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ABSTRACT

THE EXCURSION PROBABILITY OF GAUSSIAN AND
ASYMPTOTICALLY GAUSSIAN RANDOM FIELDS

By

Dan Cheng

The purpose of this thesis is to develop the asymptotic approximation to excursion prob-

ability of Gaussian and asymptotically Gaussian random fields. It is composed of two parts.

The first part is to study smooth Gaussian random fields. We extend the expected Euler char-

acteristic approximation to a wide class of smooth Gaussian random fields with non-constant

variances. Applying similar techniques, we also find that the joint excursion probability of

vector-valued smooth Gaussian random fields can be approximated via the expected Euler

characteristic of related excursion sets. As useful applications, the excursion probabilities

over random intervals and infinite intervals are also investigated. The second part focuses on

non-smooth Gaussian and asymptotically Gaussian random fields. We study the excursion

probability of Gaussian random fields on the sphere and obtain an asymptotics based on

the Pickands’ constant. Using double sum method, we also derive the approximation, which

involves the generalized Pickands’ constant, to excursion probability of anisotropic Gaussian

and asymptotically Gaussian random fields.
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Chapter 1

Introduction and Review of Existing

Literature

1.1 Gaussian Random Fields

A real-valued random field is simply a stochastic process defined over a parameter space

T , which could be a subset of RN or even a manifold, etc. The following is the rigorous

definition [cf. Adler and Taylor (2007)].

Definition 1.1.1 Let (Ω,F ,P) be a complete probability space and T a topological space.

Then a measurable mapping X : Ω → RT (the space of all real-valued functions on T ) is

called a real-valued random field. Measurable mappings from Ω to (RT )d, d ≥ 1, are called

vector-valued random fields.

Thus, X is a real-valued function X(ω, t), where ω ∈ Ω and t ∈ T . For convenience,

usually, we abbreviate X(ω, t) as X(t) or X.

We define a real-valued Gaussian (random) field to be a real-valued random field X on

a parameter space T for which the finite dimensional distributions of (X(t1), . . . , X(tn)) are

multivariate Gaussian ( i.e., multivariate Normal) for each 1 ≤ n <∞ and each (t1, . . . , tn) ∈

Tn. The functions m(t) = E{X(t)} and C(t, s) = E{(X(t)−m(t))(X(s)−m(s))} are called

respectively the mean and covariance functions of X. If m(t) ≡ 0, we call X a centered
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Gaussian field. A vector-valued Gaussian field X taking values in Rd is the random field for

which 〈ξ,X(t)〉 is a real-valued Gaussian field for every ξ ∈ Rd.

The following result is Theorem 1.4.1 in Adler and Taylor (2007), which gives a sufficient

condition such that a Gaussian field X is continuous and bounded.

Theorem 1.1.2 Let {X(t) : t ∈ T} be a centered Gaussian field, where T is a compact set

of RN . If there exist positive constants K, α and η such that

E{|X(t)−X(s)|2} ≤ K| log ‖t− s‖|−1−α, ∀‖t− s‖ ≤ η,

then X is continuous and bounded on T with probability one.

Note that the sufficient condition in the above theorem only depends on the covariance

function of X. This is a huge advantage for studying centered Gaussian random fields: all of

their properties only depend on the covariance structure. Similar sufficient conditions for the

differentiability of Gaussian fields can also be obtained, see Chapter 1 in Adler and Taylor

(2007) for more details.

1.2 Excursion Probability

The excursion probability above level u > 0 is defined as P{supt∈T X(t) ≥ u}. Due to

the wide applications in statistics and many other related areas, computing the excursion

probability becomes a classical and very important problem in probability theory. However,

usually, the exact probability is unable to obtain, instead, we try to find the asymptotic

approximation as u tends to infinity.

There is a classical result of Landau and Shepp (1970) and Marcus and Shepp (1972) that
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gives a logarithmic asymptotics for the excursion probability of a general centered Gaussian

process. If we assume that X(t) is a.s. bounded, then they showed that

lim
u→∞

u−2 logP
{

sup
t∈T

X(t) ≥ u
}

= − 1

2σ2
T

, (1.2.1)

where σ2
T = supt∈T Var(X(t)).

We present here a non-asymptotic result due to Borell (1975) and Tsirelson, Ibragimov

and Sudakov (TIS) (1976).

Theorem 1.2.1 (Borell-TIS inequality). Let {X(t) : t ∈ T} be a centered Gaussian

field, a.s. bounded, where T is a compact subset of RN . Then E{supt∈T X(t)} <∞ and for

all u > 0,

P
{

sup
t∈T

X(t)− E
{

sup
t∈T

X(t)
}
≥ u

}
≤ e
−u2/(2σ2

T )
.

It is evident to check that the Borell-TIS inequality implies (1.2.1). There are also several

non-asymptotic bounds for the excursion probability of general (only assume continuity and

boundedness a.s.) Gaussian fields, see Chapter 4 in Adler and Taylor (2007) for more details.

If assume X to be stationary or locally stationary, then there is a famous approximation

obtained by the double sum method. This technique was developed by Pickands (1969a,

1969b) for Gaussian processes, extended to Gaussian fields by Qualls and Watanabe (1973),

and surveyed and developed in a monograph of Piterbarg (1996a).

Theorem 1.2.2 Let T be a bounded Jordan measurable set in RN such that dim(T ) = N ,

and let {X(t) : t ∈ T} be a centered Gaussian field with covariance function C(·, ·) satisfying

C(t, s) = 1− ‖t− s‖α(1 + o(1)) as ‖t− s‖ → 0.
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Then as u→∞,

P
{

sup
t∈T

X(t) ≥ u
}

= HαVol(T )u2N/αΨ(u)(1 + o(1)), (1.2.2)

where Hα is the Pickankds’ constant and Ψ(u) = (2π)−1/2
∫∞
u e−x

2/2dx.

This result was developed further by Chan and Lai (2006) for Gaussian fields with a

wider class of covariance structures. The coefficient HαVol(T ) above was generalized as∫
T Hα(t)dt, where Hα(·) is a function on T . Moreover, the result in Chan and Lai (2006) is

applicable to certain asymptotically Gaussian random fields.

In Chapter 7, we investigate Gaussian random fields on the sphere and obtain Theorem

7.2.4, which is similar to Theorem 1.2.2. In Chapter 8, we extend the result in Chan and Lai

(2006) to anisotropic and asymptotically anisotropic Gaussian random fields, see Theorem

8.1.1 and Theorem 8.2.6.

Can we get more accurate approximation to the excursion probability of “nicer” Gaussian

random fields? The answer is yes. Sun (1993) used the tube method to find the approxima-

tion for Gaussian fields with finite Karhunen-Loève expansion. Also, many authors applied

the Rice method to get accurate approximations for smooth Gaussian fields, see Piterbarg

(1996a), Adler (2000) and Azäıs and Wschebor (2005, 2008, 2009), etc. Later on, these

approximations were conjectured by statisticians that they should have close connection to

the geometry of the excursion set Au = {t ∈ T : X(t) ≥ u}. Taylor, Takemura and Adler

(2005) showed the rigorous proof that the expected Euler characteristic of the excursion set,

denoted by E{ϕ(Au)}, can approximate the excursion probability very accurately. Their

result is stated as follows.

Theorem 1.2.3 Let X = {X(t) : t ∈ T} be a unit-variance smooth Gaussian random field
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parameterized on a manifold T . Under certain conditions on the regularity of X and topology

of T , the following approximation holds:

P
{

sup
t∈T

X(t) ≥ u
}

= E{ϕ(Au)}(1 + o
(
e−αu

2
)), as u→∞, (1.2.3)

where α is some positive constant.

Moreover, E{ϕ(Au)} can be computed by the Kac-Rice formula, see Adler and Taylor

(2007),

E{ϕ(Au)} = C0Ψ(u) +

dim(T )∑
j=1

Cju
j−1e−u

2/2, (1.2.4)

where Cj , j = 0, 1, . . . , dim(T ), are constants depending on X and T . Here is a simple

example. Let X be a smooth isotropic Gaussian field with unit variance and T = [0, L]N ,

then

E{ϕ(Au)} = Ψ(u) +
N∑
j=1

(N
j

)
Ljλj/2

(2π)(j+1)/2
Hj−1(u)e−u

2/2,

where λ = Var(∂X∂ti
(t)) and Hj−1(u) are Hermite polynomials of order j − 1. It is worth

mentioning here that if X is not centered or not stationary, then E{ϕ(Au)} becomes com-

plicated to compute. In the recent monograph Adler and Taylor (2007), the authors only

considered centered Gaussian random fields with constant variance. In Chapter 4 here,

we study non-centered stationary Gaussian fields and derive exact formulae for computing

E{ϕ(Au)}.

Comparing (1.2.3) and (1.2.4) with (1.2.2), we see that the approximation in (1.2.2) only

uses one of the terms, which involves uN−1e−u
2/2, in E{ϕ(Au)}. Also, we note that the

error term in (1.2.2) is only o(1), and the expected Euler characteristic approximation in

(1.2.3) is much more accurate since the error is exponentially smaller than the major term

5



E{ϕ(Au)}.

The requirement of “constant variance” on the Gaussian random fields in Theorem 1.2.3

is too restrictive for many applications. However, the original proof in Taylor, Takemura

and Adler (2005) relies on this requirement heavily. If the constant variance condition is not

satisfied, little had been known on whether the approximation (1.2.3) still holds. In a recent

paper Azäıs and Wschebor (2008, Theorem 5), the authors proved (1.2.3) for a special case

when the variance of the Gaussian field attains its maximum only in the interior of T . But

this special case excludes many important Gaussian fields in which we are interested.

As a major contribution in this thesis, we shall use the Rice method to show (1.2.3) for

more general smooth Gaussian fields without constant-variance. In Chapter 2, we study

smooth Gaussian random fields with stationary increments and obtain the desired results in

Theorem 2.3.7 and Theorem 2.3.8. Meanwhile, we provide a specific formula for computing

E{ϕ(Au)} in Theorem 2.2.2. To develop the theory further, we show in Chapter 3 that the

expected Euler characteristic approximation also holds for a large class of smooth Gaussian

random fields with non-constant variances. When computing E{ϕ(Au)}, we also find that

it can be simplified in certain sense depending on the variance function of X.

As useful applications, we study the excursion probabilities of Gaussian processes over

random intervals and infinite intervals in Chapter 5 and Chapter 6. The approximations we

derived are also more accurate than the existing ones, since the errors are super-exponentially

small.

Lastly, Chapter 9 is on a new topic: the excursion probability for vector-valued Gaussian

random fields. There has been little research on this. The only exceptions are Piterbarg and

Stamatovic (2005) and Debicki et al. (2010) who obtained some logarithmic asymptotics,

and Ladneva and Piterbarg (2000) and Anshin (2006) who obtained certain asymptotics for
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non-smooth vector-valued Gaussian random fields with special covariance functions.

Let {(X(t), Y (s)) : t ∈ T, s ∈ S} be an R2-valued, centered, unit-variance Gaussian

random field, where T and S are rectangles in RN . Define the excursion set

Au(X,T )× Au(Y, S) = {(t, s) ∈ T × S : X(t) ≥ u, Y (s) ≥ u}.

We show in Theorem 9.1.9 that under certain smoothness and regularity conditions, as

u→∞,

P
{

sup
t∈T

X(t) ≥ u, sup
s∈S

Y (s) ≥ u
}

= E{ϕ(Au(X,T )× Au(Y, S))}+ o
(

exp
{
− u2

1 + ρ(T, S)
− αu2

})
.

where ρ(T, S) = supt∈T,s∈S E{X(t)Y (s)}.

Let {(X(t), Y (t)) : t ∈ T} be an R2-valued, centered, unit-variance Gaussian process,

where T = [a, b] is a finite interval in R. Define the excursion set

Au(T,X ∧ Y ) = {t ∈ T : (X ∧ Y )(t) ≥ u}.

We show in Theorem 9.2.5 that under certain smoothness and regularity conditions, as

u→∞,

P{∃t ∈ T such that X(t) ≥ u, Y (t) ≥ u} = P
{

sup
t∈T

(X ∧ Y )(t) ≥ u
}

= E{ϕ(Au(T,X ∧ Y ))}+ o
(

exp
{
− u2

1 + ρ(T )
− αu2

})
,

where ρ(T ) = supt∈T E{X(t)Y (t)}.
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Chapter 2

Smooth Gaussian Random Fields with

Stationary Increments

2.1 Gaussian Fields with Stationary Increments

Let X = {X(t) : t ∈ RN} be a real-valued centered Gaussian random field with stationary

increments. We assume that X has continuous covariance function C(t, s) = E{X(t)X(s)}

and X(0) = 0. Then it is known [cf. Yaglom (1957)] that

C(t, s) =

∫
RN

(ei〈t,λ〉 − 1)(e−i〈s,λ〉 − 1)F (dλ) + 〈t, Θs〉 (2.1.1)

where 〈x, y〉 is the ordinary inner product in RN , Θ is an N × N non-negative definite (or

positive semidefinite) matrix and F is a non-negative symmetric measure on RN\{0} which

satisfies ∫
RN

‖λ‖2

1 + ‖λ‖2
F (dλ) <∞. (2.1.2)

Similarly to stationary random fields, the measure F and its density (if it exists) f(λ) are

called the spectral measure and spectral density of X, respectively.
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By (2.1.1) we see that X has the following stochastic integral representation

X(t) =

∫
RN

(ei〈t,λ〉 − 1)W (dλ) + 〈Y, t〉, (2.1.3)

where Y is an N -dimensional Gaussian random vector and W is a complex-valued Gaussian

random measure (independent of Y) with F as its control measure. It is known that many

probabilistic, analytic and geometric properties of a Gaussian field with stationary increments

can be described in terms of its spectral measure F and, on the other hand, various interesting

Gaussian random fields can be constructed by choosing their spectral measures appropriately.

See Xiao (2009), Xue and Xiao (2011) and the references therein for more information.

For simplicity we assume that Y = 0. It follows from (2.1.1) that the variogram ν of X

is given by

ν(h) := E(X(t+ h)−X(t))2 = 2

∫
RN

(1− cos 〈h, λ〉)F (dλ). (2.1.4)

Mean-square directional derivatives and sample path differentiability of Gaussian random

fields have been well studied. See, for example, Adler (1981), Adler and Taylor (2007),

Potthoff (2010), Xue and Xiao (2011). In particular, general sufficient conditions for a

Gaussian random field to have a modification whose sample functions are in Ck are given by

Adler and Taylor (2007). For a Gaussian random field X = {X(t) : t ∈ RN} with stationary

increments, Xue and Xiao (2011) provided conditions for its sample path differentiability in

terms of the spectral density function f(λ). Similar arguments can be applied to give the

spectral condition for the sample functions of X to be in Ck(RN ).

Definition 2.1.1 [Adler and Taylor (2007, p.22)]. Let

t, v1, . . . , vk ∈ RN ; v = (v1, . . . , vk) ∈ ⊗kRN .
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We say X has a kth-order L2 partial derivative at t, in the direction v, which we denote by

Dv
L2X(t), if the limit

Dv
L2X(t) := lim

h1,...,hk→0

1∏k
i=1 hi

GX

(
t,

k∑
i=1

hivi

)

exists in L2, where GX(t,
∑k
i=1 hivi) is the symmetrized difference

GX

(
t,

k∑
i=1

hivi

)
=

∑
s∈{0,1}k

(−1)k−
∑k
i=1 siX

(
t+

k∑
i=1

sihivi

)
. (2.1.5)

Remark 2.1.2 Recall the fact that a sequence of random variables ξn converges in L2 if and

only if E{ξnξm} converges to a constant as n,m→∞. It follows immediately that Dv
L2X(t)

exists in L2 if and only if

lim
h1,...,hk,ĥ1,...,ĥk→0

1∏k
i=1 hiĥi

E
{
GX

(
t,

k∑
i=1

hivi

)
GX

(
t,

k∑
i=1

ĥivi

)}
(2.1.6)

exists.

Let e1, e2, . . . , eN be the standard orthonormal basis of RN . If the direction v consists

of ki many ei, 1 ≤ i ≤ N , and k =
∑N
i=1 ki, then we write Dv

L2X(t) simply as
∂kX(t)

∂t
k1
1 ···∂t

kN
N

.

Lemma 2.1.3 Let X = {X(t) : t ∈ RN} be a real-valued centered Gaussian random field

with stationary increments and let k =
∑N
i=1 ki. Then

∂kX(t)

∂t
k1
1 ···∂t

kN
N

exists in L2 if and only

if
∂2kν(0)

∂t
2k1
1 ···∂t

2kN
N

exists.

Proof To simplify the notations, we only show the proof for k = 2 and the proof for general
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k will be similar. By the definition of the symmetric difference GX in (2.1.5),

1

h1h2ĥ1ĥ2
E{GX(t, h1ei + h2ej)GX(t, ĥ1ei + ĥ2ej)}

=
1

h1h2ĥ1ĥ2
E{[X(t+ h1ei + h2ej)−X(t+ h1ei)−X(t+ h2ej) +X(t)]

× [X(t+ ĥ1ei + ĥ2ej)−X(t+ ĥ1ei)−X(t+ ĥ2ej) +X(t)]}.

(2.1.7)

Expanding the product above and applying the variogram ν defined in (2.1.4), we obtain

that (2.1.7) becomes

−1

2h1h2ĥ1ĥ2
{ν(h1ei + h2ej − ĥ1ei − ĥ2ej)− ν(h1ei + h2ej − ĥ1ei)

− ν(h1ei + h2ej − ĥ2ej) + ν(h1ei + h2ej)− ν(h1ei − ĥ1ei − ĥ2ej)

+ ν(h1ei − ĥ1ei) + ν(h1ei − ĥ2ej)− ν(h1ei)− ν(h2ej − ĥ1ei − ĥ2ej)

+ ν(h2ej − ĥ1ei) + ν(h2ej − ĥ2ej)− ν(h2ej) + ν(−ĥ1ei − ĥ2ej)

− ν(−ĥ1ei)− ν(−ĥ2ej) + ν(0)}

=
−1

2h1h2(−ĥ1)(−ĥ2)
Gν(0, h1ei + h2ej + (−ĥ1)ei + (−ĥ2)ej).

(2.1.8)

Note that as h1, h2, ĥ1, ĥ2 → 0, the limit (if it exists) of the last term in (2.1.8) is just

−∂
4ν(0)

∂t2i ∂t
2
j

, together with Remark 2.1.2, we obtain the desired result. �

Proposition 2.1.4 Let X = {X(t) : t ∈ RN} be a real-valued centered Gaussian random

field with stationary increments and let ki (1 ≤ i ≤ N) be non-negative integers. If there is

a constant ε > 0 such that

∫
‖λ‖>1

N∏
i=1

|λi|2ki+ε F (dλ) <∞, (2.1.9)
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then X has a modification X̃ such that the partial derivative
∂kX̃(t)

∂t
k1
1 ···∂t

kN
N

is continuous on

RN almost surely, where k =
∑N
i=1 ki. Moreover, ∀T > 0 and η ∈ (0, ε ∧ 1), there exists a

constant κ such that

E
(

∂kX̃(t)

∂t
k1
1 · · · ∂t

kN
N

− ∂kX̃(s)

∂s
k1
1 · · · ∂s

kN
N

)2

≤ κ‖t− s‖η, ∀t, s ∈ [−T, T ]N .

Proof Applying the dominated convergence theorem,

∂2kν(0)

∂t
2k1
1 · · · ∂t2kNN

=

∫
RN

λ
2k1
1 · · ·λ2kN

N F (dλ)

=

∫
‖λ‖≤1

λ
2k1
1 · · ·λ2kN

N F (dλ) +

∫
‖λ‖>1

λ
2k1
1 · · ·λ2kN

N F (dλ)

≤
∫
‖λ‖≤1

‖λ‖2F (dλ) +

∫
‖λ‖>1

λ
2k1
1 · · ·λ2kN

N F (dλ) <∞,

(2.1.10)

where the last inequality is due to the requirement (2.1.2) and condition (2.1.9). By Lemma

2.1.3, the partial derivative
∂kX(t)

∂t
k1
1 ···∂t

kN
N

exists in L2.

Next, we show that for any η ∈ (0, ε ∧ 1), there exists a constant κ such that

E
(

∂kX(t)

∂t
k1
1 · · · ∂t

kN
N

− ∂kX(s)

∂s
k1
1 · · · ∂s

kN
N

)2

≤ κ‖t− s‖η, ∀t, s ∈ [−T, T ]N . (2.1.11)

Recall that

C(t, s) =

∫
RN

(
ei〈t,λ〉 − 1

)(
e−i〈s,λ〉 − 1

)
F (dλ)

=

∫
RN

(cos 〈t− s, λ〉 − cos 〈t, λ〉 − cos 〈s, λ〉+ 1)F (dλ),

(2.1.12)
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taking the derivative gives

∂2kC(t, s)

∂t
k1
1 · · · ∂t

kN
N ∂s

k1
1 · · · ∂s

kN
=

∫
RN

λ
2k1
1 · · ·λ2kN

N cos 〈t− s, λ〉F (dλ).

It follows that

E
(

∂kX(t)

∂t
k1
1 · · · ∂t

kN
N

− ∂kX(s)

∂s
k1
1 · · · ∂s

kN
N

)2

= E
(

∂kX(t)

∂t
k1
1 · · · ∂t

kN
N

)2

+ E
(

∂kX(s)

∂s
k1
1 · · · ∂s

kN
N

)2

− 2E
(

∂kX(t)

∂t
k1
1 · · · ∂t

kN
N

∂kX(s)

∂s
k1
1 · · · ∂s

kN
N

)

= 2

∫
RN

λ
2k1
1 · · ·λ2kN

N

(
1− cos 〈t− s, λ〉

)
F (dλ).

