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ABSTRACT

ALGORITHMIC APPROACHES FOR FAST AND EFFICIENT PACKET

CLASSIFICATION

By

Chad R. Meiners

Packet classification is the core mechanism that enables many networking services

such as packet filtering and traffic accounting. Using Ternary Content Addressable

Memories (TCAMs) to perform high-speed packet. classification has become the de

facto standard in industry because TCAMs can facilitate constant. time classifica-

tion by comparing a packet with all rules of ternary encoding in parallel. Despite

their high speed, TCAMs have limitations of small capacity, large power consump—

tion, and relatively slow access times. The well—known range expansion problem in

converting range rules to ternary rules significantly exacerbates these TCAM lim-

itations. W’hile we can expect some gain in TCAM performance from improved

hardware, the demands on TCAM performance as measured by the number of rules

in packet classifiers increase far more rapidly due to the explosive growth of Internet.

services and threats.

Space reduction is key to addressing these three issues facing TCAMs because

power consumption and access time are determined by the capacity of the TCAM.

This dissertation describes four methods in which to reduce the space that classifiers

occupy within TCAMs: TCAM Razor, All-Match Redundancy Removal. Sequential

Deconmosition, and Topological Transformations. These methods demonstrate that.

in most cases a. substantial reduction of space is achieved.
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Chapter 1

Introduction

Packet classification, which is widely used on the Internet, is the core n’iechanism that

enables routers to perform many networking services such as firewall packet filtering,

virtual private networks (VPNs). network address translation (NAT). quality of ser-

vice (QoS). load balancing. traffic: accounting and monitoring. differentiated services

(Diffserv), etc. As more services are (.leployed on the Internet. packet. classification

grows in demand and importance.

The function of a packet classification system is to map each packet to a decision

(i.e., action) according to a sequence (z'.e., ordered list) of rules, which is called a

packet classifier. Each rule in a. packet classifier has a predicate over some packet.

header fields and a decision to be performed upon the packets that. match the pred—

icate. To resolve possible conflicts among rules in a classifier. the decision for each

packet is the decision of the first (i.e., highest priority) rule that. the packet matches.

Table 1.1 shows an example packet classifier of two rules. The format of these rules

is based upon the format. used in Access Control Lists on Cisco routers.

 

Rule Source IP Destination IP Source Port Destination Port Protocol Action

 

7‘1 1.2.3.0/24 192108.01 [1.65534] [1.05534] TCP accept

* * * * * discard   
7.2

 
 

Table 1.1: An example packet classifier



 

 

Rule Source IP Destination IP Source Port Destination Port Protocol Action

7‘1 1.2.3.0/24 192168.01 0 * * discard

r2 1.2.3.0/24 192168.01 65535 * * discard

r3 1.2.3.0/24 192168.01 * 0 * discard

7‘4 1.2.3.0/24 192168.01 * 65535 * discard

r5 1.2.3.0/24 192168.01 [0,65535] [0.65535] TCP accept

7'6 * * * * * discard    
 

Table 1.2: TCAM Razor output for the example packet classifier in Table 1.1

1 .1 Motivation

To classify the never—ending supply of packets at wire speed, Ternary Content Ad—

dressable Memories (TCAMs) have become the de facto standard for high-speed

routers on the Internet. [15]. A TCAM is a memory chip where each entry can store

a packet classification rule that is encoded in ternary format. Given a packet, the

TCAM hardware can compare the packet with all stored rules in parallel and then

return the decision of the first rule that the packet matches. Thus, it takes 0(1)

time to find the decision for any given packet. In 2003, most packet classification de-

vices shipped were TCAlVI—based. More than 6 million TCAM devices were deployed

worldwide in 2004.

A traditional random access memory chip receives an address and returns the

content of the memory at that address. A TCAM chip works in a reverse manner:

it receives content and returns the address of the first entry where the content lies

in the TCAM in constant time (1.6., a few CPU cycles). Exploiting this hardware

feature, TCAM-based packet classifiers store a. rule in each entry as an array of

0’8, 1’8, or *’s (don"t—care values). A packet header (216., a search key) matches an

entry if and only if their corresponding 0’s and 1’s match. Given a search key to

a TCAM, the hardware circuits compare the key with all its occupied entries in

parallel and return the index (or the content, depending on the chip architecture

and configt,1ra.ti(_)n,) of the first matching entry.



Despite their high speed, TCAMs have their own limitations with respect to

packet classification.

Range expansion TCAMs can only store rules that. are encoded in ternary for—

mat. In a typical packet classification rule, source IP address, destination IP ad-

dress, and protocol type are specified in prefix format, which can be directly stored

in TCAMs, but source and destination port numbers are specified in ranges (216.,

integer intervals), which need to be converted to one or more prefixes before being

stored in TCAMs. This can lead to a significant increase in the number of TCAM

entries needed to encode a rule. For example, 30 prefixes are needed to represent

the single range [1, 65534], so 30 X 30 = 900 TCAM entries are required to represent

the single rule 7‘1 in Table 1.1.

Low capacity TCAMS have limited capacity. The largest TCAM chip available

on the market has 18Mb while 2Mb and 1Mb chips are most popular. Given that

each TCAM entry has 144 bits and a packet classification rule may have a worst

expansion factor of 900, it is possible that an 18Mb TCAM chip cannot store all

the required entries for a modest. packet classifier of only 139 rules. While the worst

case may not happen in reality. this is certainly an alarming issue. Furthermore,

TCAM capacity is not expected to increase dramatically in the near future due to

other limitations that we will discuss next.

High power consumption and heat generation TCAM chips consume large

amounts of power and generate large amounts of heat. For example. a le TCAM

chip consumes 15-30 watts of pox-ver. Power consumption together with the con-

sequent heat generation is a serious problem for core routers and other networking

devices. Large board Space occupation: TCAMs occupy much more board space

than SRAMs. For networking devices such as routers. area efficiency of the circuit

board is a critical issue.



High hardware cost TCAMs are expensive. For example, a 1.\'Ib TCAM chip

costs about 200 ~ 250 US. dollars. TCAM cost is a significant fraction of router

cost.

1.2 Contribution

This work describes two methods of addressing packet classification and the related

TCAM based issues: equivalent transformation techniques and new architectural

approaches.

Equivalent transformation techniques seek to find semantically equivalent but

more efficient classifiers. Two methods of equivalent transformation are TCAM

Razor and All—Match Redundancy Removal. TCAM Razor decomposes a multi-field

problem into a series of single-field problems; these problems are solved optimally

and then recomposed into a greedy multi-field solution. In contrast, All—match

Redundancy Removal identifies a maximal set of rules that can be removed from a

packet classifier without changing the packet classifier’s semantics.

New architectural approaches seek to modify how the TCAM based packet classi-

fiers operate in order to improve efficiency. We propose two approaches: sequential

decomposition and topological transformation. Sequential decomposition decom-

poses a single d-field packet classification TCAM lookup into a sequence of d 1-field

TCAM lookups. Topological transformations provide methods to translate the do-

main of each packet field into a more efficient representation. Both techniques allow

for the efficient utilization of TCAM space. These techniques mitigate the effects

of range expansion; however, they also have the unique advantage that they find

optimizations beyond range expansion. This advantage allows for sublinear com-

pression.



Chapter 2

Background

We now formally define the concepts of fields, packets, and packet classifiers. A field

F,- is a variable of finite length (i.c., of a finite number of bits). The domain of field

F,- of w bits, denoted D(F,-), is [0,2"" — 1]. A packet over the (1 fields F1, - - - , Fd

is a d—tuple (pl, - - . ,pd) where each p,- (1 g i g d) is an element of D(F,;). Packet

classifiers usually check the following five fields: source IP address, destination IP

address, source port number, destination port number, and protocol type. The

lengths of these packet fields are 32, 32, 16, 16, and 8, respectively. We use 2' to

denote the set of all packets over fields 171,- - - , Fd' It follows that E is a finite set.

and [27] = ]D(F1)| X - - - x |D(Fd)]. where |Z| denotes the number of elements in set

X and |D(Fz)| denotes the number of elements in set D(F,-).

A rule has the form (predicate) —> (decision). A (predicate) defines a set of

packets over the fields F1 through Pd and is specified as F1 6 $1 /\ - - - /\ Fd E Sd

where each S,- is a subset of l)(F.,-) and is specified as either a prefix or a nonnegative

integer interval. A prefix {0, 1}l"{*}“’“k with. A“ leading (ls or ls for a packet field of

length to denotes the integer interval [{0, 1}k{0}“’_k, {0. 1}A'{1}“’_k]. For example.

prefix 01** denotes the interval [0100,0111]. A rule. F1 6 .91 /\ - -- /\ Fd E 5d —»

(decision) is a prcfi'r rule if and only if each S,- is represented as a prefix.

A packet matches a rule if and only if the packet. matches the predicate of the

rule. A packet (p1. - - - .pd) "mic/ms a predicate F] E 5'1 /\ /\ Fd E Sd if and

only if the condition [)1 E 91 /\ - - - /\ Pd 6 Sd holds. \Ve use US to denote the set

C
H



of possible values that (decision) can be. Typical elements of 05 include accept,

discard, accept with logging, and discard with logging.

A sequence of rules (r1, - - - , rn) is complete if and only if for any packet p, there

is at least one rule in the sequence that p matches. To ensure that a sequence of

rules is complete and thus a packet classifier, the predicate of the last rule is usually

specified as F1 6 D(F1) /\ - - - Fd E AD(Fd). A packet classifier C is a sequence of

rules that is complete. The size of C, denoted ICI, is the number of rules in C. A

packet classifier C is a prefix packet classifier if and only if every rule in C is a prefix

rule. A classifier with d fields is called a (ll-dimensional packet classifier.

Two rules in a packet classifier may overlap; that is, a single packet may match

both rules. Furthermore, two rules in a packet. classifier may conflict; that is, the

two rules not only overlap but also have different decisions. Packet classifiers typi-

cally resolve such conflicts by employing a first-match resolution strategy where the

decision for a packet p is the decision of the first (i.e., highest priority) rule that p

matches in C. The decision that packet classifier C makes for packet p is denoted

CU?)-

VVe can think of a packet classifier C as defining a many-to-one mapping function

from E to DS. Two packet classifiers C1 and C2 are equivalent, denoted C1 E C2,

if and only if they define the same mapping function from E to DS; that is, for any

packet p E Z, we have C1(p) = C2(p). A rule is redundant in a. classifier if and only

if removing the rule does not change the semantics of the classifier. Furthermore,

we define the equivalence relation that. classifier C defines on each field domain and

the resulting equivalence classes. We use the notation 2;,- to denote the set of all

(d— 1)-tuple packets over the fields (F1, - - -, Fi_1, Fi+b -~-, Fat) and p_,- to denote

an element of 23_,;. Then we use C(pi,p_,-) to denote the decision that packet

classifier C makes for the packet p that is formed by combining p,- E DlFi) and p_,-.

Definition 2.0.1 (Equivalence Class). Given a packet classifier C over fields F1,

--«, Fd, we say that 3:, y E D(F,-) for 1 S i g d are equivalent. with respect to C if

and only ifC(;1:,p_z-) = C(y,p_,;) for any p__,; E E_,;. It follows that C partitions

D(F,~) into equivalence classes. W 3 use the notation C{.:r} to denote the equivalence



class that :1: belongs to as defined by classifier C.

In a typical packet. classifier rule, the fields of source IP, destination IP, and pro-

tocol type are specified in prefix format, which can be directly stored in TCAMs;

however, the remaining two fields of source port and destination port are specified

as ranges (i.e., non-negative integer intervals), which are typically converted to pre-

fixes before being stored in TCAMs. This leads to range expansion, the process of

converting a non-prefix rule to prefix rules. In range expansion, each field of a rule

is first expanded separately. The goal is to find a minimum set of prefixes such that

the union of the prefixes corresponds to the range. For example, if one 3-bit field

of a rule is the range [1, 6]. a corresponding minimum set of prefixes would be 001,

01*, 10*, 110. The worst-case range expansion of a w—bit range results in a set.

containing 2w — 2 prefixes [13]. The next step is to compute the cross product of the

set of prefixes for each field, resulting in a potentially large number of prefix rules.

2.1 Firewall decision diagrams

A crucial data structure required for this work is the Firewall Decision Diagram

(FDD) [9] A Firewall Decision Diagram (FDD) with a decision set 03 and over

fields F1, - ~ - , Fd is an acyclic and directed graph that. has the following five proper-

ties: (1) There. is exactly one node that has no incoming edges. This node is called

the root. The nodes that have no outgoing edges are called terminal nodes. (2) Each

node v has a label. denoted F(U), such that

{F12 - . - , Fd} if v is a nonterminal node.

F(U) E

DS if v is a terminal node.

(3) Each edge 6:11 —> U is labeled with a nonempty set of integers. denoted 1(e),

where 1(e) is a subset of the domain of 11‘s label (i.e., I((’) C_: D(F(u))). (4) A

directed path from the root to a tern‘iinal node is called a decision path. No two

I'

nodes on a decision path have the same label. (a) The set of all outgoing edges

of a node v, denoted 13(1)). satisfies the following two conditions: (i) Consistency:



I (e) fl [(6’) = Q) for any two distinct edges e and e’ in E(u).

066%) Me) = Darn».

 

 

 

       
 

(ii) Completeness:

 

  

F1 F2 Decision

000 000 accept

000 111 accept

110 000 accept

110 111 accept

010 0** accept

100 0** accept

** 1** accept

** *** discard

it FDD Construction

6 001 01 1 101

000 1 10 010 100 1 1 1

@ 6 6
000 001 000 001 0” 1“ O” 1“ 1' 0”

01 ' 01 '

20;.) 1a
a a d a a d a d a d a d
  
 

 

   
 

Figure 2.1: Illustration of FDD construction

We define a full—length ordered FDD as an FDD where in each decision path



all fields appear exactly once and in the same order. For ease of presentation, we

use the term “FDD” to mean “full-length ordered FDD” if not otherwise specified.

Given a packet classifier (C, the FDD construction algorithm in [17] can convert it. to

an equivalent full-length ordered FDD f. Figure 2.1(a) contains a sample classifier,

and Figure 2.1(b) shows the resultant FDD from the construction process.

After an FDD f is constructed, we can reduce f ’5 size by merging isomorphic

subgraphs. A full-length ordered FDD f is reduced if and only if it satisfies the

following two conditions: (1) no two nodes in f are isomorphic; (2) no two nodes have

more than one edge between them. Two nodes '1) and v' in an FDD are isomorphic

if and only if v and 'U’ satisfy one of the following two conditions: (1) both 1) and

'v’ are terminal nodes with identical labels; (2) both 1) and v’ are nonterminal nodes

and there is a one-to-one correspondence between the outgoing edges of 'v and the

outgoing edges of U, such that every pair of corresponding edges have identical labels

and they both point to the same node. A reduced FDD is essentially a canonical

representation for packet classifiers. Figure 2.1(c) shows the reduced FDD from

Figure 2.1(b).

2.2 One-Dimensional Classifier Minimization

The special problem of weighted one—field TCAM I'ninirnization is used as a building

block for multi-dimensional TCAM minimization. Given a one-field packet classifier

f of n prefix rules (r1, r2, - - - , r"), where {Decision(r1), De(.:ision(r2), - - - . Decision(rn)

} = {d1,(12.- - -,d;} and each decision (1,; is z-issociated with a cost. Cost(d,;) (for

1 S i S .3). we define the cost. of packet classifier f as follows:

n.

Cost(f) = Z Cost(Decision(ri))

i=1

Based upon the above definition, the problem of weighted one-diInensional TCAM

minimization is stated as follows.

Definition 2.2.1. Weighted ()nc—Dimensional Prefix: Min.i-Inization Problem. Given

a one-field packet classifier f1 where each (lccismn is associated with a cost. find a

9



prefix packet classifier f2 6 {f1} such that for any prefix packet classifier f E {f1}.

the condition Cost(f2) g Cost(f) holds.

The problem of one-dimensional prefix minimization (with uniform cost) has

been studied in [6,27] in the context of compressing routing tables. I generalize the

dynamic programming solution in [27] to solve the weighted one-dimensional TCAM

minimization. There are three key observations:

1. For any one-dimensional packet classifier f on {*}111, we can always change

the predicate of the last rule to be {*}w without changing the semantics of

the packet classifier. This follows from the completeness property of packet

classifiers.

2. Consider any one-dimensional packet. classifier f on {*}w. Let f1 be f ap-

pended with rule {1*}111 —> d, where d can be any decision. The ol;)servation

is that f E f’. This is because the new rule is redundant in f’ since f must

be complete. A rule in a packet classifier is redundant if and only if removing

the rule from the packet. classifier does not change the semantics of the packet.

classifier.

3. For any prefix 79 E {0,1}k{*}1"'_1" (0 S I; g in), one and only one of the

following ccmditions holds:

(a) r e {0,1}1~‘0{*}w-k-1,

(b) 73 E {0,1}k1{*}“’—k—1.

(c) ”P = {0,1}k{*}w—k.

This property allows us to divide a problem of {0, l}k{*}1“‘k into two sub-

problems: {0. 1}1‘70{*}w—k—1. and {0. 1}]"1{*}“1‘k—1. This divide—arid—conquer

strategy can be applied recursively.

We formulate an o )timal dynamic )rtwrammine‘ solution to the weighted one-
. C) C") F)

dimensional TCAM minimization problem.

10



Let. P denote a prefix {0,1}k{*}w_k. We use 2 to denote the prefix {0,1}k

0{*}11’_k—1, and P to denote the prefix {0,1}k1{*}w—k_1.

Given a one—dimensional packet classifier f on {*}w, we use f7; to denote a

packet classifier on P such that for any :1: E P, frp(1:) = f (1:), and we use ff; to

denote a similar packet classifier on P with the additional restriction that the final

decision is d.

C(fp) denotes the minimum cost of a packet classifier t that is equivalent to fp,

and C(fig) denotes the minimum cost of a packet classifier t’ that is eq1.1ivalent to

fp and the decision of the last rule in t’ is d.

Given a one-dimensional packet classifier f on {*}1“ and a prefix P where P Q

{*}1”, f is consistent on P if and only if V1.3 y E P, f(:r) = f(y).

The dynamic programming solution to the weighted one—dimensional TCAM

minimization problem is based on the following theorem. The proof of the theorem

shows how to divide a problem into sub-problems and how to combine solutions to

sub-problems into a solution to the original problem.

Theorem 2.2.1. Given a one—dimensional packet classifier f on {*}w, a prefix? P

where P Q {*}w, the set of all possible decisions {(11, (12, - - - , dz} where each decision

d,- has a cost wdi (1 g i S 2:). we have that

., Z: , (l,

C(fp) : mm ((fp)

221

where each C(fgi) is calculated as follows:

(I) Iff is consistent on P, then

an __ War) was,
1p>—, , ,. ,

U)f(1,) + ”(12: iff(.z.) # ,1

'23) [ff is not consistent on P, then

11



f (11 (11

CUP. )+ C( 7—3— ) — 'wdl +u'1‘1i’

' 7

1- 1-
C(f;1_1)+ C(fg—l) — 111,17;1 + 1111,17,,

, 11,- . Hi 11 '
C(fpl) = min < C(fp1)+ C(fffi‘) — 1111,12,,

C0211 )+C( 51+ l—‘U’11,+1 +1111,»

0',

1. c
C(f‘g) + C( [3“) —: 111-'11,, + “’1 \ "i

Proof. (1) The base case is when f is consistent on P. In this case, the minimum

cost prefix packet classifier in {fp} is clearly (P ——) f (13)), and the cost of this

packet classifier is w“1.). Furthermore, for d,- # [(17), the minimum cost prefix

packet classifier in {fp} with decision 11,- in the last rule is (P —> f (:17),P —+ dz)

where the second rule is redundant. The cost of this packet classifier is 1Uf(-r) + wdi'

(2) If f is not consistent on P, divide P into E and P. The crucial observation

is that an optimal solution f * to {fp} is essentially an optimal solution f1 to the

sul_)-problem of minimizing f2 appended with an optimal solution f2 to the sub-

problem of minimizing f5. The only interaction that can occur between f1 and f2

is if their final rules have the same decision, in which case both final rules can be

replaced with one final rule covering all of P with the same decision. Let d3; be the

decision of the last rule in f1 and dy be the decision of the last rule. in f2. Then

we can compose f* whose last rule has decision (1, from f1 and f2 based on the

following cases:

(A) (1.5,- = dy :- (17;: In this case, f can be constructed by listing all the rules in f1

except the last. rule, followed by all the rules in [2 except the last rule, and then the

last rule P ——+ (1,. Thus, Cost(f) = Cost(f1) + Cost(f2) — (11(1):.

(B) (1,: : (1y # di‘ In this case, f can be constructed by listing all the rules in f1

except the last rule, followed by all the rules in f2 except the last. rule, then rule

P —> 11,-. and finally rule P -—_> d,. Thus. Cost(f) = Cost(f1)+ (70-51(12)‘1L'11I‘1’U’11
'11.

(C) (11,- 75 (1;).(11- = d,,dy # 11,-: we do not, need to consider this case because

, .(l' V (1 (l- 1 (l 1 (1: >1 (1:

(11211 + ( (1,511) = cognac-,9) +1.11 — 1.1 2 ( 11151 + 1 (1,33) — 11.1



D d; (1 ,dl- d-, d1 = (1: Similarly, this case need not be considered.
9 z J i

(E) d1: aé dy, d1: 75 di, dy # dZ-z Similarly, this case need not be considered. C]

Figure 2.2 shows the illustration of a one—dimensional TCAM minimization prob—

lem, where the black bar denotes decision “accept” and the white bar denotes deci-

sion “discard”. Figure 2.3 illustrates how the dynamic progrannning works on this

example.
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Figure 2.2: An example one-dimensional TCAM 11111111111281.1011 problem
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Figure 2.3: Illustration of dynamic program

2.3 Experimental Data

we performed experiments on a. set, of '25 real—world packet classifiers, which is

denoted by R1,. The classifiers in 11L were chosen from a larger set. of real-world

13



classifiers obtained from various network service providers. where the classifiers range

in size from a handful of rules to thousands of rules. We partition the original

classifiers into 25 groups where the classifiers in each group share similar structure.

