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ABSTRACT

HIGH-ORDER COMPUTER-ASSISTED
ESTIMATES OF TOPOLOGICAL ENTROPY

By
Johannes Grote

The concept of Taylor Models is introduced, which offers highly accurate cO.
estimates for the enclosures of functional dependencies, combining high-order Taylor
polynomial approximation of functions and rigorous estimates of the truncation er-
ror, performed using verified interval arithmetic. The focus of this work is on the
application of Taylor Models in algorithms for strongly nonlinear dynamical systems.
A method to obtain sharp rigorous enclosures of Poincaré maps for certain types of
flows and surfaces is developed and numerical examples are presented.

Differential algebraic techniques allow the efficient and accurate computation of poly-
nomial approximations for invariant curves of certain planar maps around hyperbolic
fixed points. Subsequently we introduce a procedure to extend these polynomial
curves to verified Taylor Model enclosures of local invariant manifolds with COerrors
of size 10710 — 10714 and proceed to generate the global invariant manifold tangle
up to comparable accuracy through iteration in Taylor Model arithmetic.

Knowledge of the global manifold structure up to finite iterations of the local manifold
pieces enables us to find all homoclinic and heteroclinic intersections in the generated
manifold tangle. Combined with the mapping properties of the homoclinic points
and their ordering we are able to construct a subshift of finite type as a topological
factor of the original planar system to obtain rigorous lower bounds for its topologi-
cal entropy. This construction is fully automatic and yields homoclinic tangles with

several hundred homoclinic points.



As an example rigorous lower bounds for the topological entropy of the Hénon map
are computed, which to the best knowledge of the authors yield the largest such

estimates published so far.



To my parents



ACKNOWLEDGMENTS

Exceptional people to work with can be found everywhere, if one takes the time
to look closely enough, and East Lansing is no exception.
I would like to thank my academic advisor Professor Martin Berz for his continued
support, inexhaustible patience and spirited guidance during my studies at MSU, and
I must include Professors Kvoko Makino and Sheldon Newhouse in the same breath.
Working with these people, who are as great scientists as they are individuals, has
been a privilege and a blessing for me.
I truly appreciate Professors Philip Duxbury and Moxun Tang kindly serving on my
guidance committee, and Professor Bhanu Mahanti for being the Graduate Director
who cares.
To the U.S. Department of Energy, the Studienstiftung des Deutschen Volkes and
the MSU Graduate School I am indebted for financial support throughout my stay
at MSU.
I would like to acknowledge my fellow students Shashikant Manikonda, Youn-Kyung
Kim, Pavel Snopok, Alexey Poklonskiy, Alexander Wittig, Ravi Jagasia, He Zhang,
Roberto Armellin and Pierluigi DiLizia for many deep thoughts and even more laughs.
Too many people have been part of my life here in the States to name them individ-
ually without forgetting someone who deserves to be mentioned, so I shall not, and
you know who you are. I value your friendships above all.
Markus Neher of Technical University of Karlsruhe deserves recognition for support
in more ways than one, and I hope to have the opportunity to repay him adequately.
Lastly and most importantly, I would like to thank my ever supportive family, and

my dear Ina for sharing my path all this time. I could not have done it without you.

vi



TABLE OF CONTENTS

LIST OF FIGURES
1 Introduction

2 Fundamental Concepts

21 Poincaré maps. . . . . . . . .. ...
2.2 Invariant manifolds, hyperbolicity and homoclinic points . . . . . . .
2.3 Topological entropy . . . . . . . . . ...
2.4 Shift maps, subshifts of finite type and symbolic dynamics . . . . . .
2.5 TaylorModels . . . . .. .. ... ... ...

2.5.1 Applications of Taylor Models . . . . .. ... .........

2.5.2 Implementation of Taylor Models . . . . .. .. ... ... ..

3 Verified Enclosure of Poincaré Maps
3.1 The nonverified method . . . ... ... ... . ... ... ......
3.1.1 Summary of the nonverified algorithm . . .. ... ... ...
3.2 Verification . . . .. ...
3.2.1 Specification of the surface parameterization . . . . . ... ..
3.2.2 Interval enclosure of feasible crossing times . . . . . . ... ..
3.2.3 TM-enclosure of the Poincaré map . . .. ... ... ... ..
3.2.4 Summary of the verified algorithm . . . . . . . ... ... ..
3.3 Numerical Example: the Volterra-Lotka equations . . . . . . . . . ..
3.4 Summary and Outlook . . . . .. ... .o

4 Verified Representations of Invariant Manifolds
4.1 High-order approximation of the local manifold . ... ... ... ..
4.1.1 Normal form transformation . . . . . .. ... ... ... ..
4.1.2 Hubbard’s method . ... ... ... ... ... ..., ..
4.1.3 Polynomial parametrization from functional equation . . . . .
4.2 Verified enclosure of the local manifold . . . . . ... ... . ... ..
4.2.1 Construction of verified local invariant curve enclosures . . . .
4.2.2 Example: the Hénonmap . . . . . ... ... ... ... ...
4.3 Global manifold tangles . . . .. ... ... ... ... .. ... ...
4.3.1 Discarding manifold pieces . . . . . ... ... L.
4.4 Computation of homoclinic point enclosures . . . . . .. ... .. ..
4.4.1 Verification of existence of homoclinic points . . . . . . . . ..
4.4.2 Numerical tests . . . . .. .. ... .. L L
4.5 Summary and Outlook . . . . ... ... ... .. L.

vii

32
33
37
38
39
39
40
45
46
33



5 Construction of Symbolic Dynamics and Entropy Estimates 96

5.1 Some basic topological tools . . . . .. ... .. Lo 97
5.2 Rectangles and their overlapping . . . . . .. ... ... ... ... 99
5.3 Entropyestimates . . . . . . ... ... oL 104
5.4 Construction of rectangle chains . . . . . . .. ... ... ... ... 109
5.4.1 Choice of manifold tangle . . . . .. ... ... ... ..... 110
5.4.2 Interval box enclosures of homoclinic points . . . . . ... .. 111
5.4.3 Determination of homoclinic ball enclosure mappings . . . . . 112
5.4.4 Orientation of manifolds at homoclinic point enclosures . . . . 113
5.4.5 Selection of rectangle cornerpoints and connector curves . . . 115
5.4.6 Definition of rectangles . . . . . . . ... ... ... ... 123
5.4.7 Mapping of rectangles . . . ... ... oL 129
5.4.8 Entropyestimates. . . ... ... ... ... ... .. .. ... 130
5.5 Taylor Model verification of rectangle chain construction . . . . . .. 132
5.5.1 Manifold tangle . . . . .. . ... ... ... ... ... 132

5.5.2 Interval box enclosures of homoclinic points, ordering and cross-
ing orientation . . . . .. ..o Lo o0 133
5.5.3 Homoclinic interval box enclosure mappings . . . . . .. ... 134
5.6 Results: Entropy of the Hénonmap . . . . . . . ... ... ... ... 134
5.7 Verification of preselected tangles . . . . . . ... ... ... ..... 139
5.7.1 Determinationof trellis . . . . . ... ... ... ... ..... 140
5.7.2  Verification of mapping pictures . . . . . . .. . ... ... .. 144
5.8 Summary and Outlook . . . . ... ... .. ... ... ....... 160
APPENDICES 164
A Interval Arithmetic 164
Al Definitions . . . . . . . ... e 164
A.2 Fundamental problems of interval arithmetic . . . . . ... ... ... 166
A.2.1 Dependency problem . . . . ... ... .. ... .. ...... 166
A22 Wrappingeffect . . . ... ... o L 166
A.2.3 Dimensionality curse . . . . ... ... .. .. ... . ..., 167
B The differential algebra D, 169
B.1 Definitions . . . . . . . ... L 169
B.2 Compositionon nDy . . . . . . . ... 171
B.3 Depth, Contractions and Fixed Point Theorems on Dy . . . . . . . 173
B.4 Functional inversion . . . . ... ... .. ... ... ... ... ... 174
B.5 Normal form transformations . . . ... ... .. ... ... ..... 176
BIBLIOGRAPHY 181

viii



21

2.2

2.3

3.1

3.2

3.3

3.4

4.1

4.2

LIST OF FIGURES

The Poincaré map P describes the first return of an orbit in the neigh-
borhood of a periodic orbit II to a surface S which is transversed by
both. . . . . .

A non-injectively immersed curve in the plane, together with examples
for its tangent vectors (dashed). . .. ... ... ..

Unstable and stable manifolds WY(p) (dashed) and W¥(p) (dash-
dotted), tangential to the respective eigenspaces E;,‘ and Eg at the
hyperbolic fixed point p. . . . . .. ... ... ... .. ... ...

Forward propagation of the box Xg + [—d, d]2 from time 0 to time ¢
using the DA-integration method. . . . . . .. ... ... ... ...

Projection of {(zg.t) : o € D} onto the surface S by insertion of
the crossing time te(xg). . . . o o L Lo

Calculation of maximal displacement of p(xq, tc(xg)) with respect to S.

Range bound of the vector field f; and fy over the box B. . . . . ..

Periodic orbits of the Volterra-Lotka system plotted as level sets of
. g2, T1—21
f(xy, ) = xpage” T17472,

A parametrized rectangle E (black, dashed), and its image (blue, dot-
ted). In the situation of Theorem 4.4, the true unstable manifold U
(red, dash-dotted) is narrowly bound in its transverse direction by both
Eand f(E). . . . o 0 e

The parametrized rectangle E (blue, dashed), and the cone Cg (red,
dotted) with an opening slope S such that (f(Cg) N E) C (CgNE).

ix

10

34

38

42

43

47

67



4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

The parametrized rectangle E (blue, dashed) is constructed around its
center curve 7vg. The difference between 7y and the rescaled iterate
f(E) (red, dotted) can be bounded by the interval box D = (Dy, Do)
(green, dash-dotted) such that f(E) Cyg+D.. ... ... ... ...

In a) the enclosures of the local unstable (solid) and stable (dashed)
manifold near the origin are plotted. In b) we see the local manifold
enclosures Ty, and Ts from section 4.2.1 around the fixed point pg =
(—.63,0.18) and retransformed into the original coordinate system.

(a a local stable manifold segment (solid) of the Hénon map Hy j, for
a = 1.4, b = 0.3, together with the unstable manifold (dashed). The
actual Taylor Model enclosures are several orders of magnitude below
printer resolution in size. In (b) the 3rd preimage of the stable segment
isshown. . . . .. ..

4th (a) and 6th (b) preimages of the local stable manifold segment
(solid), together with the unstable manifold (dashed). . ... .. ..

8th (a) and 10th (b) preimages of the local stable manifold segment
(solid), together with the unstable manifold (dashed). . .. ... ..

a) The parallelepipeds E] (red), Eo (green, dashed) and Eg (black,
bold) contain the Hénon attractor and form the basis for a trap-
ping region. b) The fifth iterate Hib(Eﬂ (red) is contained in
(E1 U E9U E3). (Pictures courtesy of K. Makino) . . ... ... ..

a) The fifth iterate Hg’b(EQ) (green, dashed) is contained in

(E1U EqU E3). b) The fifth iterate H2 ,(E3) (black, bold) is con-
tained in (E] U E9 U E3). (Pictures courtesy of K. Makino) . .. ..

Transverse crossing of two Taylor Models T} (dash-dotted) and To
(dashed). Their intersection can be enclosed into an interval box B
(red, solid) which contains the homoclinic intersection of the true man-
ifold pieces contained in Ty and To. . . . . . . ... ... ... ...

76

86



4.11 In a) the first 20 iterates of H? of the left (plus) and right (x) top

5.1

5.2

5.3

5.4

5.6

5.7

5.8

9.9

cornerpoints of the claimed homoclinic point interval enclosure form
Thm. (4.16) are plotted, in b) the first 10 iterates of H™2 of the
top (plus) and bottom (x) right cornerpoint of the same interval box
enclosure are plotted. The unstable manifold is drawn solid, the stable
manifold dashed. . . . ... ... . ... ... .. L.

Typical types of Markov crossings RjfR9 between two rectangles R
(solid) and Ry (dashed). . . . . ... ... ... ... ... .. ...

Left-handed (orientation o = —1) and right-handed (o = 1) crossing
of stable (solid) and unstable (dashed) manifold over a homoclinic ball
enclosure. . . . ...

Homoclinic ball enclosure B(i,n;) with stable and unstable manifolds
WS and WY (dashed). The connector curves (s(¢) and (s(¢) (solid)
intersect transversely. . . . ... ... Lo oL

B(i,n;) contained in =BG, n;)) (left). (s(j) (dashdotted) for

B, n;) (right) is the image of the concatenated curves né”, (s(2) and
t
,’701[ .

A manifold tangle with 65 transverse cornerpoints, ordered along the
stable manifold S (horizontal axis), and the unstable segments U
(black) and f(U) (blue). . . . . . ...

A rectangle R(a, 3,7,0) = R(1,44,41,6) (red) as constructed in sec-
tion 5.4.6 . Also shown is the mapped rectangle f(R(1,44,41,6))
(Breen). . . . . .

The determination of the Markov-crossing of f(R(a,8,7,d)) =
R(a,b,c,d) and R(e,(,n,6) amounts to a simple check on the cor-
nerpoint ordering in the manifold tangle. . . . .. ... ... ....

a) Rectangle Ry9 (blue) and its 7th image (red). b) Rectangle Ry
(red) and its image (green). . . . . . ...

a) Rectangles Ry, R3, Rs, and R7 (red). b) Rectangle Roy (red) and
its image (green). . . . . . ...

xi

94

101

116

123

131



5.10

5.11

5.12

5.13

5.14

5.16

5.17

5.18

5.19

5.20

5.21

a) The mapped rectangles Rog and Rg3 (green) both cross Ry (red).
b) The mapped rectangle Ro3 (green) crosses both rectangles R; and
Rig(red). . .. ..

Thirteen rectangles are contained in the trellis formed by stable man-
ifold segments S;-S1g and unstable segments U; and Up. Picture
from [56]. . . ...

a) The fundamental stable arc S (red). Also printed are the segment of
the unstable manifold (blue) and the homoclinic points (black) that are
relevant for the rectangle construction. b) The first preimage H_I(Sl)
(red). . . . e

a) The second preimage H‘Q(Sl) (red). b) The third preimage
H™3(S)) (red). .. ..

a) The fourth preimage H"4(51) (red). b) The fifth preimage
H75(S)) (ved). ...

a) The sixth preimage H'G(Sl) (red). b) The seventh preimage
H™T(S)) (red). .. ...

a) The eigth preimage H_S(Sl) (red). b) The ninth preimage
H™9(S)) (red). .. . ..

a) The tenth preimage H"lo(Sl) (red). b) The eleventh preimage
H (S (red). ..o

a) Rectangle Ry (blue) and its 2nd image (red). b) Rectangle Rg
(blue) and its 2nd image (red). The remaining rectangles are printed

in black. . . . .

a) Rectangle R3 (blue) and its 2nd image (red). b) Rectangle Ry
(blue) and its 2nd image (red). . . . . . ... oL

a) Rectangle Rg (blue) and its 5th image (red). b) Rectangle Rg (blue)
and its 5th image (red). . . . . . .. .. ...

a) Rectangle R7 (blue) and its 6th image (red). b) Rectangle Rg (blue)
and its 5th image (red). . . . . . ... ... L

xii

137

141

147

148

149

152

154

155



5.22 a) A magnified view of the 5th image of rectangle Rg (red). We see that
HO(Rs) maps fully across the right boundary Sy of Ry4. b) Rectangle
Rg (blue) and its 2nd image (red). . . .. ... ... ... ......

5.23 a) Rectangle Ry (blue) and its 2nd image (red). b) Rectangle Ry
(blue) and its 6th image (red). . . ... ... . ... .........

5.24 a) Rectangle Rj9 (blue) and its 7th image (red). b) Rectangle Ri3
(blue) and its 6th image (red). . . .. ... ... ... ...

5.25 A magnified view of the 6th image of rectangle R13 (red). We see that
H6(R13) maps fully across the right boundary Sg of Rg. . . . . . ..

A.1 Schematic depiction of the wrapping effect in the linear (left) and non-
linear (right) case. The range enclosure (blue dotted line) exhibits
overestimation versus the true mapped square (red). . . . . . . .. ..

Images in this dissertation are presented in color

xiii

157

158

160



CHAPTER 1

Introduction

Ever since the first computers were used to simulate mathematical models and de-
velop an intuitive understanding of their behavior, numerical mathematics has been
concerned with the question of the accuracy of these computational results,

Interval methods, first conceptualized by Moore [49, 50], offer a way to imple-
ment self-contained numerical algorithms that compute interval range bounds of the
solution of a computation, thus automatically obtaining CO error estimates. While
interval arithmetic works fine for specific problems in e.g. linear algebra, global op-
timization or verified integration of ODEs, in general this approach has only limited
practicality as interval arithmetic has to cope with fundamental problems that limit
the accuracy of the interval range enclosure of solutions, among which are the depen-
dency problem and the wrapping effect (explained in more detail in Appendix A), and
a particularly unfavorable scaling of the computational effort with the dimensionality.

Taylor Models have been conceived in the 1990s [5,41] as an approach to verified
computing that would alleviate the problems of interval arithmetic while still yielding
valid CO error estimates in an automated fashion. In spirit, they originated in the
map methods which had been successfully applied in particle accelerator simulations

for decades. Transfer maps, i.e. the action on the beam of a particular particle



optical element like magnets, drifts or absorbers, were computed as polynomial Taylor
expansions to high order, and the suitable composition of transfer maps allowed
accurate predictions about the stability of the beam for very long times.

Frameworks were developed that made these complex polynomial manipulations
fast and efficient, like the differential algebraic picture of Taylor polynomial arithmetic
presented in Appendix B. But the question about the convergence of these high-order
Taylor expansions was of secondary interest. The reason for this was that in the
high-energy beam physics field, the equations of motion were typically only weakly
nonlinear and Taylor expansions of the associated transfer maps had a very beneficial
convergence behavior.

The picture changes dramatically if one wants to use Taylor approximations in a
strongly nonlinear setting. Here, the question of bounding the truncation errors and,
after algorithm implementation, also round-off errors in floating point arithmetic be-
comes paramount. Taylor Models are based on efficient polynomial manipulation
techniques to obtain highly acurate polynomial approximations and combine them
with rigorous interval arithemetic to bound the Taylor remainder errors. Since the
truncation error scales favorably in displacement from the expansion point with the
polynomial expansion order plus one, the fundamental drawbacks of interval arith-
metic can be mitigated by bounding the truncation error over small, but still suffi-
ciently large, domains.

Chapter 2 presents and reviews important mathematical concepts to the extent
to which they are relevant for this present work. Introductions to Poincaré maps,
invariant manifolds, topological entropy and symbolic dynamics are covered by citing
the key concepts and results, while the treatment of Taylor Models is more in-depth
and their definitions and properties are presented in a more detailed and exhaustive
manner.

In chapter 3 we present a technique to obtain Taylor Model enclosures of Poincaré



maps of flows for quite general types of Poincaré sections. The technique rests on
the availability of high-order inversion of polynomial functional dependencies, and
the ability to Taylor expand solutions of implicit equations. This yields quite ac-
curate Taylor polynomial approximations of Poincaré maps which can be outfitted
with rigorous remainder bounds a posterior: with derivative information given by the
underlying ODE of the system. Examples for both nonverified polynomial approxi-
mations and verified Taylor Model enclosures of the Poincaré maps are provided.

Chapter 4 introduces us to invariant manifolds of discrete dynamical systems, or
to be more precise of planar diffeomorphisms, and the problem of accurately repre-
senting them numerically. Since invariant manifolds are of high significance in the
determination of long-term behavior of a multitude of dynamical systems, from forced
oscillations to the Lorenz system to mission design in astrophysics, and in particular
in strongly nonlinear settings, obtaining accurate approximations of the global man-
ifold tangle structure is desirable. We present an approach in which Taylor Model
enclosures of invariant manifolds can be found with CO error sizes of 10712 and
smaller.

In chapter 5 we develop a novel automated approach to finding rigorous lower
bounds of the topological entropy for certain planar systems. This is achieved by
determining symbolic dynamics in a constructive manner. The technique combines
many results and algorithms from the previous sections, using homoclinic points and
invariant manifold segments to define topological rectangles and rigorously deter-
mining their mapping properties, thus constructing a subshift of finite type as a
topological factor of the original system.

A short overview of the fundamentals of interval arithmetic and differential alge-
braic structures for the manipulation of Taylor polynomials is given in the appendices

A and B.



CHAPTER 2

Fundamental Concepts

In this chapter we introduce fundamental mathematical concepts from dynamical
systems theory to the extent that they are featured in the Taylor Model based verified
algorithms in later chapters. Most of the material is canonical and presented without
proof, more in-depth treatment of the topics is provided by the cited references.
Sections 2.2, 2.3 and 2.4 in particular draw on [55].

In the last section, we introduce the notion of Taylor Models in a somewhat more

exhaustive manner, as Taylor Models are still a relatively novel concept.

2.1 Poincaré maps

Poincaré maps, first conceived by Henri Poincaré [58] in the 1880s, are a classical
tool for the analysis of the stability of certain periodic or near-periodic orbits that
a continuous dynamical system might exhibit. Instead of analyzing the orbit struc-
ture of the corresponding flow in the entire phase space, using Poincaré maps one
only looks on the action of the system on suitably chosen surfaces (typically planes,
or hyperplanes, but also more general classes of differentiable manifolds) that are
transverse to the flow. The fundamental advantage which the Poincaré map offers is

that the dynamics can now be analyzed in a space that has a dimension which has



Figure 2.1. The Poincaré map P describes the first return of an orbit in the neigh-
borhood of a periodic orbit II to a surface S which is transversed by both.

been reduced by one compared to the original phase space, while still preserving all
the ’interesting’ qualities of the orbit structure. In low-dimensional dynamics, this
dimension-reduction is a significant simplification and Poincaré maps have become a
successfully applied tool both in a more purely mathematical context (like forced os-
cillations) as well as in physics and astrophysics problems, like the three body problem
or particle accelerators.

The underlying idea of Poincaré maps is a simple one. Consider the autonomous
system

z=f(2), (2.1)

where f : R" — R is C 1 and we assume for simplicity that the flow ¢ : R? xR —
R™ of (2.1) exists globally, and assume now that there is a periodic orbit IT C R" of
period T > 0. Consider a hyperplane S of dimension n — 1 that is transverse to II,
ie. INS = {p} and f (p) is not tangent to S at p. Then naturally ¢ (p,T)=p€ S
again, because of the periodicity. However, one can show that in this situation also

the orbits starting at points ¢ sufficiently close to p, which are then typically not



periodic anymore, will also intersect S transversely, say at a point P (q), as shown in

Figure 2.1. The mapping ¢ — P (q) is called the Poincaré map.

2.1 Theorem. Let E C R™ be open, let f € C1(E) and let  : E x R —E be the
flow of (2.1). Assume that for some p € E the orbit Il := {p(p,t) :0<t <T} s
periodic with period T such that Il C E. Consider now a Cl-mamfold S which is
transverse to Il at p, 1.e. f(p) does not lie in the tangent space T)S.

Then there erists € > 0 and a C1- function 7 : Be (p) — R such that

v(q.7(q)) € SVq€ Be(p)
and T (p) =T.

This function 7 denotes the crossing time for the choice of initial condition g until

the orbit first intersects S.

2.2 Definition. In the situation of the preceding theorem, we define the Poincaré

map P: B: (p)NS — S as

P(q):=¢(q,7(q) Yge Be(p)NS .

Evidently this definition could be generalized to allow nonperiodic reference orbits
¢ (p.t), as long as the return to S is again transverse.

Intuitively, statements about the qualitative properties of the reference orbit II,
e.g. whether it is attracting or repelling or has a saddle point in p € S, can now be
derived from looking at the derivative of the Poincaré map at p: the orbit Il C E is
hyperbolic (attracting, repelling, saddle) if and only if p is a hyperbolic fixed point

(sink, source, or saddle, respectively) of the Poincaré map P.



2.2 Invariant manifolds, hyperbolicity and homo-
clinic points

2.3 Definition. (Topological and C"-manifolds) A topological n-manifold X is a

second-countable Hausdorff topological space with a collection {(Uj, ¢;)};eT such that

1. UjwisopenVieT and X C ;e U; -
2. ¢; : Uj — ¢;(U;) C R™ 1s a homeomorphism Y1 € T such that ;(U;) is open.
S UynU; # O for some i,j € I, the transition map (,-aiowj—l)

©j (Ui N Uj) — @; (Ul- N Uj) is a homeomorphism.

In this case we call {(U;, 9;)};c an atlas and the @; charts.
A CT n-manifold is a topological n-manifold where the transition maps in 3. are

CT.

Of particular interest to us are, of course, differentiable submanifolds (curves,

surfaces, hypersurfaces etc.) of R .

2.4 Definition. (Immersed and embedded manifold) Let X and Y be two C" ny-
and ny -manifolds, respectively, and let f : X — Y be a C"-map such that the
linearization Ly @ Tqe X — Tf(r)Y of f at x is injective on the tangent spaces
Va € X. In this case we call f an immersion, and the image f (X) CY 1is called an
immmersed C" submanaifold of Y.

f(X) is called an embedded submanifold if additionally f is injective and the

relative topology on f (X) inherited fromY equals the topology induced by f on f (X).

Note that in the definition of an immersed manifold, the immersion f itself need
not be injective (see Figure 2.2), just its derivative acting on a tangent space.
In the following let X be a smooth n-manifold and let f : X — X be a C"-

diffeomorphism from X into itself.



Figure 2.2. A non-injectively immersed curve in the plane, together with examples

for its tangent vectors (dashed).

2.5 Definition. (Hyperbolic fired and periodic points)
A fized point p € X of f is called hyperbolic iff the Jacobian Df (p) has no

eigenvalues of norm one. We also say that p is
1. a sink if all eigenvalues have norm less than 1,
2. a source if all eigenvalues have norm greater than 1,

3. a saddle if there exist eigenvalues of both types.

A periodic point q of f with period N is accordingly called a hyperbolic sink (source,

saddle) if it is a hyperbolic sink (source, saddle) fized point of fN.

The significance of hyperbolic fixed and periodic points is that in their neighbor-
hoods the tangent spaces (and the dynamics) can be classified according to certain
invariant subspaces:

2.6 Theorem. (Hyperbolic splitting) Let p € X be a hyperbolic fized point of f, then

there exists a direct sum decomposition Tp X = E;} @ Els, such that

1. Ef and Ej are invariant under Df (p).



2. Df (p) IEI&; has eigenvalues of norm less than 1.
3. Df (p) |E;,‘ has eigenvalues of norm greater than 1.

In the situation of the theorem we also call E}’,‘ and Eg the unstable and stable
eigenspaces at p. One can now ask if there are generalizations to the concept of
eigenspaces that stay invariant under the map f itself and not just the linearization.

To this end we define the stable and unstable sets

WS (p) = {.r eX:f(z) — p}

n—oc
and

W (p):= {l‘ eX:f"(z) —*‘P}

n—oc
of points diverging from or converging to p. The next theorem, also known as the
Invariant Manifold Theorem, asserts that these sets in fact have a nice differentiable

structure, as depicted in Figure 2.3:

2.7 Theorem. (Hadamard-Perron) Let p € X be a hyperbolic fired point of f and
let TpX = EI‘,‘ @ E; as per the previous theorem. Then W7 (p) s a CT wmyjectwvely

immersed copy of Eg tangent to Eg at p for o = u,s.

In light of the last theorem we call the sets W (p) and W9 (p) the unstable
and stable manifold of p, respectively. Intuitively, one might think that W (p)
and WS (p) are not only injectively immersed manifolds, but even embedded with a
nice topology. The counterexamples to this conjecture are precisely the complicated
manifold structures connected to hyperbolic and horseshoe dynamics which we will

be concerned with in the later chapters of this work.

2.8 Definition. (Homoclinic and heteroclinic points) Let py.py € X be hyperbolic

fixed points of f.

1 If W (p1) n W9 (p1) # 0, then any point in W¥ (p1) N W3 (p1) 1s called a

homoclinic point (of p1).



Figure 2.3. Unstable and stable manifolds W%(p) (dashed) and W*(p) (dash-dotted),
tangential to the respective eigenspaces E},‘ and EIS) at the hyperbolic fixed point p.

2. If W¥ (p1) N WS (po) # 0 (or W¥ (po) N W3 (p1) # 0), then any point in
WY (p1) N WS (po) (or W™ (po) NW* (p1)) is called a heteroclinic point (of py

and py).

A homo-/heteroclinic point q is called transverse if the tangent spaces of the in-

variant manifolds intersecting at q are transverse.

