimator and the DK standard errors are

different from the results found by Kiefer and Vogelsang (2005) and Vogelsang (2012). The newly

derived fixed-b asymptotic distributions depend on the date of policy change, λ , individual-specific

trend functions as well as the choice of kernel and bandwidth. Whether time period dummies

are included does not affect the fixed-b limits. For other regressors that don’t have a structural

change, the usual fixed-b asymptotic distributions still apply. Monte Carlo simulations illustrate

the performance of the fixed-b approximations in practice.

The third chapter studies finite sample properties of the naive moving blocks bootstrap (MBB)

tests based on the DK standard errors in linear DD models with individual fixed effects. The naive

bootstrap procedure is a bootstrap where the formula used to compute the standard errors on the

resampled data is the same as the formula used on the original data. Following the approach in

Gonçalves (2011), the so-called “panel MBB” method is used in this chapter. This method applies

the standard MBB to the time series of vectors containing all the individual observations at each

time period. Monte Carlo simulation results show that the bootstrap is much more accurate than the

standard normal approximation, and it closely follows the new fixed-b approximation proposed in

the second chapter. This improvement holds for the special case of Bartlett kernel. Results would

look similar for other kernels. It even holds when the independent and identically distributed (i.i.d.)

bootstrap is used, despite potential serial correlation in the data. Simulation results also show that

if the block length is appropriately chosen, the bootstrap can outperform the fixed-b approximation

when there is strong serial correlation.
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CHAPTER 1

ROBUST INFERENCE FOR LINEAR PANEL MODELS

1.1 Introduction

Many empirical papers in the accounting and finance literatures use panel data sets with obser-

vations on multiple firms over multiple time periods. In such panel data settings, the common

assumption of independence in regression errors is likely to be violated. For example, temporary

market-wide common shocks will cause correlation across firms in the same time period, and per-

sistent firm characteristics will cause correlation over time. Moreover, persistent common shocks,

such as business cycles, will cause correlation across different firms in different time periods. Po-

tential clusterings are big challenges, since if we fail to take into account them, we will underesti-

mate the standard error and hence over-reject the null hypothesis when conducting hypothesis tests.

Therefore, how to conduct a robust inference plays a key role in empirical researches. Throughout

this chapter, we call one dimension firm and the other time.

Various approaches are available to obtain “robust” standard errors. White (1980) proposed an

approach to account for heteroskedasticity in cross-section data. Later White (1984) presented a

formula for a multivariate dependent variable. Arellano (1987) proposed the well-known one-way

cluster-robust standard errors in linear panel models. Wooldridge (2003) provided an overview

of applications of cluster methods. Hansen (2007) investigated asymptotic properties of a robust

variance matrix estimator for panel data when T is large. Fama and MacBeth (1973) proposed a

method that computes standard errors robust to correlation across firms in the same time period.

White standard errors and one-way cluster-robust standard errors are common in econometrics

textbooks (e.g., Wooldridge, 2002).

Most papers in the literature only deal with clustering in one dimension and ignore clustering

in the other dimension. Methods that control for clustering in one dimension usually assume
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independence in the other dimension. However, when both cross-sectional and serial correlation

exist, the one-way cluster-robust method mis-specifies the error structure and underestimate the

true standard error. This will lead to over-rejections in hypothesis testing. One solution is the

two-way cluster-robust standard errors proposed by Thompson (2011) and Cameron et al. (2011).

This variance estimator is designed to produce robust inference when there is two-way non-nested

clustering. Specifically, in finance applications, clustering at the firm level and at the time (e.g.

day) level is of interest. This method allows for serial correlation for a given firm and correlation

across different firms in the same time period (cross-sectional correlation). However, this approach

assumes that there is no correlation across different firms in different time periods. This method

generalizes the standard cluster-robust variance estimator for one-way clustering to that for two-

way clustering, and relies on similar relatively weak distributional assumptions. It can also be

generalized to clustering with more than two dimensions (see Cameron et al., 2011).

Petersen (2009) has compared these robust standard errors and suggested using the two-way

cluster-robust standard errors as a robustness check. Gow et al. (2010) find that two-way cluster-

robust standard errors are required for valid inference in many accounting applications. However,

the two-way clustering method only works for a specific and restricted error structure. In practice,

the assumption that there is no correlation across different firms in different time periods is likely

to be violated. Suppose now there is a common shock to all the firms in the same industry; it is

much more realistic that this shock would affect those firms to some extent in the future rather

than completely disappear at the end of the current time period. Hence different firms in different

time periods may have some correlation between each other due to the lagged effect. This could

happen in a business cycle. If so, then the two-way cluster-robust standard errors will probably

fail. There are two solutions available to correct this problem. Thompson (2011) has improved the

original formula for the two-way cluster-robust standard errors to account for correlation across

different firms in different time periods. We will call it the revised two-way cluster-robust standard

errors. Another alternative solution is to use the Driscoll and Kraay, 1998 (DK) standard errors

which account for heteroskedasticity, autocorrelation and cross-sectional correlation of general and
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unknown form. A recent paper by Vogelsang (2012) has shown that fixed-b asymptotic approxi-

mations (see Kiefer and Vogelsang, 2005) for the DK standard errors perform substantially better

than standard normal asymptotic approximations for either the DK standard errors or the one-way

cluster-robust standard errors in the context of linear panel models with individual fixed effects and

cross-sectional correlation.

The objective of this chapter is to show that in the presence of both firm effect and time effect,

if there is correlation across different firms in different time periods, the two-way cluster-robust

method fails. Furthermore, two possible solutions to correct this problem are analyzed using sim-

ulations. First, several tables from Petersen (2009) are replicated and similar results are found in

simulations. In these tables, the sensitivity of standard error estimates to the presence of either

firm effects or time effects is examined. Next, we study the performance of the two-way cluster-

robust standard errors in the presence of both firm effects and time effects by comparing them

to the White standard errors and the one-way cluster-robust standard errors. In this scenario, the

two-way cluster-robust standard errors perform better than the one-way clustering method. Then,

we assume that the time effect follows an AR(1) process and analyze the performance of the two-

way clustering method. When the absolute value of the autocorrelation parameter, ρ , is close to

1, the two-way clustering method generally fails and leads to over-rejections. Finally, we examine

the performance of the revised two-way clustering method and the DK standard errors. The DK

standard errors perform well when firm dummies are included. Without removing the firm effect,

the DK standard errors do not behave well. Besides, firm dummies should be included if we care

about the endogeneity problem.

The rest of this chapter is organized as follows. Section 1.2 describes the model and reviews

several estimating methods for standard errors in panel data sets, including White, one-way cluster-

robust, FM, original two-way cluster-robust, revised two-way cluster-robust and DK standard er-

rors. Test statistics and their asymptotic distributions are also included in this section. Section 1.3

reports Monte Carlo simulation results. Section 1.3 also has theory for DK tests that explains some

strange patterns in simulations. Section 1.4 concludes. Appendix A contains proofs of a theorem
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that explains the strange pattern of the DK standard errors when firm effects are not removed in

the large-N, large-T case. Appendix B contains all simulation result tables.

1.2 The Model and Standard Errors

We follow the definitions for firm effects, time effects and persistent common shocks in Thompson

(2011). Firm effect means that the errors have arbitrary serial correlation for a given firm. Time

effect means that the errors have arbitrary correlation across different firms in the same time period.

Persistent common shock means that the errors have arbitrary correlation across different firms in

different time periods. Consider a linear regression model given by

yit = xitβ + εit , (1.1)

i = 1,2, . . . ,N, t = 1,2, . . . ,T,

where yit , xit and εit are scalars. The error εit and the regressor xit are assumed to have the same

structure given by

εit = γi+δt +ηit , (1.2)

xit = µi+θt +ξit , (1.3)

with

δt = ρδt−1+ et , (1.4)

θt = ρθt−1+ut , (1.5)

where δt and θt have the same autocorrelation parameter ρ . γi and µi are firm effects. δt and θt

are time effects. ηit and ξit are idiosyncratic errors. All error components have zero mean, finite

variance, and are independent of each other. It is assumed that γi, µi, et , ut , ηit and ξit all follow a

normal distribution. δt and θt are serially correlated, and they follow an AR(1) process. They are

normal when ρ = 0.
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The parameter of interest is β , and the estimation method is the ordinary least squares (OLS)

estimator

β̂ =

( N
∑

i=1

T
∑

t=1
x2
it

)−1 N
∑

i=1

T
∑

t=1
xityit

= β +

( N
∑

i=1

T
∑

t=1
x2
it

)−1 N
∑

i=1

T
∑

t=1
xitεit . (1.6)

Let vit = xitεit and define v̂it = xit ε̂it where ε̂it are the OLS residuals given by ε̂it = yit − xit β̂ .

Let Q̂ =
N
∑

i=1

T
∑

t=1
x2
it and Ω = ∑

i, j,t,s
E(vitv js). We need to estimate the covariance matrix to obtain

robust tests. We will focus on the following approaches in this chapter: White standard errors,

one-way cluster-robust standard errors, FM standard errors, original and revised two-way cluster-

robust standard errors, and DK standard errors. Note that the FM approach also uses a different

estimator of β . Details are discussed in subsection 1.2.2.

1.2.1 White and One-Way Cluster-Robust Standard Errors

In order to write down a general notation that nests each one-way approach, we use the group

notation in this subsection. With observations grouped into G clusters of Ng observations, for

g ∈ {1, . . . ,G}, we can rewrite model (1.1) as

yg = x′gβ + εg,

where yg, xg and εg are Ng×1 vectors. The one-way cluster-robust variance estimator is

V̂C = Q̂−1( G
∑

g=1
v̂gv̂′g

)
Q̂−1, (1.7)

where v̂g is a Ng×1 vector containing all v̂it in cluster g. If each cluster only contains one single

observation, then this estimator gives White (1980) standard errors

V̂White = Q̂−1( N
∑

i=1

T
∑

t=1
v̂2
it
)
Q̂−1. (1.8)
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If we cluster by firm, then G = N and Ng = T . If we cluster by time, then G = T and Ng = N. This

estimator is consistent if

G−1
G
∑

g=1
v̂gv̂′g

p−→ E(vgv′g) as G→ ∞. (1.9)

When either firm effects or time effects exist, White standard errors are not valid. If there are firm

effects only, we can cluster by firm. If there are time effects only, we can cluster by time. One-way

cluster-robust standard errors allow for correlation of any unknown form within clusters, but the

errors are assumed to be uncorrelated across clusters. When both firm effects and time effects are

present, the consistency condition (1.9) is violated and thus the one-way clustering method fails to

work.

1.2.2 FM Standard Errors

The Fama and MacBeth (1973) approach is originally used in asset pricing models such as the well-

known capital asset pricing model (CAPM). Since stocks have weak serial correlation in daily and

weekly holding periods, this approach is designed to correct cross-sectional correlation. In the

original version of this approach, researchers run T cross-sectional regressions (one for each time

period). For each coefficient β j, the FM estimator is the average of the T estimates

β̂
FM
j =

1
T

T
∑

t=1
β̂t, j, (1.10)

and the FM variance estimator is given by

s2
(

β̂
FM
j

)
=

1
T

T
∑

t=1

(
β̂t, j− β̂FM

j

)2

T −1
. (1.11)

The variance formula assumes no correlation over time. Therefore, when there are only time

effects, this approach produces a consistent variance estimator as T →∞. However, in the presence

of firm effects, the assumption does not hold, and hence the FM standard errors tend to be too small.
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1.2.3 Original and Revised Two-Way Cluster-Robust Standard Errors

Thompson (2011) and Cameron et al. (2011) have extended one-way cluster-robust standard errors

to two-way cluster-robust standard errors that are robust to double clustering by firm and time. The

original version just generalizes the one-way clustering method, and assumes no correlation across

different firms in different time periods. Thompson (2011) noticed this limitation and proposed a

revised version which takes into account correlation across different firms in different time periods.

The revised formula is

V̂ r
double = V̂ f irm+V̂time,0−V̂White,0+

L
∑

l=1
(V̂time,l +V̂ ′time,l)−

L
∑

l=1
(V̂White,l +V̂ ′White,l),

(1.12)

with

V̂ f irm = Q̂−1( N
∑

i=1
ŝ2
i
)
Q̂−1,

V̂time,l = Q̂−1( T
∑

t=l+1
ŝt ŝt−l

)
Q̂−1,

V̂White,l = Q̂−1( N
∑

i=1

T
∑

t=l+1
v̂it v̂i,t−l

)
Q̂−1.

ŝi =
T
∑

t=1
v̂it is the sum of all observations for firm i. ŝt =

N
∑

i=1
v̂it is the sum of all observations

for time t. This estimator is consistent as min(N,T )→ ∞ (see Thompson, 2011). V̂ f irm is the

usual formula for standard errors clustered by firm, V̂time,0 is the usual formula for standard er-

rors clustered by time, and V̂White,0 is the usual White standard errors. V̂ f irm accounts for serial

correlation for each firm, while V̂time,0 accounts for correlation across different firms in the same

time period. The terms V̂time,l with l ≥ 1 account for the correlation across different firms in dif-

ferent time periods. The terms V̂White,l with l ≥ 0 are subtracted off because of double counting.

The original two-way formula only contains the first three terms in (1.12)

V̂double = V̂ f irm+V̂time,0−V̂White,0. (1.13)

Suppose there are 3 firms and 3 time periods. Table 1.1 illustrates the sample covariance matrix

of the residuals under the assumptions for the original formula. The original version allows for
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correlation of any unknown form within clusters, clustering either by firm or by time, but it assumes

no correlation across different firms in different time periods. The revised version corrects for

potential persistent common shocks in the data. In fact, the V̂time,0+
L
∑

l=1
(V̂time,l +V̂ ′time,l) part

is exactly the DK standard errors using the truncated kernel with a truncation lag L. We will talk

about the DK standard errors in details in the next subsection.

Table 1.1: Residual cross product matrix: When standard errors are clustered by both firm and

time, correlation of residuals of the same firm in different years and residuals of the same year in

different firms may be nonzero. However, correlation of residuals in different firms and different

years are assumed to be zero.

Firm 1 Firm 2 Firm 3

Fi
rm

1 ε2
11 ε11ε12 ε11ε13 ε11ε21 0 0 ε11ε31 0 0

ε12ε11 ε2
12 ε12ε13 0 ε12ε22 0 0 ε12ε32 0

ε13ε11 ε13ε12 ε2
13 0 0 ε13ε23 0 0 ε13ε33

Fi
rm

2 ε21ε11 0 0 ε2
21 ε21ε22 ε21ε23 ε21ε31 0 0

0 ε22ε12 0 ε22ε21 ε2
22 ε22ε23 0 ε22ε32 0

0 0 ε23ε13 ε23ε21 ε23ε22 ε2
23 0 0 ε23ε33

Fi
rm

3 ε31ε11 0 0 ε31ε21 0 0 ε2
31 ε31ε32 ε31ε33

0 ε32ε12 0 0 ε32ε22 0 ε32ε31 ε2
32 ε32ε33

0 0 ε33ε13 0 0 ε33ε23 ε33ε31 ε33ε32 ε2
33

1.2.4 DK Standard Errors

Driscoll and Kraay (1998) first proposed the heteroskedasticity, autocorrelation and cross-section

correlation (HACC) robust variance estimator using the time series of cross-sectional sums of ob-

servations. The idea is to first aggregate all the individual observations at each time period and

then apply the HAC estimator to the time series of the sums. The first step takes into account

potential cross-sectional correlation in the data, and the second step takes into account potential
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serial correlation in the data. Therefore, the DK standard errors are robust to cross-sectional corre-

lation of unknown form as well as heteroskedasticity and serial correlation, assuming covariance

stationarity and weak dependence in the time dimension.

Define ˆ̄vt = ∑
N
i=1 v̂it , and let ˆ̄

Γ j = T−1 T
∑

t= j+1
ˆ̄vt ˆ̄v′t− j. The DK standard errors are given by

V̂DK = T Q̂−1 ˆ̄
ΩQ̂−1, (1.14)

with

ˆ̄
Ω = ˆ̄

Γ0+
T−1
∑
j=1

k(
j

M
)( ˆ̄

Γ j +
ˆ̄
Γ
′
j).

where k(x) is a kernel function such that k(x) = k(−x), k(0) = 1, |k(x)| ≤ 1, k(x) is continuous at

x = 0, and
∫

∞
−∞

k2(x)< ∞. M is the bandwidth parameter, or the truncation lag.

1.2.5 Test Statistics and Asymptotic Distributions

Consider testing the null hypotheses about β of the form H0 : β = β0. Define the t-statistic as

t =
β̂ −β0√

V̂
.

If we only assume heteroskedasticity, White standard errors are consistent as N→ ∞. If we allow

for heteroskedasticity and general forms of serial correlation, firm clustered standard errors are

consistent as N→ ∞. If we assume independence over time and allow for cross-sectional correla-

tion, FM and time clustered standard errors are consistent as T → ∞. Two-way clustered standard

errors are consistent if there are serial correlation for a given firm and cross-sectional correlation at

a given time period but no correlation across different firms in different time periods. Consistency

of two-way cluster standard errors requires N,T →∞. So t-statistics based on these standard errors

have a limiting standard normal distribution.

For the DK standard errors, the traditional asymptotic approach relies on Ω̂ being a consistent

estimator of Ω. Consistency of Ω̂ requires that M → ∞ as T → ∞, but at a slower rate of con-

vergence M
T → 0. Under the traditional approach, the t-statistic has a limiting standard normal

distribution. An alternative asymptotic theory has been proposed by Kiefer and Vogelsang (2005).
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They model the bandwidth as a fixed proportion of the sample size. That is, M = bT with b a fixed

constant in (0,1]. Because b is held fixed in this approach, this alternative approach is usually

labeled fixed-b asymptotics while the traditional approach is labeled small-b asymptotics. Under

the fixed-b approach, Ω̂ converges to a random variable that depends on the kernel function and

bandwidth, rather than a constant. As a result, the t-statistic has a nonstandard limiting distribu-

tion. This limiting distribution reflects the choice of kernel and bandwidth, but is otherwise pivotal.

Fixed-b asymptotics provide more accurate and reliable inference than small-b asymptotics. For

each kernel function, fixed-b critical values can be simulated. In particular, in linear panel models

with individual fixed effects, Vogelsang (2012) has shown that

t⇒
W1(1)√
P1((b)

,

where⇒ denotes weak convergence, W1(r) is the standard Wiener process, and P1(b) is a random

matrix that depends on the kernel function and bandwidth. For example, in the case of Bartlett

kernel,

P1(b) =
2
b

(∫ 1

0
B2

1(r)dr−
∫ 1−b

0
B1(r)B1(r+b)dr

)
where B1(r) =W1(r)− rW1(1).

1.3 Finite Sample Performances

This section compares finite sample performances of the covariance matrix estimators described

in section 1.2 under different error structures. First, errors with one-way clusering are considered.

We follow Petersen (2009) and analyze the sensitivity of standard errors to the presence of firm

effects or time effects. Next, we compare the performance of White, one-way cluster-robust, and

original two-way cluster-robust standard errors in the context of double clustering and persistent

common shocks. Finally, we examine the performance of revised two-way cluster-robust and DK

standard errors in the context of persistent common shocks.
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1.3.1 Data Generating Process

The data generating process (DGP) is based on model (1.1). Suppose the structures of εit and xit

satisfy (1.2), (1.3), (1.4) and (1.5). The true slope coefficient β is 1. When there are only firm

effects, the correlation structures of εit and xit take the following form

corr
(

xit ,x js
)
=


1, for i = j and t = s

ρx =
σ2

µ

σ2x
, for i = j and all t 6= s

0, for all i 6= j

corr
(

εit ,ε js
)
=



1, for i = j and t = s

ρε =
σ2

γ

σ2
ε

, for i = j and all t 6= s

0, for all i 6= j

When there are only time effects, the correlation structures of εit and xit take the following form

corr
(

xit ,x js
)
=


1, for i = j and t = s

ρx =
σ2

θ

σ2x
, for t = s and all i 6= j

0, for all t 6= s

corr
(

εit ,ε js
)
=



1, for i = j and t = s

ρε =
σ2

δ

σ2
ε

, for t = s and all i 6= j

0, for all t 6= s

So the variance of γi (or δt ), µi (or θt ), ηit and ξit can be written as ρε ·σ2
ε , ρx ·σ2

x , (1−ρε ) ·σ2
ε

and (1−ρx) ·σ2
x , respectively. In order to examine the sensitivity of standard errors to the presence

of either firm effects or time effects, we set σx = 1, and σε = 2. We allow the fraction of the

variance of xit and εit caused by the firm effect, i.e. ρx and ρε respectively, to vary from 0% to

75%. The simulation results are based on 5,000 random samples with 500 firms and 10 years per

firm. The empirical null rejection probabilities of t-statistics built upon White, one-way cluster-

robust and FM standard errors are reported at a two-sided significance level 1%.
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When there are double clustering and persistent common shocks, we focus on the comparison

of the performances of each variance estimator. The DGP follows (1.2) and (1.3), with both firm

effects and time effects. Firm effects (γi, µi) and idiosyncratic errors (ηit , ξit ) follow a standard

normal distribution. For a special case of double clustering but no persistent common shocks,

time effects (δt , θt ) are assumed to follow a standard normal distribution (ρ = 0). For a special

case of persistent common shocks, time effects (δt , θt ) are assumed to follow an AR(1) process

(ρ > 0). The (N,T ) combinations vary in different simulations, but all simulations are based

on 2,000 random samples. In the double clustering case, we allow N and T to vary from 10

to 250 separately. In the persistent common shock case, we allow N = T = 10,50,250. The

autocorrelation parameter, ρ , takes values from -0.95 to 0.95 in Table B.6, B.7 and B.8. ρ =

0,0.3,0.6,0.9 in Table B.9 and B.10. For the DK standard errors, we focus on the Bartlett kernel,

k(x) = 1−|x| for |x| ≤ 1 and k(x) = 0 for |x| ≥ 1. We set the bandwidth b = 0.1,0.2, . . . ,0.9. The

truncation lag in the revised two-way clustering method is set to be the same as the bandwidth in

DK. The empirical null rejection probabilities of t-statistics are reported at a two-sided significance

level 5%.

1.3.2 Results

Table B.1-B.4 illustrate how sensitive standard errors are to the presence of either firm effects or

time effects. The DGP of Table B.1 and B.2 contains firm effects only, and the DGP of Table B.3

and B.4 contains time effects only and ρ = 0. Table B.1 and B.3 report empirical null rejection

probabilities of t-statistics based on White standard errors and one-way cluster-robust standard

errors. Table B.2 and B.4 report empirical null rejection probabilities of t-statistics based on FM

standard errors. ρx varies across columns while ρε varies across rows. In Table B.1 and B.3,

each cell contains the average OLS estimate of β and the standard deviation of β̂ . The third and

fifth entry are the average White standard errors and clustered standard errors, respectively. The

empirical null rejection probabilities of White and clustered t-statistics at a two-sided significance

level 1% are shown in square brackets below the standard error estimates. In Table B.2 and B.4,
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each cell contains the average FM coefficient estimate and the standard deviation of β̂ . The third

entry is average FM standard errors. The empirical null rejection probabilities of FM t-statistics at

a two-sided significance level 1% are shown in square brackets below.

For example, consider the case where 50% of the variability in both the error and the regressor

is due to the firm effect or the time effect, i.e. ρx = ρε = 0.50. In Table B.1, the average OLS

coefficient estimate is 1.0008 and the standard deviation of the OLS coefficient estimate is 0.0510.

The White standard error estimate is 0.0283 and the clustered standard error is 0.0508. 15.98%

of the White t-statistics are greater than 2.58 in absolute value, while 1.02% of the clustered t-

statistics are greater than 2.58 in absolute value. In Table B.2, the average FM coefficient estimate

is 1.0008 and the standard deviation of the FM coefficient estimate is 0.0511. The FM standard

error estimate is 0.0239 and 24.98% of the FM t-statistics are greater than 2.58 in absolute value.

In Table B.3 , the average OLS coefficient estimate is 0.9966 and the standard deviation of the

OLS coefficient estimate is 0.3073. The White standard error estimate is 0.0277 and the clustered

standard error estimate is 0.2445. 81.28% of the White t-statistics are greater than 2.58 in absolute

value, while 7.40% of the clustered t-statistics are greater than 2.58 in absolute value. In Table

B.4, the average FM coefficient estimate is 0.9999 and the standard deviation of the FM coefficient

estimate is 0.0282. The FM standard error estimate is 0.0276 and 2.68% of the FM t-statistics are

greater than 2.58 in absolute value.

If there are no firm (time) effects in either the error or the regressor, White standard errors

work well. As you can see from Table B.1 and B.3, in the first row and first column, the rejection

probabilities are around 1%. However, as long as both of the regressor and the error contain firm

(time) effects, White standard errors underestimate the variance and lead to over-rejections. As

ρx and ρε increase, White standard errors remain the same either across columns or across rows,

but the true standard errors increase. In contrast, standard errors clustered by firm are very close

to the true standard errors. In Table B.1, the rejection probabilities for clustered t-statistics are

around 1%, despite the change of ρx and ρε . In this setting, one-way cluster-robust standard errors

correctly account for the correlation in the data and produce accurate inference. In Table B.3,
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standard errors clustered by time are much more accurate than White standard errors, but they still

underestimate the true standard errors. Moving down the diagonal of Table B.3 from upper left to

bottom right, the rejection probabilities for clustered t-statistics at a two-sided significance level

1% go from 4.04% to 9.16%. One possibility is that we have large N and small T (N = 500 and

T = 10) in the DGP. There are only ten clusters if clustered by time, which is not large enough for

standard normal approximations to be valid.

The FM approach is designed to account for correlation across different firms in the same

time period, so when there are only firm effects, FM standard errors fail to account for serial

correlation. From Table B.2, we can see that FM standard errors are biased downward. Moving

down the diagonal of Table B.2 from upper left to bottom right, the true standard errors rise while

the FM standard errors shrink. In the presence of time effects only, the FM approach works well.

FM standard errors are very close to the true standard errors, and the rejection probabilities for FM

t-statistics at a two-sided significance level 1% are approximately 3% for all cells in Table B.4.

When there are both firm effects and time effects, one-way cluster-robust standard errors would

probably be biased. According to Petersen (2009), a common approach to address double cluster-

ing is to include a full set of time dummies and then cluster by firm. If the time effect is constant

across firms in the same time period, then time dummies completely eliminate the time effect.

What is left in the error term is just the firm effect. However, this approach only works when

the correlation is correctly specified. If the time effect is not constant across firms, time dummies

will not completely remove the time effect, and thus standard errors clustered by firm would be

biased. Another limitation of the inclusion of dummies that empirical researchers care about is

that it restricts the types of regressors that can be included. One solution suggested by Petersen

(2009) is to cluster by firm and time simultaneously, using the two-way cluster-robust standard er-

rors proposed by Thompson (2011) and Cameron et al. (2011). Table B.5 compares performances

of White, one-way cluster-robust and original two-way cluster-robust standard errors.

In Table B.5, the DGP contains firm effects and time effects, but no persistent common shocks

(ρ = 0). N and T vary from 10 to 250 separately. Column 1 reports the average OLS coefficient
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estimates, and column 2-5 report the empirical null rejection probabilities for t-statistics based on

White, firm clustered, time clustered and original two-way clustered standard errors, respectively,

at a two-sided significance level 5%. Rejection probabilities of White and clustered t-statistics are

substantially larger than 5%. When N and T are close and both of them are large, the original two-

way cluster-robust standard errors work well. Table B.5 shows that when N = T = 50, the rejection

probability is 7.55%. When N = 50 and T = 100, the rejection probability is 6.70%. When N =

T = 100, the rejection probability is 6.65%. When N = 100 and T = 250, the rejection probability

is 4.85%. When N = T = 250, the rejection probability is 6.10%. When N = 250 and T = 100,

the rejection probability is 5.60%. The larger the sample size, the greater the improvement.

The limitation of the original two-way clustering method is that although it considers cross-

sectional correlation in the same time period, it does not allow for correlation across different

firms in different time periods. If persistent common shocks such as business cycles exist, failure

to account for them would lead to over-rejections. This approach should take into account cross-

section correlation of general form.

Table B.6 to B.8 compare performances of White, one-way cluster-robust and original two-

way cluster-robust standard errors when the time effect follows an AR(1) process. We set N = T =

10,50,250 respectively. Column 1 reports the average OLS coefficient estimates, and column 2-5

report the empirical null rejection probabilities for t-statistics based on White, firm clustered, time

clustered and original two-way clustered standard errors, respectively, at a two-sided significance

level 5%.

Again, rejection probabilities of White and clustered t-statistics are substantially larger than

5%. When N and T are small, the original two-way clustered standard errors do not work no

matter what value ρ takes. Even when ρ = 0, this method would produce a rejection probability at

12.85%. This confirms that the two-way clustering approach needs both N and T to be sufficiently

large. When N = T = 50, different stories happen when ρ is close to zero and when ρ is close

to one. When ρ is close to zero, correlation across different firms in different time periods are

weak. The original two-way cluster-robust standard errors are still reasonable. For example, when
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ρ = 0.1, the rejection probability is 6.60%. However, when correlation across different firms

in different time periods is strong, the original two-way clustering method over-rejects. When

ρ = 0.7, the rejection probability is 22.15%. When ρ = 0.9, the rejection probability rises to

45.60%. Increase in sample size helps improve the inference if ρ is small (|ρ| ≤ .7 in the tables).

For large ρ , increasing N,T makes it even worse for the two-way approach. As shown in Table

B.8, when ρ = 0.1, the rejection probability is 5.05%, while in Table B.7, it is 6.60%. When ρ is

very close to 1, over-rejection becomes more severe. When ρ = 0.9, the rejection probability is

52.65% while in Table B.7 it is 45.60%.

Table B.9 and B.10 compare performances of one-way cluster-robust, original and revised

two-way cluster-robust, and DK standard errors when the time effect follows an AR(1) process.

Usual fixed-b critical values are used for t-statistics based on the DK standard errors. Table B.9

uses the standard OLS estimator, while Table B.10 uses the fixed-effects OLS estimator. We set

N = T = 50,250. There are several interesting findings to note. In both tables, one-way cluster-

robust standard errors over-reject a lot. The original double clustering method is okay when T is

large and ρ is small. When N = T = 250 and ρ = 0.3, the rejection probability is 6%. The revised

double clustering method has a better performance than the original one only when ρ is large and

the truncation lag is not large. However, this revised method still over-rejects. When N = T = 50,

ρ = 0.9, and the truncation lag L = 5, the rejection probability of the original version is 52.5%

while the rejection probability of the revised version is 29%. When N = T = 250, ρ = 0.9, and the

truncation lag L = 5, the rejection probability of the original version is 50.9% while the rejection

probability of the revised version is 17.1%. Also, rejection probabilities of the revised method

increases as the truncation lag gets bigger. Without including firm dummies, the DK standard

errors have a strange pattern. Rejection probabilities of the DK standard errors fall as ρ increases.

In Table B.10, rejection probabilities of firm clustered standard errors are substantially larger than

5%. Rejection probabilities of time clustered standard errors and original two-way cluster-robust

standard errors are very close, since firm effects are removed by firm dummies. Similar interesting

patterns are found for the revised double clustering method. The patterns of the DK standard errors
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are consistent with those in Vogelsang (2012), and they behave very well. When N = T = 250 and

ρ = 0,0.3, the rejection probabilities are approximately 5% for all values of the bandwidth b. The

DK standard errors still behave well even when ρ = 0.9. When N = T = 250, ρ = 0.9, and b = .9,

the rejection probability is 8.8%.