Let ŝ0 = t, ŝ1 = (s1, t2, . . . , tN ), ŝ2 = (s1, s2, t3 . . . , tN ), ..., ŝN−1 = (s1, . . . , sN−1, tN ) and

ŝN = s. Let h = s− t := (h1, . . . , hN ). Then, by Jensen’s inequality,

E
(

∂kX(t)

∂t
k1
1 · · · ∂t

kN
N

− ∂kX(s)

∂s
k1
1 · · · ∂s

kN
N

)2

≤ N
N∑
j=1

E
(

∂kX(ŝj)

∂s
k1
1 · · · ∂s

kj
j ∂t

kj+1
j+1 · · · ∂t

kN
N

−
∂kX(ŝj−1)

∂s
k1
1 · · · ∂s

kj−1
j−1 ∂t

kj
j · · · ∂t

kN
N

)2

= 2N
N∑
j=1

∫
RN

(
1− cos(hjλj)

) N∏
i=1

|λi|2kiF (dλ)

≤ 2N
N∑
j=1

∫
‖λ‖≤1

(
1− cos(hjλj)

) N∏
i=1

|λi|2kiF (dλ)

+ 2N
N∑
j=1

∫
‖λ‖>1

(
1− cos(hjλj)

) N∏
i=1

|λi|2kiF (dλ)

:= I1 + I2.

(2.1.13)
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Combining the result in (2.1.10) with the elementary inequality 1− cosx ≤ x2 yields

I1 ≤ 2N

( N∑
j=1

|hj |2
)∫
‖λ‖≤1

‖λ‖2F (dλ) ≤ c1‖t− s‖2 (2.1.14)

for some positive constant c1.

To bound the jth integral in I2, we note that, when ‖λ‖ > 1, either |λj | > 1/
√
N or there

is j0 6= j such that λj0 > 1/
√
N . We break the integral according to these two possibilities.

∫
‖λ‖>1

(
1− cos(hjλj)

) N∏
i=1

|λi|2kiF (dλ)

≤
∫
|λj |>1/

√
N

(
1− cos(hjλj)

) N∏
i=1

|λi|2kiF (dλ)

+
∑
j0 6=j

∫
|λj |≤1,|λj0 |>1/

√
N

(
1− cos(hjλj)

) N∏
i=1

|λi|2kiF (dλ)

:= I3 + I4.

(2.1.15)

Combining condition (2.1.9) with the elementary inequality 1− cosx ≤ x2 yields

I3 ≤
∫

1/
√
N<|λj |≤1/|hj |

1− cos(hjλj)

|λj |ε

(
|λj |ε

N∏
i=1

|λi|2ki
)
F (dλ)

+

∫
|λj |>1/|hj |

1

|λj |ε

(
|λj |ε

N∏
i=1

|λi|2ki
)
F (dλ)

≤ c2|hj |ε

(2.1.16)

for some positive constant c2. Similarly, it is evident to check that I4 ≤ c3|hj |2 for some

positive constant c3. Therefore, the Höder condition for L2 partial derivative in (2.1.11)

holds, and then the desired result follows from Kolmogorov’s continuity theorem. �
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For simplicity we will not distinguish X from its modification X̃. As a consequence of

Proposition 2.1.4, we see that, if X = {X(t) : t ∈ RN} has a spectral density f(λ) which

satisfies

f(λ) = O

(
1

‖λ‖N+2k+H

)
as ‖λ‖ → ∞, (2.1.17)

for some integer k ≥ 1 and H ∈ (0, 1), then the sample functions of X are in Ck(RN ) a.s.

When X(·) ∈ C2(RN ) almost surely, we write
∂X(t)
∂ti

= Xi(t) and
∂2X(t)
∂ti∂tj

= Xij(t).

Denote by ∇X(t) and ∇2X(t) the column vector (X1(t), . . . , XN (t))T and the N×N matrix

(Xij(t))i,j=1,...,N , respectively. It follows from (2.1.1) that for every t ∈ RN ,

λij :=

∫
RN

λiλjF (dλ) =
∂2C(t, s)

∂ti∂sj

∣∣∣
s=t

= E{Xi(t)Xj(t)}. (2.1.18)

Define the N ×N matrix Λ = (λij)i,j=1,...,N , then (2.1.18) shows that Λ = Cov(∇X(t)) for

all t. In particular, the distribution of ∇X(t) is independent of t. Let

λij(t) :=

∫
RN

λiλj cos 〈t, λ〉F (dλ), Λ(t) := (λij(t))i,j=1,...,N .

Then we have

λij(t)− λij =

∫
RN

λiλj(cos 〈t, λ〉 − 1)F (λ) =
∂2C(t, s)

∂ti∂tj

∣∣∣
s=t

= E{X(t)Xij(t)},

or equivalently, Λ(t)− Λ = E{X(t)∇2X(t)}.

Let T =
∏N
i=1[ai, bi] be a closed rectangle on RN , where ai < bi for all 1 ≤ i ≤ N and

0 /∈ T (the case of 0 ∈ T will be discussed in Remark 2.4.1). In addition to the stationary

increments, we will make use of the following conditions on X:
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(H1). X(·) ∈ C2(T ) almost surely and its second derivatives satisfy the uniform mean-square

Hölder condition: there exist constants L, η > 0 such that

E(Xij(t)−Xij(s))2 ≤ L‖t− s‖2η, ∀t, s ∈ T, i, j = 1, . . . , N. (2.1.19)

(H2). For every t ∈ T , the matrix Λ− Λ(t) is non-degenerate.

(H3). For every pair (t, s) ∈ T 2 with t 6= s, the Gaussian random vector

(X(t),∇X(t), Xij(t), X(s),∇X(s), Xij(s), 1 ≤ i ≤ j ≤ N)

is non-degenerate.

(H3′). For every t ∈ T , (X(t),∇X(t), Xij(t), 1 ≤ i ≤ j ≤ N) is non-degenerate.

Clearly, by Proposition 2.1.4, condition (H1) is satisfied if (2.1.17) holds for k = 2. Also note

that (H3) implies (H3′). We shall use conditions (H1), (H2) and (H3) to prove Theorems

2.3.7 and 2.3.8. Condition (H3′) will be used for computing E{ϕ(Au)} in Theorem 2.2.2.

The following lemma shows that for Gaussian fields with stationary increments, (H2) is

equivalent to Λ− Λ(t) being positive definite.

Lemma 2.1.5 For every t 6= 0, Λ − Λ(t) is non-negative definite. Hence, under (H2),

Λ− Λ(t) is positive definite.

Proof Let t 6= 0 be fixed. For any (a1, . . . , aN ) ∈ RN\{0},

N∑
i,j=1

aiaj(λij − λij(t)) =

∫
RN

( N∑
i=1

aiλi

)2

(1− cos 〈t, λ〉)F (λ). (2.1.20)
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Since (
∑N
i=1 aiλi)

2(1− cos 〈t, λ〉) ≥ 0 for all λ ∈ RN , (2.1.20) is always non-negative, which

implies Λ − Λ(t) is non-negative definite. If (H2) is satisfied, then all the eigenvalues of

Λ− Λ(t) are positive. This completes the proof. �

It follows from (2.1.20) that, if the spectral measure F is carried by a set of positive Lebesgue

measure (i.e., there is a set B ⊂ RN with positive Lebesgue measure such that F (B) > 0),

then (H2) holds. Hence, (H2) is in fact a very mild condition for smooth Gaussian fields

with stationary increments.

Lemma 2.1.5 and the following two lemmas indicate some significant properties of Gaus-

sian fields with stationary increments. They will play important roles in later sections.

Lemma 2.1.6 For each t, Xi(t) and Xjk(t) are independent for all i, j, k; and E{Xij(t)Xkl(t)}

is symmetric in i, j, k, l.

Proof By (2.1.1), one can verify that for t, s ∈ RN ,

E{Xi(t)Xjk(s)} =
∂3C(t, s)

∂ti∂sj∂sk
=

∫
RN

λiλjλk sin 〈t− s, λ〉F (dλ),

E{Xij(t)Xkl(s)} =
∂4C(t, s)

∂ti∂tj∂sk∂sl
=

∫
RN

λiλjλkλl cos 〈t− s, λ〉 F (dλ).

(2.1.21)

Letting s = t we obtain the desired results. �

It follows immediately from Lemma 2.1.6 that the following result holds.

Lemma 2.1.7 Let A = (aij)1≤i,j≤N be a symmetric matrix, then

St(i, j, k, l) = E{(A∇2X(t)A)ij(A∇2X(t)A)kl}

is a symmetric function of i, j, k, l.
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2.2 The Mean Euler Characteristic

The rectangle T =
∏N
i=1[ai, bi] can be decomposed into several faces of lower dimensions.

We use the same notations as in Adler and Taylor (2007, p.134).

A face J of dimension k, is defined by fixing a subset σ(J) ⊂ {1, . . . , N} of size k and a

subset ε(J) = {εj , j /∈ σ(J)} ⊂ {0, 1}N−k of size N − k, so that

J = {t = (t1, . . . , tN ) ∈ T : aj < tj < bj if j ∈ σ(J),

tj = (1− εj)aj + εjbj if j /∈ σ(J)}.

Denote by ∂kT the collection of all k-dimensional faces in T , then the interior of T is given

by
◦
T = ∂NT and the boundary of T is given by ∂T = ∪N−1

k=0 ∪J∈∂kT J . For J ∈ ∂kT , denote

by ∇X|J (t) and ∇2X|J (t) the column vector (Xi1(t), . . . , Xik(t))T
i1,...,ik∈σ(J)

and the k × k

matrix (Xmn(t))m,n∈σ(J), respectively.

If X(·) ∈ C2(RN ) and it is a Morse function a.s. [cf. Definition 9.3.1 in Adler and Taylor

(2007)], then according to Corollary 9.3.5 or page 211-212 in Adler and Taylor (2007), the

Euler characteristic of the excursion set Au = {t ∈ T : X(t) ≥ u} is given by

ϕ(Au) =
N∑
k=0

∑
J∈∂kT

(−1)k
k∑
i=0

(−1)iµi(J) (2.2.1)

with

µi(J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = i,

ε∗jXj(t) ≥ 0 for all j /∈ σ(J)},
(2.2.2)

where ε∗j = 2εj − 1 and the index of a matrix is defined as the number of its negative
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eigenvalues. We also define

µ̃i(J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = i}. (2.2.3)

Let σ2
t = Var(X(t)) and let σ2

T = supt∈T σ
2
t be the maximum variance. For Gaussian

fields with stationary increments, it follows from (2.1.4) that ν(t) = σ2
t . For t ∈ J ∈ ∂kT ,

where k ≥ 1, let

ΛJ = (λij)i,j∈σ(J), ΛJ (t) = (λij(t))i,j∈σ(J),

θ2
t = Var(X(t)|∇X|J (t)), γ2

t = Var(X(t)|∇X(t)),

{J1, . . . , JN−k} = {1, . . . , N}\σ(J),

E(J) = {(tJ1
, . . . , tJN−k) ∈ RN−k : tjε

∗
j ≥ 0, j = J1, . . . , JN−k}.

(2.2.4)

Then for all t ∈ J ,

ΛJ = Cov(∇X|J (t)), ΛJ (t)− ΛJ = E{X(t)∇2X|J (t)}. (2.2.5)

Note that θ2
t ≥ γ2

t for all t ∈ T and θ2
t = γ2

t if t ∈ ∂NT . For {t} ∈ ∂0T , then ∇X|J (t) is

not defined, in this case we set θ2
t as σ2

t by convention. Let Cj(t) be the (1, j + 1) entry

of (Cov(X(t),∇X(t)))−1, i.e. Cj(t) = M1,j+1/detCov(X(t),∇X(t)), where M1,j+1 is the

cofactor of the (1, j + 1) entry, E{X(t)Xj(t)}, in the covariance matrix Cov(X(t),∇X(t)).

Denote byHk(x) the Hermite polynomial of order k, i.e., Hk(x) = (−1)kex
2/2 dk

dxk
(e−x

2/2).

Then the following identity holds [cf. Adler and Taylor (2007, p.289)]:

∫ ∞
u

Hk(x)e−x
2/2 dx = Hk−1(u)e−u

2/2, (2.2.6)
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where u > 0 and k ≥ 1. For a matrix A, |A| denotes its determinant. Let R+ = [0,∞),

R− = (−∞, 0] and Ψ(u) = (2π)−1/2
∫∞
u e−x

2/2dx.

The following lemma is an analogue of Lemma 11.7.1 in Adler and Taylor (2007). It

provides a key step for computing the mean Euler characteristic in Theorem 2.2.2, meanwhile,

it has close connection with Theorem 2.3.7.

Lemma 2.2.1 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field with station-

ary increments satisfying (H1), (H2) and (H3′). Then for each J ∈ ∂kT with k ≥ 1,

E
{ k∑
i=0

(−1)iµ̃i(J)

}
=

(−1)k

(2π)(k+1)/2|ΛJ |1/2

∫
J

|ΛJ − ΛJ (t)|
θkt

Hk−1

( u
θt

)
e−u

2/(2θ2t )dt. (2.2.7)

Proof Let Di be the collection of all k × k matrices with index i. Recall the definition

of µ̃i(J) in (2.2.3), thanks to (H1) and (H3′), we can apply the Kac-Rice metatheorem [cf.

Theorem 11.2.1 or Corollary 11.2.2 in Adler and Taylor (2007)] to get that the left hand side

of (2.2.7) becomes

∫
J
p∇X|J (t)(0)dt

k∑
i=0

(−1)iE{|det∇2X|J (t)|1{∇2X|J (t)∈Di}
1{X(t)≥u}|∇X|J (t) = 0}.

(2.2.8)

Note that on the event Di, the matrix ∇2X|J (t) has i negative eigenvalues, which implies

(−1)i|det∇2X|J (t)| = det∇2X|J (t). Also, ∪ki=0{∇
2X|J (t) ∈ Di} = Ω a.s., hence (2.2.8)
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equals

∫
J
p∇X|J (t)(0)dtE{det∇2X|J (t)1{X(t)≥u}|∇X|J (t) = 0}

=

∫
J

e−x
2/(2θ2t )

(2π)(k+1)/2|ΛJ |1/2θt
dt

∫ ∞
u

dxE{det∇2X|J (t)|X(t) = x,∇X|J (t) = 0}.
(2.2.9)

Now we turn to computing E{det∇2X|J (t)|X(t) = x,∇X|J (t) = 0}. By Lemma 2.1.5,

under (H2), Λ−Λ(t) and hence ΛJ −ΛJ (t) are positive definite for every t ∈ J . Thus there

exists a k × k positive definite matrix Qt such that

Qt(ΛJ − ΛJ (t))Qt = Ik, (2.2.10)

where Ik is the k × k identity matrix. By (2.2.5),

E{X(t)(Qt∇2X|J (t)Qt)ij} = −(Qt(ΛJ − ΛJ (t))Qt)ij = −δij ,

where δij is the Kronecker delta function. One can write

E{det(Qt∇2X|J (t)Qt)|X(t) = x,∇X|J (t) = 0} = E{det∆(t, x)}, (2.2.11)

where ∆(t, x) = (∆ij(t, x))i,j∈σ(J) with all elements ∆ij(t, x) being Gaussian variables. To

study ∆(t, x), we only need to find its mean and covariance. Note that ∇X(t) and ∇2X(t)

21



are independent by Lemma 2.1.6, then we apply Lemma 2.5.1 to obtain

E{∆ij(t, x)} = E{(Qt∇2X|J (t)Qt)ij |X(t) = x,∇X|J (t) = 0}

= (E{X(t)(Qt∇2X|J (t)Qt)ij}, 0, . . . , 0)(Cov(X(t),∇X|J (t)))−1(x, 0, . . . , 0)T

= (−δij , 0, . . . , 0)(Cov(X(t),∇X|J (t)))−1(x, 0, . . . , 0)T = − x

θ2
t

δij ,

(2.2.12)

where the last equality comes from the fact that the (1, 1) entry of (Cov(X(t),∇X|J (t)))−1

is detCov(∇X|J (t))/detCov(X(t),∇X|J (t)) = 1/θ2
t . For the covariance, applying Lemma

2.5.1 again gives

E{(∆ij(t, x)− E{∆ij(t, x)})(∆kl(t, x)− E{∆kl(t, x)})}

= E{(Qt∇2X|J (t)Qt)ij(Qt∇2X|J (t)Qt)kl} − (E{X(t)(Qt∇2X|J (t)Qt)ij}, 0, . . . , 0)

· (Cov(X(t),∇X|J (t)))−1(E{X(t)(Qt∇2X|J (t)Qt)kl}, 0, . . . , 0)T

= St(i, j, k, l)− (−δij , 0, . . . , 0)(Cov(X(t),∇X|J (t)))−1(−δkl, 0, . . . , 0)T

= St(i, j, k, l)−
δijδkl

θ2
t

,

where St is a symmetric function of i, j, k, l by applying Lemma 2.1.7 with A replaced by

Qt. Therefore (2.2.11) becomes

E
{

1

θkt
det(θtQt(∇2X|J (t))Qt)

∣∣∣X(t) = x,∇X|J (t) = 0

}
=

1

θkt
E
{

det

(
∆̃(t)− x

θt
Ik

)}
,

where ∆̃(t) = (∆̃ij(t))i,j∈σ(J) and all ∆̃ij(t) are Gaussian variables satisfying

E{∆̃ij(t)} = 0, E{∆̃ij(t)∆̃kl(t)} = θ2
t St(i, j, k, l)− δijδkl.
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By Corollary 11.6.3 in Adler and Taylor (2007), (2.2.11) is equal to (−1)kθ−kt Hk(x/θt), hence

E{det∇2X|J (t)|X(t) = x,∇X|J (t) = 0}

= E{det(Q−1
t Qt∇2X|J (t)QtQ

−1
t )|X(t) = x,∇X|J (t) = 0}

= |ΛJ − ΛJ (t)|E{det(Qt∇2X|J (t)Qt)|X(t) = x,∇X|J (t) = 0}

=
(−1)k

θkt
|ΛJ − ΛJ (t)|Hk

( x
θt

)
.

Plugging this into (2.2.9) and applying (2.2.6), we obtain the desired result. �

Theorem 2.2.2 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field with

stationary increments such that (H1), (H2) and (H3′) are fulfilled. Then

E{ϕ(Au)} =
∑

{t}∈∂0T

P(X(t) ≥ u,∇X(t) ∈ E({t})) +
N∑
k=1

∑
J∈∂kT

1

(2π)k/2|ΛJ |1/2

×
∫
J
dt

∫ ∞
u

dx

∫
· · ·
∫
E(J)

dyJ1
· · · dyJN−k

|ΛJ − ΛJ (t)|
γkt

×Hk
( x
γt

+ γtCJ1
(t)yJ1

+ · · ·+ γtCJN−k(t)yJN−k

)
× pX(t),XJ1

(t),...,XJN−k
(t)(x, yJ1

, . . . , yJN−k |∇X|J (t) = 0).

(2.2.13)

Proof According to Corollary 11.3.2 in Adler and Taylor (2007), (H1) and (H3′) imply

that X is a Morse function a.s. It follows from (2.2.1) that

E{ϕ(Au)} =
N∑
k=0

∑
J∈∂kT

(−1)kE
{ k∑
i=0

(−1)iµi(J)

}
. (2.2.14)

If J ∈ ∂0T , say J = {t}, it turns out E{µ0(J)} = P(X(t) ≥ u,∇X(t) ∈ E({t})). If J ∈ ∂kT

with k ≥ 1, we apply the Kac-Rice metatheorem to obtain that the expectation on the right
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hand side of (2.2.14) becomes

∫
J
p∇X|J (t)(0)dt

k∑
i=0

(−1)iE{|det∇2X|J (t)|1{∇2X|J (t)∈Di}
1{(XJ1

(t),...,XJN−k
(t))∈E(J)}

× 1{X(t)≥u}|∇X|J (t) = 0}

=
1

(2π)k/2|ΛJ |1/2

∫
J
dt

∫ ∞
u

dx

∫
· · ·
∫
E(J)

dyJ1
· · · dyJN−k

× E{det∇2X|J (t)|X(t) = x,XJ1
(t) = yJ1

, . . . , XJN−k(t) = yJN−k ,∇X|J (t) = 0}

× pX(t),XJ1
(t),...,XJN−k

(t)(x, yJ1
, . . . , yJN−k |∇X|J (t) = 0).

(2.2.15)

For fixed t, let Qt be the positive definite matrix in (2.2.10). Then, similarly to the proof in

Lemma 2.2.1, we can write

E{det(Qt∇2X|J (t)Qt)|X(t) = x,XJ1
(t) = yJ1

, . . . , XJN−k = yJN−k ,∇X|J (t) = 0}

as E{det∆(t, x)}, where ∆(t, x) is a matrix consisting of Gaussian entries ∆ij(t, x) with

mean

E{(Qt∇2X|J (t)Qt)ij |X(t) = x,XJ1
(t) = yJ1

, . . . , XJN−k = yJN−k ,∇X|J (t) = 0}

= (−δij , 0, . . . , 0)(Cov(X(t), XJ1
(t), . . . , XJN−k(t),∇X|J (t)))−1

· (x, yJ1
, . . . , yJN−k , 0, . . . , 0)T

= −
δij

γ2
t

(x+ γ2
t CJ1

(t)yJ1
+ · · ·+ γ2

t CJN−k(t)yJN−k),

(2.2.16)
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and covariance

E{(∆ij(t, x)− E{∆ij(t, x)})(∆kl(t, x)− E{∆kl(t, x)})} = St(i, j, k, l)−
δijδkl

γ2
t

.

Following the same procedure in the proof of Lemma 2.2.1, we obtain that the last conditional

expectation in (2.2.15) is equal to

(−1)k|ΛJ − ΛJ (t)|
γkt

Hk

( x
γt

+ γtCJ1
(t)yJ1

+ · · ·+ γtCJN−k(t)yJN−k

)
. (2.2.17)

Plug this into (2.2.15) and (2.2.14), yielding the desired result. �

Remark 2.2.3 Usually, for nonstationary (including constant-variance) Gaussian field X

on RN , its mean Euler characteristic involves at least the third-order derivatives of the

covariance function. For Gaussian random fields with stationary increments, as shown in

Lemma 2.1.6, E{Xij(t)Xk(t)} = 0 and E{Xij(t)Xkl(t)} is symmetric in i, j, k, l, so the

mean Euler characteristic becomes relatively simpler, contains only up to the second-order

derivatives of the covariance function. In various practical applications, (2.2.13) could be

simplified with only an exponentially smaller difference, see the discussions in Section 2.4.
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2.3 Excursion Probability

As in Section 3.1, we decompose T into several faces as T =
⋃N
k=0 ∂kT =

⋃N
k=0

⋃
J∈∂kT

J .

