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ABSTRACT

EVOLUTIONARY OPTIMIZATION METHODS
FOR ACCELERATOR DESIGN

By

Alexey A. Poklonskiy

Many problems from the fields of accelerator physics and beam theory can be
formulated as optimization problems and, as such, solved using optimization meth-
ods. Despite growing efficiency of the optimization methods, the adoption of modern
optimization techniques in these fields is rather limited. Evolutionary Algorithms
(EAs) form a relatively new and actively developed optimization methods family.
They possess many attractive features such as: ease of the implementation, modest
requirements on the objective function, a good tolerance to noise, robustness, and
the ability to perform a global search efficiently which make them the tool of choice
for many design and optimization problems. In this work we study the application of
EAs to problems from accelerator physics.

We review the most commonly used methods of unconstrained optimization and
~ describe the GATool, evolutionary algorithm and the software package, used in this
work. Then we use a set of test problems to assess its performance in terms of com-
putational resources and the quality of the obtained result. We justify the choice of
GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous
global optimization package. We design the model of their interaction and demon-
strate that the quality of the result obtained by GATool increases as the information

about the search domain is refined, supporting the usefulness of this model. We dis-



cuss GATool’s performance on the problems with static and dynamic noise and study
useful strategies of GATool parameter tuning for these and other difficult problems.

We review the challenges of constrained optimization with EAs and then describe
REPA, a new constrained optimization method based on repairing, in exquisite detail,
including the properties of its two repairing techniques: REFIND and REPROPT.
We assess REPROPT’s performance on the standard constrained optimization test
problems for EA with and suggest optimal default parameter values based on the
results. Then we study the performance of the REPA method on the same set of test
problems and compare the obtained results with those of several commonly used con-
strained optimization methods with EA. Based on the obtained results, particularly
on the outstanding performance of REPA on test problem that presents significant
difficulty for other reviewed EAs, we conclude that the proposed method is useful
and competitive. We discuss REPA parameter tuning for difficult problems and crit-
ically review some of the problems from the de-facto standard test problem set for
the constrained optimization with EA.

We study several different problems of accelerator design and demonstrate how
they can be solved with GATool. These problems include a simple accelerator design
problem (design a quadrupole triplet to be stigmatically imaging, find all possible
solutions), a complex real-life accelerator design problem (an optimization of the
front end section for the future neutrino factory), and a problem of the normal form
defect function optimization used to rigorously estimate the stability of the beam
dynamics in circular accelerators. The positive results we obtained suggest that the
application of EAs to problems from accelerator theory has large potential. The

developed optimization scenarios and tools can be used to approach similar problems.
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CHAPTER 1

Introduction

1.1 Beam and Accelerator Theory

1.1.1 Differential Algebra and Map Methods

"T'he dynamics of the various objects in Physics are often described by a system of the

nonlinear ordinary differential equations

dx
X f(x,t), 1.1.1
= f(x.1) (1.1.1)
where x is a vector of coordinates of the considered object, t is time, and f is a

Nonlinear vector function that describes various forces acting on the object and thus

8OVerning the dynamics. Initial conditions
x(0) = x4 (1.1.2)

Specify the initial position of the object, i.e. its position at the moment of time that
S <Comnsidered initial. It is often advantageous to describe the action of the system
(1.2, 1) with a so-called flow operator, M7, which establishes a mapping between the

injt; " . . " :
tia] position x; of the object at ¢ = 0 and its final position x¢ that the object



assumes at time T

xf = Mp(x). (1.1.3)

The flow operator approach is especially useful for studying various properties of the
dynamics in systems that are periodic in ¢. Since it captures the essential properties
of the dynamics in the system, it is possible to assess the properties of the low M-
instead of the dynamics of individual objects with varying initial conditions. A good
example of such system is a circular particle accelerator.