The strange pattern of the DK standard errors in Table B.9 is caused by the presence of firm

effects. Theoretical evidence is provided in the next subsection. The patterns of the revised double

clustering method can be explained in two ways. First, as mentioned in subsection 1.2.3, the part

accounts for potential persistent common shocks in the data is exactly the DK standard errors

with truncation kernel. The downweighting causes downward bias of the variance estimator, and

thus over-rejections. This explains why rejection probabilities of the revised version is bigger

than those of the original version. Second, the revised two-way approach relies on the variance

estimator being consistent. Using the traditional approach leads to unreliable inference.

1.3.3 Strange Patterns of the DK Standard Errors

This section presents theoretical evidence to explain the strange patterns of the DK standard errors

in the large-N, large-T case. All limits are taken as N,T →∞. Proofs are provided in Appendix A.

Consider model (1.1) with xit and εit satisfying (1.2), (1.3), (1.4) and (1.5). Consider testing

the null hypotheses about β of the form

H0 : β = β0.

Define the t-statistic as

tDK =
β̂ −β0√

V̂DK
.

The following theorem summarizes the theoretical results for large-N, large-T case when firm

dummies are not included in the model.

Theorem 1.1. Suppose model (1.1) has one regressor xit , and the structures of εit and xit satisfy

(1.2), (1.3), (1.4) and (1.5). Suppose firm dummies are not included in the model. Assume M = bT
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where b ∈ (0,1] is fixed. Assume N = φT such that N → ∞ when T → ∞. The Bartlett kernel is

considered. As T → ∞,

1. If the regressor and errors in model (1.1) contain both firm effects and time effects, then

√
N
(

β̂ −β

)
⇒ Q−1

√
1+φσ2Z1, (1.15)

tDK ⇒
√

1+
1

φσ2 ·
Z1√
P(b)

, (1.16)

where Z1 ∼N(0,1), and P(b) is a random variable depending on bandwidth. Z1 is indepen-

dent of P(b), and σ2 is the long run variance of θtδt .

2. If the regressor and errors in model (1.1) only contain firm effects, then

√
N
(

β̂ −β

)
⇒ Q−1Z2, (1.17)∣∣tDK
∣∣→ ∞, (1.18)

where Z2 ∼ N(0,1).

3. If the regressor and errors in model (1.1) only contain time effects, then usual fixed-b limits

(see Vogelsang, 2012) are obtained.

Note that when the model satisfies (1.2), (1.3), (1.4) and (1.5), it is easy to show that θtδt

satisfies a Functional Central Limit Theorem (FCLT). However, it is not necessary to assume that

the time effects θt and δt are independent and they both follow AR(1). The assumption can be

relaxed to allow for a more general setting. We only need to assume that θtδt satisfies a FCLT.

That is, T−
1
2
[rT ]
∑

t=1
θtδt ⇒ σW (r), where W (r) is a standard Wiener process and σ2 is the long run

variance of θtδt .

Theorem 1.1 shows that in the presence of firm effects and time effects, if firm dummies are not

included, the fixed-b limit of tDK is not asymptotically pivotal as usual. It depends on the ratio,

φ = N
T , and the long run variance of θtδt , σ2. The reason is that the firm effect destroys the weak

dependence needed for results of Vogelsang (2012) to hold. Result (1.16) indicates that the usual
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fixed-b critical values have to be scaled by a nuisance parameter which is generally unknown in

practice. As a consequence, in practice one would have to either: i) estimate the scaling factor or

ii) include firm dummies to get back the asymptotically pivotal limit. Yet another important reason

to recommend the inclusion of firm dummies is the problem of endogeneity. Empirical researchers

are worried about the regressors that are not time-varying, and want to leave out firm dummies.

However, they must be very careful because solving the endogeneity problem should be a priority.

Including firm dummies removes the individual heterogeneity that is correlated to the regressors.

Furthermore, if the individual heterogeneity is the source that generates cross-sectional correlation,

the inclusion of firm dummies would completely eliminate the cross-sectional correlation and thus

one-way clustered standard errors would work.

Table B.11 demonstrates the performance of the DK standard errors in the presence of firm

effects and AR(1) time effects, using the adjusted fixed-b critical values derived in Theorem 1.1.

Patterns look similar to Vogelsang (2012). For a given N,T,ρ combination, rejection probabilities

are above 5% with small b and they steadily decline as b increases. For a given value of ρ , as

T increases, rejection probabilities approach 5% for all bandwidths. When T = 250 and b = 1,

rejection probabilities are around 7% or 8% when there is strong serial correlation (ρ = 0.9).

Rejection probabilities rise as ρ increases.

When there are no time effects and only firm effects, the DK standard error estimate tends

to decline toward zero, and thus the t-statistic would go to infinity. Table B.12 illustrates the

performance of the DK standard errors in this case, using the usual fixed-b critical values. Given

N, as T increases, rejection probabilities for the DK standard errors blow up toward 1 for all

bandwidths. In contrast, rejection probabilities for firm clustered standard errors are close to 5%

when N is large, which is expected because the one-way approach is designed to account for any

form of serial correlation assuming independence in the cross section. Also, when both N and T

are large, the two-way approach gives similar results as the one-way approach.
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1.4 Conclusion

This chapter compares finite sample performances of White, FM, one-way cluster-robust, two-way

cluster-robust and DK standard errors using Monte Carlo simulations. If there is only one-way

clustering, one-way clustered standard errors could work very well. However, in the presence

of two-way clustering, one-way clustered standard errors is not sufficient to take into account all

potential correlations in the data. Petersen (2009) suggests applied researchers use original two-

way cluster-robust standard errors. When there are no persistent common shocks, this two-way

clustering method is valid and it allows for any unknown form of correlation within clusters. The

limitation of this method is that it does not take into account correlation across different firms in

different time periods. If we assume the time effect to be a simple AR(1) process which gener-

ates correlation across different firms in different time periods, the original two-way clustering

approach over-rejects when there is strong serial correlation (ρ is large). As a result, we need to

find a solution to solve this problem. Thompson (2011) has improved the original formula for the

two-way cluster-robust standard errors to account for correlation across different firms in different

time periods.

Another alternative solution is to use the DK standard errors which account for heteroskedastic-

ity, autocorrelation and cross-sectional correlation of general and unknown form. The DK standard

errors are valid only when firm effects are removed. The presence of firm effects will distort the

results and lead to strange outcomes for the DK standard errors. Theoretical evidences indicate

that the usual fixed-b critical values have to be scaled by a nuisance parameter which is generally

unknown in practice. Therefore, empirical researchers have to choose between estimating the scal-

ing factor and including firm dummies. Another reason to include firm dummies is that they would

eliminate the individual heterogeneity that is potentially correlated with the regressors. After firm

effects are removed, the DK standard errors produce remarkably better performance than other

standard errors.

In sum, using the original two-way cluster-robust standard errors as a robustness check only

works in a special case of double clustering. When persistent common shocks are concerned,
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the DK standard errors should be considered as a robustness check. However, the DK standard

errors are valid under the assumptions of covariance stationarity and weak dependence in the time

dimension. Also, firm dummies should be included to remove firm effects. Otherwise, one has to

estimate the nuisance parameter to adjust the fixed-b critical values.
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CHAPTER 2

FIXED-b INFERENCE FOR DIFFERENCE-IN-DIFFERENCES ESTIMATION

2.1 Introduction

This chapter focuses on fixed-b asymptotic distributions of the Wald and t statistics for Difference-

in-Differences (DD) estimation in linear panel settings. Recently, DD estimation has become in-

creasingly popular in policy analysis. DD estimation involves identifying a specific intervention

or treatment (often a policy change or a passage of a law). Applied researchers then compare the

difference in outcomes before and after the intervention for groups affected by the intervention

(treatment groups) to the same difference for unaffected groups (control groups). Such panel data

sets often contain serial correlation and/or spatial correlation in the cross section. Even though the

correlation structure is not of interest, the failure to account for potential serial and spatial corre-

lation may lead to severe distortions in the inference about parameters of interest. After Bertrand

et al. (2004) pointed out that standard errors robust to serial correlation should be considered in

DD estimation, using clustered standard errors (see Arellano, 1987) has become a standard method

to deal with serial correlation in the DD context. Hansen (2007) extended the results for the tra-

ditional short panel case, large-N, fixed-T case, to large-N, large-T and fixed-N, large-T cases.

The clustered standard errors are valid under the assumption that individuals are uncorrelated with

each other. In other words, spatial correlation in the cross section is often ignored. Wooldridge

(2003) provided a useful discussion of cluster methods. Sometimes the cross-sectional observa-

tions can be divided into groups or clusters where it is assumed that individuals within a cluster are

correlated while individuals across clusters are uncorrelated. In this case, standard errors robust to

cross-section clustering can be constructed. The number of clusters could be small, though.

In time series econometrics, the nonparametric HAC robust covariance matrix estimator (see

Newey and West, 1987) is widely used. To handle the spatial correlation, robust standard errors
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can be obtained using the approaches of Conley (1999), Kelejian and Prucha (2007), Bester et al.

(2008), Bester et al. (2011) or Kim and Sun (2011a) when a distance measure is available. Kim and

Sun (2011b) provides results on kernel HAC standard errors in linear panel models with individual

and time dummy variables using a distance measure. When a distance measure is either unavailable

or unknown for the cross section of the panel, the DK approach can be used to obtain robust

standard errors. Driscoll and Kraay (1998) established consistency of these standard errors under

mixing conditions. However, the mixing conditions do not hold for the fixed-effects estimator.

Fortunately, Gonçalves (2011) has established consistency of the DK standard errors for the fixed-

effects estimator in the presence of general forms of cross-sectional correlation. A recent paper by

Vogelsang (2012) develops a fixed-b asymptotic theory for test statistics based on the fixed-effects

estimator and the DK standard errors following Kiefer and Vogelsang (2005).

This chapter provides an analysis of the DK standard errors in linear DD models with fixed

effects and individual-specific time trends. The analysis is accomplished within the fixed-b asymp-

totic framework proposed by Kiefer and Vogelsang (2005) for HAC estimator based tests. Fixed-b

asymptotics are appealing because they reflect the influence of the choice of kernel and bandwidth

on the behavior of the standard errors while the traditional asymptotics don’t. Large-T framework

is required in the fixed-b approach. According to the survey of DD papers in Bertrand et al. (2004),

among 92 DD papers they found, 10% have at least 36 time periods and 5% have at least 51 time

periods. Therefore, it is feasible to use the DK standard errors for DD estimation to cope with

any general forms of spatial correlation in the cross section given covariance stationarity and weak

dependence in the time dimension. This chapter only considers fixed-N, large-T case. Simulation

results suggest that the asymptotic theory can be extended to large-N, large-T case.

The main objective of this chapter is to derive fixed-b asymptotic distributions of test statistics

constructed using the DD estimator and the DK standard errors. It is found that the fixed-b limits

are different from those derived by Kiefer and Vogelsang (2005) and Vogelsang (2012). The newly

derived fixed-b asymptotic distributions depend on the date of policy change, λ , and individual-

specific trend functions in addition to the choice of kernel and bandwidth. For the individual
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fixed-effects model with no trend, the fixed-b asymptotic distributions are the same as found in a

pure time series model with a shift in mean. New critical values are simulated in this study and

they have a U-shape with respect to λ . Whether time period dummies are included does not affect

the fixed-b asymptotic distributions. For other regressors that don’t have a structural break, the

fixed-b asymptotic distributions for DK test statistics found in Vogelsang (2012) still apply. The

traditional short panel case is not included. With T fixed, there is not sufficient information in the

time dimension for the DK approach to work.

The remainder of the chapter is organized as follows. The next section describes the DD models

and test statistics. Section 2.3 presents the fixed-b asymptotic results for test statistics constructed

using the DD estimator and the DK standard errors, and new critical values for t statistics in two

special cases. Finite sample properties are examined in Section 2.4. Section 2.5 concludes. Proofs

are given in Appendix C, and tables are given in Appendix D.

Throughout the chapter, xit and β denote the full set of regressors and parameters respectively

in each model. “ ′” denotes the transpose, when used in the context of a vector.

2.2 Model Setup and Test Statistics

Consider a DD model with fixed effects and individual-specific deterministic trends given by

yit = f(t)′ai+β1Treati+β2DUt +β3Treati ·DUt +uit , (2.1)

i = 1,2, . . . ,N, t = 1,2, . . . ,T,

where yit and uit are scalars, f(t) denotes a J×1 vector of trend functions, ai denotes a J×1 vector

of individual-specific unobservable variables.1 Treati denotes an indicator for individuals in the

treatment group which takes one if individual i is in the treatment group. Without loss of generality,

we assume that the first kN individuals are in the treatment group. Thus, Treati = 1(i≤ kN). DUt

1ai could be either random or deterministic. Asymptotic results will not differ because of the
de-trending transformation.
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denotes an indicator for post-policy-change time periods which takes one after the policy change.

That is, DUt = 1(t > λT ) = 1(r > λ ), where the parameter λ is the relative date of policy change

within the time sample. Both k and λ are assumed known. Often time fixed effects are included

which gives the model

yit = λt+ f(t)′ai+β1Treati+β2DUt +β3Treati ·DUt +uit . (2.2)

An alternative model includes common time trends instead of time fixed effects. The asymptotic

results for the alternative model remain unchanged. A more general model with additional regres-

sors is

yit = f(t)′ai+β1Treati+β2DUt +β3Treati ·DUt + zit
′
γ +uit , (2.3)

where zit is a (K×1) vector of additional regressors. Including time fixed effects gives the model

yit = λt+ f(t)′ai+β1Treati+β2DUt +β3Treati ·DUt + zit
′
γ +uit . (2.4)

The focus is on estimation and inference about β3, which explains the impact of a policy change

on y. The ordinary least squares (OLS) estimator of β3, β̂3, is usually referred to as DD estimator.

Since we are primarily interested in the DD estimator, we could do a de-trending transformation to

get rid of the unobservable variables λt and ai, similar to the fixed-effects transformation. There-

fore, we will call the de-trended OLS estimator the “fixed-effects OLS estimator" in the remainder.

Consider the fixed-effects OLS estimator of β given by

β̂ =

( N
∑

i=1

T
∑

t=1
x̃it x̃′it

)−1 N
∑

i=1

T
∑

t=1
x̃it ỹit , (2.5)

where in model (2.1)

β =

β2

β3

 , x̃it = xit− x̂it =

 D̃Ut

Treati · D̃Ut

 , ỹit = yit − ŷit , D̃Ut = DUt − D̂Ut ,
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with ŷit =
T
∑

s=1
yisf(s)′

( T
∑

s=1
f(s)f(s)′

)−1
f(t) and D̂Ut =

T
∑

s=1
DUsf(s)′

( T
∑

s=1
f(s)f(s)′

)−1
f(t). Note

that Treati drops after the transformation as long as f(t) has an intercept. In model (2.2) we have

β = β3,

ỹit = yit − ŷit −
1
N

N
∑
j=1

(y jt − ŷ jt),

x̃it = xit − x̂it −
1
N

N
∑
j=1

(x jt − x̂ jt) = T̃reati · D̃Ut ,

with

T̃reati = Treati−
1
N

N
∑
j=1

Treat j = 1(i≤ kN)− k.

Let

hit =

 D̃Ut

Treati · D̃Ut

 .
Here, both Treati and DUt drop after the transformation. In model (2.3) we have the same ỹit and

D̃Ut as in model (2.1) but different β and x̃it given by

β =


β2

β3

γ

 , x̃it =

hit

z̃it

 ,

where z̃it = zit − ẑit = zit −
T
∑

s=1
zisf(s)′

( T
∑

s=1
f(s)f(s)′

)−1
f(t). In model (2.4), ỹit , z̃it , D̃Ut and

T̃reati take the same form as in model (2.2). However, β and x̃it now become

β =

β3

γ

 , x̃it =

T̃reati · D̃Ut

z̃it

 .
Plugging (2.1), (2.2), (2.3) or (2.4) into (2.5) for ỹit yields

β̂ −β =

( N
∑

i=1

T
∑

t=1
x̃it x̃′it

)−1 N
∑

i=1

T
∑

t=1
x̃ituit . (2.6)
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Let ṽit = x̃ituit and define v̂it = x̃it ûit where ûit are the OLS residuals given by

ûit = ỹit − x̃′itβ̂ .

As shown by Driscoll and Kraay (1998), it is possible to obtain standard errors in a panel model

that are robust to spatial correlation of unknown form, as well as heteroskedasticity and serial

correlation, under the covariance stationarity and weak dependence conditions. Define

ˆ̄vt =
N
∑

i=1
v̂it ,

and the partial sums of ˆ̄vt as

ˆ̄S[rT ] =
[rT ]
∑

t=1
ˆ̄vt ,

where r ∈ (0,1] and [rT ] is the integer part of [rT ]. Let

ˆ̄
Γ j = T−1

T
∑

t= j+1
ˆ̄vt ˆ̄v′t− j,

and then define

ˆ̄
Ω = ˆ̄

Γ0+
T−1
∑
j=1

k(
j

M
)( ˆ̄

Γ j +
ˆ̄
Γ
′
j),

which is the nonparametric kernel HAC estimator using the cross-sectional sum, ˆ̄vt , the kernel,

k(x), and bandwidth M. An equivalent expression of ˆ̄
Ω is given by

ˆ̄
Ω = T−1

T
∑

t=1

T
∑

s=1
Kts ˆ̄vt ˆ̄v′s,

where

Kts = k(
|t− s|

M
).

When ˆ̄
Ω is used as the middle term of the sandwich form of the covariance matrix, we obtain the

robust covariance matrix estimator proposed by Driscoll and Kraay (1998)

V̂ = T (
N
∑

i=1

T
∑

t=1
x̃it x̃′it)

−1 ˆ̄
Ω(

N
∑

i=1

T
∑

t=1
x̃it x̃′it)

−1.
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Consider testing linear hypotheses about β of the form

H0 : Rβ = r,

where R is a q×K∗ matrix of known constants with full rank with q≤ K∗ and r is a q×1 vector

of known constants. Define the Wald statistics as

Wald = (Rβ̂ − r)′[RV̂ R′]−1(Rβ̂ − r).

In the case where q = 1 we can define the t-statistics

t =
Rβ̂ − r√

RV̂ R′
.

Note that q ≤ 2 in model (2.1) and q = 1 in model (2.2). In these two cases, the focus is on

the asymptotic behavior of the t-statistics under null hypotheses involving restrictions on the DD

estimator. For model (2.3) and (2.4), the asymptotic behavior of the Wald-statistics under null

hypotheses involving linear restrictions on the γ vector is also analyzed.

2.3 Asymptotic Theory and Critical Values

This section analyzes the asymptotic properties of the test statistics under null hypotheses in large-

T , fixed-N case. All limits are taken as T → ∞ and N held fixed. Simulated critical values are

provided. Throughout, the symbol “⇒” denotes weak convergence. Both “
p−→” and “p lim” denote

convergence in probability.

The asymptotic distributions of Wald and t statistics under null hypotheses are obtained using

large-T asymptotics. This approach allows the standard errors to be approximated within the fixed-

b asymptotic framework developed by Kiefer and Vogelsang (2005) which captures the choice of

kernel and bandwidth in the asymptotic approximation. Moreover, it generates limits that are

invariant to general forms of spatial correlation under assumptions of covariance stationarity and

weak dependence in the time dimension. The asymptotic distributions of the statistics depend

on the form of the kernel used to compute the HAC estimators. Here we focus on Bartlett kernel,
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k(x) = 1−|x| for |x| ≤ 1 and k(x) = 0 for |x| ≥ 1. Before we proceed, some definitions are required.

The random matrices that appear in the asymptotic results are expressed in terms of the following

functions and random variables.

Definition 2.1. Let W (r) denote a generic vector of independent standard Wiener processes. De-

fine

HF (r,λ ) = 1(r > λ )−
∫ 1

λ
F(s)′ds

(∫ 1

0
F(s)F(s)′ds

)−1
F(r),

NF (W ) =
∫ 1

0
HF (r,λ )dW (r),

QF (r,λ ,W ) =
∫ r

0
HF (s,λ )dW (s)−

∫ 1

0
dW (s)F(s)′

(∫ 1

0
F(s)F(s)′ds

)−1 ∫ r

0
F(s)HF (s,λ )ds

−
∫ r

0
HF (s,λ )2ds

(∫ 1

0
HF (s,λ )2ds

)−1
NF (W ).

The following definition defines some random matrices that appear in the asymptotic results.

Definition 2.2. Let B(r) denote a generic vector of Brownian bridges. If k(x) is the Bartlett kernel,

let the random matrices, PF (b,λ ,QF ), P(b,B), P21(b,λ ,Q
F ,B) and P21(b,λ ,Q

F ,B) be defined

as follows for b ∈ (0,1]

PF (b,λ ,QF ) =
2
b

∫ 1

0
QF (r,λ ,W )QF (r,λ ,W )′dr

− 1
b

∫ 1−b

0
[QF (r,λ ,W )QF (r+b,λ ,W )′+QF (r+b,λ ,W )QF (r,λ ,W )′]dr,

P(b,B) =
2
b

∫ 1

0
B(r)B(r)′dr− 1

b

∫ 1−b

0
[B(r)B(r+b)′+B(r+b)B(r)′]dr,

P12(b,λ ,Q
F ,B) =

2
b

∫ 1

0
QF (r,λ ,W )B(r)′dr− 1

b

∫ 1−b

0
[QF (r,λ ,W )B(r+b)′

+QF (r+b,λ ,W )B(r)′]dr,

P21(b,λ ,Q
F) =

2
b

∫ 1

0
B(r)QF (r,λ ,W )′dr− 1

b

∫ 1−b

0
[B(r)QF (r+b,λ ,W )′

+B(r+b)QF (r,λ ,W )′]dr.

For all models, the following assumption on the trend functions is sufficient to obtain the main

results of this chapter.
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Assumption 2.1. f(t) includes a constant, there exists a J× J diagonal matrix τT and a vector of

functions F, such that τT f(t)=F( t
T )+op(1),

∫ 1
0 Fi(r)dr <∞, i= 1, . . . ,J, and det[

∫ 1
0 F(r)F(r)′dr]>

0.

Assumption 2.1 is fairly standard and is the same as the assumption used by Bunzel and Vogelsang

(2005). Note that the standard individual fixed-effects model is a special case with f(t) = 1; the

individual specific trend model is a special case with f(t) = (1, t)′.

2.3.1 Models With No Additional Regressors

This subsection investigates the asymptotic properties of the statistics in models (2.1) and (2.2).

For a given time period t, stack u1t ,u2t , . . . ,uNt into a N×1 vector

ut =



u1t

u2t
...

uNt


The following assumption is sufficient to obtain results for the fixed-effects OLS estimator based

on model (2.1) and (2.2).

Assumption 2.2. T−
1
2
[rT ]
∑

t=1
ut⇒ ΛWN (r), where WN (r) is an N×1 vector of independent stan-

dard Wiener processes and ΛΛ′ is the N×N long run variance matrix of ut.

For a given time period t, stacking the N cross-section errors in the same period into a vector

accounts for general forms of spatial correlation. Assumption 2.2 holds under covariance station-

arity and weak dependence in the time dimension. It essentially requires that ut satisfy a functional

central limit theorem (FCLT). Here, ΛΛ′ is not restricted to be diagonal. Therefore, the assumption

allows for general forms of spatial correlation. Stationarity is not required in the cross section for

large-T , fixed-N case. This is analogous to large-N, fixed-T case where the random sampling in

the cross section allows for general forms of serial correlation in model, including nonstationarity.
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Before we start to derive the results in model (2.1), it is worth noting that the t-statistics on the

DD estimator in the following three models are exactly the same.2

1. yit = ai+β1Treati+β2DUt +β3Treati ·DUt +uit ,

2. yit = λt +β1Treati+β2DUt +β3Treati ·DUt +uit ,

3. yit = ai+λt +β1Treati+β2DUt +β3Treati ·DUt +uit ,

where ai is a full set of individual dummies, and λt is a full set of time period dummies. This exact

equivalence result directly implies that whether time period dummies are included does not affect

the limit of the t-statistic on the DD estimator in the individual fixed-effects model. Proofs of the

exact equivalence result are provided in Appendix C. Furthermore, Monte Carlo simulation results

suggest this exact equivalence continue to hold when trend is also included in the model. Proofs

are not given for this special case.

Let

A =

1,1, . . . ,1,1, . . . ,1

1,1, . . . ,1,0, . . . ,0


where A is a 2×N matrix with all elements in the first row and first kN elements in the second

row equal to one. Let G = AA′. The following proposition and lemma present the asymptotic

distributions of (β̂ −β ) and the partial sums in model (2.1).

Proposition 2.1. Suppose Assumption 2.1 and 2.2 hold. Let W∗(r) denote a 2×1 vector of stan-

dard Wiener processes and let Λ∗ denote the matrix square root of the matrix AΛΛ′A′. In model

(2.1), for N fixed as T → ∞ the following holds:

√
T (β̂ −β )⇒

(
G
∫ 1

0
HF (r,λ )2dr

)−1
·Λ∗

∫ 1

0
HF (r,λ )dW∗(r).

Lemma 2.2. Suppose Assumption 2.1 and 2.2 hold. Assume M = bT where b ∈ (0,1] is fixed. Let

W∗(r) denote a 2× 1 vector of standard Wiener processes and let Λ∗ denote the matrix square

2The result also holds when a global intercept is included.
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root of the matrix AΛΛ′A′. In model (2.1), for N fixed as T → ∞ the following holds:

T−
1
2 ˆ̄S[rt]⇒ Λ

∗QF (r,λ ,W∗).

When k(x) is the Bartlett kernel, from calculations in Hashimzade and Vogelsang (2008a) we

have

ˆ̄
Ω =

2
b

T−2
T−1
∑

t=1

ˆ̄St ˆ̄S′t −
1
b

T−2
T−M−1

∑
t=1

( ˆ̄St ˆ̄S′t+M + ˆ̄St+M
ˆ̄S′t) (2.7)

using the fact that ˆ̄ST = 0. The following proposition presents the fixed-b limit of the HAC esti-

mator.

Proposition 2.3. Suppose Assumption 2.1 and 2.2 hold. Assume M = bT where b ∈ (0,1] is fixed.

Let W∗(r) denote a 2×1 vector of standard Wiener processes and let Λ∗ denote the matrix square

root of the matrix AΛΛ′A′. In model (2.1), for N fixed as T → ∞ the following holds:

ˆ̄
Ω⇒ Λ

∗PF (b,λ ,QF )Λ∗
′
.

Based on Proposition 2.1 and 2.3, the following theorem summarizes the theoretical results for

model (2.1).

Theorem 2.1. Suppose the model does not include time period dummies nor additional regressors.

Suppose Assumption 2.1 and 2.2 hold. Assume M = bT where b ∈ (0,1] is fixed. Let W∗∗q denote

the q×1 vector of standard Wiener processes. For N fixed as T → ∞,

Wald⇒ NF (W∗∗q )′PF (b,λ ,QF∗∗
q )−1NF (W∗∗q )

t⇒
NF (W∗∗1 )√

PF (b,λ ,QF∗∗
1 )

Theorem 2.1 demonstrates that asymptotically pivotal test statistics are obtained within the

fixed-b framework in the presence of spatial correlation in the cross section. Therefore, the statis-

tics based on the DK standard errors under fixed-b asymptotics have broader robustness prop-

erties with respect to correlation in the model. The limiting distributions differ from those de-

rived by Kiefer and Vogelsang (2005) and Vogelsang (2012) in the following two ways. First,
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the fixed-b limits here depend on not only the choice of kernel and bandwidth, but also the date

of policy change, λ , and individual-specific trend functions. Second, the asymptotic distribution

is different from Vogelsang (2012) because DUt is deterministic and thus there are some extra

terms in the asymptotic distribution of partial sums. NF (W∗∗q ) follows a normal distribution, and

PF (b,λ ,QF∗∗
q ) is a random matrix which depends on the date of policy change, trend functions

and the choice of kernel and bandwidth. Moreover, NF (W∗∗q ) and PF (b,λ ,QF∗∗
q ) are indepen-

dent. The limiting distributions of the test statistics are identical to the results in the pure time series

model with a shift in mean and deterministic trends. The limiting distributions are non-standard,

but critical values can be obtained using simulation methods.

Corollary 2.2. Suppose model (2.1) is a standard individual fixed-effects model with no time

trends. That is, f(t) = 1. Define λW (1)−W (λ ) = (λ − 1)W̃ ( λ

λ−1). Let W∗∗q denote the q× 1

vector of standard Wiener processes. Then

HF (r,λ ) = 1(r > λ )− (1−λ ), NF (W ) = λW (1)−W (λ ) = (λ −1)W̃ (
λ

λ −1
),

QF (r,λ ,W ) =
∫ r

0
HF (s,λ )dW (s)−W (1)

∫ r

0
HF (s,λ )ds−

∫ r

0
HF (s,λ )2ds

·
(∫ 1

0
HF (s,λ )2ds

)−1
NF (W ).

For N fixed as T → ∞, the following hold

√
T (β̂ −β )⇒ 1

λ (1−λ )
G−1

Λ
∗(λ −1)W̃ (

λ

λ −1
)

Wald⇒ NF (W∗∗q )′PF (b,λ ,QF∗∗
q )−1NF (W∗∗q ), t⇒

NF (W∗∗1 )√
PF (b,λ ,QF∗∗

1 )

Corollary 2.2 provides results for a standard individual fixed-effects DD model. The limits are

identical to the results in the pure time series model with a shift in mean.

When time period dummies are also included in the model (2.2), the limiting distributions of

the statistics remain the same due to the exact equivalence result. This finding is useful since

empirical researchers often put a full set of time period dummies in their model.
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2.3.2 Models With Additional Regressors

This subsection analyzes the asymptotic properties of the statistics in models (2.3) and (2.4). Some

additional notations in this subsection are needed as follows. Let Ih denote a h×h identity matrix.

Let ι denote an N× 1 vector of ones. Let ei denote a N× 1 vector with ith element equal to one

and zeros otherwise, i.e.

ei = (0,0, . . . ,0,1,0, . . . ,0)′.

Define a K× (K +1) matrix B and a K×N(K +1) matrix Ai as follows

B = [0, IK ], Ai = (ei⊗B).

Let ẽ1 denote an (K +1)×1 vector with 1st element equal to one and zeros otherwise, i.e.

ẽ1 = (1,0, . . . ,0)′.

Let ē1 denote an (NK +1)×1 vector with 1st element equal to one and zeros otherwise, i.e.

ē1 = (1,0, . . . ,0)′.

The following assumption on additional regressors zit is sufficient to obtain results for the fixed-

effects OLS estimator based on models (2.3) and (2.4).

Assumption 2.3. Suppose there is no structural change for zit within the entire sample periods.

Assume that p limT−1
∑

T
t=1 zit = µi≡E(zi) and p limT−1

∑
[rT ]
t=1 z̃it z̃′it = rQi for r∈ (0,1] where

Q̄ =
N
∑

i=1
Qi and Q̄ is nonsingular.

Note that Assumption 2.3 requires that the additional regressors don’t have structural change

before and after the policy change. In other words, zit is uncorrelated with Treati and DUt . Under

this assumption, zit is included to reduce the variance of the error. However, empirical researchers

are more interested in the case where the additional regressors also have a structural change. In this

case, the fixed-b limits for test statistics based on the zit coefficients may not be the usual fixed-b

limits.
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To handle the case where additional regressors are also included (model 2.3), Assumption 2.2

needs to be strengthened as follows. Stack the additional regressors zit and trend functions and

consider the reduced form of the T ×K stacked vector zi–that is, the linear projection of zi onto

the space spanned by the T × J stacked vector of trend functions f(T )–with an error term as

zi = f(T )bi+ ei,

where ei is a T ×1 vector and bi is a J×K vector. It is easy to show that z̃it are the OLS residuals

given by

z̃it = zit − b̂′if(t),

where b̂i is the OLS estimator of bi. Define the (K +1)×1 vector

vii
t =

 uit

(zit −b′if(t))uit

 .
Stack the vectors v11

t , . . . ,vNN
t to form the N(K +1)×1 vector of time series

vt =



v11
t

v22
t
...

vNN
t


.