For each J ∈ ∂kT , define the number of extended outward maxima above level u as

ME
u (J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = k,

ε∗jXj(t) ≥ 0 for all j /∈ σ(J)}.

In fact, ME
u (J) is the same as µk(J) defined in (2.2.2) with i = k. We will make use of the

following lemma.

Lemma 2.3.1 Let X = {X(t) : t ∈ RN} be a Gaussian random field satisfying (H1) and

(H3′), then for any u > 0,

{
sup
t∈T

X(t) ≥ u
}

=
N⋃
k=0

⋃
J∈∂kT

{ME
u (J) ≥ 1} a.s.

Proof By the definition of ME
u (J), it is clear that

{
sup
t∈T

X(t) ≥ u
}
⊃

N⋃
k=0

⋃
J∈∂kT

{ME
u (J) ≥ 1} a.s.

Suppose supt∈T X(t) ≥ u, since X(t) ∈ C2(RN ) a.s., there exists t0 ∈ T such that X(t0) =

supt∈T X(t). Without loss of generality, assume t0 ∈ J ∈ ∂kT . Note that t0 is a local

maximum restricted on J , thus ∇X|J (t0) = 0 and ∇2X|J (t0) is non-positive definite. Due

to (H1) and (H3′), we apply Lemma 11.2.11 in Adler and Taylor (2007) to obtain that

almost surely, det(∇2X|J (t0)) 6= 0 and hence index(∇2X|J (t0)) = k. If ε∗jXj(t0) < 0 for

some j /∈ σ(J), then we can find t1 ∈ T such that X(t1) > X(t0), which contradicts
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X(t0) = supt∈T X(t). Hence ε∗jXj(t0) ≥ 0 for all j /∈ σ(J). These indicate ME
u (J) ≥ 1,

therefore {
sup
t∈T

X(t) ≥ u
}
⊂

N⋃
k=0

⋃
J∈∂kT

{ME
u (J) ≥ 1} a.s.,

completing the proof. �

It follows from Lemma 2.3.1 that

P
{

sup
t∈T

X(t) ≥ u
}
≤

N∑
k=0

∑
J∈∂kT

P{ME
u (J) ≥ 1} ≤

N∑
k=0

∑
J∈∂kT

E{ME
u (J)}. (2.3.1)

On the other hand, by the Bonferroni inequality,

P
{

sup
t∈T

X(t) ≥ u
}
≥

N∑
k=0

∑
J∈∂kT

P{ME
u (J) ≥ 1} −

∑
J 6=J ′

P{ME
u (J) ≥ 1,ME

u (J ′) ≥ 1}.

Let pi = P{ME
u (J) = i}, then P{ME

u (J) ≥ 1} =
∑∞
i=1 pi and E{ME

u (J)} =
∑∞
i=1 ipi, it

follows that

E{ME
u (J)} − P{ME

u (J) ≥ 1} =
∞∑
i=2

(i− 1)pi

≤
∞∑
i=2

i(i− 1)

2
pi =

1

2
E{ME

u (J)(ME
u (J)− 1)}.
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Together with the obvious bound P{ME
u (J) ≥ 1,ME

u (J ′) ≥ 1} ≤ E{ME
u (J)ME

u (J ′)}, we

obtain the following lower bound for the excursion probability,

P
{

sup
t∈T

X(t) ≥ u
}
≥

N∑
k=0

∑
J∈∂kT

(
E{ME

u (J)} − 1

2
E{ME

u (J)(ME
u (J)− 1)}

)

−
∑
J 6=J ′

E{ME
u (J)ME

u (J ′)}.
(2.3.2)

Define the number of local maxima above level u as

Mu(J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = k},

then obviously Mu(J) ≥ ME
u (J), and Mu(J) is the same as µ̃k(J) defined in (2.2.3) with

i = k. It follows similarly that

N∑
k=0

∑
J∈∂kT

E{Mu(J)} ≥ P
{

sup
t∈T

X(t) ≥ u
}

≥
N∑
k=0

∑
J∈∂kT

(
E{Mu(J)} − 1

2
E{Mu(J)(Mu(J)− 1)}

)
−
∑
J 6=J ′

E{Mu(J)Mu(J ′)}.

(2.3.3)

We will use (2.3.1) and (2.3.2) to estimate the excursion probability for the general

case, see Theorem 2.3.8. Inequalities in (2.3.3) provide another method to approximate the

excursion probability in some special cases, see Theorem 2.3.7. The advantage of (2.3.3)

is that the principal term induced by
∑N
k=0

∑
J∈∂kT

E{Mu(J)} is much easier to compute

compared with the one induced by
∑N
k=0

∑
J∈∂kT

E{ME
u (J)}.

The following two lemmas provide the estimations for the principal terms in approximat-

ing the excursion probability.
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Lemma 2.3.2 Let X be a Gaussian field as in Theorem 2.2.2. Then for each J ∈ ∂kT with

k ≥ 1, there exists some constant α > 0 such that

E{Mu(J)} =
1

(2π)(k+1)/2|ΛJ |1/2

∫
J

|ΛJ − ΛJ (t)|
θkt

Hk−1

( u
θt

)
e−u

2/(2θ2t ) dt(1 + o(e−αu
2
)).

(2.3.4)

Proof Following the notations in the proof of Lemma 2.2.1, we obtain similarly that

E{Mu(J)} =

∫
J
p∇X|J (t)(0)dtE{|det∇2X|J (t)|1{∇2X|J (t)∈Dk}

1{X(t)≥u}|∇X|J (t) = 0}

=

∫
J
dt

∫ ∞
u

dx
(−1)ke−x

2/(2θ2t )

(2π)(k+1)/2|ΛJ |1/2θt

× E{det∇2X|J (t)1{∇2X|J (t)∈Dk}
|X(t) = x,∇X|J (t) = 0}.

(2.3.5)

Recall ∇2X|J (t) = Q−1
t Qt∇2X|J (t)QtQ

−1
t and we can write (2.2.12) as

E{Qt∇2X|J (t)Qt|X(t) = x,∇X|J (t) = 0} = − x

θ2
t

Ik.

Make change of variables

V (t) = Qt∇2X|J (t)Qt +
x

θ2
t

Ik,

where V (t) = (Vij(t))1≤i,j≤k. Then (V (t)|X(t) = x,∇X|J (t) = 0) is a Gaussian matrix

whose mean is 0 and covariance is the same as that of (Qt∇2X|J (t)Qt|X(t) = x,∇X|J (t) =

0). Denote the density of Gaussian vectors ((Vij(t))1≤i≤j≤k|X(t) = x,∇X|J (t) = 0) by
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ht(v), v = (vij)1≤i≤j≤k ∈ Rk(k+1)/2, then

E{det(Qt∇2X|J (t)Qt)1{∇2X|J (t)∈Dk}
|X(t) = x,∇X|J (t) = 0}

= E{det(Qt∇2X|J (t)Qt)1{Qt∇2X|J (t)Qt∈Dk}
|X(t) = x,∇X|J (t) = 0}

=

∫
v:(vij)− x

θ2t
Ik∈Dk

det

(
(vij)−

x

θ2
t

Ik

)
ht(v) dv,

(2.3.6)

where (vij) is the abbreviation of matrix (vij)1≤i,j≤k. Since {θ2
t : t ∈ T} is bounded, there

exists a constant c > 0 such that

(vij)−
x

θ2
t

Ik ∈ Dk, ∀‖(vij)‖ :=

( k∑
i,j=1

v2
ij

)1/2

<
x

c
.

Thus we can write (2.3.6) as

∫
Rk(k+1)/2

det

(
(vij)−

x

θ2
t

Ik

)
ht(v)dv −

∫
v:(vij)− x

θ2t
Ik /∈Dk

det

(
(vij)−

x

θ2
t

Ik

)
ht(v) dv

= E{det(Qt∇2X|J (t)Qt)|X(t) = x,∇X|J (t) = 0}+ Z(t, x),

(2.3.7)

where Z(t, x) is the second integral in the first line of (2.3.7) and it satisfies

|Z(t, x)| ≤
∫
‖(vij)‖≥xc

∣∣∣∣det

(
(vij)−

x

θ2
t

Ik

)∣∣∣∣ht(v)dv.

Denote by G(t) the covariance matrix of ((Vij(t))1≤i≤j≤k|X(t) = x,∇X|J (t) = 0), then

by Lemma 2.5.2 in the Appendix, the eigenvalues of G(t) and hence those of (G(t))−1

are bounded for all t ∈ T . It follows that there exists some constant α′ > 0 such that
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ht(v) = o(e
−α′‖(vij)‖2

) and hence |Z(t, x)| = o(e−αx
2
) for some constant α > 0 uniformly

for all t ∈ T . Combine this with (2.3.5), (2.3.6), (2.3.7) and the proof of Lemma 2.2.1,

yielding the result. �

Lemma 2.3.3 Let X be a Gaussian field as in Theorem 2.2.2. Then for each J ∈ ∂kT with

k ≥ 1, there exists some constant α > 0 such that

E{ME
u (J)} =

1

(2π)k/2|ΛJ |1/2

∫
J
dt

∫ ∞
u

dx

∫
· · ·
∫
E(J)

dyJ1
· · · dyJN−k

× |ΛJ − ΛJ (t)|
γkt

Hk

(
x

γt
+ γtCJ1

(t)yJ1
+ · · ·+ γtCJN−k(t)yJN−k

)
× pX(t),XJ1

(t),...,XJN−k
(t)(x, yJ1

, . . . , yJN−k |∇X|J (t) = 0)(1 + o(e−αu
2
)).

(2.3.8)

Proof Under the notations in the proof of Theorem 2.2.2, applying the Kac-Rice formula,

we see that E{ME
u (J)} equals

∫
J
p∇X|J (t)(0)dtE{|det∇2X|J (t)|1{∇2X|J (t)∈Dk}

1{X(t)≥u}

× 1{(XJ1
(t),··· ,XJN−k

(t))∈E(J)}|∇X|J (t) = 0}

=
(−1)k

(2π)k/2|ΛJ |1/2

∫
J
dt

∫ ∞
u

dx

∫
· · ·
∫
E(J)

dyJ1
· · · dyJN−k

E{det∇2X|J (t)1{∇2X|J (t)∈Dk}
|X(t) = x,XJ1

(t) = yJ1
, · · · , XJN−k(t) = yJN−k ,

∇X|J (t) = 0}pX(t),XJ1
(t),··· ,XJN−k

(t)(x, yJ1
, · · · , yJN−k |∇X|J (t) = 0).
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Recall ∇2X|J (t) = Q−1
t Qt∇2X|J (t)QtQ

−1
t and we can write (2.2.16) as

E{Qt∇2X|J (t)Qt|X(t) = x,XJ1
(t) = yJ1

, · · · , XJN−k(t) = yJN−k ,∇X|J (t) = 0}

= −
(
x

γ2
t

+ CJ1
(t)yJ1

+ · · ·+ CJN−k(t)yJN−k

)
Ik.

Make change of variables

W (t) = Qt∇2X|J (t)Qt +
x

γ2
t

Ik,

where W (t) = (Wij(t))1≤i,j≤k. Denote the density of

((Wij(t))1≤i≤j≤k|X(t) = x,XJ1
(t) = yJ1

, · · · , XJN−k(t) = yJN−k ,∇X|J (t) = 0)

by ft,yJ1
,··· ,yJN−k

(w), w = (wij)1≤i≤j≤k ∈ Rk(k+1)/2. Similarly to the proof in Lemma

2.3.2, to estimate

E
{

det∇2X|J (t)1{∇2X|J (t)∈Dk}

∣∣∣∣ X(t)=x,∇X|J (t)=0,

XJ1
(t)=yJ1

,··· ,XJN−k
(t)=yJN−k

}
,
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we will get an expression similar to (2.3.7) with Z(t, x) replaced by Z̃(t, x, yJ1
, · · · , yJN−k).

Then, similarly, we have

I(t, x) :=

∫
· · ·
∫
E(J)

dyJ1
· · · dyJN−k pX(t),XJ1

(t),··· ,XJN−k
(t)(x, yJ1

, · · · , yJN−k |

|∇X|J (t) = 0)|Z̃(t, x, yJ1
, · · · , yJN−k)|

≤
∫
· · ·
∫
E(J)

dyJ1
· · · dyJN−k pX(t),XJ1

(t),··· ,XJN−k
(t)(x, yJ1

, · · · , yJN−k |

|∇X|J (t) = 0)|
∫
‖(wij)‖≥xc

∣∣∣∣det

(
(wij)−

x

γ2
t

Ik

)∣∣∣∣ft,yJ1
,··· ,yJN−k

(w)dw

≤ pX(t)(x|∇X|J (t) = 0)

∫
‖(wij)‖≥xc

∣∣∣∣det

(
(wij)−

x

γ2
t

Ik

)∣∣∣∣ft(w)dw,

where the last inequality comes from replacing the integral region E(J) by RN−k, and ft(w)

is the density of ((Wij(t))1≤i≤j≤k|X(t) = x,∇X|J (t) = 0). Hence by the same discussions

in the proof of Lemma 2.3.2, I(t, x) = o(e
−αu2−u2/(2σ2

T )
) uniformly for all t ∈ T and some

constant α > 0. Combining the proofs of Lemma 2.3.2 and Theorem 2.2.2, we obtain the

result. �

We call a function h(u) super-exponentially small (when compared with P(supt∈T X(t) ≥

u)), if there exists a constant α > 0 such that h(u) = o(e
−αu2−u2/(2σ2

T )
) as u→∞.

The following lemma is Lemma 4 in Piterbarg (1996b). It shows that the factorial

moments are usually super-exponentially small.

Lemma 2.3.4 Let {X(t) : t ∈ RN} be a centered Gaussian field satisfying (H1) and (H3).

Then for any ε > 0, there exists ε1 > 0 such that for any J ∈ ∂kT and u large enouth,

E{Mu(J)(Mu(J)− 1)} ≤ e
−u2/(2β2

J+ε)
+ e
−u2/(2σ2

J−ε1)
,
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where β2
J = supt∈J sup

e∈Sk−1 Var(X(t)|∇X|J (t),∇2X|J (t)e) and σ2
J = supt∈J Var(X(t)).

Here Sk−1 is the (k − 1)-dimensional unit sphere.

Corollary 2.3.5 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field with sta-

tionary increments satisfying (H1), (H2) and (H3). Then for all J ∈ ∂kT , E{Mu(J)(Mu(J)−

1)} and E{ME
u (J)(ME

u (J)− 1)} are super-exponentially small.

Proof Since ME
u (J) ≤Mu(J), we only need to show that E{Mu(J)(Mu(J)−1)} is super-

exponentially small. If k = 0, then Mu(J) is either 0 or 1 and hence E{Mu(J)(Mu(J)−1)} =

0. If k ≥ 1, then, thanks to Lemma 2.3.4, it suffices to show that β2
J is strictly less than σ2

T .

Clearly, Var(X(t)|∇X|J (t),∇2X|J (t)e) ≤ σ2
T . Applying Lemma 2.5.1 yields that

Var(X(t)|∇X|J (t),∇2X|J (t)e) = σ2
T ⇒ E{X(t)(∇2X|J (t)e)} = 0.

Note that the right hand side above is equivalent to (ΛJ (t)−ΛJ )e = 0. By (H2), ΛJ (t)−ΛJ

is negative definite, which implies (ΛJ (t)− ΛJ )e 6= 0 for all e ∈ Sk−1, so that

sup
e∈Sk−1

Var(X(t)|∇|JX(t),∇2
|JX(t)e) < σ2

T .

Therefore β2
J < σ2

T by continuity. �

The following lemma shows that the cross terms in (2.3.2) and (2.3.3) are super-exponentially

small if the two faces are not adjacent. For the case when the faces are adjacent, the proof

is more technical, see the proofs in Theorems 2.3.7 and 2.3.8.

Lemma 2.3.6 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field with station-

ary increments satisfying (H1) and (H3). Let J and J ′ be two faces of T such that their
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distance is positive, i.e., inft∈J,s∈J ′ ‖s− t‖ > δ0 for some δ0 > 0, then E{Mu(J)Mu(J ′)} is

super-exponentially small.

Proof We first consider the case when dim(J) = k ≥ 1 and dim(J ′) = k′ ≥ 1. By the

Kac-Rice metatheorem for higher moments (the proof is the same as that of Theorem 11.5.1

in Adler and Taylor (2007)),

E{Mu(J)Mu(J ′)} =

∫
J
dt

∫
J ′
dsE{|det∇2X|J (t)||det∇2X|J ′(s)|1{X(t)≥u,X(s)≥u}

× 1{∇2X|J (t)∈Dk,∇2X|J ′(s)∈Dk′}
|X(t) = x,X(s) = y,∇X|J (t) = 0,

∇X|J ′(s) = 0}pX(t),X(s),∇X|J (t),∇X|J ′(s)
(x, y, 0, 0)

≤
∫
J
dt

∫
J ′
ds

∫ ∞
u

dx

∫ ∞
u

dy E{|det∇2X|J (t)||det∇2X|J ′(s)|

|X(t) = x,X(s) = y,∇X|J (t) = 0,∇X|J ′(s) = 0}pX(t),X(s)(x, y)

× p∇X|J (t),∇X|J ′(s)
(0, 0|X(t) = x,X(s) = y).

(2.3.9)

Note that the following two inequalities hold: for constants ai and bj ,

k∏
i=1

|ai|
k′∏
j=1

|bj | ≤
1

k + k′

( k∑
i=1

|ai|k+k′ +
k′∑
j=1

|bj |k+k′
)

;

and for any Gaussian variable ξ and positive integer l,

E|ξ|l ≤ E(|Eξ|+ |ξ − Eξ|)l ≤ 2l(|Eξ|l + E|ξ − Eξ|l) ≤ 2l(|Eξ|l + Cl(Var(ξ))l/2),
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where the constant Cl depends only on l. Combining these two inequalities with Lemma

2.5.1, we get that there exist some positive constants C1 and N1 such that for large x and y,

sup
t∈J,s∈J ′

E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,X(s) = y,

∇X|J (t) = 0,∇X|J ′(s) = 0} ≤ C1x
N1yN1 .

(2.3.10)

Also, there exists a positive constant C2 such that

sup
t∈J,s∈J ′

p∇X|J (t),∇X|J ′(s)
(0, 0|X(t) = x,X(s) = y)

≤ sup
t∈J,s∈J ′

(2π)−(k+k′)/2[detCov(∇X|J (t),∇X|J ′(s)|X(t) = x,X(s) = y)]−1/2 ≤ C2.

(2.3.11)

Let ρ(δ0) = sup‖s−t‖>δ0
E{X(t)X(s)}

σtσs
which is strictly less than 1 due to (H3), then ∀ε > 0,

there exists a positive constant C3 such that for all t ∈ J , s ∈ J ′ and u large enough,

∫ ∞
u

∫ ∞
u

xN1yN1pX(t),X(s)(x, y)dxdy = E{[X(t)X(s)]N11{X(t)≥u,X(s)≥u}}

≤ E{[X(t) +X(s)]2N11{X(t)+X(s)≥2u}} ≤ C3 exp

(
εu2 − u2

(1 + ρ(δ0))σ2
T

)
.

(2.3.12)

Combine (2.3.9) with (2.3.10), (2.3.11) and (2.3.12), yielding that E{ME
u (J)ME

u (J ′)} is

super-exponentially small.
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When only one of the faces, say J , is a singleton, then let J = {t0} and we have

E{Mu(J)Mu(J ′)} ≤
∫
J ′
ds

∫ ∞
u

dx

∫ ∞
u

dy pX(t0),X(s),∇X|J ′(s)
(x, y, 0)

× E{|det∇2X|J ′(s)||X(t0) = x,X(s) = y,∇X|J ′(s) = 0}.
(2.3.13)

Following the previous discussions yields that E{Mu(J)Mu(J ′)} is super-exponentially small.

Finally, if both J and J ′ are singletons, then E{Mu(J)Mu(J ′)} becomes the joint prob-

ability of two Gaussian variables exceeding level u and hence is trivial. �

Theorem 2.3.7 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field with

stationary increments such that (H1), (H2) and (H3) are fulfilled. Suppose that for any face

J ,

{t ∈ J : ν(t) = σ2
T , νj(t) = 0 for some j /∈ σ(J)} = ∅. (2.3.14)

Then there exists some constant α > 0 such that

P
{

sup
t∈T

X(t) ≥ u
}

=
N∑
k=0

∑
J∈∂kT

E{Mu(J)}+ o(e
−αu2−u2/(2σ2

T )
)

=
∑

{t}∈∂0T

Ψ
( u
σt

)
+

N∑
k=1

∑
J∈∂kT

1

(2π)(k+1)/2|ΛJ |1/2

×
∫
J

|ΛJ − ΛJ (t)|
θkt

Hk−1

( u
θt

)
e−u

2/(2θ2t ) dt+ o(e
−αu2−u2/(2σ2

T )
).

(2.3.15)

Proof Since the second equality in (2.3.15) follows from Lemma 2.3.2 directly, we only need

to prove the first one. By (2.3.3) and Corollary 2.3.5, it suffices to show that the last term

in (2.3.3) is super-exponentially small. Thanks to Lemma 2.3.6, we only need to consider
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the case when the distance of J and J ′ is 0, or I := J̄ ∩ J̄ ′ 6= ∅. Without loss of generality,

assume

σ(J) = {1, . . . ,m,m+ 1, . . . , k}, σ(J ′) = {1, . . . ,m, k + 1, . . . , k + k′ −m}, (2.3.16)

where 0 ≤ m ≤ k ≤ k′ ≤ N and k′ ≥ 1. If k = 0, we consider σ(J) = ∅ by convention.

Under such assumption, J ∈ ∂kT , J ′ ∈ ∂k′T and dim(I) = m.

Case 1: k = 0, i.e. J is a singleton, say J = {t0}. If ν(t0) < σ2
T , then by (2.3.13),

it is trivial to show that E{Mu(J)Mu(J ′)} is super-exponentially small. Now we consider

the case ν(t0) = σ2
T . Due to (2.3.14), E{X(t0)X1(t0)} 6= 0 and hence by continuity, there

exists δ > 0 such that E{X(s)X1(s)} 6= 0 for all ‖s− t0‖ ≤ δ. It follows from (2.3.13) that

E{Mu(J)Mu(J ′)} is bounded from above by

∫
s∈J ′:‖s−t0‖>δ

ds

∫ ∞
u

dx

∫ ∞
u

dy E{|det∇2X|J ′(s)||X(t0) = x,X(s) = y,∇X|J ′(s) = 0}

× pX(t0),X(s),∇X|J ′(s)
(x, y, 0)

+

∫
s∈J ′:‖s−t0‖≤δ

ds

∫ ∞
u

dy E{|det∇2X|J ′(s)||X(s) = y,∇X|J ′(s) = 0}pX(s),∇X|J ′(s)
(y, 0)

:= I1 + I2.