The problem here is that even in the cases of relatively simple functions f it is
frequently not possible to determine the system map in a closed form, so for the
practical purposes M is often calculated via numerical integration of the equations
(1.1.1). However, if the function f is only weakly nonlinear, i.e. if its behaviour is
mostly determined by the linear component, then its map is also only weakly non-
linear and thus can be represented as a Taylor expansion with practically acceptable

precision. Developments in the field of Differential Algebra (DA) and its applications

to Automatic Differentiation have have opened the possibility to compute the Taylor
series for maps of such systems to an arbitrary high order. A detailed treatment
of the Differential Algebra framework and its numerous applications including map
methods for Accelerator Physics can be found in [18].

Particle accelerators typically consist of numerous subsystems influencing different
aSpPects of particle dynamics. The original method of map calculation, which involves
p FOPagation of functional dependencies through a numeric solver of differential equa-
tions using automatic differentiation technique, is slow and imprecise. Computation
it the flow for individual devices and then application of the composition property
to ODbtain the flow of the whole accelerator can be performed within the Differential

Algebra framework quite efficiently and with unlimited precision.




The law of map composition tells us that if we have two maps: MtOvtl that relates
the initial position at the () to the final position at time ¢; and My, to that relates
the initial position at time ¢ to the final position at time t9 then the map that relates
the initial position at time () to the final position at time t9 can be constructed via
a map composition:

MtOth = Mt1,t2 o MtO’tl' (1.1.4)

Using this property we can assemble the transfer map for the entire accelerator if we

have transfer maps of all its elements which we can compute using DA.

1.1.2 Beam Dynamics

Particles in accelerators are rarely studied as standalone objects. Usually ensembles

of particles that have similar coordinates are used. These ensembles are called particle

beams. Since the particles in a beam are separated from each other by a relatively

small distance, it is often convenient to select one imaginary particle that represents

the motion of the whole beam inside the accelerator and then describe the motion

of other particles in the beam in the coordinates that are relative to those of the
reference particle [18,89,170,175].

In the laboratory coordinate system the particle state is usually represented by

& Vector that consists of its space coordinates and the components of its momentum

Vector corresponding to the coordinate axes. Time usually serves as an independent

Variable:

2(t) = (2,pz, Y, Py, 2,Pz) L - (1.1.5)

I . . . :
T the curvilinear coordinate system that is attached to a reference particle the ar-

c
length along the reference trajectory is usually serves as an independent variable. In



this coordinate system (often called the curvilinear coordinate system) the particle

state is represented by the following coordinates:

( a=pz/py
2(s) = y , (1.1.6)
b= py/pg
l=k(t—tg)
\ § = (E - Eg)/Eg )

where the z, y denote the position of the particle in this relative coordinate system,
po is an arbitrary fixed momentum (usually the one of the reference particle), E
and t( are the energy and the time of flight of the reference particle, E is a total
energy of the particle, and k is a scaling coeflicient that transforms time coordinate
to space-like coordinate. In those coordinates the reference particle corresponds to a

z = 0.
The motion of a particle in the electromagnetic field is governed by the Lorentz

force [93]:

P _ (E+vxB). (1.1.7)

dt

In order to study the motion of the particles that form the beam in the curvilinear
Coordinates, those equations of the form (1.1.5) in the laboratory coordinate system,
are transformed into the curvilinear coordinate system, for the special case when the
reference trajectory is restricted to a plane (which is the case for most particle acceler-

atOI‘S) . Applying these transformations and using the reference trajectory simplifving



assumption they can be brought to the following form:

a:’=a(1+h'.tt)8Q (1.1.8)
Ps
y =b(1+ hw)m (1.1.9)
Ps
1 B B
/=( +npoFr zﬂL“_l)u+hﬂ+h@- (1.1.10)
l+n9pPsXe)  XmOPs Xm0 Ps
E B
b/=(1+"”_0 y , B B: @)(Hm) (1.1.11)
1+7n9PsXe0 Xm0 Xm0 Ps
k
ﬂ:(u+hmiiﬂfg—0-— (1.1.12)
1+ 79 ps Y0
5 =0 (1.1.13)

where / is a derivative with respect to the arclength s, h is a radius of the curvature

of the reference trajectory,

9 ~1/2
gL_(n@+n)"l az_g) ,

v~ \ @i
E-eV(z,y,s)
17 — 2 )
me
PQ
Xm0 = Ze
is the magnetic rigidity,
_ Povo
XeO = 7¢