For ease of expression we will mosly restrict ourselves to homoclinic points, even
though corresponding statements usually apply to heteroclinic points. Homoclinic
points are of great interest, since they can be viewed, depending on the angle, as a
cause or symptom of chaotic motion. Let ¢ € (W¥ (p) N W3 (p)) be a homoclinic
point for f of the fixed point p. Then it is obvious that also every image or preimage

of g is going to be such a homoclinic point, i.e.
@) e WEp)n W3 (p)) Vke Z

So the existence of one homoclinic point implies a countably infinite number of ho-

moclinic points. Since by definition images and preimages of g converge to p, we
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thus have an ever finer accumulation of manifold intersections near p and accord-
ingly a very complicated bunching up of the corresponding manifold branches. This
in essence is the sign of chaos, since any two points arbitrarily close to p will have

rapidly diverging orbits under f.

2.3 Topological entropy

2.9 Definition. (Topological entropy) Let (X,d) be a compact metric space and let
®: X — X be a topological endomorphism, i.e. a continuous self-map of X. Let
n-1
k=0
For ¢ > 0, we say that two n-orbits O (n,z) and O (n,y) are e-separated if Ik €

z.y € X and n € Ng. Then an n-orbit O (n,z) of x is the sequence {@k (1:)}

{0,...,n = 1} such that

d(@k (z) . ®F (y)) Se.
Let nowr (n.e. ) € Ny denote the mazimal number of -separated n-orbits of & in X
(note that this number is well-defined due to the compactness of X ). Then we define
the topological entropy h (P) of ¢ as

h(®) := lim lim supl max{0, log (r (n.e, ®))}.

e—0 n—oo N

This definition appears cumbersome at first, in particular it does not seem to
lend itself to a straightforward implementation in a computer environment due to the
double limit in the definition. However, one can develop an intuitive understanding
of the meaning of the entropy as a measure of the chaoticity of the underlying map

h®)n Gifferent e-separated

®. For example, for small € there are approximately e
n-orbits in X, i.e. the number of separated orbits grows exponentially with the map
iterate.

The topological entropy has numerous interesting properties, of which we will

state some of the most useful :
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2.10 Remark. In the following (X,dx),(Y,dy) are compact metric spaces.
1. Let ® : X — Y be a homeomorphism, then for its inverse &1 we have

h (qu) =h(®) .

2. For an isometric endomorphism ® : X — X, ie. dyx (®(x1).P(29)) =

dy (x1.x9) holdsVxy,29 € X, it follows

h(®)=0.

3. If for an endomrphism & : X — X and a subset & C X we have that ® (¥) C
¥, then
h(®ly) < h (D) .

4. For an endomorphism ® : X — X and n € Ny, we have

h(®") =nh(®) .

5. For any continuous flow py : X — X, t € R, likewise
h(pe) = [t h(p1) -

6. If®: X — X and ¥V : Y — Y are topological endomorphisms, then & x W :

X xY — X x Y is a topological endomorphism and

h(®x ) =h(P)+h(¥) .

We are interested in how the topological entropy changes if we project the action

of a map onto a simpler space:

2.11 Definition. Let X,Y be compact metric spaces andlet®: X — X |V :Y —

Y be topological endomorphisms,, respectively. If there is a continuous surjection

12



m: X — Y such that Vo = mo ®, then we say that ¥ is a (topological) factor of
d.
If ® and ¥ are mutually factors of each other, we say that they are topologically

conjugate.

In the setting of the last definition, if ¥ is a factor of ®, then the dynamics of
¥ mimic the dynamics of @, albeit they are simplified by the projection onto the

domain of ¥. This results in immediate estimates for the entropy:

2.12 Theorem. In the setting of Definition 2.11, if U is a topological factor of ®,
then
h(¥) < h(®) .

It follows that if ¥ and ® are conjugate, then
h(¥)=h(d) .

The last theorem means that we can find lower bounds for the topological entropy
of complicated maps if we manage to find topological factors for which the entropy
can be computed more easily. This will constitute the main idea for rigorous entropy
estimates in the later chapters of this work. Furthermore, the topological entropy is
a dvnamical invariant, an intrinsic quantity that remains constant under coordinate
transformations, and as such is particularly interesting.

In the case of planar dynamics on a 2-dimensional manifold we can get a good
intuition for the topological entropy by seeing its similarity to the concept of Lyapunov
exponents. Let X be a two-dimensional Cl-manifold and let v : [a,b] — X be a
smooth curve defined on the real interval [a,b]. Let |y| denote the arclength of . For

a C-endomorphismm ® : X — X we define the growth factor of v under ® as

G (v, ®) := limsup 1 max {0, log (|®™ (v)])} ,

n—oon

i.e. asymptotically, the iterates of v grow by a factor of eC(r®) ip length with every

iteration of ®. Then the following theorem can be shown [53, 54,65, 66]:
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2.13 Theorem. Let X be a two-dimensional Cl—mam'fold and ® : X — X be a
C>®-endomorphism. Then
h(®) = sup G(v,9) .
C*®-curves yCX
If X is additionally compact with piecewise smooth boundary, and ® 1is area-
decreasing, then

h(®) = max G(v,9) .
(®) Jmax (7. ®)

2.4 Shift maps, subshifts of finite type and sym-
bolic dynamics

In this section we introduce the notion of symbolic dynamics, which denotes the
concept of imitating the qualitative behavior of a dynamical system defined on a
general metric space with a derived system defined on a much simpler phase space

with a finite number of possible system states.

2.14 Definition. (Shift map) Let N > 0, and let o := {1.2,...,N}. We call the set c
an alphabet of length N. Consider now the space of right-infinite sequences consisting

of elements in N
EX/ = {a = (u"’l)HENO tan €EaVn € NO} .

Note that ZX, can be made into a compact metric space with the introduction of the

metric d given by

n —b
dlap) = Y 1=t
neNg
We now define the left shift map o : EK, — ):?\', as

(0 (@) = an41 ¥a = (an)peny € ZX -

14



It is easy to see that o is surjective and continuous and thus a topological endomor-
phism. Also one can generalize £, to the set £y = {a = (an),ecz : an € aVn € Z}
of doubly infinite sequences over the alphabet a with the corresponding metric, in
which case we can also consider the right shift map, but we shall only be concerned
with the left shift.

While the study of the dynamics of shift maps on general sequence spaces is

interesting in of itself, we are interested in particular invariant subsets of ZE :

2.15 Definition. (Subshift of finite type) Assume that a,21+v and o are given as
in the previous definition, and let A € {0, l}NXN be an N x N-matriz with A;; €

{0,1} Vi,j € a. Consider the subset Zjl C EKY given by
ohi={a €S Aanayyy A0V ENG} .

Clearly E; is tnwariant under o and we call the pair (a, ZZ) a subshift of finite type

or topological Markov chain of EX, , and we call the matriz A the incidence matric of
+
(o, ) A) .

The motivation to introduce such subshifts is that, unlike general maps, the com-
putation of their topological entropy is straightforward, as we will see. An N x N-
matrix A is called irreducible if for every index (7,j) € a x a there exists a power

k(i,j) € N such that (AK@9)) >0,
%)

2.16 Theorem. (Perron-Frobenius) Let A be an irreducible nonnegative real matriz.
Then there is a unique simple, real, positive eigenvalue A4 € R7T that has mazimal
absolute value. This X 4 s also called Perron-number and equals the spectral radius

of A.

For an irreducible incidence matrix A and the corresponding subshift (0. EZ)
according to Definitions 2.14 and 2.15, we also call (0, EZ) an irreducible subshift.

Now for the statement about the topological entropy of subshifts:
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2.17 Theorem. Let (0, EZ) be an irreducible subshift. Let A 4 be the Perron number

of A. Then for the topological entropy of o we have
h(o) =logAy .

So for subshifts the entropy can be obtained easily by doing an eigenvalue analysis
of the incidence matrix. We also get another intuitive idea of thinking about the
entropy of a subshift of finite type: A fixed point a* of (o. EZ) is a sequence where
1 Vn. Correspondingly, a fixed point a** of order m > 1 of (a, ZX) is a

* _
In = Q4

sequence where aj* = ay¥  Vn.

2.18 Theorem. Let N (0,k) denote the cardinality of the set of all fired points of
order k of the subshift (a. 2;). Then

h (o) = limsup l log N (0,k) .

k—soc K
To put it differently, for a subshift (a, EX) with positive topological entropy there
exist fixed points of any order and their number grows exponentially with the order.
In light of Theorems 2.12 and 2.17 it is now clear how to find entropy estimates
for complicated general maps: If possible, determine a subshift of finite type as a
topological factor of the original map, and a lower bound of the original map’s entropy

can be obtained from the spectral radius analysis of the SFT's incidence matrix.

2.19 Definition. (Symbolic dynamics) Let X be a compact metric space and let
d: X — X be a topological endomorphism . We say that & exhibits symbolic
dynamucs if there are subsets A C X such that ®|p has a subshift of finite type

(a, EZ) as a topological factor.

The question remains whether a given map exhibits symbolic dynamics, and how
close the lower entropy bounds stemming from the SFT analysis are. The following
surprising result due to Katok [26.33] confirms that this approach is indeed viable for

typical maps of interest to us:
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2.20 Theorem. Let f be a C"-diffeomorphism, r > 2, on a compact surface M. f
has nonzero topological entropy if and only if it exhibits symbolic dynamics.

Furthermore, Ve > 0 exists a subshift og such that

h(oe) > h(f) —e.

2.5 Taylor Models

In this section we present the concept of Taylor Models (TM), which have first been
introduced in the 1990s by Berz and Makino [44]. Taylor Model techniques were mo-
tivated from particle beam research, which has long successfully applied high-order
multivariate polynomial manipulation to model transfer maps of particle optical ele-
ments in accelerators. This technique works exceptionally well because the equations
of motion governing the dynamics of high-energy particle beams are usually only
weakly nonlinear, and in practice the question of convergence of the power series
expansions of the transfer maps is rarely a main focus.

Taylor's Theorem asserts that any sufficiently smooth real-valued function on RY
can be approximated by a Taylor polynomial of finite order n, where the truncation
error term scales with the (n + 1)st power in the displacement from the expansion
point. If we wish to apply polynomial approximations of functional dependencies in
a strongly nonlinear setting, of course the size of the error term becomes a central
problem that one wishes to estimate. Taylor Models offer a framework in which
self-contained bounds of the truncation error can be found in an automated fashion,
thus yielding rigorous CO-estimates and allowing Taylor Models to be used in verified

algorithms and computer-assisted theorem proving.

2.21 Definition. (Taylor Model) Let D C RY be compact, let G C RY be open such
that D C G, and let f : G — R be a real-valued C™" 1 -function. Assume a point

xg € D, and let P : RY — R be the Taylor polynomial of order n of f around the
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expansion point xqg. If there is a closed real interval I C R such that
f@)-Px—-x9)€IVreD,

then the pawr T = (P, 1) is called a Taylor Model (of order n) of f around xq. For

intuitive reasons we also write T = (P,1) = P + 1.

In the situation of the previous definition, we also say that f is contained in T, or
that T encloses f, or that T is an enclosure for f. The interval I is simply an interval
bound of the truncation error f — P over D. Naturally, in practice we wish [ to be

as narrow as possible, and we will see results about the scaling propety of I later on.

2.22 Remark. Another way to think about Taylor Models is as a quotient space of
cntl (G R). We call two functions f,g € C?1(G,R) equivalent if they both are
contained in the same Taylor Model T = (P, I). It is clear that this constitutes an
equivalence relation between f and g and T is the equivalence class for all functions

contained in it.

Now that Taylor Models have been defined, the question is whether operations can
be defined on these objects that are compatible with the arithmetic on the functions
which are contained in the Taylor Models. For example, can we define an addition
in such a way that the sum 77 + T of two TMs T7 and T3 is again a Taylor Model
for the sum of any two functions contained in the original T and Ty, respectively. In

the following we assume the conventions

A+ B:={a+b:ae€ AANbE B},
A-B:={a-b:a€e ANbeE B},
r+A={r+a:a€ A},

r-A:={r-a:a€ A},
for twosets A, BCRandr e R :
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2.23 Definition. (TM-Addition and Multiplication) Let D, G and xg as in the pre-
vious definition. Consider two C™ 1 functions f,g : G — R and their respective

n-th order Taylor Models Ty = (Pf,lf) and Tg = (Pyg.lg) around zg. We define

1. the addition
Tp+Tyi= (Pp+ Py dp+1g),

2. the scalar multiplication by ¢ € R

c-Tf = (c-Pf,c-If),

3. the multiplication

are all terms of the polynomial Pf Py = (Pf . Pg> +

where (Pf . Pg) <n

<n
(Pf - Pg) on of order at most n. and (Pf - Pg)>n is the part of the polynomial

Pf - Py contaimang all terms of order n + 1 through 2n. The remainder interval is

defined as
lrg:=B((Pr-ro), )+B(Pr) lo+B(Pg)-Ip+1f-1g .

Here B (P) denotes any wnterval range bound of a polynomial P over D, i.e. B(P)

1s a closed real interval such that
P(x)e B(P)Vz € D.

The generalization of Taylor Models and their arithmetic to higher dimensions is
straightfoward by performing the function enclosure and operations from Definitions

2.21 and 2.23 componentwise.
Indeed, the definition of Taylor Model operations 2.23 is compatible with the

corresponding operations on the contained functions:
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2.24 Theorem. Let D,G and z( as before, let f,g : G — R be C"+1—functions
contained in the n-th order TMs Tf and Ty. Then the functions f + g and f - g are
contained in the Taylor Models Tg + Ty and Ty - Ty as defined in Def. 2.23.

Proof. We show the statement for the multiplication, the proofs for the addition and
scalar multiplication work analogously. Let z € D, then f (z) = Py (z) + (5f (x) and
g(z) = Py (x) + 6g (), where 65 (z) € I and dg (x) € Iy.
Then
(f-9) (@) = £ (@) g (@) = (Pr(x) + 85 () - (Py (2) + 4 (2)

= Pf(z) - Py (x) + Pg(x)- 07 (2) + Py (x) - g (2)

where (Pf . Pg) is a polynomial which is the sum of two polynomials (Pf . Pg) <
<n

and (Pf . Pg) S that contain all terms of order up to and including n and terms of
n

order n + 1 to 2n, respectively. Hence

(F-9) () = (Py-Pg) _, (&) + (Py-Pg) (@) +Pyla)-dy () + Py ()-8 (@)

- (Pf . Pg) n () + 054 (x)

where

br.g(@) €B((Pr-Py)_ ) +B(Py)-lIg+B(Pg) -1y +1f-Ig=IpgVaeD,

where again B (P) denotes any interval range bound of a polynomial P over D. It

follows that
(f - 9) (@) € (Pf : Pg)<n (2) + If.

O

Now that addition and multiplication of TMs have been introduced, the next

question is if we can define elementary functions for TMs and their composition.
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2.25 Remark. (Elementary functions for TMs) We do not want to go into detail
here regarding the definition of intrinsic functions for Taylor Models and refer to [41]
for details. Instead, we will demonstrate the procedure using the exponential function
as an example, and the definition of TM-analogs of other elementary functions follows
in much the same spirit. The idea is to Taylor expand the elementary function (note
that elementary functions are, on suitable domains, smooth) in the same way as the
TM at which you want to evaluate the elementary function, and take care of the
truncation error term again.

Let T = Py + I be an n-th order real TM over the domain D C RY, and write
T=Cr+T51=Cr+ (le + I7). Here Cp denotes the constant part of the TM,
and T>1:=T — Cp . Let k > n. Then

exp(T) = exp (CT + TZI) =exp (C7) - exp (T21)

Zn: (T)" n i (T>1)" n () exp (0 T>1)

= exp (Cr) - m! k+1)!

m=0 ’ m=n+1

(2.2)
with 6 € [0,1],
C Pexp(T) *+ Lexp(T)

We define P, T) to be the polynomial part of order n of the right hand side of (2.2).

xp(

For the interval remainder I

exp(T) observe the following:

All expressions in (2.2) can be evaluated with TM-operations as in (2.23) with
the exception of the last summand in the parantheses, which can be estimated using

interval arithmetic:

k
(T>1) *+

(B (P>1) + IT)k+1
ATV

(k+1)!

(6-T>1) C exp ((0.1]- (B(P>1) + 1)),

where the last exponential can be bounded using the interval methods. The first sum

in the parantheses in Def.2.2 produces both the polynomial part Pexp(T) of exp(T) as
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well as contributions to the interval bound I

exp(T)’ the second sum and error term

only contribute to ]e,xp(T)‘

2.26 Remark. (Antiderivation) If a Taylor Model (Pf, If) contains a function f,
we want to be able to find the Taylor Model which contains the integral of f. This
very useful operation on (Pf, If> 1s called the antiderivation ai‘l.

Let G C RY open, let f: G — R be Ct1l and let Ty = (Pf,lf) be an n-
th order Taylor Model for f around the origin over the interval bozx [ay.by] % ... X
[av,be] € G C RY. Write Pf as the sum of two polynomials Pf,n of exact order n

and Pf,<n = Pf — Pf,n of order up to and including n — 1. Then define

o7 (1) = (P o7 (1) o 1(Tf))

rt
) :=/ lP<n (z1) dxt;
0

where
o1 (Tf
and

]afl(Tf) = (B (Pa) +15) - (b = ay) -

It is easy to show that with these definitions

fcC (Pf1f> == /fd.l?l‘ - 01_1 ((Pflf)) .
The great success of Taylor polynomial approximation has always been based on
the high-order scaling of the error term with the, usually small, displacement from the

expansion point. It is important to see that the Taylor Model operations introduced

above maintain that beneficial scaling property for the TM remainder bounds:

2.27 Theorem. (Taylor Model Scaling Theorem) Let G C RY open, xg € G, and
h > 0 such that g + [-h,h]’ C G. Let f.g: G — R be C™ 1 _functions contained
in the n-th order TMs Ty = Py + Iy and Tg = Pg + Ig around xg over the domain
xg + [=h,h]" with scaling properties Iy = O <h"+1) and Ig = O (11”+1). Let
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(Pf+g'1f+g) and (Pf_g,lf,g) be the addition and multiplication TMs of Tf and
Ty according to Definition 2.23, and let (Ps(f)vls(f)) be a TM for any intrinsic
function s defined for Taylor Models in the fashion of remark (2.25). Then

1f+g -0 (hn+l) !
If,g =0 (hn+1) ,

Iy =0 ().

The essential property of all Taylor Model operations is of course that they are

compatible with the corresponding operations on the functions contained.

2.28 Theorem. (Fundamental Theorem of Taylor Model Arithmetic) Let Gf C RY
open and let the C™t1_function f : RV — RV be contained in the v-dimensional n-th
order TM Tf = (Pf, If) over the compact domain Df C G’f . Likewise, let Gg C RY
open, let Dg C RY be compact such that the range bound B ((Pf, If)) C Dy, and let
the C"+1-functi0n g : RY — R be gwen as a finite code list of binary operations and
elementary functions. Now let Ty, f = (Pgofr Igof) be the n-th order TM obtained
by ezecuting the code list of g in TM arithmetic starting with the TM Tf.
Then we have that
gof CTyog
and if Iy has the n + 1st order scaling property as in Theorem 2.27, then so does

Tgof-
Proof. The proof follows immediately by induction over the finite code list of g using

Theorems 2.24 and 2.27. O

2.5.1 Applications of Taylor Models

In the introduction to this section it has already been hinted at that Taylor Models

are suitable objects to construct a self-verified computing framework. Essentially,
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Taylor Models can be used in the same spirit as interval arithmetic, but the most
fundamental drawbacks of intervals are alleviated significantly by the use of Taylor

Models:

1. the dependency problem can not occur in Taylor Model problems by design, as
the multiple occurence of identical monomials in the code list for a function is

immediately accounted for in the Taylor polynomial of said function.

2. wrapping effect: the cause for the overestimation of an interval enclosure of a
set is the nonlinear distortion of said set, the bulk of which is represented by

the high-order polynomial part of the Taylor Model.

3. dimensionality curse: if over a certain domain a function is to be enclosed up
to a fineness 0 < § < 1 by a set of interval boxes {Ij};vzl of maximal width 4§,

then the number of hoxes required scales as

v
v-(5)
0

with the dimensionality v of the problem.

In contrast, a Taylor Model enclosure of the function up to the same accuracy
can often be achieved with a single Taylor Model. The amount of memory
storage a Tavlor Model of a given expansion order N and dimensionality v
requires is mostly given by the number of monomial coefficients it needs to store.
The maximal number of polynomial coefficients Af (N, v) is for a polynomial of

order N and dimensionality v is

(N +)!

M (N, v) = Nlv!

which grows much slower with v than the exponential growth of the numbers

of boxes.
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Of course, the interval problems still persist in principle in the manipulation of
the remainder bounds of the Taylor Models, but the remainder bounds are usually so

small that even the overestimation effects do not come significantly into play.

We next list two applications for which Taylor Models have proven to be very

successful, and which are required for some of the algorithms later in this work.

T aylor Model Verified Flows for ODEs

We consider the standard autonomous intial value problem

&= f(x), (2.3)

x (0) = zg,

wlx ere f: RY — RY is a function, at least C'1, given as a finite code list of binary op-
er- #a tions and intrinsic functions available in Taylor Model arithmetic (in particular, f
is 1 «>cally Lipschitz and uniqueness and existence of solutions to (2.3) are guaranteed).

"The Picard-Lindelof Theorem shows that the Picard iteration
P0 = 20
t
vnt1(t) =120 +/0 f (on(s))ds

<onverges uniformly to the flow ¢ (z,t) of the IVP. Based on Schauder’s Fixed

Point Theorem, we can design an algorithm to compute verified Taylor Model repre-

Sent ations of the flow which is in the same spirit:

2.29 Theorem. (Schauder) Let X be a topological vector space and @ : X — X a

Onetinuous map. Let Y be a compact conver subset of X such that O(Y) C Y. Then
there erists a fized point of O inY.



2 .30 Algorithm. (Taylor Model flows) Let N € N be a fized computation order. The

total integration time is set to T > 0. Set the midpoint of the initial condition bor to

Xg €RY and let x € [—d,d]" ford > 0.
o

1. The first time step: Let the polynomial Py := Xg + x and the TM ¢p =

Py +[0,0]. Let 6ty be the integration step size for the first step.

(a)

(b)

The polynomial part Py is stored in a DA-vector, and define the DA-vector
Picard operator
Mpa():=Po+071f()
(refer to Appendiz B for details on the antiderivation operation) and iter-
atively compute
Prt1(zt) :=Tpg (Pn(2,1)).

After N steps, a polynomial Py invariant up to order N is obtained, i.e.
Py =N Pni1=Tpa(Pn).

Define the Picard operator for Taylor Models

Opar ()= Po+ 0,71 f ()

where now 0, 1 denotes the antiderivation in TM-arithmetic as per remark
(2.26). Heuristically, find an interval remainder bound Ir such that for the
Taylor Model

7 (z.t) := Py(x.t) + I7

we have

Py + I:= Oppr(t) Coy (2.4)

i.e. that

IcI,.
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If this is the case, then the Schauder Theorem asserts that there exists a

fized point T such that
T = (P*. 1) = Tippg (7%)
and T can be reached through successive teration of Il y.

(c) Iterate H%‘M (7*) until I* 1s sufficiently refined.

(d) Insert the timestep 8t into 7* and obtain the flow
v1(x) = Ppy () + Ip) = 7% (2, 0t1) .

For the (n + 1)st timestep, suppose the flow on () = Py, (x) + 15, has been
computed in inetgration step n, and the step size for the (n+1)st step is dt,, 4 1.

Then set the initial condition to ¢n () and repeat from step 1.

3. Terminate the algorithm after KT steps when Z}i‘le ot =T.

It can now be shown [41] that YK () indeed yields a rigorous TM-enclosure of
t1r e flow p (X + z.T) for all initial conditions in Xg + [—d, d]".
Alss  a remark, the heuristics in step 1b) of the previous algorithm are educated. Since
the bulk of Ir that satisfies the inclusion (2.4) will be given by the truncation error,

wWe  simply set the initial test interval I+ as the polynomial part of the Taylor Model

Mpr (Py +10.0]").

The simple Algorithm 2.30 forms the basis for more sophisticated approaches using
Preconditioning and remainder bound manipulation techniques which offer superior
control of remainder interval blow-up (7,46,47]. Taylor Model integrators of this
ty e have been successfully applied to Astro- and Beam Physics problems (30, 43],

and extensions of the theory allow rigorous enclosure of solutions of implicitly given

ODE;s or differential algebraic equations [28,29).
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Global Optimization

The global optimization problem, in its simplest form without constraints etc., can
be phrased as follows:

Let D C RY, D = [ay, b1] X ... X [ay, by], be an interval box and let f: D — R
be continuous. Find the global infimum of the function f over the domain D. Note
that here D is compact, so the infimum of the range is actually assumed in D,

I‘QE f(x)= min f(z).
Unlike gradient-based methods, which are fast but tend to fall into local minima, a
global optimizer is able to find the absolute minimal value of f (D) or at least a sharp

upper bound for it through e.g. a Branch and Bound algorithm [34]:

2.31 Algorithm. (Branch and Bound) Let D C RY and f be as above. Then we
can inductively define a procedure to find rigorous upper bounds for the minimum

p 7

1. Let the midpoint m € D, m; = b; —a; V1 < i < v and set the minimum upper

bound S := f (m).

2. In the first step: subdivide By := D along the coordinate azxis of greatest width
and obtain By 1 and By g such that By C By 1U By 2, and the interiors él.l N
él,? ={. Set 31 = {Bl,lf BLQ} .

3. In the k-th step, assume you have a collection of Nj. boxes B =
{Bk,l""*Bk,Nk}’ Bk,j CDV1<j <N

(a) j=1: if max f (Bk,l) < S, reset S := max f (Bk,l)- Discard all bores
By ; C By which satisfy min (Bk,j) > S. Else bisect By, 1 along the
coordinate aris of greatest width into two interval boxes By 1 1 and By 41 9

such that Bk,l C Bk+1,1UBk+l,2 and the interiors ék+l.lmBk+l,l =0.
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(b) for1 < j < Ny: assume that so far By 1,.., Bgy1 have been created.
If max f (Bk,j) < S, reset S := max f (Bk,j>' Discard all bozes Bk,j C
By which satisfy min (Bk,j) > S. Else bisect By, j along the coordinate

azs of greatest width into two interval bozes By, 1 141 and By 149 such

that By, ; C (Bk+1,l+1 U Bk+1,z+2),- and By 10410 Bry142 =10

4. Set Bk+1 = {Bk+1,l’ Bk+1‘Nk+1 }, Bk+1,j C DV1 <7< Nk+1 and
repeat from point (8) until either S is less than a prespecified threshold Mg > 0,

Ny
or the volume of szl"fl By 41,5 15 less than a threshold My > 0.

This algorithm is straightfoward, and it is clear that it yields ever sharper interval
enclosures of both the minimum Jr:lélg f (x) and the points in X where that mininum is
assumed. It can also be fully verified by using interval based methods to find the range
bound estimates for f over a specific box Bk,jv and numerous other approaches to
implement interval-based global optimization routines have been investigated (13,24,
25,32,60]. The practical issues with this algorithms are the slow convergence rate and
the possibly large memory requirement for box storage, since the discarding process
is slowed down by overestimation in function range bounding. For both problems,
it is thus paramount to find methods that minimize overestimation in order to find
sharp updates to S that allow us to quickly discard boxes.

This is a strength of Taylor Models, where in step 3 of the above algorithm we
can find sharp Taylor Model enclosures for the range of the objective function f over
the box Bk,j expanded around the midpoint by simply evaluating the code list of
f. Once this step is performed, sophisticated range bounding procedures for Taylor
Models exist [45] which allow range bounding with minimal overestimation.

Additional benefits of the Taylor Model approach is that (nonverified, but highly
accurate) information about the gradient of the f is immediately available and can

guide more informed box splitting and selection procedures than the purely chrono-
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logical ordering of new boxes as in algorithm (2.31), potentially accelerating the

discarding process substantially.

2.5.2 Implementation of Taylor Models

Taylor Models and their arithmetic have been implemented as a data type in the
programming language COSY Infinity (1, 15], which has been used to perform all
computations found in later chapters.

COSY Infinity was conceived as a beam physics code designed for particle optical
simulations, incorporating arbitrary order polynomial manipulation for the accurate
approximation of Poincaré transfer maps of the beam line elements [14]. The efficient
framework for polynomial arithmetic rests on the ideas of DA-vectors presented in
Appendix B.

It is thus a natural progression to implement Taylor Models as an extension of
this framework, such that the polynomial portion of a Taylor Model operation is
performed within the DA-vector picture, and the remainder bound portion of the
Taylor Model operation is executed in interval arithmetic (see Appendix A) for the
rigorous estimation of truncation errors.

