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ABSTRACT

A TWO-STAGE METHOD FOR ESTIMATING RELATIVE PRESSURE FIELDS

FROM NOISY VELOCITY DATA

By

Christopher David Bolin

The determination of intravascular pressure fields is important to the character-

ization of cardiovascular pathology. A two-stage method that solves the problem of

estimating the relative pressure field from noisy velocity fields on an irregular do-

main with limited spatial resolution and includes a filter for the experimental noise is

presented here. For the pressure calculation, the pressure Poisson equation is solved

by embedding the irregular flow domain into a regular domain. To lessen the prop-

agation of the noise inherent to the velocity measurements, three filters — a median

filter and two physics-based filters — are evaluated and compared to three filters from

the literature using a pair of two—dimensional mathematical phantoms. The most

accurate pressure field results from a filter that applies in a least-squares sense three

constraints simultaneously: consistency between measured and filtered velocity fields,

divergence-free and removes noise in the Laplacian of the velocity field. This filter

leads to a 5-fold gain in accuracy for the estimated relative pressure field compared

to without noise filtering, using spatial resolutions that are consistent with phase—

contrast magnetic resonance imaging (MRI) of the carotid artery on a clinical MRI

scanner in the more complex of the two phantoms.
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CHAPTER 1

Introduction

1. 1 Motivation

This work focuses on the problem of determining relative pressure fields from veloc-

ity measurements, and it is motivated by the desire to characterize cardiovascular

pathology in a minimally invasive manner. Of particular interest is the stability

of pathology associated with artherosclerotic stenoses in the internal carotid artery.

Stenoses of this nature are involved in between 34 [6] and 44 percent [7] of strokes. It

has been shown that methods of assessment beyond angiography, which is the stan-

dard, are required to better predict the physiologic effects of this type of stenoses [8].

Determining intravascular blood pressure or pressure gradient in vivo is considered

to be crucial to the design of these assessment methods [8, 9]. To date, the pri-

mary technique of determining intravascular blood pressure is catheterization, an

invasive procedure. Minimally invasive procedures are defined as those that involve

intravascular injections or are entirely noninvasive. Medical diagnostic methods such

as computed tomography (CT), Doppler ultrasonography, digital subtraction angiog-

raphy (DSA) and magnetic resonance imaging (MRI) are capable of quantifying in

vivo blood flow in a minimally invasive manner, but they are unable to provide di-



rect pressure measurements. Thus, a method of estimating the pressure field based

on these quantizations is required if a minimally invasive diagnostic tool is to be

implemented.

A two-stage method for estimating the relative pressure field from discrete noisy

measurements of the velocity field is proposed here. The first stage consists of an

effort to reduce the propagation of noise from the velocity field into the pressure

estimation. The effects of six different schemes are compared. One of these filters

is a common filter used in image processing, namely a median filter, two others are

physics-based methods developed in this work and the final three are techniques

proposed in the literature. The physics-based label applied to the methods developed

here is used to imply that they are designed to take into account the physics of the flow

rather than using arbitrary smoothing functions like the median filter. The second

stage of the method estimates the relative pressure field from the filtered velocity

field. This is rendered more complex by the low spatial resolution and irregular

nature of the discretized domains containing blood flow as assessed by minimally

invasive techniques. Accordingly, a technique described previously is chosen as a way

to handle these computational complexities [4]. It is shown in this work that the

physics—based filtering schemes proposed here increase the accuracy of the estimated

relative pressure field at realistic signal-to-noise—ratios (SNR) as compared to the

second-stage acting on the noisy velocity field and the solver with a median filter.

When compared to the techniques proposed in the literature, the application of the

two proposed physics-based methods produces a relative pressure field as with less

accuracy but more quickly (Filter 1, see Section 2.2.1) or greater accuracy and the

same computational time (Filter 2, see Section 2.2.1).

The remainder of this chapter is divided into three parts. First, a review of

proposed methods for the estimation of the intravascular pressure field is presented.

Second, methods of minimally invasive blood flow assessment are discussed with an



emphasis placed on phase contrast (PC) MRI. Many of the assumptions pertaining

to resolution and likely SNR for the numerical studies in this work are based on

capabilities of PC-MRI; therefore, a brief introduction to the principles of PC-MRI

is presented to help the reader understand these assumptions. The final section is a

brief description of the layout and organization of this thesis.

1.2 Methods of Pressure Estimation

Several methods of estimating intravascular pressure fields based on the minimally

invasive assessment of blood flow have been proposed in the literature. In general, all

methods require geometry measurements that are also acquired during the imaging

procedures. The methods can be divided into two major categories based on the

amount of subject data used in the pressure estimation. Methods that require discrete

velocity or acceleration fields in addition to geometry measurements as inputs for the

pressure estimatimation make up the first category. This category can be further

subdivided into two groups, those that solve the divergence of the Navier-Stokes

equations (NSE), called the pressure Poisson equation (PPE, see Section 2.1.1), for

pressure and those that use other methods. The second category of estimator uses

volumetric flow rates or a single plane of a velocity field as inputs and boundary

conditions for computational fluid dynamics (CFD) software. The CFD software is

used to estimate the rest of the velocity field, the pressure field and other fluid dynamic

parameters of interest. Methods from the first category can be construed as forms

of CFD; however, in this work the term CFD is used to refer to any software that

estimates both the velocity field and pressure field within the vessel. The estimation

methods of the first group are based entirely on subject-specific characterizations of

the velocity field.

The PPE has been used in several ways to estimate the relative pressure field and



the relative pressure gradient. One of the early methods to employ of the PPE uses

an iterative technique based on Fourier transforms to solve for the relative pressure

field. The method was initially tested for robustness to noise in two dimensions

(2D) using a mathematical phantom and its behavior was deemed acceptable. It

was then used to estimate the time-varying, three-dimensional (4D) intraventricular

pressure distribution in viva [4]. An explicit iterative approach to the solution of

the PPE has also been proposed and applied to the calculation of relative pressure

fields within the human heart using arguments similar to those in [4]. The velocity

data used in the in viva experiments was not filtered which might have lengthened the

convergence time and no validation was performed [10]. Another method projects the

pressure gradient onto the curl-free subspace of square integrable vector fields. The

method’s robustness to noise and turbulent flow in stenotic geometries has been tested

in vitro by comparing its results to those generated by the commercial CFD software

FLUENT. It was determined that the estimation was accurate to within 10% for the

SNR tested. However, the pressure was only estimated along the centerline and the

method is limited to axisymmetric flows [11]. Another iterative approach to solving

the PPE using a special property of the discretized version of the Laplacian operator

has proven popular. The method was first qualitatively validated using a rotating

cylinder containing a liquid at hydraulic—equilibrium. Pressure estimations were also

made in a single plane in both further in vitro experiments to determine the effect

of oscillatory flow on the estimation and in viva experiments in the aortic arch [12].

The method was then modified and expanded to 4D pressure estimations. A median

filter was added in an effort to reduce noise in both in vitra and in vivo experiments.

Validation was performed in an in vz'tra experiment by comparing the calculated

pressure difference across a flow phantom to that measured by pressure transducers

at either end. In vivo estimations were also made in the aortic arch [13]. Further

work using the modified version of this estimator from [13] compared the calculated



transstenotic pressure gradient to that measured by a pair of endovascular pressure-

sensing guidewires in in viva experiments. The transstenotic gradient was calculated

by estimating three-dimensional (3D) relative pressure fields using the method of [13],

time-averaging the fields over the cardiac cycle and finally calculating the gradient

between two points that most closely mirrored the locations of the catheters. The

calculated gradients were found to show high correlation and good agreement in

vessels with little motion [14].

Other methods that require discrete velocity or acceleration fields as an input to

their algorithms use a variety of techniques for estimating pressure. Early methods of

estimating pressure focused on calculation of the pressure drop across regions of in-

terest. The Bernoulli equation was used to estimate the pressure drop using the max-

imum blood velocity at the exit of the mitral valve in the human heart. Estimations

were compared to the pressure drop measured by catheter and it was determined that

the estimation agreed to within 20 — 25% and tended to underestimate the pressure

drop [15]. A second method used flow rates, calculated based on measured discrete

velocity fields and vessel cross-sectional areas, to calculate the one-dimensional (1D)

relative pressure distribution along a vessel [16] and pressure-pulse waveforms [17].

These methods were found to agree within 15% to preasure catheter measurements in

both in viva and in vitra experiments. Direct integration of the pressure gradient as it

appears in the NSE along a path has also been proposed. It was qualitatively tested

using a technique similar to that used in [12] with the liquid replaced by a gel. The

method was then applied to a series of in viva cardiac imaging applications. Noise in

the velocity field makes the integration of the pressure path-dependent [18]. Direct

integration using a single plane of velocity data has been compared to the method

of [13] for calculating pressure differences and little difference was noted between the

two techniques [19]. In an effort to minimize the propagation of noise from the velocity

field into the pressure field, integration of blood acceleration measurements have also



been proposed as a basis for pressure gradient [20] and pressure field estimations [21].

The estimate of the pressure gradient was tested in an in vitra experiment and com-

pared to that measured by a pair of pressure catheters. High correlation between the

estimated gradient and the measured gradient was found. An in viva experiment was

also performed to map the pressure gradient in the descending aorta [20]. Estima-

tion of pressure fields using acceleration data was done by minimizing the curl of the

pressure gradient along a series of arcs. The relative pressure field estimated in this

manner was compared to that estimated by the method in [13] in in viva experiments.

The two methods were in good agreement [21]. Both methods relying an acceleration

data ignored the contribution of viscosity in their calculations [20, 21].

Commercially available CFD software is considered to be a tool to extend the

information obtained by minimally invasive flow assessments in instances where com-

plete assessments are not possible [22]. To investigate the coupling of the information

derived from the minimally invasive flow assessments and CFD, a study of the effect

of various boundary conditions was undertaken using a U-bend model. This study

indicated that a velocity field measured by MRI and nomalized by an accurate mea-

surement of flow rate at the inlet should be used for the inflow boundary condition.

This held for both steady and unsteady cases [23]. Vessel geometry and a discrete

velocity field derived from an in viva flow assessment of the descending aorta were

used to construct a model and for the inflow boundary condition, respectively, in

an investigation into the potential of linking CFD and MRI. The commercial code

STAR—CD was used to compare the computed velocity field at the exit of a region

of interest to that measured by MRI. Good agreement between the two allowed jus-

tified investigation of other fluid dynamic parameters, including the static pressure

distribution, using the CFD model [24]. Another study, also using flow rate boundary

conditions derived from discrete velocity fields, used an in-house software to investi-

gate fluid dynamics in the carotid artery. This method was validated using using MRI



based flow measurements of several flow phantoms and good agreement was reported

between the MRI measurements and the results of the CFD model. Peak pressure

and pressure drop across a stenosis were amongst the fluid dynamic parameters inves-

tigated and the latter was used in some of the validation [25]. Other studies combine

boundary conditions based on minimally invasive blood flow assessments and CFD,

but they tend to focus on the quantification of wall shear stress and oscillatory shear

index [23, 26, 27, 28, 29, 30]

1.3 Minimally Invasive Blood Flow Assessment

This review of some of the available techniques to assess blood flow in a minimally

invasive manner illustrates some of the many ways that these assessments can be

performed. Not all of these methods are capable of measuring the (4D) velocity field

within a vessel, but all of them are able to provide the information necessary for

some of the methods developed for estimating the relative pressure field or pressure

gradient. For this reason they are referred to as ‘assessment methods’. This review

also justifies the initial assumption used in this work, that a characterization of the

blood flow within a vessel is available. Methods beyond those presented here are able

to assess blood flow, but these methods are more invasive than has been defined as

desirable (i.e., requiring catheterization or surgical access to the vessel).

DSA methods are an extension of x-ray angiography to assess the rate of blood

flow. They are based on the detection of the movement of radio—opaque contrast

agents in the vessel of interest. The contrast agent is injected intravascularly or, in

situations where a more controlled bolus is required, a catheter is used to inject it

directly into the vessel of interest. An initial background digital image is recorded

before the injection of the contrast agent. This image is then digitally subtracted from

images recorded following the contrast injection. The resulting image is generally free



of structures that the contrast agent had not reached at the time of the recording of

the second image. Various methods are then used to assess the blood flow based on

these images. A review of these methods has been published [31], a few examples are

reviewed here. One proposed method to estimate blood flow rates follows the leading

edge of an injected bolus and uses the ratio of the temporal and spatial derivatives of

its density to determine its average velocity. This method has been tested in a laminar

flow phantom, and it was determined that the measured velocity was consistently

higher than the average fluid velocity in the phantom [32]. A technique based on

first pass distribution analysis has also been studied as a method of measuring blood

volume flow rates [33]. This method was modified to address some of its limitations by

using a dual energy-subtraction technique [34, 35]. Other methods of assessing blood

flow using DSA include those based on contrast dilution [36] and contrast transit

times [37]. All of these methods are limited to estimating bulk blood flow rates and

tissue perfusion. Flow rates tend to be over estimated due to using leading edge of

the bolus in the calculations [32, 37].

Doppler ultrasonography is a generic term applied to techniques of assessing blood

flow using either continuous wave or pulsed wave systems. Continuous wave systems

are older, but they are limited in their ability since they are incapable of separat-

ing signals from more than one flow and unable to quantify blood flow [38]. These

limitations were overcome by the development of pulsed wave systems. In pulsed

wave systems, a single piezoelectric crystal is used as the transmitter and receiver of

the ultrasound signal. 'IYansmitted waves are reflected off various tissues (i.e., red

blood cells and bone) and those waves reflecting from the desired focal volume are

interpreted. The focal volume is selected by gating the received signal based on the

velocity of sound in tissue to control the focal depth and its size perpendicular to the

the transmitter/receiver is fixed by the system being used. To aid in identifying a

volume of interest, the Doppler system is often combined with an ultrasound imaging



system. The attenuation of the signal due to its passage through tissue between the

receiver and the volume of interest. is compensated for by signal amplification. There

is a limit to the focal depth, even with amplification, making studies of deep tissue

vessels difficult. After further processing of the received signal, information pertain-

ing to the velocity of the reflector is contained in the phase difference between the

reflected wave and the transmitted wave subject to the Doppler equation. The ability

of pulsed wave systems to choose focal depth and volume allows for the measurement

of flow profiles within vessels. However, because pulsed wave systems sample the data,

aliasing must be avoided. Thus, the maximum measurable velocity is constrained by

the transmitted signal’s pulse frequency. The most accurate velocity measurements

are made when the angle between the axis of the transmitted wave and the direction

of the moving reflector is close to zero. Aligning the transmitter/receiver along the

axis of a vessel to accommodate this can be made difficult by anatomical structures

such as bones or the lungs, which absorb signal [39]. Transcutaneous Doppler ultra—

sound is a noninvasive procedure, and it has been applied to study blood flow and

changes in blood flow due to pathology. Volume flow rates in the coronary artery as

calculated by the peak velocity in the vessel was an early area of application of these

methods [40]. Peak and mean flow velocities have also been measured in the cerebral

artery using transcranial Doppler ultrasound to study spontaneous hemorrhage [41].

A comparison between transthoracic Doppler ultrasonography and the use of an inva-

sive Doppler guidewire demonstrated that the noninvasive transthoracic method was

able to accurately measure coronary flow velocity [42]. A similar study demonstrated

that the noninvasive transthoracic ultrasound method is useful in the assessment of

stenosis in coronary arteries based on flow velocities [43].

CT imaging is a method of reconstructing an image of the interior of an object

from measurements of the attenuation of a series of x-rays transmitted at different

angles. Unlike standard x-ray imaging, CT allows for soft-tissues of different types



to be distinguished. Its measurement accuracy allows for the planning and monitor-

ing of various medical treatments [44]. Most techniques for blood flow assessment

using CT, like DSA, require the intravascular injection and subsequent tracking of a

radio—opaque contrast agent. Quantification of blood flow is then most often done by

using varying forms of indicator-dilution theory as proposed in [45] and [46]. Experi-

ments using a steady-flow phantom and three approaches based on indicator-dilution

theory indicated good agreement between the known flow rate in the phantom and

that measured by CT [47]. A further set of phantom experiments examining pulsatile

and steady flow determined that the use of indicator-dilution theory for measuring

blood flow with CT was heavily dependent on the relation between the concentration

of the contrast agent and the intensity of the image [48]. The volume flow rate of

cardiac output has been measured using these methods and compared to thermod-

ilution catheter measurements with good agreement [49, 50, 51]. Pulmonary blood

flow has also been assessed with CT and indicator-dilution theory [52]. However,

there is some question as to the reliability of indicator-dilution theory as a method

of assessing blood flow [53, 54]. Consequently, other methods using CT are being

investigated. Assessments of coronary output have also been performed using precise

measurements of the cardiac stroke volume and rate [53]. A low flow rate phan-

tom was used to validate a method that measures changes in contrast along the axis

of the phantom [55]. Another method is based on continuum theory and estimates

discretized velocity fields within a volume based on the motion of the surrounding

tissue [56]. With the exception of the method in [56], CT is primarily used to quantify

volume flow rates and not discretized velocity fields.