For example, the ACLs configured for the different interfaces of a router often share

a similar structure. we created RL by randomly choosing one classifier from each

of the 25 groups. We did this because classifiers with similar structure often exhibit.

similar results for the proposed algorithms. If all classifiers were used, the results

would be skewed by the relative size of each group.

Because packet classifiers are considered confidential due to security concerns,

which makes it difficult to acquire a large quantity of real-world classifiers, we gen-

erated a set of synthetic classifiers SYN with the number of rules ranging from

250 to 8000. The predicate of each rule has five fields: source IP, destination IP,

source port, destination port, and protocol type. We based our generation method

upon Singh et al.’s [23] model of synthetic rules. We choose this model over Tay-

lor&Turner’s Classbench [30] because Classbench does not generate decisions, and

there is no rationale or guidelines for assigning decisions to each rule.

To stress test. the sensitivity of our algorithms to the number of decisions in a

classifier. we created a. set. of classifiers RLU by replacing the decision of every rule in

each classifier by a unique decision. Similarly, we created the set SYNU. Thus, each

classifier in RLU (or SYNU) has the maximum possible number of distinct decisions.

Such classifiers might arise in the context of rule logging where the system monitors

the frequency that each rule is the first matching rule for a packet.

14



Chapter 3

Related Work

There is significant prior work on packet classification for both TCAM based packet

classification and software based packet classification. While TCAM based sys-

tems are more immediately relevant, software based classification shares a degree of

commonality with the sequential decomposition technique; however, differences in

available hardware result in very different design decisions.

3.1 TCAM Based Classifiers

There is significant. prior work on minimizing the TCAM space. occupied by a single

classifier. Such work falls into three broad categories: (1) classifier minimization

(c.g., [1, 5, 6, 18, 27]), which converts a. given classifier to a semantically equivalent

classifier that. requires fewer TCAM entries; (2) range encoding (e.g., [4.15.19.21,31]),

which encodes the ranges (i.e., source port and destination port) in a manner that

reduces range expansion; and (3) circuit modification (e.g., [24]). which modifies

TCAIV'I circuits to ac(_:(:)mmodate range comparisons.

3.1.1 Classifier Minimization:

The basic idea is to convert a given packet classifier to another semantically equiva-

lent packet classifier that. requires fewer TCAM entries. Several classifier minimiza—

tion schemes have been proposed [1, 5.6. 18. 27]. The work in [1, 6.27] focuses on



one-dimensional and two dimensional packet. classifiers.

Construction Optimal IP Tables In [6], Draves et al. present a polynomial

algorithm for generating a minimum equivalent packet classifier for one-dimensional

prefix match classifiers. Their algorithm, Optimal Routing Table Constructor(ORTC),

works by reducing a longest matching prefix trie to its minimal representation via.

three traversals. This minimal trie can then be used to use to generate a minimum

single field prefix classifier. A longest match prefix classifier can be trivially con-

verted into a first match prefix classifier by sorting the rules such that the longer

prefix rules appear before shorter prefix rules.

Compressing Two-Dimensional Routing Tables In [27], Suri et al. present.

a polynomial time dynamic program that generates a minimum equivalent packet

classifier for one-dimensional prefix classifiers. This dynamic program is equivalent

to the dynamic program presented in Chapter 2.2. Furthermore, Suri et al. present

a. generalization of this dynamic program for two or more fields. They show that this

generalization produces optimal two field classifiers when the the solution space of

classifiers is restricted such that the predicates of any two rules in the a classifier are

either disjoint, or one predicate is a subset of the other. However, these generalized

 
algorithms have a significant time requirements, 0(NIDS (wl x x 111(1)), where

wd is the number of bits used for 17,. As a. result, the dynamic program ceases to be

usable for more than two fields.

Complete Redundancy Detection in Firewalls In [18]. Liu and Gouda, pro-

pose the first algorithm that is guaranteed to detect and remove a maximal set of

redundant rules within a classifier. They propose two types of redundant rules.

upward redundant rules and downward redundant rules. These two types of rules

are shown to completely categorize the set of all redundant rules. Liu and Gouda’s

algorithm first uses an iterative FDD construction technique to remove all upward

redundant rules. and it uses a different iterative FDD ccmstruction technique to

remove all downward redundant rules. By removing both types of rules, the al-

16



gorithm produces a classifier free of redundant rules. Note, that this algorithm is

not guaranteed to remove the maximum number of redundant rules since there can

be interdependencies between redundant rules. However, this algorithm is effective

for all types of classifiers, and its efficiency scales well as the number of fields in a

classifier increases.

Packet Classifiers in Ternary CAMS can be Smaller In [5], Dong et al.

propose the first algorithm that modifies rules within a classifier in an attempt to

reduce the effects of range expansion. They propose four types of operations: trim-

ming rules, expanding rules, merging rules, and adding rules. The basic idea of

their algorithm is that by trimming or expanding the space covered by a predi-

cate, the range expansion for each rule can be reduced. They propose a two stage

algorithm that first trims the predicate space of every rule and then expands the

predicate space of each rule going from last to first. This algorithm is significant in

that it accommodates classifiers with more than two fields. However, it is unknown

whether or not the algorithm is optimal given a one-dimensional classifier. Further-

more, The algorithm requires repeated applications for a classifier to converge upon

a minimal set of rules and depends heavily upon repeated applications of the redun-

dancy removal technique found in [18]. This suggests that their algorithm requires

a significant amount of con’irmtational overhead.

Compressing Rectilinear Pictures and Minimizing Access Control Lists

In [1], Applegate et al. propose an optimal solution for two field classifiers composed

entirely of strip rules. Strip rules have a wild card for at. least one field. However,

while this work is of theoretical interest, it does not. scale to d—dimensional classifiers,

and it is not clear that packet classifiers can be efficiently represented with strip rules

3.1.2 Range Encoding:

The basic idea is to first encode ranges that appear in a classifier and store the en—

coded rules in a TCAM. When a packet. comes, the packet needs to be. preprocessed
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so that the resulting encoded packet can be used as a search key for the TCAM.

Previous range encoding schemes fall into two categories: database independent en-

coding schemes [4,15], where the encoding of each rule is independent of other rules

in the classifier, and database dependent encoding schemes [19, 21,31], where the

encoding of each rule may depend on other rules in the classifier. The advantage

of database independent encoding schemes is that they allow fast. incremental up-

dates to the classifier since each rule is encoded indepemlently. However, database

dependent schemes have the potential for better space savings since they can utilize

the low number of unique ranges that appear in real life classifiers to achieve lower

range expansion.

Algorithms for Advanced Packet Classification In [15], Lakslnninarayanan

et al. propose a scheme called fence encoding, which encodes interval ranges as a

range of unary numbers. All ranges under fence encoding have an expansion factor

of one, which implies that all ranges can be encoded with one rule, but the number

of unary bits required for each rule is prohibitive since a field with length 11) requires

2‘“ bits per rule. To reduce the required number of bits in a rule, Lakshminarayan

et al. proposed the technique called DIRPE, which con'mresses the size of fence

encodings at the expense of increasing the average expansion ratio. DIRPE works

by dividing a field into equally sized sub-fields, which are called chunks, and fence

encoding these chunks. Selecting the number of chunks provides a trade-off between

range expansion and TCAM entry width. The authors also propose a method of

combining DIRPE with Liu’s range encoding scheme found in [19] to handle ranges

that have a large expansion factor under DIRPE. However. this combination negates

DIRPE'S ability to allow fast updates for classifiers.

Space-efficient TCAM-based Classification using Gray Coding Bremler-

Barr and Hendler, in [4], propose a scheme in which field domains are encoded using

binary reflected gray codes(BRCC). While there is no advantage or disadvantage to

using a BRGC for fields that contain only prefix ranges. using BRGC on non-prefix

ranges breaks up the range in such a way that additional ternary bits can be used to

1,8



eliminate some of the prefixes needed to represent a range. The result is that some

of the prefixes ranges required to represent a range are merged together into a single

ternary entry. The authors note that this encoding technique is especially effective

for small ranges and name their encoding algorithm short range gray encoding or

SGRE. Since SGRE does not require any additional TCAM bits to encode ranges,

Bremler-Barr and Hendler also propose a method of combining SCRE with Liu’s

range encoding technique. Like DIRPE this combination negates SGRE’S ability

to support fast updates for classifiers, but it allows for the technique to concisely

encode ranges with large expansion factors under SRGE.

Efficient Mapping of Range Classifiers into Ternary-CAM In [19], Liu pro-

poses an encoding method that designates specific ternary bits within each TCAM

entry to represent a specific range. A packet field is encoded via an SRAM lookup

table that maps each field value to a codeword that has a designated bit set to 1 if

and only if the value is an element of the corresponding range. Each rule’s range

predicate can then be encoded such that the designated bit is set to 1 and every

other bit is set to *. This technique eliminates range expansion completely; however,

it also requires n bits per TCAM entry when a classifier has n unique ranges in a

field. This technique quickly becomes impractical as the number of unique ranges

within a field increases. To combat the explosive growth in required bits, Liu pro-

poses splitting a field domain into I: disjoint ranges such that each disjoint range

intersects with a small number of unique ranges. Since [logk + 1] bits are needed

to encode these disjoint ranges, this scheme allows for a field to be encoded using

[log k + 1] + 71’ bits where n’ is the maximum number of unique ranges that inter—

sect with a given disjoint range. Using this scheme means that rule predicates that.

intersects with more than one disjoint range must. be replicated for each intersection.

To manage the trade off between rule expansion and bit expansion, Liu proposes a

heuristic algorithm that repeatedly finds and merges the pair of disjoint ranges that

reduces rule expansion the most. These merges continue until a budget. of b bits is

exhausted.
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Fast and Scalable Packet Classification In [31], van Lunteren and Engbersen

propose an encoding method similar to [19]. In their encoding scheme, they control

the required number of bits by partitioning the unique ranges into 1 layers. The

ranges within each layer are then broken into disjoint ranges so that each layer can

be encoded in [log ni] bits where n,- is the number of disjoint ranges in layer i. Each

field then become the concatenated encoding for each layer. The authors also note

’ in another layer,that if a disjoint range r in one layer contains a disjoint range r

this information can be used to reduce the number of bits needed to encode r”s

layer. Unfortunately, no algorithms are given for partitioning unique ranges into

layers.

An Encoding Scheme for TCAM-based Packet Classification In [21], Pao

et al. propose an encoding algorithm called. prefix inclusion encoding(PIC). PIC

utilizes van Lunteren and Engbersen’s observation that containment information for

one layer can reduce the number of bits required to encode ranges in the next layer.

That is the scheme produces a series of 1 layers L1, . . . , Ll such that each disjoint

range in L,- is a subset of a single range of Li—l for i E {2, . . . , I}. With this property,

PIC can encode a field predicate into a compact prefix range. PIC was designed for

encoding fields with prefix ranges and large domains such as the source IP for IPv6

headers. However, the authors do suggests techniques for adapting their scheme

to encode range fields. These techniques require breaking overlapping ranges into

disjoint ranges, which in turn requires that encoded rules are replicated in a manner

similar to other encoding techniques.

3.1.3 Circuit Modification:

The basic idea is to modify TCAM circuits to accon‘m‘iodate range comparisons. For

example, Spitznagel ct al. proposed adding comparators at each entry level to better

accommodate range matching [24]. While this research direction is important. such

solutions are hard to deploy due to high cost. [15], and modified TCAMs may be less

applicable to applications other than packet processing.
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3.2 Software Based Techniques

The simplest. software based technique for packet classification is a linear search,

which has excellent storage requirement but. becomes too slow for wire speed packet.

classification for even modest sized classifiers. As a results, there is a rich body

of software based packet classification techniques [2,3,7',11,14,22,23,25,26,28,32],

and an extensive survey of these techniques can be found in [29]. These techniques

trade storage space for an improvement in search time via special preprocessing

of the classifier rules. Techniques can be partitioned into two categories: parallel

decomposition and decision tree classification.

3.2.1 Parallel decomposition

The objective of parallel decomposition techniques [3,11,14,25,26,28] is to break the

classification process into several steps that can performed in parallel. The above

techniques perform the decomposition along the field boundaries of a packet header.

This in effect allows for fast and efficient. single field classification solutions to encode

each field in parallel. These new values are then composed via one or more additional

classifications stages to yield a. correct classification.

High-speed Policy-based Packet Forwarding using Efficient Multi-dimen-

sional Range Matching In [14]. Lakshman and Stiliadis propose encoding each

field’s value into a bitmap that specifies a containment relationship among values and

rules [14]. This bitmap indicates whether or not an encoded value intersects with a.

given rule’s field predicate. Once each field is encoded, this method uses customized

parallel AND gates to perform an intersection of these bitmaps and ultimately finds

the first matching rule. This technique. is effective; however it requires a bit. line for

each rule in the classifier and must be implemented on customized hardware.

Scalable Packet Classification In [3]. Baboescu and Varghese improve on the

above technique by observing that for classifiers with a low occurrence of wildcards.

bitmaps will be sparely populated with 1‘s. They group bits within each bitmap

1)1
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into chunks and represent. each chuck with a single bit which is the logical OR of all

the bits within the chunk. This allows the second stage to skip the comparison of

a significant number of bits. For classifiers that have a low occurrence of wildcards,

this technique is very effective at reducing the number of memory access needed

to perform the second stage processing; however, this reduction is diminished once

wildcards occur more frequently within a classifier.

Fast and Scalable Layer Four Switching In [26], Srinivasan et al. propose

an encoding method called crossproducting that assigns a unique number to each

maximal disjoint range within a classifier field and constructs a lookup table for

the cross product of the numbers associated with each field. This technique is fast;

however, its storage requirements multiplicatively increases as the number of fields

and ranges increases. As a result, the authors only intend crossproducting for small

classifiers with two fields.

Packet Classification on Multiple Fields In [11], Gupta and McKeown pro-

pose an encoding method called Recursive Flow Classification (RFC) that. is an op-

timized version of the cross-producting scheme. This uses recursive cross-producting

tables to reduce the space requirements of regular cross-producting tables. Further-

more, they map disjoint ranges that are contained by the same set of rules into

a single value. RFC’S mapping tables define. an equivalence relation; however, this

equivalence relation is less general than the domain compression technique discussed

in Chapter 8, so they are unable to achieve a maximum compression for each field

domain in most cases. Furthermore, the recursive cross-producting scheme requires

a significant amount of space to store in memory.

Packet Classification using Tuple Space Search In [25], Srinivasan et al.

propose a tuple based search approach. This approach transforms each rule predicate

with d fields into a d—tuple, which is in essence a hash of the predicate. The idea is

that this initial hashing divides the. search space into regions that. can be searched

in parallel. Perfect hashing functions are used to find exact matches in each tuple’s
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search space. The authors propose two methods of determining appropriate tuples

to search. The first method is an exhaustive search of each tuple, and the second

uses a set pruning trie for each field that returns a set of candidate tuples. With

set pruning, the intersections of the results from each field is the set of tuple spaces

that need to be searched.

Scalable Packet Classification using Distributed Crossproducting of Field

Labels In [28], Taylor and Turner propose the Distributed Crossproducting of

Field Labels (DCFL) method that assigns each locally unique range within a field a

locally unique number. Each field value is encoded into a set of numbers, which rep-

resents the ranges that contains the value. These sets are crossproducted together

and then intersected with the set of unique tuples generated from the classifier’s

field predicates. The resulting intersection provides a. list of rules that the packet

header matches. The authors optimize this technique by incrementally perform-

ing the crossproduct and filtering the intermediate results after each incremental

crossproduct. This optimization can dramatically reduce that number of false pos-

itive tuples that are generated. Since overlapping ranges diminish the incremental

crossproducts’ ability to keep the number of candidate matches low, the technique’s

perforn'iance depends on classifiers having a. low number of overlapping ranges.

3.2.2 Decision Trees

Decision tree methods [2, 7, 12, 22,23, 32] use tree structures to successively prune

the search space to a single rule. or a small number of rules. which are then searched

linearly to find a match. Decision tree methods such as HiCuts [12] and Hypercuts

[23] are similar in flavor to our sequential decomposition approach in that they use

a sequence of searches where each search uses a portion of the packet predicate to

classify a packet. However, scfltware—based methods are constrained by a complex

tradeoff among how many searches need to be performed. the time. required to

perform] a search and the space required to store the data structure that facilitates

the search. In the worst case, these methods require many searches, slow searches.
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or tremendous amounts of memory.

Classification Using Hierarchical Intelligent Cuttings In [12], Gupta and

McKeown present a decision tree algorithm called HiCuts. This algorithm builds a

decision tree similar to an unordered FDD with the following differences: Each node

makes a decision based on a partition of a field’s domain, and leaves are allowed

to store a list of rules. The rationale for both of these decisions is derived directly

from the limitations of SRAM lookup methods. The authors implement each node

as a lookup table so that the next node in the tree can be found in constant time.

However, since a field domain of size 232 is prohibitively large, the field domain must

be cut into subsets to limit the size of each tree node. This technique successively

prunes the set of candidate rules with the decision tree until the set of rules is below

a certain threshold. Once this threshold is reached. the list of remaining rules is

stored in the leaf at the end of the decision path. The rationale for this decision is

to save storage space since small lists usually result in big subtrees. The authors

also present a parameterized construction algorithm that. allows the user to trade

maximum lookup time for storage space.

Packet Classification using Multidimensional Cutting In [23], Singh et al.

present HyperCuts, which is an improvement upon HiCuts. The authors contribution

is to allow each node in the decision tree to build a nmltidimensional lookup table

from cuts in multiple fields. This improvement allows for a. more effective pruning of

the list of candidate rules. The authors show that HyperCuts significantly improves

upon the performance of HiCuts.

A Modular Approach to Packet Classification In [32], Woo uses a three stage

approach to classifying packets. The first. stage is a lookup table that distributes

packet value among a set of decision trees by matching m. bits within a rule predicate.

These decision trees are binary trees where the nodes select. the appropriate bit

within the predicate to determine which edge to foll(;)w. The second stage traverses

the decision tree until the third staéige is reached when a. leaf in the decision tree is
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found. These leaves contain a list of one or more candidate matches that is searched

sequentially until a match is found. One key assumption in VVoo’s work is that

each classifier predicate needs to be transformed into a ternary bit. string. This

assumption implies that classifiers with significant amounts of range expansion will

degrade the storage efficiency of this technique.

Fast Firewall Implementations for Software-based and Hardware-based

Routers In [22], Qiu et al. revisit two trie-based lookup schemes for packet clas-

sification that have been traditionally dismissed as being inefficient and show that

for real packet classifiers, they offer predictable classification speeds. Longest prefix

matching tries are an efficient data structure for performing an exact match for a

single field packet; however, once packet. classifiers requires multiple field packets,

some packets will not match against the longest prefix in all dimensions. The first

technique that they examine uses a backtracking search on a multi-field trie to find

every candidate rule. They provide a set of optimizations for the multi-field trie

that speeds up the backtracking search; however, the number of memory accesses

required to classify each packet range from 117 to 196 for real-life classifiers. The

second technique that they examine uses set pruning tries, which enumerate all deci-

sion paths so that each packet value can only follow a single path. The authors also

propose two compression algorithms that help to reduce the storage requirements for

set pruning tries and backtracking tries. Set pruning tries outperform backtracking

search at the expense of additional memory storage requirements; however, experi-

mental results suggest that backtracking tries offer a better performance for storage

trade off. The experimental results suggest that these techniques offer a 2 to 5 times

speedup over linear search.

Tradeoffs for Packet Classification In [7], Feldmann and Muthukrishnan pro-

pose building lookup—up trees similar to HiCuts; however, instead of using a. lookup

table at each node, they employ an inverted lookup tree call a Fat Imrcrtcd Seg—

ment(FIS) tree to store a complete set of cuts of each field. This technique allows

for a more compact re])resentation of the classifier, but. it can significamtly increasing



the number memory accesses needed to classify a packet when compared to HiCuts

or HyperCuts.

Packet Classification for Core Routers: Is there an Alternative to CAMS?

In [2], Baboescu et al. propose the Extended Grid—0f- T1‘2'es(EGT) technique. EGT

uses a two-field trie to prune the candidate rule list and uses a path compression

algorithm to minimize the amount of memory needed to store the trie. For core

router tables, EGT provides reasonable performance; however, EGT’S performance

depends on the structural properties of the core routing tables. Packets classifiers

used in other applications (6.9. firewalls) may not have acceptable performance with

EGT.
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Part I

Equivalent Transformation

Techniques
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Consider the following TCAM lVIinimization Problem: given a packet classifier,

how can we generate another semantically equivalent packet classifier that requires

the least number of TCAM entries? Two packet classifiers are (semantically) equiv—

alent if and only if they have the same decision for every packet. For example, the

two packets classifiers in Tables 1.1 and 1.2 are equivalent; however, the one in Ta—

ble 1.1 requires 900 TCAM entries, and the one in Table 1.2 requires only 6 TCAM

entries.

Solving this problem helps to address the limitations of TCAMs. As we reduce

the number of TCAM entries required, we can use smaller TCAMs, which results

in less board space and lower hardware cost. Furthermore, reducing the number of

rules in a TCAM directly reduces power consumption and heat generation because

the energy consumed by a TCAM grows linearly with the number of ternary rules

it stores [33].

While the optimal solution to the above problem is conceivably NP-hard, in

this thesis, we propose a practical algorithmic solution using two techniques. Our

first technique, TCAM Razor, generates new but equivalent classifiers, whereas our

second technique. all-match redundancy removal. finds a set of rules that can be

safely removed from a classifier



Chapter 4

TCAM Razor

TCAM Razor consists of the following four basic steps. First, convert a given packet.

classifier to a reduced decision diagram, which is the canonical representation of the

semantics of the given packet classifier. Second, for every nonterminal node in

the decision diagram, minimize the number of prefixes associated with its outgoing

edges using dynamic programming. Third, generate rules from the decision diagram.

Last, remove redundant rules. As an example, running our algorithms on the packet

classifier in Table 1.1 will yield the one in Table 1.2.