Assumption 2.4. E(uit |zit) = 0 and T−
1
2
[rT ]
∑

t=1
vt⇒ Λ̇W (r), where W (r) is an N(K+1)×1 vector

of standard Wiener processes and Λ̇Λ̇′ is the N(K+1)×N(K+1) long run variance matrix of vt .

Assumption 2.3 requires that the sample mean and sample variance-covariance matrix of the

additional regressors across time have well-defined limits. The form of Qi depends on the form

of dummies included in the model and the choice of the trend functions. Assumption 2.4 allows

weak exogeneity in the cross section and over time and requires a FCLT holds for vt . Because Qi

is not restricted to be identical for all i and because the form of Λ̇Λ̇′ is not restricted to be block
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diagonal, the assumptions allow for heterogeneity in the conditional heteroskedasticity and serial

correlation as well as general forms of spatial correlation.

The following lemma shows that hit and z̃it are asymptotically uncorrelated.

Lemma 2.4. Under Assumption 2.1 and 2.3, for N fixed and as T → ∞, the following holds

T−1
N
∑

i=1

[rT ]
∑

t=1
hit z̃′it

p−→ 0

In particular, when r = 1, T−1 N
∑

i=1

T
∑

t=1
hit z̃′it

p−→ 0.

Let

R =

R11 R12

R21 R22


where R11 is a q1×2 matrix, R12 is a q1×K matrix, R21 is a q2×2 matrix and R22 is a q2×K

matrix. Usually we pay attention to restrictions either on the DD estimator or on the additional

explanatory variables, not on both of them at the same time. In other words, we are interested in

the cases when q2 = 0 and R12 = 0, or when q1 = 0 and R21 = 0. The next theorem presents the

results for model (2.3).

Theorem 2.3. Suppose the model includes additional regressors but no time period dummies.

Suppose Assumption 2.1, 2.3 and 2.4 hold. Assume M = bT where b ∈ (0,1] is fixed. Let W̄ (r)

denote a q1×1 vector of standard Wiener processes. Let Wq(r) denote a q2×1 vector of standard

Wiener processes. Let W∗(r) denote a 2× 1 vector of standard Wiener processes and Λ̇∗ is the

matrix square root of the matrix (A⊗ ẽ′1)Λ̇Λ̇′(A⊗ ẽ′1)
′. For N fixed as T → ∞, the following hold:

√
T (β̂ −β )⇒

(G∫ 1
0 HF (r,λ )2dr)−1(Λ̇∗

∫ 1
0 HF (r,λ )dW∗(r)

Q̄−1(∑N
i=1 Ai)Λ̇W (1)

 .
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If q2 = 0 and R12 = 0, that is, we are testing restrictions on the DD estimator, then R = [R11,0].

Wald⇒ NF (W̄ )′(PF (b,λ , Q̄F ))−1NF (W̄ ),

t⇒ NF (W̄ )√
PF
1 (b,λ , Q̄F

1 )
.

If q1 = 0 and R21 = 0, that is, we are testing restrictions on the additional regressors, then R =

[0,R22].

Wald⇒Wq(1)′Pq(b,B)−1Wq(1),

t⇒
Wq(1)√
Pq(b,B)

.

Theorem 2.3 provides some interesting insights into doing inference for DD estimator and the

zit coefficient estimator γ̂ under fixed-b asymptotics. If we only focus on testing restrictions on

DD estimator, the limiting distributions of test statistics are the same as the results in Theorem

2.1. If we only want to test restrictions on γ̂ , the limiting distribution of test statistics are identical

to the results in Vogelsang (2012). Note that the limiting distributions of test statistics based on

γ̂ are invariant to trend functions. In either case, the test statistics are asymptotically pivotal.

Nevertheless, testing restrictions on both of them at the same time is much more complicated. The

test statistics are no longer asymptotically pivotal. General forms of the limits of the test statistics

are provided in the proof of Theorem 2.3 in Appendix C.

The most general model including both additional regressors and time period dummies (model

2.4) requires a stronger assumption than Assumption 2.4. To cope with this case, Assumption 2.4

needs to be strengthened in the following way. Define the K×1 vector vi j
t = (zit−b′if(t))u jt . For

a given j stack u jt and the vectors v1 j
t ,v2 j

t , . . . ,vN j
t into an (NK +1)×1 vector

v j
t =



u jt

v1 j
t

v2 j
t
...

vN j
t


,
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and then stack the vectors v1
t ,v

2
t , . . . ,v

N
t into an N(NK +1)×1 vector

vex
t =



v1
t

v2
t
...

vN
t


,

where the “ex” superscript denotes an extended vector that includes vectors vi j
t for i 6= j.

Assumption 2.5. E(uit |z jt) = 0 for all i, j = 1,2, . . . ,N and T−
1
2
[rT ]
∑

t=1
vex
t ⇒ ΛexWex(r), where

Wex(r) is an N(NK+1)×1 vector of standard Wiener processes and ΛexΛex′ is the N(NK+1)×

N(NK +1) long run variance matrix of vt .

Assumption 2.5 requires strict exogeneity in the cross section but allows weak exogeneity over

time. It also requires that a FCLT hold for the extended vector vex
t . Here, ΛexΛex′ is not restricted

to be block diagonal, which permits general spatial correlation. Assumption 2.4 and 2.5 indicate

that the form of exogeneity needed depends on whether or not time period dummies are included

in the model. Without time period dummies, only weak exogeneity is required in both the time and

cross-section dimensions. When time period dummies are included, strict exogeneity is needed in

the cross-section dimension while only weak exogeneity is required in the time dimension.

Like results in model (2.2), including time period dummies does not affect the fixed-b limits.

The following theorem summarizes the results for model (2.4). Note that Assumption 2.4 is now

replaced with the stronger Assumption 2.5.

Theorem 2.4. Suppose the model includes both additional regressors and time period dummies.

Suppose Assumption 2.1, 2.3 and 2.5 hold. Assume M = bT where b ∈ (0,1] is fixed. Let Ã =

[1−k, . . . ,1−k,−k, . . . ,−k] and G̃ = ÃÃ′ = ∑
N
i=1 T̃reat

2
i . Let Wex∗

1 (r) denote a standard Wiener

processes with long run variance Λex∗2
1 = (Ã⊗ ē′1)Λ

exΛex′(Ã⊗ ē′1)
′. For N fixed as T → ∞, the
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following hold:

√
T (β̂ −β )⇒

(G̃∫ 1
0 HF (r,λ )2dr)−1Λex∗

1
∫ 1
0 HF (r,λ )dWex∗

1 (r)

Q̄−1(∑N
i=1 Aex

i )ΛexWex(1)


and the limits of the statistics are the same as given by Theorem 2.3.

Theorem 2.4 demonstrates that results for statistics in Theorem 2.3 continue to hold when time

period dummies are included. This is consistent to the findings in model (2.2).

2.3.3 Asymptotic Critical Values

The asymptotic critical values for Wald and t statistics based on DD estimator can be obtained

through Monte Carlo simulations. To keep the analysis straightforward, we consider the case

q = 1 and focus on the individual fixed-effects model and the individual-specific trend model.

The asymptotic critical values are simulated using 50,000 replications. The Wiener processes are

approximated by normalized sums of i.i.d. N(0,1) errors using 1000 steps. The critical values for t

statistics in the standard individual fixed-effects model are presented in Table D.1-D.4. The critical

values for t statistics in the individual-specific trend model are presented in Table D.5-D.8. Using

the Bartlett kernel, critical values are computed for the percentage points 90%, 95%, 97.5%, and

99%. Right tail critical values are given. The left tail critical values follow from symmetry around

zero. The policy change point λ goes from 0.1 to 0.9 with step size 0.1. The bandwidths b starts

from 0.02 to 1 with step size 0.02.

The critical values are invariant to the values of k. For a given b, the critical values are sym-

metric around λ = 0.5 with respect to λ . The minimum value occurs at λ = 0.5. As λ approaches

zero or one, the critical values increase. This pattern is the same as the pure time series model with

a known structural break (see Cho, 2012). For a given λ , with b = 0.02, critical values are close to

N(0,1) regardless of the choice of trend functions. As b grows, tails get fatter. With b = 1 tails are

quite fat. For different choices of trend functions, tails get fatter in different rates. For example,

when λ = 0.5, in the standard individual fixed-effects model the critical values at 5%/2.5% tails
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with b = 0.02 and b = 1 are 1.712/2.056 and 4.781/5.958, respectively, while in the individual

specific model, the critical values at 5%/2.5% tails with b = 0.02 and b = 1 are 1.745/2.073 and

5.098/6.395, respectively. Therefore, tails get fatter more quickly in the individual-specific trend

model. The critical values predict that if N(0,1) critical values are used for t statistics, then for a

given value of T , as bandwidth M increases, b increases and thus t will over-reject.

2.4 Finite Sample Properties

This section analyzes finite sample performances of the DK standard errors using a simulation

study. Because using traditional clustered standard errors is the most common method to conduct

robust inference for DD estimator, the fixed-b approximations for the DK standard errors given by

the theorems are compared with the standard normal approximations for traditional clustered and

the DK standard errors. “tclus” denotes t-statistics constructed using traditional clustered standard

errors and “tDK” denotes t-statistics constructed using the DK standard errors.

Since applied researchers are interested in the double clustering approach proposed by Cameron

et al. (2011) and Thompson (2011), finite sample performances of the two-way clustered standard

errors are also included. “tdouble” denotes t-statistics constructed using the original formula of

the double clustering approach, while “trdouble” denotes t-statistics constructed using the revised

formula. The revised formula is

V̂ r
double = V̂ f irm+V̂time,0−V̂White,0+

L
∑

l=1
(V̂time,l +V̂ ′time,l)−

L
∑

l=1
(V̂White,l +V̂ ′White,l),

(2.8)

with

V̂ f irm = Q̂−1( N
∑

i=1
ŝiŝ
′
i
)
Q̂−1,

V̂time,l = Q̂−1( T
∑

t=l+1
ŝt ŝ′t−l

)
Q̂−1,

V̂White,l = Q̂−1( N
∑

i=1

T
∑

t=l+1
v̂it v̂′i,t−l

)
Q̂−1.
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ŝi =
T
∑

t=1
v̂it is the sum of all observations for individual i. ŝt =

N
∑

i=1
v̂it is the sum of all observations

for time t. The original formula only contains the first three terms in (2.8)

V̂double = V̂ f irm+V̂time,0−V̂White,0. (2.9)

The DGP used for the simulations is very similar to the one used in Vogelsang (2012). The model

is

yit = ci+git +β1Treati+β2DUt +β3Treati ·DUt + zitγ +uit , (2.10)

where

uit = ρui,t−1+ εit , ui0 = 0, εit ∼ N(0,1), cov(εit ,ε js) = 0 f or t 6= s;

zit = ρzi,t−1+ eit , zi0 = 0, eit ∼ N(0,1), cov(eit ,e js) = 0 f or t 6= s.

ci is the individual fixed effects and git is the individual-specific simple linear trend. In all cases,

all coefficients are set to zero. Also set ci = 0, gi = 0, k = 0.5 and λ = 0.5. Note that we can

set ci = 0 without loss of generality because the fixed effects OLS estimator is exactly invariant

to ci = 0. Only one additional regressor zit is included and it is uncorrelated with uit . zit and uit

are modeled as AR(1) processes with the same autoregressive parameter ρ . εit and eit have spatial

correlation in the cross section, though uncorrelated over time. In particular, they are constructed

in the following way. For a given time period, t, N i.i.d. N(0,1) random variables are placed on

a square grid. At each grid point, εit is constructed as the weighted sum of the normal random

variable at that grid point, the normal random variables that are one step away to the left, right,

up or down on the grid with a weight θ and the normal random variables that are two steps away

in the same direction with a weight θ2. Hence, εit is a spatial MA(2) process with parameter θ

and the distance measure is maximum coordinate-wise distance on the grid. eit is constructed in a

similar way. In all cases, θ = 0.5.

Results are given for sample sizes T = 10,50,250 and N = 10,50,250 for AR(1) errors, and

N = 9,49,256 for spatial MA(2) errors. The number of replications is 2,500 in all cases and

the significance level is 5%. Results are reported for the Bartlett kernel. Fixed-effects OLS as
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discussed in section 2.2 is used to estimate the model. Results for testing the null hypothesis

H0 : β3 = 0 against the alternative H1 : β3 6= 0 are labeled tDD. Results for testing the null

hypothesis H0 : γ = 0 against the alternative H1 : γ 6= 0 are labeled tz.

Tables D.9–D.11 reports empirical null rejection probabilities for tclus and tDK statistics in the

individual fixed-effects model with no additional regressor zit . Tables D.12–D.15 reports empirical

null rejection probabilities for tclus and tDK statistics in the individual-specific trend model with

no additional regressor zit . Tables D.16–D.17 reports empirical null rejection probabilities for tDD

and tz statistics when one additional regressor zit is included. Table D.18 compares the empirical

null rejection probabilities for tclus, tdouble, trdouble and tDK in the individual fixed-effects model

with no additional regressor zit . Tables D.9, D.11, D.12 and D.14 consider AR(1) errors, while the

other tables focus on the spatial MA(2) errors. In Tables D.11, D.14 and D.15, a full set of time

period dummies is included.

A small selection of bandwidths are considered, b = 0.02,0.06,0.1,0.4,0.7,1. The autocorre-

lation parameter ρ = 0,0.3,0.6,0.9. For tDK two sets of null rejection probabilities are reported.

The first set uses the 5% N(0,1) critical value. The second set uses the new fixed-b critical val-

ues (adjusted fixed-b critical values) obtained in subsection 2.3.3. For tclus, tdouble and trdouble,

rejection probabilities are reported using the 5% N(0,1) critical value.

There are several points worth noting. First, looking at Tables D.9 and D.11, the rejection

probabilities for each combination of N, T , ρ and b are exactly the same in these two tables. This

pattern demonstrates the exact equivalence result shown in subsection 2.3.1. Similar patterns can

be found in Table D.12 and D.14 with AR(1) errors, and Table D.13 and D.15 with spatial MA(2)

errors. These four tables suggest that the exact equivalence continue to hold in the individual-

specific trend model with no additional regressors, despite the correlation structure of the error.

Next, similar patterns for tDK can be found in all tables. Patterns for tDK are quite different

when N(0,1) critical value is used compared to when the adjusted fixed-b critical values are used.

Using N(0,1) critical value, rejection probabilities tend to be much higher than 5% and this over-

rejection problem gets worse as b increases or as ρ increases. Only when b is small, T is large,
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and ρ is close to zero are rejection probabilities close to 5%. In contrast, when the adjusted

fixed-b critical values are used, the over-rejection problem is less severe. For a given N,T,ρ

combination, rejection probabilities are above 5% with small b and they steadily decline as b

increases. For a given value of ρ , as T increases, rejection probabilities approach 5% for all

bandwidths. When T = 250 and b = 1, rejection probabilities are around 8% or 9% when there

is strong serial correlation (ρ = 0.9). In the presence of spatial correlation, rejection probabilities

for tclus are substantially larger than 5%. This is expected since the traditional clustered standard

errors are not robust to the spatial correlation in the cross section. For AR(1) errors in table D.9 and

D.12, the traditional clustered standard errors behave well, and can outperform the DK standard

errors when there is strong serial correlation and the bandwidth is small.

The patterns in the rejection probabilities of tDK are similar to Vogelsang (2012). As explained

in Vogelsang (2012), the bias in ˆ̄
Ω consists of two parts. One part depends on the strength of the

serial correlation and this bias rises as the serial correlation becomes stronger, which explains why

the over-rejection problem gets worse as ρ increases. This bias causes over-rejection for either

the N(0,1) critical value or the adjusted fixed-b critical values. However, this bias declines as b

increases. The other part is captured by the adjusted fixed-b approximations, but not the N(0,1)

approximations. Therefore, over-rejection becomes less severe when fixed-b critical values are

used. It is shown (see Vogelsang, 2008) that as b increases, bias in ˆ̄
Ω initially decreases but

then increases as b increases further. Because of this, when b is close to one, ˆ̄
Ω has substantial

downward bias and tDK tends to over-reject when the N(0,1) critical value is used. Overall, the

N(0,1) approximations do not reflect the influence of the bandwidth, and thus using the N(0,1)

critical value may lead to severe distortions in rejections. In contrast, the fixed-b approximations

capture most of the bias in ˆ̄
Ω. In addition, the part that they cannot capture decreases as b increases.

This demonstrates why the rejection probability of tDK is lowest at b = 1 when adjusted fixed-b

critical values are used.

Tables D.16 and D.17 report empirical null rejection probabilities in the individual fixed-effects

model and individual-specific trend model with one additional regressor zit , respectively. For tDD,
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the adjusted fixed-b critical values are used. For tz, the usual fixed-b critical values in Kiefer and

Vogelsang (2005) and Vogelsang (2012) are used.

Note that the usual fixed-b critical values are used for tz because there is no structural break in

zit . These critical values are invariant to the choices of trend functions. Patterns of the rejection

probabilities are consistent to the findings in Vogelsang (2012). The fixed-b approximation for

tDD reflects the change of trend functions when a simple linear trend is included in the model.

Table D.18 reports the null rejection probabilities for the individual fixed-effects model with

spatial MA(2) errors. Note that the correlation structure here is different from that used in chapter

1. The results illustrate that the DK standard errors using fixed-b approximations lead to much

more accurate inference than the two-way clustered standard errors in the presence of a different

form of cross-sectional correlation. The findings are similar to those in chapter 1. The original

double clustering method is okay when T is large and ρ is small. The revised double clustering

method has a better performance than the original one only when ρ is large and the truncation

lag is small. The rejection probabilities of the revised method increases as the truncation lag gets

bigger. The DK approach using fixed-b critical values outperform the double clustering approach

when the bandwidth is chosen appropriately.

2.5 Conclusion

This chapter derives a fixed-b asymptotic theory for test statistics in DD models with fixed effects

and individual specific trends in linear panel settings. The standard errors proposed by Driscoll and

Kraay (1998) that are robust to heteroskedasticity, autocorrelation and spatial correlation of general

form are analyzed. This chapter establishes the conditions under which the DK standard errors lead

to valid tests in linear DD models with fixed effects and individual-specific time trends for fixed-N,

large-T case. It is shown that the fixed-b asymptotics for tests on the DD estimator are different

from the limits in Vogelsang (2012), but they are identical to the limits in the pure time series

model with a shift in mean for the individual fixed-effects model. The tests on additional regressors

without a structural break have the same fixed-b asymptotic distributions as in Vogelsang (2012).
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The exact equivalence result is found for the cases when only individual dummies are included,

when only time period dummies are included and when both sets of dummies are included. As

a result, whether time period dummies are included in the model does not affect the asymptotic

distribution. It is also shown that the fixed-b asymptotics for tests on DD estimator depend on

the individual-specific deterministic trends included and the date of policy change λ . New critical

values are simulated for individual fixed-effects model and individual specific trend model. For

each value of bandwidth, the adjusted critical values shows a U-shaped pattern in λ . Tails get

fatter in different rates for different trend functions. Simulation results illustrate that the use of

fixed-b critical values will lead to much more reliable inference in practice in the presence of

spatial correlation.

In a more interesting case where the additional regressors also have a structural change, the

fixed-b limits of test statistics on the zit parameter would change. The conjecture of the fixed-b

asymptotic distributions in this case would be similar to the findings in the pure time series model

with a structural break (see Cho, 2012).
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CHAPTER 3

FINITE SAMPLE PERFORMANCES OF THE MOVING BLOCKS BOOTSTRAP FOR
LINEAR DIFFERENCE-IN-DIFFERENCES MODELS WITH INDIVIDUAL FIXED

EFFECTS

3.1 Introduction

This chapter studies finite sample performances of the bootstrap procedure for linear Difference-in-

Differences (DD) models with individual fixed effects. The bootstrap method consists of randomly

resampling the original data many times and then using the quantities computed from the simulated

pseudo-data to make inference from the original observed data. This chapter discusses bootstrap

methods in the context of hypothesis testing. Bootstrap methods are widely used in empirical

studies, especially when distributions of test statistics are nonstandard and critical values are com-

plicated to compute, or difficult to derive theoretically. Moreover, it is not even necessary for us to

know the asymptotic distribution when applying the bootstrap method.

What determines the reliability of the bootstrap is how well the bootstrap data generating pro-

cess (DGP) mimics the features of the true DGP. The bootstrap has originally been proposed by

Efron (1979) for independent and identically distributed (i.i.d.) data. Later, the wild bootstrap

has been proposed by Wu (1986) to take into account heteroskedasticity. It becomes more com-

plicated to implement bootstrap methods for dependent data. Several bootstrap procedures have

been proposed for time series data, including the moving blocks bootstrap (MBB) proposed by

Kunsch (1989) and Liu and Singh (1992). More recently, the bootstrap is applied to panel data

models. Following the approach in Gonçalves (2011), the so-called “panel MBB” method is used

in this chapter. This method applies the standard MBB to the time series of vectors containing all

the individual observations at each time period. Since this method only resamples the vectors at

each time period, it preserves the potential cross-sectional correlation structure in the data. There-

fore, the panel MBB allows for inference that is robust to heteroskedasticity, serial correlation and
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cross-sectional correlation of unknown form. Also, we use the naive bootstrap where the formula

used to compute the standard errors on the resampled data is the same as the formula used on the

original data.

The DD coefficient is of interest and the estimation method is the fixed-effects ordinary least

squares (OLS) estimator. The main focus is on the tests based on the DD estimator and the DK

standard errors. In particular, we consider panels with many time periods where the Driscoll and

Kraay, 1998 (DK) standard errors are valid. The DD estimator becomes more and more popu-

lar in recent empirical researches because it allows us to evaluate the causal effects of a policy

change. Researchers are concerned with the reliability of the inference based on the DD estima-

tor. There has been an extensive research to seek robust inference for DD models. As pointed

out in Bertrand, Duflo, and Mullainathan, 2004 (BDM), ignoring the presence of serial correla-

tion leads to very unreliable inference. Wooldridge (2003) and other econometricians had already

been strongly suggesting the use of clustered standard errors. Motivated by the results in BDM,

using clustered standard errors has become a common method in empirical works. Alternatively,

Bertrand et al. (2004) also suggested using the blocks bootstrap method where each cluster is a

block. Take a state-level data for example, this method first stacks residuals for each state into

vectors and then randomly draws with replacement for each state a new residual vector from this

distribution, leaving residuals within each state unchanged. The bootstrap method is straightfor-

ward and easy to implement. However, both of these two methods lead to biased inference when

the number of clusters is small. Based on the work of BDM, Cameron, Gelbach, and Miller, 2008

(CGM) proposed a wild bootstrap-based procedure. Following CGM, applied researchers use the

wild cluster bootstrap method to obtain improved inference. Usually it is assumed that data are

independent in the cross section dimension, or are independent across clusters, but are correlated

in the time dimension. This chapter explores improved inference that is robust to cross-sectional

correlation of more general form.

In linear panel models with individual fixed effects, a recent paper by Gonçalves (2011) has

provided both theoretical and simulation evidences indicating that the panel MBB, including the
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i.i.d. bootstrap, outperforms the standard normal approximation and closely mimics the fixed-b ap-

proximation proposed in Vogelsang (2012) when a standard nonparametric heteroskedasticity and

autocorrelation consistent (HAC) variance estimator is used to compute test statistics. Gonçalves

and Vogelsang (2011) have also found similar results in pure time series models. Following the

approach of Kiefer and Vogelsang (2005) and Vogelsang (2012), in chapter 2 we have derived the

asymptotic distributions of test statistics based on the DD estimator and the DK standard errors,

assuming that the bandwidth is a fixed proportion of the sample size in time dimension. This new

fixed-b limiting distribution is different from the one proposed in Vogelsang (2012). Therefore, the

first-order asymptotic validity of the panel MBB needs to be examined in linear DD models.

The main goal of this chapter is to analyze finite sample properties of the panel MBB in linear

DD models with individual fixed effects using Monte Carlo simulations. Simulation results show

that the panel MBB performs very well, even when there is strong serial correlation. The bootstrap

is much more accurate than the standard normal approximation, and it closely follows the new

fixed-b approximation proposed in chapter 2. This improvement holds for the special case of

Bartlett kernel. Results would look similar for other kernels. The improvement even holds when

the i.i.d. bootstrap is used, despite potential serial correlation in the data. Simulations results also

show that if the block length is appropriately chosen, the panel MBB could outperform the fixed-b

approximation when there is strong serial correlation. Theoretical evidences are not provided in

this chapter, but can directly follow Gonçalves (2011).

The remainder of this chapter is organized as follows. In the next section we describe the model

and test statistics. We also review the fixed-b asymptotic approximation. Section 3.3 describes

the bootstrap method. Section 3.4 reports simulation results which compare the standard normal

approximation, the fixed-b approximation and the bootstrap. Section 3.5 concludes. Appendix E

contains all figures.
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3.2 The Difference-in-Differences Model

3.2.1 The Model and DD Estimator

Consider a DD model with individual fixed effects given by

yit = ci+β1Treati+β2DUt +β3Treati ·DUt + zitγ +uit , (3.1)

i = 1,2, . . . ,N, t = 1,2, . . . ,T,

where yit and uit are scalars, ci denotes the unobserved individual heterogeneity. Treati denotes

an indicator for individuals in the treatment group which takes one if individual i is in the treatment

group. Without loss of generality, we assume that the first kN individuals are in the treatment group.

Thus, Treati = 1(i ≤ kN). DUt denotes an indicator for post-policy-change time periods which

takes one after the policy change. That is, DUt = 1(t > λT ) = 1(r > λ ), where the parameter λ

is the relative date of the policy change within the time sample. Both k and λ are assumed known.

zit is a K×1 vector of additional regressors.

The parameter of interest is β3, which evaluates the impact of a policy change on y. The

estimation method is the fixed-effects ordinary least squares (OLS) estimator, or the DD estimator

β̂ =

( N
∑

i=1

T
∑

t=1
(xit − x̄i)(xit − x̄i)

′
)−1 N

∑
i=1

T
∑

t=1
(xit − x̄i)(yit − ȳi), (3.2)

where

β =


β2

β3

γ

 , xit =


DUt

Treati ·DUt

zit

 , ȳi = T−1
T
∑

t=1
yit , x̄i = T−1

T
∑

t=1
xit .

3.2.2 The DK Standard Errors

Driscoll and Kraay (1998) first proposed the HAC type robust variance estimator using the time

series of sums of all the individual observations at each time period. The idea is to first aggregate
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all the individual observations at each time period and then apply the HAC estimator to the time

series of the sums. The first step takes into account potential cross-sectional correlation in the data,

and the second step takes into account potential serial correlation in the data. Therefore, the DK

standard errors are robust to cross-sectional correlation of unknown form as well as heteroskedas-

ticity and serial correlation, assuming covariance stationarity and weak dependence in the time

dimension.

Let ṽit = x̃ituit and define v̂it = x̃it ûit where x̃it = xit − x̄i, ỹit = yit − ȳi, ûit are the OLS

residuals given by ûit = ỹit − x̃′it β̂ . Define ˆ̄vt = ∑
N
i=1 v̂it ,, and let ˆ̄

Γ j = T−1 T
∑

t= j+1
ˆ̄vt ˆ̄v′t− j.

Let Ω= limT→∞Var(T−
1
2

T
∑

t=1

N
∑

i=1
ṽit). Following the approach of Driscoll and Kraay (1998),

the estimation of Ω is implemented with the nonparametric kernel HAC estimator given by

ˆ̄
Ω = ˆ̄

Γ0+
T−1
∑
j=1

k(
j

M
)( ˆ̄

Γ j +
ˆ̄
Γ
′
j),

where k(x) is a kernel function such that k(x) = k(−x), k(0) = 1, |k(x)| ≤ 1, k(x) is continuous at

x = 0, and
∫

∞
−∞

k2(x) < ∞. M is the bandwidth parameter. When ˆ̄
Ω is used as the middle term

of the sandwich form of the covariance matrix, we obtain the robust covariance matrix estimator

proposed by Driscoll and Kraay (1998)

V̂ = T (
N
∑

i=1

T
∑

t=1
x̃it x̃′it)

−1 ˆ̄
Ω(

N
∑

i=1

T
∑

t=1
x̃it x̃′it)

−1.

3.2.3 Test Statistics and Asymptotic Distributions

Consider testing linear hypotheses about β of the form

H0 : Rβ = r,

where R is a q× (K+2) matrix of known constants with full rank with q≤ (K+2) and r is a q×1

vector of known constants. In the case where q = 1 we can define the t-statistic

t =
Rβ̂ − r√

RV̂ R′
.

50



The main focus is on the asymptotic behavior of t-statistics based on the DD estimator. For com-

parison purposes, t-statistics based on γ̂ are also considered in models with additional regressors.

The traditional asymptotic approach relies on ˆ̄
Ω being a consistent estimator of Ω. Consistency

of ˆ̄
Ω requires that M → ∞ as T → ∞, but at a slower rate of convergence M

T → 0. Under the

traditional approach, the t-statistic has a limiting standard normal distribution.

An alternative asymptotic theory has been proposed by Kiefer and Vogelsang (2005). They

model the bandwidth as a fixed proportion of the sample size. That is, M = bT with b a fixed

constant in (0,1]. Because b is held fixed in this approach, this new alternative approach is usually

labeled fixed-b asymptotics while the traditional approach is labeled small-b asymptotics. Under

the fixed-b approach, ˆ̄
Ω converges to a random matrix rather than a constant. In Vogelsang (2012),

the random matrix depends on the kernel function and the bandwidth. In chapter 2, the random

matrix also depends on the date of the policy change, λ , in DD models. As a result, the t-statistic

has a nonstandard limiting distribution. This limiting distribution reflects the date of the policy

change and the choice of kernel and bandwidth, but is otherwise pivotal. Fixed-b asymptotics

provide more accurate and reliable inference than small-b asymptotics. For a given date of the

policy change, kernel function and bandwidth, fixed-b critical values can be simulated.

In linear DD models with individual fixed effects as in chapter 2, we have shown that

t⇒
NF (W∗∗1 )√

PF (b,λ ,QF∗∗
1 )

,

where⇒ denotes weak convergence, W∗∗1 is the standard Wiener process, and PF (b,λ ,QF∗∗
1 ) is

the random matrix that depends on the date of the policy change λ , kernel function and bandwidth.

51



In the special case of Bartlett kernel, k(x) = 1−|x| for |x| ≤ 1 and k(x) = 0 for |x| ≥ 1, we have

HF (r,λ ) = 1(r > λ )− (1−λ ), NF (W ) = λW (1)−W (λ ) = (λ −1)W̃ (
λ

λ −1
),

QF∗∗
1 = QF (r,λ ,W∗∗1 ) =

∫ r

0
HF (s,λ )dW∗∗1 (s)−W∗∗1 (1)

∫ r

0
HF (s,λ )ds

−
∫ r

0
HF (s,λ )2ds

(∫ 1

0
HF (s,λ )2ds

)−1
NF (W∗∗1 ),

PF (b,λ ,QF ) =
2
b

∫ 1

0
QF (r,λ ,W )QF (r,λ ,W )′dr

− 1
b

∫ 1−b

0
[QF (r,λ ,W )QF (r+b,λ ,W )′+QF (r+b,λ ,W )QF (r,λ ,W )′]dr.