MRI is a tomographic imaging technique for making measurements within opaque

objects (i.e., without optical access). MRI measurements do not require intravascular

injections or the use of ionizing radiation, thereby reducing undesirable effects and

risks when compared to methods like DSA and CT, and they do not have a limited fo-
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cal depth unlike methods based on transcutaneous ultrasound. Instead, MRI is based

on the phenomenon of nuclear magnetic resonance (NMR) that was first described in

1946 [57, 58]. NMR was originally used for spectroscopic measurements, and it was

not until the 1970’s that imaging methods using NMR were first implemented [59, 60].

A full description of the physics of NMR requires the use of quantum mechanics and

is beyond the scope of this work. A brief description of the underlying principles is

possible using a semi-classical approach and is presented here for completeness.

Subatomic particles are fully described by four quantum numbers. Of these quan-

tum numbers, the one of greatest importance to MRI is the quantum spin number,

half or whole integers (i.e., 0, 1 /2, 1,3/2, 2, . . .) for protons, which characterizes the

angular momentum of the particle. According to the Pauli exclusion principle, no two

particles (e.g., protons) in a system (e.g., an atomic nucleus) can have the same set of

quantum numbers. Those nuclei with an odd number of protons and neutrons have a

non-zero net spin and possess an angular momentum J. The positive electric charge

carried by the proton together with the act of spinning about its own axis generate a

magnetic moment, 1.1., proportional to J. The proportionality constant relating J to

u is 7, the gyromagnetic ratio which is dependent on the makeup of the nucleus. A

group of nuclei with the same 7 is called a spin-system.

MRI measurements are made by manipulating the p. of the members of the spin-

system. At thermodynamic equilibrium the p of the individual nuclei of a spin-system

are oriented randomly and their sum, called the bulk magnetization, M, is zero. If

this spin-system is placed in an external magnetic field of strength BO, the u of the

nuclei with the field generating a non-zero M oriented along the direction of field.

The p. of the nuclei then precess randomly around the direction of B0 at the Larmor

frequency, wo = 780, of that combination of spin-system and external field strength.

When the spin-system is excited with a radio frequency (RF) pulse oscillating at

am and oriented perpendicular to the direction of BO, the spins tip into the plane
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perpendicular to Bo creating a transverse component of M. The oscillating field

generated by the relaxation of this transverse component back to its equilibrium state

induces a voltage in a receiver coil placed around the sample, which is the signal used

to generate images. By applying known linear magnetic field gradients in addition to

BO, a signal can be spatially located by the unique tag of each point in the combined

magnetic fields. An inverse Fourier transform is used to synthesize the measured

singal from Fourier space into physical space. Most commonly in medical imaging,

the hydrogen nucleus is the source of signal. In addition to the applied magnetic

fields, the strength of the external field for each member of the spin-system is affected

by the type of molecule to which it is attached. This allows MRI to distinguish

between different molecules, and their associated tissues, within the body containing

hydrogen nuclei based on their LUO. In order to obtain a sufficient signal-to-noise ratio

(SNR) in the acquired images, the signal from a slice of the material being imaged

is integrated generating a discrete 2D representation of 3D volumes which are called

voxels. Generally, the dimensions of a voxel vary from a few pm to a few cm. For

2D imaging, the achievable in-plane resolution depends on the imaging system being

used, but in most clinical applications, whose magnetic field gradients are limited for

safety reasons, resolutions of a few hundred mm are possible. With higher strength

research systems it can be as low as tens of pm. More detailed descriptions of

the physics of NMR, the generation of signal and the signal processing required are

available in [61, 62].

Flow can be assessed using MRI in several different ways. Of these, only two

are routinely used in medical imaging due to time constraints. Spin—tagging is a

method that encodes volumes of material with a specific spin magnetization [63, 64].

Images acquired using this method have a grid of bright and dark lines. The fluid

flow is allowed to evolve and velocities are inferred from the motion of the grid lines

in subsequent images or using methods like optical flow theory [65, 66]. PC-MRI
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techniques are able to measure time—resolved 3D velocity fields directly, unlike spin-

tagging methods, within opaque flow systems using special sequences of magnetic field

gradients [67, 68]. In this way velocity information is encoded directly into the phase

of the signal. A phase difference map is generated by subtracting the phase map of a

second image from a first reference image. The local phase difference is proportional

to the velocity of the fluid within that voxel [62]. Two images are enough to encode

velocity in a single direction. Four images are required for 3D velocity measurements

which increases scan time [69].

PC—MRI techniques are not without their limitations. The time required to mea-

sure velocity fields (Nminutes) makes it impractical for assessing flows other than

those that are either steady or periodic. The latter is possible by gating, either

prospectively or retrospectively, the imaging sequence and by acquiring a few lines in

Fourier space at a time and building an image that represents a particular phase of

the periodic flow. These techniques are called cine PC-MRI [62]. Noise arising due to

the thermal Brownian motion of electrons in the electrical components in the imaging

system and the object being scanned. A number of images are averaged together to

enhance the SNR which further increases the imaging time [61]. Voxels that contain

both moving and stationary spins, like those in the near-wall region of a blood vessel,

are subject to partial volume effects. Depending on how the velocity is calculated

from the phase difference map, the voxel will indicate either a higher velocity, biased

by the moving spins of the blood, or a lower velocity, biased by the stationary spins

of the wall or surrounding tissue [70]. Velocity measurements are also susceptible to

artifacts created by the motion of the spins. Sudden accelerations, large velocity gra—

dients within the voxel and the movement of spins from one voxel to another during

imaging can degrade the quality of the data [71]. These effects can be minimized by

using short duration imaging sequences and developments in technology [72].

PC—MRI is a popular method for noninvasively measuring discrete velocity fields
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in Opaque systems. Several of the methods of estimating pressure reviewed above

rely on PC-MRI to provide their input velocity data [10, 11, 12, 13, 14, 17, 23,

24, 25, 27]. A published review of methods used in cardiovascular fluid mechanics

contains a section on biomedical uses of PC-MRI [73]. Phantom and patient studies

have been used to develop a technique of assessing blood flow that is independent of

system and patient parameters. The phantom studies indicated that the method was

accurate to within 10% over a wide range of flow velocities [74]. A study compared

the time-varying behavior of the instantaneous and mean flow rates in phantom and

in viva experiments as measured by Doppler ultrasound and PC-MRI. The work

determined that Dappler ultrasound techniques were quicker and of lower cost but PC-

MRI delivered more quantitative information about the flow [75]. The measurement

of velocity in pulsatile flow has been evaluated using a flow phantom and determined

to be accurate and reliable [76]. The accuracy of PC-MRI in measuring pulsatile flow

was also validated in a flow phantom using the Womersley solution to the NSE. Peak

velocities were found to be within 13% of those predicted by theory [77]. PC-MRI

was compared to digital particle imaging velocimetry, a widely used technique in fluid

mechanic experiments, in in vitra studies of total cavopulmonary connection. The two

techniques showed good agreement in the large scale flow patterns and PC-MRI was

determined to have potential value in the assessment of this procedure [78]. A more

complete review of uses of PC-MRI in the evaluation of heart disease is available [79].

A comparison between CFD simulation and PC-MRI measurements on in vitra models

demonstrated that measurements of velocity in the carotid artery made by PC-MRI

were accurate to within 10% of those predicted by simulation [80].
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1.4 Thesis Layout

The remainder of this work is divided into three chapters. In Chapter 2 the theoret-

ical considerations and the implementation of the proposed method will be detailed.

Included in this chapter is a description of the mathematical phantom used to vali-

date the method and the procedures for optimizing the proposed filters. Chapter 3

presents and discusses the results of the validation and parameter estimation. The

emphasis of the discussion is on the effect of the proposed velocity filtering methods.

Finally, in Chapter 4 a conclusion of the findings this work is presented and potential

paths of future work are introduced.
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CHAPTER 2

Methodology

In this chapter the theory and implementational considerations necessary for the pro—-

posed two—stage method are presented. The technique chosen to estimate the relative

pressure field is that proposed in [4]. This approach is general enough to handle the

various complications of the problem at hand and applies boundary conditions in a

way that is anticipated to be useful in future applications of the methodology pre-

sented here. A description of the technique is included here for completeness. The

filters proposed here to minimize the propagation of noise from the velocity data

into the pressure estimation are characterized in the second section. Next, a descrip-

tion of the procedure used to validate the method using a mathematical phantom is

presented.

2. 1 Pressure Estimation

Though the method chosen to estimate the relative pressure field has been described

previously, the detail of its implementation was not. Thus, this section is divided into

two parts. First, the theory behind the method starting from the NSE is described.

Elements of this theoretical discussion will also be useful to the understanding of the

noise mitigation techniques proposed in Section 2.2. Then, the detailed description
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of the implementation of the method includes the algorithm used in the solution of

the PPE.

2.1.1 Theory

In a fluid flow, the relationship between the pressure field, P, and the fluid velocity

field, V, is described by the NSE. The general form of the NSE for an incompressible,

homogeneous fluid, like blood flowing within the larger vessels of the vascular system,

can be written as:

3V

,0 5+(VV)V =pF+V-_Q_ (2.1)

where p is the density of the fluid, F is the body force term and g is the stress

tensor [81]. In addition, the following continuity equation needs to be satisfied:

V - V = 0. (2.2)

This is a system with more unknowns, nine, than equations, four. A set of constitutive

equations are necessary to form a tractable problem. These constitutive equations

express the components g in terms of the components of the gradients of V [82].

Fluids are generally characterized as either Newtonian or non-Newtonian depend-

ing on the constitutive equation that is used to close the problem. Newtonian fluids

are those that have a linear relationship between the components of g and the velocity

gradients. Blood belongs to a non-Newtonian class of fluids. These fluids do not have

a linear relationship between the components of g and the velocity gradients which

complicates their description. However, for blood these effects are confined to flow

in vessels smaller than 0.5 mm in diameter where the shear-rate is low. In vessels

larger than this, like the carotid artery ( 10 mm in diameter), blood can be assumed

to behave like a Newtonian fluid; thus simplifying the analysis [83]. It can be shown

that using (2.2) and the assumption of a Newtonian fluid, (2.1) simplifies to

VPz—p %+(V-V)V +pF+pV2V (2.3)
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where ,u is the dynamic viscosity of the fluid. Further, it is assumed that F can be

ignored.

It would be convenient at this point to also ignore the effect of viscosity because

the numerical approximation of higher derivatives (e.g., those in the viscous term

of (2.3)) using noisy data is problematic and can lead to amplification of the noise.

This has has been done in studies of larger vessels [12, 20, 21]. Before neglecting the

higher derivatives in the viscous terms of (2.3) one should calculate the Womersley

number (W0) for the vessel of interest. The Womersley number is defined as

1

W0 = Ra (“19)? (2.4)
p

where Ra is the radius of the vessel, w is the frequency of the oscillations in rad/s and

p and p are defined as before. Womersley numbers less than 1 indicate viscous terms

are very important and those greater than 10 indicate that they can be ignored [84].

For flow in the carotid artery, Ra % 5 mm, with a pulse rate of 60 beats per minute

and using p = 0.004N s and p = 1040kg/m3, W0 z 6.4 which is between the two

cut-off points. Variability in the pulse rate and size of the carotid artery will affect

the value of W0, but it is not expected that this variability will push the flow into the

realm where viscous effects can definitely be ignored. Thus, the viscous terms will be

included in the following algorithms.

The solution of (2.3) for P can be accomplished in many ways. If the velocity

field is known, the pressure field can be solved for by integrating (2.3) along a path

as was done in [18]. However, because of the noise inherently present in experimental

data, the resulting pressure field depends on the integration path. To avoid path

dependence, the method used to determine the pressure field from a velocity field is

to solve the PPE which is derived by taking the divergence of (2.3)

V219 = v . b (2.5)

where b is the right-hand-side, RHS, of (2.3). Neumann boundary conditions are

18



prescribed for the PPE

VP~n=bcn (2.6)

where a is the unit outward normal on the boundary [85]. The pressure field resulting

from (2.5) is unique up to an integration constant and is referred to as the relative

pressure field. A measurement of the pressure at a point on Q}: can be used to

compute the absolute pressure field. A measurement of this nature can only be

obtained invasively, so the estimated pressure field is left relative to a constant to be

determined later in Section 2.1.2. The PPE has also been shown in [4] to be a least-

squares solution to (2.3) for cases where the system is inconsistent or overdetermined.

2.1.2 Numerical Implementation

On a discrete rectangular domain .0, the PPE with prescribed boundary conditions

on (9.0, can be solved directly in several ways [86, 87]. For most in viva applications,

the flow domain {217 is irregular (e.g., nonconvex). Direct solutions for the Poisson

equation on irregular domains exist by embedding .01: in an extended rectangular

domain, .0 D 01:, on which the Poisson equation is solved [88]. Depending on the

size of 0p and 60p, this technique may be inefficient and difficult to implement as

it requires the careful accounting of points on 60p for the proper application of the

boundary conditions. The alternative iterative approach proposed in [4] has been

selected for use in this work. This technique also uses embedding in an extended

rectangular domain, but implements the boundary conditions in simpler manner.

In this method, points within {21: are treated in a different manner than those

outside of .0}? in the steps leading up to the solving PPE. The value of b inside the

fluid domain, bF (i.e., on HF), is calculated once and used throughout the iterative

process whereas outside the flow domain (i.e., on .0 \ 0p) b is updated after each

19



 

step 1 Approximate bp

step 2 Approximate VP(3)

step 3 Approximate V - b(3) on .0 and b - ii on 09

step 4 Solve the Poisson equation using a direct method

step 5 Calculate [[P(S) — P(3-1)H/HP(3)II

  
 

Figure 2.1. The algorithm for solving the PPE on an irregular domain as described

in [4]. The Poisson equation is solved in step 4 using the direct method outlined in

Figure 2.2 and detailed in Appendix B.1.

iteration (indexed by s) to the value of VP from the previous iteration:

V2P(3) = V-b on a
2.

VP(3) ~73. = b(3) ~fi on 00 ( 7)

where

(3+1) = bF on .0

b { VP“) on map (2'8)

A point is identified as being on .01: or on {2 \ {2F by a mask and the initial guess for

the pressure field, Pm), is zero everywhere. In this method, the Neumann boundary

conditions are applied on 69 rather than on 8.01:. By choosing {2 to be rectangu—

lar, the calculation of a is trivial which simplifies the application of the boundary

conditions.

The algorithm for solving the PPE, as described in [4], is outlined in Figure 2.1.

Second-order accurate finite difference schemes are used to approximate all the deriva-

tives necessary to compute b and its divergence as well as the divergence of pressure.

In the calculations of step 1, central difference schemes are used where possible and

forward or backward schemes are used on 6.01:. At locations where second-order

schemes are not possible, first-order schemes are used if the data to complete them

20



is available. Regions exist where neither second- nor first-order schemes are possible

occur near 0.01:. Special approximations are used at these points that assume the

boundary is located one half of a voxel away and that the wall velocity is zero. These

assumptions allow for a rudimentary estimation of the derivative. The schemes used

are described in detail in Appendix A. Even with these special schemes it is still

possible that there will be regions where second-order derivatives will not be possible

to approximate. At these points the term for which no approximation can be made

is estimated to be the median of its neighbors. The approximations in step 2 and

step 3 are done with no consideration for the difference between 0F and .0 \ 0p.

Therefore, second-order accurate schemes are always possible and no special schemes

are necessary. The direct method used to solve the Poisson equation used in step 4 is

detailed below. The solution has converged when the absolute rate of change between

iterations as calculated in step step 5 is less than some finite threshold, set to 10—3

here. Since pressure only appears as a gradient in (2.3), the converged solution is only

accurate to an integration constant as discussed in Section 2.1.1. Thus, the spatial

average of the pressure field on 0p is subtracted from the pressure solution, yielding

a relative pressure field, Pnum [4].