Is the electric rigidity, B, By, Bz and Eg, Ey, E; are z, y and z components of
the Inagnetic and electric field in the laboratory coordinate system, correspondingly.
A rigorous definition of the coordinate system and the detailed derivation of the
®Quations of motion in this system (1.1.8)-(1.1.13) can be found in [18].

O nice the fields and the reference trajectory are known, these equations can be di-
rectly integrated (analytically for simplest cases, numerically for most real-life prob-

le
™MS) in order to determine the dynamics of the particles. More efficiently, map



methods, mentioned earlier, can be used for this purpose. The latter approach is used

by the Beam Physics package for COSY Infinity scientific computing code [22,23).

In this framework the Taylor expansion of the map is actually an array of Taylor

expansions of the dependencies of the final coordinates on the initial coordinates.

Employing notation that is frequently used in optics in order to emphasize the nature

of the coordinate dependencies, it can be written in the following form:

rg = (z]x)x; + (zla)a; + (xly)y; + (z]b)b; + (x| + (x|6)4;

+ (mlx.r).rl? + (z|za)ria; + (z|xy)xiy; + (x|eb)rib; + .. ..

In this notation the Taylor expansion for the map of the system (1.1.8)-(1.1.13)

takes the form:

2 = Y (ale'la'2y 35/411506)2 102y 3y 4055 (L1

b = 3 (bla1a'2y 3614175676 ).} Laf2y/ 354115576 (1.1.17)

I = 3" (11" 1ai2y3541%56%6)2; 1 0; 2430415676 (1.1.18)

ap = Y (ale’la’2y35%41%5 5i6)551a;’2y;’3b§4,§5 516 (1.1.19)

(1.1.20)

Where the summation is performed on all indices i1, 19, ..., 7g such that Zgzl i <n,

" 1IS the Taylor expansion order.

Nox rmnal Form Methods

liepetitive systems such as synchrotrons and storage rings are the main component of

t
he most modern high-energy particle accelerators. In those circular lattices, particles



ought to remain confined for many turns. Hence their trajectories should be stable,

which usually requires them to be bounded in some way. The study of the dynamics of
particles in these structures and the stability of the dynamics is very important both
theoretically and practically. The advantages of map methods for such studies lie in
the ability to calculate a map of motion (see section 1.1.1) representing the action of
all accelerator elements in one full revolution. Then the repeated application of this
map, the so called Poincaré map, can be studied to evaluate the stability of the entire
device for large number of turns.

The linear theory of repeated motion has been fully developed since its introduc-
tion by Courant and Snyder [49]. It relies on the well-known matrix methods from
Linear Algebra (see [17] for detailed treatment). Since the transfer map to first order
is a matrix, the so called transfer matrix, the stability of the motion is determined
by its eigenvalues: if any of the eigenvalues has absolute value > 1, then the motion
is unstable. Since the motion in such structure is volume preserving, the product of

the eigenvalues of the transfer matrix must be one. This means that if there exists
an eigenvalue > 1, there must be another inversely proportional to it and thus < 1.
However, such an arrangement would make the motion unstable. Therefore for the
IMotion to be stable and volume preserving, all eigenvalues must have a magnitude
of one. However, real-valued eigenvalues that have the magnitude of one can be per-
turbed from this value under a small perturbation in the system parameters rather
€asily, hence they should be complex. In sum, for our motion to be stable we need
the System’s linear transfer matrix to have only complex conjugate eigenvalues with
Magmn itudes of one. Further development of this theory and other conditions imposed

©N the matrix and its eigenvalues by stability considerations can be found in any of

t . .
he Sources mentioned earlier.




