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ABSTRACT 

REDUCED OCCUPANCY FOR PROCESSOR EFFICIENCY THROUGH DOWNSIZED 

OUT-OF-ORDER ENGINE AND REDUCED TRAFFIC 

By 

Ziad Youssfi 

Reducing microprocessor power consumption can alleviate expensive thermal management, 

improve reliability, allow increased performance, and reduce carbon emissions. 

Microarchitecture techniques that reduce instruction occupancy in the out-of-order engine to 

ultimately create more empty segments that can be disabled provide an attractive approach to 

reducing power consumption. This thesis presents two guiding principles to reduce occupancy 

for implementing such an approach. One involves downsizing the out-of-order engine as it 

becomes less effective in issuing instructions out of order. The second reduces instruction traffic 

by dampening traffic bursts. This thesis developed two techniques that implement these 

principles. One downsizes the out-of-order engine based on a data dependence index (DDI), 

and the second moderates the instruction traffic based on the sustained dispatch rate (SDR). The 

SDR, in addition to reducing occupancy, reduces the i-cache's power consumption. Total 

processor power savings are reported. Component power savings are also reported to show 

their relative effects on total savings. Simulations find that occupancy was reduced from 27% to 

33% in the out-of-order engine and 40% in the fetch buffer. These occupancy reductions are, to 

our knowledge, the largest reported to date, with a performance loss of only 2.6%.  Reduced 

occupancy results in fewer active segments, which directly contributes to power savings. Power 

models estimate that the savings for a single threaded, high performance processor can total to 

27% of overall dynamic power consumption, including level-1 caches.  
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1 INTRODUCTION: REDUCING 

PROCESSOR POWER 

CONSUMPTION 

1.1 Motivation 

Steadily increasing with each technology generation, the power consumption of processor chips 

has become so high that it limits performance of new designs. High power consumption 

requires expensive heat-sinking and thermal management, and leads to high current and chip 

hot spots that reduce reliability [1, 2]. At the same time, data centers stacked with high power 

processors have costly cooling systems, high energy consumption, and greater carbon 

emissions. In fact, processor power consumption has been declared a grand challenge, and is a 

problem for which even small savings are considered important gains [3]. 

The processor power consumption challenge is relatively new in computing. In 1997, 

when billion transistor chips were becoming feasible, an IEEE Computer Magazine issue 

surveyed new processor challenges [4]. None of the authors in the issue predicted power 

consumption to be a challenge.  However, by 2004, power consumption was already becoming a 

challenge for higher performance. A 2004 Computer Magazine retrospective issue discussed 

how predicting the challenge of  power consumption was missed in 1997 [5]. By 2005, the 

International Technology Roadmap for Semiconductors (ITRS) declared processor power 

consumption a "grand challenge" for processor design [3]. 
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When processor power consumption is increased, more elaborate heat-sinking and 

thermal management are required to remove the generated heat in order to keep the chip 

temperature below its operating limit. Moreover, above a certain power consumption threshold, 

air-cooling techniques cannot keep the chip below that temperature limit.  Resorting to 

alternative cooling techniques, such as liquid cooling, can result in a sharp increase in the cost of 

chip package integration [1, 6]. 

Another aspect of this challenge is environmental.  In 2008, the number of PCs in use (as 

opposed to the number shipped) in the world was estimated at more than one billion units [7]. 

The Hoover Dam power plant is rated at 4 Mega Horsepower [8]. If we conservatively assume a 

processor chip consumes on average 75 Watts, then powering the world’s PCs we requires at 

least 33 power plants like Hoover Dam! (Actually, many more than 33 if we consider the 

system’s power consumption and not just the processor’s). Moreover, the number of PCs in the 

world is expected to double by the year 2014 [7]. With the rise in processor power consumption, 

this growth rate may not be sustainable. 

This thesis details microarchitecture techniques to reduce the average power 

consumption of a processor chip. The microarchitecture techniques presented reduce 

instruction occupancy in the out-of-order engine components, creating empty segments that can 

be dynamically shut down to save power. Instruction occupancy is reduced by dynamically 

down-sizing the out-of-order engine components and by reducing instruction traffic. The same 

techniques used to reduce traffic are used to cluster more instructions in a single i-cache fetch, 

thus also reducing i-cache power consumption.   

1.2 Thesis Summary 

This thesis is divided into six chapters. The problem of increased processor power consumption 

is introduced in Chapter 1. To show the main sources of power consumption, a basic CMOS 

circuit design is given in Section 1.3. Factors behind the increasing trend in dynamic and static 

power consumption as well as the increase in power density are discussed in Sections 1.3–1.5. A 

summary of the proposed microarchitecture techniques to reduce processor power 
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consumption is given in Section 1.6. To help establish a context for the proposed techniques, a 

brief review and a classification of previous related research is also presented in that section. 

The principles for downsizing the out-of-order engine and for reducing instruction traffic are 

discussed. The Contribution section also presents a summary of the methods that implement 

those two principles. 

More extensive review of related work on processor power reduction techniques is 

presented in Chapter 2. A general taxonomy of these techniques is presented in Section 2.1, 

starting at the device level all the way up to the software level. A brief review of circuit 

complexity of the out-of-order engine components is presented in 2.2. An in-depth review of 

power reduction techniques for the out-of-order engine is presented in Section 2.3, where the 

techniques are classified based on a new definition for occupancy reduction of either neutral or 

active. Active occupancy reduction techniques are further subdivided into downsizing or traffic 

reduction techniques. A review of complexity reduction techniques for the out-order engine is 

given in Section 2.4. Complexity reduction techniques are intended to increase performance 

rather than reduce power consumption. Nonetheless, including these techniques here offers a 

more complete review. Chapter 2 ends in Section 2.5 with a review of power modeling at the 

architecture level. 

The methods used to implement the two proposed principles for reducing instruction 

occupancy are presented in Chapter 3. The principles for downsizing the out-of-order engine 

and for reducing traffic are restated in Section 3.1. The method that was developed to 

implement the principle of downsizing the out-of-order engine is detailed in Section 3.2. The 

three developed variations of the method for reducing instruction traffic are detailed in Section 

3.3. One variation of the traffic reduction method exhibits significantly better clustering of 

fetched instructions from the i-cache. This effect and its benefit for reducing the i-cache power is 

detailed in Section 3.4. The framework used for architecture models, the power models, and the 

simulation workload is presented in Section 3.5. 

Simulation results are reported in Chapter 4. First, the reductions in instruction 

occupancy for all out-of-order engine components using all methods are reported in Section 4.1. 
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The results include average occupancy as well as time distributions for the number of active 

segments. Traffic reduction results are reported in Section 4.2. In Section 4.3, the results for 

improved clustering of fetched instructions from the i-cache are presented. Dynamic power 

savings’ results are reported in Section 4.4. In order to show the effect of components on the 

processor’s total dynamic power savings, both component and total dynamic power savings, 

including level-1 caches, are reported. The effects on performance of all methods are reported in 

Section 4.5. Validation of the principles and their implementation is discussed in Chapter 5. The 

significance of the occupancy reduction results is also discussed in Chapter 5. 

Finally, conclusions and future research are presented in Chapter 6. Future research 

discussion includes using the proposed principles and methods for more power efficiency, such 

as reducing static power in addition to dynamic power. They also include using the proposed 

methods to improve scheduling and throughput on heterogeneous multi-core processor 

systems. 

1.3 Dynamic Power Consumption 

1.3.1 CMOS VLSI Design 

To help understand the rising trend in power consumption, we first examine processor circuit 

design. The dominant VLSI technology for microprocessor integrated circuits has been the 

Complementary Metal Oxide Silicon (CMOS) [9]. In CMOS two types of transistors (also called 

devices) are created: an n-type device (nMOS) and a p-type device (pMOS). In general, starting 

with a silicon wafer, CMOS fabrication involves successive steps of chemical processing to 

create sandwich-like layers of different conductive properties. For example, diffusion of 

electron-donor or -acceptor impurities is used to create positively or negatively charged silicon. 

Oxidation is used to create insulating layers of SiO2. Deposition and etching are used to connect 

devices with poly-silicon or aluminum much like circuit board components. Chemical etching is 

guided by mask patterns and lithography techniques. 

A layout and cross section of an n-well CMOS process for an inverter gate is shown in 

Figure 1, [9]. In an n-well process, p-devices are created in a p-substrate within an n-type well. 
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Figure 1. CMOS process for an inverter gate. (a) logic circuit diagram, (b) layout top view, (c) 
abstract cross-section view, and (d) actual cross section view, [9]. For interpretation of the 
references to color in this and all other figures, the reader is referred to the electronic version 
of this dissertation. 
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The n+ and p+ regions serve as the current source and drain for the n and p-devices. Their 

polarity is interchangeable, based on the direction of current. The applied gate voltage to the 

polysilicon above the gate oxide controls the conduction of current between the source and the 

drain. When high voltage (logic 1) is applied to the inverter input, the p-device is off, and the n-

device conducts current to ground, exerting logic 0 at the output. When low voltage is applied 

to the input, the n-device is off, and the p-device conducts current from the voltage supply, 

exerting logic 1 at the output. The complementary use of n- and p-devices allows a solid 

sourcing and sinking of current from power supply and ground, respectively. This maintains 

reliable signal propagation against noise and is one advantage of CMOS. 

Another advantage that CMOS had when it was introduced was lower power 

consumption than that of other VLSI technologies [9]. Because of CMOS high input impedance 

on device gates, a negligible current is drawn by the gate at the input when it is not switching, 

which saves power. However, CMOS circuits still consume power in two ways. One is dynamic 

power dissipation to charge and discharge the output capacitive load when the input changes. 

The second is static power dissipation due to substrate leakage current. 

1.3.2 Estimating Dynamic Power 

When the input logic changes from '1' to '0' for an inverter gate (Figure 2), the n-device is turned 

off, and the p-device is turned on and has to charge the capacitive load, CL. The capacitive load 

Vin CL

VDD

Vout

p-device

n-device

Figure 2. Logic circuit diagram for an inverter gate with 
a capacitive load,   , and repetitive step input,    . 
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represents the fan-out capacitive load of later logic stages. When the inverter input changes 

from '0' to '1', the p-device is turned off and the n-device is turned on and has to discharge CL. 

This charging and discharging of current consumes dynamic power, which constitutes the 

largest portion of power consumption for CMOS.  

To calculate average dynamic power for an inverter gate, we assume a repetitive step 

input, such as clock. If the input frequency fp = 1 / tp, then the average power consumed can be 

calculated by integrating the product of current and voltage over the period, tp. This integral 

can be broken down into two integrals. The first integrates the current through the n-device and 

the voltage across it over a half period (0 to tp / 2). And the second integrates the current 

through the p-device and the voltage across it over the second half period (tp / 2 to tp). This is 

expressed as: 

 

   
 

  
               

 

  
                   

  

  
 

 

  
 

 

 

 (1) 

where 

       n device transient current              

      p device transient current     

           

  
  

 

Substituting the current values and changing the variable of integration from time to voltage, 

the following is obtained: 

 
    

  

  
     

   

 

      
  

  
                       

 

   

 

   
      

 

  
       

       
(2) 

One observation that can be made from equation (2) is that the average dynamic power 

scales linearly with capacitive load and input frequency, and scales quadratically with the 

supply voltage. Another observation is that power consumption is independent of device 

parameters. 
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The average dynamic power was calculated above for a single inverter with a repetitive 

step input to switch charge on a load capacitance. For simulating a system with a large number 

of gates (e.g., thousands or millions) with non-repetitive inputs, the above calculations are too 

complex and impractical to carry out for each gate. A faster estimate can be obtained by using 

the total capacitance,       , for all gates in the circuit and the percent of time during which they 

are active expressed as: 

 
   

                            
 

  
   (3) 

The accuracy of equation (3) depends on the accuracy of the active time percentage, 

which is only an approximation. A more accurate power estimate can be obtained during 

simulation by summing up capacitances only for components that switch at any given cycle. To 

estimate power consumption to run a program on a processor, for example, the total switched 

capacitance,                , can be summed up for switching components during simulation. At 

the end of simulation, the total switched capacitance can be used along with the number of total 

cycles to run the program,              , to estimate power consumption: 

 
   

                    
 

                 
 (4) 

Equation (4) can be used to show how different processor design parameters affect 

dynamic power consumption,   , as will be discussed in the next section. 

1.3.3 Increasing Trend 

Microarchitecture techniques that increase performance generally require physically large units 

(typically arrays) due to a high device count. The high device count and the long transmission 

lines within the arrays quickly add to                 in equation (4). Capacitive cross-coupling 

among transmission lines also quickly adds to                 , especially with new generations 

of fabrication technology, due to closer physical proximity of devices. Achieving higher 

performance also requires decreasing the number of total cycles,              , as well as 

decreasing the cycle time,   , in order to decrease runtime, which also rapidly increases    . 

Combining all these variables changes together results in a superlinear increase in   . Figure 3 
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shows how clock frequency is increasing (or how    is decreasing) in relation to Intel processor 

generations [10].   

Reducing the supply voltage,    , can reduce dynamic power quadratically. However, 

reducing      leads to an exponential increase in leakage current and static power 

consumption. This will offset any decrease in dynamic power.  

In fact,     had been scaling down about 30% per technology generation, but now has 

Figure 3. Relative increase in clock frequency for Intel Processors (Data source from 
Hinton et al. [10]). 

Figure 4. The rise in dynamic power consumption with technology generations for Intel® 
processors (Data source from Borkar [11]). 
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bottomed out because of this offsetting effect [11]. Even if      continued to scale down by 15% 

per generation, clock frequency is increasing simultaneously by 40% [11]. At this increasing 

clock frequency rate,    can reach prohibitive levels. Figure 4 shows the trend for dynamic 

power for Intel processors as a function of technology generations. Some of the recent 

processors fabricated in 32nm technology running at  over 3 GHz clock frequency, such as some 

of the Intel Xeon 5000 series processors, consume well over 100 Watts [12].  

1.4 Static Power Consumption 

Fundamentally, static power consumption is due to leakage current at sub-threshold voltage in 

reverse biased parasitic diodes. These parasitic diodes, which are inherent in silicon CMOS, are 

formed between diffusion regions and the substrate [9]. Unlike dynamic power, static power is 

always dissipated whether devices are switching or not. The total static power,    , dissipated 

for a processor is independent of time, and it is summed up over all devices as:  

 
                                    

 

 

 (5) 

where 

                       

Static power consumption, just like dynamic power, has also shown an increasing trend. 

The reason for this increasing trend is twofold. First, scaling down      to reduce dynamic 

power has the undesired side effect of increasing static power. As      is reduced, the threshold 

voltage also has to be reduced. The leakage current for the parasitic reverse biased diodes 

increases exponentially with the decreasing threshold voltage. With Intel processors, for 

example, a continued decrease in supply voltage for fabrication technology of less than 90 nm 

feature size would actually result in static power accounting for more than 50% of total chip 

power dissipation. This trend is shown in the graph of Figure 5.  
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The second reason for the increase of static power is the increase of the number of 

devices on processor chips. With the doubling of devices per technology generation, the sum of 

all the leakage currents for these devices, as indicated in Equation (5), is quickly reaching a 

critical level. 

1.5 Power Density 

Increasing the number of devices on a chip and increasing the clock frequency with every 

technology generation increases both the total chip power consumption and the power 

consumption density per unit area. As more heat is generated from more devices crammed per 

unit area, the heat can detrimentally affect the operating temperature in certain areas of the 

chip. Figure 6 shows the trend over time of the power density and equivalent temperature 

densities for Intel processors [13].  These high heat densities, as high as a rocket nozzle, cannot 

be sustained on a silicon chip under normal operations.  

