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ABSTRACT
ALMOST DUAL FF-MODULES
By

Kimberly Ann Dyer

In this paper we consider a subgroup, L, of a finite group of local characteristic 2.
The action of a maximal 2-local parabolic subgroup containing a non-normal large
subgroup on its largest 2-reduced normal subgroup is considered in the quadratic L-
Lemma and Structure Theorem [MSS]. They show L/Op(L) = SLy(2), S2(2), or Dy,
and obtain a 2F-offendor. The action which we are interested in can be determined
by the Malle-Guralnick-Lawther Classification of 2F-modules [GLM]. The Malle-
Guralnick-Lawther papers depend on a K-group assumption; that is, one needs to
assume that all the simple sections of M are one of the known finite simple groups.
In this paper we explore results that do not need a K-group assumption and therefore
do not use the classification of finite simple groups.

Let F be a finite field with p := char F = 2, G a finite group, and V' a faithful, finite
dimensional FG-module such that thcre exists an elementary abelian p-subgroup,
A < G with T4 := [V, A] and Ry := [T4, A]. By considering whether or not A is
a TI-set, that is if AN A9 C {1} for all g € G\ Ng(A), we arrive at the various
cases of the main theorem. The main theorem shows that we have F = 2 and 4 <
|A| < 16, [F| > 2 and |A| = [F|2, or Go/C,(Rg) = SLg(N)/Zy where Go = (A°),
Rg = ZBE.AG Rp, N is a finite dimensional vector space over the finite field K, and
Zy = {k*idy | k € K, k% = k™1}.
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Chapter 1

Motivating Introduction

Let p be a prime and G a finite group of local characteristic p. Suppose G has a
large subgroup @. Let M be a maximal p-local parabolic subgroup of G with Q@ < M
but @ ¢ M. Let Y = Y} be the largest p-reduced normal subgroup of M. In the
Structure Theorem [MSS] the action of M on Y is determined. In the proof of the
Structure Theorem one runs into the following situation.

There exists a subgroup L of G such that Y < L but Y &£ Op(L), M NL is
the unique maximal subgroup of L containing Y'O,(L), and L is of characteristic p.
The quadratic L-Lemma [MSS] shows L/Op(L) = SL2(q) where q is a power of p,
L/Op(L) = Sz(q) where q is a power of p and p = 2, or L/Op(L) = Dy, where r is
an odd prime power and ¢ = p = 2.

In this situation one trics to obtain some information about the action of M on
Y. For this, let z € L\ M. Put D = Y NOy(L) and A = D*. In the Structure

Theorem, in this case, it was proved that
(a) [Y,AlCy(A) = [y, A]Cy(A) = D for ally € Y \ D.
(b) |D/Cp(A)| =[A/Ca(Y)| 2 q.

(¢) IY/D|=q.



(d) [D,A] < Cy(A).

Notice that (a) implics Cy (A) = Cp(A4) so we have |Y/Cy(A)| = |Y/Cp(A)| =
1Y/DID/CHAN D dlD/CoA)] S 1A/CAWIAICAY )] = 1A/CAW P v
ing |Y/Cy(A)| < |A/C4(Y)|?. Hence, A is a 2F-offender on Y. The Malle-
Guralnick-Lawther Classification of 2F-modules [GLM] now allows us to deter-
mine the action of M on Y. The Malle-Guralnick-Lawther papers depend on a
K-group assumption; that is, one nceds to assume that all the simple sections
of M are one of the known finite simple groups. In this paper we would like to

explore what can be said without making a KC-group assumption.

If there exist large enough quadratically acting subgroups, then this quadratic ac-
tion can be used to determine Y and M/Cps(Y). We consider what happens when
there is not a large enough quadratically acting subgroup. Put M = M/C} 1Y)
and H = (AM),

Let F be a maximal subficld of the ring Endg(Y). Then Y is an FH-module.

We assume that thicre is no large quadratic action on Y in the following sense:
(e) If P is a p-subgroup of M and 1 # a € P with [Y, P,a] = 0, then |P| < |F|.

Let Bp be a normal subgroup of L minimal with By £ Z(L). If p = 2, it can
be shown that there exists B < By such that [B,Y,B] = 0 and |B/Cg(Y)| > ¢. So
Y,B/Cg(Y),B/Cp(Y)] = 0 and (¢) now shows that |F| > ¢. A acts F-linearly on
Y so both [Y, A] and Cy(A) are F-subspaccs. Then (a) shows D is an F-subspace
of Y. By (c), ¢ = |Y/D| = |F|9™F(Y/D)  Gince |F| > q, we conclude that |[F| = ¢
and D is an F-hyperplane of Y. Since we would prefer to work with a 1-dimensional
F-subspace than with a hyperplane, we consider the F-dual, V, of Y and arrive at the
following set of assumptions (where the G below is now taking the place of M/Cy(Y)

from above).



Hypothesis 1.1 Let F be a finite ficld with p := charF = 2, G a finite group, and V
a faithful, finite dimensional FG-module such that there exists an elementary abelian

p-subgroup, A < G, with Ty := [V, A] and Ry := [T4, A] such that
(i) R4 is 1-dimensional.

(it) For a € A, define p4(a) : Tq/Rq — Ryt + Ry — [t,a]. Then ¢4 : A —
Homgp(T4/R4, R4),a — ¢ 4(a) is onto.

(i1i) If 1 #a € A and P is a p-subgroup of G with [V, a, P} =0, then |P| < |F|.



Chapter 2

Almost dual FF-modules

R4G. For H < G,
{Rp | B € A(H)},

Definition 2.1 Put A = A(G) = A% and R = R(G)
let A(H) = {B € A| B < H}, Iy = (A(H)), R(H)

fl

Ry =3 peaw) Rp, aend Ty = 3 pe a(ny -

The goal of this paper is to prove the following theorem. To this end, we assume

that Hypothesis 1.1 holds throughout the entire document.

Theorem 2.2 Assume Hypothesis 1.1. Then Cg(A)/A is a p'-group, A is a weakly
closed subgroup of G, for A # B € A, R4 # Rp and T4 # Tp, and one of the

following holds:
1. Each of the following holds:
(a) A € Syl (G).
(v) |Al = [F|%.
(c) |F| > 2.
(d) Go/Cgy(Rg) = SLa(F) or Go/Cgy(Ra) = Q7 (F).

(e) Rg is a corresponding natural module for Gy.

2. Each of the following holds:



(a) |F| =2.
(b) 4 <|A| < 16.

(c) |[ANB| <2 forA# Be€ A.

3. Go/Cqy(Rg) = SLg(N)/Zy, where N is a finite dimensional vector space over
the finite field K. Moreover, there exists a 1-dimensional subspace, C, of N and a
field automorphism, o, of K of order two with Cg(o) =F, K®p Rg = N @k N7,
Zy = {k*idy | k € K,k = k~1}, and the image of A in PSLg(N) consists of

the identity and all transvections with center C.

Lemma 2.3

(a) C’I‘A(A) =Ry.
(b) Ry is contained in every non-zero FA-submodule of Ty.

Proof. Since Ry is a non-trivial p-group, CRA(A) # 0. CRA(A) < Ry and Ry is
1-dimensional from 1.1(i) so Cry (A) = R4. Then R4 < Cy(A). Let v € T4 \ Ry.
Then there exists p € Hom(Ty/R4, R4) with p(v + R4) # 0. By 1.1(ii), ¢4 is onto
so there exists a € A with ¢ 4(a) = p. Then 0 # p(v+ R4) = ¢pa(a)(v+ R4) = [v,al.
Hence, v ¢ Cr, (4). Then Ty \ Ry £ C7,(A) so Cr,(A) = Cp,(A) = Ry and (a)
is proven.

Let 0 # W be an FA-submodule in T4. Since A is a p-group, Cy (A) # 0. Thus by
(a), WNR4 = WNCr,(A) and 0 # Cyy (A) < Cr,(A) s0 0 # WNCr, (A) = WNRy.

As R4 is 1-dimensional, R4 < W which proves (b). a

Decfinition 2.4 For H a group, let X and Y be FH-modules. Define Homp(X,Y) to

be the set of F-linear maps from X to Y.

We remark that Homp(X,Y) is an F-space via (fa)(z) = fa(z) and (a+0)(z) =

a(z) + B(z). Also, Homp(X,Y) is an FH-module via (a9)(z) = (a(a:g—l))g.
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Lemma 2.5

(a) ¢4 is G-invariant.

(b) Ca(T4) = 1.

(c) ¢4 is an isomorphism of ZNg(A)-modules.
(d) dimTy/Ry4 > 2.

Proof. Using the remark following 2.4, ¢4(a9)(z + Ry4) = [z,d9] = [:L‘g_l,a]g =
-1
(0a(a)(z? =+ Ry))? = (¢4(a))d(z + Ry) and (a) holds.
By 1.1(ii), ¢4 is onto and C4(Ty4) is the kernel of ¢ 4 so

®: A/Cq(T4) = Homp(Ta/Ra, Ra),a+ Cy(Tq) — da(a)

is an isomorphism of ZNg(A)-modules. Since R4 is 1-dimensional, it follows that
|A/CA(T4)| = IIFIdimTA/RA. Suppose that C4(T4) # 1. Then thereexists 1 #a € A
with [T4,a] = 0. Since A is abelian, we get [V, a], A] = 0 from the Three Subgroups
Lemma [Gor, 2.2.3]. We can then apply 1.1(iii) to sce that |A| < |F|. Now

|A/CA(Ta)| < |A| < |F| < |F|9mTa/RA,

But |A/Cs(T4)| = |F|4mTa/BA from above so |A/C4(T4)| = |A| and C4(Ty4) = 1
which proves (b). Then ® = ¢4 is an isomorphism and (c) is proven.

Suppose that T4/R4 is 1-dimensional. Let a € A with [Via] € Ryq so T4 =
V,a] + Ry.

2
V,a,a] = (v* —v)* — (v* —v) =v* =0 —0v*+v=0

as p = 2 so [V,a] < Cy(a). We also have [R4,a] = 0 since C’RA(A) = R4. Then
Tq = [Via] + R4 < Cy(a), but Ty £ Cy(a) since C4(T4) = 1 from (b). This is a

6



contradiction so (d) is proven. a

Lemma 2.6 Let U < T4 be an F-subspace. Then AJ/C4(U) = (U + R4)/R4)* as
Ng(A)NCg(R4) N Ng(U)-modules, where * denotes the dual space of an F-module.

Proof. A = Hom(T4/R4,R4q) — Hom((U + Ry4)/R4, R4). The first map is an
isomorphism by 2.5 and the sccond map is onto. Hence, the map A — Hom((U +
Ry)/Ry, Ry) is onto and its kernel is C4(U) so we have the result by the first

isomorphism theorein. O
Lemma 2.7 For f € F and a € A define fa:= ¢;11(f¢A(a)). Then

(a) ¢4 is F-linear.

(b) fa is the unique element in A with [t, fa] = f[t,a] for allt € Ty.

(c) A is an F-space.

(d) Ng(A) acts F-linearly on A.

(e) A= Homp(T4/R4,Ra) as FNg(A)-moduies.

Proof. (a) This holds by the definition of fa.

(b) Recall ¢4(a)(t + R4) = [t,a] so a(fa)(t+ Ra) = [t, fa]. Also f(¢a(a)(t+
Ry)) = flt,a] and ¢4(fa) = fé4(a) by definition so [t, fa] = f[t, a].

(c) Note that an F-space is an F-module. Consider the map F x A — A,(f,a) —
fa. Wehave f(a+a) = ¢~ (fpa(a+d)) = s~ (foa(a)+fda(@) = pa~ (foala))+
b4 1 (f84(a)) = fat+fa. Also, (ff)a=¢3 (ffda(a)) = 3 (foa(¢7 (Foa(a)) =
fo31(fea(a)) = f(fa).

(d) Let g E NG(A) We have ¢4((fa)9) 2. 5(3,)

6a(fa)? “ T (o4(a))0

(d)A(a))g fd)A( 9) 2.7(a) da(fa9). Then we get (fa)d = f(a9) since ¢4 is a
bijection.
(e) This now follows from part (d) and 2.5(c). O

7



Lemma 2.8

(a) Let U C Ty4. Then C4(U) is an F-subspace of A. If U is an F-subspace of T4
with Rg < U, then dimU + dim C4(U) = dimTy and U = Cr,(C4(U)). Also,
CA(U) = C4(FU), and for any F-subspace, Y, of T4, |A/Ca(Y)| = |Y+R4/R4|.

(b) Let X C A. Then CTA (X) is an F-subspace of T4 containing Ry. If X is an
F-subspace of A, then dim X + dim Cr, (X)=dinTy and X = CA(CTA (X)).

(c) Let K < Cg(Ry). Then Cq([Ty, K]) = Cx(K).
(d) Let K < Cg(Ry). Then [Ta, K]+ Ry = Cr, (Ca(I)).
(e) Let K < C(Ry). Then CTA([A, K])/R4 = CTA/RA(K)'

Proof. (a) Since A is an F-space from 2.7, C4(U) is an F-subspace of A. If U is an
F-subspace of T4 with R4 < U, then 2.6 gives A/C4(U) = ((U + R4)/R4)*. Since
dim A 279 dim T, /R 4, we have dim T4/ R 4 — dim Co(U) = dim((U + R)/R.4) so
we get dimU + dim C4(U) = dimT4. Also, C4(U) < C4(Cr,(Ca(U))) < Cy(U)
and dimU = dim T4 —dim C4(U) = dim Cr, (Ca(V)) so we have U = Cr,(Ca(U)).
CTA(CA(U)) is an F-subspace so FU C CTA(CA(U)) = U. Hence, Cy(U) C
Ca(FU) C C4(U).

Let Y be an F-subspace of T4 and put U =Y + R4. Then dimU +dim Cy4(U) =
dim Ty gives us that |U||C4(U)| = |Tal = |Ta/Ral|Ral = |A||R4|. Hence, |Y +
Ra/Ral = |U/Ryg| = |A/Ca(U)| = |A/CA(Y + Ry)| = |A/C4(Y)].

(b) Define p : T4 — Homp(X, R4) by p(t)(z) = [t,z]. Then Ker p = CTA(X) and
Im p < X*. Hence, dim TA/CTA(X) < dim X*. By (a) applied with U = C'TA(X),
dim X* =dim X < dimCA(CTA(X)) = dim T4 — dim C'TA(X) = dimTA/CTA(X) <
dim X*. Thus, dim X + dim CTA(X) = dimTy4 and since X < C’A(C’TA(X)), X =

Ca(Cr 4 (X))



(c) Let X < A. Since [Ty, X, K] < [R4, K] = 0, the Three Subgroups Lemma
shows that [X, K,T4] = 0 if and only if [/{,T4, X] = 0. Since A acts faithfully on
T4, we conclude that [X, K] = 0 if and only if [K, T4, X] = 0.

(d) We have C4(K) & C4([T4, K]) s0 Cr,(Ca(K)) = Cr,(Ca([T4, K])) =
[Ta, K] + Ry4.

(e) v+ Ry € CTA/RA(K) if and only if [v, K] € R4 if and only if [v, K,A] =0
by 2.3(a). Since K € Cg(Ry4), (v, A, K] = 0 so the Three Subgroups Lemma gives
[v, K, A] = 0 if and only if [A, K, v] = 0 which holds if and only if v € Cr, ([, K]).
Then Cr, ([, K])/Ra = Cr, /. (K). O

Lemma 2.9 Let v € V and define s = sy : A x A — Ry, (a,b) — [v,a,b]. Then s is
symplectic and F-bilincar. (Here symplectic means s(a,a) = 0 for all a € A, and we

will also see that s is alternating; that is s(a,b) = —s(b,a), for all a,b € A).

Proof. By definition, s(a,a) = [v,a,a] = 0 which means s is symplectic. Also s is
alternating since s(a,b) = [v,a,b] = —[v,b,a] = —s(b,a) by the Three Subgroups
Lemma [Gor, 2.2.3]. By 2.7(b), s is F-linear in the sccond coordinate. Since s is

alternating, it is also F-lincar in the first coordinate. O

Lemma 2.10 Let v € V and let s be as defined in 2.9. Let U be an F-subspace of
T4 with R4 < U and put D = C4(U). Then

(a) {a € A|[v,a] € U} = D+ = Cy([v, D]) = Ca([v, D] + Ry) is an F-subspace of
A.

(b) [v, D]+ U is an F-subspace of T4.
(c) [v, D]+ U = Cr,(Cp([v, D))

(d) {a € A|[v,a] € R4} =radsy = Cy([v, A]) = C4([v, A] + R4) is an F-subspace
of A.

(e) ([v, Al + R4)/R4 is an F-subspace of T4/ R 4.

9



(f) v, Al + Ry = Cr, (Cal[v, 4])).
Proof. (a) Let a € A.

Claim: The following are equivalent.

1. [v,a] €U.

2. [v,a,Cy(U)] =0.

3. su(a,b) =0 for all b € C4(U).

4. a € Cx(U)* .

5. sy(b,a) =0 for all b € C4(U).

6. [v,Ca(U),a] =0.

Proof of Claim. 1 <=> 2 since U = CTA(CA(U)) from 2.8; 2 = 3 by definition; 3 = 4
again by definition; 4 = 5 since s is alternating; 5 => 6 by definition; 6 = 2 by the
Three Subgroups Lemma and since A is abelian. Then the claim is proven. G

Now {a € A | [v,a] € U} = Dt by 1 <= 4 of the claim. And D+ = C4([v, D))
by 4 <=> 6 of the claim. Also, C4([v, D]) = C4([v, D] + R4) since C4(R,) 23 4,
So {a€ A|[v,a] €U} = D+ = Cy([v, D)) = Ca([v, D] + R4) is an F-subspace of A
from 2.7. Then (a) holds.

(b) [V/U, A, A] = [T4/U,A] = R4/U = 0, so A acts quadratically on V/U. Let
a:D — ([v,D]+U)/U,a — [v,a] + U. «a is a homomorphism by quadratic action,;

it’s onto and its kernel is {d € D | [v,d] € U} so

([, D) + U)/U| = |D/{d € D | [v,d) € U}| ¥ |D/Cp(lv, D] + Ra)|

2.