In practice, this implementation step is nontrivial, since so far in the definition
of Taylor Models and their operations we have assumed exact arithmetic. However,
on the computer we have to make a transition to floating point arithmetic, and it is
not immediately clear how the rigorous enclosure properties of Theorems 2.24 and
2.28 translate into the floating point environment. In other words, suppose the C-
function f : [-1,1] — R is contained in the n-th order Taylor Model T = (P, I),

where r > n, i.e. the enclosure property
fx)eP(x)+IVx e [-1,1]

holds. Does then the floating point implementation 7' = (15, f) of T satisfy the same
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enclosure property

fx)eP(x)+IVze|-1,1] (2.5)

in exact arithmetic? It has been shown in [61] that the Taylor Model implementation
in COSY Infinity indeed satisfies (2.5). An in-depth discussion of this issue is beyond
the scope of this work, but in essence the verification in the floating point picture relies
on outward rounding in the interval arithmetic and the absorption of a pessimistic
floating point error into the remainder bound interval in every operation.

Furthermore, for computational efficiency COSY supports sparsity procedures in
the polynomial operations and only keeps monomials with coefficients above a cutoff
threshold comparable to the floating point accuracy. Monomial terms below this size
are discarded and absorbed into the remainder bound, as well.

It is worth stressing that the Taylor Model data type in COSY Infinity, and in
particular its polynomial part, only contains floating point information. This means
e.g. that a Picard iteration as in Algorithm 2.30, which in exact arithmetic leaves the
polynomial expansion invariant in every step except for the highest order, also will
leave the floating point polynomial invariant up to the highest order when performed

in floating point arithmetic.
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CHAPTER 3

Verified Enclosure of Poincaré

Maps

Poincaré maps [58] are a standard tool in general dynamical systems theory to study
qualitative properties of continuous dynamical systems (e.g. the flow generated by an
ordinary differential equation), most prominently the asymptotic stability of periodic
or almost periodic orbits (see e.g. [23] [2] [62]). A Poincaré map essentially describes
how points on a plane S (the Poincaré section) which is transversed by such an orbit
O (the reference orbit) and which are sufficiently close to O get mapped back onto S
by the flow. The two key benefits in this approach are that long-term behaviour of the
the flow close to O can be analyzed through the derivative of the Poincaré map at the
intersection point of S and O, which is available after just one revolution of O, and
that the dimensionality of the problem has been reduced by one, since the Poincaré
map is defined on S and neglects the "trivial” direction of the flow purpendicular to
the surface.

We will actually consider a somewhat generalized notion of Poincaré maps, by
dropping the restriction that the flow exhibit a periodic reference orbit. Assuming

we are given a smooth surface in phase space, the Poincaré section S, and an initial
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condition X for the flow such that the orbit originating at X actually transverses
the section S at some crossing time 7Tj, then by a Poincaré map we understand a map
that projects all flows originating in a neighborhood of X directly to the section S.

Seeing that the Poincaré map itself is given implicitly, it seems like a logical
progression to tackle the problem of computing Poincaré maps in the Differential
Algebraic (DA) framework of polynomial approximations (see Appendix B), since
under quite general assumptions high-order polynomial approxiations to inverse or
implicitly given functions are available in an automated fashion.

Finding rigorous Tavlor Model enclosures for the Poincaré map is a priori chal-
lenging, since the issue of verified functional inversion is very subtle. Here however,
we can use the vector field of the differential equations as an additional tool to esti-
mate trunctation errors, which leads to quite natural geometric condtions, which can
be checked

The key question that will be discussed is how to project a domain box exactly to
a given surface under the action of the flow. In the above setting, where a reference
orbit starting at the initial condition X transverses a surface S at time T, then
for all points x in a sufficiently small region containing Xg a unique crossing time
for the surface also exists, and can be represented as a Taylor expansion in terms of
small variations (Xg — () around the reference crossing time Tp. We will present a
method to obtain nonverified and verified polynomial representations of this crossing

time and the subsequent construction of a Poincaré map.

3.1 The nonverified method
Consider a system

x(t) = f(z(t),t), (3.1)

2(0) = X + 2.
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X2
Xp € [—d, d]2
d X0
/ Lp(Xo + Xxo, t)
Xo
L,O(Xo + Xo, 0)
0 X1

Figure 3.1. Forward propagation of the box Xg+ [—d, d}Q from time 0 to time t using
the DA-integration method.

where f : RY D U%¢" — RY, v € N, is a finite code list of binary operations
and intrinsic functions available for DA-vectors. Suppose we are given a surface S
which is transversed by the reference orbit (where xg = 0) at a crossing time T. This
crossing time needs to be known to high accuracy (however, a non-verified result for
Ty is sufficient) and we assume that it is known. Typically the computation of 7{ can
be formed as a scalar constraint satisfaction problem and can be determined using a
high-order Runge-Kutta integrator.

We assume that a DA-integration as in Appendix B of the domain box Xg + D,
where D := [—dy.dq] x ... X [=dy,dy], has been performed until the time Ty (cf.
Figure 3.1). In the last integration step, the time dependence has been retained, and
we have a polynomial expansion ¢(xq,t) of the flow.

We want to consider as large a class of surfaces as Poincaré sections as possible.

A suitable assumption is that locally around the point (0, Tp) the Poincaré section
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S C R is given implicitly in terms of a function ¢ : RY — R as
= {z e RY:0(x) = 0}.

Since the function ¢ also needs to be expressed in terms of binary opertions and
elementary functions available in the computer environment for DA-arithmetic, it is
necessarily smooth, and hence also the surface S. This contains most surfaces which
are of practical interest, in particular the most common case where S is an affine
plane of the form S := {x € R : 1 = ¢} where the first component z1 of the vector
z is set to the fixed value ¢ € R; here o(z) =21 —c.

The other condition which needs to be met by S is that the flow is transverse to

it for all possible initial conditions xg € D, i.e. that

0 # (Vo (e(x0,t)), f(e(xg, 1), 1))Vzg € D.

Without this assumption a Poincaré map cannot be defined meaningfully, since for
its definition the existence of a uniquely defined crossing time for each initial con-
dition is required. However, for our method this question can be neglected. In the
‘pathological’ case that the vectorfield is in the tangent space of the surface at any
point, the functional inversion step described in the following will fail.

The interesting question is how the object {¢(zg,t) : g € D} can be projected
to S by insertion of a suitable crossing time. For every possible initial condition,
we wish to derive an expression of the crossing time tc(xg) at which the trajectory
originating at the said initial value traverses the section S, and then reinsert this time
te(zg) back into the DA vector o(x(,t) describing the flow. This yields a polynomial
¢(zg. te(g)) only depending on the initial conditions zg which projects these values
almost exactly onto the Poincaré section, up to accuracy restrictions depending on
the approximation order. The information about this crossing time is contained in
the flow and the geometry of S in an implicit way, hence we need to use suitable

tools for functional inversion in the DA context as has been described above. The
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function p(xq.t) as such cannot be invertible, since the dimensionality of its domain
and range do not even agree. Instead, we will introduce an auxiliary function o
which is substantially easier to handle and yields all relevant results. For ¢ (z,t) to
be invertible in the first place we need v to map into RY +1

This motivates the following construction: Define a function v : R¥Vt! — Rv+1

by
L’k(‘l'O- f) = 1‘0‘;\.\7’1\". e {1, l/} (3.2)
Uy +1(x0. 1) := o(p(z0. 1))

where the indices & denote components of the respective vectors. To get an idea
how the construction of y» comes about, we remark that a functional inversion step is
expected because of the implicit occurrence of the to(zp) in the problem, and hence
' needs to map between spaces of equal dimension. Furthermore t¢(xg) depends on

the variables zg and is determined by the constraint condition
o(p(z te(rp))) = 0. (3.3)
Because of the last statement t.(.rg) satisfies
v(zp.te(rg)) = (70.0)
and assuming that v is invertible we can evaluate
v N, 0) = v (¥ (20, te(20))) = (20, te(zo))T

and immediately extract the DA-vector representation of t.(rg) in terms of the xg in
the last component. In this case the invertibility of ¢ at the point (zg,tc(zg)) is ac-

tually guaranteed by the condition of transversality. This proves the next statement:

3.1 Theorem. Suppose for the system (3.1) and a surface S given by a smooth

function ¢ : RY — R as S := {r € RY : o(x) = 0}, the crossing time Ty of
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the reference orbit is known. Assume that (3.1) has been integrated until Ty and let
g(rg.t) be the local flow. Then the function ¥ defined as in (3.2) s invertible, and
the function

te(wg) == v} (x0.0) (3.4)
projects the flow directly onto the surface S, i.e. p(xg.te(xq)) satisfies (3.8) for all

Iy € D.

1

Performing the inversion of ¥ to v~ * as in section (2.8) and the evaluation (3.4)

in DA-arithmetic yields a DA-vector that contains the Taylor expansion coefficients

of te(xg) up to the desired order.

Now the DA-vector representation of the Poincaré map P(xg) is simply con-

structed by inserting t.(rqg) into the flow:
P(xg) := p(xg. te(xq))-

In figure 2 it is illustrated how P(() projects the original transported box {p(xq,t) :

xg € D} almost exactly onto the surface S.

3.1.1 Summary of the nonverified algorithm

1. For the system (3.1) and a given surface S, find the crossing time T of the

reference orbit, i.e. ¢(Xg.Ty) € S

2. Integrate (3.1) until the time Tjy, perform one extra integration step in which

the time dependence is preserved. This yields a time-dependent flow ¢(xq,t).
3. Expand the parametrization o(2) of S around the point ¢(0.7()

4. Set up and invert the auxiliary function ¥ using DA functional inversion to

obtain a DA-vector represenation of vl

5. Evaluate t¢(xq) := ‘U’_l(;l'().O).
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=S = {xeR?:x = o(x2)}

\

«— (o0, 0)

— p(x0, te(x0))

’ X]'

Figure 3.2. Projection of {¢(xg,t) : ¥o € D} onto the surface S by insertion of the
crossing time te(xg).

6. Evaluate P(xq) := @(xq, te(zg))-

<<% .2 Verification

Ixm  the same way that Taylor Models offer a somewhat natural extension to DA-

I'Ta «=thods to a verified setting, one can ask whether it is possible to modify the previ-
O W sly described algorithm to obtain verified interval bounds for the truncation error of
€ I € polynomial representation of both the crossing time te(zg) as well as the Poincaré
X ;ap P(zg) itself. We will see that indeed this is possible. Again the objective will
be to compute a TM for the crossing time to be inserted into the TM for the local

B o w in order to construct a TM-representation of the Poincaré map.
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3.2.1 Specification of the surface parameterization

We now assume that for a given reference initial condition Xg the crossing time Ty

at a surface S is well-known. Let S be parametrized as
={reR":z1=g(x9,..,70)}; (3.5)

comparing this to section 3.2, we see that in this case o(z) = 2] — g(z9, ..., zy). For
simplicity we will write 27 = g(z), but indeed g does not have any x1-dependence;
the z1-component of a point = on § is uniquely specified by its last v — 1 components.
We demand that g : RY — R is a function comprised of a finite code list of binary
operations and instrinsic functions which are available in Taylor Model arithmetic,
which entails smoothness for g and hence also for S just like in section 3.1 . We

will denote the TM-representation of g also by g(z) + Ig, it should be clear from the

context whether the parametrization g or the DA-part of its Taylor Model is meant.

3.2.2 Interval enclosure of feasible crossing times

Assume that a TM-based verified integration of the system (3.1) has been performed
until the time 7, and the final coordinates are given by a TM-flow of the form
©(z0,Tp) + Ip. This means that the trajectory (0, Tp) originating at the midpoint
X exactly coincides with the surface S, i.e. ¢1(0,Ty) = g(¢(0,7p)). Also note that
there is no time-dependence in ¢(xg,Tp) + I, anymore after the time T has been
inserted into the flow.

Just like in the nonverified method, we need an extra integration step in which we
keep the full local time dependence in the flow ¢(zq,t). This is obtained by the same
verified TM-integration procedure with initial conditions x(0) = (o(20,Ty) + 1p),
except the insertion of the time step is not carried out.

However, the time domain of the extra interation step explicitly enters the calcu-

lation of the remainder bound. So it is mandatory to get a good guess about a time
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interval [—£,#] , where £ > 0, such that all true crossing times t%(zg) of all trajectories
originating in the box X + D are contained in the time interval Ty + [—t.{].

To obtain this estimate, we first take the DA-part (2, Tg) of the verified solution
at time Ty and use it as the initial condition for one extra nonverified integration
step in DA-arithmetic (as in section 2.1). This yields a DA-representation of the
local time-dependent flow, which we can use, together with the DA-part g(x) of the
surface parametrization, to compute a polynomial of the local crossing time tc(zq)
as described in the previous section. This polynomial, albeit not verified, already
represents the functional dependency of the true crossing time t%(x()) on zg to a high
degree, and so a range bound of t.(xg) over all g € D will yield an interval enclosure
[t tu], with t; < 0 < ty, which is a very good estimate of the range of tZ(zg) around
Ty - Inflating the interval bounds (say by p per cent, where p is typically around 10

to 20) and taking the bigger modulus, we see by setting

(1+ =) - max{|t;], tu} (3.6)

t:
100

Il

that the time interval T + [—t, ¢] has very good chances to satisfy the crossing time
enclosure stated above. We can actually verify that T + [—t. {] constitutes a rigorous
interval bound of t:(xg) Vg € D by a somewhat involved but straightforward argu-
ment that g((xg. Ty — 1)) < 0V € D and g(p(xg. Ty +t)) > 0Vag € D or vice

versa.
3.2.3 TM-enclosure of the Poincaré map

Now we are able to integrate the system

z(t) = f(x(t).1), (3.7)
2(0) = (9. Tp) + I
in TM-arithmetic as in section 2.5.1 with full local time dependence of the time

domain [—£,#]. Again, for simplicity we will just call the resulting flow ¢(zq,t) + I,
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though the interval bound I, has changed.

Observe that the set B := {@(xg,t) + I, : (zg.t) € D x [—t,t]} contains all
trajectories satisfying (3.7) over the time interval [—,¢]. Thus we are able to obtain
an interval bound I4 for the TM of g by expanding g in TM-arithmetic over a B,
where B is an interval vector which contains B. B can be obtained, e.g. by range
bounding ¢(xg.t) + I, over all (z¢.t) € D x [—t.t]. Note that in typical applications
the curvature scale of the surface S is several orders of magnitude bigger than the
scale of the transported box B (or B respectively), and hence the range of g over B
is very small, typically smaller than the remainder bounds I,. In fact, in the case
where ¢ is a polynomial of order less than or equal to the computation order in the
TM-arithmetic, g will have a zero remainder bound, up to small floating point errors.

We proceed by first obtaining the polynomial part of the TM-representation of
the crossing time, tc(zg). We extract the polynomial ¢(zg,t) from the TM-solution
of the local flow, and use the DA-part g(z) of the parameterization of S to compute
a nonverified DA-representation for the polynomial part t.(xg) of the crossing time
exactly as described in section 3.1 .

We are allowed to insert any Taylor Model with a range in T+ [—t, ] into the time
dependence of the flow-TM ¢(xq,t) + I, in an attempt to project the flow onto the
surface S. In particular, we are allowed to insert our best educated guess for a TM
which approximates the true crossing time t3(zg), namely the DA-approximation
te(zg) outfitted with a zero remainder bound. Note that the TM tc(zg) + [0,0]
approximates tx(x(), but does not necessarily contain t%(zg) for all 29 € D, or any
xg € D for that matter. We will actually be able to find a rigorous interval bound
for t%(zq) later.

Insertion of tc(xg) + (0. 0] into @(xg.t) + I, yields a Taylor Model which describes
a curvilinear rectangle that "hugs’ the surface S narrowly, i.e. the displacement of the

set ¢(z, te(xg) + [0,0]) + I, in the transverse xq-direction from the surface is almost
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S:={xeR?:x; =0(x)}

@(xo0, te(x0)) =

/’,

(A(x0), p2(x0, te(x0))) L
w

0 ’ X1 e 0 X1
Ia

v

Figure 3.3. Calculation of maximal displacement of ¢(zq, t¢(xg)) with respect to S.

zero. However, we cannot expect the inclusion
{g(p(xg, te(xg) +[0,0])) + Ig : xg € D} C {p(xg.te(xg) +[0,0]) + Iy : z9 € D}.

To obtain a TM-enclosure P (xqg) + I»p1 of the first component of the true Poincaré

map P*(xq), we first introduce the Taylor Model

A(xg) := (p1(z0.te(z0) +(0.0]) + Ip;) — (9(¢(z0. te(zg) + [0,0])) + Ig).  (3.8)

A(xg) is a measure of the displacement parallel to the first coordinate axis of
©1(zg, te(zg) + [0,0]) relative to the surface (cf. Figure 3.3), so range bounding
A(zg) over all zg € D yields an interval bound Ia, which is very narrow, basically
the order of magnitude of the remainder bound Iy, of the original TM-flow. Thus
we have already found a TM-enclosure of the first component of the Poincaré map
by setting

P1(x0) + Ip| := ¢1(x0, te(x0) + [0,0]) + IA. (3.9)
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Figure 3.4. Range bound of the vector field f; and fo over the box B.

We are now able to also find the remaining, ’tangential’ components Pa(xg) +
1p2, s Pu(xg) + Ip,, of the TM-enclosure of P*(zg). In order to outfit the TMs
wj(xo.te(zg) +[0.0]), j € {2....,v} with suitable remainder bounds ij, we need to
make use of the vectorfield of the system (3.7) and make 'velocity’-type arguments.
We first observe that an interval bound I,,,; | of the velocity in xy-direction, i.e. the
function f1, over the entire set B can be found by simply range bounding the TM
f1(o(zg,t),t)¥(xq,t) € D x [—t,] as in figure 3.4.

Note that except in pathological cases Ivel, | does not contain zero and its upper
and lower bounds are typically of similar size since the vectorfield f(x.t) does not

vary significantly over the the set B. If we consider the interval

I
I = —2 (3.10)

¢ Ivel,.L

we see that I3 is very narrow due to the smallness of /5 and that it contains the largest

possible time duration that it can take the flow to traverse the surface in x-direction.
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Bounding the tangential velocities, i.e. the TMs f;(¢(xq.t).1)V (xg.t) € D x [~t.1)

for j € {2,...,v}, we get interval bounds lvel,j “Vj and can define the intervals
L =Tt Lygy 5 Vi € {2, v} (3.11)

which allow the rigorous bounding of the tangential components of the Poincaré map

bv
Pj(:l‘()) + ij = ;;j(.l‘o‘l‘c(l‘()) + [0.0]) + (11;} U IJ,H)Vj € {2, U} (3.12)

We can summarize the construction of a validated TM-enclosure of the Poincaré map

in the following theorem:

3.2 Theorem. Suppose that for the system (3.1), with xg € D, and a surface S as
quen wn (8.5) the crossing time Ty of the true reference trajectory p*(Xg.t) is known
approvumately, and that a TM-integration has been performed until Tgy. Suppose fur-
ther that a time interval Ty + [—t.t] that encloses all true crossing times has been
constructed as in (3.6) and that a verified time-dependent TM-representation of the
flow of (3.7) has been obtained over D x (T + [—t,t]) as in section 2.2.

Then, a TM P(xq) + Ip constructed as in (3.9) and (3.12) using the interval
estumates (3.8), (3.10) and (3.11) has the property that for the true Poincaré map

P*(xg) we have the enclosure
P*(xg) € P(zg) + IpVzg € D.

We conclude the discussion by remarking that there is an alternative route to
obtaining a suitable TM-representation P(xq) + Ip of P*(zg), namely by simply
finding a sharp remainder bound /. for the crossing time t¢(xg) such that the true
crossing time tz(xg), for 79 € D. is enclosed by the TM tc(xg) + 1 .Vrg € D. We
indeed have already found such an interval enclosure for the crossing time, namely
the interval Iy as computed in (3.10). Insertion of this TM tc(xq) + I into the time-
dependence of the flow ¢(z(.t) + I yields a TM for the Poincaré map as well, but we

expect the aforementioned construction to have slightly sharper bounds for P*(xq).
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3.2.4 Summary of the verified algorithm

10.

11.

12.

. For the system (3.1) and a given surface S, find the crossing time T of the

reference orbit, i.e. (X, Ty) € S

. Integrate (3.1) in TM-arithmetic until the time 7 and obtain a verified flow

¢(zo, Tp) + It
Expand the parametrization g(z) + I4 of S around the point (0, Tp)

Extract the polynomial part p(zg,Tp), perform one extra integration step in

DA-arithmetic with full local time-dependence

Compute a DA-approximation t.(xg) of the crossing time like in section 2.3

. Perform arange bound [tl, tu] of te(xg) over g € D, construct the time domain

Tp + [—t.1] as in (3.10)

. Perform a TM-integration of the system (3.7) over the time domain Ty + [—¢.7] ,

keep local time dependence. This yields a verified time-dependent flow ¢ (zq, t)+
I, . Extract the remainder interval of the code list evaluation g(p(xq,t) + Iy)

as a remainder interval I4 for the TM-representation of g.

. Extract the polynomial part ¢(xq,t), together with g(xg) perform the nonvali-

dated computation of the crossing time tc(zqg) like in section 2.3
Find interval bound /5 for the displacement (3.8) over the set D
Find interval bound I, | of the vector field component fi(z,t)
Find interval bound I .as in (3.10)

Find interval bounds Ivel, il of the tangential vector field components fj(."c. t)

as in (3.11)
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13. Construct the TM-enclosure P(xq) + Ip of the true Poincaré map Pirye(2q)
as in (3.9) and (3.12)

3.3 Numerical Example: the Volterra-Lotka equa-
tions

We consider the Volterra-Lotka equations

1 = 2x1(1 — 29) (3.13)

tg = —xp(1 — 1)

with the initial conditions (21(0),z9(0)) = (1,3). These initial conditions leads to a
periodic trajectory with a period of T) ~ 5.488138468035. For testing purposes it is
furthermore beneficial that actually all trajectories in the first quadrant are periodic,

and the closed orbits are the level sets of the function
f(ay,xg) = wpge 1722,

as shown in figure 3.5. This means that f stays constant along a single trajectory.
The Poincaré section onto which we want to project is S := {(x1,29) : 1] =
1}, ie. g(r) = x1 — 1 exactly and we may assume that I3 = [0,0]. Note that
all nonconstant trajectories traversing this surface do so horizontally, since the zo-
component of the vectorfield vanishes on S. Furthermore, one can easily show that
at the points (1, z9) € S the maximal zo-value of the corresponding orbit is assumed.
We consider a domain box Xg+[—d, d]2, where X := (71(0),x2(0)) = (1,3) and d :=
10~3. We perform a 16th order verified TM-integration over the time interval [0, To]
using the arbitrary-order code COSY Infinity [1,15], which fully supports verified
operation using interval and Taylor Model data types. We will not review steps 1-6

in the verified algorithm, since for the most parts they need to be repeated in the later
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Figure 3.5. Periodic orbits of the Volterra-Lotka system plotted as level sets of

f(x1.29) = 7125 T17 272,

steps, and just state the fact that we obtained an interval enclosure of all crossing

times for trajectories originating in X + [~d, 1[]2 as Ty + [—t,1], where
t = 0.3488916233200980.

Using the TM-integration scheme from section 2.2, we obtained time-dependent TMs
#(20,) + I for the flow over the time-domain Tg + [, ). The 1 (zo,t) + |-

component is
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TM VARIABLE: NO=16 NV=3

I  COEFFICIENT ORDER EXPONENTS
1 1.000000000416704 0 0 0 0
2 0.1000000000363324E-02 1 1 0 0
3 0.3187097194452020E-02 1 0 1 0
4 -.1584341969869541 1 0 0 1
5 0.1195161448703009E-05 2 2 0 0
6 0.3187097199172751E-05 2 1 1 0
7 0.6983455150714117E-05 2 0 2 0
8 -.1584341969567188E-03 2 1 0 1
9 -.5841622829368688E-03 2 0 1 1
10 0.1255069738025934E-01 2 0 0 0
264 -.2772494477873786E-19 16 1 0 15

265 -.1205045114232825E-18 16 0 1 15
266 0.2745362100462193E-18 16 0 0 16

REMAINDER BOUND INTERVAL:
[-.2812625244546855E-009,0.2827141034585959E-009]

and the w9 (z(.t) + Ipg-component is
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TM VARIABLE: NO=16 NV=3

I  COEFFICIENT ORDER EXPONENTS

1 2.999999999998760 0 0 0 0
2  -.2749150733449834E-12 1 1 0 0
3  0.9999999991337136E-03 1 0 1 0
4 0.4951517601531404E-10 1 0 0 1
5 -.8889349260011417E-15 2 2 0 0
6 -.2390322899443805E-05 2 1 1 0
7 -.3809095702117611E-05 2 0 2 0
8 0.1188256477338971E-03 2 1 0 1
9 0.3787088884005587E-03 2 0 1 1
10 -.9413023036667367E-02 2 0 0 0

254 0.3499033280718983E-17 15 0 0 15
255 0.6881983195065229E-19 16 0 1 15
256 -.1623038355645917E-18 16 0 0 16

REMAINDER BOUND INTERVAL:
[-.1509589656350207E-009,0.1465844505110771E-009]

The exponent notation refers to the expansion in terms of zg 1, g 2 and t. Note
here that for internal purposes supporting the verified computation COSY Infinity
rescales all variables to the domain {1, 1]. Indeed, the coefficient 3 in the expansion
of the flow in zo-direction should be the identity in z( 9, which is the case taking
into account the rescaling (recall the domain size for the xQ,; is [—10_3, 10_3] for
j=1,2).

Extracting the DA-part of p(xq,t) + I, we can set up the auxiliary function ¥
as in step 8 and invert it using DA-methods. This yields the DA-part tc(zg) of the

crossing time:
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TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 0.2630142082556787E-08 0 0 0 0
2 0.6311768667250960E-02 1 1 0 0
3 0.2011622020280193E-01 1 0 1 0
4 0.4387698247913437E-05 2 2 0 0
5 -.3155884300401868E-05 2 1 1 0
6 0.1963668821309683E-05 2 0 2 0
7 -.3714103288167166E-08 2 0 2 0
8 0.1793429553434871E-08 2 0 2 0
9 0.1577940909990520E-08 2 0 2 0
10 -.4277865429354660E-09 2 0 2 0

27 0.6212283471025129E-18 7 5 2 0
28 -.2159517257712372E-18 7 4 3 0
29 0.1677381555981327E-18 7 2 5 0

We next perform step 9 by outfitting this polynomial part of the crossing time
with a zero remainder bound and inserting it into p(x(.t) + I, and subsequently

we construct the TM A(xq) from (3.8)

TM VARIABLE: NO=16 NV=3
I COEFFICIENT ORDER EXPONENTS
1 0.1738810083033253E-18 1 0 1 0

REMAINDER BOUND INTERVAL:
[-.2812625477812596E-009,0.2827141267851699E-009]

which can be range bounded by
IA = [—.2812625479551414E — 009, 0.2827141269590517F — 009).

Next we can find remainder bounds for the transverse and tangential velocity as in

30



steps 10 and 12, by inserting p(x¢.t) + I, into (3.13), which leads to the range bounds

L = [—4.683179956640803, —3.383171090471560]

Lyer 2, = [—-4478418602052703,0.5274061209170990].
Then, according to step 11 we can use A and I, | to compute
Iy, = [—.8356483293301176 E' — 010, 0.8313577422888692E — 010].
This allows us to estimate the remainder bounds I and
Iy =TIt Lyera) = [—.4407260438228519F — 010, 0.4384631619549699E — 010]

for the TM-representation of the Poincaré map and finally complete step 13 by com-

puting, according to (3.9) and (3.12), the TM-representation Py (zg) + Ipls

TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 1.000000000000000 0 0 0 0
2 0.1738810083033253E-18 1 0 1 0

REMAINDER BOUND INTERVAL:
(-.2812636815047402E-009,0.2827152370081946E-009]

and for Po(zq) + Ip,:
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TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 2.999999999998760 0 0 0 0
2 0.3761326318189197E-13 1 1 0 0
3 0.1000000000129772E-02 1 0 1 0
4 0.3749999994446287E-06 2 2 0 0
5 -.3783981671657100E-14 2 1 1 0
6 -.5693365190215309E-14 2 0 2 0
25 -.3816772356026731E-19 7 5 2 0
26 0.7400323546967589E-19 7 4 3 0
27 -.4375766016780720E-19 7 2 5 0

REMAINDER BOUND INTERVAL:
[-.1509623028476050E-009,0.1509623028476049E-009]

The two Taylor Models constitute an enclosure of the true Poincaré map P*(xq)
for all rg € D. It is indeed more intuitive to analyze the result as a function mapping
the initial conditions X + 2¢ from the surface S back to S, which can be performed
by simply setting x(p 1 = 0. Note that the result is still verified, since we are allowed
to insert any Taylor Model with a range in [-1, 1]3 into P(xg) + Ip.

