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ABSTRACT

THREE ESSAYS ON ROBUST INFERENCE FOR LINEAR PANEL MODELS WITH MANY
TIME PERIODS

By

Yu Sun

This dissertation consists of three chapters. The first chapter is a critique on the two-way cluster-
robust standard errors. In the presence of both cross-sectional correlation and serial correlation,
traditional one-way cluster-robust standard errors are not valid. A new robust variance estima-
tor called two-way cluster-robust standard errors is proposed by Thompson (2011) and Cameron
et al. (2011) to conduct accurate inference when double clustering exists. However, this approach
does not allow for correlation across different firms in different time periods. If such correlation
exists, then the two-way cluster-robust standard errors will fail to work. Monte Carlo simulation
results demonstrate that using two-way cluster-robust standard errors may lead to unreliable in-
ference even when there is a simple AR(1) time effect. One solution to address this problem is
proposed by Thompson (2011). He has improved the original formula for the two-way cluster-
robust standard errors to account for correlation across different firms in different time periods.
An alternative solution is the standard errors proposed by Driscoll and Kraay (1998) that are ro-
bust to cross-sectional correlation of general and unknown form as well as heteroskedasticity and
serial correlation under covariance stationarity and weak dependence. The Driscoll and Kraay,
1998 (DK) standard errors perform well when firm dummies are included. Interestingly, without
removing the firm effect, the DK standard errors do not behave well. Simulations results illustrate
these interesting findings.

The second chapter provides an analysis of the standard errors proposed by Driscoll and Kraay
(1998) in linear Difference-in-Differences (DD) models with fixed effects and individual-specific
time trends. The analysis is accomplished within the fixed-b asymptotic framework developed by

Kiefer and Vogelsang (2005) for heteroskedasticity and autocorrelation (HAC) robust covariance



matrix estimator based tests. For the fixed-N, large-T case, it is shown that fixed-b asymptotic
distributions of test statistics constructed using the DD estimator and the DK standard errors are
different from the results found by Kiefer and Vogelsang (2005) and Vogelsang (2012). The newly
derived fixed-b asymptotic distributions depend on the date of policy change, A, individual-specific
trend functions as well as the choice of kernel and bandwidth. Whether time period dummies
are included does not affect the fixed-b limits. For other regressors that don’t have a structural
change, the usual fixed-b asymptotic distributions still apply. Monte Carlo simulations illustrate
the performance of the fixed-b approximations in practice.

The third chapter studies finite sample properties of the naive moving blocks bootstrap (MBB)
tests based on the DK standard errors in linear DD models with individual fixed effects. The naive
bootstrap procedure is a bootstrap where the formula used to compute the standard errors on the
resampled data is the same as the formula used on the original data. Following the approach in
Gongalves (2011), the so-called “panel MBB” method is used in this chapter. This method applies
the standard MBB to the time series of vectors containing all the individual observations at each
time period. Monte Carlo simulation results show that the bootstrap is much more accurate than the
standard normal approximation, and it closely follows the new fixed-b approximation proposed in
the second chapter. This improvement holds for the special case of Bartlett kernel. Results would
look similar for other kernels. It even holds when the independent and identically distributed (i.i.d.)
bootstrap is used, despite potential serial correlation in the data. Simulation results also show that
if the block length is appropriately chosen, the bootstrap can outperform the fixed-b approximation

when there is strong serial correlation.
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CHAPTER 1

ROBUST INFERENCE FOR LINEAR PANEL MODELS

1.1 Introduction

Many empirical papers in the accounting and finance literatures use panel data sets with obser-
vations on multiple firms over multiple time periods. In such panel data settings, the common
assumption of independence in regression errors is likely to be violated. For example, temporary
market-wide common shocks will cause correlation across firms in the same time period, and per-
sistent firm characteristics will cause correlation over time. Moreover, persistent common shocks,
such as business cycles, will cause correlation across different firms in different time periods. Po-
tential clusterings are big challenges, since if we fail to take into account them, we will underesti-
mate the standard error and hence over-reject the null hypothesis when conducting hypothesis tests.
Therefore, how to conduct a robust inference plays a key role in empirical researches. Throughout
this chapter, we call one dimension firm and the other time.

Various approaches are available to obtain “robust” standard errors. White (1980) proposed an
approach to account for heteroskedasticity in cross-section data. Later White (1984) presented a
formula for a multivariate dependent variable. Arellano (1987) proposed the well-known one-way
cluster-robust standard errors in linear panel models. Wooldridge (2003) provided an overview
of applications of cluster methods. Hansen (2007) investigated asymptotic properties of a robust
variance matrix estimator for panel data when T is large. Fama and MacBeth (1973) proposed a
method that computes standard errors robust to correlation across firms in the same time period.
White standard errors and one-way cluster-robust standard errors are common in econometrics
textbooks (e.g., Wooldridge, 2002).

Most papers in the literature only deal with clustering in one dimension and ignore clustering

in the other dimension. Methods that control for clustering in one dimension usually assume



independence in the other dimension. However, when both cross-sectional and serial correlation
exist, the one-way cluster-robust method mis-specifies the error structure and underestimate the
true standard error. This will lead to over-rejections in hypothesis testing. One solution is the
two-way cluster-robust standard errors proposed by Thompson (2011) and Cameron et al. (2011).
This variance estimator is designed to produce robust inference when there is two-way non-nested
clustering. Specifically, in finance applications, clustering at the firm level and at the time (e.g.
day) level is of interest. This method allows for serial correlation for a given firm and correlation
across different firms in the same time period (cross-sectional correlation). However, this approach
assumes that there is no correlation across different firms in different time periods. This method
generalizes the standard cluster-robust variance estimator for one-way clustering to that for two-
way clustering, and relies on similar relatively weak distributional assumptions. It can also be
generalized to clustering with more than two dimensions (see Cameron et al., 2011).

Petersen (2009) has compared these robust standard errors and suggested using the two-way
cluster-robust standard errors as a robustness check. Gow et al. (2010) find that two-way cluster-
robust standard errors are required for valid inference in many accounting applications. However,
the two-way clustering method only works for a specific and restricted error structure. In practice,
the assumption that there is no correlation across different firms in different time periods is likely
to be violated. Suppose now there is a common shock to all the firms in the same industrys; it is
much more realistic that this shock would affect those firms to some extent in the future rather
than completely disappear at the end of the current time period. Hence different firms in different
time periods may have some correlation between each other due to the lagged effect. This could
happen in a business cycle. If so, then the two-way cluster-robust standard errors will probably
fail. There are two solutions available to correct this problem. Thompson (2011) has improved the
original formula for the two-way cluster-robust standard errors to account for correlation across
different firms in different time periods. We will call it the revised two-way cluster-robust standard
errors. Another alternative solution is to use the Driscoll and Kraay, 1998 (DK) standard errors

which account for heteroskedasticity, autocorrelation and cross-sectional correlation of general and



unknown form. A recent paper by Vogelsang (2012) has shown that fixed-b asymptotic approxi-
mations (see Kiefer and Vogelsang, 2005) for the DK standard errors perform substantially better
than standard normal asymptotic approximations for either the DK standard errors or the one-way
cluster-robust standard errors in the context of linear panel models with individual fixed effects and
cross-sectional correlation.

The objective of this chapter is to show that in the presence of both firm effect and time effect,
if there is correlation across different firms in different time periods, the two-way cluster-robust
method fails. Furthermore, two possible solutions to correct this problem are analyzed using sim-
ulations. First, several tables from Petersen (2009) are replicated and similar results are found in
simulations. In these tables, the sensitivity of standard error estimates to the presence of either
firm effects or time effects is examined. Next, we study the performance of the two-way cluster-
robust standard errors in the presence of both firm effects and time effects by comparing them
to the White standard errors and the one-way cluster-robust standard errors. In this scenario, the
two-way cluster-robust standard errors perform better than the one-way clustering method. Then,
we assume that the time effect follows an AR(1) process and analyze the performance of the two-
way clustering method. When the absolute value of the autocorrelation parameter, p, is close to
1, the two-way clustering method generally fails and leads to over-rejections. Finally, we examine
the performance of the revised two-way clustering method and the DK standard errors. The DK
standard errors perform well when firm dummies are included. Without removing the firm effect,
the DK standard errors do not behave well. Besides, firm dummies should be included if we care
about the endogeneity problem.

The rest of this chapter is organized as follows. Section 1.2 describes the model and reviews
several estimating methods for standard errors in panel data sets, including White, one-way cluster-
robust, FM, original two-way cluster-robust, revised two-way cluster-robust and DK standard er-
rors. Test statistics and their asymptotic distributions are also included in this section. Section 1.3
reports Monte Carlo simulation results. Section 1.3 also has theory for DK tests that explains some

strange patterns in simulations. Section 1.4 concludes. Appendix A contains proofs of a theorem



that explains the strange pattern of the DK standard errors when firm effects are not removed in

the large-N, large-T case. Appendix B contains all simulation result tables.

1.2 The Model and Standard Errors

We follow the definitions for firm effects, time effects and persistent common shocks in Thompson
(2011). Firm effect means that the errors have arbitrary serial correlation for a given firm. Time
effect means that the errors have arbitrary correlation across different firms in the same time period.
Persistent common shock means that the errors have arbitrary correlation across different firms in

different time periods. Consider a linear regression model given by

Vit = XitB + €z (1.1)

i=1,2,....N, t=1.2,....T,

where y;;, x;; and €;; are scalars. The error €;; and the regressor x;; are assumed to have the same

structure given by

&jr = Y+ O + Mg, (1.2)

Xjp = i + 60 + &y, (1.3)
with

& =p&_q1+er, (1.4)

60 =pO,_1 +u, (1.5)

where & and 6; have the same autocorrelation parameter p. ¥; and y; are firm effects. & and 6
are time effects. 1;; and &;; are idiosyncratic errors. All error components have zero mean, finite
variance, and are independent of each other. It is assumed that ¥;, u;, e, ur, n;; and ‘git all follow a
normal distribution. & and 6; are serially correlated, and they follow an AR(1) process. They are

normal when p = 0.



The parameter of interest is 3, and the estimation method is the ordinary least squares (OLS)

estimator
N T ) -1 N T
B = ( Y Y x;‘;) Yo ) xiir
i=1t=1 i=1t=1
N T ) -1 N T
=B+ ( Y Y xit> Y Y xier (1.6)
i=1t=1 i=1t=1

Let v;; = x;;€;; and define ¥;; = x;;€;; where &;, are the OLS residuals given by &; = y;; — x;; B.
T
Let Q Zl z Zl X2 oA and Q = Z; E(vjv js)- We need to estimate the covariance matrix to obtain
= 7]a »
robust tests. We will focus on the following approaches in this chapter: White standard errors,
one-way cluster-robust standard errors, FM standard errors, original and revised two-way cluster-

robust standard errors, and DK standard errors. Note that the FM approach also uses a different

estimator of 3. Details are discussed in subsection 1.2.2.

1.2.1 White and One-Way Cluster-Robust Standard Errors

In order to write down a general notation that nests each one-way approach, we use the group
notation in this subsection. With observations grouped into G clusters of Ng observations, for

g€ {l,...,G}, we can rewrite model (1.1) as
/
Yg = XgB + &g,
where yg, Xg and &g are Ng x 1 vectors. The one-way cluster-robust variance estimator is
NIFPRE: '"YA—1
() vg¥)0 ", (1.7)
g=1

where Vg is a Ng x 1 vector containing all ¥ in cluster g. If each cluster only contains one single

observation, then this estimator gives White (1980) standard errors

Vi hite = 21 tZ : (1.8)
s W



If we cluster by firm, then G = N and Ng =T'. If we cluster by time, then G =T and Ng = N. This
estimator is consistent if
-1 G o o P /
G~ Y ¥gVg — E(vgvg) as G — oo, (1.9)
g=1

When either firm effects or time effects exist, White standard errors are not valid. If there are firm
effects only, we can cluster by firm. If there are time effects only, we can cluster by time. One-way
cluster-robust standard errors allow for correlation of any unknown form within clusters, but the
errors are assumed to be uncorrelated across clusters. When both firm effects and time effects are
present, the consistency condition (1.9) is violated and thus the one-way clustering method fails to

work.

1.2.2 FM Standard Errors

The Fama and MacBeth (1973) approach is originally used in asset pricing models such as the well-
known capital asset pricing model (CAPM). Since stocks have weak serial correlation in daily and
weekly holding periods, this approach is designed to correct cross-sectional correlation. In the
original version of this approach, researchers run T cross-sectional regressions (one for each time

period). For each coefficient 3 > the FM estimator is the average of the T estimates

T
gEM _ 1y g
[3]. = Zﬁt,]’ (1.10)
=1
and the FM variance estimator is given by

N N 2
)4 £ G2
=

The variance formula assumes no correlation over time. Therefore, when there are only time
effects, this approach produces a consistent variance estimator as 7' — co. However, in the presence

of firm effects, the assumption does not hold, and hence the FM standard errors tend to be too small.



1.2.3 Original and Revised Two-Way Cluster-Robust Standard Errors

Thompson (2011) and Cameron et al. (2011) have extended one-way cluster-robust standard errors
to two-way cluster-robust standard errors that are robust to double clustering by firm and time. The
original version just generalizes the one-way clustering method, and assumes no correlation across
different firms in different time periods. Thompson (2011) noticed this limitation and proposed a
revised version which takes into account correlation across different firms in different time periods.

The revised formula is

L L
o 0 0 5 5 o1 5 o/
Viaouble = Vfirm + Vtime,O - VWhite,O + lZ (Vtime,l + Vtime,l) - ZZI (VWhite,l + VWhite,l)’

(1.12)
with
N
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§; = Y Vj; is the sum of all observations for firm i. § = ), V;; is the sum of all observations
=1 i=1

for time . This estimator is consistent as min (N,7T) — oo (see Thompson, 2011). Vfirm is the
usual formula for standard errors clustered by firm, Vtime 0 is the usual formula for standard er-
)
rors clustered by time, and VW hite,0 is the usual White standard errors. Vfirm accounts for serial
correlation for each firm, while Vtime o accounts for correlation across different firms in the same
7

time period. The terms Vt ; with [ > 1 account for the correlation across different firms in dif-
)

ime
ferent time periods. The terms VW hite.l with [ > 0 are subtracted off because of double counting.

The original two-way formula only contains the first three terms in (1.12)

Vdouble = Vfirm + Vtime,O - VWhite,O' (1.13)
Suppose there are 3 firms and 3 time periods. Table 1.1 illustrates the sample covariance matrix

of the residuals under the assumptions for the original formula. The original version allows for



correlation of any unknown form within clusters, clustering either by firm or by time, but it assumes
no correlation across different firms in different time periods. The revised version corrects for
L
. . . ~ ~ ~/
potential persistent common shocks in the data. In fact, the V; ime,0 121 (Vtime, 1t Vtim e, l) part

is exactly the DK standard errors using the truncated kernel with a truncation lag L. We will talk

about the DK standard errors in details in the next subsection.

Table 1.1: Residual cross product matrix: When standard errors are clustered by both firm and
time, correlation of residuals of the same firm in different years and residuals of the same year in
different firms may be nonzero. However, correlation of residuals in different firms and different

years are assumed to be zero.

Firm 1 Firm 2 Firm 3
_ & eEn eE3 E181 0 0 €& 0 0
E enell € EnpE;3 0 epeyn O 0 €8 O
£13€11 E13812 € 0 0 e383 0 0 €383
~ 821811 0 0 &) ©180 ©103 £181 0 0
E 0 epep 0 epey & epe3 0 epen O
0 0 383 €381 £380n €5 0 0 £33
- 8111 0 0 &8 0 0 e, €132 31633
E 0 €36 0 0 exen 0 epey €3 333
0 0 e33613 0 0 e33823 €33631 €336 £33

1.2.4 DK Standard Errors

Driscoll and Kraay (1998) first proposed the heteroskedasticity, autocorrelation and cross-section
correlation (HACC) robust variance estimator using the time series of cross-sectional sums of ob-
servations. The idea is to first aggregate all the individual observations at each time period and
then apply the HAC estimator to the time series of the sums. The first step takes into account

potential cross-sectional correlation in the data, and the second step takes into account potential



serial correlation in the data. Therefore, the DK standard errors are robust to cross-sectional corre-
lation of unknown form as well as heteroskedasticity and serial correlation, assuming covariance

stationarity and weak dependence in the time dimension.

. T .
Define \3;:25.\7_ 1\7it,and let Fj:T_l ) ﬁtﬁg_ j The DK standard errors are given by
o t=j+1
Ipi =10~ 1601
DK =T0Q Q0 ~, (1.14)
with
=t 2/
Q:F0+j;1k(]‘—/1)(l“]+l“j).

where k(x) is a kernel function such that k(x) = k(—x), k(0) =1,

k(x)| <1, k(x) is continuous at

x=0,and [*_ k2 (x) < eo. M is the bandwidth parameter, or the truncation lag.

1.2.5 Test Statistics and Asymptotic Distributions

Consider testing the null hypotheses about 8 of the form Hyy : § = fBy. Define the t-statistic as

B - By
5

If we only assume heteroskedasticity, White standard errors are consistent as N — oo. If we allow

=

for heteroskedasticity and general forms of serial correlation, firm clustered standard errors are
consistent as N — oo. If we assume independence over time and allow for cross-sectional correla-
tion, FM and time clustered standard errors are consistent as 7' — oo. Two-way clustered standard
errors are consistent if there are serial correlation for a given firm and cross-sectional correlation at
a given time period but no correlation across different firms in different time periods. Consistency
of two-way cluster standard errors requires N, T — oo. So t-statistics based on these standard errors
have a limiting standard normal distribution.

For the DK standard errors, the traditional asymptotic approach relies on Q being a consistent
estimator of Q. Consistency of Q requires that M — o as T — oo, but at a slower rate of con-

M

vergence 7+ — 0. Under the traditional approach, the ¢-statistic has a limiting standard normal

distribution. An alternative asymptotic theory has been proposed by Kiefer and Vogelsang (2005).



They model the bandwidth as a fixed proportion of the sample size. That is, M = bT with b a fixed
constant in (0,1]. Because b is held fixed in this approach, this alternative approach is usually
labeled fixed-b asymptotics while the traditional approach is labeled small-b asymptotics. Under
the fixed-b approach, Q converges to a random variable that depends on the kernel function and
bandwidth, rather than a constant. As a result, the 7-statistic has a nonstandard limiting distribu-
tion. This limiting distribution reflects the choice of kernel and bandwidth, but is otherwise pivotal.
Fixed-b asymptotics provide more accurate and reliable inference than small-b asymptotics. For
each kernel function, fixed-b critical values can be simulated. In particular, in linear panel models
with individual fixed effects, Vogelsang (2012) has shown that

Wi (1)

VPI((B)

where = denotes weak convergence, Wy (r) is the standard Wiener process, and P} (b) is a random

1=

matrix that depends on the kernel function and bandwidth. For example, in the case of Bartlett

kernel,

1 1-b
Py (b) :%(/0 B%(V)d'”—/o B(r)By(r+b)dr)

where By (r) = Wy (r) —rW((1).

1.3 Finite Sample Performances

This section compares finite sample performances of the covariance matrix estimators described
in section 1.2 under different error structures. First, errors with one-way clusering are considered.
We follow Petersen (2009) and analyze the sensitivity of standard errors to the presence of firm
effects or time effects. Next, we compare the performance of White, one-way cluster-robust, and
original two-way cluster-robust standard errors in the context of double clustering and persistent
common shocks. Finally, we examine the performance of revised two-way cluster-robust and DK

standard errors in the context of persistent common shocks.
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1.3.1 Data Generating Process

The data generating process (DGP) is based on model (1.1). Suppose the structures of €;; and x;;
satisfy (1.2), (1.3), (1.4) and (1.5). The true slope coefficient 8 is 1. When there are only firm

effects, the correlation structures of €;; and x;; take the following form

(
I,fori=jandt=s
62
C x| = M R
corr (xztax]s> =9\ Px= "5, fori=jandallt #s
Oy
| 0, foralli#j

(
I,fori=jandt=s
2
_ Y .
corr (e‘it,ejs) =14 pe= PR fori=jandallt #s
I3

0, forall i # j
\

When there are only time effects, the correlation structures of €;; and x;; take the following form

(
I,fori=jandt=s

2
(o]
corr(xit,x]'s> = px:—g,fort:sand alli # j
Ox
| O, forallz#s
I,fori=jandt=s
o2
_ 5 .
corr(el-t,sj ) =19 pPe :g,fort:sandallz%]
3]

0, forallt # s

So the variance of ¥; (or ), u; (or 6¢), n;; and éil can be written as pg - Gg, [ G%, (1—peg)- Gg

and (1 — py)- G%, respectively. In order to examine the sensitivity of standard errors to the presence
of either firm effects or time effects, we set oy = 1, and 6¢ = 2. We allow the fraction of the
variance of x;; and &;; caused by the firm effect, i.e. px and pg respectively, to vary from 0% to
75%. The simulation results are based on 5,000 random samples with 500 firms and 10 years per
firm. The empirical null rejection probabilities of #-statistics built upon White, one-way cluster-

robust and FM standard errors are reported at a two-sided significance level 1%.
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When there are double clustering and persistent common shocks, we focus on the comparison
of the performances of each variance estimator. The DGP follows (1.2) and (1.3), with both firm
effects and time effects. Firm effects (¥;, y;) and idiosyncratic errors (1, §;;) follow a standard
normal distribution. For a special case of double clustering but no persistent common shocks,
time effects (0, 6;) are assumed to follow a standard normal distribution (p = 0). For a special
case of persistent common shocks, time effects (J, ;) are assumed to follow an AR(1) process
(p > 0). The (N,T) combinations vary in different simulations, but all simulations are based
on 2,000 random samples. In the double clustering case, we allow N and T to vary from 10
to 250 separately. In the persistent common shock case, we allow N = T = 10,50,250. The
autocorrelation parameter, p, takes values from -0.95 to 0.95 in Table B.6, B.7 and B.8. p =
0,0.3,0.6,0.9 in Table B.9 and B.10. For the DK standard errors, we focus on the Bartlett kernel,
k(x) =1— |x| for |x| <1 and k(x) = O for |x| > 1. We set the bandwidth b = 0.1,0.2,...,0.9. The
truncation lag in the revised two-way clustering method is set to be the same as the bandwidth in
DK. The empirical null rejection probabilities of z-statistics are reported at a two-sided significance

level 5%.

1.3.2 Results

Table B.1-B.4 illustrate how sensitive standard errors are to the presence of either firm effects or
time effects. The DGP of Table B.1 and B.2 contains firm effects only, and the DGP of Table B.3
and B.4 contains time effects only and p = 0. Table B.1 and B.3 report empirical null rejection
probabilities of 7-statistics based on White standard errors and one-way cluster-robust standard
errors. Table B.2 and B.4 report empirical null rejection probabilities of ¢-statistics based on FM
standard errors. px varies across columns while pg varies across rows. In Table B.1 and B.3,
each cell contains the average OLS estimate of 8 and the standard deviation of 3 The third and
fifth entry are the average White standard errors and clustered standard errors, respectively. The
empirical null rejection probabilities of White and clustered ¢-statistics at a two-sided significance

level 1% are shown in square brackets below the standard error estimates. In Table B.2 and B .4,
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each cell contains the average FM coefficient estimate and the standard deviation of 3 . The third
entry is average FM standard errors. The empirical null rejection probabilities of FM ¢-statistics at
a two-sided significance level 1% are shown in square brackets below.

For example, consider the case where 50% of the variability in both the error and the regressor
is due to the firm effect or the time effect, i.e. px = pe = 0.50. In Table B.1, the average OLS
coefficient estimate is 1.0008 and the standard deviation of the OLS coefficient estimate is 0.0510.
The White standard error estimate is 0.0283 and the clustered standard error is 0.0508. 15.98%
of the White ¢-statistics are greater than 2.58 in absolute value, while 1.02% of the clustered ¢-
statistics are greater than 2.58 in absolute value. In Table B.2, the average FM coefficient estimate
is 1.0008 and the standard deviation of the FM coefficient estimate is 0.0511. The FM standard
error estimate is 0.0239 and 24.98% of the FM ¢-statistics are greater than 2.58 in absolute value.
In Table B.3 , the average OLS coefficient estimate is 0.9966 and the standard deviation of the
OLS coefficient estimate is 0.3073. The White standard error estimate is 0.0277 and the clustered
standard error estimate is 0.2445. 81.28% of the White 7-statistics are greater than 2.58 in absolute
value, while 7.40% of the clustered z-statistics are greater than 2.58 in absolute value. In Table
B.4, the average FM coefficient estimate is 0.9999 and the standard deviation of the FM coefficient
estimate is 0.0282. The FM standard error estimate is 0.0276 and 2.68% of the FM z-statistics are
greater than 2.58 in absolute value.

If there are no firm (time) effects in either the error or the regressor, White standard errors
work well. As you can see from Table B.1 and B.3, in the first row and first column, the rejection
probabilities are around 1%. However, as long as both of the regressor and the error contain firm
(time) effects, White standard errors underestimate the variance and lead to over-rejections. As
px and pg increase, White standard errors remain the same either across columns or across rows,
but the true standard errors increase. In contrast, standard errors clustered by firm are very close
to the true standard errors. In Table B.1, the rejection probabilities for clustered z-statistics are
around 1%, despite the change of px and pg. In this setting, one-way cluster-robust standard errors

correctly account for the correlation in the data and produce accurate inference. In Table B.3,
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standard errors clustered by time are much more accurate than White standard errors, but they still
underestimate the true standard errors. Moving down the diagonal of Table B.3 from upper left to
bottom right, the rejection probabilities for clustered z-statistics at a two-sided significance level
1% go from 4.04% to 9.16%. One possibility is that we have large N and small 7 (N = 500 and
T = 10) in the DGP. There are only ten clusters if clustered by time, which is not large enough for
standard normal approximations to be valid.

The FM approach is designed to account for correlation across different firms in the same
time period, so when there are only firm effects, FM standard errors fail to account for serial
correlation. From Table B.2, we can see that FM standard errors are biased downward. Moving
down the diagonal of Table B.2 from upper left to bottom right, the true standard errors rise while
the FM standard errors shrink. In the presence of time effects only, the FM approach works well.
FM standard errors are very close to the true standard errors, and the rejection probabilities for FM
t-statistics at a two-sided significance level 1% are approximately 3% for all cells in Table B.4.

When there are both firm effects and time effects, one-way cluster-robust standard errors would
probably be biased. According to Petersen (2009), a common approach to address double cluster-
ing is to include a full set of time dummies and then cluster by firm. If the time effect is constant
across firms in the same time period, then time dummies completely eliminate the time effect.
What is left in the error term is just the firm effect. However, this approach only works when
the correlation is correctly specified. If the time effect is not constant across firms, time dummies
will not completely remove the time effect, and thus standard errors clustered by firm would be
biased. Another limitation of the inclusion of dummies that empirical researchers care about is
that it restricts the types of regressors that can be included. One solution suggested by Petersen
(2009) is to cluster by firm and time simultaneously, using the two-way cluster-robust standard er-
rors proposed by Thompson (2011) and Cameron et al. (2011). Table B.5 compares performances
of White, one-way cluster-robust and original two-way cluster-robust standard errors.

In Table B.5, the DGP contains firm effects and time effects, but no persistent common shocks

(p =0). N and T vary from 10 to 250 separately. Column 1 reports the average OLS coefficient

14



estimates, and column 2-5 report the empirical null rejection probabilities for z-statistics based on
White, firm clustered, time clustered and original two-way clustered standard errors, respectively,
at a two-sided significance level 5%. Rejection probabilities of White and clustered z-statistics are
substantially larger than 5%. When N and T are close and both of them are large, the original two-
way cluster-robust standard errors work well. Table B.5 shows that when N = 7" = 50, the rejection
probability is 7.55%. When N = 50 and T = 100, the rejection probability is 6.70%. When N =
T = 100, the rejection probability is 6.65%. When N = 100 and T = 250, the rejection probability
is 4.85%. When N = T = 250, the rejection probability is 6.10%. When N = 250 and T = 100,
the rejection probability is 5.60%. The larger the sample size, the greater the improvement.

The limitation of the original two-way clustering method is that although it considers cross-
sectional correlation in the same time period, it does not allow for correlation across different
firms in different time periods. If persistent common shocks such as business cycles exist, failure
to account for them would lead to over-rejections. This approach should take into account cross-
section correlation of general form.

Table B.6 to B.8 compare performances of White, one-way cluster-robust and original two-
way cluster-robust standard errors when the time effect follows an AR(1) process. We set N =T =
10,50,250 respectively. Column 1 reports the average OLS coefficient estimates, and column 2-5
report the empirical null rejection probabilities for 7-statistics based on White, firm clustered, time
clustered and original two-way clustered standard errors, respectively, at a two-sided significance
level 5%.