IR

®) |\ D/Cp(Flv, D) + Ra)l.

By the last statement in 2.8(a) applied with Y = Flv, D]+ U we get |A/C4(F[v, D] +
U)| = |(Flv, D]+U)/Ry4|. Also, C4(U) = D implics Cy(F[v, D]+U) = C4(F[v, D])N

10



C(U) = Cp(F[v, D)) = Cp(F[v, D] + R4). Then

|A/D||D/Cp(Flv, D] + Ra)| = |A/Cp(Flv, D] + Ra)| = |A/C4(F[v, D] + U)|

= |(F[v, D + U)/Ra| = |(Flv, D] + U)/U||U/ Ry4|.

Since |A/C4(U)| = |U/R 4|, we must have |D/Cp(F[v, D]+ R4)| = |(Flv, D]+U)/U]|.
Hence,

|([v, D] + U)/U| = |(F[v, D] + U)/ U]
and (b) holds.
(c) Since [v, D] + U is an F-subspace of T4 from (b), 2.8(a) gives [v,D] + U =
Cr,(Ca(lv, D+U)). Since Cy([v, D]+U) = Cp([v, D)), [v, D]+U = Cr, (Cp([v, DI))-

If U = Ry, then D = A and (d), (e), and (f) follow from (a), (b), and (c)

respectively. O

Lemma 2.11 Let v € V and let X be an F-space of [v, A] + R4 with [v,A]+ R4 =
X ® Ry. Defineq:=q,x : A— Ry so that q(a) is the unique element of Ry such
that [v,a] — q(a) € X. Then for all a,b € A,

q(ab) = q(a) + sv(a,b) + q(b).

Proof. Let z(a) = [v,a] — g(a). [v,a] = v* —v so v® = v + z(a) + ¢(a) with z(a) € X
and g(a) € R4. Also for any b € A, [z(a),b] = [v,q,b] — [g(a),b] = [v,a,b] = sy(a,b)

since ¢(a) € R, implies q(a)? = q(a). Then z(a)® = z(a) + sy(a,b). Hence,

’Uab _ (’Ua)b — (’U + :L(a) + q(a))b
=" +2(a)’ + g(a)® = v + 2(b) + q(b) + z(a) + su(a,b) + q(a)

= v+ (z(a) + z(b)) + (g(a) + sy(a, b) + ¢(b)).

11



It follows that z(ab) = z(a) + z(b) and q(ab) = ¢(a) + sy(a,b) + q(b). O

We remark that g from the previous lemma does not nced to be a quadratic form.

In particular, we do not know whether ¢(fa) = fzq(a) forall f € F and a € A.
Lemma 2.12 Let 1 # a € A and put Aq = C4([V,a]). Then

(a) Aq = Fa.

(b) [V, Aa] = [V, a] = Cr,(a) is a hyperplane of Ty and Ry < [V, Aq).

(c) Aq is quadratic on V.

(d) Aa € Sylp(Cg([V,d])).

(¢) Aa D Ng([V;a]).

(f) Cg([V:a])/Aqa is a p-group.

Proof. From 2.3(b) we have R4 < [V, a] and by 2.5(b), T4 # Cr, (a). Thus
(%) Ry <[V,a] <Cr,(a) <Ty

since [V, a,a] = 0.

Observe that [V,a] is an F-subspace of V. Thus, |Aq] = |C4([V,a])]| 2-8()
|Ta/[V,a]| = |F|*, where n is a positive integer, as T4/[V,a] is an F-space. Also,
[V,a,Aq] = 0 so |Ay| < |F| by 1.1(iii). Hence, |Aq] = |F| and Ay = Fa. Then (a) is
proven.

We have just shown |F| = |T4/[V, a]| and thus [V, a] is a hyperplane of T4. [V, a] <
Cr,(a) < T4 and since [V, a] is a hyperplane of Ty, [V, a] = Cr,(a). Let 1# b € Aq.
Then [V,a] < Cr,(b) = [V, 8] and again, since [V, a] is already a hyperplane of Ty,
we conclude that [V,a] = [V,U] = [V, Aq]. Since R4 < [V,q] for any 1 # a € A,
Ry < [V, Ag]. So (b) is proven.

12



Then [V, Aq, Aa] = [V,a,A4] = [V, A4q,a] = [V,a,a] = 0 from (b). So Aq is
quadratic on V and (c) is proven.

Let P be any p-subgroup of G with A, < P. Since [V, a, Ag] =0, Ag < Cp([V, a]).
If Ag # Cp([V,a]), then |Ay| < |Cp([V,d])| < |F| from 1.1(iii) which contradicts
(a). So Cp([V,a]) = A4 for any p-subgroup, P, of G with A, < P. Thus, A, €
Sylp(Cg([V,a])) and (d) is proven.

We have
v, (abcVelyy — (v, aNeWady = (v, aNoViady = (v, q)

by (b)- [Via, Aa] = 050 [V, a, 43 G V] = 0 which means [V, (A5G 1Dy = (v,0] <
CV((A{IVG([V’&D )). Therefore, (AflV c(V.a) ) is quadratic on V. Hence, (AivG([V’a])) is
a p-group so (d) implies that A, = (AiVG([V’aI)} Thus A, < Ng([V,a]) and (e) is
proven.

AaANg([V,a]) and Aq € Syl (Ca([V,a])) imply that Cg([V, a])/Aq is a p'-group

and (f) is proven. O
Lemma 2.13 Cg(Ty) is a p’-group.

Proof. Let P be a p-subgroup of Cg(Ty4) and let 1 # a € A. Then P < Cg(T4) <
Cc(V,a]). By 2.12(f), Cg([V,a])/Aq is a p'-group. So P < A < A which implies
P < C4(T4) making P =1 by 2.5. O

Lemma 2.14 Let P be a p-subgroup of G with A < P < Ng(T4) N Cg(R4). Then
Cp(Ta/R4) = A and Cg(V/T4) N C(Ta/Ra) N Cg(Ry) = A.

Proof. Extend ¢4 to @ : Cp(T4/R4) — Hom(T4/Ra,R4),s — (t+ Ry — |[t, s]) so
that |4 = ¢ 4. Since ¢4 isonto, Cp(T4/R4) = (Ker ®)A. This gives Cp(T4/R4) =
CCP(TA/RA)(TA)A- Cc(T,) is a p’-group fron 2.13 so CCP(TA/RA)(TA) = 1. Hence,
Cp(Ta/Ry) = A.
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We have Cq(V/T4) NCq(Ta/R4) NCq(Ry) is a p-group by A.1, so using what

we just proved,

Ca(V/TANCe(Ta/Ra)NCG(Ra) = Cop(viT)nCq(Th/R)NCo(R4)(Ta/Ra) = A.

O
Lemma 2.15 Let A,B € A withT4 =Tp and R4 = Rg. Then A= B.

Proof. A = Cg(V/T4) N Cg(Ta/Ra) N Cg(Ry) = Cg(V/Tg) N Cg(Tp/Rp) N
Cc(Rp) = B from 2.14.

Lemma 2.16 C(A)/A is a p'-group.

Proof. Let P be a p-subgroup of Cg(A) with A < P < Cg(A). Now P centralizes
A and so it also normalizes A. P normalizes V' as V is an FG-module. Then P
normalizes [V, A] = T4 and [T4, A] = R4. Since Ry is 1-dimensional and Cg 4(P)#

0 as both are p-groups, we have Cp A(P) = Ry. Hence, P centralizes R 4. Therefore,
P < C(A)NCg(1t4) < Co(Hom(Ta/Ry, Ra)) N Ca(Ra) < Ca(Ta/Ra)

from 2.7(e). Then P = Cp(T4/R4) = A by 2.14 and C(A)/A is a p'-group. a

Definition 2.17 Let H be a group and let X <Y < H. We say that X is weakly
closed in Y with respect to H if for all h € H with Xh <Y, we have X* = X. That
is, if X 1is the only H-conjugate of X contained in' Y. We say that X is a weakly
closed subgroup of H if there exists a Sylow p-subgroup, P, of H such that X is weakly

closed in P with respect to H.

Lemma 2.18 Let R be a p-subgroup of a finite group H. Then the following are

equivalent:

(a) R is a weakly closed subgroup of H.
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(b) Any p-subgroup of H contains at most one conjugate of R.
(c) Let h € H with [R,R" < RN R". Then R = R,
(d) fR<S<AX < H and S is a p-group, then R X.

Proof. (a = b) Every p-subgroup of H is containcd in a Sylow p-subgroup of H which
contains only one conjugate of R by the definition of weakly closed.

(b= c¢) Since [R, R"] < RN R, we have R < Ng(R") and R* < Ng(R) so RR"
is a subgroup, in fact it’s a p-group. We have R < RRM and RP < RRM. Then (b)
gives R = RM.

(c=>d Letze Xand R<S<IX < H. If R<S, then conjugating by z we
get RT 9.5 since S 4 X. So we have [R,R*] < RN R*. Then R = R so R4 X.
So we see that RIS 94X = R X. Counsider R 9 Ng(R) 9 Ng(Ng(R)). Then
R 9 Ng(Ng(R)) < Ng(R) which gives Ng(R) = Ng(Ng(R)) =S and R S.

(d=a)Let S =X € Syly(H)so RAS. Thus, S € Syly(Ny(R)). Assume RM <
S for some h € H. Conjugating S € Sylp(Ny(R)) by h we get, Sh e Sylp(NH(Rh)).
Also, RSSh—l by (d) so R*<S. Then S € Sylp(NH(Rh)). Hence, S = S™ for some
t € Ng(R"). Then we have R < S<S(ht) < H again from (d) so R = RM = Rk, O

Lemma 2.19 A is a weakly closed subgroup of G.

Proof. Otherwise 2.18 implies that there exists B € A with [4,B] < AN B and
A # B. By 2.16, Cg(A)/A is a p’-group so B £ Cg(A). Hence, [4, B] # 1. Then
[V, [A, B]] # 0. Since B normalizes A, B normalizes T4 and T4 N Tg. Similarly, A
normalizes Ty N T'g.

As U and AB are p-groups, Cy(AB) # 0. So we have 0 # Cy(AB) < CTA(A) =
R4 by 2.3. By symmetry, Cy(AB) < Rp and since R4 is 1-dimensional, Cyy(AB) =
R4p = Rp.

Now if T4 = T, 2.15 gives a contradiction to A # B,so Ty # Tg. Let 1 #a €
AN B. 2.12(b) states that [V, a] is a hyperplane of T4. Then [V,a] < [V, AN B] <
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U < Ty since T4 # Tp. We sce that [V,a] = [V,AN B] = U is a hyperplane of Ty
and similarly of Tg. So U = [V, a] < Cy(a) for all a € AN B; hence U < Cy (AN B).
Then ANB < Cy(U) = Aq and

Ag = Ca([V,a]) £ Cyp([V,a]) < Co([V; a]).

By 2.12(d), Cg([V, a])/Aq is a p'-group so C 4 g([V; a]) = Aq and similarly C4p(|V, a]) =
Bao

Now ANB < A, = B, < AN B and we have
AN B = Aq = Cyp([V,d]) = Cyp(U)

which has order |F| from 2.12(a). Also, [U, AB] < [T4,A][Tp,B] = RARp = R4 =
Rp.

Define 7 : AB — Hom(U/R4, Ry),l — (u+ R4 — [u,l]). Restricted to A, 7
is onto from 1.1 so AB = A(Ker (7)). We get AB = A(Cyp(U)) = A(ANB) = A
which contradicts A # B. O

Lemma 2.20 If H < G, then H acts transitively on A(H) and A(H) = CH for any
C e A(H).

Proof. Let A € A(H). For any C € A(H), (A,C") is a 2-group for some h € H by
Sylow’s theorem. Since A is a weakly closed subgroup of G by 2.19, 2.18(b) gives
A= CY9. Then H acts transitively on A(H) and A(H) = CH. O

Notation: From now on let A # B € A and put L := (A4, B), R := Op(L),
E:=(ANR)BNR),Z:=ANB,U:=Tq4NTg,and W := R4+ (T4NTg)+ Rp.

Lemma 2.21 Let L be a finite group and A be an elementary abelian weakly closed
subgroup of L where B € AL and I = (A,B). Let R = Op(L), E = (AnOp(L))(BN
Op(L)), and € := C; (AL). Then
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(f) é/Op(i) is an abelian p’-group.

(9) Moreover, if i/é = SLo(q), Sz(q) with q a prime power of p larger than 2, or
L/C = Do, wilh T an odd prime, then C = E = Op(i).

Proof. (a) Notice that AR is a p-group. Since Ais a weakly closed subgroup of L, 2.18
shows that R normalizes A. Similarly, R normalizes B. Thus, [f?., fi] <ANR<E<R
and [R,BJ< BNR<E<R. So[R,L]<E. Since E<R,[E,L]<[R,I] < E and
then [R,[] < E QL.

(b) E' = [ANR, BNR] < [A, RIN[R, B] < ANB. Since ANB < Z(L), ANB < R
so ANB< Z(L)NE

(c) Since Op(f,)fi is a p-group and A is a weakly closed subgroup of L, A<lOp(L)
by 2.18(d) as A < Op(L)A < Op(L [JA < G. A is normal in any p-subgroup so
Op(L) < Ng(A). Thus, Op(L) < C.

(d) If J € A(L), then AN C normalizes J N C by definition of C. Let E :=
(DNC | D € AL). E is a p-group since each D is a conjugate of A. Thus

E < 0y(L), yiclding

~

(©) .

ANnOy(L) < An

o)
N
-

2

N Op(L).

So AN Op(L) = ANC. This, along with the definition of E, gives us AN E <
ANOp(L) < E. Hence, ANC = AN0Oy(L) = ANE.
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(e) Notice that C <L and A<C by definition. We have [fl, (:’] <ANC<E and
similarly, [E’, C’] < BNC < E. Thus, [[:, C'] <E< Op(f,).

(f) As[L,C] < E < Op(L), we have C/0,(L) < Z(L/Op(L)). Since Op(L/Op(L)) =
1, C/Oy(L) is an abelian p'-group.

(£) In addition, suppose now that L/C = SLy(q),Sz(¢) or Do,. Let A< S €
Sylp(i,) and let L = L/C. For notational simplicity let S = S. Define M = Nz(g)
and let A := M be the inverse image of M in C. Since [C, ] (2 Op(L), S is normal
in CS so S is the unique Sylow p-subgroup of CS. As S < since CS <M, S is the
unique Sylow p-subgroup of M. Hence, S = Op(x’f'[ ) <M. Since A is a weakly closed
subgroup of L, A<M.

Consider the L/C = SLy(g) case. We may assume S := {(19)|seF}andis
a Sylow p-subgroup of SLg(g). Let 4 := A/C < S € Syly(L) and Ng, o(4) (S) cor-
) We hase (1) (20)(7719) = (,2, 0)- S0 Nagy(3)

A1 PR AVANS SVANAMED A 2a
acts irreducibly on 5. Since A< M, A=S.

respond to (’\

For L/C = Sz(q), it follows easily from [Huppert, Chapter XI Section 3] that
Z(S) = ©(S), M acts irreducibly on Z(S), and M acts irreducibly on S/Z(S).
Since A is elementary abelian, A < Q;(S) = Z(S). Since A<M and M is irreducible
on Z(S), we get A = Z(5).

For L/C = Dy, with r an odd prime, |A| = 2. Since r is prime, A is a maximal
subgroup, so A = M.

Define L = L/E and for X < L let X = XE/E. From [L,C] (2 E we have
[fl, é] =1,s0C < Z(L). Also, AnNC < E from (d),so AnC =1.

Case 1: Suppose that L/C = Ds,. Then |B| = 2 = |4] = |A/(ANC) @
|A/(ANE)| = |AE/E| = |A|. Hence, L = (A, B) is also a dihedral group of order 2s
for some s.

Since A and B are weakly closed subgroups of L, they are conjugate in L. If s

is even, then (a,b)/((ab)?) = Dy = Coy x Cy which contradicts that A and B are
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conjugate. So it follows that s = l | is odd. Then € < Z(L) =1s0 C =1 and

() (€ .
C=E. Also, E < 0y(L) < CsoC = E = R and we are done in this case.

(¢) or Sz(q) with ¢ > 2. M acts irreducibly

i1(An¢) D (4, K1)(AnE). So A = [A,81] <

Case 2: Suppose now that L/C

o~

on Aso A < [A, M]C. Hence, A = [4,
L. Similarly, B < L. Thus, L = L'.

[Griess, Table 1] gives the orders of the Schur multipliers. Since the Schur mul-

tipliers of SLo(q) and Sz(q) are p-groups, we conclude that C is a p-group and so
C=R

Claim: There exists a complement, 13, to Rin S.
Proof of Claim. Consider L/R = L/C = SLo(q). We have R < Sylp(f}).

SC = AC since (as proved above) A =35, s0 AR = S. Let P = A.

Also

ANR=(A/E)N(R/E)=1.

SoP=Aisa complement to Rin S.
Now consider L/R = Sz(q). Then M acts irreducibly on S$/AC and |S/AC| = q

AC/A < Z(§/A) and [C,L] = 1. Also, §/AC is elementary abelian so §' < AC

Then t* : S/AC x $/AC — AC/A, (aT,bT) — [a,D)A is a symplectic map.
Assume S/ A is not abelian so (S/A) # 1. Choose H < (5/A) with |(S/A)/H|

. t:S8/AC x S§JAC — (§/A)'/H is a symplectic form over Fq. If radt = §/AC

then S/A is abelian. If radt = 1, then ¢ is non-degenerate and M-invariant on S/AC.