Performing the restriction xg 1 = 0 yields for Py (zq) + Ipl the same as above (no

x0.1-dependence), and for Po(zg) + 1732 :

TM VARIABLE: NO=16 NV=3

I COEFFICIENT ORDER EXPONENTS

1 2.999999999998760 0 0 0 0
2 0.1000000000129772E-02 1 0 1 0
3 -.5693365190215309E-14 2 0 2 0
4 0.1311936146646892E-15 3 0 3 0
5 -.1609031863045520E-17 4 0 4 0
6 0.9437249062120226E-19 5 0 5 0

REMAINDER BOUND INTERVAL:
[-.1509623028476050E-009,0.1509623028476049E-009]
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We see that the first component is exactly 1 up to small floating point errors,
which means that P(zg) + Ip indeed projects onto S. The second component offers
an illuminating validation of our argument: Since all orbits of the Volterra-Lotka-
system are periodic. the Poincaré map acting only on the surface S necessarily needs
to be the identity map, a characteristic which is nicely reproduced here. The constant
part of Py(xg) + 17;2 is three, i.e. the same as the initial condition, and the identity
map in the vertical shift is represented by the coefficient number 2, the linear identity

in g 9 (recall the rescaling from zg o € [-1073.1073] to [-1,1)).

3.4 Summary and Outlook

The Differential Algebraic framework is a natural tool to address implicitly posed
problems like the computation of Poincaré maps due to the availability of automatic
and efficient functional inversion tools. We presented an algorithm which generates
a polynomial approximation of the crossing time for orbits in the neighborhood of a
reference orbit which transverses a given surface.

Starting with the nonverified polynomial expansion of the crossing time, a rigorous
Taylor Model enclosure of the true crossing time can be obtained by applying velocity-
type arguments using the vector field in the vicinity of the Poincaré section. Once
a valid crossing time enclosure is obtained, inserting this into the Taylor Model flow
yields a verified Taylor Model enclosure of the true Poincaré map.

It is a logical progression to combine the techniques for rigorous Poincaré maps
presented in this chapter and the methods for invariant manifolds and related phe-
nomena in the plane in the subsequent chapters. One can think of the Lorenz or
Roessler systems, continuous three-dimensional systems, which could be restricted
to a suitably chosen surface via the Poincaré map algorithm, and subsequently the

restricted dynamics on the surface could be analyzed through their invariant manifold
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tangle.
Lastly, we note that the construction of the crossing time as in (3.2) can be posed
as a constraint satisfaction problem, and similar techniques have been applied in

constrained optimization problems to model feasible sets with dramatically reduced

search volume.



CHAPTER 4

Verified Representations of

Invariant Manifolds

The study of stable and unstable manifolds is naturally a very rich topic, given the
significance of the invariant manifold structure for the dynamical properties of a dy-
namical system, ranging from questions as diverse as the determination of topological
invariants and hyperbolicity to applications in the description of long-term behavior
of physical systems, e.g. in the three-body problem or particle optics.

Of particular interest in the present work is the study of the invariant manifold
tangle with respect to the existence and the properties of the homo- and heteroclinic
intersections contained in it, and the resulting implication of horseshoe dynamics [63]
or similar hyperbolic phenomena. In this case, the manifold structure can be arguably
complicated and it has long been a challenge to develop quality numerical tools to
investigate them.

In the following we develop an approach to find Taylor Model enclosures of the
local invariant manifolds for planar diffeomorphisms around a hyperbolic fixed point
(in this case the existence of local invariant manifolds as injectively immersed curves

is guaranteed by the Invariant Manifold Theorem 2.7. As the global manifolds are
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generated as images (or preimages) of the local unstable (or stable) manifolds, likewise
Taylor Model enclosures of the global manifold structure are iteratively generated by
mapping the Taylor Model representations of the local manifolds in TM-arithmetic.

The technique consists of two steps: initially, a polynomial approximation of the
local invariant manifolds is obtained, via various techniques as presented in section
(4.1).

In the second step, these polynomials are extended to Taylor Model enclosures
of the true local manifolds by heuristically outfitting them with remainder inter-
vals bounding the truncation error. The algorithm confirms the validity of the cO.
estimates in a self-verified enclosure check.

After the TM-enclosures for the local manifolds have been constructed, we com-
pute sharp verified TM-enclosures of significant pieces of the global manifold tangles.
Subsequently we compute rigorous interval enclosures for homoclinic points in the

tangle, and give numerical examples that support the accuracy claims.

4.1 High-order approximation of the local mani-
fold

The first step to obtaining rigorous Taylor Model enclosures of local invariant man-
ifolds is the construction of nonverified, yet highly accurate polynomial approxima-
tions. We present three DA-based approaches which can be used to generate the
polynomial expansions in the neighborhood of the fixed point. All three techniques
are somewhat similiar in spirit, essentially based on normal form arguments, but with

different intuitions and realms of applicability.
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4.1.1 Normal form transformation

Let f: RY O D — RY be a C"-map on an open set D with a fixed point p € D
such that there is a hyperbolic splitting TpR” = R” = Ejf @ Ej at p. For simplicity,
we also assume p to be at the origin, which can be achieved through a suitable affine
transformation. Suppose now that there exists a normal form transformation A

: RY — RY that fully linearizes f around p, i.e.
(N*l ofoN) ()= Df(p)-x=L(z).

in the neighborhood of p. A prerequisite for this is that the eigenvalues satisfy the

nonresonance conditions

Aj— )\}fl C /\5" #0V1<j<vand ky,...ky €N (4.1)

We now have a way of representing the local stable and unstable manifolds of f at
the origin through those of L. Consider the unstable manifold W (p), and let EY be

the unstable eigenspace of the linearized map L:

W) = (e €R”: i), = 0=l eRY: (N Lox ), = 0

k——o0

={zeR": <No Lk oN—l) (2) — 0} = {reR”: LFW1(0)) — 0}

k——o0
={zeR": N Ya) e EY}
We are thus able to approximate the local unstable manifold WY (p) of f as

WU (p) = N(EY).

The technique works likewise for the stable manifold 1V% (p) as the image of ES under
N. For the fully linearized map, the eigenspaces are hypersurfaces parametrized by

coordinate axes at the fixed point.



In the case where W or W¥ are just curves, E* or E® correspond to the coor-
dinate axes and we have eg. W% = N ({(0, ey 0,25, 0, ...,O)T tx; € IR}) for some
index 1 <i<v.

While the nonresonance condition (4.1) is merely necessary, but not sufficient
for the convergence of the NFT construction, it guarantees that we may perform
the construction in DA-arithmetic, as presented in section B.5 of Appendix B. In the
case of nonconvergence, the thus obtained polynomial approximations of the invariant
manifolds would possibly fail the automated validation tests in the verification steps
presented in the following section.

To this end it is important to note that for a finite computation order N in the DA-
framework, where N < 7, condition (4.1) only needs to be satisfied for multiindices
k| = k1 + ... + kp < N. Assume now a DA-vector representation [N] of the normal
form transformation has been obtained as in section B.5 . Suppose the unstable

eigenspace is spanned by the coordinate axes unit vectors, say
u ., __ 3 5
E" :=span{éy.....épr},
for some A € N. Then the natural parametrization of E* in DA-arithmetic is

[Eu] = ([Tl] v ['731\[] ; [0] IR [0]) € NDle

and locally we can get a polynomial approximation for a parametrization of H"[éc (p)
as

(W3°) = W] [E¥] € NDY.

4.1.2 Hubbard’s method

In the special case of a planar analytic (so in particular smooth) map Hubbard's
method [31] provides an approach that can be implemented in a straightforward

fashion.
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4.1 Theorem. (Hubbard) Let f : C2 — C2 be a complezr analytic diffeomorphism
with a hyperbolic saddle point at p. Let Ay and As be the unstable and stable eigen-

values of D f(p) with corresponding eigenvectors vy and vs. Fort € C, define the test

curves

() = P+ ), (42)

X

() = fT"(p + tAGvs).

Then the sequences {y}}n>1 and {75, }n>1 converge uniformly on compact sets to

limit functions v* and v5. and the following properties hold:

1 f(r(8) = 7" (Aut) and f(73(t)) = 7 (Ast) for allt € C
2. The maps v* and v° are injective ymmersions.

3. The wmages of ¥* and ¥° coincide with the unstable and stable manifolds, re-

spectively, of f containing p.

Since typically fixed points and eigenvalues can be determined well, the functions
in (4.2) can be constructed to the desired order with high accuracy.
For a finite computation order N, straightforward application of DA-arithmetic

vields the curves
[k ) = N (p+ PN )
oy 0= 7 (o [ ],

as local DA-vector representations, and taking the real part if necessary. Here we
may actually relax the assumption that f be complex analytic and just demand that

fis CT for some r > N + 1.
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4.1.3 Polynomial parametrization from functional equation

Another technique for the explicit construction of polynomial approximations of in-
variant manifolds can be obtained from the fact that the manifold parametrizations
can be chosen in such a way that they obey an eigenvalue scaling law, described below
in (4.3). In the plane one can relatively simply derive the coefficients of the polyno-
mial expansions of the manifolds. These techniques are standard and are covered in
great detail in [9,10,16,17,35,67].

In the following let again f : R? 2D— R? denote a planar analytic diffeomor-
phism with a hyperbolic saddle point p € D, here assumed to be at the origin. We
further assume that the eigenvector corresponding to the unstable eigenvalue Ay with
[Au| > 1 coincides with the xj-axis, and the eigenvector of the stable eigenvalue Ag
satisfving |As| < 1 with the xg-axis. Let the eigenvalues satisfy the nonresonance
condition (4.1).

Let fn denote the Taylor expansion of f around (0,0) to order n < k, and let
f =n g for two sufficiently differentiable functions f and g denote agreement of their
Taylor expansions around (0,0) up to order n (for more detail refer to Appendix B,
esp. Def. B.1 and following).

The following outlines the construction of a polynomial curve 7% = (7{,75)
parametrizing the unstable manifold, again an analogous algorithm can be performed

for the stable manifold. We seck a curve 4% : R — R2 such that
FGH) =" (Aut), (4.3)

a scaling property of the unstable manifold which stems directly from the Invariant

Manifold Theorem (2.7). We make the polynomial Ansatz
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1=2
< 1
" (8) =04 D 3t =" () + Ont™,
i=2

and see that in fact 4™ (0.0) = (l,O)T is tangent to the rj-axis at the origin for

every n € N. Rewriting the diffeomorphisim we obtain

filar.xg) = Ay + filzy,29),

fg(.Tl..Tg) = )\s.‘l‘g + fg(.Tl..”(‘Q)‘

where f = (fl, fg) denotes the nonlinear part of f. Note in particular that f can be
written as a power series expansion because of the analyticity of f. By inserting the

above expressions into the condition (4.3) we obtain

n n
Mt 4 A Y et + fi (7 (1) = At + DNy ag (4.4)
=2 1=2

n n
As D3t + fo (3 (1) (1) = DAL it
=2 =2

For the determination of an. 3n we are interested in the terms of (4.4) of exact order
nin t, or in other words the part of (4.4) which is homogeneous of order n in ¢. To this
end we observe that the part of f ('yi’"n (t) ,’yé‘"n (t)) which is homogeneous of order n
in t is identical to the part homogeneous of order n in t of f (",'i"nﬁl (1) .'y;‘n_l (t)).
Indeed this is the case since f is a power series expansion of order 2 and greater, and
so the n-th order terms of %™ do not contribute to the terms of f (*,-il"n (1) ,7’5'" (t))

homogeneous of order n.

Inserting this into the equations (4.4) and rearranging terms we obtain
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n—1
; ; 5 ~ 1 3 -1
u =X ant™ = 3 et = fi (11771 0), 5" @)
1=2

n—1
(s =N dnt" =3 (A= 2s) Bt = o (0" 0" )
1=2

and hence, because (A\g — A\') # 0V n € N, 0 = u. s due to the nonresonance,
i u )

5

Qn = Bn = Tz_—/\zr), (4~5)

U_

where S( n) and Sén) denote the sum of the coefficients of terms of exact order
nin f; (71 -l ().~ g e (t)) and fo (’yi’ e 1(t) ,'7;""-1 (t)). The construction
(4.5) is fully explicit and inductive, since computation of an and 3, only requires
knowledge of the ;. ;3; for 1 <i:<n-—1.

Making the transition to DA-arithmetic is again straightforward here. Again we
may relax our assumption that f is analytic and just demand that f is C” for some
r > N + 1, where N is the desired expansion order of the DA-vector-computation.
Additionally. the nonresonance condition (4.1) only needs to hold up to order N as

well. We get

where
u— Ay

- b [9¢]. 1 g [ ].

and

0] [ G 0 58 )] - [ G 005 )]

for i = 1,2 is homogeneous of order n in t.
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4.2 Verified enclosure of the local manifold

4.2.1 Construction of verified local invariant curve enclo-

sures

In the previous section techniques to find a nonverified polynomial approximation for
the unstable curve near a fixed point were introduced. In the following we describe
how such a polynomial approximation can be extended to a two-dimensional Taylor
Model ‘tube’ that rigorously encloses the true invariant manifold.

Again, throughout this section let f : R2 5> D— R? be C" with a hyperbolic
fixed point at the origin, and such that the dominating eigenvector with eigenvalue
Ay with [Ay| > 1 coincides with the xj-axis, and the minor one with eigenvalue Ag
(IAs] < 1) with the xg-axis. For simplicity we will also assume that in fact Ay, > 1,
else consider the squared map.

We first introduce the notion of slopes:

4.2 Definition. A differentiable curve v C R2 parametrized as y(t) = (7v1(t),y2(t)).
with t € [—1,1], such that |51(t)| # 0Vt is called reqular. For regular curves, we

define the slope s~ as

4.3 Remark. We can find simple transformation laws how the slope of a curve
changes under iteration by a map f € CQ(RQ). For a regular initial curve v;, we

denote the tranformed curve v fi= f(v;) and observe that

3 £(t) := Df((t)) - 4:(t)

or componenturnise

Ykt = 01 e (vi(1) - ¥i1(t) + G fr (Vi (1)) - 4: 2(t) for k =1,2
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Figure 4.1. A parametrized rectangle E (black, dashed), and its image (blue, dotted).
In the situation of Theorem 4.4, the true unstable manifold U (red, dash-dotted) is
narrowly bound in its transverse direction by both E and f(E).

and thus we obtain the new slope

5 (t):31f2(“z(t)J Fi1(t) + 0o fo(%i(1)) - % 2(t)
i AN f1(7i(t)) - 43,1 (t) + Do f1(7i(t)) - 43 2(t)
_ 1fo(hi(1)) + Dafa(ni(t)) - sy;(1)

— N (i) + e fr (i) - s, (1)

Let E be a parametrized curvilinear rectangle, i.e. the image of the unit square
under an injective polynomial P : [—1, l]2 — R2. We denote the left and right
boundaries §) E and 8, E of E by 9 E = P({-1}x[-1,1]) and 8, E = P({1}x[-1,1]),
and call 9y E := §)E U 9r E the vertical boundary of E.

Likewise we introduce the horizontal boundary 9, E := P([-1,1] x ({-1} U {1}))
of E. To visualize these notions an example for such a parametrized rectangle is
depicted in Figure 4.1. We are now able to formulate conditions under which such a

set can enclose the unstable curve in the vicinity of the origin:



4.4 Theorem. Let E and P be as above such that E contains the hyperbolic fired

point at the origin. If
f(E)NOE =0, (4.7)

then the unstable manifold is disjoint from OpE. If furthermore there exists M > 1

and S > 0 such that

1012 (2) = dafa (2) - 5| < S V |s| < S, (48)

01f1 (x) — B2 f1 (2) - s| > MV |s] < S, (4.9)

then the unstable manifold is disjoint from OpE and leaves E through both O;E and
OrE.

Proof. First suppose that the unstable manifold intersects 0y E, then there exists a
first such point, say p, such that the entire manifold arc A from the origin to p lies
inside E. Consider the preimage p := f’l(p). Since this lies in the interior of A, we
have p € E. But then p = f(p) € f(FE), which is in contradiction to assumption (4.7)
above.

To prove the second claim. consider the open cone
Cg:= {v = (v1,v9) € R : vy = ovy where |o| < S},

see also Figure 4.2.

We first note that the image of any regular curve in Cg N E' which has slope less than
S again has slope less than S, by virtue of the slope transformation law (4.6) and the
conditions (4.8,4.9). In particular, this also entails that (f(Cg)NE) C (CgNE).
Let now z be an element in the connected component of U N E containing the fixed
point. Then z € Cg, because the entire manifold segment between the origin and
z has slope less than S. For if not, then there would be a point Z on that segment

such that sg7|z > S. At the origin s7(0) = 0, so because of continuity of s; we
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have that for a positive ¢ < S there exists a neighborhood B(e) of the origin in Cg
such that s/l < € < SY( € B(e). But  is an element of the unstable manifold,

-k
so 3k(e) € N such that f (&)

(Z) € B(e), and hence SU|f_k(€) . < e < S. Since
as stated above, slopes of less than S get transformed to slopes léss than S under
iteration, we most also have s7|3 < S, in contradiction to our earlier choice.

So since x € Cg, we may write 9 = ox] for some |o| < S. Consider the

parametrized line G(t) := (zl,atg)T - t, then we have that G(0) = 0, G(1) = z and

hence by the Mean Value Theorem for some £ € [0,1] :

fi(@) = f1(GQ)) = D(f1(G(€)))
= (VA(G(©). (21, 29)T)
= 01/1(G(©)) - 21 + B f1(G(9)) - 2
= (01/1(G(€)) + 0 /1(G(€)) - 0) 21 .

and thus

|f1(2)] =101/1(G(§)) + 02 f1(G(£)) - ol - |1 | > M - |2y]
by assumption (4.9). So the x1-component of the image of any point x on the con-
nected component of U N E containing the origin has its modulus inflated by at least
M > 1, and consequently the unstable manifold must leave E. Since U cannot leave
through the horizontal boundary, it must leave through 0;F and 9rE. Note that a
horseshoe-shape of U such that it leaves E through only one of its vertical boundaries

cannot happen, since in this case the slope of U would be unbounded in C¢nE. O

Let now g : [-1,1] — R? be a polynomial curve approximating the unstable
manifold near the origin, v9(0) = (0,0), and assume that -y is regular, a natural
condition which can easily be checked rigorously. We will now use g as the basis
to construct a curvilinear rectangle as in the preceding theorem, and then employ
Taylor Model arithmetic to rigorously check the assumptions in guaranteeing the

valid unstable curve enclosure.

66



Figure 4.2. The parametrized rectangle E (blue, dashed), and the cone Cg (red,
dotted) with an opening slope S such that (f(Cg)NE) C (CgNE).

Figure 4.3. The parametrized rectangle E (blue, dashed) is constructed around its
center curve 7y. The difference between g and the rescaled iterate f(E) (red, dotted)
can be bounded by the interval box D = (Dq, Dg) (green, dash-dotted) such that
f(E)Cv+D.
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4.5 Lemma. Let € > 0, define the polynomial P : [-1.1]2 — R2 as

0.1 (t

P(ts):= ( 70,1 () ) (4.10)
70,2 (t) +e-s

and let Is, D1. Dy C R be closed intervals (cf. Fig(4.3)) such that for the slope of g

we have

Svq (t) € IsVt € [-1,1] (4.11)

and furthermore
fi (P (/\L.S)) =10 (t) € D,V (t,s) € [—1, 1]2. (4.12)

Consider the parametrized rectangle E := P ([—1. 12]). If there exists a positive
K < ¢ such that

Is-Dy+ Dy C [-K,K], (4.13)
then f(E) N Oy E = 0 and condition (4.7) is satisfied.
4.6 Remark. The intuition behind the lemma is the following: if a polynomial curve
~o approzimates the true local unstable manifold U well. then by thickening it slightly
by a width €, which in practice will be very small (10_12 and smaller), we obtain a

thin parametrized rectangle P which has a chance to rigorously contain U. P mirrors

the functional equation f(U(t)) = U(Aut) of the true local manifold U = U(t), i.e.

f(P(t,s)) = v0(Aut),

up to some small contributions of size less than €, and the difference bounds D; in

(4.12) can be very sharp.

Proof. First note that E is indeed an embedded rectangle, since P is bijective and
smooth. Further note that the set vg ([—1.1]) + (Dj, DQ)T contains the connected

component of the unstable manifold in E containing the fixed point. Now suppose
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f(E)NORE # 0, then pick a point p in that intersection. and assume without loss of
generality that p € 0y E. Then by (4.12) we know p = g (¢g) + 0 for some tg € [—1, 1]
and §; € D; for i =1,2.

There exists a curve segment C C 0OyFE connecting p and ( :=
(7’0,1(f0)‘ 70,2(t0) + 5). By the Mecan Value Theorem we have a point ¢ =
(')'0‘1 (t2) 102 (t2) + 6) € C', with ty € (min {tg,t1},max {tg,t1}), such that with

the slope o4 of the boundary 9, E at g we have
(@—p2=€—-02=0q(C1 —p1) =0g 1.
Since Oy E is 7 shifted vertically by ¢, we simply have o4 = Sv0 (t9) and hence
0g 0] + 03 = s+ (tg) - 01 + 89 =€,
in contradiction to (4.13). a

With the last result we are now ready to verify the conditions in Thm. 4.4 using

Taylor Model methods:

4.7 Corollary. Let €,7g and P as in Lemma 4.5. and consider the Taylor Models

o = v+ (39)=(, 250+ (53)

T;(t) == 40, (t)+[0,0] fori=1,2.

Let I3, D}, D3 C R be interval range bounds such that

Ly ([=1.1))
F1 (['—lv 1])
N GLIEY)) I

c I3,

If
max {|min (I3 - D} + D3)| . max (I3 - D] + D3)} <«

then f(E)NORE = 0.

69



Proof. First note that T (t.s) and I; (t) are exact Taylor Model representations of
the parametrized rectangle £ and the curve derivatives 4q ; for ¢ = 1,2, as the test
curve 7 is constructed as a finite order polynomial. The rest follows directly from

applying Lemma 4.5 using Taylor Model arithmetic. a

4.8 Proposition. In the setting of Thn. 4.4, let again

=9 (g0) = (gt ve-s) * (00)

be a Taylor Model representation of the set E. Assume that there are S > 0 and

M > 1 such that there are interval range bounds on the derivatives over T given by

max (o1 £2 (T (-1, 1]2))] - Ii)ng (1 (1-1.12)) - [-s.8]) < 5.
min ([alfl (T ([—1. 1}2))| - jz)gfl (T ([—1, 112)) - [-s. S}D > M.

Then the conditions (4.8.4.9) hold.

Proof. Straightforward application of Taylor Model arithmetic on (4.8.4.9). a

4.9 Remark. Finding a suitable slope bound S is not hard in practice. Due to the
hyperbolic structure in the wicinity of the fizred point the derivative 0y f1 typically 1s
large, and 09 fo typically s small in absolute value, so that the relations (4.8,4.9)
may hold true even for large test values S > 1. A good first candidate for S could be
constructed as telflaixl “SVO (t)' and subsequent inflation by some factor greater than

)

one.

Summing up this section, given an approximate test polynomial 49 and a thick-
ening € > 0 such that the Taylor Model interval range bounds in Corollary 4.7 and
Proposition 4.8 are satisfied, then the true unstable curve leaves the thin parametrized

rectangle constructed as in (4.10) through its vertical, and not its horizontal bound-

ary.
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4.2.2 Example: the Hénon map

As an example for the constructions we have developed so far we consider the Hénon
map
H, p(x1,29) := (1 + 19 — a:r“lz,b:rl) . (4.14)
Depending on the parameter choices for a and b, the map exhibits a wide range of
dynamics (e.g., since det(DH) = —b everywhere, the parameter b determines volume-
preservation etc.). The standard parameter values proposed by Hénon originally are
a = 14 and b = 0.3. In this situation, H exhibits seemingly hyperbolic dynamics
and a strange attractor. There are two hyperbolic saddle points p; and pg, and we
consider the manifold structure near p; =~ (0.631354477089, 0.1894063431265).
Subsequently we reexpand the Hénon map around p; and shift it to the origin to

obtain an origin-preserving version of H around pi:

Hgy p(t1.t2) := Hy p(p1,1 +t1. P12 +t2) — (P1,1, P1,2)
= (-2apy1t; +tg —at® bty)
For convenience, we will switch to diagonal coordinates at pp, the construction of

which can still be performed analytically in dependence on the parameters a and b.

The Jacobian of H, j is

b 0

and evaluated at the origin, this yields the eigenvalues

~ -2a —2aty 1
DHa.b(fl‘t2)=( PL1 1 )

2
Al2=ap11 F (‘11’1,1) +b= A = -192, Ay = 0.155

with corresponding normalized eigenvectors

T
/\.
e, = (f’h‘v'?i) i=1,2,
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1
A\ 2 -3 . _
where n; = ((-5") + 1) . With these, we can set up the transformation

matrices

m 2

My = (el e2) _ (%}01 %?nz) _ [A[ } iels

and the inverse

b = (A1 = A2) mn2 \ - 'bl’71 o Jig=12

which will provide that M(:g o —a,b o M, p has diagonal linear part. We can

perform the compositions explicitly as

~ Ky t2 + Koty + Agtito + Kyto + Kp 1‘2
M t1.t9) = 1 2
(Ha,bo a,b) (t1.t2) ( Kety + Kty :

where
]\'1 = —-a 1’\1121 ](5 = —a 1\1%2
K9 := —2apj 1 M1 + Mg Kg :=bMy;
Kg:= -2a M1 M9 K7 :=bM9

K4 :=—2apy 1 Mg + Moo

and subsequently

2 2 2
Mho (Hypod ) = (A1 0 (0 J1t] + Jatity + J3t
(Ma‘b O( o [a.b»( b2 (0 A2 t2 ’ JN% + Jstity + Jstg
(4.15)
where
]1 = Ml_l K1 J4 _‘\[21 K

For convenience, we again denote the transformed map (A/[a o H bo M, )

by Ha,b' Note that the linear part of fia’b is now diagonal, due to the first order
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normal form transformation, and furthermore that all coefficients J; are still analytic
expressions solely in terms of a and b. For the cone type argument we consider the

Jacobian of the transformed map

2J1t1 + 21 +J3t J3tg + 2J4t9 )

DH, p(t1.to) =
ab(f1:12) ( 2J5t) + Joto  Jgty + A9 + 2Jgto
Evaluating the formula (4.15) with our parameters yields the approximate linearly

diagonalized Hénon map in the new coordinates as
- -192 0 t ~1.28t7 + 1.19t1 ty — 0.29¢3
Hg p(ty.tg) = ( 0 0.16) ' (t;) * ( 0.22t§1 +0.21t1t12 : 0.05t 2) '

We performed a 20th order computation as outlined in section 4.2 for TM-
enclosures for the local stable and unstable manifolds over parameters (t,s) €
[(-0.2, 0.2]2. Linearly transforming back into the natural coordinate system, we ob-
tain Taylor Model enclosures Ty, and Ts for pieces of the local unstable and stable
manifolds of finite length as depicted in Figure ?7.

In the following we list the actual Taylor Models for manifold enclosures. Note
that per the construction in Corollary 4.7 and Proposition 4.8, they are outfitted
with a zero-width remainder bound, however due to the implementation of rigorous
outward rounding in COSY Infinity [15], the depicted remainder bound has a width

just above the machine accuracy threshold.

The Taylor Models for T, j is:
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TM VARIABLE: NO=20 NV=2

I COEFFICIENT ORDER EXPONENTS
1 0.6313544770895047 0 0 0
2 -.1976115511989409 1 1 0
3 -.1014764915954764E-01 2 2 0
4 0.1057527102942118E-02 3 3 0
5 0.2855780728643021E-04 4 4 0
6 -.1866238471492046E-05 5 5 0

REMAINDER BOUND INTERVAL:
[-.6012505080026924E-291,0.6012505080026924E-291]

We see T, 1 is centered at the fixed point, has a dominant linear part and only
dependence on the longitudinal parameter ¢.

For the vertical component T}, o:

TM VARIABLE: NO=20 NV=2

I COEFFICIENT ORDER EXPONENTS
1 0.1894063431268514 0 0 0
2 0.3081679465402512E-01 1 1 0
3 0.3200000000000000E-14 1 0 1
4 -.8226109067472505E-03 2 2 0
5 -.4456299883934181E-04 3 3 0
6 0.6255494451670481E-06 4 4 0

REMAINDER BOUND INTERVAL:
[-.6012505080026924E-291,0.6012505080026924E-291]

014 according to

Again T}, 9 has no s-dependence except for the linear term 0.32-1
the choice in Eq.(4.10). So in this case the accuracy with which T, encloses l’if'l"(‘)c (p)
is e =032-10714,

Analogously we have the component Ty y:
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TM VARIABLE: NO=20 NV=2

I COEFFICIENT ORDER EXPONENTS
1 0.6313544770895047 0 0 0
2 0.1024000000000000E-12 1 1 0
3 -.9224555310786783E-01 1 0 1
4 0.1129853346959211E-02 2 0 2
5 -.3773693602439372E-05 3 0 3
6 0.5463903367657585E-08 4 0 4

REMAINDER BOUND INTERVAL:
[-.6012505080026924E-291,0.6012505080026924E-291]

This time T 1 has no t-dependence except in the linear term, analogous to Ty, 9,
except in éj-direction.The obtained enclosure accuracy is € = 0.1024 - 10_12, signif-
icantly worse than in the unstable case. This is likely a consequence of the much
stronger expansion of the inverse Hénon map near p than the map itself.