Again, rejection probabilities of White and clustered ¢-statistics are substantially larger than
5%. When N and T are small, the original two-way clustered standard errors do not work no
matter what value p takes. Even when p = 0, this method would produce a rejection probability at
12.85%. This confirms that the two-way clustering approach needs both N and T to be sufficiently
large. When N =T = 50, different stories happen when p is close to zero and when p is close
to one. When p is close to zero, correlation across different firms in different time periods are

weak. The original two-way cluster-robust standard errors are still reasonable. For example, when
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p = 0.1, the rejection probability is 6.60%. However, when correlation across different firms
in different time periods is strong, the original two-way clustering method over-rejects. When
p = 0.7, the rejection probability is 22.15%. When p = 0.9, the rejection probability rises to
45.60%. Increase in sample size helps improve the inference if p is small (|p| < .7 in the tables).
For large p, increasing N,T makes it even worse for the two-way approach. As shown in Table
B.8, when p = 0.1, the rejection probability is 5.05%, while in Table B.7, it is 6.60%. When p is
very close to 1, over-rejection becomes more severe. When p = 0.9, the rejection probability is
52.65% while in Table B.7 it is 45.60%.

Table B.9 and B.10 compare performances of one-way cluster-robust, original and revised
two-way cluster-robust, and DK standard errors when the time effect follows an AR(1) process.
Usual fixed-b critical values are used for 7-statistics based on the DK standard errors. Table B.9
uses the standard OLS estimator, while Table B.10 uses the fixed-effects OLS estimator. We set
N =T = 50,250. There are several interesting findings to note. In both tables, one-way cluster-
robust standard errors over-reject a lot. The original double clustering method is okay when T is
large and p is small. When N =T = 250 and p = 0.3, the rejection probability is 6%. The revised
double clustering method has a better performance than the original one only when p is large and
the truncation lag is not large. However, this revised method still over-rejects. When N =T = 50,
p = 0.9, and the truncation lag L = 5, the rejection probability of the original version is 52.5%
while the rejection probability of the revised version is 29%. When N =T =250, p = 0.9, and the
truncation lag L = 5, the rejection probability of the original version is 50.9% while the rejection
probability of the revised version is 17.1%. Also, rejection probabilities of the revised method
increases as the truncation lag gets bigger. Without including firm dummies, the DK standard
errors have a strange pattern. Rejection probabilities of the DK standard errors fall as p increases.
In Table B.10, rejection probabilities of firm clustered standard errors are substantially larger than
5%. Rejection probabilities of time clustered standard errors and original two-way cluster-robust
standard errors are very close, since firm effects are removed by firm dummies. Similar interesting

patterns are found for the revised double clustering method. The patterns of the DK standard errors

16



are consistent with those in Vogelsang (2012), and they behave very well. When N =T = 250 and
p = 0,0.3, the rejection probabilities are approximately 5% for all values of the bandwidth b. The
DK standard errors still behave well even when p =0.9. When N =T =250, p =0.9, and b = .9,
the rejection probability is 8.8%.

The strange pattern of the DK standard errors in Table B.9 is caused by the presence of firm
effects. Theoretical evidence is provided in the next subsection. The patterns of the revised double
clustering method can be explained in two ways. First, as mentioned in subsection 1.2.3, the part
accounts for potential persistent common shocks in the data is exactly the DK standard errors
with truncation kernel. The downweighting causes downward bias of the variance estimator, and
thus over-rejections. This explains why rejection probabilities of the revised version is bigger
than those of the original version. Second, the revised two-way approach relies on the variance

estimator being consistent. Using the traditional approach leads to unreliable inference.

1.3.3 Strange Patterns of the DK Standard Errors

This section presents theoretical evidence to explain the strange patterns of the DK standard errors
in the large-N, large-T case. All limits are taken as N, 7 — oo. Proofs are provided in Appendix A.
Consider model (1.1) with x;; and g;; satisfying (1.2), (1.3), (1.4) and (1.5). Consider testing

the null hypotheses about 8 of the form

HO:B:ﬁO'

Define the #-statistic as

B— By

DK =~
\/ VDK

The following theorem summarizes the theoretical results for large-N, large-T case when firm

dummies are not included in the model.

Theorem 1.1. Suppose model (1.1) has one regressor xj;, and the structures of €;; and x;j; satisfy

(1.2), (1.3), (1.4) and (1.5). Suppose firm dummies are not included in the model. Assume M = bT
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where b € (0,1] is fixed. Assume N = @T such that N — e when T — oo. The Bartlett kernel is

considered. As T — oo,

1. Ifthe regressor and errors in model (1.1) contain both firm effects and time effects, then
W(E—ﬁ) =0 /149027, (1.15)

R FE S (1.16)
bk 962 \/P(b) |

where Z| ~N(0,1), and P(b) is a random variable depending on bandwidth. Z is indepen-

dent of P(b), and o2 is the long run variance of 6; 0.

2. Ifthe regressor and errors in model (1.1) only contain firm effects, then

W(B—ﬁ) =017, (1.17)

ltpk | = o (1.18)
where Zy ~ N(0,1).

3. If the regressor and errors in model (1.1) only contain time effects, then usual fixed-b limits

(see Vogelsang, 2012) are obtained.

Note that when the model satisfies (1.2), (1.3), (1.4) and (1.5), it is easy to show that 6;d;
satisfies a Functional Central Limit Theorem (FCLT). However, it is not necessary to assume that
the time effects 6; and & are independent and they both follow AR(1). The assumption can be

relaxed to allow for a more general setting. We only need to assume that 6;0; satisfies a FCLT.
1 [rT]
Thatis, T 2 Y 6;6; = oW(r), where W(r) is a standard Wiener process and o2
=1
variance of 6; ;.

is the long run

Theorem 1.1 shows that in the presence of firm effects and time effects, if firm dummies are not
included, the fixed-b limit of 7k is not asymptotically pivotal as usual. It depends on the ratio,
O = ]TV and the long run variance of 6; 0, 2. The reason is that the firm effect destroys the weak

dependence needed for results of Vogelsang (2012) to hold. Result (1.16) indicates that the usual
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fixed-b critical values have to be scaled by a nuisance parameter which is generally unknown in
practice. As a consequence, in practice one would have to either: i) estimate the scaling factor or
i1) include firm dummies to get back the asymptotically pivotal limit. Yet another important reason
to recommend the inclusion of firm dummies is the problem of endogeneity. Empirical researchers
are worried about the regressors that are not time-varying, and want to leave out firm dummies.
However, they must be very careful because solving the endogeneity problem should be a priority.
Including firm dummies removes the individual heterogeneity that is correlated to the regressors.
Furthermore, if the individual heterogeneity is the source that generates cross-sectional correlation,
the inclusion of firm dummies would completely eliminate the cross-sectional correlation and thus
one-way clustered standard errors would work.

Table B.11 demonstrates the performance of the DK standard errors in the presence of firm
effects and AR(1) time effects, using the adjusted fixed-b critical values derived in Theorem 1.1.
Patterns look similar to Vogelsang (2012). For a given N, T, p combination, rejection probabilities
are above 5% with small b and they steadily decline as b increases. For a given value of p, as
T increases, rejection probabilities approach 5% for all bandwidths. When 7 = 250 and b =1,
rejection probabilities are around 7% or 8% when there is strong serial correlation (p = 0.9).
Rejection probabilities rise as p increases.

When there are no time effects and only firm effects, the DK standard error estimate tends
to decline toward zero, and thus the ¢-statistic would go to infinity. Table B.12 illustrates the
performance of the DK standard errors in this case, using the usual fixed-b critical values. Given
N, as T increases, rejection probabilities for the DK standard errors blow up toward 1 for all
bandwidths. In contrast, rejection probabilities for firm clustered standard errors are close to 5%
when N is large, which is expected because the one-way approach is designed to account for any
form of serial correlation assuming independence in the cross section. Also, when both N and T

are large, the two-way approach gives similar results as the one-way approach.
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1.4 Conclusion

This chapter compares finite sample performances of White, FM, one-way cluster-robust, two-way
cluster-robust and DK standard errors using Monte Carlo simulations. If there is only one-way
clustering, one-way clustered standard errors could work very well. However, in the presence
of two-way clustering, one-way clustered standard errors is not sufficient to take into account all
potential correlations in the data. Petersen (2009) suggests applied researchers use original two-
way cluster-robust standard errors. When there are no persistent common shocks, this two-way
clustering method is valid and it allows for any unknown form of correlation within clusters. The
limitation of this method is that it does not take into account correlation across different firms in
different time periods. If we assume the time effect to be a simple AR(1) process which gener-
ates correlation across different firms in different time periods, the original two-way clustering
approach over-rejects when there is strong serial correlation (p is large). As a result, we need to
find a solution to solve this problem. Thompson (2011) has improved the original formula for the
two-way cluster-robust standard errors to account for correlation across different firms in different
time periods.

Another alternative solution is to use the DK standard errors which account for heteroskedastic-
ity, autocorrelation and cross-sectional correlation of general and unknown form. The DK standard
errors are valid only when firm effects are removed. The presence of firm effects will distort the
results and lead to strange outcomes for the DK standard errors. Theoretical evidences indicate
that the usual fixed-b critical values have to be scaled by a nuisance parameter which is generally
unknown in practice. Therefore, empirical researchers have to choose between estimating the scal-
ing factor and including firm dummies. Another reason to include firm dummies is that they would
eliminate the individual heterogeneity that is potentially correlated with the regressors. After firm
effects are removed, the DK standard errors produce remarkably better performance than other
standard errors.

In sum, using the original two-way cluster-robust standard errors as a robustness check only

works in a special case of double clustering. When persistent common shocks are concerned,
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the DK standard errors should be considered as a robustness check. However, the DK standard
errors are valid under the assumptions of covariance stationarity and weak dependence in the time
dimension. Also, firm dummies should be included to remove firm effects. Otherwise, one has to

estimate the nuisance parameter to adjust the fixed-b critical values.
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CHAPTER 2

FIXED-b INFERENCE FOR DIFFERENCE-IN-DIFFERENCES ESTIMATION

2.1 Introduction

This chapter focuses on fixed-b asymptotic distributions of the Wald and ¢ statistics for Difference-
in-Differences (DD) estimation in linear panel settings. Recently, DD estimation has become in-
creasingly popular in policy analysis. DD estimation involves identifying a specific intervention
or treatment (often a policy change or a passage of a law). Applied researchers then compare the
difference in outcomes before and after the intervention for groups affected by the intervention
(treatment groups) to the same difference for unaffected groups (control groups). Such panel data
sets often contain serial correlation and/or spatial correlation in the cross section. Even though the
correlation structure is not of interest, the failure to account for potential serial and spatial corre-
lation may lead to severe distortions in the inference about parameters of interest. After Bertrand
et al. (2004) pointed out that standard errors robust to serial correlation should be considered in
DD estimation, using clustered standard errors (see Arellano, 1987) has become a standard method
to deal with serial correlation in the DD context. Hansen (2007) extended the results for the tra-
ditional short panel case, large-N, fixed-T case, to large-N, large-T and fixed-N, large-T cases.
The clustered standard errors are valid under the assumption that individuals are uncorrelated with
each other. In other words, spatial correlation in the cross section is often ignored. Wooldridge
(2003) provided a useful discussion of cluster methods. Sometimes the cross-sectional observa-
tions can be divided into groups or clusters where it is assumed that individuals within a cluster are
correlated while individuals across clusters are uncorrelated. In this case, standard errors robust to
cross-section clustering can be constructed. The number of clusters could be small, though.

In time series econometrics, the nonparametric HAC robust covariance matrix estimator (see

Newey and West, 1987) is widely used. To handle the spatial correlation, robust standard errors
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can be obtained using the approaches of Conley (1999), Kelejian and Prucha (2007), Bester et al.
(2008), Bester et al. (2011) or Kim and Sun (2011a) when a distance measure is available. Kim and
Sun (2011b) provides results on kernel HAC standard errors in linear panel models with individual
and time dummy variables using a distance measure. When a distance measure is either unavailable
or unknown for the cross section of the panel, the DK approach can be used to obtain robust
standard errors. Driscoll and Kraay (1998) established consistency of these standard errors under
mixing conditions. However, the mixing conditions do not hold for the fixed-effects estimator.
Fortunately, Gongalves (2011) has established consistency of the DK standard errors for the fixed-
effects estimator in the presence of general forms of cross-sectional correlation. A recent paper by
Vogelsang (2012) develops a fixed-b asymptotic theory for test statistics based on the fixed-effects
estimator and the DK standard errors following Kiefer and Vogelsang (2005).

This chapter provides an analysis of the DK standard errors in linear DD models with fixed
effects and individual-specific time trends. The analysis is accomplished within the fixed-b asymp-
totic framework proposed by Kiefer and Vogelsang (2005) for HAC estimator based tests. Fixed-b
asymptotics are appealing because they reflect the influence of the choice of kernel and bandwidth
on the behavior of the standard errors while the traditional asymptotics don’t. Large-7T framework
is required in the fixed-b approach. According to the survey of DD papers in Bertrand et al. (2004),
among 92 DD papers they found, 10% have at least 36 time periods and 5% have at least 51 time
periods. Therefore, it is feasible to use the DK standard errors for DD estimation to cope with
any general forms of spatial correlation in the cross section given covariance stationarity and weak
dependence in the time dimension. This chapter only considers fixed-N, large-T case. Simulation
results suggest that the asymptotic theory can be extended to large-N, large-T case.

The main objective of this chapter is to derive fixed-b asymptotic distributions of test statistics
constructed using the DD estimator and the DK standard errors. It is found that the fixed-b limits
are different from those derived by Kiefer and Vogelsang (2005) and Vogelsang (2012). The newly
derived fixed-b asymptotic distributions depend on the date of policy change, A, and individual-

specific trend functions in addition to the choice of kernel and bandwidth. For the individual
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fixed-effects model with no trend, the fixed-b asymptotic distributions are the same as found in a
pure time series model with a shift in mean. New critical values are simulated in this study and
they have a U-shape with respect to A. Whether time period dummies are included does not affect
the fixed-b asymptotic distributions. For other regressors that don’t have a structural break, the
fixed-b asymptotic distributions for DK test statistics found in Vogelsang (2012) still apply. The
traditional short panel case is not included. With T fixed, there is not sufficient information in the
time dimension for the DK approach to work.

The remainder of the chapter is organized as follows. The next section describes the DD models
and test statistics. Section 2.3 presents the fixed-b asymptotic results for test statistics constructed
using the DD estimator and the DK standard errors, and new critical values for ¢ statistics in two
special cases. Finite sample properties are examined in Section 2.4. Section 2.5 concludes. Proofs
are given in Appendix C, and tables are given in Appendix D.

Throughout the chapter, x;; and 8 denote the full set of regressors and parameters respectively

in each model. “’” denotes the transpose, when used in the context of a vector.

2.2 Model Setup and Test Statistics

Consider a DD model with fixed effects and individual-specific deterministic trends given by

viz = £(t) ay + B Treat; + B, DUy + B3 Treat; - DUy + ujy, @2.1)

i=1,2,....N, t=1.2,....T,

where y;; and u;; are scalars, f(¢) denotes a J x 1 vector of trend functions, a; denotes a J x 1 vector
of individual-specific unobservable variables. ! Treat; denotes an indicator for individuals in the
treatment group which takes one if individual i is in the treatment group. Without loss of generality,

we assume that the first kN individuals are in the treatment group. Thus, Treat; = 1(i < kN). DUy

1ai could be either random or deterministic. Asymptotic results will not differ because of the
de-trending transformation.
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denotes an indicator for post-policy-change time periods which takes one after the policy change.
That is, DU; = 1(t > AT) = 1(r > A), where the parameter A is the relative date of policy change
within the time sample. Both k and A are assumed known. Often time fixed effects are included

which gives the model
Vi = M +1(t) ay+ By Treat; + By DU; + B3 Treat; - DUy +ujq. 2.2)

An alternative model includes common time trends instead of time fixed effects. The asymptotic
results for the alternative model remain unchanged. A more general model with additional regres-
sors 1s

Vit = f(t)/ai + By Treat; + By DUy + B3 Treat; - DUy + zit/}/+ Ujt, (2.3)

where z;4 is a (K x 1) vector of additional regressors. Including time fixed effects gives the model
Vi = M +£(t) ay+ B Treat; + B DU; + B3 Treat; - DUy + 24 v+ ujy. (2.4)

The focus is on estimation and inference about 33, which explains the impact of a policy change
on y. The ordinary least squares (OLS) estimator of 33, 33, is usually referred to as DD estimator.
Since we are primarily interested in the DD estimator, we could do a de-trending transformation to
get rid of the unobservable variables At and a;, similar to the fixed-effects transformation. There-
fore, we will call the de-trended OLS estimator the “fixed-effects OLS estimator" in the remainder.
Consider the fixed-effects OLS estimator of 8 given by
N T —1 T
p= ( ) iili;t) Y Y X (2.5)
i=1r=1 i=1t=1
where in model (2.1)
B DU,

B= o Xjg =Xt — Xjg = |+ Si=Yi—3i, DUr=DU—DUy,
ﬁ3 Treat;- DUy
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I ;T N1 __ T T -1

with§;, = ¥ y;.f(s) ( y f(s)f(s)) £(1)and DU; = ¥ DUgk(s) ( y f(s)f(s)) £(1). Note
s=1 s=1 s=1 s=1

that Treat; drops after the transformation as long as f(¢) has an intercept. In model (2.2) we have

B :B37
1 N
Sit =it =Sie =5 X 0je =jt)s
j=1
1N SIS
iit =Xt —)?it — ]T/ Z (th —ﬁjt) = Treatl--DU[,
J=1
with
. 1 N
Treat; = Treat; — N Z Treat j = 1(i <kN)—k.
j=1
Let
DU,
h;; = __
Treat;- DU

Here, both T'reat; and DUy drop after the transformation. In model (2.3) we have the same y;, and

DU ¢ as in model (2.1) but different 8 and X;¢ given by

B>
B . (i
B_ ﬁ?) o Xjt = _ )
Zj
Y

T T -1 __
where Z;; = z;; —2;; =2;;, — L zisf(s)/< Y f(s)f(s)’) f(r). In model (2.4), §;;, Zj;, DUy and
s=1 s=1
Treat; take the same form as in model (2.2). However, 8 and X;¢ now become

ﬁ?’ ﬂ;gti -Blj[
B = ) iit = B
14 Zit

Plugging (2.1), (2.2), (2.3) or (2.4) into (2.5) for y;; yields

- 2t _ i :

i=1t=1 =1t=1
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Let V;; = X;;u;; and define V;, = X;;1i;, where ii;; are the OLS residuals given by
Ao ﬁ
Uit = Yir — XjtP-
As shown by Driscoll and Kraay (1998), it is possible to obtain standard errors in a panel model
that are robust to spatial correlation of unknown form, as well as heteroskedasticity and serial

correlation, under the covariance stationarity and weak dependence conditions. Define

. N
=Y Vi,
i=1
and the partial sums of V; as
A [rT]
ST = Ve
=1

J
t=j+1
and then define
s o ISl J 2y
Q=T+ Y k(- )(I;+I7),
j=1

which is the nonparametric kernel HAC estimator using the cross-sectional sum, ff;, the kernel,

k(x), and bandwidth M. An equivalent expression of Qis given by

R 1 T T
Q=T" Z Z KtthVS,
t=1s=1
where
|t —s|
Kie =k .
ts = k( o )

When Q is used as the middle term of the sandwich form of the covariance matrix, we obtain the

robust covariance matrix estimator proposed by Driscoll and Kraay (1998)

Z Z thxzt é Z Z thxzt

i=1r=1 i=1r=1
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Consider testing linear hypotheses about 3 of the form
HO : RB =T,

where R is a ¢ x K* matrix of known constants with full rank with ¢ < K* and ris a g x 1 vector

of known constants. Define the Wald statistics as

A

Wald = (RB —r)[RVR'] 1 (RB —1).

In the case where ¢ = 1 we can define the 7-statistics

B Rﬁ’—r
VRVR'

Note that ¢ < 2 in model (2.1) and ¢ = 1 in model (2.2). In these two cases, the focus is on

t

the asymptotic behavior of the #-statistics under null hypotheses involving restrictions on the DD
estimator. For model (2.3) and (2.4), the asymptotic behavior of the Wald-statistics under null

hypotheses involving linear restrictions on the ¥ vector is also analyzed.

2.3 Asymptotic Theory and Critical Values

This section analyzes the asymptotic properties of the test statistics under null hypotheses in large-
T, fixed-N case. All limits are taken as 7 — oo and N held fixed. Simulated critical values are
provided. Throughout, the symbol “=-" denotes weak convergence. Both “L” and “plim” denote
convergence in probability.

The asymptotic distributions of Wald and t statistics under null hypotheses are obtained using
large-T asymptotics. This approach allows the standard errors to be approximated within the fixed-
b asymptotic framework developed by Kiefer and Vogelsang (2005) which captures the choice of
kernel and bandwidth in the asymptotic approximation. Moreover, it generates limits that are
invariant to general forms of spatial correlation under assumptions of covariance stationarity and
weak dependence in the time dimension. The asymptotic distributions of the statistics depend

on the form of the kernel used to compute the HAC estimators. Here we focus on Bartlett kernel,
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k(x) =1—|x| for |x| < 1 and k(x) = O for |x| > 1. Before we proceed, some definitions are required.
The random matrices that appear in the asymptotic results are expressed in terms of the following

functions and random variables.

Definition 2.1. Let W(r) denote a generic vector of independent standard Wiener processes. De-

fine
HF (r2) = IL(r>l)—//llF(s)/ds</OlF(s)F(s)/ds> F(r),
NFw) = / YHF (o aw ().
oF (r.2,w) / HE (5,2)aw (s / dW (s / Fs ds)_l/OrF(s)HF(s,l)ds

/HFslzds / HstL)zds> NF(W)

The following definition defines some random matrices that appear in the asymptotic results.

Definition 2.2. Let B(r) denote a generic vector of Brownian bridges. If k(x) is the Bartlett kernel,
let the random matrices, PF(b,l, QF), P(b,B), Py; (b,?L,QF,B) and Py (b,/l,QF,B) be defined

as follows for b € (0, 1]

1
PF (6,2, 0F) :5/0 OF (2. W)OF (r.2, WY dr

b
_1 10F (A, W)OF (r+5,2,W) +OF (r+b, A, W)OF (A, W) |dr.
1-b
P(b.B) = b / B(r /dr—l—l) /O B(r)B(r+b) +B(r+b)B(r)/dr,

+B(r+b)Q Fna,wYar

For all models, the following assumption on the trend functions is sufficient to obtain the main

results of this chapter.
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Assumption 2.1. £(¢) includes a constant, there exists a J x J diagonal matrix Ty and a vector of
functions F, such that tpf(t) = F(%) +op(1), fol Fi(r)dr<eo,i=1,...,J, and det [fol F(r)F(r)dr] >
0.

Assumption 2.1 is fairly standard and is the same as the assumption used by Bunzel and Vogelsang
(2005). Note that the standard individual fixed-effects model is a special case with f(¢) = 1; the

individual specific trend model is a special case with £(r) = (1,1)’.

2.3.1 Models With No Additional Regressors

This subsection investigates the asymptotic properties of the statistics in models (2.1) and (2.2).

For a given time period 7, stack uy,up;,...,up; into a N x 1 vector
Ule
Uy
llt =
|“Nt |

The following assumption is sufficient to obtain results for the fixed-effects OLS estimator based

on model (2.1) and (2.2).

1)

Assumption 2.2. T 2 Y ug = AWy (r), where Wy (r) is an N x 1 vector of independent stan-
=1

dard Wiener processes and AN isthe N x N long run variance matrix of 4.

For a given time period ¢, stacking the N cross-section errors in the same period into a vector
accounts for general forms of spatial correlation. Assumption 2.2 holds under covariance station-
arity and weak dependence in the time dimension. It essentially requires that ug satisfy a functional
central limit theorem (FCLT). Here, AA is not restricted to be diagonal. Therefore, the assumption
allows for general forms of spatial correlation. Stationarity is not required in the cross section for
large-T, fixed-N case. This is analogous to large-N, fixed-T case where the random sampling in

the cross section allows for general forms of serial correlation in model, including nonstationarity.
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Before we start to derive the results in model (2.1), it is worth noting that the #-statistics on the

DD estimator in the following three models are exactly the same.2

1. y;; = a;+ By Treat;+ By DU + B3 Treat; - DU + ujy,
2. viy = M + By Treat; + By DUt + B3 Treat; - DUz + ujy,
3. yi = aj+ Ay + By Treat; + By DUt + B3 Treat; - DUy + ujy,

where g; is a full set of individual dummies, and Ay is a full set of time period dummies. This exact
equivalence result directly implies that whether time period dummies are included does not affect
the limit of the z-statistic on the DD estimator in the individual fixed-effects model. Proofs of the
exact equivalence result are provided in Appendix C. Furthermore, Monte Carlo simulation results
suggest this exact equivalence continue to hold when trend is also included in the model. Proofs
are not given for this special case.

Let
1

1,1,...,1,0,...,0
where A is a 2 X N matrix with all elements in the first row and first kN elements in the second
row equal to one. Let G = AA!. The following proposition and lemma present the asymptotic

distributions of ( — B) and the partial sums in model (2.1).

Proposition 2.1. Suppose Assumption 2.1 and 2.2 hold. Let W*(r) denote a 2 x 1 vector of stan-
dard Wiener processes and let A* denote the matrix square root of the matrix AAN' A, In model

(2.1), for N fixed as T — oo the following holds:
n 1 -1 1
_ F 2 Ak F *
VIB=B)= (G | HF (na)2ar) A" [T aaw o)

Lemma 2.2. Suppose Assumption 2.1 and 2.2 hold. Assume M = bT where b € (0,1] is fixed. Let

W*(r) denote a 2 x 1 vector of standard Wiener processes and let A* denote the matrix square

2The result also holds when a global intercept is included.
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root of the matrix AAN' A, In model (2.1), for N fixed as T — oo the following holds:

T

DI|—

§[ﬁ] = A*QF(I’,A,W*).

When k(x) is the Bartlett kernel, from calculations in Hashimzade and Vogelsang (2008a) we

have
- 2 _2T_1 a2 2/ 1 _2T_M_1 A A/ 2 A/
Q=-T7% ) SS—3T Y Syt SeemSt) (2.7)

using the fact that §T = 0. The following proposition presents the fixed-b limit of the HAC esti-

mator.

Proposition 2.3. Suppose Assumption 2.1 and 2.2 hold. Assume M = bT where b € (0, 1] is fixed.
Let W*(r) denote a 2 x 1 vector of standard Wiener processes and let A* denote the matrix square

root of the matrix ANN'A. In model (2.1), for N fixed as T — o the following holds:

2 /
Q= A*PF (b,2,0F A% .

Based on Proposition 2.1 and 2.3, the following theorem summarizes the theoretical results for

model (2.1).

Theorem 2.1. Suppose the model does not include time period dummies nor additional regressors.
Suppose Assumption 2.1 and 2.2 hold. Assume M = bT where b € (0,1] is fixed. Let W; * denote

the g x 1 vector of standard Wiener processes. For N fixed as T — oo,

Wald = NF (W) PE (b, 2,05~ INF (W)
NE (wi)
t = 7

Theorem 2.1 demonstrates that asymptotically pivotal test statistics are obtained within the
fixed-b framework in the presence of spatial correlation in the cross section. Therefore, the statis-
tics based on the DK standard errors under fixed-b asymptotics have broader robustness prop-
erties with respect to correlation in the model. The limiting distributions differ from those de-

rived by Kiefer and Vogelsang (2005) and Vogelsang (2012) in the following two ways. First,
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the fixed-b limits here depend on not only the choice of kernel and bandwidth, but also the date
of policy change, A, and individual-specific trend functions. Second, the asymptotic distribution
is different from Vogelsang (2012) because DU; is deterministic and thus there are some extra
terms in the asymptotic distribution of partial sums. N F (Wc}|< *) follows a normal distribution, and
pF (b,A QF **) is a random matrix which depends on the date of policy change, trend functions
and the choice of kernel and bandwidth. Moreover, NI’ (Wg*) and PF (b, 2 QF **) are indepen-
dent. The limiting distributions of the test statistics are identical to the results in the pure time series

model with a shift in mean and deterministic trends. The limiting distributions are non-standard,

but critical values can be obtained using simulation methods.

Corollary 2.2. Suppose model (2.1) is a standard individual fixed-effects model with no time
trends. That is, £(t) = 1. Define AW (1) —W (L) = (A — I)W(%) Let W(}"* denote the g x 1

vector of standard Wiener processes. Then

F(r,?t)zﬂ(r>),)—(1—l), NF(W):lW(l)—W(l):(l—l)W(%),
of (rna,w) /HFs/l)dW /HFM /HFsA)zds

/0 H (s,0)2ds) NF .

For N fixed as T — oo, the following hold

1

ﬁ(ﬁ—ﬁ)jm

G_lA*(JL—l)W(lL)
NF Wk
Wald = NF (w;*)PE (b, 2,05 " INF(W3"), 1= Wi
VPE (0,2, 07%)

Corollary 2.2 provides results for a standard individual fixed-effects DD model. The limits are
identical to the results in the pure time series model with a shift in mean.

When time period dummies are also included in the model (2.2), the limiting distributions of
the statistics remain the same due to the exact equivalence result. This finding is useful since

empirical researchers often put a full set of time period dummies in their model.
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2.3.2 Models With Additional Regressors

This subsection analyzes the asymptotic properties of the statistics in models (2.3) and (2.4). Some
additional notations in this subsection are needed as follows. Let I, denote a & x h identity matrix.
Let 1 denote an N x 1 vector of ones. Let ¢; denote a N X 1 vector with ith element equal to one

and zeros otherwise, i.e.

e; = (0,0,...,0,1,0,...,0)".