3.3 Bootstrap Methods

Another alternative to asymptotic approximations is the bootstrap. In order to obtain heteroskedas-

ticity, autocorrelation and cross-sectional correlation robust inference, we follow the panel MBB

approach proposed by Gonçalves (2011). Motivated by the idea of Driscoll and Kraay (1998),

Gonçalves (2011) proposed the panel MBB which is an extension of the standard MBB to linear

panel models. The panel MBB first stacks all the individual observations at each time period into

vectors and then applies the standard MBB to the time series of these vectors. Gonçalves (2011)

has proved that this method is robust to heteroskedasticity, serial correlation and cross-sectional

correlation of unknown form when the fixed-effects OLS estimator is used, under the assumption

that N is an arbitrary nondecreasing function of T and T → ∞. Weak dependence in the time di-

mension is required for the MBB to be valid, but we allow the dependence in the cross section

dimension to be either weak or strong.

Define the bootstrap fixed-effects OLS estimator β̂∗ as

β̂
∗ =

( N
∑

i=1

T
∑

t=1
(x∗it − x̄∗i )(x

∗
it − x̄∗i )

′
)−1 N

∑
i=1

T
∑

t=1
(x∗it − x̄∗i )(y

∗
it − ȳ∗i ), (3.3)

where

ȳ∗i = T−1
T
∑

t=1
y∗it , x̄∗i = T−1

T
∑

t=1
x∗it .
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Note that (3.3) is calculated using the bootstrap data (y∗it ,x
∗
it). The method to construct the pseudo-

data using the panel MBB is described below.

The first step is to run the pooled OLS regression to obtain the fixed-effects OLS estimator β̂

and the residuals ûit . Define the (K +1)×1 vector ωit = (z′it , ûit)
′ which collects the additional

regressors and the OLS residual for each observation in model (3.1). Let ωt =(ω ′1t ,ω
′
2t , . . . ,ω

′
Nt)
′

denote the N(K+1)×1 vector containing the N cross-sectional observations at a given time period

t. Let l ∈ N (1≤ l < T ) be the block length, and let Bt,l = {ωt ,ωt+1, . . . ,ωt+l−1} be the block

of l consecutive observations starting at ωt . For simplicity, assume T = hl. Note that l = 1 is just

the standard i.i.d. bootstrap case. The MBB randomly draws h = T
l blocks with replacement from

the set of overlapping blocks {B1,l ,B2,l , . . . ,BT−l+1,l}. Thus the pseudo-data ω∗t take the form

ω
∗
1 = ωI1+1,ω

∗
2 = ωI1+2, . . . ,ω

∗
l = ωI1+l ,

ω
∗
l+1 = ωI2+1, . . . ,ω

∗
2l = ωI2+l ,

...

ω
∗
(h−1)l+1 = ωIh+1, . . . ,ω

∗
hl = ωIh+l ,

where the indices I1, I2, . . . , Ih are i.i.d. random variables distributed uniformly on {0,1, . . . ,T− l}.

Let x∗it = (DUt ,Treati ·DUt ,z∗
′

it )
′. Pseudo-values y∗it are given by

y∗it = x∗
′

it β̂ + û∗it . (3.4)

It is worth noting that the bootstrap data generating process (DGP) is a bit different from that

in Gonçalves (2011). Gonçalves (2011) uses the pairs bootstrap where the bootstrap data (y∗it ,x
∗
it)

are directly drawn from the original data (yit ,xit) without a first-step regression to obtain the OLS

residuals. The pairs bootstrap does not work in DD models because it may mix the pre and post

policy change values and thus lead to a biased estimator β̂∗.

One might want to do the pairs bootstrap within the pre/post policy change subgroup. How-

ever, if testing the additional regressors is of interest, this method gives biased estimators for the

additional regressors. Therefore, a combination of the residual bootstrap and the pairs bootstrap
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is used in this chapter. Since DUt and Treati ·DUt are indicators, they are not resampled in the

bootstrap procedure. Only the pairs of additional regressors and the residuals are resampled. New

pseudo-values of the dependent variable are computed using (3.4).

For example, consider a simple time series model with one random regressor z:

yt = µ +β zt +ut .

We have

yt = µ̂ + β̂ zt + ût , (3.5)

where µ̂ and β̂ are the OLS estimators, and ût is the OLS residual. Equation (3.5) holds for all

(yt ,zt). For each bootstrap sample (y∗t ,z
∗
t ),

y∗t = µ̂ + β̂ z∗t + û∗t (3.6)

is always true. Equation (3.5) is the “population model” for the bootstrap sample, and µ̂ and β̂ are

the “population coefficients”. As usual in the bootstrap literature, let E∗ denote the expected value

induced by the bootstrap resampling, conditional on a realization of the original time series. We

have

E∗(û∗t ) =
1
T

T
∑

t=1
ût = 0,

because û∗t is uniformly distributed on {û1, . . . , ûT } conditional on the original sample. The sec-

ond equation holds because of the normal equation of the OLS estimator. Similarly, we have

E∗(z∗t û∗t ) =
1
T

T
∑

t=1
zt ût = 0.

These two conditions guarantee that the OLS estimators µ̂∗ and β̂∗ can consistently estimate µ̂

and β̂ , respectively. This explains why the bootstrap would work intuitively. If we resample (yt ,zt)

within the pre/post policy change subgroup, the expected value E∗(z∗t û∗t ) becomes

E∗(z∗t û∗t ) =
1

λT

λT
∑

t=1
zt ût +

1
(1−λ )T

(1−λ )T
∑

t=1
zt ût 6= 0.

This method causes z∗t to be correlated with û∗t and thus leads to a biased OLS estimator.
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Next, consider model (3.1). Without loss of generality, we can set ci = 0 and β1 = 0. We have

yit = β̂2DUt + β̂3Treati ·DUt + z′it γ̂ + ûit .

If we directly draw (yit ,z
′
it) from the original data, it is possible that the pre/post policy change

values are mixed in the bootstrap sample. For example, suppose a original post-policy-change pair

(yis,z
′
is) appears as a pre-policy-change pair in the bootstrap data. Then in the original data we

have yis = β̂2+ β̂3Treati+z′isγ̂ + ûis, while in the bootstrap data yis = z′isγ̂ + û∗is. û∗is is no longer

the original OLS residual ûis associated with (yis,z
′
is). This will cause z∗it to be correlated with û∗it

and thus leads to a biased OLS estimator. Therefore, we have to resample (z′it , ûit) and re-construct

yit using (3.4). In (3.4), we have

E∗(z∗it û∗it) =
1

NT

N
∑

i=1

T
∑

t=1
zit ûit = 0.

The OLS estimator of (3.4) can consistently estimate β̂ .

Given a bootstrap sample (y∗it ,x
∗
it), let

x̃∗it = x∗it − x̄∗i , v̂∗it = x̃∗it û∗it , ˆ̄v∗t =
N
∑

i=1
v̂∗it ,

ˆ̄
Γ
∗
j = T−1

T
∑

t= j+1
ˆ̄v∗t ˆ̄v∗
′

t− j,

ˆ̄
Ω
∗ = ˆ̄

Γ
∗
0+

T−1
∑
j=1

k(
j

M
)( ˆ̄

Γ
∗
j +

ˆ̄
Γ
∗′
j ),

V̂∗ = T (
N
∑

i=1

T
∑

t=1
x̃∗it x̃∗

′
it )
−1 ˆ̄

Ω
∗(

N
∑

i=1

T
∑

t=1
x̃∗it x̃∗

′
it )
−1.

The naive bootstrap t-statistic t∗ can be defined as

t∗ = Rβ̂∗− r∗√
RV̂∗R′

,

where r∗ = Rβ̂ .

To obtain the bootstrap critical value t∗c for a test with a significance level α , we generate B

bootstrap samples indexed by j and compute t∗j . We sort t∗j from the smallest to the largest and

then calculate t∗c = t∗
[α(B+1)], where [α(B+1)] is the integer part of α(B+1).
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3.4 Finite Sample Performances

This section compares finite sample performances of the standard normal asymptotic approxima-

tion, the fixed-b asymptotic approximation and the naive panel MBB using Monte Carlo simula-

tions. We first present results for the simplest DD model without additional regressors, and then

add one additional regressor into the model and report the results. The interesting patterns found

in Gonçalves (2011) and Gonçalves and Vogelsang (2011) hold in the simplest DD model. They

continue to hold after one additional regressor is added to the model.

The DGP used for simulations is very similar to the one used in Vogelsang (2012). The model

is

yit = ci+β1Treati+β2DUt +β3Treati ·DUt + zitγ +uit , (3.7)

where

uit = ρui,t−1+ εit , ui0 = 0, εit ∼ N(0,1), cov(εit ,ε js) = 0 for t 6= s;

zit = ρzi,t−1+ eit , zi0 = 0, eit ∼ N(0,1), cov(eit ,e js) = 0 for t 6= s.

ci is the unobserved individual fixed effects. Only one additional regressor zit is included and it

is uncorrelated with uit . zit and uit are modeled as AR(1) processes with the same autoregressive

parameter. εit and eit have spatial correlation in the cross section dimension, though uncorrelated

over time. In particular, they are constructed in the following way. For a given time period t,

N i.i.d. standard normal random variables are placed on a square grid. At each grid point, εit

is constructed as the weighted sum of the normal random variable at that grid point, the normal

random variables that are one step away to the left, right, up or down on the grid with a weight

θ and the normal random variables that are two steps away in the same direction with a weight

θ2. Hence, εit is a spatial MA(2) process with parameter θ and the distance measure is maximum

coordinate-wise distance on the grid. eit is constructed in a similar way.

We consider testing the null hypothesis that H0 : β3 = 0 against the alternative H1 : β3 6= 0

56



with a significance level of 5% using the t-statistic

tDD =
β̂3

se(β̂3)
,

where se(β̂3) is the DK standard error estimate. In the cases where the additional regressor zit

is included, we also consider testing the null hypothesis that H0 : γ = 0 against the alternative

H1 : γ 6= 0 with a significance level of 5% using the t-statistic

tz =
γ̂

se(γ̂)
,

where se(γ̂) is the DK standard error estimate.

In all cases, β1, β2, β3 and γ are set to zero. Also set ci = 0, θ = 0.5, k = 0.5 and λ = 0.5 unless

otherwise specified. Note that we can set ci = 0 without loss of generality because the fixed-effects

OLS estimator is exactly invariant to ci = 0. Results are reported for sample sizes T = 50,250 and

N = 50,250 when there is no cross-sectional correlation, T = 50,250 and N = 49,256 when there

is spatial correlation. In the simulations, 1,000 random samples are generated for each pair of

(N,T ). We consider three values for the AR parameter, ρ: 0.0, 0.3 and 0.9, and four values for

the bandwidth: b = 0.02, 0.1, 0.5 and 0.7. We only consider the Bartlett kernel. We reject the null

hypothesis whenever tDD > tc1 or tz > tc2, where tc1 and tc2 are critical values. In particular,

tc1 = tc2 = 1.96 is used for the standard normal asymptotic approximation. For the fixed-b asymp-

totic approximation, tc1 is the 97.5% percentile of the fixed-b asymptotic distribution derived in

chapter 2, while tc2 is the 97.5% percentile of the fixed-b asymptotic distribution derived by Kiefer

and Vogelsang (2005). For the naive panel MBB, both tc1 and tc2 are the 97.5% bootstrap per-

centile of the corresponding bootstrap t-statistics. For each sample, the bootstrap tests are based

on 499 replications. In most cases, we consider the block length l = 1, i.e. the i.i.d. bootstrap.

Results for the block length l = 25 when T = 250 are reported in the case of spatial correlation.

All results are shown in figures. (See Appendix E.) Figures E.1 and E.2 illustrate the empirical

null rejection probabilities as a function of λ , given that there is no cross-sectional correlation and

N = 100, T = 250, ρ = 0.3 and b = 0.02 and 0.5, respectively. We consider five values for λ : 0.1,

0.3, 0.5, 0.7 and 0.9. The standard i.i.d. bootstrap is used. In both figures, the standard normal
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asymptotic approximation leads to over-rejection. The empirical null rejection probabilities using

the standard normal asymptotic approximation show a U-shape with the bottom at λ = 0.5. The

over-rejection problem gets worse when λ approaches either 0 or 1. In contrast, the naive panel

MBB is more accurate than the standard normal approximation. The improvement is remarkable.

The larger the bandwidth b, the bigger the improvement. In fact, the bootstrap closely follows the

fixed-b asymptotic approximation, and thus reflects the date of the policy change λ . The bootstrap

rejection probabilities do not vary much for different values of λ .

Figures E.3–E.20 each contains two columns. Each column contains three graphs correspond-

ing to the three values of ρ . Every sub-figure illustrates the empirical null rejection probabilities

as a function of the bandwidth b given λ = 0.5. Figures E.3–E.12 present results for the simplest

DD model without the additional regressor. Figures E.3, E.5, E.7 and E.9 present results for mod-

els without cross-sectional correlation, while Figures E.4, E.6, E.8, and Figure E.10-E.12 present

results for models with spatial MA(2) correlation.

Figures E.3 and E.5 focus on cases when N = 50 and N = 250, respectively. Figures E.4 and E.6

focus on cases when N = 49 and N = 256, respectively. In each figure, the first column presents

results for T = 50 while the second column presents results for T = 250. Several interesting

patterns can be found here. For the standard normal approximation, rejection probabilities tend

to be much larger than 5%. The over-rejection problem gets worse when b increases. In contrast,

the i.i.d. bootstrap is always much more accurate than the standard normal approximation. The

larger the bandwidth b, the bigger the improvement. The improvement becomes larger as the

sample size T increases. This improvement holds for N = 50 and N = 250. The improvement

holds regardless of potential cross-sectional correlation in the data. The i.i.d. bootstrap tends to

closely mimic the fixed-b approximation for all DGPs, all (N,T ) combinations, and all bandwidths,

despite potential serial correlation in the data. Looking at Figures E.4 and E.6, where spatial MA(2)

correlation exists, when ρ = 0, i.e. there is no serial correlation but cross-sectional correlation

only, the bootstrap rejection probabilities are very close to 5%. Even when there is strong serial

correlation, i.e. ρ = 0.9, if the bandwidth is large enough, the bootstrap rejection probabilities
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could still be around 10% or less.

Figures E.7-E.10 illustrate how different values of N would affect the improvement of the

i.i.d. bootstrap over the standard normal approximation. Figures E.7 and E.8 focus on cases when

T = 50, and Figures E.9 and E.10 focus on cases when T = 250. In Figures E.7 and E.9, the

first column presents results for N = 50 while the second column presents results for N = 250.

In Figures E.8 and E.10, the first column presents results for N = 49 while the second column

presents results for N = 256. Across all DGPs, all (N,T ) combinations and all values of ρ , no

significant improvement of the i.i.d. bootstrap over the standard normal approximation is observed

as N increases.

Figures E.11 and E.12 compare the performance of the bootstrap with different block lengths.

In each figure, the first column presents results for the block length l = 25 while the second column

presents results for l = 1, the i.i.d. bootstrap. Figure E.11 focuses on the case when N = 49 and

T = 250. Figure E.12 focuses on the case when N = 256 and T = 250. It is worth noting that when

there is strong serial correlation (e.g., ρ = 0.9), increasing the block length to 25 helps further

improve the inference, and the bootstrap is likely to outperform the fixed-b approximation across

all the bandwidths. But when there is no serial correlation in the data (ρ = 0), yet we set the

block length to be 25, the bootstrap can over-reject a little bit. When N = 49 and l = 25, the

improvement over the fixed-b approximation is very small. However, when N increases from 49

to 256, significant improvement can be found in Figure E.12. The results suggest that if the block

length is appropriately chosen, the panel MBB can outperform the fixed-b approximation when

there is strong serial correlation.

Figures E.13–E.20 present results for the DD model with one additional regressor z. Since we

are interested in the performance of the bootstrap when the cross-sectional correlation exists, all

DGPs include the spatial MA(2) correlation in the cross section. Figures E.13–E.16 illustrate the

empirical null rejection probabilities for tests based on β3 and γ . The first column shows results for

β3, and the second column shows results for γ . (N,T ) combinations (49,50), (49,250), (256,50),

and (256,250) are considered in Figures E.13–E.16, respectively. In other words, (large-T , small-
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N), (small-T , large-N) and (large-T , large-N) cases are included. Figures E.17–E.20 compare

the performance of the bootstrap with different block lengths. Figures E.17 and E.19 focuses on

(N,T ) = (49,250). Figures E.18 and E.20 focuses on (N,T ) = (256,250). The patterns for the

DD estimator found in the simplest DD model continue to hold after the additional regressor z

is added. Similar patterns also hold for inference on the z coefficient, which is consistent with

findings in Gonçalves (2011).

3.5 Conclusion

In this chapter we use Monte Carlo simulations to investigate finite sample performances of the

naive panel MBB applied to heteroskedasticity, autocorrelation and cross-sectional correlation ro-

bust tests based on the DD estimator and the DK standard errors. Simulation results show that the

naive panel MBB outperforms the standard normal approximation in the special case of Bartlett

kernel. This improvement even holds for the i.i.d. bootstrap, despite potential serial correlation in

the data. The results suggest that the finite sample performance of the naive panel bootstrap closely

follow the performance of the fixed-b approximation to the first order. In addition, the results also

suggest that the bootstrap can be more accurate than the fixed-b approximation when appropriate

block length is chosen. Results would look similar for other kernels.

Gonçalves and Vogelsang (2011) have shown that the naive MBB, including the i.i.d. boot-

strap, has the same limiting distribution as the fixed-b asymptotic distribution. For the special case

of a location model, Gonçalves and Vogelsang (2011) have proved that the i.i.d. bootstrap can pro-

duce more accurate inference than the standard normal approximation depending on the choice of

the bandwidth and the number of finite moments in the data. Given the patterns in the simulations,

we can conjecture that the asymptotic equivalence of the panel MBB and the fixed-b distribution

holds in our settings. The improvement of the i.i.d. bootstrap over the standard normal approxi-

mation could also be extended to panel models and inference on the DD parameter. Theoretical

explanations can be included in future research.
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Appendix A

PROOFS IN CHAPTER 1

Proofs of Theorem 1.1 is provided.

Proofs of Theorem 1.1. First, we need to show that sample variance of xit has a well-defined limit.

1
NT

N
∑

i=1

[rT ]
∑

t=1
x2
it =

1
NT

N
∑

i=1

[rT ]
∑

t=1
(µi+θt +ξit)

2

=
1

NT

N
∑

i=1

[rT ]
∑

t=1
(µ2

i +θ
2
t +ξ

2
it +2µiθt +2µiξit +2θtξit)

=
[rT ]
T
· 1

N

N
∑

i=1
µ

2
i +

1
T

[rT ]
∑

t=1
θ

2
t +

1
NT

N
∑

i=1

[rT ]
∑

t=1
ξ

2
it +2

( 1
N

N
∑

i=1
µi
)( 1

T

[rT ]
∑

t=1
θt
)

+
2

NT

N
∑

i=1

[rT ]
∑

t=1
µiξit +

2
NT

N
∑

i=1

[rT ]
∑

t=1
θtξit

p−→ r
(
E(µ2

i )+E(θ2
t )+E(ξ 2

it )+2E(µi)E(θt)+2E(µiξit)+2E(θtξit)
)

= rQ

where Q = E(µ2
i )+E(θ2

t )+E(ξ 2
it ).

Next, we prove (1.15) and (1.16). We have to show that θtδt is a zero mean covariance sta-

tionary process and thus it can be represented in the form of a MA(∞) process according to Wold’s

theorem. Therefore, θtδt satisfies a FCLT, and T−
1
2
[rT ]
∑

t=1
θtδt ⇒ σW (r), where W (r) is a standard

Wiener process and σ2 is the long run variance of θtδt . It is straightforward to get

E(θtδt) = E(θt)E(δt) = 0,

γ j = cov(θtδt ,θt− jδt− j) = E(θtδtθt− jδt− j) = E(θtθt− j)E(δtδt− j) =
ρ2 j

(1−ρ2)2
.
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Some algebra yields
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⇒ rZ∗1 +φ

1
2 σW∗(r),

where Z∗1 ∼ N(0,1), and W∗(r) is a standard Wiener process. Z∗1 is independent with W∗(r)

because µi, γi are independent with θt , δt . Therefore,

√
N(β̂ −β ) =

( 1
NT

N
∑

i=1

T
∑

t=1
x2
it
)−1 · 1√

NT 2
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T
∑

t=1
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1
2 σW∗(1)

)
= Q−1

√
1+φσ2Z1,
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where Z1 ∼ N(0,1). Define the partial sums of ˆ̄vt as

ˆ̄S[rT ] =
[rT ]
∑

t=1
ˆ̄vt ,

where r ∈ (0,1] and [rT ] is the integer part of rT . The limiting distribution of ˆ̄S[rT ] is
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1
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1
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)
= rZ∗1 +φ

1
2 σW∗(r)− rZ∗1− rφ

1
2 σW∗(1)

= φ

1
2 σ(W∗(r)− rW∗(1))≡ φ

1
2 σB(r)

where B(r) is a Brownian bridge.

Following the approach of Kiefer and Vogelsang (2005), rewrite the ˆ̄
Ω in terms of the partial

sums of ˆ̄vt . Consider the Bartlett kernel

K (x) =

 1−|x| |x| ≤ 1

0 |x|> 1,

Algebra from Hashimzade and Vogelsang (2008b) gives
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)
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using the fact that ŜT = 0 by the OLS normal equations. Note that in this setting, ˆ̄St is a scalar and

M = bT . Continuing the algebra,
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Next, we prove (1.17) and (1.18) following the same steps as above.
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where Z2 ∼ N(0,1). Therefore,

√
N
(

β̂ −β

)
=

(
1

NT

N
∑

i=1

T
∑

t=1
x2
it

)−1
· 1√

NT 2

N
∑

i=1

T
∑

t=1
vit ⇒ Q−1Z2

The limiting distribution of ˆ̄S[rT ] is

1√
NT 2

ˆ̄S[rT ] =
1√
NT 2

N
∑

i=1

[rT ]
∑

t=1
vit −

 1
NT

N
∑

i=1

[rT ]
∑

t=1
x2
it

 ·√N
(

β̂ −β

)
⇒ rZ2− (rQ) ·Q−1Z2 = 0

Therefore,

1

NT 2 ·T
ˆ̄
Ω =

2
bT

T−1
∑

t=1

1√
NT 2

ˆ̄St
1√
NT 2

ˆ̄St −
2

bT

T−bT−1
∑

t=1

1√
NT 2

ˆ̄St
1√
NT 2

ˆ̄St+M

⇒ 2
b

(∫ 1

0
0 ·0dr−

∫ 1−b

0
0 ·0dr

)
= 0

It directly follows that

N ·V̂DK =

(
1

NT

N
∑

i=1

T
∑

t=1
x2
it

)−1
1

NT 2 ·T
ˆ̄
Ω

(
1

NT

N
∑

i=1

T
∑

t=1
x2
it

)−1

⇒ Q−1 ·0 ·Q−1 = 0

Therefore, ∣∣tDK
∣∣=

∣∣∣β̂ −β0
∣∣∣√

V̂DK
=

∣∣∣√N
(

β̂ −β

)∣∣∣√
N ·V̂DK

→ ∞.

66



Appendix B

TABLES IN CHAPTER 1

Table B.1: Estimating coefficient, standard errors and null rejection probabilities with firm effects:

OLS and one-way clustered standard errors.

Source of regressor volatility

Avg(βOLS)

Std(βOLS)

Avg(SEWhite)

% Sig(tWhite)

Avg(SE f
C)

% Sig(t f
C) 0% 25% 50% 75%

Source of error volatility 0% 1.0003 1.0004 1.0004 1.0004

0.0285 0.0283 0.0283 0.0283

0.0283 0.0283 0.0283 0.0283

[0.0108] [0.0098] [0.0086] [0.0078]

0.0282 0.0282 0.0282 0.0282

[0.0108] [0.0098] [0.0086] [0.0090]

25% 1.0001 1.0005 1.0007 1.0008

0.0284 0.0353 0.0411 0.0463

0.0283 0.0283 0.0283 0.0283

[0.0094] [0.0402] [0.0756] [0.1180]

0.0282 0.0352 0.0411 0.0462

[0.0090] [0.0108] [0.0092] [0.0104]

Continued on next page.
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Table B.1 (cont’d)

Source of regressor volatility

Avg(βOLS)

Std(βOLS)

Avg(SEWhite)

% Sig(tWhite)

Avg(SE f
C)

% Sig(t f
C) 0% 25% 50% 75%

50% 1 1.0006 1.0008 1.0009

0.0283 0.0412 0.051 0.0592

0.0283 0.0283 0.0283 0.0283

[0.0110] [0.0762] [0.1598] [0.2262]

0.0282 0.0411 0.0508 0.0589

[0.0112] [0.0100] [0.0102] [0.0098]

75% 0.9999 1.0006 1.0008 1.0010

0.0283 0.0464 0.0593 0.0699

0.0283 0.0282 0.0282 0.0282

[0.0120] [0.1156] [0.2218] [0.3068]

0.0282 0.0462 0.0589 0.0694

[0.0112] [0.0090] [0.0088] [0.0102]
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Table B.2: Estimating coefficient, standard errors and null rejection probabilities with firm effects:

FM standard errors.

Source of regressor volatility

Avg(βFM)

Std(βFM)

Avg(SEFM)

% Sig(tFM) 0% 25% 50% 75%

Source of error volatility 0% 1.0003 1.0004 1.0004 1.0004

0.0286 0.0284 0.0283 0.0283

0.0276 0.0275 0.0275 0.0275

[0.0322] [0.0304] [0.0282] [0.0284]

25% 1.0001 1.0006 1.0007 1.0008

0.0285 0.0355 0.0412 0.0463

0.0276 0.0267 0.0258 0.0248

[0.0304] [0.0766] [0.1302] [0.1902]

50% 1 1.0006 1.0008 1.001

0.0285 0.0414 0.0511 0.0593

0.0276 0.0258 0.0239 0.0218

[0.0316] [0.1336] [0.2498] [0.3662]

75% 0.9999 1.0006 1.0008 1.001

0.0284 0.0466 0.0594 0.07

0.0276 0.0249 0.0218 0.0183

[0.0290] [0.1928] [0.3660] [0.5134]
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Table B.3: Estimating coefficient, standard errors and null rejection probabilities with time effects:

OLS and clustered standard errors.

Source of regressor volatility

Avg(βOLS)

Std(βOLS)

Avg(SEWhite)

% Sig(tWhite)

Avg(SEt
C)

% Sig(ttC) 0% 25% 50% 75%

Source of error volatility 0% 1.0005 1.0005 1.0005 1.0005

0.0285 0.0289 0.0298 0.0312

0.0283 0.0287 0.0294 0.0305

0.01 0.01 0.0098 0.0102

0.026 0.026 0.0259 0.0257

0.0404 0.0406 0.0476 0.0642

25% 1.0003 0.999 0.9978 0.9961

0.028 0.1518 0.2181 0.2831

0.0279 0.0281 0.0286 0.0295

0.0116 0.6208 0.7292 0.7904

0.0254 0.124 0.1739 0.2202

0.0396 0.0524 0.0734 0.0908

50% 1.0002 0.9984 0.9966 0.9942

0.0276 0.213 0.3073 0.3994

0.0275 0.0274 0.0277 0.0283

0.0096 0.7344 0.8128 0.8540

Continued on next page.
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Table B.3 (cont’d)

Source of regressor volatility

Avg(βOLS)

Std(βOLS)

Avg(SEWhite)

% Sig(tWhite)

Avg(SEt
C)

% Sig(ttC) 0% 25% 50% 75%

0.0245 0.1732 0.2445 0.3103

0.0412 0.0526 0.074 0.0910

75% 1 0.9978 0.9957 0.9927

0.0272 0.2602 0.376 0.4889

0.0269 0.0266 0.0267 0.0269

0.0092 0.7856 0.853 0.8806

0.0235 0.2113 0.2989 0.3796

0.0364 0.052 0.0738 0.0916
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Table B.4: Estimating coefficient, standard errors and null rejection probabilities with time effects:

FM standard errors.

Source of regressor volatility

Avg(βFM)

Std(βFM)

Avg(SEFM)

% Sig(tFM) 0% 25% 50% 75%

Source of error volatility 0% 1.0006 0.9999 0.9995 0.9986

0.0285 0.0323 0.0405 0.0561

0.0275 0.0316 0.0389 0.0551

[0.0308] [0.0300] [0.0348] [0.0306]

25% 1.0003 0.9994 0.9999 0.999

0.0247 0.0285 0.0348 0.0492

0.0237 0.0275 0.0337 0.0476

[0.0344] [0.0300] [0.0272] [0.0318]

50% 1 0.9996 0.9999 0.9999

0.0199 0.0232 0.0282 0.0391

0.0195 0.0225 0.0276 0.0394

[0.0258] [0.0296] [0.0268] [0.0236]

75% 0.9997 1.0001 1.0005 0.9998

0.0143 0.0166 0.0202 0.0281

0.0138 0.0159 0.0195 0.0277

[0.0322] [0.0292] [0.0308] [0.0280]
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Table B.5: Comparing performances of White, one-way cluster-robust and two-way cluster-robust

standard errors in the presence of both firm effects and time effects when N, T varies seperately.

For time effects with ρ = 0.

N T βOLS SEWhite SE f
C SEt

C SEdouble

10 10 0.9999 0.2645 0.23 0.241 0.181

10 25 0.9996 0.3735 0.209 0.271 0.137

10 50 0.9977 0.463 0.1875 0.346 0.1395

10 100 1.0004 0.566 0.166 0.4345 0.13

10 250 1.0014 0.694 0.1395 0.5915 0.1175

25 10 0.997 0.383 0.262 0.211 0.145

25 25 0.999 0.423 0.1945 0.192 0.0845

25 50 1.0013 0.52 0.1405 0.241 0.0775

25 100 1.0014 0.603 0.1295 0.35 0.0815

25 250 1.0005 0.7225 0.104 0.5205 0.08

50 10 0.9964 0.4565 0.3325 0.18 0.1295

50 25 1.0019 0.5295 0.2495 0.154 0.084

50 50 1.0001 0.554 0.1845 0.194 0.0755

50 100 1.0004 0.635 0.1385 0.2645 0.067

50 250 0.9998 0.7255 0.1065 0.4075 0.0715

100 10 1.0031 0.563 0.4395 0.166 0.133

100 25 1.002 0.604 0.336 0.131 0.0745

100 50 1.0012 0.6425 0.258 0.1485 0.078

100 100 1.0006 0.67 0.1865 0.1825 0.0665

100 250 0.9999 0.7485 0.108 0.291 0.0485

250 10 0.9962 0.7065 0.611 0.146 0.1315

Continued on next page.
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Table B.5 (cont’d)

N T βOLS SEWhite SE f
C SEt

C SEdouble

250 25 1.0016 0.7165 0.497 0.104 0.0825

250 50 1.0004 0.7315 0.3945 0.1015 0.0755

250 100 1.0011 0.7575 0.2935 0.1145 0.056

250 250 1.0003 0.7925 0.1735 0.176 0.061
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Table B.6: Comparing performances of White, one-way cluster-robust and two-way cluster-robust

standard errors in the presence of firm effects and AR(1) time effects when N = T = 10.

ρ βOLS SEWhite SE f
C SEt

C SEdouble

-0.95 0.9984 0.6215 0.644 0.5035 0.499

-0.9 1.0053 0.5855 0.599 0.451 0.442

-0.7 1.0059 0.3945 0.393 0.2895 0.265

-0.5 1.0065 0.283 0.27 0.2145 0.181

-0.3 0.9928 0.2275 0.2155 0.1815 0.1365

-0.1 0.996 0.203 0.1745 0.1715 0.1205

0 0.9995 0.2135 0.1805 0.1855 0.138

0.1 1.0066 0.219 0.1785 0.1875 0.1365

0.3 1.0029 0.2195 0.186 0.1995 0.142

0.5 0.9973 0.2395 0.2035 0.2075 0.163

0.7 1.0025 0.28 0.257 0.238 0.1985

0.9 1.0035 0.3465 0.3125 0.273 0.2365

0.95 0.992 0.424 0.403 0.348 0.316
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Table B.7: Comparing performances of White, one-way cluster-robust and two-way cluster-robust

standard errors in the presence of firm effects and AR(1) time effects when N = T = 50.