By extending 0F to .0, one of the many direct methods of solving Poisson equa-

tions can be used to complete step 4 from Figure 2.1. In this work the method based

on fast Fourier transforms (FFT) described in [5] is applied. The basic algorithm is

illustrated in Figure 2.2. The specific FFT and inverse FFT used depends on the

boundary conditions and the dimensionality of the problem. For the PPE the bound—

ary conditions are of the Neumann type as discussed in Section 2.1.1. This dictates

the use of cosine transforms and inverse transforms. For 2D problems, a 1D transform

is used and similarly for 3D problems a 2D transform is used. Certain numerical difli-

culties arise for the case of Neumann boundary conditions. Since the solution sought

is a least-squares solution, these difficulties are bypassed by perturbing the problem.
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step 4a Incorporate the boundary conditions into (,(8)

step 4b Perform a FFT to transform the equations into Fourier space

step 40 Solve resulting series of tridiagonal systems for the Fourier

coefficients

step 4d Perform an inverse FFT to transform the solution back into

physical space   
Figure 2.2. The algorithm for the direct solver of Poisson equations based on Fourier

transforms as described in [5] that completes step 4 in Figure 2.1. Greater detail

can be found in Appendix B.1.

The perturbation uses a constraint to force the system to conform to Green’s theo-

rem. Even with the perturbation, one of the tridiagonal systems solved in step step

4c is singular. This system is identified and its output is set to zero. Details of the

transforms and inverse transforms used, the incorporation of the boundary conditions

and a description of the perturbation used are found in Appendix B.

The method described in this section has been implemented in MatLab (The

MathWorks, Natick, MA). Special functions were written for nearly all aspects of the

algorithm due to the complexity of the steps required to handle the irregular domain

and consistency issues within the available built-in functions. The primary exception

is the method used for the solution of the tridiagonal systems Poisson solver. This is

accomplished using MatLab’s matrix division operator.

2.2 Proposed Noise Filters

The negative effect of noise in the velocity field on the accuracy of the pres-

sure estimation has been mentioned in several of the methods reviewed in Sec-

tion 1.2 [4, 10, 11, 12, 13, 18, 20, 21]. In an attempt to mitigate these effects, three
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different filters are proposed and tested in this work. These proposed filters are

compared to three filters described in the literature.

2.2.1 Filter Description

The methods proposed here for removing noise in the velocity field (i.e., to smooth

the velocity field and its derivatives either in an arbitrary fashon or in a selective

fashon by applying physical constraints) are identified by different names depending

on their area of application. For example, the estimation of the pressure field in

a fluid based on its measured velocity field is an inverse problem. Many problems

of this type are ill-posed; thus, they require steps to introduce enough additional

information for a unique solution to be found. These steps, called regularization,

can involve the assumption of smoothness constraints similar to some of the velocity

filtering methods used here. However, the six methods for filtering the velocity field

investigated here are not coupled to the estimation of the pressure field and are

not performed simultaneously. For this reason regularization is not the appropriate

terminology. A filter is commonly defined as a device that has the effect of selectively

modifying something to eliminate an undesirable attribute. In this case the measured

velocity field is modified in ways that attempt to minimize measurement noise in the

field. Thus, these methods of modifying the experimental velocity field are refered to

as filters henceforth.

Experimental velocity measurements are inherently polluted by noise, which is

amplified by the numerical differentiation required for most of the methods of pressure

estimation discussed in Section 1.2. If smaller vessels are to be investigated the

high-order terms in the NSE cannot be ignored as demonstrated in Section 2.1.1;

therefore, some sort of filtering is required for the accurate estimation of the relative

pressure field. The purpose of this work is to identify the appropriate method for

mitigating the noise in the velocity field and its derivatives. The exact manner of
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optimization is left for later discussion. Tura et al. [89] has proposed an Tikhonov-

type velocity field filtering technique based on a modified form of the NSE for cases

where measurements are noisy and incomplete. Using the NSE to filter the velocity

field and estimate the relative pressure field would not be appropriate unless both the

velocity filtering and pressure estimation are performed simultaneously, which would

then be more computationally intensive than using either by themselves. A few other

methods have been proposed for filtering velocity data by applying physics-based and

smoothing functions in a least-squares sense. One such filter proposed for improving

the accuracy of PC-MRI velocity measurements and streamlines minimizes the square

of the first spatial derivatives of the velocity field, the terms of (2.2), and the difference

between the filtered field and the noisy field. These three constraints, when applied

simultaneously, guarantee that the filtered velocity field is unique. This filter was

formulated and implemented in three ways: using a Cartesian variable system, an

axisymmetric cylindrical coordinate system and a stream function approach. The

results of the filter with the broadest application, using a Cartesian coordinate system

and no assumption of axisymmetry, were discussed only qualitatively. The more

restrictive stream function based filter was reported to reduce the normalized RMS

difference between filtered PC-MRI velocity measurements and the CFD generated

velocity field of a flow phantom to less than 10% [2]. A viscous energy norm can

also be used for filtering as it was in [3] to reconstruct the experimentally measured

velocity field of the stationary helical vortex mode of a Taylor—Couette—Poiseuille

flow to within 10% of the field predicted by theory. This method, like that in [2]

does not directly affect the second derivatives that appear in (2.3). Alternatively

the experimental velocity field can be projected onto a space of divergence-free fields

obtained either numerically [1, 3] or analytically [90], and both approaches have shown

promising results. In this work three methods of reducing the propagation of noise

into the estimated pressure field by filtering the velocity field are proposed. One is
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a standard image/signal-processing filter and the other two are novel, physics-based

filters that rely on a least—squares approach similar to those in [2, 3].

The first approach proposed here is a median filter, which has the benefits of being

edge-preserving and easy to implement [91]. These filters are popular in image pro-

cessing and have been used in some of the other pressure estimation methods [13, 14].

The velocity at each point is replaced by the median of its neighbors within a defined

application radius, resulting in a new velocity field Vmed- This reduces the effect of

spurious noise peaks in the velocity field at the cost of spatial resolution. Using a

larger application radius further reduces the spatial resolution.

A physics—based approach is proposed for the development of two additional fil-

ters. At this stage, the continuity equation (2.2) has not been explicitly enforced.

Physically, it is known that the measured velocity field must satisfy this constraint

from Section 2.1.1. The first proposed filter imposes (2.2) in a least-squares sense

on 0p. An additional penalty function that minimizes the L2 norm of the difference

between the experimental (Vexp) and filtered (V) velocity fields is added minimize

the difference between these fields. Without this second term it is possible for the

filter to modify Vexp into a velocity field that satisfies (2.2) but is no longer physically

relavant. The function to be minimized is

where (11 is a Lagrange multiplier to be calibrated (see Section 3.2).

Filter 2 minimizes the value of the L2 norm of the Laplacian of the velocity field

in addition to the terms for Filter 1 in equation (2.9). The addition of this term is

an attempt to decrease the effect of noise pollution on the computation of the second

derivatives in the viscous terms of the NSE (2.3) by selectively removing the noise in

these terms. This is a constraint that is used in the implementation of optical flow
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algorithms [92]. Thus, the cost function for Filter 2 is

f2 2:: [V - V] + C12 [[V — Vexp[[ + '72

 

[VQVH (2.10)

where a2 and 72 are Lagrange multipliers to be calibrated (see Section 3.2). Because

the three terms of Filter 2 are pushing the cost function toward separate goals, it is

unlikely that f2 will ever reach zero (this is possible if the measurements are noise free

and the flow is completely inviscid). Therefore, this term is not attempting to force

the Laplacian of the velocity field to be zero, but. it is attempting to remove noise in

the second spatial derivatives of the velocity field which will need to be calculated in

general to estimate the relative pressure field using the method from Section 2.1.2.

Filter 1 and Filter 2, unlike the median filter, do not filter the velocity field at

the cost of resolution. The median filter removes noise without adding any additional

information (i.e., phyiscal constraints) to the problem; therefore, spatial resolution is

traded to remove noise in the velocity field. The proposed physics-based filters bring

new information into the problem by enforcing additional constraints on the system,

so no resolution must be sacrificed to remove noise from the velocity field.

To determine the relative merit of the filters proposed here, a useful comparison

is made to the filter proposed in [1] and the additional filtering terms of [2, 3]. The

filtering terms of [2] and [3] can be implemented by modifying the last term on the

RHS of (2.10). The filtering term proposed in [2] (2.10) becomes

f3 1: IV ' V] + 03 [IV ’ VeXPll

(f)2+(@)2+(f)2+(f)20m fly at 8y

where u and v are the :L‘- and y—components of V, respectively. Using the viscous

+ 7'3 (2.11)

  

dissipation term of [3], (2.10) becomes

f4 1: [V'V|+O‘4I[V’Vexpll

2 29 2+ QB 2+1 @+_a£ 2

# 8:1: (9y 2 03/ (9:1:
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The filter of (2.11) is identified as (d/dgr)2 and the filter of (2.12) as Visc. Diss. in

the various figures of Section 3.

It is common in fluid mechanics to apply scaling to parameters which are useful

in multiple problems. Doing so eliminates the necessity of optimizing the parameters

for each new use. In addition to the physics-based filters themselves, a method of

scaling their Lagrange multipliers is proposed so that reoptimization for each new

application is avoided. Parameters (11, (1'2, 0'3 and 04 are scaled by

01234 -= all [[V'VexpllV, . , - 1,2»3a4nvmed — Vexpll

 (2.13)

where Vmed is the median filtered velocity field. The speed of the median filter allows

for this normalization to contribute negligibly to the computation time required for

the minimization of the cost functions. A scaling factor for 72 is similarly defined

,_ ,1 ”V ' Vexp”

’72 7.— —— 2.14

2 ||V2Vexp|l ( l

The scaling of 73 and 74 akin to that of 72 and in 2D Cartesian coordinates they are

—1

Bu 2 8n 2 8v 2 0v 2

7‘33=73{I[V'Vexpll}{[(5¥) +(gg) +(g) +(d—y) } (2'15)

and

—1

8112 8112100 (9222

ale) +<.—.> Will i}

The filter of [1] was proposed as a method of filtering PC-MRI meeasurements

 

n == 7’4 {HV . Vexpll}[
  

respectively.

based on the notion that the measured velocity field must be divergence free. The

velocity field is projected onto the space of divergence—free fields using a discrete

projector P that has the form

PV = V —— GL‘IDV (2.17)
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where G is the discrete gradient operator, L is the discrete Laplacian operator and D

is the discrete divergence operator. L—IDV is found by solving the Poisson equation

V2L_1DV = V-V on a
2.1

L’lDV = 0 on an ( 8)

The projection generates a divergence free velocity field, but it does not eliminate all

of the noise. It also does not. guarantee that the filtered velocity field will still be

physically relevant.

2.2.2 Filter Implementation

The filters tested in this work are implemented in manners of varying complexity. For

example, the medf 111:2 function in MatLab is used to perform the median filtering

whereas each cost function and the PSDF filter require their own special functions.

The complexity of the special functions affects the time required to filter the ve-

locity field. Whenever possible MatLab’s built-in functions are used to reduce the

complexity of the algorithms.

- Filter 1, Filter 2, and the filters based on [2] and [3] considerably more compu-

tational resources than the median filter. The divergence operator in f1 and f2 and

the Laplacian operator in f2 are applied using matrix algebra in custom functions

written for the 2D validation. This is done to make use of the speed of MatLab at

performing these operations. Derivatives are numerically approximated in the same

method as described in Section 2.1.2 for the approximation of bp and are detailed in

Appendix A. Care is taken on 80p, as identified by a mask, not to include points

from outside 0F. The matrices containing the operators are generated once and are

inputs to the functions that evaluate f1 and f2. These matrices are very large and

sparse. In 2D, if .0 of size M x N points, then the coefficient matrices are of size

2(MN) x 2(MN) This can lead to storage issues for large computational domains.

The evaluation of f3 and f4 is done element by element due to the complexity of their
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additional filtering terms. All four cost functions f1, f2, f3 and f4 are minimized us-

ing the unconstrained nonlinear minimization algorithm, fminunc, in MatLab. This

algorithm uses a simple cubic approximation method to minimize the two functions.

The PSDF filter is conviently implemented using the the same Poisson solver used

in the relative pressure field estimation. The algorithm for filtering the velocity field

is in Figure 2.3. This system has Dirichlet boundary conditions which require sine

transforms and inverse transforms and do not require the extra steps necessary for

the solution of a Neumann problem. This version of the Poisson solver is described

in detail in Appendix B.2.

 

step 1 Compute the divergence of the velocity field DV

step 2 Solve the Poisson equation using the algorithm described

in 2.1.2 yielding L“1DV

step 3 Take the gradient of the solution to the Poisson equation re—

sulting in GL—IDV

step 4 Subtract the result of step 3 from the original velocity field

V yielding the filtered velocity field V — GL‘IDV  
 

Figure 2.3. The algorithm for projecting the noisy velocity field into the space of

divergence—free fields as proposed in [1].

2.3 Mathematical Phantoms & Validation

Several components of the the proposed method require validation and optimization

as a sort of ‘proof of concept’ to assess which approach is best. This section is divided

into three parts. First, a mathematical phantom of suitable complexity to test the

algorithms is described. The second part of the section outlines a testing procedure for

determining the effect of resolution and embedding on the estimation of the pressure
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field. In [4] the proposed algorithm for estimating the relative pressure field was

tested for robustness to noise at a higher resolution than that expected for PC-MRI

data of the carotid artery. No results were reported on the effect of resolution or

the size of .0 relative to 0p. In the final part the procedures for optimizing the

filter parameters described in Section 2.2.1, the tests used to determine the method’s

robustness to noise at a realistic resolution for PC-MRI measurements of the carotid

artery, determining the effect of the proposed filters and testing the scaling of the

filter parameters proposed in Section 2.2.2.

2.3.1 Mathematical Phantoms

Examination of the usefulness of the relative pressure estimation method proposed in

this work, like all numerical methods, requires comparing results to an example with

known properties. This can be done by an experiment on a physical system performed

with additional measurements provided by a trusted second method as in [13, 14, 17,

20], experiments on a physical phantom with well understood behavior like in [12], or

numerical experiments using either commercial CFD software [11], or a mathematical

phantom of sufficient complexity [4]. Experiments with physical phantoms and PC-

MRI are expensive and noise free tests cannot be guaranteed. Comparing a numerical

solution to CFD in a complex geometry allows for noise-free tests, but questions

about the accuracy of the CFD model can still be raised. Instead, a mathematical

phantom of a suitably complex system with a known analytical solution is chosen for

use here because of the flexibility it allows in the testing and the simplicity of its

implementation.

For the validation tests, a mathematical phantom of Couette flow between rotating

cylinders is used. Certain comprimises must be made when choosing a mathematical

phantom. Couette flow between rotating cylinders provides a nontrivial system with

an analytical solution for both the pressure and velocity fields. The cylindrical shape
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Figure 2.4. A schematic of the Couette flow system used in the 2D validation exper-

iments with the important geometric features identified.

of this system also allows for identification of potential issues with the calculation of

bp near boundaries that are similar to those anticipated in vessel geometry. The two

boundaries in the system, on the inner and outer cylinder walls, also test the effect

of multiple, moving embedded boundaries on the PPE solver. This is expected in

viva for data collected above the internal/external bifurcation in the carotid artery.

However, one of the characteristics of this flow field is that the viscous terms of (2.3)

are identically zero. This is a comprimise that must be made to ensure that the

majority of the components of the algorithms are tested sufficiently. The derivation

of the flow field from (2.3) is detailed in Appendix C1 The final results are presented

in this section. The Cartesian velocity field (a, v) in polar coordinates (r, 6) is given

by:

u(r,0) = — (Ar + E) sin0

B 7‘ (2.19)

v(r, 0) 2 (Ar + 7) c050
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where r := V452 + 312, 6 := arctan (y/z‘) and

wgrg — 0217‘?

2_ 2

7'2 ’1

A: 

B = rfrg (tal — (.02)

2 2

7’2‘7‘1

 

r1 and r2 are the radii of the inner and outer cylinders, respectively, and <01 and 022

are their respective angular velocities, see Figure 2.4 for a schematic of the system.