So S/AC has even dimension over Fo. This is a contradiction since ¢ is an odd power

of 2 for the Suzuki groups, so we conclude that S/A is abelian
Let P =[S, M]. Since M /S is a p'-group, we get S/A = CS/A(N[) x [S/A, M) =
5.2.2.3]. Since M acts irreducibly on Z(S) and on

S‘/A(M) x P/A from [Gor,

S/Z(S), we have CS(JW) = 1. Thus, C;

R () R -
(& . Also, [R,L] < Eso R< Cg(M)
7). Then § = RP and §/A

ARJAx PJA gives RONP < (AR)NP <

1) <

and R = Ce(M
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A So RNP < RNA=1since A=[A,N] < P. This completes the proof of the
claim that there exists a complement to Rin S. B

Now that the claim is proven, Gaschiitz’ Theorem [Asch, 10.4] implies that there
exists a complement K to R in L. Then, L = Rx K, L = [/ = [L,I] <
[R, R)[R,K][K,K] = [K,K] since R = C is in the center of L. So L < K < L
and we have L = K and R=1. Thus C/E=R/E=1s0C=E = R. )

Lemma 2.22 T, =To+ T = [V, L] = [V,OP(L)] + U.

Proof. We have
Tp=V,L]=[V,Al+[V,B] =T4 + Tp.

Let Y = [V,OP(L)]. We have A < S4 and B < Sp where S4 and Spg are in
Syly(L). So S4* = Sp for z € L = S4OP(L). Then Syt = §4% for | € OP(L). So
Al <S4t = Sp. However, B < Sp so A = B since A is a weakly closed subgroup
of G from 2.19. Then T, = Tq +Th < Ty + [Ta,] £ Ta+Y. Ty < Tp and
Y<[V,L|=TpsoT, =T4+Y. Then A2 gives Y =[Y, L] = [Y, A] + [Y, B]. Thus,
T =Ta+[Y,Al+[Y,Bland [Y,A] < [V,A| =Ty so T, =Ta+[Y,B]. Tg =T NTg

since Tg < T, so
Tp=TNTp=(Ta+[Y,B))NTp=T4NTp +Y, B]
as [Y, B] < Tg. Similarly T4 = [Y, A] + T4 N Tp. Hence,
[V,L] =Ty = [V, Al + (T4NTp) + |V, B] = [V, L]+ U =Y + U = [V,0P(L)]| +U. O

Lemma 2.23 R4 # Rp.

Proof. Assume not and choose B such that 4 = Rp with A # B and, in addition,
L = (A, B) minimal. By 2.19, any Sylow p-subgroup contains only one conjugate of

A so L is not a p-group.
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By the quadratic L-Lemma [MSS], we have L/Op(L) = SLa(q), Sz(q) or Doy,
where ¢ is a power of p and r is an odd prime. Then by 2.21(e), [L,C] < Op(L)
where C = Cr(AL). So CL(AL)/O,,(L) < Z(L/Oy(L)) = 1 as L/Op(L) is simple.
Hence, Cp(AL) = R.

If Ty = Tp, then by 2.15, A = B, yielding a contradiction, so T4 # Tg. Notice
2.21(d)
that [V,Z] =[V,ANB]<Uand Z < Z(L). Suppose that Z # 1. Then 2.12(b)

implies that [V, Z] contains a hyperplane of T4 and Tg. Since U is also a hyperplane
of Tq and Ty, U = [V, Z]. Since [U, L] < [Ty, A][Tg,B] = R4Rg = R4 = Rp, A.l
says L/Cr(U) is a p-group. So OP(L) < Cp(U) by the definition of OP(L). Hence,

(*) [U,OP(L)] = 0.

Thus [V, Z,OP(L)] = 0, and the Three Subgroups Lemma gives [V, OP(L), Z] = 0. Let
a € Z. Then [V,a] = U from 2.12 and [V, a] = [V, Z]. [V, a,a] = 0 gives [V, Z,a] = 0.
Hence, [V, Z, Z] = 0. Then

W, L, 2“2 v, 00(L)) + U, 2] = (v, OP(L)] + [V, 2], Z) = 0.

Since A < L, we conclude [V, A, Z] = 0. Thus, Z < A centralizes T4 and 2.5 yields a

contradiction making Z = 1.

E'=[ANRBNR < ANB =7 =150 E is abelian. Recall that R = E by
2.21. Then

E=(AnRY =(ANR)ANR, L] < (ANR)[E, L] = (AN R)[E, A|[E, B]

= (ANR)[E, B] < E.

Thus, ENB = [E, B(ANBNR) = [E, B|Z = [E, B] and similarly ENA = [E, A], so
E = (ANR)[E, B] = (AN E)[E, B] = [E, A||E, B] = |E, L]. Hence, E = [E, OP(L)]
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by A.4 and we have R < OP(L).

Let a € A\ R. By minimality of L, L = (a, B). Thus, Tf, = (Tlg) = (Tgl’B)) =
[Tp,a]+Tp and Tp = TANTL, = [T, a]+ (TpNTy) = [Tp,a]+U. Ry < Cr,(a) =
[Via] < T4 by 2.12(b). If U = R4, then T4 = [Tp,a] + U < [V,a] < T4 by
2.12(b) again, a contradiction. This implies that U # R4. Observe that [T4,a] =
[TB,a,a] + [U,a] = [U,a]. However, 2.3 gives [T4,a] # 0 and hence [U,a] # 0.

On the other hand, [U, E] = [U, R] < [U, OP(L) © 0 and so for any d € A we have

d € Eifand only if [U,d] = 0. Thus, ANR = C4(U) and |U/R4| 2.8(a) |A/C4(U)] =
|A/(AN R)| = |AR/R| by the sccond isomorphism thecorem. If L/R % Do, then
L/R is simple so L/R = OP(L/R) and L = OP(L)R. Since R < OP(L), we have
L = OP(L). Then [U,L] = [U,OP(L)] = 0 since OP(L) < Cp(U), and therefore
[U,a] = 0, a contradiction. Hence, L/R = Dy,. Thus, |AR/R| = 2 and |U/Ry4| = 2.
Since |U/Ry| is an F-space, |[F| = 2 and therefore [U| = 4. Nowlet 1 #a € ANE.
We have [V,qa] = CTA(a) from 2.12(b). Then |[V,q]| = ]CTA(a)| = |T4/Ral = |4|
and so |[[V,a]/U| = %4—[ Since R = E, |AJANE| = |U/R4| = 2. We also have
BnE =B - W va,BnE < [T4,BNE < T4N[V,B] = U since
E < C £ Np(A). Define D := C'BnE([V,-a]/RA). Since B N E centralizes U,
(BN E)/D embeds into Homg([V,a]/U,U/Ry4). So |(BnN E)/D| < |[V,a]/U| =
]—f}-l. Since |BN E| = l—’;—l, it must be the case that D # 1. AsZ =1,D £ A
so |AD| > |A|l. [V,a,4] < R4 and [V,a,D] < Rp = Ry so [[V,a],AD] £ Ry.
Then |AD/Cap([V,a])| < |Hom([V,a]R4/Ra, R4)| = |[V,a]Ra/Ry| = |A|/2 and
since |[AD| > |A] we have |Cap([V,a])| > 4. Observe that AD is a p-group and
[V,a,C4p([V,a])] = 0. So we can apply 1.1(iii) yiclding |Cap([V,a])| < |F| = 2, a

contradiction. Therefore, R4 # Rp. a
Lemma 2.24

(a) Ng(A) = Ng(R,).

(b) CL(A(L)) = CL(R(L)).
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(c) Op(L) < CL(Ry) < CL(A(L)).

Proof. (a) Ng(A) < Ng(Ry). Let | € Ng(Rq). We have Ry = R4l = Ry so
Al = A from 2.23. Then Ng(Ry4) < Ng(A).

(b) CL(A(L)) = Npeary NL(D) = N NL(Rp) = CL(R(L)) from (a).

(c) Op(L) < Cr(AL) by 2.21(c) so Op(L) normalizes each D € A(L) and so
centralizes each Rp. Thus Oy(L) < Cr(Ry). Also, CL(Rr) = CL(ER(L)) <
crmw) @ cpaw). O

Lemma 2.25 If Ry < Tp, then also Rg < T}y.

Proof. Observe that Cg(R4) = Cg(R4 + Rp), so by 2.8(a), |B/Cg(R4)| = |R4 +
Rp/Rp| = |F| and Cr,(Cp(R4)) = R4 + Rp.

We have Cg(R4) < Ng(R4) = Ng(A) < Ng(T4) by 2.24. Suppose that R &
Ty4. Then (R4 + Rp)NTy=R4NT4 = Ry. Also,

[TaNTp,Cp(RA)] < [Ta,Cp(RA)N[TR,Cp(R4)] S TpgN [T, B]<TgyN R =0

so TANTp < Crg(Cp(RA))NTa = (Ra+Rp)NT4 = Ry. Now [Ty,Cp(R4)] < Ty
and [T4,Cp(R4)| < [V,B]=Tg so

(*) [Ta,Cp(RA)] < TaNTp < Ry.

Let P = ACp(Ry4). Then 2.14 implics Cp(T4/R4) = A, and thus Cg(R,4) (;)
Cp(Ta/R4) = A. By 2.5(d), |B| > |F|? and since |B/Cg(R4)| = |F|, we have
Cp(Ra) # 1. Pick 1 # b € Cg(Ra). Then by 2.12(b), Rg < [V,b] < [V, Cp(R4)] <
[V, A] = Th. 0
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Chapter 3

The case where A is not a TI-set

Lemma 3.1 Suppose that Ry < Tp. Then R;, = R4+ Rg, E = Cr(Ry), L/E =
SLo(F), T4 # Ty, and one of the following holds:

(a) |F| > 2, |A| = |F|?, and |AN B| = |F|.
(b) |F| =2, |ANB| =2, and |A] < 2%.

Proof. From 2.25 we have that Rp < T4. It follows that both A and B normalize
Rq+ Rp. Then Ry, = (RL) <Ry + Rp < Ry gives R, = R4+ Rp as R4 + Rp is
L-invariant. So Ry, is 2-dimensional.

By 2.8(a), |4/Ca(RB)| = |Ra + Rp/R4| = |F|. Then ACL(RL)/CL(RL) =
{(:9 )+ € F} and BCL(RL)/CL(RL) = {(g1 )I* € F}, so L/CL(RL) = SLy(F).
Now 2.21 and 2.24(c) give Cr(Rr) < CL(AL) = E = R < Cr(Ry). Hence, E =
Cr(Rr) and L/E = SLy(F). |A] > |F|? by 2.5(d) so |[ANE| = |ANCL(Ry)| =
ICa(Rp)| > [F|.

Since Z < Z(L) by 2.21(b), Z QL. Define L = L/Z.

1°  Chooseb € (BNE)\Z. Then C4(b) = ANE and |[A,b|Z/Z| = |A/C4(b)| = |F|.

Proof of (1°). Suppose a € A\ E with [a,b] € Z. [b,{(a,B)] = [b,d][b,B] = 1

since B is abclian and [a,0] € Z. Then b is centralized by L := (a, B). Since
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L/E = SLy(F) = LE/E, LE = L. In particular, there exists | € L with AE = B'E.
Since A is a weakly closed subgroup in G, A = B!. Thenbe bZ =bZ < B' = 4
and b € AN B = Z, which is a contradiction. Thus, C4(b) < ANE. [ANE,BnN
E]| < [AE]N[E,B] £ Zso [ANE,b < Z and we have AN E < Cx(b). Hence,
ANE = Cy(b). Consider the commutator map which sends a to [a,b]Z; this gives

[A,0]Z/Z] = |A/C4(D)| = |A/JANE| = |F|. o
2° Ty #Tg.

Proof of (£°). Suppose that T4 = Tg. Then [V, L, A] < [T, A]+ (T, A] = [T4, 4] =
RpA<Rpso[V,L,L]< Rgq+ Rp < Ry, and hence [V, L] < Ry, and

(*) [V,L',E] =0

since E = Cp(Ry). Assume that E # Z. By 2.21(b), Z < Eso BNE # Z and
there exists b € BN E \ Z. Thus, (1°) implies that [4,b] # 1. Let 1 # a € [A,].
[A,b] < Asince b€ E = Cr(AL) < Ni(A). [A,0) < [L,L]=L'soa€ ANL. By
(%), [V,a,E] =0so E < Cg([V,a]). E = Ris a pgroup so by 2.12, E < A, < A.
Thus b € Z which contradicts (1°). Hence, E = Z.

We alrcady have that [ANE| > |F|,s0 Z=FE # 1. Then 1 # [T4,Z] < R4 and
since R4 is 1-dimensional, R4 = [T4, AN B] = [Tg, AN B] = Rp, a contradiction to
2.23. ]

3°  Cp(A)=ANE and Cx(OP(L)) = 1.

Proof of (). C4(b) = ANE # A from (1°). So C4(b) # A and b ¢ Cgrp(A) so
Cprp(4) =1 E = (ANE)(BNE) from 2.21. Since A is abelian, AN E < C(A)
and we conclude that C(4) = (AN E)((BN E) N Cx(A)) = AN E and similarly
Cp(B) = BNE. Also,

Cp(L)=Cx(A)NCE(B)=ANENBNE=ANB=Z=1
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Hence, C5(OP(L)) = 1. - O
4°  Z #1.

Proof of (4°). Suppose that Z = 1 and let 1 # b € BN E. Then (1°) and Z = 1
imply C4(b) = C4(b) = AN E. From 2.8(d) we have [T4,b] + R4 = CTA(CA(b)) =
Cr, (AN E). By 2.8(b),

(Cr (AN E)| = [T4/(AN E)| = [Flla/(An B) ) 2

Also, ANE < E = C(R},) so ANE centralizes Ry, and we have R, < Cry (ANE).
Then, as they have the same order, Ry, = Cp, (AN E). So we have [Ty, b] + Ry =
Cry(ANE) = Rp. Now [Ty,b]+ Ry =Ry forallbe BN E, so [Ty, BNE] < Ry,

and hence also
(**) [TA1 E] = [TA’A N E][TA,B N E] < RARL < RL'

Let n = dim A. Since |A/ANE| = |F|, we have |ANE| = |[F|*~!. E= (ANE)(BNE)
and Z = 1 give |E| = |F|2(»=1).

Let a € ANE and put Y = Cr,(a) = [V,a]. Then Y is a hyperplane of
Ty from 2.12. R; < Ty and [Rp,E) = [R,Cr(RL)] = 0, so Ry, < Y. Then
dimY/R; =(n+1)—-1-2=n-—2and

(% * *) Y, E] < [Ty, E] (*S*) Ry,

Consider the map v : £ — Hom(Y/Rp, Ry ) which takes e — (y+ Ry — [y, €]). This
gives |E/Cp(Y)| < |F|(mY/RONARL) = |F2(=2) and so [Cp(Y)| 2 [FI%. By
2.12, Cg(Y) < Aq and |Ag| = |F| which is a contradiction. Hence, Z # 1. O

By (4°) we can choose 1 # z € Z. Then [V,2] < TqNTg = U. From (2°)
and 2.12 we get that U = [V, 2] is a hyperplane of T4 and Tg and U = Cp A(z).
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Z < Cz(V,2]) < A;NB; < Zso A, N B, = Z. However, A; is the unique Sylow
p-subgroup of C([V, 2]) so A; = B; and Z = A; = Fz. Then |Z| = |F]|.

Cg(U) is a p-subgroup in Cg(U) so by 2.12, Cg(U) < Ax = Z = C4(U) <
Cg(U). Thercfore, Cg(U) = Z. |T4/U| = |F| and |Tp/U| = |F| as U is a hyperplane
of T4 and Tp, so |T/U| = |F|2.

Let Uy be an F-subspace of U with U = Uy ® Ry. Put Ag = Cy(Up), By =
Cp(Up) and Lg = (Ag, Bp). Since Ry, < U, we have C(U) < Cr(Ry) = E and so
Cr(U) = Cg(U) = Z. Notice that Uy, Lg] = 0 by construction. Cry(U) <CL(U) =
Z < Cry(U) so Lo/ Z acts faithfully on U. Cp (RL) = Cry(RL+Up) = Cr(U) =2
so Lo/Z acts faithfully on Ry. By 2.8(b), |Ag| = |T4/(Us + R4)| = |Ta/U||U/(Uy +
Rp)| = |T4/U||(Uo+Ra+Rp)/(Uo+Ra)| = |F|2. Hence, |Ag/CLy(RL)| = |A0/Z| =
|F|. Thus Ag acts as (19 ) and By acts as (§1 ) on Rp. Then Ag induces SLy(F)
on Ry, and Ly/Z = SLo(F).

5° The commutator map, Ty, /U — Ry, t + U — [t,2] is a well defined isomor-

phism.

Proof of (5°). Tp/Cr (2) = [Tg,2] = [Ta,2] + [T, 2]. Also, 1 # 2 € AN B so
by 2.5, 1 # [Ta,z] < Ra. Since Ry is 1-dimensional, [Ty, 2] = R4 and similarly
[Tp,z] = Rp. Then Tp/Cr,(2) = [TL,2] = [Ta,2] + [T, 2] = R4+ Rp = Rp.
Now T /U and Tr,/ CTL(z) = Ry are both 2-dimensional so U < CTL(z) < Ty, gives

U=Cr;(z) =Cy(2) NTg and T./U = Ry. /
6° [Cv(z),L] <U, [U, L] < Ry, and [Cv(z),OP(L)] < Rp.

Proof of (6°). Let Vy < V be maximal with [Vp,2] < Up. a : V/Cy(z) — U,
v — [v,2] is an isomorphism. Vp/Cy(2) is the inverse image of Uy under a, so
W/Cy(z) = Uy as Lg-modules. Then, as Ly centralizes Uy, Lg also centralizes
Vo/Cy(z). We have [Cy(z),L] < Cy(z)N[V,L] < Cy(z)NTy =U. Also, [U,L] <
(T4, AN [Tp,B] < R so [U/Rr,Ly] = 1. Ly stabilizes the series R, < U <
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Cy(z) £V and so also stabilizes the series 1 < U/Rp, < Cy(z)/Ry, < Vy/Ry. Then
by A.1, [W/Rr,OP(Lg)] = 1. Hence, [V, OP(Lg)] < Rr. Ry, < U < Cy(2) so OP(L)
centralizes Cy(z)/Ry. Then, [Cy(z),O0P(L)] < Ry. O

Suppose that |F| > p. Since Ly/Z = SLy(F) and OP(SLo(F)) = SLy(F), we have
OP(Ly/Z) = Lo/Z. By A3, OP(Ly/Z) = OP(Lg)Z/Z. Then Ly/Z = OP(Ly)Z/Z
and Ly = OP(Lg)Z. So Ag = (OP(Lg)NAp)Z and since |Ag/Z| = |F|, Ag £ Z. Then
Ag £ Esince Z = Cr(Ry) = CL(RL)NLp = ENLg. So there exists a € OP(Lg)NAg
with a ¢ E. Since a € OP(Ly), [Vo,a] < Rp. Since p = 2, [W,q] < Cr; (a).
Cro(RL) = Z and a ¢ Z so [Rp,a] # 0. Hence, Ry < CRL(a) < Rp. Rpis
2-dimensional and R4 is 1-dimensional so Cp L (a) = Ry.