Define a K x (K + 1) matrix B and a K x N(K + 1) matrix A; as follows
B=[0.Ig], A;j=(e®B).

Let &1 denote an (K + 1) x 1 vector with 157 element equal to one and zeros otherwise, i.e.

The following assumption on additional regressors zj; is sufficient to obtain results for the fixed-

effects OLS estimator based on models (2.3) and (2.4).

Assumption 2.3. Suppose there is no structural change for 73 within the entire sample periods.

[rT],

Assume thatplimT_1 ZtT:I zij¢ = M = E(z4) andplimT_1 thl zyz;, =rQ;forre (0,1] where

— -
Q= Y 0;andQ isnonsingular.
i=1

Note that Assumption 2.3 requires that the additional regressors don’t have structural change
before and after the policy change. In other words, z;¢ is uncorrelated with T'reat; and DUy. Under
this assumption, zj is included to reduce the variance of the error. However, empirical researchers
are more interested in the case where the additional regressors also have a structural change. In this
case, the fixed-b limits for test statistics based on the Zit coefficients may not be the usual fixed-b

limits.
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To handle the case where additional regressors are also included (model 2.3), Assumption 2.2
needs to be strengthened as follows. Stack the additional regressors z;; and trend functions and
consider the reduced form of the 7' x K stacked vector z;—that is, the linear projection of z; onto

the space spanned by the T x J stacked vector of trend functions f(7 )-with an error term as
z; = f(T)bl' +e;,

where e; is a T x 1 vector and b; is a J X K vector. It is easy to show that Z;, are the OLS residuals
given by

= i/

Zj; =1z;; —bf(1),

where b; is the OLS estimator of b;. Define the (K + 1) x 1 vector

Ujy

i _
vy = ,
(2j = b3f(2))ujy

Stack the vectors th 1 b ,ng N to form the N (K +1) x 1 vector of time series

TR
Vi
22
\;
Vr =
NN
A
_L[rT] .
Assumption 2.4. E(uj|z;;) =0andT 2 Y. vy = AW(r), where W(r) is an N(K + 1) x 1 vector
=1

of standard Wiener processes and AA' is the N(K 4+ 1) x N(K + 1) long run variance matrix of ;.

Assumption 2.3 requires that the sample mean and sample variance-covariance matrix of the
additional regressors across time have well-defined limits. The form of Q; depends on the form
of dummies included in the model and the choice of the trend functions. Assumption 2.4 allows
weak exogeneity in the cross section and over time and requires a FCLT holds for v;. Because Q;

is not restricted to be identical for all i and because the form of AA’ is not restricted to be block
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diagonal, the assumptions allow for heterogeneity in the conditional heteroskedasticity and serial
correlation as well as general forms of spatial correlation.

The following lemma shows that h;; and Z;; are asymptotically uncorrelated.

Lemma 2.4. Under Assumption 2.1 and 2.3, for N fixed and as T — oo, the following holds

Z thzlt—>0

i=1t=1
1 N
In particular, whenr=1, T " ) Z hzt it —> 0.
i=1t=1
Let

R R

R— 11 £12
Ry1 Rpp

where Ry is a g1 x 2 matrix, Ry9 is a g] x K matrix, Ry1 is a gy X 2 matrix and Ry is a gy x K
matrix. Usually we pay attention to restrictions either on the DD estimator or on the additional
explanatory variables, not on both of them at the same time. In other words, we are interested in
the cases when g, = 0 and Ry, = 0, or when g1 = 0 and Ry1 = 0. The next theorem presents the

results for model (2.3).

Theorem 2.3. Suppose the model includes additional regressors but no time period dummies.
Suppose Assumption 2.1, 2.3 and 2.4 hold. Assume M = bT where b € (0,1] is fixed. Let W(r)
denote a qy X 1 vector of standard Wiener processes. Let Wq(r) denote a qy X 1 vector of standard
Wiener processes. Let W*(r) denote a 2 x 1 vector of standard Wiener processes and A* is the
matrix square root of the matrix (A ® & I)AA/ (A®e 1) . For N fixed as T — oo, the following hold:
(G Jg HE (r,2)2ar) =V (A* [ HE (r,2)aw™* (r)

VT(B-B)= . -
o~ 1N apAw(n)
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If o = 0 and Ry =0, that is, we are testing restrictions on the DD estimator, then R = [Rl 1 0].

Wald = NF (W) (PF (b, 1,08 )~ INF (W),
NE (W)

/P (b.2,0F)

If g1 = 0 and Ry = 0, that is, we are testing restrictions on the additional regressors, then R =

[0, RZZ]-

1=

Wald = Wy (1) Py(b,B) ™ Wy (1),

Theorem 2.3 provides some interesting insights into doing inference for DD estimator and the
z;; coefficient estimator § under fixed-b asymptotics. If we only focus on testing restrictions on
DD estimator, the limiting distributions of test statistics are the same as the results in Theorem
2.1. If we only want to test restrictions on 7, the limiting distribution of test statistics are identical
to the results in Vogelsang (2012). Note that the limiting distributions of test statistics based on
¥ are invariant to trend functions. In either case, the test statistics are asymptotically pivotal.
Nevertheless, testing restrictions on both of them at the same time is much more complicated. The
test statistics are no longer asymptotically pivotal. General forms of the limits of the test statistics
are provided in the proof of Theorem 2.3 in Appendix C.

The most general model including both additional regressors and time period dummies (model
2.4) requires a stronger assumption than Assumption 2.4. To cope with this case, Assumption 2.4
needs to be strengthened in the following way. Define the K x 1 vector vij = (2 — b;f(t))u jt- For

a given j stack u jt and the vectors th J , Vt2j I ,Vivj into an (NK 4 1) x 1 vector




and then stack the vectors th , vtz, . ,vgv into an N(NK + 1) x 1 vector

where the “ex” superscript denotes an extended vector that includes vectors V;J fori # j.

1[rT]
Assumption 2.5. E(“it|zjt) =O0foralli,j=1,2,....Nand T 2

tgl viX = AGW(r), where
WX (r) is an N(NK + 1) x 1 vector of standard Wiener processes and A A’ is the N(NK +1) x

N(NK + 1) long run variance matrix of vy.

Assumption 2.5 requires strict exogeneity in the cross section but allows weak exogeneity over
time. It also requires that a FCLT hold for the extended vector v§*. Here, ACXAEX g not restricted
to be block diagonal, which permits general spatial correlation. Assumption 2.4 and 2.5 indicate
that the form of exogeneity needed depends on whether or not time period dummies are included
in the model. Without time period dummies, only weak exogeneity is required in both the time and
cross-section dimensions. When time period dummies are included, strict exogeneity is needed in
the cross-section dimension while only weak exogeneity is required in the time dimension.

Like results in model (2.2), including time period dummies does not affect the fixed-b limits.
The following theorem summarizes the results for model (2.4). Note that Assumption 2.4 is now

replaced with the stronger Assumption 2.5.

Theorem 2.4. Suppose the model includes both additional regressors and time period dummies.
Suppose Assumption 2.1, 2.3 and 2.5 hold. Assume M = bT where b € (0,1] is fixed. Let A =
[1—k,....,1—k,—k,...,—k] and G = AA" = Zi’il 7%12. Let fo*(r) denote a standard Wiener
processes with long run variance A?x*z =A® e_ll )Aeerx/ A® e_ll)/. For N fixed as T — oo, the
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following hold:

VI(B-P)= (G Jo T (122 ~IAT Jo HE (1 A)aW e (7
0~ 1(Zl | A aexwex (1)

and the limits of the statistics are the same as given by Theorem 2.3.

Theorem 2.4 demonstrates that results for statistics in Theorem 2.3 continue to hold when time

period dummies are included. This is consistent to the findings in model (2.2).

2.3.3 Asymptotic Critical Values

The asymptotic critical values for Wald and ¢ statistics based on DD estimator can be obtained
through Monte Carlo simulations. To keep the analysis straightforward, we consider the case
q = 1 and focus on the individual fixed-effects model and the individual-specific trend model.
The asymptotic critical values are simulated using 50,000 replications. The Wiener processes are
approximated by normalized sums of i.i.d. N(0, 1) errors using 1000 steps. The critical values for ¢
statistics in the standard individual fixed-effects model are presented in Table D.1-D.4. The critical
values for 7 statistics in the individual-specific trend model are presented in Table D.5-D.8. Using
the Bartlett kernel, critical values are computed for the percentage points 90%, 95%, 97.5%, and
99%. Right tail critical values are given. The left tail critical values follow from symmetry around
zero. The policy change point A goes from 0.1 to 0.9 with step size 0.1. The bandwidths b starts
from 0.02 to 1 with step size 0.02.

The critical values are invariant to the values of k. For a given b, the critical values are sym-
metric around A = 0.5 with respect to A. The minimum value occurs at A = 0.5. As A approaches
zero or one, the critical values increase. This pattern is the same as the pure time series model with
a known structural break (see Cho, 2012). For a given A, with b = 0.02, critical values are close to
N(0,1) regardless of the choice of trend functions. As b grows, tails get fatter. With b = 1 tails are
quite fat. For different choices of trend functions, tails get fatter in different rates. For example,

when A = 0.5, in the standard individual fixed-effects model the critical values at 5%/2.5% tails
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with b = 0.02 and b = 1 are 1.712/2.056 and 4.781/5.958, respectively, while in the individual
specific model, the critical values at 5%/2.5% tails with b = 0.02 and b = 1 are 1.745/2.073 and
5.098/6.395, respectively. Therefore, tails get fatter more quickly in the individual-specific trend
model. The critical values predict that if N(0, 1) critical values are used for ¢ statistics, then for a

given value of T, as bandwidth M increases, b increases and thus ¢ will over-reject.

2.4 Finite Sample Properties

This section analyzes finite sample performances of the DK standard errors using a simulation
study. Because using traditional clustered standard errors is the most common method to conduct
robust inference for DD estimator, the fixed-b approximations for the DK standard errors given by
the theorems are compared with the standard normal approximations for traditional clustered and

the DK standard errors. ”” denotes z-statistics constructed using traditional clustered standard

elus

errors and “tpg”” denotes z-statistics constructed using the DK standard errors.
Since applied researchers are interested in the double clustering approach proposed by Cameron
et al. (2011) and Thompson (2011), finite sample performances of the two-way clustered standard

errors are also included. “7;,,1,,” denotes t-statistics constructed using the original formula of

the double clustering approach, while “tg’ou ble” denotes z-statistics constructed using the revised

formula. The revised formula is
L L
Vioubte = Vfirm +Viime,0 = Ywhite 0t X Vrime 1+ Viime ) = X Vwhited + Wy hire.1):
N = 2.8)

with



T N
§; = Y Vj isthe sum of all observations for individual i. § = Y. V;; is the sum of all observations
t=1 i=1
for time 7. The original formula only contains the first three terms in (2.8)

Vaouble = Vfirm* Viime,0 — VW hite,0- (2.9)

The DGP used for the simulations is very similar to the one used in Vogelsang (2012). The model
1s
yir = ¢j +g;t + By Treat; + By DUr 4 B3 Treat; - DUs + zj, Y + ujy, (2.10)

where

Ujp = Pujr |+ & U= 0, ¢;~N(0,1), Cov(git78js) =0 fort #s;

it =PZig—1+eip zo =0, e ~N(0,1), cov(ejp,ejs) =0 fortFs.

c; 1s the individual fixed effects and g;t is the individual-specific simple linear trend. In all cases,
all coefficients are set to zero. Also set ¢; =0, g; =0, k= 0.5 and A = 0.5. Note that we can
set ¢; = 0 without loss of generality because the fixed effects OLS estimator is exactly invariant
to ¢; = 0. Only one additional regressor z;; is included and it is uncorrelated with u;;. z;; and u;;
are modeled as AR(1) processes with the same autoregressive parameter p. €;; and ¢;; have spatial
correlation in the cross section, though uncorrelated over time. In particular, they are constructed
in the following way. For a given time period, ¢, N i.i.d. N(0,1) random variables are placed on
a square grid. At each grid point, &;; is constructed as the weighted sum of the normal random
variable at that grid point, the normal random variables that are one step away to the left, right,
up or down on the grid with a weight 6 and the normal random variables that are two steps away
in the same direction with a weight 62, Hence, ¢, is a spatial MA(2) process with parameter 6
and the distance measure is maximum coordinate-wise distance on the grid. e;; is constructed in a
similar way. In all cases, 8 = 0.5.

Results are given for sample sizes T = 10,50,250 and N = 10,50,250 for AR(1) errors, and
N = 9,49,256 for spatial MA(2) errors. The number of replications is 2,500 in all cases and

the significance level is 5%. Results are reported for the Bartlett kernel. Fixed-effects OLS as
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discussed in section 2.2 is used to estimate the model. Results for testing the null hypothesis
Hpy : B3 = 0 against the alternative Hy : B3 # 0 are labeled 7). Results for testing the null
hypothesis Hy : Y = 0 against the alternative Hy : ¥ # 0 are labeled t;.

Tables D.9-D.11 reports empirical null rejection probabilities for ¢

clus and g statistics in the

individual fixed-effects model with no additional regressor z;;. Tables D.12-D.15 reports empirical
null rejection probabilities for 7., ¢ and 7k statistics in the individual-specific trend model with
no additional regressor z;;. Tables D.16-D.17 reports empirical null rejection probabilities for zpp)
and 7 statistics when one additional regressor z;; is included. Table D.18 compares the empirical
null rejection probabilities forz.;,, ¢, T 7 oubles t c’;’ou ble and 7y g in the individual fixed-effects model
with no additional regressor z;;. Tables D.9, D.11, D.12 and D.14 consider AR(1) errors, while the
other tables focus on the spatial MA(2) errors. In Tables D.11, D.14 and D.15, a full set of time
period dummies is included.

A small selection of bandwidths are considered, » = 0.02,0.06,0.1,0.4,0.7, 1. The autocorre-
lation parameter p = 0,0.3,0.6,0.9. For 1 g two sets of null rejection probabilities are reported.
The first set uses the 5% N(0, 1) critical value. The second set uses the new fixed-b critical val-
ues (adjusted fixed-b critical values) obtained in subsection 2.3.3. For telus: 'double and tc’;’ou ble’
rejection probabilities are reported using the 5% N(0, 1) critical value.

There are several points worth noting. First, looking at Tables D.9 and D.11, the rejection
probabilities for each combination of N, T, p and b are exactly the same in these two tables. This
pattern demonstrates the exact equivalence result shown in subsection 2.3.1. Similar patterns can
be found in Table D.12 and D.14 with AR(1) errors, and Table D.13 and D.15 with spatial MA(2)
errors. These four tables suggest that the exact equivalence continue to hold in the individual-
specific trend model with no additional regressors, despite the correlation structure of the error.

Next, similar patterns for 7y g can be found in all tables. Patterns for 7y are quite different
when N (0, 1) critical value is used compared to when the adjusted fixed-b critical values are used.
Using N(0, 1) critical value, rejection probabilities tend to be much higher than 5% and this over-

rejection problem gets worse as b increases or as p increases. Only when b is small, T is large,
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and p is close to zero are rejection probabilities close to 5%. In contrast, when the adjusted
fixed-b critical values are used, the over-rejection problem is less severe. For a given N,T,p
combination, rejection probabilities are above 5% with small b and they steadily decline as b
increases. For a given value of p, as T increases, rejection probabilities approach 5% for all
bandwidths. When 7' = 250 and b = 1, rejection probabilities are around 8% or 9% when there
is strong serial correlation (p = 0.9). In the presence of spatial correlation, rejection probabilities

for ¢ are substantially larger than 5%. This is expected since the traditional clustered standard

clus
errors are not robust to the spatial correlation in the cross section. For AR(1) errors in table D.9 and
D.12, the traditional clustered standard errors behave well, and can outperform the DK standard
errors when there is strong serial correlation and the bandwidth is small.

The patterns in the rejection probabilities of 7 g are similar to Vogelsang (2012). As explained
in Vogelsang (2012), the bias in O consists of two parts. One part depends on the strength of the
serial correlation and this bias rises as the serial correlation becomes stronger, which explains why
the over-rejection problem gets worse as p increases. This bias causes over-rejection for either
the N(0,1) critical value or the adjusted fixed-b critical values. However, this bias declines as b
increases. The other part is captured by the adjusted fixed-b approximations, but not the N(0, 1)
approximations. Therefore, over-rejection becomes less severe when fixed-b critical values are
used. It is shown (see Vogelsang, 2008) that as b increases, bias in o) initially decreases but
then increases as b increases further. Because of this, when b is close to one, fl has substantial
downward bias and g tends to over-reject when the N(0, 1) critical value is used. Overall, the
N(0,1) approximations do not reflect the influence of the bandwidth, and thus using the N(0,1)
critical value may lead to severe distortions in rejections. In contrast, the fixed-b approximations
capture most of the bias in Q. In addition, the part that they cannot capture decreases as b increases.
This demonstrates why the rejection probability of 7y is lowest at b = 1 when adjusted fixed-b
critical values are used.

Tables D.16 and D.17 report empirical null rejection probabilities in the individual fixed-effects

model and individual-specific trend model with one additional regressor z;;, respectively. For rpp,
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the adjusted fixed-b critical values are used. For 77, the usual fixed-b critical values in Kiefer and
Vogelsang (2005) and Vogelsang (2012) are used.

Note that the usual fixed-b critical values are used for #; because there is no structural break in
zjt- These critical values are invariant to the choices of trend functions. Patterns of the rejection
probabilities are consistent to the findings in Vogelsang (2012). The fixed-b approximation for
tpp reflects the change of trend functions when a simple linear trend is included in the model.

Table D.18 reports the null rejection probabilities for the individual fixed-effects model with
spatial MA(2) errors. Note that the correlation structure here is different from that used in chapter
1. The results illustrate that the DK standard errors using fixed-b approximations lead to much
more accurate inference than the two-way clustered standard errors in the presence of a different
form of cross-sectional correlation. The findings are similar to those in chapter 1. The original
double clustering method is okay when 7 is large and p is small. The revised double clustering
method has a better performance than the original one only when p is large and the truncation
lag is small. The rejection probabilities of the revised method increases as the truncation lag gets
bigger. The DK approach using fixed-b critical values outperform the double clustering approach

when the bandwidth is chosen appropriately.

2.5 Conclusion

This chapter derives a fixed-b asymptotic theory for test statistics in DD models with fixed effects
and individual specific trends in linear panel settings. The standard errors proposed by Driscoll and
Kraay (1998) that are robust to heteroskedasticity, autocorrelation and spatial correlation of general
form are analyzed. This chapter establishes the conditions under which the DK standard errors lead
to valid tests in linear DD models with fixed effects and individual-specific time trends for fixed-N,
large-T case. It is shown that the fixed-b asymptotics for tests on the DD estimator are different
from the limits in Vogelsang (2012), but they are identical to the limits in the pure time series
model with a shift in mean for the individual fixed-effects model. The tests on additional regressors

without a structural break have the same fixed-b asymptotic distributions as in Vogelsang (2012).
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The exact equivalence result is found for the cases when only individual dummies are included,
when only time period dummies are included and when both sets of dummies are included. As
a result, whether time period dummies are included in the model does not affect the asymptotic
distribution. It is also shown that the fixed-b asymptotics for tests on DD estimator depend on
the individual-specific deterministic trends included and the date of policy change A. New critical
values are simulated for individual fixed-effects model and individual specific trend model. For
each value of bandwidth, the adjusted critical values shows a U-shaped pattern in A. Tails get
fatter in different rates for different trend functions. Simulation results illustrate that the use of
fixed-b critical values will lead to much more reliable inference in practice in the presence of
spatial correlation.

In a more interesting case where the additional regressors also have a structural change, the
fixed-b limits of test statistics on the z;; parameter would change. The conjecture of the fixed-b
asymptotic distributions in this case would be similar to the findings in the pure time series model

with a structural break (see Cho, 2012).
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CHAPTER 3

FINITE SAMPLE PERFORMANCES OF THE MOVING BLOCKS BOOTSTRAP FOR
LINEAR DIFFERENCE-IN-DIFFERENCES MODELS WITH INDIVIDUAL FIXED
EFFECTS

3.1 Introduction

This chapter studies finite sample performances of the bootstrap procedure for linear Difference-in-
Differences (DD) models with individual fixed effects. The bootstrap method consists of randomly
resampling the original data many times and then using the quantities computed from the simulated
pseudo-data to make inference from the original observed data. This chapter discusses bootstrap
methods in the context of hypothesis testing. Bootstrap methods are widely used in empirical
studies, especially when distributions of test statistics are nonstandard and critical values are com-
plicated to compute, or difficult to derive theoretically. Moreover, it is not even necessary for us to
know the asymptotic distribution when applying the bootstrap method.

What determines the reliability of the bootstrap is how well the bootstrap data generating pro-
cess (DGP) mimics the features of the true DGP. The bootstrap has originally been proposed by
Efron (1979) for independent and identically distributed (i.i.d.) data. Later, the wild bootstrap
has been proposed by Wu (1986) to take into account heteroskedasticity. It becomes more com-
plicated to implement bootstrap methods for dependent data. Several bootstrap procedures have
been proposed for time series data, including the moving blocks bootstrap (MBB) proposed by
Kunsch (1989) and Liu and Singh (1992). More recently, the bootstrap is applied to panel data
models. Following the approach in Gongalves (2011), the so-called “panel MBB” method is used
in this chapter. This method applies the standard MBB to the time series of vectors containing all
the individual observations at each time period. Since this method only resamples the vectors at
each time period, it preserves the potential cross-sectional correlation structure in the data. There-

fore, the panel MBB allows for inference that is robust to heteroskedasticity, serial correlation and
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cross-sectional correlation of unknown form. Also, we use the naive bootstrap where the formula
used to compute the standard errors on the resampled data is the same as the formula used on the
original data.

The DD coefficient is of interest and the estimation method is the fixed-effects ordinary least
squares (OLS) estimator. The main focus is on the tests based on the DD estimator and the DK
standard errors. In particular, we consider panels with many time periods where the Driscoll and
Kraay, 1998 (DK) standard errors are valid. The DD estimator becomes more and more popu-
lar in recent empirical researches because it allows us to evaluate the causal effects of a policy
change. Researchers are concerned with the reliability of the inference based on the DD estima-
tor. There has been an extensive research to seek robust inference for DD models. As pointed
out in Bertrand, Duflo, and Mullainathan, 2004 (BDM), ignoring the presence of serial correla-
tion leads to very unreliable inference. Wooldridge (2003) and other econometricians had already
been strongly suggesting the use of clustered standard errors. Motivated by the results in BDM,
using clustered standard errors has become a common method in empirical works. Alternatively,
Bertrand et al. (2004) also suggested using the blocks bootstrap method where each cluster is a
block. Take a state-level data for example, this method first stacks residuals for each state into
vectors and then randomly draws with replacement for each state a new residual vector from this
distribution, leaving residuals within each state unchanged. The bootstrap method is straightfor-
ward and easy to implement. However, both of these two methods lead to biased inference when
the number of clusters is small. Based on the work of BDM, Cameron, Gelbach, and Miller, 2008
(CGM) proposed a wild bootstrap-based procedure. Following CGM, applied researchers use the
wild cluster bootstrap method to obtain improved inference. Usually it is assumed that data are
independent in the cross section dimension, or are independent across clusters, but are correlated
in the time dimension. This chapter explores improved inference that is robust to cross-sectional
correlation of more general form.

In linear panel models with individual fixed effects, a recent paper by Gongalves (2011) has

provided both theoretical and simulation evidences indicating that the panel MBB, including the
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i.i.d. bootstrap, outperforms the standard normal approximation and closely mimics the fixed-b ap-
proximation proposed in Vogelsang (2012) when a standard nonparametric heteroskedasticity and
autocorrelation consistent (HAC) variance estimator is used to compute test statistics. Gongalves
and Vogelsang (2011) have also found similar results in pure time series models. Following the
approach of Kiefer and Vogelsang (2005) and Vogelsang (2012), in chapter 2 we have derived the
asymptotic distributions of test statistics based on the DD estimator and the DK standard errors,
assuming that the bandwidth is a fixed proportion of the sample size in time dimension. This new
fixed-b limiting distribution is different from the one proposed in Vogelsang (2012). Therefore, the
first-order asymptotic validity of the panel MBB needs to be examined in linear DD models.

The main goal of this chapter is to analyze finite sample properties of the panel MBB in linear
DD models with individual fixed effects using Monte Carlo simulations. Simulation results show
that the panel MBB performs very well, even when there is strong serial correlation. The bootstrap
is much more accurate than the standard normal approximation, and it closely follows the new
fixed-b approximation proposed in chapter 2. This improvement holds for the special case of
Bartlett kernel. Results would look similar for other kernels. The improvement even holds when
the i.i.d. bootstrap is used, despite potential serial correlation in the data. Simulations results also
show that if the block length is appropriately chosen, the panel MBB could outperform the fixed-b
approximation when there is strong serial correlation. Theoretical evidences are not provided in
this chapter, but can directly follow Gongalves (2011).

The remainder of this chapter is organized as follows. In the next section we describe the model
and test statistics. We also review the fixed-b asymptotic approximation. Section 3.3 describes
the bootstrap method. Section 3.4 reports simulation results which compare the standard normal
approximation, the fixed-b approximation and the bootstrap. Section 3.5 concludes. Appendix E

contains all figures.
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3.2 The Difference-in-Differences Model

3.2.1 The Model and DD Estimator

Consider a DD model with individual fixed effects given by

Yir=¢i+ ﬁl Treati + ﬁzDUt + ﬁ3 Treatl- -DU; + ZjpY+ug, (3.1)

i=1,2,....N, t=1.2,....T,

where y;; and u;; are scalars, ¢; denotes the unobserved individual heterogeneity. Treat; denotes
an indicator for individuals in the treatment group which takes one if individual i is in the treatment
group. Without loss of generality, we assume that the first kN individuals are in the treatment group.
Thus, Treat; = 1(i < kN). DUy denotes an indicator for post-policy-change time periods which
takes one after the policy change. That is, DUy = 1(r > AT) = 1(r > A), where the parameter A
is the relative date of the policy change within the time sample. Both k and A are assumed known.
z;; is a K x 1 vector of additional regressors.
The parameter of interest is 3, which evaluates the impact of a policy change on y. The
estimation method is the fixed-effects ordinary least squares (OLS) estimator, or the DD estimator
N T -1 N T
p= ( Y Y (i %) (X _’_‘i)/) Y Y (i — %) (i — i), (3.2)
i=1t=1 i=lt=1
where
Py bl T T
B=|Bs|> xit=|Trea;-DU;|, 5i=T"" Zlyib % =7"" leit'
t= t=

Y Zj

3.2.2 The DK Standard Errors

Driscoll and Kraay (1998) first proposed the HAC type robust variance estimator using the time

series of sums of all the individual observations at each time period. The idea is to first aggregate
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all the individual observations at each time period and then apply the HAC estimator to the time
series of the sums. The first step takes into account potential cross-sectional correlation in the data,
and the second step takes into account potential serial correlation in the data. Therefore, the DK
standard errors are robust to cross-sectional correlation of unknown form as well as heteroskedas-
ticity and serial correlation, assuming covariance stationarity and weak dependence in the time
dimension.

Let V;; = Xj;u;; and define V;; = X;il;; where X;; = X;; —X;, §;; = yj; — ¥, lij; are the OLS

A

residuals given by i1, = Jj; — %/ . Define ¥; = ):N_ Vi, and let =71 MR A A
" = / =1

Let Q =limp_, ., Var(T % % ]X\;] ¥,;). Following the approach of Driscoll and Kraay (1998),
the estimation of € is implemenie:dlvlvikll the nonparametric kernel HAC estimator given by

S e P

Q=To+ Y k)@;+T).

j=1

where k(x) is a kernel function such that k(x) = k(—x), k(0) = 1, |k(x)| < 1, k(x) is continuous at
x=0,and [ k2 (x) < oo. M is the bandwidth parameter. When Q is used as the middle term
of the sandwich form of the covariance matrix, we obtain the robust covariance matrix estimator

proposed by Driscoll and Kraay (1998)

3.2.3 Test Statistics and Asymptotic Distributions

Consider testing linear hypotheses about 3 of the form
HO . Rﬁ =Tr,

where R is a ¢ X (K +2) matrix of known constants with full rank with ¢ < (K+2) andrisagx 1

vector of known constants. In the case where ¢ = 1 we can define the ¢-statistic

_ Rﬁ—r

VRVR!

t
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The main focus is on the asymptotic behavior of #-statistics based on the DD estimator. For com-
parison purposes, ¢-statistics based on ¥ are also considered in models with additional regressors.

The traditional asymptotic approach relies on o) being a consistent estimator of 2. Consistency
of O requires that M — o as T — oo, but at a slower rate of convergence AT/I — 0. Under the
traditional approach, the z-statistic has a limiting standard normal distribution.

An alternative asymptotic theory has been proposed by Kiefer and Vogelsang (2005). They
model the bandwidth as a fixed proportion of the sample size. That is, M = bT with b a fixed
constant in (0, 1]. Because b is held fixed in this approach, this new alternative approach is usually
labeled fixed-b asymptotics while the traditional approach is labeled small-b asymptotics. Under
the fixed-b approach, o) converges to a random matrix rather than a constant. In Vogelsang (2012),
the random matrix depends on the kernel function and the bandwidth. In chapter 2, the random
matrix also depends on the date of the policy change, A, in DD models. As a result, the ¢-statistic
has a nonstandard limiting distribution. This limiting distribution reflects the date of the policy
change and the choice of kernel and bandwidth, but is otherwise pivotal. Fixed-b asymptotics
provide more accurate and reliable inference than small-b asymptotics. For a given date of the
policy change, kernel function and bandwidth, fixed-b critical values can be simulated.

