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ABSTRACT

SUBSTRATES FOR SURFACE-ENHANCED RAMAN
SPECTROSCOPY

By

Muhammad Ajmal Khan

Surface enhanced Raman spectroscopy (SERS) utilizes surface plasmon
resonance in metallic nanostructures to yield nearly a millionfold increase in the Raman
signal of an analyte. The unprecedented sensitivity and specificity of SERS has great
potential for applications in analytical chemistry and biological sensors. SERS is
inherently a nanoscale phenomenon and recent advances in nanotechnology have
generated an immense opportunity for the use of nanoparticles, nanowires and nanorods
as substrates for SERS. This dissertation explores different aspects of utilizing bulk
synthesized germanium oxide, zinc oxide nanowires, and metallic nanorods as substrates
for SERS. It discusses the synthesis details and growth kinetics for the oxide nanowires
and metallic nanorods. The germanium nanowire growth is carried out in a simple tube
furnace chamber using two different temperature regimes - the traditionally high
temperature synthesis and a novel low temperature synthesis. The high temperature
synthesis (~850 °C) does not yield good control over length and diameter of the
nanowires. The new low temperature synthesis technique overcomes these limitations by
maintaining the source temperature at ~650 °C.

Zinc oxide nanowires are synthesized by thermal evaporation of zinc powder in
an oxidizing environment. The as-synthesized bulk nanowires act as nanostructured

template that is coated with a thin gold film to create a plasmon active surface for SERS
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application. In addition metallic nanorods of aluminum, copper, and silver were
synthesized on glass slides in an e-beam equipped physical vapor deposition system using
oblique angle deposition technique. Structural and chemical compositional
characterization of the SERS substrates was done using a scanning electron microscope,
transmission electron microscope and energy dispersive X-ray spectroscopy (EDS). The
SERS performance is evaluated using model analytes of 4-methylbenzenthiol, 1,2-
benzenedithiol and trans-1,2-bis(4-pyridyl)ethylene. The substrates yield strong and
unambiguous Raman spectra from just a monolayer or few femto moles of analyte. The
Raman enhancement factors are computed by comparing the intensity of Raman signal
from SERS substrate to that from the bulk analyte. The metallic nanorods substrates show
a metal dependent SERS enhancement with silver yielding an order of magnitude
stronger enhancement compared to other metals. The oxide nanowires based substrates

show an average Raman enhancement factor of ~10° with good reproducibility of signal

over the tested area. The dissertation puts in to perspective how noble metal coated

germanium oxide and zinc oxide nanowires can be used as robust SERS platform for

detection of trace levels of chemical species.
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Chapter 1: Introduction

1.1  Raman spectroscopy

The understanding and control of interaction between light and matter has always
been an area of active research due to its potential applications in many fields of science
and technology. Vibrational spectroscopic techniques have been extensively employed to
study this interaction and have played a major role in extending our understanding of
structure, bonding, and reactivity in all phases of matter. The main techniques to detect
molecular vibrations are based on the processes of infrared (IR) absorption and Raman
scattering. These are widely used to provide information on chemical structure of matter,
identify substances using their characteristic spectral patterns, and to determine
quantitatively or semi-quantitatively the amount of substance in a sample. Samples can
be examined in a whole range of physical states; for example, as solids, liquids or vapors,

in hot or cold states, in bulk, as microscopic particles, or as surface layers.