V,z] = Uy ® Ry, so [V/Uy, 2] = (R + Up)/Uy = Ry = U/Uy. Then Rp =
[V/Uo, 2] = (V/Uo)/Cvyy,(2) = (V/Uo)/(Vo/Up) = V/Vo. We know Rp/[Rp,d] is
1-dimensional so (V/Vp)/[V/Vo,a] = (V/Vo)/(([Via] + Vo)/Vo) = V/(IVia] + Vo) is
1-dimensional. We have shown [Vp,a] < Cg, (a) = I24 so [([Vya] + Vy,a] < R4. We
have also shown V/([V,a] + Vp) is 1-dimensional so V = Fv + [V, a] + V} for some
v € V\([V,a]+Vy). Then [V,a] < F[v,a]+ R 4. Hence, [V, a] is at most 2-dimensional.
[V, a] is a hyperplane in T4 so it follows that T4/ R 4 is at most 2-dimensional and 2.5

gives that T4/ R4 is exactly 2-dimensional so |A| = |F|2 and (a) holds in this case.

Suppose now that |F| = p. 1If dinTy4/R4 = 2, then dimA = 2, so |A| = 4,
|ANB| = 2, and (b) holds. So now we may assume that dim7T4/R4 > 2. From (1°),
we have |A/AN E| = |F| so |[AN E| > |F|. However, |[ANZ| =|Z| = |F| so E # Z.

Let D be a normal subgroup of L in E minimal with respect to D £ Z. By
(3°), Cg/z(0P(L)) = 1 so [D,0P(L)] # 1. If [D,OP(L)] < Z, then D/Z <
Cp,z(OP(L)) =1, but D % Z so [D,0P(L)] £ Z. The minimality of D implics

(% * %) D =D, OP(L)] < OP(L).

Let l € L. If [D,A] < Z, then [D,AY] < Z, but L = (AL) so [D,L] < Z. Then
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[D,0P(L)] < Z which is a contradiction. Hence, [D,A] € Z and therefore there
exists a € (AND)\ Z. U/Cy(a) = [U,a] < R4 so |[U/Cy(a)] < |F|. Nowa € D <
E =Cr(RL) so R;, < Cy(a). Then

o

(67)
[Cu(a),L] < Rp < Cy(a)

so L normalizes Cy(a). Since a € D\ Z, (o) £ Z, but (aL) < D since D is normal in
L and so by minimality, D = (aL). Then [Cy;(a), D] = [Cy(a), (aF)] = [Cy(a), o)t =
1.

Define X/Cy(a) = CV/CU(a)(Z)- Observe that Cy(z) < X so Cy(z) = Cx(2).
Cpyla) U = [V,z] so [X, 2] = Cy(a). Also, Cy(a) = [X,z] = X/Cx(z) = X/Cy(2)
as L-modules. 1 = [Cy(a), D] '=: [X/Cy(2),D] and so [X,D] < Cy(z). Hence,
[X,D,0P(L)] < [Cv(2),0P(L)] (65) Rp, < [Tg,a]+Ry. Nowdim(Ty/Rr)/(Ta/RL) =
dim T /T4 =dim(Tg +T4)/T4 = dimTg/(T4 NTpR) = 1 since T4 NTp is a hyper-
plane of Tg. So T4 is a hyperplane of T.. [T4,a] < Rgq < Ry, so T4/Ry, is centralized
by a, making T4/Rp, < CTL/RL(a). Let W = [Tg,a] + Rr. We have dimW /Ry =
dim(Ty/ Ry, a] = dim(Ty/RL)/Cry 1, (a) < dim(T/Rp)/(Ta/Rr) = 1. So W/Ry

5°)

is at most 1-dimensional and W is at most 3-dimensional. Also, 1 = [Rp, E] =
(T}./U, zz] gives [T, E] < U. R, < U so we have R, < W < U. Then [W,L] <
(U, L] (63) Ry < W and so W is L-invariant and W = ([T, a)F)+ Ry, = [T, D]+ Ry,
Thus, [X,0P(L), D] < [V, L, D] = [T, D] < W.

The Three Subgroups Lemma gives [X, [D, OP(L)]] < W. Then [X, D] < W since
D (r2%) [D,0P(L)]. Thus, [X,a] < W. Observe that [U,a] < [T4,a] < Ry and
[U,a] # 1 since a ¢ Z. Therefore [U,a] = R4 as R4 is 1-dimensional. So U/Cy(a)
is 1-dimensional. Then V/X = (V/Cy(a))/(X/Cy(a)) = (V/C’U(a))/C’V/CU(a) (a) =
[V/Cy(a),a] = [V,a]/Cy(a) is 1-dimensional since [V,a] and [V,z] = U are both

hyperplanes of T4 and U/Cy(a) is 1-dimensional. So we have V/X is 1-dimensional
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and W at most 3-dimensional. Since X/W < CV/W(a)’ (V/W)/ (CV/W(a)) is a
quotient of (V/W)/(X/W) and therefore at most 1-dimensional. Hence, [V/W,a]
and therefore, ([V,a] + W)/W is at most 1-dimensional. Then [V, a] is at most 4-

dimensional. So |A| < 2% and (b) holds in this casc. O

Lemma 3.2 Let A < S € Syly(G) and s € S\ A. Then dim[A, s] > 2. In particular,
ifdim A < 3, then A € Syl,(G).

Proof. Suppose dim[A4, s] < 2. Since A is a weakly closed subgroup of G, A 4 S. By
2.16, Cg(A) = A; thus [A, s] # 1. Pick 1 # a € [A, s]. Since [A, s] is an F-subspace of
A, [A,s) = Fa = Aq. Then O/, (5) 720 Cr,([A,s))/Ra = Or,(Aa)/Ra 222
[V,a]/R4. Hence, [V,a,s] < Ry. Since A induces Homp([V,a]/R4, R4) on [V, a],
s € Cg([V,a])A = AgA = A by 2.12. This is a contradiction to the choice of s.
Therefore, dim[A4, s] > 2.

Assume dim A < 3 and suppose S # A. S\ A has an element of order 2, so choose

s€ S\ A with s2 € A. Then [A,s] < Cy(s) < A. So
2 x dim[A4, s] = dim A/C4(s) + dim[4,s] < dimA < 3.

Then dim[A4, s] < 2 which is a contradiction and therefore S = A. a

Lemma 3.3 Suppose that R4 < Tg, |F| > 2, |A| = |F|?, and |AN B| = |[F|. Then

one of the following holds:

(e) ANB 2G, Rg = [V,AN B] is 2-dimensional, Go/Cgy(Rg) = SLa(F), and Rg

is the corresponding natural module.

(b) Rg is 4-dimensional, GO/CGO(RG) = QI(IF), and Rg is the corresponding nat-

ural module.

Proof.
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1° A is a Sylow p-subgroup of G and both Ng(A)/A and Ng(A)/Cq(T4/R,4) are
p -groups.

2.14
Proof of (1°). A € Syly(G) by 3.2. A < Cg(T4/Ry) so Ng(A)/Cq(T4/R4) and
Ng(A)/A are p-groups. O

Let P be the set of 1-dimensional subspaces of T4/ R 4. Observe that Ry /R4 € P.

2°  Letl#z2€Z. Then E=7 and Ry, = [V, z].

2.24(c)
Proof of (). Eis a p-group and E < Oy(L) < Cr(A(L)) £ Ng(A),so EXA

by (1°). E=(ANE)(BNE)< E(BNA)<ANB=Zso E=2. [T4,2] = R4 and

[Tp, 2] = Rp so [T, 2] = R, and therefore,
(%) Ry =Ty, 2] = [T, 2] < [V, Z].

Ry, and [V, Z] are both 2-dimensional so Ry, = [V,Z] = [V,z]. Then, since Z is
2.12(e)
1-dimensional, Z=A, <9 Ng(Rp)so Ng(Rr) = Ng(Z). O

3°  Ng(A) has orbits of length 1, |F| — 1, and 1 on P. Also, Ng(A) < Ng(Z).

Proof of (°). Let 1 # z € Z. [Ry, Z] = 0so R, < Cpy (Z) < T. Now T /Cry (2) =
[Ty, 2] © Ry as L-modules. Since A is 2-dimensional, T4 is 3-dimensional. T, /T4 =
(Tp+T4)/Tg =Tg/(TpNTy) and since T4 NTg is a hyperplane of Tg, T /T4 is
1-dimensional. Hence, T, is 4-dimensional and T,/ Ry, is 2-dimensional. Then both
TL/CTL(Z) and T /Ry, are 2-dimensional, so Cr, (Z) = R, and T./RL = Ry,
Let p: Tr/Rr — R, be an L-isomorphism. Then CRL(A) = CTL/RL(A)’ but
CRL(A) = R4 and CTL/RL(A) = Ty /Ry, making T4/Ry, = R4 as Ny (A)-modules.
Claim: T4/Rp = R, as FH-modules where H = Ny (A) N N (B).
Proof of Claim. Ry, = R4 ® R so Ry, /R4 =y (R4 + Rp)/R4 =y Rp/(Rg N
Rp) =y Rp. Then R = Ry @ Rp =g T4/Rp ® Ry /Ry. Ni(A)/A is a p'-group

by (1°). Maschke’s theorem [Asch, 12.9] gives the existence of Y/R4q < Ty/Ry
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with Ty/Rg = R /Ry ®Y/Ry. Y/RA =g (Ta/R4)/(RL/R4) =y T4/Rr. Then
Rp 2y Ta/RL ® R /RA = Y/Ry® R, /Ry = Ty/Ry. So the claim is proven.
We now calculate the orbits of H on Rj instecad of on T4/R4. Let K =

{(6\ /\91 ) | 0 # A € F}. The lengths of the orbits of H on R are the same as

the lengths of orbits of K on the 1-subspaces of F x F.

Observe that F(1,0) and F(0, 1) are fixed points of K. Let z,y € F\ {0}. Since

1 — A2 for some

0 # XA € F. Heuce, H/Z corresponds to (3)‘91 )(1,1) = A\ATH = A7z, y).

Thus, K has three orbits whose lengths are 1, 1, and F — 1. Then H has three orbits

the characteristic of F is 2, cach element in F is a square so zy~

on Ty4/R4 whose lengths are 1, 1, and F — 1.

A/Z corresponds to {(} 9 )| € F} and N1 (A)/Z corresponds to {(;\ /\91 ) |x €
F} so N (A) = HA. A acts trivially on T4 /R4 so the orbits of Ny (A) are the same
as the orbits of H on P, namely orbits of length 1, 1, and |F| — 1 on P. An orbit of
Ng(A) and Ng(A) N Ng(Rp) is a union of orbits of Ny (A) so the possible lengths
of such orbits are:

1)1,1, |F] -1

2) |F|+1

3) 1, |F|

4) 2, |F| - 1.

Since Ng(A)/A is a p'-group by (1°), the orbits of Ry /R4 have p'-length so
options 3 and 4 are not viable.

Suppose for a contradiction that Ng(A) is transitive on P. Since |F| > 2, N (A)
has exactly 2 fixed points: Rp/R4 and RY /Ry for some g € Ng(A) with R /R4 #
R%/RA. Then NL(A)Q—1 fixes R%_I/RA and Ry /Ry. So NL(A)Q_-1 < Ng(A) N
Ng(Rr).

From (1°), Ng(R)NNg(A) does not have an orbit of length |F| on P but it fixes

R /R4 so it docs have an orbit of length 1. This implies that Ng(Rr) N Ng(A) has
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orbits of length 1, |F| — 1, and 1 on P. Notice that this means that Ng(R) N Ng(A)
and Np(A) have the same orbits. So Ng(Ry) N Ng(A) fixes Ry, /R4 and R%/RA.
Since we proved that Ny, (A)g—1 < Ng(A)NNg(RL), this means that N L(A)g_1 fixes
Rr/R4 and R} /R4. Since the fixed points of NL(A)H'1 are Ry /R4 and R{l /Ry,
this gives R% = R%—l. Hence, Rf =Ry.

Notice that gA/A has odd order from (1°) so (9)A4 = (¢®)A. Thus R% = Ry.
This is a contradiction to the choice of g. So option 2 is not viable and the orbits of
Ng(A) and Ng(A) N Ng(Rp) must be of length 1, 1, and |F| — 1.

Let Y/R4 and Rp/R4 be the fixed points of Ng(A) on P. Let Z := Cy4(Y).

[Rr,Z] =0so0 Z < Cyq(RL) < A. Since A is 2-dimensional, Z is 1-dimensional,
and A # C4(Rr), we have Z = C4(R[). Ng(A) normalizes C4(R[) so it normalizes
Z and we have Ng(A) € Ng(Z). Z = C4(Y) and since Y is a fixed point of Ng(A),
Ng(A) < Ng(2). o

4° Let1#t € A. Then one of the following holds:
(a) t ¢ Z and A is the unique Sylow p-subgroup of Cg(t).
(b) t € Z and OF (Cg(t)) = Ce(t)o = L.

(c) t € Z and there exisls A # B € A with t € AN B. Morcover, for any such B,
Z=ANB and L= (A, B) = 0P (Co(t)) = Ca(t)o.

Proof of (4°). Notice that Syl,(Cg(t)) = A(Cg(t)). If {A} = A(Cg(t)), then (a)
holds. Suppose from now on that {A} # A(Cg(t)). Then there exists B € A(Cg(t))
with A # B. So tB is a p-group and B is a Sylow p-subgroup of Cg(t). Thus t € B
andt € AN B.

Ifte Z thent e ANBNB and Ry + Rp + Ry < [Vit] by 2.3. [Vit] = R
from (2°). Therefore, R < Rp so Ity = R4t for some I € L. Thus B = Al by 2.23
and A(Cg(t)) = AL. Then Cg(t)g = L. OPI(H) = (Syl,(H)) for any finite group so
O (Ca(t)) = (A(Cg(t))) and (b) holds.
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So suppose that t ¢ Z and put L = (A, B). Then Ri = Rg+ R < [Vt] <
Ty N TB' So L fulfills all the assumptions L docs. Then we can apply (b) to get
OPI(C’G(t)) = Cg(t)g = L. We can also apply (3°) to see 2tcl)1&t Rj /Ry is a fixed
point of Ng(A) on P. Hence, R; =Y and CL(R[ ) ( )
gives Z = Cy(Y) = Ca(R;)=AN B. So (c) holds. O

AN B applied to L

5° Letg€G. ThenZ29 =Zx 29 € A(L) and |ZGAD| =1 forall D € A
where ZG AD := {29 | g € G, 29 C D}.

Proof of (5°). For 1 # z € Z we have Op(Cg(2)) < Op’(C'g(z)) (40) b)

gives L/E 2 SLy(F) so Op(L) = E. Then Op(Cg(z)) < Op(L) = E < Cg(Rr)
Cc([V, 2]). Hence, Op(Cg(2)) < Op(Cg([V, 2])) = A; since A, is the unique Sylow
p-subgroup of Cg([V,2]) from 2.12(f). A, < Cg(z) so A, < Op(Cg(2)). Hence,
0p(Ca(2)) = 4s.

Recall that Ng(A) < Ng(Z) by (3°). Let h € Ng(A). zh € Zh = Z so z is not

A

L. Also, 3.1
(3°)

conjugate in Ng(A) to any involution in A\ Z. By [Gor, 7.1.1], since A is an abelian
Sylow p-subgroup of G, z is not conjugate in G to any involution in A \ Z. Then
2°NACZ Z2CANA={Z},and |ZCAD|=1forany D € A.

Let z? € Cg(z). Aisa Sylow p-subgroup of Cg(z) so 2P € A¥ for some k € Cg(2).
Then 2/ € A and Pl € Zsince 26 CA={Z}. Sozh e ZFk = Z, Z 9 Cq(2),
and 26 N Cu(z) = {2929 € Cq(2)} C Z.

geGandlet1#ce Z9 and 3 := 9 1. Recall Z = AN B = Cy(Y). Since Z
corresponds to a different fixed point in T4/R,4 than Z does, Z # Z. Then z and ¢
are not conjugate in G. Notice that (z,c) = Dg,, where n is even, otherwise z and ¢
would be conjugate by Sylow’s Theorem. Since n is even and (zc) is a cyclic group
of order n, there exists ¢t € (zc) with |t| =2. 2 and c send each element to its inverse
in Do, sot € Z((z,c)). Thent € o (CG(z)) ) L. Pick X € Syly(L) with t € X.
Then Z < Op(L) < X. We can then apply (4°) to X in the place of A.

Suppose for a contradiction that (4°)(b) holds. Sincet € Z((z,¢c)), c € OPI(CG(t))
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= L. Hence, [z,c)J=1and t € zc. Soc € tz € Z. Therefore, z = I elna cZ.
This is a contradiction to 3 € Z and ZNZ = 1.