Following the proof of Lemma 2.3.6 yields that I1 is super-exponentially small. We apply

Lemma 2.5.1 to obtain that there exists ε0 > 0 such that

sup
s∈J ′:‖s−t0‖≤δ

Var(X(s)|∇X|J ′(s)) ≤ sup
s∈J ′:‖s−t0‖≤δ

Var(X(s)|X1(s)) ≤ σ2
T − ε0.

Then I2 and hence E{Mu(J)Mu(J ′)} are super-exponentially small.
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Case 2: k ≥ 1. For all t ∈ I with ν(t) = σ2
T , by assumption (2.3.14), E{X(t)Xi(t)} 6= 0,

∀ i = m+ 1, . . . , k+ k′−m. Note that I is a compact set, by Lemma 2.5.1 and the uniform

continuity of conditional variance, there exist ε1, δ1 > 0 such that

sup
t∈B,s∈B′

Var(X(t)|Xm+1(t), . . . , Xk(t), Xk+1(s), . . . , Xk+k′−m(s)) ≤ σ2
T − ε1, (2.3.17)

where B = {t ∈ J : dist(t, I) ≤ δ1} and B′ = {s ∈ J ′ : dist(s, I) ≤ δ1}. It follows from

(2.3.9) that E{Mu(J)Mu(J ′)} is bounded by

∫ ∫
(J×J ′)\(B×B′)

dtds

∫ ∞
u

dx

∫ ∞
u

dy pX(t),X(s),∇X|J (t),∇X|J ′(s)
(x, y, 0, 0)

× E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,X(s) = y,∇X|J (t) = 0,∇X|J ′(s) = 0}

+

∫ ∫
B×B′

dtds

∫ ∞
u

dx pX(t)(x|∇X|J (t) = 0,∇X|J ′(s) = 0)p∇X|J (t),∇X|J ′(s)
(0, 0)

× E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0,∇X|J ′(s) = 0}

:= I3 + I4.

Note that

(J × J ′)\(B ×B′) =
(

(J\B)×B′
)⋃(

B × (J\B)
)⋃(

(J\B)× (J\B)
)
. (2.3.18)

Since each product set on the right hand side of (2.3.18) consists of two sets with positive

distance, following the proof of Lemma 2.3.6 yields that I3 is super-exponentially small.

For I4, taking into account (2.3.17), one has

sup
t∈B,s∈B′

Var
(
X(t)|∇X|J (t),∇X|J ′(s)

)
≤ σ2

T − ε1. (2.3.19)
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To estimate

p∇X|J (t),∇X|J ′(s)
(0, 0) = (2π)−(k+k′)/2(detCov(∇X|J (t),∇X|J ′(s)))

−1/2, (2.3.20)

we write the determinant on the right hand side of (2.3.20) as

detCov(Xm+1(t), . . . , Xk(t), Xk+1(s), . . . , Xk+k′−1(s)|X1(t), . . . , Xm(t), X1(s), . . . , Xm(s))

× detCov(X1(t), . . . , Xm(t), X1(s), . . . , Xm(s)),

(2.3.21)

where the first determinant in (2.3.21) is bounded away from zero due to (H3). By (H1), as

shown in Piterbarg (1996b), applying Taylor’s formula, we can write

∇X(s) = ∇X(t) +∇2X(t)(s− t)T + ‖s− t‖1+ηYt,s, (2.3.22)

where Yt,s = (Y 1
t,s, . . . , Y

N
t,s)T is a Gaussian vector field with bounded variance uniformly for

all t ∈ J , s ∈ J ′. Hence as ‖s− t‖ → 0, the second determinant in (2.3.21) becomes

detCov(X1(t), . . . , Xm(t), X1(t) + 〈∇X1(t), s− t〉+ ‖s− t‖1+ηY 1
t,s, . . . ,

Xm(t) + 〈∇Xm(t), s− t〉+ ‖s− t‖1+ηYmt,s)

= detCov(X1(t), . . . , Xm(t), 〈∇X1(t), s− t〉+ ‖s− t‖1+ηY 1
t,s, . . . ,

〈∇Xm(t), s− t〉+ ‖s− t‖1+ηYmt,s)

= ‖s− t‖2mdetCov(X1(t), . . . , Xm(t), 〈∇X1(t), et,s〉, . . . , 〈∇Xm(t), et,s〉)(1 + o(1)),

(2.3.23)

40



where et,s = (s− t)T /‖s− t‖ and due to (H3), the last determinant in (2.3.23) is bounded

away from zero uniformly for all t ∈ J and s ∈ J ′. It then follows from (2.3.21) and (2.3.23)

that

detCov(∇X|J (t),∇X|J ′(s)) ≥ C1‖s− t‖2m (2.3.24)

for some constant C1 > 0. Similarly to (2.3.10), there exist constants C2, N1 > 0 such that

sup
t∈J,s∈J ′

E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0,∇X|J ′(s) = 0}

≤ C2(1 + xN1).

(2.3.25)

Combining (2.3.19) with (2.3.20), (2.3.24) and (2.3.25), and noting that m < k′ implies

1/‖s − t‖m is integrable on J × J ′, we conclude that I4 and hence E{Mu(J)Mu(J ′)} are

finite and super-exponentially small. �

Theorem 2.3.8 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field with

stationary increments such that (H1), (H2) and (H3) are fulfilled. Then there exists some

constant α > 0 such that

P
{

sup
t∈T

X(t) ≥ u
}

=
N∑
k=0

∑
J∈∂kT

E{ME
u (J)}+ o(e

−αu2−u2/(2σ2
T )

)

= E{ϕ(Au)}+ o(e
−αu2−u2/(2σ2

T )
),

(2.3.26)

where E{ϕ(Au)} is formulated in Theorem 2.2.2.

It is worth mentioning here that the main idea for the proof of Theorem 2.3.8 comes

from Azäıs and Delmas (2002) (especially Theorem 4). Before showing the proof, we list the
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following two lemmas.

Lemma 2.3.9 Under (H2), there exists a constant α0 > 0 such that

〈e, (Λ− Λ(t))e〉 ≥ α0, ∀ t ∈ T, e ∈ SN−1.

Proof Let MN×N be the set of all N×N matrices. Define a mapping φ : RN×MN×N → R

by (ξ, A) 7→ 〈ξ, Aξ〉, then φ is continuous. Since Λ−Λ(t) is positive definite, φ(e,Λ−Λ(t)) > 0

for each t ∈ T and e ∈ SN−1. On the other hand, {(e,Λ − Λ(t)) : t ∈ T, e ∈ SN−1} is a

compact subset of RN ×MN×N and φ is continuous, completing the proof. �

Lemma 2.3.10 Let {ξ1(t) : t ∈ T1} and {ξ2(t) : t ∈ T2} be two Gaussian random fields.

Let

σ2
i (t) = Var(ξi(t)), σi = sup

t∈Ti
σi(t), σi = inf

t∈Ti
σi(t),

ρ(t, s) =
E{ξ1(t)ξ2(s)}
σ1(t)σ2(s)

, ρ = sup
t∈T1,s∈T2

ρ(t, s), ρ = inf
t∈T1,s∈T2

ρ(t, s),

and assume 0 < σi ≤ σi < ∞, where i = 1, 2. If 0 < ρ ≤ ρ < 1, then for any N1, N2 > 0,

there exists some α > 0 such that as u→∞,

sup
t∈T1,s∈T2

E{(1 + |ξ1(t)|N1 + |ξ2(s)|N2)1{ξ1(t)≥u,ξ2(s)<0}} = o(e−αu
2−u2/(2σ2

1)).

Similarly, if −1 < ρ ≤ ρ < 0, then

sup
t∈T1,s∈T2

E{(1 + |ξ1(t)|N1 + |ξ2(s)|N2)1{ξ1(t)≥u,ξ2(s)>0}} = o(e−αu
2−u2/(2σ2

1)).
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Proof We only prove the first case, since the second case follows from the first one. By

elementary computation on the joint density of ξ1(t) and ξ2(s), we obtain

sup
t∈T1,s∈T2

E{(1 + |ξ1(t)|N1 + |ξ2(s)|N2)1{ξ1(t)≥u,ξ2(s)<0}}

≤ 1

2πσ1σ2(1− ρ2)1/2

∫ ∞
u

exp

{
−

x2
1

2σ2
1

}
dx1∫ 0

−∞
(1 + |x1|N1 + |x2|N2) exp

{
− 1

2σ2
2(1− ρ2)

(
x2 −

σ2ρx1

σ1

)2}
dx2

= o

(
exp

{
− u2

2σ2
1

−
σ2

2ρ
2u2

2σ2
2(1− ρ2)σ2

1

+ εu2
})

,

as u→∞, for any ε > 0. �

Proof of Theorem 2.3.8 Note that the second equality in (2.3.26) follows from Theorem

2.2.2 and Lemma 2.3.3, and similarly to the proof in Theorem 2.3.7, we only need to show

that E{ME
u (J)ME

u (J ′)} is super-exponentially small when J and J ′ are neighboring. Let

I := J̄ ∩ J̄ ′ 6= ∅. We follow the assumptions in (2.3.16) and assume also that all elements in

ε(J) and ε(J ′) are 1, which implies E(J) = RN−k+ and E(J ′) = RN−k
′

+ .
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We first consider the case k ≥ 1. By the Kac-Rice metatheorem, E{Mu(J)Mu(J ′)} is

bounded from above by

∫
J
dt

∫
J ′
ds

∫ ∞
u

dx

∫ ∞
u

dy

∫ ∞
0

dzk+1 · · ·
∫ ∞

0
dzk+k′−m

∫ ∞
0

dwm+1 · · ·
∫ ∞

0
dwk

E{
∣∣det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,X(s) = y,∇X|J (t) = 0, Xk+1(t) = zk+1,

. . . , Xk+k′−m(t) = zk+k′−m,∇X|J ′(s) = 0, Xm+1(s) = wm+1, . . . , Xk(s) = wk}

× pt,s(x, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk)

:=

∫ ∫
J×J ′

A(t, s) dtds,

(2.3.27)

where pt,s(x, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk) is the density of

(X(t), X(s),∇X|J (t), Xk+1(t), . . . , Xk+k′−m(t),∇X|J ′(s), Xm+1(s), . . . , Xk(s))

evaluated at (x, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk).

Let {e1, e2, . . . , eN} be the standard orthonormal basis of RN . For t ∈ J and s ∈ J ′, let

et,s = (s− t)T /‖s− t‖ and let αi(t, s) = 〈ei, (Λ− Λ(t))et,s〉, then

(Λ− Λ(t))et,s =
N∑
i=1

〈ei, (Λ− Λ(t))et,s〉ei =
N∑
i=1

αi(t, s)ei. (2.3.28)

By Lemma 2.3.9, there exists some α0 > 0 such that

〈et,s, (Λ− Λ(t))et,s〉 ≥ α0 (2.3.29)
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for all t and s. Under the assumptions (2.3.16) and that all elements in ε(J) and ε(J ′) are

1, we have the following representation,

t = (t1, . . . , tm, tm+1, . . . , tk, bk+1, . . . , bk+k′−m, 0, . . . , 0),

s = (s1, . . . , sm, bm+1, . . . , bk, sk+1, . . . , sk+k′−m, 0, . . . , 0),

where ti ∈ (ai, bi) for all i ∈ σ(J) and sj ∈ (aj , bj) for all j ∈ σ(J ′). Therefore,

〈ei, et,s〉 ≥ 0, ∀ m+ 1 ≤ i ≤ k,

〈ei, et,s〉 ≤ 0, ∀ k + 1 ≤ i ≤ k + k′ −m,

〈ei, et,s〉 = 0, ∀ k + k′ −m < i ≤ N.

(2.3.30)

Let

Di = {(t, s) ∈ J × J ′ : αi(t, s) ≥ βi}, if m+ 1 ≤ i ≤ k,

Di = {(t, s) ∈ J × J ′ : αi(t, s) ≤ −βi}, if k + 1 ≤ i ≤ k + k′ −m,

D0 =

{
(t, s) ∈ J × J ′ :

m∑
i=1

αi(t, s)〈ei, et,s〉 ≥ β0

}
,

(2.3.31)

where β0, β1, . . . , βk+k′−m are positive constants such that β0+
∑k+k′−m
i=m+1 βi < α0. It follows

from (2.3.30) and (2.3.31) that, if (t, s) does not belong to any of D0, Dm, . . . , Dk+k′−m,

then by (2.3.28),

〈(Λ− Λ(t))et,s, et,s〉 =
N∑
i=1

αi(t, s)〈ei, et,s〉 ≤ β0 +
k+k′−m∑
i=m+1

βi < α0,
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which contradicts (2.3.29). Thus D0 ∪ ∪k+k′−m
i=m+1 Di is a covering of J × J ′, by (2.3.27),

E{ME
u (J)ME

u (J ′)} ≤
∫ ∫

D0

A(t, s) dtds+
k+k′−m∑
i=m+1

∫ ∫
Di

A(t, s) dtds.

We first show that
∫ ∫

D0
A(t, s) dtds is super-exponentially small. Similarly to the proof

of Theorem 2.3.7, applying (2.3.20), (2.3.24) and (2.3.25), we obtain

∫ ∫
D0

A(t, s) dtds

≤
∫ ∫

D0

dtds

∫ ∞
u

dx p∇X|J (t),∇X|J ′(s)
(0, 0)pX(t)(x|∇X|J (t) = 0,∇X|J ′(s) = 0)

× E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0,∇X|J ′(s) = 0}

≤ C ′1

∫ ∫
D0

dtds

∫ ∞
u

dx(1 + xN1)‖s− t‖−mpX(t)(x|∇X|J (t) = 0,∇X|J ′(s) = 0),

(2.3.32)

for some positive constants C ′1 and N1. Due to Lemma 2.3.6, we only need to consider the

case when ‖s− t‖ is small. It follows from Taylor’s formula (2.3.22) that as ‖s− t‖ → 0,

Var(X(t)|∇X|J (t),∇X|J ′(s)) ≤ Var(X(t)|X1(t), . . . , Xm(t), X1(s), . . . , Xm(s))

= Var(X(t)|X1(t), . . . , Xm(t), X1(t) + 〈∇X1(t), s− t〉+ ‖s− t‖1+ηY 1
t,s, . . . ,

Xm(t) + 〈∇Xm(t), s− t〉+ ‖s− t‖1+ηYmt,s)

= Var(X(t)|X1(t), . . . , Xm(t), 〈∇X1(t), et,s〉+ ‖s− t‖ηY 1
t,s, . . . ,

〈∇Xm(t), et,s〉+ ‖s− t‖ηYmt,s)

≤ Var(X(t)|〈∇X1(t), et,s〉+ ‖s− t‖ηY 1
t,s, . . . , 〈∇Xm(t), et,s〉+ ‖s− t‖ηYmt,s)

= Var(X(t)|〈∇X1(t), et,s〉, . . . , 〈∇Xm(t), et,s〉) + o(1).

(2.3.33)
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By Lemma 2.5.2, the eigenvalues of [Cov(〈∇X1(t), et,s〉, . . . , 〈∇Xm(t), et,s〉)]−1 are bounded

uniformly in t and s. Note that E{X(t)〈∇Xi(t), et,s〉} = −αi(t, s). Applying these facts and

Lemma 2.5.1 to the last line of (2.3.33), we see that there exist constants C2 > 0 and ε0 > 0

such that for ‖s− t‖ sufficiently small,

Var(X(t)|∇X|J (t),∇X|J ′(s)) ≤ σ2
T − C2

m∑
i=1

α2
i (t, s) + o(1) < σ2

T − ε0, (2.3.34)

where the last inequality is due to the fact that (t, s) ∈ D0 implies

m∑
i=1

α2
i (t, s) ≥

m∑
i=1

α2
i (t, s)|〈ei, et,s〉|

2 ≥ 1

m

( m∑
i=1

αi(t, s)〈et,s, ei〉
)2

≥
β2

0

m
.

Plugging (2.3.34) into (2.3.32) and noting that 1/‖s−t‖m is integrable on J×J ′, we conclude

that
∫ ∫

D0
A(t, s) dtds is finite and super-exponentially small.

Next we show that
∫ ∫

Di
A(t, s) dtds is super-exponentially small for i = m+ 1, . . . , k. It

follows from (2.3.27) that
∫ ∫

Di
A(t, s) dtds is bounded by

∫ ∫
Di

dtds

∫ ∞
u

dx

∫ ∞
0

dwi pX(t),∇X|J (t),Xi(s),∇X|J ′(s)
(x, 0, wi, 0)

× E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0, Xi(s) = wi,∇X|J ′(s) = 0}.

(2.3.35)

We can write

pX(t),Xi(s)
(x,wi|Xi(t) = 0) =

1

2πσ1(t)σ2(t, s)(1− ρ2(t, s))1/2

× exp

{
− 1

2(1− ρ2(t, s))

(
x2

σ2
1(t)

+
w2
i

σ2
2(t, s)

− 2ρ(t, s)xwi
σ1(t)σ2(t, s)

)}
,
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where

σ2
1(t) = Var(X(t)|Xi(t) = 0), ρ(t, s) =

E{X(t)Xi(s)|Xi(t) = 0}
σ1(t)σ2(t, s)

,

σ2
2(t, s) = Var(Xi(s)|Xi(t) = 0) =

detCov(Xi(s), Xi(t))

λii
,

and ρ2(t, s) < 1 due to (H3). Therefore,

pX(t),∇X|J (t),Xi(s),∇X|J ′(s)
(x, 0, wi, 0)

= p∇X|J ′(s),X1(t),...,Xi−1(t),Xi+1(t),...,Xk(t)(0|X(t) = x,Xi(s) = wi, Xi(t) = 0)

× pX(t),Xi(s)
(x,wi|Xi(t) = 0)pXi(t)

(0)

≤ C3 exp

{
− 1

2(1− ρ2(t, s))

(
x2

σ2
1(t)

+
w2
i

σ2
2(t, s)

− 2ρ(t, s)xwi
σ1(t)σ2(t, s)

)}
× (detCov(X(t),∇X|J (t), Xi(s),∇X|J ′(s)))

−1/2

(2.3.36)

for some positive constant C3. Also, by similar arguments in the proof of Theorem 2.3.7,

there exist positive constants C4, C5, C6, C7, N2 and N3 such that

detCov(∇X|J (t), Xi(s),∇X|J ′(s)) ≥ C4‖s− t‖2(m+1), (2.3.37)

C5‖s− t‖2 ≤ σ2
2(t, s) ≤ C6‖s− t‖2, (2.3.38)
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and

E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0, Xi(s) = wi,∇X|J ′(s) = 0}

= E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0,

〈∇Xi(t), et,s〉 = wi/‖s− t‖+ o(1),∇X|J ′(s) = 0}

≤ C7(xN2 + (wi/‖s− t‖)N3 + 1).

(2.3.39)

Combining (2.3.35) with (2.3.36), (2.3.37) and (2.3.39), and making change of variable w =

wi/‖s− t‖, we obtain that for some positive constant C8,

∫ ∫
Di

A(t, s) dtds

≤ C8

∫ ∫
Di

dtds‖s− t‖−m−1
∫ ∞
u

dx

∫ ∞
0

dwi(x
N2 + (wi/‖s− t‖)N3 + 1)

× exp

{
− 1

2(1− ρ2(t, s))

(
x2

σ2
1(t)

+
w2
i

σ2
2(t, s)

− 2ρ(t, s)xwi
σ1(t)σ2(t, s)

)}
= C8

∫ ∫
Di

dtds‖s− t‖−m
∫ ∞
u

dx

∫ ∞
0

dw(xN2 + wN3 + 1)

× exp

{
− 1

2(1− ρ2(t, s))

(
x2

σ2
1(t)

+
w2

σ̃2
2(t, s)

− 2ρ(t, s)xw

σ1(t)σ̃2(t, s)

)}
,

(2.3.40)

where σ̃2(t, s) = σ2(t, s)/‖s− t‖ is bounded by (2.3.38). Applying Taylor’s formula (2.3.22)

to Xi(s) and noting that E{X(t)〈∇Xi(t), et,s〉} = −αi(t, s), we obtain

ρ(t, s) =
1

σ1(t)σ2(t, s)

(
E{X(t)Xi(s)} −

1

λii
E{X(t)Xi(t)}E{Xi(s)Xi(t)}

)
=

‖s− t‖
σ1(t)σ2(t, s)

(
− αi(t, s) + ‖s− t‖ηE{X(t)Y it,s}

− ‖s− t‖
η

λii
E{X(t)Xi(t)}E{Xi(t)Y it,s}

)
.

(2.3.41)
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By (2.3.38) and the fact that (t, s) ∈ Di implies αi(t, s) ≥ βi > 0 for i = m + 1, . . . , k,

we conclude that ρ(t, s) ≤ −δ0 for some δ0 > 0 uniformly for t ∈ J , s ∈ J ′ with ‖s − t‖

sufficiently small. Then applying Lemma 2.3.10 to (2.3.40) yields that
∫ ∫

Di
A(t, s) dtds is

super-exponentially small.

It is similar to prove that
∫ ∫

Di
A(t, s) dtds is super-exponentially small for i = k +

1, . . . , k + k′ −m. In fact, in such case,
∫ ∫

Di
A(t, s) dtds is bounded by

∫ ∫
Di

dtds

∫ ∞
u

dx

∫ ∞
0

dzi pX(t),∇X|J (t),Xi(t),∇X|J ′(s)
(x, 0, zi, 0)

× E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0, Xi(t) = zi,∇X|J ′(s) = 0}.

We can follow the proof in the previous stage by exchanging the positions of Xi(s) and Xi(t)

and replacing wi with zi. The details are omitted since the procedure is very similar.