Raman spectrum is considered as the optical fingerprint of chemicals and
bimolecules as it represents the vibrational frequencies of functional chemical bonds in
molecules[1]. Raman spectroscopy offers a number of advantages due to its ability to
€xamine samples inside glass containers without any special preparation and in the
Presence of common solvents like water. Being a completely non-detructive and non-
intrusive technique, it permits the detection and identification of unknown species in any
Phase. As an optical technique it has high resolution (1 cm™) and immunity to the
Presence of an ambient gas phase. On the more fundamental side, it provides spectra

complementary to those obtained by either infrared absorption or electron energy loss



spectroscopy[2]. Raman scattering depends upon the change in the molecular
polarizability during a molecular vibration, while infrared absorption depends upon the
change in the dipole moment. High resolution, wide spectral range, high sensitivity,
complementary selection rules, and high spatial resolution make Raman spectroscopy an
ideal probe for surface sciences. It also finds its usage in a wide variety of fields
including examination and identification of inorganics, minerals, art, archaeology,
polymers, emulsions etc. Raman scattering is extensively employed in biological,
pharmaceutical and forensic applications to study physical structures of the live cells, and

for plant control and reaction following[3].

1.2 Limitations of conventional Raman spectroscopy

Despite its numerous advantages, conventional Raman scattering is less widely
used than infrared absorption. The major shortcoming of the technique is its extremely
small scattering cross section as compared to the Rayleigh or elastic scattering. Typical
Raman scattering cross sections of molecules are in the range of ~10%° ¢cm? whereas
typical Rayleigh scattering cross sections are ~ 10 cm? [4]. The scattering cross section
of a particle is defined by relating the rate of photons striking a molecule to the rate of
Scattering in all directions and can be viewed as an area presented by a molecule for the
Scattering of incident photons[4]. Thus it might appear that the application of such an
intrinsically inefficient process to the detection of trace amount of species would not be
Very productive. In addition to low signal intensity, Raman spectroscopy is also plagued
by fluorescence[5]. Fluorescence is a strong light emission from the sample (including
Sample impurities) or its surrounding. These broadband fluorescence signals can be of

much higher intensity than the Raman signals and may altogether obscure the Raman






spectra (typical fluorescence cross sections of molecules is ~ 10'° cm?)[4]. It is estimated
that at least 40% of the samples used in Raman spectroscopy suffer from some degree of
fluorescence. Techniques such as time resolved spectroscopy, excitation using deep
ultraviolet (UV) and metal fluorescence quenching have been studied to tackle
fluorescence problem but each has its associated problems like sample degradation from
UV irradiation, spectra perturbation by metal etc. The chance of an unknown sample
exhibiting fluorescence is strongly dependent on the wavelength of the laser used for
excitation. Typical laser wavelengths are 780 nm, 633 nm, 532 nm, and 473 nm, although
others are common. Fluorescence from the sample or its surrounding can be significantly
reduced by moving the excitation all the way to the near infrared (for example, 785 nm
will yield considerably less fluorescence than 532 nm). But on the other hand the
efficiency of Raman scattering is proportional to 1/A*, so there is a decrease in
enhancement as the excitation laser wavelength becomes longer. Hence a balance needs
be maintained between enhancements from shorter wavelength versus accompanying
fluorescence. Near-infrared (IR) laser excitation greatly reduces the number of samples
prone to fluorescence and allows higher laser powers to be wused without
Photodecomposition. This makes Near-IR excitation a natural choice for the study of
fluorescent prone samples but the low sensitivity due to small scattering cross-section

I'emains a major problem limiting the widespread application of Raman spectroscopy.