Suppose (4°)(c) holds. The sctup is symmetric in Z and Z so we arrive at a
similar contradiction to the (4°)(b) case. Thus, (4°)(a) holds. Then X is the unique
Sylow p-subgroup of Cg(t). 2 € Z < X and ¢ € Cg(t) so ¢ € X. Thus, [z,c] =1
and c € OP’(CG(t)) = L. This holds for any ¢ € Z9. Then Z9 < L, Z € Z(L), and
ZNZ =1.S0(Z,29) = Z x Z9 and has order |F|?. Therefore, ZZ9 € Syl,(L) =
A(L). O

In particular, A = Z x Z. By 3.1, L/E = SLo(F) and by (3°), E = Z; hence
L = Z x SLy(F) by Gaschiitz’'s Theorem [Asch, 10.4]. We know Z < Z(L) and
SLy(F) is perfect so L' & SLo(F). Since Ng(A) normalizes Y, it also normalizes
Ca(Y) = Z. So Nz (A) noralizes Z. Then [A,N(A)] = [Z x Z,N(A)] < Z. We
have A/Z = [A/Z, N[ (A)] inside SLy(F) as Z x (;\ /\91 ) corresponds to N (A) <
Ng(A) < Ng(Z) from (3°). So Z < A = Z[A,Nr(A)] and as [4, N(A)] < Z, we
get Z = (ZN Z)[A,NL(A)] = [A,NL(A)] < L. Hence, Z < L' = SLy(F). Then
(ZLy = L' since A/Z has order |F|.

Recall ZZ9 € A(L) from (5°) so ZZ9 = Al for some | € L making Z < Al
Thus, A = Alg™h by 2.20. Therefore, lg~1h € Ng(A) (50) Ng(Z). So Z = Zlo™h
and Z = 2" = 21671 Then 29 = Z! and we get (ZG) = (ZLy = L' Hence,
[(Z€),(ZC)] = 1. Then Gg = (A) = (AC) = (2C) x (Z©).

Case 1: If Z <G, then Z = 26 < AC = (22)6 = (2Z)L = AL. Rg =
RaLl =Rpso Rg =Ry (?i:) [V, Z] is 2-dimensional. As Z <G, Gy = Z x (Z€) so
Go = Z x L' = L. Also recall from 3.1 and 2.21 that Z = C(Rp), so Z = CGO(RG)
and Go/Cq(Rg) = L/Z = SLy(F) and (a) holds.

Case 2: Suppose that Z # Z9 for some g € G. Then by (5°), B := Z9Z =
(229719 € A Then ANB = Z by (4°). (ZC) = SLy(F) = (ZC). Hence,
Go = (29) x (ZC) = SLy(F) x SLa(F) = QF (F).
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Let w € (ZC)\ Ng(A). We have (ZG) = L', (2¢) = I/, and L = ZL' =
Z(Z%). Then (Rffc)) - (R;ﬁ(ZG)) = (RL) = Ry, giving Rg = Rg, = (R} =
(R4 (229 = (R<LZG>). Hence, R, = R4 + Ra® so Rg = (R<LZG>) - Rffc) +
Ri(zc) =R; + R f/d’ which are both 2-dimensional so Rg is 4-dimensional. Both
R; and R E‘I’ are natural SLy(F)-modules for (ZC) = L.

Hence, as an F(ZC)-module, Rg = Vi ® V3 and as an F(Z%)-module, Rg = V, ®
Va, where V; and V; are natural SLg(F)-modules. Notice that End ( ZG)(VI) = F and
so by [Asch, 27.14(5)] , Rg = Vi @f J for some F(Z%)-module, J. Then Rg = J & J
as F(Z%)-modules and so J = V; as F(Z%)-modules. Hence, Rg = V} = W] as
FGy-modulcs.

The same argument also shows that the natural QI(]F )-module for G is the tensor

product of two natural SLo(F)-modules and so Rg is a natural QI(IF )-module. This

gives (b). O
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Chapter 4

The case where A is a TI-set

Corollary 4.1 If A is a TI-set, then Ry £ Tp, D is a TI-set for any D € A, and
RpnNTy=0.

Proof. Assume R4 < Tp. Then by 3.1, |AN B| # 1 which contradicts the definition
of TI-set, so Ry £ Tp.
Let D = A" for some h € G. If D is not a T'I-set, then there exists g € G\ Ng(D)
such that AhnA"Y # 1. This implies ANAY # 1 which contradicts that A is a T'I-sct.
If0# RgNTy < Rp, then RgNTy = Rp since Ry is 1-dimensional. But then

Rp < T4 which contradicts that B is a T I-sct. |
Notation 4.2

() W=Rp+(TaNTg)+ Rp.

(b) Ay = Ng(W), By = Ng(W), and Ly = (Ay, By).

(c) Ao = Na(Ra+ Rp), Bo= Np(Ra + Rp), and Lo = (Ao, By)-

If X is one of the symbols just defined, then we will sometimes write X (A, B) in place
of X, to indicate the dependence of X on A and B. Also if C,D € A with C # D,
then X(C, D) is defined as above with C and D in place of A and B.
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We also fiz 0 # rg € Rg and put s = srp and 51 = 3|A1- (For the definition of
srp see 2.9). Finally, if Ry £ Tp, pick X < [rp, A+ Ry with TgNTg < X and

[rB,Al+ R4o =X @ Ry, then put ¢ = Irp,X (see 2.11).
Lemma 4.3 Suppose that A is a TI-set. Then N4(Rp) < N4(B).

Proof. Let a € Ng(Rp). Then Rp = R}, = Rpa and by 2.23, B* = B so a € N4(B)
and we have N4(Rpg) < N4 (B). O

Lemma 4.4 Let 0 #1p € Rp.

(a) WNTy=(TyNTg)+ Ry.

(b) A normalizes W NTy.

(c) Ay centralizes W/W NTy, (WNT4)/Ry, and Ry.
(d) Ay ={a€ A|[rg,al € WNTy}.

(e) Ap={a€ A|[rp,al € R4} =rads.

Proof. (a) Clearly (TyNTg)+ R4 < T4. Also, RgNT4 <TagNTgandso WNTy =
(Ra+(TaNTp)+ Rp)NTg=(Ra+(TaNTp))+ (RpNTa) = Ry + (T4 NTp).

(b) [WNTy, Al < Ry < WNTy |

(c) [WNTy, Al < Ry < WNTy also gives us that A centralizes (WNT4)/R4.
Aj clearly centralizes R4. Observe that A; normalizes W and W NT4 and that
W/(WNTy) @ (Rp+(WNTy))/(WNTy,) is at most 1-dimensional so A; centralizes
W/W N T4

(d) Let a € A. Suppose [rg,a] € WNTy4. Then (a) gives W =Frg+ W NTy so
(W,a] = [Frp,a] + [WNTy,a] < WNT4 < W since a normalizes W NTy4. Hence,
a € Ny(W) = A;. Suppose a € A}. Then by (c), A; centralizes W/W NTy so
(W, A1) <K WNTy and we get [rg,al € WNTy.

(e) Let a € A. Suppose [rg,a] € R4. Then [R4 + Rp,a] = [R4,a] + [Rp,a] =
[R4,a] + Flrg,a] < R4 < Rg+ Rp. Hence, a € Ngy(Rq + Rp) = Ap. Now

38



suppose a € Ag. (R4 + Rp)/ Ry is a 1-space normalized by Ag so Ag acts trivially
on it and [rg,a] € R4. Hence, Ay = {a € A | [rB,a] € R4} and 2.10 gives
{a€ A|[rp,al € Ry} =rads. O

Lemma 4.5 Suppose that A is a TI-set and Ng(A) # 1. Then
(a) No(B) # 1.

(b)) ANE = Ng(B) = Cq(Rp) = C4(W) = Ca(Tg N Tp).

(c) ANE is an F-subspace of A.

(d) |AJANE|=|T4NTg|.

(¢) [T4,BNE]=T4NTg.

(f) dimT4NTg > 2.

(9) dim A > 4.

(h) W is an L-submodule of V. In particular, R, < W and L = L.

Proof. From 4.1, with A and B interchanged, we have Rg € T4. [T4,Np(A)] <
[V,B] = Tpg and (T4, Ng(A)] = [V, A, Ng(A)] < T4 so we get

(*) [Ta, Np(A)] < TaNTp
and
(%) [TgoNTp,Ng(A)) < Tp4NRp=0.

1°  Thenl# Ny(B)=ANE.

Proof of (1°). Let z € C4(Np(A)). Then 1 # Np(A) = Ng(A)* < BN B*. As B
is a T1I-set this gives B = B¥. Hence, 1 # C4(Np(A)) < N4(B). Then Ny(B) # 1

and (a) is proven. In particular, the sctup is symmetric in A and B.
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From (x) and (*x) we have [T4, Ng(A),Ng(A)] < [T4 N Tg,Ng(A)] < 0. So
Np(A) acts quadratically on T4 and therefore on T4/R 4. Then, by 2.5(c), Ng(A)
acts quadratically on A* and therefore also on A. Since Np(A) acts quadrati-
cally on A, we have [A, Ng(A)] < C4(Np(A)) < N4(B). So [N4(B)Ng(A), A] <
N4(B) £ N4(B)Ng(A). Thus, A normalizes Ny(B)Ng(A), and similarly B nor-
malizes N4(B)Np(A). Then N4y(B)Ng(A)<(A,B) = L. Ny(B)Np(A) is a p-group
so it’s in Op(L). So also N4(B) < Op(L). Then AN Op(L) < Ny(B) < AN Op(L).
So ANOp(L) = Ng(B). Also, ANOy(L) S ANE <ANOp(L) so Ny(B)=ANE
and symmetrically Ng(A) = BN E. o

(*#) also gives us that Ng(A) centralizes R4, Rp, and Ty NTg and therefme W.
Thus, (W, Ng(A)] = 0 and so Ng(A) < Cg(W) < Cp(Ry) < NB(RA) NB(A)
Then using the symmetry of A and B we have ANE = N4(B) = Cq(Rp) = Ca(W).
So (b) is proven except for the last equality.

We have £ = (ANOp(L))(BNOp(L)) = (ANE)(BNE). Since A is a TI-set, we
have ANB = 1. Hence, E is abelian. Then C4(BNE) < ANE and C4(BNE) > ANE
so Cq(BNE)=ANE. By 2.7(d) Ng(A), and therefore B N E, acts F-lincarly on
A. Therefore, C4(BN E) = AN E is an F-subspace of A. Then (c) is proven. Also,
2.8(d) gives

(¢ * %) [TA,BOE]-FRA:CTA(CA(BQE'))=CTA(A0E).
2° ToNTg = [Ty, BNE].

Proof of (2°). R4 < C'TA(AO E) so

(**) (** ) (x)and(b)
(T4NTp)+ Ry < CTA(AOE [TA,BﬂE]+RA < (T4NTR)+ Ry.

So equality holds everywhere. Then T4 NTp = [T4,BNE]|+ (T4NTg N Ry) =
(T4, BN E]. [ So (e) is proven.
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3° W=[Ty+Tpg,E]l= [T, E] is a L-submodule and R;, < W.

Proof of (3°). [Ty, E) = [Ta+Tp,E) = [T4,ANE]|+ [Tsg,BNE]+ [Tg,ANE] +
[Tg,BNE]=Rp+ (TyNTg)+ R = W from (2°). Then W is a L-submodule.
Since R4 < W, R = (RE) <wl=w. o

So L normalizes W giving A = A}, B = By, and L = Lj. Then (h) is proven.
Put L= L/C[(W) and A = A/C4(W).

4° AﬂE=CA(TAnTB) and IZI=|A/AOE|=|TA ﬂTBl.

Proof of (4°). (x*x) and (2°) give Cp, (ANE) = [T, BNE]+ Ry = (TpNTg) + Ry.
Then C4(TaNTp) = Co(TaNTp + Ry) = Ca(Cr, (AN E)) = AN E by 2.8(b).
Now the proof of (b) is complete.

Also, 2.8(b) applied with Y = T4y NTp gives |[A/JANE| = |A/C4(T4NTg)| =
|((T4aNTg)+R4)/Ra| = |TaNTg| since Ry £ T4NTp. Then (d) is proven. We also
have |A] = |A/CA(RA+(TaNTy)+Rp)| = |A/Ca(T4NTR)| since ANE < C4(Rp).
O

5° dimpTpNTp > 2.

Proof of (5°). Observe that Ng(A)A is a p-group and Np(A) £ A since 1 # Np(A)
and Ng(A)NA =1 as AisaTI-set. Then A is not a Sylow p-subgroup. Choose
1# s € Np(A). Then s ¢ A and A(s) is a p-group. dimT4NTp = dim[A4, Ng(A)] >
dim[A, s] > 2 by 3.2 and ({) is proven. O

If dim A < 4, then 3.2 gives A € Syl,(G) yielding a contradiction so dim A > 4

and (g) is proven. O

Lemma 4.6 Suppose A is a TI-sct. Then Ngy(B) = ANE =Cy (W) and ANE is

an F-subspace of A.

Proof. If Ng(B) # 1, this follows from 4.5. So suppose N4(B) = 1. By 2.21,
ANE=ANCL(A(L)) £ Ng(B) =1.
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From 4.3 we have C4(W) < C4(Rp) < N4(Rp) < N4(B) = 1. So Ny(B) =
ANE =Cyx(W) = 1. In particular, AN E = 1 is F-subspace of A. O

Lemma 4.7 Suppose A is a TI-set.

(a) If AJ/(ANE) is even dimensional, then ANE =rads = Ayp.

(b) If A/(ANE) is odd dimensional, then Ag/AN E is 1-dimensional.

Proof. By 4.6, we have AN E = Cy4(W) = Cyq(RB) = C4(R4 + Rp). Clearly,
Cay(Ra+Rp) < Cy(Ra+ Rp) as Ag < A. Also, Cp(Ra + Rp) < Cyy(Ra+ Rp)
since Cq(Rq4+ Rp) < N4(Rg4+ Rp) = Ap. Hence, CAO(RA +Rp) =C4(Rs+Rp)
and ANE = Cy,(Ra+ Rp). Also, AO/CAO(RA + Rp) is isomorphic to a 2-subgroup
of SLy(F) making |Ag/A N E| < |F|. Notice that both Ag 44 ads and ANE are
F-spaces from 2.10 and 4.6. Thus, Ag/AN E is an F-space and either Ag = ANE or
Ag/AN E is 1-dimensional. Since Ag = rad s is a non-degencrate symplectic space,

A/Ap is even dimensional. So if Ag = AN E, then (a) holds and if Ag/ANE is

1-dimensional, (b) holds. d

Lemma 4.8 Suppose A is a TI-set and A/ANE is odd dimensional. Then Lg induces

SLo(F) on Rq+ Rp. In particular, Ly acts transitively on the 1-spaces in R4+ Rp.

Proof. We have |Ag/AN E| = |F| from 4.7(b). Also,
ANE < Cpy(Ra+ Rp) = Cay(Rp) = Nay(Rp) < Ngy(B) < ANE

as [R4, Ag] = 0. So lAO/CAO(RA + Rp)| = |F|. Thus, Ag induces the full centralizer
of R4 in SLg(R4 + Rp) on R4 + Rp. A similar statement holds for By and we

conclude that Ly = (A, Bp) induces SLo(F) on R4 + Rp. a
Lemma 4.9 Suppose A is a TI-set. Then
(a) A; is an F-subspace of V.
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(b) Leta € Ay. Thenrp—q(a) € Tga. Moreover, g(a) =0 if and only ifa € ANE.

(c) Suppose Ay # ANE and let D be F-subspace of Ay mazimal with Cp(W) =1

and s1|p=0. Then q|p is onto and dim D = 1.
(d) One of the following holds:

1. =0, Ay =rads; anddimA;/JANE < 1.

2. s51#0,rads; =ANE anddimA;/ANE = 2.

Proof. (a) By 4.4, Ay ={a€ A|[rp,a] € WNT4}. Since W NTy is an F-subspace
of Ty, we put U = WN Ty in 2.10(a) and conclude that A; is an F-subspace of A.

(b) Let @ € Aj. By definition of ¢ and X in 2.11, [rg,a] — ¢(a) € X. Also,
[rB,al € WNTy = (T4 NTp) + Ry from 4.4. Since q(a) € Ry, [rB,a] — q(a) €
((TaNTR)+ Ry)NX. Since Ty NTp < X, this means [rg,a] — q(a) € (TyNTg)+
(RaNX) =TqgNTg+0=TyNTg. Sory —rp—qla) € T4NTpg and since
rg € RuB C T, % — q(a) € Tp. Conjugation by a gives, rg — g(a) € Tpa since
q(a) € Ry < Cy(a).

If a € Nyg(B), then rp® = rg. In this case q(a) € T4 N Tp, and since R4 N
(T4 NTpg) = 0, we must have g(a) = 0. If g(a) = 0, we conclude that rg € Tga. If
B® # B, then Rp < Tpa gives a contradiction to 4.1 so we must have B = B% and
a € Ng(B). By 4.6, N4(B) = AN E and so (b) holds.

(c) Notice that D # 0 since s; vanishes on any 1-dimensional subspace, so |D| >
|F|. By 2.11, q|p is Z-lincar. By (b) and 4.6, g(d) # 0 for all a ¢ C4(W) and so for
all d € D since Cp(W) = 1. Thus, ¢|p is one to one. Since |q(D)| < |R4| < |F|, we
conclude that |D| < |F| and so dim D =1 and q |p is onto.

(d) Notice that Cp(W) = 1 is equivalent to D N (AN E) = 1 and obscrve that
(D(ANE))/(ANE) is a maximal isotropic subspace of Aj/ANE. Thus, ANE <
rads; < D(ANE). Then rads; = (D(AN E))Nrads; = (D Nrads))(ANE).

Moreover, Drads;/rads) is a maximal isotropic subspace of Aj/rads; and since
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the maximal isotropic subspaces of non-degenerate 2n-dimensional symplectic spaces
have dimension n, we conclude that dim A;/rads; = 2 - dim(Drad s;/rad s1). This
comes from [Asch, 19.15, 19.16, 20.8].