Figure 5. Percentage of total chip power consumption due to leakage current as a 
function of technology feature size.(Data source from Borkar [11] and Grove [13]). 
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Since processor chip power dissipation is not spatially or temporally uniform, localized 

heating areas, in the form of hotspots, occur on a shorter time scale than chip-wide heating. The 

time scale for these hotspots is on the order of one hundred microseconds to milliseconds. 

However, the rapid increase in power density is such that the temperature at these hotspots can 

cause timing errors or even physical damage [2, 14]. 

1.6 Thesis Contribution 

1.6.1 Current Occupancy Reduction Techniques 

The out-of-order execution engine consumes a large proportion of the power used by a chip. As 

a result, dynamically shutting down empty segments in its components can reduce power. 

Shutting down segments that are normally empty, with no additional attempt to reduce 

instruction occupancy, can be classified as neutral occupancy reduction [15, 16]. In contrast, 

microarchitecture techniques that cause components to reduce instruction occupancy based on 

dynamic thread behavior can be classified as active occupancy reduction. As a thread executes, 

its code behavior and its demands on different components change. This dynamic creates 

opportunities to actively reduce occupancy, creating additional empty segments. The challenge 

is to dynamically detect when such behavioral changes occur, so as to determine when a 

Figure 6. Power density for Intel processor generation over years and equivalent 
temperature density. (Data source from A. Grove [13]) 
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component's occupancy can be reduced to save energy and when it should be increased to 

protect performance. Active occupancy reduction offers more attractive power savings than 

neutral occupancy reduction does [17]. However, current approaches have yet to fully realize 

that potential.  

One approach to active occupancy reduction is downsizing triggered by changes in a 

general performance metric such as the IPC (instructions commit per cycle) [18, 19]. However, 

the IPC is only a symptom of performance determined by many behaviors, and it can itself be 

penalized by downsizing. To minimize the penalty, a downsized component must periodically 

be upsized to measure any effect on the IPC. This trial-and-error approach requires long 

"tuning" periods (on the order of hundred-thousands to millions of cycles) in order to determine 

the optimal size for a component, especially one that has many size configurations. With often 

short-lived execution behaviors, this approach can miss power saving opportunities [20]. 

A second approach to active occupancy reduction is reducing traffic to the out-of-order 

engine, for example by monitoring behavioral changes in branch prediction and throttling the 

fetch when the front-end encounters highly mispredicted branches [21]. However, reducing 

traffic alone will not always reduce occupancy. A queue's occupancy might be reduced when 

traffic going into it is reduced, but if the queue's service rate is also reduced, the queue steady 

state remains at high occupancy. Moreover, using solely one behavior, such as branch 

prediction, does not take advantage of other behavioral changes. 

1.6.2 New Principles for Active Occupancy Reduction 

Because both downsizing and reducing traffic can reduce occupancy, we propose an approach 

that combines them, while overcoming some of their individual limitations. Specifically, we 

propose improvements to downsizing and traffic reduction based on two principles: 

Principle 1: Gradually downsize the out-of-order engine as it becomes less effective in 

issuing instructions out of program order. There are two states in which queues in the out-of-

order engine become less effective. One occurs when instructions line up in a data dependence 

chain. The more instructions line up, the more rapidly performance becomes insensitive to 
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instruction window size. That insensitivity can be exploited by setting a smaller window that 

yields the same performance. The second ineffective state is the opposite, when instructions 

become virtually independent. Then they need much less (if any) out-of-order movement, 

making large queues energy inefficient. In both states, components can be forced to reduce their 

occupancy by downsizing. Components should maintain maximum size when the engine holds 

a roughly equal mix of independent and dependent instructions, in order to allow out-of-order 

issue. The sizing decision must be solely based on the state of data dependences; otherwise, the 

engine's ability to find and issue independent instructions might be hindered. 

Principle 2: Continuously moderate the front-end pressure to reduce instruction traffic. The 

front end is normally designed to fetch instructions from the i-cache and push them into the 

out-of-order engine as fast as possible. However, the engine may not always be able to move 

instructions as fast as they come in. It might be slowed down, for example, by data cache 

misses, function unit latencies, and resource conflicts. When that happens, the engine is under 

constant front-end traffic pressure to raise its occupancy. By moderating front-end pressure, 

traffic into the out-of-order engine can be reduced. 

1.6.3 Implementation of Principles 

This thesis reports two methods implementing these two principles in order to reduce 

occupancy in all of the out-of-order engine components. The first downsizes components based 

on a newly developed data dependence index (DDI). The DDI is a single number that expresses 

how well instructions line up in a data dependence chain. In previous work, it was shown that a 

metric based on data dependences can be used alone to reduce occupancy in the out-of-order 

engine [22]. Here, a new algorithm that uses token-passing in the issue queue to measure the 

DDI is reported. The algorithm has the advantage of having low hardware complexity and not 

requiring periodic upsizing to keep components at the most efficient size. 

The second method reduces traffic by using the fetch buffer to moderate the front-end 

pressure, matching it to the currently sustained dispatch rate (SDR). The SDR is the average 

dispatch rate that the engine can sustain over a short interval. This moderation dampens traffic 

bursts above the SDR, thereby reducing average traffic. In addition to reducing traffic, this 
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method provides an energy saving bonus for the i-cache. Because it drains the fetch buffer 

before fetching is resumed, this method can cluster significantly more instructions in each i-

cache access. Because an i-cache access energy cost is the same regardless of how many 

instructions are fetched, this method significantly reduces i-cache power consumption. 

The two methods operate independently but in tandem, matching resources to behavior 

changes that are both microarchitecture independent and dependent. The downsizing method 

responds to data dependence changes, which are microarchitecture independent. The fetch rate 

moderation method responds to the changes that are microarchitecture dependent. 

Similar matching is desired with heterogeneous multi-core processing (HMP) where the 

objective is to match an inherent thread behavior to one of many dissimilar processors. HMP 

research has found that techniques that directly measure inherent thread behavior changes are 

more effective than ones relying on a general performance metric such as the IPC [23]. These 

findings directly support our findings in the power efficiency domain. 

To evaluate the methods' power efficiency, the Wattch power models were used [24]. 

These power models can estimate dynamic power consumption for the SimpleScalar 

architecture [25]. For a realistic estimate of performance, occupancy, and power consumption, 

the SPEC CPU 2000 benchmark suite from the University of Minnesota was simulated as a 

workload [26]. This benchmark suite is derived from SPEC CPU 2000 and is recognized by 

SPEC as a valid simulation tool for simulation based computer architecture research. The suite 

uses statistical sampling to maintain function-level execution patterns, instruction mix, and 

cache behaviors for entire benchmarks. The available suite compatible with the “pisa” 

SimpleScalar architecture was used. The suite contains a mix of compression, graphics, 

scientific, and database benchmarks.  

Power savings per component as well as total processor savings in dynamic power, 

including level-1 caches are reported. It is asserted that a meaningful quantitative analysis of 

efficiency should consider both component as well as total processor savings in dynamic power, 

in order to show the relative effect of components on the total savings. 
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2 BACKGROUND & RELATED 

WORK 

This chapter reviews related methods and research on reducing processor power consumption. 

Section 1 reviews the design levels in which current methods can be grouped, from the device 

up to the compiler level. Since the focus of this thesis is on the out-of-order engine, Section 2 

briefly reviews the function of the out-of-order issue in a typical multi-issue pipeline and its 

circuit complexity. Section 3 then examines power reduction techniques specific to the out-of-

order engine. 

  The out-of-order engine techniques reviewed in Section 3 are classified based on their 

approach. This taxonomic classification helps emphasize common strengths that should be kept 

and common weaknesses that should be addressed in a new design. The classification also 

helps define a new method that combines the strengths of different classes. 

The first level of classification of out-of-order techniques is based on whether they 

downsize components. Those techniques that downsize components are further classified by 

whether they are active or neutral regarding occupancy reduction. Active occupancy reduction 

techniques are further subdivided by whether they use IPC or traffic reduction. Section 3 also 

discusses the need for a tandem technique that draws on the strength of the active occupancy 

reduction techniques while addressing their weaknesses. 

Section 4 reviews complexity reduction techniques for the out-of-order issue. These 

techniques’ objective is performance rather than power efficiency. Since this thesis' work deals 

with out-of-order issue design, these techniques are reviewed here for completeness. 
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Finally, Section 5 reviews power models at the architecture levels, specifically the 

Wattch power models. These models are critical for a quantitative analysis of efficiency that 

considers both component as well as total processor power savings. Obtaining the total power 

consumption helps to show the relative effect of components on the total savings. 

2.1 Processor Power Reduction Levels 

2.1.1 Device Level 

The minimum threshold and supply voltages for a CMOS device can be lowered by reducing 

the device size, which in turn helps reduce chip dynamic power consumption. Pursuing smaller 

device sizes through successive silicon fabrication technologies has helped curb the increase in 

power consumption, but this approach is running into limitations [27]. 

One such limitation is that lowering the threshold voltage leads to an exponential 

increase in device leakage current and hence an exponential increase in chip static power 

consumption [9]. For feature size less than 90 nm, the increase in static power will offset any 

decrease in dynamic power consumption (Section 1.3.3). Silicon on Insulator (SOI) fabrication 

technology was proposed to reduce leakage current; however, SOI is subject to other 

limitations, including higher cost of fabrication than bulk CMOS [9]. Even if leakage current is 

reduced for feature sizes less than 90 nm, CMOS fabrication technologies are not thought 

capable of producing feature sizes less than 10 nm [28]. 

A radical solution to reduced device size limitations is finding alternate materials and 

devices to those of CMOS. Advances in nanotechnology are helping find potential devices. One 

such device is the memristor, which is basically a resistor with memory [29]. It can be used as 

memory storage device; it is denser and faster than flash memory and uses much less power. 

While it was shown to be feasible for memory storage, a memristor device still requires much 

more development for use in general logic or processor circuits [28]. 

Another explored alternative to implement a logic switch is nano-scale germanium-

silicon wires that can be used in "nano-processor" tiles [30]. Researchers have also looked at 
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switching a material state from crystalline to amorphous using electric current in what is called 

phase-change memories [31]. Using carbon nano-tubes is yet another alternative that is being 

pursued as alternate logic switch [28]. As no clear alternate device has emerged yet, the 

challenge remains not just the feasibility of these devices, but also the cost of manufacturing 

them. 

2.1.2 Circuit Level 

Circuit techniques to reduce power consumption involve reducing the total switched capacitive 

load of devices and their connections. This basically amounts to reducing                  in 

equation (4) given in Section 1.3.2. The capacitive load can be reduced either statically at design-

time or dynamically at run-time. 

To reduce the capacitive load at design time, geometries for some devices can be 

reduced to lower their capacitances. Some devices still must have large geometries so they can 

source or sink enough current to ensure fast switching speed. The challenge is finding those 

devices on the chip whose geometries can be reduced without sacrificing too much 

performance. A power-delay product curve can be used in such a case to trade off as little 

performance as possible for significant power savings [1]. Cell layout libraries that are used 

repeatedly on the chip can be targeted for this approach. 

Circuit design algorithms can be used at design time to minimize the switched 

capacitance. During the synthesis phase in a computer-aided design (CAD) tool, these 

algorithms can optimize logic gate connections to have minimum switching activity. 

Unfortunately, only 10% of total processor power is from synthesized logic that can be 

optimized by CAD tools [1]. 

To reduce the capacitive load during run-time, empty units or segments of units can be 

disabled to avoid wasteful switching activities. Extra control logic can detect when units or 

segments become empty and disable clocking or signal propagation. One challenge for this 

approach is finding the optimum granular size for units or segments that can be disabled. If the 

granular size is too large, a unit would rarely be disabled because some part of it, even if it is a 

small one, would almost always be used. If the granular size is too small, the power overhead 
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from many logic control gates would offset the power savings. In addition, at a small granular 

size, the large number of control gates can create clock skew or glitches that can be difficult to 

mitigate [1]. 

The issue queue in the out-of-order engine, for example, can be segmented, and control 

logic can then disable segments whenever they become empty. Because the issue queue is a 

"power-hungry" component on the chip, this segmentation is an effective power saving scheme. 

Ponomarev et al. proposed such a scheme by segmenting the bit-lines of the issue queue and 

using a row decoder to activate only those segments that contain an accessed instructions [16]. 

From a power efficiency perspective, asynchronous circuits are the most efficient. 

Without a global clock, asynchronous units process data only when it is available, and thus 

circuit activity is never wasteful. However, the challenge for asynchronous circuits has been 

their slow performance. Novel techniques to improve their performance, such as Interlocked 

Pipelines CMOS [32], have been proposed. But even with these improvements, asynchronous 

circuits' performance still lags behind synchronous circuits. 

2.1.3 Microarchitecture Level 

At the microarchitecture level, the functional organization between and within processor units 

can be designed to maximize efficiency with no or little impact on performance. The design for 

efficiency can be either static or adaptive. 

Static Design:  

A static design is where the microarchitecture parameters are fixed at design time so that both 

power efficiency and performance are optimized. The design can be guided with an 

optimization metric that includes both performance and power. One such metric is the energy-

delay product. For a processor, the delay can be the cycle per instruction (CPI) and the energy 

can be the power consumption in Watts. Other metrics derived from the energy-delay product 

can emphasize more heavily either on the delay or the energy aspect. For example, the      

      metric emphasizes optimizing the delay aspect over power because the CPI is raised to 

the cube power. 
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In a static design, the energy-delay product metric for superscalar processor can be used 

to determine the tradeoff between power consumption and performance as cache and core sizes 

are varied [6]. An optimal size can then be chosen that minimizes power consumption with an 

acceptable performance level. The energy delay product is also used to show how simultaneous 

multi-threading and chip multi-processor designs can scale up better in terms of throughput 

and power consumption than a single wide-issue processor [6]. 

Adaptive Design:  

In an adaptive microarchitecture design, the processor’s functional organization is made to 

adapt to certain conditions at run-time to reduce power consumption. Many of the functional 

components in a superscalar processor are designed to provide high performance in the long 

run. However, as a thread executes, its code and data behavior change, resulting in varying 

demands on these components. If one or more components become a performance bottleneck, 

other components can become temporarily underutilized, thus wasting energy. The goal of 

adaptive design is to take advantage of such situations and disable unused components or 

portions of them to save power. The design also has to detect when the thread behavior changes 

again and disabled components are needed back in service. The disabled components should 

then be quickly re-enabled for optimal performance. 

The challenge for adaptive designs is finding indicators of behavioral change in 

executing threads to trigger adaptation. The choice of indicator also depends on the targeted 

component. For example, Balasubramonian et al. propose using a combination of cache miss 

rate, instruction commit rate, and branch frequency as an indicator to trigger reconfiguration of 

the cache hierarchy [33]. By dynamically reallocating a different amount of cache memory to 

different levels, they claim to improve cache performance and reduce cache power 

consumption. 

This thesis proposes microarchitecture techniques to reduce power consumption in the 

out-of-order engine's components (issue queue, reorder buffer, load-store queue, and 

connecting buses). It uses two indicators to reduce instruction occupancy in the out-of-order 

engine. The data dependence index (DDI) is one indicator used to downsize the out-of-order 
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engine. The sustained dispatch rate (SDR) is a second indicator used to reduce instruction traffic 

bursts into the out-of-order engine. Both indicators work in tandem to adapt the out-of-order 

engine to behaviors that are microarchitecture dependent and independent—the data 

dependence index being microarchitecture independent, and the sustained dispatch rate being 

microarchitecture dependent. This tandem approach results in a very effective reduction in 

instruction occupancy, which leads to more disabled segments and greater reductions in power 

consumption. A brief review of other adaptive designs for the out-of-order engine was given in 

section 1.6.1. A more detailed review of adaptive designs for the out-of-order engine is given in 

the rest of this chapter. 