In linear DD models with individual fixed effects as in chapter 2, we have shown that

NE (W)

VPE (b2, 0 )

=

where = denotes weak convergence, Wl’I< * is the standard Wiener process, and P’ (b, A, Q{: ) is

the random matrix that depends on the date of the policy change A, kernel function and bandwidth.
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In the special case of Bartlett kernel, k(x) = 1 — |x| for |x| <1 and k(x) = O for |x| > 1, we have

HF(r,),):IL(r>/'L)—(1—7L), NF(W):),W(I)—W(A):(A— )W(%),

o = oF (ra,wi™) = | “H (s, 2)dW i (s) - Wi (1) /OFHF@,A)ds
I F 2 1 F 2 =P
_/OH (s,2) ds(/() H" (s,1) ds) NT (W),

1
PF<b,A,QF>:§/O OF (2, W)QF (A, W) dr
1 r1-=b

ol 2T EAWOT b A W) 08 (45,2, W)Q" (14, W)

3.3 Bootstrap Methods

Another alternative to asymptotic approximations is the bootstrap. In order to obtain heteroskedas-
ticity, autocorrelation and cross-sectional correlation robust inference, we follow the panel MBB
approach proposed by Gongalves (2011). Motivated by the idea of Driscoll and Kraay (1998),
Gongalves (2011) proposed the panel MBB which is an extension of the standard MBB to linear
panel models. The panel MBB first stacks all the individual observations at each time period into
vectors and then applies the standard MBB to the time series of these vectors. Gongalves (2011)
has proved that this method is robust to heteroskedasticity, serial correlation and cross-sectional
correlation of unknown form when the fixed-effects OLS estimator is used, under the assumption
that NV is an arbitrary nondecreasing function of 7 and 7" — . Weak dependence in the time di-
mension is required for the MBB to be valid, but we allow the dependence in the cross section
dimension to be either weak or strong.
Define the bootstrap fixed-effects OLS estimator 3* as
N T -1 N T
=L Yo%) X X -shoho. 6

i=1r=1 i=1r=1
where
T T
5 =T_1t21y?; % =T_1121X?}-
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Note that (3.3) is calculated using the bootstrap data (y;kt , x;kt) The method to construct the pseudo-
data using the panel MBB is described below.

The first step is to run the pooled OLS regression to obtain the fixed-effects OLS estimator [§
and the residuals ii;;. Define the (K + 1) x 1 vector @;; = (zgt, fi;;)" which collects the additional
regressors and the OLS residual for each observation in model (3.1). Let oy = (a)i . a)é PEERES w]/Vt)/
denote the N(K + 1) x 1 vector containing the N cross-sectional observations at a given time period
t. Let] € N (1 <[ <T)be the block length, and let Bt,l = {a)t,wt_i_l,...,a)t+l_1} be the block
of [ consecutive observations starting at @y. For simplicity, assume 7 = hl. Note that [ =1 is just

T

the standard i.i.d. bootstrap case. The MBB randomly draws h = ] blocks with replacement from

the set of overlapping blocks {B{ ;,B5 ;,...,By_; +1 7} Thus the pseudo-data a)t* take the form

% * *

* _ o

* _ ko

where the indices 11,15, ..., I, are i.i.d. random variables distributed uniformly on {0, 1,...,7 —1I}.
Letx}, = (DU, Treat; -DUt,z;-"t/)’ . Pseudo-values y, are given by
vy =X B+, (3.4)
It is worth noting that the bootstrap data generating process (DGP) is a bit different from that
in Gongalves (2011). Gongalves (2011) uses the pairs bootstrap where the bootstrap data (y;-"t,x;-kt)
are directly drawn from the original data (y;;,X;;) without a first-step regression to obtain the OLS
residuals. The pairs bootstrap does not work in DD models because it may mix the pre and post
policy change values and thus lead to a biased estimator 3 *,
One might want to do the pairs bootstrap within the pre/post policy change subgroup. How-
ever, if testing the additional regressors is of interest, this method gives biased estimators for the

additional regressors. Therefore, a combination of the residual bootstrap and the pairs bootstrap
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is used in this chapter. Since DUy and T'reat; - DUy are indicators, they are not resampled in the
bootstrap procedure. Only the pairs of additional regressors and the residuals are resampled. New
pseudo-values of the dependent variable are computed using (3.4).

For example, consider a simple time series model with one random regressor z:

vt = U+ Bzt +uy.

We have
vt = B+ P + i, (3.5)
where {1 and ﬁ are the OLS estimators, and 7y is the OLS residual. Equation (3.5) holds for all

(vt,2¢). For each bootstrap sample (y;,z}),

i =R+ B it (3.6)
is always true. Equation (3.5) is the “population model” for the bootstrap sample, and I and fi are
the “population coefficients”. As usual in the bootstrap literature, let E* denote the expected value
induced by the bootstrap resampling, conditional on a realization of the original time series. We
have

1 I
E*(@af) = T Y =0,
t=1
because ﬁ;k is uniformly distributed on {i{,...,d} conditional on the original sample. The sec-

ond equation holds because of the normal equation of the OLS estimator. Similarly, we have

These two conditions guarantee that the OLS estimators 1™ and ﬁ* can consistently estimate fi
and ﬁ, respectively. This explains why the bootstrap would work intuitively. If we resample (y,zz)

within the pre/post policy change subgroup, the expected value E* (z;I< ﬁ;k ) becomes

1-A)T
E*(z*ﬁ*)zL)gztﬁ,Jr;( Z) 2y #0.
ro AT & (1-0)T =

This method causes z;" to be correlated with ﬁ;" and thus leads to a biased OLS estimator.

54



Next, consider model (3.1). Without loss of generality, we can set ¢; = 0 and ; = 0. We have
. . A
Yit = BoDUy + B3 Treat; - DUs 42, 7+ iy .

If we directly draw (yl-t,zgt) from the original data, it is possible that the pre/post policy change
values are mixed in the bootstrap sample. For example, suppose a original post-policy-change pair

(yl-s,zf S) appears as a pre-policy-change pair in the bootstrap data. Then in the original data we

have y;, = B + B3 Treat; + z; 7+ g, while in the bootstrap data y;; = zg JJHar. a7 is no longer
the original OLS residual 7; associated with (y;q, zg S). This will cause z;-'; to be correlated with ﬁ:‘t
and thus leads to a biased OLS estimator. Therefore, we have to resample (zét, ii;;) and re-construct
yjr using (3.4). In (3.4), we have

1
NT

i

E*( >I<A>I<):

thult thun« =0.

1M
> &Mﬂ

t

The OLS estimator of (3.4) can consistently estimate f3.

Given a bootstrap sample (y7,x%), let

it it
X * X S k A% &%k N %
Xip =Xt =X Vie = XUy Vi :-Zlviﬁ
1=
T /
* _ —1 2% ax
. =T : Vtvl—j’
t=j+1
Ax  Ax =1 J ek awl
QF =T+ Z KT+ ),
J=1
% NT**/ 1-*NT**/1
4 :T(Z Ziztiiﬂ Q (Z Ziltiit)
i=1t=1 i=1t=1
The naive bootstrap -statistic #* can be defined as
. RB* _p*

t

VRV*R'’
where r* = Rﬁ.

To obtain the bootstrap critical value 7, for a test with a significance level o, we generate B
bootstrap samples indexed by j and compute t;f. We sort t;f from the smallest to the largest and

then calculate ¢ = tf‘a( I where [a(B + 1)] is the integer part of o(B+1).

B+1
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3.4 Finite Sample Performances

This section compares finite sample performances of the standard normal asymptotic approxima-
tion, the fixed-b asymptotic approximation and the naive panel MBB using Monte Carlo simula-
tions. We first present results for the simplest DD model without additional regressors, and then
add one additional regressor into the model and report the results. The interesting patterns found
in Gongalves (2011) and Gongalves and Vogelsang (2011) hold in the simplest DD model. They
continue to hold after one additional regressor is added to the model.
The DGP used for simulations is very similar to the one used in Vogelsang (2012). The model
is
vit = ¢j+ By Treat; + By DUt + B3 Treat; - DUy + 73, Y + ujy, (3.7)

where

Wip = PUj +¢&;, ujp=0, g~ N(0,1), COV(Eit,EjS) =0 for t #s;

g =P 1te, o= 0, e;; ~N(0,1), cov(el-t,ejs) =0for t #s.

c; is the unobserved individual fixed effects. Only one additional regressor z;; is included and it
is uncorrelated with u;;. z;; and u;, are modeled as AR(1) processes with the same autoregressive
parameter. &;; and e;; have spatial correlation in the cross section dimension, though uncorrelated
over time. In particular, they are constructed in the following way. For a given time period ¢,
N i.i.d. standard normal random variables are placed on a square grid. At each grid point, €;;
is constructed as the weighted sum of the normal random variable at that grid point, the normal
random variables that are one step away to the left, right, up or down on the grid with a weight
6 and the normal random variables that are two steps away in the same direction with a weight
62, Hence, g, is a spatial MA(2) process with parameter 6 and the distance measure is maximum
coordinate-wise distance on the grid. e;; is constructed in a similar way.

We consider testing the null hypothesis that H : B3 = 0 against the alternative H; : B3 # 0
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with a significance level of 5% using the 7-statistic

A

B3
'IDD= — %>
se( 3)

where se(ﬁA_g) is the DK standard error estimate. In the cases where the additional regressor z;;
is included, we also consider testing the null hypothesis that H : ¥ = 0 against the alternative

Hj : v # 0 with a significance level of 5% using the ¢-statistic

where se(7) is the DK standard error estimate.

In all cases, 1, By, B3 and y are set to zero. Alsosetc; =0, 0 =0.5,k=0.5and A = 0.5 unless
otherwise specified. Note that we can set ¢; = 0 without loss of generality because the fixed-effects
OLS estimator is exactly invariant to ¢; = 0. Results are reported for sample sizes T = 50,250 and
N = 50,250 when there is no cross-sectional correlation, 7 = 50,250 and N = 49,256 when there
is spatial correlation. In the simulations, 1,000 random samples are generated for each pair of
(N,T). We consider three values for the AR parameter, p: 0.0, 0.3 and 0.9, and four values for
the bandwidth: » = 0.02, 0.1, 0.5 and 0.7. We only consider the Bartlett kernel. We reject the null
hypothesis whenever 1y > 1.1 or 17 > t.9, where 7.1 and ¢y are critical values. In particular,
f-1 =t = 1.961is used for the standard normal asymptotic approximation. For the fixed-b asymp-
totic approximation, #.1 is the 97.5% percentile of the fixed-b asymptotic distribution derived in
chapter 2, while 75 is the 97.5% percentile of the fixed-b asymptotic distribution derived by Kiefer
and Vogelsang (2005). For the naive panel MBB, both 7.1 and 7., are the 97.5% bootstrap per-
centile of the corresponding bootstrap 7-statistics. For each sample, the bootstrap tests are based
on 499 replications. In most cases, we consider the block length [ = 1, i.e. the i.i.d. bootstrap.
Results for the block length [ = 25 when 7' = 250 are reported in the case of spatial correlation.

All results are shown in figures. (See Appendix E.) Figures E.1 and E.2 illustrate the empirical
null rejection probabilities as a function of A, given that there is no cross-sectional correlation and
N =100, T =250, p =0.3 and b = 0.02 and 0.5, respectively. We consider five values for A: 0.1,

0.3, 0.5, 0.7 and 0.9. The standard i.i.d. bootstrap is used. In both figures, the standard normal
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asymptotic approximation leads to over-rejection. The empirical null rejection probabilities using
the standard normal asymptotic approximation show a U-shape with the bottom at A = 0.5. The
over-rejection problem gets worse when A approaches either O or 1. In contrast, the naive panel
MBB is more accurate than the standard normal approximation. The improvement is remarkable.
The larger the bandwidth b, the bigger the improvement. In fact, the bootstrap closely follows the
fixed-b asymptotic approximation, and thus reflects the date of the policy change A. The bootstrap
rejection probabilities do not vary much for different values of A.

Figures E.3—E.20 each contains two columns. Each column contains three graphs correspond-
ing to the three values of p. Every sub-figure illustrates the empirical null rejection probabilities
as a function of the bandwidth b given A = 0.5. Figures E.3-E.12 present results for the simplest
DD model without the additional regressor. Figures E.3, E.5, E.7 and E.9 present results for mod-
els without cross-sectional correlation, while Figures E.4, E.6, E.8, and Figure E.10-E.12 present
results for models with spatial MA(2) correlation.

Figures E.3 and E.5 focus on cases when N = 50 and N = 250, respectively. Figures E.4 and E.6
focus on cases when N =49 and N = 256, respectively. In each figure, the first column presents
results for T = 50 while the second column presents results for 7 = 250. Several interesting
patterns can be found here. For the standard normal approximation, rejection probabilities tend
to be much larger than 5%. The over-rejection problem gets worse when b increases. In contrast,
the i.i.d. bootstrap is always much more accurate than the standard normal approximation. The
larger the bandwidth b, the bigger the improvement. The improvement becomes larger as the
sample size T increases. This improvement holds for N = 50 and N = 250. The improvement
holds regardless of potential cross-sectional correlation in the data. The i.i.d. bootstrap tends to
closely mimic the fixed-b approximation for all DGPs, all (N, T') combinations, and all bandwidths,
despite potential serial correlation in the data. Looking at Figures E.4 and E.6, where spatial MA(2)
correlation exists, when p = 0, i.e. there is no serial correlation but cross-sectional correlation
only, the bootstrap rejection probabilities are very close to 5%. Even when there is strong serial

correlation, i.e. p = 0.9, if the bandwidth is large enough, the bootstrap rejection probabilities
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could still be around 10% or less.

Figures E.7-E.10 illustrate how different values of N would affect the improvement of the
i.i.d. bootstrap over the standard normal approximation. Figures E.7 and E.8 focus on cases when
T =50, and Figures E.9 and E.10 focus on cases when T = 250. In Figures E.7 and E.9, the
first column presents results for N = 50 while the second column presents results for N = 250.
In Figures E.8 and E.10, the first column presents results for N = 49 while the second column
presents results for N = 256. Across all DGPs, all (N,T) combinations and all values of p, no
significant improvement of the i.i.d. bootstrap over the standard normal approximation is observed
as N increases.

Figures E.11 and E.12 compare the performance of the bootstrap with different block lengths.
In each figure, the first column presents results for the block length / = 25 while the second column
presents results for [ = 1, the i.i.d. bootstrap. Figure E.11 focuses on the case when N =49 and
T = 250. Figure E.12 focuses on the case when N = 256 and T = 250. It is worth noting that when
there is strong serial correlation (e.g., p = 0.9), increasing the block length to 25 helps further
improve the inference, and the bootstrap is likely to outperform the fixed-b approximation across
all the bandwidths. But when there is no serial correlation in the data (p = 0), yet we set the
block length to be 25, the bootstrap can over-reject a little bit. When N = 49 and [ = 25, the
improvement over the fixed-b approximation is very small. However, when N increases from 49
to 256, significant improvement can be found in Figure E.12. The results suggest that if the block
length is appropriately chosen, the panel MBB can outperform the fixed-b approximation when
there is strong serial correlation.

Figures E.13-E.20 present results for the DD model with one additional regressor z. Since we
are interested in the performance of the bootstrap when the cross-sectional correlation exists, all
DGPs include the spatial MA(2) correlation in the cross section. Figures E.13-E.16 illustrate the
empirical null rejection probabilities for tests based on 83 and y. The first column shows results for
B3, and the second column shows results for y. (N, T) combinations (49,50), (49,250), (256,50),

and (256,250) are considered in Figures E.13-E.16, respectively. In other words, (large-T', small-
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N), (small-T, large-N) and (large-T', large-N) cases are included. Figures E.17-E.20 compare
the performance of the bootstrap with different block lengths. Figures E.17 and E.19 focuses on
(N,T) = (49,250). Figures E.18 and E.20 focuses on (N,T) = (256,250). The patterns for the
DD estimator found in the simplest DD model continue to hold after the additional regressor z
is added. Similar patterns also hold for inference on the z coefficient, which is consistent with

findings in Gongalves (2011).

3.5 Conclusion

In this chapter we use Monte Carlo simulations to investigate finite sample performances of the
naive panel MBB applied to heteroskedasticity, autocorrelation and cross-sectional correlation ro-
bust tests based on the DD estimator and the DK standard errors. Simulation results show that the
naive panel MBB outperforms the standard normal approximation in the special case of Bartlett
kernel. This improvement even holds for the i.i.d. bootstrap, despite potential serial correlation in
the data. The results suggest that the finite sample performance of the naive panel bootstrap closely
follow the performance of the fixed-b approximation to the first order. In addition, the results also
suggest that the bootstrap can be more accurate than the fixed-b approximation when appropriate
block length is chosen. Results would look similar for other kernels.

Goncalves and Vogelsang (2011) have shown that the naive MBB, including the i.i.d. boot-
strap, has the same limiting distribution as the fixed-b asymptotic distribution. For the special case
of a location model, Gongalves and Vogelsang (2011) have proved that the i.i.d. bootstrap can pro-
duce more accurate inference than the standard normal approximation depending on the choice of
the bandwidth and the number of finite moments in the data. Given the patterns in the simulations,
we can conjecture that the asymptotic equivalence of the panel MBB and the fixed-b distribution
holds in our settings. The improvement of the i.i.d. bootstrap over the standard normal approxi-
mation could also be extended to panel models and inference on the DD parameter. Theoretical

explanations can be included in future research.
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Appendix A

PROOFS IN CHAPTER 1

Proofs of Theorem 1.1 is provided.

Proofs of Theorem 1.1. First, we need to show that sample variance of x;; has a well-defined limit.

! N[rT]2 | N [Tl 5
ﬁigl tgl it~ NT igl t§1(“i+6t+éit)
| N [T]
= 7 X X (7 07 + &y + 2046+ 2085 + 26, Eyp)
i=1t=1
[rT] 1 N ’ I[I”T] rT] N 1 [rT]
e D W Y &2+ ) ¥ 6
T Ngi Tﬁﬂt zg}g zgi)(Tzit)
5 N[ﬂ? N [T
1=1t= i=1r=1

Ly r(E(uf) +E(67) + E(ED) +2E (1) E(6;) +2E (1:&if) +2E (6,Ejr)

where Q = E(,ulz) +E(9[2) +E(§g)
Next, we prove (1.15) and (1.16). We have to show that 6;0; is a zero mean covariance sta-

tionary process and thus it can be represented in the form of a MA(eo) process according to Wold’s
_ L[]
theorem. Therefore, 6; & satisfies a FCLT,and T 2 Y 6;6; = oW (r), where W (r) is a standard
t=1
2

Wiener process and 6 is the long run variance of ;0. It is straightforward to get

E(6;61) = E(6/)E() =
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Some algebra yields
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where Z]' ~ N(0,1), and W*(r) is a standard Wiener process. Z] is independent with W*(r)

because L;, ¥; are independent with 6;, &. Therefore,
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where Z| ~ N(0,1). Define the partial sums of ﬁt as

§ Z Vi,

where r € (0,1] and [rT] is the integer part of r7. The limiting distribution of S 7] is

| N [rT]

NTzs[rT] \/— Z Vi = \/—lgl t;} i€t
N

N [rT] A
- 1\1]T2 E«lt:lxn <8it_xit< —l3>>
1 N [1T] | N [T] )
Va2 zzltzlvn_ ]Wz;lt;lxit .\/N(ﬁ_@

where B(r) is a Brownian bridge.

Following the approach of Kiefer and Vogelsang (2005), rewrite the Q in terms of the partial

sums of v¢. Consider the Bartlett kernel

P RERCEY
X)) =
0 x| > 1,

Algebra from Hashimzade and Vogelsang (2008b) gives
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using the fact that S = 0 by the OLS normal equations. Note that in this setting, §; is a scalar and

M = bT. Continuing the algebra,
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Next, we prove (1.17) and (1.18) following the same steps as above.
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where Zy ~ N(0,1). Therefore,
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Appendix B

TABLES IN CHAPTER 1

Table B.1: Estimating coefficient, standard errors and null rejection probabilities with firm effects:

OLS and one-way clustered standard errors.

Source of regressor volatility

Ave(Bors)
Std(BoLs)
AVE(SEyy pire)
% Sigltw pite)
Avg(SEg)

% Sig(t)) 0%  25%  50%  75%

Source of error volatility 0% 1.0003  1.0004 1.0004 1.0004
0.0285 0.0283 0.0283  0.0283

0.0283  0.0283 0.0283  0.0283

[0.0108] [0.0098] [0.0086] [0.0078]

0.0282  0.0282 0.0282  0.0282

[0.0108] [0.0098] [0.0086] [0.0090]

25% 1.0001 1.0005 1.0007  1.0008
0.0284 0.0353 0.0411 0.0463

0.0283  0.0283  0.0283  0.0283
[0.0094] [0.0402] [0.0756] [0.1180]
0.0282  0.0352 0.0411 0.0462
[0.0090] [0.0108] [0.0092] [0.0104]

Continued on next page.
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Table B.1 (cont’d)

Source of regressor volatility

Ave(BoLs)
Std(Bpr.s)
AVE(SEW pite)
% Sigty pite)
Avg(SEé)

% Sig(té) 0% 25% 50% 75%

50% 1 1.0006 1.0008 1.0009

0.0283  0.0412 0.051  0.0592

0.0283  0.0283 0.0283 0.0283

[0.0110] [0.0762] [0.1598] [0.2262]

0.0282 0.0411 0.0508 0.0589

[0.0112] [0.0100] [0.0102] [0.0098]

75% 0.9999 1.0006 1.0008 1.0010

0.0283  0.0464 0.0593 0.0699

0.0283  0.0282 0.0282 0.0282

[0.0120] [0.1156] [0.2218] [0.3068]

0.0282  0.0462 0.0589 0.0694

[0.0112] [0.0090] [0.0088] [0.0102]
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Table B.2: Estimating coefficient, standard errors and null rejection probabilities with firm effects:

FM standard errors.

Source of regressor volatility

Ave(Brpp)
Std(Brpp)
AVe(SER )
% Sig(tppy) 0%  25%  S50%  75%

Source of error volatility 0% 1.0003  1.0004 1.0004 1.0004
0.0286  0.0284 0.0283  0.0283

0.0276  0.0275 0.0275 0.0275

[0.0322] [0.0304] [0.0282] [0.0284]

25% 1.0001 1.0006 1.0007  1.0008
0.0285 0.0355 0.0412 0.0463

0.0276  0.0267 0.0258  0.0248
[0.0304] [0.0766] [0.1302] [0.1902]

50% 1 1.0006 1.0008 1.001
0.0285 0.0414 0.0511 0.0593

0.0276  0.0258 0.0239  0.0218
[0.0316] [0.1336] [0.2498] [0.3662]

75%  0.9999 1.0006 1.0008 1.001
0.0284  0.0466  0.0594 0.07

0.0276  0.0249 0.0218 0.0183
[0.0290] [0.1928] [0.3660] [0.5134]
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Table B.3: Estimating coefficient, standard errors and null rejection probabilities with time effects:

OLS and clustered standard errors.

Source of regressor volatility

Ave(Bors)

SWd(Bors)
AVE(SEy pire)

% Sigltw pire)

Avg(SEfC)

% Sig(tl-) 0% 25% 50%  75%

Source of error volatility 0% 1.0005 1.0005 1.0005 1.0005
0.0285 0.0289 0.0298 0.0312

0.0283 0.0287 0.0294 0.0305

0.01 0.01 0.0098 0.0102

0.026 0.026 0.0259 0.0257

0.0404 0.0406 0.0476 0.0642

25% 1.0003 0.999 0.9978 0.9961
0.028 0.1518 0.2181 0.2831
0.0279 0.0281 0.0286 0.0295
0.0116 0.6208 0.7292 0.7904
0.0254 0.124 0.1739 0.2202
0.0396 0.0524 0.0734 0.0908

50% 1.0002 0.9984 0.9966 0.9942
0.0276  0.213 0.3073 0.3994
0.0275 0.0274 0.0277 0.0283
0.0096 0.7344 0.8128 0.8540

Continued on next page.
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Table B.3 (cont’d)

Source of regressor volatility

Ave(BoLs)
Std(Bpr.s)
AVE(SEw pite)
% Sigltw pire)
Ave(SEf)

% Sig(tL-) 0% 25% 50% 5%

0.0245 0.1732 0.2445 0.3103

0.0412 0.0526 0.074 0.0910

75% 1 0.9978 0.9957 0.9927

0.0272 0.2602 0.376 0.4889

0.0269 0.0266 0.0267 0.0269

0.0092 0.7856 0.853 0.8806

0.0235 0.2113 0.2989 0.3796

0.0364 0.052 0.0738 0.0916
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Table B.4: Estimating coefficient, standard errors and null rejection probabilities with time effects:

FM standard errors.

Source of regressor volatility

Ave(Brap)
Std(Bppp)
AVe(SER )

% Sig(tgpg) 0% 25% 50% 75%

Source of error volatility 0% 1.0006  0.9999 0.9995 0.9986

0.0285 0.0323 0.0405 0.0561

0.0275 0.0316  0.0389  0.0551

[0.0308] [0.0300] [0.0348] [0.0306]

25% 1.0003  0.9994  0.9999 0.999

0.0247  0.0285 0.0348  0.0492

0.0237  0.0275 0.0337 0.0476

[0.0344] [0.0300] [0.0272] [0.0318]

50% I 0999 0.9999 0.9999

0.0199 0.0232 0.0282  0.0391

0.0195 0.0225 0.0276  0.0394

[0.0258] [0.0296] [0.0268] [0.0236]

75%  0.9997 1.0001 1.0005 0.9998

0.0143 0.0166 0.0202 0.0281

0.0138  0.0159 0.0195 0.0277

[0.0322] [0.0292] [0.0308] [0.0280]
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Table B.5: Comparing performances of White, one-way cluster-robust and two-way cluster-robust
standard errors in the presence of both firm effects and time effects when N, T varies seperately.

For time effects with p = 0.

f t
N T Bors SEwnite SEc  SEc SEjouble
10 10 09999 02645 023 0241 0.181

10 25 09996 03735 0.209 0.271 0.137
10 50 0.9977 0.463 0.1875 0.346 0.1395
10 100 1.0004 0.566 0.166 0.4345 0.13
10 250 1.0014 0.694 0.1395 0.5915 0.1175
25 10 0.997 0.383 0.262 0.211 0.145
25 25 0.999 0.423 0.1945 0.192 0.0845
25 50 1.0013 0.52 0.1405 0.241 0.0775
25 100 1.0014 0.603 0.1295  0.35 0.0815
25 250 1.0005  0.7225 0.104 0.5205 0.08
50 10 0.9964 0.4565 0.3325  0.18 0.1295
50 25 1.0019  0.5295 0.2495 0.154 0.084
50 50 1.0001 0.554 0.1845 0.194 0.0755
50 100 1.0004 0.635 0.1385 0.2645 0.067
50 250 0.9998  0.7255 0.1065 0.4075 0.0715
100 10 1.0031 0.563 0.4395 0.166 0.133
100 25 1.002 0.604 0.336 0.131 0.0745
100 50 1.0012  0.6425 0.258 0.1485 0.078
100 100 1.0006 0.67 0.1865 0.1825 0.0665
100 250 0.9999  0.7485 0.108 0.291 0.0485
250 10 0.9962  0.7065 0.611 0.146 0.1315

Continued on next page.
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Table B.5 (cont’d)

N T ﬁOLS SEW hite SEg SEE‘ SEdouble
250 25 1.0016 0.7165 0.497 0.104 0.0825
250 50 1.0004  0.7315 0.3945 0.1015 0.0755
250 100 1.0011  0.7575 0.2935 0.1145 0.056
250 250 1.0003  0.7925 0.1735 0.176 0.061
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Table B.6: Comparing performances of White, one-way cluster-robust and two-way cluster-robust

standard errors in the presence of firm effects and AR(1) time effects when N =T = 10.

f t
P BoLs SEwnhite SE- SE- SEjouble
-0.95 0.9984 0.6215 0.644 0.5035 0.499

-0.9 1.0053 0.5855 0.599 0.451 0.442
-0.7 1.0059  0.3945 0.393 0.2895 0.265
-0.5 1.0065 0.283  0.27 0.2145 0.181
-0.3 0.9928  0.2275 0.2155 0.1815 0.1365
-0.1  0.996 0.203 0.1745 0.1715 0.1205
0 09995 0.2135 0.1805 0.1855 0.138
0.1 1.0066 0.219 0.1785 0.1875 0.1365
0.3 1.0029 0.2195 0.186 0.1995 0.142
0.5 09973  0.2395 0.2035 0.2075 0.163
0.7 1.0025 0.28 0.257 0.238 0.1985
0.9 1.0035 0.3465 0.3125 0.273 0.2365
0.95 0.992 0.424 0.403 0.348 0.316
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Table B.7: Comparing performances of White, one-way cluster-robust and two-way cluster-robust

standard errors in the presence of firm effects and AR(1) time effects when N = T = 50.

f t
P BoLs SEwnhite SE- SE- SEjouble
-0.95 0.992 0.927 0.9225 0.6525 0.6485

-0.9 0.9953 0.896 0.846 0.531 0.518
-0.7 1.0007  0.7655 0.5415 0.3105 0.2465
-0.5 1.0037 0.645 0.3295 0.2135 0.113
-0.3 1.0029 0.563  0.203 0.1725 0.0695
-0.1 0.9974 0.566 0.198 0.183 0.074
0 1.0015 0.565 0.1655 0.166 0.055
0.1 0.9979 05765 0.184 0.191 0.066
0.3 1.0019 0.5715 0.2025 0.176 0.074
0.5 09995 0.6255 0.2785 0.197 0.1125
0.7 0.9989 0.72 0.4825 0.2915 0.2215
0.9 1.0005 0.8505 0.766 0.4835 0.456
0.95 0.9966 0.887 0.8345 0.5525 0.536
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Table B.8: Comparing performances of White, one-way cluster-robust and two-way cluster-robust

standard errors in the presence of firm effects and AR(1) time effects when N = T = 250.

f t
P BoLs SEwnhite SE- SE- SEjouble
-0.95 0.9979 0.9665 0.954 0.6635 0.662

-0.9 0.9971 0.943 0.8865 0.5275 0.52
-0.7 0.9987 0.888 0.5755 0.276 0.219
-0.5 1.0003 0.853 0.3245 0.198 0.107
-0.3 0.9996 0.8235  0.21 0.1745 0.0675
-0.1 0999 0.7865 0.1815 0.1755 0.053
0 1.0002 0.788 0.1705 0.1635 0.049
0.1 1.0008 0.81 0.179 0.1695 0.0505
0.3 09991  0.8225 0.2195 0.1765 0.056
0.5 1.0005 0.811 0.3065 0.184 0.096
0.7 0.9998 0.892  0.557 0.2805 0.2205
0.9 1.0004 0.9495 0.881 0.536 0.5265
0.95 1.0063 0.976 0.9525 0.666 0.6635
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Table B.9: Comparing performances of one-way cluster-robust, two-way cluster-robust and DK standard errors in the presence of firm
effects and AR(1) time effects when N =T = 50 and N = T = 250. No firm dummies.