1.3  Surface enhanced Raman spectroscopy
The observation of Surface-Enhanced Raman Spectroscopy (SERS) by

Fleishchman e al. in 1974 reinvigorated interest in Raman scattering as a powerful
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analytical tool[6]. The Raman signals from pyridine molecules adsorbed on the
electrochemically roughened silver electrode were found to be over a millionfold stronger
than their corresponding surface densities. The initial enthusiasm following the discovery
of SERS lasted for over a decade and many theories were proposed to explain the strong
enhancement observed from rough surfaces and colloidal aggregates. Today, it is
generally agreed that the SERS arises from two mechanisms — an electromagnetic
enhancement and a chemical charge transfer effect. In electromagnetic enhancement
model, the analyte located in the close proximity to the metal interacts with the incident
laser light through the excitation of surface plasmons in metal[7]. The metal can be in the
form of a thin rough film with nanoscale features or in the form of aqueous colloidal
nanoparticles. Silver, gold and copper are the common metals employed due to their
strong SERS activity. In the theory of chemical enhancement, the analyte chemically
bonds to the metal and excitation is through the transfer of electrons from metal to
molecule and back to metal again[8]. There is evidence for both mechanisms contributing
to SERS but it is difficult to isolate one from the other in actual measurement. However,
it is widely accepted that electromagnetic enhancement plays a more dominant role than
the chemical enhancement. The work in SERS reached a plateau about ten years ago but
became reinvigorated again by the reports of Kneipp and coworkers[9-13] and Nie and
Coworkers[14-18] of single molecule detection. Both independently and simultaneously
demonstrated that under favorable circumstances it is possible to detect single molecule
based on its SERS spectra. The reported enhancement factors are of the order of 10'
With an effective Raman cross-section of 10"'® cm*molecule at near-infrared non-

resonant excitation for molecules in colloidal silver solution[19].
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The discovery of SERS has offered an unprecedented sensitivity and selectivity to

Raman spectroscopy. Identifying molecules at very low concentrations is critical for
many analytical applications such as forensics, medical diagnostics, drug discovery, and

chemical development. This giant enhancement of Raman signal offers the potential of

developing an ultrasensitive sensing platform based on SERS with molecular (especially

bimolecular) identification capabilities. SERS is an attractive tool for biomedical

applications because it has several advantages over competing optical techniques. Some

of these advantages are: (i) minimal sample preparation; (ii) potential for remote

sampling through fiber optics; (iii) fast analysis; (iv) weak Raman scattering of hydroxyl

group. This implies that water and silica do not manifest themselves as serious sources of

background noise. Thus biological samples in aqueous media can be analyzed without

any interference from water or glass containers. As a result, a number of biological
applications using SERS have been reported. Kneipp has demonstrated SERS nanoprobes
utilizing gold nanoparticles for probing intrinsic chemical environment in living
cells[20]. Yonzon e. al. reported a SERS based blood-glucose sensor that can be used for
real-time continuous sensing[21]. The sensor utilized a mixed self-assembled monolayer
(SAM) of decanethiol (DT) and mercaptohexanol (MH) on silver film over nanospheres
(AgFON). The purpose of SAM was to protect oxidation of silver and to provide for the
binding of analyte of interest to the AgFON. The silver nanospheres based SERS was
able to efficiently detect and quantify glucose in physiological concentration range in the
Presence of interfering analytes and in bovine plasma. The sensor showed temporal
Stability‘ for at least 10 days in bovine plasma, making it a potential candidate for

implantable sensing. Similarly Vo-Dinh and coworkers have successfully demonstrated
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SERS based gene probes for the detection of HIV DNA, p53 cancer gene, and
hyperspectral imaging of Raman dye-labeled silver nanoparticles in single cells[22, 23].
Alak and Vo-Dinh were the first to demonstrate trace level detection of
organophosphorus chemical agents using SERS[24]. Since then, SERS has also been
applied for the detection of chemical agents like cyanide, VX, Sarin etc., and their
hydrolysis products in water[25]. Many researchers have reported successful detection of
trace amount of bacillus anthracis (anthrax) spores using SERS[26-29]. SERS has also
been utilized to detect common bacteria like E. coli that cause intestinal and extra-

intestinal infections[30].