If D £ radsj, we get dim Ay/rads; = 2. Also in this case, if D Nrads; # 0,
then D = D Nrads; since dim D < 1. Hence, D < rad s; which is a contradiction
to our assumption. So D Nrads; =0 and rads; = (DNrads;)(ANE)=ANE in
this case. If D < radsj, we get dinA;/rads; = 0, A} = rads; = D(ANE) and
dimA;/ANE =dimD(ANE)/(ANE) <1 since dim D = 1. O

Lemma 4.10 Suppose A is a Tl-set, W is 4-dimensional, and [rg, Aj]+ R4 = WNTy
for some 0 #rp € Rg. Then AW):={De A|Rp < W} = Al = {4}uB41 =
{B}UAB1L, |A1JANE| = |[F|?, |A(W)| = |F|2 + 1, and Ly acts doubly transitive
on A(W). Also A and B are conjugate and W = (R‘ﬁl). Furthermore, T4 N W
s the perp of Ry with respect to syy, where sy is the symmetric form associate to
qiy, and there exists quy : W — R4 = F, an Lj-invariant quadratic form of —-
type, (the maximal singular subspaces of W with respect to q are 1-dimensional).
{Rp|De A Rp <W}={Rp|De AW)} is the set of singular 1-spaces and Ly
induces QUW, qi) on W.

Proof. Observe that A # AN E since [rg, A1] # 1. Let D € A(W) with D # A. By
4.1, Rp ¢ WNT4. By assumption we have (W NT4)/Ryq = ([rp, A1) + R4)/R4.
Let H be a l-space of W/Ry with H £ (WNTy)/Ry. As (WNTy)/Ry 44@)
(Rg+ (T4 NTpR))/R4 is a hyperplane of W/R4, H+ (W NTy)/Rqg = W/R4. So
there exists z € (W NTy)/Ry and e € H with e + z = 7 where g = rg + Ry4.
Then e —7g = —x € (WNTy)/Ryq. Now —z = [Fg,a] for some a € A; since
—z € (WNTy)/Ra = ([rp,A1] + R4)/Ra. Then 7} =7p + [Fg,a] =Tfp—z =e.
Hence, H = (R} + Ry)/ R4 for some a € Ay. So we sce that A; acts transitively on
the 1-spaces of W/R 4 that are not in (W NTy)/R4. We know (R4 + Rp)/R4 is a

-1
1-space so there exists a € A} with Rp < R4 + R},. Replacing D by D* = we may
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assume that Rp < R4 + Rp.

Choose s € R4 with s + rp € Rp. From 4.9(c) we have ¢ |A1 is onto. So
there exists d € Ay with ¢(d) = sso s+rg =q(d)+rp € Tg from 4.9(b). Thus,
Rp < Tg and by 4.1, D = B% Hence, A(W) = {A}U BA1. By symmetry,
A(W) = {B}U AB1. Then |BA1| = |A{E/E| so |A(W)| = |ALE/E| + 1. Therefore,
Ly acts doubly transitive on A(W). So A and B are conjugate and there exists
g € L1 with A9 = B. By hypothesis, [rg, A;]+ R4 = WNTy 44() T4NTg+ Ry so
W < Rp+|(rp,A1]+ Ra < (Rgl) +Ry < (Rﬁl) < W since A and B are conjugate.
So IV = (RA1).

It remains to show that such a gy exists.

Now let @ € A; \ E. Then by 4.9(d), a ¢ rads; and so [W,a, A;] # 0. Since
A} normalizes but does not centralize [W, a], we conclude that [W,a] is at least 2-
dimensional. Note that W = Rp @ R} @ (Tp NT}). Since [W,a] is at least 2-
dimensional, we get that [Tg N TG, a] # 0.

Since a € A]\ E and ANE = Ny(B), B* # B. We know B = AY for some
g € L;. We've shown that A and B = A9 are in A(W) and since L; is doubly
transitive on A(W), (B%)! = A and B! = B for some [ € L;. So we have B¥ = A.
Conjugating by o' = I~lal we get Ba”_lal = Al_lal. Then B! = Aal. As B! = B,
we can let w = a! and sce that there exists anv w € Lj such that A = B and w?=1.
Since 0 # [Tz N T%,w], conjugating by I gives 0 # [Tg* N T‘é’l,w] = [TgNTH,w] =
[Tp NTy4,w].

Choose vy € R% and vy € T4 NTpg with [v},w] # 0. Put va = v} and v3 = vf.
Observe that v3 € Rg. Then (v1,v9) is an F-basis for Ty NTg. Since W = R4 +
(T4 NTg) + Rp, (vg,v1,v2,v3) is an F-basis for W. Let L; be the image of L; in
GL4(F) and Ay = A1/Ca, (W) % A1/(AN B). Since E acts trivially on both W
and A(L), Ly acts on both W and A(L).

Let ¢ € Ay. Now [u3,c] € [W, A1] S WNTy = Ry+(TaNTg) = Fvg+Fvy +Fug
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so [u3, c] = zg(c)vg + z1(c)v1 + z2(c)ve for some z;(c) € F. Put z(c) = (z1(c), z2(c)).
Since Rpg is 1-dimensional, v3 = Arpg for some 0 # A € F. Thus, [v3, A1] + R4 =
[Arpg, A1]+ Ra = A([rB, A1] + R4]) = M(W NT4) by assumption. And A(WNTy) =
W NTy so [v3,A1]] + R4 = WNTy = Fuy +Fvg + R4. Then z : A] — F2? is
onto. From 4.9(d), dimA;/AN E < 2 so we conclude that z is a bijection and
|A1/AN E| = |F2|. Since A acts quadratically on W/Ry, z(cd) = z(c) + z(d) for
all ¢,d € A;. So z is an isomorphism from Ay to (F2,+). Let a : F2 — A}, t — a(t)
be inverse of z : A; — F2. Define q(t) = zg(a(t)). Since z(a(t)) = t, we have
[v3,a(t)] = q(t)vg + tyv1 + tave. Hence, vg(t) = ¢(t)vg + tjv1 + tovg + v3. Then
q(t) = 0 if and only if vg(t) € Fv; + Fuy + Fug. Since W NTg = Fu; + Fuy + Fug
and Fvg = Rp, this holds if and only if RaB(t) < Tg which, by 4.1, holds if and only
if a(t) € N/il (B). N/il(B) = 1 since Ny(B) = C4(W) from 4.6 and CAI(W) = 1.
So q(t) = 0 if and only if a(t) = 1. Since a : F?2 — A is 1-1, this holds if and only if
t = 0. Then ¢(t) = 0 if and only if t = 0.

0 01
01
Wehave o = |0 X 0 where X = . Let t = (t1,t2) € F2. We
10
1 00

have shown that there exists a(t) € Ay, and similarly b(t) € By, such that

(1 000\

1 00 ( )
ni1(t1,¢2) 1 0 O -
a(t)=|n@) I 0 |= € A
na(t1,t2) 0 1 0
q(t) t 1
\a(t1,t2) t1 ta 1 )
and
(16t dltity)
1t ¢()
0 1 0 np(t,t2) ~
bty=10 I a@) |= € B
0 0 1 mp(ty,ta)
0 0 1
o000 1 )
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Observe that z(a(t)a(t’)) = t + ' so applying a to both sides gives a(t)a(t') =

a(t +t'). Then we get

(1)

and

(2)

n(t) +n(t’) = n(t + ).

qt) +tn(t) + q(t') = q(t + t).

Define a tilde function from F2\ {0} — F?\ {0} by t — & with B®) = 4¥0) ¢

A(W)\{A,B}. Then F(q(¢t) ¢ 1)=F(1 ¢ g(f)) and we sce that

(3)

Now

\00

-

O O
H\_/

n*(t)

1

n(t) I 0

/
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. na(t1, t2) . , o i
where n*(t) = and t* = (t9,t1). Notice that a(t)* € B; and A; and

ny(t1,t2)

By are conjugate by w so a(t)¥ = b(t*).

Then, since we have a(t)¥ = b(t*), we get

(5) q(t™) = q(t)
and
(6) n(t*) = n*(t).

Thus, (6) together with (3) gives

t*

n(t) = n*(q(t)

).

Since B8 = AY®), we have A«e(t) = 440 5o Ava(V() = A. Therefore, wa(t)b(t) €
Np,(R4) and Ny (A) so it normalizes [W, A;]. Hence, wa(t)b(t) must be of the shape
*» 00

* x 0

* k%

We alrcady have

t 1
/o 0 1 1 00 N ORERI0)]
wa®b@ =10 x 0o ||n@) I o 0 I n*(ﬁ%—)
\1 00 q(t) t 1 0 0 1
((I(t) t 1 1 'q(t_t) q(lt
— * *_t*_.
n*(t) X.O 0 I ()
\ 1 00 0 0 1




0 t+tl 1+tn*(%+l
= * *x(gy_t ﬂt_) ..é:..
n*(t) n (t)q(t) + X o) +"(q(t))
1 _t_ 1
\ 10 10
(q(t) 0 (L)
= | n*t) nr()-Lt- n) 4ot
n*(t) n (t)q(t) +X "0) +”(q(t))
1 Lo 1
\ q(t) q(t)
Then we get
(7) () =0
q(t)
and
n*(t) t*
® o "G
From (3), (4), and (5) we obtain
1 t*
9 — = .
©) TORRYOL
From (7) and (8) we obtain
(10) tn(t) = 0.

This gives (t +t')n(t +t') = 0 so (1) and (10) yield

(11) t'n(t) = tn(t).

Since we showed [V, a(t')] is 2-dimensional carlier, 9 # 0. Consider ¢’ = (1,0).
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0
Then n(t') = for some z9 from (10). And t'n(t) + tn(t’) = 0 from (11) so

)
n(t) 0 .
(1 0 + 1t to = 0. Hence, ni(t) + tazo = 0. Similarly,
na(t) )
)
consider ¢ = (0,1). Then n(t') = for some z; from (10). This yiclds
0
toxo
no(t) + tyz1 = 0. Thus, n(t) =
t1T
tar
Again from (10), tn(t) = 0so we have (tl to ) = t1tazo+tot1z] = 0.
111

Then tyta(ze + 1) = 0 and z9 = 1. Replacing vy by zov; and so also vy by zoug

we can let 29 = 1 = 1 and discover

(12) n(t) =

We calculate

(1 00 1 oy 1 00
w(t) := a(t)b(f)a(t) = | n(t) I 0 0 I arty) n(t) I 0
0 0
0
0

q(t) t 1

q( q(t) q(t

t 1
(1 s . 1 0
= | n(t) n(t)+1 nl) 4 n* 1) n(t) I
0
0

\a(t) el 1+tn*(;1%)+1 q(t) t 1
t 1
(1 0 0] 1 0
= | n(t) "(t)ﬁj'*'l 0 n(t) I
\q(t) 0 0 q(t) t 1



( 1+ q—(ttjn(t) +1

\ q(t)

( 0 0 q(l—t)
=] 0 n(t)q(tt +1 0

\a(t) 0 0

Now we can find

1
/ 0 0 o)
h(t) :=wtlw=1 0 n(t)q_(tﬁ +1I 0
\a(t) 0 0
1
(0
=] 0 n(t)q—t(% +X 0
\ 0 0 q(t)
So h(t) € Ng(R4) = Ng(A).
Which allows us to calculate
a()"®) = (h(k))La(t)h(k)
q(k) 0 0
— E* -1
0 (”(l”)q(k) + X) 0
1
0 0 0]
1
0] 0
. _k*
0 n(k)q(k) +X 0
0 0 q(k)

-t_]+L 1

q(t) ¢t

= | n(t) + n(t)a%n(t) + n(t) "(t)q_gﬁl +1

0
0 0

0 01
0 X O
1 00

1 00

n(t) I 0



q(k) 0 0
= | (k) A5+ X)) (a(k) k5 +X)7 0
a(t) t 1
9(k) g(F) a(k)
q(l—k) 0 0
k*
0 n(k) O +X 0
0 0 q(k)
1 0 0
_ N k* —1n(t
= | (n(k) 255 + X) lq(kg I 0
q(t) —t (n
o TR A+ X) 1

Now h(t) normalizes a so we have a(t)"*) = a(r) for some r € F x F which

depends on ¢t and k. Then

- ﬁ(n(k)%;) +X)
AR IR IO
RN ([ R

Sor= (k)z(tlkz + tok) (kg kq ) + ;1-(]17)7‘1(’“) (tz t1 )

=(t1k2+t2k1k2+q(k)t2 ty koky +tok2+q(k)t] )
q(k)? q(k)?

This gives

t1k3 + tokiko + tog(k) tikoks + tokf + th(k))
q(k)? ’ q(k)?
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Let q;(k) = q(k,0) and ¢2(k) = q(0, k). 1f ko = 0, then

q(t) —q to  tok? +t1q1(k1)
q1(k1)? ak)’  qu(k)?

If t = 0, then

q(t1) _ g (1L

q1(k1)? q1(k1)
Let a = ¢o(1) and qi(k1) = ¢;. Then ¢i(t;) = Q1(k1)2q2(q—l?kl—)) = t1g2(1) = t2a.
Similarly, q2(t2) = t%a. (2) and (12) give
(13) q(t1,t2) = at? + 1t + at3.

Then ¢ is a quadratic form with associated symplectic form s((t1,t2), (s1,$2)) =

t152 +tas1. Define gy (soug + s1v1 + soug + s3v3) = sgs3 + as% + 5182 + as%. qw 1s

a quadratic form with associated symplectic form sy ((¢1, 2, t3,t4), (1, $2, 83, 84)) =
0 01

t184 + tosy +t3s9 +t481. Recallw = |0 X 0 so it switches sp and s3 and

1 00
switches s; and sg clearly making gy w-invariant.

(1 000\ (1000\

ny(ty,t 1 00 t 1 00
Now recall a(t) = 11, t2) 1= 2 . Then

no(t;,to) 0 1 0 ty 0 1 0

\alti,t2) t1 ta 1 ) \g(t) 1 t2 1 )

aw ((sovo + 101 + sava + szug)2l1t2))
= qw (souo + (s1t2v0 + s1v1) + (s2t1vp + s2v2) + (s3q(t)vo + s3t1vy + s3tove + s3v3))
= qw ((s0 + s1t2 + saty + s3q(t))vo + (s1 + sgt1)vr + (s2 + s3ta)va + s3v3)
= (sp + s1t + saty + s3q(t))s3 + a(sy + s3t1)?
+ (81 + s3t1)(sg + s3ta) + a(sy + 33t2)2
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= 5083 + S1t2S3 + sot153 + s%q(t) + as% + as%t% + 8182 + s183t9 + s3t159
+ s§t1t2 + as% + asgt%
= 5083 + S1t9sy + sol183 + sgat'f + S%tltg + sgat% + as% + as%t% + 81892
2 o2 242
+ s183t2 + s3t1sg + sitito + asy + asisty
— 2 2
= 5083 + as] + 5182 + as)

= qw (sovo + s1v1 + sov2 + s303).

So qyy is Aj-invariant as well as w-invariant. Ly = (A1, AY) = (A,w) so gy is also
Li-invariant.

Consider Rfi = vol = Fuvg + Fv; + Fvg. Obscrve that the definition of sy shows
that Ty N W is the perp of R4 with respect to syyy. To be singular we must have
0 = qw(toug + t1v1 + tovg) = at% + t1to + at% = q(t1,t2) which implies t} =t9 =0
from carlier. Hence, R4 is a maximal singular subspace and we sce that the maximal
singular subspaces are 1-dimensional and gy is of —-type.

Due to the double transitivity we have Rﬁl = {Rp | D € A(W)}. W has
IF|?> + 1 singular 1-subspaces and |Rfi1| = |F|2 + 1 where each Rp is singular so
{Rp | D € A(W)} is exactly the set of singular 1-subspaces of W.

[Asch, Chap 7] gives us that Q(W, qjy7) = SLo(K) where K is a quadratic extension
of F. Aj is the image of A; in O(W,qy). Since A; centralizes Rj/RA, A <
Q(W, qiy) and |A1| = ¢2, which is the order of the Sylow subgroup in SLy(K). So A;
and Bj are sent to different Sylow subgroups and SLs(K) is generated by two Sylow

subgroups so L; induces Q(W, qiy ). a

Lemma 4.11 Suppose that A is a TI-set and No(B) # 1. Then L = Ly, dim A/ANE

is even, and WNTy = [rp, Al + R4.

Proof. By 4.5(h), L = Ly and therefore s = s;. By 4.5(d) and (f), dimp A/ANE =

dimp T4 NTp > 2. Suppose for a contradiction that dim A/AN E is odd. Then 4.7
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gives rads # AN E. Since s = s1, 4.9(d) implies A =rads and dinA/ANE =1, a
contradiction to dim A/AN E > 2. Thus, dim A/AN E is even.

Since A is quadratic on V/Ry4, the map 6 : A — T4/Rp,a — [rg,a]+ R4a/Ry is
a homomorphism. From 4.4(e), Ag = {a € A | [rp,a] € Ra} so Ay is the kernel of 4.

Thus, |A/Ag| = |[rB, A] + Ra/ R 4]. This, along with Ay L7 ANE and A = A, gives

|A/ANE| = |A/Ao| = |lrp, Al + Ra/Ral < W NTy/Ry|

9 Ry + (@anTg)/Ral = T4 Tl “2D 14740 B)

Hence, [rp, A]+ R4 = W N Ty. O

Lemma 4.12 Suppose A is a TI set, Ny(B) =1, and dim A/AN E is even. Then
Ta=[rp,Al+ Ra, WNTy = [rp,A1] + Ry, and |A1| = T4 N Tg|.

Proof. We have Ag 47 ANE 4.6 Nj(B) = 1. The map § as given in 4.11 is still a

homomorphism with kernel Ag. Then
|Al = |A/Ao| = |[rB, Al + Ra/Ral < |Ta/Ral = |Al.

Thercfore, Ty = [rg, A] + R4 and § is an isomorphism. From 4.4(d) we have A; =
{a€ A|[rg,a]l € WNTy},s0o Ay =6~ Y(WNTy/Ry). We conclude that |A;| =
IWNTy/Ry|=|TgNTp| and WNTy = [rp, A1] + Ry. a

Lemma 4.13 Suppose that A is a TI set, dim A/ANE is even, and T4 NTg # 0.
Then dimW =4, dimT4NTg =2, and [rg, Aj]+ R4 = WNTy.

Proof. By4.11and 4.12, [rp, A1]+ R4 = WNT4. By 4.5(d) and 4.12, dim A; /ANE =
dimT4 NTp > 0. By 4.9(d), dimA;/JANE < 2. If dimA;/ANE = 2, then
dimT4NTg =2, dimnW = 4 and we are done in this case.