Our solution is effective, efficient, and practical. In terms of effectiveness, our ap-

proach achieves a total compression ratio of 3.9% on real—life packet classifiers, which

is significantly better than the previously published best. result of 54% [5]. In terms

of efficiency, our approach runs in seconds, even for large packet classifiers. Finally,

in terms of practicality, our approach can be easily deployed as it does not require

any modification of existing packet classification systems. In comparison, a number

of previous solutions require hardware and architecture modifications to existing

packet classification systems, making their adoption by networking manufz—icturers

and ISPS much less likely.

The solution is named “TCAM Razor” f(’)llowing the principle of Occams razor:

“0f two equivalent theories or eJ‘planat-ions. all other things being equal, the simpler

one is to be preferred.” In our context, of all packet classifiers that are equivalent,

the one with the least number of TCAM entries is preferred.
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4.1 Multi-dimensional TCAM Minimization: The

Basics

In this section, we present TCAM Razor, our algorithm for minimizing multi-

dimensional prefix packet classifiers. A key idea behind TCAM Razor is processing

one dimension at a time using the weighted one-dimensional TCAM minimization

algorithm in Section 2.2 to greedily identify a local minimum for the current dimen-

sion. Although TCAM Razor is not guaranteed to achieve a global minimum across

all dimensions, it does significantly reduce the number of prefix rules in real-life

packet classifiers.

4.1.1 Conversion to Firewall Decision Diagrams

To facilitate processing a packet classifier one dimension at. a time, we first convert.

a given packet classifier to an equivalent reduced Firewall Decision Diagram (FDD)

[10]. Given a packet classifier f1, we can construct. an equivalent. FDD f2 using the

FDD construction algorithm in [17].

 
Fi "ure 4.1: A firewz-ill decision diagram

g o
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4.1.2 Multi-dimensional TCAM Minimization

We start the discussion of our greedy solution by examining the reduced FDD in

Figure 4.1. We first look at the subgraph rooted at node '02. This subgraph can be

seen as representing a one-dimension packet classifier over field F2. We can use the

weighted one-dimensional TCAM minimization algorithm in Section 2.2 to minimize

the number of prefix rules for this one-dimensional packet classifier. The algorithm

takes the following 3 prefixes as input:

10 * * (with decision accept and cost 1),

O * ** (with decision discard and cost 1),

11 * * (with decision discard and cost 1).

The one—dimensional TCAM minimization algorithm will produce a minimum (one-

dimensional) packet classifier of two rules as shown in Table 4.1.

 

Rule # F1 Decision
 

1 10** accept

2 * ** * discard     
Table 4.1: A minimum packet classifier corresponding to 212 in Fig. 4.1

Similarly, from the subgraph rooted at. node 123, we can get. a minimum packet

classifier of one rule as shown in Table 4.2.

 

Rule# F1 Decision

1 ****

 

discard

     

Table 4.2: A minimum packet classifier corresponding to U3 in Fig. 4.1

Next, we look at the root. ’Ul- As shown in Figure 4.2, we view the subgraph

rooted at ’02 as a decision with a n‘iultiplication factor or cost of 2, and the subgraph

rooted at ‘03 as another decision with a. cost. of 1. Thus. the graph rooted at 1.21 can

be thought of as a “virtual” one-(lin'iensioiial packet classifier over field F1 where

each child has a multiplicative cost.
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F2610“ -’ accept

F26 **** -* discard

F26 **** —* discard

 

Figure 4.2: “Virtual” one—dimensional packet classifier

Now we are ready to use the one-dimensional TCAM 11111111111281.1011 algorithm

in Section 2.2 to minimize the number of rules for this “virtual” one-dimensional

packet. classifier. The algorithm takes the following 5 prefixes and associated costs

as input:

1000

101*

with decision '02 and cost 2 ,

with decision 2:2 and cost 2 ,

1001

11* *

with decision 123 and cost 1 .

( l

( l

0 * ** (with decision ()3 and cost. 1)

( l

( lwith decision '03 and cost 1 .
/

Running the weighted one-(iimensional TCAh-l minimization algorithm on the above

input. will produce the “virtual” one-dimensional packet classifier of three rules as

shown in Table 4.3.

 

Rule # F1 Decision
 

    

1 1001 go to node. (’3

2 10** go to node (22

3 **** go to node U3
 

Table 4.3: A minimum packet classifier (:(n‘respontling to ”1 in Fig. 4.1
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Combining the “virtual” packet classifier in Table 4.3 and the two packet clas-

sifiers in Table 4.1 and 4.2, we get a packet classifier of 4 rules as shown in Table

 

 

4.4.

Rule # F1 F2 Decision

1 1001 **** discard

2 10** 10** accept

3 10** **** discard

4 **** **** discard    
 

Table 4.4: Packet classifier generated from the FDD in Figure 4.1

4.1.3 Removing Redundant Rules

Next, we observe that rule r3 in the packet classifier in Table 4.4 is redundant. If we

remove rule 73, all the packets that used to be resolved by 13 (that is, all the packets

that match 13 but do not match r1 and r2) are now resolved by rule 7‘4, and r4 has

the same decision as 73. Therefore. removing rule 73 does not change the semantics

of the packet. classifier. Redundant rules in a packet classifier can be removed using

the algorithms in [18] or the algorithm in the next chapter. Finally, after removing

redundant rules, we get a packet classifier of 3 rules from the FDD in Figure 4.1.

4.1.4 The Algorithm

To summarize, TCAM Razor, our multi-dimensional TCAM minimization algo-

rithm, consists of the following four steps:

1. Convert the given packet classifier to an equivalent. FDD.

2. Use the FDD reduction algorithm described in the next. section to reduce the

size of the FDD. This step will be explained in more detail in the next section.

3. Generate a packet (jtlassifier from the FDD in the following bottom up fashion.

For every terminal node, assign a cost of 1. For a non-terminal node U with
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outgoing edges {(31, - - - , ez}, formulate a one-dimensional TCAM n'iinimization

problem as follows. For every prefix ’P in the label of edge e.-, (1 g j S .3),

we set the decision of ”P to be j, and the cost of ’P to be the cost of the

node that edge ej points to. For node v, we use the weighted one-dimensional

TCAM minimization algorithm in Section 2.2 to compute a one—dimensional

prefix packet classifier with the minimum cost. We then assign this minimum

cost to the cost of node 1). After the root node is processed, generate a. packet

classifier using the prefixes computed at each node in a depth first. traversal

of the FDD. The cost of the root indicates the total number of prefix rules in

the resulting packet classifier.

4. Remove all the redundant rules from the resulting packet classifier.

4.1.5 TCAM Update

Packet classification rules periodically need to be updated. The common practice

for updating rules is to run two TCAMs in tandem where one TCAM is used while

the other is updated [16]. TCAM Razor is compatible with this current practice.

Because TCAM Razor is efficient and the resultant TCAM lookup table is small,

TCAM updating can be efficiently performed by rerunning TCAM Razor on the

updated rules. When rules are frequently added to a classifier, we suggest the

following lazy update strategy. First, after running TCAM Razor, store the resulting

rules in the lower portion of the TCAM. Let n denote the total number of entries

in the TCAM, m denote the total number of TCAM entries needed by a packet

classifier after applying Razor, and let array T denote the TCAM. Initially, the m

entries are stored from T[n — m] to T[n — 1]. When a new rule 7‘ needs to be added

to the classifier. we first. perform range expz—msion on r. Let ""1 be the number of

prefix rules that. are created. We store these rules in locations T[n — m — ml] to

T[n — m — 1]. As new rules are added, this process continues until the TCAM is

filled up. Thus, TCAM Razor only needs to run periodically rather than when each

new rule is added.
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Chapter 5

All-Match Redundancy Removal

we present an all-match based complete redundancy removal algorithm. This is the

first algorithm that attempts to solve first—match problems from an all-match per—

spective. We formally prove that the resulting packet classifiers have no redundant

rules after running our redundancy removal algorithm. We conducted extensive ex-

periments on both real-life and synthetic packet classifiers. The experimental results

show that our redundancy removal algorithm achieves an average compression ratio

of 41.8% for TCAM entries.

We have improved upon [18] in two ways. First. the redundancy theorem be-

comes simpler. The redundancy theorem in [18] distinguishes upward and downward

redundant rules, and detects them separately. In contrast, the redundancy theorem

presented here gives a single criterion that. can detect both upward and downward

redundant rules. Second, the new redundancy removal algorithm is more efficient.

The algorithm in [18] scans a packet classifier twice and build FDDS twice in order

to remove the two types of redundant rules. In comparison. the new algorithm only

scans a packet classifier once and builds one all—match FDD with a cost similar cost.

to building an FDD. The new algorithm is about twice as efficient. as the algorithm

in [18].



5.1 All-Match Based Redundancy Theorem

In this section, we introduce the concept. of all—match FDDs and the all-match based

redundancy theorem.

5.1.1 All-Match FDDs

Definition 5.1.1 (All—Match FDD). An all—match FDD t for a packet classifier

f : (r1,r2,-~,rn) over fields F1,---,Fd is an FDD that has the following five

properties:

9
"
:

Each node v is labeled with a packet field denoted F(v). If v is a nonterminal

node, then [7(0) is a packet field. va is a terminal node, then F(v) is a list

of integer values (121, i2, . - - , ik) where 1 S i1 < i2 . -- < ik g n.

Each edge e:u —+ v is labeled with a nonempty set of integers, denoted [(6),

where [(6) is a subset of the domain ofu ’s label (i.e., I(e) g I)(F(u))).

The set of all outgoing edges of a node “U in t, denoted E(v), satisfies the

following two conditions:

(a) Consistency: I(e) fl I(e’) = (D for any two distinct edges 8 and e’ in E(v).

(b) Completeness: UeEE(v) I(e) = D(F(v)).

A directed path from the root to a te'miinal node is called a decision pat-h.

No two nodes on a decision path have the same label. Given a decision path

P : (2218112262 - - - 'Umemu,,,,+1), the matching set ofP is defined as the set of all

packets that satisfy (F(ul) E [(61)) /\(F(v2) E I(e2))/\- - -/\(F(Um) E I(e-m)).

We use M(P) to denote the matching set of P.

For any decision path. P : (‘Ulelvgeg - - - Uy'neynvnl+1) where F(vm+1) =2 (i1,

i2, ...,ik.) and for any rule rJ-(l g j S n). if i‘\l(P)fli‘ll(rJ-) 75 o. then ll/(P) Q

111(7‘j) andj E {i1,l2,- - -,'lk}. C]

36



r1 : F1 E [1, 5] /\ F2 E [1,10] ——> accept

r2 : F1 E [1, 5] /\ F2 E [5,10] —> accept

r3 : F1 E [6, 10] /\ F2 E [1,3] —> discard

r4 : F1 E [1, 10] /\ F2 E [1,10]—> discard

Figure 5.1: A simple packet classifier

[1,5] [6,10]

[1,4] V0] [1,3] [4,10]

1,4 (1,2,4)( 3,4 )

Figure 5.2: A11 all—match FDD for the packet classifier in Fig 5.1

Fig 5.2 shows an all-match FDD for the simple packet classifier in Fig 5.1. In this

example, we assume every packet has only two fields F1 and F2. and the domain of

each field is [1. 10].

In an all—match FDD for a packet classifier f . for any decision path 73 : (01611}282

- -- vme-,-nu,,.,y+1) where F(um+1) = (i1, i2, ik), if a packet p satisfies this path P,

then {731,7}: .. "i k} are exactly all the rules in f that p mat(_:hes. 1le IS why we2, ..

call such a FDD an “all-Inat.(':h FDD”.
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5.1.2 The All-Match Based Redundancy Theorem

Before we present the All-I\‘Iat(_:l1 Based Redundancy Theorem, we first prove the

following lemma.

Lemma 5.1.1. Let t be an all-722atch FDD for packet classifier f : (7‘1,r2, - - - ,rn).

For any rule rz- in f, let P1, P2, - - - , Ph be all the decision paths whose terminal node

contains r23. then the following condition holds: 111(73): U_1 lil(Pj') [3

Proof:

(1) According to prope1tv5oin the definition of all-match FDDs, we have 111(Pj) Q

Al(ri) for everyj (1 < j\<h). Thus, we have Uj=11l1(Pj ) C 111(7'i-)

(2) Consider a. packet p in A102) According to the consistency and completeness

properties of all-match FDDS, there exists one and only one decision path that p

matches. Let P be this decision path. Thus, we have p E ll[(rz-) fl 111(P). According

to property 5 in the definition of all-match FDDS, i is in the label of P’s terminal

node. Thus, we have P E {P1 P2, - - - , Ph}. Therefore, we have p E U521 111(Pj).

Thus we get. lll(r) C Uh__1M(P) [3

Theorem 5.1.1 (All—Match Based Redundancy Theorem). Let t be an all-72iatch

FDD for packet classifier f : (2‘1.7‘2. - - - ,rn). Rule rz- is redundant in f if and only

if in all te77ni72al nodes oft that have i as their first value, i is immediately followed

by another integer j such that rz- and rJhave the same deczsion.

Proof. (1) Suppose in all terminal nodes of t that have i as their first. value. I

is immediately followed by another integer j such that r and 7']haw the same

decision. We next. prove that 7’1‘ is redundant in f.

We observe that removing a. rule r2- only possibly affects the decisions for the

packets in 111(2)). Let P1.Pg. - - 1 , P}, be all the decision paths in t whose terminal

node contains 1'. According to 11111111121501 1 we ham M(7 =Ul-I’__ 1 ’l[( PJ- ). Con-

sider an arbitrary packet p in 111/(r1) Suppose we have. p E 1\I(Pj). (M f be the

resulting packet. classifier after removing Ti from f. To prove that 7',‘ is redundant

in f, we only need to prove f(p) = f’(p). Let the. label of the terminal node of P]-

be (i1, i2, - - 1.11.). Because i E (11.19.. - - , ik}, there. are two cases:
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1. 21 74 i. In tins case, Til is the first rule 1n f that p matches. Thus. removmg

rz- does not affect the decision for p. In this case, we have f (p) = f' (p).

2. i1 = i, and rz- has the same decision as 7‘2-2. In f, 7‘2- is the first rule that p

111atches. In f’ , rz- is the first rule that p 111atches. Because rz- and 732 has the
2

same decision, we have f (p) = fI (p) in this case.

Therefore, rz- is redundant in f.

(2) Suppose rule rz- is redundant in f and there exists a terminal node in t whose

first two values are i followed by j , and rz- and rj have different decisions. Let P

denote the decision path from the root to this terminal node. Consider a packet

p E 1W(P) Thus, rz- is the first rule that p matches in f and rj is the first rule that

p matches in f’. Because rz- and rj have different decisions, we have f (p) 51$ f’ (p)

This conflicts with the assumption that 21,; is redundant. Therefore, if rz- is redundant

in f, then in all terminal nodes of t: that have i as their first value, i is immediately

followed by another integer j such that 7i and rj have the same decision. El

5.2 All-Match Based Redundancy Removal

In this section, we first present an algorithm for constructing all-111atch FDDS from

packet classifiers. Second, we present. a redundancy removal algorithm based on

Theorem 5.1.1. Third we rove that the resulting )acket classifier does not have
7 C

any redundant rules.

5.2.1 The All-Match FDD Construction Algorithm

According to Theorem 5.1.1, in order to detect and remove redundant. rules in a

packet classifier, we first need to construct an all-match FDD for that packet clas-

sifier. The pseudocode for the. all—111atch FDD construction algorithm is shown in

Algorithms 1 and 2.

Consider the packet classifier in Figure 5.1. The process of constructing the.

corresponding all—match FDD is shown in Figure 5.3.
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Algorithm 1 All—Match FDD Construction Algorithm

Input: A packet classifier f : (r1,712, - - -,rn).

 

Output: A all-match FDD t for packet classifier f.

1: Build a path from rule 7‘1. Let. 1) denote the root. The label of the terminal node

is (1).

2: for i z: 2 to 72. do

3: APPEND( v, r21, 1, i);

4: end for
 

0 6
[1,5] - [1,5]

E e

[1.10] [1.41 [5,10]

 

   

Figure 5.3: Constructing an all-111atch FDD

5.2.2 The All-Match Based Redundancy Removal Algorithm

We first introduce two auxiliary lists that are used in the all—match based redundancy

removal algorithm: containment list and residency list. Given an all—match FDD
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Algorithm 2 APPEND
 

Input: A vertex v, a rule (F1 E 81) /\ - - - /\ (Fd E 84) —1 (dec), a depth m, and a

rule number i.

Output: 1) includes the rule (F1 E 51) /\ ~ - 1 /\ (Fd E 5(1) ——+ (dec) in its all-match

structure.

{F(v) 2 Fm and E(U)={€1,-1-,€k}}

1: ifmzd+1then

2: Add i to the end of v’s label.

3: return

4: else if (Sm -— (I(el) U - - - U I(ek))) +4 (0 then

5: Add an outgoing edge ek+1 with label Sm — (I(el) U - - - U I(ek)) to u;

6: Build a decision path from (Fm+1 E Sm+1) /\ - - - /\ (Fd E 5d) -—> (dec), and

make ek+1 point to the first. node in this path;

7: Add i to the end of the label of the terminal node of this decision path;

8: end if

9: forj:=1t.okdo

10: if I(ej) C Sm then

11 APPEND(eJ-’s target,(F1 E 81) /\ - - - /\ (Fd E Sd) —> (dec),m+1,i);

12: end if

13: Add one outgoing edge e to v, and label e with I (ej) fl Sm;

14: Make a copy of the subgraph rooted at the target node of ej, and make 6

points to the root of the copy;

15: Replace the label of ej by I(ej) — Sm;

16: APPEND(e’s target,(F1 E 81) /\ - - - /\ (Fd E 5(1) —1 (dec).m+1,i);

17’: return

18: end for
 

that. has 771 terminal nodes, we assign a. unique sequence number in [1,772.] to each

terminal node. In the containment. list. each entry consists of a terminal node

sequence number and the rule sequence numbers crmtained in the terminal node.
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Terminal Rule #

node #

 

 

 

 

  

 

 

     
 

 

         
 

,._

1 1
f——'\ r———fl

2 1,2,4 2 2
\____J m

3 3,4 3 3

(——\

4 4 4 1,2,3,4

Containment List Residency List

Figure 5.4: The containment. list. and the residency List for the all-match FDD in

Figure 5.2

In the residency list, each entry consists of a. rule sequence number and the set of

terminal nodes which contains this rule. The all-match list and the residency list

for the all-match FDD in Figure 5.2 are in Figure 5.4.

The all—match based redundancy removal algorithm works as follows. Given a

packet. classifier f : (r1, r2, - - - , 7'”), this algorithm scans f from r-n to r1, and checks

whether each rule is redundant using Theorem 5.1.1. Whenever a rule is detected as

redundant, the rule is removed from f. The pseudocode of the algorithm is shown

in Algorithm 3.

Consider the packet classifier in Figure 5.1 and its all-match FDD in Figure 5.2.

The all—111atch list and the residency list are in Figure 5.4. We, next demonstrate the

process of determining whether 7'4 is redundant using the all-Iriatch based redun-

dancy removal algorithm shown in Figure 3. From the residency list, we know that

rule r4 is contained in terminal nodes 1.2.3 and 4. 111 t(:1.rminal node 4. 7‘4 is the only

value, and thus is not redundant. Next, we check whether 7'3 is redundant. From

the. residency list. we know that. 73 is contained in terminal node 3. In terminal

node 3. the first. value is 3, and is innnediatt-1ly followed by a 4. and 7‘3 and 7'4 have
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Algorithm 3 All—Match Based Redundancy Removal Algorithm

Input: A packet classifier f : (r1, r2, - - - , rn), and an all-match FDD t for f.

 

Output: A packet classifier fI where f E f’ and there is no redundant rule in f' .

1: Build the containment list ConList[1..m] from t.

2: Build the residency list ResList[1..n] from t.

3: for i := n to 1 do

4: redundant :2 true

5: for each terminal node sequence number tn in ResList[i] do

6: if i is the only value in ConList[tn]) or i is the first value in Co-22,List[tn]

and the second value in ConList[tn], say j , satisfies the condition that r,-

and rj have different decisions then

7: redundant :2 false;

8: break;

9: end if

10: end for

11: if redundant then

12: remove rz- from f7;

13: for each terminal node sequence number in in ResLis-t[i] do

14: delete i from (YonListltnl;

15: end for

16: end if

17: end for
 

the same decision. According to the Theorem 5.1.1, r3 is redundant. Subsequently,

we remove r3 from the packet classifier and delete 3 from the third entry of the

all-match list. In a similar fashion, we can further detect that r2 is redundant and

r1 is not. redundant. The resulting packet classifier is shown in Figure 5.5.
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F1 E [1, 5] /\ F2 E [1,10] —2 accept

F1 E [1, IO] /\ F2 E [1,10]—+ discard

Figure 5.5: The resulting packet classifier after removing redundant rules from the

packet. classifier in Figure 5.1

5.2.3 Proof of Complete Redundancy Removal

A packet classifier redundancy removal algorithm is a complete redundancy removal

algorithm if and only if for any packet classifier the algorithm produces a. semantically

equivalent packet classifier in which no rule is redundant.

Theorem 5.2.1. The All—Match Based Redundancy Removal Algorithm is a com-

plete redundancy removal algorithm. C]

Proof:

Let. f be a given packet classifier and let t be an all—match FDD for f. Let f'' be

the resulting packet classifier after running the all-match based redundancy removal

algorithm. Suppose fII has a rule rz- that is redundant in f/I . Let fI be the resulting

packet classifier after the algorithm has examined all the rules from ”+1 to r-n and

the redundant rules from n+1 to rn, has been removed. Because the algorithm does

not remove ri, 7",; is not redundant. in f’. According to Theorem 5.1.1, there is at

least a terminal node u that satisfies one of the following conditions:

1. this terminal node only contains i,

2. this terminal node has i as its first value and i is inunediately followed by

another value j such that 7",; and rj have different (_'l(-?(_tlSlODS.

If U satisfies one of the two conditions, then u still satisfies that condition after the

algorithm removes all the redundant rules above Ti» because i will never be deleted

from ’12 according to the. algorithm. Therefore, r7; is not redundant. in fI’ according

to Theorem 5.1.1. [:1
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It is worth noting that the order from n to 1 in detecting redundant rules is

critical. If we choose another order, the algorithm may not. be able to guarantee

complete redundancy removal. Take the order from 1 to n as an example. When we

check whether rz- is redundant, suppose rz- is not redundant because there is one and

only one terminal node in the all-match FDD that has i as its first value and i is

immediately followed by another value j such that r,- and rj have different decisions.