SEé SEé, SE jouble SEcZ’ouble SEpk Using Usual Fixed-b Critical Values
values of b values of b

N,T p A 2 3 4 5 6 7 8 1 2 3 4 5 6 7 .8

50 .0 .174 .186 071 123 188 .253 325 399 485 536 .622 160 .148 .137 .135 .132 .130 .133 .131
3 .224 179 .084 126 206 283 .348 419 472 545 .647  .138 .131 .126 .125 .121 .124 .120 .122
.6 374 245 151 150 229 297 355 422 470 551 .653  .125 .108 .100 .092 .091 .094 .095 .096
9 772 558 525 290 363 .443 491 544 613 .681 .781 310 .221 .190 .183 .180 .180 .179 .181

250 .0 .171 .172 .059 103 166 .236 .314 397 465 .530 .606 .155 .147 .143 .138 .138 .137 .136 .136
3 .198 .164 .060 097 184 .247 311 .381 .441 .516 589 .121 .116 .105 .104 .106 .110 .106 .106
.6 .402 229 159 140 216 277 319 373 423 476 546 .087 .084 .080 .082 .075 .075 .073 .076
9 .848 .520 509 171 246 316 .351 400 .443 509 599 .105 .086 .076 .073 .073 .072 .072 .070
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Table B.10: Comparing performances of one-way cluster-robust, two-way cluster-robust and DK standard errors in the presence of firm
effects and AR(1) time effects when N =T =50 and N = T = 250. Firm dummies.

SEg SEé SE jouble SE c,;’oub le SEpk Using Usual Fixed-b Critical Values
values of b values of b

NT p A 2 3 4 5 6 7 8 1 2 3 4 5 6 7 .8

50 .0 .631 .075 .082 182 259 302 316 .361 .402 445 537 068 .066 .062 .062 .060 .062 .060 .064
3 .674 .091 102 .184 250 310 .328 .376 .420 .469 .552 .067 .063 .055 .056 .059 .059 .058 .057
.6 .786 .191 .196 203 287 .334 .378 417 .458 .520 .603  .103 .090 .087 .082 .082 .085 .083 .083
9 933 516 525 328 439 496 526 .565 .587 .648 .727 283 .233 219 .202 .201 .198 .192 .190

250 .0 .830 .049 .050 152 217 255 292 337 368 412 500 .048 .048 .046 .047 .047 .048 .048 .048
3 .840 .072 073 150 219 253 305 334 368 .408 478 .048 .051 .050 .050 .048 .050 .049 .050
.6 .906 .190 192 163 242 293 329 362 410 454 530 .069 .064 .061 .064 .062 .060 .061 .058
9 980 .534 535 202 289 341 .394 420 479 542 625 120 .102 .092 .094 .090 .093 .092 .089
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Table B.11: Comparing performances of one-way cluster-robust, two-way cluster-robust and DK

standard errors in the presence of firm effects and AR(1) time effects. No firm dummies.

SEpk Using Adjusted Fixed-b Critical Values

values of b

NT »p SEé SEq SEgouple -1 2 3 4 5 6 7 8 9 10
50,50 .0 .174 .186  .071  .051 .049 .052 .052 .051 .049 .051 .055 .052 .053
3 224 179 084  .073 .064 .063 .059 .062 .062 .065 .068 .064 .066

6 374 245 151  .100 .085 .079 .072 .068 .074 .071 .073 .074 .075

9 772 558 525 310 .220 .188 .183 .180 .180 .179 .180 .181 .186

50,100 .0 .128 264  .066  .052 .053 .053 .051 .050 .054 .051 .055 .053 .055
3 150 251 067  .049 .049 .050 .047 .047 .047 .049 .048 .047 .048

6 273 258 121 070 .064 .063 .062 .056 .056 .058 .056 .055 .058

9 756 547 505 .187 .139 .121 .118 .121 .121 .118 .121 .123 .125

50,250 .0 .093 .403  .065  .043 .048 .046 .044 .044 .047 .049 .047 .044 .046
3 .090 380 .055 .041 .043 .040 .043 .041 .042 .042 .043 .043 .043

6 .188 350 121  .068 .059 .061 .060 .061 .064 .064 .064 .066 .067

9 713 535 472 .102 .089 .080 .081 .077 .080 .081 .084 .082 .083

100,50 .0 254 .137  .077 073 .064 .066 .065 .067 .065 .064 .061 .063 .066
3 288 .141  .083  .072 .061 .060 .059 .058 .060 .059 .059 .060 .060

6 498 224 176 .094 .082 .080 .074 .076 .080 .077 .080 .080 .082

9 831 565 545 299 218 .186 .173 .165 .170 .176 .179 .178 .181

100,100 .0 .179 .180  .063  .063 .066 .059 .060 .059 .059 .060 .058 .060 .061
3 .197 168  .073  .056 .056 .054 .054 .051 .051 .050 .055 .054 .056

6 401 246 156  .081 .072 .073 .074 .070 .071 .070 .072 .070 .072

9 .828 555 532 .187 .137 .124 .118 .117 .117 .115 .116 .115 .117
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Table B.11 (cont’d)

SEpk Using Adjusted Fixed-b Critical Values

values of b
NT p SEL SEL SEgpupe 1 2 3 4 5 6 7 8 9 10
100250 0 103 281 051 042 042 047 044 047 049 046 047 045 .047
3 137 296 061 053 052 048 047 044 047 044 047 045 048
6 266 273 117 050 052 049 051 051 053 053 053 052 .055
9 787 538 505 097 077 072 070 071 070 067 066 068 .069
25050 0 395 092 068 061 053 054 051 051 052 052 051 049 051
3 446 102 071 058 055 057 058 055 056 .055 059 058 .058
6 645 207 188 098 085 076 070 070 070 070 071 072 073
9 891 546 539 291 204 177 .168 .164 .163 .165 .166 .170 .171
250,100 .0 299 106 055 053 056 055 059 058 060 060 059 059 063
3 344 129 078 066 066 064 061 059 059 060 057 .058 .059
6 569 205 170 072 071 071 070 067 071 071 072 074 075
9 878 545 535 185 .145 128 .124 113 11§ .121 .123 .124 .125
250250 0 171 172 059 060 .053 051 050 051 053 051 054 053 .055
3198 164 060 049 046 043 045 045 049 048 046 047 .048
6 401 229 159 067 066 064 062 059 059 058 056 057 059
9 848 520 .509 103 086 .075 072 073 072 071 068 .072 .073
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Table B.12: Comparing performances of one-way cluster-robust, two-way cluster-robust and DK

standard errors in the presence of a firm effect. No firm dummies.

SEpg Using Usual Fixed-b Critical Values

values of b

S ot
N T SEL SEL SEgupe 1 2 3 4 5 6 1 8 9 10

10 10 .118 .365 158 330 301 .291 275 266 .270 .274 271 .270 .275
25 112 525 135 489 467 447 429 417 419 415 416 416 418
50 122 .623 134 598 572 558 553 .546 .539 .540 .537 541 .542
100 .117 .733 .140 716 .698 .673 .667 .658 .654 .652 .651 .652 .653
250 .114 .826 133 814 801 .787 780 .772 772 771 772 772 .T74

25 10 .075 .376 .103 344 319 296 284 278 279 .280 .279 .281 .284
25 .078 .513 .089 491 460 452 446 .440 435 436 .434 .433 .436
50 .073 .623 .082 607 589 571 555 .546 .544 541 .544 542 544
100 .076 .717 .086 705 .679 .659 .648 .635 .633 .632 .628 .626 .630
250 .084 .845 .090 831 .822 815 .811 .803 .801 .799 .799 .797 .799

50 10 .059 .370 077 336 313 .296 276 .268 .263 .268 .265 .264 .270
25 .068 .550 .076 521 495 473 458 446 437 438 439 437 442
50 .057 .626 .061 599 573 559 550 .537 .535 .534 .534 .532 .536
100 .069 .739 073 726 708 .696 .685 .678 .679 .675 .673 .674 .678
250 .059 .825 .061 816 .800 .796 .791 784 778 775 777 775 778

100 10 .058 .362 .076 331 313 307 292 284 283 .282 275 275 .278
25 .063 .526 .069 492 466 .448 429 420 414 410 412 413 417
50 .070 .628 073 612 596 575 561 .548 .545 .543 541 .540 .542
100 .057 .750 .060 J37 718 .698 .692 .682 .676 .674 .675 .673 .678
250 .059 .824 .060 813 .806 .798 .791 .784 780 .774 775 .776 .T78

Continued on next page.
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Table B.12 (cont’d)

SEpk Using Usual Fixed-b Critical Values

values of b
N T SEL SEL SEgppe 1 2 3 4 5 6 1 8 9 10
250 10 056 346 070 311 294 271 268 257 264 253 252 251 255
25 045 517 051 489 466 446 439 431 426 424 428 429 431
50 046 642 048 617 595 583 571 565 559 555 554 558 561
100 053 749 054 723 709 695 693 681 676 .672 672 672 673
250 053 847 054 822 806 795 785 782 776 775 774 777 779
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Appendix C

PROOFS IN CHAPTER 2

Proofs of the exact equivalence result, Proposition 2.1 and 2.3, Lemma 2.2 and 2.4, Theorem 2.1—

2.3 are provided in this Appendix.

Proof of the exact equivalence result. 1t is straightforward to obtain
L >
Y DU =A(1-A)T,
DU;DUg = DU;DUg — (1 — A)DU; — (1 — A)DUs + (1 — 1),

N 2
Z Treat; =k(1—k)N.

i=1
Define
kKN AT
n= AZ Zun Z Z”lt klz Z”lt+kz Z”lt
i=1r=1 i=1r=1 i=1t=1 i=1t=1
E=k2SNSY —kSKN SN — kSN SKN 1 SN KN — (SKN _ sV (SKN — ks
kN
N _ k
S = Z ujp, SN = Z Ujs
i—=1 i—=1
Recall r = M
s.e.(ﬁ3
Consider the individual dummies case. We have
N T | by, N T | By,
y ¥ " | DU, Treat; DU;) Z y "
i=1t=1 |Treat;- DU

i=1t=1 |Treat;- DU;
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Simple algebra yields

N T DU _ N1
(L ¥ " | DUy, Treat;- DUY))
i=1t=1 |Treat;- DUy
N T __, 1 Treat; | \ —1 I k|\—1
-( ¥ ¥ ou; ) =(ra-anr )
i=1t=1 Treat; Treat; k k
1 k —k

N T DU, N | 1 T N | 1 T
y ¥ " |w=Y Y DUy =Y, (A % wi-
i=1t=1 |Treat;- DUy i=1 |Treat; | t=1 i=1 |Treat; =1
N T N AT
AY Yup— X X uy
_ | i=1r=1 i=1t=1
kKN T kN AT
AY Yup— X X uy
i=1t=1 i=1t=1

Plugging (C.2) and (C.3) into (C.1), it directly follows
T AT
A B 1 k(A X Zluit_' )y Zluit)
ﬁ_ﬁ_lk(l—l)(l—k)NT i>kNt= i>kNt=
n

In particular, we have
A . n
P3—h3= Ak(1— ) (1 —k)NT

Next, consider the standard error matrix. We know

DU | SN
=Y ", =DU, |
! | it IN

i=1 |Treat;- DUy Sy
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Therefore,

SNsN  sNskN
VS stSY

T DU,
)3

1t=1 |Treat; .DU t

I MZ

— N
| [DU¢, Treat; -DU;]) (
i=1t=1 |Treat;- DUy

— — \—1
-[DU;,Treati~DUt]>

2
:<7Lk(1—7tl)(1—k)N> k1 —k 1

1 2
<7Lk(1—7t)(1—k)N> _* T—IZ?ZIZZZIKtSB\UtBﬁsg

Specifically, we have

R 1
s.e.(B3) = T STIIE tzl sg K;sDU;DU & . (C.5)

Now consider the individual and time dummies case. Similarly we can derive

-B3= ( Z Z Treatl DUt2> Z Z Treat; DU;ult
i=1t=1 i=1r=1
1 N T AT
Ak(1—2)(1— k)NTl.;l re“l( t;”lf t;”ﬂ)
n
Ak(1—A)(1—k)NT

For the standard error matrix, it is easy to show

N
vy = Z Treat; DUtult —DU;(SkN kng),

i=1
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and

T T T T
O=17'Y ¥ Kby =T71 Y Y K;sDUDU(SKN — ksl (sEN — kst
r=1s=1 r=1s=1
T T
—77 'Y Y KiDUDUSE.
t=1s=1
Thus, it follows
0= (L3 Y Frea? 50%) 28 1 " Y Ky DU DU
elfy) = (7 X, K Treard DUL) "0 =iy X, X KisDUIDUs

(C.7)
From above, we know the top and the bottom of # statistics are exactly equivalent in these two cases.
As aresult, ¢ statistics are exact equivalent in these cases. By symmetry, it is easy to show that this

exact equivalence result holds in the case when only time period dummies are included. 0

A 1
Proof of Proposition 2.1. \/T(B—B)= (T~ ZN 12 1 KirXi )_I(T 2Z§\lez:1fituit).Us—

ing Assumption 2.1 and 2.2, it can be shown that

_1 N T 1 T 1 r
T 23 ) Fuy =T 22( voofNg)ur =T 2 ) A-DUp-uy
i=1t=1 =1 =1
T T T »
—AT2Y [DU; 1Y DU( )rT<T_ y rTf(s)f(s)’rT>
=1 s=1 s=1
rTf(z)}
an [ Tae =1 (R as( [ R ds) ) aw
= an [ 1> 2) = [ R as( [ FRG) ds)Fe)|aw
1
_ A /0 aE (r, ) aw* (r)
N T T T,
T 'Y Y s#, =771y A-DUDU, A =G-T71 Y. DU;
i=lr=1 =1 =1
T T T .
61y [Du,_r—l Y. DUH(s) 7y (T_l y ”L'Tf(s)f(s)/”L'T)
=1 s=1 s=1
2
'TTf(t)}
1 / / —1 2
:>G-/O[ 1(r> 2) /F Vas( / F(s)F(s)'ds) F(r)| "ar
1
:G/O HF(r,l)zdr
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Therefore,

VT(B—B)= G/ HY (1) 2dr)~ 1A*/ HE (r,2)aw* (r) 0

Proof of Lemma 2.2. Using Assumption 2.1, 2.2 and Proposition 2.1, we obtain

1, 1[r7T] _l [rT] N
T 2S[rt]:T 2 Z vi=T 2 Z let”lt_ Z let i — [)’ B)]
=1 r=1i=1 r=1i=
1Tl N 1Tl N | /
=172y Y Huy -T2 Y Y Sty — (17 y 2%) (8- B)
t=1i=1 t=1i=1 t=1i=
N I ;-1
—AT 2Y DUuy—A-T 2 Y ugh(s) g (7 Z o f(s)E(s) TT>
=1 s=1 s=1
[rT] . [rT|
- erTf DU, — ( T ZDU,) T(f - B)
l‘
= A /HFsldW /dW /F (s)'ds)
/ F(s)HE (5,1)ds /HFM 2ds / HFs/l)2ds> INF(W )]
= A*QF (2, W)
because
1[[TI N _1[TI N T
T 2 Z’zltﬁzt:T 222@1 Z”ls Zf f(r)
t=1i=1 t=1li=1  s=1 =1
1Tl T N T |
=T 2 Y (Y Y 5iu b)) (Y £(s)t(s)") ™ (r)
t=1 s=1li=1 s=1
1T T T L
=T 2 Zl( ZlADUzusf(S) ) Zlf(S)f(S) ) 1)
=1 s= §=
17T T 7]
=A-T 2) usf Y, orf( Z orf(t)DU; O
s=1 t 1

Proof of Proposition 2.3. It directly follows from (2.7), Lemma 2.2 and the continuous mapping
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theorem that

.o Tl 1. 1o T-M-1 1, 1, IR O
Q=27 ZIT 28T 285 —3T 21 (T 28T 28, py+T 284y T 28)
= =
2 /
iz?/ A*OF (A, WO (r, A, W*) A¥ dr
1 1= * F ! *
oA [Q (A, WO (r+ 6,4, WY + 0F (r+b, A, W*)OF (1,4, W*) | A* ar
/
= A*PF (b, 4,07 )A* [

Proof of Theorem 2.1. Using Proposition 2.3, it directly follows that
1 1
R(T™ 21 Z %% ) (7 Zl Z %% )

-1 —1
=R(G /o uF (r2)2ar) " A*pF (b,/’L,QF)A* G /o u (r,2)%ar)

R
1
=PF(b,/l,QF(r,7L,R(G/O HF(r,?L)zdr)_lA*W*))
/
= AZ*PF(bJ?QF(I”,)L,WQ**))AZ* _ AZ*PF(b,/l,QF**)A** C.8)

Using Proposition 2.1, we have
R 1 -1 1 1
RVT(B—B) :>R<G/0 uF (r,2)%ar) -A*/O HE (1 2)dW* (r) = A2 /o HE (r, ) aw* (r)

(C.9)
With (C.8) and (C.9), it follows that

Wald = (RB —r)[RVR'] "V (RB - r
N

~—

o o —1NT~~/—1/_1
xtxlt) (T )3 intxit> R}

i=1r=1

= (RVT (B~ B)) [(le

1t

I~

-RVT(B - B)

A**/ HF A dW**( ))/[AZ*PF(b,l,QF A** 1A>I<>k/ HF A dW**()

)k o
= NE W) P (0,2,QF ) IV ()

NF(WI**)
Fxxy =

When g = 1, it directly follows that t =
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Proof of Lemma 2.4.

—1 L= / -1 4 / L -1 & /
7'y DU, =T y f(s)(Z ) Zf 7, =0 (C.10)
=1 s=AT+1 s=1

using the fact that ZtT:I f(t)i;t = 0. Hence, 7! Zl[r:Tl] Eﬁtigt =op(1). If r > A, then

7] 7]
! Y oud 1! ¥ 4
=1 t=A+1
. [rT] / . [rT] . 1
D S D M O (o ZrTf Yer)
t=A+1 t=A+1
T (C.11)

T_l Z TTf

(r—A P‘l /F dr/F ’dr (u{,o,...,0)>

= (r=A)(u} —uf) =0

If r <A, then
[rT]
=1y by, =0 (C.12)
=1
From (C.10), (C.11) and (C.12), it directly follows that

T] [rT|
'Y bud, =171 Y. (DU, - DU )z, L5 0 (C.13)
=1 =1
and thus
A A T »
Y Y mpz =) 7Y DUz, 0.
i=lr=1 i=1 |Treat; =1

]

Proof of Theorem 2.3. The K x 1 vector Z;;u;; can be written in terms of the N(K +1) x 1 vector

vy as follows

Zipj = (20 — DR (8))uje = (2 — bif(t)) — (Bif(r) — bif(1)) Yy = BV — (b; — b)) t(t)u;y

—1,z
=Apr— (1 (b= b)) o t(t)uyy
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Using this formula it is easy to show that

1 [T} 1 [rT]

T2 Y ZGuyg =T 2°Y (A — (v (b — b)) opf(t)uy)
1 [rT] 1 1 / 1 [rT|
=AT 2 Y w—T 2(VTtp (bij—b))-T 2} opf(t)uy
=1 t=1
1 [rT] 1 1 [rT]
=AT 2 Y vi+T 20p(1)-0p(1)=A;T 2 Y vr+op(1)
= A;AW (1) (C.14)

using Assumption 2.1 and 2.4. With Assumption 2.1, 2.3, 2.4, Lemma 2.4 and (C.14), simple

algebra gives

A N T N 1T
VT(B—B)= < YT ) xiﬂ‘,‘;) ( YT 2Y) xlt”lt)

i=1 =1 i=1 =1
N 1T , N T 17N L7
I R BT ik 57 2r21hituﬁ

—_ | 1= = 1= = 1= =
LI RN A S I SR SRR
o (o LR
1= = =t = 1= =

R GJjHE (rnA)2dr)~1 0

1
—~~

0 o1
(A®E)A Jg [1(r > L) — [1 F(s)/ds(J F(s)F(s)ds) 1R (r)]aw (r)
N
(glAi)AW(l)
(G Jg HE (r,2)%ar) =L (A* [ HE (r,2)aw™* (r)

(O~ 1EN  apAw (1)

Let

T
which is a (K +2) x (K +2) block diagonal matrix. Using the fact that ¥, 7;f(r)’ = 0, it follows
=1
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that

Tl N N [Tl T T .
Z Z Zjpljy = Z Z Zjt Z ”isf(s)/< Z f(s)f(s)/> f(z)
t=1i= i=1r=1 s=1 s=1
N [rT] T T
=X ( ) zfr)) X (o)) WED (€.15)
1= t= S= K=
N T
= Y op(1) (Zf 9) 'Y uists) 0

N
I
_
o7
I
_

The limits of the partial sums Ky [T 2re casy to obtain

1. TN /|
T 28,p =T 2}, ) Figlly— Z Zfztf VT(B-B)
t=1i=1 t=1i=
LT N TN TN
T2 % X hilwe =) | |T70 X X by T70 X ¥ e,
_ t=1i=1 . t=1i=1 t=1i=
LT N TN TN
T 2 Z Z th(ult ult) T Z Z thhlt T Z Z thilt
t=1i=1 r=1i=1 t=1i=1
VT(B—B)
AT HE (5, )W (s) — f W (s)F(s) (Jg F()F(s)ds) -1
> JGF <>HF<s A)ds|
( Z AjAW(r)
i=1

G [ HF (s,2)%ds 0 (G JJHE (1,2)2an TV A* [ HE (n0)aw* (r)
: | “1(E Agaw()
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The limit of Q can be written as

b B(r) B(r) B(r)
/ /
oF (r+b,4,W¥) oF (r+b,2,w*)| | 0F (A, W) )A**/d
. . r
B(r+b) B(r+b) B(r)
Py (b2, 0F B) P(b,B)

%k

_ |Ru RlZ] Gl H )%™t 0 | L PPB.A.00)  Pip(a, 0" B)

0 o1 Py1(b,2,0F B) P(b,B)
/
(G JaHE (,2)2an) ™10 | |Ryy Ry

0 0~ [Ry1 Ra

'A**/

Ry 1 (G J§ HE (n2)2dr)~1A* R0~ 1(ZN  4)A

Ry1 (G fg HE (r,2)2dr)~1A* Ryp0~ (2

i ADA

PEb,2,0F)  Pio(b.A,0F B)

Py, (b, A, 0" B) P(b,B)

/

| RI(G g HE (nA)dr) T IA* R0 HEN 4p)A

i=1

Ry (G JgHE (r2)2anTIA* Ry0~l(Zl

i

Aj)A

(C.16)
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RVT(B_py= | K11 12| |CRHE AP T g HE W)
R21 R22 Q_l(zg'vzlAi)AW(l)

If g =0 and Ry, =0, that is, we are testing restrictions on the DD estimator, then R = [Rl 1 0]
and the limits of (C. 16) and (C.17) are simpliﬁed as follows
1 1
(T Z Z XitX; > (T Z Z XitX; )
i=1t=1 =1r=1

~ Ry (G/O aE ()24 VA*PE (b, 2, 0F )A* (G/O HE (1, 0)2ar) "R |
=APF (0,2, 0)A

and

RVT(B—PB) = RH(G/OI HE (r,1)2dr) " 1A¥ /01 HE (1,0)aw* (r) = A4 /01 HE (1,2)dW (r)
where W(r) is a g1 X 1 vector of standard Wiener processes and /_\1 is the matrix square root of
the matrix

Rll(G/Ol HF(r,;L)2dr)—1A*A*'(G/Ol HE (r,2)2dr) 1R,
It directly follows that

Wald = (A /01 HE (r,2)aW () (A, PE (b,2,0F)A)) 1A, /01 aE (nA)aw (r)

(Y F . F “Fu—1 [1,F .
_(/OH (r,?L)dW(r))/(P (b,A,0")) /OH (r,A)dW (r)

If g1 =0 and Ry; = 0, that is, we are testing restrictions on the additional regressors, then R =

[0,R55] and the limits of (C.16) and (C.17) are simplified as follows

R p— 1
RT™), X Xitxt Q r Z Z xlt R
i=1t=1 i=1t=1
N o N N
=Ry (Y, 0) (Y ADAP(B,BIA (Y 4,) Z 0;) " 'R, = AyP(b,B)A,
i=1 i=1 =1 =1
. N N )
RVT(B-B)= Rzz(‘zl Q,')_l(.ZIA,-)AW(l) = RyWy(1)
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where Wy (1) is a gy x 1 vector of standard Wiener processes and /_\2 is the matrix square root of

the matrix

N N
_ A AL / —1 5/
Rop( Y 0~ (X ADAN (L 4 (X 00~ 'Ry
i=1 i=1 i=1 i=1
It directly follows that

Wald = (AyWg (1)) (AyP(b, B)Ay) ™LAy Wy (1) = Wy (1) Py(b,B) ™ 1Wy(1) O

R 1,

Proof of Theorem 2.4. The key step is to show that the limits of /7(8 —B) and T 2§ 7] take
the same form as in Theorem 2.3. Once these results are obtained, the rest of the proof closely
follows the proof in Theorem 2.3 and details are omitted. With both trend functions and time

period dummies in the model it follows that

N
Zirttyp = (zig — Dif(0))ujp — N~ ! 'Zl (zjr = ’3/]'f(f ))uis
J:
N
= ((zjp — bjE(r)) — (Bf(e) = BjE(1))Jujp =N Zl<<z jo =) = (@f(0) = (1)) uyy
]:
/ 1 N / 2/ /
= (zjy —byf(t) )ujy —N— 'Zl (zjp = b () Jujy — (bf(1) = bif(r) Jujy
J:
e Z (B () — b/;81)
N
=iyl Z vl' — (b —by) Bt uz + N7 21 (b;—b)E(0)uy
]_
= ([0,e®@1Ig] - N[O,l ®Ig)) (et @ Ing 1 Ve — (b — b;) f(t)uyy
N
+N 1 Zl(zs b)) (0)uy
J:
1.2 / 1 N 1.2 /
_Aex ex (7:; (bi—bi)) TTf(l)uit-f-N_ ZI(T; (bj—bj)) TTf(t)”it
]:

95



Using this formula it directly follows that

rT] 1 [rT]
Z leult—A T 2 Z V —-T 2 \/_’L' (bi_bi))/'T 2 Z ’L'Tf(t)ul't
t=1
1 1 [rT]
+N1 Z T 2(VTe ' (b;—b)) -3 Z gy (C.18)
j=l1 t=1
1l
2 Z Ve —1—0p iAfoexWex(r)
using Assumption 2.1 and 2.5. Usmg (C.13), we have
N N | N
T Z Z TreatiDUt~zl«t =T Z Z Treatl'DUt[Zit—Zit—ﬁ Z (th—th)]
t=1li=1 t=1i=1 j=1
TN TN
Y. Y Treat;DU(z; — ) —T N ) (zjr—2j)
t=1li=1 t=1"j=1
N _
. Z Treat;DUy
i=1
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=T7" ), ) TreatiDU(ziy—2;g) =T~ " )}, 5 ), (2js—2j;)
t=1i=1 t=1"" j=l1
-0
N N »
=Y Treat;,T™" Y DUt(zj — %) =0
i=1 t=1