If k = 0, then m = 0 and σ(J ′) = {1, . . . , k′}. Since J becomes a singleton, we may let

J = {t0}. By the Kac-Rice metatheorem, E{Mu(J)Mu(J ′)} is bounded by

∫
J ′
ds

∫ ∞
u

dx

∫ ∞
u

dy

∫ ∞
0

dz1 · · ·
∫ ∞

0
dzk′ pt0,s(x, y, z1, . . . , zk′ , 0)

× E{|det∇2X|J ′(s)||X(t0) = x,X(s) = y,X1(t0) = z1, . . . , Xk′(t0) = zk′ ,∇X|J ′(s) = 0}

:=

∫
J ′
Ã(t0, s) ds,

where pt0,s(x, y, z1, . . . , zk′ , 0) is the density of (X(t0), X(s), X1(t0), . . . , Xk′(t0),∇X|J ′(s))

evaluated at (x, y, z1, . . . , zk′ , 0). Similarly, J ′ could be covered by ∪k′i=1D̃i with D̃i = {s ∈
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J ′ : αi(t0, s) ≤ −β̃i} for some positive constants β̃i, 1 ≤ i ≤ k′. On the other hand,

∫
D̃i

Ã(t0, s) ds ≤
∫
D̃i

ds

∫ ∞
u

dx

∫ ∞
0

dzi pX(t0),Xi(t0),∇X|J ′(s)
(x, zi, 0)

× E{|det∇2X|J ′(s)||X(t0) = x,Xi(t0) = zi,∇X|J ′(s) = 0}.

By similar discussions, we obtain that E{ME
u (J)ME

u (J ′)} is super-exponentially small and

hence complete the proof. �

2.4 Further Remarks and Examples

Remark 2.4.1 (The case when T contains the origin). We now show that Theorem 2.3.7

and Theorem 2.3.8 still hold when T contains the origin. In such case, (H3) is actually

not satisfied since X(0) = 0 is degenerate. However, we may construct a small open cube

T0 containing 0 such that supt∈T0
σ2
t is sufficiently small, then according to the Borell-TIS

inequality, P{supt∈T0
X(t) ≥ u} is super-exponentially small. Let T̂ = T\T0, then

P
{

sup
t∈T̂

X(t) ≥ u
}
≤ P

{
sup
t∈T

X(t) ≥ u
}
≤ P

{
sup
t∈T̂

X(t) ≥ u
}

+ P
{

sup
t∈T0

X(t) ≥ u
}
. (2.4.1)

To estimate P{sup
t∈T̂ X(t) ≥ u}, similarly to the rectangle T , we decompose T̂ into several

faces by lower dimensions such that T̂ = ∪Nk=0∂kT̂ = ∪Nk=0 ∪L∈∂kT̂
L. Then we can get the

bounds similar to (2.3.3) with T replaced with T̂ and J replaced with L. Following the proof

of Theorem 2.3.7 yields

P
{

sup
t∈T̂

X(t) ≥ u
}

=
N∑
k=0

∑
L∈∂kT̂

E{Mu(L)}+ o(e
−αu2−u2/(2σ2

T )
).
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Due to the fact that supt∈T0
σ2
t is sufficiently small, E{Mu(L)} are super-exponentially small

for all faces L such that L ⊂ ∂kT̄0 with 0 ≤ k ≤ N − 1 (note that T̄0 is a closed rectangle).

The same reason yields that for 1 ≤ k ≤ N , L ∈ ∂kT̂ , J ∈ ∂kT such that L ⊂ J , the

difference between E{Mu(L)} and E{Mu(J)} is super-exponentially small. Hence we obtain

P
{

sup
t∈T̂

X(t) ≥ u
}

=
∑

{t}∈∂0T

Ψ
( u
σt

)
+

N∑
k=1

∑
J∈∂kT

1

(2π)(k+1)/2|ΛJ |1/2

×
∫
J

|ΛJ − ΛJ (t)|
θkt

Hk−1

( u
θt

)
e−u

2/(2θ2t ) dt+ o(e
−αu2−u2/(2σ2

T )
).

(2.4.2)

Here, by convention, if θt = 0, we regard e−u
2/(2θ2t ) as 0. Combining (2.4.1) with (2.4.2),

we conclude that Theorem 2.3.7 still holds when T contains the origin. The arguments for

Theorem 2.3.8 are similar.

Example 2.4.2 (Refinements of Theorem 2.3.7). Let Gaussian field X be as in Theorem

2.3.7. Suppose that ν(t0) = σ2
T for some t0 ∈ J ∈ ∂kT (k ≥ 0) and ν(t) < σ2

T for all t 6= t0.

(i). If k = 0, then, due to (2.3.14), supt∈T\{t0} θ
2
t ≤ σ2

T−ε0 for some ε0 > 0. This implies

that E{Mu(J ′)} are super-exponentially small for all faces J ′ other than {t0}. Therefore,

P
{

sup
t∈T

X(t) ≥ u
}

= Ψ
( u

σT

)
+ o(e

−u2/(2σ2
T )+αu2

), as u→∞. (2.4.3)

For example, let Y be a stationary Gaussian field with covariance ρ(t) = e−‖t‖
2

and define

X(t) = Y (t)−Y (0), then X is a smooth Gaussian field with stationary increments satisfying

conditions (H1)-(H3). Let T = [0, 1]N , then we can apply (2.4.3) to approximate the

excursion probability of X with t0 = (1, . . . , 1).
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(ii). If k ≥ 1, then similarly, E{Mu(J ′)} are super-exponentially small for all faces

J ′ 6= J . It follows from Theorem 2.3.7 that

P
{

sup
t∈T

X(t) ≥ u
}

=
uk−1

(2π)(k+1)/2|ΛJ |1/2

∫
J

|ΛJ − ΛJ (t)|
θ2k−1
t

e−u
2/(2θ2t ) dt(1 + o(1)).

Let τ(t) = θ2
t , then ∀i ∈ σ(J), τi(t0) = 0, since t0 is a local maximum point of τ restricted

on J . Assume additionally that the Hessian matrix

ΘJ (t0) := (τij(t0))i,j∈σ(J) (2.4.4)

is negative definite, then the Hessian matrix of 1/(2θ2
t ) at t0 restricted on J ,

Θ̃J (t0) = − 1

2τ2(t0)
(τij(t0))i,j∈σ(J) = − 1

2σ4
T

ΘJ (t0),

is positive definite. Let g(t) = |ΛJ − ΛJ (t)|/θ2k−1
t and h(t) = 1/(2θ2

t ), applying Lemma

2.5.3 with T replaced with J gives us that as u→∞,

P
{

sup
t∈T

X(t) ≥ u
}

=
uk−1|ΛJ − ΛJ (t0)|

(2π)(k+1)/2|ΛJ |1/2θ2k−1
t0

(2π)k/2

uk|Θ̃J (t0)|1/2
e
−u2/(2θ2t0

)
(1 + o(1))

=
2k/2|ΛJ − ΛJ (t0)|
|ΛJ |1/2| −ΘJ (t0)|1/2

Ψ
( u

σT

)
(1 + o(1)).

(2.4.5)

Example 2.4.2 (Continued: the cosine field). We consider the cosine random field on R2:

Z(t) =
1√
2

2∑
i=1

(ξi cos ti + ξ′i sin ti), t = (t1, t2) ∈ R2,
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where ξ1, ξ′1, ξ2, ξ′2 are independent, standard Gaussian variables. Z is a well-known centered,

unit-variance and smooth stationary Gaussian field [cf. Adler and Taylor (2007, p.382)].

Note that Z is periodic and Z(t) = −Z11(t)−Z22(t). To avoid such degeneracy, let X(t) =

ξ0 +Z(t)−Z(0), where t ∈ T ⊂ [0, 2π)2 and ξ0 is a standard Gaussian variable independent

of Z. Then X is a centered and smooth Gaussian field with stationary increments. The

variance and covariance of X are given respectively by

ν(t) = σ2
t = 3− cos t1 − cos t2,

C(t, s) = 2 +
1

2

2∑
i=1

[cos(ti − si)− cos ti − cos si].

(2.4.6)

Therefore, X satisfies conditions (H1), (H2) and (H3) [though X12(t) ≡ 0, it can be shown

that this does not affect the validity of Theorems 2.3.7 and 2.3.8]. Taking the partial deriva-

tives of C gives us that

E{X(t)∇X(t)} =
1

2
(sin t1, sin t2)T , Λ = Cov(∇X(t)) =

1

2
I2,

Λ− Λ(t) = −E{X(t)∇2X(t)} =
1

2
[I2 − diag(cos t1, cos t2)],

(2.4.7)

where I2 is the 2× 2 unit matrix and diag denotes the diagonal matrix.

(i). Let T = [0, π/2]2. Then by (2.4.6), ν attains its maximum 3 only at the cor-

ner (π/2, π/2), where both partial derivatives of ν are positive. Applying the result (i) in

Example 2.4.2, we obtain P{supt∈T X(t) ≥ u} = Ψ(u/
√

3)(1 + o(e−αu
2
)).

(ii). Let T = [0, 3π/2] × [0, π/2]. Then ν attains its maximum 4 only at the boundary

point t∗ = (π, π/2), where ν2(t∗) > 0 so that the condition (2.3.14) is satisfied. In this case,

t∗ ∈ J = (0, 3π/2)×{π/2}. By (2.4.7), we obtain ΛJ = 1
2 and ΛJ −ΛJ (t∗) = 1

2(1−cos t∗1) =
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1. On the other hand, for t ∈ J , by Lemma 2.5.1 and (2.4.7),

τ(t) = θ2
t = Var(X(t)|X1(t)) = 3− cos t1 − cos t2 −

1

2
sin2 t1, (2.4.8)

therefore ΘJ (t∗) = τ11(t∗) = −2. Plugging these into (2.4.5) with k = 1 gives us that

P{supt∈T X(t) ≥ u} =
√

2Ψ(u/2)(1 + o(1)).

(iii). Let T = [0, 3π/2]2. Then ν attains its maximum 5 only at the interior point

t∗ = (π, π). In this case, t∗ ∈ J = (0, 3π/2)2. By (2.4.7), we obtain ΛJ = 1
2I2 and

ΛJ − ΛJ (t∗) = I2. On the other hand, for t ∈ J , by Lemma 2.5.1 and (2.4.7),

τ(t) = θ2
t = Var(X(t)|X1(t), X2(t)) = 3− cos t1 − cos t2 −

1

2
sin2 t1 −

1

2
sin2 t2, (2.4.9)

therefore ΘJ (t∗) = (τij(t
∗))i,j=1,2 = −2I2. Plugging these into (2.4.5) with k = 2 gives us

that P{supt∈T X(t) ≥ u} = 2Ψ(u/
√

5)(1 + o(1)).

Example 2.4.3 (Refinements of Theorem 2.3.8). Let X be a Gaussian field as in Theorem

2.3.8. Suppose t0 ∈ J ∈ ∂kT is the only point in T such that ν(t0) = σ2
T . Assume

σ(J) = {1, . . . , k}, all elements in ε(J) are 1, νk′(t0) = 0 for all k + 1 ≤ k′ ≤ N . Then by

Theorem 2.3.8,

P
{

sup
t∈T

X(t) ≥ u
}

= E{ME
u (J)}+

N∑
k′=k+1

∑
J ′∈∂k′T,J̄

′∩J̄ 6=∅

E{ME
u (J ′)}+ o(e

−αu2−u2/(2σ2
T )

).

(2.4.10)
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Lemma 2.3.3 indicates E{ME
u (J)} = (−1)kE{

∑k
i=0(−1)iµi(J)}(1 + o(e−αx

2
)), therefore

E{ME
u (J)} = (−1)k

∫
J
p∇X|J (t)(0)dtE{det∇2X|J (t)1

{(Xk+1(t),...,XN (t))∈RN−k+ }

× 1{X(t)≥u}|∇X|J (t) = 0}(1 + o(e−αx
2
))

=

∫ ∞
u

dx

∫
J
dt

(−1)ke−x
2/(2θ2t )

(2π)(k+1)/2|ΛJ |1/2θt
E{det∇2X|J (t)1

{(Xk+1(t),...,XN (t))∈RN−k+ }

|X(t) = x,∇X|J (t) = 0}(1 + o(e−αu
2
))

:=

∫ ∞
u

AJ (x)dx(1 + o(e−αu
2
)),

(2.4.11)

and similarly,

E{ME
u (J ′)} =

∫ ∞
u

dx

∫
J ′
dt

(−1)k
′
e−x

2/(2θ2t )

(2π)(k′+1)/2|ΛJ ′|1/2θt
E{det∇2X|J ′(t)

× 1
{(X

J ′1
(t),...,X

J ′
N−k′

(t))∈RN−k
′

+ }
|X(t) = x,∇X|J ′(t) = 0}(1 + o(e−αu

2
)).

(i). First we consider the case k ≥ 1. We shall follow the notations τ(t), ΘJ (t) and

Θ̃J (t) in Example 2.4.2. Let h(t) = 1/(2θ2
t ) and

gx(t) =
(−1)k

(2π)(k+1)/2|ΛJ |1/2θt
E{det∇2X|J (t)1

{(Xk+1(t),...,XN (t))∈RN−k+ }

|X(t) = x,∇X|J (t) = 0}.

Note that supt∈T |gx(t)| = o(xN1) for some N1 > 0 as x→∞, which implies that the growth

of gx(t) can be dominated by the exponential decay e−x
2h(t), hence both Lemma 2.5.3 and

2.5.4 are still applicable. Applying Lemma 2.5.3 with T replaced by J and u replaced by x2,
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we obtain that as x→∞,

AJ (x) =
(2π)k/2

xk(detΘ̃J (t0))1/2
gx(t0)e

−x2/(2σ2
T )

(1 + o(1)). (2.4.12)

On the other hand, it follows from (2.2.17) that

gx(t) =
1

(2π)(k+1)/2|ΛJ |1/2θt

∫
· · ·
∫
RN−k+

dyk+1 · · · dyN

× |ΛJ − ΛJ (t)|
γkt

Hk

(
x

γt
+ γtCk+1(t)yk+1 + · · ·+ γtCN (t)yN

)
× pXk+1(t),...,XN (t)(yk+1, . . . , yN |X(t) = x,∇X|J (t) = 0).

Note that X(t0) and ∇X(t0) are independent, and Cj(t0) = 0 for all 1 ≤ j ≤ N . Therefore,

gx(t0) =
|ΛJ − ΛJ (t0)|

(2π)(k+1)/2|ΛJ |1/2σk+1
T

Hk

( x

σT

)
× P{(Xk+1(t0), . . . , XN (t0)) ∈ RN−k+ |∇X|J (t0) = 0}.

Plugging this and (2.4.12) into (2.4.11), we obtain

E{ME
u (J)} =

2k/2|ΛJ − ΛJ (t0)|
|ΛJ |1/2| −ΘJ (t0)|1/2

Ψ
( u

σT

)
× P{(Xk+1(t0), . . . , XN (t0)) ∈ RN−k+ |∇X|J (t0) = 0}(1 + o(1)).

(2.4.13)

For J ′ ∈ ∂k′T with J̄ ′ ∩ J̄ 6= ∅, similarly, applying Lemma 2.5.4 with T replaced by J ′, we
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obtain that

E{ME
u (J ′)} =

2k
′/2|ΛJ ′ − ΛJ ′(t0)|

|ΛJ ′|1/2| −ΘJ ′(t0)|1/2
Ψ
( u

σT

)
P{ZJ ′(t0) ∈ Rk

′−k
− }

× P{(XJ ′1
(t0), . . . , XJ ′

N−k′
(t0)) ∈ RN−k

′
+ |∇X|J ′(t0) = 0}(1 + o(1)),

(2.4.14)

where ZJ ′(t0) is a centered (k′ − k)-dimensional Gaussian vector with covariance matrix

−(τij)i,j∈σ(J ′)\σ(J). Plugging (2.4.13) and (2.4.14) into (2.4.10), we obtain the asymptotic

result.

(ii). k = 0, say J = {t0}. Note that X(t0) and ∇X(t0) are independent, therefore

E{ME
u (J)} = Ψ

( u

σT

)
P{∇X(t0) ∈ RN+ }. (2.4.15)

For J ′ ∈ ∂k′T with J̄ ′ ∩ J̄ 6= ∅, then E{ME
u (J ′)} is given by (2.4.14) with k = 0. Plug-

ging (2.4.15) and (2.4.14) into (2.4.10), we obtain the asymptotic formula for the excursion

probability.

Example 2.4.3 (Continued: the cosine field). We consider the Gaussian field X defined

in the continued part of Example 2.4.2.

(i). Let T = [0, π]2. Then ν attains its maximum 5 only at the corner t∗ = (π, π), where

∇ν(t∗) = 0 so that the condition (2.3.14) is not satisfied. Instead, we will use the result

(ii) in Example 2.4.3 with J = {t∗} and k = 0. Let J ′ = (0, π) × {π}, J ′′ = {π} × (0, π).

Combining the results in the continued part of Example 2.4.2 with (2.4.15) and (2.4.14), and
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noting that Λ = 1
2I2 implies X1(t) and X2(t) are independent for all t, we obtain

E{ME
u (J)} =

1

4
Ψ(u/

√
5), E{ME

u (∂2T )} =
1

2
Ψ(u/

√
5)(1 + o(1)),

E{ME
u (J ′)} = E{ME

u (J ′′)} =

√
2

4
Ψ(u/

√
5)(1 + o(1)).

Summing these up, we have P{supt∈T X(t) ≥ u} = [(3 + 2
√

2)/4]Ψ(u/
√

5)(1 + o(1)).

(ii). Let T = [0, 3π/2] × [0, π]. Then ν attains its maximum 5 only at the boundary

point t∗ = (π, π), where ν2(t∗) = 0. Applying the result (i) in Example 2.4.3 with J =

(0, 3π/2)× {π} and k = 1, we obtain

E{ME
u (J)} =

√
2

2
Ψ(u/

√
5), E{ME

u (∂2T )} = Ψ(u/
√

5)(1 + o(1)),

which implies P{supt∈T X(t) ≥ u} = [(2 +
√

2)/2]Ψ(u/
√

5)(1 + o(1)).

Remark 2.4.4 Note that we only provide the first-order approximation for the examples

in this section. However, as shown in the theory of the approximations of integrals (see

e.g. Wong (2001)), the integrals in (2.3.15) and (2.3.26) can be expanded with more terms

once the covariance function of the Gaussian field is smooth enough. Hence for the exam-

ples above, higher-order approximation is available. Since the procedure is similar and the

computation is tedious, we omit such arguments here.

2.5 Some Auxiliary Facts

The following lemma is well-known and is quoted here for reader’s convenience.

Lemma 2.5.1 Let Y and Z be two Gaussian random vectors of dimension p and q, respec-

tively. Then Y |Z = z is still a p-dimensional Gaussian random vector having the following
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mean and covariance:

E{Y |Z = z} = EY + E{(Y − EY )(Z − EZ)T }[Cov(Z)]−1(z − EZ),

Cov(Y |Z = z) = Cov(Y )− E{(Y − EY )(Z − EZ)T }[Cov(Z)]−1E{(Z − EZ)(Y − EY )T }.

In particular, if p = q = 1 and EY = EZ = 0, then

E{Y |Z = z} =
zE(Y Z)

Var(Z)
, Var(Y |Z = z) = Var(Y )− (E(Y Z))2

Var(Z)
.

Using similar arguments in the proof of Lemma 2.3.9, we can obtain the following result.

Lemma 2.5.2 Let {A(t) = (aij(t))1≤i,j≤N : t ∈ T} be a family of positive definite matrices

such that all elements aij(·) are continuous. Denote by x and x the infimum and supremum

of the eigenvalues of A(t) over t ∈ T respectively, then 0 < x ≤ x <∞.

The following two formulas state the results on the Laplace method approximation.

Lemma 2.5.3 can be found in many books on the approximations of integrals, here we refer

to Wong (2001). Lemma 2.5.4 can be derived by following similar arguments in the proof of

Laplace method for the case of boundary point in Wong (2001).

Lemma 2.5.3 (Laplace method for interior point). Let t0 be an interior point of T . Suppose

the following conditions hold: (i) g(t) ∈ C(T ) and g(t0) 6= 0; (ii) h(t) ∈ C2(T ) and attains

its unique minimum at t0; and (iii) ∇2h(t0) is positive definite. Then as u→∞,

∫
T
g(t)e−uh(t)dt =

(2π)N/2

uN/2(det∇2h(t0))1/2
g(t0)e−uh(t0)(1 + o(1)).

Lemma 2.5.4 (Laplace method for boundary point). Let t0 ∈ J ∈ ∂kT with 0 ≤ k ≤ N−1.

Suppose that conditions (i), (ii) and (iii) in Lemma 2.5.3 hold, and additionally ∇h(t0) = 0.
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Then as u→∞,

∫
T
g(t)e−uh(t)dt =

(2π)N/2P{ZJ (t0) ∈ (−E(J))}
uN/2(det∇2h(t0))1/2

g(t0)e−uh(t0)(1 + o(1)),

where ZJ (t0) is a centered (N − k)-dimensional Gaussian vector with covariance matrix

(hij(t0))J1≤i,j≤JN−k , −E(J) = {x ∈ RN : −x ∈ E(J)}, and the definitions of J1, . . . , JN−k

and E(J) are in (2.2.4).
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Chapter 3

Smooth Gaussian Random Fields with

Non-constant Variances

3.1 Gaussian Fields on Rectangles

Let {X(t) : t ∈ RN} be a smooth centered Gaussian random field with non-constant variance

and let T =
∏N
i=1[ai, bi] be a closed rectangle in RN . In this Chapter, we study the excursion

probability of X over T .

Let ν(t) := σ2
t = Var(X(t)) and assume supt∈T ν(t) = 1. A matrix is called negative

semidefinite if all of its eigenvalues are nonpositive. In addition to conditions (H1) and (H3)

in the previous chapter, we will make use of the following condition.

(H4). ∀t ∈ J ∈ ∂kT such that ν(t) = 1 and 0 ≤ k ≤ N − 2, (E{X(t)Xij(t)})i,j∈ζ(t) is

negative definite, where ζ(t) = {n : νn(t) = 0, 1 ≤ n ≤ N}.

Proposition 3.1.1 Let X(·) ∈ C2(RN ) a.s. If (νij(t))i,j∈ζ(t) is negative semidefinite for

each t ∈ J ∈ ∂kT such that ν(t) = 1 and 0 ≤ k ≤ N − 2, then (H4) holds.