ρ βOLS SEWhite SE f
C SEt

C SEdouble

-0.95 0.992 0.927 0.9225 0.6525 0.6485

-0.9 0.9953 0.896 0.846 0.531 0.518

-0.7 1.0007 0.7655 0.5415 0.3105 0.2465

-0.5 1.0037 0.645 0.3295 0.2135 0.113

-0.3 1.0029 0.563 0.203 0.1725 0.0695

-0.1 0.9974 0.566 0.198 0.183 0.074

0 1.0015 0.565 0.1655 0.166 0.055

0.1 0.9979 0.5765 0.184 0.191 0.066

0.3 1.0019 0.5715 0.2025 0.176 0.074

0.5 0.9995 0.6255 0.2785 0.197 0.1125

0.7 0.9989 0.72 0.4825 0.2915 0.2215

0.9 1.0005 0.8505 0.766 0.4835 0.456

0.95 0.9966 0.887 0.8345 0.5525 0.536
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Table B.8: Comparing performances of White, one-way cluster-robust and two-way cluster-robust

standard errors in the presence of firm effects and AR(1) time effects when N = T = 250.

ρ βOLS SEWhite SE f
C SEt

C SEdouble

-0.95 0.9979 0.9665 0.954 0.6635 0.662

-0.9 0.9971 0.943 0.8865 0.5275 0.52

-0.7 0.9987 0.888 0.5755 0.276 0.219

-0.5 1.0003 0.853 0.3245 0.198 0.107

-0.3 0.9996 0.8235 0.21 0.1745 0.0675

-0.1 0.999 0.7865 0.1815 0.1755 0.053

0 1.0002 0.788 0.1705 0.1635 0.049

0.1 1.0008 0.81 0.179 0.1695 0.0505

0.3 0.9991 0.8225 0.2195 0.1765 0.056

0.5 1.0005 0.811 0.3065 0.184 0.096

0.7 0.9998 0.892 0.557 0.2805 0.2205

0.9 1.0004 0.9495 0.881 0.536 0.5265

0.95 1.0063 0.976 0.9525 0.666 0.6635
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Table B.9: Comparing performances of one-way cluster-robust, two-way cluster-robust and DK standard errors in the presence of firm
effects and AR(1) time effects when N = T = 50 and N = T = 250. No firm dummies.

SE f
C SEt

C SEdouble SEr
double SEDK Using Usual Fixed-b Critical Values

values of b values of b
N,T ρ .1 .2 .3 .4 .5 .6 .7 .8 .1 .2 .3 .4 .5 .6 .7 .8
50 .0 .174 .186 .071 .123 .188 .253 .325 .399 .485 .536 .622 .160 .148 .137 .135 .132 .130 .133 .131

.3 .224 .179 .084 .126 .206 .283 .348 .419 .472 .545 .647 .138 .131 .126 .125 .121 .124 .120 .122

.6 .374 .245 .151 .150 .229 .297 .355 .422 .470 .551 .653 .125 .108 .100 .092 .091 .094 .095 .096

.9 .772 .558 .525 .290 .363 .443 .491 .544 .613 .681 .781 .310 .221 .190 .183 .180 .180 .179 .181
250 .0 .171 .172 .059 .103 .166 .236 .314 .397 .465 .530 .606 .155 .147 .143 .138 .138 .137 .136 .136

.3 .198 .164 .060 .097 .184 .247 .311 .381 .441 .516 .589 .121 .116 .105 .104 .106 .110 .106 .106

.6 .402 .229 .159 .140 .216 .277 .319 .373 .423 .476 .546 .087 .084 .080 .082 .075 .075 .073 .076

.9 .848 .520 .509 .171 .246 .316 .351 .400 .443 .509 .599 .105 .086 .076 .073 .073 .072 .072 .070
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Table B.10: Comparing performances of one-way cluster-robust, two-way cluster-robust and DK standard errors in the presence of firm
effects and AR(1) time effects when N = T = 50 and N = T = 250. Firm dummies.

SE f
C SEt

C SEdouble SEr
double SEDK Using Usual Fixed-b Critical Values

values of b values of b
N,T ρ .1 .2 .3 .4 .5 .6 .7 .8 .1 .2 .3 .4 .5 .6 .7 .8
50 .0 .631 .075 .082 .182 .259 .302 .316 .361 .402 .445 .537 .068 .066 .062 .062 .060 .062 .060 .064

.3 .674 .091 .102 .184 .250 .310 .328 .376 .420 .469 .552 .067 .063 .055 .056 .059 .059 .058 .057

.6 .786 .191 .196 .203 .287 .334 .378 .417 .458 .520 .603 .103 .090 .087 .082 .082 .085 .083 .083

.9 .933 .516 .525 .328 .439 .496 .526 .565 .587 .648 .727 .283 .233 .219 .202 .201 .198 .192 .190
250 .0 .830 .049 .050 .152 .217 .255 .292 .337 .368 .412 .500 .048 .048 .046 .047 .047 .048 .048 .048

.3 .840 .072 .073 .150 .219 .253 .305 .334 .368 .408 .478 .048 .051 .050 .050 .048 .050 .049 .050

.6 .906 .190 .192 .163 .242 .293 .329 .362 .410 .454 .530 .069 .064 .061 .064 .062 .060 .061 .058

.9 .980 .534 .535 .202 .289 .341 .394 .420 .479 .542 .625 .120 .102 .092 .094 .090 .093 .092 .089
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Table B.11: Comparing performances of one-way cluster-robust, two-way cluster-robust and DK

standard errors in the presence of firm effects and AR(1) time effects. No firm dummies.

SEDK Using Adjusted Fixed-b Critical Values

values of b

N,T ρ SE f
C SEt

C SEdouble .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

50,50 .0 .174 .186 .071 .051 .049 .052 .052 .051 .049 .051 .055 .052 .053

.3 .224 .179 .084 .073 .064 .063 .059 .062 .062 .065 .068 .064 .066

.6 .374 .245 .151 .100 .085 .079 .072 .068 .074 .071 .073 .074 .075

.9 .772 .558 .525 .310 .220 .188 .183 .180 .180 .179 .180 .181 .186

50,100 .0 .128 .264 .066 .052 .053 .053 .051 .050 .054 .051 .055 .053 .055

.3 .150 .251 .067 .049 .049 .050 .047 .047 .047 .049 .048 .047 .048

.6 .273 .258 .121 .070 .064 .063 .062 .056 .056 .058 .056 .055 .058

.9 .756 .547 .505 .187 .139 .121 .118 .121 .121 .118 .121 .123 .125

50,250 .0 .093 .403 .065 .043 .048 .046 .044 .044 .047 .049 .047 .044 .046

.3 .090 .380 .055 .041 .043 .040 .043 .041 .042 .042 .043 .043 .043

.6 .188 .350 .121 .068 .059 .061 .060 .061 .064 .064 .064 .066 .067

.9 .713 .535 .472 .102 .089 .080 .081 .077 .080 .081 .084 .082 .083

100,50 .0 .254 .137 .077 .073 .064 .066 .065 .067 .065 .064 .061 .063 .066

.3 .288 .141 .083 .072 .061 .060 .059 .058 .060 .059 .059 .060 .060

.6 .498 .224 .176 .094 .082 .080 .074 .076 .080 .077 .080 .080 .082

.9 .831 .565 .545 .299 .218 .186 .173 .165 .170 .176 .179 .178 .181

100,100 .0 .179 .180 .063 .063 .066 .059 .060 .059 .059 .060 .058 .060 .061

.3 .197 .168 .073 .056 .056 .054 .054 .051 .051 .050 .055 .054 .056

.6 .401 .246 .156 .081 .072 .073 .074 .070 .071 .070 .072 .070 .072

.9 .828 .555 .532 .187 .137 .124 .118 .117 .117 .115 .116 .115 .117

Continued on next page.
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Table B.11 (cont’d)

SEDK Using Adjusted Fixed-b Critical Values

values of b

N,T ρ SE f
C SEt

C SEdouble .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

100,250 .0 .103 .281 .051 .042 .042 .047 .044 .047 .049 .046 .047 .045 .047

.3 .137 .296 .061 .053 .052 .048 .047 .044 .047 .044 .047 .045 .048

.6 .266 .273 .117 .050 .052 .049 .051 .051 .053 .053 .053 .052 .055

.9 .787 .538 .505 .097 .077 .072 .070 .071 .070 .067 .066 .068 .069

250,50 .0 .395 .092 .068 .061 .053 .054 .051 .051 .052 .052 .051 .049 .051

.3 .446 .102 .071 .058 .055 .057 .058 .055 .056 .055 .059 .058 .058

.6 .645 .207 .188 .098 .085 .076 .070 .070 .070 .070 .071 .072 .073

.9 .891 .546 .539 .291 .204 .177 .168 .164 .163 .165 .166 .170 .171

250,100 .0 .299 .106 .055 .053 .056 .055 .059 .058 .060 .060 .059 .059 .063

.3 .344 .129 .078 .066 .066 .064 .061 .059 .059 .060 .057 .058 .059

.6 .569 .205 .170 .072 .071 .071 .070 .067 .071 .071 .072 .074 .075

.9 .878 .545 .535 .185 .145 .128 .124 .113 .118 .121 .123 .124 .125

250,250 .0 .171 .172 .059 .060 .053 .051 .050 .051 .053 .051 .054 .053 .055

.3 .198 .164 .060 .049 .046 .043 .045 .045 .049 .048 .046 .047 .048

.6 .401 .229 .159 .067 .066 .064 .062 .059 .059 .058 .056 .057 .059

.9 .848 .520 . 509 .103 .086 .075 .072 .073 .072 .071 .068 .072 .073
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Table B.12: Comparing performances of one-way cluster-robust, two-way cluster-robust and DK

standard errors in the presence of a firm effect. No firm dummies.

SEDK Using Usual Fixed-b Critical Values

values of b

N T SE f
C SEt

C SEdouble .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

10 10 .118 .365 .158 .330 .301 .291 .275 .266 .270 .274 .271 .270 .275

25 .112 .525 .135 .489 .467 .447 .429 .417 .419 .415 .416 .416 .418

50 .122 .623 .134 .598 .572 .558 .553 .546 .539 .540 .537 .541 .542

100 .117 .733 .140 .716 .698 .673 .667 .658 .654 .652 .651 .652 .653

250 .114 .826 .133 .814 .801 .787 .780 .772 .772 .771 .772 .772 .774

25 10 .075 .376 .103 .344 .319 .296 .284 .278 .279 .280 .279 .281 .284

25 .078 .513 .089 .491 .460 .452 .446 .440 .435 .436 .434 .433 .436

50 .073 .623 .082 .607 .589 .571 .555 .546 .544 .541 .544 .542 .544

100 .076 .717 .086 .705 .679 .659 .648 .635 .633 .632 .628 .626 .630

250 .084 .845 .090 .831 .822 .815 .811 .803 .801 .799 .799 .797 .799

50 10 .059 .370 .077 .336 .313 .296 .276 .268 .263 .268 .265 .264 .270

25 .068 .550 .076 .521 .495 .473 .458 .446 .437 .438 .439 .437 .442

50 .057 .626 .061 .599 .573 .559 .550 .537 .535 .534 .534 .532 .536

100 .069 .739 .073 .726 .708 .696 .685 .678 .679 .675 .673 .674 .678

250 .059 .825 .061 .816 .800 .796 .791 .784 .778 .775 .777 .775 .778

100 10 .058 .362 .076 .331 .313 .307 .292 .284 .283 .282 .275 .275 .278

25 .063 .526 .069 .492 .466 .448 .429 .420 .414 .410 .412 .413 .417

50 .070 .628 .073 .612 .596 .575 .561 .548 .545 .543 .541 .540 .542

100 .057 .750 .060 .737 .718 .698 .692 .682 .676 .674 .675 .673 .678

250 .059 .824 .060 .813 .806 .798 .791 .784 .780 .774 .775 .776 .778

Continued on next page.
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Table B.12 (cont’d)

SEDK Using Usual Fixed-b Critical Values

values of b

N T SE f
C SEt

C SEdouble .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

250 10 .056 .346 .070 .311 .294 .271 .268 .257 .264 .253 .252 .251 .255

25 .045 .517 .051 .489 .466 .446 .439 .431 .426 .424 .428 .429 .431

50 .046 .642 .048 .617 .595 .583 .571 .565 .559 .555 .554 .558 .561

100 .053 .749 .054 .723 .709 .695 .693 .681 .676 .672 .672 .672 .673

250 .053 .847 .054 .822 .806 .795 .785 .782 .776 .775 .774 .777 .779
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Appendix C

PROOFS IN CHAPTER 2

Proofs of the exact equivalence result, Proposition 2.1 and 2.3, Lemma 2.2 and 2.4, Theorem 2.1–

2.3 are provided in this Appendix.

Proof of the exact equivalence result. It is straightforward to obtain

T
∑

t=1
D̃U2

t = λ (1−λ )T,

D̃UtD̃Us = DUtDUs− (1−λ )DUt − (1−λ )DUs+(1−λ )2,

N
∑

i=1
T̃reat

2
i = k(1− k)N.
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∑
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∑
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Recall t =
β̂3−β3
s.e.(β̂3)

.

Consider the individual dummies case. We have

β̂ −β =
( N
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Simple algebra yields

( N
∑

i=1
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Plugging (C.2) and (C.3) into (C.1), it directly follows
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In particular, we have

β̂3−β3 =
η
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. (C.4)

Next, consider the standard error matrix. We know
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Therefore,
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)−1 ˆ̄

Ω

( 1
T

N
∑

i=1

T
∑

t=1

 D̃Ut

Treati · D̃Ut


· [D̃Ut ,Treati · D̃Ut ]

)−1

=
( 1

λk(1−λ )(1− k)N

)2

 k −k

−k 1

 ˆ̄
Ω

 k −k

−k 1


=
( 1

λk(1−λ )(1− k)N

)2

∗ ∗

∗ T−1
∑

T
t=1 ∑

T
s=1 KtsD̃UtD̃Usξ


Specifically, we have

s.e.(β̂3) =
1

T (λk(1−λ )(1− k)N)2

T
∑

t=1

T
∑

s=1
KtsD̃UtD̃Usξ . (C.5)

Now consider the individual and time dummies case. Similarly we can derive

β̂3−β3 =
( N

∑
i=1

T
∑

t=1
T̃reat

2
i · D̃U2

t
)−1 N

∑
i=1

T
∑

t=1
T̃reatiD̃Utuit

=
1

λk(1−λ )(1− k)NT

N
∑

i=1
T̃reati

(
λ

T
∑

t=1
uit −

λT
∑

t=1
uit
)

=
η

λk(1−λ )(1− k)NT

(C.6)

For the standard error matrix, it is easy to show

ˆ̄vt =
N
∑

i=1
T̃reatiD̃Utuit = D̃Ut(S

kN
t − kSN

t ),
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and

ˆ̄
Ω = T−1

T
∑

t=1

T
∑

s=1
Kts ˆ̄vt ˆ̄v′s = T−1

T
∑

t=1

T
∑

s=1
KtsD̃UtD̃Us(SkN

t − kSN
t )(SkN

s − kSN
s )

= T−1
T
∑

t=1

T
∑

s=1
KtsD̃UtD̃Usξ .

Thus, it follows

s.e.(β̂3) =
( 1

T

N
∑

i=1

T
∑

t=1
T̃reat

2
i · D̃U2

t
)−2 ˆ̄

Ω =
1

T (λk(1−λ )(1− k)N)2

T
∑

t=1

T
∑

s=1
KtsD̃UtD̃Usξ .

(C.7)

From above, we know the top and the bottom of t statistics are exactly equivalent in these two cases.

As a result, t statistics are exact equivalent in these cases. By symmetry, it is easy to show that this

exact equivalence result holds in the case when only time period dummies are included.

Proof of Proposition 2.1.
√

T (β̂−β )= (T−1
∑

N
i=1 ∑

T
t=1 x̃it x̃′it)

−1(T−
1
2 ∑

N
i=1 ∑

T
t=1 x̃ituit). Us-

ing Assumption 2.1 and 2.2, it can be shown that

T−
1
2

N
∑

i=1

T
∑

t=1
x̃ituit = T−

1
2

T
∑

t=1

(
x̃1t , . . . , x̃Nt

)
ut = T−

1
2

T
∑

t=1
A · D̃Ut ·ut

= A ·T−
1
2

T
∑

t=1

[
DUt −T−1

T
∑

s=1
DUsf(s)′τT

(
T−1

T
∑

s=1
τT f(s)f(s)′τT

)−1

· τT f(t)
]
ut

⇒ AΛ

∫ 1

0

[
1(r > λ )−

∫ 1

λ
F(s)′ds

(∫ 1

0
F(s)F(s)′ds

)−1
F(r)

]
dW (r)

= Λ
∗
∫ 1

0
HF (r,λ )dW∗(r)

T−1
N
∑

i=1

T
∑

t=1
x̃it x̃′it = T−1

T
∑

t=1
A · D̃UtD̃Ut ·A′ = G ·T−1

T
∑

t=1
D̃U2

t

= G ·T−1
T
∑

t=1

[
DUt −T−1

T
∑

s=1
DUsf(s)′τT

(
T−1

T
∑

s=1
τT f(s)f(s)′τT

)−1

· τT f(t)
]2

⇒ G ·
∫ 1

0

[
1(r > λ )−

∫ 1

λ
F(s)′ds

(∫ 1

0
F(s)F(s)′ds

)−1
F(r)

]2
dr

= G
∫ 1

0
HF (r,λ )2dr
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Therefore,

√
T (β̂ −β )⇒ (G

∫ 1

0
HF (r,λ )2dr)−1 ·Λ∗

∫ 1

0
HF (r,λ )dW∗(r)

Proof of Lemma 2.2. Using Assumption 2.1, 2.2 and Proposition 2.1, we obtain

T−
1
2 ˆ̄S[rt] = T−

1
2
[rT ]
∑

t=1
ˆ̄vt = T−

1
2
[rT ]
∑

t=1

N
∑

i=1
x̃it ûit = T−

1
2
[rT ]
∑

t=1

N
∑

i=1
x̃it [ũit − x̃′it(β̂ −β )]

= T−
1
2
[rT ]
∑

t=1

N
∑

i=1
x̃ituit −T−

1
2
[rT ]
∑

t=1

N
∑

i=1
x̃it üit −

(
T−1

[rT ]
∑

t=1

N
∑

i=1
x̃it x̃′it

)√
T (β̂ −β )

= A ·T−
1
2
[rT ]
∑

t=1
D̃Utut −A ·T−

1
2

T
∑

s=1
usf(s)′τT ·

( 1
T

T
∑

s=1
τT f(s)f(s)′τT

)−1

· 1
T

[rT ]
∑

t=1
τT f(t)D̃Ut −

(
G ·T−1

[rT ]
∑

t=1
D̃U2

t
)√

T (β̂ −β )

⇒ Λ
∗
[∫ r

0
HF (s,λ )dW∗(s)−

∫ 1

0
dW (s)F(s)′

(∫ 1

0
F(s)F(s)′ds

)−1

·
∫ r

0
F(s)HF (s,λ )ds−

∫ r

0
HF (s,λ )2ds

(∫ 1

0
HF (s,λ )2ds

)−1
NF (W∗)

]
= Λ
∗QF (r,λ ,W∗)

because

T−
1
2
[rT ]
∑

t=1

N
∑

i=1
x̃it ûit = T−

1
2
[rT ]
∑

t=1

N
∑

i=1
x̃it · (

T
∑

s=1
uisf(s)′)(

T
∑

s=1
f(s)f(s)′)−1f(t)

= T−
1
2
[rT ]
∑

t=1
(

T
∑

s=1

N
∑

i=1
x̃ituisf(s)′)(

T
∑

s=1
f(s)f(s)′)−1f(t)

= T−
1
2
[rT ]
∑

t=1
(

T
∑

s=1
AD̃Utusf(s)′)(

T
∑

s=1
f(s)f(s)′)−1f(t)

= A ·T−
1
2

T
∑

s=1
usf(s)′τT · (

1
T

T
∑

s=1
τT f(s)f(s)′τT )−1 1

T

[rT ]
∑

t=1
τT f(t)D̃Ut

Proof of Proposition 2.3. It directly follows from (2.7), Lemma 2.2 and the continuous mapping
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theorem that

ˆ̄
Ω =

2
b

T−1
T−1
∑

t=1
T−

1
2 ˆ̄St ·T

−1
2 ˆ̄S′t −

1
b

T−1
T−M−1

∑
t=1

(T−
1
2 ˆ̄St ·T

−1
2 ˆ̄S′t+M +T−

1
2 ˆ̄St+M ·T

−1
2 ˆ̄S′t)

⇒ 2
b

∫ 1

0
Λ
∗QF (r,λ ,W∗)QF (r,λ ,W∗)′Λ∗

′
dr

− 1
b

∫ 1−b

0
Λ
∗
[
QF (r,λ ,W∗)QF (r+b,λ ,W∗)′+QF (r+b,λ ,W∗)QF (r,λ ,W∗)′

]
Λ
∗′dr

= Λ
∗PF (b,λ ,QF )Λ∗

′

Proof of Theorem 2.1. Using Proposition 2.3, it directly follows that

R
(

T−1
N
∑

i=1

T
∑

t=1
x̃it x̃′it

)−1 ˆ̄
Ω

(
T−1

N
∑

i=1

T
∑

t=1
x̃it x̃′it

)−1
R′

⇒ R
(

G
∫ 1

0
HF (r,λ )2dr

)−1
Λ
∗PF (b,λ ,QF )Λ∗

′(
G
∫ 1

0
HF (r,λ )2dr

)−1
R′

= PF (b,λ ,QF
(

r,λ ,R(G
∫ 1

0
HF (r,λ )2dr)−1

Λ
∗W∗)

)
= Λ
∗∗
q PF (b,λ ,QF (r,λ ,W∗∗q ))Λ∗∗

′
q = Λ

∗∗
q PF (b,λ ,QF∗∗

q )Λ∗∗
′

q (C.8)

Using Proposition 2.1, we have

R
√

T (β̂−β )⇒R
(

G
∫ 1

0
HF (r,λ )2dr

)−1
·Λ∗

∫ 1

0
HF (r,λ )dW∗(r)=Λ

∗∗
q

∫ 1

0
HF (r,λ )dW∗∗q (r)

(C.9)

With (C.8) and (C.9), it follows that

Wald = (Rβ̂ − r)′[RV̂ R′]−1(Rβ̂ − r)

= (R
√

T (β̂ −β ))′
[
R
(

T−1
N
∑

i=1

T
∑

t=1
x̃it x̃′it

)−1 ˆ̄
Ω

(
T−1

N
∑

i=1

T
∑

t=1
x̃it x̃′it

)−1
R′
]−1

·R
√

T (β̂ −β )

⇒ (Λ∗∗q
∫ 1

0
HF (r,λ )dW∗∗q (r))′[Λ∗∗q PF(b,λ ,QF∗∗

q )Λ∗∗
′

q ]−1
Λ
∗∗
q

∫ 1

0
HF (r,λ )dW∗∗q (r)

= NF (W∗∗q )′PF(b,λ ,QF∗∗
q )−1NF (W∗∗q )

When q = 1, it directly follows that t⇒
NF (W∗∗1 )√

PF (b,λ ,QF∗∗
1 )

.
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Proof of Lemma 2.4.

T−1
T
∑

t=1
D̂Ut z̃′it = T−1

T
∑

s=λT+1
f(s)′

( T
∑

s=1
f(s)f(s)′

)−1 T
∑

t=1
f(t)z̃′it = 0 (C.10)

using the fact that ∑
T
t=1 f(t)z̃′it = 0. Hence, T−1

∑
[rT ]
t=1 D̂Ut z̃′it = op(1). If r > λ , then

T−1
[rT ]
∑

t=1
DUt z̃′it = T−1

[rT ]
∑

t=λ+1
z̃′it

= T−1
[rT ]
∑

t=λ+1
z′it −T−1

[rT ]
∑

t=λ+1
f(t)′τT

(
T−1

T
∑

s=1
τT f(s)f(s)′τT

)−1

·T−1
T
∑

s=1
τT f(s)z′is

p−→ (r−λ )
(

µ
′
i −

∫ 1

0
F(r)′dr

(∫ 1

0
F(r)F(r)′dr

)−1
(µ ′i ,0, . . . ,0)

)
= (r−λ )(µ ′i −µ

′
i ) = 0

(C.11)

If r ≤ λ , then

T−1
[rT ]
∑

t=1
DUt z̃′it = 0 (C.12)

From (C.10), (C.11) and (C.12), it directly follows that

T−1
[rT ]
∑

t=1
D̃Ut z̃′it = T−1

[rT ]
∑

t=1
(DUt − D̂Ut)z̃′it

p−→ 0 (C.13)

and thus

T−1
N
∑

i=1

[rT ]
∑

t=1
hit z̃′it =

N
∑

i=1

 1

Treati

T−1
[rT ]
∑

t=1
D̃Ut z̃′it

p−→ 0.

Proof of Theorem 2.3. The K×1 vector z̃ituit can be written in terms of the N(K +1)×1 vector

vt as follows

z̃ituit = (zit − b̂′if(t))uit = ((zit −b′if(t))− (b̂′if(t)−b′if(t)))uit = Bvii
t − (b̂i−bi)

′f(t)uit

= Aivt − (τ−1
T (b̂i−bi))

′
τT f(t)uit
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Using this formula it is easy to show that

T−
1
2
[rT ]
∑

t=1
z̃ituit = T−

1
2
[rT ]
∑

t=1
(Aivt − (τ−1

T (b̂i−bi))
′
τT f(t)uit)

= AiT
−1

2
[rT ]
∑

t=1
vt −T−

1
2 (
√

T τ
−1
T (b̂i−bi))

′ ·T−
1
2
[rT ]
∑

t=1
τT f(t)uit

= AiT
−1

2
[rT ]
∑

t=1
vt +T−

1
2 Op(1) ·Op(1) = AiT

−1
2
[rT ]
∑

t=1
vt +op(1)

⇒ AiΛ̇W (r) (C.14)

using Assumption 2.1 and 2.4. With Assumption 2.1, 2.3, 2.4, Lemma 2.4 and (C.14), simple

algebra gives

√
T (β̂ −β ) =

( N
∑

i=1
T−1

T
∑

t=1
x̃it x̃′it

)−1( N
∑

i=1
T−

1
2

T
∑

t=1
x̃ituit

)

=


N
∑

i=1
T−1 T

∑

t=1
hith′it

N
∑

i=1
T−1 T

∑

t=1
hit z̃′it

N
∑

i=1
T−1 T

∑

t=1
z̃ith′it

N
∑

i=1
T−1 T

∑

t=1
z̃it z̃′it


−1

N
∑

i=1
T−

1
2

T
∑

t=1
hituit

N
∑

i=1
T−

1
2

T
∑

t=1
z̃ituit


⇒

(G∫ 1
0 HF (r,λ )2dr)−1 0

0 Q̄−1



·

(A⊗ ẽ′1)Λ̇
∫ 1
0 [1(r > λ )−

∫ 1
λ

F(s)′ds(
∫ 1
0 F(s)F(s)′ds)−1F(r)]dW (r)

(
N
∑

i=1
Ai)Λ̇W (1)


=

(G∫ 1
0 HF (r,λ )2dr)−1(Λ̇∗

∫ 1
0 HF (r,λ )dW∗(r)

(Q̄−1(∑N
i=1 Ai)Λ̇W (1)


Let

Λ̇
∗∗ =

Λ̇∗ 0

0 (
N
∑

i=1
Ai)Λ̇


which is a (K +2)× (K +2) block diagonal matrix. Using the fact that

T
∑

t=1
z̃it f(t)′ = 0, it follows
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that

[rT ]
∑

t=1

N
∑

i=1
z̃it ûit =

N
∑

i=1

[rT ]
∑

t=1
z̃it

T
∑

s=1
uisf(s)′

( T
∑

s=1
f(s)f(s)′

)−1
f(t)

=
N
∑

i=1

( [rT ]
∑

t=1
z̃it f(t)′

)( T
∑

s=1
f(s)f(s)′

)−1 T
∑

s=1
uisf(s)

=
N
∑

i=1
op(1) ·

( T
∑

s=1
f(s)f(s)′

)−1 T
∑

s=1
uisf(s)

p−→ 0

(C.15)

The limits of the partial sums ˆ̄S[rT ] are easy to obtain

T−
1
2 ˆ̄S[rT ] = T−

1
2
[rT ]
∑

t=1

N
∑

i=1
x̃it ũit − (T−1

[rT ]
∑

t=1

N
∑

i=1
x̃it x̃′it)

√
T (β̂ −β )

=


T−

1
2
[rT ]
∑

t=1

N
∑

i=1
hit(uit − ûit)

T−
1
2
[rT ]
∑

t=1

N
∑

i=1
z̃it(uit − ûit)

−


T−1
[rT ]
∑

t=1

N
∑

i=1
hith′it T−1

[rT ]
∑

t=1

N
∑

i=1
hit z̃′it

T−1
[rT ]
∑

t=1

N
∑

i=1
z̃ith′it T−1

[rT ]
∑

t=1

N
∑

i=1
z̃it z̃′it


·
√

T (β̂ −β )

⇒


Λ̇∗[

∫ r
0 HF (s,λ )dW∗(s)−

∫ 1
0 dW (s)F(s)′

(∫ 1
0 F(s)F(s)′ds

)−1

·
∫ r
0 F(s)HF (s,λ )ds]

(
N
∑

i=1
Ai)Λ̇W (r)



−

G
∫ r
0 HF (s,λ )2ds 0

0 rQ̄

 ·
(G

∫ 1
0 HF (r,λ )2dr)−1(Λ̇∗

∫ 1
0 HF (r,λ )dW∗(r)

Q̄−1(
N
∑

i=1
Ai)Λ̇W (1)



=

Λ̇∗QF (r,λ ,W∗)

(
N
∑

i=1
Ai)Λ̇B(r)

= Λ̇
∗∗

QF (r,λ ,W∗)

B(r)


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The limit of ˆ̄
Ω can be written as

ˆ̄
Ω =

2
b

T−1
T−1
∑

t=1
T−

1
2 ˆ̄St ·T

−1
2 ˆ̄S′t −

1
b

T−1
T−M−1

∑
t=1

(T−
1
2 ˆ̄St ·T

−1
2 ˆ̄S′t+M +T−

1
2 ˆ̄St+M ·T

−1
2 ˆ̄S′t)

⇒ 2
b

∫ 1

0
Λ̇
∗∗

QF (r,λ ,W∗)

B(r)


QF (r,λ ,W∗)

B(r)


′

Λ̇
∗∗′dr− 1

b

∫ 1−b

0
Λ̇
∗∗
(QF (r,λ ,W∗)

B(r)


·

QF (r+b,λ ,W∗)

B(r+b)


′

−

QF (r+b,λ ,W∗)

B(r+b)


QF (r,λ ,W∗)

B(r)


′)

Λ̇
∗∗′dr

= Λ̇
∗∗

 PF (b,λ ,QF ) P12(b,λ ,Q
F ,B)

P21(b,λ ,Q
F ,B) P(b,B)

 Λ̇
∗∗′

R(T−1
N
∑

i=1

T
∑

t=1
x̃it x̃′it)

−1 ˆ̄
Ω(T−1

N
∑

i=1

T
∑

t=1
x̃it x̃′it)

−1R′

⇒

R11 R12

R21 R22


(G∫ 1

0 HF (r,λ )2dr)−1 0

0 Q̄−1

 · Λ̇∗∗
 PF (b,λ ,QF ) P12(b,λ ,Q

F ,B)