Using Assumption 2.1, 2.3 and (C.18) it immediately follows that

VB p) = (G Ja HE (r2)2an)~1 0

0 o1
(A& A [111(r> 1) —F(r)/ (J] F(s)F(s) ds) ! fi F(s)ds|dW e (r)

N
(X AEIA“We ()
1=

@I HE 2 2ar) A L uE (g 2)aw e ()
e ApAewer()
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_L, Tl N
The result for T ZS[rT] is given next. From (C.15) we know Y ¥ (z;; — Zj)itjy = op(1).
t=1i=1
Similarly, it can be shown that

N [rT] N L T
Zl Z Z]t_fjt Z < Z Z]t_fjt)f@ )( Z f(s)f(s > Z ujsf(s)
t=1j=1 j=1 =1 s=1

N 1 T

-4

op(1 (Zf ) Z”ls

Direct calculation gives

1TI N

T 2 Z Z Zitlhjy

t=1i=1
=T 2 ) Y Ziglwy—tip— Y (wjp—ij)) =T 2}, Y, Zip(uyy —ityg)
t=1i=1 j=1 t=1li=1
1T N 1Tl N
=T 2 ) ) Zyuy—T 2} Z(Zit_zit_ﬁ ) (zjr = 2jr) )ity
r=1i=1 ] j
1T N

1 _1
=T 2 ) Y Zuz—T 2

r=1i=1 —1i=1 =1i=1" j=1
17T N

=T 2°) Y Zjuy+op(l)
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Therefore,

1, _l[rT] N B [rT] N ,
T 28, =T 2% ¥ Sy~ (T Y Y 5)VT(B—B)
(=1i=1 =1i=1
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T 2 Y Y Treat;DU;ii;
— t=1i=1
_L[T] N
T 2 Y ¥ Ziuj+op(l)
t=1i=1
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Y Y ZjTreat; DU Z y thzlt
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(X AF)AZWE(r)
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Appendix D

TABLES IN CHAPTER 2

Table D.1: 90% Asymptotic Critical Values for 75y (Bartlett Kernel) Without Trend.

b= 0.02 004 006 008 01 012 0.14 0.16 0.18 0.2

A=0.1 1506 1.728 1.953 2.148 2.325 2.485 2.624 2.744 2.864 2.975
0.2 1.380 1.476 1.571 1.663 1.752 1.843 1.940 2.024 2.107 2.185
0.3 1.335 1390 1.449 1.506 1.569 1.629 1.689 1.751 1.808 1.873
04 1322 1360 1.409 1.454 1.499 1.545 1.594 1.645 1.699 1.747
0.5 1.325 1370 1.415 1.458 1.506 1.547 1.599 1.647 1.697 1.750
0.6 1326 1374 1.411 1.457 1.501 1.556 1.606 1.658 1.712 1.768
0.7 1.342 1.402 1.463 1.526 1.586 1.649 1.714 1.774 1.838 1.899
0.8 1.377 1.469 1570 1.663 1.753 1.845 1.932 2.022 2.107 2.186
09 1505 1.732 1.953 2.143 2.318 2.472 2.611 2.745 2.862 2.970

= 022 024 026 028 03 032 034 036 038 04

A=0.1 3.076 3.174 3.269 3.357 3.442 3.529 3.605 3.686 3.768 3.847
0.2 2267 2345 2416 2.484 2.554 2.621 2.684 2.751 2.814 2.881
0.3 1.938 2.001 2.064 2.131 2.197 2.253 2313 2.369 2420 2.476
04 1.805 1.862 1.922 1978 2.036 2.094 2.147 2.200 2.257 2.313
0.5 1.801 1.857 1916 1.971 2.026 2.086 2.141 2.194 2.247 2.301
0.6 1.822 1.879 1.934 1990 2.045 2.105 2.158 2.214 2.272 2.329
0.7 1962 2.025 2.089 2.155 2.218 2.281 2.338 2.394 2.450 2.505
0.8 2.261 2.337 2.403 2473 2.540 2.607 2.670 2.737 2.800 2.862
0.9 3.067 3.175 3.274 3.371 3.449 3.534 3.619 3.703 3.788 3.867

Continued on next page.
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Table D.1 (cont’d)

b=

042 044 046 048

0.5

052 054 0.56 0.58

0.6

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

3.926
2.946
2.528
2.370
2.361
2.382
2.562
2916
3.943

0.62

3.997
3.009
2.578
2424
2416
2.440
2.619
2.979
4.034

0.64

4.087
3.071
2.633
2.482
2472
2.496
2.670
3.034
4.106

0.66

4.163
3.122
2.682
2.536
2.528
2.541
2.727
3.096
4.177

0.68

4.228
3.174
2.739
2.585
2.577
2.589
2.781
3.156
4.250

0.7

4.303
3.228
2.797
2.635
2.628
2.643
2.837
3.214
4.320

0.72

4.381
3.287
2.846
2.686
2.674
2.686
2.888
3.271
4.383

0.74

4.448
3.339
2.898
2.734
2.719
2.733
2.940
3.326
4.450

0.76

4.517
3.385
2.947
2.781
2.765
2773
2.986
3.384
4.526

0.78

4.585
3.443
2.992
2.830
2.812
2.824
3.028
3.432
4.591

0.8

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

4.656
3.490
3.038
2.876
2.852
2.869
3.073
3.486
4.661

0.82

4.725
3.546
3.088
2914
2.896
2912
3.120
3.537
4.732

0.84

4.796
3.602
3.130
2.954
2.942
2.961
3.164
3.588
4.800

0.86

4.859
3.656
3.174
2.994
2.983
3.000
3.209
3.630
4.873

0.88

4.923
3711
3.220
3.033
3.025
3.041
3.252
3.688
4.944

0.9

4.996
3.756
3.262
3.074
3.062
3.078
3.292
3.742
5.012

0.92

5.065
3.817
3.308
3.114
3.104
3.116
3.334
3.792
5.070

0.94

5.130
3.862
3.347
3.152
3.145
3.155
3.381
3.845
5.136

0.96

5.191
3.911
3.389
3.189
3.182
3.199
3.426
3.899
5.199

0.98

5.255
3.962
3.426
3.223
3.226
3.237
3.468
3.947
5.262

1.0

A=0.1
0.2
0.3
0.4

5.306
4.004
3.468
3.262

5.377
4.045
3.500
3.288

5.436
4.090
3.541
3.323

5.501
4.139
3.584
3.361

5.551
4.186
3.625
3.396

5.607
4.226
3.661
3.434

5.670
4.277
3.702
3.474

5.727
4.320
3.742
3.511

5.789
4.366
3.778
3.547

5.850
4411
3.817
3.582
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Table D.1 (cont’d)

0.5
0.6
0.7
0.8
0.9

3.267
3.277
3.507
3.989
5.319

3.298
3.318
3.544
4.039
5.388

3.337
3.354
3.584
4.082
5.449

3.376
3.384
3.630
4.124
5.522

3411 3.448
3.420 3.457
3.674 3.712
4.169 4.205
5.590 5.646

3.484
3.493
3.748
4.259
5.687

3.521
3.531
3.788
4.305
5.754

3.560
3.567
3.827
4.349
5.812

3.597
3.605
3.865
4.393
5.872
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Table D.2: 95% Asymptotic Critical Values for 77y (Bartlett Kernel) Without Trend.

b=

0.02 0.04 0.06 0.08

0.1

0.12 0.14 0.16 0.18

0.2

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

1.980
1.775
1.720
1.710
1.712
1.704
1.719
1.788
1.983

0.22

2.313
1.915
1.801
1.773
1.766
1.767
1.810
1.922
2.325

0.24

2.618
2.052
1.883
1.833
1.831
1.839
1.893
2.066
2.621

0.26

2.873
2.190
1.975
1.900
1.902
1.904
1.993
2.195
2.890

0.28

3.104
2.314
2.057
1.971
1.965
1.969
2.070
2.325
3.126

0.3

3.302
2.448
2.145
2.036
2.032
2.044
2.160
2.456
3.341

0.32

3.476
2.571
2.236
2.111
2.102
2.120
2.254
2.569
3.522

0.34

3.642
2.686
2.324
2.188
2.172
2.193
2.345
2.686
3.678

0.36

3.803
2.794
2.407
2.268
2.253
2.265
2.436
2797
3.830

0.38

3.952
2.902
2.498
2.345
2.324
2.346
2.525
2.907
3.986

0.4

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

4.093
3.005
2.579
2.423
2.399
2431
2.617
3.011
4.125

0.42

4.216
3.102
2.663
2.501
2470
2.501
2.703
3.114
4.254

0.44

4.330
3.194
2.750
2.581
2.551
2.574
2.790
3.219
4.376

0.46

4.460
3.289
2.843
2.662
2.632
2.656
2.874
3.301
4.503

0.48

4.574
3.379
2.931
2.745
2.710
2.732
2.967
3.391
4.622

0.5

4.681
3.471
3.009
2.816
2.781
2.808
3.044
3.482
4.737

0.52

4.791
3.564
3.086
2.893
2.863
2.887
3.124
3.572
4.857

0.54

4.891
3.644
3.156
2971
2.936
2.970
3.208
3.656
4.962

0.56

5.018
3.733
3.246
3.047
3.010
3.053
3.276
3.739
5.076

0.58

5.124
3.814
3.321
3.125
3.086
3.125
3.350
3.813
5.183

0.6

A=0.1
0.2
0.3

5.230
3.899
3.386

5.338
3.974
3.457

5.455
4.053
3.530

5.564
4.134
3.617

5.668
4.199
3.694

5.762
4.278
3.766

5.855
4.355
3.838

5.946
4.434
3.902

6.050
4.516
3.965

6.138
4.581
4.026
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Table D.2 (cont’d)

0.4
0.5
0.6
0.7
0.8
0.9

3.198
3.161
3.206
3.429
3.893
5.294

0.62

3.266
3.231
3.273
3.497
3.968
5.399

0.64

3.329
3.306
3.352
3.570
4.055
5.505

0.66

3.417
3.380
3.426
3.644
4.143
5.616

0.68

3.479
3.448
3.496
3.709
4.224
5.714

0.7

3.547
3.521
3.567
3.783
4.295
5.814

0.72

3.606
3.588
3.640
3.851
4.362
5.923

0.74

3.680 3.737
3.663 3.714
3.696 3.754
3910 3.974
4.444 4519
6.007 6.101

0.76  0.78

3.795
3.780
3.814
4.045
4.596
6.186

0.8

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

6.219
4.647
4.084
3.859
3.835
3.870
4.121
4.681
6.281

0.82

6.327
4.723
4.144
3917
3.893
3.926
4.187
4.755
6.370

0.84

6.419
4.787
4.207
3.980
3.945
3.987
4.239
4.814
6.467

0.86

6.507
4.878
4.264
4.034
3.989
4.052
4.289
4.895
6.551

0.88

6.593
4.950
4.322
4.094
4.045
4.090
4.353
4.970
6.639

0.9

6.669
5.017
4.368
4.134
4.096
4.143
4.415
5.041
6.743

0.92

6.757
5.095
4.417
4.184
4.138
4.190
4.462
5.115
6.840

0.94

6.849 6.944
5.150 5.214
4.477 4.533
4.226 4.279
4.186 4.235
4.235 4.282
4511 4.566
5.179 5.244
6.925 7.012

0.96 0.98

7.032
5.267
4.577
4.337
4.290
4.332
4.622
5.310
7.106

1.0

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

7.114
5.328
4.627
4.383
4.337
4.387
4.683
5.389

7.205
5.382
4.684
4.427
4.387
4.442
4.746
5.433

7.279
5.440
4.726
4.481
4.444
4.493
4.786
5.486

7.375
5.503
4.782
4.530
4.489
4.541
4.828
5.535

7.454
5.556
4.842
4.582
4.531
4.587
4.887
5.585

7.535
5.608
4.886
4.630
4.5717
4.633
4.941
5.639

7.612
5.667
4.938
4.682
4.635
4.680
4.995
5.707

7.701 7.780
5.723 5.783
4.985 5.036
4.729 4.774
4.687 4.735
4.721 4.772
5.044 5.099
5.768 5.829

7.862
5.840
5.087
4.823
4.781
4.821
5.149
5.886
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Table D.2 (cont’d)

09 7.189 7.274 7.349 7.432 7.502 7.590 7.660 7.732 7.810 7.890
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Table D.3: 97.5% Asymptotic Critical Values for 7)) (Bartlett Kernel) Without Trend.

b= 0.02 004 006 0.08 01 012 0.14 0.16 0.18 0.2

A=0.1 2440 2.861 3.245 3.560 3.835 4.075 4.289 4.490 4.674 4.852
0.2 2.132 2.328 2.508 2.684 2.850 2.987 3.137 3.281 3.421 3.555
0.3 2.054 2.165 2.289 2.409 2.532 2.642 2.7764 2.873 2.973 3.088
0.4 2.037 2.128 2.220 2.320 2.407 2.499 2.601 2.708 2.799 2.901
0.5 2.056 2.130 2214 2.286 2.375 2.469 2.566 2.669 2.766 2.865
0.6 2.040 2.120 2.206 2.296 2.401 2.490 2.577 2.675 2.792 2.902
0.7 2.064 2.186 2.300 2.427 2.530 2.641 2.765 2.878 2.982 3.098
0.8 2.140 2.325 2.506 2.687 2.868 3.016 3.163 3.311 3.451 3.594
0.9 2413 2.862 3.235 3.547 3.835 4.086 4.320 4.530 4.720 4.900

b= 022 024 026 028 03 032 034 036 038 04

A=0.1 5.032 5.195 5348 5500 5.651 5.791 5.947 6.083 6.221 6.370
0.2 3.695 3.813 3.935 4.045 4.164 4.274 4.403 4.515 4.619 4.714
0.3 3.199 3.312 3.424 3.536 3.648 3.751 3.855 3.961 4.064 4.153
0.4 3.003 3.095 3.198 3.306 3.397 3.501 3.608 3.713 3.800 3.893
0.5 2.958 3.060 3.163 3.268 3.360 3.456 3.560 3.658 3.744 3.829
0.6 2.994 3.087 3.190 3.293 3.397 3.499 3.590 3.692 3.783 3.883
0.7 3.210 3.317 3.426 3.530 3.641 3.749 3.849 3.946 4.047 4.146
0.8 3.726 3.867 3.985 4.103 4.205 4.341 4.459 4.587 4.685 4.778
0.9 5.090 5.276 5432 5.584 5.735 5.884 6.035 6.204 6.334 6.454

= 042 044 046 048 05 052 054 056 058 0.6

A=0.1 6509 6.636 6.773 6.896 7.035 7.150 7.256 7.362 7.483 7.610
0.2 4.811 4909 5.026 5.109 5.200 5.285 5.364 5.474 5.567 5.658
0.3 4.251 4.333 4.414 4502 4.589 4.671 4.769 4.842 4.941 5.021
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Table D.3 (cont’d)

0.4
0.5
0.6
0.7
0.8
0.9

3.988
3.916
3.980
4.238
4.889
6.601

0.62

4.076
4.006
4.068
4.341
4.997
6.749

0.64

4.176
4.099
4.149
4.442
5.120
6.880

0.66

4.259
4.211
4.237
4.542
5.215
6.997

0.68

4.334
4.302
4.315
4.646
5.300
7.106

0.7

4.423
4.390
4.395
4.728
5.394
7.237

0.72

4.502
4.466
4.479
4.812
5.496
7.368

0.74

4.595
4.546
4.548
4.890
5.590
7.509

0.76

4.672
4.631
4.638
4.966
5.670
7.645

0.78

4.756
4.690
4.716
5.047
5.762
7.773

0.8

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

7.725
5.749
5.098
4.822
4.770
4.772
5.115
5.859
7.882

0.82

7.852
5.833
5.191
4.885
4.846
4.854
5.205
5.944
8.009

0.84

7.981
5.923
5.264
4.942
4913
4.926
5.277
6.011
8.122

0.86

8.079
5.992
5.343
5.007
4.972
5.000
5.356
6.111
8.249

0.88

8.213
6.080
5.420
5.081
5.029
5.069
5.424
6.194
8.368

0.9

8.338
6.167
5.481
5.147
5.084
5.119
5.475
6.293
8.485

0.92

8.429
6.246
5.546
5.216
5.159
5.181
5.551
6.368
8.576

0.94

8.539
6.324
5.595
5.280
5.213
5.226
5.624
6.441
8.692

0.96

8.648
6.412
5.675
5.348
5.277
5.294
5.684
6.526
8.771

0.98

8.741
6.480
5.732
5.410
5.350
5.353
5.751
6.608
8.896

1.0

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

8.869
6.554
5.805
5.483
5.398
5.409
5.826
6.688

8.976
6.635
5.882
5.529
5.461
5478
5.888
6.759

9.066
6.696
5.944
5.577
5.526
5.541
5.958
6.827

9.151
6.763
6.003
5.640
5.588
5.603
6.032
6.896

9.272
6.841
6.074
5.706
5.647
5.663
6.083
6.968

9.361
6.920
6.123
5.766
5.718
5.728
6.142
7.048

9.440
6.993
6.189
5.829
5.775
5.787
6.213
7.097

9.549
7.068
6.255
5.889
5.837
5.842
6.275
7.171

9.633
7.151
6.316
5.953
5.899
5.898
6.341
7.246

9.729
7.228
6.380
6.014
5.958
5.959
6.405
7.319
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Table D.3 (cont’d)

0.9 8994 9.109 9.215 9317 9.415 9.506 9.602 9.696 9.790 9.881
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Table D.4: 99% Asymptotic Critical Values for 7)) (Bartlett Kernel) Without Trend.

b=

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2.952
2.586
2479
2451
2.446
2438
2474
2.588
2.962

0.22

3.546
2.838
2.649
2.563
2.537
2.546
2.630
2.860
3.569

0.24

3.998
3.092
2.799
2.690
2.646
2.674
2.793
3.090
4.053

0.26

4.375
3.305
2.959
2.808
2.747
2.794
2.959
3.312
4.436

0.28

4.716
3.522
3.117
2.950
2.871
2.924
3.107
3.527
4.782

0.3

5.015
3.725
3.297
3.066
3.003
3.059
3.243
3.741
5.101

0.32

5.287
3.906
3.443
3.213
3.144
3.212
3.389
3.936
5.387

0.34

5.556
4.103
3.604
3.357
3.266
3.324
3.530
4.136
5.629

0.36

5.809
4.259
3.754
3.492
3.391
3.462
3.689
4.286
5.884

0.38

6.073
4.424
3.884
3.629
3.505
3.597
3.844
4.472
6.113

0.4

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

6.308
4.592
4.031
3.744
3.627
3.719
3.989
4.613
6.344

0.42

6.506
4.731
4.167
3.876
3.756
3.829
4.141
4.781
6.550

0.44

6.702
4.907
4.295
4.013
3.895
3.962
4.260
4.938
6.713

0.46

6.923
5.061
4.444
4.120
4.038
4.071
4.409
5.065
6.927

0.48

7.099
5.224
4.594
4.244
4.168
4.195
4.536
5.228
7.155

0.5

7.313
5.382
4.733
4.383
4.304
4.339
4.680
5.377
7.305

0.52

7.505
5.512
4.842
4.546
4.412
4.465
4.800
5.528
7.481

0.54

7.681
5.600
4.973
4.675
4.541
4.590
4.927
5.683
7.671

0.56

7.832
5.740
5.080
4.791
4.666
4.709
5.029
5.823
7.857

0.58

7.992
5.894
5.202
4.915
4.770
4.831
5.149
5.965
8.026

0.6

A=0.1
0.2
0.3

8.148
6.020
5.324

8.336
6.144
5.444

8.522
6.273
5.559

8.659
6.383
5.664

8.783
6.522
5.766

8.923
6.639
5.863

9.078
6.747
5.931

9.188
6.857
6.080

9.352
6.977
6.169

9.508
7.087
6.275
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Table D.4 (cont’d)

0.4
0.5
0.6
0.7
0.8
0.9

b=

5.034
4.877
4.951
5.261
6.127
8.197

0.62

5.138
4.971
5.050
5.358
6.249
8.393

0.64

5.238
5.081
5.191
5.498
6.381
8.575

0.66

5.347
5.192
5.297
5.626
6.538
8.718

0.68

5471
5.302
5.387
5.725
6.667
8.857

0.7

5.567
5431
5472
5.865
6.775
9.021

0.72

5.665
5.527
5.587
5.977
6.871
9.170

0.74

5.773
5.631
5.686
6.106
7.011
9.316

0.76

5.880
5.711
5.777
6.198
7.109
9.456

0.78

6.029
5.797
5.849
6.265
7.199
9.597

0.8

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

9.700
7.204
6.391
6.081
5.873
5.940
6.357
7.308
9.750

0.82

9.871
7.293
6.467
6.146
6.002
6.019
6.463
7.413
9.872

0.84

9.996
7.406
6.546
6.222
6.102
6.105
6.548
7.516
10.025

0.86

10.115
7.515
6.659
6.348
6.182
6.194
6.637
7.628
10.184

0.88

10.288
7.598
6.780
6.416
6.283
6.280
6.768
7.739
10.305

0.9

10.405
7.717
6.870
6.499
6.368
6.359
6.848
7.872
10.430

0.92

10.606
7.818
6.975
6.558
6.428
6.460
6.933
7.985
10.620

0.94

10.750
7.932
7.039
6.646
6.488
6.538
7.018
8.124

10.755

0.96

10.861
8.024
7.100
6.723
6.551
6.623
7.089
8.191
10.895

0.98

11.013
8.128
7.172
6.806
6.621
6.685
7.171
8.264
11.003

1.0

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

11.118
8.198
7.260
6.889
6.725
6.758
7.249
8.395

11.259
8.305
7.364
6.968
6.813
6.826
7.346
8.458

11.408
8.404
7.461
7.036
6.861
6.879
7.413
8.524

11.569
8.451
7.541
7.099
6.936
6.970
7.507
8.633

11.711
8.537
7.639
7.190
7.010
7.038
7.591
8.733

11.775
8.636
7.723
7.260
7.085
7.120
7.655
8.814

11.905
8.719
7.785
7.324
7.168
7.197
7.730
8.913

12.014
8.808
7.863
7.399
7.237
7.277
7.824
8.998

12.098
8.887
7.944
7.487
7.307
7.353
7.900
9.089

12.221
8.982
8.014
7.560
7.380
7.427
7.976
9.184
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Table D.4 (cont’d)

09 11.170 11.242 11.364 11.519 11.671 11.737 11.831 11.946 12.111 12.236
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Table D.5: 90% Asymptotic Critical Values for 7y (Bartlett Kernel) With A Simple Trend.

b= 0.02 004 006 0.08 01 012 0.14 0.16 0.18 0.2

A=0.1 1438 1.591 1.736 1.881 2.015 2.136 2.247 2.349 2.446 2.547
0.2 1362 1.443 1.522 1.608 1.693 1.783 1.870 1.959 2.052 2.142
0.3 1.346 1.422 1.495 1577 1.660 1.748 1.824 1.904 1.991 2.076
04 1.364 1.440 1.520 1.599 1.681 1.757 1.837 1916 1.988 2.060
0.5 1.358 1.432 1.507 1.586 1.660 1.740 1.819 1.894 1.968 2.043
0.6 1.340 1.413 1.492 1.568 1.644 1.727 1.803 1.890 1.965 2.048
0.7 1360 1.431 1.513 1.592 1.669 1.762 1.844 1.930 2.008 2.094
0.8 1.366 1.443 1.526 1.616 1.699 1.789 1.881 1.975 2.067 2.158
0.9 1.439 1.600 1.752 1.887 2.018 2.142 2.250 2.356 2.455 2.550

b= 022 024 026 028 03 032 034 036 038 04

A=0.1 2.638 2.724 2.802 2.886 2.977 3.055 3.139 3.203 3.269 3.340
0.2 2.223 2302 2376 2443 2515 2.581 2.647 27715 2.769 2.822
0.3 2.156 2.232 2308 2377 2.448 2512 2.575 2.633 2.700 2.753
04 2.139 2.213 2280 2.344 2.395 2.450 2.506 2.558 2.607 2.647
0.5 2.112 2.168 2.223 2.280 2.327 2.383 2.426 2465 2.505 2.552
0.6 2.115 2.185 2.250 2.308 2.366 2.424 2.475 2.522 2.566 2.607
0.7 2.171 2.250 2.329 2.398 2.462 2.529 2.592 2.651 2.706 2.761
0.8 2.240 2.321 2401 2.478 2.545 2.616 2.674 2.736 2.793 2.849
09 2.651 2.742 2.838 2.920 3.002 3.078 3.152 3.226 3.306 3.375

= 042 044 046 048 05 052 054 056 058 0.6

A=0.1 3407 3.469 3.533 3.600 3.660 3.716 3.778 3.832 3.887 3.943
0.2 2.879 2.935 2990 3.034 3.085 3.137 3.180 3.228 3.272 3.316
0.3 2799 2.852 2.897 2943 2.988 3.030 3.082 3.117 3.170 3.221
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Table D.5 (cont’d)

0.4
0.5
0.6
0.7
0.8
0.9

2.686
2.596
2.652
2.810
2.900
3.439

0.62

2.731
2.632
2.697
2.855
2.948
3.506

0.64

2.779
2.664
2.746
2.904
3.003
3.575

0.66

2.826
2.704
2.795
2.950
3.054
3.639

0.68

2.873
2.739
2.844
2.996
3.103
3.698

0.7

2912
2.786
2.886
3.040
3.151
3.761

0.72

2.964
2.832
2.935
3.083
3.197
3.819

0.74

3.009 3.055
2.879 2.922
2977 3.019
3.132 3.182
3.249 3.293
3.871 3.921

0.76  0.78

3.096
2.973
3.061
3.226
3.338
3.982

0.8

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

3.996
3.360
3.268
3.140
3.017
3.103
3.281
3.381
4.033

0.82

4.043
3.408
3.313
3.191
3.063
3.144
3.327
3.428
4.084

0.84

4.095
3.457
3.368
3.233
3.103
3.193
3.374
3.476

4.141

0.86

4.147
3.501
3.407
3.282
3.153
3.246
3.426
3.524
4.191

0.88

4.193
3.556
3.452
3.329
3.193
3.285
3.481
3.573
4.243

0.9

4.251
3.600
3.502
3.372
3.238
3.333
3.532
3.625
4.292

0.92

4.304
3.657
3.548
3.419
3.281
3.378
3.587
3.674
4.349

0.94

4.362 4.410
3.700 3.747
3.602 3.644
3.465 3.511
3.320 3.362
3.424 3.466
3.629 3.678
3.722 3.771
4.398 4.453

0.96 0.98

4.466
3.800
3.691
3.555
3.400
3.509
3.724
3.816
4.507

1.0

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

4.524
3.847
3.738
3.596
3.442
3.550
3.771
3.856

4.576
3.894
3.785
3.638
3.483
3.593
3.810
3.908

4.629
3.934
3.834
3.677
3.522
3.636
3.854
3.953

4.685
3.980
3.879
3.719
3.562
3.677
3.905
3.992

4.732
4.025
3.928
3.761
3.599
3.717
3.949
4.043

4.779
4.068
3.972
3.801
3.635
3.757
3.993
4.083

4.842
4.112
4.020
3.841
3.674
3.795
4.036
4.129

4.894 4.942
4.158 4.201
4.063 4.104
3.882 3.924
3.717 3.755
3.832 3.874
4.079 4.120
4.176 4.216

4.992
4.242
4.145
3.965
3.792
3.913
4.163
4.262
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Table D.5 (cont’d)

09 4565 4.612 4.663 4.720 4.781 4.824 4.879 4.928 4.976 5.028
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Table D.6: 95% Asymptotic Critical Values for 7)) (Bartlett Kernel) With A Simple Trend.

b= 0.02 004 006 0.08 01 012 0.14 0.16 0.18 0.2

A=0.1 1.877 2.095 2306 2.497 2.679 2.840 2.986 3.143 3.279 3.408
0.2 1.755 1.864 1976 2.102 2.225 2349 2.467 2.601 2.734 2.859
0.3 1.739 1.843 1.953 2.066 2.181 2.294 2.414 2.526 2.646 2.757
0.4 1.755 1.873 1980 2.101 2.213 2.325 2.435 2.549 2.661 2.749
0.5 1.745 1.856 1.961 2.081 2.199 2305 2.409 2.524 2.619 2.713
0.6 1.735 1.844 1965 2.073 2.190 2.306 2.416 2.533 2.636 2.734
0.7 1.749 1.857 1971 2.092 2.203 2.323 2.433 2.556 2.675 2.792
0.8 1.748 1.866 1.989 2.115 2.247 2371 2.497 2.629 2.760 2.873
0.9 1.874 2.091 2.301 2.489 2.665 2.832 2982 3.142 3.278 3.414

b= 022 024 026 028 03 032 034 036 038 04

A=0.1 3.539 3.671 3.788 3.909 4.013 4.127 4.227 4.321 4.427 4.505
0.2 2.985 3.088 3.196 3.287 3.379 3.466 3.563 3.644 3.724 3.798
0.3 2.861 2.970 3.067 3.166 3.261 3.353 3.436 3.521 3.603 3.685
0.4 2.857 2945 3.030 3.117 3.195 3.271 3.345 3.413 3.476 3.550
0.5 2799 2.879 2957 3.030 3.115 3.173 3.238 3.310 3.371 3.432
0.6 2.832 2.925 3.022 3.108 3.184 3.256 3.328 3.398 3.465 3.540
0.7 2.898 3.003 3.112 3.211 3.298 3.383 3.458 3.542 3.622 3.696
0.8 2.979 3.089 3.186 3.276 3.363 3.444 3.529 3.609 3.690 3.763
0.9 3.555 3.687 3.799 3.921 4.022 4.124 4.228 4.324 4417 4.511