14  Common SERS substrates

The initial observation of SERS was from metal electrodes roughened by
oxidation-reduction cycles. Later SERS was also reported from silver and gold colloidal
nanoparticles. Currently the colloidals are one of the most widely used substrates for
SERS due to the ease of preparation. However, the techniques exploiting colloids or
roughened surfaces prevent the control of the spacing and periodicity of the features. This
leads to the random and strong variations in the SERS signal from these substrates that
limit their widespread use for analytical applications. Numerous efforts have been
devoted to the search for a homogeneous, repeatable, and mass producible SERS
Substrate that can yield enormous enhancement factors observed in random “hot spots”.
'V arious forms of nanostructures have been explored to enhance SERS effects, such as
rough metallic surfaces by chemical etching[31], silver films on TiO,[32], colloidal silver

nanoparticles[15], silver nanoparticle arrays fabricated by nanosphere lithography[33],




electro-deposition of silver on silver films at high potential{34], aligned monolayer of
silver nanowires[35] and aligned silver nanorods by oblique angle deposition[36, 37].
However, many of these methods are either expensive or time consuming, and it is not
easy to make reproducible substrates of the correct surface morphology to provide
maximum SERS enhancements. Assembling metal nanostructures synthesized by a
bottom-up approach, such as by I;angmuir- Blodgett films or by casting metal colloids
onto surfaces, can achieve quasi-regular arrays of metallic nanoparticles or nanowires
with small separation. However, most of the bottom-up approaches usually require a
monolayer coating of surfactants for dispersion during synthesis. This added surfactant
can interfere with the Raman signal of the analyte. Other techniques, such as nanosphere
lithography (NSL) uses self assembled and close-packed nanospheres as the lift-off layer
for evaporated Raman active metal (usually Ag or Au)[38]. This technique also fails to
provide the necessary nanometer-scale gaps between metallic nanostructures formed

between nanospheres following lift-off.

1.5 Major challenge for SERS

The discovery of SERS effect promised to expand the applications of Raman for
the detection of very low concentrations of molecules. The potential of SERS has been
demonstrated by single molecule detection. However, until very recently, the common
SERS substrates (typically colloids or roughened surfaces) gave highly variable signals
and severely limited acceptance of SERS as a viable analytical technique. As a result, the
dream of an ultra-sensitive field deployable robust SERS sensor is still far from reality.

Al the giant Raman enhancement demonstrations reported have come from few hotspots
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on the substrate[15]. In the study of SERS from silver (Ag) nanocrsytal aggregates, Jiang
and coworkers noted that the hotspots are mostly compact, nonfractal aggregates of Ag
nanoparticles and only fewer than 1% of the aggregates give detectable SERS
activity[39]. The hotspots yielding high SERS activity are interspersed with large areas
of little or no enhancement. This leaves the analyst with the tedious task of manually
exploring the surface of the substrate for these hotspots and subsequent detection of
analyte. Mostly these hot spots result from natural and uncontrollable aggregation of
nano-particles at random locations on substrate that make the SERS measurement highly
erratic. The lack of reproducibility has effectively limited SERS to the research
laboratory. A way around this problem is engineering substrates that have uniform
morphology imitating such hotspots. The difficulty of fabricating such substrates can be
gauged from the order of dimensions needed for reasonable SERS enhancement. Both the
theoretical and experimental studies suggest that a separation of less than 5 nm between
aggregated nanoparticles is necessary for strong SERS enhancement[39]. But this scale of
controlled separation is far beyond the resolution of any scalable top-down fabrication
approach[40]. Today main issue facing the SERS community is fabrication of a robust,
€conomical and scalable substrate that can provide high sensitivity with good uniformity

and repeatability over large area.

1.6 SERS from Nanowires : Motivation for this work
SERS has the potential to greatly enhance our current capability of trace chemical
analysis. This can have significant impact on early medical diagnosis and treatment. Also

it can be an effective tool in monitoring the food supply chain against viral and bacterial






contaminations. At the same time, the ability to detect chemical and nerve agents will
help fight the threat of bio-terrorism. However, the full potential of SERS can be only
realized after developing techniques for economical fabrication of a homogenous SERS
substrate. This research has been motivated by the desire to fabricate an economical and
reproducible SERS substrate based on different types of nanowires and nanorods. The
terms nanowire and nanorod are often used interchangeably to denote high aspect ratio

(AR) nanostructures. In this dissertation, the term nanowire is used to denote the

length

nanostructures having lengths much larger than diameter (i.e., AR = >>1). The

diamter

nanorods are also high aspect ratio nanostructures but their aspect ratio is less compared
to nanowires (typically AR <10). The use of these high aspect ratio nanostructures such

as nanowires and nanorods for SERS has several advantages. These include:

1. The high aspect ratio of these nanostructures yields strong electric field

enhancement.