P21(b,λ ,Q
F ,B) P(b,B)


· Λ̇∗∗

′
(G∫ 1

0 HF (r,λ )2dr)−1 0

0 Q̄−1


R11 R12

R21 R22


′

=

R11(G
∫ 1
0 HF (r,λ )2dr)−1Λ̇∗ R12Q̄−1(∑N

i=1 Ai)Λ̇

R21(G
∫ 1
0 HF (r,λ )2dr)−1Λ̇∗ R22Q̄−1(∑N

i=1 Ai)Λ̇


·

 PF (b,λ ,QF ) P12(b,λ ,Q
F ,B)

P21(b,λ ,Q
F ,B) P(b,B)


·

R11(G
∫ 1
0 HF (r,λ )2dr)−1Λ̇∗ R12Q̄−1(∑N

i=1 Ai)Λ̇

R21(G
∫ 1
0 HF (r,λ )2dr)−1Λ̇∗ R22Q̄−1(∑N

i=1 Ai)Λ̇


′

(C.16)
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R
√

T (β̂ −β )⇒

R11 R12

R21 R22


(G∫ 1

0 HF (r,λ )2dr)−1(Λ̇∗
∫ 1
0 HF (r,λ )dW∗(r)

Q̄−1(∑N
i=1 Ai)Λ̇W (1)

 (C.17)

If q2 = 0 and R12 = 0, that is, we are testing restrictions on the DD estimator, then R = [R11,0]

and the limits of (C.16) and (C.17) are simplified as follows

R
(

T−1
N
∑

i=1

T
∑

t=1
x̃it x̃′it

)−1 ˆ̄
Ω

(
T−1

N
∑

i=1

T
∑

t=1
x̃it x̃′it

)−1
R′

⇒ R11(G
∫ 1

0
HF (r,λ )2dr)−1

Λ̇
∗PF (b,λ ,QF )Λ̇∗

′
(G
∫ 1

0
HF (r,λ )2dr)−1R′11

= Λ̄1PF (b,λ , Q̄F )Λ̄′1

and

R
√

T (β̂ −β )⇒ R11(G
∫ 1

0
HF (r,λ )2dr)−1

Λ̇
∗
∫ 1

0
HF (r,λ )dW∗(r) = Λ̄1

∫ 1

0
HF (r,λ )dW̄ (r)

where W̄(r) is a q1× 1 vector of standard Wiener processes and Λ̄1 is the matrix square root of

the matrix

R11(G
∫ 1

0
HF (r,λ )2dr)−1

Λ̇
∗

Λ̇
∗′(G

∫ 1

0
HF (r,λ )2dr)−1R′11.

It directly follows that

Wald⇒ (Λ̄1

∫ 1

0
HF (r,λ )dW̄ (r))′(Λ̄1PF (b,λ , Q̄F )Λ̄1)

−1
Λ̄1

∫ 1

0
HF (r,λ )dW̄ (r)

= (
∫ 1

0
HF (r,λ )dW̄ (r))′(PF (b,λ , Q̄F ))−1

∫ 1

0
HF (r,λ )dW̄ (r)

If q1 = 0 and R21 = 0, that is, we are testing restrictions on the additional regressors, then R =

[0,R22] and the limits of (C.16) and (C.17) are simplified as follows

R(T−1
N
∑

i=1

T
∑

t=1
x̃it x̃′it)

−1 ˆ̄
Ω(T−1

N
∑

i=1

T
∑

t=1
x̃it x̃′it)

−1R′

⇒ R22(
N
∑

i=1
Qi)
−1(

N
∑

i=1
Ai)Λ̇P(b,B)Λ̇′(

N
∑

i=1
Ai)
′(

N
∑

i=1
Qi)
−1R′22 = Λ̄2P(b,B)Λ̄′2

R
√

T (β̂ −β )⇒ R22(
N
∑

i=1
Qi)
−1(

N
∑

i=1
Ai)Λ̇W (1) = Λ̄2Wq(1)
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where Wq(1) is a q2×1 vector of standard Wiener processes and Λ̄2 is the matrix square root of

the matrix

R22(
N
∑

i=1
Qi)
−1(

N
∑

i=1
Ai)Λ̇Λ̇

′(
N
∑

i=1
Ai)
′(

N
∑

i=1
Qi)
−1R′22

It directly follows that

Wald⇒ (Λ̄2Wq(1))′(Λ̄2P(b,B)Λ̄2)
−1

Λ̄2Wq(1) =Wq(1)′Pq(b,B)−1Wq(1)

Proof of Theorem 2.4. The key step is to show that the limits of
√

T (β̂ −β ) and T−
1
2 ˆ̄S[rT ] take

the same form as in Theorem 2.3. Once these results are obtained, the rest of the proof closely

follows the proof in Theorem 2.3 and details are omitted. With both trend functions and time

period dummies in the model it follows that

z̃ituit = (zit − b̂′if(t))uit −N−1
N
∑
j=1

(z jt − b̂′jf(t))uit

= ((zit −b′if(t))− (b̂′if(t)−b′if(t)))uit −N−1
N
∑
j=1

((z jt −b′jf(t))− (b̂′jf(t)−b′jf(t)))uit

= (zit −b′if(t))uit −N−1
N
∑
j=1

(z jt −b′jf(t))uit − (b̂′if(t)−b′if(t))uit

+N−1
N
∑
j=1

(b̂′jf(t)−b′jf(t))uit

= vii
t −N−1

N
∑
j=1

v ji
t − (b̂i−bi)

′f(t)uit +N−1
N
∑
j=1

(b̂ j−b j)
′f(t)uit

= ([0,e′i⊗ IK ]− 1
N
[0, ι ′ ⊗ IK ])(e′i⊗ INK+1)v

ex
t − (b̂i−bi)

′f(t)uit

+N−1
N
∑
j=1

(b̂ j−b j)
′f(t)uit

= Aex
i vex

t − (τ−1
T (b̂i−bi))

′
τT f(t)uit +N−1

N
∑
j=1

(τ−1
T (b̂ j−b j))

′
τT f(t)uit
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Using this formula it directly follows that

T−
1
2
[rT ]
∑

t=1
z̃ituit = Aex

i T−
1
2
[rT ]
∑

t=1
vex
t −T−

1
2 (
√

T τ
−1
T (b̂i−bi))

′ ·T−
1
2
[rT ]
∑

t=1
τT f(t)uit

+N−1
N
∑
j=1

T−
1
2 (
√

T τ
−1
T (b̂ j−b j))

′ ·T−
1
2
[rT ]
∑

t=1
τT f(t)uit

= Aex
i T−

1
2
[rT ]
∑

t=1
vex
t +op(1)⇒ Aex

i Λ
exWex(r)

(C.18)

using Assumption 2.1 and 2.5. Using (C.13), we have

T−1
[rT ]
∑

t=1

N
∑

i=1
T̃reatiD̃Ut · z̃′it = T−1

[rT ]
∑

t=1

N
∑

i=1
T̃reatiD̃Ut [zit − ẑit −

1
N

N
∑
j=1

(z jt − ẑ jt)]

= T−1
[rT ]
∑

t=1

N
∑

i=1
T̃reatiD̃Ut(zit − ẑit)−T−1

[rT ]
∑

t=1

1
N

N
∑
j=1

(z jt − ẑ jt)

·
N
∑

i=1
T̃reatiD̃Ut

= T−1
[rT ]
∑

t=1

N
∑

i=1
T̃reatiD̃Ut(zit − ẑit)−T−1

[rT ]
∑

t=1

1
N

N
∑
j=1

(z jt − ẑ jt)

·0

=
N
∑

i=1
T̃reatiT

−1
[rT ]
∑

t=1
D̃Ut(zit − ẑit)

p−→ 0

Using Assumption 2.1, 2.3 and (C.18) it immediately follows that

√
T (β̂ −β )⇒

(G̃∫ 1
0 HF (r,λ )2dr)−1 0

0 Q̄−1



·

(Ã⊗ ē′1)Λ
ex ∫ 1

0 [1(r > λ )−F(r)′(
∫ 1
0 F(s)F(s)′ds)−1 ∫ 1

λ
F(s)ds]dWex(r)

(
N
∑

i=1
Aex

i )ΛexWex(1)


=

(G̃∫ 1
0 HF (r,λ )2dr)−1Λex∗ ∫ 1

0 HF (r,λ )dWex∗(r)

Q̄−1(∑N
i=1 Aex

i )ΛexWex(1)


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The result for T−
1
2 ˆ̄S[rT ] is given next. From (C.15) we know

[rT ]
∑

t=1

N
∑

i=1
(zit − ẑit)ûit = op(1).

Similarly, it can be shown that

[rT ]
∑

t=1

N
∑
j=1

(z jt − ẑ jt)ûit =
N
∑
j=1

( [rT ]
∑

t=1
(z jt − ẑ jt)f(t)

′
)( T

∑
s=1

f(s)f(s)′
)−1 T

∑
s=1

uisf(s)

=
N
∑
j=1

op(1) ·
( T

∑
s=1

f(s)f(s)′
)−1 T

∑
s=1

uisf(s)
p−→ 0

Direct calculation gives

T−
1
2
[rT ]
∑

t=1

N
∑

i=1
z̃it ũit

=T−
1
2
[rT ]
∑

t=1

N
∑

i=1
z̃it(uit − ûit −

1
N

N
∑
j=1

(u jt − û jt)) = T−
1
2
[rT ]
∑

t=1

N
∑

i=1
z̃it(uit − ûit)

=T−
1
2
[rT ]
∑

t=1

N
∑

i=1
z̃ituit −T−

1
2
[rT ]
∑

t=1

N
∑

i=1
(zit − ẑit −

1
N

N
∑
j=1

(z jt − ẑ jt))ûit

=T−
1
2
[rT ]
∑

t=1

N
∑

i=1
z̃ituit −T−

1
2
[rT ]
∑

t=1

N
∑

i=1
(zit − ẑit)ûit +T−

1
2
[rT ]
∑

t=1

N
∑

i=1

1
N

N
∑
j=1

(z jt − ẑ jt)ûit

=T−
1
2
[rT ]
∑

t=1

N
∑

i=1
z̃ituit +op(1)
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Therefore,

T−
1
2 ˆ̄S[rT ] = T−

1
2
[rT ]
∑

t=1

N
∑

i=1
x̃it ũit − (T−1

[rT ]
∑

t=1

N
∑

i=1
x̃it x̃′it)

√
T (β̂ −β )

=


T−

1
2
[rT ]
∑

t=1

N
∑

i=1
T̃reatiD̃Ut ũit

T−
1
2
[rT ]
∑

t=1

N
∑

i=1
z̃ituit +op(1)



−


T−1

[rT ]
∑

t=1

N
∑

i=1
(T̃reatiD̃Ut)2 T−1

[rT ]
∑

t=1

N
∑

i=1
T̃reatiD̃Ut z̃′it

T−1
[rT ]
∑

t=1

N
∑

i=1
z̃it T̃reatiD̃Ut T−1

[rT ]
∑

t=1

N
∑

i=1
z̃it z̃′it


√

T (β̂ −β )

⇒


Λex∗

[∫ r
0 HF (s,λ )dWex∗(s)−

∫ 1
0 dW (s)F(s)′

(∫ 1
0 F(s)F(s)′ds

)−1

·
∫ r
0 F(s)HF (s,λ )ds

]
(

N
∑

i=1
Aex

i )ΛexWex(r)


−

G̃
∫ r
0 HF (s,λ )2ds 0

0 rQ̄



·

(G̃
∫ 1
0 HF (r,λ )2dr)−1(Λex∗ ∫ 1

0 HF (s,λ )dWex∗(s)

Q̄−1(
N
∑

i=1
Aex

i )ΛexWex(1)



=

Λex∗QF (r,λ ,Wex∗)

(
N
∑

i=1
Aex

i )ΛexBex(r)

= Λ
ex∗∗

QF(r,λ ,Wex∗)

Bex(r)


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Appendix D

TABLES IN CHAPTER 2

Table D.1: 90% Asymptotic Critical Values for tDD (Bartlett Kernel) Without Trend.

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

λ = 0.1 1.506 1.728 1.953 2.148 2.325 2.485 2.624 2.744 2.864 2.975

0.2 1.380 1.476 1.571 1.663 1.752 1.843 1.940 2.024 2.107 2.185

0.3 1.335 1.390 1.449 1.506 1.569 1.629 1.689 1.751 1.808 1.873

0.4 1.322 1.360 1.409 1.454 1.499 1.545 1.594 1.645 1.699 1.747

0.5 1.325 1.370 1.415 1.458 1.506 1.547 1.599 1.647 1.697 1.750

0.6 1.326 1.374 1.411 1.457 1.501 1.556 1.606 1.658 1.712 1.768

0.7 1.342 1.402 1.463 1.526 1.586 1.649 1.714 1.774 1.838 1.899

0.8 1.377 1.469 1.570 1.663 1.753 1.845 1.932 2.022 2.107 2.186

0.9 1.505 1.732 1.953 2.143 2.318 2.472 2.611 2.745 2.862 2.970

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

λ = 0.1 3.076 3.174 3.269 3.357 3.442 3.529 3.605 3.686 3.768 3.847

0.2 2.267 2.345 2.416 2.484 2.554 2.621 2.684 2.751 2.814 2.881

0.3 1.938 2.001 2.064 2.131 2.197 2.253 2.313 2.369 2.420 2.476

0.4 1.805 1.862 1.922 1.978 2.036 2.094 2.147 2.200 2.257 2.313

0.5 1.801 1.857 1.916 1.971 2.026 2.086 2.141 2.194 2.247 2.301

0.6 1.822 1.879 1.934 1.990 2.045 2.105 2.158 2.214 2.272 2.329

0.7 1.962 2.025 2.089 2.155 2.218 2.281 2.338 2.394 2.450 2.505

0.8 2.261 2.337 2.403 2.473 2.540 2.607 2.670 2.737 2.800 2.862

0.9 3.067 3.175 3.274 3.371 3.449 3.534 3.619 3.703 3.788 3.867

Continued on next page.

99



Table D.1 (cont’d)

b = 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

λ = 0.1 3.926 3.997 4.087 4.163 4.228 4.303 4.381 4.448 4.517 4.585

0.2 2.946 3.009 3.071 3.122 3.174 3.228 3.287 3.339 3.385 3.443

0.3 2.528 2.578 2.633 2.682 2.739 2.797 2.846 2.898 2.947 2.992

0.4 2.370 2.424 2.482 2.536 2.585 2.635 2.686 2.734 2.781 2.830

0.5 2.361 2.416 2.472 2.528 2.577 2.628 2.674 2.719 2.765 2.812

0.6 2.382 2.440 2.496 2.541 2.589 2.643 2.686 2.733 2.773 2.824

0.7 2.562 2.619 2.670 2.727 2.781 2.837 2.888 2.940 2.986 3.028

0.8 2.916 2.979 3.034 3.096 3.156 3.214 3.271 3.326 3.384 3.432

0.9 3.943 4.034 4.106 4.177 4.250 4.320 4.383 4.450 4.526 4.591

b = 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

λ = 0.1 4.656 4.725 4.796 4.859 4.923 4.996 5.065 5.130 5.191 5.255

0.2 3.490 3.546 3.602 3.656 3.711 3.756 3.817 3.862 3.911 3.962

0.3 3.038 3.088 3.130 3.174 3.220 3.262 3.308 3.347 3.389 3.426

0.4 2.876 2.914 2.954 2.994 3.033 3.074 3.114 3.152 3.189 3.223

0.5 2.852 2.896 2.942 2.983 3.025 3.062 3.104 3.145 3.182 3.226

0.6 2.869 2.912 2.961 3.000 3.041 3.078 3.116 3.155 3.199 3.237

0.7 3.073 3.120 3.164 3.209 3.252 3.292 3.334 3.381 3.426 3.468

0.8 3.486 3.537 3.588 3.630 3.688 3.742 3.792 3.845 3.899 3.947

0.9 4.661 4.732 4.800 4.873 4.944 5.012 5.070 5.136 5.199 5.262

b = 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

λ = 0.1 5.306 5.377 5.436 5.501 5.551 5.607 5.670 5.727 5.789 5.850

0.2 4.004 4.045 4.090 4.139 4.186 4.226 4.277 4.320 4.366 4.411

0.3 3.468 3.500 3.541 3.584 3.625 3.661 3.702 3.742 3.778 3.817

0.4 3.262 3.288 3.323 3.361 3.396 3.434 3.474 3.511 3.547 3.582

Continued on next page.
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Table D.1 (cont’d)

0.5 3.267 3.298 3.337 3.376 3.411 3.448 3.484 3.521 3.560 3.597

0.6 3.277 3.318 3.354 3.384 3.420 3.457 3.493 3.531 3.567 3.605

0.7 3.507 3.544 3.584 3.630 3.674 3.712 3.748 3.788 3.827 3.865

0.8 3.989 4.039 4.082 4.124 4.169 4.205 4.259 4.305 4.349 4.393

0.9 5.319 5.388 5.449 5.522 5.590 5.646 5.687 5.754 5.812 5.872
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Table D.2: 95% Asymptotic Critical Values for tDD (Bartlett Kernel) Without Trend.

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

λ = 0.1 1.980 2.313 2.618 2.873 3.104 3.302 3.476 3.642 3.803 3.952

0.2 1.775 1.915 2.052 2.190 2.314 2.448 2.571 2.686 2.794 2.902

0.3 1.720 1.801 1.883 1.975 2.057 2.145 2.236 2.324 2.407 2.498

0.4 1.710 1.773 1.833 1.900 1.971 2.036 2.111 2.188 2.268 2.345

0.5 1.712 1.766 1.831 1.902 1.965 2.032 2.102 2.172 2.253 2.324

0.6 1.704 1.767 1.839 1.904 1.969 2.044 2.120 2.193 2.265 2.346

0.7 1.719 1.810 1.893 1.993 2.070 2.160 2.254 2.345 2.436 2.525

0.8 1.788 1.922 2.066 2.195 2.325 2.456 2.569 2.686 2.797 2.907

0.9 1.983 2.325 2.621 2.890 3.126 3.341 3.522 3.678 3.830 3.986

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

λ = 0.1 4.093 4.216 4.330 4.460 4.574 4.681 4.791 4.891 5.018 5.124

0.2 3.005 3.102 3.194 3.289 3.379 3.471 3.564 3.644 3.733 3.814

0.3 2.579 2.663 2.750 2.843 2.931 3.009 3.086 3.156 3.246 3.321

0.4 2.423 2.501 2.581 2.662 2.745 2.816 2.893 2.971 3.047 3.125

0.5 2.399 2.470 2.551 2.632 2.710 2.781 2.863 2.936 3.010 3.086

0.6 2.431 2.501 2.574 2.656 2.732 2.808 2.887 2.970 3.053 3.125

0.7 2.617 2.703 2.790 2.874 2.967 3.044 3.124 3.208 3.276 3.350

0.8 3.011 3.114 3.219 3.301 3.391 3.482 3.572 3.656 3.739 3.813

0.9 4.125 4.254 4.376 4.503 4.622 4.737 4.857 4.962 5.076 5.183

b = 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

λ = 0.1 5.230 5.338 5.455 5.564 5.668 5.762 5.855 5.946 6.050 6.138

0.2 3.899 3.974 4.053 4.134 4.199 4.278 4.355 4.434 4.516 4.581

0.3 3.386 3.457 3.530 3.617 3.694 3.766 3.838 3.902 3.965 4.026

Continued on next page.
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Table D.2 (cont’d)

0.4 3.198 3.266 3.329 3.417 3.479 3.547 3.606 3.680 3.737 3.795

0.5 3.161 3.231 3.306 3.380 3.448 3.521 3.588 3.663 3.714 3.780

0.6 3.206 3.273 3.352 3.426 3.496 3.567 3.640 3.696 3.754 3.814

0.7 3.429 3.497 3.570 3.644 3.709 3.783 3.851 3.910 3.974 4.045

0.8 3.893 3.968 4.055 4.143 4.224 4.295 4.362 4.444 4.519 4.596

0.9 5.294 5.399 5.505 5.616 5.714 5.814 5.923 6.007 6.101 6.186

b = 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

λ = 0.1 6.219 6.327 6.419 6.507 6.593 6.669 6.757 6.849 6.944 7.032

0.2 4.647 4.723 4.787 4.878 4.950 5.017 5.095 5.150 5.214 5.267

0.3 4.084 4.144 4.207 4.264 4.322 4.368 4.417 4.477 4.533 4.577

0.4 3.859 3.917 3.980 4.034 4.094 4.134 4.184 4.226 4.279 4.337

0.5 3.835 3.893 3.945 3.989 4.045 4.096 4.138 4.186 4.235 4.290

0.6 3.870 3.926 3.987 4.052 4.090 4.143 4.190 4.235 4.282 4.332

0.7 4.121 4.187 4.239 4.289 4.353 4.415 4.462 4.511 4.566 4.622

0.8 4.681 4.755 4.814 4.895 4.970 5.041 5.115 5.179 5.244 5.310

0.9 6.281 6.370 6.467 6.551 6.639 6.743 6.840 6.925 7.012 7.106

b = 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

λ = 0.1 7.114 7.205 7.279 7.375 7.454 7.535 7.612 7.701 7.780 7.862

0.2 5.328 5.382 5.440 5.503 5.556 5.608 5.667 5.723 5.783 5.840

0.3 4.627 4.684 4.726 4.782 4.842 4.886 4.938 4.985 5.036 5.087

0.4 4.383 4.427 4.481 4.530 4.582 4.630 4.682 4.729 4.774 4.823

0.5 4.337 4.387 4.444 4.489 4.531 4.577 4.635 4.687 4.735 4.781

0.6 4.387 4.442 4.493 4.541 4.587 4.633 4.680 4.721 4.772 4.821

0.7 4.683 4.746 4.786 4.828 4.887 4.941 4.995 5.044 5.099 5.149

0.8 5.389 5.433 5.486 5.535 5.585 5.639 5.707 5.768 5.829 5.886
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Table D.2 (cont’d)

0.9 7.189 7.274 7.349 7.432 7.502 7.590 7.660 7.732 7.810 7.890
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Table D.3: 97.5% Asymptotic Critical Values for tDD (Bartlett Kernel) Without Trend.

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

λ = 0.1 2.440 2.861 3.245 3.560 3.835 4.075 4.289 4.490 4.674 4.852

0.2 2.132 2.328 2.508 2.684 2.850 2.987 3.137 3.281 3.421 3.555

0.3 2.054 2.165 2.289 2.409 2.532 2.642 2.764 2.873 2.973 3.088

0.4 2.037 2.128 2.220 2.320 2.407 2.499 2.601 2.708 2.799 2.901

0.5 2.056 2.130 2.214 2.286 2.375 2.469 2.566 2.669 2.766 2.865

0.6 2.040 2.120 2.206 2.296 2.401 2.490 2.577 2.675 2.792 2.902

0.7 2.064 2.186 2.300 2.427 2.530 2.641 2.765 2.878 2.982 3.098

0.8 2.140 2.325 2.506 2.687 2.868 3.016 3.163 3.311 3.451 3.594

0.9 2.413 2.862 3.235 3.547 3.835 4.086 4.320 4.530 4.720 4.900

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

λ = 0.1 5.032 5.195 5.348 5.500 5.651 5.791 5.947 6.083 6.221 6.370

0.2 3.695 3.813 3.935 4.045 4.164 4.274 4.403 4.515 4.619 4.714

0.3 3.199 3.312 3.424 3.536 3.648 3.751 3.855 3.961 4.064 4.153

0.4 3.003 3.095 3.198 3.306 3.397 3.501 3.608 3.713 3.800 3.893

0.5 2.958 3.060 3.163 3.268 3.360 3.456 3.560 3.658 3.744 3.829

0.6 2.994 3.087 3.190 3.293 3.397 3.499 3.590 3.692 3.783 3.883

0.7 3.210 3.317 3.426 3.530 3.641 3.749 3.849 3.946 4.047 4.146

0.8 3.726 3.867 3.985 4.103 4.205 4.341 4.459 4.587 4.685 4.778

0.9 5.090 5.276 5.432 5.584 5.735 5.884 6.035 6.204 6.334 6.454

b = 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

λ = 0.1 6.509 6.636 6.773 6.896 7.035 7.150 7.256 7.362 7.483 7.610

0.2 4.811 4.909 5.026 5.109 5.200 5.285 5.364 5.474 5.567 5.658

0.3 4.251 4.333 4.414 4.502 4.589 4.671 4.769 4.842 4.941 5.021
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Table D.3 (cont’d)

0.4 3.988 4.076 4.176 4.259 4.334 4.423 4.502 4.595 4.672 4.756

0.5 3.916 4.006 4.099 4.211 4.302 4.390 4.466 4.546 4.631 4.690

0.6 3.980 4.068 4.149 4.237 4.315 4.395 4.479 4.548 4.638 4.716

0.7 4.238 4.341 4.442 4.542 4.646 4.728 4.812 4.890 4.966 5.047

0.8 4.889 4.997 5.120 5.215 5.300 5.394 5.496 5.590 5.670 5.762

0.9 6.601 6.749 6.880 6.997 7.106 7.237 7.368 7.509 7.645 7.773

b = 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

λ = 0.1 7.725 7.852 7.981 8.079 8.213 8.338 8.429 8.539 8.648 8.741

0.2 5.749 5.833 5.923 5.992 6.080 6.167 6.246 6.324 6.412 6.480

0.3 5.098 5.191 5.264 5.343 5.420 5.481 5.546 5.595 5.675 5.732

0.4 4.822 4.885 4.942 5.007 5.081 5.147 5.216 5.280 5.348 5.410

0.5 4.770 4.846 4.913 4.972 5.029 5.084 5.159 5.213 5.277 5.350

0.6 4.772 4.854 4.926 5.000 5.069 5.119 5.181 5.226 5.294 5.353

0.7 5.115 5.205 5.277 5.356 5.424 5.475 5.551 5.624 5.684 5.751

0.8 5.859 5.944 6.011 6.111 6.194 6.293 6.368 6.441 6.526 6.608

0.9 7.882 8.009 8.122 8.249 8.368 8.485 8.576 8.692 8.771 8.896

b = 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

λ = 0.1 8.869 8.976 9.066 9.151 9.272 9.361 9.440 9.549 9.633 9.729

0.2 6.554 6.635 6.696 6.763 6.841 6.920 6.993 7.068 7.151 7.228

0.3 5.805 5.882 5.944 6.003 6.074 6.123 6.189 6.255 6.316 6.380

0.4 5.483 5.529 5.577 5.640 5.706 5.766 5.829 5.889 5.953 6.014

0.5 5.398 5.461 5.526 5.588 5.647 5.718 5.775 5.837 5.899 5.958

0.6 5.409 5.478 5.541 5.603 5.663 5.728 5.787 5.842 5.898 5.959

0.7 5.826 5.888 5.958 6.032 6.083 6.142 6.213 6.275 6.341 6.405

0.8 6.688 6.759 6.827 6.896 6.968 7.048 7.097 7.171 7.246 7.319
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Table D.3 (cont’d)

0.9 8.994 9.109 9.215 9.317 9.415 9.506 9.602 9.696 9.790 9.881
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Table D.4: 99% Asymptotic Critical Values for tDD (Bartlett Kernel) Without Trend.

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

λ = 0.1 2.952 3.546 3.998 4.375 4.716 5.015 5.287 5.556 5.809 6.073

0.2 2.586 2.838 3.092 3.305 3.522 3.725 3.906 4.103 4.259 4.424

0.3 2.479 2.649 2.799 2.959 3.117 3.297 3.443 3.604 3.754 3.884

0.4 2.451 2.563 2.690 2.808 2.950 3.066 3.213 3.357 3.492 3.629

0.5 2.446 2.537 2.646 2.747 2.871 3.003 3.144 3.266 3.391 3.505

0.6 2.438 2.546 2.674 2.794 2.924 3.059 3.212 3.324 3.462 3.597

0.7 2.474 2.630 2.793 2.959 3.107 3.243 3.389 3.530 3.689 3.844

0.8 2.588 2.860 3.090 3.312 3.527 3.741 3.936 4.136 4.286 4.472

0.9 2.962 3.569 4.053 4.436 4.782 5.101 5.387 5.629 5.884 6.113

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

λ = 0.1 6.308 6.506 6.702 6.923 7.099 7.313 7.505 7.681 7.832 7.992

0.2 4.592 4.731 4.907 5.061 5.224 5.382 5.512 5.600 5.740 5.894

0.3 4.031 4.167 4.295 4.444 4.594 4.733 4.842 4.973 5.080 5.202

0.4 3.744 3.876 4.013 4.120 4.244 4.383 4.546 4.675 4.791 4.915

0.5 3.627 3.756 3.895 4.038 4.168 4.304 4.412 4.541 4.666 4.770

0.6 3.719 3.829 3.962 4.071 4.195 4.339 4.465 4.590 4.709 4.831

0.7 3.989 4.141 4.260 4.409 4.536 4.680 4.800 4.927 5.029 5.149

0.8 4.613 4.781 4.938 5.065 5.228 5.377 5.528 5.683 5.823 5.965

0.9 6.344 6.550 6.713 6.927 7.155 7.305 7.481 7.671 7.857 8.026

b = 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

λ = 0.1 8.148 8.336 8.522 8.659 8.783 8.923 9.078 9.188 9.352 9.508

0.2 6.020 6.144 6.273 6.383 6.522 6.639 6.747 6.857 6.977 7.087

0.3 5.324 5.444 5.559 5.664 5.766 5.863 5.931 6.080 6.169 6.275
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Table D.4 (cont’d)

0.4 5.034 5.138 5.238 5.347 5.471 5.567 5.665 5.773 5.880 6.029

0.5 4.877 4.971 5.081 5.192 5.302 5.431 5.527 5.631 5.711 5.797

0.6 4.951 5.050 5.191 5.297 5.387 5.472 5.587 5.686 5.777 5.849

0.7 5.261 5.358 5.498 5.626 5.725 5.865 5.977 6.106 6.198 6.265

0.8 6.127 6.249 6.381 6.538 6.667 6.775 6.871 7.011 7.109 7.199

0.9 8.197 8.393 8.575 8.718 8.857 9.021 9.170 9.316 9.456 9.597

b = 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

λ = 0.1 9.700 9.871 9.996 10.115 10.288 10.405 10.606 10.750 10.861 11.013

0.2 7.204 7.293 7.406 7.515 7.598 7.717 7.818 7.932 8.024 8.128

0.3 6.391 6.467 6.546 6.659 6.780 6.870 6.975 7.039 7.100 7.172

0.4 6.081 6.146 6.222 6.348 6.416 6.499 6.558 6.646 6.723 6.806

0.5 5.873 6.002 6.102 6.182 6.283 6.368 6.428 6.488 6.551 6.621

0.6 5.940 6.019 6.105 6.194 6.280 6.359 6.460 6.538 6.623 6.685

0.7 6.357 6.463 6.548 6.637 6.768 6.848 6.933 7.018 7.089 7.171

0.8 7.308 7.413 7.516 7.628 7.739 7.872 7.985 8.124 8.191 8.264

0.9 9.750 9.872 10.025 10.184 10.305 10.430 10.620 10.755 10.895 11.003

b = 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

λ = 0.1 11.118 11.259 11.408 11.569 11.711 11.775 11.905 12.014 12.098 12.221

0.2 8.198 8.305 8.404 8.451 8.537 8.636 8.719 8.808 8.887 8.982

0.3 7.260 7.364 7.461 7.541 7.639 7.723 7.785 7.863 7.944 8.014

0.4 6.889 6.968 7.036 7.099 7.190 7.260 7.324 7.399 7.487 7.560

0.5 6.725 6.813 6.861 6.936 7.010 7.085 7.168 7.237 7.307 7.380

0.6 6.758 6.826 6.879 6.970 7.038 7.120 7.197 7.277 7.353 7.427

0.7 7.249 7.346 7.413 7.507 7.591 7.655 7.730 7.824 7.900 7.976

0.8 8.395 8.458 8.524 8.633 8.733 8.814 8.913 8.998 9.089 9.184
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Table D.4 (cont’d)

0.9 11.170 11.242 11.364 11.519 11.671 11.737 11.831 11.946 12.111 12.236
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Table D.5: 90% Asymptotic Critical Values for tDD (Bartlett Kernel) With A Simple Trend.