We further suppose j is immediately followed by another value k where 7‘2‘ and rk

have the same decision. After moving all the redundant rules after 71,-, j is possibly

removed from the terminal node and consequently rz- and rk become the first two

values in the terminal node and they have the same decision. Thus, rz- becomes

redundant.



Chapter 6

Experimental Results

In this section, we evaluate the effectiveness of TCAM Razor and All-Match Re-

dundancy Removal on both real-life and synthetic packet classifiers. Note that in

cases where TCAM Razor cannot produce smaller packet classifiers than redundancy

removal alone, TCAM Razor will return the classifier produced by redundancy re-

moval. Thus, TCAM Razor always performs at least as well as redundancy ren'ioval.

6. 1 Methodology

We first define the metrics that. we used to measure the effectiveness of TCAM Razor

and the redundancy removal technique by Liu and Gouda [18]. 111 this paragraph,

f denotes a packet classifier, S denotes a set. of packet. classifiers, and A denotes

either TCAM Razor or the redundancy removal technique. We then let I f | denote

the number of rules in f, A(f ) denote the prefix classifier produced by applying A

on f, and Direct( f) denote the prefix classifier produced by applying direct range

expansion on f. We define the following four metrics for assessing the performance

of A on a set of classifiers S'.

o The average compression ratio of A over S =

(MN
Efesm

lSl
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o The total compression ratio of A over S =

EfeSlAffll

Efengirect(f)|'

 

o The average expansion ratio of A over S 2

Wm

Efes m

ISI

 

 

o The total expansion ratio of A over S =

EfeSlAffll

EfeSlfl .

 

Variable Ordering

The variable order that. we used to convert a packet classifier into an equivalent FDD

affects the effectiveness of TCAM Razor. There are 5! = 120 different permutations

of the five packet fields (source IP address, destination IP address, source port

number, destination port number, and protocol type).

A question that naturally arises is: which variable order achieves the best com-

pression ratio? To answer this question, for each pern‘iutation , we computed the

total compression ratio for TCAM Razor over RL. The maximum total compres-

sion ratio is 10.8% and the minimum total compression ratio is 7.7%. When we

use the best permutation for each classifier, the total compression ratio is 6.7%.

Furthermore, the four permutations that start with the field Destination IP address

and Source IP address have a total compression of less than 7.8%. Using the best

permutation from these four permutations results in a. total compression ratio of

7.5%. The best single permutation is the order (Destination IP address, Source IP

address, Source Port, Destination Port, Protocol) and has a total compression ratio

of 7.7%. We use this pernuitation to represent TCAM Razor in the experiment.
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results, which is denoted Razor. When we report results using the best permuation

for each individual classifier, we denote this algorithm as BRazor.

The next natural question to ask is: is this permutation the best order for most

packet classifiers?

The answer for BL is yes. In Figure 6.1(a), for each packet classifier in RL, we

show the compression ratios of TCAM Razor, BRazor, and redundancy removal. The

results show that the single best permutation achieves almost the best compression

ratio for each packet classifier group.
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Figure 6.1: Compression and Expansion ratios of RL

Compression Ratio Expansion Ratio

Average Total Average Total

RR Razor RR Razor RR Razor RR Razor

RL 42.4 % 23.3 % 32.5 % 7.7 ‘70 1373.4 % 60.8 ‘70 111.7 ‘70 26.5 ‘70

RLU 66.2 “/0 32.2 ‘70 56.9 ‘70 13.4 % 3217.0 % 153.3 ‘70 195.3 % 46.0 %

SYN 11.1 ‘70 6.8 ‘70 8.4 % 5.6 % 13.2 (70 8.1 ‘70 10.0 70 6.6 %

SYNU 44.1 % 42.8 ‘70 39.4 % 38.6 % 52.6 ‘70 50.9 ‘70 47.0 ‘70 46.0 ‘70          
 

Table 6.1: Statistics for experimental classifiers

Compression Ratio

Table 6.1 demonstrate that TCAM Razor outperforms just redundancy removal.

Figure 6. 1 (a) shows that only 7 out 25 classifiers so no improvement over redundancy
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removal; however, BRazor does achieve an improvenumt over redui‘idancy removal

for four of these classifiers.

We can also see that both TCAM Razor and redundancy removal are less effec-

tive on RLU due to each rule having unique decisions. TCAM Razor is still twice

as effective as redundancy on RLU, which demonstrates that TCAM Razor remains

twice effective for RL as the number of unique decisions becomes large. The results

for the synthetic classifiers show that TCAM Razor is an improvement over redun-

dancy removal and that synthetic generation technique produces a large number of

redundant rules.

Expansion Ratio

Table 6.1 and Figure 6.1(a) demonstrate similar results for Razor, BRazor and re-

dundancy removal. Note that. twelve classifiers are significantly effected by range

expansion. and for these classifiers TCAM Razor is highly effective and combating

range expansion.

6.2 Comparison with other techniques

It is difficult. to compare our results directly with those of Deng ct at. [5] because

we do not have access to their programs or the packet classifiers they experimented

with. However. Razor has a total compression ratio of 7.70},- on our real—life packet

classifiers. IIi contrast. Dong et al. reported a total compression ratio of 54‘ c on

their real-life packet classifiers.
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Part II

New Architectural Approaches
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New architectural approaches seek to modify how the TCAM based packet classi-

fiers operate in order to improve efficiency. We propose two approaches: sequential

decomposition and topological transformation. Sequential decomposition decom-

poses a single d—field packet classification TCAM lookup into a sequence of d l-field

TCAM lookups. Topological transformations provide methods to translate the do—

main of each packet field into a more efficient representation. Both techniques allow

for the efficient utilization of TCAM space. These techniques mitigate the effects of

range; however, they have the unique advantage that they find optimizations beyond

range expansion. This advantage allows for sublinear compression.



Chapter 7

Sequential Decomposition

The problem that sequential decomposition tries to solve in this chapter can be

stated intuitively as follows: how can we squeeze the most information possible into

TCAM chips with little or no perfownance loss? Solving this problem helps to ad-

dress almost all limitations of TCAMs. Given a packet classifier, if we can represent.

it using fewer bits, we can use a smaller TCAM chip, which will result in lower

power consumption, less heat generation. less board space, and lower hardware cost.

Furthermore, reducing the number of TCAM rules results in less power consumption

and heat generation because the energy consumed by a TCAM grows linearly with

the number of ternary rules it stores [33]

Sequential decomposition is composed of four algorithmic approaches to re-

thinking and redesigning TCAM-based packet classification systems: multi-lookup,

pipelined-lookup, packing, and table consolidation. These approaches move beyond

the traditional paradigm that performs a. single lookup on a single TCAM for each

search key. The following two observations of information redundancy and a ternary

search key, which have mostly been ignored in prior work, form the theoretical basis

for our new approaches.

Information Redundancy Inforn'iation stored in TCAMS tends to have high

redundancy from an information theory perspective. Specifi(‘:ally, we observe that

the same ternary string for a specific field may be repetitively stored in I'nultiple



TCAM entries.

Figure 7.1(a), the strings 001, 010, and 100 from the first field are each stored three

For example, in the simple two-dimensional packet classifier in

times in the TCAM, and the strings 001, 010, and *** from the second field are each

stored three times in the TCAM as well. Such information redundancy is primarily

due to the multi—dimensional nature of packet classification rules. One source of

information redundancy is range expansion in two or more fields.

 

 

 

 

 

 

  
 

 

  
 

    
 

     

Single-lookup Multi-lookup

001 ,001 accept t1

001,010 accept w. log 001 t;

001,*** discard 010 t2

010,001 accept 100 t2

010,010 accept w. log ** t3

010,*** discard t2

100,001 accept 001 accept

100,010 accept w. log 010 accept w. 10g

100,*** discard an: discard

***,*** discard w. log t3

*** discard w. log

(a) (b)

Figure 7.1: Reducing information redundancy

Ternary Search Key A TCAM chip typically has a built—in Global Mask Register

(GMR) that supports ternary search keys. The GMR of a TCAM chip contains a

bit. mask that specifies which bit columns in the chip participate in a search. For

example, in a TCAM chip that contains two entries 1010 and 0100, if the search

key is 0101 and the GMR specifies that only the first two columns participate in

this search, the TCAM chip will return that. the lookup key matches the second

entry 0100. In essence, the GMR allows the user to specify the search key in ternary

format. In the above example, the GMR transforms the. search key 0101 into 01**.



The GMR opens new opportunities for further improving TCAM space efficiency.

Intuitively, the GMR allows multiple lookup tables to be packed into one TCAM

chip where the GMR can be used at run time to dynamically select the right table

to search.

The multi—lookup approach is based on three key observations. First, breaking a

multi-dimensional packet classifier into multiple one-dimensional classifiers greatly

reduces information redundancy in TCAMs. Second, multiple lookup tables can

co—reside in TCAM as long as extra bits are set to distinguish them. Third, a

search key can be segmented into multiple search keys where each is searched in a

one-dimensional classifier. Breaking the two-dimensional classifier in Figure 7.1(a)

results in the three one-dimensional classifiers in Figure 7.1(b). Although in this

particular example, the number of entries in the original single—lookup table is only

two more than the total number of entries in the multi—lookup tables, the savings

will increse significantly as the repetition in each field increases. Furthermore, note

that the width of the multi—lookup tables is much smaller than that of the single

lookup table.

The space efficiency achieved by the multi-lookup approach comes with the price

of more clock cycles to perform each search. Our pipelined—lookup approach speeds

up the multi-lookup approach by pipelining the multiple lookups using multiple

TCAM chips. Interestingly, the pipelined-lookup approach achieves even higher

packet classification throughput than the traditional single—lookup approach because

the narrower TCAM entries now fit on the data bus.

The packing approach is based on the following three observations. First, TCAM

chips have limited configurability on their width. This prevents us from configuring

the TCAM width to exactly the table width, which could cause a significant number

of bits in each TCAM entry to be unused. Second, the multi-lookup and pipelined-

lookup approaches produce “thin” tables of varying width. Third, search keys for

TCAM chips can. be ternary, which allows TCAM columns to be dynamically selected

for each lookup. The basic idea of the packing approach is that multiple tables can

be placed within the same TCAM entries. These tables will be distinguished by the



GMR.

In addition to the packing approach, table consolidation allows one TCAM table

to store multiple classifiers efficiently at the expense of extra SRAM. Table consol-

idation is based on the two observations. First, TCAM is far more expensive and

consumes much more power than SRAM; it makes sense to use a large SRAM with a

small TCAM rather than a small SRAM with a large TCAM. Second, semantically

different TCAM tables may share common entries, and transferring this redundancy

to SRAM removes the information redundancy from the more expensive TCAM.

7.1 Multi-Lookup Approach

Prior work and current practice have assumed the use of a single-lookup for TCAM

based systems. we observe that relaxing this assumption could yield unexpected

savings on TCAM space with minor throughput degradation. In this section, we

propose a multi-lookup approach to redesigning TCAM based systems. We present

two algorithms to support this approach: an algorithm for constructing a. multi-

lookup table and an algorithm for processing packets.

7.1.1 Constructing Multi—lookup Table

The algorithm for constructing a multi-lookup TCAM table from a given packet

classifier consists of the following four steps, which are illustrated in Figure 7.2 and

Figure 7.3: (1) FDD Construction: Constructing a tree—like representation, called

a Firewall Decision Diagram (FDD), of the packet.- classifier. (2) FDD Reduction:

Reducing the size of the FDD. (‘3) Table Generation: Generating a TCAM table

from each nonterminal node in the reduced FDD. (4) Table Meiyence: Merging the

generated TCAM tables into a single multi-lookup TCAM table.

FDD Construction

To generate a multi—lookup TCAM table, we first convert a. given packet classifier

to an equivalent firewall decision diagram.Figure 7.2( b) shows the FDD constructed
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Figure 7.2: FDD generation and reduction

from the packet classifier in Figure 7.2(a).
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Figure 7.3: The h-"Iulti—lookup scheme

FDD Reduction

Reduction is an important step in reducing the total number of TCAM entries in the

final multi-lookup table because the reduction step reduces the number of nonter-

minal nodes, which consequently reduces the number of TCAM entries generated.

Figure 7.2(c) shows the resultant FDD after FDD reduction. A brute force algo-

rithm FDD reduction algorithm can be found in [9]; however, we provide a more.

efficient reduction algorithm in Section 7.6.



Table Generation

Suppose the reduced FDD has n nonterminal nodes. Consider any nonterminal

node v. Since v is complete with respect to its labeled field, we can view v as a

one-dimensional packet classifier in which its outgoing edges point to its classifier’s

decisions. We will construct a corresponding TCAM table Table(v) for each non—

terminal node v in the FDD, and we assign a unique ID in the range 0 to n — 1 to

both v and Table(v). We will refer to ID as both node v’s ID and table Table(v)’s

ID. The meaning should be clear from context. For example, the IDs for the four

nonterminal nodes in Figure 7.3(a) are 00, 01, 10, and 11.

For any table t, we define its height h(t) to be the number of entries in t, and

we define its width w(t) to be the number of bits in each TCAM entry. In the

single lookup approach, most people assume w(t) = 144 because the five packet

fields require 104 bits. Using the multi-lm1kup approach, we will show we can make

w(t) = 72.

We generate Table(v) in two steps. We first generate a correct packet classifier

by making one entry for each prefix on each edge. That is, for each of v’s outgoing

edges e from v to v' and for each prefix p on edge e, we generate a rule r as follows:

the predicate of r is p; if v’ is a terminal node, the decision of r is the label of v'; if v,

is a nonterminal node, the decision of r is the ID of v’. We then minimize the number

of TCAM entries in Table(v) by using an optimal, polynomial-time algorithm for

minimizing one-dimensional prefix packet classifiers [27]. Figure 7.3(a) shows the

four minimal TCAM tables that correspond to each of the four nonterminal nodes

in the FDD.

Table Mergence

The final step is to merge all n TCAM tables into a single Imllti-lookup table. For

every nonterminal node v, we prepend v‘s ID to the predicate of each rule in Table(v).

Since each table ID provides a unique signature that distinguishes that table‘s entries

from all other table entries, all n tables can be merged into a. single n’mlti-lookup

table. Figure 7.3(b) shows the resultant multi—lookup table from merging the four
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TCAM tables in Figure 7.3(a).

7.1.2 Packet Processing

After the multi-lookup TCAM table is built for a d-din‘iensional packet. classifier, the

decision for a d-dimensional packet (p1,...,pd) can be found by d searches on the

TCAM. The first search key kl is formed by concatenating the root node’s ID and

p1. Let f (131) denote the search result of 11:1. The second search key, k2 is formed by

concatenating f (131) and 172. This process continues until we compute f (kd), which

is the decision for the packet. For example, given the two dimensional multi—lookup

table in Figure 7.2(e) and a packet (010, 001), the first search key is 00010, which

returns 10. The second search key is 10010, which returns accept as the decision for

the packet.

7.1.3 Analysis

We analyze the impact of the 11'uilt.i-lookup approach on TCAM space and packet

classification throughput.

Space

We define the space used by a packet classifier in a TCAM chip as the number of

classifier entries or rules multiplied by the width of the TCAM chip in bits:

space 2 # of entries x TCAM width

Given a packet classifier f, let Single(f) denote the resulting single lookup TCAM

table and let Multi(f) denote the resulting multi—lcmkup TCAM table. It follows

that. width w(Single(f )) = 144 because the table must accommodate the 104 bits in

the five packet fields, and the number of entries is h(Si/iglc( f )) Thus, the number

of bits required by the single lookup approach is h(S/fnglc(f)) x 144. On the other

hand, we can safely set width u.r(111'u.lti(f)) = 72. This follows as the maximum

width of the five packet fields is 32, which leaves 40 bits for storing a table. ID and



optionally, the decision. This is more than sufficient for any realistic TCAM for the

forseeable future. Thus, the number of bits required by the multi-lookup approach

is h(Multi(f )) x 72. The multi-lookup table starts with a 50% reduction in width.

Throughput

Based on the above analysis that there are at least 40 bits to store table IDs plus

the decision, there is sufficient space to store the decision for each rule in the TCAM

entry and still have each TCAM entry fit within the 72 bits of the typical TCAM bus

width. Thus, it will require two bus cycles to process each packet field: one cycle to

send the search key and one cycle to perform the search and return the result. Given

there are five packet fields that need to be processed, the total packet processing

time will require ten TCAM bus cycles. The single lookup approach requires either

four TCAM bus cycles or five TCAM bus cycles to find the decision for a packet:

four bus cycles if the decision is stored in TCAM, five bus cycles if the decision is

stored in SRAM. Note that the overall packet processing throughput for the multi-

lookup approach may actually be closer to the packet processing throughput of the

single lookup approach because TCAM lookup is normally not the bottleneck of

such systems; instead other operations such as moving a packet in and out of queues

are the real bottlenecks, so taking a few more bus cycles to process a packet may

not have a significant impact on throughput.

7.2 Pipelined-lookup Approach

The multi-lookup approach is an effective method for reducing TCAM space needed

for packet classifiers. However, this reduction in space reduces packet classification

throughput by requiring multiple lookups on a single TCAM chip. In this section,

we present our pipelined-lookup approach, which improves packet throughput. by

using one TCAM chip for each field. That is. we will use five TCAM chips where,

for 1 S i g 5. chip i stores table t,- which is the merger of all tables of F,- nodes.

Having one merged table per field in a separate TCAM chip enables us to pipeline
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the multiple lookups needed for processing each packet. Surprisingly, the pipelined-

lookup approach can be four to five times faster than the traditional single-lookup

approach. Furthermore, separating the tables from different fields yields new op—

portunities to save bits. The result is that while more TCAM chips are needed, the

pipelined-lookup approach can be even more space efficient than the multi-lookup

approach. Next, we present the technical details of the pipelined-lookup approach

to redesigning TCAM based systems. In particular, we present two algorithms to

support this approach: an algorithm for constructing a sequence of d TCAM tables

and an algorithm for processing packets.

7.2.1 Pipelined-Table Construction

Our algorithm for constructing a sequence of d tables t1 through t5 consists of four

steps. The first two steps are FDD construction and FDD reduction. which are

similar to the first two steps in the multi-lookup approach. The last two steps, table

generation and table mergence, require some modifications as described below.

Table Generation

This step differs from the table generation step in the multi—lookup approach in

assigning node IDs in the constructed FDD. Here, we assign each node an ID that

can uniquely discriminate that node from all other nodes of the same field. Let m,-

be the number of nodes with label F,- in the constructed FDD. The ID assigned to

each F,- node consists of [log mi] bits. For example, the IDs of the three F2 nodes

in Figure 7.4(a) are 00, 01, and 10. In contrast, in the table generation step of

the multi-lookup approach, the ID assigned to each node with label Fi consists of

[log(Zgl':1 771,-)] bits. Note that each F, node. has a unique ID in the context of

17,-. We also observe that for field F1, there will always be a single table. Therefore,

we do not need an ID to distinguish this table from tables of other fields. In the

remainder of this section, we assume no ID is needed for the F1 table.
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Table Mergence

Similar to the table mergence step in the multi-lookup approach, for every nontermi-

nal node v, we first prepend v’s ID to each rule in Table(v). Second, for every field

Fi, we combine all tables of Pi nodes into one table ti- For example, Figure 7.4(b)

shows the two pipelined TCAM tables generated from the FDD in Figure 7.4(a).
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Figure 7.4: Table generation and table mergence in the pipelined-lookup approach

7.2.2 Packet Processing

Similar to the multi-lookup approach, in the pipelined-lookup approach, a til-dimensional

packet search is separated into d searches; however. with the pipelined-lookup ap-
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proach, these searches can be pipelined. That is, the d TCAM chips are chained

together into a pipeline such that the search result of the i-th chip is part of the

search key for the (i + 1)-th chip, and the result of the last chip is the decision for

the packet. With such a chain, d packets can be processed in parallel in the pipeline.

Figure 7.5 illustrates the packet processing algorithm for the two tables t1 and

t2 in Figure 7.4(b). Suppose two packets (010,001) and (111,010) arrive one after

the other. When (010, 001) arrives, the first. search key, 010, is formed and sent to

t1 while the rest of the the packet (001) is forwarded to t2. When the next packet

(111, 010) arrives, table t1 has sent the search result 01 to table t2. When the first

search key for the second packet. 111 is formed, the second search key for the first.

packet 01001 is formed in parallel, and both are sent to tables t1 and t2, respectively.

This cycle will yield a result of accept for the first packet, and a result of 10 for the

second packet. The above process continues for every received packet.
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Figure 7.5: Example, of a. pipelined—lookup

7.2.3 Analysis

We next analyze the impact of the 1)ipelined—lookup approach on TCAM space. and

classification throughput.
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Space

The pipelined—lookup approach is at. least as space efficient as the multi—lookup

approach, and there are many cases where it uses even fewer TCAM bits. We first

observe that the pipelined-lookup approach generates the same number of TCAM

entries as the multi-lookup approach. That is, if t is the table formed by the multi-

lookup approach and t1 through t5 are the tables formed by the pipelined-lookup

approach, we have that h(t) = [3:1 h(t,;). The space savings of the pipelined—

lookup approach results from requiring fewer bits per entry. The first opportunity

for saving space comes from the fact that the number of bits needed to encode a

table ID in the pipelined-lookup approach is less than or equal to that for the multi-

lookup approach as we only need to distinguish a table from other tables with the

same field label. The second Opportunity for savings comes from the three fields

with width 16 or 8 bits. For these fields, we. may use width w(ti) = 36 whereas

w(t) = 72. Specifically, for the source port and destination port fields, we have

36 -— 16 = 20 bits to represent a table ID and optionally the decision of each rule.

For the protocol field, we have 36 —— 8 = ‘28 bits for this purpose. For most classifiers,

these bits should suffice. In summary, the pipelined—lookup approach is at least as

space efficient as its multi-lookup counterpart; fm'thermore, there are cases where it

is more space efficient.

Throughput

The pipelined—lookup approach clearly leads to higher throughl‘mt than the multi-

lookup approach. More so, the pipelined—lookup approach actually achieves four or

five times higher throughput than the traditional single-lookup approach. In the

pipelined—lookup approach, because a search key can always be transmitted over

the bus in one cycle, the packet classification throughput. is one packet per cycle.