2. The surface properties of these nanostructures are highly reproducible and
well defined as compared to colloidal systems.

3. The synthesized nanowires/nanorods offer many unique features (sharp
vertices, noncircular cross-sections, inter-wire coupling) that may lead to
larger field enhancement factors, offering higher sensitivity under optimal
conditions[41, 42].

4. High density of nanowires/nanorods means close interaction between
adjacent nanowires and hence strong inter-wire coupling, which enables

SERS to manifest for a broad selection of excitation sources.
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5. The nanowires/nanorods can readily be used for molecular detection
either in air or in aqueous solution environment.

6. The semiconducting nanowires of zinc oxide and germanium dioxide are
high refractive index materials, which can provide strong light

confinement for improved SERS effect.

The major contribution of this dissertation to the field of SERS is an attempt to
investigate oxide nanowire based substrates for potential use in detection of chemicals
using Raman spectroscopy. This includes both the fabrication and characterization of the
nanowire substrate for application as SERS platforms. It deals with bulk synthesized
semiconducting nanowires of germanium oxide and zinc oxide to yield SERS. The
germanium oxide nanowires were initially synthesized at high temperature (~850 °C).
Subsequently a novel low temperature (~650 °C) synthesis was developed to achieve
better control over the parameter of substrates. The as-synthesized oxide nanowires are
not Raman active since only noble metals yield appreciable SERS. Gold coating of the
nanowires has been employed as SERS active interface to support surface plasmons.
Selection of gold is based on its chemical inertness, compatibility with biological systems
and good optical properties for near IR laser excitation. The chemical functionality can be
easily added to the gold coated substrates by exploiting well-established surface
Chemistry protocols. The coating of SERS substrates with ligand molecules having
Specific terminal groups is extremely effective to boost the selectivity of the SERS
substrate. This functionalization of SERS substrates is particularly useful in the case of

complex molecules such as proteins or for molecules with low affinity to metal. The

10






comparison of SERS performance of nanowires with that of commercially available
Klarite chip showed a stronger enhancement from nanowires. The dissertation also
1nvestigates synthesis of aluminum and copper nanorods using well-established oblique
angle deposition technique. The SERS performance of theses quasi-aligned nanorods is

evaluated using model molecules and compared with those of commonly employed silver

nanorods.

1.7  Organization of this dissertation

This dissertation is organized into 7 chapters. The dissertation begins with an
introduction to the theory of Raman scattering and SERS in chapter 2. The experimental
set up for the preparation of SERS substrates and their Raman characterization is
described in chapter 3. Synthesis and Raman studies of high temperature fabricated
germanium oxide nanowires is presented in chapter 4. Results of Raman analysis using
low temperature germanium oxide, zinc oxide, and silver nanorods are presented in

chapter 5, 6, and 7 respectively. Finally chapter 8 presents a summary of results and

outlines some future tasks.

11






Chapter 2: Theory of Raman Scattering

When monochromatic radiation scattered from a system such as gas, liquid or
solids is analyzed, most of the light has same frequency (hence wavelength) but some
firaction is found to have different frequency than the incident light. Such scattering of
light with a change of frequency is known as Raman scattering, after Indian scientist C.
V. Raman who, with K. S. Krishnan, first observed this phenomenon in 1928[43]. The
elastic scattering from scattering centers like molecules that are very small compared to
the wavelength of incident radiation is called Rayleigh scattering. Another type of elastic
scattering from larger objects (size greater than wavelength of incident radiation) like a
dust particle is also possible and is referred as Mie scattering[44]. Often the term
Rayleigh scattering is used to represent both Rayleigh and Mie elastic scattering[45].
Inelastic scattering originating from the Doppler effect with a very small frequency
change (wavenumber change of the order of 0.1 cm™) can also exist. This type of
scattering, predicted by Brillouin in 1922 and experimentally verified by Gross in 1930,
is called Brillouin scattering[46]. However, due to very small wavenumber change,
Brillouin scattering is not separable from the incident radiation under the experimental
conditions used for Raman spectroscopy.