Temperature Aware Design:  

Techniques for reducing processor power consumption reduce power either on average or in 

the long run. They may not reduce transient spikes in power consumption that result in 

hotspots on the chip. These hotspots tend to vary temporally and spatially, causing steep 

temperature gradients that can compromise chip reliability. Microarchitecture techniques can be 

used to moderate occurrences of chip hotspots using workload and instruction-level-parallelism 

indicators [2, 14]. 

2.1.4 System Level 

Power savings can be achieved when considering the processor and its interaction with 

memory, I/O devices, and peripherals. While waiting for memory to retrieve data, idle 

processor time can trigger transitions into one of many possible low power modes. Memory and 

I/O devices can transition into low power modes as well when not in use. A system power 

management control is responsible for detecting idle components and triggering their transition 

into, or out of, lower power states. Dynamic voltage and frequency scaling (DVFS) techniques 

can be used to transition the processor into low power modes [34]. The Advanced 

Configuration & Power Interface (ACPI) is a good example of a standard system power 

management that has been widely adopted by the industry [35]. 
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The operating system can also be part of a system power management. For example, the 

OS can help in detecting process or user activity and force a system to go into a low power 

mode. 

2.1.5 Compiler Level 

A compiler can assign different power levels to a code section based on the section's behavior. A 

compiler technique can be either static or dynamic. A static technique uses offline profiling 

analysis to determine code behavior. Dynamic compilation techniques can capture program 

behavior dynamically by inserting an extra execution layer between the application binaries and 

lower OS and hardware levels. Dynamic techniques have the advantage of capturing program 

behavior related to the run-time environment, such as instruction and data cache performance 

and branch prediction that would not be possible with static techniques. Dynamic techniques, 

however, have the disadvantage of potentially slowing execution if code analysis is not fast or 

simple enough. Both static and dynamic techniques can trigger processor low power modes 

through dynamic voltage and frequency scaling (DVFS). Wu et al., for example, propose to 

reduce processor power consumption by using DVFS and dynamic compilation to detect idle 

CPU cycles during memory operations [34]. 

2.2 Complexity of the Out-of-Order Issue 

In order to improve a single thread performance, microarchitecture techniques try to exploit 

instruction-level parallelism (ILP) to reduce execution time. The out-of-order engine helps 

exploit ILP by allowing instructions to bypass each other in the pipeline. If an executing 

instruction stalls, other independent instruction can bypass it, keeping the instruction pipeline 

flowing. Unfortunately, this ILP exploitation is not linear in relation to the out-of-order engine's 

resources. Exploiting small ILP requires a much larger increase in the number of entries in the 

engine [36, 37]. 

This non-linearity between ILP and number of entries can be compounded with high 

circuit complexity. As will be shown later in this section, the out-of-order issue does indeed 

have high circuit complexity, which impacts not only performance but also power 
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consumption. Out-of-order engine components tend to be among the highest power consumers 

on chip [15, 16, 38]. They also tend to suffer the most intense hotspots [2, 14]. 

This section briefly reviews the function of different out-of-order engine components 

within the pipeline. It then qualitatively analyzes circuit complexity of the out-of-order issue, 

which is critical in terms of power consumption (for a quantitative analysis of the out-of-issue 

complexity, refer to [39]). This analysis provides a context for reviewing previously reported 

techniques (presented in later sections) that reduce power in some of the engine's components. 

Similarly, the analysis provides a context for the adaptive techniques presented in this thesis, 

which reduce power consumption in all of the engine's components. 

2.2.1 Out-of-Order Pipeline Flow 

To analyze the circuit complexity of the out-of-order issue, a brief review of the logic function of 

its different components in the pipeline is given first. 

Fetching, Decoding, and Renaming Stages:  

In each cycle, the pipeline starts by fetching a group of instructions from the instruction cache 

and then decoding them. A standard pipeline is depicted in Figure 7. For a branch instruction, 

the branch predictor determines whether the branch is taken and what the target address is.  

The compiler usually has access to only logic registers made available by the instruction 

set. This limitation introduces dependences among the destination registers (or write-after-write 

dependence) in a thread. A particular microarchitecture alleviates these dependences by 

offering many more physical registers, allowing multiple instructions with the same destination 

register to proceed in the pipeline. The rename stage, following fetch and decode, maps logic 

destination registers to available physical registers. Source register operands are also mapped 

and their status is flagged in one of two ways. If the source register already contains the desired 

result, then the source operand status is flagged as ready. Otherwise, the status is flagged not 

Fetch Decode Rename Issue
Register 

Read
Execute 
Bypass

Retire

Figure 7. Simplified processor pipeline and stages. 



24 

ready, as the desired result will be produced by an instruction yet to be executed ("in flight 

instruction").  Renamed instructions are then dispatched in program order into the issue queue 

and the reorder buffer. 

Out-of-Order Issue, Execute, and Retire Stages:  

Instructions that are dependent on results from producer instruction(s) still in flight are called 

consumer instructions. Since the relation between a producer and consumer instruction is not 

determined a priori, the result tag after execution of an in-flight instruction is broadcast to all 

instructions in the issue queue. Every instruction in the issue queue then tries to match the 

result tag against its source operand tags. If matched, that source operand is marked as ready. 

When both operands for a consumer instruction are ready, and the function unit needed for its 

execution is available, the select logic can issue this instruction to execute out of program order. 

When an instruction is issued for execution, its entry in the issue queue is freed. 

The broadcasting of result tags, matching them against operand tags, and marking of 

operand tags as ready is collectively referred to as the wakeup logic. The bypass logic can also 

pass result values directly from a producer instruction executed in the last cycle, so that a 

producer and a consumer instruction can execute in back-to-back cycles, avoiding pipeline 

bubbles. Sometime after an instruction executes, the reorder buffer commits it in program order 

and frees its entry, marking the end of its pipeline journey. 

2.2.2 Circuit Complexity 

To implement the result tag matching against all source operands, the conventional wakeup 

logic implements associative matching using content-addressable memory (CAM). Figure 7 

shows a block diagram for the CAM in the issue queue. When an instruction is selected for 

execution, its result register tag is driven on the tag lines, so that the tag is available to all 

instructions in the queue. Every instruction then compares the tags of its own source operands 

against the result tag. If matched, the source operand status is changed to ready. Once both 

source operands of an instruction are ready, and the needed execution unit for that instruction 

is available, the select logic can issue that instruction for execution. 
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In Figure 9, a detailed CAM cell for one bit position of the wakeup logic is illustrated 

[39]. The cell compares one bit of the operand tag (DATA) with the corresponding bit position 

of all result tags (TAG1–TAGIW). The operand tag bit is stored in a RAM cell. Other bit positions 

are placed on the same row connected to the same match line. In every cycle, the horizontal 

match lines are pre-charged high. The pull-down stack would pull a match line low if any of the 

operand bits are mismatched against the result tag. Otherwise, the match line stays high, 

indicating all operand bits match all bits of one result tag. The horizontal match-line and its 

associated pull-down stack correspond to one comparator in Figure 8. If an operand tag is 

matched against any of the result tags, then the OR logic indicates the ready status for that 

operand.  

To exploit more ILP, both the issue width (IW) and the number of entries in the issue 

queue need to increase. The capacitive load in the CAM array then increases superlinearly due 

to the following: 

Figure 8. CAM array for the wakeup logic in the issue queue [39]. 
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1. Increasing IW implies increasing the number of tag lines, which in turn results in 

increasing the width of the CAM array horizontally; that is, the match lines length has to 

increase.   

2. Increasing the number of instruction entries implies increasing the height of the CAM 

array vertically; that is, the tag lines length has to increase. 

3. The number of devices and capacitive loading also increases with increasing the CAM 

array tag lines and match line. 

The superlinear increase in the capacitive load in the associative CAM array leads to 

superlinear increase of power consumption in the out-of-order issue [39]. 

The reorder buffer and the load-store queues are usually implemented as RAM array, 

rather than CAM array. However, to exploit more ILP, the capacitive loading in these units also 

increases superlinearly due to the following: 

1. With increasing IW, the RAM arrays have to support multiple read and write ports. This 

leads to increased array size horizontally. 

2. Increasing the number of entries leads to increased array size vertically, leading to 

increased bit-line length. 

3. Just as with CAM array, the number of devices and their capacitive loading also 

increases. 

With increasing the number of entries and the issue width, the result-bus, which 

connects all components together in the out-of-order engine, has to support more ports for 

simultaneous reading and writing instructions. This leads to increased capacitive loading. The 

result-bus would also have higher a circuit activity. 

As a result, the superlinear increase in the capacitive loading in all out-of-order engine 

components, coupled with higher circuit activity in all of its components, leads to superlinear 

increase in its power consumption. 
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2.3 Power Reduction for the Out-of-Order Engine 

2.3.1 Classification 

To reduce the high power consumption of the out-of-order engine, techniques with different 

approaches have been proposed. Figure 10 shows a graphical classification of these techniques 

based on their approach. Techniques that keep a fixed size for components rely on dynamic 

reconfiguration or circuit techniques to reduce power consumption. Such techniques are outside 

the scope of this thesis and are briefly reviewed in this section. 

Downsizing techniques can dynamically reduce the effective size of components to 

reduce power consumption. The trigger conditions for resizing in these techniques vary, but the 

variations share some common patterns. This section identifies and classifies these patterns in 

order to help address any limitations they might have in common. This also helps in the design 

of a new technique that combines the strength of different class patterns. 

A common pattern for most downsizing techniques is to segment one or more 

components in the out-of-order engine and disable empty segments for power savings. The  

Figure 9. Circuit diagram of a CAM cell for one bit position of the wakeup logic [39]. 



28 

 

Figure 10. Classification of power reduction techniques for the out-of-order engine. The boxes 
on bottom right represent techniques proposed by thesis to replace the IPC based and traffic 
based techniques. 

segmentation is implemented at the circuit level, by disabling signal propagations to a segment 

to reduce activity and the total capacitive load.  

Beyond common downsizing, the techniques differ on whether a limit on the number of 

active segments is set. Shutting down empty segments that are normally empty, with no 

additional attempt to reduce instruction occupancy, is classified here as having no occupancy 

reduction. In contrast, microarchitecture techniques that cause components to reduce 

instruction occupancy based on dynamic thread behavior are classified here as active occupancy 

reduction. This difference is graphically illustrated in Figure 11. 
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Active occupancy reduction techniques that have been proposed thus far downsize their 

components based on monitoring the instruction commit rate per-cycle (IPC), or based on 

reducing instruction traffic. Active occupancy reduction offers more attractive power savings 

than neutral occupancy reduction. The advantage of actively adjusting processor resources 

based on thread behavior was also discussed in [17]. However, current approaches for active 

occupancy reduction have yet to fully realize that potential. It is worth noting that all proposed 

active occupancy reduction techniques downsize only the issue queue. The only technique that 

downsizes all out-of-order engine components does not reduce occupancy. The following 

sections will review proposed neutral and active occupancy reduction techniques in details.   

2.3.2 Downsizing with Neutral Occupancy Reduction 

Only one technique proposed by Ponomarev et al. used neutral occupancy reduction, but it is 

also the only one that downsized all major components in the out-of-order engine (issue queue, 

reorder buffer, and load-store queue) [15]. In this technique, empty segments are disabled for 

power savings, but they are reactivated as soon as the front-end exerts pressure to dispatch 

more instructions. The reactivation of empty segments takes place regardless of whether they 

help performance or not. 

Empty, 

Disabled 

Segments

Active 

Segments

Max 

Segments

Max 

Segments

Figure 11. Active versus no occupancy reduction for an abstract queue. Without actively 
limiting the number of active segments, only a few segments can be disabled (left). When a 
limit is set based on thread behavior (middle), segments are forced to drain, creating more 
empty segments that can be disabled (right). 



30 

Power savings for Ponomarev et al.'s technique were reported for the out-of-order 

engine components. However, total processor power savings were not reported due to a limited 

use of power modeling in their methodology. Moreover, clustering of fetched instruction to 

reduce the i-cache power consumption was not addressed [15]. 

2.3.3 Downsizing with Active Occupancy Reduction 

A number of the proposed techniques to reduce power in the out-of-order engine can be 

classified as active occupancy reduction. They either implement IPC monitoring algorithms to 

trigger resizing or they limit instruction traffic based on microarchitecture indicators. However, 

none of the active occupancy reduction techniques proposed so far have targeted all 

components of the out-of-order engine for power reduction. 

Using IPC:  

Downsizing the issue queue based on an IPC metric was proposed by Folegnani et al. [38]. In 

this technique, the issue queue is segmented and the top segment is monitored for its 

contribution to the IPC. If the segment does not contribute, then it is disabled to save power.  

The monitoring then moves on to the next lower segment. Since the only way to determine 

whether a segment contributes to performance is by enabling it and then disabling it, the 

algorithm can spend a substantial time upsizing the issue queue. With often short-lived 

execution behaviors, this periodic upsizing can miss power savings opportunities and may not 

react fast enough to thread behavioral changes [20]. This is a typical adverse side effect of 

downsizing based on the IPC. 

In Folegnani et al.'s technique, only power savings for the issue queue are reported; 

occupancy reduction is not reported. Moreover, a large portion of the power savings comes 

from disabling the wakeup logic of entries that either are empty or have ready operands; not 

from downsizing per se. Total processor power savings for their technique are not reported due 

to limitations of power modeling. 

Another technique that monitors the IPC to actively reduce instruction occupancy was 

proposed by Karkhanis et al. [19]. In this technique, an algorithm measures the IPC over an 
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initial interval while setting the number of instructions in the pipeline stages from fetch through 

issue to the maximum possible. Over subsequent intervals, the algorithm lowers the number of 

instructions to different maximums. If a lower maximum is found to yield the same IPC as the 

initial interval, then this new maximum is maintained. Otherwise, the algorithm reverts back to 

the initial interval state. This process is repeated anytime the IPC or branch behavior changes. 

This technique suffers from the same IPC limitation as Folegnani et al.'s. The algorithm 

has to go back to the maximum possible state and then "hunt" for a lower instruction limit. The 

duration of the initial interval as well all subsequent intervals are on the order of 100K cycles. 

This means that to find an optimal state, the algorithm might need on the order of a million 

cycles. With thread behaviors acting on a much shorter scale [20], the processor can be 

constantly in a "hunt" or inefficient state. Moreover, changes in IPC or branch behavior can 

trigger this "hunting" process, even if the original state is optimally efficient. 

Segmentation of out-of-order engine components and disabling empty segments were 

not implemented in Karkhanis et al.'s technique. Thus, high power consumption by the tag line 

was not reduced, and only power savings for the issue queue comparators are reported. 

Reduction in instruction activities is reported, but reduction in instruction occupancy is not 

reported. Total processor power savings were not reported due to limited power modeling. 

Using Traffic Reduction: 

A traffic reduction technique based on branch behavior was reported by Manne et al. [21]. In 

this technique, the front-end stops fetching instructions when it encounters a branch that it 

cannot predict confidently. Instructions from an often-unpredicted path are then less likely to 

enter the pipeline, thereby reducing total traffic. 