Proof Since 1
2νij(t) = E{X(t)Xij(t)}+ E{Xi(t)Xj(t)},

(E{X(t)Xij(t)})i,j∈ζ(t) =
1

2
(νij(t))i,j∈ζ(t) − (E{Xi(t)Xj(t)})i,j∈ζ(t). (3.1.1)
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But (νij(t))i,j∈ζ(t) is negative semidefinite and (E{Xi(t)Xj(t)})i,j∈ζ(t) is positive definite,

it follows that (E{X(t)Xij(t)})i,j∈ζ(t) is negative definite and hence (H4) holds. �

Remark 3.1.2 In (H4), ν(t) = 1 implies νn(t) = 0 for all n ∈ σ(J) and thus ζ(t) ⊃ σ(J).

Additionally, we only consider t ∈ J ∈ ∂kT with 0 ≤ k ≤ N − 2, this is because for

N − 1 ≤ k ≤ N , (E{X(t)Xij(t)})i,j∈ζ(t) is automatically negative definite due to ν(t) = 1,

as shown below.

(i). If k = N , then t becomes a maximum point of ν in the interior of T , and ζ(t) =

σ(J) = {1, · · · , N}, hence (νij(t))i,j∈ζ(t) is always negative semidefinite. By (3.1.1), we see

that (E{X(t)Xij(t)})i,j∈ζ(t) is negative definite.

(ii). If k = N − 1, we distinguish two cases. If ζ(t) = σ(J), then (E{X(t)Xij(t)})i,j∈ζ(t)

is negative by the same arguments in the previous step. If ζ(t) = {1, · · · , N}, it follows from

Taylor’s formula that

ν(s) = ν(t) +∇ν(t)(s− t)T + (s− t)∇2ν(t)(s− t)T + o(‖s− t‖2)

= ν(t) + (s− t)∇2ν(t)(s− t)T + o(‖s− t‖2),

(3.1.2)

for all s ∈ T such that ‖s − t‖ is small enough. Since t ∈ J ∈ ∂N−1T , {± s−t
‖s−t‖ : s ∈

T} contains all the directions e ∈ SN−1. Note that ν(t) = 1, ∇2ν(t) does not have

any positive eigenvalue and hence (νij(t))i,j∈ζ(t) = ∇2ν(t) is negative semidefinite, then

(E{X(t)Xij(t)})i,j∈ζ(t) is negative by (3.1.1).

If D is a subset (not necessary open) of J ∈ ∂kT , we define

ME
u (D) = #{t ∈ D\∂D : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = k,

ε∗jXj(t) > 0 for all j /∈ σ(J)}.
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For t ∈ J ∈ ∂kT , let

Λ(t) = (E{Xi(t)Xj(t)})1≤i,j≤N , ΛJ (t) = (E{Xi(t)Xj(t)})i,j∈σ(J),

Σ(t) = (E{X(t)Xij(t)})1≤i,j≤N , ΣJ (t) = (E{X(t)Xij(t)})i,j∈σ(J),

{1, · · · , N}\σ(J) = {J1, · · · , JN−k},

E(J) = {(tJ1
, · · · , tJN−k) ∈ RN−k : tjε

∗
j ≥ 0, j = J1, · · · , JN−k}.

(3.1.3)

Let Cj(t) be the (1, j + 1) entry of (Cov(X(t),∇X(t)))−1, i.e. Cj(t) =
M1,j+1

detCov(X(t),∇X(t))
,

where M1,j+1 is the cofactor of the (1, j+1) element, E{X(t)Xj(t)}, in the covariance matrix

Cov(X(t),∇X(t)).

Note that the notations Λ(t) and ΛJ (t) are different from those defined in Chapter 2.

The result Lemma 3.1.3 below follows immediately from similar argumentss in the proof

of Proposition 3.1.1.

Lemma 3.1.3 If t0 ∈ J ∈ ∂kT satisfies ν(t0) = 1, where k ≥ 1, then E{X(t0)Xi(t0)} = 0

for all i ∈ σ(J) and ΣJ (t0) is negative definite.

Corollary 3.1.4 Let {X(t) : t ∈ RN} be a Gaussian random field satisfying (H1), (H3)

and (H4), then there exists some constant α > 0 such that

N∑
k=0

∑
J∈∂kT

E{ME
u (J)(ME

u (J)− 1)} = o(e−αu
2−u2/2).

Proof Due to Lemma 2.3.4, it suffices to show that β2
J < 1 for each J ∈ ∂kT , which is

equivalent to Var(X(t)|∇X|J (t),∇2X|J (t)e) < 1 for all t ∈ J̄ = J ∪ ∂J and e ∈ Sk−1 by

continuity.
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(i). Suppose Var(X(t0)|∇X|J (t0),∇2X|J (t0)e) = 1 for some t0 ∈ J , then

1 = Var(X(t0)|∇X|J (t0),∇2X|J (t0)e) ≤ Var(X(t0)|∇2X|J (t0)e) ≤ Var(X(t0)) ≤ 1.

Note that

Var(X(t0)|∇2X|J (t0)e) = Var(X(t0))

⇔ E{X(t0)(∇2X|J (t0)e)} = 0

⇔ ΣJ (t0)e = 0.

Since t0 is a maximum point, by Lemma 3.1.3, ΣJ (t0) is negative definite and hence

ΣJ (t0)e 6= 0 for all e ∈ Sk−1, which is a contradiction.

(ii). Suppose Var(X(t1)|∇X|J (t1),∇2X|J (t1)e) = 1 for some t1 ∈ ∂J . It then follows

from similar arguments in step (i) that Var(X(t1)|∇X|J (t1)) = 1 and hence νi(t1) = 0 for

all i ∈ σ(J), which implies (E{X(t1)Xij(t1)})i,j∈σ(J) is negative definite by (H4). Thus

there will be a contradiction as in step (i), completing the proof. �

Lemma 3.1.5 Let {X(t) : t ∈ RN} be a Gaussian random field satisfying (H1), (H3) and

(H4). Then there exists some constant α > 0 such that as u→∞,

N∑
k=0

∑
J∈∂kT

E{ME
u (J)} = E{ϕ(Au)}+ o(e−αu

2−u2/2). (3.1.4)

Proof Due to (2.2.1), we only need to show that for each k ∈ {0, 1, . . . , N} and J ∈ ∂kT ,

E{ME
u (J)} = (−1)k

k∑
i=0

(−1)iE{µi(J)}+ o(e−αu
2−u2/2). (3.1.5)
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Without loss of generality, let σ(J) = {1, · · · , k} and assume all elements in ε(J) are 1. Let

O(J̄) = {t ∈ J : ν(t) = 1} ∪ {t ∈ ∂J : ν(t) = 1, νi(t) = 0,∀1 ≤ i ≤ k}.

Our aim is to find an open neighborhood of O(J̄) restricted on J , say Uδ(J) = {t ∈ J :

d(t, O(J̄)) < δ}, such that as u→∞,

E{ME
u (J)} = E{ME

u (Uδ(J))}+ o(e−αu
2−u2/2)

= (−1)k
k∑
i=0

(−1)iE{µi(Uδ(J))}+ o(e−αu
2−u2/2)

= (−1)k
k∑
i=0

(−1)iE{µi(J)}+ o(e−αu
2−u2/2).

(3.1.6)

For n = k + 1, . . . , N , let

On(J̄) = {t ∈ J : ν(t) = 1, νn(t) = 0} ∪ {t ∈ ∂J : ν(t) = 1, νn(t) = 0, νi(t) = 0,∀1 ≤ i ≤ k}.

Firstly, we consider the subset U1(J̄) = ∩Nn=k+1On(J̄) and define its open neighborhood in

J , U1
δ1

(J) = {t ∈ J : d(t, U1(J̄)) < δ1}, where δ1 is a small positive number to be specified.

Then, by the Kac-Rice metatheorem, E{ME
u (U1

δ1
(J))} becomes

∫
U1
δ1

(J)

(−1)k

(2π)k/2(detΛJ (t))1/2
dt

∫ ∞
u

∫
RN−k+

E{det∇2X|J (t)1{∇2X|J (t)∈Dk}
|

|X(t) = x,∇X|J (t) = 0, Xk+1(t) = yk+1, . . . , XN (t) = yN}

× pX(t),Xk+1(t),...,XN (t)(x, yk+1, . . . , yN |∇X|J (t) = 0) dxdyk+1 · · · dyN ,

(3.1.7)

where Dk is the collection of all k × k matrices with k negative eigenvalues.
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Due to (H4) and continuity, we can choose δ1 small enough such that ΣJ (t) are neg-

ative definite for all t ∈ U1
δ1

(J). Write ∇2X|J (t) = Q−1
t,JQt,J∇

2X|J (t)Qt,JQ
−1
t,J , where

Qt,J (−ΣJ (t))Qt,J = Ik. Let alij(t) = E{Xl(t)(Qt,J∇2X|J (t)Qt,J )ij} for l = 1, · · · , N , then

E{(Qt,J∇2X|J (t)Qt,J )ij |X(t) = x,∇X|J (t) = 0, Xk+1(t) = yk+1, · · · , XN (t) = yN}

= (E{X(t)(Qt,J∇2X|J (t)Qt,J )ij}, a1
ij(t), · · · , a

N
ij (t))(Cov(X(t),∇X(t)))−1

· (x, 0, · · · , 0, yk+1, · · · , yN )T

= (−δij , a1
ij(t), · · · , a

N
ij (t))(Cov(X(t),∇X(t)))−1(x, 0, · · · , 0, yk+1, · · · , yN )T .

Make change of variables W (t) = (Wij(t))1≤i,j≤k, where

Wij(t) = (Qt,J∇2X|J (t)Qt,J )ij −
(
− x

γ2
t

δij +
N∑
l=1

alij(t)Cl(t)x

)
,

i.e.,

Qt,J∇2X|J (t)Qt,J = W (t)− x

γ2
t

Ik + x

( N∑
l=1

alij(t)Cl(t)

)
1≤i,j≤k

= W (t)− xB(t),

where B(t) = 1
γ2
t
Ik − (

∑N
l=1 a

l
ij(t)Cl(t))1≤i,j≤k. Denote the density of

((Wij(t))1≤i≤j≤k|X(t) = x,∇X|J (t) = 0, Xk+1(t) = yk+1, · · · , XN (t) = yN )

by gt(w), w = (wij : 1 ≤ i, j ≤ k) ∈ Rk(k+1)/2, then gt(w) is independent of x. Let (wij) be
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the abbreviation of the k × k symmetric matrix (wij)1≤i≤j≤k, then

E{det∇2X|J (t)1Dk(∇2X|J (t))|X(t) = x,∇X|J (t) = 0, Xk+1(t) = yk+1, · · · , XN (t) = yN}

= det(−ΣJ (t))E{det(Qt,J∇2X|J (t)Qt,J )1{Qt,J∇2X|J (t)Qt,J∈Dk}
|

|X(t) = x,∇X|J (t) = 0, Xk+1(t) = yk+1, · · · , XN (t) = yN}

= det(−ΣJ (t))

∫
(wij):(wij)−xB(t)∈Dk

det((wij)− xB(t))gt(w) dw.

Since νn(t) = 0 for all t ∈ U1(J̄) and n = k+1, · · · , N , we can find δ1 small enough such that

Cl(t) are close to 0 for all l = 1, · · · , N and t ∈ U1
δ1

(J). Together with the fact {γ2
t : t ∈ J}

is bounded, there exists a constant c1 > 0 such that

(wij)− xB(t) ∈ Dk, ∀‖(wij)‖ <
x

c1
.

It then follows from similar arguments in Lemma 2.3.2 and Lemma 2.3.3 that

E{ME
u (U1

δ1
(J))} = (−1)k

k∑
i=0

(−1)iE{µi(U1
δ1

(J))}+ o(e−αu
2−u2/2).

Next, we consider the subset U2(J̄) = (∩N−1
n=k+1On(J̄)) \U1

δ1
(J), and define its neighbor-

hood U2
δ2

(J) = {t ∈ J : d(t, U2(J̄)) < δ2} \ U1
δ1

(J), where δ2 is a small positive number to
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be specified. Then we can write E{ME
u (U2

δ2
(J))} as

∫
U2
δ2

(J)
p∇X|J (t)(0) dtE{|det∇2X|J (t)|1{∇2X|J (t)∈Dk}

1{X(t)≥u}

× 1{Xk+1(t)>0,...,XN−1(t)>0}|∇X|J (t) = 0}

−
∫
U2
δ2

(J)
p∇X|J (t)(0) dtE{|det∇2X|J (t)|1{∇2X|J (t)∈Dk}

1{X(t)≥u}

× 1{Xk+1(t)>0,...,XN−1(t)>0,XN (t)≤0}|∇X|J (t) = 0}.

(3.1.8)

The second term in (3.1.8) is bounded by

∫
U2
δ2

(J)
dt

∫ ∞
u

dx

∫ 0

−∞
E{|det∇2X|J (t)||X(t) = x,XN (t) = yN ,∇X|J (t) = 0}

× pX(t),XN (t),∇X|J (t)(x, yN , 0, · · · , 0)dyN .

(3.1.9)

Note that the conditional expectation in (3.1.9) can be bounded by c2(|x|N1 + |yN |N2) when

u is large, for some positive constants c2, N1 and N2; and

pX(t),XN (t),∇X|J (t)(x, yN , 0, · · · , 0)

= p∇X|J (t)(0, · · · , 0|X(t) = x,XN (t) = yN )pX(t),XN (t)(x, yN )

≤ c3pX(t),XN (t(x, yN )

for some positive constant c3. On the other hand, U2(J̄) is a compact set and for all

t ∈ U2(J̄), νN (t) 6= 0 which implies νN (t) > 0 due to ν(t) = 1, thus we can choose δ2

sufficiently small such that E{X(t)XN (t)} > δ0 for all t ∈ U2
δ2

(J) and some δ0 > 0. Hence
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(3.1.9) is super-exponentially small by Lemma 2.3.10. Similar arguments give

(−1)k
k∑
i=0

(−1)iE{µi(U2
δ2

(J))}

= (−1)k
∫
U2
δ2

(J)
p∇X|J (t)(0) dtE{det∇2X|J (t)1{X(t)≥u}

× 1{Xk+1(t)>0,...,XN−1(t)>0}|∇X|J (t) = 0}+ o(e−αu
2−u2/2).

Combining this with (3.1.8), and following the same arguments to simplify E{ME
u (U1

δ1
(J))},

we obtain

E{ME
u (U2

δ2
(J))} = (−1)k

k∑
i=0

(−1)iE{µi(U2
δ2

(J))}+ o(e−αu
2−u2/2).

Continue this procedure at most finite many times, and take the union of those disjoint

neighborhoods (U1
δ1

(J), U2
δ2

(J), . . . ), we can find Uδ(J) = {t ∈ J : d(t, O(J̄)) < δ} inside

the union for some δ > 0 such that the second equality in (3.1.6) holds. On the other hand,

By the Kac-Rice metatheorem,

E{ME
u (J)} − E{ME

u (Uδ(J))} = E{ME
u (J \ Uδ(J))}

≤ 1

(2π)k/2

∫
J\Uδ(J)

1

(detΛJ (t))1/2
dt

∫ ∞
u

pX(t)(x|∇X|J (t) = 0)

× E{|det∇2X|J (t)||X(t) = x,∇X|J (t) = 0} dx.

(3.1.10)

But, by the definition of Uδ(J) and continuity,

sup
t∈J\Uδ(J)

Var(X(t)|∇X|J (t) = 0) < 1− ε0
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for some ε0 > 0, hence the first equality in (3.1.6) holds and the third equality in (3.1.6)

follows similarly. We finish the proof. �

Following the same proof in Lemma 2.3.6, we obtain the following result.

Lemma 3.1.6 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field satisfying

(H1) and (H3). Let J and J ′ be two faces of T such that their distance is positive, i.e.,

inft∈J,s∈J ′ ‖s − t‖ > δ0 for some δ0 > 0, then E{ME
u (J)ME

u (J ′)} is super-exponentially

small.

The next result is an extension of Theorem 2.3.7.

Lemma 3.1.7 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field satisfying

(H1) and (H3). Let J and J ′ be two neighboring faces, that is J̄ ∩ J̄ ′ 6= ∅. Suppose

{t ∈ J̄ ∩ J̄ ′ : ν(t) = 1, νj(t) = 0,∀j ∈ σ(J) ∪ σ(J ′)} = ∅, (3.1.11)

then E{ME
u (J)ME

u (J ′)} is super-exponentially small.

Proof Condition (3.1.11) implies that there exists ε0 > 0 such that

sup
t∈U(δ)

Var(X(t)|∇X|J (t),∇X|J ′(t)) ≤ 1− ε0,

where U(δ) = {t ∈ J ∪ J ′ : d(t, J̄ ∩ J̄ ′) ≤ δ} and δ is a sufficiently small positive number.

Following the same proof in Theorem 2.3.7 yields our desired result. �

The next result follows from similar arguments in the proof of Theorem 2.3.8.
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Lemma 3.1.8 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field satisfying

(H1), (H3) and (H4). Let J and J ′ be two neighboring faces, that is J̄ ∩ J̄ ′ 6= ∅. Then

E{ME
u (J)ME

u (J ′)} is super-exponentially small.

Proof Let I = J̄ ∩ J̄ ′. We follow the assumptions in (2.3.16) and assume also that all

elements in ε(J) and ε(J ′) are 1, which implies E(J) = RN−k+ and E(J ′) = RN−k
′

+ .

If condition (3.1.11) is satisfied, then E{ME
u (J)ME

u (J ′)} is super-exponentially small by

Lemma 3.1.7. So we will focus on the alternative case, which is

I0 := {t ∈ I : ν(t) = 1, νj(t) = 0,∀1 ≤ j ≤ k + k′ −m} 6= ∅.

Let B(I0, δ) = {t ∈ J ∪ J ′ : d(t, I0) < δ}, where δ is a small number to be specified.

Note that E{ME
u (J)ME

u (J ′)} can be written as

E{[ME
u (J ∩B(I0, δ)) +ME

u (J ∩Bc(I0, δ))][ME
u (J ′ ∩B(I0, δ)) +ME

u (J ′ ∩Bc(I0, δ))]}

= E{ME
u (J ∩B(I0, δ))M

E
u (J ′ ∩B(I0, δ))}+ o(e−αu

2−u2/2),

since the rest terms are super-exponentially small by the same arguments in Lemma 3.1.7.

Therefore, to prove the result, we may estimate E{ME
u (J ∩ B(I0, δ))M

E
u (J ′ ∩ B(I0, δ))}

instead of E{ME
u (J)ME

u (J ′)} itself, with only a super-exponentially small difference. By

(H4),

ΣJ∪J ′(t) := E{X(t)Xij(t)}i,j=1,...,k+k′−m

are negative definite for all t ∈ I0, so that by continuity (similar to Lemma 2.3.9), we can
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choose δ small enough such that

〈ẽ,−ΣJ∪J ′(t)ẽ〉 ≥ α0, ∀t ∈ B(I0, δ), ẽ ∈ Sk+k′−m−1 (3.1.12)

for some constant α0 > 0.

We first consider the case k ≥ 1. By the Kac-Rice metatheorem,

E{ME
u (J ∩B(I0, δ))M

E
u (J ′ ∩B(I0, δ))}

≤
∫
J∩B(I0,δ)

dt

∫
J ′∩B(I0,δ)

ds

∫ ∞
u

dx

∫ ∞
u

dy∫ ∞
0

dzk+1 · · ·
∫ ∞

0
dzk+k′−m

∫ ∞
0

dwm+1 · · ·
∫ ∞

0
dwk

E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,X(s) = y,∇X|J (t) = 0, Xk+1(t) = zk+1,

. . . , Xk+k′−m(t) = zk+k′−m,∇X|J ′(s) = 0, Xm+1(s) = wm+1, . . . , Xk(s) = wk}

× pt,s(x, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk)

:=

∫ ∫
(J∩B(I0,δ))×(J ′∩B(I0,δ))

A(t, s) dtds,

(3.1.13)

where pt,s(x, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk) is the density of

(X(t), X(s),∇X|J (t), Xk+1(t), . . . , Xk+k′−m(t),∇X|J ′(s), Xm+1(s), . . . , Xk(s))

evaluated at (x, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk).

Let {ẽ1, ẽ2, . . . , ẽk+k′−m} be the standard orthonormal basis of Rk+k′−m. For t ∈ J

and s ∈ J ′, let ẽt,s be the projection of (s − t)T /‖s − t‖ on span{J, J ′}, and let αi(t, s) =
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〈ẽi,−ΣJ∪J ′(t)ẽt,s〉, then

−ΣJ∪J ′(t)ẽt,s =
k+k′−m∑
i=1

〈ẽi,−ΣJ∪J ′(t)ẽt,s〉ẽi =
k+k′−m∑
i=1

αi(t, s)ẽi. (3.1.14)

It follows from (3.1.12) that

〈ẽt,s,−ΣJ∪J ′(t)ẽt,s〉 ≥ α0 (3.1.15)

for all t ∈ J ∩B(I0, δ) and s ∈ J ′ ∩B(I0, δ). Let

Di = {(t, s) ∈ (J ∩B(I0, δ))× (J ′ ∩B(I0, δ)) : αi(t, s) ≥ βi}, if m+ 1 ≤ i ≤ k,

Di = {(t, s) ∈ (J ∩B(I0, δ))× (J ′ ∩B(I0, δ)) : αi(t, s) ≤ −βi}, if k + 1 ≤ i ≤ k + k′ −m,

D0 =

{
(t, s) ∈ (J ∩B(I0, δ))× (J ′ ∩B(I0, δ)) :

m∑
i=1

αi(t, s)〈ei, et,s〉 ≥ β0

}
,

(3.1.16)

where β0, β1, . . . , βk+k′−m are positive constants such that β0 +
∑k+k′−m
i=m+1 βi < α0. As in

the proof of Theorem 2.3.8, we see that D0 ∪ ∪k+k′−m
i=m+1 Di is a covering of (J ∩ B(I0, δ)) ×

(J ′ ∩B(I0, δ)). By (3.1.13),

E{ME
u (J ∩B(I0, δ))M

E
u (J ′ ∩B(I0, δ))}

≤
∫ ∫

D0

A(t, s) dtds+
k+k′−m∑
i=m+1

∫ ∫
Di

A(t, s) dtds.