Though the flow is 1D in polar coordinates, the transformation to Cartesian coor-

dinates generates a flow with non-zero gradients in both directions for at least one

component of velocity at every point. Figure 2.5(a) is a vector plot of half of the

analytical velocity field, VA, which illustrates its complexity. An analytical solution

for the relative pressure field is similarly obtained:

 

2 2 2

P(r)=p A r +2ABlnr—B—+C (2.20)

2 2r2

where C is an arbitrary integration constant, such that P is the relative pressure field

as defined earlier. An example of half of the analytical pressure field relative to its

spatial average, PA, and normalized by its root-mean-square, PARA-is, on .01: (RMS)

is found in Figure 2.5(b).

A second simple phantom is necessary to determine if any bias has been introduced

by the combination of filter and mathematical phantom. Poiseuille channel flow is

a simple system with a 1D analytical velocity field and linear pressure gradient, see

Figure 2.6 for a schematic. The Cartesian velocity field is

ad) = 13% (y2 -— by) (2.21)

where u is the velocity component along the :r-direction, QC is the volume flow rate

per unit depth and h is the height of the channel. Figure 2.7(a) is a vector plot of

the analytical velocity field at an arbitrary :r-location, VA- The analytical pressure

field is

12QCH
13(1)) = h3
 (:1: — 1‘0) (2.22)
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(a) Analytical velocity field

[PA/FARMS]

  
(b) Normalized analytical pressure field

Figure 2.5. Example sections of the analytical solution for the Couette flow mathe—

matical phantom: (a) the velocity field, VA; (b) the magnitude of the pressure field

relative to its spatial average, PA, and normalized by its RMS, FARMS, on .017.

where 2:0 is an arbitrary datum. An example of the analytical pressure field relative

to its spatial average, PA, and normalized by its root-mean-square, PA,RMSi on 01;

(RMS) is found in Figure 2.7(b). In this mathematical phantom the viscous terms

of (2.3) are not identically zero, see Appendix C.2 for a detailed derivation.

The mathematical phantoms described here are implemented using custom func-

tions in MatLab. The physical domain in which they are contained is fixed, but the

resolution in all directions is variable to facilitate the resolution experiments described

in Section 2.3.2. These functions also generate the mask used in the algorithms of

Section 2.1.2 and Section 2.2.2 for identifying points on 01:.
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Figure 2.6. A schematic of the Poiseuille flow system used in the 2D validation

experiments with the important geometric features identified.

2.3.2 Resolution and Embedding Experiments

As stated above, no testing of the algorithm in Section 2.1.2 for robustness to changes

in resolution or the level of embedding have been, to the best of the author’s knowl-

edge, published. In [4] the algorithm was tested on a phantom similar to the 2D

Couette flow between rotating cylinders used here with a grid size of 256 x 256. The

carotid artery has a diameter of ~ 10 mm and PC-MRI velocity data is expected

to have an in—plane voxel size of ~ 0.5 mm x 0.5 mm. Thus, approximately twenty

voxels are expected across the vessel. This low resolution could be enhanced using

interpolation to increase the number of data points on 01:, but upsampling like this

with noisy data is problematic. The effect resolution has on the algorithm is investi-

gated here to determine if upsampling can be avoided. The resolution of the velocity

data cannot be guaranteed to be isotropic, so tests on the effect of anisotropic resolu-

tion in both directions are undertaken here to explore its influence on the estimated

pressure field. The size of 0 can also be an issue from a computational point of view.
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(a) Analytical velocity field

I PA/PA,RMS l

  
(b) Normalized analytical pressure field

Figure 2.7. Example sections of the analytical solution for the Poiseuille flow math-

ematical phantom: (a) the velocity field at a arbitrary axial location, VA; (b) the

magnitude of the pressure field relative to its spatial average, PA, and normalized by

its RIVIS, PA,RMSv on 0F-

For maximum efficiency .0 should be as small as possible. An investigation into the

relative size of 0 compared to 0p is performed to determine a reasonable relative size

for .0 or if an optimum size exists. In 3D, a single contiguous domain is desired to

eliminate the difficulties of point registration. It is expected that the carotid artery

will not remain centered in each plane of this domain. Therefore. the effect of the

placement of .017 Within .0 is also investigated.

The behavior of the pressure estimating algorithm with respect to resolution is

required before any of the other experiments can be performed. If the estimation can
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be performed accurately in noise-free conditions, the rest of the tests should be con—

ducted at realistic PC-MRI resolutions. However, if the algorithm does not output

results of sufficient accuracy at realistic resolutions without noise, then additional

steps, like the upsampling mentioned above, will be required for the following ex-

periments. Only the image matrix size and not the size of the voxels was reported

in [4], so determining the resolution in that study is impossible. For these resolution

experiments, the 2D mathematical phantom described in Section 2.3.1 is used. The

parameters used to generate the mathematical velocity and pressure fields for these

experiments are in Appendix D. The size of .01: and the size of .0 relative to .01: are

both fixed. To vary the resolution, the number of points in the computational mesh

is increased or decreased. In these experiments the resolution is isotropic. The size of

the mesh is varied from 2048 X 2048 to 16 X 16 which corresponds to relative pixel

size, 77 = Amt/2m, of 7 X 10—4 and 0.09, respectively. PC-MRI data of the carotid

artery, with 7) = 0.05, falls within this range. The metric (E) used to determine the

accuracy of the algorithms is

RMS (PA)

 a = (2.23)

where Pnum is defined as before and PA is the analytical pressure field minus its

spatial average (i.e., PA is an absolute pressure field). At 77 = 0.05, E is less than

1% (see Section 3.1). This is deemed sufficient for the rest. of the experiments to be

conducted at this resolution without upsampling.

It is possible that the measured velocity field will have an anisotropic resolution

and that this will affect the estimated pressure field. The Poisson equation solver used

here relies on a FFT to decouple the two spatial directions and was derived to be

robust to anisotropic resolution over a regular domain. However, the additional steps

required for solutions on an irregular domain have the potential to favor isotropic

resolution for more accurate solutions. Because the FFT is applied in one direction,

the effect anisotrOpic resolution on the irregular solution can be dependent on which
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direction has lower resolution. Two tests are carried out to determine these effects.

In the first, the relative pixel size in the direction of the FFT, "FFT = A3'313‘FT/(2T2li

is held constant at 77mm, = 0.0056 while 7750! = A1350] /2r2, the relative pixel size in

the solution direction, is allowed to vary from 0.0004 to 0.09. The second test holds

77501 = 77mm, and allows TIFFT to vary from 0.0004 to 0.09. The fixed relative pixel

size was chosen such that it fell in the converged region as determined by the initial

isotropic resolution tests. The size of .0 relative to .017 in both directions is fixed.

Determining the effect of embedding on the algorithm is important not only from

the standpoint of the accuracy of the solution, but also from a computational stand-

point. The size of .0 relative to 01: is referred to as level of embedding (F) and is

defined as

NQ

F = —— — 2.24Na ( >

where Ng is the number of voxels across .0 and N9F is the number of voxels across

the diameter of the outer cylinder in the 2D mathematical phantom, see Figure 2.8(a)

for an illustration. This experiment is performed with N9F = 20 and 77 = 0.05. Ex-

periments are conducted with .0]: located in three different regions of .0 to simulate

the expected meandering of 0p in an in viva data set. In the first experiment 0F is

embedded centered in .0 as shown in Figure 2.8(a) while in the other two experiments

0F is embedded centered in one direction but off center in the other, see Figure 2.8(b),

and in the corner of 0, see Figure 2.8(c). For all three experiments the level of em-

bedding is allowed to vary from 0% to 250%. Based on the results of this experiment

(see Section 3.1) a level of embedding of 25% is deemed suitable for the rest of the

2D experiments.
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(b)

Figure 2.8. Illustrations useful in visual-

izing the embedding tests, (a) the defini-

tion of the level of embedding F and an

schematic of the fluid domain 0p em-

bedded in the center of the extended

computational domain .0, (b) .01: em-

bedded centered in one direction and off-

center in the other and (c) 01: embedded

in a comer of .0.
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2.3.3 Filter Parameter Estimation and Noise Experiments

Once the determination of how the method is affected by resolution has been made,

the level of embedding and the location of .01; within .0, tests to determine the

usefulness of filtering the velocity field before estimating the relative pressure field

can begin. This is done in two steps. In the first step the same set of experimental

parameters as were used in the tests of Section 2.3.2 to optimize scaled versions filter

parameters of Section 2.2.2. Once the scaled parameters are found, the filters are

tested using the same experimental parameters over a range of SNR to determine

their effectiveness. Based on this testing, three filters are chosen to be representatve

of the filtering options in terms of speed of implementation and accuracy. These

representatives are put through another set of noise tests using different experimental

parameters to test the scaling of the filter parameters.

The SNR for experiments with a noisy velocity field is defined as

RMS (VA)

SW =
‘ RMS (Vexp — VA)

 (2.25)

where RMS is defined as before, Vexp is the noisy experimental velocity and VA is

the analytical velocity field. Noise is added to the VA with the randn function in

MatLab which generates random numbers with a Gaussian distribution and the level

is adjusted based on the desired SNR.

The two proposed physics-based filters and two of those described in the literature

require the tuning of the parameters (11’, 012’ and 72’, 03’ and 73’, and 04’ and 74’.

This is done using the worst conditions considered here (SNR=5) and optimizing the

parameters such that the pressure solution resulting from the filtered velocity fields

has the smallest E. These parameters are optimized empirically to determine the

order of magnitude for the penalty terms in the cost functions. It is expected that

these terms should be small compared to the term representing (2.2) so this level of

optimization is deemed sufficient because it is unlikely that a set of parameters can
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be found that will be optimal for all noisy velocity fields. The optimized values of

the parameters, 01 ’ = 0.1, 02' = 0.01 and 7’2 = 0.53, are used in the application

of the two proposed physics-based filters Filter 1 and Filter 2, see Section 2.2.2. The

optimized parameters for the filters from the literature, 03 = 0.01 and '73 = 0.1 and

of, = 0.0001 and ya = 0.1, are used in the application of those filters.

The first set of tests with the noisy velocity fields are used to determine the effect

of decreasing SNR on the algorithm and the effectiveness of the filters using the

initial filter parameters. It was shown in [4] that the algorithm was robust to noise

in 2D experiments using a mathematical phantom at a higher resolution than that of

interest here. White Gaussian noise is added to the analytical velocity field at SNRs

of 5, 10, 15, 20, 25 and 30 and the resulting noisy velocity field is input either directly

into the algorithm of Section 2.1.2 or filtered before being input into the algorithm.

A PC-MRI data set is expected to have a SNR between 5 and 10. However, with

advances in sequence design or technology it is possible for this to increase, so the

higher SNRs are tested to verify the filters do not enhance the proportion of noise in

these conditions. Several noisy velocity fields are used to test each of the filters and

the relative pressure estimation without a filter and the results are averaged.

A method of determining the quality of the filtered velocity field is of use as a way

to directly compare the effect of the filters on the velocity field rather than on their

effect on the resulting estimated relative pressure field. Such a method was described

in [1] to evaluate the velocity filter pr0posed in that work. The performance factor

F of a filter is defined as

F ___ “VA " Vfll

“VA — VeXPll

 (2.26)

where Vf is the filtered velocity field. F is the ratio of the error in the filtered velocity

field to the error in the noisy velocity field. If F < 1, then the filter is effective in

moving the the velocity field towards the true field, whereas F > 1 indicates that

the filter is no longer effective and is moving the velocity field away from the true
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field. This metric is used in the initial noise experiments as an additional method

of differentiating between the proposed filters and evaluating their performance as

compared to those filters from the literature.

A second set of experiments with noisy velocity data are performed using only the

median filter and the two proposed physics-based filters proposed here. Based on the

initial set of experiments, the three proposed filters illustrate the range of filtering

options adequately. This second set of experiments are carried out using a different

set of flow parameters to determine the appropriatness of the proposed scaling of

the filter parameters. The second set of experimental parameters attempt to match

the scale of the velocities that occur within the carotid artery. Setting experimental

parameters that attempt to more closely match those in arterial flow is somewhat

difficult with the Couette flow mathematical phantom used here. There are no direct

connections in terms of length scales between this phantom and Carotid flow which

makes matching the Reynold’s number (Re) complex. Additionally, arterial flow is

normally described, as stated in 2.1.1, with W0 not Re. As time dependence is not

being considered at this stage, an attempt is made to mathematically approximate a

flow with a more accurately scaled velocity field than that in the initial set of tests

by matching an average Re rather than Womersley numbers for the two flows. To

more closely match the behavior of blood, its average density and viscosity are used.

The average Re in the Couette flow phantom defined as

0217‘1 + (.0’27’2

2

 (2.27)

where the subscript C indicates the Couette flow phantom, is approximately matched

to an average reynolds number in carotid artery flow defined as

D _

Rea = BLUE (2.28)

p

where the subscript 0 indicates the approximate conditions in the carotid artery. This

is not a direct scaling between the two flows. The mathematical phantom parameters
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used to match these numbers are in Appendix D. The matching of these two numbers

allows for only a very rough approximation of the velocity field which is adequate for

testing the scaling of the filter parameters.

These two sets of experiments represent only one possible flow geometry. As dis-

cussed in Section 2.3.1, certain compromises are made in the selection of the Coutette

flow mathematical phantom. In particular the viscous terms are identically zero in the

analytical description of the phantom. The constraint in Filter 2 that minimizes the

Laplacian of the noisy velocity field is attempting accomplish this same requirement.

This indicates a potential bias in the results of this work. To determine the impor-

tance of this bias, a set of simple experiments were undertaken using the Poiseuille

flow phantom. The flow domain is embedded in the center of an extended domain

as in the Couette noise experiments, noise is added to the analytical velocity field at

SNR = 5 — 20 and the filter parameters optimized for the Couette flow mathemat-

ical phantom are used. The median filter, Filter 1, Filter 2, (d/dc)2 Filter and the

Visc. Diss. Filter are tested and compared to the relative pressure estimation with

no filtering. The mathematical phantom parameters used are in Appendix D.
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CHAPTER 3

Results & Discussion

The results of the 2D validation of both stages of the proposed methodology are

presented in this chapter. The results of these experiments serve as a ‘proof of con-

cept’ for the method. Without them it is unreasonable to assume the method would

work in more realistic conditions or with velocity fields derived from real PC—MRI

measurements. Starting with the resolution and embedding experiments described in

Section 2.3.2, each additional experiment relies on the results of those before it. For

this reason, this section is divided into three parts. The first two parts mirror the

presentation of the experimental methodology in Section 2.3. Tabulated versions of

the graphical resluts presented in these two sections are in Appendix E. The final

section is dedicated to a discussion of the results.

3.1 Influence of Spatial Resolution and Embed-

ding Strategy

The examination of the influence of isotropic spatial resolution, represented here by

the relative voxel size n, on the normalized relative RMS error, E, reveals that the

relative pressure field estimation is second-order accurate, as shown in Figure 3.1.
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Figure 3.1. Plot of the normalized relative RMS error, E, of the estimated relative

pressure field for Couette flow with no noise added as a function of the the relative

pixel size, 77 = Ax/2’l‘2.

More importantly, Ex 1% for the resolution expected for MRI studies of the carotid

artery, 7] = 0.05. Thus, it is not necessary to artificially increase the resolution of the

velocity field with interpolation in the remaining experiments.

Anisotropic resolution has a different effect depending on which direction is coarser

in resolution. Above X301 = 10 and XFFT = 10, E differs between the two directions,

see Figures 3.2(a) and (b), respectively. For X301 > 10 E is larger compared to the

opposite, XFFT > 10, maximum E: 2.6% and maximum E: 1.3%, respectively.

Below X30] 2 10 and XFFT = 10, the solver behaves identically to decreasing values

of X30] and XFFT with a clear minimum E at x501 = XFFT = 1.

The effect of embedding 0p in increasingly larger 0 is shown in Figure 3.3. If 0p

is embedded in the center of .0, E decays monotonically towards an asymptotic value

of 0.8% with increasing F. In addition, Figure 3.3 indicates that there is an error
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Figure 3.2. Plot of the normalized relative RMS error, E, of the estimated relative

pressure field for Couette flow with no noise added as a function of X0 = a/nconv.

minimum (Ex 0.9%) at F of approximately 45% when 0F is located in the corner

of .0 and at about 110% for the case when 0;: is located off to one side of .0. All

in all, the effects of the embedding are relatively negligible (E< 1%) provided the

embedding level is greater than 20%. A F of 25% is used for all other experiments

presented here.
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Figure 3.3. Plot of the normalized relative RMS error, E, of the estimated relative

pressure field for Couette flow with no noise added as a function of the embedding

level P with a 20 x 20, which corresponds to 77 = 0.05, flow domain 01:.