However, reducing instruction traffic alone will not always reduce occupancy. A 

queue's occupancy might be reduced when traffic going into it is reduced, but if the queue's 

service rate is also reduced, the queue steady state remains at high occupancy. Moreover, 

reducing traffic based on a single behavior, such as branch prediction, does not take advantage 

of other thread behavioral changes. 
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Further reduction in traffic over Manne et al. was reported by Baniasadi and Moshovos 

[40]. Data dependences and flow rate were used to control traffic. However, this technique 

shares the same traffic reduction limitation as Mann et al. Moreover, their data dependence 

metric only counts data dependences. This simple count does not consider how well 

instructions line up in a dependence chain. 

Another traffic reduction technique proposed by Buyuktosunoglu et al. uses issue queue 

utilization and a parallelism indicator to pause instruction fetch [41]. When utilization is high 

and parallelism is low, fetching is paused to lower utilization. When utilization becomes low, 

fetching is resumed. This dynamic, however, causes the utilization to fluctuate between high 

and low levels during low parallelism periods, instead of remaining low. Only issue utilization 

is addressed in the out-of-order engine. Moreover, the fetch pausing is not timed with the fetch 

buffer occupancy to cluster i-cache instructions more effectively. 

Need for a New Tandem Approach: 

 Because the IPC is only a symptom of performance that is determined by many behaviors, 

downsizing the out-of-order issue queue based on the IPC can affect the instruction window's 

ability to find and issue instructions out of order. To avoid this effect, IPC techniques have to 

employ periodic upsizing, which renders them too slow to react to short-lived thread behaviors 

[20].  Moreover, a traffic reduction technique alone will not always reduce occupancy, especially 

when the out-of-order engine's service rate slows down. 

What is needed is a technique that resizes the out-of-order engine but does not depend 

on the IPC. The out-of-order engine should be resized whenever it becomes less effective in 

issuing instructions out of program order. This technique should be coupled with a technique 

that reduces traffic bursts, especially when the out-of-order engine service rate is slow. 

Reducing traffic bursts above the sustained dispatch rate lessens the chances of congesting the 

out-of-order engine. 

This thesis develops both techniques. It develops a new data dependence index to resize 

the out-of-order engine, and it develops a burst reduction technique by using the fetch buffer to 
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moderate traffic. The latter technique also achieves clustering more instructions in a single i-

cache access, thus reducing the i-cache power consumption. 

2.3.4 Fixed-Size Techniques 

These techniques do not downsize components. However, they might be applied in conjunction 

with microarchitecture techniques to reduce occupancy for more power savings. For example, 

dynamic reconfiguration of the issue queue was proposed by Bai and Bahar based on 

performance counters [42]. Reducing tag comparisons in the issue queue was proposed by 

Huang et al. [43]. A pointer-based issue queue was proposed by Ramirez at al. [44]. 

2.4 Complexity Reduction of the Out-of-Order Issue 

The techniques discussed in this section are designed to reduce the complexity of the associative 

wakeup logic in the issue queue to improve performance. None of these techniques address 

power consumption. It is theoretically possible to combine active occupancy techniques with 

complexity reduction to improve both performance and efficiency. Such an approach is beyond 

the scope of this work and will be discussed in the future research section. These techniques are 

reviewed here for completeness. They are grouped into three categories: associative techniques 

in which the associative logic is still used, non-associative techniques in which other circuit 

forms are used (such as indexing and arrays), and scheduling techniques in which instruction 

latencies are used to reduce complexity. 

2.4.1 Associative Techniques 

Associative techniques try to reduce issue queue complexity by using a smaller out-of-order 

issue queue, and complement it with a larger simple queue or buffer. Deciding which 

instructions go to the small, complex queue and which ones go to the large, simple queue is 

critical for performance. 

Lebeck et al. complement a small conventional issue queue with a large 2K-entry, 

simple, waiting buffer [45]. If a load instruction misses in the cache, then it is moved to the 

waiting buffer along with all the instructions that depend on it. The load and its dependent 
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instructions stay in the wait-buffer until the cache miss is serviced, as Figure 12 (a) shows. The 

authors demonstrate that such a design can achieve significant speedup over a conventional, 

monolithic issue queue; however, they do not estimate the impact on power consumption. 

Some high-performance processors allow instructions that are dependent on a load to 

issue speculatively before knowing whether the load will actually hit in the data cache or not. 

Based on decisions from a load-hit predictor, load-dependent instructions are speculatively 

issued early to save some pipeline cycles. When the predictor is wrong and the load does not hit 

in the cache, all dependent instructions that were issued speculatively must be reissued after the 

cache miss has been serviced. After having been issued, the speculative instructions must stay 

in the issue queue until their status is resolved, thereby occupying more entries and requiring a 

larger issue queue size. 

For the purpose of having a small issue queue capable of high clock speed, Moreshet 

and Bahar propose using a replay buffer to store load-dependent instructions after they are 

issued speculatively from the main issue queue [46].  If the load hits in the cache, these 

instructions are removed from the replay buffer; if the load misses in the cache, then the 

instructions are reissued from the replay buffer when the cache miss is serviced, as Figure 12 (b) 
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Figure 12. (a) Using CAM queue with a waiting buffer for instructions dependent on a load that 
missed in the cache; (b) Replay buffer for speculative loads; (c) Moving critical or oldest 
instructions to an associative queue. 
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shows. The replay buffer can be implemented with simpler, slower circuitry since loads that 

miss in the cache take multiple cycles to be serviced. The authors claim 18% power savings for 

the issue queue with no degradation of performance [46]. 

Brekelbaum et al. propose a simple, slow, and large issue queue to which all instructions 

are dispatched [47]. As non-ready instructions age and become older, they become more 

“critical”. In every cycle, the oldest critical instructions are moved to a fast, smaller queue, from 

where they are issued, as Figure 12 (c) illustrates. Since the large queue is outside the critical 

timing path, this hierarchical scheme yields a larger instruction window capable of extracting 

more ILP, but with the benefit of a fast, low-complexity issue queue. Beyond performance 

benefits reported in this study, no detailed power consumption tradeoffs were reported.  

Ernst and Austin leverage the fact that most instructions have only one non-ready 

operand [48]. They propose using three queues: one non-CAM queue for instructions that are 

ready at dispatch, a second CAM-based queue for instructions having only one ready operand, 

and a third small CAM-based queue for instructions having none of their operands ready. Since 

the two CAM-based queues are smaller than a conventional large CAM queue, the authors 

show that such arrangement consumes 10-20% less power while running at clock speed 20-40% 

faster than the conventional design [48]. However, they do not report any power savings. 

2.4.2 Non-Associative Techniques 

Indexing: 

Canal and Gonzalez offer indexing as an alternative to associative CAM design [49]. This 

technique uses RAM and an index of register tags to send each result to only one consumer 

instruction. Cruz et al. observed that, for a majority of instructions, a result produced by one 

instruction is used by only by one other instruction [50]. Based on this observation, Canal and 

Gonzalez proposed a queue for instructions that are the first user of a result produced by 

another instruction. This queue is called the first-use instruction queue, as Figure 13 shows. 

Other instructions that are not “first-use” are dispatched to a small, conventional, associative 

queue. Instructions that have all operands ready are dispatched directly into an in-order queue. 
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The reduced complexity of the combined three queues allows them to be clocked faster 

than a conventional associative issue queue. The authors do not, however, estimate power 

savings for this technique. 

Array:  

Another alternative to a conventional issue queue based on associative search is to use an array 

structure that keeps track of instruction dependences. The array consists of rows representing 

instructions, and columns representing registers, as shown in Figure 14. A cell in the array is set 

to “1” when an instruction depends on a physical register whose value will be written by 

another instruction that is still in “flight”. When a register is written by an instruction, the 

wakeup logic resets all cells in that register’s column to “0”. An instruction is determined as 

ready when all of its row cells are reset to “0”.  

 

Figure 13. Block diagram for the first-use indexing [50].   
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 Compared to the CAM methods, the array technique reduces complexity by eliminating 

the associative comparisons of register tags. However, it still has the disadvantage of requiring 

a large number of decoders for selecting and clearing a register column. Determining when an 

instruction is ready also requires a large number of comparisons to check all cells of a row. 

Goshima et al. improved on the basic array method by distributing the array into three 

arrays for storing different types of instructions: integer, floating-point, and load-store [51]. 

They report improvement in clock speed due to reduced cycle time of the wakeup and select 

logic, but they do not study potential power reduction benefits. 

Deeper pipelining has been used consistently by microprocessor designers to increase 

performance, as deeper pipelines allow higher exploitation of parallelism. Increasing pipeline 

depth also allows faster clocking, as there is smaller logic computation per stage. Over the past 

20 years, for example, pipeline depths have increased from 1 for the Intel 286 processor, to 5 for 

the Intel 486, to 10 for the Intel Pentium Pro, to 40 (based on fast clock) for the Intel Pentium 4 

[10]. 

Critical loops, however, pose a challenge for deeper pipelining. A critical loop is a 

sequence of logic operations that must produce results in one pipeline stage, so the results can 

be used in the next cycle; otherwise, a pipeline “bubble” is propagated, reducing IPC 

performance. 

2

1 2 43 5 6

1

3

4

5

6

1 10 0 0 0

Registers

In
s
tr

u
c
ti
o
n
s

add R6, R2, R4

Figure 14. Array representation. The add instruction stored 
in row 3 depends on both registers 2 and 4. 



38 

The wakeup and select logic form such a critical loop. When an instruction is selected for 

execution, its dependent instructions have to wake up in the same cycle so that they can execute 

in the next cycle; otherwise, the instruction and its dependent instructions cannot execute in 

consecutive cycles; i.e., a pipeline bubble would be produced. To allow pipelining the wakeup 

and select logic, Brown et al. have proposed breaking down the critical loop of wakeup and 

select logic into two loops: a critical, single-cycle loop for wakeup logic and a non-critical loop 

for select logic [52]. They accomplish breakdown by speculating that all waking instructions are 

immediately selected for execution. They use an array to keep track of instruction dependences 

over the two loops. The authors claim potential power savings but they do not report power 

savings data for their technique. 

2.4.3 Scheduling Techniques 

Scheduling techniques try to take advantage of complete or partial knowledge about instruction 

latencies to reduce the wakeup's high wire-latency in the issue queue. The challenge for these 

techniques is how to accurately estimate latency or issue-time. 

Generally, the issue-time of an instruction is based on the issue-time of all instructions it 

depends on. If all load instructions hit in the cache, this estimation would be simple. The 

difficulty arises due to variable latency of memory access instructions. 

Canal and Gonzalez have proposed two similar but different techniques to deal with the 

variable latency of loads [49]. In one technique, they propose using a wait-buffer to hold load 

instructions, and all instructions dependent on them, until it is known whether the loads hit in 

the cache or not. Once cache latency for a load is determined, the load and all dependent 

instructions are scheduled with proper priority into an in-order queue, as Figure 15 (a) 

illustrates. 

The second technique proposed by Canal and Gonzalez also uses a wait-buffer, but with 

a different arrangement [53]. All load instructions are assumed to have cache-hit latency as they 

enter the in-order queue. If they suffer a cache miss and can’t issue when they reach the bottom 

of the queue, they are relocated to the wait-buffer along with dependent instructions. Once the 
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cache miss is serviced, instructions can then issue directly from the wait-buffer, as Figure 15 (b) 

illustrates.  

For both examples above, the authors assert that these techniques reduce the complexity 

in comparison to using only one large out-of-order issue queue and, therefore, are amenable to 

faster clocking and scalability. The authors, however, do not conduct a study for potential 

power savings benefits. Other scheduling techniques have been reported that report innovative 

circuit design with similar results [54-56]. 

From a power consumption perspective, scheduling instructions is not power efficient in 

two cases. One is when most instructions line up in a data dependence chain and cannot be 

scheduled. The second is when most instructions are independent and performance does not 

benefit from scheduling them. It is theoretically possible that active occupancy reduction 
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techniques developed here could be combined with scheduling techniques to achieve additional 

optimization in performance and power consumption. 

2.5 Power Models at the Microarchitecture Level 

Since power consumption has become a critical design constraint, microprocessors designers 

have to evaluate power consumption early on in the design process. Traditional circuit or 

device level power estimation tools, however, are not practical at the architectural definition 

stage. Traditional power estimation tools rely on circuit parameters obtained after the chip 

layout and floor-planning stages. It is usually too late after these stages to make architecture 

modifications for power reduction. Moreover, the dynamic power component is dependent on 

actual workloads. Architecture simulations with workloads using detailed layout circuit 

parameters entail time-consuming simulations that are impractical for designers to quickly 

explore the tradeoff space of power and performance. 

Recently, researchers have developed new techniques capable of quick dynamic power 

estimation at the architecture level. The key feature of these techniques is the estimation of the 

total, switched capacitive loading variable (Ctot) in the processor dynamic power equation (3), in 

Chapter 1. Recall from that equation that dynamic power is dependent on the variables Ctot , 

VDD, Nc, and tp. All of these variables are dependent on the technology process, but the total 

switched capacitance, Ctot , and the number of cycles, Nc , are, in addition, dependent on 

architecture configurations. Nc can be easily obtained from an architecture, cycle-level 

simulator; however, Ctot is the key variable that needs to be estimated efficiently at the 

architecture level to estimate dynamic power consumption. Brooks et al. [24], Vijaykrishnan et 

al. [57], and Cai [58] have  implemented dynamic power models that estimate Ctot based on 

architecture parameters, such as pipeline width, issue queue size, cache sizes and configuration, 

number of registers, and other architecture parameters. 
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2.5.1 The Wattch Approach 

To estimate the switched capacitance efficiently, Brooks et al. [24] in their Wattch power models 

simplify the capacitance calculations by grouping typical processor circuits into four major 

circuit categories: 

1. Memory Array Structures: used for instruction and data caches, register files, branch 

predictor, and buffers. 

2. Fully Associative CAM: used for the issue queue wakeup logic, the reorder buffer and the 

translation look-aside buffer. 

3. Combinational Logic and Wires: used for functional units, the issue queue selection logic 

and result buses. 

4. Clock Structures: for distributing clock signals to all units on the die. 

For each of the above circuit categories, Brooks et al. then derive formulas for the 

capacitive load of all essential circuit stages based on a typical physical layout. To illustrate how 

they derive the capacitance equations for the word-lines and bit-lines activation stages for the 

register file structure, the schematic circuit diagram in Figure 16 is used. The register file is a 

memory array type. Its word-lines are laid out horizontally and its bit-lines are laid out 

vertically in the schematic. The word data bits are stored in static memory cells across the array. 

The array access has four stages: in the first stage, the array activates decoding the requested 

address (left in the schematic); in the second, it activates the resulting word-line; in the third, it 

activates the bit-lines discharge from cell transistors after the initial pre-charge; and in the 

fourth, it activates the output data from the sense amplifiers connected to each pair of bit-lines 

complements . 

The capacitance of a single word-line is composed of the capacitance of the diffusion 

capacitance of the word-line driver (left in Figure 16), plus the gate capacitance of the cell access 

transistors, plus the capacitance of the line metal wire. Similarly, the capacitance of a single bit-

line is composed of diffusion capacitance of the pre-charge driver (top in Figure 16), plus the 
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diffusion capacitance of the cell access transistors, plus the capacitance of the line metal wire. 

Table 1 lists the total capacitance equations for all the word-lines and the bit-lines for a register 

file structure.  

The capacitance equations in Table 1 factor in the register file size, so they are a function 

of architecture parameters, which is a key feature for these equations. The number of word-

lines, the number of bit-lines, the diffusion capacitance for the word-line and the pre-charge 

drivers, the word-line length, and the bit-line length all are a function of the register file size. 