Following the same arguments in the proof of Theorem 2.3.8, we obtain that
∫ ∫

D0
A(t, s) dtds

and
∫ ∫

Di
A(t, s) dtds are all super-exponentially small for i = m + 1, . . . , k + k′ −m, com-

pleting the proof. �
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Theorem 3.1.9 Let X = {X(t) : t ∈ RN} be a centered Gaussian random field satisfying

(H1), (H3) and (H4). Then there exists some constant α > 0 such that as u→∞,

P
{

sup
t∈T

X(t) ≥ u
}

= E{ϕ(Au)}+ o(e−αu
2−u2/2).

Proof The result follows from the combination of (2.3.1), (2.3.2), Corollary 3.1.4, Lemma

3.1.5, Lemma 3.1.6, Lemma 3.1.7 and Lemma 3.1.8. �

3.2 Applications for Gaussian Fields with a Unique

Maximum Point of the Variance

In this section, we consider the case when ν(t) attains its maximum 1 at a unique point

t0 ∈ J ∈ ∂kT such that νj(t0) 6= 0 for all j /∈ σ(J).

Lemma 3.2.1 Let X be as in Theorem 3.1.9. Suppose ν(t0) = 1, where t0 ∈ J ∈ ∂kT and

k ≥ 1, then as x→∞,

E{det∇2X|J (t0)|X(t0) = x,∇X|J (t0) = 0} = |ΣJ (t0)|xk(1 + o(1)).

Proof Since ν(t0) = 1, ΣJ (t0) is negative definite. Let Qt0,J be the k× k positive definite

matrix such that Qt0,J (−ΣJ (t0))Qt0,J = Ik. Then we can write

∇2X|J (t0) = Q−1
t0,J

Qt0,J∇
2X|J (t0)Qt0,JQ

−1
t0,J

,
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and therefore,

E{det∇2X|J (t0)|X(t0) = x,∇X|J (t0) = 0}

= | − ΣJ (t0)|E{det(Qt0,J∇
2X|J (t0)Qt0,J )|X(t0) = x,∇X|J (t0) = 0}.

(3.2.1)

Since X(t0) and ∇X|J (t0) are independent,

E{Qt0,J∇
2X|J (t0)Qt0,J |X(t0) = x,∇X|J (t0) = 0} = −xIk.

It follows that

E{det(Qt0,J∇
2X|J (t0)Qt0,J )|X(t0) = x,∇X|J (t0) = 0} = E{det(∆(t0)− xIk)}, (3.2.2)

where ∆(t0) = (∆ij(t0))i,j∈σ(J) is a k× k Gaussian random matrix such that E{∆(t0)} = 0

and its covariance matrix is independent of x. By the Laplace expansion of the determinant,

det(∆(t0)− xIk) = (−1)k[xk − S1(∆(t0))xk−1 + S2(∆(t0))xk−2 + · · ·+ (−1)kSk(∆(t0))],

where Si(∆(t0)) is the sum of the
(k
i

)
principle minors of order i in ∆(t0). Taking the

expectation above, we see that as x→∞,

E{det(∆(t0)− xIk)} = (−1)kxk(1 + o(1)).

Combining this with (3.2.1) and (3.2.2) completes the proof. �
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Let τ(t) = θ2
t , then ∀i ∈ σ(J), τi(t0) = 0, since t0 is a local maximum point of τ restricted

on J . Assume additionally that the Hessian matrix

ΘJ (t0) := (τij(t0))i,j∈σ(J)

is negative definite, then the Hessian matrix of 1/(2θ2
t ) at t0 restricted on J ,

Θ̃J (t0) = − 1

2τ2(t0)
(τij(t0))i,j∈σ(J) = − 1

2σ4
T

ΘJ (t0), (3.2.3)

is positive definite. Let g(t) = |ΛJ − ΛJ (t)|/θ2k−1
t and h(t) = 1/(2θ2

t ), applying Lemma

2.5.3 with T replaced with J gives us that as u→∞,

Proposition 3.2.2 Let X be as in Theorem 3.1.9. Suppose that ν(t) attains its maximum

1 at a unique point t0 ∈ J ∈ ∂kT such that νj(t0) 6= 0 for all j /∈ σ(J). If ΘJ (t0) is negative

definite, then as u→∞,

P
{

sup
t∈T

X(t) ≥ u
}

=
2k/2| − ΣJ (t0)|

|ΛJ (t0)|1/2| −ΘJ (t0)|1/2
Ψ(u)(1 + o(1)).

Proof Since t0 is the only point attaining the maximum variance, and also, νj(t0) 6= 0 for

all j /∈ σ(J), similarly to Example 2.4.2, we obtain that as u→∞,

P
{

sup
t∈T

X(t) ≥ u
}

= (−1)k
k∑
i=0

(−1)iE{µi(J)}+ o(e−αu
2−u2/2)
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for some α > 0. Note that

(−1)k
k∑
i=0

(−1)iE{µi(J)}

= (−1)k
∫
J
p∇X|J (t)(0)E{det∇2X|J (t)1{X(t)≥u}|∇X|J (t) = 0}dt

=
(−1)k

(2π)k/2

∫
T

1

|ΛJ (t)|1/2
dt

∫ ∞
u

E{det∇2X|J (t)|X(t) = x,∇X|J (t) = 0}

× pX(t)(x|∇
2X|J (t) = 0)dx

=
(−1)k

(2π)(k+1)/2

∫ ∞
u

dx

∫
T

1

θt|ΛJ (t)|1/2
E{det∇2X|J (t)|X(t) = x,∇X|J (t) = 0}e−x

2/2θ2t dt.

Now we apply the Laplace method in Lemma 2.5.3 with

g(t) =
1

θt|ΛJ (t)|1/2
E{det∇2X|J (t)|X(t) = x,∇X|J (t) = 0

}
,

h(t) =
1

2θ2
t

, u = x2,

(3.2.4)

and obtain

(−1)k
k∑
i=0

(−1)iE{µi(J)}

=
(−1)k(2π)k/2

(2π)(k+1)/2|ΛJ (t0)|1/2|Θ̃J (t0)|1/2

×
∫ ∞
u

E{det∇2X|J (t0)|X(t0) = x,∇X|J (t0) = 0}x−ke−x
2/2(1 + o(1))dx

=
(−1)k(2π)k/2|ΣJ (t0)|

(2π)k/2|ΛJ (t0)|1/2|Θ̃J (t0)|1/2
Ψ(u)(1 + o(1))

=
2k/2| − ΣJ (t0)|

|ΛJ (t0)|1/2| −ΘJ (t0)|1/2
Ψ(u)(1 + o(1)),

(3.2.5)

where the second equality is due to Lemma 3.2.1 and the last line is due to (3.2.3). �
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If dim(T ) = 1, then the result in Proposition 3.2.2 becomes much simpler as stated in

the following.

Corollary 3.2.3 Let T ⊂ R and let X be as in Theorem 3.1.9. Suppose ν(t) attains its

maximum 1 at a unique interior point t0, and additionally,

Var(X ′(t0)) + E{X(t0)X ′′(t0)} 6= 0. (3.2.6)

Then as u→∞,

P
{

sup
t∈T

X(t) > u
}

=

(
Var(X ′(t0))

E{X(t0)X ′′(t0)}
+ 1

)−1/2

Ψ(u)(1 + o(1)).

Proof Note that, under our assumptions, k = 1,

Σ(t0) = E{X(t0)X ′′(t0)}, Λ(t0) = Var(X ′(t0)).

Also, τ(t) = θ2
t = Var(X(t)|X ′(t)) implies

Θ(t0) = τ ′′(t0) = −2E{X(t0)X ′′(t0)}(Var(X ′(t0)) + E{X(t0)X ′′(t0)})
Var(X ′(t0))

.

Applying Proposition 3.2.2 gives

P
{

sup
t∈T

X(t) ≥ u
}

=
21/2| − Σ(t0)|

|Λ(t0)|1/2| −Θ(t0)|1/2
Ψ(u)(1 + o(1))

=

(
E{X(t0)X ′′(t0)}

Var(X ′(t0)) + E{X(t0)X ′′(t0)}

)1/2

Ψ(u)(1 + o(1)),

completing the proof. �
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3.3 Gaussian Fields on Manifolds without Boundary

In this section, we assume that T is an N -dimensional smooth manifold without boundary

(SN for example). Let {∂/∂xi}1≤i≤N be a natural coordinate vector field and let X be a

smooth function on T . Define

∇X =
( ∂X
∂x1

, . . . ,
∂X

∂xN

)
,

and let ( ∂2X
∂xi∂xj

(t)) be the abbreviation of the N ×N matrix ( ∂2X
∂xi∂xj

(t))i,j=1,...,N .

If X is a Morse function, then according to Corollary 9.3.5 or page 211-212 in Adler and

Taylor (2007), the Euler characteristic of the excursion set Au = {t ∈ T : X(t) ≥ u} is given

by

ϕ(Au) = (−1)N
N∑
k=0

(−1)kµk(T ),

where

µk(T ) := #
{
t ∈ T : X(t) ≥ u,∇X(t) = 0, index

( ∂2X

∂xi∂xj
(t)
)

= k
}
.

We also define the number of local maxima above level u as

Mu(T ) := #
{
t ∈ T : X(t) ≥ u,∇X(t) = 0, index

( ∂2X

∂xi∂xj
(t)
)

= N
}
.

Since T has no boundary, we have the following much simpler bounds for the excursion

probability.

E{Mu(T )} ≥ P
{

sup
t∈T

X(t) ≥ u
}
≥ E{Mu(T )} − 1

2
E{Mu(T )(Mu(T )− 1)}. (3.3.1)
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We assume again supt∈T Var(X(t)) = 1.

Lemma 3.3.1 Let T be an oriented, compact C3 manifold without boundary. Let {X(t) :

t ∈ T} be a Gaussian random field such that X ∈ C3(T ) a.s. and (H3) is fulfilled. Then

there exists some constant α > 0 such that as u→∞,

E{Mu(T )(Mu(T )− 1)} = o(e−αu
2−u2/2).

Proof Since T is compact it has a finite atlas. Let (U,ϕ) be one of its charts and consider

X := X ◦ ϕ−1 : ϕ(U) ⊂ RN → R.

Then it follows immediately from the definition of Mu that

Mu(X,U) ≡Mu(X,ϕ(U)).

Since X ∈ C3(M), the condition (H1) holds for X. Applying Lemma 2.3.4 yields

E{Mu(X,ϕ(U))(Mu(X,ϕ(U))− 1)} = o(e−αu
2−u2/2).

This verifies the desired result. �

Lemma 3.3.2 Let T be an oriented, compact C3 manifold without boundary. Let {X(t) :

t ∈ T} be a Gaussian random field such that X ∈ C3(T ) a.s. and (H3) is fulfilled. Then
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there exists some constant α > 0 such that as u→∞,

E{Mu(T )} = E{ϕ(Au)}+ o(e−αu
2−u2/2).

Proof The result follows from Lemma 3.1.5 and the arguments in the proof of Lemma

3.3.1. �

Theorem 3.3.3 Let T be an oriented, compact C3 manifold without boundary. Let {X(t) :

t ∈ T} be a Gaussian random field such that X ∈ C3(T ) a.s. and (H3) is fulfilled. Then

there exists some constant α > 0 such that as u→∞,

P
{

sup
t∈T

X(t) ≥ u
}

= E{ϕ(Au)}+ o(e−αu
2−u2/2),

where E{ϕ(Au)} is formulated by

(−1)N
∫
T
E
{

det
( ∂2X

∂xi∂xj
(t)
)
1{X(t)≥u}

∣∣∣∇X(t) = 0
}
p∇X(t)(0)∂x1 ∧ · · · ∧ ∂xN .

Proof The result follows immediately from the combination of (3.3.1), Lemma 3.3.1,

Lemma 3.3.2 and the Kac-Rice metatheorem on manifolds [cf. Theorem 12.1.1 in Adler and

Taylor (2007)]. �
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3.4 Gaussian Fields on Convex Sets with Smooth Bound-

ary

Let T be a compact, convex, N -dimensional subset of RN with smooth boundary ∂T . Morse

theorem gives

ϕ(Au) = (−1)N
N∑
k=0

(−1)kµk(
◦
T ) + (−1)N−1

N−1∑
k=0

(−1)kµk(∂T ),

where

µk(
◦
T ) = #{t ∈

◦
T : X(t) ≥ u,∇X(t) = 0, index(∇2X(t)) = k},

µk(∂T ) = #{t ∈ ∂T : X(t) ≥ u,∇X|∂T (t) = 0, 〈∇X(t), n(t)〉 ≥ 0, index(∇2X|∂T (t)) = k},

and n(t) is the unit normal vector pointing outwards. We also define the number of extended

outward local maxima above level u as

ME
u (
◦
T ) = #{t ∈

◦
T : X(t) ≥ u,∇X(t) = 0, index(∇2X(t)) = N},

ME
u (∂T ) = #{t ∈ ∂T : X(t) ≥ u,∇X|∂T (t) = 0, 〈∇X(t), n(t)〉 ≥ 0,

index(∇2X|∂T (t)) = N − 1}.

Note that T can be stratified into
◦
T ∪∂T . We have the following bounds for the excursion
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probability.

E{ME
u (
◦
T )}+ E{ME

u (∂T )} ≥ P
{

sup
t∈T

X(t) ≥ u
}

≥ E{ME
u (
◦
T )}+ E{ME

u (∂T )} − E{ME
u (
◦
T )ME

u (∂T )}

− 1

2
E{ME

u (
◦
T )(ME

u (
◦
T )− 1)} − 1

2
E{ME

u (∂T )(ME
u (∂T )− 1)}.

(3.4.1)

Since ∂T is a hypersurface. We may consider ∂T as an (N − 1)-dimensional submanifold

embedded on RN . Similarly, we have the following result.

Lemma 3.4.1 Let T be a compact, convex, N-dimensional subset of RN with smooth bound-

ary ∂T . Let {X(t) : t ∈ T} be a Gaussian random field such that (H1) and (H3) are fulfilled.

Then there exists some constant α > 0 such that as u→∞,

E{ME
u (
◦
T )(ME

u (
◦
T )− 1)} = o(e−αu

2−u2/2),

E{ME
u (∂T )(ME

u (∂T )− 1)} = o(e−αu
2−u2/2),

E{ME
u (
◦
T )}+ E{ME

u (∂T )} = E{ϕ(Au)}+ o(e−αu
2−u2/2).

The next lemma shows that the crossing term is also super-exponentially small.

Lemma 3.4.2 Let T be a compact, convex, N-dimensional subset of RN with smooth bound-

ary ∂T . Let {X(t) : t ∈ T} be a Gaussian random field such that (H1) and (H3) are fulfilled.

Then there exists some constant α > 0 such that as u→∞,

E{ME
u (
◦
T )ME

u (∂T )} = o(e−αu
2−u2/2).
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Proof By the Kac-Rice metatheorem,

E{ME
u (
◦
T )ME

u (∂T )}

≤
∫
◦
T
dt

∫
∂T

ds

∫ ∞
u

dx

∫ ∞
u

dy E{|det∇2X(t)||det∇2X|∂T (s)||X(t) = x,

X(s) = y,∇X(t) = 0,∇X|∂T (s) = 0}pX(t),X(s),∇X(t),∇X|∂T (s)(x, y, 0, 0).

By similar arguments in Theorem 2.3.7, if ∇X(s) 6= 0 for all s ∈ ∂T such that ν(s) = 1, then

E{ME
u (
◦
T )ME

u (∂T )} is super-exponentially small. Hence we will consider the alternative case

when

I0 := {s ∈ ∂T : ν(s) = 1,∇X(s) = 0} 6= ∅.

Let B(I0, δ) = {t ∈ T : d(t, I0) < δ}, where δ is a small positive number to be spec-

ified. As discussed in Lemma 3.1.8, E{ME
u (
◦
T )ME

u (∂T )} can be reduced to E{ME
u (
◦
T

∩B(s0, δ))M
E
u (∂T ∩ B(I0, δ))} with only a super-exponentially small difference. Due to

the compactness of T , it suffice to show that E{ME
u (
◦
T ∩B(s0, δ))M

E
u (∂T ∩ B(s0, δ))} is

super-exponentially small for some s0 ∈ I0 and δ > 0, where

B(s0, δ) = {t ∈ T : d(t, s0) < δ}.

Notice another fact that for all s ∈ ∂T such that ν(s) = 1, ∇2ν(s) are negative semidefinite

and hence Σ(s) = E{X(s)∇2X(s)} are negative definite. Therefore by continuity, we may

choose δ small enough such that

〈 − Σ(t)et,s, et,s〉 ≥ α0, ∀t ∈
◦
T ∩B(s0, δ), s ∈ ∂T ∩B(s0, δ), (3.4.2)
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for some positive constant α0, where et,s = (s− t)/‖s− t‖.

For s ∈ ∂T ∩ B(s0, δ), let Z(s) = 〈∇X(s), n(s)〉, and denote by Πs the projection onto

the tangent space of ∂T at s, so that ∇X|∂T (s) = Πs∇X(s). Then

E{ME
u (
◦
T ∩B(s0, δ)))M

E
u (∂T ∩B(s0, δ))}

=

∫
◦
T∩B(s0,δ))

dt

∫
∂T∩B(s0,δ)

ds

∫ ∞
u

dx

∫ ∞
u

dy

∫ ∞
0

dz E{|det∇2X(t)||det∇2X|∂T (s)|

|X(t) = x,X(s) = y,∇X(t) = 0,∇X|∂T (s) = 0, Z(s) = z}

× pX(t),X(s),∇X(t),∇X|∂T (s),Z(s)(x, y, 0, 0, z)

≤
∫
◦
T∩B(s0,δ))

dt

∫
∂T∩B(s0,δ)

ds

∫ ∞
u

dx

∫ ∞
0

dz E{|det∇2X(t)||det∇2X|∂T (s)||X(t) = x,

∇X(t) = 0,∇X|∂T (s) = 0, Z(s) = z}pX(t),∇X(t),∇X|∂T (s),Z(s)(x, 0, 0, z)

:=

∫ ∫
(
◦
T∩B(s0,δ))×(∂T∩B(s0,δ))

A(t, s)dtds.

(3.4.3)

We can bound the integral in (3.4.3) as the following.

∫ ∫
(
◦
T∩B(s0,δ))×(∂T∩B(s0,δ))

A(t, s)dtds ≤
∫ ∫

D1

A(t, s)dtds+

∫ ∫
D2

A(t, s)dtds, (3.4.4)

where

D1 = {t ∈
◦
T ∩B(s0, δ), s ∈ ∂T ∩B(s0, δ) : 〈 − Σ(t)et,s, n(s)〉 ≥ b1},

D2 = {t ∈
◦
T ∩B(s0, δ), s ∈ ∂T ∩B(s0, δ) :

N−1∑
i=1

〈 − Σ(t)et,s, Ei(s)〉〈et,s, Ei(s)〉 ≥ b2},

b1 and b2 are positive numbers such that b1 + b2 < α0, {E1(s), · · · , EN−1(s)} is the or-

thonormal basis of the tangent space of ∂T at s. This is because, if (t, s) does not belong to
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D1 nor D2, then

〈 − Σ(t)et,s, et,s〉

= 〈 − Σ(t)et,s, n(s)〉〈et,s, n(s)〉+
N−1∑
i=1

〈 − Σ(t)et,s, Ei(s)〉〈et,s, Ei(s)〉

< b1 + b2 < α0,

where we use the fact that the convexity of T implies 〈et,s, n(s)〉 ≥ 0. But this conflicts

(3.4.2), hence D1 ∪D2 is a covering of (
◦
T ∩B(s0, δ))× (∂T ∩B(s0, δ)).

We first show that
∫ ∫

D2
A(t, s)dtds is super-exponentially small. By similar arguments

in the proof for Gaussian fields on rectangle, we see that there exists positive constants C1,

C2 and N1 such that

E{|det∇2X(t)||det∇2X|∂T (s)||X(t) = x,∇X(t) = 0,∇X|∂T (s) = 0} ≤ C1(xN1 + 1),

detCov(∇X(t),∇X|∂T (s)) ≥ C2‖s− t‖2(N−1).

Therefore,

A(t, s) ≤
∫ ∞
u

E{|det∇2X(t)||det∇2X|∂T (s)||X(t) = x,∇X(t) = 0,∇X|∂T (s) = 0}

× pX(t)(x|∇X(t) = 0,∇X|∂T (s) = 0)p∇X(t),∇X|∂T (s)(0, 0)dx

≤ C3‖s− t‖1−N
∫ ∞
u

(1 + xN1)pX(t)(x|∇X(t) = 0,∇X|∂T (s) = 0)dx

(3.4.5)

for some positive constant C3.
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On the other hand, as ‖s− t‖ → 0,

Var(X(t)|∇X(t),∇X|∂T (s)) = Var(X(t)|∇X(t),Πs∇X(s))

= Var(X(t)|∇X(t),Πs(∇X(s)−∇X(t))/‖s− t‖)

= Var(X(t)|∇X(t),Πs(∇2X(t)et,s)) + o(1)

≤ Var(X(t)|Πs(∇2X(t)et,s)) + o(1)

≤ 1− (Πs(Σ(t)et,s))[Cov(Πs(∇2X(t)et,s))]
−1(Πs(Σ(t)et,s))

T + o(1),

where the third equality is due to Taylor’s formula. Note that Cov(Πs(∇2X(t)et,s)) is

bounded away from 0 because of the regularity condition (H3). Also, by the definition of

D2, the vectors Πs(Σ(t)et,s) are not vanishing for all (t, s) ∈ D2, thus there exists a constant

ε1 > 0 such that

Var(X(t)|∇X(t),∇X|∂T (s)) ≤ 1− ε1, ∀(t, s) ∈ D2.

Combining this with (3.4.5), and noting that ‖s − t‖1−N is integrable on (
◦
T ∩B(s0, δ))) ×

(∂T ∩B(s0, δ)), we conclude that
∫ ∫

D2
A(t, s)dtds is super-exponentially small.