= 042 044 046 048 05 052 054 056 058 0.6

A=0.1 4601 4.678 4.757 4.842 4931 5.012 5.081 5.153 5.228 5.301
0.2 3.870 3.929 3.992 4.055 4.119 4.186 4.256 4.328 4.397 4.465
0.3 3.759 3.821 3.877 3.948 4.019 4.083 4.152 4.220 4.282 4.343
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Table D.6 (cont’d)

0.4
0.5
0.6
0.7
0.8
0.9

3.613
3.489
3.602
3.767
3.833
4.596

0.62

3.676
3.547
3.667
3.841
3.909
4.691

0.64

3.739
3.598
3.721
3911
3.972
4.776

0.66

3.800
3.648
3.780
3.977
4.042
4.864

0.68

3.867
3.706
3.852
4.043
4.118
4.938

0.7

3.940
3.766
3.911
4.108
4.189
5.001

0.72

3.996
3.824
3.980
4.168
4.246
5.083

0.74

4.059 4.127
3.893 3.948
4.043 4.107
4.231 4.307
4.304 4.369
5.160 5.232

0.76  0.78

4.196
4.010
4.164
4.371
4.429
5.305

0.8

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

5.374
4.534
4.401
4.257
4.072
4.233
4.439
4.505
5.392

0.82

5.447
4.501
4.470
4.324
4.136
4.301
4511
4.571
5.468

0.84

5.525
4.662
4.541
4.377
4.193
4.356
4.582
4.641
5.543

0.86

5.601
4.722
4.604
4.441
4.249
4.413
4.654
4.701
5.617

0.88

5.668
4.782
4.679
4.501
4.304
4.471
4.715
4.767
5.686

0.9

5.738
4.851
4.742
4.560
4.361
4.533
4.785
4.819
5.753

0.92

5.800
4914
4.815
4.615
4.410
4.592
4.859
4.890
5.820

0.94

5.874 5.952
4.984 5.044
4.886 4.945
4.675 4.733
4.465 4.523
4.648 4.707
4.927 4.985
4.949 5.020
5.892 5.978

0.96 0.98

6.027
5.114
5.011
4.788
4.577
4.764
5.045
5.087
6.049

1.0

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

6.114
5.166
5.071
4.841
4.631
4.822
5.112
5.150

6.167
5.231
5.129
4.899
4.683
4.872
5.179
5.208

6.238
5.289
5.186
4.961
4.735
4.926
5.237
5.281

6.314
5.341
5.242
5.019
4.789
4.981
5.298
5.337

6.379
5.405
5.302
5.078
4.838
5.037
5.359
5.396

6.456
5.475
5.368
5.131
4.892
5.089
5.415
5.458

6.513
5.539
5418
5.188
4.944
5.146
5.480
5.512

6.583 6.652
5.594 5.653
5475 5.535
5.243 5.293
4.995 5.048
5.198 5.256
5.537 5.591
5.567 5.624

6.723
5.711
5.590
5.349
5.098
5.310
5.649
5.681
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Table D.6 (cont’d)

09 6.128 6.176 6.261 6.317 6.390 6.468 6.531 6.589 6.651 6.722
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Table D.7: 97.5% Asymptotic Critical Values for 7)) (Bartlett Kernel) With A Simple Trend.

b= 0.02 004 006 0.08 01 012 0.14 0.16 0.18 0.2

A=0.1 2289 2.577 2.845 3.074 3.307 3.527 3.714 3.906 4.067 4.240
0.2 2.121 2.269 2420 2.587 2.756 2912 3.060 3.227 3.386 3.538
0.3 2.095 2.243 2.378 2.533 2.677 2.827 2.972 3.127 3.279 3.419
04 2.117 2.252 2393 2.551 2.696 2.852 3.009 3.162 3.301 3.421
0.5 2.073 2.227 2387 2.535 2.676 2.831 2.978 3.124 3.233 3.351
0.6 2.095 2.239 2.388 2.547 2.690 2.837 2.983 3.127 3.259 3.395
0.7 2.104 2.251 2394 2.541 2.683 2.834 2.971 3.125 3.270 3.414
0.8 2.111 2.267 2423 2591 2.752 2922 3.081 3.229 3.365 3.516
0.9 2.244 2538 27798 3.053 3.298 3.500 3.689 3.863 4.031 4.205

b= 022 024 026 028 03 032 034 036 038 04

A=0.1 4403 4559 4714 4.853 5.003 5.132 5.262 5.396 5.534 5.659
0.2 3.666 3.806 3.949 4.067 4.180 4.270 4.378 4.486 4.580 4.666
0.3 3.546 3.688 3.810 3.934 4.059 4.162 4.266 4.360 4.456 4.547
0.4 3.533 3.635 3.758 3.859 3.956 4.062 4.159 4.248 4.325 4.403
0.5 3.455 3.565 3.676 3.771 3.849 3.938 4.014 4.098 4.185 4.257
0.6 3.536 3.644 3.748 3.873 3.975 4.080 4.173 4.263 4.343 4.435
0.7 3.546 3.676 3.804 3.925 4.069 4.166 4.283 4.381 4.480 4.579
0.8 3.679 3.815 3.941 4.068 4.201 4.306 4.398 4.520 4.619 4.720
09 4374 4526 4.667 4.807 4.946 5.088 5.219 5.367 5.471 5.591

= 042 044 046 048 05 052 054 056 058 0.6

A=0.1 5778 5.872 5976 6.092 6.187 6.271 6.374 6.467 6.576 6.666
0.2 4754 4.852 4942 5.044 5.133 5.219 5.281 5.361 5.454 5.536
0.3 4.648 4.747 4.838 4911 4.979 5.071 5.158 5.244 5.331 5.401

Continued on next page.
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Table D.7 (cont’d)

0.4
0.5
0.6
0.7
0.8
0.9

4.491
4.339
4.506
4.676
4.810
5.695

0.62

4.584
4.403
4.592
4.762
4.909
5.813

0.64

4.658
4.474
4.659
4.859
5.002
5.910

0.66

4.753
4.542
4.750
4.952
5.094
6.011

0.68

4.844
4.608
4.828
5.032
5.186
6.113

0.7

4.920
4.688
4.901
5.106
5.277
6.213

0.72

5.003
4.770
4.978
5.185
5.338
6.297

0.74

5.082 5.173
4.854 4.929
5.058 5.156
5.251 5.328
5.422 5.502
6.382 6.475

0.76  0.78

5.250
5.004
5.241
5.413
5.578
6.570

0.8

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

6.748
5.606
5.492
5.338
5.079
5.334
5.509
5.669
6.664

0.82

6.845
5.679
5.567
5.409
5.153
5.407
5.601
5.756
6.759

0.84

6.947
5.759
5.655
5.483
5.234
5.466
5.686
5.838
6.850

0.86

7.041
5.833
5.749
5.555
5.320
5.545
5.769
5.926
6.962

0.88

7.136
5.932
5.833
5.650
5.393
5.629
5.866
6.018
7.052

0.9

7.229
6.020
5.917
5.718
5.468
5.689
5.958
6.078
7.128

0.92

7.336
6.117
5.998
5.806
5.535
5.765
6.037
6.146
7.237

0.94

7.433 7.519
6.204 6.297
6.075 6.143
5.886 5.949
5.611 5.684
5.829 5.900
6.117 6.186
6.220 6.314
7.332 7.421

0.96 0.98

7.618
6.365
6.208
6.018
5.750
5.965
6.270
6.399
7.520

1.0

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

7.698
6.438
6.288
6.088
5.824
6.039
6.332
6.485

7.786
6.527
6.361
6.154
5.890
6.112
6.417
6.570

7.894
6.602
6.434
6.234
5.946
6.182
6.488
6.618

7.967
6.661
6.508
6.309
6.015
6.255
6.553
6.702

8.062
6.719
6.578
6.376
6.072
6.317
6.634
6.784

8.165
6.788
6.653
6.448
6.141
6.388
6.701
6.854

8.261
6.861
6.720
6.502
6.204
6.453
6.774
6.926

8.327 8.414
6.933 7.005
6.795 6.872
6.577 6.642
6.263 6.327
6.522 6.588
6.848 6.919
6.997 7.060

8.500
7.068
6.941
6.708
6.395
6.657
6.989
7.134
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Table D.7 (cont’d)

09 7.586 7.675 7.783 7.888 7.971 8.052 8.116 8.211 8.296 8.382
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Table D.8: 99% Asymptotic Critical Values for 7)) (Bartlett Kernel) With A Simple Trend.

b=

0.02 0.04 0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

2.762
2.528
2.529
2511
2.482
2.532
2.490
2.533
2.746

0.22

3.157
2.742
2.734
2.704
2.688
2.728
2.664
2753
3.122

0.24

3.518
2.932
2.929
2912
2.882
2.924
2.851
2.969
3.459

0.26

3.795
3.158
3.125
3.108
3.080
3.133
3.052
3.171
3.774

0.28

4.071
3.344
3.316
3.286
3.275
3.289
3.261
3.389
4.051

0.3

4.369
3.555
3.529
3.502
3.454
3.505
3.469
3.587
4.340

0.32

4.605
3.763
3.731
3.697
3.641
3.705
3.637
3.804
4.591

0.34

4.852
3.946
3.923
3.895
3.818
3.900
3.835
4.016
4.831

0.36

5.075
4.157
4.125
4.052
3.964
4.098
4.029
4.211
5.059

0.38

5.293
4.393
4.282
4.243
4.116
4.230
4.229
4.419
5.254

0.4

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

5.533
4.567
4.462
4.399
4.262
4.384
4.408
4.592
5.459

0.42

5.737
4.726
4.619
4.523
4.398
4.539
4.568
4.764
5.657

0.44

5.915
4.858
4.773
4.643
4.517
4.682
4.703
4.926
5.835

0.46

6.041
5.015
4.924
4.790
4.650
4.839
4.868
5.090
5.977

0.48

6.262
5.132
5.068
4.905
4.770
4.940
5.011
5.236
6.161

0.5

6.423
5.290
5.230
5.011
4.878
5.062
5.154
5.345
6.320

0.52

6.589
5.442
5.381
5.122
5.007
5.180
5.305
5477
6.493

0.54

6.740
5.567
5.504
5.252
5.102
5.293
5.429
5.603
6.669

0.56

6.871
5.686
5.586
5.370
5.222
5.396
5.554
5.745
6.818

0.58

7.052
5.818
5.697
5.498
5.322
5.509
5.662
5.871
6.975

0.6

A=0.1
0.2
0.3

7.181
5.908
5.839

7.339
6.025
5.944

7.503
6.129
6.060

7.654
6.239
6.185

7.775
6.371
6.288

7914
6.459
6.386

8.041
6.584
6.525

8.159
6.709
6.655

8.290
6.814
6.774

8.429
6.928
6.868
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Table D.8 (cont’d)

0.4
0.5
0.6
0.7
0.8
0.9

5.573
5.427
5.616
5.777
6.016
7.096

0.62

5.669
5.522
5.737
5.899
6.111
7.230

0.64

5.788
5.634
5.844
6.020
6.208
7.370

0.66

5.875
5.733
5.992
6.138
6.311
7.509

0.68

5.982
5.817
6.098
6.254
6.442
7.647

0.7

6.086
5.937
6.207
6.360
6.556
7.748

0.72

6.214
6.026
6.290
6.454
6.690
7.872

0.74

6.333
6.147
6.399
6.566
6.818
7.989

0.76

6.440
6.264
6.499
6.668
6.911
8.112

0.78

6.532
6.362
6.619
6.796
7.036
8.230

0.8

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

b=

8.581
7.011
6.950
6.623
6.467
6.733
6.908
7.146
8.347

0.82

8.752
7.092
7.087
6.716
6.586
6.813
7.017
7.228
8.470

0.84

8.829
7.204
7.186
6.826
6.647
6.929
7.123
7.361
8.591

0.86

8.933
7.313
7.332
6.927
6.750
6.991
7.237
7.451
8.704

0.88

9.063
7.419
7.422
7.016
6.826
7.079
7.339
7.561
8.812

0.9

9.148
7.550
7.559
7.103
6.907
7.196
7.461
7.639
8.930

0.92

9.280
7.618
7.653
7.213
7.017
7.282
7.552
7.7157
9.020

0.94

9.402
7.713
7.751
7.281
7.103
7.390
7.643
7.860
9.114

0.96

9.548
7777
7.827
7.375
7.189
7.485
7.745
7.973
9.243

0.98

9.642
7911
7.902
7.465
7.283
7.551
7.849
8.080
9.348

1.0

A=0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

9.731
8.036
8.010
7.543
7.372
7.646
7.938
8.176

9.861
8.144
8.113
7.631
7.458
7.747
8.057
8.261

9.969
8.239
8.197
7.705
7.551
7.841
8.138
8.344

10.072
8.328
8.291
7.807
7.636
7.938
8.217
8.441

10.168
8.431
8.391
7.900
7.711
8.028
8.302
8.571

10.301
8.519
8.495
7.989
7.789
8.111
8.389
8.646

10.360
8.606
8.601
8.075
7.888
8.193
8.485
8.766

10.475
8.691
8.697
8.160
7.956
8.274
8.573
8.826

10.600
8.770
8.787
8.253
8.059
8.355
8.659
8.901

10.714
8.859
8.877
8.338
8.144
8.440
8.748
8.984
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Table D.8 (cont’d)

09 9.467 9.583 9.741 9.874 9.963 10.051 10.104 10.208 10.311 10.424
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Table D.9: Null Rejection Probabilities, 5% level, ¢y (Bartlett Kernel). No trend or additional

regressors. A = .5,k =.5. AR(1) error. Two-Tailed Test of Hp : B3 = 0.

N(0,1) CV Adjusted Fixed-b CV

IpK values of b IpK- values of b

NT p ot 02 06 1 4 7 10 .02 06 .1 4 7 10

10,10 .0 .102 .127 .127 .127 .276 .397 465 .111 .088 .070 .065 .067 .068

3 0.102 221 221 .221 .367 .470 .539 202 .173 .153 .120 .114 .115
.6 102 347 347 347 470 565 .617 328 298 .260 .189 .184 .178
9 102 503 .503 .503 .572 .659 709 485 451 .423 278 275 .281
10,50 .0 .105 .060 .076 .098 .272 .401 .469 .049 .040 .044 .041 .044 .041
3 .104 167 .127 .133 300 .422 488  .147 .084 .067 .056 .054 .056
6 102 344 225 207 .342 460 .533  .326 .172 .127 .088 .090 .082
9 101 .654 .503 .446 .508 .604 .651 .640 .447 .347 228 218 .217
10,250 .0 .093 .049 .068 .096 .254 .371 .443 .039 .040 .044 .046 .044 .039
3 .091 070 .078 .104 .262 .381 .448 .054 .048 .048 .050 .047 .046
.6 .089 123 .098 .116 .269 .386 .454 .104 .060 .066 .060 .054 .051
9 087 378 .216 .194 332 442 515 354 170 .131 .098 .092 .091
50,10 .0 .056 .113 .113 .113 .273 .381 .447 .096 .080 .068 .061 .060 .060
3 .057 213 213 213 354 472 537 195 .165 .142 .113 .107 .106
.6 .062 363 363 .363 .479 571 .626 342 .304 .267 .185 .186 .18l
9 .056 .508 .508 .508 .586 .658 .704 489 .453 420 .277 .281 .282
50,50 .0 .060 .068 .085 .112 .269 .395 466 .053 .051 .054 .052 .054 .050
3 .059 176 .136 .146 294 416 488 .156 .094 .076 .069 .066 .067
.6 .058 353 227 211 .348 .466 .535 .330 .181 .137 .098 .092 .093
9 057 .640 498 .443 506 .593 .647 .626 .452 .356 .225 216 .214

Continued on next page.
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Table D.9 (cont’d)

N(0,1) CV

Adjusted Fixed-b CV

IpK- values of b

IpK- values of b

NT p ot 02 06 1 4 7 10 .02 06 .1 4 7 10
50,250 .0 056 .054 .076 .096 247 .363 435 044 .045 .044 .048 .047 .042
3 056 .079 .085 .103 253 .366 440 .062 .053 .050 .049 .049 .045

6 057 .125 .102 .117 260 372 451 .108 .066 .058 .057 .058 .054

9 .056 370 224 200 320 435 510 345 .172 .125 .092 .091 .088

250,10 .0 .053 .112 .112 .112 278 .394 459 .102 .082 .064 .061 .060 .058
3 .055 216 216 216 356 .464 530 .198 .168 .144 .114 .111 .108

6 056 352 352 352 449 543 602 330 295 266 .195 .194 .192

9 050 .508 .508 508 .568 .656 .708 486 457 417 271 266 .265

250,50 .0 .057 .065 .083 .101 251 .375 445 .050 .049 .050 .046 .047 .046
3 058 .164 .126 .135 278 390 473 147 .085 .072 .064 .064 .062

6 .054 337 212 .195 326 442 517 316 .168 .127 .092 .090 .092

9 051 .654 .494 438 508 .599 .650 .638 440 345 224 212 211

250,250 .0 .048 .053 .074 .093 257 379 455 042 .045 .049 .044 .046 .048
3 .046 071 .081 .097 264 386 459 .060 .050 .051 .048 .049 .050

6 .048 .119 .099 .110 274 388 470 .103 .063 .064 .052 .054 .054

9 047 381 229 204 335 448 523 362 .171 .126 .091 .093 .091
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Table D.10: Null Rejection Probabilities, 5% level, 1y (Bartlett Kernel). No trend or additional

regressors. A = .5, k =.5. MA(2) spatial correlation in cross-section. 8 = 0.5. Two-Tailed Test of

H02ﬁ3:0.

N(0,1) CV Adjusted Fixed-b CV

tpK- values of b tpK- values of b

NT p oty 02 06 1 4 7 10 02 06 1 4 7 10

9,10 .0 .339 .110 .110 .110 .280 .396 .473 .101 .082 .069 .072 .070 .068
3 .339 221 221 221 368 .471 .537 200 .175 .152 .123 .122 .123
.6 346 361 .361 .361 .456 .556 .613 .341 .310 .276 .202 .199 .197

9 334 484 484 484 556 .654 702 470 430 .402 271 .267 .263
9,50 .0 .340 .064 .076 .094 .255 .366 .441 051 .047 .045 .050 .045 .042
3 .337 165 118 .127 274 392 461 .148 .080 .070 .066 .064 .063
.6 337 333 215 .194 327 433 503 310 .170 .127 .093 .089 .091
9 342 644 484 428 500 .588 .644  .628 .430 .339 .220 .219 .210
9,250 .0 .368 .059 .072 .094 .262 .386 .460 .050 .048 .048 .052 .046 .048
3 368 078 .081 .099 .270 .390 .467 .064 .052 .050 .053 .048 .050
.6 369 126 .099 .112 280 .401 472 .111 .063 .060 .056 .053 .054
9 366 390 .232 .206 .343 .456 .527 370 .178 .129 .092 .087 .088

49,10 .0 .577 .108 .108 .108 .274 400 .482 .094 .072 .056 .055 .057 .053
568 219 219 219 370 489 .553 200 .165 .134 .104 .101 .099
566 342 342 342 472 574 635 318 .288 .258 .186 .181 .180
562 508 508 .508 574 .659 .704 490 .458 426 .278 .277 .276

ol o W

49,50 565 .057 .073 .095 260 .380 .455 .049 .045 .048 .050 .051 .050
557 .162 114 130 .292 409 478  .146 .079 .066 .065 .064 .064

.6 553 341 218 .199 .342 449 519 319 .171 .122 .094 .092 .092

Continued on next page.
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Table D.10 (cont’d)

N(0,1) CV

Adjusted Fixed-b CV

IpK- values of b

IpK- values of b

NT p oty 02 06 .1 4 7 10 02 06 .1 4 7 10
9 566 .654 501 441 516 .603 .656 642 445 349 219 209 204
49250 .0 578 056 072 .092 268 379 452 047 .045 .045 .050 .050 .050
3 572 .077 081 .098 273 384 458 064 .049 .050 .054 .053 .050
6 .572 .129 .100 .118 280 .394 465 .113 .064 .060 .060 .058 .057
9 580 387 226 202 333 455 .524 361 .178 .125 .096 .092 .093
256,10 .0 .612 .125 .125 .125 272 .385 460 .110 .090 .074 .070 .068 .069
3 619 222 222 222 350 465 .528 200 .171 .149 .114 .114 .113
6 621 350 350 350 .454 .557 622 328 296 262 .190 .185 .182
9 636 .508 .508 .508 569 .662 712 488 451 422 268 271 .266
256,50 .0 .639 .060 .072 .092 269 387 469 .047 .044 .043 .040 .042 .042
3 635 .174 123 .129 302 415 489 151 .081 .068 .058 .060 .052
6 631 370 232 208 348 464 .532 344 .178 .131 .096 .092 .092
9 635 .662 498 441 503 .600 .656 640 446 358 228 217 219
256,250 .0 .623 050 .074 .093 252 384 460 .038 .039 .045 .051 .049 .050
3 625 071 .082 .100 259 387 464 058 .048 .051 .053 .053 .055
6 626 .125 .097 .110 270 395 468 .104 .062 .059 .059 .058 .058
9 624 373 216 .193 333 437 510 350 .165 .126 .099 .093 .094
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Table D.11: Null Rejection Probabilities, 5% level, 1 (Bartlett Kernel). No trend or additional

regressors. Time dummies. A = .5, k = .5. AR(1) error. Two-Tailed Test of Hy : B3 = 0.

N(0,1) CV Adjusted Fixed-b CV

IpK values of b IpK- values of b

NT p ot 02 06 1 4 7 10 .02 06 .1 4 7 10

10,10 .0 .102 .127 .127 .127 .276 .397 465 .111 .088 .070 .065 .067 .068

3 0.102 221 221 .221 .367 .470 .539 202 .173 .153 .120 .114 .115
.6 102 347 347 347 470 565 .617 328 298 .260 .189 .184 .178
9 102 503 .503 .503 .572 .659 709 485 451 .423 278 275 .281
10,50 .0 .105 .060 .076 .098 .272 .401 .469 .049 .040 .044 .041 .044 .041
3 .104 167 .127 .133 300 .422 488  .147 .084 .067 .056 .054 .056
6 102 344 225 207 .342 460 .533  .326 .172 .127 .088 .090 .082
9 101 .654 .503 .446 .508 .604 .651 .640 .447 .347 228 218 .217
10,250 .0 .093 .049 .068 .096 .254 .371 .443 .039 .040 .044 .046 .044 .039
3 .091 070 .078 .104 .262 .381 .448 .054 .048 .048 .050 .047 .046
.6 .089 123 .098 .116 .269 .386 .454 .104 .060 .066 .060 .054 .051
9 087 378 .216 .194 332 442 515 354 170 .131 .098 .092 .091
50,10 .0 .056 .113 .113 .113 .273 .381 .447 .096 .080 .068 .061 .060 .060
3 .057 213 213 213 354 472 537 195 .165 .142 .113 .107 .106
.6 .062 363 363 .363 .479 571 .626 342 .304 .267 .185 .186 .18l
9 .056 .508 .508 .508 .586 .658 .704 489 .453 420 .277 .281 .282
50,50 .0 .060 .068 .085 .112 .269 .395 466 .053 .051 .054 .052 .054 .050
3 .059 176 .136 .146 294 416 488 .156 .094 .076 .069 .066 .067
.6 .058 353 227 211 .348 .466 .535 .330 .181 .137 .098 .092 .093
9 057 .640 498 .443 506 .593 .647 .626 .452 .356 .225 216 .214
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Table D.11 (cont’d)

N(0,1) CV

Adjusted Fixed-b CV

IpK- values of b

IpK- values of b

NT p ot 02 06 1 4 7 10 .02 06 .1 4 7 10
50,250 .0 056 .054 .076 .096 247 .363 435 044 .045 .044 .048 .047 .042
3 056 .079 .085 .103 253 .366 440 .062 .053 .050 .049 .049 .045

6 057 .125 .102 .117 260 372 451 .108 .066 .058 .057 .058 .054

9 .056 370 224 200 320 435 510 345 .172 .125 .092 .091 .088

250,10 .0 .053 .112 .112 .112 278 .394 459 .102 .082 .064 .061 .060 .058
3 .055 216 216 216 356 .464 530 .198 .168 .144 .114 .111 .108

6 056 352 352 352 449 543 602 330 295 266 .195 .194 .192

9 050 .508 .508 508 .568 .656 .708 486 457 417 271 266 .265

250,50 .0 .057 .065 .083 .101 251 .375 445 .050 .049 .050 .046 .047 .046
3 058 .164 .126 .135 278 390 473 147 .085 .072 .064 .064 .062

6 .054 337 212 .195 326 442 517 316 .168 .127 .092 .090 .092

9 051 .654 .494 438 508 .599 .650 .638 440 345 224 212 211

250,250 .0 .048 .053 .074 .093 257 379 455 042 .045 .049 .044 .046 .048
3 .046 071 .081 .097 264 386 459 .060 .050 .051 .048 .049 .050

6 .048 .119 .099 .110 274 388 470 .103 .063 .064 .052 .054 .054

9 047 381 229 204 335 448 523 362 .171 .126 .091 .093 .091
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Table D.12: Null Rejection Probabilities, 5% level, 1) (Bartlett Kernel). Trend. No additional

regressors. A = .5,k =.5. AR(1) errors. Two-Tailed Test of Hy : B3 = 0.

N(0,1) CV Adjusted Fixed-b CV
IpK values of b IpK- values of b
N, T P toyus 02 06 .1 4 g 1.0 02 .06 .1 4 7 1.0

10,10 .0 .092 .186 .186 .186 .331 .414 479 .168 .122 .091 .081 .078 .079
098 215 215 215 .354 432 494 192 .140 .104 .085 .080 .080
089 212 212 212 351 426 489 .192 .143 .116 .087 .084 .085

3
6
9 .090 210 .210 .210 .328 .386 .447 .188 .144 .105 .070 .069 .070
0

10,50 100 .070 .102 .140 .312 401 477 .056 .057 .056 .049 .051 .053
3 .100 .163 .140 .161 .333 .423 486 .139 .086 .076 .067 .064 .062
6 .102 315 211 212 365 .444 512 282 .134 .104 .080 .084 .083
9 110 495 336 .300 .401 .470 .538 471 .243 .152 .098 .095 .094
10,250 .0 .102 .068 .096 .133 .307 .392 460 .056 .048 .050 .050 .052 .052
3 .102 087 .106 .138 .308 .398 462 .073 .056 .052 .050 .052 .052
.6 107 135 .124 155 .322 408 476 .116 .066 .060 .055 .058 .057
9 095 .349 220 215 361 .448 522  .326 .135 .100 .083 .081 .082
50,10 .0 .053 .180 .180 .180 .328 .406 472 .160 .119 .094 .074 .064 .065
3 .054 207 207 207 341 426 487 190 .147 .116 .089 .086 .087
.6 .057 220 .220 .220 .340 .417 476 .201 .155 .120 .088 .086 .086
9 .060 219 .219 219 338 .400 453 .196 .149 .112 .077 .072 .072
50,50 .0 .063 .077 .108 .142 .303 .406 .475 .066 .057 .060 .059 .058 .059
3 .063 165 .146 .170 .328 .422 488 .142 .085 .075 .067 .069 .071
.6 .066 314 226 .222 .364 .450 515 286 .137 .099 .080 .080 .081
9 .058 497 333 .288 .399 475 539 472 .238 .146 .098 .096 .097
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Table D.12 (cont’d)

N(0,1) CV

Adjusted Fixed-b CV

IpK- values of b

IpK- values of b

NT p ot 02 06 1 4 7 10 .02 06 .1 4 7 10
50,250 .0 .058 .069 .106 .138 .316 .402 476 .055 .055 .054 .048 .051 .048
3 058 .094 .119 .144 322 410 475 .076 .060 .059 .053 .054 .052
6 054 .143 .131 .156 330 419 484 121 .072 .067 .058 .059 .058
9 056 346 223 212 356 441 511 324 .138 .098 .078 .073 .075
250,10 .0 .054 200 200 200 .356 434 488 .177 .131 .098 .085 .083 .082
3 .057 226 226 226 363 442 512 205 .158 .123 .095 .091 .091
6 055 228 228 228 360 439 .502 209 .159 .125 .090 .087 .086
9 050 214 214 214 335 408 470 .189 .144 .112 .078 .073 .070
250,50 .0 .052 .077 .112 .145 318 406 473 .062 .060 .052 .055 .056 .053
3 055 .168 .152 .176 340 426 490 .150 .088 .076 .062 .064 .063
6 .051 312 212 214 365 450 526 284 .137 .105 .081 .079 .080
9 044 494 329 291 390 472 .538 468 228 .146 .097 .095 .095
250,250 .0 .048 .068 .105 .141 312 414 486 .053 .055 .055 .057 .052 .052
3051 .090 .117 .151 314 415 499 076 .059 .056 .056 .054 .054
6 .051 .146 .136 .169 320 422 .499 .123 .068 .064 .060 .063 .062
9 050 343 212 212 362 443 514 318 .135 .099 .081 .081 .084

130



Table D.13: Null Rejection Probabilities, 5% level, 1) (Bartlett Kernel). Trend. No additional

regressors. A = .5, k =.5. MA(2) spatial correlation in cross-section. 8 = 0.5. Two-Tailed Test of

H02ﬁ3:0.