3.2 Calibration and Performance of Proposed

Noise Filters

The Lagrange multipliers used for Filter 1 (01), Filter 2 (02 and 72) and the modified

form of Filter 2 using the filtering terms of [2] (03 and '73) and [3] (a4 and ’74), are

calibrated by optimizing the results for the worst noise conditions considered here

(SNR = 5). The normalized relative RMS error for the estimated relative pressure

field, E, is plotted against (1,1,2 and 7'2 in Figure 3.4(a,b). The optimal performance

is obtained for a’l = 0.1 and (1'2 = 0.01,’7’2 20.53, which are the conditions used

henceforth. Similar plots for the filters using the terms of [2], see (2.11), and [3],

see (2.12), are shown in Figure 3.5(a,b). The optimal performances of these filters is
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(b) Filter 2 calibration

Figure 3.4. Plot of the average normalized relative RMS error, E, of the estimated rel-

ative pressure field for the initial Couette flow experimental parameters, a resolution

of 77 = 0.05 on a 20 X 20 flow domain 01:, an embedding level 1" = 25% and SNR = 5,

as a function of: (a) (1’1 for Filter 1; (b) at? and 7’2 for Filter 2, the minimum is

circled.
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Figure 3.5. Contour plots of the average normalized relative RMS error, E, of the

estimated relative pressure field for the initial Couette flow experimental parameters,

a resolution of 77 = 0.05 on a 20 X 20 flow domain .01: and an embedding level P = 25%

and SNR = 5, as a function of: (a) a]; and 73 for the filter with filtering term proposed

in [2]; (b) “£1 and 72 for filter with the filtering term proposed in [3]. The minimum

is circled in both figures.
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obtained using as = 0.01,)f3 = 0.1 and d1, = 0.0001“1 = 0.1 for (2.11) and (2.12),
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Figure 3.6. Plot comparing the average normalized relative RMS error, E, in the

estimated relative pressure field, for the initial Couette flow parameters, a resolution

of 77 = 0.05 on a 20 X 20 flow domain .01: and an embedding level P = 25%, after

applying the three filters pr0posed here (Median Filter, Filter 1, Filter 2) to the

relative pressure field estimation with the field estimated with no filtering and three

filters from the literature (PSDF [1], (d/dax)2 [2], Visc. Diss. [3]) over the range of

SNR tested.

The normalized relaitve RMS error, E, obtained before and after filtering is plot-

ted against SNR in Figure 3.6. The tests were carried out using the initial set of

experimental parameters with resolution of n = 0.05, on a 20 X 20 flow domain 0p

embedded in a 25 X 25 computational domain .0. The embedding level P = 25%

is deemed sufficient in View of the results presented in Section 3.1. For all filters, E

decreases with increasing SNR, as expected. Moreover, the two physics-based filters

proposed here outperform the median filter and the PSDF filter of [1] over the full

range of SNR values tested. Filter 2 outperforms all filters tested throughout the
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range of SNR tested. Both the median filter and PSDF filter become ineffective at

low SNR, SNR = 10 and SNR = 7.5, respectively. The other filters all remain effec-

tive through the SNR tested. For Filter 1, E decreases from an average of 14.3% at

SNR = 5 to an average of 2.5% at SNR = 30. For the filter of [2], E goes from 10.4%

to 2.8% for the same SNR range. For the filter of [3], E goes from 7.5% to 4.3%. For

Filter 2, E goes from 5.3% to 2%.

The dependence of the estimated relative pressure field, Pnum(:r, y), on the filtering

of the noisy experimental velocity data with SNR = 5 is illustrated in Figure 3.7.

Pixelated images of the magnitude of the normalized error distribution, e(a:, y), are

plotted when no filtering is applied in Figure 3.7(a) and then for the median filter in

Figure 3.7(b), Filter 1 in Figure 3.7(c), Filter 2 in Figure 3.7(d) and filters using the

terms of of [2] in Figure 3.7(e) and [3] in Figure 3.7(f). The results of the PSDF filter

are not included because the reduction in error is indistinguishable. The improved

performance of Filter 2 is demonstrated by the clearly lower magnitude of 5(22, 3;) and

the significantly lower relative RMS error (e) as compared to the results for the other

filters (by factor of 1.35 w.r.t. the filtering term of [3], 1.84 w.r.t. the filtering term

of [2], 2.7 w.r.t. Filter 1 and factor of 3.64 w.r.t. the median filter).

The performance factor F is plotted against SNR in Figure 3.8 for all filters tested

here with the initial set of Couette flow experimental parameters. Without filtering

F is expected to be 1, F < 1 indicates that the filtered velocity field is closer to

the true velocity field and F > 1 means the filtered velocity field is further from

the true velocity field than the original noisy field. The two physics-based filters

proposed here, Filter 1 and Filter 2, both have F values less than 1 for the entire

range of SNR tested. The median filter and the PSDF filter both begin to push the

filtered velocity field away from the true velocity field after an SNR of 5. The filter

using the term of [2], (d/das)2, remains effective through the range of SNR tested,

but F approaches one at SNR = 30. The filter using the term of [3] remains effective
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(a) No filter: E: 23.6% (1)) Median filter: E: 19.3%

 

(c) Filter 1: E: 14.3% (d) Filter 2: E: 5.3%

 

(e) (d/dx)2: E: 9.8% (f) Visc. Diss.: E: 7.2%

Figure 3.7. Sample images of the magnitude of the normalized relative error distri-

bution, s(.v, y)|, for the estimated relative pressure fields obtained using the initial

Couette flow experimental parameters, a resolution of 77 = 0.05 on a 20 X 20 flow

domain 01:, an embedding level P = 25% and SNR = 5 (a) no filter; (b) a median

filter with radius 1 pixel; (c) Filter 1; (d) Filter 2; (e) a filter using the term of [2];

and (f) a filter using the term of [3] on the noisy velocity field. The normalized RMS

error, E, is specified for each case.
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Figure 3.8. Plot comparing the average performance factor F to SNR for all filters

tested using the initial Couette flow experimental parameters, a resolution of 77 = 0.05

on a 20 X 20 flow domain 0F and an embedding level P = 25%. Note that the median

filter, the PSDF method and the filter using the viscous dissipation term of [3] all

become ineffective by SNR = 15.

through an SNR of 15.

The effect of filtering on the noisy experimental velocity data with SNR = 5 is

illustrated ill Figure 3.9. Vector plots of the analytical velocity field over half of 0p

are superposed with the velocity field resulting with the application of no filtering in

Figure 3.9(a), median filtering in Figure 3.9(b), Filter 1 in Figure 3.9(c), Filter 2 in

Figure 3.9(d), a filter using the term of [2] in Figure 3.9(e) and a filter using the term

of [3] in Figure 3.9(f). The results of the PSDF filter are not included because the

reduction in error is indistinguishable. The F value for the respective filtered velocity

fields are indicated beneath the individual vector plots. The efficacy of Filter 2 at

producing a velocity field that is closer to the true velocity field is evidenced by the

difference in F as compared to the other filters (a. factor of 4.17 smaller w.r.t. Filter 1,
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Figure 3.9. Sample velocity vector fields of the initial Couette flow experimental

parameters, a resolution of 77 = 0.05 on a 20 X 20 flow domain 0F, an embedding level

P = 25% and SNR = 5 illustrating the effect of (a) no filter (Vexp); (b) a median

filter with radius 1 pixel; (c) Filter 1; (d) Filter 2; (e) the filter using the term of [2],

see (2.11); and (f) the filter using the term of [3], see (2.12), on the noisy velocity field.

The subscript f indicates the filtered field. The performance factor, F, is specified for

each case.
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a factor of 4.9 w.r.t. the term of [3], a factor of 5 w.r.t. the term of [2] and a factor of

5.22 smaller w.r.t. the median filter).
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Figure 3.10. Plot of the average normalized relative RMS error, E, in the estimated

relative pressure field versus SNR for the more realistic Couette flow parameters,

resolution 77 = 0.05 on a 20 x 20 flow domain 01: and an embedding level of F = 25%,

comparing the results of the three filters proposed here to the result with no filter

over the range of SNR tested.

The second set of noise experiments using the optimized scaled filter parameters on

the Couette flow mathematical flow phantom with a more realistically scaled velocity

field show that the scaling of the filter parameters is appropriate, see Figure 3.10 for a

plot of the RMS error E versus SNR. In this case the PPE solver does amplify the noise

to a greater extent, E: 38%, than in the previous set of experiments, E= 24.3%. The

filters remain effective in reducing the propagation of noise into the estimated relative

pressure field reducing E to 21.9% using the median filter, 22.9% using Filter 1, and

6.1% using Filter 2. In these experiments the median filter out performs Filter 1 by

1% and continues to be effective until SNR = 20. Filter 1 becomes more effective
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than the median filter as the SNR increases and remains effective through the range

of SNR tested with E: 4% at SNR = 30 compared to 6.7% for the median filter and

6% without a filter. Filter 2 decreases E to 2% at SNR = 30.
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Figure 3.11. Plot of the average normalized relative RMS error, E, in the estimated

relative pressure field versus SNR for the Poiseuille flow parameters, resolution 7) =

0.05 on a 20 X 20 flow domain 01: and an embedding level of F = 25%, comparing

the results of the three filters proposed here to the result with no filter and two filters

from the literature (d/das)2 [2], Visc. Diss. [3]) over the range of SNR = 5 — 20.

The set of noise experiments using the optimized filter parameters on the Poiseuille

flow mathematical flow phantom demonstrate that the solver has difficulty with noise

in such simple flows, see Figure 3.11 for a plot of the RMS error E versus SNR. In this

case the PPE solver does amplify the noise to a greater extent, E: 924%, than in the

previous experiments with Couette flow, E: 24.3 — 38%. The median filter is entirely

ineffective. The filter with the additional term of [3] based on viscous dissipation also

reduces the error at SNR = 5 ((E= 765%), but this filter also becomes ineffective
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before SNR = 10. Filter 1, Filter 2 and the filter with the additional term of [2]

that minimizes the square of the first spatial derivatives of the velocity field remain

effective through the range of SNR tested. For this flow, the filtering term of [2] is

the most effective reducing E to 131% at SNR = 5 whereas Filter 1 reduces it. to 573%

and Filter 2 reduces it. to 483%.
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3.3 Discussion

The investigation of the influence of spatial resolution and embedding level P on the

estimation of the relative pressure field reveals that the PPE solution technique is

capable of generating accurate relative pressure fields at spatial resolutions that are

consistent with PC-MRI of small blood vessels. Based on the examination of effect

of anisotropic resolution, the Poisson solver combined with embedding is affected by

changes in the coarseness of the resolution and which direction is coarser. Greater

coarseness in the direction of the FFT does not affect the accuracy of the estimated

pressure field as much as coarseness in the solving direction when the resolutions differ

by a factor of 10 or more. In situations such as these the Poisson solver can be adjusted

to maximize the accuracy by applying the FFT in the direction of coarser resolution.

It is clearly beneficial to use isotropic resolution as this maximizes the accuracy of the

estimated pressure field. This fact is more important in three—dimensional velocity

fields measured by MRI where it is more common to have anisotropic resolution due

to the multi—slice acquisition of the spatial information (preferred to lengthier 3D data

acquisition). The accuracy of the solution is affected by the value for 1",\especially

when .017 is not embedded at the center of .0, and there exists optimal embedding

levels that provide more accurate solutions. From a practical aspect however, these

optimal embedding levels may require an excessively large computational domain 0,

which then requires longer computational times and/or more computational power.

Normalized RMS errors of the estimated relative pressure field on the order of 1% or

less (5‘ S 1%) are achievable for realistic in-plane resolutions and embedding levels

P > 20% in the absence of noise in the velocity input.

For PC-MRI, realistic RMS noise levels are about 10% to 20%, corresponding

to SNR = 5 to 10. In the initial set of noise tests, see Figure 3.6, the curves for 5‘

vs. SNR for no filter and the median filter cross at SNR = 10, which reveals that

the median filter actually amplifies the propagation of the experimental noise into
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the estimated relative pressure field for SNR > 10. Similarly, the PSDF filter of [1]

begins to amplify the propagation of noise for SNR > 7.5. By implementing two

physics-based filters on the experimental velocity field with a normalized RMS noise

of 20%, the normalized RMS error in the estimated relative pressure field is reduced

from E = 23.6% to 14.3% by Filter 1 and down to only 5% by Filter 2, which is quite

encouraging. Implementing the filter of [2], see (2.11), reduces the error to 10.4%,

and implementing the filter of [3], see (2.12), reduces the error to 7.5%. Filter 1

requires less computational time than Filter 2: 30 min compared to 75 to 90 min

on a Dell Optiplex 755 with a 2.99 GHz processor, 1.96 GB of RAM, cache speed

of 3 GHz, and cache size of 4 MB (Dell Computers, Round Rock, TX). Thus, the

significant gain in accuracy provided by Filter 2 vs. Filter 1 is inversely proportional

to their relative computational time, which is an expected trade—off. The filters using

the terms of [2] and [3] are implemented in the same manner as Filter 2 and have

the same computational time. Because Filter 2 as proposed here is more generates a

more accurate relative pressure field estimation than either of these two filters with

the same computational time, it is clear that they offer no advantage over Filter 2.

The comparison of the F values of the filtered velocity fields is also revealing. Over

the range of SNR tested the two physics-based filters outperformed all other filters

tested. In some cases the effect of the filter on the velocity field can be inferred from

Figure 3.6. For instance, it is apparent that both the projection onto the space of

divergence free fields, PSDF, proposed in [1] and the median filter become ineffective

in moving the noisy velocity field towards the true velocity field because their relative

pressure field 5 curves cross the curve for estimation with no filter. From Figure 3.8

the F values for these two filters start at an average of F = 0.95 and F = 0.98,

respectively, for SNR = 5 and quickly become greater than one. The results of the

PSDF method do not agree with those published at similar SNR, F = 0.88 in [4]

compared to an average of F = 0.95 here for SNR = 5. However, those experiments
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were performed with a larger computational domain (32 x 32). The PSDF is fast

(0.01 sec), produces a velocity field closer to the true velocity field than the median

filter and is implemented using a similar Poisson solver to that used for the pressure

estimation, but the resulting relative pressure field estimation is worse than that of

a median filtered velocity field. The other two filters proposed in the literature have

similar, though less severe, effects on the velocity field. Based on Figure 3.6 both of

the physics-based filters proposed here, Filter 1 and Filter 2, should generate velocity

fields that are nearer the true field because their E curves stay near or below the

expected error for the range of SNR tested. Again the results in Figure 3.8 agree

with this expectation. The performance of Filter 1 decreases from an average of

F = 0.75 to F = 0.69 over the range of SNR tested while the performance of Filter 2

increases from an average of F = 0.18 to F = 0.25. It is more difficult to determine

the effectiveness of the filters using the terms of [2], (d/d.r)2, and [3], Visc. Diss.

based solely either on E or F. Over the lower portion of the range of SNR tested,

both of these filters generate velocity fields that better estimate the relative pressure

field than the noisy velocity field as compared to PSDF, median filtering and Filter 1

according to Figure 3.6. The F value at SNR = 5 for these filters are on average

F = 0.56 and F = 0.46 for the filtering terms of [2] and [3], respectively, which

agrees with the E interpretation. According to the F values of these two filters, they

start becoming less effective than Filter 1 at SNR z 10 whereas according to E they

become less effective between SNR = 15 and 20. The F value of the filter using the

term of [2] remains less than one only through SNR = 25, but its E curve remains

below that for no filtering throughout the range of SNR tested. The filter using the

term of [3] becomes ineffective at SNR x 12.5 according to its F value which is before

the SNR that its E curve crosses that of Filter 1 and near the SNR where it crosses

the curve of the filter with the term of [2]. At SNR = 25 its E curve crosses the curve

of estimation without a filter and its F = 2.
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The second set of noise tests demonstrate that the method and the optimized

scaled filter parameters do transfer to more realistic conditions. While the RMS

error in the estimated relative pressure field increases by 60%, from 23.6% to 38%,

between the initial experiments and these experiments when no filter is applied to

the velocity field at SNR = 5, it only increases 20% from 5% to 6%, when Filter 2

is applied. This indicates that the proposed scaling is appropriate. However, the

results of applying Filter 1 seem to indicate the opposite. At SNR = 5 the median

filter actually outperforms Filter 1 and the E increases from 14.3% in the initial set

of tests to 22.9% in the second set. This increase of z 60% mirrors that of the case

with no filter, but it does not mirror the increase in the value of (11 which increases

from an average of 0.65 to 89. More likely the additional filtering term of minimizing

the Laplacian of the velocity field is an effective way of combating the propagation of

noise from the velocity field to the estimated relative pressure field. The approximate

optimization of a’l used in Filter 1 is also not as precise as that for 015 and 7’2 used

in Filter 2. Fine-tunning the value of az'l may increase its accuracy. The median

filter remains effective over a greater range of SNR in these experiments decreasing E

through SNR = 20 as opposed to SNR = 10 in the initial set of tests. Both Filter 1

and Filter 2 remain effective through the range of SNR tested as they did in the initial

set of experiments. The times to execute Filter 1 and Filter 2 in these experiments

remains the same as it was in the initial experiments.