So suppose for a contradiction, that dimA;/ANE = dimT4NTg = 1. Then
dimW = 3. If N4(B) # 1, then 4.5(f) gives dimTy N Ty > 1, a contradiction.
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Hence, N4y(B) = ANE =1 and dim A; = 1. Since dim A/AN E is even, 4.7(a) gives
Ag=ANE=1.

A cea) [r:c] € Ry} and so [Rp,a] £ Ry.

Let 1 #a € Ay. Thena ¢ Ap 4
From 4.4(a) we see (W NTy)/R4 = T4 N Ty which is 1-dimensional in this case
and [W, A;] < W N Ty, this implies WNTy4 = [W,a] + R4 < Cw(a). Thus, A;
centralizes WNTy = Rg + (T4 NTpg) and so also T4 N Tg. By symmetry, B
centralizes T4 N Tg and so Ty N Tg < Cw({(A1,B1)) = Cw(L1). Also, A; acts
faithfully on W := W/(T4NTg) and |A;| = |F|. Thus, A; induces the full centralizer
of Ry = (Rg+(T4NTR))/(T4NTR) in SLy(W) on W. A similar statement holds for
B and we conclude that L1 induces SLy(W) on W. In particular, L; acts transitively
on the 1-spaces of W, and Bj acts transitively on the 1-spaces in W distinct from
Rp. Since a ¢ Ny(B), Rg # R% and so Ry £ WNTp and R% # Rp # Ry. Thus,

Rp% = R4’ for some b € By. It follows that
Ry < RYy +(TanTp) = (R +(TanTp))’ < T4
and by 4.1, B® = AY and R% = Rfﬂl.

Hence, (B2, B) = (Ab, BY) = (A, B)® = L} = L and

To+Tp 2.22 [V,L) = [V, L% = T% + Tg = [T, a] + Tp.

Thus,
|([Tp,a]l + T)/Tpl = (Ta+Tp)/TBl = |Ta/(TaNTp)| = |Tal/|F|.

By 2.12 and 2.3, [V, a] is a hyperplane of T4 containing R4 and so |[V,a]| = |T4|/|F|.
Then |[Tp,a]| < |[V,a]| = |Tal/|F| = [([Tp,a] + Tp)/Tp| = |[Tp,al/([Tp,a] N Tp)|
and so [Tg,a]NTg = 0. It follows that [V,a] = [Tp,a] and [V,a]NTp = 0. In
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particular, ([V,a] NW) N (TgNW) = 0. Thus, dim([V,a] N W) = dim([V,a] " W) +
(WnNTg)/(WNTg) <dimW/(WNTg) =1since WNTg is a hyperplane of W.
Therefore, [V,a] N W is at most 1-dimensional. Since Ry < [V,a] N W, this gives
Vial| "W = Rgq. Rp < W so [Rp,a] < [W,a] < WN[V,a] = Ry since a € 4.

Hence, a € Ay = 1, a contradiction. O

Lemma 4.14 Suppose A is a TI-set, W is 4-dimnensional, and WNTy4 = [rp, A1] +
R4. Then there exists an Ly-invariant quadratic F-form, qy, associated with the

symplectic form sy such that
(a) Ly induces QW, qyy) on W.

(b) aw is of —-type.
¢c) WNT4 = RY with respect to syy.
A A W

(d) Let R be a 1-dimensional subspace of W. Then R € R if and only if qy(R) =0

and if and only if R € Rﬁl.
(e) C’Ll(l'V) =FE.

Proof. (a), (b), and (c) are proven in 4.10.

(d) This is shown at the end of the proof of 4.10.

(e) We first show that Aj is a weakly closed subgroup of Lj. Recall that Cy (A1) =
R4 so it’s 1-dimensional. Let g € Ly < Ng(W) with [A;, A] < A;. Then A] <
Ng(Cw(A1)) = Ng(Ry4). So R4 < CW(A"II) = ng4 and thus R4 = Ri. Then
A= A9 and A, = A“l] so Aj is a weakly closed subgroup of L;. From 4.10 we have
L1/Cr(RL)) = QUW,qw) & SLy(FF). So we can apply 2.21(g). Hence, E = C :=
Cp,(AY). Then Cp (W) 4.10 Cr (RYY) 2'22(3) Ci = E. 4.6 gives E < Cp, (W) so
E=Cp (W). O

Thecorem 4.15 Suppose A is a TI-set. Then one of the followinﬁ holds:
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1. dimA/ANE is even, L = L;, dimW =4, and [rg, A] + R4 = W NTy.
2. |A|=24, E=1, and |F| = 2.

Proof. If Ng(B) # 1, then 4.5, 4.11, and 4.13 show that (1) holds.

So suppose N4(B) = 1. Then 4.5 gives Ng(A) =1land ANE=1=BNE
making E = 1. By 2.5, dim A > 2 and by 4.7, dim Ag < 1. Thus, A # Ayp.

If Ay # A, picka € A\ A;. If A = Ay, pick a € A\ Ap. Since 49 < Ay,
we have a ¢ Ap in either case. Put B = B, A=B% [ = (BB = (A, B),
E=(An0y(L))(BNOp(L)), and W = Rp + (TgNTY) + Ry = W(A, B). Since
|Tp/Crg(a)l = |Tp/(TpNCy (a))| = [(Tp+Cy (a))/Cy(a)| < |V/Cy(a)| = |[V,a]| =
ITal/|F| < |Tpl|, we have Cr),(a) # 0. Since Crpla) < Tp NTE, this implies
TpNTH #0.

Suppose for a contradiction that dim A/ANE is odd. Then by 4.8, Ly := N E(R it
R B) acts transitively on the 1-spaces of R it R = Rp + R%. Hence, there exists
g9 € N; (R + Rj3) with R} = [Rp, a]. It follows that R} < T4 and so R = Ry by
4.1. But then [Rp,a] = R4 and a € Ay, a contradiction to the choice of a.

Thus, dim A/fi N E is even. Since T '1NTz # 0, we can apply 4.13 to see that
dimW =4 and [TB,/il] + R;i =Wn T;. Therefore, we can apply 4.14 to L. So I;
induces Q(W, qW) on W, where g,y is a non-degenerate quadratic form of —-type.
Notice that a normalizes W and L so g,y 1s a-invariant.

Assume that W N T4 contains a singular 1-space R. Then R = R% for some
g € Ly from 4.14(d). So R% < T4 and hence, R% 4.10 R4 yielding A9 = A. Since
A # B and Ly is doubly transitive on the singular 1-spaces in W, we may choose g
such that R = Rp. Then B9 = BY = B and A9 = A. Thus, W = W9 = W since
L, normalizes W and then a € N4(W) = A;. By our choice of a this implies A = A4,
and so L = L and (1) holds.

Next, assume that W N T4 contains no singular 1-space. Let Y be a isotropic

subspace of WNTy. Let g be the quadratic form on W. Then q|y is Z-linear. Since
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Y contains no singular 1-spaces, ¢ |y is one-to-one. Thus, |Y| = |¢(Y)| < |F|. This

implies that wn T4 contains no isotropic space of dimension greater than 1.

Since a acts quadratically on W, [W ,a] is an isotropic subspace of W. Thus,
[IV,a] is a non-singular 1-space. Let X; and X3 be 1-subspaces of [W,a]* with
[(W,a]* = X1+ Xo+[W,a]. So X1+[W,a] # Xa+[W,a]. For the following argument
let s € {1,2}. Since X; and [W,a] are 1-dimensional, they are both isotropic. As
X; < [W,a]* we also have [W,a] < X;+. Thus, both X; and [W,a] are contained
in X;* and in [W,a]t. So X; + [W,d] < Xt n [W,a]* = (X; + [W,a])L. Then
X;+ [W, a] is an isotropic 2-space in W and therefore contains a singular 1-space Y;.

Since Y; is singular, Y; # [V, a). Then Y; + [W,a] = X; + [W,a] and so Y; # Ya.
Also, Y1 = R¢o and Yy = Rp for some C,D € BL1 with © # D by 4.14(d). So
Rc+Rp < [W,at = W (a) by [Asch, 22.1]. The doubly transitive action of Ly on
B implies W = W(C, D) and L = (C, D). Since Rg + Rp < [W,a]t = Cyy(a),
a centralizes Ro and Rp. So a normalizes C and D and we have a € N4(C) N
Ny(D). 4.6 states that Ng(C) and Ny(D) are F-subspaces of A, so we conclude
that Ag = Fa < N4(C) N N4(D) < Ng(W). Since N4(Rp) 4§3 Nyg(B) = 1, we
have Ny, () = 1 and so 4.6 gives CAG(W) =1 as well. Also, [Ag,a] = 1. Then,
since Aq normalizes W and centralizes @, it normalizes the 1-space [W,a] and so
also centralizes it giving [W,a] < Cyy7(Ag). This gives C’W(Aa)l < [W,a]t. Thus,
[W,Ag) < [W,a]t. Suppose that [W,Ay] # [W,a] and let T be a 1-subspace of
[W, Ag] with [W,a] # T. Then [W,a] + T is an isotropic 2-space in W N Ty, a
contradiction. Therefore, (W, Ag] = [W, d] is 1-dimensional. Notice that this, along
with A.5 implies |A4| = 2 and so |F| = 2.

Since (B, B%) = L = (C, D), we have
Tg+ T8 = [V,L] = Tc + Tp.

Let L* = (A,C), E* = (ANOL(L*))(C NOy(L*)), and W* = Ry + (T4 NTg) + Re.
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Since a € Ny(C), Ng(C) # 1. So by 4.5(f), Ty NTg # 1. By 4.11, dim A/AN E* is
even. Then 4.13 gives diin W* = 4 and dim TyNT¢ = 2. Thus, dim[T¢g, a] < dim TN
T4 < 2. Since [W, a] is non-singular, R # [W,a]. Therefore, Ro N[W,a] = 0 and
then W = 0+ = (Re N[W,a))t = RE + [W,a]t = (WNTp) + Cy(a). Hence,

(W,a] = [(W NTe),a] + [Cyy (), a] < [T, al.

By symmetry, dim[Tp,a] < 2 and [WV,a] < [Tp,a]N[Tgc, a]. Thus, dim[Tg+T%,a] =

dim[Tg, a] + [Tp,a] < 3. Also, dimTy = dimTH and dimTp NTH = 2 so we have

dimA-1=dimTy -2 =dimT} — dim(Tp N Tp)
— din(T§/(T5 NT)) = din((T} + Tp)/Tp)
= dim(([Tg, a] + Tp)/T) < dim[Tp, a]/([Tp,a] N TB)

< dim[Tg,d] < dim{Tg + Tj,a] < 3.

Thus, dim A < 4. Observe that a ¢ C as A is a Tl-set. And since a normalizes C,
C({a) is a 2-group. It follows that C, and so also A, is not a Sylow 2-subgroup of G.
3.2 now shows that dim A £ 3. Thus, dimA = 4 and so |A| = |F|* = 2%. Then (2)
holds. a
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Chapter 5
Identifying Ln(QQ)

Hypothesis 5.1 In this chapter we assume that A is a TI-set, dimA/ANE = 2,
L=Ly,dmW =4, and [rg,A|+ R4 =W NTy for all A# B € A.

Lemma 5.2 W = Ry,

Proof. Since L = Ly, 4.10 gives W = (Rﬁl) =Ry, a

Definition 5.3 A point is an element of A. If A and B are distinct points, then
l(A, B) = A({A, B)). Any set of points of the form l(A, B) is called a line. L is the
set of all lines. A point A is said to be incident to a line l (or lies on a line 1) if
Ael. Iflisaline then Ly=(A| A€l).

A subset B of A is called a subspace of A if (A,B) C B for all A # B € B.
The subspace generated by B is the smallest subspace of A containing B; that is, the

intersection of all the subspaces containing B. We denote this subspace by [B].

Lemma 5.4

(a) Let S be a subspace of A and A € S. Then A normalizes S.
(b) Let 0# B C A. Then (A((B))) = (B).

(c) Let BC A. Then [B] = A((B)) and (B) = ([B]).
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Proof. (a) Let B € S. If A = B, then A fixes B and so BACS. If B+# A, then A
normalizes [(4, B). Since S is a subspace, [(A4, B) C S and so again BA C S.

(b) (B) < (A((B))) < (B).

(c) If A, B € A({B)), then (A, B) < (B) and so [(A, B) C A({B)). Thus, A({B)) is
a subspace of A. If D € B, then D < (B) and so D € A({B)). Therefore, B C A({B))
and [B] C A((B)). By (a), every element in ([B]) normalizes [B] so ([B]) normalizes

[B]. Thus,

A((B)) 220 A®) ¢ alIBD C [B] € A((B)).

Then

A((B)) = [B] = AUBD = 4((1B8Y))
and

) Y ausy) = (AUIBY)) = ([BY). 0

Lemma 5.5 Let | = I(A, B) be a line.

(a) Li/Cr,(1) = Qf (F) = SLa(F).

(b) L; acts doubly t7‘ansiti';)ely on l.

(c) If C €1, then C/Cc(l) acts regularly onl\ {C}.
(d) Ly ={C,D) and !l =1(C,D) for all C # D € L.

Proof. We may assume | = [(A, B) and so L; = L. By Hypothesis 5.1, 4.15(1) holds.
So we can apply 4.14. Thus, the map ® : | — {the set of singular 1-spaces of W}
which takes C — R¢ is a L-equivariant bijection. Also, the action of 0 (F) on the
singular 1-spaces is isomorphic to the action of SLy(F) on the 1-spaces of F2. So we

have (a). 4.10 and 4.5 give us A(L) = BA U {A} and the doubly transitive action.
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We also have N4(B) Wane=cC '4(1) so we have (b) and (¢). In fact, a line
contains exactly |[B4 U {A}| = |F| + 1 points. By (b), (4, B) = (C, D) and so also
l =1(A, B) = I(C, D), which gives us (d). O

Lemma 5.6 Any two distinct points lie on a unique common line.

Proof. By 5.5(d), I(A, B) is the unique line incident with A and B. O
Lemma 5.7

(a) Let m be a line. Then m is A-invariant if and only if A € m.

(b) Let a € A and m an a-invariant line. Then one of the following holds:

1. A€ m and A is the unique fized-point of a on m.

2. a fizes all points on m.

(c) Let J C A. Then C4(J) is a subspace of A.

Proof. (a) Suppose first that A € m and let D be a point that lies on m with A # D.
Then 5.6 gives m = [(A, D) = A((A, D)) and so m is invariant under A.

Suppose next that m is A-invariant. Let C be a point incident to m. Then both
A and C are contained in Ng(m). A= C9 € m by 2.20.

(b) We may assume that there exists D, D* € m with D # D? or else a fixes all
points on m. Put | = I(A, D). Since | is A-invariant by (a), D% € [. Then 5.5(d) says
I = I(D,D%). Also, 5.5(c) says A/C4(l) acts regularly on m \ {A} and so A is the
only fixed point of a on [.

(c) Let a € J. Let C # D € C4(J). Then m = I(C, D) is invariant under a and

a has at lcast two fixed-poiuts on m. Thus by (b), m C Cy(a) so m C Cy(J). O

Lemma 5.8 Let A, B,C be non-collinear points. Then W N T is at most two-
dimensional and there exists D € A(L) withTp NTg £« W.
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Proof. Suppose dinW NTp > 3. Then W N T contains an isotropic 2-space and
then also a singular 1-space. So R% < T¢ for some g € L. But then C = A9 € A(L),
contrary to the assumption that A, B, C are non-collinear. So dimW NTg < 2.
Suppose next Tp N T < W for all D € A(L). Since 4.13 states that Tp N T
is 2-dimensional, we conclude that WNTo =TpNTo < RJ'. But then WNTp <

(Rp| D € A(L)}t =W+t =0and WNTg =0, a contradiction. O

Lemma 5.9 Suppose that No(B) = 1. Then Gg = L, Rg = W, and Rg is natural
Q4 (F)-module for Gy.

L 4nE = 1, we have dimA = dimA/(A N E) = 2. Thus,

Proof. Since N4(B)
dinTy =3and Ty = WNTy < W. Let C € A and suppose that C ¢ A(L).
Then by 5.8, Tp N T £ W for some D € A(L). So D € Al for some | € L making
Tp=T, < W! =W, a contradiction. Thus, C € A(L). Hence, A = A(L), Gy =

and W = R = Rg. We have R is natural Q (F)-module for Gy from 4.10. a

Lemma 5.10 E=Cp (W) and L = L'.

Proof. Forall A € A(L), E < Ng(A)so E < Cg(Ry4). Then we have E < Cr (W) =5

2.24 2.21
CL(RL) < CL(A(L))
L/CL(W) = Qy (F) = SLo(F) from 4.10. So L/CL(W) is simple, L = L'C(W),
and L = L'E. It remains to show that E < L. Let a € A\ E. Since Cp(a) <

BN B%* =1, we have
Ce(a) = Clange)BnE)(a@) = (AN E)Cpnp(a) = ANE.

Thus, |E/Cg(a)| = |[E/ANE| = |BNE| = |ANE| and so also |[E,a]| = |[ANE|.
On the other hand, a acts quadratically on E and so [E,a] < Cg(a) = ANE. As
they have the same order, AN E = [E,a] < L'. By symmetry, BNE < L' and so

=(ANE)BNE)< L. 0
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Lemma 5.11 Let A, B,C be non-collinear points. Then A = N4(B)N4(C).

Proof. Suppose N4(B) = 1. Then 5.9 gives A = A(L), a contradiction to A, B,C
non-collincar. Hence, N4(B) # 1 and similarly N4(C) # 1.

Suppose first that Ng(B) N N4(C) = 1. In 4.5, (g) gives dimA > 4 while
(b), (d), and (f), together with the fact that dimW = 4 give dim A/N4(B) =
2 = dimA/N4(C). So4 < dimA = dimA/(Ng(B) N N4(C)) < dimA/N4(B) +
dim A/N4(C) = 4. It follows that dim A = 4, dim N4(B) = dim N4(C) = 2 and
A = Np(B)N4(C) in this case.