Light scattering arises from the dipole moments induced in molecules by the
Incident field, through the polarizability of the electrons. Polarizability is the ability of
the electron cloud to be distorted by the electric field of the incident radiation. The more

Polarizable a molecule is, the more the electron clouds of its bonds are distorted by the

INncident radiation. The electric field of the radiation interacts with the electron cloud of
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the bonds of molecule in the sample and this induces a temporary dipole moment in the
bond[47]. The molecular bond emits the scattered light (Rayleigh or Raman scattered) as
it relaxes to a low energy unexcited state. Rayleigh scattering is a result of static
Ppolarizability whereas Raman scattering follows from the modulation of polarization by
electronic, vibrational or rotational motions[45]. Rayleigh scattering, being at the
frequency of the incident radiation, does not convey any useful information but Raman

scattering provides information about the vibrational states of the molecule.
2.1 Classical theory of Raman scattering

A simple classical model based on electromagnetic theory of radiation can be
used to gain insight into the light scattering phenomena. Consider a laser beam
illuminating the sample at frequency v with corresponding amplitude of electric field
given by

E = Eycos(2nvyt) 2.1

The electric field can induce a dipole moment x in the molecule according to

u=ak 2.2)

where a is the polarizability of the molecule. At a molecule’s equilibrium nuclei

E<€ometry, the polarizability has certain value, . As the molecule vibrates, the distance
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between nuclei changes from that of equilibrium. At some distance, Ar, away from the

equilibrium position, the instantaneous polarizability is given by

or

a=q +(§2)Ar (2.3)

Here the derivative term represents the change in the polarizability of the
molecule with change in position. Suppose the molecule is vibrating or rotating in some
sinusoidal manner with maximum displacement of r,,, , then Ar can be expressed in
terms of vibrational frequency v, as

Ar = rpay COS(272V 1) (2.4)

Inserting equation (2.4) into equation (2.3) gives
oa
a =g+ hyax r cos(2rv,,t) (2.5)

Substituting the value of a and E from equation (2.5) and (2.1) respectively into

(2.2), the time dependence of the dipole moment becomes
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H=ayEg [l + Tmax (%)COS(Z?I‘VM{)] cos(2mvyt)

= agEy cosLrvyt) + —;— Eormax (%’-)cos(br(vo +v,)1) (2.6)

+ 1 Egrmax (gz)cos(Zn(vo -V,
2 or

The final form of equation (2.6) shows that the scattered light has been modulated
by the oscillating polarizability. The first term in the above equation corresponds to the
Rayleigh scattering at the unshifted frequency. The second term with higher frequency,

Vo +Vp,, is the anti-Stokes Raman scattering and third term with lower frequency,
Vo —Vp , is the Stokes Raman scattering. This simple classical treatment also provides a

selection rule for Raman scattering: the molecular polarizability must change as a
function of nuclear motion during a vibration for that vibration mode to be Raman
active[2]. However, it is deficient in that it does not take into account the quantized
nature of vibrations and lacks any information about intensities of scattering. Quantum
theory on the other hand is able to better explain the relationship between molecular
Properties and Raman scattering. Nonetheless a simple insight into Raman scattering can
be gained using a simple classical model of the wave nature of light.
Figure 2-1 shows a pictorial representation of the Rayleigh and Raman scattering.
The states marked 0, 1, 2 etc., are different vibrational states (vibronic states) of the
Zround electronic state. The incident light considered as an oscillating dipole interacts
With the molecule and polarizes the cloud of electrons. This transfers the energy of the
light into the molecule, which is promoted to a higher energy virtual state as, indicated by