N(0,1) CV Adjusted Fixed-b CV

tpK- values of b tpK- values of b

NT p oty 02 06 1 4 7 10 02 06 1 4 7 10

9,10 .0 .350 .185 .185 .185 .341 .435 .504 .168 .122 .092 .078 .075 .075
3 .368 216 216 216 366 .456 .524 194 .146 .113 .088 .084 .084
.6 364 238 .238 .238 .377 .464 526 216 .155 .124 .087 .084 .084

9 345 230 230 .230 .343 .421 .484 208 .152 .115 .077 .073 .074
9,50 .0 366 .072 .104 .147 .322 424 495 .057 .055 .054 .051 .049 .051
3 360 174 152 .180 .343 .428 498 150 .088 .076 .062 .060 .058
.6 354 314 228 232 362 442 514 290 .143 .106 .085 .080 .077
9 349 473 325 284 386 .461 .528 450 .219 .138 .082 .080 .081
9,250 .0 .354 .082 .114 .145 314 410 491 .065 .059 .057 .060 .056 .059
3 .354 105 .124 152 .320 413 489 .089 .070 .069 .062 .062 .063
.6 350 155 .144 171 328 415 487 .139 .087 .080 .068 .062 .062
9 361 362 240 .240 .373 .453 518 .338 .160 .121 .089 .083 .083

49,10 .0 .567 .179 .179 .179 .345 433 504 .160 .118 .089 .076 .073 .071
558 215 215 215 366 450 516  .196 .147 .106 .086 .082 .082
560 229 229 229 370 438 513 206 .153 .120 .088 .088 .086
588 222 222 222 351 424 488 202 .147 .116 .080 .071 .071

ol o W

49,50 573 .068 .101 135 .307 .402 480 .052 .044 .047 .060 .059 .058
568 .162 140 .162 .330 428 487 .138 .076 .064 .067 .068 .070

.6 548 303 212 211 .360 .444 516 .277 .125 .093 .082 .078 .076
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Table D.13 (cont’d)

N(0,1) CV

Adjusted Fixed-b CV

IpK- values of b

IpK- values of b

NT p oty 02 06 .1 4 7 10 02 06 .1 4 7 10
9 558 462 304 265 376 447 520 438 218 .136 .086 .081 .083
49250 .0 .589 071 .112 .144 325 413 486 057 .057 .056 .058 .057 .055
3 .585 .098 .123 .156 329 426 489 078 .064 .058 .062 .060 .059
6 .582 .149 .142 .169 334 430 .501 128 .080 .071 .066 .065 .064
9 572 364 233 231 367 454 533 334 .153 .113 .089 .087 .087
256,10 .0 .613 .199 .199 .199 337 425 491 .180 .138 .10l .084 .082 .082
3629 222 222 222 356 438 497 204 .157 .123 .092 .086 .088
6 632 218 218 218 353 431 495 196 .142 .106 .076 .076 .076
9 631 206 206 206 316 390 462 187 .141 .103 .063 .058 .060
256,50 .0 .630 .068 .102 .139 314 .403 478 .049 .048 .048 .053 .053 .054
3 626 .168 .145 .169 337 427 497 146 .076 .067 .063 .060 .063
6 633 324 216 220 372 456 .528 290 .140 .103 .080 .082 .083
9 613 477 314 276 391 472 530 453 227 .138 .082 .084 .085
256,250 .0 .629 068 .100 .135 325 .414 491 053 .048 .048 .051 .055 .054
3 623 .088 .106 .136 327 417 493 073 .057 .054 .056 .054 .052
6 630 .130 .122 .151 332 433 503 .111 .066 .060 .060 .058 .058
9 619 365 224 217 374 460 .525 333 .135 .096 .077 .074 077
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Table D.14: Null Rejection Probabilities, 5% level, tpy (Bartlett Kernel). Trend. Time Dummies.

No additional regressors. A = .5, k = .5. AR(1) errors. Two-Tailed Test of Hy : B3 = 0.

N(0,1) CV Adjusted Fixed-b CV
IpK values of b IpK- values of b
N, T P toyus 02 06 .1 4 g 1.0 02 .06 .1 4 7 1.0

10,10 .0 .092 .186 .186 .186 .331 .414 479 .168 .122 .091 .081 .078 .079
098 215 215 215 .354 432 494 192 .140 .104 .085 .080 .080
089 212 212 212 351 426 489 .192 .143 .116 .087 .084 .085

3
6
9 .090 210 .210 .210 .328 .386 .447 .188 .144 .105 .070 .069 .070
0

10,50 100 .070 .102 .140 .312 401 477 .056 .057 .056 .049 .051 .053
3 .010 .163 .140 .161 .333 .423 486 .139 .086 .076 .067 .064 .062
6 .102 315 211 212 365 .444 512 282 .134 .104 .080 .084 .083
9 110 495 336 .300 .401 .470 .538 471 .243 .152 .098 .095 .094
10,250 .0 .102 .068 .096 .133 .307 .392 460 .056 .048 .050 .050 .052 .052
3 .102 087 .106 .138 .308 .398 462 .073 .056 .052 .050 .052 .052
.6 107 135 .124 155 .322 408 476 .116 .066 .060 .055 .058 .057
9 095 .349 220 215 361 .448 522  .326 .135 .100 .083 .081 .082
50,10 .0 .053 .180 .180 .180 .328 .406 472 .160 .119 .094 .074 .064 .065
3 .054 207 207 207 341 426 487 190 .147 .116 .089 .086 .087
.6 .057 220 .220 .220 .340 .417 476 .201 .155 .120 .088 .086 .086
9 .060 219 .219 219 338 .400 453 .196 .149 .112 .077 .072 .072
50,50 .0 .063 .077 .108 .142 .303 .406 .475 .066 .057 .060 .059 .058 .059
3 .063 165 .146 .170 .328 .422 488 .142 .085 .075 .067 .069 .071
.6 .066 314 226 .222 .364 .450 515 286 .137 .099 .080 .080 .081
9 .058 497 333 .288 .399 475 539 472 .238 .146 .098 .096 .097
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Table D.14 (cont’d)

N(0,1) CV

Adjusted Fixed-b CV

IpK- values of b

IpK- values of b

NT p ot 02 06 1 4 7 10 .02 06 .1 4 7 10
50,250 .0 .058 .069 .106 .138 .316 .402 476 .055 .055 .054 .048 .051 .048
3 058 .094 .119 .144 322 410 475 .076 .060 .059 .053 .054 .052
6 054 .143 .131 .156 330 419 484 121 .072 .067 .058 .059 .058
9 056 346 223 212 356 441 511 324 .138 .098 .078 .073 .075
250,10 .0 .054 200 200 200 .356 434 488 .177 .131 .098 .085 .083 .082
3 .057 226 226 226 363 442 512 205 .158 .123 .095 .091 .091
6 055 228 228 228 360 439 .502 209 .159 .125 .090 .087 .086
9 050 214 214 214 335 408 470 .189 .144 .112 .078 .073 .070
250,50 .0 .052 .077 .112 .145 318 406 473 .062 .060 .052 .055 .056 .053
3 055 .168 .152 .176 340 426 490 .150 .088 .076 .062 .064 .063
6 .051 312 212 214 365 450 526 284 .137 .105 .081 .079 .080
9 044 494 329 291 390 472 .538 468 228 .146 .097 .095 .095
250,250 .0 .048 .068 .105 .141 312 414 486 .053 .055 .055 .057 .052 .052
3051 .090 .117 .151 314 415 499 076 .059 .056 .056 .054 .054
6 .051 .146 .136 .169 320 422 .499 .123 .068 .064 .060 .063 .062
9 050 343 212 212 362 443 514 318 .135 .099 .081 .081 .084
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Table D.15: Null Rejection Probabilities, 5% level, i (Bartlett Kernel). Trend. Time Dummies.
No additional regressors. A = .5, k =.5. MA(2) spatial correlation in cross-section. 6 = 0.5.

Two-Tailed Test of H : B3 = 0.

N(0,1) CV Adjusted Fixed-b CV

tpK- values of b tpK- values of b

NT p oty 02 06 1 4 7 10 02 06 1 4 7 10

9,10 .0 .350 .185 .185 .185 .341 .435 .504 .168 .122 .092 .078 .075 .075
3 .368 216 216 216 366 .456 .524 194 .146 .113 .088 .084 .084
.6 364 238 .238 .238 .377 .464 526 216 .155 .124 .087 .084 .084

9 345 230 230 .230 .343 .421 .484 208 .152 .115 .077 .073 .074
9,50 .0 366 .072 .104 .147 .322 424 495 .057 .055 .054 .051 .049 .051
3 360 174 152 .180 .343 .428 498 150 .088 .076 .062 .060 .058
.6 354 314 228 232 362 442 514 290 .143 .106 .085 .080 .077
9 349 473 325 284 386 .461 .528 450 .219 .138 .082 .080 .081
9,250 .0 .354 .082 .114 .145 314 410 491 .065 .059 .057 .060 .056 .059
3 .354 105 .124 152 .320 413 489 .089 .070 .069 .062 .062 .063
.6 350 155 .144 171 328 415 487 .139 .087 .080 .068 .062 .062
9 361 362 240 .240 .373 .453 518 .338 .160 .121 .089 .083 .083

49,10 .0 .567 .179 .179 .179 .345 433 504 .160 .118 .089 .076 .073 .071
558 215 215 215 366 450 516  .196 .147 .106 .086 .082 .082
560 229 229 229 370 438 513 206 .153 .120 .088 .088 .086
588 222 222 222 351 424 488 202 .147 .116 .080 .071 .071

ol o W

49,50 573 .068 .101 135 .307 .402 480 .052 .044 .047 .060 .059 .058
568 .162 140 .162 .330 428 487 .138 .076 .064 .067 .068 .070

.6 548 303 212 211 .360 .444 516 .277 .125 .093 .082 .078 .076
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Table D.15 (cont’d)

N(0,1) CV

Adjusted Fixed-b CV

IpK- values of b

IpK- values of b

NT p o1y, 02 06 1 4 7 10 .02 06 1 4 7 10
9 558 462 304 265 376 447 520 438 218 .136 .086 .081 .083
49250 .0 589 .071 .112 .144 325 413 486 .057 .057 .056 .058 .057 .055
3 585 .098 .123 .156 329 426 489 078 .064 .058 .062 .060 .059
6 582 .149 .142 .169 334 430 .501 .128 .080 .071 .066 .065 .064
9 572 364 233 231 367 454 533 334 153 .113 .089 .087 .087
256,10 .0 .613 .199 .199 .199 337 425 491 .180 .138 .101 .084 .082 .082
3 .629 222 222 222 356 438 497 204 .157 .123 .092 .086 .088
6 632 218 218 218 353 431 495 196 .142 .106 .076 .076 .076
9 631 206 206 206 316 .390 462 .187 .141 .103 .063 .058 .060
256,50 .0 .630 .068 .102 .139 314 403 478 049 .048 .048 .053 .053 .054
3 626 .168 .145 .169 337 427 497 146 .076 .067 .063 .060 .063
6 633 324 216 220 372 456 .528 290 .140 .103 .080 .082 .083
9 613 477 314 276 391 472 530 453 227 .138 .082 .084 .085
256,250 .0 .629 .068 .100 .135 325 414 491 053 .048 .048 .051 .055 .054
3 623 .088 .106 .136 327 417 493 073 .057 .054 .056 .054 .052
6 .630 .130 .122 .151 332 433 .503 .111 .066 .060 .060 .058 .058
9 619 365 224 217 374 460 525 333 .135 .096 .077 .074 .077
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Table D.16: Null Rejection Probabilities, 5% level, 1y (Bartlett Kernel). One additional regres-
sor. No trend. A = .5, k = .5. MA(2) spatial correlation in cross-section. 8 = 0.5. Two-Tailed Test

of Hy: B3 =0and Hy: y=0.

Adjusted Fixed-b CV Usual Fixed-b CV
tpp- values of b tz, values of b
NT p .02 .06 .1 4 7 10 02 06 .1 4 7 10
9,10 .0 .103 .08 .070 .066 .060 .060 .186 .167 .150 .121 .117 .120
3 193 .164 .143 .110 .110 .105 .202 .184 .164 .130 .125 .130
6 320 281 254 .174 .164 .154 240 214 .190 .149 .140 .143
9 449 419 387 244 241 236 301 .281 .261 .192 .174 .174
9,50 .0 .048 .049 .052 .049 .044 .046 .062 .059 .059 .060 .060 .058
3 .143 .086 .073 .064 .055 .059 .081 .070 .068 .064 .062 .063
6 .312 .160 .119 .086 .078 .082 .189 .118 .110 .088 .084 .086
9 .605 416 328 .205 .194 .188  .442 295 246 .178 .162 .166
9,250 .0 .047 .044 .048 .047 .044 .042 .056 .054 .054 .050 .050 .052

3 .064 .049 .052 .049 .048 .046 .061 .056 .056 .052 .050 .050
6 .109 .060 .058 .055 .052 .050 .087 .072 .072 .064 .064 .067
9 359 172 123 089 .086 .086 .243 .145 .133 .101 .093 .096

49,10 .0 .097 .074 .059 .054 .057 .054 .141 .121 .108 .092 .085 .088
3 .204 174 144 111 .107 .103  .160 .142 .125 .112 .105 .108

o)

320 290 262 .186 .174 176 226 .203 .184 .148 .144 .146

N

AT4 442 410 274 271 272 319 .296 274 203 .191 .191

49,50 .0 .054 .050 .046 .049 .048 .045 .056 .056 .055 .053 .051 .052
3 .148 .085 .074 .063 .066 .064 .080 .069 .061 .056 .055 .058
6 328 171 .128 .100 .092 .094 .178 .114 .098 .076 .079 .082
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Table D.16 (cont’d)

Adjusted Fixed-b CV

Usual Fixed-b CV

tpp- values of b

tz, values of b

NT p .02 .06 .1 4 7 10 02 .06 .1 4 7 10
9 .635 441 344 228 217 213 463 .290 .231 .164 .158 .160
49,250 .0 .045 .045 .044 .044 .046 .050 .048 .052 .051 .051 .053 .051
3 .062 .050 .049 .050 .049 .050 .058 .058 .056 .051 .055 .054
6 .114 .061 .059 .057 .056 .056 .075 .063 .061 .055 .060 .061
9 361 .176 .129 .093 .095 .092 243 .129 .115 .099 .095 .099
256,10 .0 .121 .098 .079 .070 .069 .066 .111 .098 .082 .066 .070 .069
3 .203 178 156 .117 .119 .116  .138 .117 .099 .082 .079 .078
6 334 301 273 .198 .192 .196 222 .198 .174 .128 .115 .115
9 483 448 415 272 271 266 335 314 .290 210 .197 .194
256,50 .0 .050 .040 .040 .041 .044 .043 .055 .053 .052 .046 .047 .050
3 .152 .085 .070 .057 .064 .057 .076 .062 .059 .057 .056 .056
6 347 179 129 .097 .095 .092 .187 .105 .090 .071 .076 .074
9 649 458 366 .227 216 213 487 298 .238 .172 .158 .158
256,250 .0 .040 .040 .044 .048 .044 .050 .053 .050 .047 .045 .045 .045
3 .059 .046 .051 .052 .050 .050 .060 .057 .052 .043 .049 .050
6 .105 .066 .056 .061 .056 .056 .084 .067 .060 .059 .060 .060
9 346 .165 .129 .100 .094 .092 229 .114 .094 .085 .081 .086
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Table D.17: Null Rejection Probabilities, 5% level, 11y (Bartlett Kernel). Trend and one additional
regressor. A = .5, k =.5. MA(2) spatial correlation in cross-section. 6 = 0.5. Two-Tailed Test of

Hpy:B3=0and Hy:y=0.

Adjusted Fixed-b CV Usual Fixed-b CV
tpp- values of b tz, values of b
NT p .02 .06 .1 4 7 10 02 06 .1 4 7 10
9,10 .0 .160 .112 .085 .082 .074 .078 .208 .190 .169 .120 .121 .120
3 .189 .140 .105 .082 .081 .083 .225 .200 .180 .137 .136 .139
6 .203 .148 .114 .081 .080 .080 .272 .248 .228 .188 .181 .192
9 .194 .142 108 .076 .073 .073  .347 .323 .299 .250 .244 .249
9,50 .0 .060 .057 .058 .054 .060 .057 .063 .064 .061 .062 .055 .058
3 .152 .084 .074 .064 .064 .063 .082 .078 .072 .064 .066 .069
6 .289 .146 .111 .083 .081 .080 .194 .129 .114 .089 .088 .090
9 444 213 .140 .086 .089 .087 .442 313 274 219 .216 .224
9,250 .0 .054 .049 .049 .048 .044 .046 .054 .053 .055 .051 .052 .055

3 .073 .057 .058 .054 .050 .052 .060 .060 .058 .056 .056 .056
6 122 .073 .068 .061 .058 .056 .087 .075 .070 .062 .060 .064
9 313 .144 .104 .081 .077 .078 .241 .152 .140 .097 .095 .098

49,10 .0 .181 .134 .100 .087 .083 .081 .160 .150 .133 .103 .098 .103
3 .201 154 112 .094 .089 .086 .186 .168 .152 .118 .117 .119

o)

201 151 .114 .087 .083 .082  .226 .204 .186 .156 .154 .154

N

190 .140 .111 .074 .068 .070 .302 .278 .254 .230 .215 .220

49,50 .0 .066 .057 .055 .058 .060 .058 .058 .056 .055 .051 .052 .052
3 .152 .088 .072 .070 .070 .070 .078 .066 .064 .058 .061 .064
6 .284 .136 .101 .086 .086 .084 .176 .114 .104 .079 .080 .087
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Table D.17 (cont’d)

Adjusted Fixed-b CV

Usual Fixed-b CV

tpp- values of b

tz, values of b

NT p .02 .06 .1 4 7 10 02 .06 .1 4 7 10
9 452 216 .139 .089 .086 .088 .446 .302 .259 .191 .183 .187
49,250 .0 .056 .056 .052 .058 .058 .058 .047 .049 .050 .049 .050 .052
3 .074 .060 .052 .060 .061 .059 .055 .054 .057 .056 .053 .054
6 .118 .072 .064 .067 .067 .066 .080 .067 .066 .059 .059 .063
9 338 .161 .118 .095 .092 .092 251 .141 .122 .094 .094 .098
256,10 .0 .186 .134 .104 .083 .084 .084 .127 .111 .096 .079 .078 .080
3 .208 .164 .134 .098 .094 .094 .146 .126 .111 .097 .095 .097
6 217 163 .128 .093 .090 .090 .206 .188 .169 .141 .136 .138
9 200 .155 .114 .077 .069 .069 281 .259 .233 .197 .179 .187
256,50 .0 .051 .050 .048 .056 .054 .055 .060 .056 .054 .055 .051 .054
3 .147 .077 .070 .063 .066 .066 .085 .068 .063 .057 .061 .062
6 .294 139 103 .086 .086 .086 .187 .114 .105 .085 .080 .084
9 448 231 .140 .088 .086 .084 442 285 .243 .189 .170 .174
256,250 .0 .051 .047 .049 .047 .051 .050 .054 .048 .046 .044 .044 .044
3 .067 .056 .054 .053 .051 .050 .060 .055 .051 .047 .047 .048
6 .113 .066 .063 .060 .057 .060 .082 .066 .066 .059 .058 .059
9 334 139 .098 .077 .076 .076 231 .122 .105 .082 .083 .086
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Table D.18: Null Rejection Probabilities, 5% level, tpp (Bartlett Kernel). No trend and additional regressors. A = .5, k = .5. MA(2)

spatial correlation in cross-section. 8 = 0.5. Two-Tailed Test of H( : B3 = 0.

N(0,1) CV N(0,1) CV Adjusted Fixed-b CV

tgouble’ values of b Ipk- values of b IpK values of b

N, T P Telus double .02 A 4 i .02 N 4 7 .02 A 4 i

49,50 .0 .565 .063 .093 .223 405 466 .057 .095 .260 .380 .049 .048 .050 .051
3 .557 155 108 226 .454 498 .162 .130 .292 409 .146 .066 .065 .064
553 288 186 227 496 538  .341 .199 342 449 319 .122 .094 .092

6

9 566 479 381 .327 .632 .666 .654 441 516 .603  .642 .349 .219 .209
256,250 .0 .623  .045 .066 .192 403 468 .050 .093 .252 .384 .038 .045 .051 .049
3 .625 140 .066 .193 414 469 .071 .100 .259 .387 .058 .051 .053 .053
6 626 289 .073 .194 433 481 .125 .110 .270 395 .104 .059 .059 .058

9 624 514 201 .202 494 534 373 193 333 437 350 .126 .099 .093

141



Appendix E

FIGURES IN CHAPTER 3

N=100, T=250, rho=.3, b=.02

—_——

1 2 3 4 5 6 7 8 9 1
lambda

Figure E.1: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, N = 100,

T =250, p =0.3, b= 0.02. For interpretation of the references to color in this and all other figures,

the reader is refered to the electronic version of this dissertation.
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N=100, T=250, rho=.3, b=.5
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Figure E.2: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, N =

100,7 =250,p =0.3,5=0.5.
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Figure E.3: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, N = 50,

A =0.5.
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Figure E.4: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, N =49, A = 0.5.
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Figure E.5: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, N = 250,

A =0.5.
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Figure E.6: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, N = 256, A =0.5.
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Figure E.7: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, 7 = 50,

A =0.5.
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Figure E.8: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, 7 =49, A = 0.5.
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Figure E.9: Empirical null rejection probabilities, no spatial correlation, Bartlett kernel, T = 250,

A =0.5.
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Figure E.10: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, T = 250, A =
0.5.
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Figure E.11: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, N =49, T =
250, A =0.5.
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Figure E.12: Empirical null rejection probabilities, spatial MA(2), Bartlett kernel, N = 256, T =
250, A =0.5.
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Figure E.13: Empirical null rejection probabilities, additional regressor, spatial MA(2), Bartlett

kernel, N =49, T =50, A =0.5.
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Figure E.14: Empirical null rejection probabilities, additional regressor, spatial MA(2), Bartlett

kernel, N =49, T =250, A =0.5.
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Figure E.15: Empirical null rejection probabilities, additional regressor, spatial MA(2), Bartlett

kernel, N =256, T =50, A =0.5.
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Figure E.16: Empirical null rejection probabilities, additional regressor, spatial MA(2), Bartlett

kernel, N =256, T =250, A =0.5.
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Figure E.17: Empirical null rejection probabilities for DD parameter, additional regressor, spatial

MA(2), Bartlett kernel, N =49, T = 250, A = 0.5.
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Figure E.18: Empirical null rejection probabilities for DD parameter, additional regressor, spatial

MA(2), Bartlett kernel, N = 256, T = 250, A = 0.5.
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Figure E.19: Empirical null rejection probabilities for z parameter, additional regressor, spatial

MA(2), Bartlett kernel, N =49, T = 250, A = 0.5.
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Figure E.20: Empirical null rejection probabilities for z parameter, additional regressor, spatial

MA(2), Bartlett kernel, N = 256, T = 250, A = 0.5.
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Figure E.20: (cont’d)
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Figure E.20: (cont’d)
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Figure E.20: (cont’d)
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Figure E.20: (cont’d)

rho=.9

0 1 234567

bandwidth

(f) N=256, T=250, 1=1, z parameter

251



BIBLIOGRAPHY

252



BIBLIOGRAPHY

M. Arellano. Computing robust standard errors for within-groups estimators. Oxford Bulletin of
Economics and Statistics, 49(4):431-434, 1987.

M. Bertrand, E. Duflo, and S. Mullainathan. How much should we trust differences-in-differences
estimates? Quarterly Journal of Economics, 119:249-275, 2004.

A.C. Bester, T.C. Conley, C.B. Hansen, and T.J. Vogelsang. Fixed-b asymptotics for spatially
dependent robust nonparametric covariance matrix estimators. Working Paper, Department of
Economics, Michigan State University, 2008.

A.C. Bester, T.C. Conley, and C.B. Hansen. Inference with dependent data using cluster covariance
estimators. Journal of Econometrics, 2011. doi:10.1016/j.jeconom.2011.01.007.

H. Bunzel and T. J. Vogelsang. Powerful trend function tests that are robust to strong serial corre-
lation with an application to the prebisch-singer hypothesis. Journal of Business and Economic
Statistics, 23:381-394, 2005.

A. Cameron, J. Gelbach, and D. Miller. Bootstrap-based improvements for inference with clustered
errors. The Review of Economics and Statiscs, 90:414—-427, 2008.

A. Cameron, J. Gelbach, and D. Miller. Robust inference with multiway clustering. Journal of
Business and Economic Statistics, 29:238-249, 2011.

C. K. Cho. Fixed b inference in a time series regression with a structural break. Working paper,
Department of Economics, Michigan State University, 2012.

T. G. Conley. GMM estimation with cross sectional dependence. Journal of Econometrics, 92(1):
145, 1999.

J.C. Driscoll and A.C. Kraay. Consistent covariance matrix estimation with spatially dependent
panel data. Review of Economics and Statistics, 80(4):549-560, 1998.

B. Efron. Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7:1-26, 1979.

E.F. Fama and J.D. MacBeth. Risk, return, and equilibrium: Empirical tests. Journal of Political
Economy, 81(3):607-636, 1973.

S. Gongalves. The moving blocks bootstrap for panel linear regression models with individual
fixed-effects. Econometric Theory, 27:1048—-1082, 2011.

S. Gongalves and T. J. Vogelsang. Block bootstrap HAC robust tests: The sophistication of the
naive bootstrap. Econometric Theory, 27(4):745-791, 2011.

I. Gow, G. Ormazabal, and D. Taylor. Correcting for cross-sectional and time-series dependence
in accounting research. The Accounting Review, 85:483-512, 2010.

253



C.B. Hansen. Asymptotic properties of a robust variance matrix estimator for panel data when T
is large. Journal of Econometrics, 141(2):597-620, 2007.

N. Hashimzade and T. J. Vogelsang. Fixed-b asymptotic approximation of the sampling behavior of
nonparametric spectral density estimators. Journal of Time Series Analysis, 29:142—-162, 2008a.

N. Hashimzade and T. J. Vogelsang. Fixed-b asymptotic approximation of the sampling behaviour
of nonparametric spectral density estimators. Journal of Time Series Analysis, 29:142—-162,
2008b.

H.H. Kelejian and I.R. Prucha. HAC estimation in a spatial framework. Journal of Econometrics,
140(1):131-154, 2007.

N. M. Kiefer and T. J. Vogelsang. A new asymptotic theory for heteroskedasticity-autocorrelation
robust tests. Econometric Theory, 21:1130-1164, 2005.

M.S. Kim and Y. Sun. Spatial heteroskedasticity and autocorrelation consistent estimation of
covariance matrix. Journal of Econometrics, 160:349-371, 2011a.

M.S. Kim and Y. Sun. Heteroskedasticity and spatiotemporal dependence robust inference for
linear panel models with fixed effects. Working paper, Department of Economics, Ryerson
University, 2011b.

H. R. Kunsch. The jackknife and the bootstrap for general stationary observations. Annals of
Statistics, 17:1217-1241, 1989.

R.Y. Liu and K. Singh. Moving blocks jackknife and bootstrap capture weak dependence. In
R. LePage and L. Billiard, editors, Exploring the Limits of the Bootstrap, New York, 1992.
Wiley.

W. K. Newey and K. D. West. A simple, positive semi-definite, heteroskedasticity and autocorre-
lation consistent covariance matrix. Econometrica, 55:703-708, 1987.

M. A. Petersen. Estimating standard errors in finance panel data sets: Comparing approaches.
Review of Financial Studies, 22(1):435, 2009.

S. B. Thompson. Simple formulas for standard errors that cluster by both firm and time. Journal
of Financial Economics, 99:1-10, 2011.

T. J. Vogelsang. Spectral analysis. In S. N. Durlauf and L. E. Blume, editors, The New Palgrave
Dictionary of Economics. Palgrave Macmillan, 2008.

T. J. Vogelsang. Heteroskedasticity, autocorrelation, and spatial correlation robust inference in
linear panel models with fixed-effects. Journal of Econometrics, 2012.

H. White. A heteroskedasticity-consistent covariance matrix estimator and a direct test for het-
eroskedasticity. Econometrica, 48:817-38, 1980.

H. White. Asymptotic Theory for Econometricians. Academic Press, New York, 1984.

254



J. M. Wooldridge. Analysis of Cross-sectional and Panel Data. Cambridge, MA: MIT Press, 2002.

J. M. Wooldridge. Cluster-sample methods in applied econometrics. American Economic Review
Papers and Proceedings, 93(2):133-138, 2003.

C. F. J. Wu. Jackknife, bootstrap and other resampling methods in regression analysis. Annals of
Statistics, 14:1261-95, 1986.

255