In contrast, the packet classification throughput. of the traditional single-l(')(_)kup

approach is one packet per four or five cycles.
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7.3 Packing Approach

In this section, we present the TCAM packing approach. This approach reduces

space consumption by allowing multiple rules from different TCAM tables to co-

reside in the same TCAM entry. The TCAM packing approach is orthogonal to the

multi—lookup and pipelined—lookup approaches in that it can be combined with the

two approaches to further improve TCAM space efficiency. The TCAM packing idea

is based on the following three key observations:

First, the reconfigurability of TCAM widths is limited. TCAM chips typically

only allow entry widths of 36, 72, 144, or 288 bits. This leads to wasted space as

typical TCAM tables rarely can be configured to exactly one of these widths. In the

standard single lookup approach, up to 40 bits might be unused given the predicate

will be 104 bits.

Second, the multi—lookup and pipelined—lookup approaches produce “thin” tables

of varying widths. We say the tables are thin because each table focuses on a single

packet field. Thus, the table widths are much smaller than 104 bits. The widths vary

because the packet fields have different lengths: 8, 16, and 32, and these predicate

bits form a significant fraction of each table entry. Having multiple fields of varying

widths provides opportunities to better approach the standard TCAM widths.

Third, the search key for TCAM chips can be ternary. In other words, TCAM

columns are dynamically selectable for each lookup. A typical TCAM chip has

a global mask register, which dynamically selects the columns that participate in a

lookup. The global mask register allows multiple entries from different lookup tables

to co—reside in the same TCAM entry without conflicting with each other.

We developed two TCAM packing schemes, which we call strict partitioning and

shadow packing.



7.3.1 Strict Partitioning

Basic Strict Partitioning

The basic idea of strict partitioning is to divide a TCAM chip into multiple columns

and distribute multi-lookup or pipelined-lookup tables among these columns. The

distribution needs to satisfy the following two conditions: (1) all tables in the same

column must have different node IDs, (2) all the roles in a table are stored in only

one column. Multiple tables in the same column are discriminated by their table

ID. Multiple columns in the same TCAM chip are discriminated by the GMR of the

chip. The appropriate GMR can be selected by using a column [D which must have

enough bits to discriminate all the columns.

We illustrate the strict partitioning scheme using the four multi-lookup tables

in Figure 7.2(d) in a TCAM chip with entry width 21 bits. Figure 7.6 shows a

possible arrangement of the four tables: table 00 in column 1, table 01 in column 2,

and tables 10 and 11 in column 3. We use column IDs 00, 01, and 10 for columns

1, 2. and 3, respectively. We decode the first entry 00 000 01’@01 in column 1 as

follows. The first two bits 00 encode the table ID, the next three bits 000 are the

rule predicate, and the last four bits 01L®01 encode the rule decision where the first

two bits encode the next table ID and the last two bits encode the column ID of

the next table. By partitioning the TCAM chip into three separate columns, the

TCAM chip is essentially divided into three TCAM chips. Lookups in the TCAM

chip are performed by padding the search key with the appropriate ternary bits via

the GMR. For example, to lookup 111 in table 10 of column 10, the lookup key is

***************10111*.

Storing Decisions: Because packing schemes can use previously unused bits in

the multi-lookup and pipelined—lookup approaches to store rules. storing the decision

of each rule in the TCAM entry is not space or cost effective. Therefore, for all our

packing schemes, we assume that the rule decisions are stored in SRAM. Figure 7.7

shows a version of the strict partitioning in Figure 7.6 with decisions stored in SRAM.

Packing multi-lookup tables vs. packing pipelined-lookup tables: Recall
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Figure 7.6: Strict. partitioning of a TCAM chip
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Figure 7.7: Decisions in SRAM

that all our packing schemes can be applied to both the multi—lookup and pipelined-

lookup approaches. The only difference is that when we pack multi-lookup tables

into one TCAM chip, we need to deal with tables of variable width. In contrast,

when we pack pipelined-lookup tables into d TCAM chips, we only deal with tables

of the same width for each chip, ignoring minor differences induced by table IDs.

Reassigning Table IDs With Fewer Bits: The original table. IDs were used

to distinguish a table from either all other tables (in the multi—lookup approach) or

all other tables of the same field (in the pipelined-lookim amn'oach). However, in

a packing schen'ie, we only need to distinguish a table from the other tables in the

same column. Therefore, we can often use fewer bits for tables IDs. In our packing

schemes, after tables are allocated to (70111111118. we reassign table IDs using the least

number of needed bits, and the decisions for the rules have to be. updated to reflect



the new table IDs. Note that different columns may have different table ID widths,

and rule decisions may have different lengths. In the strict partitioning scheme, for

a column with 71 tables, the number of bits in the reassigned ID of each table is

[log n]. Figure 7.8 shows a version of strict partitioning in Figure 7.7 with table IDs

reassigned with fewer bits.

  

  

  

TCAM chip Decision Table

Col 00 C01 01 C01 10 C01 00 C01 01 C01 10

000 000 0 0** @01 a a

010 111 0 *** 0@10 a d

100 *** 1 1** O@1O d a

110 1 *** @01 d

*** 1’Q1O        
  

Figure 7.8: Reassignincr the table IDs
O O 0

Processing Packets: We. describe the algorithm for processing packets un-

der the strict partitioning approach using examples. Suppose the given packet is

(000, 110), the first TCAM lookup is 000******* and the lookup result is the index

value of O. This index value is used to find entry 0 in the column 00 in the SRAM to

find the decision of iii-()1, which means that the second lookup should be performed

on column 01. To further perform the second lookup, the GMR is modifed to make

the second lookup key ***11()****. The result. of the second lookup is the index

value of 1, which means the decision is stored in the second entry of column 01 in

SRAM. The second entry of column 01 in SRAM is “(1.”, which means that the final

decision for the given packet is accept.

Optimized Strict Partitioning

Given a set of TCAM tables to be packed in a single. TCAM chip. there are many

ways to do strict partitioning. First, we can choose the TCAM width to be. 36, 72,

144, or 288. Second. for each possible TCAM width, there are many possible ways

to divide the TCAM. Third, for each possible division of the TCAM, there are many
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possible ways to allocate TCAM tables to columns. Among all possible strict parti-

tioning solutions for a TCAM chip, we want to find the solution that uses the least

TCAM space under throughput constraints. Note that the classification throughput

may decrease as the TCAM width increases. We formally define the Strict Parti-

tioning Optimization Problem. as follows. We omit throughput constraints in the

definition for ease of presentation.

Definition 7.3.1. Given n TCAM tables t1, . . . , tn, find a partition of the tables to

771 sets c1, . . . , cm that minimizes the objective TW X maxgll Rules(c,;) such that

. L211 C7: = {t1. . . . , in}

. 23:11(rnaxtjeatwcj>> + log 1cm s TW

where TW 6 {36,72,144,288}, w(tj) denotes the width of table tj, |tj| denotes the

number of rules within tj? and Rates(ci) denotes the total number of table entries in

Ci, which is théci |tj|.

The problem of makespan scheduling on multiple identical machines [8]. which

is NP—complete, is a special case of this problem. Thus, the strict partitioning

optimization problem is NP-complete. It belongs to NP because the solution can be

verified in polynomial time.

7.3.2 Shadow Packing

In strict partitioning. we. viewed columns as the 1:)1'imary dimension of TCAM chips

and sought to pack tables into fixed width columns. In shadow packing, on the

other hand, we view rows as the primary dimension of TCAM chips and seek to

pack tables within fixed height. rows. we consider shadow packing because of the

following two observations.

First, with strict partitioning. when tables of varying width are. allocated to the

same column, the number of bits assigned to each table I. is equal to Mr) X w(t’)

where t’ is the widest. table assigned to that. column. This leads to many unused bits

if tables of different widths are assigned to the same colunm. On the other hand,
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horizontally packed tables can be placed next to each other as keeping the vertical

boundaries across multiple tables is unnecessary. Of course, there may be wasted

bits if tables of different heights are packed in the same column. We will allow tables

to be stacked in the same row if they fit within the row boundaries.

Second, with strict partitioning, the table ID’s between tables in different columns

cannot be shared. Thus, the number of bits used for table IDs grows essentially lin-

early with the number of columns. On the other hand, horizontally aligned tables

in the same row can potentially share some “row ID” bits in their table IDs; these

tables would be distinguished by their horizontal offsets.

Based on the above two observations, we design the shadow packing scheme that

achieves more space efficiency by packing tables horizontally and allowing multiple

tables to share bits in their IDs. We first define the concept of shadowing for

table ID inheritance and the concept of shadow packing trees for representing table

ID inheritance. Then, we present the shadow packing algorithm and discuss the

procedure for processing packets with shadow packing.

Shadowing

In Figure 7.9(a), table to shadows tables ‘00 and t01. We define the concept of

shadowing as follows:

Definition 7.3.2 (Shadowing Relationship). For a table t stored in a TCAM, we use

VBegin(t) and VEnd(t) to denote the vertical indexes of the TCAM entries where the

table begins and ends respectively, and use HBegin(t) and HEnd (t) to denote horizon-

tal indexes of the TCAM bit columns where the table begins and ends respectively. For

any two tables t1 and t2 where [VBcgin.(t2), VEnd(t2)] (_Z [VBegin(t1), VEnd(t1)]

and HEnd(t1) < HBcgin(t2), we say t1 shadows t2.

When table t1 shadows t2, the ID of t1 can be reused as part. of 12’s ID. Suppose

table t shadows tables t1, - - - , tm. bees-ruse [’5 ID defines the vertical TCAM region

[Begin(t), End(t)], each t, (1 g i g m) can use t’s ID to distinguish t,- from tables

outside [Begin(t), End(t)] vertically, and use [log ml bits to distii‘iguish t,- from tables

70



inside [Begin( t,) End(t(t)])ve1tically. Horizontally, table t and each table t,- can be

distinguished by properly setting the GMR of the TCAIV’I.

Definition 7.3.3 (Shadow Packing). Given a region defined vertically by [01,112]

and horizontally by [h1, ’22].- all tables completely contained within this region are

shadow packed if and only if there exist rn (rn>1) tables t1,~ -,tm in the region

such that the following three conditions hold:

1. 221: VBegin(t1), VEnd(til+1 = VBegin(t,-+1)for1 S i S rn—l, VEnd(tm) g

(U2 ,0

2. no tables are allocated to the region defined vertically by [VEnd(tm) + 1,122]

and horizontally by [h1, hgl;

3. for eachi (1 g i< m), the region d(fi’lttd vertically by [VBcgin(ti), VEnd(t)]

and horizontally by [HEnd(t.,-)+1. [72] either has no tables or the tables allocated

to the region are also shadow packed.

For example, the tables in Figure 7.9(a) are shadow packed. Figure 7.9(b)

shows the tree representation of the shadowing relationship among the tables in

Figure 7.9(a).

0 t
t / 000

O 00

t /
F’ tom

0

O \ ~k

/ 1 t01'_’ to1

x y two

01

t:1-"—"' t101

10 1:110

 
(a) (b)

Figure 7.9: Shadow packed tables &t shadow packing tree



Shadow Packing Algorithm

Given a. set of tables and a TCAM region, the shadow packing algorithm allocates

the tables into the region. The goal of a shadow packing algorithm is to minimize

the number of TCAM entries occupied by the tables, i.e., to minimize VEnd(tm).

We call this minimization problem the Shadow Packing Optimization Problem. This

problem becomes more difficult as we recurse because we must also address which

tables should be allocated to which region. Whether this problem can be solved in

polynomial time is an open problem.

In this chapter, we present a shadow packing algorithm SPack, which has been

shown to be effective in our experiments on real-life packet classifiers. The basic idea

of SPack is as follows. Given a set of tables S and a TCAM region, SPack first finds

the tallest table t that will fit in the region where ties are broken by choosing the

fattest table. SPack returns when there are no such tables. Otherwise, SPack places

t in the top left corner of the region, and SPack is recursively applied to S — {t} in

the region to the right of t. After that, let S’ be the set of tables in S that have not

yet been allocated. SPack is applied to S, in the region below t. Intuitively, SPack

greedily packs the tallest (and fattest) possible table horizontally. The pseudocode

of SPack is shown in Algorithm 4.

We, however, must compute the initial SPack region. The height of the initial

region is the total number of rules within the set of tables. We do not need to set

this value carefully because SPack only moves to another row when all the remaining

tables do not fit in any of the current shadows. The width is more complicated and

must be computed iteratively. For each valid TCAM width w 6 {36,72, 144,288},

we set the initial width to be w and run SPack. Once we have a packing, we

determine the number of bits I) that. are needed for node IDs. If the packing could

accommodate these extra b bits, we are done. Otherwise, we choose an aggressive

backoff scheme by recursing with a width of w —— b. It is possible, particularly for

w = 36, that no solution will be found. To detern'iine which TCAM width we should

use, we choose the width w E {36, 72, 144, 288} whose final successful value resulted

in the fewest. number of entries. Note that. there are other possible strategies for
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Algorithm 4 Shadow Packing (SPack)

Input: S : a set of tables, and a region [01,122], [h1, hg].

 

Output: 8': the set of tables in S that have not been packed.

1: Find the tallest table t E S that will fit in [vbv2], [12.1,h2] such that ties are

broken by choosing the fattest table;

: if no table is found thent
o

3: return S;

4: else

5: Place t in the top left corner of ['v1,v2], [h1, hg];

6: s” <— SPack(S', VBegin(t), VEnd(t), HEnd(t) + 1, 22.2);

7: return SPack(S",VEnd(t) + 1, '02, h1, hg);

8: end if
 

determining the width of the SPack regions; for instance, instead of reducing the

region width by b, the width could be reduced by 1. Furthermore, to speed up this

process, SPack can be modified to abort the packing once it detects that the table

packing and IDs can not fit within the region.

Reassignng Table IDS and Rule Decisions: Because shadow packing estab-

lishes a hierarchy of table IDs, each table needs a new ID, and all the rule decisions

need to be remapped to reflect these new IDs. Each table ID is determined by a

tree representation similar to the one found in Figure 7.9(b), which we call a shadow

packing tree. For each node v in a shadow packing tree, if v has m > 1 outgoing

edges, each outgoing edge is uniquely labeled using llogrn) bits; if v has only one

outgoing edge, that edge is labeled *. For each table t, let u be the corresponding

node in the shadow packing tree. All the bits along the path from the root to v

are all the bits needed to distinguish t from all other tables. Note that. the * corre-

sponds to a table where no additional ID bits are needed. In our shadow packing

algorithm, we reserve l bit columns in the. TCAM where l is the maximum number

of bits needed to the distinguish a table. Reserving some bit columns for storing

table IDs has the advantage of simplifying the processing of packets since the bit



columns containing the table IDs are fixed in the TCAM.

Figure 7.10(a) shows the shadow packing tree for the four tables in Figure 7.2(d)

and their reassigned table IDs. Figure 7.10(b) shows the final memory layout in

the TCAM chip after shadow packing and the conceptual memory layout of the

decision table within SRAM. The one bit ID column in Figure 7.10(b) is needed

to distinguish between the tables with original IDs 01 and 11. Note that table 10

shares the table ID 0 with table 01 as it is the only table in table 01’s shadow. To

make the decision table in Figure 7.10(b) easier to understand, we encode it in a

memory inefficient manner using columns.
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Figure 7.10: The shadow packing process.

Processing Packets: We describe the algorithm for processing packets under

the shadow packing approach using examples. Given a packet (000,111), the first

TCAM lookup is *000******, and the lookup result is the index value of 0. This

index value is used to find entry 0 in the column 00 in the SRAM which contains

the decision of 0:024 : ()1. The 01334 means that the second lookup key should occur



in table ID 0 at horizontal offset of 4, and the 01 means that decision of the next

search is located in column 01 in SRAM. To perform the second lookup, the GMR

is modified to make the second lookup key 0***111***. The result of the second

lookup is the index value of 1, and the decision stored in the second entry of column

01 in SRAM is retrieved, which is accept.

7.3.3 Strict Partitioning vs. Shadow Packing

We now compare the space efficiency of strict partitioning and shadow packing. The

sole advantage of strict partitioning is that it has no horizontal boundaries. On the

other hand, shadow packing has two key advantages. It has no vertical boundaries,

and tables in the same row can share some table ID bits. Furthermore, we mitigate

some of the disadvantage of horizontal boundaries by greedily packing tables in the

shadow of other tables.

7.4 Table Consolidation

The basic idea of table consolidation is to use one TCAM table to represent multiple

TCAM tables. Table consolidation is motivated by the following two observations.

First, two TCAM tables may share common entries, which result in the same infor—

mation being stored multiple times. Second, existing TCAM-based packet classifi—

cation systems are based on a “fat” TCAM and “thin” SRAM architecture, which

means that the majority of the information (i.e., the predicates of rules) representing

a packet classifier is stored in TCAMS and little information (i.e., the decision of

rules) is stored in SRAMs. However, because TCAMs are much more expensive than

SRAMs, we ideally would store more infm'n‘iation in SRAMs and less information in

TCAMS.

We begin with two new concepts: hi-dCCISIOn rule and kr~decision classifier. A

k-decision rule is a classification rule whose decision is an array of k decisions.

A [st—decision classifier is a sequence of k-decision rules following the first-match

semantics. W'e formally define the table consolidation problem as follows:



Definition 7.4.1 (Table Consolidation Problem). Given k I-decision classifiers

C1,--°,(Ck, find a k-decision classifier (C such that for any i {1 S i S k), the

condition (C,- E G[i] holds.

We emphasize that a h-decision classifier can be viewed as a l—decision classifier if

we view the array of k decisions of each rule as one decision. In general, a k-(IBCISIOII

classifier can be viewed as a k’-decision classifier where k, < k, if we treat some.

decisions as one decision.

7.4.1 Table Consolidation Algorithm

We use multi—match FDDs to facilitate table consolidation. A multi-match FDD sat—

isfies all the properties of an all—match FDD except the condition j 6 {21, i2, - - - , ik}

in the 5th property.

Our table consolidation algorithm works as follows. First, given a set of k clas-

sifiers C1,-- ~,<Ck., we concatenate the set of classifiers into one classifier C1_k =

C1| - - - ICk. Second, we construct a multi—match FDD f from ([3143 such that f

satisfies the following additional condition: for any decision path ’P, the terminal

node of ’P consists of k numbers (7721,7712, - - - , 771k} where, for each i (1 S i S 1:),

rule rmi is the first rule in (C,- that contains 73. In other words, for any decision

path ’P in the multi-match FDD f and for any classifier (Ci: only the index of the

first rule in (Ci that contains P is included in the label of ”P’s terminal node. Third,

after the multi-match FDD f is constructed, we run the TCAM Razor algorithm

presented in [20] on f and generate the final compact k-decision classifier G. Fig-

ure 7.11 shows the process of consolidating two TCAM tables t1 and t2. The final

2-decision classifier is TCAM table t4. The correctness of the table consolidation

algorithm is based on Theorem 7.4.1.

Theorem 7.4.1. Given k I-decision classifiers C1, - - - ,(Ck, the table consolidation

algorithm generates a k-decision classifier (C where for any i (1 S i S k), the

condition Ci E (7'[i] holds.
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Figure 7.11: Consolidation of 2-dimensional tables

7.4.2 Hierarchical Table Consolidation

In building a multi-match FDD from a set of classifiers, each classifier influences the

shape of the FDD and causes the FDD to grow. To localize the expansion impact

of one classifier on others, we propose the following hierarchical table consolidation

strategy. Given k classifiers, first, we equally divide them into [ls/m] buckets where

every bucket has m classifiers except for one bucket that may have less than m clas-

sifiers. Second, for the classifiers in each bucket, we apply the table consolidation

algorithm and get an m-decision classifier. Thus. we get [ls/ml classifiers. By treat-

ing each m—decision classifier as a l-decision classifier, we apply the above process

again on the [ls/ml classifiers. This process repeats until we get the final k-decision

classifier. We refer to the strategy of choosing m = k as flat table consolidation.

Theorem 7.4.2 establishes the correctness of hierarchical table consolidation.

Theorem 7.4.2 (Hierarchical Table Consolidation Theorem). Given the same input
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of k J-decision classifiers and the same table consolidation algorithm, the strategies

of hierarchical table consolidation and flat table consolidation output the same k-

decision classifier.
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Figure 7.12: Table consolidation for pipelined-lookup sequential decomposition
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7.4.3 TCAM/SRAM Space Tradeoff via Bounded Consoli-

dation

Table consolidation creates a tradeoff between TCAM storage and SRAM storage.

On one hand, merging multiple classifiers into one classifier results in less TCAM

storage. On the other hand, each entry in the resulting classifier requires more

SRAM for storing the decision list. We could simply merge all classifiers into a

single classifier; however, this may require more SRAM space than what is avail-

able. To address this issue, we propose the following bounded consolidation scheme.

The basic idea of bounded consolidation is to limit the number of classifiers that

we combine. Given a set of k l-decision classifiers, we first sort the classifiers in

decreasing (or increasing) order according to size (i.e., the number of rules in each

classifier). Second, we partition the sorted classifiers into [Ir/ml chunks where the

first [kt/ml -— 1 chunks are of uniform size 772. (1 S m g A). Third, for every chunk,

we apply the table consolidation algorithm to the classifiers that it contains. Finally,

we get. [ls/ml multi-decision classifiers. Note that m is an adjustable parameter.

7.5 One-Dimensional Table Consolidation

While table consolidation can be applied to d—dirnensional classifiers for arbitrary d,

we show that it is especially effective for consolidating one-dimensional classifiers.

In particular, Theorem 7.5.1 shows that table consolidation is guaranteed to reduce

TCAM space occupied when applied to one-din'iensional classifiers. Table consolida—

tion’s effectiveness on one-dimensional classifiers implies that. it is especially effective

when combined with sequential decomposition to minimize the space required by any

single classifier. W’e defer the proof of Theorem 7.5.1 to the appendix.