Nonlinear motion is in general much more difficult to study. In accelerator theory
nonlinear studies are usually divided into the study of the parameter-dependent linear
motion, where parameters include the particle energy spread, magnet misalignments,
etc., with perturbation theory; and the study of fully nonlinear dynamics. Many use-
ful properties of nonlinear motion can be obtained exactly by employing the method
of normal forms, first introduced (to low orders, no more than 3) by Dragt in 1979 |54]
and developed over almost two decades, then brought to its full practical power (max-
imum order is theoretically infinite, i.e. limited only by the available computational
resources) by Berz in 1992 within the Differential Algebra framework [16,17]. This
approach provides an algorithm to build a nonlinear change of variables to remove
all removable non-linearities and present motion in the set of variables where it is
circular with amplitude-dependent frequency.

Assume, that we obtained the nonlinear transfer map of a particle optical system

under consideration:

Zf =M(Zi,5), (1.1.21)

where z is the 2v-dimensional vector of the phase space coordinates, § is the vector
of the system parameters and the indices 7 and f correspond to initial and final
COordinates. We want to build a sequence of the coordinate transformations A of the

map
AoMoA™l (1.1.22)
to Termove all nonlinearities of every order up to the desired.

"The first transformation is performed in order to make the map origin-preserving

for any §:




DA methods are employed to move the map to the new parameter-dependent fixed
point z i so that

zp = M(zp,0). (1.1.23)

It is possible if and only if 1 is not an eigenvalue of the linear part of the map. For
stable repetitive systems such a condition always holds as we mentioned earlier.
The diagonalization of the linear part of the map, so called linear diagonalization,
is performed on the next step. From Linear Algebra we know that in this case
diagonalization is possible if the matrix has exactly 2v distinct eigenvalues, which is
true for most modern circular accelerators. In this case it is possible to represent all
eigenvalues as complex conjugate pairs r ~eiiuj. It is easy to show that for symplectic

J

systems [17], the condition for the determinant to be unity entails

rj=1, p]-eR, forj=1,...,v.

If we now transfer the matrix to the new basis of complex conjugate eigenvectors vj:t

corresponding to complex conjugate eigenvalues, it assumes the diagonal form

riet#1 0 ... 0 0
0 reeT™ . 0 0
R = : 5 : : : (1.1.24)
0 0 .. rpettv 0
0 0 ... 0  rye v

On subsequent steps we iteratively build a sequence of non-linear transformations
of the form (1.1.22), such that on each step the constructed transformation tries to
remove one particular order of nonlinearity. The ultimate goal is to remove all non-
linearities up to a specified order but, as it turns out, this is not always possible.
Nonlinearities that can be removed by means of this transformation are called remov-
able, all other nonlinearities are called non-removable. Non-removable nonlinearities

usually characterize the non-linear nature of the system under consideration.



It is worth noting that all these transformations are nonlinear and thus they do
not affect the diagonal form of the linear map obtained in the first two steps. Since
the process is iterative, it is sufficient to describe the algorithm to make the m-th
step in order to fully determine it. Having one step of the algorithm we can proceed
in applying it from order 2 to the desired order.

On the m-th step we try to remove nonlinearities of the order m only. In order
to achieve it, we start by splitting the map M into a linear part R and a nonlinear
part Sy M = R+ Sm. Then we perform a transformation using a map that to the

m-th order has the form

Am =T+ T, (1.1.25)

where Z is a linear unity map, 7m has only zero terms up to order (m — 1). The
linear part of the transformation is a unity matrix that is invertible, hence the map
Am itself is invertible. Using relations for transfer map inversion from [17], we obtain

the inverse to order m:

Applying the transformation from (1.1.22), we obtain

AmoMo ATl = (T+Tm) o (R+ Sm) o (T - Tm)
=m (I+Tm)0(R+Sm—ROTm), (1127)

=mR+Sm+(TmOR—ROTm)

where we used the fact that any nonlinear map composed with 7y, is zero to the
order m since 7y, is of the order m and does not have smaller-order terms. If we now

could choose Ty, so that for communicator

Cm= {Tm,R}=(TmOR—ROTm) (1128)