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

λ = 0.1 1.438 1.591 1.736 1.881 2.015 2.136 2.247 2.349 2.446 2.547

0.2 1.362 1.443 1.522 1.608 1.693 1.783 1.870 1.959 2.052 2.142

0.3 1.346 1.422 1.495 1.577 1.660 1.748 1.824 1.904 1.991 2.076

0.4 1.364 1.440 1.520 1.599 1.681 1.757 1.837 1.916 1.988 2.060

0.5 1.358 1.432 1.507 1.586 1.660 1.740 1.819 1.894 1.968 2.043

0.6 1.340 1.413 1.492 1.568 1.644 1.727 1.803 1.890 1.965 2.048

0.7 1.360 1.431 1.513 1.592 1.669 1.762 1.844 1.930 2.008 2.094

0.8 1.366 1.443 1.526 1.616 1.699 1.789 1.881 1.975 2.067 2.158

0.9 1.439 1.600 1.752 1.887 2.018 2.142 2.250 2.356 2.455 2.550

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

λ = 0.1 2.638 2.724 2.802 2.886 2.977 3.055 3.139 3.203 3.269 3.340

0.2 2.223 2.302 2.376 2.443 2.515 2.581 2.647 2.715 2.769 2.822

0.3 2.156 2.232 2.308 2.377 2.448 2.512 2.575 2.633 2.700 2.753

0.4 2.139 2.213 2.280 2.344 2.395 2.450 2.506 2.558 2.607 2.647

0.5 2.112 2.168 2.223 2.280 2.327 2.383 2.426 2.465 2.505 2.552

0.6 2.115 2.185 2.250 2.308 2.366 2.424 2.475 2.522 2.566 2.607

0.7 2.171 2.250 2.329 2.398 2.462 2.529 2.592 2.651 2.706 2.761

0.8 2.240 2.321 2.401 2.478 2.545 2.616 2.674 2.736 2.793 2.849

0.9 2.651 2.742 2.838 2.920 3.002 3.078 3.152 3.226 3.306 3.375

b = 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

λ = 0.1 3.407 3.469 3.533 3.600 3.660 3.716 3.778 3.832 3.887 3.943

0.2 2.879 2.935 2.990 3.034 3.085 3.137 3.180 3.228 3.272 3.316

0.3 2.799 2.852 2.897 2.943 2.988 3.030 3.082 3.117 3.170 3.221
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Table D.5 (cont’d)

0.4 2.686 2.731 2.779 2.826 2.873 2.912 2.964 3.009 3.055 3.096

0.5 2.596 2.632 2.664 2.704 2.739 2.786 2.832 2.879 2.922 2.973

0.6 2.652 2.697 2.746 2.795 2.844 2.886 2.935 2.977 3.019 3.061

0.7 2.810 2.855 2.904 2.950 2.996 3.040 3.083 3.132 3.182 3.226

0.8 2.900 2.948 3.003 3.054 3.103 3.151 3.197 3.249 3.293 3.338

0.9 3.439 3.506 3.575 3.639 3.698 3.761 3.819 3.871 3.921 3.982

b = 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

λ = 0.1 3.996 4.043 4.095 4.147 4.193 4.251 4.304 4.362 4.410 4.466

0.2 3.360 3.408 3.457 3.501 3.556 3.600 3.657 3.700 3.747 3.800

0.3 3.268 3.313 3.368 3.407 3.452 3.502 3.548 3.602 3.644 3.691

0.4 3.140 3.191 3.233 3.282 3.329 3.372 3.419 3.465 3.511 3.555

0.5 3.017 3.063 3.103 3.153 3.193 3.238 3.281 3.320 3.362 3.400

0.6 3.103 3.144 3.193 3.246 3.285 3.333 3.378 3.424 3.466 3.509

0.7 3.281 3.327 3.374 3.426 3.481 3.532 3.587 3.629 3.678 3.724

0.8 3.381 3.428 3.476 3.524 3.573 3.625 3.674 3.722 3.771 3.816

0.9 4.033 4.084 4.141 4.191 4.243 4.292 4.349 4.398 4.453 4.507

b = 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

λ = 0.1 4.524 4.576 4.629 4.685 4.732 4.779 4.842 4.894 4.942 4.992

0.2 3.847 3.894 3.934 3.980 4.025 4.068 4.112 4.158 4.201 4.242

0.3 3.738 3.785 3.834 3.879 3.928 3.972 4.020 4.063 4.104 4.145

0.4 3.596 3.638 3.677 3.719 3.761 3.801 3.841 3.882 3.924 3.965

0.5 3.442 3.483 3.522 3.562 3.599 3.635 3.674 3.717 3.755 3.792

0.6 3.550 3.593 3.636 3.677 3.717 3.757 3.795 3.832 3.874 3.913

0.7 3.771 3.810 3.854 3.905 3.949 3.993 4.036 4.079 4.120 4.163

0.8 3.856 3.908 3.953 3.992 4.043 4.083 4.129 4.176 4.216 4.262
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Table D.5 (cont’d)

0.9 4.565 4.612 4.663 4.720 4.781 4.824 4.879 4.928 4.976 5.028
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Table D.6: 95% Asymptotic Critical Values for tDD (Bartlett Kernel) With A Simple Trend.

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

λ = 0.1 1.877 2.095 2.306 2.497 2.679 2.840 2.986 3.143 3.279 3.408

0.2 1.755 1.864 1.976 2.102 2.225 2.349 2.467 2.601 2.734 2.859

0.3 1.739 1.843 1.953 2.066 2.181 2.294 2.414 2.526 2.646 2.757

0.4 1.755 1.873 1.980 2.101 2.213 2.325 2.435 2.549 2.661 2.749

0.5 1.745 1.856 1.961 2.081 2.199 2.305 2.409 2.524 2.619 2.713

0.6 1.735 1.844 1.965 2.073 2.190 2.306 2.416 2.533 2.636 2.734

0.7 1.749 1.857 1.971 2.092 2.203 2.323 2.433 2.556 2.675 2.792

0.8 1.748 1.866 1.989 2.115 2.247 2.371 2.497 2.629 2.760 2.873

0.9 1.874 2.091 2.301 2.489 2.665 2.832 2.982 3.142 3.278 3.414

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

λ = 0.1 3.539 3.671 3.788 3.909 4.013 4.127 4.227 4.321 4.427 4.505

0.2 2.985 3.088 3.196 3.287 3.379 3.466 3.563 3.644 3.724 3.798

0.3 2.861 2.970 3.067 3.166 3.261 3.353 3.436 3.521 3.603 3.685

0.4 2.857 2.945 3.030 3.117 3.195 3.271 3.345 3.413 3.476 3.550

0.5 2.799 2.879 2.957 3.030 3.115 3.173 3.238 3.310 3.371 3.432

0.6 2.832 2.925 3.022 3.108 3.184 3.256 3.328 3.398 3.465 3.540

0.7 2.898 3.003 3.112 3.211 3.298 3.383 3.458 3.542 3.622 3.696

0.8 2.979 3.089 3.186 3.276 3.363 3.444 3.529 3.609 3.690 3.763

0.9 3.555 3.687 3.799 3.921 4.022 4.124 4.228 4.324 4.417 4.511

b = 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

λ = 0.1 4.601 4.678 4.757 4.842 4.931 5.012 5.081 5.153 5.228 5.301

0.2 3.870 3.929 3.992 4.055 4.119 4.186 4.256 4.328 4.397 4.465

0.3 3.759 3.821 3.877 3.948 4.019 4.083 4.152 4.220 4.282 4.343
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Table D.6 (cont’d)

0.4 3.613 3.676 3.739 3.800 3.867 3.940 3.996 4.059 4.127 4.196

0.5 3.489 3.547 3.598 3.648 3.706 3.766 3.824 3.893 3.948 4.010

0.6 3.602 3.667 3.721 3.780 3.852 3.911 3.980 4.043 4.107 4.164

0.7 3.767 3.841 3.911 3.977 4.043 4.108 4.168 4.231 4.307 4.371

0.8 3.833 3.909 3.972 4.042 4.118 4.189 4.246 4.304 4.369 4.429

0.9 4.596 4.691 4.776 4.864 4.938 5.001 5.083 5.160 5.232 5.305

b = 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

λ = 0.1 5.374 5.447 5.525 5.601 5.668 5.738 5.800 5.874 5.952 6.027

0.2 4.534 4.591 4.662 4.722 4.782 4.851 4.914 4.984 5.044 5.114

0.3 4.401 4.470 4.541 4.604 4.679 4.742 4.815 4.886 4.945 5.011

0.4 4.257 4.324 4.377 4.441 4.501 4.560 4.615 4.675 4.733 4.788

0.5 4.072 4.136 4.193 4.249 4.304 4.361 4.410 4.465 4.523 4.577

0.6 4.233 4.301 4.356 4.413 4.471 4.533 4.592 4.648 4.707 4.764

0.7 4.439 4.511 4.582 4.654 4.715 4.785 4.859 4.927 4.985 5.045

0.8 4.505 4.571 4.641 4.701 4.767 4.819 4.890 4.949 5.020 5.087

0.9 5.392 5.468 5.543 5.617 5.686 5.753 5.820 5.892 5.978 6.049

b = 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

λ = 0.1 6.114 6.167 6.238 6.314 6.379 6.456 6.513 6.583 6.652 6.723

0.2 5.166 5.231 5.289 5.341 5.405 5.475 5.539 5.594 5.653 5.711

0.3 5.071 5.129 5.186 5.242 5.302 5.368 5.418 5.475 5.535 5.590

0.4 4.841 4.899 4.961 5.019 5.078 5.131 5.188 5.243 5.293 5.349

0.5 4.631 4.683 4.735 4.789 4.838 4.892 4.944 4.995 5.048 5.098

0.6 4.822 4.872 4.926 4.981 5.037 5.089 5.146 5.198 5.256 5.310

0.7 5.112 5.179 5.237 5.298 5.359 5.415 5.480 5.537 5.591 5.649

0.8 5.150 5.208 5.281 5.337 5.396 5.458 5.512 5.567 5.624 5.681
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Table D.6 (cont’d)

0.9 6.128 6.176 6.261 6.317 6.390 6.468 6.531 6.589 6.651 6.722
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Table D.7: 97.5% Asymptotic Critical Values for tDD (Bartlett Kernel) With A Simple Trend.

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

λ = 0.1 2.289 2.577 2.845 3.074 3.307 3.527 3.714 3.906 4.067 4.240

0.2 2.121 2.269 2.420 2.587 2.756 2.912 3.060 3.227 3.386 3.538

0.3 2.095 2.243 2.378 2.533 2.677 2.827 2.972 3.127 3.279 3.419

0.4 2.117 2.252 2.393 2.551 2.696 2.852 3.009 3.162 3.301 3.421

0.5 2.073 2.227 2.387 2.535 2.676 2.831 2.978 3.124 3.233 3.351

0.6 2.095 2.239 2.388 2.547 2.690 2.837 2.983 3.127 3.259 3.395

0.7 2.104 2.251 2.394 2.541 2.683 2.834 2.971 3.125 3.270 3.414

0.8 2.111 2.267 2.423 2.591 2.752 2.922 3.081 3.229 3.365 3.516

0.9 2.244 2.538 2.798 3.053 3.298 3.500 3.689 3.863 4.031 4.205

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

λ = 0.1 4.403 4.559 4.714 4.853 5.003 5.132 5.262 5.396 5.534 5.659

0.2 3.666 3.806 3.949 4.067 4.180 4.270 4.378 4.486 4.580 4.666

0.3 3.546 3.688 3.810 3.934 4.059 4.162 4.266 4.360 4.456 4.547

0.4 3.533 3.635 3.758 3.859 3.956 4.062 4.159 4.248 4.325 4.403

0.5 3.455 3.565 3.676 3.771 3.849 3.938 4.014 4.098 4.185 4.257

0.6 3.536 3.644 3.748 3.873 3.975 4.080 4.173 4.263 4.343 4.435

0.7 3.546 3.676 3.804 3.925 4.069 4.166 4.283 4.381 4.480 4.579

0.8 3.679 3.815 3.941 4.068 4.201 4.306 4.398 4.520 4.619 4.720

0.9 4.374 4.526 4.667 4.807 4.946 5.088 5.219 5.367 5.471 5.591

b = 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

λ = 0.1 5.778 5.872 5.976 6.092 6.187 6.271 6.374 6.467 6.576 6.666

0.2 4.754 4.852 4.942 5.044 5.133 5.219 5.281 5.361 5.454 5.536

0.3 4.648 4.747 4.838 4.911 4.979 5.071 5.158 5.244 5.331 5.401
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Table D.7 (cont’d)

0.4 4.491 4.584 4.658 4.753 4.844 4.920 5.003 5.082 5.173 5.250

0.5 4.339 4.403 4.474 4.542 4.608 4.688 4.770 4.854 4.929 5.004

0.6 4.506 4.592 4.659 4.750 4.828 4.901 4.978 5.058 5.156 5.241

0.7 4.676 4.762 4.859 4.952 5.032 5.106 5.185 5.251 5.328 5.413

0.8 4.810 4.909 5.002 5.094 5.186 5.277 5.338 5.422 5.502 5.578

0.9 5.695 5.813 5.910 6.011 6.113 6.213 6.297 6.382 6.475 6.570

b = 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

λ = 0.1 6.748 6.845 6.947 7.041 7.136 7.229 7.336 7.433 7.519 7.618

0.2 5.606 5.679 5.759 5.833 5.932 6.020 6.117 6.204 6.297 6.365

0.3 5.492 5.567 5.655 5.749 5.833 5.917 5.998 6.075 6.143 6.208

0.4 5.338 5.409 5.483 5.555 5.650 5.718 5.806 5.886 5.949 6.018

0.5 5.079 5.153 5.234 5.320 5.393 5.468 5.535 5.611 5.684 5.750

0.6 5.334 5.407 5.466 5.545 5.629 5.689 5.765 5.829 5.900 5.965

0.7 5.509 5.601 5.686 5.769 5.866 5.958 6.037 6.117 6.186 6.270

0.8 5.669 5.756 5.838 5.926 6.018 6.078 6.146 6.220 6.314 6.399

0.9 6.664 6.759 6.850 6.962 7.052 7.128 7.237 7.332 7.421 7.520

b = 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

λ = 0.1 7.698 7.786 7.894 7.967 8.062 8.165 8.261 8.327 8.414 8.500

0.2 6.438 6.527 6.602 6.661 6.719 6.788 6.861 6.933 7.005 7.068

0.3 6.288 6.361 6.434 6.508 6.578 6.653 6.720 6.795 6.872 6.941

0.4 6.088 6.154 6.234 6.309 6.376 6.448 6.502 6.577 6.642 6.708

0.5 5.824 5.890 5.946 6.015 6.072 6.141 6.204 6.263 6.327 6.395

0.6 6.039 6.112 6.182 6.255 6.317 6.388 6.453 6.522 6.588 6.657

0.7 6.332 6.417 6.488 6.553 6.634 6.701 6.774 6.848 6.919 6.989

0.8 6.485 6.570 6.618 6.702 6.784 6.854 6.926 6.997 7.060 7.134
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Table D.7 (cont’d)

0.9 7.586 7.675 7.783 7.888 7.971 8.052 8.116 8.211 8.296 8.382
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Table D.8: 99% Asymptotic Critical Values for tDD (Bartlett Kernel) With A Simple Trend.

b = 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

λ = 0.1 2.762 3.157 3.518 3.795 4.071 4.369 4.605 4.852 5.075 5.293

0.2 2.528 2.742 2.932 3.158 3.344 3.555 3.763 3.946 4.157 4.393

0.3 2.529 2.734 2.929 3.125 3.316 3.529 3.731 3.923 4.125 4.282

0.4 2.511 2.704 2.912 3.108 3.286 3.502 3.697 3.895 4.052 4.243

0.5 2.482 2.688 2.882 3.080 3.275 3.454 3.641 3.818 3.964 4.116

0.6 2.532 2.728 2.924 3.133 3.289 3.505 3.705 3.900 4.098 4.230

0.7 2.490 2.664 2.851 3.052 3.261 3.469 3.637 3.835 4.029 4.229

0.8 2.533 2.753 2.969 3.171 3.389 3.587 3.804 4.016 4.211 4.419

0.9 2.746 3.122 3.459 3.774 4.051 4.340 4.591 4.831 5.059 5.254

b = 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4

λ = 0.1 5.533 5.737 5.915 6.041 6.262 6.423 6.589 6.740 6.871 7.052

0.2 4.567 4.726 4.858 5.015 5.132 5.290 5.442 5.567 5.686 5.818

0.3 4.462 4.619 4.773 4.924 5.068 5.230 5.381 5.504 5.586 5.697

0.4 4.399 4.523 4.643 4.790 4.905 5.011 5.122 5.252 5.370 5.498

0.5 4.262 4.398 4.517 4.650 4.770 4.878 5.007 5.102 5.222 5.322

0.6 4.384 4.539 4.682 4.839 4.940 5.062 5.180 5.293 5.396 5.509

0.7 4.408 4.568 4.703 4.868 5.011 5.154 5.305 5.429 5.554 5.662

0.8 4.592 4.764 4.926 5.090 5.236 5.345 5.477 5.603 5.745 5.871

0.9 5.459 5.657 5.835 5.977 6.161 6.320 6.493 6.669 6.818 6.975

b = 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

λ = 0.1 7.181 7.339 7.503 7.654 7.775 7.914 8.041 8.159 8.290 8.429

0.2 5.908 6.025 6.129 6.239 6.371 6.459 6.584 6.709 6.814 6.928

0.3 5.839 5.944 6.060 6.185 6.288 6.386 6.525 6.655 6.774 6.868
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Table D.8 (cont’d)

0.4 5.573 5.669 5.788 5.875 5.982 6.086 6.214 6.333 6.440 6.532

0.5 5.427 5.522 5.634 5.733 5.817 5.937 6.026 6.147 6.264 6.362

0.6 5.616 5.737 5.844 5.992 6.098 6.207 6.290 6.399 6.499 6.619

0.7 5.777 5.899 6.020 6.138 6.254 6.360 6.454 6.566 6.668 6.796

0.8 6.016 6.111 6.208 6.311 6.442 6.556 6.690 6.818 6.911 7.036

0.9 7.096 7.230 7.370 7.509 7.647 7.748 7.872 7.989 8.112 8.230

b = 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

λ = 0.1 8.581 8.752 8.829 8.933 9.063 9.148 9.280 9.402 9.548 9.642

0.2 7.011 7.092 7.204 7.313 7.419 7.550 7.618 7.713 7.777 7.911

0.3 6.950 7.087 7.186 7.332 7.422 7.559 7.653 7.751 7.827 7.902

0.4 6.623 6.716 6.826 6.927 7.016 7.103 7.213 7.281 7.375 7.465

0.5 6.467 6.586 6.647 6.750 6.826 6.907 7.017 7.103 7.189 7.283

0.6 6.733 6.813 6.929 6.991 7.079 7.196 7.282 7.390 7.485 7.551

0.7 6.908 7.017 7.123 7.237 7.339 7.461 7.552 7.643 7.745 7.849

0.8 7.146 7.228 7.361 7.451 7.561 7.639 7.757 7.860 7.973 8.080

0.9 8.347 8.470 8.591 8.704 8.812 8.930 9.020 9.114 9.243 9.348

b = 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0

λ = 0.1 9.731 9.861 9.969 10.072 10.168 10.301 10.360 10.475 10.600 10.714

0.2 8.036 8.144 8.239 8.328 8.431 8.519 8.606 8.691 8.770 8.859

0.3 8.010 8.113 8.197 8.291 8.391 8.495 8.601 8.697 8.787 8.877

0.4 7.543 7.631 7.705 7.807 7.900 7.989 8.075 8.160 8.253 8.338

0.5 7.372 7.458 7.551 7.636 7.711 7.789 7.888 7.956 8.059 8.144

0.6 7.646 7.747 7.841 7.938 8.028 8.111 8.193 8.274 8.355 8.440

0.7 7.938 8.057 8.138 8.217 8.302 8.389 8.485 8.573 8.659 8.748

0.8 8.176 8.261 8.344 8.441 8.571 8.646 8.766 8.826 8.901 8.984
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Table D.8 (cont’d)

0.9 9.467 9.583 9.741 9.874 9.963 10.051 10.104 10.208 10.311 10.424
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Table D.9: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). No trend or additional

regressors. λ = .5, k = .5. AR(1) error. Two-Tailed Test of H0 : β3 = 0.

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

10,10 .0 .102 .127 .127 .127 .276 .397 .465 .111 .088 .070 .065 .067 .068

.3 .102 .221 .221 .221 .367 .470 .539 .202 .173 .153 .120 .114 .115

.6 .102 .347 .347 .347 .470 .565 .617 .328 .298 .260 .189 .184 .178

.9 .102 .503 .503 .503 .572 .659 .709 .485 .451 .423 .278 .275 .281

10,50 .0 .105 .060 .076 .098 .272 .401 .469 .049 .040 .044 .041 .044 .041

.3 .104 .167 .127 .133 .300 .422 .488 .147 .084 .067 .056 .054 .056

.6 .102 .344 .225 .207 .342 .460 .533 .326 .172 .127 .088 .090 .082

.9 .101 .654 .503 .446 .508 .604 .651 .640 .447 .347 .228 .218 .217

10,250 .0 .093 .049 .068 .096 .254 .371 .443 .039 .040 .044 .046 .044 .039

.3 .091 .070 .078 .104 .262 .381 .448 .054 .048 .048 .050 .047 .046

.6 .089 .123 .098 .116 .269 .386 .454 .104 .060 .066 .060 .054 .051

.9 .087 .378 .216 .194 .332 .442 .515 .354 .170 .131 .098 .092 .091

50,10 .0 .056 .113 .113 .113 .273 .381 .447 .096 .080 .068 .061 .060 .060

.3 .057 .213 .213 .213 .354 .472 .537 .195 .165 .142 .113 .107 .106

.6 .062 .363 .363 .363 .479 .571 .626 .342 .304 .267 .185 .186 .181

.9 .056 .508 .508 .508 .586 .658 .704 .489 .453 .420 .277 .281 .282

50,50 .0 .060 .068 .085 .112 .269 .395 .466 .053 .051 .054 .052 .054 .050

.3 .059 .176 .136 .146 .294 .416 .488 .156 .094 .076 .069 .066 .067

.6 .058 .353 .227 .211 .348 .466 .535 .330 .181 .137 .098 .092 .093

.9 .057 .640 .498 .443 .506 .593 .647 .626 .452 .356 .225 .216 .214
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Table D.9 (cont’d)

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

50,250 .0 .056 .054 .076 .096 .247 .363 .435 .044 .045 .044 .048 .047 .042

.3 .056 .079 .085 .103 .253 .366 .440 .062 .053 .050 .049 .049 .045

.6 .057 .125 .102 .117 .260 .372 .451 .108 .066 .058 .057 .058 .054

.9 .056 .370 .224 .200 .320 .435 .510 .345 .172 .125 .092 .091 .088

250,10 .0 .053 .112 .112 .112 .278 .394 .459 .102 .082 .064 .061 .060 .058

.3 .055 .216 .216 .216 .356 .464 .530 .198 .168 .144 .114 .111 .108

.6 .056 .352 .352 .352 .449 .543 .602 .330 .295 .266 .195 .194 .192

.9 .050 .508 .508 .508 .568 .656 .708 .486 .457 .417 .271 .266 .265

250,50 .0 .057 .065 .083 .101 .251 .375 .445 .050 .049 .050 .046 .047 .046

.3 .058 .164 .126 .135 .278 .390 .473 .147 .085 .072 .064 .064 .062

.6 .054 .337 .212 .195 .326 .442 .517 .316 .168 .127 .092 .090 .092

.9 .051 .654 .494 .438 .508 .599 .650 .638 .440 .345 .224 .212 .211

250,250 .0 .048 .053 .074 .093 .257 .379 .455 .042 .045 .049 .044 .046 .048

.3 .046 .071 .081 .097 .264 .386 .459 .060 .050 .051 .048 .049 .050

.6 .048 .119 .099 .110 .274 .388 .470 .103 .063 .064 .052 .054 .054

.9 .047 .381 .229 .204 .335 .448 .523 .362 .171 .126 .091 .093 .091
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Table D.10: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). No trend or additional

regressors. λ = .5, k = .5. MA(2) spatial correlation in cross-section. θ = 0.5. Two-Tailed Test of

H0 : β3 = 0.

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

9,10 .0 .339 .110 .110 .110 .280 .396 .473 .101 .082 .069 .072 .070 .068

.3 .339 .221 .221 .221 .368 .471 .537 .200 .175 .152 .123 .122 .123

.6 .346 .361 .361 .361 .456 .556 .613 .341 .310 .276 .202 .199 .197

.9 .334 .484 .484 .484 .556 .654 .702 .470 .430 .402 .271 .267 .263

9,50 .0 .340 .064 .076 .094 .255 .366 .441 .051 .047 .045 .050 .045 .042

.3 .337 .165 .118 .127 .274 .392 .461 .148 .080 .070 .066 .064 .063

.6 .337 .333 .215 .194 .327 .433 .503 .310 .170 .127 .093 .089 .091

.9 .342 .644 .484 .428 .500 .588 .644 .628 .430 .339 .220 .219 .210

9,250 .0 .368 .059 .072 .094 .262 .386 .460 .050 .048 .048 .052 .046 .048

.3 .368 .078 .081 .099 .270 .390 .467 .064 .052 .050 .053 .048 .050

.6 .369 .126 .099 .112 .280 .401 .472 .111 .063 .060 .056 .053 .054

.9 .366 .390 .232 .206 .343 .456 .527 .370 .178 .129 .092 .087 .088

49,10 .0 .577 .108 .108 .108 .274 .400 .482 .094 .072 .056 .055 .057 .053

.3 .568 .219 .219 .219 .370 .489 .553 .200 .165 .134 .104 .101 .099

.6 .566 .342 .342 .342 .472 .574 .635 .318 .288 .258 .186 .181 .180

.9 .562 .508 .508 .508 .574 .659 .704 .490 .458 .426 .278 .277 .276

49,50 .0 .565 .057 .073 .095 .260 .380 .455 .049 .045 .048 .050 .051 .050

.3 .557 .162 .114 .130 .292 .409 .478 .146 .079 .066 .065 .064 .064

.6 .553 .341 .218 .199 .342 .449 .519 .319 .171 .122 .094 .092 .092
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Table D.10 (cont’d)

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

.9 .566 .654 .501 .441 .516 .603 .656 .642 .445 .349 .219 .209 .204

49,250 .0 .578 .056 .072 .092 .268 .379 .452 .047 .045 .045 .050 .050 .050

.3 .572 .077 .081 .098 .273 .384 .458 .064 .049 .050 .054 .053 .050

.6 .572 .129 .100 .118 .280 .394 .465 .113 .064 .060 .060 .058 .057

.9 .580 .387 .226 .202 .333 .455 .524 .361 .178 .125 .096 .092 .093

256,10 .0 .612 .125 .125 .125 .272 .385 .460 .110 .090 .074 .070 .068 .069

.3 .619 .222 .222 .222 .350 .465 .528 .200 .171 .149 .114 .114 .113

.6 .621 .350 .350 .350 .454 .557 .622 .328 .296 .262 .190 .185 .182

.9 .636 .508 .508 .508 .569 .662 .712 .488 .451 .422 .268 .271 .266

256,50 .0 .639 .060 .072 .092 .269 .387 .469 .047 .044 .043 .040 .042 .042

.3 .635 .174 .123 .129 .302 .415 .489 .151 .081 .068 .058 .060 .052

.6 .631 .370 .232 .208 .348 .464 .532 .344 .178 .131 .096 .092 .092

.9 .635 .662 .498 .441 .503 .600 .656 .640 .446 .358 .228 .217 .219

256,250 .0 .623 .050 .074 .093 .252 .384 .460 .038 .039 .045 .051 .049 .050

.3 .625 .071 .082 .100 .259 .387 .464 .058 .048 .051 .053 .053 .055

.6 .626 .125 .097 .110 .270 .395 .468 .104 .062 .059 .059 .058 .058

.9 .624 .373 .216 .193 .333 .437 .510 .350 .165 .126 .099 .093 .094
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Table D.11: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). No trend or additional

regressors. Time dummies. λ = .5, k = .5. AR(1) error. Two-Tailed Test of H0 : β3 = 0.

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

10,10 .0 .102 .127 .127 .127 .276 .397 .465 .111 .088 .070 .065 .067 .068

.3 .102 .221 .221 .221 .367 .470 .539 .202 .173 .153 .120 .114 .115

.6 .102 .347 .347 .347 .470 .565 .617 .328 .298 .260 .189 .184 .178

.9 .102 .503 .503 .503 .572 .659 .709 .485 .451 .423 .278 .275 .281

10,50 .0 .105 .060 .076 .098 .272 .401 .469 .049 .040 .044 .041 .044 .041

.3 .104 .167 .127 .133 .300 .422 .488 .147 .084 .067 .056 .054 .056

.6 .102 .344 .225 .207 .342 .460 .533 .326 .172 .127 .088 .090 .082

.9 .101 .654 .503 .446 .508 .604 .651 .640 .447 .347 .228 .218 .217

10,250 .0 .093 .049 .068 .096 .254 .371 .443 .039 .040 .044 .046 .044 .039

.3 .091 .070 .078 .104 .262 .381 .448 .054 .048 .048 .050 .047 .046

.6 .089 .123 .098 .116 .269 .386 .454 .104 .060 .066 .060 .054 .051

.9 .087 .378 .216 .194 .332 .442 .515 .354 .170 .131 .098 .092 .091

50,10 .0 .056 .113 .113 .113 .273 .381 .447 .096 .080 .068 .061 .060 .060

.3 .057 .213 .213 .213 .354 .472 .537 .195 .165 .142 .113 .107 .106

.6 .062 .363 .363 .363 .479 .571 .626 .342 .304 .267 .185 .186 .181

.9 .056 .508 .508 .508 .586 .658 .704 .489 .453 .420 .277 .281 .282

50,50 .0 .060 .068 .085 .112 .269 .395 .466 .053 .051 .054 .052 .054 .050

.3 .059 .176 .136 .146 .294 .416 .488 .156 .094 .076 .069 .066 .067

.6 .058 .353 .227 .211 .348 .466 .535 .330 .181 .137 .098 .092 .093

.9 .057 .640 .498 .443 .506 .593 .647 .626 .452 .356 .225 .216 .214
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Table D.11 (cont’d)

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

50,250 .0 .056 .054 .076 .096 .247 .363 .435 .044 .045 .044 .048 .047 .042

.3 .056 .079 .085 .103 .253 .366 .440 .062 .053 .050 .049 .049 .045

.6 .057 .125 .102 .117 .260 .372 .451 .108 .066 .058 .057 .058 .054

.9 .056 .370 .224 .200 .320 .435 .510 .345 .172 .125 .092 .091 .088

250,10 .0 .053 .112 .112 .112 .278 .394 .459 .102 .082 .064 .061 .060 .058

.3 .055 .216 .216 .216 .356 .464 .530 .198 .168 .144 .114 .111 .108

.6 .056 .352 .352 .352 .449 .543 .602 .330 .295 .266 .195 .194 .192

.9 .050 .508 .508 .508 .568 .656 .708 .486 .457 .417 .271 .266 .265

250,50 .0 .057 .065 .083 .101 .251 .375 .445 .050 .049 .050 .046 .047 .046

.3 .058 .164 .126 .135 .278 .390 .473 .147 .085 .072 .064 .064 .062

.6 .054 .337 .212 .195 .326 .442 .517 .316 .168 .127 .092 .090 .092

.9 .051 .654 .494 .438 .508 .599 .650 .638 .440 .345 .224 .212 .211

250,250 .0 .048 .053 .074 .093 .257 .379 .455 .042 .045 .049 .044 .046 .048

.3 .046 .071 .081 .097 .264 .386 .459 .060 .050 .051 .048 .049 .050

.6 .048 .119 .099 .110 .274 .388 .470 .103 .063 .064 .052 .054 .054

.9 .047 .381 .229 .204 .335 .448 .523 .362 .171 .126 .091 .093 .091
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Table D.12: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). Trend. No additional

regressors. λ = .5, k = .5. AR(1) errors. Two-Tailed Test of H0 : β3 = 0.