Theorem 7.5.1. Given any set of k7 I-decision I-dimension(Ll (.rlo..<;sifi(::rs C1, - - - , (Ck:

the [sf-decision 1-dimensional classifier (C output by the. TCAM distillation algorithm

satisfies the following condition: [C] S I(l'll + - - - + I('A.| — A: + l.
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7.5.1 Table Consolidation with Sequential Decomposition

Because table consolidation is guaranteed to work well on one-dimensional classifiers,

table consolidation can be integrated with the sequential decomposition scheme to

further reduce the space required by a TCAM—based packet classifier. Basically,

in the third step of pipelined-lookup sequential decomposition, for each field 17,-,

we group all the tables of F,- nodes and apply our table consolidation algorithm to

produce a multi-decision table rather than using table ID’s. For example, given the

two tables of the two F2 nodes ”0 and v1, our table consolidation algorithm outputs

the 2-decision table t2 in Figure 7.12(c). In this case, table consolidation reduced

the required number of TCAM entries from 4 to 3.

The packet lookup process on the d multi-decision TCAM tables proceeds as

follows. The first table has only one column of decisions and each decision is the

decision column index of the second table. Similarly, each decision in the i-th (1 g

i < d) table is the decision column index of the next table. We illustrate the packet.

lookup process using the example in Figure 7.12(d). Given a packet (010,001), we

first use 010 to search the table t1 and get result 0. Second, we use 001 to search

table t2 and get. search result (d1, d4). The final result is the first element of (d1, d4),

which is d1. Note that each TCAM chip has its own SRAM. Therefore, the packet

lookup process can be pipelined to achieve the throughput of one packet per cycle.

7.5.2 Coping with More Fields than TCAM chips

If we have fewer TCAM chips than packet fields, we have two choices. One is

to strategically combine selected fields into one field until the number of fields is

equal to the number of TCAM chips. We can use the FDD structure to facilitate

combination of multiple fields. For example, given a. d—dimensional classifier over

fields 171,172, - - - , Fd and the corresponding FDD, we can combine the first. let (1 <

k: < d) fields into one field by treating the subgraph rooted at. each Fk+1 node as a.

terminal node and then use our TCAM Razor algorithm presented in [20] to generate

a kT-din'iensional table for the k-dimensional FDD. Then, for each subgraph rooted
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at an Fk+1 node, we can apply the above process recursively.

A second choice is to employ the sequential decomposition multi—lookup approach

where we store tables from multiple fields on a single TCAM chip. For example,

if we have d dimensions and q chips, we would store tables from either [d/ql or

(d/qj fields in each chip in the pipeline. Each stage of the pipeline would require

either [d/ql or [d/qj lookups. This would result in a classification throughput of

one packet per [d/ql TCAM bus cycles.

7.6 Implementation Issues

7.6.1 Fast FDD Reduction

FDD reduction is an effective way to reduce the number of multi-lookup tables and

pipelined-lookup tables generated from an FDD. A brute force deep comparison

algorithm for FDD reduction was proposed in [9]. Here we use a more efficient.

FDD reduction algorithm that uses signatures to speed up node comparisons. The

algorithm works as follows.

The algorithm processes the nodes level by level starting from the terminal nodes.

At the current level, we compute a signature for each node. For a terminal node v.

set. o’s signature to be its label. For a non-terminal node v, suppose v has A? children

121, vk, in increasing order of signature (Sig(-o,j) < Sig(o,+1) for 1 g i g k. — l),

and the edge between 1) and its child u,- is labeled with E, a sequence of non-

overlapping prefixes in increasing order. Set the signature of node v as follows:

Sig(v) = h.(Sig(ol), E1, . - -, Sigh/7,), Ek) where h is a hash function.

After we have assigned signatures to all nodes at a given level, we search for

isomorphic subgraphs as follows. For every pair of nodes o, and U]- (1 S i 3A j S A)

at. this level, if Sig(u,;) 31$ Sig(ej), then we can conclude that o,- and ”j are not

isomorphic; otherwise, we explicitly determine if 2),: and DJ are isomorphic. If u,- and

'o]- are isomorphic, we delete node oj and its outgoing edges. and redirect. all the

edges that point to o.)- to point to 12,. Further, we eliminate double edges between

node 1),- and its parents.
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7.6.2 TCAM Update

Packet classification rules periodically need to be updated. The common practice

for updating rules is to run two TCAMS in tandem where one TCAM is used while

the other is updated [16]. All our approaches are compatible with this current

practice. Because our algorithms are efficient (running in milliseconds) and the

resultant TCAM lookup tables are small, updating TCAM tables can be efficiently

performed.

If an application requires very frequent rule update (at. a frequency less than a

second, for example), we can handle such updates in a batch manner by chaining the

TCAM chips in our proposed architecture after a TCAM chip of normal width (144

bits), which we call the “hot” TCAM chip. When a new rule comes, we add the rule

to the top of the hot TCAM chip. When a packet comes, we first use the packet as

the key to search in the hot chip. If the packet has a match in the hot chip, then the

decision of the first matching rule is the decision of the packet. Otherwise, we feed

the packet to the TCAM chips in our architecture described as above to find the

decision for the packet. Although the lookup on the hot TCAM chip adds a constant

delay to per packet latency, the throughput. can be much improved by pipelining the

hot chip with other TCAM chips. Using batch updating, only when the hot. chip

is about to fill up, we need to run our topological transformation algorithms to

recornpute the TCAM lookup tables.

7.6.3 Non-ordered FDDs

Recall that the FDD construction algorithm that. we used produces ordered FDDs,

that is, in each decision path all fields appear in the same order. However, ordered

FDDs may not. be the smallest. when compared to non-ordered FDDs. The FDD

construction algorithm can be easily modified so that different. subtrees may use

different. field ordering. By adding field information to the decisions in each table

entry, we can easily accommodate different field orderings. Thus. the packet pro—

cessing algorithm for both nuilti~lookup and pipelined~lookup can select. the correct
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field for each lookup. The size advantage of non—ordered FDDs comes at the cost.

that FDD reduction will not be able to process subtrees that have different field

orders. Nevertheless, the use of non—ordered FDDs does open new possibilities for

further optimizations.

7.6.4 Lookup Short Circuiting

So far, we have assumed the use of full-length FDDs where in each decision path

all fields appear exactly once. Actually, this constraint can be relaxed so that some

paths may omit unnecessary fields when a node in the path contains only one outgo-

ing edge. In this case, the node along with singleton outgoing edge can be pruned.

Using FDDS that are not full—length has the advantage of reducing FDD size and

consequently reducing the total number of tables. Furthermore, this optimization al-

lows some specific decision paths to be performed with a reduced number of lookups,

which will allow for faster packet processing when the tables are processed in a multi-

lookup fashion. Therefore, we call this optimization technique lookup short circuit-

ing. Similar to the use of non—ordered FDDs, this optimization technique requires

storing field information in the decisions.

7.6.5 Best Variable Ordering

In converting a packet classifier to an equivalent FDD, the order of the fields used

by decision paths has a significant impact on the size of the resulting FDD. Given

that fewer nodes in an FDD normally lead to a smaller multi—lookup or pipelined-

lookup table, choosing a good variable order (i.e., field order) is important in FDD

construction. Given a packet classifier that has five fields, we can easily try all 5! =

120 permutations to find the best. permutation for that particular packet classifier.

7.7 Experimental Results

In this section, we evaluate the effectiveness and efficiency of our sequential decom-

position approach, as well as our three optimizations of lookup 1')i1_)elining. TCAM
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Figure 7.13: Compression ratio for each classifier in RL.

packing, and table consolidation, on both real—life and synthetic classifiers.

7.7.1 Methodology

We first define the metrics for measuring the effectiveness of our algorithms. Let

C denote a classifier, 5' denote a set of classifiers, |S| denote the number of classi—

fiers in S, and A denote an algorithm. We use A(C') and Direct(C) to denote the

number of TCAM bits used for classifier C by algorithm A and direct expansion,

respectively. We use A(C')R and Direct(C) to denote the number of SRAM bits

used by algorithm A and direct expansion, respectively. Vi'e define the Compression

ratio of algorithm A on C as

.
v

A (')CRatzo(A.C) =m
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Figure 7.14: Compression ratio for each classifier in RLU.

the average compression ratio of algorithm A on a set of classifiers S as

—' ZCES CRati0(/l, C)

A( )= ISI . 

and the total compression ratio of algorithm A on S as

A“. _ EGGS/4(0)

A(S) _ ZCES Direct(C)'

Likewise we define similar metrics for measuring the compression ratio for SRAM

space. We define the SRAM/TCAM ratio of A on C as

 

A(Cln
STRatio(A,C) = A(C') .

We denote the respective average and total SRAM/TCAM ratio as

 

_ ZCES STR(Ll’l0(/l, (1')

A(Sla S
  



and

"T/ _ EGGS/“(7)12
.4(S)R— ZCESA(C) ,
 

respectively.

We use All to denote the multi—lookup approach, and use P to denote the

pipelined lookup algorithm. We annotate M and P with subscripts C and S if

the table consolidation and shadow packing optimizations are used. For example,

MS denotes multi—lookup with the shadow packing optimization while PCS denotes

the pipelined lookup with the optimizations of shadow packing and table consolida-

tion. Given three optimizations, we study 8 variants (M, INC, 1113, JUGS, P, PC,

PS, and PCS) in total and compare them with results from TCAM Razor (Razor)

and direct expansion (DE). For the optimization technique of table consolidation, in

our experiments, we performed bounded table consolidation with bound 4 because

it has been found to be an effective trade off between TCAM and SRAM space.

Note that when table consolidation and shadow packing are used together, table

consolidation must be performed before shadow packing.

The variable order that we used to convert a classifier to an equivalent. FDD

affects the number of tables generated by our algorithms, which consequently affects

the TCAM space efficiency. There are 5! = 120 different pernuitations of the five

packet fields (source IP address, destination IP address, source port number, desti-

nation port number. and protocol type). For HL, we investigate the effectiveness of

the 5! = 120 perrmitations. A question that naturally arises is: which variable order

achieves the best. (or close to best.) compression ratio for all our algoritlnns‘? By

computing the average compression ratios of our algorithms on Illa, we discovered

that the best order is (Destination IP, Source IP, Destination Port. Protocol, Source

Port); we label this as permutation 31402. For any of our algorithms, the difference

between the average cmnparison ratio achieved by 31402 and that achieved by the

best. order for that particular algorithm is no more than 0.005.
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7.7.2 Effectiveness

Table 7.1 shows the average and total compression ratios of TCAM Razor and our

8 variants 1W, 1113, P, PS, MC, [1105, PC, and PCS, all using permutation 31402,

on the four classifier sets of RL, RLU, SYN, SYNU. we focus our discussion on

average compression ratios; we primarily use total compression ratios to facilitate

comparison of our techniques with other approaches. Figures 7.13(a) and 7.13(b)

show the compression ratios of each of the 25 classifiers in RL for the four algorithms

of Ill, 1115, P, and PS. Similarly, Figures 7.13(c) and 7.13(d) show the compression

ratios of each of the 25 classifiers in RL for the four algorithms of 1110, MCS? PC,

and PCS. For illustration purposes, we show 13 classifiers with low compression

ratios in Figures 7.13(a) and 7.13(c) and the remaining 12 classifiers in Figures

7.13(b) and 7.13(d).

 

A] AIS P PS 1110 11105 PC PCS Razor

 

12L 0.171 0.062 0.127 0.086 0.109 0.048 0.083 0.074 0.245
 

RIJU 1.642 0.147 0.928 0.245 0.558 0.082 0.327 0.128 0.319

 

SYN 0.028 0.007 0.016 0.010 0.021 0.008 0.013 0.012 0.083
 

SYNU 0.263 0.016 0.139 0.021 0.112 0.014 0.062 0.021 0.408
 

average compression ratio
 

 

Ill 1113 P PS IUC [1105 PC PCS Razor

 

RL 0.052 0.018 0.036 0.024 0.029 0.010 0.021 0.017 0.088
 

RLU 0.649 0.045 0.351 0.060 0.210 0.020 0.116 0.029 0.131
 

SYN 0.022 0.003 0.013 0.004 0.015 0.002 0.009 0.003 0.061

 

SYNU 0.254 0.013 0.133 0.014 0.106 0.009 0.058 0.010 0.382
   total compression ratio
 

Table 7.1: Compression ratios
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M MS P PS MC AICS PC PCS Razor

RL 1.504 5.138 1.504 7.471 2.840 15.631 2.840 24.537 0.245

RLU 3.926 2.861 3.926 4.830 4.697 7.301 4.697 10.573 0.319

SYN 0.268 0.645 0.268 0.975 0.614 2.707 0.614 4.123 0.083

SYNU 0.526 0.215 0.526 0.301 0.893 0.810 0.893 1.186 0.408

average ratio

M AIS P PS NC 11105 PC PCS Razor

RL 0.513 1.614 0.513 2.146 0.871 3.421 0.871 5.305 0.088

RLU 2.071 0.964 2.071 1.273 2.594 1.658 2.594 2.396 0.131

SYN 0.293 0.326 0.293 0.432 0.589 0.784 0.589 1.345 0.061

SYNU 0.508 0.157 0.508 0.171 0.850 0.452 0.850 0.510 0.382

total ratio

Table 7.2: SRAM compression ratios

ll] MS P PS MC MCS PC PCS DE

RL 0.054 0.660 0.077 0.660 0.178 2.489 0.249 2.489 0.008

RLU 0.096 0.829 0.170 0.829 0.358 3.209 0.612 3.209 0.044

SYN 0.070 0.723 0.120 0.723 0.216 2.642 0.362 2.642 0.007

SYNU 0.172 1.131 0.325 1.131 0.687 4.525 1.240 4.525 0.086

average ratio

11] AIS P PS MC MCS PC PCS DE

EL 0.086 0.800 0.123 0.776 0.259 2.849 0.362 2.755 0.009

RLU 0.146 0.976 0.270 0.976 0.568 3.842 1.024 3.778 0.046

SYN 0.091 0.801 0.159 0.791 0.272 2.761 0.466 2.767 0.007

SYNU 0.200 1.242 0.381 1.236 0.800 4.935 1.473 4.902 0.100

total ratio   
Table 7.3: SRAM/TCAM ratios
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Effectiveness of Each Optimization Technique

we have a total of 32 average compression ratio data points in Table 7.1 for our

new techniques. For each of our three optimization techniques, we can pair together

two data points to determine if the optimization improves space compression or not.

For example, we can comparem with andW to determine if shadow

packing improves the performance of multi-lookup on the RL data set. For each

optimization technique, this leads to 16 comparison pairs.

The first important insight is that shadow packing always improve space com-

pression, and the typical reduction is quite large. Table consolidation improves space

compression for 13 of the 16 pairs; for the other three pairs, table consolidation either

has no effect or slightly degrades compression. Note, this may change if we used a

different bound than 4. Finally, the lookup pipelining optimization improves space

compression for the eight pairs that do not include shadow packing. However, for

the eight pairs that do include shadow packing, it. actually hurts space compression,

sometimes quite significantly.

The experimental results show that shadow packing is the most important space

compression optimization. The improvement gained from implementing shadow

packing is almost always quite significant ranging between 0.06 and 0.92 with an

average of 0.38. The improvement gained from implementing table consolidation

ranges between 0.34 and 1.2 with an average of 0.71. Given that the lookup pipelin—

ing optimization does not. perform well in combination with shadow packing, we

should not use the pipelining optimization unless the packet processing throughput

improvement is significant enough to warrant the extra expense of multiple TCAM

chips.

Best variant for space compression

The best overall variant for space compression is 1)./CS, multi-lookup with the

shadow packing and table consolidation optimizations. The only data set where

MOS is not the best variant is the SYN dataset. where MS slightly outperforms

MOS- Note again that. with a. different bound than 4. AICS might outperform illS
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on this data set.

Effectiveness on Classifiers with Many Distinct Decisions

The effectiveness of our algorithms is relatively insensitive to the number of distinct

decisions in packet classifiers. Even with the extreme examples of RLU and SYNU

where every rule has a distinct decision, our best variant 1110S achieves average

compression ratios of 0.082 and 0.014, respectively. There are two main reasons that

explain the insensitivity of our algorithms to the number of distinct decisions in a

classifier. First, through sequential decomposition, we still produce relatively short

and thin tables that can be efficiently shadow packed. Second, table consolidation

neutralizes some of the effects of distinct decisions as entries in different tables with

different decisions can be consolidated together.

SRAM usage

Our techniques reduce the number of required TCAM bits by using inexpensive

SRAM space to replace expensive TCAM space. Table 7.2 shows the average and

total SRAM compression ratios for all eight algorithms. For real-life classifiers, our

techniques typically increase the amount of SRAM space used. There are four main

reasons for this increase in SRAM space. The first is the possible increase in the

total number of “thin” rules. The second is the increase in the number of bits

needed to store decisions, since a decision in our algorithms is often a table ID. For

fast indexing purposes, our algorithms require a uniform number of bits per TCAM

entry, which is essentially the maximum number of bits to encode a decision. The

third reason is the unused SRAM space for fast indexing shadow packed tables. With

shadow packing, the total number of required SRAM bits is the number of TCAM

entries times the maximum number of tables packed in a row times the maximum

number of bits needed to encode a. decision. The fourth reason is ascribed to table.

consolidation due to reasons similar to shadow packing. From Table 7.2, we can see

that. shadow packing and table consolidation significantly increase SRAM usage.

However, SRAM (‘zompression ratios do not account for the fact that SRAMs are
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often under-utilized by the traditional single-lookup scheme. That is. the number

of SRAM bits needed to store a classifier are significantly less than the number of

needed TCAM bits. Table 7.3 shows the SRAM/TCAM ratios for all eight algo—

rithms as well as direct expansion. From this table, we can see that all the algo-

rithms, except 111105 and PCS, use less SRAM bits than TCAM bits on average.

Even for [MCS and PCS, having an SRAM chip that is 4 times larger than the corre-

sponding TCAM chip is sufficient. Given the relative costs and power consumption

of SRAM and TCAM chips, this is a good tradeoff. Furthermore, in our experiments

on real-life classifiers, no classifier demands more than 0.6 Mb of SRAM.

Comparing with the state-of-the—art

It is difficult to directly compare our results with those in other prior work, such as

Dong et al.’s work [5], Lakshminarayan et al.’s DIRPE scheme [15], and Bremler-

Barr and Hendler’s SRGE scheme [4]. First, the real-life classifier sets are different

and are privately owned. Second, the evaluation metrics are not the same. For

example. Dong et al.’s [5] only reported a total compression ratio of 0.54 while

the range encoding papers only reported expansion ratio results. Fortunately, the

expansion ratios reported in prior range encoding schemes can be used to extrapolate

their total compression ratios. The expansion ratio of an algorithm on a classifier is

defined as the ratio between the number prefix rules produced by the algorithm for

the classifier and the number of original rules in the classifier. Thus. the compression

ratio of an algorithm can be calculated by the ratio between the expansion ratio of

the algorithm and the expansion ratio of direct expansion. For the best—known range

encoding method, i.e., hybrid-SRGE [4], we calculated its total compression ratio to

be 0.396. As we can see, our methods achieve significantly better total compression

ratios, albeit on different data sets.
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Chapter 8

Topological Transformations

One approach for mitigating the effects of range expansion has been to reencode

critical ranges. The basic idea is to reencode a given packet and use the reencoded

packet as the TCAM search key. For instance, Liu [19], Lunteren and Engbern [31],

and Pao et al. [21] all proposed methods of representing specific ranges as special bit-

strings using extra TCAM bits. Lakshminarayan et al. [15] and Bremler-Barr and

Hendler [4] proposed to replace the prefix encoding format with alternative ternary

encoding formats, called DIRPE and SRGE, respectively.

Previous reencoding schemes suffer from two fundamental limitations. First, they

only consider range fields and ignore all other fields; thus, they miss many optimiza-

tion opportunities that can be applied to prefix fields as well. It was not realized

that packet classifiers often have the potential of being minimized in TCAM even

when no fields are specified in ranges. Second, they require either con'iputationally

or economically expensive reencoding steps that do not easily integrate into exist-

ing packet classification systems. As each packet needs to be reencoded before it

can be used as a search key, previous range reencoding schemes propose to perform

packet reencoding using software, which greatly increases packet processing time, or

customized hardware, which is expensive from a design, cost, and implementation

perspective.

In this chapter, we take two novel views on range reencoding that are funda-

mentally different from previous range reencoding schemes. First, we view range
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reencoding as a topological transforn’iation process from one colored hyperrectangle

to another. W'hereas previous range reencoding schemes only deal with range fields,

we perform reencoding on every packet field. Specifically, we propose two orthogo—

nal, yet composable, reencoding schemes: domain compression and prefix alignment.

In domain compression, we transform a given colored hyperrectangle, which repre—

sents the semantics of a given classifier, to the smallest possible “equivalent” colored

hyperrectangle. In prefix alignment, on the other hand, we strive to transform

a colored hyperrectangle to an equivalent “prefix-friendly” colored hyperrectangle

where the ranges align well with prefix boundaries, minimizing the costs of range

expansion. Second, we view range reencoding as a classification process that can

be implemented with small TCAM tables. Thus, while a preprocessing step is still

required, it can be easily integrated into existing packet classification systems using

the same underlying TCAM technology. Furthermore, implementing our schemes on

a. pipeline of TCAM chips even increases packet classification throughput. because

our schemes enable the use of TCAM chips of small width.

Domain Compression: The fundamental observation is that in most packet

classifiers, many coordinates (i.e., values) within a field domain are equivalent. The

idea of domain compression is to reencode the domain so as to eliminate as many re-

dundant coordinates as possible. This type of reduction not only leads to fewer rules,

but also narrower rules, which results in smaller TCAM tables. From a geometric

perspective, domain compression “squeezes” a colored hyperrectangle as much as

possible. For example, consider the colored rectangle in Figure 8.1(A) that repre-

sents the classifier in Figure 8.1(H). In field F1 represented by the X—axis, all values in

[0, 7] U [66, 99] are equivalent; that is, for any y 6 F2 and any 1171,12 E [0, 7] U [66, 99]

, packets (.1‘1,y) and (£2.11) have the same decision. Therefore, when reencoding

F1, we can map all values in [0,7] U [66,99] to a single value, say 0. By identifying

such equivalences along all dimensions, the rectangle in Figure 8.1(A) is reenc.o(ile(_l

to the one in Figure 8.1(D), whose corresponding classifier is shown in Figure 8.1(I).