Lastly, the component T o:

TM VARIABLE: N0O=20 NV=2

I COEFFICIENT ORDER EXPONENTS
1 0.1894063431268514 0 0 0
2 -.1774563550054591 1 0 1
3 0.1393776240096155E-01 2 0 2
4 -.2985124704889843E-03 3 0 3
5 0.2771556369100959E-05 4 0 4
6 -.1335693482088341E-07 5 0 5

REMAINDER BOUND INTERVAL:
[-.6012505080026924E-291,0.6012505080026924E-291]

4.3 Global manifold tangles

In the previous section we have demonstrated how the local invariant manifolds near

a hyperbolic fixed point can be enclosed sharply using Taylor Model approximations.
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Figure 4.4. In a) the enclosures of the local unstable (solid) and stable (dashed)
manifold near the origin are plotted. In b) we see the local manifold enclosures Ty
and T from section 4.2.1 around the fixed point pg = (—.63,0.18) and retransformed
into the original coordinate system.
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We can now proceed to generate significant pieces of the global manifold structure
simply by iteration. Iterating the Taylor Model enclosures of the unstable manifold
through the map f or the stable manifold enclosures through the inverse f ~1in Taylor
Model arithmetic will yield valid Taylor Model enclosures of successively larger global
manifold pieces.

In practice, this approach requires a bisection and reparametrization of the Taylor
Model enclosures of the manifolds, even though the initial basic premise is retained
in spirit. The fundamental problem is the blow-up of the remainder bound size under

iteration, which is caused by two main factors.

1. If the map f (or its inverse) is volume-expanding and the unstable (or stable)
manifold is repelling, then the Taylor Model enclosure of said manifold must also
expand, by the inclusion property. In this case actually not only the remainder

bound increases in size, but the polynomial part as well.

2. The remainder bound grows disproportionally if the truncation error between
the true manifold and the polynomial part of the Taylor model enclosure be-
comes large. This is the case when the manifold parametrization can only un-
satisfactorily be modeled by a polynomial of finite order, for instance when the
true manifold grows exponentially in length under iteration, or if it makes sharp
turns. Thus, the truncation error is primarily scaling with the longitudinally

parametrizing variable of the Taylor model.

The first issue can not be controlled through any sophisticated manipulation of
the TM manifold enclosure, since the expansion is an intrinsic property of the map.
The only way to obtain sharp estimates even for higher iterates is to increase the
computation order and to employ high-precision or arbitrary-precision arithmetic, so
that the initial Taylor Model enclosure of the local invariant manifold is sharper to

begin with.
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The second problem, however, can be remedied. The solution to keeping the
truncation error size in check is to rescale and locally reexpand the polynomial ap-

proximation:

4.10 Algorithm. Let T = Pr (t.s) + I be a Taylor Model enclosure containing a
piece of unstable manifold, and parametrized longitudinally by the variable t . Let
0 > 0 be the desired threshold of the Co-appro;rimutz’on of the unstable manifold by
the TM-enclosures, i.e. the marimal size of the remainder bounds. Let M € N be the
mazimal number of bisection steps (typically M < 10). To generate TM-enclosures

of new pieces of unstable manifold, execute the follouing algorithm:

1. Compute f(T) =: Pf(T) + If(T) in Taylor Model arithmetic. If ‘If(T)’ <4,

the iteration is successful.

2. If ilf(T)‘ > 4, split and reparametrize the TM T as Ty := Pr (—% + é) + It
and Ty := Pr (% + é) + I, with t € [-1.1].

3. Compute f(T7) =: Pf(Tl) (t.s) + If(Tl) and f (T) =: Pf(TQ) (t.s) + If(TQ)'
If IIf(Tl)l <4 and '[f(TQ)‘ < 4, the iteration is successful.

4. If ‘[f(Tl)’ >4 or 'If(TQ)' > 4. repeat iteration from step 2.

5. If after M subdivisions not all remainder bounds are of width less than 6, either

stop iteration or increase 9.

The algorithm can be performed analogously for the stable manifold enclosures

with the inverse map.

This algorithin generates an ordered list of local Taylor Model enclosures

K
{T1.... Tk}, the union of which still contains the true manifold f(U) C U 7j,

J=1
instead of one big Taylor Model which fails to sharply enclose the manifold iterate.



While this particular algorithin only factors in the remainder bound size of the iter-
ated manifold enclosures as the benchmark of where and how to bisect and reexpand
the Taylor Model pieces, more sophisticated bisection methods can be implemented
that take into account information like length, length growth or curvature.

We infer that under repeated iteration this algorithm inductively computes an

K(n
ordered list of K (n) Taylor Models {Tj} 4 (1) such that for the n-th iterate we have
J:

K(n)

e c U Ty
j=1

4.3.1 Discarding manifold pieces

In this section we discuss a criterion which allows us to discard large subsets of the
global manifold tangle in certain special cases, easing the computational workload
and memory requirement substantially.

In the following let f : RY O D — D, where D is open, be a C"-diffeomorphism.

We first introduce the notion of an attractor:

4.11 Definition. (Attractor) An attractor for f s a compact set A C RY that has
an open neighborhood V. C RY such that 7K (V) C V for some K € N and A =
Nien F5 (V).

The set B4 := UpenN FR (V) is called the basin of A.

It is clear that A is invariant under f and that all orbits starting in B 4 converge
to A.

Consider now the case where f is volume-decreasing, i.e. the determinant
lldet (D f (x))]| < 1Vx € D. In this case, the unstable manifolds may be bounded (in
particular they may be contained in an attractor), but in turn this means that the
inverse map is expanding and the stable manifolds can be unbounded. An example

for this phenomenon is the Hénon map H, j with standard parameters a = 1.4 and
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Figure 4.5. (a a local stable manifold segment (solid) of the Hénon map H, , for
a = 14, b = 0.3, together with the unstable manifold (dashed). The actual Taylor
Model enclosures are several orders of magnitude below printer resolution in size. In
(b) the 3rd preimage of the stable segment is shown.
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Figure 4.6. 4th (a) and 6th (b) preimages of the local stable manifold segment (solid),
together with the unstable manifold (dashed).
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b = 0.3, in which the determinant of the Jacobian Hdet (DHa,b) H = b < 1 every-
where. Here, numerical experimentation suggests that the unstable manifold of both
fixed points is bounded and contained in an attractor with an unbounded basin. The
stable manifold is contained within the basin, but extends very far, loosely speaking
'to near-infinity’ (the Lipschitz constant of H, p is unbounded) , before returning to
the attractor to form homo-/heteroclinic intersections and running off again. From
a practical point of view, in particular with respect to a verified Taylor Model en-
closure of the stable manifold, this behavior is disheartening, as there is little chance
to sharply bound truncation errors of polynomial approximations for curves which
exhibit accelerating length-growth.

However, in the volume-decreasing case we may be able to determine a trapping

region in the neighborhood of an attractor:

4.12 Definition. (Trapping region) A trapping region is a nonempty compact subset

E C D such that f(E) C E.

A trapping region E always contains a fixed point by Schauder’s Theorem (2.29),
and in particular contains the global unstable manifold W% (p) for any hyperbolic
fixed point p € E. If we are interested in the homoclinic intersections of W?¥ (p) N

(p)) n =00 WS (p), we

WU (p), and we iteratively generate WS (p) as f~" (W’lsoc

indeed only need to iterate stable manifold segments which are contained in E"

4.13 Proposition. Let f, D, E as above, let p € E be a hyperbolic fired point, and
let 7 € WS (p). If f~X0 (2) ¢ E for some kg > 0, then also f~F () ¢ EVk > ko.

Proof. 1f there were any k > kg such that f —k (z) € E, then also every image
of f_k (x) is contained in F, in particular fk_kO (f—k (1')) = f_kO (¥) € E, a

contradiction. 0

In practice this means that in order to generate branches of the stable manifold for

the purpose of studying the homoclinic tangle, we may discard any stable manifold
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branch which gets mapped outside the trapping region, or in particular outside any
superset of a trapping region.

In the case of the Hénon map H,, p, a set of three parallelepipeds E'1-E3 (cf. Figure
4.8a) was identified by K. Makino which could be shown to contain its fifth Hénon
iterate (cf. Figures 4.8b and 4.9). We will not denote the exact specifications of the
parallelepipeds here, but instead state the following result which has been verified

using Taylor Model iteration:
4.14 Proposition. The sets E1-Eg satisfy
Hg,b (E{UEyUEs3) C(EjUEUES),

and hence the set A

E:=|J H ,(Ey U Ey U E3)
1=0
s a trapping region for Ha,b-

It can be shown that the set E is contained within the interval box Ip :=
[-1.5,1.5] x [—0.5,0.5], and in the generation of the stable manifolds from Figures
4.5-4.7 one is allowed to discard and not further propagate all Taylor Model pieces
getting mapped outside /5. We note that this discarding criterion is still somewhat
crude, and a more sophisticated test to discard stable manifold segments outside the
region of interest can be formulated: Since the set E consist essentially of the par-
allelepipeds E1-E3, it can be bounded sharply by a superset consisting of slightly
inflated parallelepipeds which capture the structure of E more finely than Ip. The
rigorous test which segments of a Taylor Model curve lie outside a parallelepiped is

however only marginally more difficult than the same test for an interval box.
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Figure 4.8. a) The parallclepipeds E7 (red), Eg (green, dashed) and E3 (black,
bold) contain the Hénon attractor and form the basis for a trapping region. b) The
fifth iterate H(';’ p(E1) (red) is contained in (Eq U E9 U Eg). (Pictures courtesy of K.
Makino) ’
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Figure 4.9. a) The fifth iterate Hc?b(EQ) (green, dashed) is contained in
(Ey U E9UE3). b) The fifth iterate Hg p(E3) (black, bold) is contained in
(E1 U E9 U E3). (Pictures courtesy of K. Makino)
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4.4 Computation of homoclinic point enclosures

In the preceding sections we have presented a technique to get verified TM-enclosures
of the invariant manifolds near a hyperbolic fixed point p, as well as a propagation
scheme which yields an ordered list of TMs which rigorously enclose finite forward
(inverse) images of the unstable (stable) manifold pieces at p, up to a finite number
of iterates.

In the following we will describe a simple way of computing sharp interval bounds
of the homoclinic intersection points of these parts of the invariant manifolds of p,
with the added advantage that the compuation can be automated in a straightfor-
ward fashion. In other words, we are confident that this technique is suitable to
compute all intersection points of particularly long pieces of the invariant manifolds
of p. Naturally, the approach can readily be extended to compute heteroclinic inter-
section points of two stable and unstable manifold pieces belonging to two different
hyperbolic fixed points, but for brevity we will only consider homoclinic intersections
of the manifold tangle of a single fixed point p.

The knowledge about homoclinic points is of course valuable in itself, since there
are numerous deep questions in the study of hyperbolic and chaotic dynamics directly
related to their existence, abundance and mapping properties. But for the purpose of
this presentation, the added benefit is that the quality of a numerical approximation
of a homoclinic point can readily be checked through various quantitative techniques,
which will give us good tests to assess the accuracy of the TM-manifold-enclosures

that are used to compute the homoclinic points in the first place.

4.4.1 Verification of existence of homoclinic points

Assume we are given TM-enclosures of two pieces of the planar unstable and stable

manifold which are known to intersect. Let these TMs be parametrized as Tj(t, s) =
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Figure 4.10. Transverse crossing of two Taylor Models T} (dash-dotted) and To
(dashed). Their intersection can be enclosed into an interval box B (red, solid) which
contains the homoclinic intersection of the true manifold pieces contained in 77 and
T2.
Pi(t,s) + I and Tp(t,s) = Po(t,s) + I, with ¢t and s as longitudinal parameters
respectively, where (t,s) € [—1, 1]2.

We note that as representations of two-dimensional sets, P; and Py overlap over
a range of parameters, as depicted in Figure 4.10. However, as the Taylor Models
enclosing the manifold pieces are very thin (transverse width is several orders of mag-
nitudes smaller than length), as a first step we may assume there is a single point
(to, sg) at which Py (tg, sg) = Pa(tg, sg). There are straightforward ways how (sq, ¢()
can be determined sharply, for example as a two-dimensional global optimization
problem minimizing the distance between 77 and Th, or a suitable Newton-type it-
eration once one is near the intersection point of the polynomial parts. Note that
(to, sg) need not be known rigorously.

Let us furthermore assume that 77 and Ty have been reexpanded around (g, sg),
so that their intersection point is close to the origin, and that we have performed a

linear transformation on 77 and T with their inverse linear parts, which means that
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T; and T9 are tangent to the x1- and x9-axes at the origin, respectively.

For easy of notation we also assume orientation such that

T11(=1.s09) < T1,1(t0. s0) < T1,1(1.50).

T o(tg, —1) < T o(tp, s0) < To 9(tp.1).

but the following algorithm can easily be generalized to arbitrary orientations. We

use T; ; for the j-th component of the TM T;, ie. T; j = P, j (t,s) + I; ;.
4.15 Algorithm. First check that

(max (:rl,1 ({=1} x [-1. 1])) < min (TQ,I ([—1. 1]2)»

A (max <Tg.1 ({—l. 1]2)) < min (Tl,l ({1} x [-1, 1])))
and that

(max <T22 ([-1,1] x {—1})) < min (Tl,g ([—1_ 1]2)))

A (max (Tl'g ([~1, 1]2)) < min (TQ,Q ([-1.1] x {1})))

Then the intersection contains a homoclinic point h. Furthermore, we can sharpen

the interval enclosure of h by iterating the following algorithm:

1. Compute the range bound in xy-direction Ty 1 ({—1, 1]2) .

2. If there are —1 < 0; < 6, <1 such that
(max (Tl,l ([-1.61] x [-1, 1])) < min (Tgﬁl ([-1, 1]2)>>
A (max (T2.1 ([-—1, 1]2)) < min (Tl,l ([Bu, 1] x [-1, 1])))

0u—6, | 6u—0

reexpand T around t; —

3. Repeat from step 1. but switch the indices 1 and 2 in both the TMs T1,Ty and

their components. and the variablest and s.
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4. Stop the algorithm if step 2 cannot be performed successfully or if the widths of
Ty 1 ([—1, 1]2) and Ty 9 ([—1, 1]2) undercut the desired accuracy threshold.

It is of note that the heuristic determination of 6; ,, in step 2 can be done somewhat
‘'optimally’ if we use the map inversion tools which are available in DA-arithmetic.

The values

b =~ Pif (min(TQ’l([—l, 1])2),0)

by ~ P} (max(:rm([-l, 1])2),0)

are a good initial guess for §; ., possibly after a slight inflation by 10 percent or so.
To give an example for the performance of the last algorithm we return to the
Hénon map. It is not immediately clear what it means to rigorously enclose homoclinic
points in this case, as these are dense in the unstable manifold and hence any interval
enclosure with nonempty intersection with the unstable manifold contains homoclinic
points. However, we can enclose specific homoclinic points, as follows:
In the global manifold tangle constructed in the previous section we see that successive
iteration of the TM-enclosures of the local stable and unstable manifolds at the fixed
point p; through the map H ; or the inverse H;g seems to generate the ’first’ (in
the sense of arclength) homoclinic intersection point of the iterated TM-enclosures,
which we call g1, at about (0.33, —0.25). Applying the above sharpening algorithm,
we are able to assert existence of such a point in a quite sharp interval box enclosure

of width = 10—12.

4.16 Theorem. In the standard Hénon map (4.14), the transverse homoclinic inter-
section q1 of WY and W of the hyperbolic fired point p; = (0.63,0.18) s contained

within the interval boz

(10.338852549387, 0.33885254939)] , [-0.255112629783, —0.2551126297832]) . (4.16)
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4.4.2 Numerical tests

The rigorous homoclinic point enclosures from the last section serve as an excellent
litmus test for the claimed accuracy of the manifold enclosure themselves, and var-
ious a posteriori tests to check the quality of the homoclinic point enclosure can
be performed to support the sharpness of the interval enclosure. Unfortunately, no
analytic formula for the coordinates of the true homoclinic point of the Hénon map
near (0.35, —0.25) exist, so we have to resort to some nonverified, but quantitative
numerical experiments to corroborate the statement 4.16.

In the following we assume that p is a hyperbolic fixed point of a planar diffeo-
morphism f : R? — R? with eigenvalues 0 < |A1] < 1 < |Ag| of D fp(0), ht is a true
homoclinic point in Wg N Wl‘,", and h¢ is a computed numerical approximation of hy;.
It is clear that there are completely analogous method to estimate the displacement
of he from the unstable manifold by correspondingly using f ~1instead of f.

Theorem 4.16 must hold true by virtue of every step in algorithm 4.15 having been
performed in Taylor Model arithmetic. However, there are nonverified numerical
techniques that can substantiate the claim of the theorem in an intuitive manner.

Define the midpoint of the homoclinic point enclosure (4.16) as
he := (0.3388525493875, —0.25511262978315) , (4.17)

and let hy be a the true homoclinic point g; contained in (4.16).

Number of forward iterates near fixed point as a measure

The first very simple and straightforward method to measure the quality of h¢ is the
number of forward iterates that stay within a neighborhood of p. Since k¢ is close to
ht, the images f k (he) first converge to p; along the stable manifold and, once near
p1, get pulled away from p; again along W;,‘ with a factor of & |A{]| in every iteration

for the distance to W"‘,f . If we consider the maximal number K of iterations such
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that the forward iterates fk(hc) do not leave a ball Bs(p) for k < K (where d is
reasonably small, say § =~ 0.1), then we know that the original displacement of h¢

from n»'g, or from h; respectively, can be approximately be expressed as

d(he, hy) = dist(he, Wlf) = ,/\—(sIT (4.18)
1

In the example above with f = H, ,, [A\1| ~ 1.92 and § = 0.1, we get K = 40, i.e.

d(he. he) = 0.1/(1.92)*0 ~ 0.4655 - 10713 (4.19)

which is compatible with the claimed sharpness of the enclosure from Theorem 4.16.

Monitoring of distance to stable manifold under forward iteration

The second method is very much similar in spirit to the first one, but with a more
accurate numerical result for the original displacement of h¢ from W; , and hence h;.
The reason why the first method only gives a rough estimate about d(h¢, h¢) is that
the expansion of the distance of f k(hc) to the stable manifold only goes with a factor
of |[A1] in the higher iterates where k =~ K, i.e. where fk(hc) is near p. For the lower
iterates with small k, while there still is expansion of dist(fk(hc), W}‘DS) in principle
due to the hyperbolic structure of the system near WI‘,S, that expansion factor need
not be |A1], which when combined as in eq.(4.18) can produce errors in the range of
one order of magnitude.

The approach for a more plausible estimate of d(h¢, ht) is to monitor the contrac-
tion of dz’st(fk(hc), u.'g) for every iterate 0 < k < K, and keep track of all shrinking

factors. In the following we outline the algorithm:

1. Let 4(t) be the polynomial part of the TM-enclosure of Wif between h; and p.
Define hq := he.

2. For0 <n < K —1: Let hy := f(hy,_1). Compute the perpendicular unit

vector uy from hy, to v by minimizing the scalar product |[{5(t),¥(t) — hn)| over
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the parameter t at t,. Set up := y(tn) — hn - (|7(th) — hnl)_l. Evaluate the

Jacobian D f(hy) and compute the length growth factor ky := |D f(hyn) - un|.

1
K-1
3. Approximate d(he. ht) = dist(hy. W) - ( I1 k'n) .
n=0

In our present case with h¢ as in (4.17), hy = gq; and K = 40we obtain a numerical

value

d(he, hy) =~ 0.897 - 10713

which is again in agreement with the previous rigorous claim.

Mapping to different sides of the stable manifold

Considering the computed point he and the tangent direction of the stable manifold
near he, we can construct another point e that has been translated perpendicularly
to the manifold tangent from he by a small (positive or negative) length [ roughly
of the size of the expected displacement dist(hc, Wlf) If indeed the points he and
izc lie on different sides of the manifold, then so will all their forward iterates. In
other words. once the points fk(hc) and fk(;zc) get near p, their images slowly drift
away from each other to follow different branches of the unstable manifold under
subsequent iteration, which can be observed by simply printing the iterates of both
points to the screen. If this diverging behavior of fk(hc) and fk(flc) persists, the
true set W has to be within |I| of Ac.

Returning to the claimed homoclinic point interval enclosure in Theorem 4.16,
its top left and right cornerpoints were mapped successively by the squared Hénon
map Hc%,b (to avoid confusing switching of sides of the iterates) as depicted in Figure
4.11a. Likewise, Figure 4.11b shows the iterates by H;g of the right top and bottom
cornerpoints of the interval box. In both cases we see that the iterates follow different
branches of the unstable and stable manifold near the fixed point, respectively, which

is again compatible with the claim of Theorem 4.16.
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Figure 4.11. In a) the first 20 iterates of H? of the left (plus) and right (x) top
cornerpoints of the claimed homoclinic point interval enclosure form Thm. (4.16) are
plotted, in b) the first 10 iterates of H~2 of the top (plus) and bottom (x) right
cornerpoint of the same interval box enclosure are plotted. The unstable manifold is
drawn solid, the stable manifold dashed.
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4.5 Summary and Outlook

Normal form type methods offer expansions of local parametrizations of invariant
manifolds in the neighborhood of a hyperbolic saddle point in the plane. The oper-
ations involved are suitable to be performed using sophisticated polynomial manipu-
lations offered in DA-arithmetic.

Thus, highly accurate polynomial approximations to the local invariant manifolds
are obtained. The question about the truncation error can be answered automatically,
as in the Taylor Model validation step a heuristic CO-error bound can be proven to
be self-contained.

This enables us to compute Taylor Model enclosures of the true invariant manifolds
over a length proportional to 0.1, with an error estimate of 10712 and smaller.

The global manifold tangle is obtained through repeated iteration in Taylor Model
arithmetic of the initial local piece. To control blow-up of remainder bounds, the
iterating scheme splits and reexpands Taylor Model enclosure pieces if necessary, and
we obtain a finite list of Taylor Model pieces ordered along the arclength of the
true manifold. It is evident that high-precision arithmetic is required to extend the
iteration scheme to higher iterates before TM-pieces become so large that meaningful
manipulation is not feasible anymore.

Based on verified global optimization, rigorous bounds for all homoclinic intersec-
tions of a finite manifold tangle can be obtained. Typically existence of homoclinic

points within the enclosure balls can be guaranteed.
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CHAPTER 5

Construction of Symbolic

Dynamics and Entropy Estimates

In this chapter we develop an approach to obtain rigorous lower bounds for the
topological entropy of planar diffecomorphisms. The technique is based on finding
symbolic dynamics exhibited by the original map and performing entropy calculations
on the simplified finite system. This is achieved by defining regions in phase space,
so-called generalized curvilinear rectangles, and considering how they overlap under
mapping, which allows to draw conclusions about the existence of real orbits of the
diffeomorphism within those rectangle sequences (see e.g. (8] for related work on this
approach).

In light of the last chapter, where part of the global manifold tangle has been
sharply enclosed in Taylor Models, as well as verification of existence and ordering of
homoclinic points within that tangle, we then introduce procedures to fully automate
the rectangle construction mentioned above. Rectangles are bound by segments of
stable and unstable manifold, with homoclinic points at their corners, which allows
to construct and analyze rectangle sequences on a large scale and thus yields rigorous

lower entropy estimates which are very close to the numerically suggested true entropy
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values.

5.1 Some basic topological tools

Before we proceed with the presentation of the algorithm, we first review some fun-
damental results from algebraic topology. in particular in two dimensions, which will
prove to be useful in establishing the algorithm rigorously. We first cite Brouwer’s

fixed point theorem [18]:

5.1 Theorem. (Brouwer) Every continuous function from the closed unit ball in R™

into itself has a fizred point.

Using Brouwer’s theorem we can prove a seemingly simple fact about the existence
of an intersection of two horizontally and vertically, respectively, oriented curves in a

rectangle. We follow [40] in the presentation;

5.2 Lemma. Let 7, (s) = (7"11,1 (8) . Yho (s)) and vy () = (')'v,l () 7.2 (t)), with
s,t € [=1.1], be two continuous curves in the rectangle [a.b] x [c,d] C R2, with
a,b,c.d € R, such that vy, 1 (=1) = a, 74,1 (1) = b, vy 2(=1) =c and v, 2(1) = d.

Then there exists (sg.tg) € [—1, l]2 such that yp, (sg) = v (to)-

Proof. In the following we consider the max norm ||x]|,, := max {|z1], |r|} on R2.

Note that with this norm the set [—1, 1]2

is actually the closed unit ball. Suppose now
that no intersection of -y, and vy exists, then |7, (s) — v (t)|| # 0V (s,t) € [-1, 1}2,
and we may define the map

S () = .1 () h2(s) =2 (1)
f(s,t) = (H’)v’h (s) = (t) Hoo “’)h (s) — v (f)lloo) .

We see that f maps [—1, 1]2 into itself, or more precisely, into the boundary of [—1, 1]2,
and thus must have a fixed point by Theorem 5.1, say at (0,7), i.e. f(o,7)= (0,7).

Then ||(o,7)|| = 1 must hold and thus either |o| = 1 or |7| = 1. Suppose now that
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o = —1, then also f;(—1,7) = —1, but this cannot be the case as f;(-1,7) >
0 by definition. The remaining three cases of |o| = 1 or |7| = 1 lead to similar

contradictions. O

It is interesting to note that the previous lemma can be used (see [40]) to prove

the Jordan Curve Theorem (JCT) in a relatively simple fashion.

5.3 Theorem. (Jordan Curve Theorem) Given a Jordan curve J C R2, the comple-
ment R2\J consists of two mutually disjoint nonempty components, each with J as
its boundary. Eractly one of them is bounded (also called interior of J ), the other un-
bounded (called the exterior of J). Furthermore, both components are path-connected

and open.

In the situation of the theorem, we can write RQ\J = BUU, where B and U are
the bounded and unbounded components, respectively. It is then easy to see that
B = Bund U = U. The JCT can be extended to higher dimensions, but we only
consider the planar case in this work. In this situation, there actually holds a stronger

result, the Jordan-Schoenflies Theorem:

5.4 Theorem. (Jordan-Schoenflies) assume a Jordan curve J C R2 with a corre-
sponding homeomorphism h : Sl — R? such that J = h (Sl). Then h can be
extended to the entire plane, i.e. there is a homeomorphism h:R%2 — R? such that

izISl =h.

A consequence of the last theorem is that for a planar Jordan curve, the closure
of its bounded component (according to the JCT) is the homeomorphic image of the

unit disk in R2.
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5.2 Rectangles and their overlapping

The construction of symbolic dynamics in a dynamical system is possible by picking
suitably chosen subsets of phase space and checking how they overlap under iteration.

The subsets that we consider are generalized, curvilinear 'rectangles’.

5.5 Definition. Let vy : [a,.b] — RY be an injective homeomorphic curve. Let py,pa
be points in the same connected component of .
Then by p~(p1.p2) we denote the subarc of v which has p; and py as its endpoints,

and is oriented from py to po.

5.6 Definition. (Rectangles) A set R C R? is called a rectangle’ if R is the home-
omorphic image of the unit square, i.e. R =h ([—1, 1]2) for some homeomorphism
h:[-1, 1]2 — R2. Accordingly, we define the top, bottom, left and right edges of R

with the following notation:
1. tR:=h([-1.1] x {1}), the top edge,
2. bR := h([-1,1] x {—1}), the bottom edye,
3. IR :=h({-1} x [-1,1]), the left edge,
4. TR:=h ({1} x [-1,1]), the right edge.

In light of the Jordan-Schoenflies Theorem it becomes clear that the 'rectangles’
we consider are in a general sense simply Jordan curves together with their bounded
component, but the rectangle picture has two main advantages: it simplifies some
technicalities in the proofs and allows an easy transition, both practically and intu-
itively, into the computational implementation of the algorithm later.

Note that the edges are parametrized curves, e.g. as tR = tR(s) = h((s,1))
and likewise with the other edges. We customarily identify the point sets tR etc.,

and their parametrizations, this shall not lead to any confusions. Note furthermore
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that the homeomorphic (in particular, we will consider diffeomorphisms later) image
of a rectangle is again a rectangle with preserved top, bottom, left and right edge
classifications. For the finding of symbolic dynamics, we have to consider the way in

which images of rectangles overlap and introduce the following notion:

5.7 Definition. (Markov crossing) Assume two rectangles Ry and Ro are given. We

say that Ry Markov-crosses Ry, in symbols R1§Ro, iff the following hold:
1. tR9 N Ry = 0. where 1?1 denotes the winteror of Ry,
2. bRy N Ry = 0.
3 IRiNRy =0,
4. TR N Rz =0,

5. The intersections tRy NIRy. tR1 NT Ry, bRy NIRy and bRy NTRy consist of a

single point each, called x4y, T4y, xp; and xy, respectively,

6. The wnterior B of the Jordan curve J := SJtRl(‘Tt{-Ttr) U PrRQ(‘EtrTbr) U

prl(-TbrIbl) u SJ[RQ(.l‘b[;l‘tl) s fully contained in Ry N Ry.