UPward arrows in Figure 2-1. This interaction can be considered as the formation of a
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very short-lived ‘complex’ between the light and the electrons in the molecule[3]. This
high-energy state, often called virtual state, has different electron geometry compared to
the ground state and is characterized by the fact that the nuclei have not moved
appreciably. This virtual state is a real state of the transitory ‘complex’ formed between
light and molecule. This is an unstable state and energy is released almost simultaneously
in the form of scattered radiation as annotated by the bold downward arrow in Figure
2-1. A word about the virtual state: since it has different electron geometry than the static
state and the nuclei have not moved to reach a new equilibrium state to fit distorted
electron arrangement, this state does not correspond to any of the electronic states of the
molecule. The laser defines the extent of the distortion of electron cloud and the energy
of the virtual state. As a result, this process is not quantized and the energy of the
molecule can assume any of an infinite number of states depending on the frequency of
radiation of the source. The Rayleigh scattering is the most intense form of scattering and
is essentially an elastic process. This happens when the electron cloud relaxes without
any nuclear motion. The Raman scattering (Stokes and anti-Stokes) happens when light
and electrons interact and the nuclei begin to move at the same time. Since nuclei are
much heavier than electrons, there is appreciable change in the energy of the molecule. If
the molecules start with a ground state and finally relaxes to an excited ground state, then
it has effectively absorbed the energy difference between two states. The scattered
radiation is of longer wavelength than the excitation wavelength and the process is

termed Stokes Raman scattering.
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Figure 2-1. Pictorial representation of Rayleigh and Raman scattering[47].

On the other hand, if the molecule was initially in an excited state and makes a
transition to ground state, the scattered radiation is of shorter wavelength and the process
is called Anti-Stokes Raman scattering. At room temperature, most molecules are likely
to be in their lowest energy electronic state or ground state ‘0’ represented by bold
horizontal line. Thus the intensity of Stokes Raman scattering will be much higher than
the anti-Stokes scattering. The ratio of the Stokes and anti-Stokes Raman scatterings
depends upon the population of molecules in the ground and excited state. This can be

Calculated using Boltzmann’s equation

Nex _ 8ex exp[—(Eex 'EO)} @.7)
No &0 kT

17



L PAME T VI IIRII 39D I werI 0V an

NIRRT AR T YU TTIrN

N




where

Nex 1s the number of molecules in the excited vibrational energy level,

Ny is the number of molecules in the ground vibrational energy level,
g is the degeneracy of the energy levels,
E,. - Ey is the difference in energy between the excited and the ground

state,

k is the Boltzmann’s constant (1.3807 x 10 %3 JK.

The intensity of Anti-Stokes band is expected to increase with Increasing
temperature as a larger fraction of a target molecules are expected to be in the first
vibrationally excited states under such circumstance. It may be worth reiterating the
fundamental differences between Raman scattering and the IR absorption. Although the
Raman scattering and the IR absorption of a molecule are dependent upon the same
vibrational modes, they arise from processes that are inherently different. The selection
rule for IR absorption requires that the dipole moment must change for a molecular
vibration to be IR active. Raman scattering on the other hand, involves a momentary
distortion of the electron distribution of a bond in a molecule, which is then followed by
reemission of the radiation as the bond returns to one of its ground electronic states. The
homo-nuclear molecules such as nitrogen or oxygen provide a good example to illustrate
this difference, These molecules do not possess any dipole moment in equilibrium
Position or under bond stretching vibration. Thus the bonds of homo-nuclear molecules
e not infrared active as no dipole moment can be induced by the incident radiation.

However, these bonds are Raman active since the polarizability of the bond between the
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atoms in such a molecule varies periodically. The polarizability of the bond changes in
phase with the stretching vibrations, reaching a maximum at the greatest separation and a

minimum at the closest approach of the two nuclei.