The register file size is an architecture parameter dependent on the register file width, the 

number of entries, and the number of read-write ports. Table 1 lists circuit types whose 

capacitance load is scaled based on the respective architecture structure. Complete details for 

Figure 16. Schematic diagram of word-lines and bit-lines for a circuit array structure (adapted 
from Brooks et al. [24]) 
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other structures’ capacitance equations can be found in [24] and the Wattch source code that is 

available from the authors. 

Table 1 Capacitive load equations used for bit-lines and word-lines stages for the circuit of type 
memory array for a register file structure. 

Node Capacitance Equation 

Register File Wordline Capacitance = Cdiff (Wordline Driver) + 

Cgate (Cell Access) × Num Bitlines + 

Cmetal × Wordline Length. 

Register File Bitline Capacitance = Cdiff (Precharge) + 

Cdiff (Cell Access) × Num Wordlines + 

Cmetal × Bitline Length. 

The Wattch power models integrate with the sim-outorder SimpleScalar cycle-level 

simulator, and Wattch uses the architecture parameters given to sim-outorder. When simulating 

a program, and before sim-outorder gets into its main cycle-level loop, the Wattch models are 

invoked to calculate the capacitance load for each architecture structure. The capacitance load 

values are then stored in memory for fast dynamic access. Each time a unit is accessed during 

the cycle-level loop, that unit’s capacitance is added to the running sum for Ctot.. When the 

simulated program ends, Wattch uses Ctot and the total number of cycles, Nc , obtained from 

sim-outorder to calculate the average dynamic processor power (equation (3), Chapter 1). 

Wattch uses constant VDD and tp values for a given technology process. 

Clock gating:  

For multi-ported units, clock gating becomes a more common approach in processor designs to 

curb power consumption. When a multi-ported unit is accessed on some but not all ports, only 

the accessed ports are usually activated to reduce power consumption. Wattch authors have 

developed three models of clock gating for multi-ported units: 
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1. A unit consumes 100% of its full power whenever it is accessed on any particular port. 

The unit consumes zero power when none of its ports are accessed. 

2. The power that a unit consumes increases linearly with the number of accessed ports. 

The unit consumes zero power when none of its ports are accessed. 

3. The power that a unit consumes increases linearly with the number of accessed ports. 

The unit, however, consumes 10% of its full power when none of its ports are accessed. 

This option reflects the power overhead for control logic to disable part or all of a unit. 

In our work, we used the above option (3), and our reported data for power savings reflect the 

10% overhead.  
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3 METHODS 

This Chapter presents the methods used to reduce instruction occupancy and ultimately 

increase processor efficiency. Section 3.1 states the guiding two principles for the methods. The 

principles were introduced in Chapter 1. They are elaborated here in more depth. Principle 1 

states two cases for downsizing the out-of-order engine based on data dependences. Principle 2 

states the case for reducing instruction traffic bursts. The tandem principle explains why both 

principles must be applied to achieve significant occupancy reduction. 

Section 3.2 describes the methods used to implement Principle 1. It first develops the 

data dependence index (DDI) that is needed to quantify data dependences. The token passing 

algorithm shows how to measure the DDI in hardware. An alternative measuring algorithm to 

measure the DDI by extending register renaming is also proposed. Validation of the algorithms 

is then presented. The downsizing policy shows the rationale for when and how much to 

downsize the engine as a function of the DDI. 

Section 3.3 describes the methods used to implement Principle 2. Three methods are 

investigated to evaluate the most effective one in moderating traffic bursts: The first uses the 

DDI as a condition to pause fetching; the second uses the sustained dispatch rate (SDR) and the 

fetch buffer occupancy to pause fetching; and the third uses both SDR and the issue occupancy 

to pause fetching. Section 3.4 then briefly shows that the second and third methods have the 

advantage of clustering fetched instructions, which can reduce i-cache power consumption. 

Finally, Section 3.5 describes the simulation framework in detail. Both the architecture 

and the power models are described. The workload benchmarks and the simulations methods 

are then described. 
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3.1 Efficiency Principles for the Out-of-Order Engine 

3.1.1 Principle 1 

Gradually downsize the out-of-order engine as it becomes less effective in issuing 

instructions out of program order. This principle can be applied to queues in the out-of-order 

engine in two cases. 

Case 1: Upper levels of data dependence. If window instructions exhibit long chains of 

data dependence, the data dependence level is said to be high. The more instructions line up, 

the higher the dependence level. When this happens, the window’s performance rapidly 

becomes insensitive to window size. This insensitivity effect can be observed in Wall's study on 

available instruction level parallelism [36]. Figure 17 shows this effect for two benchmarks 

using Wall's data. For an ideal processor, no parameter affects the issue rate performance other 

than data dependence and window size.  Although the figure shows data dependence for entire 

benchmarks, data dependence levels vary dynamically, as will be seen later in the chapter.  

This effect is also observed for an ideal processor with an unlimited issue width. 

However, it can still be applied for a non-ideal processor. The high data dependence levels 

naturally limit the issue rate, so that the limited issue width of a non-ideal processor does come 

into play. Thus, this trade-off between window size and performance at upper levels of data 

dependence can still be exploited for efficiency for a non-ideal processor. Figure 18 graphically 

shows this exploitation. 

Case 2: Lower levels of data dependence. This case exploits the limited issue width of a 

non-ideal processor at low levels of data dependence. In Case 1, it was asserted that 

performance is sensitive to window size at low levels of data dependence for an ideal processor. 

However, the limited issue-width of a non-ideal processor renders performance insensitive to 

window size at very low levels of data dependence. In this case, a small window would be able 

to find enough independent instructions to issue and saturate the issue-width, even in the event 

of other microarchitecture latencies, such data cache misses. This effect can then be exploited for 

efficiency. 
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Figure 17. Ideal processor performance as a function of window size for different data 
dependence levels. The data dependence level is higher in li than in tomcatv. Thus, li’s 
performance is less “sensitive” to window size. If the window size is reduced from 128 to 32 
entries, for example, performance drops much less significantly for li than does for tomcatv. For 
a long chain of data dependence, performance is completely insensitive Data from Hennessy and 
Patterson [37]. 
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 In both cases, components can be forced to reduce their occupancy by downsizing. This 

concept is illustrated in Figure 19. Components should maintain maximum size when data 

dependence exhibits neither high nor low levels; that is, when the engine holds a roughly equal 

mix of independent and dependent instructions. In other words, maximum size should be 

maintained when neither Case 1 nor 2 applies. The sizing decision must be solely based on the 

state of data dependences; otherwise, the engine's ability to find and issue independent 

instructions might be hindered.  

3.1.2 Principle 2 

Continuously moderate the front-end pressure to reduce traffic bursts. The front end is 

normally designed to fetch instructions from the i-cache and push them into the out-of-order 

engine as fast as possible. However, the engine may not always be able to move instructions as 

fast as they come in. It might be slowed down, for example, by data cache misses, function unit 

latencies, or resource conflicts. Because of this constant front-end pressure, any empty entries in 

the engine are quickly filled up by short dispatch bursts. Even if traffic is reduced, engine 

queues can still maintain high occupancy. This scenario is graphically illustrated in Figure 20. 

To help maintain a lower occupancy, it is important to not only reduce traffic, but also to 

dampen short bursts above the currently sustained dispatch rate.  
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Figure 19. Downsizing with active occupancy reduction. Segments above the max segments 
pointer are allowed to drain so they can be disabled. 
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3.1.1 Tandem Principle 

For a significant occupancy reduction, both principles one and two must be applied. 

Applying Principle 1 alone does not cover cases when the engine is slowed down by 

microarchitecture-dependent latencies. For such cases, applying Principle 2 helps reduce 

occupancy when Principle 1 alone cannot. Conversely, applying Principle 2 alone does not 

cover cases when the engine can be downsized based on microarchitecture-independent 

latencies (namely data dependences). In such cases, applying Principle 1 helps reduce 

occupancy when Principle 2 alone cannot. For example, when data dependences are very few, 

traffic can be high so Principle 2 would not apply, yet the engine can still be downsized by Case 

2 of Principle 1. 

3.2 Downsizing the Out-of-Oder Engine 

3.2.1 The Data Dependence Index 

In order to downsize the out-of-order engine's components based on data dependences, as 

outlined in Principle 1, a metric for data dependences is needed. The latency metric proposed 

by out-of-order scheduling techniques often involves a data dependence order [54-56]. 

However, downsizing components based on such metric results in a large performance loss. 

This is because this metric includes microarchitecture latencies unrelated to data dependences. 

Figure 20. A short traffic burst as a result of front-end pressure, in (a), can raise occupancy in 
the queue in (b). The queue can then stay congested even if traffic is reduced. 

Slow service rate

Slow arrival rate + short 

burst
Slow service rate

Uncongested queue
(a)

Slow arrival rate(b) Congested queue
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As Principle 1 states, downsizing on any condition other than data dependences hinders the 

instruction window’s ability to find and issue independent instructions. 

Dynamically building an entire dependence graph in the issue queue is impractical due 

to high hardware complexity. Measuring the longest data dependence path is more practical. 

However, the longest path alone does not account for instructions that are not part of it, and 

thus does not fully capture data dependence parallelism. Therefore, we propose the Data 

Dependence Index (DDI) as the ratio of the number of instructions in the longest path, Nmax, to 

the total number of instructions in the graph, N, expressed as: 

    
    

 
    

Nmax = Pmax + 1, where Pmax is the number of edges in the longest path. If all 

instructions are independent, then Nmax = 0. The range of the DDI is a fixed scale from zero to 

one (0 ≤ DDI ≤ 1). As more instructions become independent, the DDI approaches zero, because 

the longest path becomes shorter, containing fewer instructions. On the other end, as more 

instructions become dependent, the DDI value approaches one because the longest path 

becomes longer, containing more instructions.  If the DDI = 1, then all instructions form one 

long dependence chain. Figure 21 gives examples of the DDI. In (a) the DDI is greater than in 

(b), indicating greater data dependence. Figure 22 gives examples of the DDI that are counter 

intuitive: the graph in (a) appears to have more data dependence than (b); however, both 

graphs in (a) and (b) have the same DDI. 

The DDI can be theoretically justified using the ideal processor concept, such as the one 

defined by Wall [36]. In such a processor, the issue rate is a function of only data dependences. 

To derive an expression for this issue rate, we can realize that all instructions, N, in a graph can 

issue in the time it takes to issue the longest path’s instructions. Thus the ideal issue rate can be 

expressed as N/(Pmax + 1), where Pmax is the number of edges in the longest path. The ideal 

issue rate is almost the inverse of the DDI, except that its range is not bounded between zero 

and one as with the DDI. 
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Applying the ideal issue rate directly instead of the DDI is impractical because of its 

range. As data dependences decrease and become very few, the ideal issue rate becomes very 

large and falls outside the useable dynamic range of size adjustment for the out-of-order 

engine’s components. The DDI, on the other hand, quickly goes to zero, then equals zero when 

all instructions are independent. In other words, the fixed DDI scale between zero and one is 

more practical for size adjustment.  

The DDI measures data dependences for all instructions, including those from a 

predicted path. This implies that the window size is adjusted to data dependences from 

whichever path is currently taken. If the prediction turns out to be correct, then the window size 

was properly adjusted. If the path was mispredicted, the window will adjust when the correct 

path instructions are fetched and dispatched. 
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Figure 21. Data dependence graphs with instructions numbered in their program order. In (a) 
Nmax = 4 and N = 6, giving DDI = 4/6. In  (b) the DDI = 4/9. 
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Figure 22. The graph in (a) appear to have more data dependence than the graph in (b); 
however, counter intuitively, both graphs have the same DDI = 4/7. 



52 

Modern processors cannot determine data dependences through memory at the issue 

stage. Likewise, the DDI does not measure dependences through memory; the DDI measures 

only data dependences through registers. However, modern processors still issue loads and 

stores out of order by relying on special disambiguation techniques and memory address 

speculation [59, 60]. These disambiguation techniques verify that data dependences are not 

violated at the retirement stage. So as far as adjusting the window is concerned, loads and stores 

are considered to be independent (at least at the issue stage) and do not affect the DDI. 

3.2.2 Token Passing Algorithm 

To dynamically measure the longest data dependence path, we use a token-passing algorithm. 

The algorithm was inspired by Fields et al.’s algorithm that tracks the critical path for 

instruction scheduling [54]. The algorithm tracks only data dependences as instructions issue 

and does not need a predictor, resulting in a simpler hardware implementation. The proposed 

algorithm is for issue queue instructions. An alternative algorithm for the reorder buffer is 

proposed in the Future Directions chapter. 

Each instruction entry in the issue queue has a token field that represents the instruction 

depth in the dependence chain. When instructions are dispatched into the issue queue, their 

token is initially set to zero, which means that they do not yet have a token. Independent (or 

ready) instructions, whose operands are available in registers, are never part of a chain, and 

thus their token is never inherited. Dependent instructions will eventually inherit a token from 

previous instructions before they issue. 

Token creation and increment: When an instruction issues for execution, its token is 

incremented by one. If it is incremented from zero to one, then a token is said to be "created". 

This could be the head of a new chain. 

Token passing: Normally when an instruction issues to execute, it passes its result tag to 

the issue queue so that waiting instructions can compare the result tag against their operand 

tags. If there is a match, the corresponding operand is marked as ready. 
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Token passing can happen at the same time. When an instruction executes, it passes its 

incremented token along with its result tag. Waiting instructions can then inherit this token 

when they compare their operand tags to the result tag. To ensure that the token from a longer 

path is propagated  when a chain merges, each waiting instruction has to compare two tokens 

(assuming dyadic instructions) and store the larger one as follows: 

 If the waiting instruction matches two result tags (A and B), then compare token A to 

token B and store the larger.  

 If the waiting instruction matches one result tag, then compare the corresponding 

token (A or B depending upon which tag matches) to the instruction’s existing token 

and store the larger. 

Figure 23 (a) summarizes the token passing algorithm in a graph, and Figure 23 (b) 

shows the logic needed to compare and store instruction tokens. 

Token termination: If an instruction executes and no waiting instruction inherits its 
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Figure 23. Token passing is shown in (a). As instructions issue, instruction No. 1’s token (small 
black circle) is passed all the way to instruction No 6. The logic for comparing and storing the 
largest token is shown in (b). The Mux either passes both token A and B, or passes token A or B 
and the existing token. This Mux is controlled by the matching of result tags with operand tags. 
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token, that token is said to "terminate", indicating the end of a chain; that is, the window is not 

large enough to pass this token to future instructions. 

Token termination: If an instruction executes and no waiting instruction inherits its 

token, that token is said to "terminate", indicating the end of a chain; that is, the window is not 

large enough to pass this token to future instructions. 

The DDI: As instructions issue during each cycle, the maximum token among the issue 

group is compared to a global maximum. The global maximum stores the issue group 

maximum token if it is greater than its existing value. The global maximum then holds the 

longest path, Pmax, that the window "sees" over any time period until Pmax is reset again. A 

sample DDI is computed using Pmax over the time period it takes to issue N = 8 instructions, 

then Pmax is reset again. Once 128 DDI samples are accumulated, a DDI interval average is 

taken, which is used to adjust the window size for the next interval. On average, this interval 

lasts about 512 clock cycles. 