10



the following condition holds

Cm = —Sm, (1129)

then result of the transformation in (1.1.27) can be simplified to
AmoMo Azl = R (1.1.30)

and the transformation Ay, defined by (1.1.25) removes all nonlinearities of the map
up to the order m. However, such choice of 7, is usually not possible.
In order to find the conditions for its existence, we consider the Taylor expansion
+

of the 7, in the coordinates 55 in the eigenvector basis v]-:t. The Taylor expansion

for the j-th component of the 7, has the form
T:t— Tﬂ: k+k— +l"i’_ —kl— +k'g_ -—k;
mj_Z( T ET) () ()™ ()™ (sg) ™, (1130
where
+ -
(T [ 1)
are Taylor expansion coeflicients for corresponding exponents of s}t; k™t and k™ are
vectors of exponents
kt = ...,k
k™ = (k.. k)
Now if we, using the same notation for Taylor expansion of Cp, substitute relations
(1.1.31) for Tr,, and the exact expression (1.1.24) for the R into the definition of the
communicator (1.1.28), and then use the fact that polynomials are equal if the corre-

Sponding coefficients are equal to equate coeflicients of the corresponding exponents

in Taylor polynomials, we obtain the expression for the Taylor expansion coefficients

11



of Cr, components:

v k++k_ . + _ i
+ 1+ 1) = ) in(kT -k CooEu et -
(= lH_lrl et )-—r] e I (T Ik k).

(1.1.32)
Substituting this expression into the condition (1.1.29) and solving the resulting

equation for the coefficients of the Taylor expansion (1.1.31) of 7m, we obtain:

(S it k)

Pk _ i\
((H?:lrll l)'ew(k+_k )‘Tj'eiwj>

Now we see that the existence of the transformation (1.1.30) depends on conditions

(1.1.33)

+ —
(ij|k+’k ) =

for which the expression in the denominator in the formula (1.1.33) is not zero. If it is
zero for certain values of (k+, k™), then the corresponding Taylor expansion term of
Sm cannot be removed. Some special cases, such as symplectic systems, which often
arise in accelerator physics, as well as quantities of interest (in particular resonances
of different kinds) that can be obtained from the normal form transformation, are

discussed in details in [17].

Normal Form Defect Function

Normal forms (see [17], section 1.1.2) are a valuable part of the map methods in Dif-
ferential Algebra (DA) framework and a powerful tool in studying the dynamics of the
particles in circular accelerators. As was mentioned, the motion in these coordinates
follows nearly perfect circles around a fixed point (Fig. 1.1).

If the motion has perfectly circular nature, it entails constancy of the radii that
are thus invariants of motion. This, in turn, demonstrates the stability of the motion

for the infinite time and number of turns. If the motion is non-perfectly circular, a

12



Figure 1.1: Phase space trajectories in FODO cell, obtained for 1000 turns by ap-
plying one turn map to the vector with initial coordinates 1000 times; in conventional
(left) and normal form (right) coordinates

measure of the defect in the invariants of the motion I is:
d = max([(M) = I), (1.1.34)

where M is the Poincare map (see section 1.1.2), and can be introduced using
Nekhoroshev-type estimates [140]. It then could be studied to estimate the time
and the number of turns that particles stay in the accelerator and make assertions
on motion stability [16,18,20]. Note, however, that the presented approach to calcu-
lation of the invariants of motion involves Taylor expansions of maps to a specified
order, hence it allows one to obtain the expansions of the invariant radii to that order
only. This means that with this method we can obtain only approximate invariants
from (1.1.34). Nevertheless, the quality of the approximation for the weakly nonlinear
systems that particle accelerators are in most cases, improves rapidly with the order
of the approximation order.