Figures 8.1(B) and (C) show the two transforming tables for [’1 and F2. respec-

st

tively; note that these tables can be implemented as TCAM tables. We use a as
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a shorthand for “accept” and “d” as a shorthand for “discard”.

E uivalent class

I 47””:1 l 
 

    
   

    
 

0 : ' :

6 .__-L_ ______ 0

15 .-- l _____ Domain 0 Prefix 1

75.-- _____ Compression 1 Ali nment 2

[0, 7|=>0 [0, 51=>o 2 10.01=>0 [0.0] =>03

5“ g [8, l9]=>1[6, 141=>1 0 1 2 [1,11=>2 u,1|=>2 3 1 2 3

99 l m [20,44] =>2 [15.75|=>2 (D) [2,21=>3 [2,2|=>3 (G)

3 20 44 5 99 [45,65] =>1 [76,88] =>1 (E) (F)

(A) [66,99] =>0 [39.99) =>o

[8, 65]/\[15,75|=>a (B) (C) [1, 2]/\[2,21 =>a l2,3|l\[3,3]=>a

[20,44]/\|6, 88] =>a [2. 2|/\[1,2] =>a [3,3|/\[2,3]=>a

[0, 99mm, 99|=>d [0, 2mm, 2] =>d [0,3]/\[0,3|=>d

(I) (J)

Figure 8.1: Example of topological transformations

Prefix Alignment: The basic idea. of prefix alignment is to “shift”, “shrink”, or

“stretch” ranges by transforming the domain of each field to a new “prefix—friendly”

domain so that the majority of the reencoded ranges either are prefixes or can be

expressed by a. small number of prefixes. In other words, we want to transform

a colored hyperrectangle to another one where the ranges align well with prefix

boundaries. This will reduce the costs of range expansion. For example, consider the

packet classifier in Figure 8.1(1), whose corresponding rectangle is in Figure 8.1(D).

Range expansion will yield 5 prefix rules because interval [1. 2] or [01. 10] cannot be

combined into a prefix. However. by transforming the rectangle in Figure 8.1(D) to

the one in Figure 8.1(G), the range expansion of the resulting classifier. as shown

in Figure 8.1(J). will have 3 prefix rules because [2,3] is expanded to 1*. Figures

8.1(D) and (E) show the two transforming tables for F1 and F2, respectively. Again,

these tables can be implemented in TCAM.

We implemented our algorithms and conducted experiments on both real-world

and synthetic packet classifiers. Our experimental results show that our combined

algorithm on real-world classifiers achieves an average expansion ratio of 0.07 ex-

cluding TCAM space. for transformers, and an expansion ratio of 0.21 including

TCAM space for transformers. This is much better than the best result. in prior
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work, the database dependent scheme hybrid-SRGE proposed by Bremler—Barr and

Hendler [4], where the average expansion ratio is 1.03 (this figure ignores the cost of

the reencoding process and is thus most comparable to our 0.07 average expansion

ratio).

8.1 Topological Transformation

The basic idea of our transformation approach is to transform a given packet classifier

into another classifier that can be stored more efficiently in TCAM. Furthermore, we

need a transformer that can take any packet and transform it into a new packet that

is then used as the search key on the transformed classifier. Of course, the decision

that the transformed classifier makes for the transformed packet must be the same

as the decision that the original classifier makes for the original packet. We also

require that the transformer itself be a packet classifier that can be efficiently stored

in TCAM. This is one of the features that differentiates our work from previous

reencoding approaches.

More formally, given a d—dimensional packet. classifier (C over fields 171,- - - ,Fd,

a topological transformation process produces two separate components. The first

component is a set of transfomzers T = {'ll‘i | 1 g 2' S d} where transformer T2-

transforms D(F,-) into a new domain D’(FZ-). Together, the set of transformers T

transforms the original packet space E into a new packet space 23'. The second

component is a transformed (ll-dimensional classifier (C’ over packet space 23’ such

that for any packet (p1, - ‘ - ,pd) E E, the following condition holds:

C(pli ' ' ° 3])(1) : C’(T1(P1)WHT(I(P(1»a

Each of the d transformers T,- and the transformed packet classifier (C, are imple-

mented in TCAM.
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Figure 8.2: Multi-lookup architecture

8. 1.1 Architectures

There are two possible architectures for storing the (1+1 TCAM tables (Cf, T1, - - - , 'll‘d:

the maria—lookup architecture and the pipelined-lookup architecture, each of which is

described below.

In the multi-lookup architecture, which is similar to the multi-lookup architecture

in Section 7.1, we store all the d+ 1 tables in one TCAM chip. To identify tables, for

each table, we prepend a [log(d + 1)] bit string, which we call the table ID, to every

entry in the table. Figure 8.2 illustrates the packet classification process using the

Inulti-lookup architecture when d = 2. Suppose the three tables are (C’, T1, and T2,

and their table IDs are 00, 01, and 10, respectively. Given a packet (p1, p2), we first

concatenate 'll‘l’s table ID 01 with p1 and use the resulting bit string Ollpl as the

search key for the TCAM. Let p1, denote the search result. Second, we concatenate

'll‘g’s table ID 10 with p2 and use the resulting bit string 10] [)2 as the search key for

the TCAM. Let pg’ denote the search result. Third, we concatenate the table ID 00

of (C, with m, and p2,, and use the resulting bit string ()()]])1']])2' as the search key

for the TCAM. The search result is the final decision for the given packet (7)1,pg).

We recommend two pipelined-lookup architectures for implementing our trans-

formation approaches: parallel I_)ipelined-looki1p and chained pipelined—looku]). In
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Figure 8.4: Chained pipelined—lookup architecture

both architectures, we store each of the d + 1 tables in separate TCAMs. As one

TCAM stores only one table, we do not need to prepend table entries with table IDs

for either approach. In the parallel pipelined—lookup architecture, the d transformer

tables T, laid out in parallel, form a two-element pipeline with the transformed clas-

sifier C’. Figure 8.3 illustrates the packet classification process using the parallel

pipelined-lookup architecture when d = 2. Given a packet (p1,p2), we send p1 and

p2, in parallel over separate buses, to T1 and T2, respectively. Then, the search

result. 191’po, is used as a key to search on (C’. This second search result is the final

decision for the given packet (p1,p2).

The (d + 1)-stage chained pipelined-lookup architecture is similar to the pre-

viously proposed pipelined-lookup architecture. Figure 8.4 illustrates the packet

classification process using the chained pipelined-lookup architecture when d = 2.

In comparison with the pipelined-lookup architecture, The main advantage of the

multi-lookup architecture is that it can be easily deployed since it requires minimal

modification of existing TCAM-based packet processing systems. Its main drawback

is a. modest. slowdown in packet processing throughput because (1 +1 TCAM searches

are required to process a d—dimensional packet. In contrast, the main advantage of

the two pipelined-lookup architectures is high packet processing throughput. Their

main drawback is that the hardware needs to be modified to accommodate (1+ 1
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TCAM chips.

Implementing our reencoding schemes on pipelined—lookup architectures actually

improves packet processing throughput over conventional TCAM implementations.

While the width of TCAM entries can be set to 36, 72, 144, or 288 bits, the typical

TCAM bus width is 72 bits. Thus the conventional TCAM lookup approach, which

uses a TCAM entry width of 144 bits, requires either four or five TCAM bus cycles to

process a packet: four bus cycles if the decision is stored in TCAM, five bus cycles if

the decision is stored in SRAM. Because all the tables produced by our reencoding

schemes have width less than 36 bits, we can set TCAM entry width to be 36.

Thus, using pipelined-lookup architectures, our reencoding approaches achieve a

classification throughput of one packet per cycle; using multi-lookup architectures,

our reencoding approaches achieve a classification throughput of one packet per

twelve cycles.

8.1.2 Measuring TCAM space

The TCAM space needed by our transformation approach is measured by the total

TCAM space needed by the (1+1 tables: C’, T1, - ' - , Td. We define the space used by

a classifier or transformer in a TCAM as the number of entries (i.e., rules) multiplied

by the width of the TCAM in bits:

space 2 # of entries X TCAM width

Although TCAMs can be configured with varying widths, they do not allow arbitrary

widths. The width of a TCAM typically can be set at 36, 72, 144, and 288 bits (per

entry). The primary goal of the transformation approach is to produce C’, T1, - - - , Td

such that. the TCAM space needed by these (1 + 1 TCAM tables is much smaller

than the TCAM space needed by the original classifier (C. Note that most previous

reencoding approaches ignore the space required by the. transformers and only focus

on the space required by the transformed classifier (C’.
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8.1.3 TCAM Update

Packet classification rules periodically need to be updated. The common practice for

updating rules is to run two TCAMs in tandem where one TCAM is used while the

other is updated [16]. All our approaches are compatible with this current practice.

Because our algorithms are efficient and the resultant TCAM lookup tables are

small, updating TCAM tables can be efficiently performed.

If an application requires very frequent rule update (at a frequency less than a

second, for example), we can handle such updates in a batch manner by chainng the

TCAM chips in our proposed architecture after a TCAM chip of normal width (144

bits), which we call the “hot” TCAM chip. When a new rule comes, we add the rule

to the top of the hot TCAM chip. When a packet comes, we first use the packet as

the key to search in the hot chip. If the packet has a match in the hot chip, then the

decision of the first matching rule is the decision of the packet. Otherwise, we feed

the packet to the TCAM chips in our architecture described as above to find the

decision for the packet. Although the lookup on the hot TCAM chip adds a constant

delay to per packet latency, the throughput can be much improved by pipelining the

hot chip with other TCAM chips. Using batch updating, only when the hot chip

is about to fill up, we need to run our topological transformation algorithms to

recompute the TCAM lookup tables.

8.2 Domain Compression

In this section, we describe our new reencoding scheme called dommfin compression.

The basic idea of domain con‘ipression is to simplify the logical structure of a clas-

sifier by mapping the domain of each field D(F,-) to the smallest possible domain

D’(F,-). We formalize this process by showing how a classifier (C defines an equiv-

alence relation on the domain of each of its fields. This equivalence relation allows

us to define equivalence classes within each field domain that domain compression

will exploit.

Domain compression has several benefits. First, with a compressed domain
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D'(Fz-), we require fewer bits to encode each packet field. This allows us to set

TCAM entries widths to be 36 bits rather than 144 bits, which saves both space

in the TCAM and time as each entry fits on the 72 bit TCAM bus. Second, each

transformed rule r’ in classifier (C, will contain fewer equivalence classes than the

original rule 7‘ did in classifier (C. This leads to reduced range expansion and the

complete elimination of some rules, which allows us to achieve expansion ratios less

than one.

Our domain compression algorithm consists of three steps: (1) computing equiv-

alence classes, (2) constructing transformer Ti for each field Ft: and (3) constructing

the transformed classifier (3'.

8.2.1 Step 1: Compute Equivalence Classes

In domain compression, we compress every equivalence class in each domain D(F,-)

to a single point in D’(F,-). The crucial tool of the domain compression algorithm

is the Firewall Decision Diagram (FDD).

The first step of our domain compression algorithm is to convert a. given (1-

dimensional packet classifier (C to (1 equivalent reduced FDDs f1 through fd where

the root of FDD fi is labeled by field F1. Figure 8.5(a) shows an example packet

classifier over two fields F1 and F2 where the domain of each field is [0,63]. Figures

8.5(b) and (c) show the two FDDs f1 and f2, respectively. The FDDs f1 and

f2 are almost reduced except that the terminal nodes are not merged together for

illustration purposes.

The crucial observation is that each edge of reduced FDD f2- corresponds to one

equivalence class of domain D(.F,-). For example, consider the the classifier in Figure

8.5(a) and the corresponding FDD f1 in Figure 8.5(b). Obvi01.1sly, for any p1 and

p1, in [7, 11] U [16, 19] U [39,40] U [43,60], we have C(p1,p2) = C(pl’, p2) for any [)2

in [0,63], so it. follows that (C{-p1} = C(pl’}.

Theorem 8.2.1 (Equivalence Class Theorem). For any packet classifier C over

clds F --F and an etuiualent reduced FDD rooted at an F: node v. the
l, (I. 1 t a
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labels ofv ’s outgoii‘zg edges are all the equivalence classes over field F,- as defined by

(3.

8.2.2 Step 2: Construct Transformers

Given a packet. classifier (C over fields F1, - - - , Fd and the (1 equivalent reduced FDDs

f1, - - - , fd where the root node of f,- is labeled P}, we compute transformer T,- as

follows. Let i) be the root of ft: and suppose v has m outgoing edges 61,- - -,em.

First, for each edge ej out of u, as all the ranges in ej’s label belong to the same

equivalent class according to Theorem 8.2.1, we choose one of the ranges in cj’s

label to be the representative, which we call the landmark. Any of the ranges in

eis label can be chosen as the landmark. For each equivalence class, we choose the

range that intersects the fewest number of rules in C as the landmark breaking ties

arbitrarily. We then sort edges in the increasing order of their landmarks. We use L]-

and ej to denote the landmark range and corresponding edge in sorted order where

edge el has the smallest valued landmark Ll and edge em has the largest valued

landn‘iark Lm. Our transformer T,- then maps all values in ej’s label to value j where

1 S j S m. For example, in Figures 85(1)) and (c), the greyed ranges are chosen

as the landmarks of their corresponding equivalence classes, and Figures 8.6(a) and

(b) show transformers T1 and T2 that result from choosing those landmarks.

8.2.3 Step 3: Construct Transformed Classifier

we now construct transformed classifier (C, from classifier (C using transformers T7;

for l g i g d as follows. Let F1 6 81 /\ - - - /\ Fd E Sd ——> (decision) be an original

rule in (C. The domain compression algorithm converts F,- E S,- to Ft, 6 Si, such

that for any landmark range LJ- (0 g j g m. — l), 1.]- H S,- # (ll if and only ifj 6 Si’.

Stated another way, we re[_)lace range S, with range [(1. b] C_: D’(F,-) where a is the

smallest number in [0, in — 1] such that. La (1 S, # (0 and b is the largest. number in

[0,712, — 1] such that Lb fl 8,; 74 (0. Note, it is possible no landmark ranges intersect

range Si; in this case. a. and b are undefined and 37;, = 0. For a. converted rule
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r, 2 F1, E 81’ /\ - - - /\ Fd’ E 8d, ——> (decision) in C], if there exists 1 S i. S d such

that S,’ = (0, then this converted rule r’ can be deleted from (C’.

For example, consider the rule F1 E [7,60] /\ F2 E [10,58] —-> discard in the

example classifier in Figure 8.5(a). For field F1, the five landmarks are the five

greyed intervals in 8.5(b), namely [0,0], [1,6], [7,11], [12,15], and [63, 63]. Among

these five landmarks, [7,60] overlaps with [7,11] and [12,15], which are mapped to 2

and 3 respectively by transformer T1. Thus, F1 E [7,60] is converted to F1, E [2, 3].

Similarly, for field F2, [10,58] overlaps with only one of Fg’s landmark, [10,19],

which is mapped to 3 by F2’s mapping table. Thus, F2 E [10,58] is converted to

F2, E [3, 3]. Figure 8.7 shows the resultant domain compressed classifier.

Next, we prove that. (C, and T are semantically equivalent to (C.

Theorem 8.2.2. Consider any classifier (C and the resulting transformers 'II‘ and

transformed classifier (C’. For any packet p 2 (p1, . - - , pd). we have

(C(Ill, ' ° ' 7pd) : (Cl/(T1 (p1) ' ° ' 7 Td(p(1))

Proof. For each field F, for 1 S i g (1, consider p’s field value 1),. Let. L(p,) be the

landmark range for [3(1),]. We set. 1“, = min(L(p,)). We now consider the packet

:1." = (.‘1‘1.---;r.d) and the packets :L'(j) = (.r1,...:rj__1,pJ-,...,pd) for O S j g d;

that. is, in packet (EU), the first j fields are identical to packet :r and the last d —j

fields are identical to packet p. Note 33(0) = p and I((l’) = .‘L‘. We now show that

C(])) 2 (C(17). This follows from C(:r(0)) = C(;r(1)) = --- = C(I(d)). Each equality

follows from the fact that. 17]- and pj belong to the same equivalence class within

l)(FJ-).

Let r be the first rule in (C that packet :17 matches. we argue that 7), will match

the transformed rule r, E (C’. Consider the conjunction F, E S,- of rule r. Since :1:

matches rule r, it must be the case. that 1:, E 3,. This implies that L(]),) D S, % (ll.

Thus. by our construction p,’ = 'll‘,(p,) = 'll‘,(.r,) E S,’. Since this holds for all fields

F,. packet. p, matches rule 7". “7e also argue that packet. [2’ will not match any rule

before transformed rule 7" E C’. Suppose packet 19’ matches some rule. r1, E C’

that occurs before rule 7". This implies that, for each conjunction F, E S, of the
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corresponding rule r1 E C that L(p,) F) S, 3é (0. However, this implies that 1:,- E 5',

since if any point in L(p,) is in 8,, then all points in L(p,) are in 8,. It follows that

1' matches rule r1 E C, contradicting our assumption that. rule r was the first rule

that :1: matches in C. Thus, it follows that p’ cannot match rule rl’. It then follows

that r' will be the first rule in C that p’ matches and the theorem follows. C]

8.3 Prefix Alignment

In this section, we describe a new topological transformation approach called prefix

alignment. When applying this approach, we assume that we have a classifier C

that needs to be converted into a prefix classifier via range expansion. we observe

that range explosion happens when ranges do not align well with prefix boundaries.

The basic idea of prefix alignment is to “shift”, “shrink”, or “stretch” ranges by

transforming the domain of each field to a new “prefix-friendly" domain so that the

majority of the reencoded ranges either are prefixes or can be expressed by a. small

number of prefixes. This will reduce the costs of range expansion. Of course, we

must guarantee that our prefix alignment transformation preserves the semantics of

the original classifier.

we first consider the special case where the classifier has only one field F. We

develop an optimal solution for this problem using dynamic programming techniques.

We then describe how we use this solution as a building block for performing prefix

alignment on multi-dimensional classifiers. Finally, we discuss how to compose the

two transformations of domain compression and prefix alignn‘ient.

8.3.1 Prefix Alignment Overview

The one—dimensimial prefix alignment problem can be described as the following

“cut” problem. Consider the three ranges [0,12]. [5,15]. and [0.15] over domain

D(F1) = [0. 15] in classifier C in Figure 8.8(A), and suppose the transformed domain

0’(F1) : [00,11] in binary format. Because D'(F1) has a total of 4 elements, we

want to identify three cut points 0 E .171 < 1‘2 < 1:3 g 15 such that if [0,171] E
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D(F1) transforms to 00 E D’(F1), [3:1 + 1,332] E D(F1) transforms to 01 E D’(F1),

[332+ 1,1:3] E D(F1) transforms to 10 E D’(F1), and [13+ 1, 15] E D(F1) transforms

to 01 E D’(F1 ), the range expansion of the transformed ranges will have as few rules

as possible. For this simple example, there are two families of optimal solutions:

those with 1:1 anywhere in [0, 3], 2:2 = 4, and $3 = 12, and those with 171 = 4,

x2 = 12, and 1173 anywhere in [13,15]. For the first family of solutions, range [0, 12]

is transformed to [00, 10] = 0* U10, range [5, 15] is transformed to [10. 11] = 1*, and

range [0, 15] is transformed to [00, 11] = M. In the second family of solutions, range

[0, 12] is transformed to [00, 01] = 0*, range [5, 15] is transformed to [01, 11] = 01U1*,

and range [0, 15] is transformed to [00,11] = **. The classifier C, in Figure 8.8(A)

shows the three transformed ranges using the first family of solutions. Thus, in both

examples, the range expansion of the transformed ranges only has 4 prefix rules

while the range expansion of the original ranges has 7 prefix rules.

We now illustrate how to compute an optimal solution using a divide and conquer

strategy. The first observation is that we can divide the original problem into two

subproblems by choosing the middle cut point. The second observation is that a

cut point should be the starting or ending point of a range if possible in order

to reduce range expansion. Suppose the target domain D’(F1) is [0.2b — 1]. we

first need to choose the middle cut point x2b_1, which will divide the problem

into two subproblems with target domains [0, 2b—1 — 1] = 0{=i<}b""1 and [21)“1. 2b —

1] = 1{*}b-1 respectively. Consider the example in Figure 8.8(A), the 172 cut

point partitions [0,15] into [0, 51:2], which transforms to prefix 0*, and [1'2 + 1,15],

which transforms to prefix 1*. The first observation implies either 332 = 4 or .r2 =

12. Suppose we choose r2 2 4; that is, we choose the dashed line as shown in

Figure 8.8(A). This then divides the original problem into two subproblems where

we need to identify the 171 cut point in the range [0.4] and the 3:3 cut point. in

[5, 15]. Furthermore. in the two subproblems, we include each range trimmed to fit

the restricted domain. For example, in the first subproblem, ranges [0, 12] and [0. 15]

are trimmed to [0,4], and in the second subproblem. ranges [5,15] and [0.15] are

trimmed to [5, 15] and range [0, 12] is trimmed to [5. 12]. It is important. to maintain
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each trimmed range, even though there may be multiple copies of the same trimmed

range. We then see in the first subproblem that the choice of 11:1 is immaterial since

both trimmed ranges span the entire restricted domain. In the second subproblem,

the range [5, 12] dictates that 1173 = 12 is the right choice.

This divide and conquer process of computing cut points can be represented as a

binary cut tree. For example, Figure 8.8(B) depicts the tree where we select $2 = 4

and 11:3 = 12. This binary cut. tree also encodes the transformation from the original

domain to the target domain: all the values in a terminal node will be mapped to the

prefix represented by the path from the root to the terminal node. For example, as

the path from the root to the terminal node of [0,4] is 0, all values in [0,4] E D(F1)

are transformed to 0*.

Note that in the domain compression technique, we considered transformers that

mapped points in D(F,) to points in D’(F,). In prefix alignment, we consider

transformers that map points in [)(F,) to prefix ranges in D'(F,). If this seems

confusing, we can also work with transformers that map points in D(F,) to points

in D’(F,) with no change in results; however, transformers that map to prefixes

more accurately represent the idea of prefix alignment than transformers that map

to points. Note also that since we will perform range expansion on C’ with no

redundancy removal, we can ignore rule order. We can then view a one-dimensional

classifier C as a multiset of ranges S in I)(F1).