The final set of experiments with a mathematical phantom, Poiseuille flow, demon-

strate that the proposed filters reduce the error in the estimated relative pressure

field when compared to the estimation without filtering in a second flow system.

The mathematical simplicity of the Poiseuille flow belies the difficulty encountered

by the proposed method in estimating the relative pressure field from the noisy ve-

locity field. There is a drastic increase of E in the estimated relative pressure fields

with and without first filtering the velocity field. Estimating a linear gradient using
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Fourier methods is difficult because of the practical limitation to use a finite rather

than infinite representation. The solver is capable of accurately estimating the rel-

ative pressure field with no noise in the velocity field at these resolution conditions

(E = 0.2%). The additions of noise to the velocity field, however, allows the pressure

estimation to converge to a periodic field which is preferred by this type of solver. It

is worth noting that the filters, with the exception of the filter using the term of [3],

follow the same trend of accuracy improvement as was seen in the Couette mathe-

matical phantom experiments. The median filter is effective initially, but becomes

ineffective before SNR = 10. Filter 1, Filter 2 and the filter using the term of [2] all

reduce the error through the range of SNR tested. Unlike before, the simpler of the

two filters proposed here, Filter 1, is either as or more effective at higher SNR than

Filter 2. Also unlike the Couette experiments, the filter using the term of [2] is the

best performer throughout the range of SNR tested. Interestingly, the filter using the

term of [3] increases E compared to the case with no filter at higher SNR which is a

behavior not seen in the previous experiments. Because the error was so large across

all cases in using this phantom, it is difficult to tell if any bias was introduced by the

combination of filter and mathematical phantom. The fact that Filter 2 continues to

be one of the better performers indicates that it has the potential to be a useful filter

in cases where the flow physics are less well understood.

These ‘proof of concept’ experiments to determine if this type of two—stage method

is worth investigating further are encouraging. PC-MRI resolution conditions do not

greatly hamper the PPE solver’s ability to estimate an accurate relative pressure field

in zero noise conditions. The level of embedding, F, and the position of 0p within .0

do factor greatly into the accuracy of the solution, and the level of embedding required

to generate a solution that is within 1% relative RMS error of the true relative pressure

field does not require .0 to be excessively larger than 0F. Based on the two sets of

noise testing, the scaling of the filter parameters is appropriate. Additionally, the
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Filter 2 proposed here outperforms all of the other filters tested in the more complex

mathematical phantom. Filter 1 is faster than Filter 2 and the filters using the

terms of [2] and [3], but it produces a less accurate velocity field than Filter 2 and

struggles in conditions a with more realisitically scaled velocity field. The results of

this 2D validation show that the two—stage method in general, and using either one

of the two physics-based filters proposed here in particular, is a reasonable approact

to estimating the relative pressure field from noisy velocity fields.
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CHAPTER 4

Conclusions

Engineering is a discipline whose goal is to find the best path from problem to solution.

In many cases this is an iterative process where the ideal path is found through a series

of small improvements. Here the problem being considered directly is estimating the

relative pressure field from noisy velocity measurements, but the underlying goal is

to provide a diagnostic tool. The work presented here represents one iteration toward

the best solution for both of these aspirations. The previous iterations include the

minimally invasive blood flow assessments reviewed in Section 1.3 and the various

algorithms for estimating the relative pressure field reviewed in Section 1.2. This step

adds a noise filter between the velocity measurements and the pressure estimation to

improve the resulting relative pressure field. The results of this work show that the

inclusion of either one of two proposed physics-based filters as well as two filters from

the literature improve the accuracy of the estimated relative pressure field. In this

chapter the insight into the problem gained in this iteration of estimating relative

pressure fields and the future of the proposed method are presented.
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4. 1 Insight

It is important to understand how an algorithm will behave in the presence of various

complicating factors before it is used to interpret real-world measurements. The

mathematical phantom experiments were useful in elucidating the complexities of the

problem of estimating the relative pressure field on an irregular domain. The effect of

spatial resolution on the algorithm is the first issue that many numerical methods are

required to overcome. The results of the presented experiments have demonstrated

that the pressure estimation algorithm is adequately capable of resolving relative

pressure fields accurately at the relatively coarse resolution achievable in clinical PC-

MRI. However, it is recommended that isotropic resolution be used when possible.

Embedding the irregular domain as done here is useful for simplifying the application

of the boundary conditions, but its effect on the accuracy of the solution has not been

published. The results presented here show that using a computational domain that

is 25% larger than the major dimension of the irregular physical domain produces

suitable results in noise-free conditions. These results provide the necessary level of

knowledge of the behavior of the algorithm to then proceed with tests using noisy

velocity fields.

Though the resolution and embedding tests discussed in Section 3.1 demonstrate

that the pressure algorithm is accurate at the low resolution expected for PC-MRI, the

noise tests are equally demonstrative of the inaccuracies that are introduced by noisy

velocity measurements. The first stage of the proposed method, namely removing

noise in the velocity field using one of three proposed filters or filters described in the

literature, proves useful in reducing the negative effects of noisy data. Of the tested

filters, the filter that simultaneously applies in a least-squares sense the continuity

equation for an incompressible fluid, a constraint on the variation between the filtered

velocity field and the noisy one and an additional constraint that limits the size of

the Laplacian of the velocity field, Filter 2, performs the best. It succeeds in reducing
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the error in the estimated pressure field from an average of 23.6% with no filter to an

average of 5.3% with filtering at a realistic resolution in the worst conditions tested.

This non-negligible improvement was also demonstrated in a second set of experiments

with different flow parameters. The trend was also seen in a set of experiments using a

second mathematical phantom. By comparing these results to those of Filter 1, which

does not apply the additional term and improves the pressure estimation to an average

error of 14.6%, it is evident that removing noise in the Laplacian is useful. Other

second terms such as those proposed in [2] and [3] when applied using scaling factors

like those proposed here are also effective in mitigating the pollution of the estimated

relative pressure field with noise from the measured velocity field. However, accuracy

is not the only factor to be considered when comparing the filters, the time required

to complete the filtering and estimation of the pressure field is also of importance.

At this point, it is uncertain how accurate the pressure field needs to be to fulfill the

eventual goal of providing a useful diagnostic technique. For this reason, it is not

prudent to ignore the capabilities of Filter 1 which is faster to implement than filters

with additional terms.

Using a physics-based approach in the design of the filters is an obvious improve—

ment over ad hoc methods like median filtering. An understanding of the principles

of fluid mechanics that govern blood flow in vessels like the carotid artery is necessary

for these approaches to be workable. Minimizing the continuity equation for a noisy

velocity field results in a velocity field that satisfies the conservation of mass, but

there is no guarantee that the resulting field is still relevant to the physical system.

Even though they are polluted by noise, the measured velocity fields still represent

a system that satisfies all governing equations. When removing noise from this field

the filtered field should not stray far from this starting point. From these physical

insights the cost function of Filter 1, see Section 2.2.1, was written. Filter 2 adds an

additional constraint that is designed to allow for a more accurate characterization

 



of the effect of viscosity. Though it is not directly based on a governing equation,

the minimization of the Laplacian of the velocity field is a method of removing noise

from the flow field that directly affects the estimation of the viscous terms in the NSE.

It is reasonable to assume that the velocity field does not contain discontinuities or

large spikes at this level, so this additional constraint seeks to eliminate them. Other

terms can also be applied if a priori knowledge of the flow field or experience dictates

physical constraints separate from those tested here. The difficulty encountered by

the method in estimating the relative pressure field from a noisy velocity field with

no filterng in the Poiseuille flow experiments underscores the importance of filtering

stage. The scaling of the filter parameters proposed here appears appropriate and is a

useful way to avoid reoptimizing the parameters for each new application. Horn these

physical principles, as well as the results of the resolution and embedding experiments,

this two-stage methodology is proposed for estimating the relative pressure field from

a velocity field at conditions that are realistic for clinical PC-MRI experiments.

4.2 Future Work

This work endeavors towards providing the first step of a noninvasive technique for

the diagnosis of the physiological relevance of arteriosclerotic stenoses in the carotid

artery. To that end, a two—stage method is proposed to estimate the relative pressure

field from a noisy velocity field. While the velocity field by itself does provide enough

information to calculate such potentially important parameters as wall shear stress

and oscillatory shear index, the relative pressure field is also necessary before any

serious investigation into the dynamics of the vessel wall can be investigated. It is

these dynamics that are expected to provide information about the danger associated

with a particular stenosis. The extension of the two—stage method proposed here to

the evaluation of the dynamics of the vessel wall is an obvious next step.
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Before that step can be taken some refinement to the details of the method are

desired. The time required to implement either of the two physics-based filters pro-

posed here is one area of concern. Different minimization algorithms, rewriting the

functions in a lower-level computing language like C or Fortran and faster computers

are all possible solutions to this problem. Another area with potential for improving

the method concerns the parameters used in the implementation of the filters. To

this point the parameters are only roughly optimized. It is unlikely that there exists

a set of exactly optimized parameters that will provide ideal results independent of

the SNR. However, there is the possibility that further optimization of these param-

eters could lead to better results than those presented here especially in the case of

Poiseuille flow. It is possible that some sort of experiment with a physical phantom

will be necessary to determine the best set of parameters to be used. This potential

for improvement does not preclude the discussion, in general terms, of the future use

of the proposed method that follows.

Experiments with 2D mathematical flow phantoms are presented here, but blood

flow in the carotid artery and the dynamics of the vessel wall are 3D and time-varying.

It is difficult to construct a mathematical phantom with an analytical solution for

both the velocity field and pressure field that is rich in all three spatial dimensions

and as well as the temporal dimension. Thus, testing of the method proposed here

is difficult to implement in higher dimensions. However, the time-varying velocity

field is not a factor in the design of either of the two proposed physics-based filters

and its effects are only present in the acceleration term in the NSE. Additionally, the

pressure field is calculated relative to its own spatial average not the time average.

Therefore, once the time derivative of the velocity field is estimated, the 3D pressure

field that represents each time step can be calculated as a stand-alone system. Once

the method is expanded and validated in 3D, tests on a simple time-varying flow, such

as the Womersley flow, can be used to determine the effect of time the derivative on
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the pressure estimation which allows for the focus to be shifted to the determination

of the characteristics of the vessel wall.

Interaction between the wall and the blood flowing through a vessel will have an

impact on the estimation of the pressure field. The experiments carried out in this

work did use flow systems with moving boundaries, but not systems with changing

volumes. While it is reasonable to assume that the volume of a segment of a blood

vessel will be unchanged between cardiac cycles, it is not reasonable to assume that

it will remain unchanged during a cycle. If the properties of the vessel wall are

to be understood, some coupling between the methodology presented here and the

appropriate tissue mechanics models will be required. This is the next major step in

developing the minimally invasive tool that is the underlying desire of this work.

68



APPENDIX A

Finite Difference Schemes

Finite difference schemes use Taylor series expansions to approximate the derivative

of a function at a point. In this work there are no mixed derivatives so this appendix

focuses on the derivation of schemes for derivatives in a single direction. The Taylor

series expansion of a function f (.13) about the point f (.27 + A33) is

 

OO .

’ _ (A2)" din) f
f(.i: + An) _ 112:0: n! F”) 1, (A1)

If f is evaluated on a discrete grid with a fixed spacing of As: between points, then

the index notation i :l: n, where n = 0, 1, 2, . . . ,oo, can be used to expand the first

few terms of the summation of (A1) at the point (i + 1)

_d_f (Am)2 (12_f, (AI)3d_:f +A(_)Ilr“d_:f
  

 

 

 

A similar expansion for the point i — 1 yields

may (A.>2 .12) (M3 d3f (A.>4 d‘f 5
f._1)=f.-— .d_—,.+ 2 8,7,1.— 6 d—,,,l.+ ,4 .1—,I.+ 0(Arv) (A3)

By subtracting (A.3) from (A2) and rearranging terms an approximation of the first

derivative at point i is possible using the value of f at the locations i + 1 and i — 1

fi|'_f(i+l)— f(i—l)

dzz— 2A2:

 +O(A:L‘2) (A4)
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Similarly, by adding (A2) to (A3) an approximation of the second derivative of f at

point i is possible using the value of f at i + 1, i and i — 1.

(Rffl_flHU-Zfl+fWJ)
E5l, _ (Ax)? + 0(Ax2) (A5) 

Both (A4) and (A5) are second-order accurate central-difference schemes. The

second-order accuracy stems from the expected magnitude of the first term of the

Taylor series that has been which is of the order of the size of the step in :7: squared.

First-order accurate schemes can also be derived from (A2) and (A3)

df __ f(i+1) _ fi

fi._fi-flau
8;]; —T+ 0(ACII) (A.7)

These are a forward scheme, (A6), and a backward scheme, (A.7). Schemes like these

are of use on the boundaries of a discrete domain.

If second-order accurate forward and backward schemes are desired or second

derivatives are required, then more points are necessary. The expansions for points

(i + 2) and (i + 3) are

 
d_f +A<2)42‘47 (242)3d3f (242)4d4f 5

f(i)=+2 fi+2A$d—- 2 Egg—l2 __6—003—3" TEI'I+O(A‘T)(A°8)

and

df +(3A222)2 d2f (_.__3A6i)3 d3f (_-__3A.i:)4 d4f

f(i+3)—fi+3A-r_li+ 7jli+ 0130135) (A-Q)

(1.13 ——d.i:3l4+ 24___d—ffll’fl’

respectively. A second-order accurate forward scheme for a first derivative is found

using (A2) and (A8)

df _ _f(i+2) + 4f(i+1) — 3f,-
_ . _ , 2
d1: 2A2: + 0(A.r ) (A.10) 

These points are also required to find a first-order accurate forward scheme for the

second derivative

d_2fl_ f(i+2) _2f(i+1) +fz'

drr2 z — (Ax)2

 + 0(Ai) (All)
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The point approximated in (A9) is necessary to find the second-order forward scheme

of the derivative in (A.11)

d2)” |_ f(i+3) + 4f(i+2) — 5fi+1 + 2ft 2)

(11:2 z — (Air)2

+ 0(Aa:
 (A.12)

A similar approach is used to find backward equivalents of (A.10), (All) and (A12).