Complexity: Because Pmax is computed over 8 instructions, a 3-bit token is sufficient to 

hold the largest value. Compared to other issue queue entries, such as instruction opcode, 

operands, operand flags, and operand tags and matching, the 3-bit token adds negligible 

storage to the issue queue. The token does affect the tag-drive width because the token is passed 

along the results tag. It also slightly increases the number of bit-lines for reading tokens as 

instructions issue. In the worst case scenario, if the issue queue is completely full all the time 

(empty segments are not turned off) and all devices are switching, the power models used in 

this work estimate about 6% power overhead in the issue queue and 0.5% in the total processor. 

However, with segmentation of the bit-lines, reducing instruction occupancy, and turning off 

empty segments, this overhead becomes practically undetectable, especially for the total 

processor. 

Moreover, computing Pmax requires eight comparators (8 issue width), each 3-bits 

wide, which we assert requires a negligible power increase. Pmax also requires 3-4 logic levels, 

which are well within the optimum cycle of 6-8 fan-out-of-four (FO4) logic levels [61]. The DDI 
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sample can be computed with a small ROM lookup table. Also, both the sample DDI and the 

interval DDI computations are not on the critical path, so they can overlap with Pmax and the 

token passing activities and can take more than one cycle if necessary. 

3.2.3 Extended Register-Renaming Algorithm 

This is an alternative method to the token-passing algorithm to measure the DDI. Measuring the 

DDI can be accomplished at the rename stage by extending the dependence-check-logic. As 

instructions are decoded, logical register operands are renamed to physical registers to remove 

any name dependences introduced by the compiler. When the dependence-check-logic 

determines that an instruction’s source operand is dependent on a previous instruction’s 

destination operand, it renames the producer and consumer to the same physical register.  

The check-logic can be extended so that each time data dependence is detected for an 

instruction, its depth in the dependence chain is incremented by one and propagated to the next 

instruction in the chain. A comparator is needed to propagate the maximum dependence for 

two source operands for the same instruction. In other words, if an instruction is the merge 

point of two dependence chains, only the longest branch of the chain is propagated to the 

consumer instruction. A final comparator determines the maximum of all dependence chains 

lengths to find the DDI. An average DDI is then computed over 512 clock cycles. This averaging 

helps to smooth out any irregular DDI samples. 

Complexity. Since the DDI is measured every time over the same number of 

instructions, e.g., over 8 instructions at dispatch, the ratio is not needed and the longest path 

itself is equivalent to the DDI. Figure 24 illustrates a simple example for obtaining the LDPR 

over 4 instructions. The magnitude of the measurement of the longest path is on the order of 

      where n is the number of instructions. Moreover, since n, the dispatch width, is small, the 

complexity and overhead to obtain the DDI at rename is minimal compared to the overall 

dependence-check-logic. For instance, if the dispatch width is 4 instructions, the hardware 

needed to measure the DDI is 4 comparators and 3 increment-by-1 counters, all of which are 

two bits wide. 
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3.2.4 Validation 

To validate the implementation of the DDI algorithm, the measured DDI must be compared to a 

known data dependence condition. Two loops were hand-coded in assembly language so that 

their performance was a function only of data dependences. The first loop had most of its 

instructions dependent on each other in a long chain (DDI near one), whereas the second loop 

had most of its instructions independent of each other (DDI near zero). The loops were coded so 

that instruction latency was least dependent on the microarchitecture. This implies that 

instructions hit in the caches, loop branches were predicted correctly and instructions did not 

contend for functional units. The two loops were then run several hundred times. The measured 

issue rate, which is near ideal, is then compared to the measured DDI for validation. 

During the run of the first loop (with long chain dependences), the measured DDI was 

observed to be near one while the issue rate was also near one. During the run of the second 

loop (no data dependences), the measured DDI was observed to be near zero while the issue 

rate was near the maximum issue width. These observations confirmed correct implementation 

and allowed proceeding with the window adjustment using the DDI. 

3.2.5 Downsizing Policy 

Data dependences tend to change in phases during program execution because they inherently 

relate to program structures. Figure 25 shows DDI graphs during the execution of randomly 

selected periods of two SPEC_2000 benchmarks. A long running loop, for example, might have 

many instructions dependent on each other. Even though different iterations of the loop might 

be independent, the processor window may not be large enough to "see" beyond one loop 

i1: Add R1, R2, R3

i2: Add R4, R1, R5

i3: Add R7, R1, R6

i4: Add R9, R7, R8

0

1

1

2

Figure 24. An example of four instructions at rename. The shaded boxes represent dependence 
depth counters. The maximum dependence value for all chains is 2 and the DDI = 2/4. 
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iteration. A different loop, on the other hand, might have many independent instructions. 

Because of this phase pattern, the DDI should be measured over short intervals so that an 

efficient window size can be set for the duration of a phase.  

To adjust the instruction-window size, the architecture and the power models were 

segmented for the issue queue, the load-store queue, and the reorder buffer. Past studies, for 

example Ponomarev et al. [16], showed power saving benefits from turning off issue queue 

segments whenever they become empty. In this work, we proactively set a maximum number 

of useable segments based on the interval DDI. This reduces the number of instructions and 

forces more segments to become empty and thus be turned off. In this work, this mapping from 

DDI values to the maximum useable segments is called the DDI policy.  

An initial DDI policy was first derived based on the two cases of Principle 1; that is, the 

maximum number of active segments was limited as the DDI value increased above a threshold 
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Figure 25. During two randomly selected periods, the DDI for the 164.gzip.log benchmark (top) 
alternates between high and low periods. The DDI for the 175.gcc benchmark (bottom) remains 
fairly constant around a value of 0.36. 
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and as it deceased below another threshold. The threshold DDI values and the rate of increase 

and decrease were then empirically optimized with initial simulation tests. These values were 

then applied to all subsequent simulations. Figure 26 shows a graphical representation of the 

DDI policy. 

When the maximum window size was adjusted, the issue queue, the load-store queue, 

and the reorder buffer were adjusted together and kept to their original proportions: the reorder 

buffer was set to hold twice as many entries as the issue queue or the load-store queue. 

However, since the reorder buffer segment size (16 entries) is twice as large as the issue queue 

or the load-store queue segment size (8 entries), the maximum useable segments remain the 

same for all three units. So, for example, when the maximum number of useable segments is set 

at 4, the reorder buffer can have up to 4×16 = 64 entries, and the issue and load-store queues can 

have up to 4×8 = 32 entries each. 

As Figure 26 shows, the DDI policy assigns the maximum useable segments to the 

physical window size of 8 segments for DDI values between 0.17 and 0.55. In this range, the 

window contains a mix of data-dependent and independent instructions, so that the window’s 

performance is sensitive to its size. In other words, in this range a larger window can effectively 

find more independent instructions to issue. 
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Figure 26. A graphical representation for the DDI policy. 



59 

As the DDI value increases above 0.55, the window size is gradually decreased as fewer 

independent instructions are found and the window’s performance gradually becomes less 

sensitive to size. Less sensitivity means that a smaller, more efficient window can perform just 

as well. When the DDI reaches 0.8, most instructions essentially become dependent and the 

window becomes completely insensitive to size. Two active segments can then perform just as 

well. 

As the DDI value decreases below 0.17, independent instructions dominate. Because of 

limited microarchitectural resources (such as limited issue width), the window can find enough 

independent instructions in a smaller instruction pool to sustain the maximum issue rate. Thus, 

the window size is gradually decreased. Below a 0.05 DDI value, sufficient independent 

instructions are available so that only two segments can sustain maximum issue rate. Because of 

the nature of the DDI ratio, the DDI value goes to zero faster when independent instructions 

dominate than it goes to one when dependent instructions dominate, as shown in Figure 26. 

This explains why the DDI policy curve is steeper on the left and slightly asymmetric. 

To control the window size, three counters were assigned to keep track of the number of 

non-empty segments in each of the reorder buffer, the issue queue, and the load-store queue. 

These counters increment and decrement each time a segment is turned on and off, respectively, 

in each unit. If incrementing one of the units' counters results in exceeding the maximum 

number of useable segments set by the DDI policy, instruction dispatch is momentarily halted. 

When entries are freed up by instructions issuing or committing, instruction dispatch resumes. 

3.3 Moderating Front-End Traffic Pressure 

To find the most effective method for reducing traffic, three variations on fetch pausing aimed 

at moderating the front-end pressure were implemented. 

3.3.1 Fetch Pause Based on Data Dependence 

The first variation pauses fetching on any cycle if the out-of-order engine has a high level of 

data dependences: 
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FetchPause-DDI: 

if (highDDI && fBufferNum > 0) { 

  fetchPause = true; 

} else { 

  fetchPause = false; 

} 

Here the fBufferNum >  0 condition ensures that fetching is not paused if the fetch buffer 

is empty so that the engine does not "starve".  The highDDI is a flag set if the interval DDI is 

greater than 0.4. Although this variation can slow down traffic when the engine slows down 

due to a high level of data dependences, it does not consider other microarchitecture latencies. 

3.3.2 Fetch Pause Based on Sustained Dispatch Rate 

To consider microarchitecture latencies, a second variation on fetch pausing was implemented. 

Fetching is paused on any cycle if the fetch buffer occupancy is higher than the sustained 

dispatch rate (SDR). In this case the SDR is the dispatch rate averaged over intervals of 512 

cycles: 

FetchPause-SDR: 

if (fBufferNum > SustainedDispatchRate + delta) { 

  fetchPause = true; 

} else { 

  fetchPause = false; 

} 

The delta parameter is a safety margin to "cushion" fast deviations in the SDR and avoid 

the risk of starving the engine. A delta = 2 was empirically found to be optimal. The SDR is 

determined by all microarchitecture latencies. The advantage of this fetch pause variation is that 

it can moderate traffic bursts above the SDR. This concept is illustrated in Figure 27. If the 

engine has many empty entries and dispatch bursts by the front-end try to fill it up, the bursts 

are dampened because the fetch buffer would be frequently drained by the fetch pause. 

3.3.3 Fetch Pause Based on Sustained Dispatch Rate and Occupancy  

The third variation is the same as the second except that an issue queue occupancy condition is 

added. Fetching is paused not only when the fetch buffer occupancy is higher than the dispatch 

rate but also when the issue queue has more than four full segments: 
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FetchPause-SDR+IQ: 

if ((fBufferNum > SustainedDispatchRate + delta) && 

 (IQ_num >= 4 * segSize)) { 

  fetchPause = true; 

} else { 

  fetchPause = false; 

} 

IQ_num is the instruction occupancy in the issue queue and segSize is the segment size 

(8 for the issue queue). The rationale for adding the issue queue occupancy condition was to 

avoid the possibility of “starving” the out-of-order engine. 

Figure 27. Fetch pause based on the fetch buffer occupancy and the sustained dispatch rate 
(SDR). In cycle 2, fetch is paused because the fetch buffer holds more instructions than the SDR. 
This can cause the fetch buffer to empty. In cycle 3, fetch is resumed, but no instructions move 
downstream because the fetch buffer was empty cycle 2. In cycle 4 fetch is paused again. The 
behavior can repeat as long as the front-end is trying to push instruction faster the SDR, in 
effect dampening traffic bursts above the SDR that can raise occupancy in the out-of-order 
engine.   

Fetch Buffer Decode and Rename

Fetch Pause

Fetch Pause

Cycle 1

Cycle 2

Cycle 3
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3.4 Clustering Fetched Instructions 

The FetchPause-SDR and FetchPause-SDR+IQ  methods are designed to take advantage of an 

energy saving bonus in the i-cache. Because an i-cache access energy cost is the same however 

many instructions are fetched, clustering as many instructions as possible into a single fetch is 

more energy efficient. The second and third variations let the fetch buffer drain first before 

fetching is resumed, creating ample space to cluster instructions. Instruction clustering was 

addressed by Buyuktosunoglu et al. [41]. However, their technique does not consider the fetch 

buffer occupancy for effective clustering. Other techniques proposed to reduce traffic did not 

consider instruction clustering [19, 21, 40]. 

3.5 Evaluation Framework 

3.5.1 Architecture Models 

The architecture models were simulated using SimpleScalar [25]. For the base model, 

SimpleScalar was modified to have a separate issue queue and reorder buffer. An 8-way, 

performance-driven model with parameters comparable to those used by similar studies, such 

as in [38, 41, 42], was chosen to help compare the results.  Table 2 lists the architecture 

parameters. Also, the issue queue and the reorder buffer were sized just large enough so that 

performance was not degraded (i.e., simulations for this work showed that a smaller 32-entry 

issue queue and a 64-entry reorder buffer degraded performance for some benchmarks by as 

much as 15%). 

3.5.2 Power Models 

Power consumption was modeled using the Wattch framework [24]. Wattch provides 

mathematical models for the capacitive loading for different types of processor circuits (RAM, 

CAM, clock, or complex logic) as a function of architectural unit sizes. The models can estimate 

dynamic power consumption in the early architectural definitions before committing designs to 

circuit floor-planning and layout. 
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The Wattch models were modified first to fit the base model with a separate issue queue 

and reorder buffer, both with appropriate read and write ports. The models were then 

decomposed to represent structural segmentation. This allowed only occupied segments to 

contribute toward total power during any given cycle. These segmentation models were then 

used for window adjustment and fetch clustering. We also used Wattch power models that are 

sensitive to data changes and that apply aggressive conditional clocking (cc3 mode). The goal 

was to use a base model that is already power efficient to which the occupancy reduction 

techniques could be applied to further reduce power. 

Table 2 Processor parameters used for simulations. 

Fetch Buffer 16 instructions, up to 2 branches 

Decode/Issue/Commit Width 8 instructions 

Issue Queue 64 entries 

Load-Store Queue 64 entries 

Reorder Buffer 128 entries 

ALU 8 integer, 2 integer multiply/divide, 4 floating, 

2 floating multiply/divide 

I-cache-L1 2048 sets, direct, 32 bytes per block, LRU, 2 

cycle hit latency 

D-cache-L1 512 sets, 4 way, 32 bytes per block, LRU, 2 

cycle hit latency 

D/I-cache-L2 16K sets, 4 way, 64 bytes per block, LRU, 16 

cycle hit latency 

3.5.3 Simulation Methods 

For a realistic estimate of performance, occupancy, and power consumption, the SPEC CPU 

2000 benchmark suite from the University of Minnesota was simulated as a workload [26]. This 

benchmark suite is derived from SPEC CPU 2000 and is recognized by SPEC as a valid 

simulation tool for simulation based computer architecture research. The suite uses statistical 

sampling to maintain function-level execution patterns, instruction mix, and cache behaviors for 

entire benchmarks. The available suite compatible with “pisa” SimpleScalar architecture was 

used. The suite contains a mix of compression, graphics, scientific, and database benchmarks 
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[26] For each of the benchmarks, large input data sets were chosen for simulation, resulting in 

700 million to 5 billion instructions per method per benchmark simulation.  

To each benchmark, the following six methods were applied, which are designated as 

M1–M6 as follows: 

M1: Base model was used to establish performance with no architectural or power 

model modifications. 

M2: Empty segments were turned off whenever they became empty. No active 

restriction on window size or fetching was applied. 

M3: The out-of-order engine was dynamically adjusted using the DDI policy. This 

implied simultaneously adjusting the sizes for the issue queue, reorder buffer, 

and the load-store queue. 

M4: Fetch pause based on the window DDI (FetchPause-DDI) was added to M3. 

M5: Fetch pause based on the sustained dispatch rate (FetchPause-SDR) was added to 

M3. 

M6: Fetch pause based on the sustained dispatch rate and the issue queue occupancy 

(FetchPause-SDR+IQ) was added to M3.   