An intuitive idea of Markov crossings can be gained form Figure 5.1. It is clear
that Def. 5.7 can directly be extended to allow multiple Markov-crossings as in the
bottom right picture in Figure 5.1.

The fact that in point (6) the stated set J is a Jordan curve is easy to prove.
Furthermore, by the Jordan-Schoenflies f the union B U J is actually a rectangle in
the sense of Def. 5.6 which is contained in Ry N Ry, with the top, bottom, left and
right edges of B U J contained in tR1,bR1,[R9 and rR9 , respectively.

Intuitively, a Markov crossing of Ry and Rg is an overlap of the rectangles such
that Ry is thinner than Ro in the ’vertical’ direction and stretches fully across Ro
in the ’horizontal” direction. We now introduce the notion of a chain of rectangles,

DMarkov-crossing each other under iteration:
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Figure 5.1. Typical types of Markov crossings Ri:R9 between two rectangles Ry
(solid) and Ry (dashed).

5.8 Definition. (Rectangle N-chains) For a homeomorphism f : R2> D —
R2, and some N € Ng, assume we are given an ordered sequence of rectangles
'R={Rn};’y:_01, such that Rp C D and f(Rn)t{R;,+1Y0 < n < N — 1. Then
we call R a rectangle N -chain for f. If N = oo, we say R is a global rectangle chain.

Two rectangle N -chains R and R(2) are equal iff Rl(l) = R(Q)VO <i<N-1.

1
5.9 Definition. (h/v-transverse curves) For a given rectangle R, an injective curve

v : [a.b] — R connecting (R and rR is called an h-transverse curve. If § connects

tR and bR, we call it a v-transverse curve.

It follows directly from Lemma 5.2 that two curves, one being an h-transverse and

the other being a v-transverse curve for the same rectangle, must intersect.

5.10 Lemma. Suppose two rectangles Ry and Ro are given such that R1{R9, and
there is an h-transverse curve y1 C Ry. Then vy contains a subarc v9 C Ro that is

an h-transverse curve for Ry.

101



Proof. We prove the statement in several steps, and use the same notation as in Def.

5.7

1. For a Jordan curve J, a path v connecting two points x € B and £ € U in the
interior and exterior of J must intersect J. For if not, v C RQ\J = (BuUl),
and since B and U are path-connected, then also their union B U U must be
path-connected, and thus connected. But then by definition, B U U cannot be

the union of two nonempty, disjoint open sets, which it is according to the JCT.

2. The segments IRy (xppry) and PrRQ(rtr-Tbr) are v-transverse curves for Rj.
We will show this for the segment gy RQ(Ibl“'tl)» the proof then works analo-
gously for ©rR, (x4p2p,)- It is obvious that OIR, (wppryy) connects t Ry and bRy,
hence we only need to show that in fact ©LRy (xppry) C Ryp. Suppose this is
not the case, then there is a point n € PLRy (xpyyy) such that ) ¢ Ry. As
R is compact, we can find € > 0 such that the ball B¢ (n) N Ry = 0. Since
n is furthermore on the boundary of the rectangle B U J, there exists a point

£€ B:(n)NB,ie. £ ¢ Ry and £ € B. This is a contradiction to B C Rjy.

3. The h-transverse curve 71 in Rj crosses both segments g RQ(J’blﬂ'tl) and
ggrR2(1'tr.Tb,.). This is an immediate consequence from Lemma 5.2 and the

previous claim.

4. 71 contains a subarc 49 C R that is an h-transverse curve for Ro. With-
out loss of generality, assume that 47 : [-1,1] — Ry such that v (-1) €
IR; and 71 (1) € rRy, and that 5] intersects S’lRQ(l'blItl) before it inter-
sects 891-R2(-1‘tr~’l'br)- Consider the nonempty (by (3)) set /; of intersection
points of 1 and PZRQ(“’bll'tl) in the sense of the parametrization of 71, i.e.
I = {t €(-1,1):71(t) € 891R2(Ib11’t1)}~ Let t; := suplj, then t; > -1
and v (t)) € 1Ry (xprry;) by continuity of ;. Likewise consider now the

set [, = {t €t 1)y (t) € ©rRy (.r,g,.:zrb,.)}.
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We show that I # 0. First note that the set Rq\ (R N Ry) has exactly one
connected component that contains the curve segment o+, (71 (—1)v1 (7)), call
that set R]. Then define the rectangle R:= R1\RJ, and note that the curve
segment ©~q (71 () 1 (1)) is an h-transverse curve for R. Also, erQ(ItTIln')
is a v-transverse curve for R and thus by Lemma 5.2 Py (1 (E) 11 (1)) N
goTR2(:L'tr;rb,.) # 0, hence there 3t € (t;,1) such that v (f) € SOrRQ(fCtrl'br)~
Let now t := inf Iy, then t, > t; and 7 (tr) € er2(;1:tr$b.,.), again by
continuity of 1. Now set yo := 71|[tl,t7-]f then y9 C 71 and 79 connects
galRQ(a:bll‘tz) C [R9, and gOrR2(.Tt7-.‘L‘b7.) C rRy and thus is an h-transverse

curve for Ro.

The last lemma will provide us with a means of counting orbits:

5.11 Theorem. For a homeomorphism f : RZ2>D —R?2 et R = {Rn};’:’rz_ol be a
rectangle N -chain. Then there is an N-orbit in R, v.e. there exists a point g € Ry
such that f™* (zg) € Rp V0 < n < N—1. A global orbit exists if R is a global rectangle

chain, i.e. 1f N = oo.

Proof. Let g be an h-transverse curve for Ryg. Then f (7g) is an h-transverse curve for
f (Rp), and by the last lemma contains a subarc v which is an h-transverse curve for
R1. Inductively, we get a sequence of curves {7n}neN0 such that f -1 (’7n+1) C n,
and each vp is an h-transverse curve for Rp. This yields that f —(n+1) (Ynt1) C
f~™(vn) C vo. Since all preimages f~" (vn) are closed, we get a nested sequence
of closed sets and thus the intersection nneNO 7™ (vn) # 0. So pick a point zq in
that intersection, and it is obvious that xg € vg C Rg and f" (xqg) € yn C Rn, and

thus satisfies the desired properties. a
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5.3 Entropy estimates

Given the results form the previous section, we can now make the transition from
rectangle crossings under iteration by a diffeomorphism to entropy estimates for that

same map:

5.12 Theorem. (Entropy from orbit counting) For a homeomorphism f : R? >
D — R2, let {Ry. ..., Rv} be a set of mutually disjoint rectangles, and let A € NUXV
be a matriz with integer entries such that A; j = 1 off f (Rj)#R; and 0 else. Then

we have for the topological entropy of f

h(f) > log(sp(A)),

where sp (A) is the spectral radius of A.

Proof. 1. First note that, since all rectangles are mutually disjoint and by defini-
tion compact, 3&g > 0 smaller than the minimal distance between the rectan-
gles, i.e.

dist (Ri,Rj) > eVl <ij<u.

Since the entropy h(f) := lim limsup%log(r(n,s,f)) is growing
£—0 n—oo

monotonously as € — 0, for this finite g we then get

h(f) > limsupllog (r (n,eq. f)) -

n—soo N

2. We now inductively define the sequence of state vectors

For any integer vector w € NV, let
v
[lelly =l
1=1
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(n)

denote its 1-norm. We claim that rin € N gives a lower bound for the number

of mutually distinct rectangle (n + 1)-chains with elements in {Rj...., Ry} the

last element of which is R;. Obviously, this is true for n = 0, since rl(o) =

1V1 < 7 < v and there is exactly one rectangle 1-chain {R;} with R; as the

last element, and trivially f0 (R))iR; V1< i <.

Now for the step n — n + 1, consider a nonzero entry rg.”), then there are
n—1
r;n) rectangle n-chains ending in R;, and pick one, say R := {Rik}k 0 If

Aij#0,f (Rin—l) =f (Rj) iR;, and the set R U {R;} is an (n + 1)-chain
ending in R;. Since R is distinct from all other n-chains (both ending and
not ending in R;), then also R U {R;} is distinct from all other (n + 1)-chains
ending in R;. Thus, summing up we have that the total number of mutually

distinct (n + 1)-chains ending in R; must be greater or equal to

v
Z Ai,j"_g‘n) _ rl(n%—l)’
j=1

which proves the claim. But morecover we have shown that the total number of
all mutually distinct (n + 1)-chains for f with elements in R is bounded below

by
v
T =

i=1

0 e,

. We claim that

r(n.eqg.f) 2 ‘ r("—l)Hl (5.1)
n—1)

and additionally, rl( ' gives a lower bound for the number of n-orbits starting

in U;'):l R; and ending in R;. This is true since by step (2), there are exactly
(n-1)

r; rectangle n-chains ending in R;, and by Theorem 5.11 each contains at

least one n-orbit starting in U}):l Rj. Since by (1) all rectangles are separated

(n-1)

by at least £q, then also these r; n-orbits must be gg-separated. Summation

(n-1)

over all r; yields (5.1).



n)

4. We can express Hr( ll via the matrix norm of A :

v v
0
9l = " = 2 g
i=1 ig=1
v v
— n . n _ n
_ijle(A )i‘1|21"£f%‘v ]2::1‘(‘4 il | = 114"l

where ||A"|| 5 denotes the row-sum-norm of A™. It is a standard result (see [59])

that for any real square matrix A/ and any matrix norm ||.|| for Af, we have

VI =, sp (D).

n

and so we have the estimate

h(f)> limsupl log (r (n.eq. f)) > limsupllog (Hr(")

n—oc n n—oo N

> limsupl [IAY| . ) = log (sp(A)) .
_§§3?0g(VH ”x) og (sp (A))

)

O

As an alternative approach, we can obtain entropy estimates from the length
growth of curves. The benefit of this technique is that the rectangles under consider-
ation here may share boundaries, which will prove to be of fundamental importance
in our later algorithms where we construct rectangles that are bounded by invariant
manifolds. The cost is a restriction to smooth maps and rectangles with piecewise
smooth boundaries.

We start by stating canonical results about smooth extensions of functions [36]:

5.13 Lemma. (Extension lemma) Let M be a closed subset of a smooth manifold.
If f: M — RY s smooth, then for every open neighborhood V of M there erists a

smooth function fiy : V — RY such that fy|pr = f.

The proof of this statement is based on the existence of so-called bump functions,

i.e. smooth functions with a compact support. A typical example 3 for a bump
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function on R is given by

__1
B(z):={ € 1-22 for lz| < 1

0 else

These bump functions can be ’tailored’ to the choices of V' and M and the smoothing
of f outside M is performed using a convolution with a suitably chosen bump function.
In particular we have the following results about curve connection in the plane as a

corollary:

5.14 Corollary. (Smooth connection of curves) Let y; : R — R?2 for i =1,2 be
smooth tmmersed curves (not necessarily injective). Let a < b < ¢ < d € R and
consider the restricted curves "fll{a,b] and 72|[c,d] . Note that all one-sided derivatives
of v; emst at the endpoints and y; # 0 there. Then there exists a smooth curve
c19:(b.c) — R? such that the concatenated curve (71 &c1ok& ')'2) : [ay, by] — R2

given by
71 () fte€lab]
(& er2&m) ()= cz(t) ite(bo)
yo (t) ift € [c,d]

is again smooth and an immersed curve. In particular note that c g is of finite length

since the first derivatives are bounded on the compact set (b, c).
We can now prove the entropy estimates stemming from curve length growth:

5.15 Theorem. (Entropy from curve length growth) For a C°°-diffeomorphism f :
R2 > M — D, where M is compact, let {Ry,..., Ry} be a set of rectangles in M
with mutually disjoint interior such that the boundary segments tR; , bR;,IR; and rR;
are smooth for every 1 <i <wv. Let A € N**V be a matrir with integer entries such
that A; j =1 off f (Rj) fR; and 0 else. Then we have for the topological entropy of
f

h(f) = log(sp(A)).
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Proof. 1. By Theorem 2.13 we know that

h(f) = sup G f)
C-curves yCM

1
= sup limsup = log | f™ o 7] .
C®-curves yCM n—0oc T

where |.| denotes the arclength of a Cl-curve. So for a choice of a fixed C°-

curve y9 C M, we have that
: 1 n
h(f) 211msup—10g|f °'YO|- (5.2)
n—ooo N
2. For a rectangle R; and any associated C°° h-transverse curve v, (R;), we have

inf (v (R;)]) > 0.
Yh(R;)CR;

3. For a rectangle R; there exists ¢(R;) > 0 such that and , we have
Ivh (Ri)| > e(Ry).

for any associated C'° h-transverse curve 7y, (R;) C R;. For if not, then for

continuity reasons {R; N R; # 0, which contradicts Def. 5.6. Then define
lp:=min{e(R;):1<i<v} >0,
so lp is the positive minimal length of any h-transverse curve for any rectangle

in {Rl. ceny RU}.

For every R; € {R],..., Ry}, select now a C° h-transverse curve Yh.i (these
exist for every R;, in particular the boundaries tR; and bR; are smooth h-
transverse curves for R;), and connect their endpoints with C° curves ¢ j+1 C
M,1 < j <w-1, according to corollary (5.14) such that the concatenated curve

70 defined as
Y0 =Th1&c12& o0& o3& &cy_1 0y &p,
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is an immersed (not necessarily injective) C°°-curve in M. Let

v—1

K, = Z ‘f" ocj,j+1l >0Vn e Ny.
J=l1
4. We claim that
770 50] 2 1|47 |g fo + K

We already know from steps (2) and (4) in Thm. 5.12 that |[|A™||,, gives
a lower bound for the number of mutually distinct rectangle (n + 1)-chains.
From Lemma 5.10 we know that every (n + 1)-chain ends in a rectangle which
has a subarc of f™ o~q as an h-transverse curve, which has a minimal length of

lp. This proves the statement.

5. Combining the last claim with (5.2) vields the estimate

1
h(f) > limsup - log If" o’)'0| > limsup log T{/l]A“H lp + Kn
n—oo

n—oo

> limsup log ( YVIIA7| - %)
n—oo

= log (sp(A)).

a

In light of the last two theorems, it becomes apparent that we found ’symbolic
dynamics’ exhibited by f, i.e. we found a subshift of finite type which satisfies the
same entropy estimates as would a topological factor of f according to Thm. 2.12.
Here the rectangles { Ry, ..., Ry} form an alphabet a of v+1 symbols, and a subshift of
finite type ZX is given by the incidence matrix A determined by the Markov crossing

properties of the R; under iteration by f, combined with the shift map on Z;.

5.4 Construction of rectangle chains

While the theorems from the last section ascertain entropy estimates for homeomor-

phisms and diffeomorphisms through a collection of rectangles and their incidence
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matrix under mapping, for a given problem it is neither clear how to best select a set
of rectangles nor how to rigorously prove their iterative Markov crossings.

To this end we now wish to combine the theoretical framework developed so far
in this chapter with the Taylor Model based techniques for the representation of
manifold tangles, which was presented in chapter 4. The fundamental idea is to
define suitable rectangles as sets bounded by segments of invariant manifolds, with
homoclinic points as their cornerpoints. Knowledge about the mapping properties of
the homoclinic points together with the invariance of the unstable and stable manifold
pieces will allow us to rigorously determine Markov crossings under iteration of the
thus defined rectangles.

The arguments are designed in such a way that they can be established with
Taylor Model arithmetic.

All definitions of sets or maps hold throughout this section.

5.4.1 Choice of manifold tangle

Let p be a hyperbolic saddle point of the C"-diffeomorphism f : R2 — R?, and let
Au be the unstable eigenvalue, assumed without loss of generality to have positive
real part (else consider the squared map f2). Let I'Vlléc (p) be a connected component
of the local unstable manifold around p containing p. Define the subarc W}é (p) as
W}é— (p):=f K (W;(‘)c (p)) for some finite iterate K. Observe that U C f (U).

Let S := {S7..... Spr} be an arclength-ordered finite collection of compact stable
subarcs S; C W¥ (p) for 1 < ¢ < M with mutually disjoint nonempty interiors. By
arclength-ordered we mean the following: Choose a fixed parametrization W?¥ (p) :=
vs (t) for t € R. Then for any two points p; € S; and py € S;41, p; # po, there
exist t] < t9 such that p; = vs(t1) and po = 75 (t9). If p3 € PWS (p) (p1,p2), then
p3 = s (t3) for some t] < t3 < to.

Let Y := {Uy,....U} be likewise an arclength-ordered finite collection of compact
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unstable subarcs U; C 1'1"'}‘:’, for 1 <i < L, with mutually disjoint nonempty interiors.
For the rectangle construction, we now consider the manifold tangle 7 C R? given
by
T:=(Suf(S)uUufH))
where we demand that both (SU f(S)) and (4 U f (U)) can be fully ordered.

In fact, we will make the assumption that f(S) C S and U C f (U). In this case,
T=8SUfU)

and the orderings of (S U f(S)) and (U U f (U)) are inherited from S and f (U).

5.4.2 Interval box enclosures of homoclinic points

fUNS #0, then let
B:={B(in;):1<i< N} (5.3)

be a collection of mutually disjoint closed balls B (i,n;) C R? with nonempty interior,
which contains all homoclinic intersections of S NU, that is

N
(Snuyc | Bin,).
1=1

We assume that every B (7,n;) gets crossed by the manifolds according to section 4.4
in such a way that existence of at least one homoclinic point of S "YU is guaranteed
in each B (i,n;). We may assume that the homoclinic point is in the interior B(i,n;).
Furthermore, for the box B (i, n;) the indices i and n; denote the ordering of the boxes
along the stable and unstable manifold respectively. More precisely: analogous to the
previous step, choose fixed parametrizations W (p) = vs (v) and W* (p) = y, (w)
for v,w € R. For two points p; € B(i,n;) and pg € B (i + 1,n;41), there exist
v1,v9, w1, wo € R such that pp. = 75 (vr.) = yu (wy) for k = 1,2. Then v; < vy, and

furthermore w1 S wo iff n; Sn;y g .
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5.16 Remark. In (5.3) and in the rest of the algorithm for the rectangle mappings we
only consider closed balls. This choice is purely for notational ease in the argument.
In fact, we only need the balls to be C” -diffeomorphic images of the unit ball in R2,
which is beneficial for sharpness of the homoclinic point enclosure in practice. The

argument works unchanged for this relazed requirement.

5.4.3 Determination of homoclinic ball enclosure mappings

Consider now f(U) NS (which is nonempty because SNU C (SNf (U)) and SNU

# 0). Then choose a collection of closed balls with mutually disjoint nonempty interior
B:= {B(j.nj> 1<) < ﬂ’}
such that again

N
(snfe)c | B(j,nj).
J=1
with the ordering of B (] nj) as the j-th stable and nj-th unstable box, and which

satisfies B C B. This choice of B is clearly allowed, one simply sets
B (J'Nlji) =B(i,n;) for I<i< N

and then selects interval box enclosure B (j, nj) for j € {1,...,1\7}\{]’1,...,]'1\/}
which contain the newly created homoclinic intersections in (f (U)\U) N'S. Note

that then N < N.

5.17 Definition. (Parent/chid balls) Let By, By C RZ be two closed balls with
nonempty interior. If there exist x1 € By and z9 € Bg such that f(x]) = x9,
we call By a parent ball of By, and By a child ball of By.

The following is clearly true:
5.18 Proposition. Every ball B(k,nk) € BCB is a parent ball for some

B (jk‘njk) € B
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We now make the additional assumption that for every parent ball B (k, ni) € B

exists a jj. € {1, ...,1\7"} such that

B (k.ny) C f_1 ([3 (jkv"jk>) \

and f_1 (B (jk,njk)> is disjoint from all other balls B(j,nj) where j €
{1,...,,&'}\{;;}.

This obviously also means
f (B(k,nk)) CB (jk~7ljk) ,
f (B (k.nk)) nB (J nj) —0vje {1, /\7} \ U}

so in particular, for every parent ball there is a unique child ball into which the
parent ball maps. In other words, within the collection B we have mutually disjoint

parent-child-pairs, and additional balls which are neither a parent nor a child ball.

5.4.4 Orientation of manifolds at homoclinic point enclosures
We first introduce a convenience definition:

5.19 Definition. Let B C R2 be a closed ball with nonempty nterior. Let 7y :
[a,b] — R2 be a curve which both enters and leaves B, i.e. there are t1 <tg <3

in [a,b] such that v (to) € B and v (t1).7v (t3) ¢ B. Then we define

tin (v, B) :=inf {t € [a,b] : v (t) € OB},

tout (7. B) :==sup{t € [a.b] : v (t) € IB}.
as the entrance and exit parameters for vy, and accordingly

@in (7. B) == 7 (tin (7, B)),

qout (7. B) =7 (tout (v. B)),

as the entrance and exit points of vy in B.
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Figure 5.2. Left-handed (orientation o = —1) and right-handed (o = 1) crossing of
stable (solid) and unstable (dashed) manifold over a homoclinic ball enclosure.

For continuity reasons in particular ¢;;, (v, B) € 0B and gyt (7. B) € 0B.

Now consider B (i, n;) € B. Since B (i,n;) is guaranteed to contain a homoclinic
point, in particular both W% (p) and W* (p) have to enter as well as leave B (4,n;),
and we assumed that the entry/exit points of W% (p) and W* (p) on the boundary
OB (i,n;) alternate and are mutually nonequal (i.e. no homoclinic points on the
boundary dB (i,n;)). We can now meaningfully define the orientation, or handedness,

of the manifold crossing for B (i, n;):

5.20 Definition. (Crossing orientation) Let B (i,n;) € B, and for simplicity write

B= B(znl) Then we define the crossing orientation o (i) of B as

1. o(?) := 1 if starting at qj, (W's (p) . B) and going counterclockwise (positive)
on B, the next manifold crossing point is g, (W“‘ (p), B) .

2. o(i) := —1 else, i.e. if the next manifold crossing point is qoyt (VV“ (p) ., B) .
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A superset E C R? of B is said to have crossing direction o (i) if there are no further

homoclinic intersections of WS (p) and W¥ (p) in E\B.
Also see Figure 5.2 for a visualization.

5.21 Remark. Intuitively, one can think of these definitions as taking the cross prod-
uct of the tangent vectors to W¥ (p) and W* (p) in B (i,n;), with o(i,n;) indicating
whether the manifold crossing s right-handed (o (i) = 1) or left-handed (o (i) = —1).
In the more general setting, this intuition does not hold fully, since we can have mul-
tiple manifold crossings or homoclinic tangencies within B (i,n;), hence this at first
glance more involved and cumbersome definition of the crossing orientation.

In fact, in the definition of manifold rectangles below, we are not interested in the
crossing orientation at the homoclinic cornerpoints, but in the manifold orientation

outside the cornerpoint ball enclosures.

5.4.5 Selection of rectangle cornerpoints and connector
curves
We first introduce the notion of connector curves:

5.22 Proposition. Let B(z‘,ni) € B, again write B = B(i,ni), with an assoct-
ated crossing direction o(i). Let the manifolds WO (p) for ¢ = u,s be C*° and
parametrized as v° : R — R2, with the entrance and exit points din (W" (p) ,B)
and Qoyt (W" (p), B) on 8B (i, n;) mutually nonequal and alternating. For simplic-

ity, write

19, = tin (WO (1), B), 3,0 1= tou (W7 (0), B),

qz'an = Qin (W’o (), B) ’ qgut = qout (W7 (p), B

Then there exist injectively immersed C°°-curves (g (i) : [tg’n,tgut] — B, for

o =u,s, such that
1. ¢o connects ¢7, = (g (1) and ¢34 = Co (t9,,4) for o =w.s.
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Figure 5.3. Homoclinic ball enclosure B(i,n;) with stable and unstable manifolds W*
and W (dashed). The connector curves (s(7) and (s(7) (solid) intersect transversely.

2. The connection preserves the C°C-differentiability, i.e. the concatenated curve

o R — R? given by

79 (t) ifte (—oo,t?n)
o (t) := (Co (D)) (t) ifte [t?n’tgut]
77 (t) if t € (17,4, 0)

is again an unmersed C>-curve for o = u, s.

3. The curves (y (i) and (s (i) intersect transversely in eractly one point h (i, n;)
in the interior of B, such that the orientation of their tangent vectors at h (i, n;)

corresponds to the crossing orientation o (i):
(C‘q'h(‘i,n.i) X Culh(i,nl’)) § 0 < 0(1') § 0.

The statement follows immediately from Proposition 3.14, also see Figure 5.3. In

this situation we call the curves (s (7) and (y (¢) the stable and unstable connector
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curves for B (i,n;), and h(i,n;) the i-th cornerpoint, for reasons that will become

clear soon.

5.23 Proposition. Let B(i,ni),B(j, nj) € B, and for simplicity write B =
B(i,n;) and B = B (j, n ) Suppose now that B C f~! (B), and that the man-
ifold crossing directions o (i) for B and for f— ( ) are equal. Let furthermore
Cu (i) .Cs (1) and h (i,n;) be chosen for B according to the previous proposition. Then

there exist connector curves Cy (j) and (s (j) for B (j, nj) such that

f o (i) C o (j) , 0 =1u,s.
In particular, this means that h (j, nj) = f(h (i, n;)).

Proof. For ease of hand we write

tg, =tin (W (p).B), t"ut = tout (W” (p).B).
qion = Qin (W (p),B), qout = gout (W7 (p), B)
q?n = in (”/a (p). B) ) ‘jgut ‘= Qout ( 7 (p), B) )

Let finally the manifolds W7 (p) be C*° and parametrized as 77 : R — R2, and

8‘7 aom‘ € R such that

(9?71) = f—l ((}gl) and g (eout) f_l (qgut)

for 0 = u, s. Then there exist curves

) , (5.4)

. -1
ng [85,t5) — 571 (
1

UgUt [ out*gout] - f_

for o = u, s such that

1. 7™ connects f~1 (@,) = nin (an) and ¢7 = nin (t7.) for o = u,s.

2. n9*t connects Qo = nout (t o) and f~ ((jgut) = pout (69,) for o = u.s.
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3. The concatenated curve pg : [0;7”, out] — ( ) given by

ni (t ift € [(}U tfn]

)
po (t) == (Co (1)) (t) ifte ( tout)
t

(
7/gUt( ) ifte [fout’ out

is an injectively immersed C'>°-curve for o = u, s.

4. The concatenated curve 5 : R — R?2 given by

A9 (6) it € (00,67
o (t) =< po(t) ifte[67,69,]
o (t) ifte (901115 OC)

is an injectively immersed C>°-curve for ¢ = u, s.

5. The curves 1, and pg do not intersect in f_1 (B) \B, i.e. they only have a

single transverse intersection point h (¢) inherited from B.

Once such curves r/ rygl‘t as in Figure 5.4 and subsequently ps have been con-

structed for 0 = u, s, define curves (g (j) in B as

Co (4) = f (o) -

Then the (s (j) are connector curves for B = B ( 7, nj) which intersect transversely

in the point h (j, nj) := f(h(z,n;)) with the same orientation as o (). a

This proposition enables us to select rectangle cornerpoints and connector curves
which merge smoothly into the invariant manifolds outside a child ball B (j, n]-) eB
if the same are known for the parent ball.

Based on the last two results. we can now proceed to assign such connector curves
and rectangle cornerpoints to every homoclinic enclosure ball in B. For convenience

we define rosaries:

L

5.24 Definition. (Rosary) A rosary is a finite set of L balls p := {B ( nzj)} 0
J:

such that
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W

Figure 5.4. B(i.ni) contained in f_l(B(j, nj)) (left). ¢s(j) (dashdotted) for B(j‘nj)

right) is the image of the concatenated curves 77?", +(i) and nout,
g g 5 ]

1. Unless B ('iO-'”iO) or B (iL,niL) contain the fized point, then B (z'j,nljj) C

k(al-: . . P
f (B(zj+k.71,-j+k>> for1<j<Landl1 <k<L-j,
2. f—1 ([3 (7’0.-17.,~0>) and f (B (iL-7‘iL>) are disjoint from all elements of B.

In other words, a rosary defines a sequence of L balls in B such that the j-th ball
is mapped fully into the subsequent balls in the rosary, no ball maps into the first
ball, and the last ball maps outside B. A rosary with only a single element contains

a ball B (il- "il) which is neither a parent nor a child ball.