The expansions about points (i — 2) and (i — 3) are

   

   

(1 2A d2 2A 3d3 d4

f(-2)=f.-—2—Axd—f-+ ( 2") —dei-( 6‘” -d—.fl.-+ (,f) d——f|io:5+(Ar)(A-13)

and

d_f (A0432);, (3A)3331 (3A3)4d4f, 5
as): f.—3A0,,+ 2 33,).— 6 731.324 FI.+0(A3)(A.14)

respectively. The backward scheme equivalents of (A.10), (All) and (A12) are

df f(i_2) — 4f(i_1) + 3ft
 

 

 

Elf = 2m + 0(Ax2) (A15)

(12 fi_2 _Zfi— +fz',3. = < > at v ..( .3) (A...)

and

(12 —fi_ +4f27_ — 5fi— +2fi
35:93 = ( 3) ((3)2 ( 1) +O(ALE2) (A.17)

For those special cases where the proximity of 0.01: prevents the use of any of the

above approximations, a central difference approximation that allows for variations

in A57: is required. To start, substitute (A.4) into (A.2)

f(i+1) f(i—1)+(A$)2 (12f|_+ (A$)3§3_f

2A3: 2 d932’+ 6 (13:3

 

f(i+l) = f; 'l' Ail} [i + 0(Al‘4) (A.18)
 

Rearranging yields a new expression for f(i+1) in terms of f, and f(,-_1)

2d2f (A303 d3f_ . __ . 4
dzr2l’ 3 (1333], + 0(Aa: ) (A.19)f(i+1) = sz' — f(i—1)+(A$)

For the proposes of this derivation it is convenient to once again use (:rinAr) instead

of (i :i: n). Let us now assume that the grid spacing in the direction of (:1: + Ax) is
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different from the spacing in the direction of (.‘L’ — A17), denoted as A$+ and Ar.,

respectively, and both of these spacings are different than the regular spacing on the

rest of the grid, Ax. Rewritting (A2) using this new notation, solving for the second

derivative and substituting (A.4) yields

 
{IQ—f 2 f(1'+AI) _ f(:r.-A.r.) )] (A20)

(1x2 (A$+)2 [f(1+A:r+) f1? l‘+ ( 2A1:

A new expression for f(1‘+ A1.) in terms of f(I+A$+) and f($_A:,I) is found by substi-

tuting (A20) into (A.19)

2(11—(A)?n+(AYfIIIm(AA—1mm}
1+3—

 

f(1+Ar) =

(A21)

Following a similar procedure, a new expression for f(J:—A:r) in terms of f(:r—A:I:_)

and f(;c+A1‘) iS

2((1- (A1A) IIIIA-oII)
_ 1+3Ai

l‘_

 

(A22)

By substituting (A22) into (A21) and vice versa new expressions for f(1:+A;r) and

. . A A
f(:r—A:1:) in terms of the ratlos R+ = Zfi and R_ = mg: f(:r.+Aa:+) and f(1,_A$_)

are obtained

R

f(1‘.+A;r) = 2{ [1-(R+)2+ 1:12.1(1— 133)] far. + (3+)2 f(;r+A:r+)

+R+_1(R—))2f(x—Ax-l} ()1+R+)1[ (R+—1)(R—-1)i}_l (A23)

 

  

1+R_ (R++1)(R_+1)

and

 

  

 



Substituting (A23) and (A24) into (A.4) and (A5) yields approximations for first

and second derivatives in areas where the schemes that assume a fixed grid are not

possible. When these schemes are applied in any of the algorithms in this work it is

assumed that. Ami = 0.5Aa: and that the velocity at that point is zero. This allows

for a rudimentary approximation of the derivatives in virtually all regions of 0p.
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APPENDIX B

Fourier Poisson Equation Solver

The solution of the Poisson equation in step 4 of Section 2.1.2 is performed using

the solver based on fast Fourier transforms (FFT) presented in [5]. The solver is

direct and more efficient than the Gaussian method. The two different versions of the

solvers used in this work will be worked through in the following order: 2D problem

with Neumann boundary conditions followed by 2D problem with Dirichlet boundary

conditions.

B.1 2D Neumann Problem

Following the general algorithm laid out in Section 2.1.2, for a 2D computational

domain .0 the first step is to incorporate the boundary conditions b - ft on 8.0 into

V . b, see Figure 8.1 for an illustration as well as the definition of the boundary

names. On the respective boundaries the boundary conditions are

(VPfi 0,]- = (bT)0,j

(VP'fiMIj = (bit-)Mj
I ’ ‘ B.l

(VP-72),“) = (bi/hp ( )

(VP'fihw = (by)i,N

where bx is the :c-cornponent of the discrete form of the b and by is its y-component.

Using the second-order finite difference scheme (AS) in the center of {2, the discretized
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Figure B.1. A schematic illustrating the computational domain .0 and defining the

names of the boundaries and indices used in the direct solver of the Poisson equation

in two-dimensions.

version of V2P is

P(z'-+1)Ij - 2PM + P(-2:-1)Ij PAW) — 2PM + Paw—1)

(Ave)2 (Ay)2

  

= (V ' b)i,j = 9m (B?)

By using the same discretization on the east boundary then for points i = 0 and

j: 1,2,...,(N—1)

P14 — 2130,,- + P—IIj P0I(j+1) ‘ 21003“ + POM—1)

(Ax)2 (Ay)2

  

= (V ' b)0,j (33)

However, the point P_1,j does not exist in this computational domain. To eliminate

this point from (33), the Neumann boundary condition are applied as prescribed

in (31) discretized using (A.4)

Plaj — P_13j _ 

Substituting (B.4) into (33) yields the expression

2(DU—2100i P0(j+1)—2P0,j+P0(j—1) 2
i 1 7 ’ = V.b .+_ b , = , 85

(A113)2 (Ay)2 ( )0,] ASII( 1‘)0,] 90,] ( )
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Similarly for the west boundary for points i = AI and j = 1,2,. . . , (N —- 1)

-2PM,j+2P(M—1),j + PM,(j+1)‘2PMIJ‘+PMI(j—1)

(Arc)2 (Ag)2
2 .

= (V ' b)1t[,j — A; (bI)1\[,j = 9M,j (36)

  

the south boundary for points i = 1,2,. . . , (M — 1) and j = 0

(Av)2 (Ay)2

P(i+1),0 — 213210 + P(i—1) 0 2pm - 2PM)
 

 

2

= (V ' bhyo + E (bx/>130 = 9230 (8'7)

and the north boundary for points i = 1,2,. . . , (M — 1) and j = N

P(-z'+1),N '2Pz‘IN+P(2i—1),N + ‘2Pz'IN+2PiI(N—1)

(A32)2 (Ag)2

2

= (V ' WAN — A; (bl/by = 92',N (38)

  

In the corners, boundary conditions apply in both directions, but the same method

is used to incorporate the boundary conditions as on the sides of the domain. The

southeast corner (i = j = 0) of .0 has contributions from the south. and the east

boundary conditions

2PM) — 21301) 2P0,1 — 213030

(Ass)2 (Ay)2

  

2 2

= (V ' b)0,0 + $011203 + E (by)0,0 = 90,0 (B9)

The remaining corners proceed in the same fashion. At i = 0 and j = N

  

2P1,N - 2P0,N + ‘2P0,N + 2P0,(N—1)

(Arc)2 (Ag)2

2 2

= (V ° b)0,N + E (brlow — A—y (by)0,N = 90,N- (310)

At i = .M and j = 0

-2PM,0 + 2P(M—1),0 + 2PMII — 2PMIO

(Ax)2 (Ag)?

2 2

= - — — b — b , = 8.11(V b)M,O A,“ I)M,0 + Ag ( y)M,o 9M,0 ( )
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Ati=Mandj=N

—2PM,N + 2P(M—1),N ‘2PMIN + ZPAIIW-l)

(Ax)2 (Ag)2

2 2

=(V'b)M,N — A—$(bx)M,N—A—y(by)m,gv=9M,N (312)

  

The next step in the solver is to use a FFT to decouple (8.5). This requires a

cosine transform of the form

2 M 7rI ll .

gkfij = IT! 9in cos “CM (B.13)

i=0

II

where the indicates that the first and last. terms are multiplied by one half. The

inverse of (B.13) is

9233': :Z—[OI’g)j cos ik— (8.14)

The transform of (8.14) can also be applied to the discretized pressure field

A!
A . 7r

P'iJ = Z HPkJ cos “CM (B.15)

k=0

Substituting (B.13) and (B.15) into (B2) yields

 

 

M

1 ,, A 7r

Artfg Pk][+1k—-2coszkfi +cos(i—1)kM] +

M P I I

2P -+ P. -_
:0” PMj+1) m2 M] 1) cosik— =

:0 (Ay) M

:Z—O”9;,j cos ik— (B.16)

The first term on the RHS of (B.16) can be simplified using trigonometric identities

cos(A + B) = cosAcosB — sinAsinB and 2sin2A :1— cos 2A, to

k—7r—— — — —=— — — .cos(i +1) AI 2cosikAI+cos(i 1)kM 45in2 k2AICOSikM (B17)
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Substituting (B.17) into (316) and combining the sums on the LHS yields

Ag2 - .
21::I/

y)2 [3%010+” —(2 "l” dig—sin2193—11) kaj + Pk,(j—1)] COS lkfi
 

' II~ .1 7T
= z} ng- coszkfi (B.18)

Now apply the orthogonality of the basis function cos iTls[to yield the tridiagonal

system

* 2 ,I 2 7r * * 2-
Pk,(j+1) — (2 + 4X s1n km) Pk,j + Pk,(j——l) = A3] 913,} (8.19)

where X = Ay/A13. On the south (j = 0) and north. (j = N) boundaries (B.13)

and (8.15) to (8.7) and (38) respectively are applied yielding

 

 

 

AI

1 ,, A ‘ , 77

(Ax)2 lg) PM) [cos(i + ”161111 — 2cos ikfi + cos(i— INC—jg]

A A A

P. — P
I! k,1 LO

+2]; ( Ay2 ) COSZk-M-

A, 71_ ”I - _
— E: 9“) cos zklM (B20)

and

1 AI

n * , I, _. _ _ _ _ _
(Ar)? [2%) Pk,N [LOb(l+1)k7r\I 2cosilc7rM +cos(i 1)k Ml

Pk,N + Pk,1(N~ ) 7r
II - .+2 2]: (_ Ay2 cos MEI—

——Z”9!:N COS 211— (8.21)

Following the same simplification as for (319) the boundaries become

 

2Pk’1 — (2 + 4x2 sin2 k2—71l1) Pkg = Ay2§h0 (B22)

forj = 0 and

—(2 + 4x2 sin21:27:11) PM, + 2Pk,(N_,) = AyQQkVN (B23)
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for j = N. The result of the transform is (N + 1) tridiagonal systems of (M + 1)

equations which can be solved in a variety of standard ways. For the problem with

Neumann boundary conditions, however, an additional step is required before the

system can be solved.

In the case of the Neumann problem, a least-squares solution to the Poisson

equation is sought. To complete the solution the problem the discrete form of Green’s

theorem is applied to this system

[W N M N

Z (hr/(LN) ‘ bum») + Z (bum) — bro») = ZZ 914 (B24)

i=0 i=0 i=0 j=0

Noisy velocity data and embedding mean that this system may not satisfy (B24)

initially and, therefore, that a solution does not exist. The RHS of (B24) is per-

turbed slightly so that the resulting new system gm- does obey Green’s theorem. The

solution to this system will be a least-squares solution to the original system 9M if

the perturbation is small compared to 913]" The perturbed system is defined as

M N

i=0 j=ocicjgiJ

Al N

21:0 23:0 Cicj

 
gig = 9233‘ - (B25)

Table 31. The weights for the perturbation required to solve the 2D Neumann

Poisson equation.

 

 

 

     

 

 

  

6: 0.5 1 05

j

0 1,2, .,N—1 N

c] 0.5 1 05     

where c,- and cj are weights whose value depends on i, j, see Table B.1. The Fourier

coefficients are solved for using the (M + 1) tridiagonal systems of (N + 1) equations

defined in (B.19), (B22), (B23) and gm- yielding PM. As mentioned before one of
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the tridiagonal systems will be singular. The output of this system can be set to an

arbitrary value, in this work it is set to zero. The final step is to transform back into

physical space using (B.15) to obtain PM.

B2 2D Dirichlet Problem

The solver for the 2D Dirichlet problem starts with the same discrete version of VQP

as the Neumann problem, but as the boundary conditions are different, so is their

incorporation. For this problem (B2) is the same, but the boundary conditions are

P0,j = (Peast)j

PALj : (pwest)j (B26)

Pi,N = (pnorth)i

Pi,0 : (psouth)z'

where Peasta pwesta Pnorth and Psouth are discrete functions that define the value of

PM on their respective boundaries. At 2' = 1 and j = 1,2,. . . , (N— 2), (B2) becomes

P2,j — 2P1,j + P0.j P1,j+1" 2P1,j+ P1,(j—1)
 

 

  

 

. = V - b - B27

(Ax)2 my)2 ( )1” f )

Applying the appropriate boundary condition from (B26) and rearranging

P2j - 2P1 j P1(j+1) — 2P1,j + P1 (j—l) 1
___’—__’- + ’ ’ = V . b . _— . . = '

(A513)2 (Amg ( )1,] (A$)2 (Feast)] 91,]

(B28)

The other boundaries follow in the same manner. For i = (M — 1) and j =

1,2,...,(N—2)

‘2P(M—1),j + P<A~I—2).j + P(M—1),j+1 — 2P(M—1),j + P<M—1),(j—1)

(Aw)? (Ag/)2
1

= (V ' b)(M—1),j — (A—TTQ- (pwest)j = 9(M_1),QB-29)

Forz': 1,2,...,(M—2) andj== 1

P(i+1),1_ 23,11" P(z'—1),1 + P-i,2 - 2Pzi,1

(Are)? (At/)2
1

= (V ' b)i,1 —W (p-rzorth)i = 91,1 (13°30)
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Fori=1,2,...,(iI—2) andj=(N—1)

P(i+1),(N—1) “ 2Pi.,(N—1)'+' P(z‘—1),(N—1) + "2Pi,(N—1)+ Pam—2)

(Arr)? (Ag)?

1

= (V ° b)i,(N—1) — “(Kw—2

  

(psouth)i : 9i,(N—l) (B31)

The corners are treated with two boundary conditions. For 2' = 1 and j = 1

Pal - 2PM P12 - 2131,1

2 + 2

(A13) (All)

1 1

= (V ' b)1,1 — 2 (1980.51)]

(Ax) _ my)?

 

 

(p.90uth.)1 2 91,1 (B32)

Fori=1andj=(N—1)

  
P2.(N—1)— 2Pl,(N—1) + —2P1,(N—1) + P1,(N—2)

(A202 (Ag)2

1 1

= (V ' b)1,(N_1) — m (purest)N — (Kb—2 (p.90uth.)1 = 91,(N_1§B-33)

Fori=(M—1)andj=1

~2P(M_1),j+P(M—2),j + P(M—1),2_2P(M—1),1

(Ax)? (Ax/)2

= (V ' b)(M—1),1 —

  

 

2 (peast)1 —T (pnorth)i’ll = g(AI—1),B°34)

Fori= (M—l) andjz (N— 1)

  

_2P(1lI—1),(]V—l) “l“ P(AI—2),(IV—1) + —2P(1lI—1),(IV—l) + P(IlI—-1),(N—2)

(Ax)2 (A's/l2

1 1

= (V ' b)(AI—1),(N—1) — —2 ”71063th _ 2 (pwzorth)ill : 9(AI—1),(N(—Ei-)35)

(Ax) ‘ Ay)

 

A problem with Dirichlet boundary conditions is decoupled with a sine FFT. The

forward transform for 9133' is

2(M— 1)

QM: TI 2; g,jsinikir— (8.36)

The inverse FFT for g is

AI— 1

9133': 2 g,-jsinik— (B37)
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Similarly, the inverse FFT for P is

(Al— 1)

:2 P,,- sinikfil (8.38)

Following the procedure used to derive the 2D solver with Neumann boundary con-

ditions in 8.1, the next step is to substitute (8.36) and (8.38) into (82). This

substitution yields

 

 

(AI—1)
1 -

(A13)? 2 PkJ- [sin(i+1)kfi — 2sin i111? + sin(z —1)k7l_Il

AI—1 . - ~

( ) Pk.<j+1) — 2PM + Pee—1) 7r
2 2 sinikfi——

1.21 (Ay)

(Al— 1)

Z gkj sinki— (8.39)

The term in the square brackets on the right hand side can be simplified using the

identities sin(A + B) = sin A cos B + sin B cos A and 2 sin2 A = 1 — cos 2A

[sin(i+1)k— — 2sin ik— + sin(i—— ”klAI ll —4 sin2k— sin zk— (8.40)

Ml—— 2M M

Notice that (8.40) has the same form as (8.17), but was derived from a sine transform

rather than a cosine transform.

Following the same steps of combining the summations and applying the orthog-

onality of the basis function sin zkfi as were used in the Neumann problem, the

coefficients of (8.39) are set equal yielding

A A . 2 A

Pk,(j+l) — (2 + 4X2 sin2162—1” sin ZkIf—I) Pk,j + Pk’(j_1)=(Ay) ng (13.41)

where X has the same definition as in the Neumann problem. For j: 1 and j:

(N — 1) the coefficients are

Pk2 — (2 + 4X2 sin2—7r—k2M sin ikA7) B131 2 (Ay)2gk,1 (8.42)
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and

2 . 2 7r . . 7T . - _ 2 .