In addition to performance and power statistics reported by SimpleScalar and Wattch, 

the simulator was instrumented to collect distribution data about the number of active 

segments and instruction fetches. Simulation data was then post-processed to obtain averages 

for all benchmarks for each of the M1–M6 methods.  
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4 RESULTS 

This chapter reports the simulation results for the methods M1 through M6 that were described 

in Chapter 3. Section 1 reports instruction occupancy statistics for the out-of-order engine's 

components. The occupancy averaged over all benchmarks for each method is reported. 

Moreover, the percentage time distribution for the number of active segments in each of the out-

of-order engine components is reported for each method. 

The aim of the fetch pausing methods in M4–M6 is to reduce instruction traffic as 

outlined in Principle 2. To compare the methods’ efficacy in reducing traffic, Section 2 reports 

instruction traffic statistics for all methods. Since two of the fetch pause techniques (FetchPause-

SDR in M5 and FetchPause-SDR+IQ in M6) are also designed to take advantage of instruction 

clustering for extra power savings in the i-cache, Section 3 reports statistics for instruction 

clustering for all methods. The clustering statistics include the average number of instructions 

per single fetch, the distribution of the number of instructions per fetch, and the average fetch 

event rate. 

Section 4 reports power consumption statistics generated by the power models for all 

methods. The power statistics are reported in two formats: the first is power consumption by 

each component broken down by method, and the second is total processor power consumption 

for each method broken down by component. The first format helps indentify how effective 

each method is in reducing power consumption for a specific component. The second format 

shows total processor savings for each method and the relative effect of each component on the 

total power savings. 
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Finally, Section 5 reports the methods' effects on the benchmarks' performance. The 

percent change in IPC performance is tabulated for each benchmark and for each method. The 

average performance effect for each method is also given in that section. 

4.1 Instruction Occupancy Reduction 

The average instruction occupancy for each of the six methods (M1–M6) was calculated for the 

reorder buffer (ROB), the issue queue (IQ), the fetch buffer (FB), and the load-store queue (LSQ). 

The instruction occupancy statistics are based on architecture models and are independent of 

the power models. Figure 28 shows the average occupancy reduction for the M2–M6 methods. 

Turning off empty segments in M2 does not reduce instruction occupancy, since no size or flow 

restrictions were applied. 

When the out-of-order engine was downsized in M3 with the DDI policy, instruction 

occupancy dropped 16-17% in the issue queue, the reorder buffer, and the load-store queue. At 

the same time, the fetch buffer occupancy remained constant in M3 because no fetch pausing 

restriction was applied. The fetch buffer occupancy dropped by 15% in M4 when the 

FetchPause-DDI condition was added (Figure 28). 

However, when the sustained dispatch rate condition (FetchPause-SDR) was added in 

M5, the occupancy dropped the most in all components: 40% in the FB, 33% in the IQ, 27% in 

the ROB, and 27% in the LSQ (Figure 28). The decrease in the fetch buffer occupancy is a strong 

indication that the fetch buffer is getting drained at a much faster rate. This implies that traffic 

bursts are being dampened successfully, which is the aim of Principle 2. 

When the IQ minimum occupancy condition was added to the fetch pause condition 

(FetchPause-SDR+IQ) in M6, the fetch buffer and the window occupancies substantially 

dropped as well, but not as much as they did in M5. The FB dropped 21%, the IQ 25%, and the 

ROB and LSQ 22% (Figure 28). 
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As instruction occupancy is reduced, the number of active segments is also reduced. 

Figure 29 shows the proportions of time (averaged over all benchmarks) of the number of active 

segments for the IQ, the ROB, and the LSQ. In M2, the IQ spends a large proportion of time 

having 8 active segments, but in M3 this time proportion is reduced in favor of smaller (2–5) 

active segments. This trend toward reducing large number active segments reaches a maximum 

in M5 where the IQ spends significantly more time having a smaller number of active segments, 

which  helps reduce power consumption. This trend toward reducing the number of active 

segments is exhibited in the ROB and the LSQ as well. The number of active segments was 

computed based only on the instruction occupancy, which means it was based on the 

architectural model and is unrelated to the power models.  
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Figure 28. Reduction in instruction occupancy for the FB, the IQ, the LSQ, and the ROB. 
Occupancies are averaged over all benchmarks and normalized to M1. 
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4.2 Traffic Reduction 

To illustrate effects on reducing the front-end instruction traffic, Figure 30 shows the average 

instruction fetch rate (instruction per cycle) for all methods. M5, with its FetchPause-SDR, 

reduced the instruction fetch rate the most, from 4 instructions per cycle to 3.5, or about 13%. 

The next best method in reducing fetch rate was M6, which is also based on the SDR. 

Figure 29. Percentage of time for the number of active segments for all methods. M1 is 
omitted as it does not support segmentation. 
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4.3 Fetch Clustering 

In addition to reducing traffic, the goal of methods M4–M6 was to increase the clustering of 

fetched instructions. To show the effect on clustering, Figure 31 displays the average number of 

instructions in a single fetch or i-cache access for all methods. Pausing fetch based on the 

window DDI in M4 leads to a small increase in instruction clustering. However, when pausing 

fetch based on the SDR was applied in M5, the average instructions fetched from a single cache 

line almost doubled compared to M1, from about 7 to 14 instructions. 

This doubling is significant, especially if we consider that the fetch buffer size is 16 

instructions; that is, the number of instructions fetched in a single access went from less than 

half to almost the full fetch buffer size. This increase of clustering is also shown in Figure 32, 

which plots the percentage proportion of fetches by the instructions they carry; it shows that in 

M5 over 80% of fetches carry 13–16 instructions. 
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Figure 30. The average instruction fetch rate, which is reduced the most in M5. 
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Another important variable to consider is the fetch activity on the bus that connects to 

the i-cache. Figure 33 shows this activity in the fetch event rate (fetch per cycle). With effective 

clustering, bus traffic is reduced. M5 exhibits the lowest fetch activity, which is reduced by 56% 

compared to M1. 
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Figure 32. Percentage of fetches by the number of instructions they carry. In M5, over 80% 
of fetches cluster between 13–16 instructions in one i-cache access. 

Figure 31. Average number of instructions per fetch, which is highest in M5. 
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4.4 Power Savings 

Along with occupancy and traffic statistics, dynamic power consumption in Watts was collected 

during the same simulations. Power savings are illustrated in Figure 34, which shows the 

average power consumption breakdown for the window, the load-store queue, and the i-cache 

for all methods. The window power component covers both issue queue and reorder buffer 

activities, which include wakeup and select-logic accesses, dispatching and issuing instructions, 

physical register accesses and allocating-deallocating reorder buffer entries. The i-cache power 

component reflects energy usage for cache line accesses. The result bus and the clock are also 

included in the figure, because their power consumption is related and was reduced. The result-

bus component reflects energy spent transferring instructions and data between the issue 

queue, the reorder buffer, and the execution units. The clock component is proportional to 

global chip activities. The “other” component in the figure did not have much power change 

and includes the power for the branch predictor, the TLB, the rename and decode, and the d-

cache activities.  

 Figure 35 shows the same data as in Figure 34 but grouped by method in a stacked bar 

graph to highlight savings trends in total processor power consumption.  
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Figure 33. Average fetch event rate, which is also lowest in M5. 
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Figure 35. Total power savings for methods broken down by component to show total processor 
savings and relative effect of component’s savings on the total. 

Figure 34. Total power savings for components broken down by methods. The window 
component includes the IQ and the ROB. 
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When only empty segments were turned off in M2, total processor power consumption 

went down to 76 W from 85 W in M1, or 11% (Figure 35). When the out-of-order engine was 

downsized using the DDI policy in M3, the processor power went down to 70 W, or 17% less 

than M1, mostly due to window power reduction, which was reduced 29% compared to M1 

(Figure 34). Pausing instruction fetch based on the window DDI in M4 yielded only a slightly 

greater reduction in power compared to M3. However, pausing fetch based on the SDR in M5 

reduced the processor power to 62 W, or 27% less than M1. This substantial power reduction 

was largely due to window power reduction (40%), helped by additional i-cache power 

reduction (47%). M5 also reduced the result-bus power, largely due to reduced accesses, and it 

reduced clock power due to reduced global instruction activities. The power reduction in M5 

was also consistent with M5’s reduced traffic and increased fetch clustering. Finally, M6 was 

second best in power reduction with 22% total processor power reduction compared to M1. 

4.5 Performance Effect 

Turning off empty segments in M2 does not affect any performance compared to M1 because it 

does not apply any architecture restrictions. M3 and M4 had 1.5% and 1.8% IPC performance 

loss respectively. M5, the method with the most power savings, did only slightly worse with 

2.6% IPC performance loss, and M6 performed slightly better than M5 with only 1.9% IPC 

performance loss. Table 3 lists the IPC performance for all benchmarks for all methods. For 

each method, the average IPC for all benchmarks is used to calculate the percent change in 

performance compared to the M1 method. 
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Table 3 IPC performance for all benchmarks and for all methods. The bottom row represents 
the percent change of the average IPC over all benchmarks for each method compared to the 
M1 method. 

 Methods 

SPEC Benchmark M1 M2 M3 M4 M5 M6 

164.gzip.graphic 1.9257 1.9257 1.9165 1.9069 1.8683 1.8886 

164.gzip.log 2.2931 2.2931 2.2802 2.2755 2.2623 2.2682 

164.gzip.program 2.2276 2.2276 2.2181 2.2115 2.1987 2.2033 

164.gzip.random 1.2838 1.2838 1.2783 1.2599 1.2122 1.2547 

164.gzip.source 1.7486 1.7486 1.7382 1.7314 1.7083 1.7197 

175.vpr.place 2.4632 2.4632 2.4609 2.4582 2.4194 2.4496 

175.vpr.route 2.5163 2.5163 2.4986 2.4977 2.4816 2.4946 

176.gcc 1.1231 1.1231 1.1112 1.0937 1.0671 1.0832 

177.mesa 4.1002 4.1002 3.8516 3.8621 4.0162 3.9272 

179.art 3.1234 3.1234 3.029 3.0507 3.002 3.0507 

181.mcf 1.9645 1.9645 1.9327 1.9351 1.9158 1.9351 

183.equake 3.0728 3.0728 3.0462 3.046 3.0626 3.0627 

188.ammp 1.4644 1.4644 1.4557 1.4348 1.4248 1.4348 

197.parser 2.1958 2.1958 2.1954 2.1704 2.136 2.193 

255.vortex 2.011 2.011 1.9633 1.9143 1.786 1.83 

256.bzip2.graphic 2.8865 2.8865 2.8391 2.841 2.8261 2.841 

256.bzip2.program   2.9001 2.9001 2.8636 2.8663 2.8501 2.8663 

256.bzip2.source 2.8872 2.8872 2.86 2.8621 2.8481 2.8621 

Average 2.3437 2.3438 2.3077 2.3010 2.2825 2.2980 

% Change 
compared to M1 

― 0.00% -1.54% -1.82% -2.61% -1.95% 
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5 DISCUSSION OF RESULTS 

5.1 Validation of Principle 1 

The objective of reducing instruction occupancy is to create more empty segments in the out-of-

order engine's components than would normally exist. Empty segments can then be disabled to 

reduce power consumption. Two principles, along with a tandem principle to apply them 

together, are proposed to reduce instruction occupancy in the out-of-order engine. The 

principles were described in Section 3.1. 

To validate Principle 1, the data dependence index (DDI) was conceived, and a token 

passing algorithm was developed to measure it (described in Section 3.2.1 and 3.2.2). Case 1 and 

2 of Principle 1 could then be implemented through the developed DDI policy (described in 

Section 3.2.5) to downsize the out-of-order engine's components. 

Results from simulation method M3, which implemented the DDI measurement and 

policy, show that instruction occupancy compared to the base model M1 was reduced in all out-

of-order engine components by 16–17%. More specifically, M3 results also show that the out-of-

order engine components spent higher percentage of cycles with fewer active segments. For 

example, in the segmented base model M2, the engine spent, on average over all benchmarks, 

less than 15% of cycles having 2-4 active segments and over 30 % of cycles having 8 active 

segments. In M3, the percentage of 2-4 active segments increased to about 30%, while the 

percentage of 8 segments decreased to about 15%. The fact that this significant decrease in 

instruction occupancy came at IPC performance loss of only 1.5% indicates the following: 
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 Both cases 1 and 2 of Principle 1 are validated. When they are applied, they will 

reduce instruction occupancy when data dependences become very high or very 

low.  

 The proposed token passing algorithm and the DDI policy are validated as a 

means of applying Principle 1 to reduce instruction occupancy. 

5.2 Validation of Principle 2 and the Tandem Principle 

To validate Principle 2, three techniques were simulated. The objective in each of the three 

techniques with respect to Principle 2 was as follows: 

 FetchPause-DDI, simulated via M4, was not complying with Principle 2 and the 

objective was to reduce occupancy based on the DDI state in the instruction 

window. 

 FetchPause-SDR, simulated via M5, was fully complying with Principle 2. The 

object was to dampen traffic bursts based on the sustained dispatch rate (SDR). 

 FetchPause-SDR+IQ, simulated via M6, was partially complying with Principle 2. 

The objective was similar to FetchPause-SDR except a condition for IQ 

occupancy is added. All three techniques are described in Section 3.3 and their 

simulations described in 3.5. 

Simulation results on standard benchmarks show that instruction occupancy was 

reduced the most in M5 for the technique that is fully complying with Principle 2: 40% in the 

FB, 33% in the IQ, 27% in the ROB, and LSQ. The partially complying technique in M6 came in 

second in occupancy reduction: 21% in the FB, 25% in the IQ, and 22% in the ROB and LSQ. The 

non-complying technique in M4 showed only modest occupancy reduction over M3. These 

results indicate the following: 

 Since the fully complying technique with Principle 2 showed the most reduction 

in instruction occupancy, Principle 2 is validated. The fact that the FB occupancy 
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dropped by 40% in this technique also indicates that the fetch buffer was being 

drained or emptied more often. As this happens, traffic bursts into the out-of-

order engine cannot be sustained and are dampened, just as outlined by 

Principle 2. 

 The FetchPause-SDR technique is validated. Conditioning the fetch pause on the 

fetch buffer occupancy and the sustained dispatch rate (SDR) dampened traffic 

bursts and reduced traffic. 

 Since applying the FetchPause-DDI technique in M5 in addition to the DDI 

policy reduced instruction occupancy more than applying the DDI policy alone 

in M3, the Tandem Principle is also validated. That is, applying Principle 2 in 

tandem with Principle 1 significantly reduced in instruction occupancy. 

5.3 Significance of Clustering Fetched Instructions 

Clustering of fetched instructions has a direct effect on reducing i-cache power consumption. 

Since each i-cache fetch consumes the same amount of power, efficiency increases if each fetch 

is made to carry more instructions. Moreover, as more instructions are clustered together in 

each fetch, fewer fetches are needed for the same number of instructions. This helps reduce 

traffic activities on the bus connecting the front end to the i-cache. 

When the FetchPause-SDR technique pauses fetch to let the fetch buffer drain, it allows 

space for more instructions to be clustered together when fetching is resumed. The results show 

that the average number of instructions per fetch almost doubled, from 7 to 14 instructions, in 

M5 compared to the base model. Since the fetch buffer size is 16 instructions, this increase 

shows that the fetch clustering went to almost the full fetch buffer size. The results also show 

that in M5 the fetch event rate or fetch activity was reduced by 56%. 
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5.4 Significance of Power Reduction Results 

Just as expected, the power consumption results from the power models were closely associated 

with the instruction occupancy reduction. As instruction occupancy was reduced, more empty 

segments were disabled and power was saved. By applying Principle 1 alone with the DDI 

policy, total processor power consumption in M3 went down by 17%, mostly due to power 

savings in the IQ and the ROB, whose power consumption was collectively reduced by 29%. 