5.25 Lemma. The set B consist of finitely many mutually disjoint rosaries Pls- PR

i.€e.

o
I
o~
=
Re)
o~
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such that no lust elements of any p;. maps into another rosary, i.e.

f(E’ (iL(A~)~7’7L(A)))mB\{ ( L(k) g ))}z(a,

where L(k) is the number of elements in py..

Proof. We select the p;. inductively:

1.

k = 1. It is clear that the fixed point p of the manifold tangle is con-
tained in some element of B, say p € B (z’l,n,il). Then by the mapping
assumption (5.4.3), f([S’ ('il.nz-l)) N B(] -nj) = 0Vj # 71, and hence

pl = {]_:)’ (z’l, n,jl)} is a rosary.

. k — k + 1: Let pj through p;. be chosen, and let

‘Bk::{B(a,n(,):lga<’V }—B\ UpJ

be the set of elements in B not vet contained in the rosaries chosen so far. Since
k
the images of all elements in J p; are disjoint from elements in By, there

7=1
must be a ball B(ag, n“O) such that

f—l (B(ao,nao)) (3\{ (g, nao)}) =0.

Per the mapping property (5.4.3). select a sequence {Bi}iZO of balls in B, such
that By = B(ag, nag) and f(B;) C B;y1. Any such sequence {B;};>¢ has to

be finite. for if it were infinite, then we would have

f(B;) C B; (5.5)

for some n € N, 1 < 7 < N(k). But due to the locally hyperbolic manifold
structure persisting in all balls B(i,ji) € B, the invariance (5.5) can not occur.
Hence there must exist a finite L € N, 1 < L < N(k), such that f (B ) maps
outside B\ ( U p;j U {B; }2 1) This makes {B; } ~_; the longest rosary in B

J_.
starting with B(ao. "”0)' and we call this rosary pp.4 1.
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This procedure obviously is exhaustive and assigns every element of B to a rosary.

Disjointness of the rosaries is clear by construction. O

By Propositions 5.22 and 5.23 we know that we can construct cornerpoints and
connector curves for every parent and child ball in B. We now want to select h (i, n;),
Cu (1) and (s (i) for every B(i,ni) € B, but do so contingent on the rosary that

contains B (i, n;):

. K
5.26 Algorithm. (Cornerpoint and connector curve selection) Let B= |J py,
k=1
’ : R [ Lkl
and assume that for two rosaries Pk = {B (zj,nij)}jzo and Pky

- L.
{B (lm,nlm)}m 2 (k1 may equal ky) and any two elements B( 1_1) € Piy

and B (lm, "lm> € Prys we have the disjointness condition

f_t(B( TN ))ﬁf ( (lm,nl )) =0v0<t<j0<s<m, (5.6)

except where s =0, I, = ij—t for a given 'ij, t.

L
Assume further that for any rosary py, = {B (i 1 nij)} ‘50 we have that the cross-

ing orientation of 1 (B (1.']-+1. ”ij+1)) (in the sense of Def.5.20) equals o (z'j).

We choose cornerpoints and connector curves for elements of p;. inductively:

1. Consider the rosary py, and let j = 0 : For B (io,nio), choose a cornerpoint

h (1?0, 711'0) and connector curves Gy (ig) and (s (ig) as in Prop. 5.22.

2. j— j+1: Leth ( ST ) Cu ( ) and (g ( ) be comtructedforB( nz]>
By definition,

I (B(J n;. )) c ( (‘ij+1»"z'j+1))‘

So proceed as in Prop. 5.23 and for o = w,s construct mutually dis-
joint curves 7S, which connect fFG+D) (‘Iin (VV” (P):B(ij+lv"i]-+1)))
to fJ (Qin (WU (p),B (ij’"ij))) and NS ut
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which connect I (%u.t (WU (p).B (i]-, ”ij))> to
fmU+D (qout (WU (p).B (ij+1-"ij+1)))-

Map the concatenated curve &g := 7I?n&f—j (Cg (U)) &nJ ¢ to obtain
G (1) = 71 (&)

Since furthermore h (ig.n;.) = f~7 (h i:,1;. is the only intersection o
0- Mg ARRE Yy

the curves &, and € in f_(j+1) (B ('ij+1s n,ij+1)>, also we set

h (ij+1"'lij+1> = f (h (ij,ni].>) = fj+1 (h (io,nio))

as the wunique transverse intersection of (y ('ij+1) and (s (ij+1) m

Stop the induction when j = L.

3. Repeat steps 1 and 2 over all rosaries py. for k=2,... K.

5.27 Remark. The disjointness condition (5.6) is a natural one. If we did not
have ball enclosures of the homoclinic points, but the actual homoclinic points, this
condition would always be given. So for continuity reasons, by having sufficiently
small ball enclosures of the homoclinic points, we are still be able to satisfy (5.6).
In practice, however, due to the hyperbolic nature of the map in the neighborhood
of homocliniwc points, this disjointness demand for the homoclinic ball mappings is
quite hard to satisfy and is the primary reason for a breakdown of the Taylor Model

verification of the the rectangle chain construction described in this section.

Obviously the above algorithm exhaustively assigns a unique rectangle corner-
point to every ball in B by finding mapping sequences, and we can define the set of
cornerpoints as

HB = {h(i.ni)EIR?:lSiSN}.
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Figure 5.5. A manifold tangle with 65 transverse cornerpoints, ordered along the
stable manifold S (horizontal axis), and the unstable segments U (black) and f(U)
(blue).

1t is also clear that the following mapping property holds: If B (i, n;), B (j, nJ) eB
such that B (i,n;) is a parent ball for B (j‘ nj)4 then for the associated cornerpoints

and connector curves we have

f(h(i.nl)):h(j.n]).

5.4.6 Definition of rectangles

5.28 Remark. At this point, we have 'untangled’ the manifold tangle T from section

5.4.1 . For every ball in B(i, n;) € B, a unique point h (i, n;) is selected at which
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the ’patched’ manifolds intersect transversely with the same orientation o (i) as is
assigned to B (i,n;) as in section 3.4.4 . By 'patched’ manifolds we mean the curves
obtained from taking the invariant manifolds outside the balls in B and connecting
them with the respective connector curves inside the balls.

The ordering of all points h(i,n;) along the patched manifold as given by the
indices © and n; s still valid. This information is sufficient to draw the manifold
tangle T as in Figure 5.5.

It is important to note that we have thus made a transition from the problem
of finding rectangle chains for f in the plane, to describing the construction in a

completely discrete framework.
Consider a subset Hpg of H 3 given as

Hp = {h (i,n;) € R? : h (i.n;) is the cornerpoint in B (i,n;) € BN 5’} ,

=:{h(a,ma):1 <a< N}.

where the indices (a,mgq) correspond to the stable and unstable ordering (7,n;)
restricted to the intersections in S NU. So Hpg contains the cornerpoints selected for
the closed balls in S NU. In particular, by design all balls in BN B are parent balls,
so we have that

f(h(a,mq)) € HgVl<a<N.

In other words, if we define rectangles with cornerpoints in Hpg, their images will again
be rectangles with cornerpoints in H B We now proceed with the rectangle construc-
tion with an eye to the untangled manifold picture in remark (5.28). Specifically, we
will use the manifold orientation at the intersection points to define rectangles "above’

and 'below’ the stable axis to ensure disjointness of rectangle interiors.

5.29 Algorithm. (Cornerpoint loop)
1. Construction 'above’ the stable azis: Let a = 1 and consider h (a,mq) € Hg.
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(a) Select the next cornerpoint in the unstable direction as h (_B,m_g), where
mg = mq +o0(a), i.e. h (,3, mﬁ) is the next (or previous) cornerpoint
along the unstable arc above the stable axis if the crossing is positive (or

negative). See also Figure 5.6 for visualization.

(b) Select the previous cornerpoint h (y,m~) in the stable direction, i.e. vy =
8- 1L

(c) Select the next cornerpoint in the unstable direction as h(d,mg), where
mg = mq + 0 (a).

(d) If 6 = a + 1, record the ordered sequence of cornerpoint indices cq =

{a.3,v,6}. Let @ — «a + 1 and repeat from step 1.

(e) Stop when a = N.

2. Construction 'below’ the stable axis is analogous to above: Let o =1 and con-

sider h (o, mq) € Hg.

(a) Select the next cornerpoint in the unstable direction as h (ﬂ,mg), where
mg = mq +o0(a), t.e. h (;3, mg) is the next (or previous) cornerpoint
along the unstable arc above the stable azis if the crossing is positive (or
negative).

(b) Select the previous cornerpoint h (y,m~) in the stable direction, i.e. y =
8-1.

(c) Select the next cornerpoint in the unstable direction as h (8, mg), where
mg = mq + 0 (a).

(d) If 6 = a + 1, record the ordered sequence of cornerpoint indices cq =

{a,3,7,0}. Let a — a + 1 and repeat from step 1.

(e) Stop when a = N.
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R1 M1

sl
L
L

Figure 5.6. A rectangle R(a, 3,7,0) = R(1,44,41,6) (red) as constructed in section
5.4.6 . Also shown is the mapped rectangle f(R(1,44,41,6)) (green).

Identify all index sequences that are cyclic permutations of each other, i.e. if
co = {a,B,7,8} and ¢z = {d. 3"’5} = {7,0.a B}, then discard cg.
M

i=1
such that for each index sequence c¢q := {a,3,7.0} the cornerpoints

We now have a collection of M cornerpoint index sequences {C"‘i}

h(a,mqa),h (J.m_;) Jh (7.m~) ,h(6,mg) are adjacent to each other in the stable
and unstable directions of S MU as per algorithm steps 1 and 2, and form a closed

loop
h(a,mq) —h (3, m‘g) — h(y,my) — h(8,m5) — h(a,ma).

We now use these cornerpoint sequences to define rectangles, with special care about

the choice of curves connecting them so that invariance under mapping is guaranteed:
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Consider an index sequence cq := {a,8,7.d} , and select the cornerpoints
h (a,mq) and h (J, mfg). They are contained in balls B (a, no) and B (3, n/j) which
are directly adjacent to each other in the unstable manifold of S NU. Furthermore

they are contained in rosaries Pky Py C B as

B(a,nq) =B (ijo,i : ) € Pk = { ( )};’V(fl),

B
B (;‘J’, 71»,3) =B (lmo nlmo) € Py = { (lm ”lm> }i\ri(:f)

The balls B (iN(kl)* ni‘V(kl)) and B (lN(kQ)* nl!\’(kg)) are the last elements of
their respective rosaries, and have associated unstable connector curves (y (iN( kl))

and (y (ZN(I\'Q))' The preimages

_(N(}"l) ) (Cu ( IN Al)))
(¥ (k) =tmg) (¢ (i)

are disjoint, contain h(a,mq) and h (ﬁ, mﬂ) and are connected C” by ex-

actly one subarc of the unstable manifold W% (p). Define the curve tR(a,3,7.0)

~(N(kp) -1 (e (rvap))): W () and

‘(N(k?)—lmo) (Cu (lN(kQ))) and having h(a,mq) and h (Ximd) as its end-

as the curve concatenated from f

points.

Analogously, connect h (3 ’”/3) .h (7. m@,) and h (6.mg) . h (a.mq) with ‘stable’
curves 7R (a. 3,7, 6) and IR (a, 3.7, 6), and connect h (y,m~) , h (8, mg) with an 'un-
stable’ curve bR (a, 3,7, d).

This construction leads to the following result:

5.30 Lemma. For the index sequence cq = {a.3,v,6},  let
h(a, ma),h(ﬁ,m},j),h('y,nw),h(é,m(g) and tR(a,3,7,8), rtR(a,3,7.9),
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bR (a,3,v.6) and IR (a.3,7.6) be given as above. Then the concatenated curve

J:=tR(a.3,7v,0)
UrR(a, 3,7.6)
UbR (., 3,7,9)

U ZR (a, ;3, Y, (5)

is a Jordan curve and .J together with its interior forms a retangle with piecewise
C" boundaries and with cornerpoints
gy =h(a.ma), x4 =h (,‘3, mﬂ) ,
Ty, =h ('y, m»,) . ap =h(d,mg).
This rectangle is naturally denoted R (o, 3,7, 0).
Repeating the rectangle construction over all index sequences yields the set of

suitable rectangles:

M
stemming from the rosaries

1=

5.31 Lemma. For all inder sequences {C“i}
Pl. - P| cOntaining B. we can construct M rectangles R(c., 3.7.0) with piecewise

C" boundaries. All M rectangles have disjoint interior.

The disjointness follows directly from the construction, since two rectangles can

share at most one boundary. We also observe the following:

5.32 Proposition. If R(a.3.7v,9) is a rectangle, then its image f (R (a,3,7,9)) is

again a rectangle with

fhiama)), f(h(8.mp)),
Fh(rms)),  f(h(6mg),

as its top left. top right, bottom right and bottom left cornerpoints, and

f(tR(a,3,7.0)), f(rR(a,3,7.6)),
f(bR(a,3,7,8)), f(R(a,3,7.9)),

as its top, right, botton and left boundaries.

This is illustrated in Figure 5.6.
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5.4.7 Mapping of rectangles

The rather involved construction of rectangle boundaries yields this fundamental and

important mapping property:

5.33 Theorem. (Invariance of rectangles under mapping) Let R(c,3.7,6) and
R (d B’yg) be two rectangles constructed as in the previous section. If

the cornerpoints of R («, 3,v.d) map into those of R (&Bﬁg) then
f(R(a.3.7,8) = R (a,3,7.5).

However, typically the rectangles do not map into each other, but due to the hy-
perbolic nature of the map across each other instead, i.e. they form Markov crossings
under iteration. This observation is the content of the next mapping theorem.

Let R; = Rj(a.3,7.6) be a rectangle given by the top left, top right, bottom
right and bottom left cornerpoints x; = h(a,nq), x4 =h (;3,71,/3) Xy = h ('y, n»y)

and ap) = h(d,ng5). Consider the mappings

h(a.na) = f (xy) = f (h (@.na))
h(b.mp) = f (@) = £ (h (8.m5))
h(c,ne) := f(xy,) = f (h (3.17))
h(d.ng) := f(xy) = f(h(6,n4)).

Then these are the cornerpoints for the rectangle f (Rp).
Let now a second rectangle Ry = R9 (e.(. 1, 8) be given with the top left, top right,
bottom right and bottom left cornerpoints xy; = h(e,ng), 24 = h (C‘"C) Ty =

h (1.ny) and xp; = h (6, ny).

5.34 Theorem. (Rectangle Markov crossing) Let the rectangles Ry and Rg have
cornerpoints as above, and let their boundary segments be oriented as in Fig-

ure 5.7. There is a Markov crossing f(Ry)3Rg if there exist homoclinic points
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h(i,n;),h (j, nj) Jh (k. ng) and h(l,n;) such that the following hold:

1) a<i<j<b i7) c<k<l<d

. 9.7
iit) n¢ < n; <ng < ny iv) ng<ny<n; <ng. (5.7)

If Ry or Rg have other orentations of their boundary seqgments, then analogous state-

ments to Thm. 5.7 hold with altered orderings.

Proof. The proof follows directly from Figure 5.7. We concatenate the unstable arc

P (p) (h (¢,m;) h (j, nj)), the stable arc PWS (p) (h (j, nj) h (k, nk)), the unsta-
ble arc P (p) (h (k,ny) h(l.ny)) and the stable arcppys (p) (h(l,ny) h(i,n;)). Then

the concatenated curve

J = oypugy (hm) b (Giny))
U OIS () (h (j, nj) h (k.nk)>
U W (p) (h (k,ny) h(l,np))

U S‘)W's(p) (h (l‘ 711) h (i» ni))

is a Jordan curve, the interior of which is contained in both rectangles f (Ry) and

R9, and thus we have a Markov crossing. a

5.4.8 Entropy estimates

The entire rectangle chain construction of Section 5.4 culminates in the following

theorem, a direct consequence of Thm. 5.15:

5.35 Theorem. Let f : R2 > M — M, where M is compact, be a smooth diffeo-
morphism with a homoclinic saddle point p. Starting from p, generate the manifold
tangle T as in section 5.4.1 and proceed to obtain homoclinic ball enclosures B with
the ordering information (as in section 5.4.2), mapping information (as in section

5.4.4) and manifold crossing orientation (as in section 5.4.3) of elements B.
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(577}5) (Cvi"()

(a’ ’I’La) (b7 nb)
(Z,n:)  (J,m5)
ZIN N / Y
| (¢, m) P (k, n) ‘
(d, na) (¢, nc)
(6, n9) (m, ’I’L,,)
Figure 5.7. The determination of the Markov-crossing of f(R(a,?3,7v.d)) =

R(a,b,c,d) and R(e,(,n,0) amounts to a simple check on the cornerpoint ordering
in the manifold tangle.
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This data permits the automatic construction of rectangles and rectangle crossings
such that for an incidence matriz A obtained from the Markov crossings in Thm. 5.34

we have

h(f) > sp(A).

5.5 Taylor Model verification of rectangle chain
construction

In the previous section an algorithm to construct topological rectangles using the
invariant manifold tangle, and to determine their Markov crossings, has been pre-
sented. In the following we now rigorously verify this construction, i.e. we introduce
Taylor Model based algorithms that can check the assumptions that were made for
the construction in section 5.4. Conceptually, this will prove to be not difficult, since
the construction in section 5.4 was developed with an eye on the implementation in

the Taylor Model framework.

5.5.1 Manifold tangle

Let p be a hyperbolic saddle point of the C"-diffeomorphism f : RZ2 — R2, and let
Ay be the unstable eigenvalue, assumed without loss of generality to have positive
real part (else consider the squared map f 2).

According to the construction in section 4.4 we are able to find ordered sequences
of Taylor Models that form a CY-enclosure of the invariant manifolds. Starting with
verified Taylor Model enclosures Ts of the local invariant manifolds Wli’g (p), we

simply iterate in Taylor Model arithmetic to obtain
e, ) < fRe () and 7K (WEL ) € fRs (1),

loc

for some iterates Ky, Ks € Ny . The fundamental assumption which needs to be
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satisfied is Y C f(U) and f(S) C S. The simplest choice of tangle that guarantees

this property is to choose § := {S1} and U := {U1} where
Us = f~Es (1178 and Sy = fFKu (jpru 5.8
/1 T f ( 10(.' (‘”)) anc 1 T f ( IOC (p)) ? (O' )

in which case the desired containments are immediately satisfied.

Selecting the entire manifold iterates as in (5.8) for the manifold tangle is not nec-
essarily desirable, e.g. for high iterates Ky, Ks the manifolds accumulate so densely
upon themselves that the Taylor Model enclosures fK‘U (Ty) and f —Ks (Ts) cannot
resolve them anymore, and one may wish to select only a finite collection of subarcs
of the entire manifold iterates.

We note that there is a technique to suitably pick a finite collection U* C U of
unstable subarcs for the tangle selection and still have U* U f (U*) fully ordered:

Let U* := {Uf e 'z*} be an ordered collection of compact unstable subarcs
with mutually disjoint interiors. For a subarc Ui* € U*, let by (i) and by (i) denote
the lower and upper endpoints of U in the orientation of W (p). Then U* U f (U*)

can be ordered if the following two conditions hold:
L f(by (k) 2bu(k)VI<k<L*
2. fbu(k))<by(k+1)VI<k<(L*-1)

where < and > denote ordering in the orientation of W (p).

5.5.2 Interval box enclosures of homoclinic points, ordering

and crossing orientation

In section 4.4 we presented an algorithm to find set enclosures of homoclinic intersec-
tions of a stable and unstable manifold piece contained in intersecting Taylor Models.

Immediately we can extend this algorithm to enclose all homoclinic intersections of
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J J

entire lists of TMs {Tu,i}. ul and {Ts j} _s % The algorithm is simply performed
1= V)=

Ju . Js times.

Candidate parameter enclosures for intersections of two Taylor Models T, ; and

Ju

J 1=1

and {Ts j} Asl are ordered along the arclength of the manifold they contain, and
k] ]:

Ts,j are found by a verified global optimization scheme. Since the lists {Tu,i}

every T, ; and T ; is parametrized longitudinally on [—1, 1], the candidate parameter
enclosures for the intersections can easily be ordered.

Existence of a homoclinic intersection points as in section 5.4.2 and following is
being proved via Algorithm 4.15. Since Algorithm 4.15 checks the existence of entry
and exit points and determines the correponding boundary segment of the interval

enclosure, the manifold crossing orientation is obtained immediately as well.

5.5.3 Homoclinic interval box enclosure mappings

The containment conditions (5.4.3) and (5.6) are required for the determination of
mapping properties and rosaries. Performing the mappings of an interval box enclo-
sure B € B in Taylor Model or interval arithmetic yields verified outer estimates of
their ranges and containment can be rigorously checked. Techniques for the efficient
range bounding for specific cases Taylor Model are available [45,48].

Finding sharp range estimates of f (B) and f! (B) in light of the inavoidable
accumulation of homoclinic interval box enclosures for higher iterates of the manifold

is the biggest challenge.

5.6 Results: Entropy of the Hénon map

As an example of the entropy construction in the last section we again consider the
Hénon map

Hgy p(2,y) = (1 +y—az?, baf)
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L

80 b)
Figure 5.10. )Tl e mapped rectangles Rog and Rog (green) both cross Rj (red). b)
TI napped rectangle Ro3 (green) cros: \f\sl th re mgl(\s Ry and Ry3 (red).
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with the standard parameters of a = 1.4, b = 0.3. This map has been a subject
of detailed study before and nonverified numerical approximations of its topologi-
cal entropy have been calculated using various approaches, e.g. via periodic orbit
counting [19,20] or from curve length growth algorithms [57). Numerical experiments
suggests that

h(Hap) =~ 0464 (5.9)

Work has been done using concepts similar to Markov-crossings in interval arithmetic
for rigorous bounds [21,22], but without employing the invariant manifold structure.
The largest lower entropy bound obtained with such interval methods as of the time
of this writing is

h (Hayp) > 0.430.

In comparison, the construction in section 5.4 has been implemented using Taylor
Model arithmetic in COSY Infinity [1,15]. Coding for the determination of the ho-
moclinic ball data (ordering, orientation, mapping) from section 5.4.1 through 5.4.4
was implemented by the author, the construction of rectangles and their Markov-
crossings was performed by the COSY program dyn2.for due to K. Makino. dyn2.for
also created Figures 5.5, 5.6 and 5.8-5.10.

Data sets with interesting results ranged from sample sizes of about 100 homoclinic
ball enclosures to over 700, with the corresponding number of rectangle (# R) and

Markov crossings (# MC) as listed in the following table:

n | #HP | #R|#MC|h(Hgp)>

7 1101 |37 |43 ] 0.3466

8 [161 |66 |94 |0.4132 (5.10)
9

267 119 | 185 0.4132
10 | 437 218 | 346 0.4283
11 | 707 381 | 603 0.4417

The best lower entropy estimate obtained so far from this automatic procedure is
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thus

h(Hap) 2 04417 .

5.7 Verification of preselected tangles

The preceding sections have been concerned with the fully automatic verified con-
struction of symbolic dynamics through the knowledge of the ordering and mapping
properties of homoclinic points within a homoclinic tangle. While this method is
designed to fully rely on computational power, one could argue that it disregards the
experience and intuition of the user to a certain degree. That is to say, the method
tries to get 'good’ symbolic dynamics, i.e. subshifts as topological factors that retain
a majority of the original dynamics. by a brute-force approach in which the sheer
number of homoclinic points and the rectangles constructed from the data is maxi-
mized, thus coding the dynamics more finely.

The approach of the experienced researcher is typically a different one: he has an
educated idea about which rectangles (and their associated homoclinic cornerpoints)
are essential to retaining the interesting dynamics in a subshift on the selected symbol
space, and which ones might be redundant. For example, near-tangencies between
the stable and unstable manifold which form a very thin bigon (a set with a bound-
ary consisting of exactly one subsegment each of the stable and unstable manifold)
contribute significantly to entropy estimations, because they expand disproportion-
ally under iteration and lead to many entries in the incidence matrix. Naturally,
the number of homoclinic points that a researcher is able to consider for these con-
structions is very small, maybe in the few dozens, compared to the computational
effort required in the automatic methods described above, which need hundreds or
thousands of homoclinic points to code the dynamics well. This suggests that it is

worthwhile to try to verify a manually selected homoclinic tangle with Taylor Model
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methods, i.e. prove that a selected set of rectangles, cornered by homoclinic points,
indeed satisfies the mapping properties suggested by numerical experimentation.

In the following, we analyze a homoclinic tangle suggested by Newhouse in [56]. The
authors consider the Hénon map with standard parameter values a = 1.4 and b = 0.3
and are able to find a rigorous lower entropy bound which is within 1073 of the

numerically suggested true entropy value for this map.

5.7.1 Determination of trellis

Newhouse proposed a trellis constructed around the hyperbolic saddle
po =~ (0.6313544770895048, 0.1894063431268514)
and the transverse homoclinic point
q1 =~ (0.3388525493895907, —0.2551125297830196)

(the existence of which has been confirmed already in chapter 4). There are subarcs
S1 € W¥(pg) and Uy € W (pg) connecting pg and g; which form a bigon D. The
intersection H?2 (U1) N D contains a second unstable arc Uy which lies in the interior
of D and forms a bigon with a subarc of S1. These manifold pieces together with
stable subarcs S9-S13, which were generated as S; C H —k; (S1) N D for some k;-th
preimage of Sp, form the trellis which defines a set of 13 rectangles { R, ..., Rj3} with
mutually disjoint interiors as shown in picture (5.11).

All rectangles R; are have top and bottom boundaries in W¥ (pg) and left and
right boundaries in W¥ (pg). The rectangles Ry-Rg and Rg-Rj( are of full height in
D, whereas R7 has its upper unstable boundary in Uy and Rj1-R13 have their lower
unstable boundaries in Us. Clearly, the bigon D D Ullil R;, and we want to consider
return maps from D back into itself, and how iterates H™i (R;) Markov-cross other

rectangles R;:
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Figure 5.11. Thirteen rectangles are contained in the trellis formed by stable manifold
segments S1-S1( and unstable segments Uy and Us. Picture from [56].
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5.36 Proposition. (Newhouse) The rectangles R1-R13 satisfy the follounng mapping

properties:

10.

11.

12.

15.

. H? (Ry) crosses R1. Ro, R3, Ry, Rs5, Rg, R11 and Ry9.

H? (R9) crosses R13 and Rg.

H? (R3) crosses Rg.

. H?%(Ry) crosses Ry.

H® (Rs) crosses R1, R9 and R3; the crossing of R3 is a double crossing.
H5 (Rg) crosses Ry and Ry.

HS (R7) crosses Ry; the crossing is a double crossing.

H® (Rg) crosses R1, R9 and Rgy; all crossings are double crossings.

H? (Rg) crosses Rg and Ryp.

H? (R10) crosses Ry, Ro, R3, Ry, Rs, Rg, R7 and Rg.

HS (Rq1) crosses Ry, Ry, R3, R4 and Rs; all crossings are double crossings.
H" (Ry9) crosses Ry, Ry and Rg; all crossings are double crossings.

HS (R12) crosses Ry, R9, R3, R4 and Rs; all crossings are double crossings.

This proposition is seemingly true as suggested by nonverified numerical experi-

mentation, but that these intersection do in fact occur as claimed will be shown later

using verified Tavlor Model manifold enclosures.

5.37 Definition. (Return vector) For x € D, let 7 : D — N4 denote the first

return iterate such that H' (%) (x) € D. It turns out that 7 (x) > 2Vx € D and that
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7 is constant on R;. We can thus define the return vector r for the set of rectangles
{Ry.....R13} as

(S NE’ , 1; =7 (x;) for some x; € R;.
According to Proposition 5.36, the return vector r is apparently given by
r=1(2,2,2,2.55.6.52.2.6.7,6) .

The matrix A € N13¥13 is defined as Ajj=kiff H"i (R;) Markov-crosses R exactly

k times. From the claim we can see that

1111110000110
0000000100001
0000000010000
0000000001000
1120000000000
1100000000000
A=]12000000000000
2220000000000
0000000011000
1111111100000
2222200000000
2220000000000
222220000000 0)

The jargon is to call A an incidence matrix for the trellis composed of the rectangles
R1-Rq3. Strictly speaking, A is not an incidence matrix according to Def. 2.15, as
the encoded crossing properties under iteration are based on higher iterates of H.
However, there is a standard and straightforward procedure to transform A into a
form compatible with our notion of incidence matrices: consider the i-th row of A
which denotes the Markov crossings of H"i (R;) with R;. We construct a tower by

adding new rectangles R; 1 := H1(R)) yRjo = H? (R;), Ri,ri—l = Hri~1 (R;),

and insert them as additional rows and columns between rows/colums 7 and i + 1.
Trivially, by definition H (Ri,j) Markov crosses R; ;11 only, leading to additional
rows in the expanded matrix A as A(i,j),k = 6;\.‘j+1. We call this incidence matrix

on this expanded rectangle set A.
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A is an N92%52_jncidence matrix in the sense of Def. 2.15. We do not state A
here for obvious formatting reasons. According to Thm. 2.17, the logarithm of the
spectral radius of A vields a lower bound on the entropy of the Hénon map H. There
are standard techniques available for the determination of verified lower bounds of the
spectral radius of real-valued matrices, and we were able to determine the following

entropy bound:

5.38 Theorem. The topological entropy h (H) of the standard Hénon map H = Hg 3,

with a = 1.4 and b = 0.3 satisfies the estimate
h(H) > 0.46469 .