Suppose all trajectories in normal form coordinates are perfect circles. Then we
know we have found an invariant of the system for all degrees of freedom. Now,
if the transformation from normal form coordinates to conventional coordinates is
continuous, then the set of trajectories is bounded and the motion is stable for an
infinite time. For most systems under consideration this, however, is not the case.
One reason for this is that the normal form defects can be very small and, being

calculated on a computer, can be caused by floating point operations errors. Another
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reason is that the particle dynamics is calculated by means of Taylor expansions up to
a specified order, so the invariants we obtain are only approximate. Here the defects
of this approximation (decreasing with increasing order) produce the deviation from
circularity. A third reason that many systems are non-integrable, i.e. they do not have
an invariant for every degree of freedom. In this case the motion is non-circular even
if the dynamics are calculated exactly, with no approximations or numerical errors.
The non-integrability of the system indicates itself in the form of small denominators
in (1.1.33) in some step of the normal form transformation algorithm applied to its
map (see section 1.1.2). The circularity of the motion in the Figure 1.1 is disturbed
for all three reasons but the non-integrability of the system under consideration most
likely has the largest impact.

Any real physical system has some construction defects and real values of pa-
rameters can deviate from designed. Rigorous estimations of the stability ranges for
perturbed motion exist, but stability predictions are possible for only for very small
perturbations and totally dominated by realistic construction errors. While the defec-
tive nature of the invariants of motion prevents us from making statements on global
stability for an infinite period of time, it is still possible to estimate stability for a
finite, but still practically useful period of time, applying principles established by
Nekhoroshev [140].

In order to do so, we divide the normal form coordinate space for each degree of
freedom into a set of rings such that in each of them motion is almost circular, as
demonstrated in Figure 1.2(a). Suppose that for the ring n the defect is not larger

than Arp. Then all particles launched from ring (n — 1) need to make at least

_ r™m — Tn_l
Nn = = = (1.1.35)

turns before they reach the n-th ring (see Figure 1.2(b)). If we want to estimate the
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2r
(b) Particles motion in the ring: arrows
point at particle positions, step corre-
sponds to one turn, height of the step
corresponds to the defect, maximum
height corresponds to Ar;, number of
steps is the number of turns N; particle
stay in this ring. Note that the defect
gets larger towards the outer radii.

(a) Normal form coordi-
nate space divided into a
set of rings where we esti-
mate the maximum defect

Figure 1.2: Normal form coordinate space divided into rings and schematic view of
particles motion in one of those rings

minimal number of turns it would take particles to get from the inner circle bounded
by rin (initial region) to the outer ring bounded by rmax (restricted region, particles

that have reached it are considered lost), we can perform the subdivision

T"min = "1 <rg <---<Tnp = Tmax:
Then if maximal defects on each of the rings bounded by those radii are Ar;, ¢ =
2,...,n correspondingly, the total minimal number of turns, particles need to get to

the restricted region from the initial region, is given by

N.Z

Usually the normal form defect function grows quickly with radii (as can be seen,

Ti—Ti—1
Ar,

(1.1.36)
for example, in Figures 4.8 and 4.9), hence large values of n help us to get a better
estimate of N. Since in most cases of interest the Ar; are small, motion stability can

be assured for a large number of turns.



The practical usefulness of this method heavily depends on the ability to determine
tight and rigorous bounds for the defects of Ar;. In practice, defect functions (Figs.
4.8, 4.13) are multi-dimensional polynomials of high order, with many of the high-
order elements canceling each other out. Thus they pose difficulties for conventional
interval methods. Studies on obtaining rigorous bounds for the maxima of normal
form defect functions [20,26,126] have lead to many interesting numerical algorithms
applicable to much wider class of problems (see section 2.2.2 for description of a
rigorous global optimizer based on the DA framework and Taylor Models [118], section
4.2 on its application to the normal form defect function). The behaviour of these
functions is highly oscillatory, the number of local extrema is high so they also present
significant difficulty for conventional minimization methods. These properties are
employed in section 4.2 to test the GATool genetic algorithm-based heuristic optimizer

described in section 2.3 and in appendix B.