However, when the FetchPause-SDR technique was included, as Principle 2 and the Tandem 

Principle outlined, total power consumption in M5 went down by 27%. Just like in M3, the IQ 

and the ROB were also large contributors with 40% power savings. 

Another contributor to the power savings in M5 came from the i-cache. As fetched 

instructions were clustered more effectively, the i-cache power models indicate that its power 

consumption was reduced by 47%. Another important contributor was the result bus and the 

global clock. As more segments were disabled, less signaling was required, thus global clocking 

and bus activities were also reduced. 

These reported power savings are in comparison to the base models that include some 

power efficiency measures. The chosen Wattch power models for this work include conditional 

clocking of accessed unit ports; that is, only accessed ports on a unit contribute toward its 

power consumption. The chosen models also include the overhead for the conditional clocking. 

The reported power savings also include the overhead for segmentation. Care was taken to 

include driver power overhead per segment. That is, the assumption was made that each 

segment needs its own array drivers. 

Although the power savings reported here are significant, they are not a solution by 

themselves to the processor power problem. This work addresses only the dynamic power 

consumption, but as the clock rate and the number of devices on a chip continue to increase 

with each technology generation,  both dynamic and static power consumption will continue to 

increase. The power savings reported here at the microarchitecture level, in conjunction with 

other power saving measures at other design levels, will help curb the power increase. They 
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will help reduce cost, increase reliability, reduce environmental impact, and allow for continued 

performance growth for only some time, and only until a more radical solution is found. 

5.5 Comparative Discussion 

This thesis reports significant reduction in instruction occupancy in all pipeline stages, front to 

back. So far, it is the only known work that reports such statistics for power efficiency.  

Moreover, this thesis reports statistics for clustering fetched instructions. 

Only Ponomarev et al. in [15] report power saving in all of out-of-order engine 

components. Although they use segmentation to reduce power, their technique is passive in 

occupancy reduction. They do not report instruction occupancy or total processor power 

savings, and they report performance loss of 5%, which is twice as much as the performance 

loss in M5. Folegnani et al. in [38] use the IPC to actively disable IQ segments. They do not 

report instruction occupancy statistics or total processor power consumption. Karakhanis et al. 

[19] also use the IPC to limit instruction count, but instruction occupancy statistics are not 

given, nor is the total processor power savings. To compare techniques that reduce the 

instruction count in the processor, at least the instruction occupancy should be reported for all 

major pipeline components.  

Traffic reduction techniques by Manne et al. and Baniasadi et al. report traffic reduction 

statistics [21, 40]. However, traffic reduction does not necessarily reduce instruction occupancy, 

as explained in Section 3.1.2. Reducing occupancy is more effective in reducing power in 

segmented structures.  Reporting total processor power consumption would help compare 

technique effectiveness, especially if they share the same power models. It would also be useful 

if component power consumptions are reported to show the effect of components on the total 

power savings. The work by Buyuktosunoglu et al. in [41] is the only known work based on 

traffic reduction that reports power statistics. The reported total power savings of 10% and the i-

cache power savings of 35% are less than those reported in this thesis for a similar performance 

loss. 
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6 CONCLUSION &  
FUTURE RESEARCH 

6.1 Conclusion 

Processor power consumption has been steadily increasing with each technology generation, 

and this trend is constraining performance of new designs. High power consumption results in 

reduced chip reliability, increased cost of chip package integration and cooling, and increased 

cost of operation. Moreover, with the current growth rate of personal computing, high power 

consumption may not be environmentally sustainable. The ITRS has declared the power 

consumption’s increasing trend a grand challenge.  In effect, this trend must be curbed for a 

continued growth in performance. 

Both the dynamic and the static components of processor power consumption are on an 

increasing trend. The dynamic component is increasing due to high clock rate, increased 

number of devices on a chip, and increased switched capacitance. The static component is 

increasing due to increased leakage current and increased number of devices on the chip. Not 

only is the chip’s total power consumption increasing, but the power density per unit area is 

increasing as well. The high power density results in localized hotspots that vary spatially and 

temporally and can cause timing errors or even physical damage. 

Reductions in power consumption are being pursued at all design levels. At the device 

level, new materials are being sought that can draw less current than present CMOS based 

devices. At the circuit level, techniques are proposed to reduce the switched load capacitance of 

devices and connections. At the microarchitecture level, static and adaptive techniques are 
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proposed to maximize processor efficiency. And at the system and software levels, techniques 

are being investigated that can detect idle cycle times and transition I/O devices, processor, and 

memory into low power states. 

For the processor, the out-of-order engine’s components consume a large proportion of 

the total power on the chip. To achieve high performance, large CAM and RAM arrays are 

needed for the out-of-order issue, and multi-ported RAM arrays are needed for the reorder 

buffer and load-store queue. However, the circuit complexity of such arrays grows 

superlinearly with size [39]. In fact, the match and the tag lines for the CAM array and the bit 

and word lines of the RAM array all carry high capacitive load, which contributes to their high 

power consumption. 

Previously reported microarchitecture techniques have shown that segmenting the out-

of-order engine and shutting down empty segments can reduce power consumption. However, 

these techniques have not reached their full potential. In one technique, segments in an out-of-

order engine component can be disabled to save power whenever they become empty, but no 

attempt is made to limit the number of active segments that don’t contribute to performance 

[15]. In other techniques, occupancy is actively reduced when it doesn’t contribute to 

performance, but only in the issue queue and based on the IPC [19, 38]. Relying on the IPC 

requires periodic upsizing and long tuning periods that can miss power savings opportunities. 

Another group of techniques relies on reducing instruction traffic, but reducing traffic can still 

leave engine queues congested, especially when the queues’ service rate is slow[21, 40, 41]. 

The work in this thesis builds on previous techniques to overcome some of their 

limitations. It offers the following contributions to reduce processor power consumption: 

 Principle 1 is proposed to actively and gradually limit the number of active 

segments in the out-of-order engine whenever data dependences reduce the 

engine’s effectiveness in issuing instructions out-of-order. The advantage of this 

principle is that is it can reduce power consumption not only when data 

dependences are high, but also when they are low.  
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 A new data dependence index (DDI) is proposed to measure data dependences 

in a single number. 

 A token passing algorithm is proposed to dynamically measure the DDI. The 

advantage of this algorithm is that it does not require periodic upsizing and can 

be applied at short intervals to increase power savings over short intervals. 

 A DDI policy is proposed to apply Principle 1 to limit the number of active 

segments. 

 Principle 2 is proposed to dampen traffic bursts and moderate the front-end 

pressure in order to reduce traffic. The advantage of dampening traffic bursts is 

that it helps queues maintain reduced occupancy even if the service rate is slow. 

 A fetch pause technique is proposed to implement Principle 2 based on the 

sustained dispatch rate (SDR) and the fetch buffer occupancy. The advantages of 

this technique are its low complexity and its ability to pause fetching on a cycle-

by-cycle basis. 

 The proposed SDR fetch pause technique offers effective instruction clustering 

from the i-cache. This clustering translates into increased efficiency in the i-cache 

and its connection bus. 

 A Tandem Principle is proposed to apply both Principles 1 and 2 at the same 

time to further reduce instruction occupancy and increase efficiency. The two 

Principles and their methods operate independently but in tandem, matching 

resources to thread behavior changes that are both microarchitecture 

independent and dependent. Principle 1 responds to data dependence changes, 

which are microarchitecture independent. Principle 2 responds to changes that 

are microarchitecture dependent. 

 The application of the two Principles offers reduced occupancy in all pipeline 

stages, front to back: 40% in the fetch buffer, 33% in the issue queue, 27% in the 
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reorder buffer and the load-store queue. The SDR fetch pause technique offers 

clustering of nearly a full fetch buffer size. 

 This thesis offers statistics for the reduction in total dynamic power consumption 

for a single threaded, high performance processor,  and in all of its major 

components. This helps to show the effect of components’ dynamic power 

reduction on the total. 

 The proposed techniques offer 27% savings of the total dynamic power 

consumption with performance loss of only 2.6%. 

6.2 Future Research 

6.2.1 Applications to Power Efficiency 

Static Power Consumption:  

In addition to rising dynamic power consumption, which is addressed in this thesis, static 

power consumption has also been rising due to reduced supply and threshold voltages of deep 

sub-micron technologies (Section 1.4). The DDI policy and the FetchPause-SDR were applied in 

this work to reduce instruction occupancy, thereby creating additional empty segments that can 

be disabled to reduce dynamic power consumption. Static power is still consumed, however, by 

those disabled segments, unless a circuit technique is applied to reduce it. But first, circuit 

models have to be developed to accurately estimate how much static power is consumed by 

out-of-order engine CAM and RAM arrays and how much of it can theoretically be saved. 

Adaptive microarchitecture techniques have been proposed to reduce static power 

consumption in caches. In i-cache, only a small subset of cache lines is active and accessed at 

any interval. Thus, other cache lines can be turned off to stop or reduce their leakage current. 

Examples of these techniques are Powell et al. [62] and Flautner et al. [63]. In [62], a wide NMOS 

transistor is used to cut off the supply voltage, Vdd, for SRAM cells in unused lines. In [63], 

unused cache lines are put into a drowsy, low leakage, state by lowering the supply voltage. 

The advantage of the drowsy state is that the caches lines in the drowsy state maintain their 
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data. In the gated-Vdd technique, turned-off lines lose their data; thus data has to be fetched 

again from L2 caches, which can increase dynamic power consumption. For the out-of-order 

engine’s components, a gated-Vdd technique could be used if maintaining states in disabled 

segments is not required. Otherwise, a drowsy state technique could be used. 

Mobile Processors:  

The DDI policy and FetchPause-SDR target the dynamic power consumption of a high-end, 

high performance processor. However, mobile and embedded processors’ performance has 

been increasing and steadily approaching that of high-end processors. The constraint for mobile 

and embedded processors is performance per Watt. A question worthy of study would be how 

applicable are the DDI policy and FetchPause to a mobile processor that has somewhat reduced 

microarchitecture parameters. The hypothesis in this case is that reducing instruction 

occupancy in mobile processors can lead to power efficiency and long-battery life.  

6.2.2 Applications to Performance Improvement 

Thread Assignment in Heterogeneous Multi-Processors: 

To take advantage of the increasing number of on-chip devices offered by each technology 

generation, computer architects are exploiting thread-level parallelism by offering multicores or 

chip multi-processing (CMP). A CMP with small low-power cores can produce a higher thread 

throughput than a single, large high-power core. Thus CMP offers higher system throughput 

per unit power than a single core. For servers with a high thread count, a large number of low 

power cores is more desirable to increase the ratio of throughput per unit power. But for 

desktops and laptops with a low thread count, the performance of a single thread is more 

important; thus, fewer large, high-power cores are more desirable. 

A heterogeneous multi-processor (HMP) has been proposed to get the best of both 

worlds by having a mix of large, complex cores and small, simple cores [64]. When a thread's 

performance is not helped by a large, complex core, it can be dynamically switched to a small, 

low-power core, which consumes less power. Since the smaller cores take up less chip area than 

complex ones, an HMP can have more cores than a CMP with large cores for the same fixed 
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chip area. Thus, an HMP can also have a higher throughput than a CMP with only large, 

complex cores. 

One challenge for getting the most power efficiency and performance in HMP is the 

assignment of threads to cores. Proposed assignment techniques so far have had some 

limitations. A dynamic assignment policy was proposed based on the ratios of IPC for different 

threads running on different cores [65]. To obtain the IPC ratios, all threads have to be run on all 

cores for an extended period of time, which can limit this technique’s usefulness. By the time all 

the ratios are obtained, thread behavior can change already and performance can suffer because 

of sub-optimal assignments. Another technique proposes an assignment metric as the geometric 

distance between inherent thread characteristics and core configurations [23]. But this technique 

allows only a static assignment and does not consider data dependences as an inherent 

characteristic. 

Data dependences can play an essential role in dynamic thread assignment in HMP. For 

example, if a thread's instructions line up in a long data dependence chain, core configuration 

doe not matter much, and a simple, in-order issue core can be sufficient for optimal 

performance. The sustained dispatch rate (SDR) can also help in thread-to-core assignment. For 

example, a low DDI (low data dependences) combined with a low SDR indicates that the core 

microarchitecture, such as caches, is causing a bottleneck. A thread assignment to a core with 

larger caches would then be more suitable.  Future research can explore the combination of the 

DDI and SDR as metrics for dynamic assignment in HMP. 

Simultaneous Multi-Threading (SMT):  

In SMT, two or more threads can execute simultaneously on the same core, sharing the 

instruction window. This can improve throughput, as long as the sharing threads don't interfere 

with each other's execution. Thus, dynamically picking non-interfering threads from an 

available pool to share a core is critical for optimal throughput. Data dependences constitute an 

essential and inherent characteristic that should be taken into consideration for sharing threads. 

For instance, if two threads have high level of data dependences, then their performance is 

insensitive to window size and can share a core without interference. If they both have mid-
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level data dependences such that their performance is sensitive to window size, then their 

sharing might interfere with their performance. In this case, throughput would benefit if one of 

the two threads is swapped out with another non-interfering thread. Future research can 

explore how the data dependence index (DDI) along with the sustained dispatch rate (SDR) can 

be used to dynamically determine whether threads' execution can be interfering on any given 

core. 

Out-of-order Instruction Scheduling:  

Scheduling techniques have been proposed to reduce the complexity of the out-of-order issue 

and improve performance [49, 53-56]. However, scheduling instructions might be wasteful in 

two cases. (1) When data dependences are high, instructions cannot be scheduled. (2) When 

data dependence are very low, the out-of-order issue can easily find enough instructions to 

keep the multiple-issue pipeline flowing without scheduling. Thus, future research can explore 

scheduling techniques' tradeoff between performance and power. In a heterogeneous multi-

processor (HMP) system, for example, one core can have high-power with complex scheduling, 

and another core can have low-power without scheduling. A metric such as the DDI can then 

help decide which core a thread can be assigned for optimal performance and power efficiency. 

Dynamic Voltage and Frequency Scaling (DVFS):  

The out-of-order engine's components have high circuit complexity that limits maximum clock 

frequency on the chip [39]. The limitation stems from the large switched capacitance of the long 

bit-lines within component arrays. Dynamic downsizing of the out-of-order engine by 

segmentation and disabling empty segments reduces the switched capacitance of the bit-lines. 

Future research can explore whether reduced switched capacitance can be exploited by DVFS to 

increase frequency or voltage when segments are disabled to improve performance.  

The DDI and the SDR can help decide when voltage and frequency should be scaled up 

or down. For example, low DDI and high SDR values imply that data dependences are low and 

the microarchitecture is not being a bottleneck. In this case, the voltage and frequency can be 

scaled up to improve performance. But a low DDI and low SDR imply that the 
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microarchitecture is causing a bottleneck (maybe due to i-cache misses), in which case the 

voltage and frequency should be low to save power. 

Data dependences constitute an essential and inherent characteristic of thread execution. 

Quantifying this characteristic through a metric (such as the DDI) and using it with a 

microarchitecture dependent metric (such as the SDR) helps adapt chip resources to optimize 

power efficiency. This adaptation has potential to also optimize performance. Chip resources 

can be in the same core, can be different cores, or can be adapting voltage or clock frequency. 

This type of adaptation has benefit to the continued growth of computing.     
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