So now suppose that Ng(B) N N4(C) # 1 and A # N4(B)Ng(C). Let P =
[A, B,C]. Notice that N4(B)NN4(C) fixes A, B and C. Since C4(N4(B)NN4(C))
is a subspace of A from 5.7(c), we conclude that N4(B) N N4(C) fixes all points in
P and so

Ca(P) = Na(B)NNp(C) # 1.

Put H = (A, B,C), Q = C4(P)Cp(P)Cc(P),and Y = W(A, B)W(A,C)W(B,C).
By (% * ), (b), and (e) in 4.5 we have
Cr, (Na(B)) =TaNTp + Ry.
Since Ng(B)N4(C) is a proper F-subspace of A, this means
2.8
Cr,(NaA(B))NCrp, (Np(C)) = Cr,(Na(B)N4(C)) # Ry
and so
(TanTp) + Ra) N((TaNTc) + Ry) # Ra.

Thus, there exists a 1-subspace, J, of T4 with J # Rgq and J < (T4 NTR)+ R4) N
((T4NTg)+ Ry). So J <Tp + Ry and therefore J + R4 < Tg + R4. Since Ty is

a hyperplane of T + R4, (J + R4) N Ty is a hyperplane of J + R4 and therefore
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1-dimensional. Since A acts transitively on the 1-subspaces of J + R4 different from
R4, there exists € A with JT = (J + R4) N Ty so J* < Tg. Similarly there exists
y € Awith J¥ = (J + R4) N Tg < Tp. Replacing B by B * and C by CV™ " we

may assume that J <Tp and J <Tg. So J <TyNTgNTc.

Note that

Yi:=Rpa+Rp+Ro+(TanTg)+ (TagNnTe)+ (TpNTe)

=W+ Ro+ (TanTe)+ (TpNTg).

Since J < W, dim((TgNTp)+W)/W =dim(TgNTe)/(TgNTeNW) < dim(Tg N
Tc)/J £ 1as Tg NTg is 2-dimensional. So both ((Tg NT¢) + W)/W and similarly
((TgaNTg) + W)/W are at most 1-dimensional. Thus, dimY/W < 3.

We will now show that Ry < Y. By 5.4, H = (P). In particular, P is H-
invariant. Observe that C4(P) < Ng(B) and so [C4(P),B] < Cp(P). 1t follows
that H normalizes Q. Since C4(P) # 1, we have Ry < [T4,C4(P)] from 2.3. Also,
[Tg,CA(P)]| <TaoNTp <W(A,B) <Y and so

Ry < [TpTpTc, Q] LY.

2.20 says A(H) = A" so Ry = (Rf{ ). Since H normalizes T4yTgTc and Q, this
implics that
Ry = (RY{) < [T4TpTc, Q) < Y.

As L < H, we conclude that L acts on Ry /W. Since |L/Cr(W)| = |4 (F)|, we

have that |F|2 + 1 divides |L/CL(W))| 510 |L/E|. On the other hand, |F|2 + 1 does

not divide |GL3(F)|. So if K := C(Ry/W) < E, then

IFI2+1
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divides

|IL/CL(W)|=|L/E

divides
|L/E||E/K|=|L/K]|
divides
|GL(Ry /W)
which divides
|GL3(F)|

as dim Ry /W < dimY/W < 3. This is a contradiction, so it follows that K £ E.
Since L/E is simple, this means L = EK. Since FE is abelian, we get L/ is abelian,
and since L is perfect, L = K. Thus, [Ry,L] < W. Let D € A(L) with D # C.
Then

TpNTe < W(D,C)NTp = [Re, D]+ Rp < [Ry, L]+ Rp < W.

But this contradicts 5.8. O

Corollary 5.12 Let A, B and C be non-collinear. Then N4(B) fizes all points on
l(A, B), fizes all lines through A, and acts transitively on the points of [(A, C) distinct
from A.

Proof. Since N4(B) L0 AN E and E fixes A(L), N4(B) fixes all points on (A, B).
By 5.5, A fixes all lines through A and acts transitively on I(A, C)\{A}. Also, N4(C)
fixes all points in {(A,C). As A = Ny(B)N4(C) from 5.11, this implies that N 4(B)
acts transitively on [(A4,C) \ {A}. O

Lemma 5.13 Let A, B, C be non-collinear points and P the subspace of A generated
by A, B and C. Then P is a Moufung plane.
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Proof. Let P4 be set of points which lie on a line from A to a point on I(B,C).
Similarly, let Pg the set of points which lie on a line from B to a point on [(4,C)

and let P be the set of points which lie on a line from C to a point on (4, B).
1° P=Py

Proof of (1°). We will first show that P4 C Pp.

Let D be a point on I(B,C). If D = B, then I(A, D) C Pg. So suppose D # B.
Then I(D, B) = I(C, B) # I(A, B) and D, A, B are non-collinear. Let F' be a point
on [(D,A). So F is an arbitrary element in P4. If F = A, then F' € Pp, so we may
assume that F' # A. By 5.12 there exists y € N4(B) with DY = F. Since y € Ng(B)
and D lies on {(C,B), F = DY lies on [(CY,B). Since y € A and A normalizes
[(A,C), CY lies on I(A,C). So F € Pp. This completes the proof that P4 C Pp.
By symmetry, Pg C P4. Hence, P4 = Pp and by symmetry, P4 = Pp = P¢.

Since P4 is the set of points from a union of lines through A and A normalizes
every line through A by 5.7(a), A normalizes P 4. Similarly B normalizes Pg and C
normalizes Pg. It follows that H := (A, B, C) normalizes P4 = P = P¢. Clearly
P4 C P. By 5.4(c),

P =T[AB,C| = AH)*2 4H c py

and so P = P4 and (1°) holds. O
2°  Putn = |F|2. Then there are n® + n+ 1 points and n? +n + 1 lines in P.

Proof of (£°). 4.10 gives |A U BA| = |F|2 + 1 so every line contains n + 1 points.
Therefore, there are n + 1 lines from A to a point on {(B,C). Each of these lines
contains n points other than A and so there are (n + 1)n + 1 = n 4+ n + 1 points
in P4 = P. There are (n? + n + 1)(n? + n) pairs of points in P. Each line contains

(n + 1)n pairs of points and each pair of points uniquely determines a line, so there
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are
(n? +n+1)(n? +n)

2
= 1
i+ ) n"+n+

lines. So (2°) holds. O

We conclude from (2°) and [Ha, Theorem 20.8.1] that P is a projective plane. Let
P be a point and [ a line with P € [. An elation on P with center P and axis ! is
an automorphism of P which fixes all points on [ and all lines in P through P. Let
q be a line in P through P distinct from [. By definition the projective plane P is a
Moufang plane if for all such P,! and q, the group of elations with center P and axis
[ acts transitively on ¢ \ {P}.

Let R be a point on [ distinct from P. By 5.12, Np(R) acts as a group of elations
with center P and axis | on P. Moreover, Np(R) acts transitively on ¢ \ {P}. So P

is indeed a Moufang plane. O
Corollary 5.14 P is isomorphic to the projective plane defined over F.

Proof. Since P is Moufang plane, [Ha, Theorein 20.5.3] shows that the ternary ring R
associated to P is an alternate division ring. Since P, and therefore R, is finite, [Ha,
Theoremn 20.6.2] shows that R is a field. Since [Ha] has also shown us that |R| + 1 is
the number of points on a line, we get R = |F |2 = |F|. Any two finite fields of the

same order are isomorphic and so R 2 F. O
Proposition 5.15 A is a projective space defined over F.

Proof. According to the Veblen-Young axioms a projective space is set of points and

lines such that

e Any two distinct points lie on a unique common line; and

e If A, B and C are non-collincar points and D and E are distinct points such
that A, C, E and B, C, D are collinear, then the line through D and E intersccts

the line though A and B in a point F.
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The first statement we already have in 5.6. Let P = (A, B, C). For the sccond,
B, C, D collinear gives us that D lies in P and A, C, E collinear gives us that E lics
in P. So the line through D and F lies in P. The line through A and B also lies in
P so it intersects the line through D and E in a point F.

Then A is a projective space. If A is 2-dimensional, then A is generated by three
points and 5.14 gives us the result. So assurﬁe that A is at least 3-dimensional. It
follows that A is Desarguesian and therefore a projective space defined over a field

R. From 5.14 we see that R 2 F and the Proposition is proven. O
Theorem 5.16 Part 3 of Theorem 2.2 holds.

Proof. For H < G let H' be the image of H in the automorphism group, Aut(A),
of the projective space A, and let H} be the image of H in GLp(Rg). Let I be
the subgroup of Aut(A) consisting of the identity element and all transvections with
center A.

Claim: Al =1.

Proof of Claim. Suppose for a contradiction that Al # I. Then there exists an
Fo-hyperplane, Iy, of I with Al < I;. Notice that I contains an f“-hyperplane, 1o,
of I and that Iy = Cy(D) for some point A # D € A. Then ATC;(D) < I and
so |A/Na(D)| = |AT/N (D)| < |I/Cy(D)| = |F|. Hence, |DA| < [F| = |I(4, D)\
{A}| 5-3(c) |D4|, a contradiction. Thus, AT = I and the claim holds.

Since G acts transitively on A4, we conclude that GE is the subgroup of Aut(.A)
generated by the transvections. Hence, Go/Cg,(A) = Gl =~ PSLy(F), where m — 1
is the dimension of the projective space A. Let x be a p-element in Cg(A). Then z
centralizes all D € A so we have z € Cg(Rg). Thus, C,t(A) = Cg(A)/Ca(Rg) is
a p'-group. In particular, [4, Cq(A)] < ANCg(A) < Cg(Rg) and CG(i)(A) < Z(Gé).
[Griess] now shows that Gt~ S Ly (F)/Zy for some subgroup Zy < Z(SLm(F)).

For an F-subspace, X, of V put X = F ®f X. From Cy(A) 2.3 R,y we get
Cy(4) = Ry4. Let X be a non-zero FGg-submodule of ﬁg. Then 0 # C5(A) < Ry,
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and since Ry is 1-dimensional over F, Ry = Cz(A) < X. Thus, Rg = (Eio) <
X. Hence, EG is a simple FGo-module. Let Ag < A; < ... < Aj—1 = A be
a chain of subspaces of A with dimA; = i, Ag = {A}, and A; = (A, B). Let
Py = N{Ng,(4))1 |0 < j <m—1,i# j} and L; = O (B;). Fori >0, P; < N4 (A)
so L; centralizes R 4. Now Lo normalizes [(A, B) and so also L and Ry,. It follows that
Ly = LiCLO(RL) and so I}[, = Ny ® N§ where Ny is a natural S Lo(F)-module for
Lo and o is the field automorphism of order 2 of F. Curtis’ Lemma [MS] now shows
that ﬁc is uniquely determined up to isomorphism as an FSLm(jIT‘)-module and that
Rg=N ®g N9 for some natural FSLy(F)-module, N. Let z € Z(SLy(F)). Then
z = Axid for some A € F with A™ = 1. Moreover, z acts as A\’ *id on N®if«‘ N? and
soz € Zy if and only if A% = A™1. Thus Zg = {A*id | A € F,A™ = 1,07 = A~1}

and all parts of the thecorem are proved. O
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Chapter 6

Main Theorem

We are now able to prove our main theorem.

Proof of Theorem 2.2. We have C(A)/A a p’-group from 2.16. Also, 2.19 states that
A is a weakly closed subgroup of G. We have R4 # Rp from 2.23. If T4y = Tg, then

Ry < Tp and 3.1 applics making Ty # Tg. So we have Ty # Tp.

Case 1: Suppose A is not a TI-set. Then there exists A # B € A such that
|ANB|# 1. Hence, Ry = [T4,ANB] < Tpg.

Case la: Suppose |F| > 2. Then 3.1(a) holds. So |A| = |F|?> making |A| > 4, and
|AN B| = |F|. We are then able to apply 3.2 to get A € Sylp(G). We can also apply
3.3 to sce that Go/Cg,(Rg) = SLa(F) or Go/ Ceo(Rg) = Q7 (F) and in either case
Rg is the corresponding natural module. So in this situation 2.2(1) holds.

Case 1b: Suppose |F| = 2. Then 3.1(b) holds. So |AN B| < 2, and |A] < 2%. In
this situation 2.2(2) holds.

Case 2: Suppose A is a T'I-sct.

Case 2a: Suppose Ny(B) =1 for some A # B € A. Then we can apply 4.15(2)
to get |F] = 2 and |A| = 24. This situation also gives 2.2(2).

Case 2b: Suppose N4(B) # 1 for all A # B € A. Then we can apply 4.15(1) to
get dimA/ANE =2, L =Ly, dimW =4, and [rg, A]+ R4 = WNT4. So hypothesis
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5.1 is fulfilled and we can apply 5.16. Hence, 2.2(3) holds in this case.
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Appendix A

Background Lemmas

Lemma A.1 Let P be a finite p-group and H a finite group acting on P. If H
stabilizes a subnormal series on P, then H/C(P) is a p-group and [P,OP(H)] = 1.
In particular, if [P,H,H, ... H] =1, then H/Cy(P) is a p-group and [P,OP(H)] = 1.

Proof. [Gor, 5.3.3] gives the main result. In particular, if [P, H, H,... H] = 1, then
we have a subnormal series 1 = [P,H,H,...H] C --- C [P,H,H| C [PH C P
stabilized by H/Cy(P). O

Lemma A.2 [V, 0P(G), OP(G)] = [V, 0P(G), G] = [V, OP(G)].

Proof. [V,0P(G),0P(G)] < [V,0P(G)] < V is a subnormal series stabilized by OP(G)
so it’s centralized by OP(OP(G)) = OP(G). Then [V,0P(G)] < [V,0P(G), OP(G)] <
[V,0P(G), G] < [V, OF(G)].

a

Lemma A.3 If N G, then OP(G/N) = OP(G)N/N.

Proof. (G/OP(G))/(OP(G)N/OP(G)) = G/OP(G)N = (G/N)/(OP(G)N/N) by the
third isomorphismn theorem. Then G/OP(G)N is a p-group since (G/OP(G)) is a
p-group by definition. Also by definition, OP(G/N) is the smallest normal subgroup
of G/N with a p-group as its quotient so OP(G/N) < OP(G)N/N. OP(G)N/N is
generated by the p’ elements so OF(G)N/N < OP(G/N). O
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Lemma A.4 IfV = [V, L], then V = [V,O0P(L)).

Proof. Let V = V/[V,0P(L)]. Then L/CL(V)isap-groupsoif V # 1, then Cyp«(L) #
0. Hence, [V, L] # V. This is a contradiction so V = 1. a

Lemma A.5 Let W be an orthogonal space. Let X < W be a 1-dimensional non-

singular subspace. Then there exists at most one a € O(W) with [W, a] = X.

Proof. Let w € W\ X1 and z € X with w® = w + kz where k # 0. So g(w) =
q(w®) = q(w) + ks(w,z) + k2q(z). Then k(s(w,z) + kg(z)) = 0. Since k # 0,

k= —-s(w,x

(w,z
q(z T

S . .
.Sowt =w— ‘) z and we sece that a is unique. O
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Appendix B

Definitions

Let G be a finite group and p a prime for all the following definitions.

Definition B.1 A group which is abelian and all nontrivial elements have order p is

called an clementary abelian p-group.

Definition B.2 G has characteristic p if Cg(Op(G)) < Op(G). G has local

characteristic p if all the p-local subgroups have characteristic p.

Definition B.3 @ is a large p-subgroup of G if Q is a p-subgroup, Q@ I Ng(A) for
alll# A< Z(Q), and Cg(Q) < Q.

Definition B.4 A subgroup P is a parabolic subgroup of G if P contains a Sylow
p-subgroup of G. A subgroup P containing a Sylow p-subgroup of G is a p-parabolic
subgroup of G, and P is a local p-parabolic subgroup if, in addition, Op(P) # 1.

Definition B.5 A p-subgroup Y of G is called p-reduced (for G) if Y is elementary

abelian and normal in G, and Op(G/Cq(Y)) = 1. The largest p-reduced subgroup of

G is denoted by Yg.

Decfinition B.6 Let A be an elementary abelian p-group and V' a finite dimensional

GF(p)A-module. Then A is

(a) quadratic on V if [V, A, A] = 0.
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(b) a 2F-offender on V if |V/Cy(A)| < |A/C4(V)|%.
(c) non-trivial on V if [V, A] # 0.

Decfinition B.7 A homomorphism, = : G — Sq is an action of G on Q defined by
a9 =a9". If the kernel of w is 1, then G acts faithfully on Q. If Kerm = G, then

G acts trivially on .

Definition B.8 If the action is transitive and no element other than the identity

fizes any other element, then the action is called regular.

Definition B.9 If G is faithful on an elementary abelian p-group, V', and there exists
and elementary abelian p-group, A with 1 # A < G with |A||Cy(A)| > |V|, then V
15 called a failure of factorization module or FF-module for G. The subgroup A is
called an offending subgroup.

Definition B.10 Oy(M) is the largest normal p-subgroup of M.

Definition B.11 OP(M) is the smallest normal subgroup of M such that M/OP(M)
18 a p-group.

Definition B.12 For X CV, Xt ={veV |z Lv forallz € X} wherez L v if
s(z,v) = 0.

Definition B.13 A subspace U is isotropic if the symplectic form vanishes on U;
that is, if U < UL (s(u,u) = 0).

Definition B.14 A wvector v € V is singular if v is isotropic (s(v,v) = 0) and
q(v) = 0 where V is an orthogonal space and q is the quadratic form.

Definition B.15 T C G is a TI-set if TNTI C {1} for all g € G\ Ng(T).
Definition B.16 Let G be a finite group with C' = G. If there exists a largest group
H (unique up to isomorphism) such that H/Z(H) = G with H = H’, then Z(H) is
the Schur multiplier. Note that the Schur multiplier is the largest perfect central

extension.
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Definition B.17 If we have G acting on Q, then G, is transitive on Q \ w and
G is doubly transitive on {(wy,ws)|w; # we}. An action is transitive if there is

only one orbit. The action is doubly transitive if some permutation takes any pair of

elements to any other pair.
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