— (2 + 4X 8111 (CW S111 lk—fi) Pk,(.N—1) + Pk,(N—2) — (Ay) gk,(N—1) (13.43)

respectively. This group of (M — 1) tridiagonal systems of (N — 1) equations can be

solved for Pkj using any one of the standard techniques. The solution Pm- is obtained

from Pkfij using the inverse transform defined in (8.38).
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APPENDIX C

Mathematical Phantom

C.1 Couette Flow Between Rotating Cylinders

Couette flow is one of the few analytical solutions to the NSE. The derivation of

the velocity and pressure fields for Couette flow between rotating cylinders begins

with (2.3) in polar coordinates (r, 0) ignoring the axial direction

811,. (911,. 119 (911,. 1% _ 8P

p(3t_+1ry+766 7 — ar

 

 

021),. lavr 1 6211,. UT 2 6119

'—.— -— ___. — — — —.— .1

H < 87*2 7‘ 87" + 7‘2 062 7‘2 7‘2 39) (C )

avg 6119 '09 8119 11,419 _ 1 BP

”(atflrar r00 7‘ ‘ r80

2 , 2 ,

+ due 1%. _1____8v9 _ L9 .3819. ((3.2)

()7‘2 7" 87“ r2 (902 7‘2 r2 (99

where Ur is the radial component of the velocity and 1.19 is the azimuthal component.

Now assume that the flow is steady (g; = 0), axisymmetric (9% = ) and that the

flow in the radial direction is negligible (or z 0), then (Cl) and (C2) simplify to

v2 dP
_9 = __‘ .

p ( 7" dr (C3)
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Q

21 

Figure CL A schematic illustrating the components of 119 for the case where or = 0

in the Cartesian coordinate system

and

 

(92119 1 (9116 ’Ug ,

O—“(arz fiat?) (04)

respectively. Both the P and the '09 are now functions of 7“ only. Integrating (C4)

twice to solve for ’09 and applying the no slip boundary conditions on the walls of

both cylinders (119(7‘1) = rlwl and 119(7’2) = rgwg) yields

  

2 2 2 2
er2 — wlrl 1 r1r2 (wl — 1122)

119(7‘) = ‘2 2 — + .2 ‘2 7“ (C6)

and leads to the definitions of A and B used in Section 2.3.1. The components of 119

in the Cartesian coordinate system are found by geometry (see Figure C.1)

u(7‘,0) = vgsine

{v(r,0) = vgcoSO (06)
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The pressure field is found by substituting (C5) into (C3) and integrating yielding

 

 

wgrg -w17'¥r2 wgrg —w1r¥ r%r%(w1—w2

szp W31” 2 2 .2 2 1“"
72‘71 72""1 72‘71

2
2 2

r 7‘ w —wo 1_ 12:12-l __2+c (C.7)
7‘2—r1 2r

C2 Poiseuille Channel Flow

Pressure driven flow in a channel with stationary walls, also known as Poiseuille flow,

is a second simple analytical solution to the NSE. The derivation of the velocity field

and pressure field begin with (2.3) in Cartesian coordinates. It is assumed that the

flow is steady, parallel to the channel walls, fully developed, and has no out-of-plane

velocity component. The NSE simplify to

BP 8211

0 = —— -— C8

0.: ”(ax/4‘) ( l

where u is the component of the velocity in the x—direction. 8y rearranging (C8)

16p a2
—— = —3— (C9)
[1. (93B (93/2

where the LHS is in terms of .‘L' and the RHS is interms of y only. The RHS of (C9)

can be set equal to a constant C

_ (121.1

dy2

solving for it knowing that the velocity is zero at the wall (11 = 0 at y = 0 and y = h)

C ((110)

yields

11(31):; ( 2 — hy) (C11)

The constant C in (CH) is equal to the pressure gradient in the .r-direction divided

by the dynamic viscosity. To relate C to a physiological value, it is desirable to put it

in terms of flow rate per unit depth. The flow rate for these conditions, QC, is found

by

h.

Q [0 (my 1 >
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Substituting (Cll), integrating and solving (C12) for C yields

 C = 332% = 111%; ((3.13)

The analytical velocity field is now

My) = 31% (y2 - by) (C14)

The analytical pressure field is found by integrating (C13) w.r.t. .1;

10(1) = -— ”QC" (.1- — 230) ((3.15) 

h3

where .270 is an arbitrary datum.
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APPENDIX D

Experimental Parameters

The experiments determining the robustness of the PPE solution method to reso-

lution, level of embedding and location of {21: in .0 used a set of parameters in the

Couette flow mathematical phantom that were not intended to match physiological

conditions, see Table D1 Instead it was intended to be a purely mathematical sys-

tem. As such, the parameters were chosen for convenience. Using the values from

Table DI the Rec of this flow is 2.10 x 106 which is far beyond the transition to tur-

bulent flow in this system. Therefore, the tests performed using this set of parameters

serve as a ‘proof of concept’ for the method.

In the second set of noise experiments an attempt was made to have a more

realistically scaled velocity field. This was done by matching Rec and Rea as defined

in Section 2.3.3 as closely as possible. Using the conditions from the calculation of the

W0 from Section 2.1.1 (p = 1040kg m’3, u = 0.004Ns, Da = 0.01m) and assuming

an average velocity of U0 = 0.1 m s‘l, ReA % 260. The parameters in Table D2

closely approximate these Viscous conditions leading to Reg = 235.

For the set of Poiseuille flow of experiments, similar values to those chosen for the

second set of Couette flow experiments. The volumetric flow rate QC was chosen to

approximate the average flow rate in the carotid artery and normalized by the average
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radius of the artery to yield the desired units and velocity scales. This is based on the

average velocity and approximate cross-sectional area. The parameters in Table D3

were used to generate the analytical velocity field and relative pressure field.

Table D1 Parameters used in the Couette flow mathematical phantom in the reso-

lution, embedding and initial noise experiments.

 

 

 

 

 

 

 

 

 

 

    

53min (m) —1

firmax (In) 1

ymin (m) "1

ymax (fl) 1

r1 (m) 0.25

7‘2 (m) 0.79

wl (rad/s) 7r

w2 (rad/s) 27r

u (N s m-2) 0.656 x 10-3

p (kg m—3) 992.2

7] (-) 0.05
 

Table D2. Parameters used in the Couette flow mathematical phantom noise exper-

iments with more realistic viscous terms.

 

 

 

 

 

 

 

 

 

 

   

mm (m) —6.2 x 10—3

:rmax (m) 6.2 x 10-3

ymin (In) -6.2 X 10_3

ymax (m) 6.2 x 10—3

7‘1 (m) 2 X 10—3

3 (m) 5 x 10—3

w; (rad/s) 3671'

(.02 (rad/s) 187r

p (N s m’2) 4 X 10—3

p (kg 111-3) 1040

7) () 0.05 
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Table D3. Parameters used in the Poiseuille flow mathematical phantom noise ex-

 

 

 

 

 

 

 

 

 

periments.

mm (m) —6.2 x 10-3

xmax (m) 6.2 x 10-3

ymin (m) -6.2 x 10—3

ymax (m) 6.2 x 10—3

h. (m) 10—3

QC (m3is) 1.57 x 10—3

p (N s m‘2) 4 x 10—3

p (kg 111—3) 1040

7] (—) 0.05   
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APPENDIX E

Tabulated Experimental Results

This appendix contains the tabulated results from Sections 3.1 and 3.2. The tables

are labeled with their corresponding figures.

Table E1 The normalized relative RMS error, 5, results of the isotropic and

anisotropic resolution tests (see Figures 3.1 and 3.2).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

7) 5" (%) xa a = 71301 5 (%) a = 77301 F? (%)

0.0007 0.0032 0.1250 0.0217 0.0217

0.0014 0.0028 0.2500 0.0246 0.0246

0.0056 0.0087 0.5000 0.0222 0.0222

0.0112 0.0243 1.0000 0.0183 0.0183

0.0223 0.0966 2.0000 0.0430 0.0430

0.0255 0.1278 4.0000 0.1485 0.1485

0.0298 0.1930 5.3333 0.1520 0.1520

0.0357 0.3249 6.4000 0.2139 0.2139

0.0446 0.3943 7.1111 0.2563 0.2563

0.0595 0.5899 8.0000 0.3650 0.3650

0.0893 1.8457 9.1429 0.5880 0.4227

10.6667 0.6379 0.6379

12.8000 1.2395 0.7797

16.0000 2.6315 1.3225
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Table E2. The normalized relative RMS error, E (%), results of the embedding tests

(see Figure 3.3).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

F (%) 0.0000 8.6957 17.391 26.807 34.783 43.478 60.699 69.565

Center 1.4908 1.1014 1.0029 0.9595 0.9223 0.8923 0.8714 0.8575

Off Center 1.4320 1.0835 1.0024 0.9875 0.9833 0.9755 0.9639 0.9515

Corner 1.2316 1.0178 0.9584 0.9269 0.9187 0.9260 0.9412 0.9581

F(%) 78.261 86.957 95.652 104.35 113.04 121.74 130.44 139.13

Center 0.8487 0.8430 0.8390 0.8360 0.8339 0.8322 0.8308 0.8296

Off Center 0.9407 0.9329 0.9286 0.9275 0.9288 0.9323 0.9369 0.0.9423

Corner 0.9733 0.9851 0.9933 0.0.9983 1.007 1.0014 1.0009 0.9996

F(%) 147.83 156.52 165.22 173.91 182.61 191.30 200.00 208.70

Center 0.8286 0.8277 0.8268 0.8261 0.8255 0.8249 0.8243 0.8239

Off Center 09481 0.9536 0.9590 0.9640 0.9684 0.9723 0.9756 0.9784

Corner 0.9979 0.9960 0.9940 0.9920 0.9900 0.9882 0.9865 0.9849

F(%) 217.39 226.09 234.78 243.48 252.17 260.87 269.57 278.26

Center 0.8234 0.8229 0.8225 0.8222 0.8219 0.8916 0.8213 0.8211

Off Center 0.9808 0.9828 0.9844 0.9858 0.9869 0.9877 0.9885 0.9890

Corner 0.9834 0.9821 0.9808 0.9797 0.9786 0.9777 0.9768 0.9761
 

Table E3. The filter parameters that yield optimal performance at SNR = 5. These

are the parameters used in all future experiments with noisy velocity fields (see Fig-

ures 3.4 and 3.5).

 

I I I

01 0‘2 72

I

0‘3 73

I

0‘4 7f;
 

Parameter    0.1 0.01   0.53  0.01  0.1   0.0001  0.1   
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Table E.4.

E: i 0 (%), in the estimated relative pressure field, for the initial Couette flow pa-

rameters, a resolution of 77 = 0.05 on a 20 x 20 flow domain 0F and an embedding

level P = 25%, after applying the three filters preposed here (Median Filter, Filter 1,

Filter 2) to the relative pressure field estimated with no filtering and three filters from

the literature (PSDF [1], (d/d:r)2 [2], Visc. Diss. [3]) over the range of SNR tested

(see Figure 3.6).

The average normalized relative RMS error and standard deviation,

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

     

SNR 5 10 15

No Filter 23.6 i 4.10 11.9 :1: 1.88 8.09 :t 1.48

Median Filter 19.3 i 1.81 12.1 :1: 0.91 10.1 :1: 0.52

Filter 1 14.3 i 2.54 7.65 :t 1.52 5.0834 i 1.06

Filter 2 5.30 :1: 1.96 2.64 :1: 1.28 2.29 a: 0.45

PSDF 22.4 a: 4.38 13.2 i: 1.63 11.11 1.13

d/dr2 10.5 :t 1.82 6.48 i 0.71 4.23 a: 0.60

Visc. Diss. 7.56 i 1.34 5.30 i 0.73 5.14 :t 0.56

SNR 20 25 30

No Filter 5.89 :l: 1.04 4.78 :t 0.81 3.98 :t 0.71

Median Filter 10.1 :1: 0.40 10.2 :1: 0.36 10.2 :1: 0.34

Filter 1 3.63 :l: 0.60 3.03 :5 0.61 2.55 i 0.55

Filter 2 2.94 :1: 0.23 1.95 :t 0.46 2.00 i: 0.26

PSDF 10.32 :1: 0.70 9.85 :1: 0.58 9.58 i 0.46

d/dr2 3.72 :1: 0.52 3.16 i 0.43 2.88 i 0.35

Vise. Diss. 4.78 :t 0.51 4.55 :1: 0.36 4.30 i 0.49
  
Table E5. The average performance factor F and standard deviation, F :l: 0, for all

filters tested using the initial Couette flow experimental parameters, a resolution of

77 = 0.05 on a 20 x 20 flow domain 0F and an embedding level 1" = 25% across the

range of SNR tested (see Figure 3.8).

 

 

 

 

 

 

 

 
 

 

 

 

 

 

    

SNR 5 10 15

Median Filter 0.95 :l: 0.03 1.60 i 0.05 2.22 :1: 0.22

Filter 1 0.75 :1: 0.04 0.72 a: 0.05 0.74 d: 0.06

Filter 2 0.18 a: 0.03 0.22 :1: 0.04 0.20 i 0.02

PSDF 0.98 i 0.05 1.34 i 0.07 1.82 d: 0.08

d/dr2 0.56 i 0.04 0.74 i 0.05 0.80 d: 0.06

Visc. Diss. 0.46 :t 0.03 0.82 :l: 0.07 1.34 :L- 0.09

SNR 20 25 30

Median Filter 2.99 i 0.14 3.79 i 0.21 4.41 :t 0.34

Filter 1 0.68 :t 0.06 0.76 :t 0.06 0.69 i 0.05

Filter 2 0.19 i 0.03 0.23 1’: 0.04 0.25 :t 0.02

PSDF 2.34 a: 0.15 2.91 i 0.16 3.36 a: 0.19

gar? 0.87 a: 0.02 0.99 i: 0.03 1.12 :t 0.06

Vise. Diss. 1.73 :1: 0.16 2.01 5: 0.22 2.31 :1: 0.16   
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Table E6. The average normalized relative RMS error and standard deviation,

E: :l: a (%), in the estimated relative pressure field, for the second Couette flow pa-

rameters, a resolution of 77 = 0.05 on a 20 x 20 flow domain {21: and an embedding

level P = 25%, after applying the three filters proposed here (Median Filter, Filter 1,

Filter 2) to the relative pressure field estimated with no filtering (see Figure 3.10).

 

 

 

 

 

 

 

 

 

 

     

SNR 5 10 15

No Filter 37.9 :1: 8.57 18.4 :1: 4.05 12.2 :t 2.66

Median Filter 21.9 i 2.76 13.1 :1: 1.49 9.99 :t 1.12

Filter 1 22.9 :1: 3.48 10.6 d: 1.47 7.01 i 1.24

Filter 2 5.85 :l: 0.60 3.37 :l: 0.97 3.08 :l: 0.36

SNR 20 25 30

No Filter 9.11 :t 1.99 7.29 :t 1.58 6.08 :l: 1.32

Median Filter 8.36 :L- 0.85 7.35 :l: 0.67 6.72 :l: 0.54

Filter 1 5.97 :l: 1.33 4.16 :l: 0.69 4.06 :l: 0.56

Filter 2 2.41 i 0.51 2.05 d: 0.21 2.09 i 0.16  
 

Table 13.7. The average normalized relative RMS error and standard deviation,

5 i 0 (%), in the estimated relative pressure field, for the Poiseuille flow parame—

ters, a resolution of n = 0.05 on a 20 x 20 flow domain 0F and an embedding level

P = 25%, after applying the three filters proposed here (Median Filter, Filter 1, Filter

2) to the relative pressure field estimated with no filtering and two filters from the

literature ((d/d:l:)2 [2], Visc. Diss. [3]) over the range of SNR tested (see Figure 3.11).

 

 

 

 

 

 

 

     

SNR 5 10 15 20

No Filter 923.4 :1: 78.2 456.1 i 15.8 332.9 :1: 16.3 2399 d: 33.7

Median Filter 968.4 i 51.4 576.7 :1: 27.2 526.4 d: 25.6 488.1 :1: 25.7

Filter 1 572.5 :t 61.1 234.1 a: 73.6 139.9 :t 9.27 145.7 :t 21.4

Filter 2 483.5 :1: 25.8 217.1 :1: 28.1 166.6 i 18.1 113.3 i 6.93

d/dr2 157.5 :1: 14.8 130.5 :t 5.81 120.9 :t 6.94 119.4 d: 19.0

Vise. Diss. 764.7 :t 22.9 742.3 i 85.7 793.2 i 58.6 727.1 i 31.9
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