8.3.2 One-dimensional Prefix Alignment

We next present the technical details of our dynamic programming solution to the

prefix aligmnent problem by ansmrring a series of four questions.

Correctness of Prefix Alignment

The first question is: why is the prefix alignment transformation process correct? In

other words, how does the prefix alignment transformation preserve the semantics

of the original classifier? We first define the concept of prefix transformers and

then show that. if prefix transformers are used. the prefix alignment transformation
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process is correct.

Given a prefix P, we use min P and max P to denote the smallest and the largest

values in P, respectively.

Definition 8.3.1 (Prefix transformers). A transformer T, is an order—presenting

prefix transformer from D(F,) to D'(F,) for a packet classifier C if T, satisfies the

following three properties. (I) (prefix property) Vx E D(F,), 'Il‘,(x) = P where P

is a prefix in domain D’(F,),' (2) (order-preserving property) Vx, y E D(F,), x < y

implies either 'll‘,(x) = 'll‘,(y) or max T,(x) < min ’ll‘,(y); {3) (consistency property)

Vx,y E D(F,), T,(x) = T,(y) implies C{x} = C{y}.

The following Lemma 8.3.1 and Theorem 8.3.1 easily follow the definition of

prefix transformers.

Lemma 8.3.1. Given any prefix transformer 11', for a field F,, for any a,b,x E

D(F,), x E [a, b] if and only if 'll‘,(.r) E [1'1‘1in'll‘,(a), max T,(b)].

Theorem 8.3.1 (Topological Alignment Theorem). Given a packet classifier C over

fields F1, - - - , F,,, and d prefix transformers T = (T, | 1 g i S d}, and the classifier

C, constructed by replacing any range [a, b] over field F, (1 S i S d) by the range

[min T,(a), max 'll‘,(b)], the condition C(p1.- - -.pd) = C’(T1(p1), ---, 'll‘d(pd)) holds.

Find Candidate Cut Points

The second question is: what cut points need to be considered? To answer this

question, we first introduce the concept of atomic ranges. For any multiset of ranges

S (a multiset. may have duplicate entries) and any range :17 over domain D(F1), we

use S‘in'x to denote the set of ranges in S that contain x.

Definition 8.3.2 (Atomic Range. Set). Given a multiset S of ranges, the union of

which constitute a range denoted U S. and a set of ranges S’, S, is the atomic range

set of S if and only if the following four conditions hold: (1) (coverage property)

U S = US’; (2) (disjoint property) VJ), y E S', x {’1 y = (ll; (3) (atomicity property)

Vx E S and Vy E S', :1: H y 74 0 implies y g x. (.4) (maximality property) V17. 1) E S’

and max x + 1 = min y implies Std-J: 7£ S‘Qy.
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For any multiset of ranges S, there is one and only one atomic range set of S,

which we denote as AR(S). Because of the maximality property of atomic range set,

the candidate out points correspond to the end points of ranges in AR(S). We now

show how to compute S-start points and S-end points. For any range [x,y] E S,

define the points x — 1 and y to be S-end points, and define the points x and y + 1

to be S-start points. Note that we ignore x - 1 if x is the minimum element of U S;

likewise, we ignore y + 1 if y is the maximum element of U S. Let (31,- - - , sm) and

(e1, - - - , em) be the ordered list of S-start points and S-end points. It follows that

for 1 g i g m — 1 that s, g e, = s,+1 +1. Thus, AR(S) = {[sl,e1],- - - , [sm,em]}.

For example, if we consider the three ranges in classifier C in example Figure

8.8(A), range [0, 12] creates S-start point 13 and S-end point 12, range [5, 15] creates

S-end point 4 and S—start point 5, and range [0, 15] creates no S-start points or S-

end points. Finally, 0 is an S—start point. and 15 is an S-end point. This leads to

AH(S) = {[0,4].[5.12],[13,15]}.

Choose Target Domain Size

The third question is: how many bits should be used to encode domain 0'(F1 )? The

number of bits b used to encode the domain D'(F1) may impose some constraints

on possible prefix transformers. Consider the example from C in Figure 8.8(A) with

ranges [0,12], [5, 15]. and [0, 15]. Suppose there were a fourth range [5,7]. For this

multiset of ranges S, we then have AR(S) = {[0. 4], [5, 7], [8, 12], [13, 15]}. If we allow

only 2 bits to encode D’(F1), then there is only one possible prefix transformer. We

must have [0,4] map to 00, [5,7] map to ()1, [8,12] map to 10, and [13,15] map

to 11. On the other hand, if we allow 3 bits. we can also allow additional prefix

transformers such as [0, 4] map to 000. [5. 7] map to 001, [8,12] map to 01*, and

[13,15] map to 1**. In this case, the first prefix transformer is superior to this

second prefix transformer. However. if the original ranges had been [0, 4], [0,7],

[0. 12], and [0, 15], the second prefix transformer would have been superior. and this

prefix transformer is only possible if we encode D,(F1) with at least 3 bits.

We will include the number of bits b used to encode D’( F1) as an input parameter
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to our prefix alignment problem. we determine the best b through an iterative

process of repeatedly incrementing b and computing an optimal solution for that

b. we start by choosing = [log |AR(S)|], which is the smallest possible number

of bits for any legal prefix transformer. Once we have a solution, we increment b

and repeat the process until we cannot reduce the range expansion any further. we

choose a linear search as opposed to a binary search for efficiency reasons. As we

shall see in a moment, any solution using b bits will require a sub-solution using b— 1

bits. Thus, when we fail to find a solution using b bits and try to find a solution

using 2b bits, we will require a sub-solution for each number from b + 1 to 2b - 1

(otherwise we would have found a solution using b bits). Furthermore, the binary

search may miss the best b by a large factor, which will lead to a large amount of

unnecessary computation.

Choose Optimal Cut Points

The fourth question is: How do we choose the optimal cut points? As we noted

before. we can view a one-dimensional classifier C as a multiset of ranges S in D(F1).

We then formulate the one-dimensional prefix alignment problem as follows: Given

a multiset of ranges S over field F1 and a number of bits b. find prefix transformer

T1 such that the range expansion of the transformed multiset of ranges S' has the

minimum number of prefix rules and D’(F1) can be encoded using only b bits.

We now present an optimal solution for this problem using dynamic program-

ming. Given a multiset of ranges S, we first compute its atomic range set AR(S).

Suppose there are m atomic ranges R1, - - - , Hm with S-start points 81 through sm

and S-end points e1 through cm sorted in increasing order. For any S-start point.

sf and S—end point sy where 1 g .r g y g m, we define S rm [.1:, y] to be the multiset.

of ranges from S that intersect. range [817,531]; furthernmre. we. assume that each

range in S (n) [.r. y] is trimmed so that. its start point. is at least s1,- and its end point

is at most sy. We then define a collection of subproblems as follows. For every

1 g .‘I? g y g m, we define a prefix alignment problem P.4(r, y. b) where the problem

is to find a prefix transformer T1 for [54.5, cu] Q I)(F1) such that the range expansion
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of (S rm [x, y])’ has the smallest possible number of prefix rules and the transformed

domain D'(F1) can be encoded in b bits. We use cost(x, y. b) to denote the number

of prefix rules in the range expansion of the optimal (S n [x, y])’. The original prefix

alignment problem then corresponds to PA(1, m, b) where b can be arbitrarily large.

The key observation that allows the use of dynamic programming is that the

prefix alignment problem obeys the optimal substructure property. For example,

consider PA(1, m, b). As we employ the divide and conquer strategy to locate a

middle cut point that will establish what the prefixes O{*}b_1 and 1{*}b—1 cor-

respond to, there are m — 1 choices of cut points to consider: namely e1 through

em_1. Suppose the optimal cut point is ek where 1 S k S m — 1. Then the op-

timal solution to PA( 1, m, b) will build upon the optimal solutions to subproblems

PA(1,k,b — 1) and PA(k + 1,m,b — 1). That is, the optimal prefix transformer

for PA(1, m. b) will simply append a 0 to the start of all prefixes in the optimal

prefix transformer for PA(1, k, b — 1), and similarly it will append a 1 to the start

of all prefixes in the optimal prefix transformer for PA“: + 1, 777., b — 1). Moreover,

cos/(1,771, b) = cost(1,k,b — 1) + cost(k + 1,7‘n,b — 1) — [.S'<;Ci'[1, 771]]. We subtract

[S'iQ[1, m][ in the above cost equation because ranges that include all of [81, em] are

counted twice, once in cost(1,k,b — 1) and once in cost(k + 1, m, b — 1). However,

as [s], ck] transforms to 0{*}b-1 and l3k+17 em] transforms to 1{*}b—1, the range

[31,em] can be expressed by one prefix {*}b = 0{*}b_1 U 1{*}b"1.

Based on this analysis, Theorem 8.3.1 shows how to compute the optimal cuts

and binary tree. As stated earlier, the optimal prefix transformer T1 can then be

computed from the binary cut tree.

Theorem 8.3.1. Given a multiset of ranges S with [AR(S)
 
= 777.. cost(l,r, b) for

any b 2 0. 1 S l S r S m can be computed as follows. For any 1 S l < r S m, and

1S 1’: Sm. and b 2 0:

cost(l, 7', 0) = 00,

cost(lsf, 11‘, b) = $th kll’ 
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and for any 1 S l < 7‘ S 777. and b 2 1

( cost(l,]c,b—1) \

+

cost l,r,b = min nth 1, ,b—1

( ) kE{l,...,r—1} COS< + T )

t new“ )  
C]

Note that we set cost(k, k, 0) to |S@[k, It“ for the convenience of the recursive

case. The interpretation is that with a 0-bit domain, we can allow only a single value

in D’(F1); this single value is sufficient to encode the transformation of an atomic

interval.

8.3.3 Multi-Dimensional Prefix Alignment

We now consider the multi-dimensional prefix alignment problem. Unfortunately,

while we can optimally solve the one—dimensional problem, there are complex inter-

actions between the dimensions that make solving the multi-dimensional problem

optimally extremely difficult. In particular, the total range expansion required for

each rule is the product of the range expansion required for each field. Thus, there

may be complex tradeoffs where we sacrifice one field of a rule but align another field

so that the costs do not multiply. However, we have not found a polynomial algo-

rithm for optimally choosing which rules to align well in which fields. It is an open

problem to prove whether the optimal multi-dimensional prefix alignment problem

is NP-hard.

In this chapter, we present. a hill—climbing solution where we itm'atively apply

our one—dimensional prefix alignment algorithm one field at a time to improve our

solution. The basic idea is to perform prefix alignment one field at a time; however,

because the range expansion of one field affects the numbers of ranges that appear

in the other fields. we run prefix alignment for each field more than once. Running

prefix alignment more than once allows each field to use more and more accurate

information about the number of times each range appears in a field.
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For a classifier C over fields F1, . . . , Fd, we first create (1 identity prefix trans—

formers TQ, . . . .Tg. We define a multi-field prefix alignment iteration k as follows.

For i from 1 to d, generate the optimal prefix transformer Tf assuming the prefix

., . , k—l k—l k—l k—l -
transformers for the other fields are {T1 , ..., Ti—l , Ti+1 , ..., Td }. Our 1t-

erative solution starts at k = 1 and preforms successive multi-field prefix alignment

iterations until no improvement. is found for any field.

8.3.4 Composing with Domain Compression

Although the two transformation approaches proposed in this chapter can be used

individually to save TCAM space, we advocate combining them together to achieve

higher TCAM reduction. Given a classifier C over fields F1. . . . , Fd, we first per-

form domain compression resulting in a transformed classifier C, and d transformers

Talc, . . . , Tgc; then, we perform prefix alignment on the classifier C, resulting in a

transformed classifier C” and (1 transformers Tllm, . . . ,TZG. To combine the two

transformat.ion processes into one, we merge each pair of transformers TE!“ and T?a

into one transformer T, for 1 S i S (1. One nice property of their composition is

that since the transformer for domain compression is a function from D(F,) to a

point in D’(F,) and each point in D’(F,) will belong to its own equivalence class in

D’(F,) for 1 S i S d, each point. x E D'(F,) defines an atomic range [x, x].

A good property of the two proposed topological transformation approaches is

that they are composable with many other reencoding or TCAM optimization tech-

niques. For example, we can apply previous TCAM minimization schen‘ies (such

as [5, 18, 20]) to a transformed classifier to further reduce TCAM space. Further-

more. as new classifier minimization algorithms are developed, our transformations

can potentially leverage these future results. Finally, we can apply the optimal

algorithm in [27] to compute the minimum possible transformers T, for 1 S i S d.
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8.4 Experimental Results

We evaluate the effectiveness and efficiency of our topological t.ransformation ap—

proaches on both real-world and synthetic classifiers. Although our two approaches

can be used independently, they are much more effective when used together. Thus,

we only report results for both techniques combined, and we finish by running the

redundancy removal algorithm in [18] on the transformed classifier C”.

8.4.1 Evaluation Metrics

Given a TCAM optimization algorithm A and a classifier C, let A(C) denote the re-

sulting classifier, W(A(C)) denote the number of bits to represent each rule in A(C),

TW(A(C)) denote the minimum TCAM entry width for storing A(C) given choices

36, 72, 144, or 288. [A(C)| denote the number of rules in A(C), and B(A(C)) =

TW(A(C)) X|A(C)[, which represents the total number of TCAM bits required

to store A(C). The main goal of TCAM optimization algorithms is to minimize

B(A(C)). we use Direct to denote direct range expansion algorithm, so B(Direct(C))

represents the baseline we compare against, W(Direct(C)) = 104, TW(Direct(C)) =

144. and B(Direct(C)) = 144 x |Direct(C)|. Below is the summary of our notations:

For any A and C, we measure overall effectiveness by the compression ratio

_ BfA ((3))

GIN/KC” _ B(Direct(C)

our approaches at compressing classifiers, we define the Rule Number Ratio of A on

C to be RNR(A(C)) = '18:“, which is often referred to as expansion ratio, and the

 
). To isolate the factors that contribute to the success of

 

Rule Width Ratio of A on C to be RWR(A(C)) = W(A(C) . When we consider a

S
  

set of classifiers S where denotes the number of classifiers in S , we generalize our

metrics as follows. Average compression ratio of A for S is

= ZCeS Cliff/1(9)
 

  

 

C'R(A(S)) 8"

average rule number ratio of A for S is

.. RNR A C

RNR(A(S)) = DUES s ( ( )),
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and average rule width ratio of A for S is

2 Does RWRMUCD

s '

 awry/4(5))

  

We split RL into two groups, RLa and RLb where RNR(Direct(C)) S 2 for all

C E RLa and RNR(Direct(C)) > 40 for all C E RLb. We have no classifiers where

2 S RNR(Direct(C)) S 40. It turns out [RLa] = 12 and [RLb] = 13. By separating

these classifiers into two groups, we can determine how well our techniques work on

classifiers that do suffer significantly from range expansion as well as those that do

not.

8.4.2 Effectiveness

Results on real-world and synthetic classifiers

Table 8.1 shows the average compression ratio, rule size ratio, and rule number ratio

for our algorithm on all eight data sets. Figures 8.10 through 8.15 show the specific

compression ratios, rule width ratios, and rule number ratios for all of our real-world

classifiers; the black bars represent the increases in each quantity that arise from

assigning each rule a. unique decision. In each figure, we sort the classifiers by the

number of rules in the original classifier. We present compression ratio and rule

number ratio data with and without transformers. The data without transform-

ers facilitate comparison with most previous reencoding schemes. The data with

transformers depicts the true space savings of our methods.

Our algorithm achieves significant compression on both real-world and synthetic

(_rlassifiers. On RL, our algorithm achieves an average compression ratio of 10.3%

if we count TCAM space for transformers and 2.6% if we do not. These savings

are attributable to both rule width and rule number compression. The average rule

width compression ratio is 10.6%. which means that a typical encoded classifier only

requires 11 bits, instead of 104 bits, to store a rule. However, the actual savings that

rule width compression contributes to average comjjn'ession ratio is only 25% because

the encoded classifiers will always use 36 bit wide. TCAM entries of 36, which is the
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compression rule width rule number

we. T with T we. T with T

RL 2.6% 10.3% 10.6% 27.6% 123.3%

RLU 7.0% 16.2% 14.5% 63.2% 176.8%

RLa 5.3% 20.8% 14.2% 22.7% 87.4%

RLaU 14.4% 33.1% 18.5% 62.5% 140.3%

RLb 0.1% 0.5% 7.2% 32.2% 156.4%

RLbU 0.2% 0.6% 10.8% 63.8% 210.6%

SYN 0.6% 2.5% 10.4% 2.7% 11.8%

SYNU 9.3% 12.4% 16.0% 43.9% 58.9% 
 

Table 8.1: Average compression ratio, rule width ratio, and rule number ratio for 9

data. sets (with transformers included and excluded)

smallest possible TCAM width. In comparison, direct range expansion would use

144 bit wide TCAM entries. That is, TW(A(C)) = 32 for all the classifiers in RL

(actually in all data sets including RLU, SYN, and SYNU). The remaining savings

is due to rule number compression. Note that the average rule number compression

ratio without transformers is 27.6%; that is, domain compression and redudancy

removal eliminate an average of 72% of the rules from our real-life classifier sets.

In comparison, the goal of all other reencoding schemes is an average rule number

compression ratio without transformers of 100%. On other data sets, our algorithm

also performs well. For example, for Taylor’s rule set TRS, we achieve an average

compression ratio of 2.7% with transformers included and 1.0% with transformers

excluded.

Sensitivity to classifier efficiency

Our algorithm is effective for both efficiently specified classifiers and inefficiently

specified classifiers. The efficiently specified classifiers in RLa experience relatively

little range expansion; the inefficiently specified classifiers in RLb experience signif—

icant range expansion. Not surprisingly, our algorithm provides roughly 40 times
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better compression for RLb than for RLa with average compression ratios of 0.5%

and 20.8%, respectively. In both sets, TCAM width compression contributes 25%

savings. The difference is rule number compression. On efficient classifiers, our al-

gorithm provides modest rule number compression (even though the average rule

number ratio without transformers for RLa is 22.7%). On inefficient classifiers, our

algorithm provides tremendous rule number compression.

Sensitivity to number of unique decisions

Our algorithm '3 effectiveness is only slightly diminished as we increase the number

of unique decisions in a classifier. In the extreme case where we assign each rule

a. unique decision in RLU, our algorithm achieves an average compression ratio of

16.2% with transformers included and 7.0% with transformers excluded; and on

SYNU, our algorithm achieves an average compression ratio of 12.4% with trans-

formers included and 9.3% with transformers excluded. In particular, the TCAM

width is unaffected as our algorithm still uses 36 bit wide TCAM entries.

Comparison with state—of—the—art results

Oar algorithm outpevforvns all existing reencoding schemes by at least a factor of

3.16 including transformers and by at least a factor of 7.24 ea'elading transformers.

We first. consider the width of TCAM entries. We have 36 bit. wide TCAM entry

width while the smallest TCAM width achieved by prior work is 72 [21]. There-

fore, on TCAM entry width, our algorithm is 2 times better than the best known

result. Next, we consider the number of TCAM entries. Excluding TCAM entries

for transformers, the best rule number ratio that any other method can achieve

on It]. is 100% whereas we achieve 27.6%. Therefore. e:1.‘(_'l'u(ling TCAM entries for

transform("I's. our algorithm is at least 7.24 (= 2 X 100%./27.6%) times better than

the optimal TCAM reencoding algorithm that does not consider classifier semantics.

In comparison with PIC [21], the best. known TCAM-based reencoding alg(_)ritlin'1,

the transformers in PIC use at. least the same number of TCAM entries as our al-

gorithm because our domain compression technique may map multiple intervals to
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one decision whereas PIC maps each interval to a unique decision. Thus, including

TCAM entries for transformers, the best average rule number ratio that PIC can

achieve on RL is 195.7%(= 123.3% — 27.6% + 100%). Therefore, including TCAM

entries for transformers. our algorithm is at least 3.16 (= 2 x 195.7%/ 123.3%) times

better than PIC.
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F1 F2 Decision

[12, 15] [7,60] Discard
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[20, 38] [0, 63] Accept
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[1, 63] [0, 62] Accept
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[0, 63] [0, 63] Discard
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Figure 8.5: Step 1 of domain compression
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Figure 8.6: Step 2 of domain compression
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F1 F2 Decision

[3, 3] [2, 3] Discard

(l) [2, 3]] Discard

(l) [0, 4] Accept

[0, 4] (ll Accept

[2, 3] [3, 3] Discard

[1, 4] [0, 3] Accept.

[0, 3] [1, 4] Accept

[0, 4] [0, 4] Discard

U

F1 F2 Decision

[3, 3] [2, 3] Discard

[2,3] [3, 3] Discard

[1, 4] [0, 3] Accept,

[0, 3] [1, 4] Accept

[0, 4] [0, 4] Discard  
 

Figure 8.7: Step 3 of domain compression

119



‘

u
}
.
.
.
‘
I
'
w
m
w
fl
-
l
fl
m
‘
I

m
.
“
:
.

I
t
?
"

f
a
u
u
—
u
-
e
m
u
u
-
r

-
.

.
.
~
C
u
l
l
l
'
1
‘
.

 

 

 

   

 

  

.--".. ’5“- - " ‘1 55"": ' glass-54 1-. 5.771 31.3.4.1? fa? '1' ' :93 1 - 3}." “ME 1 -' .4

0 l 4 6 7 8 9 10 ll 12 13

map .t'é 0' map to‘W. map to'."

 

    as" s

14 15

 

(A)

Figure 8.8: Example of 1-D prefix alignment.

 

 

 

A TCAM opt. scheme

Direct direct range expansion

(C packet classifier

A(C) resulting classifier

l‘l/"(.4(<C)) width of rules in A(C)

[.4(<C)| number of rules in A((C)

TW(A(C)) minimum TCAM width for rules in A(C)

B(A(C)) TW(A(C)) x |.4,(<C)| total bits of A((C)   
Figure 8.9: Summary of notation
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Figure 8.12: Rule size ratio of RLa and
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Figure 8.14: Rule number ratio of RLa

and 11’LaU
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