1.2 Neutrino Factories

1.2.1 Purpose and History

A neutrino is a special kind of elementary particle that was believed not to have
any mass, charge or color. Recent studies, however, have demonstrated that neutri-
nos have a very small (estimated to be much less than 1 MeV), but non-zero mass.
They are the most abundant constituent of the universe and have an important im-
pact on astrophysical processes, from the first minutes after the Big Bang itself to
supernovae explosions observed today. Neutrinos are created as a result of certain
types of radioactive decay or nuclear reactions such as those that take place in the

sun, in nuclear reactors, or when cosmic rays hit atoms. There are three types, or
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"flavors", of neutrinos, named after their partner leptons in the Standard Model:
electron neutrinos ve, muon neutrinos vy and tau neutrinos vr. Each of those types
also has an antimatter partner, called an antineutrino (ve, ¥, v+ — electron, muon
and tau antineutrinos, correspondingly). In 1998, experiments began to show that
solar and atmospheric neutrinos change flavors. The processes leading to these unex-
pected masses and mixing parameters are suggested to take place at energies never
seen since the Big Bang, perhaps connected to the unification of all forces. Precise
determinations of the masses and mixing angles of the three families of neutrinos
opens a unique window of observation into these early times [63]. These fascinating
questions of physics require an ambitious accelerator-based neutrino experimental
program [1,2].

The Neutrino Factory is a very important facility for the long-term neutrino
physics program. Modern technologies of particle accelerators, both already devel-
oped and being researched, open the possibility of building an accelerator complex
to produce and capture more than 1029 muons per year. The idea of an accelerator
where the pions are injected into a storage ring, decay to produce muons captured
within the same ring, and then further decay into a neutrino beam was proposed
several times by different researchers starting from Koshkarev in 1974, but it has the
basic problem that the resulting neutrino beam intensity was low [39,106]. The Neu-
trino Factory idea in its current form was proposed by Geer in 1997 [75]. He suggested
creating muons from an intense pion source at low energies, then compressing their
phase space to produce a bright beam which is then accelerated to the energies of
several tens of GeV and injected into a storage ring with long straight sections where

they decay into highly intense neutrino beams
M_ i e—llﬂl_/e, [l,+ i 6+l_/'u1/e. (121)
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Beams of such brightness can be used for the extensive study of the neutrino oscilla-
tions [5] and neutrino interactions with the required high precision.

In the U.S., the Neutrino Factory and Muon Collider Collaboration [146] is a
collaboration of 130 scientists and engineers engaged in carrying out the accelerator
R&D that is needed before a Neutrino Factory can be actually built. Much techni-
cal progress has been made over the last few years, and the required key accelerator
experiments are now in the process of being proposed and approved. In addition to
the U.S. effort, there are active Neutrino Factory R&D groups in Europe and Japan,
and much of the R&D is performed and organized as an international endeavor. Neu-
trino Factory R&D is an important part of the present global neutrino program. The
Neutrino Factory requires an intense multi-GeV proton source capable of producing a
primary proton beam with a beam power of 2 MW or more on the target. This is the
same proton source required in the near future for Neutrino Superbeams [33]. There-
fore, there is a natural evolution from Superbeam experiments to Neutrino Factory
experiments over time. Studies performed so far have shown that the Neutrino Fac-
tory gives the best performance among all considered neutrino sources over virtually
all of the parameter space. Its practical possibility and cost remain, however, impor-
tant questions that are being actively researched. Numerous articles and technical
reports on the progress are published. The summary reports, including international

ones, are produced every year [1,3,86,150,178].

1.2.2 Design Overview

The Neutrino Factory is a secondary beam machine; that is, a production beam is
used to create secondary beams that eventually provide the desired flux of neutrinos.

For the Neutrino Factory, the production starts from a high intensity proton beam
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that is accelerated to a moderate energy (beams of 2-50 GeV have been considered
by various groups) and impinges on a target, typically made from a high-Z material
(baseline choice is a liquid Hg jet). Th<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>