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

10,10 .0 .092 .186 .186 .186 .331 .414 .479 .168 .122 .091 .081 .078 .079

.3 .098 .215 .215 .215 .354 .432 .494 .192 .140 .104 .085 .080 .080

.6 .089 .212 .212 .212 .351 .426 .489 .192 .143 .116 .087 .084 .085

.9 .090 .210 .210 .210 .328 .386 .447 .188 .144 .105 .070 .069 .070

10,50 .0 .100 .070 .102 .140 .312 .401 .477 .056 .057 .056 .049 .051 .053

.3 .100 .163 .140 .161 .333 .423 .486 .139 .086 .076 .067 .064 .062

.6 .102 .315 .211 .212 .365 .444 .512 .282 .134 .104 .080 .084 .083

.9 .110 .495 .336 .300 .401 .470 .538 .471 .243 .152 .098 .095 .094

10,250 .0 .102 .068 .096 .133 .307 .392 .460 .056 .048 .050 .050 .052 .052

.3 .102 .087 .106 .138 .308 .398 .462 .073 .056 .052 .050 .052 .052

.6 .107 .135 .124 .155 .322 .408 .476 .116 .066 .060 .055 .058 .057

.9 .095 .349 .220 .215 .361 .448 .522 .326 .135 .100 .083 .081 .082

50,10 .0 .053 .180 .180 .180 .328 .406 .472 .160 .119 .094 .074 .064 .065

.3 .054 .207 .207 .207 .341 .426 .487 .190 .147 .116 .089 .086 .087

.6 .057 .220 .220 .220 .340 .417 .476 .201 .155 .120 .088 .086 .086

.9 .060 .219 .219 .219 .338 .400 .453 .196 .149 .112 .077 .072 .072

50,50 .0 .063 .077 .108 .142 .303 .406 .475 .066 .057 .060 .059 .058 .059

.3 .063 .165 .146 .170 .328 .422 .488 .142 .085 .075 .067 .069 .071

.6 .066 .314 .226 .222 .364 .450 .515 .286 .137 .099 .080 .080 .081

.9 .058 .497 .333 .288 .399 .475 .539 .472 .238 .146 .098 .096 .097
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Table D.12 (cont’d)

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

50,250 .0 .058 .069 .106 .138 .316 .402 .476 .055 .055 .054 .048 .051 .048

.3 .058 .094 .119 .144 .322 .410 .475 .076 .060 .059 .053 .054 .052

.6 .054 .143 .131 .156 .330 .419 .484 .121 .072 .067 .058 .059 .058

.9 .056 .346 .223 .212 .356 .441 .511 .324 .138 .098 .078 .073 .075

250,10 .0 .054 .200 .200 .200 .356 .434 .488 .177 .131 .098 .085 .083 .082

.3 .057 .226 .226 .226 .363 .442 .512 .205 .158 .123 .095 .091 .091

.6 .055 .228 .228 .228 .360 .439 .502 .209 .159 .125 .090 .087 .086

.9 .050 .214 .214 .214 .335 .408 .470 .189 .144 .112 .078 .073 .070

250,50 .0 .052 .077 .112 .145 .318 .406 .473 .062 .060 .052 .055 .056 .053

.3 .055 .168 .152 .176 .340 .426 .490 .150 .088 .076 .062 .064 .063

.6 .051 .312 .212 .214 .365 .450 .526 .284 .137 .105 .081 .079 .080

.9 .044 .494 .329 .291 .390 .472 .538 .468 .228 .146 .097 .095 .095

250,250 .0 .048 .068 .105 .141 .312 .414 .486 .053 .055 .055 .057 .052 .052

.3 .051 .090 .117 .151 .314 .415 .499 .076 .059 .056 .056 .054 .054

.6 .051 .146 .136 .169 .320 .422 .499 .123 .068 .064 .060 .063 .062

.9 .050 .343 .212 .212 .362 .443 .514 .318 .135 .099 .081 .081 .084
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Table D.13: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). Trend. No additional

regressors. λ = .5, k = .5. MA(2) spatial correlation in cross-section. θ = 0.5. Two-Tailed Test of

H0 : β3 = 0.

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

9,10 .0 .350 .185 .185 .185 .341 .435 .504 .168 .122 .092 .078 .075 .075

.3 .368 .216 .216 .216 .366 .456 .524 .194 .146 .113 .088 .084 .084

.6 .364 .238 .238 .238 .377 .464 .526 .216 .155 .124 .087 .084 .084

.9 .345 .230 .230 .230 .343 .421 .484 .208 .152 .115 .077 .073 .074

9,50 .0 .366 .072 .104 .147 .322 .424 .495 .057 .055 .054 .051 .049 .051

.3 .360 .174 .152 .180 .343 .428 .498 .150 .088 .076 .062 .060 .058

.6 .354 .314 .228 .232 .362 .442 .514 .290 .143 .106 .085 .080 .077

.9 .349 .473 .325 .284 .386 .461 .528 .450 .219 .138 .082 .080 .081

9,250 .0 .354 .082 .114 .145 .314 .410 .491 .065 .059 .057 .060 .056 .059

.3 .354 .105 .124 .152 .320 .413 .489 .089 .070 .069 .062 .062 .063

.6 .350 .155 .144 .171 .328 .415 .487 .139 .087 .080 .068 .062 .062

.9 .361 .362 .240 .240 .373 .453 .518 .338 .160 .121 .089 .083 .083

49,10 .0 .567 .179 .179 .179 .345 .433 .504 .160 .118 .089 .076 .073 .071

.3 .558 .215 .215 .215 .366 .450 .516 .196 .147 .106 .086 .082 .082

.6 .560 .229 .229 .229 .370 .438 .513 .206 .153 .120 .088 .088 .086

.9 .588 .222 .222 .222 .351 .424 .488 .202 .147 .116 .080 .071 .071

49,50 .0 .573 .068 .101 .135 .307 .402 .480 .052 .044 .047 .060 .059 .058

.3 .568 .162 .140 .162 .330 .428 .487 .138 .076 .064 .067 .068 .070

.6 .548 .303 .212 .211 .360 .444 .516 .277 .125 .093 .082 .078 .076
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Table D.13 (cont’d)

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

.9 .558 .462 .304 .265 .376 .447 .520 .438 .218 .136 .086 .081 .083

49,250 .0 .589 .071 .112 .144 .325 .413 .486 .057 .057 .056 .058 .057 .055

.3 .585 .098 .123 .156 .329 .426 .489 .078 .064 .058 .062 .060 .059

.6 .582 .149 .142 .169 .334 .430 .501 .128 .080 .071 .066 .065 .064

.9 .572 .364 .233 .231 .367 .454 .533 .334 .153 .113 .089 .087 .087

256,10 .0 .613 .199 .199 .199 .337 .425 .491 .180 .138 .101 .084 .082 .082

.3 .629 .222 .222 .222 .356 .438 .497 .204 .157 .123 .092 .086 .088

.6 .632 .218 .218 .218 .353 .431 .495 .196 .142 .106 .076 .076 .076

.9 .631 .206 .206 .206 .316 .390 .462 .187 .141 .103 .063 .058 .060

256,50 .0 .630 .068 .102 .139 .314 .403 .478 .049 .048 .048 .053 .053 .054

.3 .626 .168 .145 .169 .337 .427 .497 .146 .076 .067 .063 .060 .063

.6 .633 .324 .216 .220 .372 .456 .528 .290 .140 .103 .080 .082 .083

.9 .613 .477 .314 .276 .391 .472 .530 .453 .227 .138 .082 .084 .085

256,250 .0 .629 .068 .100 .135 .325 .414 .491 .053 .048 .048 .051 .055 .054

.3 .623 .088 .106 .136 .327 .417 .493 .073 .057 .054 .056 .054 .052

.6 .630 .130 .122 .151 .332 .433 .503 .111 .066 .060 .060 .058 .058

.9 .619 .365 .224 .217 .374 .460 .525 .333 .135 .096 .077 .074 .077
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Table D.14: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). Trend. Time Dummies.

No additional regressors. λ = .5, k = .5. AR(1) errors. Two-Tailed Test of H0 : β3 = 0.

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

10,10 .0 .092 .186 .186 .186 .331 .414 .479 .168 .122 .091 .081 .078 .079

.3 .098 .215 .215 .215 .354 .432 .494 .192 .140 .104 .085 .080 .080

.6 .089 .212 .212 .212 .351 .426 .489 .192 .143 .116 .087 .084 .085

.9 .090 .210 .210 .210 .328 .386 .447 .188 .144 .105 .070 .069 .070

10,50 .0 .100 .070 .102 .140 .312 .401 .477 .056 .057 .056 .049 .051 .053

.3 .010 .163 .140 .161 .333 .423 .486 .139 .086 .076 .067 .064 .062

.6 .102 .315 .211 .212 .365 .444 .512 .282 .134 .104 .080 .084 .083

.9 .110 .495 .336 .300 .401 .470 .538 .471 .243 .152 .098 .095 .094

10,250 .0 .102 .068 .096 .133 .307 .392 .460 .056 .048 .050 .050 .052 .052

.3 .102 .087 .106 .138 .308 .398 .462 .073 .056 .052 .050 .052 .052

.6 .107 .135 .124 .155 .322 .408 .476 .116 .066 .060 .055 .058 .057

.9 .095 .349 .220 .215 .361 .448 .522 .326 .135 .100 .083 .081 .082

50,10 .0 .053 .180 .180 .180 .328 .406 .472 .160 .119 .094 .074 .064 .065

.3 .054 .207 .207 .207 .341 .426 .487 .190 .147 .116 .089 .086 .087

.6 .057 .220 .220 .220 .340 .417 .476 .201 .155 .120 .088 .086 .086

.9 .060 .219 .219 .219 .338 .400 .453 .196 .149 .112 .077 .072 .072

50,50 .0 .063 .077 .108 .142 .303 .406 .475 .066 .057 .060 .059 .058 .059

.3 .063 .165 .146 .170 .328 .422 .488 .142 .085 .075 .067 .069 .071

.6 .066 .314 .226 .222 .364 .450 .515 .286 .137 .099 .080 .080 .081

.9 .058 .497 .333 .288 .399 .475 .539 .472 .238 .146 .098 .096 .097
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Table D.14 (cont’d)

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

50,250 .0 .058 .069 .106 .138 .316 .402 .476 .055 .055 .054 .048 .051 .048

.3 .058 .094 .119 .144 .322 .410 .475 .076 .060 .059 .053 .054 .052

.6 .054 .143 .131 .156 .330 .419 .484 .121 .072 .067 .058 .059 .058

.9 .056 .346 .223 .212 .356 .441 .511 .324 .138 .098 .078 .073 .075

250,10 .0 .054 .200 .200 .200 .356 .434 .488 .177 .131 .098 .085 .083 .082

.3 .057 .226 .226 .226 .363 .442 .512 .205 .158 .123 .095 .091 .091

.6 .055 .228 .228 .228 .360 .439 .502 .209 .159 .125 .090 .087 .086

.9 .050 .214 .214 .214 .335 .408 .470 .189 .144 .112 .078 .073 .070

250,50 .0 .052 .077 .112 .145 .318 .406 .473 .062 .060 .052 .055 .056 .053

.3 .055 .168 .152 .176 .340 .426 .490 .150 .088 .076 .062 .064 .063

.6 .051 .312 .212 .214 .365 .450 .526 .284 .137 .105 .081 .079 .080

.9 .044 .494 .329 .291 .390 .472 .538 .468 .228 .146 .097 .095 .095

250,250 .0 .048 .068 .105 .141 .312 .414 .486 .053 .055 .055 .057 .052 .052

.3 .051 .090 .117 .151 .314 .415 .499 .076 .059 .056 .056 .054 .054

.6 .051 .146 .136 .169 .320 .422 .499 .123 .068 .064 .060 .063 .062

.9 .050 .343 .212 .212 .362 .443 .514 .318 .135 .099 .081 .081 .084
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Table D.15: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). Trend. Time Dummies.

No additional regressors. λ = .5, k = .5. MA(2) spatial correlation in cross-section. θ = 0.5.

Two-Tailed Test of H0 : β3 = 0.

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

9,10 .0 .350 .185 .185 .185 .341 .435 .504 .168 .122 .092 .078 .075 .075

.3 .368 .216 .216 .216 .366 .456 .524 .194 .146 .113 .088 .084 .084

.6 .364 .238 .238 .238 .377 .464 .526 .216 .155 .124 .087 .084 .084

.9 .345 .230 .230 .230 .343 .421 .484 .208 .152 .115 .077 .073 .074

9,50 .0 .366 .072 .104 .147 .322 .424 .495 .057 .055 .054 .051 .049 .051

.3 .360 .174 .152 .180 .343 .428 .498 .150 .088 .076 .062 .060 .058

.6 .354 .314 .228 .232 .362 .442 .514 .290 .143 .106 .085 .080 .077

.9 .349 .473 .325 .284 .386 .461 .528 .450 .219 .138 .082 .080 .081

9,250 .0 .354 .082 .114 .145 .314 .410 .491 .065 .059 .057 .060 .056 .059

.3 .354 .105 .124 .152 .320 .413 .489 .089 .070 .069 .062 .062 .063

.6 .350 .155 .144 .171 .328 .415 .487 .139 .087 .080 .068 .062 .062

.9 .361 .362 .240 .240 .373 .453 .518 .338 .160 .121 .089 .083 .083

49,10 .0 .567 .179 .179 .179 .345 .433 .504 .160 .118 .089 .076 .073 .071

.3 .558 .215 .215 .215 .366 .450 .516 .196 .147 .106 .086 .082 .082

.6 .560 .229 .229 .229 .370 .438 .513 .206 .153 .120 .088 .088 .086

.9 .588 .222 .222 .222 .351 .424 .488 .202 .147 .116 .080 .071 .071

49,50 .0 .573 .068 .101 .135 .307 .402 .480 .052 .044 .047 .060 .059 .058

.3 .568 .162 .140 .162 .330 .428 .487 .138 .076 .064 .067 .068 .070

.6 .548 .303 .212 .211 .360 .444 .516 .277 .125 .093 .082 .078 .076
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Table D.15 (cont’d)

N(0,1) CV Adjusted Fixed-b CV

tDK , values of b tDK , values of b

N,T ρ tclus .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

.9 .558 .462 .304 .265 .376 .447 .520 .438 .218 .136 .086 .081 .083

49,250 .0 .589 .071 .112 .144 .325 .413 .486 .057 .057 .056 .058 .057 .055

.3 .585 .098 .123 .156 .329 .426 .489 .078 .064 .058 .062 .060 .059

.6 .582 .149 .142 .169 .334 .430 .501 .128 .080 .071 .066 .065 .064

.9 .572 .364 .233 .231 .367 .454 .533 .334 .153 .113 .089 .087 .087

256,10 .0 .613 .199 .199 .199 .337 .425 .491 .180 .138 .101 .084 .082 .082

.3 .629 .222 .222 .222 .356 .438 .497 .204 .157 .123 .092 .086 .088

.6 .632 .218 .218 .218 .353 .431 .495 .196 .142 .106 .076 .076 .076

.9 .631 .206 .206 .206 .316 .390 .462 .187 .141 .103 .063 .058 .060

256,50 .0 .630 .068 .102 .139 .314 .403 .478 .049 .048 .048 .053 .053 .054

.3 .626 .168 .145 .169 .337 .427 .497 .146 .076 .067 .063 .060 .063

.6 .633 .324 .216 .220 .372 .456 .528 .290 .140 .103 .080 .082 .083

.9 .613 .477 .314 .276 .391 .472 .530 .453 .227 .138 .082 .084 .085

256,250 .0 .629 .068 .100 .135 .325 .414 .491 .053 .048 .048 .051 .055 .054

.3 .623 .088 .106 .136 .327 .417 .493 .073 .057 .054 .056 .054 .052

.6 .630 .130 .122 .151 .332 .433 .503 .111 .066 .060 .060 .058 .058

.9 .619 .365 .224 .217 .374 .460 .525 .333 .135 .096 .077 .074 .077
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Table D.16: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). One additional regres-

sor. No trend. λ = .5, k = .5. MA(2) spatial correlation in cross-section. θ = 0.5. Two-Tailed Test

of H0 : β3 = 0 and H0 : γ = 0.

Adjusted Fixed-b CV Usual Fixed-b CV

tDD, values of b tz, values of b

N,T ρ .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

9,10 .0 .103 .085 .070 .066 .060 .060 .186 .167 .150 .121 .117 .120

.3 .193 .164 .143 .110 .110 .105 .202 .184 .164 .130 .125 .130

.6 .320 .281 .254 .174 .164 .154 .240 .214 .190 .149 .140 .143

.9 .449 .419 .387 .244 .241 .236 .301 .281 .261 .192 .174 .174

9,50 .0 .048 .049 .052 .049 .044 .046 .062 .059 .059 .060 .060 .058

.3 .143 .086 .073 .064 .055 .059 .081 .070 .068 .064 .062 .063

.6 .312 .160 .119 .086 .078 .082 .189 .118 .110 .088 .084 .086

.9 .605 .416 .328 .205 .194 .188 .442 .295 .246 .178 .162 .166

9,250 .0 .047 .044 .048 .047 .044 .042 .056 .054 .054 .050 .050 .052

.3 .064 .049 .052 .049 .048 .046 .061 .056 .056 .052 .050 .050

.6 .109 .060 .058 .055 .052 .050 .087 .072 .072 .064 .064 .067

.9 .359 .172 .123 .089 .086 .086 .243 .145 .133 .101 .093 .096

49,10 .0 .097 .074 .059 .054 .057 .054 .141 .121 .108 .092 .085 .088

.3 .204 .174 .144 .111 .107 .103 .160 .142 .125 .112 .105 .108

.6 .320 .290 .262 .186 .174 .176 .226 .203 .184 .148 .144 .146

.9 .474 .442 .410 .274 .271 .272 .319 .296 .274 .203 .191 .191

49,50 .0 .054 .050 .046 .049 .048 .045 .056 .056 .055 .053 .051 .052

.3 .148 .085 .074 .063 .066 .064 .080 .069 .061 .056 .055 .058

.6 .328 .171 .128 .100 .092 .094 .178 .114 .098 .076 .079 .082
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Table D.16 (cont’d)

Adjusted Fixed-b CV Usual Fixed-b CV

tDD, values of b tz, values of b

N,T ρ .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

.9 .635 .441 .344 .228 .217 .213 .463 .290 .231 .164 .158 .160

49,250 .0 .045 .045 .044 .044 .046 .050 .048 .052 .051 .051 .053 .051

.3 .062 .050 .049 .050 .049 .050 .058 .058 .056 .051 .055 .054

.6 .114 .061 .059 .057 .056 .056 .075 .063 .061 .055 .060 .061

.9 .361 .176 .129 .093 .095 .092 .243 .129 .115 .099 .095 .099

256,10 .0 .121 .098 .079 .070 .069 .066 .111 .098 .082 .066 .070 .069

.3 .203 .178 .156 .117 .119 .116 .138 .117 .099 .082 .079 .078

.6 .334 .301 .273 .198 .192 .196 .222 .198 .174 .128 .115 .115

.9 .483 .448 .415 .272 .271 .266 .335 .314 .290 .210 .197 .194

256,50 .0 .050 .040 .040 .041 .044 .043 .055 .053 .052 .046 .047 .050

.3 .152 .085 .070 .057 .064 .057 .076 .062 .059 .057 .056 .056

.6 .347 .179 .129 .097 .095 .092 .187 .105 .090 .071 .076 .074

.9 .649 .458 .366 .227 .216 .213 .487 .298 .238 .172 .158 .158

256,250 .0 .040 .040 .044 .048 .044 .050 .053 .050 .047 .045 .045 .045

.3 .059 .046 .051 .052 .050 .050 .060 .057 .052 .043 .049 .050

.6 .105 .066 .056 .061 .056 .056 .084 .067 .060 .059 .060 .060

.9 .346 .165 .129 .100 .094 .092 .229 .114 .094 .085 .081 .086
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Table D.17: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). Trend and one additional

regressor. λ = .5, k = .5. MA(2) spatial correlation in cross-section. θ = 0.5. Two-Tailed Test of

H0 : β3 = 0 and H0 : γ = 0.

Adjusted Fixed-b CV Usual Fixed-b CV

tDD, values of b tz, values of b

N,T ρ .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

9,10 .0 .160 .112 .085 .082 .074 .078 .208 .190 .169 .120 .121 .120

.3 .189 .140 .105 .082 .081 .083 .225 .200 .180 .137 .136 .139

.6 .203 .148 .114 .081 .080 .080 .272 .248 .228 .188 .181 .192

.9 .194 .142 .108 .076 .073 .073 .347 .323 .299 .250 .244 .249

9,50 .0 .060 .057 .058 .054 .060 .057 .063 .064 .061 .062 .055 .058

.3 .152 .084 .074 .064 .064 .063 .082 .078 .072 .064 .066 .069

.6 .289 .146 .111 .083 .081 .080 .194 .129 .114 .089 .088 .090

.9 .444 .213 .140 .086 .089 .087 .442 .313 .274 .219 .216 .224

9,250 .0 .054 .049 .049 .048 .044 .046 .054 .053 .055 .051 .052 .055

.3 .073 .057 .058 .054 .050 .052 .060 .060 .058 .056 .056 .056

.6 .122 .073 .068 .061 .058 .056 .087 .075 .070 .062 .060 .064

.9 .313 .144 .104 .081 .077 .078 .241 .152 .140 .097 .095 .098

49,10 .0 .181 .134 .100 .087 .083 .081 .160 .150 .133 .103 .098 .103

.3 .201 .154 .112 .094 .089 .086 .186 .168 .152 .118 .117 .119

.6 .201 .151 .114 .087 .083 .082 .226 .204 .186 .156 .154 .154

.9 .190 .140 .111 .074 .068 .070 .302 .278 .254 .230 .215 .220

49,50 .0 .066 .057 .055 .058 .060 .058 .058 .056 .055 .051 .052 .052

.3 .152 .088 .072 .070 .070 .070 .078 .066 .064 .058 .061 .064

.6 .284 .136 .101 .086 .086 .084 .176 .114 .104 .079 .080 .087
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Table D.17 (cont’d)

Adjusted Fixed-b CV Usual Fixed-b CV

tDD, values of b tz, values of b

N,T ρ .02 .06 .1 .4 .7 1.0 .02 .06 .1 .4 .7 1.0

.9 .452 .216 .139 .089 .086 .088 .446 .302 .259 .191 .183 .187

49,250 .0 .056 .056 .052 .058 .058 .058 .047 .049 .050 .049 .050 .052

.3 .074 .060 .052 .060 .061 .059 .055 .054 .057 .056 .053 .054

.6 .118 .072 .064 .067 .067 .066 .080 .067 .066 .059 .059 .063

.9 .338 .161 .118 .095 .092 .092 .251 .141 .122 .094 .094 .098

256,10 .0 .186 .134 .104 .083 .084 .084 .127 .111 .096 .079 .078 .080

.3 .208 .164 .134 .098 .094 .094 .146 .126 .111 .097 .095 .097

.6 .217 .163 .128 .093 .090 .090 .206 .188 .169 .141 .136 .138

.9 .200 .155 .114 .077 .069 .069 .281 .259 .233 .197 .179 .187

256,50 .0 .051 .050 .048 .056 .054 .055 .060 .056 .054 .055 .051 .054

.3 .147 .077 .070 .063 .066 .066 .085 .068 .063 .057 .061 .062

.6 .294 .139 .103 .086 .086 .086 .187 .114 .105 .085 .080 .084

.9 .448 .231 .140 .088 .086 .084 .442 .285 .243 .189 .170 .174

256,250 .0 .051 .047 .049 .047 .051 .050 .054 .048 .046 .044 .044 .044

.3 .067 .056 .054 .053 .051 .050 .060 .055 .051 .047 .047 .048

.6 .113 .066 .063 .060 .057 .060 .082 .066 .066 .059 .058 .059

.9 .334 .139 .098 .077 .076 .076 .231 .122 .105 .082 .083 .086
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Table D.18: Null Rejection Probabilities, 5% level, tDD (Bartlett Kernel). No trend and additional regressors. λ = .5, k = .5. MA(2)

spatial correlation in cross-section. θ = 0.5. Two-Tailed Test of H0 : β3 = 0.

N(0,1) CV N(0,1) CV Adjusted Fixed-b CV

trdouble, values of b tDK , values of b tDK , values of b

N,T ρ tclus tdouble .02 .1 .4 .7 .02 .1 .4 .7 .02 .1 .4 .7

49,50 .0 .565 .063 .093 .223 .405 .466 .057 .095 .260 .380 .049 .048 .050 .051

.3 .557 .155 .108 .226 .454 .498 .162 .130 .292 .409 .146 .066 .065 .064

.6 .553 .288 .186 .227 .496 .538 .341 .199 .342 .449 .319 .122 .094 .092

.9 .566 .479 .381 .327 .632 .666 .654 .441 .516 .603 .642 .349 .219 .209

256,250 .0 .623 .045 .066 .192 .403 .468 .050 .093 .252 .384 .038 .045 .051 .049

.3 .625 .140 .066 .193 .414 .469 .071 .100 .259 .387 .058 .051 .053 .053

.6 .626 .289 .073 .194 .433 .481 .125 .110 .270 .395 .104 .059 .059 .058

.9 .624 .514 .201 .202 .494 .534 .373 .193 .333 .437 .350 .126 .099 .093
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Appendix E

FIGURES IN CHAPTER 3
0
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0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
lambda

alpha normal

fixed−b bootstrap

N=100, T=250, rho=.3, b=.02

Figure E.1: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, N = 100,

T = 250, ρ = 0.3, b= 0.02. For interpretation of the references to color in this and all other figures,

the reader is refered to the electronic version of this dissertation.
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Figure E.2: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, N =

100,T = 250, ρ = 0.3, b = 0.5.
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Figure E.3: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, N = 50,

λ = 0.5.
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Figure E.3: (cont’d)
0

.1
.2

.3
.4

.5
.6

.7

0 .1 .2 .3 .4 .5 .6 .7 .8

bandwidth

rho=.3

(b) N=50, T=50

145



Figure E.3: (cont’d)
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Figure E.3: (cont’d)
0

.1
.2

.3
.4

.5
.6

.7

0 .1 .2 .3 .4 .5 .6 .7 .8
bandwidth

significance level normal

fixed−b bootstrap

rho=0

(d) N=50, T=250

147



Figure E.3: (cont’d)
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Figure E.3: (cont’d)
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Figure E.4: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, N = 49, λ = 0.5.
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Figure E.4: (cont’d)
0

.1
.2

.3
.4

.5
.6

.7

0 .1 .2 .3 .4 .5 .6 .7 .8

bandwidth

rho=.3

(b) N=49, T=50

151



Figure E.4: (cont’d)
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Figure E.4: (cont’d)
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Figure E.4: (cont’d)
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Figure E.5: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, N = 250,

λ = 0.5.
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Figure E.5: (cont’d)
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Figure E.5: (cont’d)
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Figure E.5: (cont’d)
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Figure E.5: (cont’d)
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Figure E.5: (cont’d)
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Figure E.6: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, N = 256, λ = 0.5.
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Figure E.6: (cont’d)
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Figure E.6: (cont’d)
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Figure E.6: (cont’d)
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Figure E.6: (cont’d)
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Figure E.7: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, T = 50,

λ = 0.5.
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Figure E.7: (cont’d)
0

.1
.2

.3
.4

.5
.6

.7

0 .1 .2 .3 .4 .5 .6 .7 .8

bandwidth

rho=.3

(b) N=50, T=50

169



Figure E.7: (cont’d)
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Figure E.7: (cont’d)
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Figure E.8: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, T = 49, λ = 0.5.
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Figure E.8: (cont’d)
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Figure E.9: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, T = 250,

λ = 0.5.
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Figure E.9: (cont’d)
0

.1
.2

.3
.4

.5
.6

.7

0 .1 .2 .3 .4 .5 .6 .7 .8

bandwidth

rho=.3

(b) N=50, T=250

181



Figure E.9: (cont’d)
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Figure E.9: (cont’d)
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Figure E.10: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, T = 250, λ =

0.5.
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Figure E.10: (cont’d)
0

.1
.2

.3
.4

.5
.6

.7

0 .1 .2 .3 .4 .5 .6 .7 .8

bandwidth

rho=.3

(b) N=49, T=250

187
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Figure E.10: (cont’d)
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Figure E.11: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, N = 49, T =

250, λ = 0.5.
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Figure E.11: (cont’d)
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Figure E.11: (cont’d)
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Figure E.12: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, N = 256, T =

250, λ = 0.5.
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Figure E.12: (cont’d)
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Figure E.12: (cont’d)
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Figure E.13: Empirical null rejection probabilities, additional regressor, spatial MA(2), Bartlett

kernel, N = 49, T = 50, λ = 0.5.
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Figure E.13: (cont’d)
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Figure E.14: Empirical null rejection probabilities, additional regressor, spatial MA(2), Bartlett

kernel, N = 49, T = 250, λ = 0.5.
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Figure E.14: (cont’d)
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Figure E.15: Empirical null rejection probabilities, additional regressor, spatial MA(2), Bartlett

kernel, N = 256, T = 50, λ = 0.5.
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Figure E.15: (cont’d)
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Figure E.16: Empirical null rejection probabilities, additional regressor, spatial MA(2), Bartlett

kernel, N = 256, T = 250, λ = 0.5.
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Figure E.16: (cont’d)
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Figure E.16: (cont’d)
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Figure E.16: (cont’d)
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Figure E.17: Empirical null rejection probabilities for DD parameter, additional regressor, spatial

MA(2), Bartlett kernel, N = 49, T = 250, λ = 0.5.
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Figure E.17: (cont’d)
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Figure E.17: (cont’d)
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Figure E.17: (cont’d)
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Figure E.17: (cont’d)
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Figure E.17: (cont’d)
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Figure E.18: Empirical null rejection probabilities for DD parameter, additional regressor, spatial

MA(2), Bartlett kernel, N = 256, T = 250, λ = 0.5.
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Figure E.18: (cont’d)
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Figure E.18: (cont’d)
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Figure E.18: (cont’d)
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Figure E.18: (cont’d)
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Figure E.19: Empirical null rejection probabilities for z parameter, additional regressor, spatial

MA(2), Bartlett kernel, N = 49, T = 250, λ = 0.5.
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Figure E.19: (cont’d)
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Figure E.19: (cont’d)
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Figure E.19: (cont’d)
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Figure E.19: (cont’d)
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Figure E.20: Empirical null rejection probabilities for z parameter, additional regressor, spatial

MA(2), Bartlett kernel, N = 256, T = 250, λ = 0.5.
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Figure E.20: (cont’d)
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Figure E.20: (cont’d)
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