This theorem obviously requires Proposition 5.36 to hold, which we will prove in
the next section. It is quite remarkable that this rigorous lower bound which relies on
only 13 symbols is so close to the numerically suggested true value of the topological

entropy of the Hénon map with standard parameters.

5.7.2 Verification of mapping pictures

Let S; € W¥(pg) be the segment of the stable manifold connecting the fixed point
po to the homoclinic point g and consider the 11th preimage S := H_H(Sl). We
first determine subarcs Sp through Si3 of S as shown in Figure 5.11 (in the figure the
arcs S1-S13 actually extend slightly above and below the domain D, we crop them
such that their ends lie in Uy U Up).

The approximate position of the homoclinic intersections of the arcs S1-s13 with
the unstable segment U; U U9 as shown in Figure 5.11 is sufficient to determine the

number n; of backward iterates of H~"i(S]) at which each of the exact arcs S;,

1 <i <13, are first generated. With one exception, the respective iterates are much
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smaller than 11, leading to easy identification of the corresponding pieces.

S1:0 S9p:8 S3:6 Sp:8
Sg:4 Sg:11 S7:5 Sg:5
Sg:4 S10:6 S11:2 S12:6 S13:6

Figures 5.12-5.17 justify the last statement. The figures contain the approximate
boundary points of the rectangles R; from Figure 5.11, and rigorous Taylor Model
enclosures of the manifold pieces Uj,Us and the respective preimages of S;. The
curvilinear rectangles Ry through Rjj3 are defined analogously to Figure 5.11, each
formed by two stable and two unstable arcs, but with the rigorously determined true

manifold segments:

5.39 Proposition. Let n;(i) and ny,(i) be the numbers of the inverse iterate of Sy at
which the left and right stable boundaries of rectangle R; are first generated, as shown

n Figures 5.12-5.17. We see that the following table holds:

Rectangle n; nr Rectangle n; ny

Ry 0 8 Rg 5 4
Ro 8 6 Rg 4 6
Rs 6 8 Rio 6 3
Ry 8 4 Ry 5 6
Rs 4 11 Ri9 6 6
Rg 11 5 Ri3 6 5
Ry 5 5

With these definitions, we can now prove the following rectangle crossing under
iteration:
5.40 Theorem. The rectangle mappings claimed in Prop. 5.36 occur in the given

trellis.

Proof. The proof is based on the fact that the pictures (5.12-5.17) are verified, i.e.
that the rigorously computed error bounds for all manifold pieces are below printer
resolution. More precisely, the plotted curves are contained in Taylor Models with

error bounds of size less than 10712 for the unstable arcs U 1 and U, and between
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10712.1075 for the iterates of the stable arcs S1-S13. Together with the informa-
tion of iterates first generating the S; we can show that the mapping properties in
suggested in the pictures are in fact true.

First consider Ry. We observe that the upper unstable boundary of R; is con-
tained in U7 and extends between the stable subarcs S; and Sp. Then its second
iterate must be contained in H2 (U1) "' D = Uy U Us, and per the picture one can
identify that it is again contained in the upper portion of U;. It extends between
H? (S1) and H? (S2), and since according to Prop.5.39 n; (R1) = 0 and ny (Ry) = 8,
we have n; (H2 (Rl)) = 0 and nr (H2 (Rl)) = 6, and we can identify that the
mapped rectangle H? (Ryp) is bounded on the left by S7 and on the right by S;3. For
the remaining lower unstable boundary of H 2 (R1) we know that it is again contained
in U1UU9, and inspection of the picture shows that it is a subarc of Uy again extending
between the stable segments S and S13. With this information it is now clear that in-
deed the second iterate H2 (Rq) stretches Markov across Ry. Ro, R3, R4, Rs, Rg. R11
and Rjo. This proves claim 1.

Next we analyvze the crossing properties of H? (Rg). For its left and right stable
boundaries we have n; (Rs) = 5 and nr (Rs5) = 4. Hence for the stable boundaries of
the fifth iterate we have n; (H5 (R5)) = 0 and nr (H5 (R5)) = 0, and we can thus
infer that both stable boundaries of H° (Rg) must be subarcs in S1. Furthermore,
from Figure 5.21b and the magnification Figure 5.22a it is clear that both upper and
lower unstable boundaries of H° (Rg) extend fully to the right of R3, and thus we
have that H° (Rg) Markov-crosses Ry, Ry and Rg twice. This establishes claim 8.

The remaining claims 2-7 and 9-13 work analogously to the two cases discussed

in detail here. O

146



/ \\
/VA
v/ P /
.
/ T
,;'/ B /
// / / =+
/‘/ s //4(‘/‘: =
"
a)
b)

Figure 5.12. a) The fundamental stable arc S; (red). Also printed are the segment
of the unstable manifold (blue) and the homoclinic points (black) that are relevant
for the rectangle construction. b) The first preimage H _1(51) (red).
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a)

b)
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Figure 5.13. a) The second preimage H ‘Z(Sl) (red). b) The third preimage (S1)
(red).
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Figure 5.14. a) The fourth preimage H~4(S}) (red). b) The fifth preimage H="(S1)
(red).
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a)

b)

Figure 5.15. a) The sixth preimage H_G(Sl) (red). b) The seventh preimage
H™T(Sy) (red).
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b)

i i HI(S,
Figure 5.16. a) The eigth preimage H _S(Sl) (red). b) The ninth preimage (S1)
(red).
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b)

Figure 5.18. a) Rectangle Ry (blue) and its 2nd image (red). b) Rectangle Ry (blue)
and its 2nd image (red). The remaining rectangles are printed in black.
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b)

Figure 5.19. a) Rectangle R3 (blue) and its 2nd image (red). b) Rectangle R4 (blue)
and its 2nd image (red).
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b)

Figure 5.20. a) Rectangle R5 (blue) and its 5th image (red). b) Rectangle Rg (blue)
and its 5th image (red).



b)

Figure 5.21. a) Rectangle R7 (blue) and its 6th image (red). b) Rectangle Rg (blue)
and its 5th image (red).
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b)

Figure 5.22. a) A magnified view of the 5th image of rectangle Ry (red). We see that
H‘F’(R5) maps fully across the right boundary Sy of Ry. b) Rectangle Rg (blue) and
its 2nd image (red).
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b)

Figure 5.23. a) Rectangle Ryg (blue) and its 2nd image (red). b) Rectangle Ryp
(blue) and its 6th image (red).
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b)

Figure 5.24. a) Rectangle Ryo (blue) and its Tth image (red). b) Rectangle Rj3
(blue) and its 6th image (red).
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Figure 5.25. A magnified view of the 6th image of rectangle Ry3 (red). We sce that
HG(R13) maps fully across the right boundary Sg of Ry,

5.8 Summary and Outlook

We presented a method to compute lower bounds for the topological entropy of pla-
nar diffeomorphisms by selecting generalized rectangles and checking their Markov-
crossings under iterations. In the case of a smooth diffeomorphisin, only disjointness
of the rectangle interiors is required, thus allowing invariant manifolds to be used as
the rectangle boundaries.

Having CO-enclosures of the invariant manifolds given by an arclength-ordered
set of Taylor Models enables us to find a set of closed balls rigorously containing
all homoclinic points of a finite manifold tangle. The ordering of the balls along
both the stable and unstable manifold in the tangle, together with their mapping
properties and orientation of the manifold crossing is sufficient information to prove
the existence of rectangles with well-defined mapping and Markov-crossing properties,

the boundaries of which are contained in the original Taylor Model C9-enclosures of
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the invariant manifolds.

The entire algorithm can be fully automated and all assumptions that enter the
rigorous rectangle construction are suitable to be checked using Taylor Model meth-
ods.

The largest lower bound for the entropy of the standard Hénon map thus computed
is

h (Ha,,,) > 0.4417,
obtained from a data set of 707 homoclinic points. The estimates can be improved
by accounting for hexagons, octagons etc. in the manifold tangle which have bound-
aries alternating in the stable and unstable manifold. Such sets can be converted to
rectangles through the incorporation of bigons, i.e. sets that have exactly one stable
and one unstable arc as their boundary.

Conversions of this type increase the number of rectangles and Markov-crossings
and lead to incidence matrices with larger spectral radii. In the following table we can
see how the number of rectangles (# R), the number of Markov crossings (# MC), and
the entropy estimates (h (Ha’ ) >) change if rectangle conversion of higher n-gons

is performed.

n | #R|#MC | h(Hgp) > | # R with conv. | # MC with conv. | h (Hgp) >
7 [37 |43 | 0.3466 47 62 0.3738
8 |66 |94 |04132 77 110 0.4309
9 119 | 185 | 0.4132 130 205 0.4403
10 218 | 346 | 0.4283 229 366 0.4499
11]381 |603 | 0.4417 392 621 0.4536

The data suggests an improved lower bound
h(Hyyp) 2 0.4536.

The n-gon conversion will be treated in detail in forthcoming publications.
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Recent work shows that there are more sophisticated ways to check Markov-
crossings than the method in sections (5.4.6) and (5.4.7). Using the same data for
ordering, mapping and orientation of the homoclinic balls as produced the above esti-
mates, P. Collins [11,12] suggested an algorithm that claims a rigorous lower entropy
bound of

h(Hap) > 0.4571.

An investigation to which degree these methods can be implemented in the verified
computational framework seems worthwile.

Future modifications of the method should include updates in the computational
framework, such as the implementation of high-precision Taylor Model arithmetic,
which should increase the size of the manifold tangle and the number of homoclinic
enclosure balls that can be rigorously shown to satisfy condition (5.6), the foremost
criterion where the verification using Taylor Models can fail. Lastly, Taylor Model
enclosures of invariant manifolds were used to produce verified pictures, accurate to
below printer resolution, which rigorously establish a rectangle construction suggested
by S. Newhouse [56]. Using 52 rectangles, the lower entropy bound stemming from
the incidence matrix is

h (Ha’b) > 0.46469,

which to the best knowledge of the authors is the largest lower bound that has been
established for the Hénon map with the standard parameter values so far, and which
agrees to within 10~3 with the entropy value (5.9) suggested through nonverified

numerical experiments.
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APPENDIX A

Interval Arithmetic

A.1 Definitions

The concept of interval arithmetic as introduced by Moore [49.50] is one of the
earliest frameworks to offer numerical computations with automated self-contained
error estimates. Instead of performing operations on real numbers (which may or
may not be accurately known or even representable), one performs operations on
intervals known to contain the respective numbers , where the interval operations are
compatible with the original number operations, i.e. for any operation ® (summation,
subtraction, multiplication or division) and any two closed intervals 11,9 C R, we
must satisfy

a€lj.belp=a®be l] ® Iy, (A.1)

where we again identify the symbols for number and interval operations for conve-

nience.

A.1 Definition. (Interval operations) Let I = [a1.b1],Io = [a9.bg] C R be closed
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real intervals. Then we define

Iy + I := a1 + ag. by + bo]
I{ — Iy :=[a; — bp.by — a9] ,
I - Iy := [min{ajag, a;bg.byag, by1by} ,max {ajag, ajby.byag, byba}] ,

I/Iy =11 - I3t where 171 = [1/b.1/a9) provided 0 ¢ I .

It is easy to check that indeed the operations from definition (A.1) satisfy the
condition (A.1). Moreover, it is important to note that the above operations can
be implemented in a computer environment with proper outward rounding of the
resulting imtervals to satisfy the inclusion property (A.1) in a fully rigorous way,
even accounting for round-off errors.

Analogous to the binary operations also elementary functions can be extended to
intervals. For a function f: R DD — R and a closed interval I C D, the interval

equivalent function (again abusing notation) has to satisfy
ael= f(a)e f(I) .

For detailed discussions on the implementation of such interval extensions of mathe-
matical functions we refer to [27].

The availablity of general classes of functions for interval arguments has led to
a wide range of applications for interval arithmetic in self-contained error analysis,
from root-finding (interval Newton methods) and global optimization (Branch-and-
Bound algorithms) to verified interval inclusion of ODE-flows [37,38]. Tucker used
interval ODE integrators to prove the existence of the geometric model for the Lorenz-

attractor [64].
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A.2 Fundamental problems of interval arithmetic

The goal of interval algorithms is of course to keep the resulting interval enclosures
of the mathematical solutions as narrow as possible. However, in a general setting
in practice all applications mentioned above suffer from significant overestimation,
i.e. a blow-up of the interval enclosures after frequent evaluation of code lists in
interval arithmetic. The major causes of this problem are unfortunately rooted in the
very definition of interval operations themselves, which can lead to overly pessimistic

interval widths in the right hand side of condition (A.1).

A.2.1 Dependency problem

To illustrate the dependency problem [42],we consider a classic simple example. Let
f:[-1,1] — R given as f(z) := x — z. Clearly f is just the zero function, and
its range over the entire domain [—1,1] is simply {0}, but when we evaluate the

expression in interval arithmetic we obtain
r—ze[-1,1-[-1,1] = [-2,2] ,

which is a true statement, but obviously the estimation is both impractically coarse
and fails to reflect the mathematical reality. This is precisely the dependency problem,
the artificial blowup in the interval evaluation of a function if that function is given
as a code list that requires many individual interval evaluations, e.g. in a Horner

scheme or an inductively defined function.

A.2.2 Wrapping effect

The second cause for overestimation is the so called wrapping effect (3,39, 51, 52,
based on the fact that interval arithmetic provides interval range bounds along the

coordinate axes. Consider planar functions fq, fo : [—1, 1]2 — R? that map the
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Figure A.1. Schematic depiction of the wrapping effect in the linear (left) and non-
linear (right) case. The range enclosure (blue dotted line) exhibits overestimation
versus the true mapped square (red).

initial square as in Figure A.1l for an intuitive idea of the wrapping effect. In both
cases the resulting interval range bounds severly overestimates the true range bounds.
While in the first case, where the action of f is linear, the effect can be alleviated
to a certain degree by linearly transforming the coordinate system, in the nonlinear

second case of fy the overestimation by interval arithmetic can be arbitrarily large.

A.2.3 Dimensionality curse

The dimensionality curse is jargon for the unfavorable exponential scaling of compu-
tational effort and memory requirement with the dimension of the problem in interval
arithmetic. Typically, one wishes to model a set (e.g. a box of initial coordinates
transported through an ODE or the set containing all zeroes of a function) as con-
tained within a union of interval hoxes of a given fineness. That is, for a collection of
interval boxes T = {I;.}J | with I = [ag 1,bf 1] % ... x [ak,v: bk,v] CRY by > agy

Vi<k<m, 1<I<u,let

£ = max{(bk‘l - ak’1> 1 <1< v}.
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Note that . > 0. Then define the fineness of 7 as
eg :=max{eg :1 <k <m}.

Typically however, the fineness €7 is a given quantity in the context of the prob-
lem, say the threshold accuracy with which one wants to approximate sets. Let
D c RY have full dimension v, and we want to construct a collection of intervals

I= {Ik}z(gf(z) with 0 < e7 << 1 such that D C Ui_gii(z) I;., then

1 v
card (I) «~ (E—) ,
z

an undesirable exponential scaling with the dimensionality.
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APPENDIX B

The differential algebra D,

B.1 Definitions

In the following, we introduce a framework that allows the efficient numerical manipu-
lation of high-order multivariate polynomials and of Taylor polynomials in particular.
Given that by its very nature Taylor Model arithmetic combines both polynomial ma-
nipulation and, for the remainder bound, interval arithmetic, the techniques presented
in this section bridge the gap to the former.

Consider an open subset G C RY containing the origin, and let the set C"*(G,R)
be the set of all real-valued n -times continuously differentiable functions on G. Then

we introduce an equivalence relation on this function space as follows:

B.1 Definition. For two functions f,g € C™*(G,R) we say that f =n g ('f equals g
up to order n’) if and only if f(0) = g(0) and all partial derivatives of f and g agree

at the origin up to order n.
It is obvious that =, indeed establishes an equivalence relation on C™(G,R).

B.2 Definition. On the function space C™(G,R), equivalence classes modulo the
relation =m, m < n, are called 'DA-vectors of order m'. For f € C™(G,R), its

DA-vector of order m is denoted by (f),,.
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The collection of DA-vectors up to and including order n is called n Dy .

The DA-vector [f],, contains all functions that agree with f at the origin up to

their n-th derivative, and in particular it is easy to see the following:

B.3 Proposition. For a function f € C™(G,R), its Taylor polynomial of order n is

contained in nDy.

We can therefore think of the DA-vector [f],, as the n-th order Taylor polynomial.
Since basic arithmetic operations on R carry over naturally to C™(G,R), we wish to

establish these operations on » Dy as well.

B.4 Definition. (Elementary operations) Let f,g € C™(G,R) and consider their
DA-vectors [f],, and [g],,. Lett € R. We define

fln +gln = f + 9ln- (B.1)

t'[f]n = [t'f]n .

Furthermore, we can define a multiplication

[f}n ) [g]n = [f ) g]n : (B.2)

Here we take the liberty of denoting operations on C™(G.R) and Dy with the same

symbols.

In a more intuitive manner, which is beneficial when thinking of DA-vectors in
the Taylor Model context, this means that knowledge of the Taylor polynomials of
two functions f and g at the origin immediately yields the Taylor polynomials for
the sum f + g and the product f - g. For a more detailed study of this property of
DA-arithmetic we refer to [4,6].

It is clear that with addition and scalar multiplication as in (B.1) D, becomes

a vector space and with the vector multiplication (B.2) an algebra. In fact, we can
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define a derivative operation that observes the product rule such that 5 Dy, becomes

a differential algebra.

B.5 Definition. Let 1 < k < n and (f],, € nDy. Then we define the derivation Oy
as
O fln = [mx - O fln s (B3)
where 1. € C™(G,R), mi.(x) := x}. forz € RY, s the projection of the k-th component
of x.
This derivation operation is thus analogous to the differentiation on C™(G.R),

except that J;, had to be modified as in (B.3) as a Lie derivative in order to make

nDy closed under 9y..

B.6 Proposition. For all1 <k <n and f,g € C"(G,R) we have

O ([fln + [91n) = Ok [fln + O [9]
O (fln - l9ln) = Ok [fln - [9ln + [f]n - Ok 9l -
The fact that the derivation operation observes a product rule indeed makes , Dy,
a differential algebra.
The extension of the p Dy-concept from real-valued functions to vector valued

functions in C™(G.R™) is straightforward:

B.7 Definition. Let f,g € C™(G,R™). We say that f =p g if and only if their

components satisfy f; =n g;. 1 <i < m, in the sense of the Definition B.1.

Analogously we see that =, defines an equivalence relation also on these vector

valued functions and we can define the collection of equivalence classes n D}*.

B.2 Composition on , D,

Consider a function M : RY D G — G C RY that is n-times continuously differen-

tiable and which satisfies M(0) = 0, and let g € C"(G,R). Then g o M € C"™*(G,R)
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and [g o M|,, € nDy. Hence we may define the composition as follows:

B.8 Definition. Let M : G — G and g € C™(G,R), and consider their respective
DA-vectors [M],, € nDy and [g],, € nDy. Then define the composition of [M],,and

9l as

[g]n ° [M]n = [g ° M]n :

In other words, knowledge of the Taylor polynomials for g and M yields the
Taylor polynomial for go M, provided the constant part of M is compatible with the
expansion point of g (the origin in this case).

From the composition of DA-vectors we immediately obtain the DA-vectors of
elementary functions, if care is taken that we work on domains and ranges where the
functions have the necessary smoothness. In particular, intrinsic functions available

in a computer environment are of interest here.

B.9 Definition. (Elementary Functions) Let f € C"(G,R) sucht that f(0) = 0 and

consider [f],, € nDy. The we define

exp ([f],) = lexp(f)],,
log ([f1,) := log (f)];, where f >0 on G
sin ([f]p,) := [sin (f)],
cos ([f]) := [cos (f)],
VUl = [VF] where f >0 00 G

We see that for any function which can be written as a finite code list of elementary
operations and intrinsic functions in a computer environment, we are able to obtain its
Taylor expansion around the origin in an automated way by starting with the identity

DA-vector [Z],, and then inductively evaluating the code list in DA-arithmetic.
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B.3 Depth, Contractions and Fixed Point Theo-
rems on , D,

B.10 Definition. For [f],, € nDy, (f],, # 0. define the depth X((f],,) as the order
of the first nonvanishing derivative of f € C™(G.R) at the origin. If [f],, = 0, set

A(flp) =n+1.

For vector-valued functions, [f],, € nDy", we set A([f],,) := minj<;<m A ([fi],,)-

Intuitively, the depth of the difference of two DA-vectors is somewhat comparable
to a metric, except that two DA-vectors are the more similar the larger the depth
of their difference is. Hence we introduce the notion of a contracting operator on

DA-vectors.

B.11 Definition. Let O : M — ;D' be an operator on M C D], and let

(fl - g, € M, Then we say that O 1is contracting if and only if

AMO([fln) = O(gln) > A([fln = [9ln) -

Naturally, one would hope that for this type of contractions traditional fixed-point

theorems exist, and it turns out this is the case:

B.12 Theorem. (Fized Point Theorem) Let M C nDy and let O : M — M be
a contracting operator. Then O has a unique fired point [pg] € nDy. Furthermore,
starting with the identity [I),,, [pol, is assumed after finitely many iterations, namely
n+1,

0" ([Z]n) = pol -
Again for details we refer to [2].

B.13 Remark. A particularly useful operation for the computation of flows of ODEs
both in the DA-vector picture and the verified integration using Taylor Models is the

antiderivation 82._1, essentially the integration with respect to the i-th variable.
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If for two DA-vectors [f],, (9], € nDy we have that X ([f], — 9],,) = k, then

after integration the first nonvanishing derivative of f — g is of order k +1, and hence
NCRRET (W)

A (07 ()~ lol)
=X (0711 = glw) > A(UF = gh) = A ([l = l9)n) -

In other words, if the Taylor polynomial of a function f is known up to order n at
the origin, one can immediately obtain the Taylor polynomial of its indefinite integral
w.r.t. the i-th variable up to the same order.

This allows the computation of high-order expansions of ODE-flows. Assume the

autonomous IVP
B () = 1 (2), 2(0) = 70,
for a Cl-function f : R¥ — RY, then the local expansion of the flow ¢ (x,t) around

zg can be obtained through the Picard-iteration

[ (2, )]0 = [zo0ln,

[¢ (. )]k41 = [20l, + 9;31 (f (fe (. D)]g)) -

Since the Picard-iteration yields Taylor expansions of successively increasing or-

ders, i.e. [p(x,t)]k11 =k (¥ (x,t)]g, this scheme converges after at most n steps.

B.4 Functional inversion

The most useful advanced feature in the context of the present work is the automated
functional inversion of a DA-vector. The claim states the following: assume a smooth
origin-preserving function M : RY — RY that is invertible at the origin, i.e. its
Jacobian Df (0) is regular, and we know its Taylor polynomial up to order n stored

in the DA-vector [M],,, then there is an algorithm to compute the Taylor polynomial
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of the local inverse M ™! around the origin up to the same expansion order n in the

DA-vector [M_l} , and furthermore [M],, o [M‘l]n = [M_l]n oM, =[I],:

n
B.14 Theorem. (Functional DA-inversion) Let G C RY, 0 € G, and let M €
C™ (G.G) such that M (0) = 0 and the linear part L(x) := DM (0) -z, uath a reqular
Jacobian DM (0). Write M = L + N, where N s the purely nonlinear part of M.

Then the operator

O():=L"1o(T-No)

1s contracting on Dy, and for the identity (I),, € nD,, we have
o (), = [mM71]

Proof. First we note that the DA-vector [M”’ 1] is indeed a fixed point of the operator

O. For the original function M we have

MoM™ =1
=LoM =T -Nom™!
=M l=L"1o (I —NoM_l)
and thus
[M_l} =L 1o (I—No [M_ID .
We only need to show that O is contracting on » Dy and have proved both existence

and uniqueness of [M_l] .

Let [f]n ) [g]n € an, then

O([fl,) = Ogly) = L7 o (T = No[f],) = L7 o (T = No[g],)
= L—l o (No [f]n - No [g]n)

If we assume that A([f],, —[g],,) = k, then the lowest nonvanishing order of

O([fl) — O(lg],) has to be at least k + 1, since every term in [f],, — [g],, gets

175




multiplied with a nonlinear term of N . Hence

AMO([fln) —O0(gly) 2 k+1>k=X([f],, - [9n) -

and

MO (A1) = 0" () 2k 4n 1zt

and thus O™ 1 ([f],,) and O"*1([g],,) coincide with all derivatives at the origin up

to order n. ad

B.5 Normal form transformations

Utilizing the functional inversion algorithm from the previous section, we can for-
mulate an automated approach to compute normal form transformations for suitable
maps. Assume we are given an origin-preserving C"-map f : RY — RY, where the

linear part of f is diagonal, and such that the origin is a hyperbolic fixed point, i.e.
[Ail # 1V1 <7 < v.

Given a fixed compuation order n, we assume that the eigenvalues are nonresonant

up to that maximal order, i.e. satisfy
A=Ak o< <ov K <n, (B.4)

where k =(kq, ..., kv) is a multiindex of length v. Up to finite order n, this criterion

can usually be easily checked once the eigenvalues are known.

The objective is to find a coordinate transformation A which reduces f to its

linear part L in the new coordinates,

N—lofoNzL, ' (B.5)
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using normal forms. Assume this can be done order-by-order using near-identity

transformations
T =1,
Ti =7+ Si*

with nonlinear parts §; of exact order ¢ (i.e. homogoneous). For the inverse

transformations 71 we then have

T 1=1-8;.

1

Suppose that f has been transformed such that in new coordinates it takes the form
f:RY — RY, where f is origin-preserving, C" and up to order ¢ — 1 we have

f=i1L

and hence

f=iL+R;

where R; contains only terms of order ¢ and higher. We now derive a condition for the
transformations 7;, or more specifically their nonlinear parts S;, such that application

of 7; eliminates the nonlinear part R;, i.e.

Observe that up to order 7 we have

Tl ofoTi= (T-8)o(L+R)o(I+5)
=i (L+R;)o(T+5;)=S;o(L+R)o(I+35))
= L+LoS;+Rijo(ZT+S;)—Sjo(L+LoS;+R;0(ZT+S;))
= L+LoS;+R;—S;oL

=; L+ R‘i + [LS,]
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Looking at the last expression componentwise, we can choose the coefficients in
S; such that the commutator eliminates respective terms in R;. Suppose that both
R; and S; can be represented by their Taylor polynomial expansion, and that the

j-th components in their expansions are

) . k ¥}
Rz(']) _ Z p(k. j) - 1.11 - 1-5L’ (B.6)
k=i
. ) k .
Sl,(J) = Z o(k,j) -:1.'11 Ce ’Ll};U
k=i

Since L is diagonal we have that for the j-th component of the commutator

(LoSi=8oL)d) = [ 3 Ajolk,j)-afl ...zt
|k|=:

Z o(k,j) - (/\1x1)k1 . ()\Umv)kv

|k|=3
N : Nk :
i Z ()‘j - ’\11 Tt )\ﬁv) o(k, ) '1‘11 ~1.'.ij
|k|=1

and comparing with eq.(B.6) componentwise we see that the correct choice for

o(k,j) is given by

p(k. j)

k ky
Aj =AY

Note that this choice for o(k, j) is feasible due to the nonresonance condition (B.4).

ok,j):=-

Applying these transformations to f we can now remove the nonlinearities in f

inductively. We define a sequence {U; },~9 to fully linearize the original map f

Uy = f,

U =T toll o T,
We can now set

N :=Tyo..0Ty, (B.7)

Nl Tnﬁlo...oTQ_l, (B.8)
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to obtain a transformation A which satisfies eq.(B.5) up to prespecified order n. Note

that this also entails that
-1
L=l =, (N_lof o N) =Noflonl
and

f=aNoLoNL
f_lzrlN_l OL_l ON .

The move of the aforementioned algorithm into the DA-vector realm is benefi-
cial, since the inverse transformations 7'2_1, 'Tn__l in (B.8) can be obtained as DA-

vectors [7'2_ 1] yeees [Tn_l] in the fashion of the last paragraph once the DA-vectors
n

n
(72],, . - [Tn},, are defined componentwise by

7], = ], w18,

- [r] + Z L) P B
! AL ke [ v
|k|=i Aj =AMy

Finally up to finite order n the Taylor expansions for the normal form transfor-

mation A and its inverse N~ ! are obtained in the DA-vectors

=
Il

[TQ}n 0..0 [Tn]n ’

V= e e B
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