Symmetrical Bending or Asymmetrical
stretch, y; deformation, y, stretch, y3

4 > <
* OITCUYGN

Figure 2-2. Three modes of vibrations of CO, molecule[3].

Figure 2-2 shows the three vibrational modes of CO,. The symmetric stretches of
CO; molecule are Raman active because polarizability clearly changes during the
vibration. However, symmetric stretching is infrared inactive since there is no change in
dipole. On the other hand, the asymmetric stretches in the molecule are Raman inactive
because there is no change in the polarizability of the molecule. Since bond polarizability
are additive, the polarizability change due to compression of one C=0 bond is cancelled
by the stretching of the other C=0 bond. The asymmetric stretch is infrared active
because when one of the OXxygen atoms moves toward the carbon and other away from it.
This results in a change in dipole moment, as there is a net change in charge distribution.
Similar arguments apply to the bending vibration, which is IR active but Raman inactive.

The intensity of the Stokes Raman scattering is given by [3]

I=Kia?g 2-8)
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where K consists of constants such as speed of light, / is the laser power, w is the
frequency of incident radiation and a is the polarizability of the electrons in the molecule.
This suggests that higher laser power and shorter wavelength will yield higher Raman
intensities. But the problem of sample degradation, photodecomposition and fluorescence
puts an upper limit on practically usable laser power and wavelength. The intensity has
quadratic dependence upon the polarizability of the molecule. The polarizability is a
function of the shape and size of the molecule. It usually varies with spatial direction and
is independent of the permanent dipole moment (if present) in a molecule. It is an
anisotropic property of a molecule and hence the scattered Raman intensity shows a
dependence upon the direction and polarization of the incident and scattered radiation.
Therefore, polarizability is often expressed as a tensor to take into account the possible
variation in polarization. The polarizability is calculated quantum mechanically by

perturbation theory or by time dependent theory.

2.2  Quantum mechanical theory of Raman scattering

In quantum mechanics, the Raman scattering is explained by the Kramers
Heisenberg Dirac (KHD) equation derived by Krammers and Heisenberg[48], and
Dirac[49]. The scattering process is described as an excitation to a virtual state (lower in
energy than a real electronic transition) with nearly coincident de-excitation to a different
vibronic state of ground electronics state. The difference in energy between two vibronic
states manifests as a change in the wavelength of the scattered radiation. The scattering
event occurs in 10" seconds or less. The KHD expression describing the molecular

polarizability tensor for the transition from ground state to final state is given by[3]
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Here G is the ground vibronic state, I is the intermediate state (a vibronic state of

the excited electronics state) and F is the final vibronic state of ground state, (a po )GF is

the molecular polarizability tensor component for transition G — F, and p and o are the
incident and scattered polarization directions. The operator r is the electric dipole

operator, hw; is the incident photon energy, wg; is the angular frequency of transition
I — G, h represents A/2x where h is Planck’s constant and /7 is the natural linewidth of

the intermediate state. The summation Z is over all vibronic states of the molecules
1

due to non-specific nature of scattering. The numerator in equation (2.9) uses ‘bra’ and

‘ket’ (<| and |>) nomenclature for integrals to simplify the expression. In the integral

<1 |r,_.,|G >, the |G> is a wave function to represent ground vibronic state of the ground

electronics state. The operator 7, operating on |G> and subsequent multiplication by

excited state <J] mixes the two states to describe the distorted electron configuration in
the virtual state. This describes in part the excitation process (transition from ground

vibronic state to an intermediate state). A similar scattering process described by

< F ’rpll > leaves the molecule in the final state |[F>. Since molecule can be in an

excited vibronic state to start with, a second term in added in equation (2.9) that mixes
the excited and ground in a similar way. It may be emphasized that the mixing of states
(vibronic, excited and ground) employed in the KHD approximation models the virtual

state of the molecule at the instant <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>