Now we turn to estimating
∫ ∫

D1
A(t, s)dtds. For (t, s) ∈ D1, we have

pX(t),∇X(t),∇X|∂T (s),Z(s)(x, 0, 0, z)

= pΠs(∇X(t)),∇X|∂T (s)(0, 0|X(t) = x, Z(s) = z, 〈∇X(t), n(s)〉 = 0)

× pX(t),Z(s)(x, z|〈∇X(t), n(s)〉 = 0)p〈∇X(t),n(s)〉(0)

≤ C4(detCov(X(t),∇X(t),∇X|∂T (s), Z(s)))−1/2

× exp

{
− 1

2(1− ρ(t, s)2)

(
x2

σ2
1(t, s)

+
z2

σ2
2(t, s)

− 2ρ(t, s)xz

σ1(t, s)σ2(t, s)

)}
(3.4.6)
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for some positive constant C4, where

σ2
1(t, s) = Var(X(t)|〈∇X(t), n(s)〉) =

detCov(X(t), 〈∇X(t), n(s)〉)
Var(〈∇X(t), n(s)〉)

,

σ2
2(t, s) = Var(Z(s)|〈∇X(t), n(s)〉) =

detCov(Z(s), 〈∇X(t), n(s)〉)
Var(〈∇X(t), n(s)〉)

,

ρ(t, s) =
E{X(t)Z(s)|〈∇X(t), n(s)〉 = 0}

σ1(t, s)σ2(t, s)
.

Recall Z(s) = 〈∇X(s), n(s)〉, similarly to the rectangle case, one can check that there exits

positive constants C5 and C6 such that

C5‖s− t‖2 ≤ σ2
2(t, s) ≤ C6‖s− t‖2. (3.4.7)

Applying Taylor formula, we obtain

ρ(t, s) =
1

σ1(t, s)σ2(t, s)

(
E{X(t)Z(s)} − E{X(t)〈∇X(t), n(s)〉}E{Z(s)〈∇X(t), n(s)〉}

Var(〈∇X(t), n(s)〉)

)
=

1

σ1(t, s)σ2(t, s)

(
E{X(t)〈∇X(t) +∇2X(t)(s− t) + ‖s− t‖1+ηYt,s, n(s)〉}

− E{X(t)〈∇X(t), n(s)〉}
Var(〈∇X(t), n(s)〉)

E{〈∇X(t), n(s)〉〈∇X(t) +∇2X(t)(s− t)

+ ‖s− t‖1+ηYt,s, n(s)〉}
)

=
‖s− t‖

σ1(t, s)σ2(t, s)

(
E{X(t)〈∇2X(t)et,s + ‖s− t‖ηYt,s, n(s)〉}

− E{X(t)〈∇X(t), n(s)〉}
Var(〈∇X(t), n(s)〉)

E{〈∇X(t), n(s)〉〈∇2X(t)et,s + ‖s− t‖ηYt,s, n(s)〉}
)
.

By our assumption, E{X(s0)∇X(s0)}=0, therefore if δ is sufficiently small, E{X(t)∇X(t)}
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gets close to 0 for t ∈
◦
T ∩B(s0, δ). Thus, as ‖s− t‖ → 0,

ρ(t, s) =
‖s− t‖

σ1(t, s)σ2(t, s)
(〈Σ(t)et,s, n(s)〉 − o(1))

≤ ‖s− t‖
σ1(t, s)(C5‖s− t‖2)1/2

(−b1 − o(1))

< −ε2

(3.4.8)

for some positive constant ε2, where the second inequality comes from (3.4.7) and the defi-

nition of D1.

By similar arguments in the proof for Gaussian fields on rectangle, we see that there

exists positive constants C7, C8, N2 and N3 such that

E{|det∇2X(t)||det∇2X|∂T (s)||X(t) = x,∇X(t) = 0,∇X|∂T (s) = 0, Z(s) = z}

≤ C7(xN2 + (z/‖s− t‖)N3 + 1)

and

detCov(X(t),∇X(t),∇X|∂T (s), Z(s)) ≥ C8‖s− t‖2N .

Combining this with (3.4.6), and making change of variable z̃ = z/‖s− t‖ and σ̃2(t, s) =

σ2(t, s)/‖s− t‖, we obtain

A(t, s) ≤ C9‖s− t‖−N
∫ ∞
u

dx

∫ ∞
0

dz (xN2 + (z/‖s− t‖)N3 + 1)

× exp

{
− 1

2(1− ρ(t, s)2)

(
x2

σ2
1(t, s)

+
z2

σ2
2(t, s)

− 2ρ(t, s)xz

σ1(t, s)σ2(t, s)

)}
≤ C9‖s− t‖1−N

∫ ∞
u

dx

∫ ∞
0

dz̃ (xN2 + z̃N3 + 1)

× exp

{
− 1

2(1− ρ(t, s)2)

(
x2

σ2
1(t, s)

+
z̃2

σ̃2
2(t, s)

− 2ρ(t, s)xz̃

σ1(t, s)σ̃2(t, s)

)}
(3.4.9)
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for some positive constant C9. Applying Lemma 2.3.10 yields that
∫ ∫

D1
A(t, s)dtds is super-

exponentially small. �

Theorem 3.4.3 Let T be a compact, convex, N-dimensional subset of RN with smooth

boundary ∂T . Let {X(t) : t ∈ T} be a Gaussian random field such that (H1) and (H3) are

fulfilled. Then there exists some constant α > 0 such that as u→∞,

P
{

sup
t∈T

X(t) ≥ u
}

= E{ϕ(Au)}+ o(e−αu
2−u2/2).

Proof The result follows immediately from applying (3.4.1), Lemma 3.4.1 and Lemma

3.4.2. �

3.5 Gaussian Fields on Convex Sets with Piecewise

Smooth Boundary

Let T be an N -dimensional compact and convex set in RN . Suppose it has piecewise smooth

boundary and can be stratified as T = ∪Ni=0∂iT , where ∂iT is the i-dimensional boundary

of T made up of the disjoint union of a finite number of i-dimensional manifolds without

boundary.

Define the support cone [cf. Adler and Taylor (2007, p.188)] of T at t as

StT := {ξ ∈ RN : ∃δ > 0, C1 curve γ : (−δ, δ)→ Rd such that

γ(0) = t,∇γ(0) = ξ, γ(s) ∈ T for all s ∈ [0, δ)}.

It is easy to check that StT contains the tangent space of t.
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Define the normal cone [cf. Adler and Taylor (2007, p.189)] of T at t as

NtT := {z ∈ RN : 〈z, ξ〉 ≤ 0 for all ξ ∈ StT}.

So t ∈ T is called extended outward critical point if ∇X(t) ∈ NtT .

Morse theorem gives

ϕ(Au) =
N∑
k=0

∑
J∈∂kT

(−1)k
k∑
i=0

(−1)iµi(J),

where

µi(J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = i,∇X(t) ∈ NtT}

= #{t ∈ J : X(t) ≥ u,∇X(t) ∈ NtT, index(∇2X|J (t)) = i},

and the last line above is due to the fact that ∇X(t) ∈ NtT implies ∇X|J (t) = 0 for all

t ∈ J .

We will need a modified version of (H4), say (H4′), as the following.

(H4′). ∀t ∈ J ∈ ∂kT such that ν(t) = 1 and 0 ≤ k ≤ N − 2, (E{X(t)∇2X(t)})|L is negative

definite, where L is the largest subspace of RN such that (∇ν(t))|L = 0.

Here, (E{X(t)∇2X(t)})|L and (∇ν(t))|L are the projections of E{X(t)∇2X(t)} and ∇ν(t)

onto the subspace L, respectively.

Similar to Proposition 3.1.1, we have the following result.

Proposition 3.5.1 Let X(t) ∈ C2(RN ) a.s. and let L be the largest subspace of RN such

that (∇ν(t))|L = 0. If (∇2ν(t))|L is negative semidefinite for each t ∈ J ∈ ∂kT such that

ν(t) = 1 and 0 ≤ k ≤ N − 2, then (H4′) holds.
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For J ∈ ∂kT , we also define the number of extended outward maxima above level u as

ME
u (J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = k,∇X(t) ∈ NtT}

= #{t ∈ J : X(t) ≥ u,∇X(t) ∈ NtT, index(∇2X|J (t)) = k}.

Then similarly to Lemma 2.3.1, one has

{
sup
t∈T

X(t) ≥ u
}

=
N⋃
k=0

⋃
J∈∂kT

{ME
u (J) ≥ 1} a.s.

Thus by similar discussions, we get

N∑
k=0

∑
J∈∂kT

E{ME
u (J)} ≥ P

{
sup
t∈T

X(t) ≥ u
}

≥
N∑
k=0

∑
J∈∂kT

(
E{ME

u (J)} − 1

2
E{ME

u (J)(ME
u (J)− 1)}

)

−
∑
J 6=J ′

E{ME
u (J)ME

u (J ′)}.

(3.5.1)

Theorem 3.5.2 Let T be a compact, convex, N-dimensional subset of RN with piecewise

smooth boundary. Let {X(t) : t ∈ T} be a Gaussian random field such that (H1), (H3) and

(H4′) are fulfilled. Then there exists some constant α > 0 such that as u→∞,

P
{

sup
t∈T

X(t) ≥ u
}

= E{ϕ(Au)}+ o(e−αu
2−u2/2).

Proof Similar to the arguments in proving the smooth boundary case, we only need to

show that E{ME
u (J)ME

u (J ′)} is super-exponentially small for neighboring faces J ∈ ∂kT and

J ′ ∈ ∂k′T . Moreover, similarly, it suffices to show that E{ME
u (J∩B(s0, δ))M

E
u (J ′∩B(s0, δ))
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is super-exponentially small for s0 ∈ I = J̄ ∩ J̄ ′ such that ν(s0) = 1 and (∇ν(s0))|L = 0,

where L = span{Ss0 J̄ ∪ Ss0 J̄
′}, B(s0, δ) = {t ∈ T : d(t, s0) < δ} and δ is a small positive

number to be specified. Without loss of generality, we assume k ≥ k′ and k ≥ 1.

Denote by {E1, · · · , Em} the normal basis on I. Since J is a k-dimensional face, there

are (k−m) many (m+1)-dimensional faces which belong to the closure of J and are adjacent

to I as well. Denote these (m+1)-dimensional faces by {Jm+1, · · · , Jk} ⊂ ∂m+1T . Now, for

each i = m + 1, . . . , k, we may view I as an m-dimensional boundary of Ji, and let Ei(s0)

be the unit normal vector pointing outwards at s0, i.e., Ei(s0) ∈ Ns0 J̄i. In such way, we

have a smooth frame (not necessary orthogonal) {E1(t), · · · , Em(t), Em+1(t), · · · , Ek(t)} on

J̄ ∩B(s0, δ).

Similarly, since J ′ is a k′-dimensional face, there are (k′−m) many (m+ 1)-dimensional

faces which belong to the closure of J ′ and are adjacent to I as well. Denote these (m+ 1)-

dimensional faces by {J ′m+1, · · · , J
′
k′} ⊂ ∂m+1T . Now, for each i = m + 1, . . . , k′, we may

view I as an m-dimensional boundary of J ′i, and let E′i(s0) be the unit normal vector pointing

outwards at s0, i.e., E′i(s0) ∈ Ns0 J̄
′
i. In such way, we have a smooth frame (not necessary

orthogonal) {E1(s), · · · , Em(s), E′m+1(s), · · · , E′
k′(s)} on J̄ ′ ∩B(s0, δ).

By (H4′), ΣL(t) := (E{X(t)∇2X(t)})L is negative definite at t = s0. If δ is small

enough, by continuity,

〈 − ΣL(t)et,s, et,s〉 ≥ α0, ∀t ∈ J ∩B(s0, δ), s ∈ J ′ ∩B(s0, δ), (3.5.2)

for some positive constant α0, where et,s is the projection of (s− t)/‖s− t‖ on L (in fact, the

projection only removes the vanishing components of (s− t)/‖s− t‖ such that the number
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of components in et,s is the same as dim(L)). For (t, s) ∈ (J ∩B(s0, δ))× (J ′ ∩B(s0, δ)), let

αi(t, s) = 〈 − ΣL(t)et,s, Ei(t)〉, i = 1, . . . ,m,m+ 1, . . . , k,

α′j(t, s) = 〈 − ΣL(t)et,s, E
′
j(s)〉, j = m+ 1, . . . , k′.

We claim that there exist positive constants b0, bm+1, · · · , bk, b′m+1, · · · , b
′
k′ , whose prop-

erty needs to be specified later, such that D0 ∪ (∪ki=m+1Di) ∪ (∪k′j=m+1D
′
j) is a covering of

(J ∩B(s0, δ))× (J ′ ∩B(s0, δ)), where

Di = {(t, s) ∈ (J ∩B(s0, δ))× (J ′ ∩B(s0, δ)) : αi(t, s) ≥ bi} if m+ 1 ≤ i ≤ k;

D′j = {(t, s) ∈ (J ∩B(s0, δ))× (J ′ ∩B(s0, δ)) : α′j(t, s) ≤ −b
′
j} if m+ 1 ≤ j ≤ k′;

D0 =

{
(t, s) ∈ (J ∩B(s0, δ))× (J ′ ∩B(s0, δ)) :

m∑
i=1

|αi(t, s)|2 ≥ b0

}
.

(3.5.3)

Note that as δ gets smaller, (J ∩ B(s0, δ)) ∪ (J ′ ∩ B(s0, δ)) becomes more similar to two

intersecting flat faces, and et,s will be around the convex cone created by vectors

{±E1(t), . . . ,±Em(t), Em+1(t), . . . , Ek(t),−E′m+1(s), . . . ,−E′
k′(s)}.

Hence due to the convexity of T , there exists ε0 > 0, whose property needs to be specified

later, such that for all (t, s) ∈ (J ∩ B(s0, δ)) × (J ′ ∩ B(s0, δ)) and δ sufficiently small, the

following representation holds:

et,s =
k∑
i=1

〈et,s, Ei(t)〉Ei(t) +
k′∑

j=m+1

〈et,s, E′j(s)〉E
′
j(s), (3.5.4)
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where 〈et,s, Ei(t)〉 ∈ R for i = 1, . . . ,m, and

〈et,s, Ei(t)〉 ≥ −ε0, ∀i = m+ 1, . . . , k,

〈et,s, E′j(s)〉 ≤ ε0, ∀j = m+ 1, . . . , k′.

By continuity, there exists a universal positive constant r such that

sup
(t,s)∈J×J ′

max{|αi(t, s)|, |α′j(t, s)|} ≤ r,

for all i = m+ 1, . . . , k and j = m+ 1, . . . , k′.

If (t, s) ∈ (J ∩ B(s0, δ))× (J ′ ∩ B(s0, δ)) does not belong to any of sets in (3.5.3), then

by (3.5.4),

〈 − ΣL(t)et,s, et,s〉 =
m∑
i=1

αi(t, s)〈et,s, Ei(t)〉+
k∑

i=m+1

αi(t, s)〈et,s, Ei(t)〉

+
k′∑

j=m+1

α′j(t, s)〈et,s, E
′
j(s)〉

≤ b0 +
k∑

i=m+1

max{bi, rε0}+
k′∑

j=m+1

max{b′j , rε0},

(3.5.5)

where the last inequality we use the facts that for i = m + 1, . . . , k, if (t, s) /∈ Di and

〈et,s, Ei(t)〉 ≥ 0, then αi(t, s)〈et,s, Ei(t)〉 ≤ bi; and for j = m + 1, . . . , k′, if (t, s) /∈ D′j and

〈et,s, E′j(s)〉 ≤ 0, then α′j(t, s)〈et,s, E
′
j(s)〉 ≤ b′j .

Now, we choose the positive constants b0, bm+1, · · · , bk, b′m+1, · · · , b
′
k′ and ε0 such that

the last line of (3.5.5) is strictly less than α0. Then 〈−ΣL(t)et,s, et,s〉 < α0 conflicts (3.5.2).

This verifies our claim that D0∪ (∪ki=m+1Di)∪ (∪k′j=m+1D
′
j) is a covering of (J ∩B(s0, δ))×

(J ′ ∩B(s0, δ)).
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Due to the convexity of T , if δ is small enough, then for each (t, s) ∈ (J ∩ B(s0, δ)) ×

(J ′ ∩B(s0, δ)),

∇X(t) ∈ NtT ⇔ ∇X|J (t) = 0 and 〈∇X(t), E′j(s)〉 ≥ 0, ∀j = m+ 1, . . . , k′;

and for each s ∈ J ′ ∩B(s0, δ),

∇X(s) ∈ NsT ⇔ ∇X|J ′(s) = 0 and 〈∇X(s), Ei(t)〉 ≥ 0, ∀i = m+ 1, . . . , k.

By the Kac-Rice metatheorem,

E{ME
u (J ∩B(s0, δ))M

E
u (J ′ ∩B(s0, δ))

≤
∫
J∩B(s0,δ)

dt

∫
J ′∩B(s0,δ)

ds

∫ ∞
u

dx

∫ ∞
u

dy∫ ∞
0

dzm+1 · · ·
∫ ∞

0
dzk′−m

∫ ∞
0

dwm+1 · · ·
∫ ∞

0
dwk

E{|det∇2X|J (t)‖det∇2X|J ′(s)||X(t) = x,X(s) = y,

∇X|J (t) = 0, 〈∇X(t), E′m+1(s)〉 = zm+1, · · · , 〈∇X(t), E′
k′(s)〉 = zk′ ,

∇X|J ′(s) = 0, 〈∇X(s), Em+1(t)〉 = wm+1, · · · , 〈∇X(s), Ek(t)〉 = wk}

× pt,s(x, y, 0, zm+1, · · · , zk′ , 0, wm+1, · · · , wk)

:=

∫ ∫
(J∩B(s0,δ))×(J ′∩B(s0,δ))

A(t, s) dtds,

where pt,s is the density of

(X(t), X(s),∇X|J (t), 〈∇X(t), E′m+1(s)〉, · · · , 〈∇X(t), E′
k′(s)〉,

∇X|J ′(s), 〈∇X(s), Em+1(t)〉, · · · , 〈∇X(s), Ek(t)〉).
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Moreover, due to the covering discussed before, this integral can be bounded as

∫ ∫
(J∩B(s0,δ))×(J ′∩B(s0,δ))

A(t, s) dtds

≤
k∑

i=m+1

∫ ∫
Di

A(t, s) dtds+
k′∑

j=m+1

∫ ∫
D′j

A(t, s) dtds+

∫ ∫
D0

A(t, s) dtds.

We first show that
∫ ∫

D0
A(t, s) dtds is super-exponentially small. By similar arguments

in the proof for Gaussian fields on rectangle, we see that there exist positive constants C1,

C2 and N1 such that

E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0,∇X|J ′(s) = 0} ≤ C1(xN1 + 1),

detCov(∇X|J (t),∇X|J ′(s)) ≥ C2‖s− t‖2m.

Therefore,

A(t, s) ≤
∫ ∞
u

E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0,∇X|J ′(s) = 0}

× pX(t)(x|∇X|J (t) = 0,∇X|J ′(s) = 0)p∇X|J (t),∇X|J ′(s)
(0, 0)dx

≤ C3‖s− t‖m
∫ ∞
u

(1 + xN1)pX(t)(x|∇X|J (t) = 0,∇X|J ′(s) = 0)dx

(3.5.6)

for some positive constant C3.
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On the other hand, let Πt be the projection onto span{E1(t), · · · , Em(t)}, then as δ → 0,

Var(X(t)|∇X|J (t),∇X|J ′(s)) ≤ Var(X(t)|Πt∇X|J (t),Πt∇X|J ′(s))

= Var(X(t)|Πt∇X(t),Πt∇X(s)) + o(1)

= Var(X(t)|Πt∇X(t),Πt(∇X(s)−∇X(t))/‖s− t‖) + o(1)

= Var(X(t)|Πt∇X(t),Πt(∇2X(t)et,s)) + o(1)

≤ Var(X(t)|Πt(∇2X(t)et,s)) + o(1)

≤ 1− (Πt(ΣL(t)et,s))[Cov(Πt(∇2X(t)et,s))]
−1(Πt(ΣL(t)et,s))

T + o(1),

where the third equality is due to Taylor’s formula. Note that Cov(Πt(∇2X(t)et,s)) is

bounded away from 0 because of the regularity condition (H3). Also, by the definition of

D0, the vectors Πt(ΣL(t)et,s) are not vanishing for all (t, s) ∈ D0, thus there exists a constant

ε1 > 0 such that

Var(X(t)|∇X|J (t),∇X|J ′(s)) ≤ 1− ε1, ∀(t, s) ∈ D0.

Combining this with (3.5.6), and noting that ‖s− t‖m is integrable on (J ∩B(s0, δ)))× (J ′∩

B(s0, δ)), we conclude that
∫ ∫

D0
A(t, s) dtds is super-exponentially small.

Now we turn to estimating
∫ ∫

Di
A(t, s)dtds, i = m+ 1, . . . , k. Let Π̃t be the projection

onto span{E1(t), . . . , Em(t), Em+1(t), . . . , Ei−1(t), Ei+1(t), . . . , Ek(t)}, then for (t, s) ∈ Di,
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we have

pX(t),∇X|J (t),∇X|J ′(s),〈∇X(s),Ei(t)〉(x, 0, 0, w)

= p
Π̃t(∇X(t)),∇X|J ′(s)

(0, 0|X(t) = x, 〈∇X(s), Ei(t)〉 = w, 〈∇X(t), Ei(t)〉 = 0)

× pX(t),〈∇X(s),Ei(t)〉(x,w|〈∇X(t), Ei(t)〉 = 0)p〈∇X(t),Ei(t)〉(0)

≤ C4[detCov(X(t),∇X|J (t),∇X|J ′(s), 〈∇X(s), Ei(t)〉)]−1/2

× exp

{
− 1

2(1− ρ(t, s)2)

(
x2

σ2
1(t, s)

+
w2

σ2
2(t, s)

− 2ρ(t, s)xw

σ1(t, s)σ2(t, s)

)}
(3.5.7)

for some positive constant C4, where

σ2
1(t, s) = Var(X(t)|〈∇X(t), Ei(t)〉) =

detCov(X(t), 〈∇X(t), Ei(t)〉)
Var(〈∇X(t), Ei(t)〉)

,

σ2
2(t, s) = Var(〈∇X(s), Ei(t)〉|〈∇X(t), Ei(t)〉) =

detCov(〈∇X(s), Ei(t)〉, 〈∇X(t), Ei(t)〉)
Var(〈∇X(t), Ei(t)〉)

,

ρ(t, s) =
E{X(t)〈∇X(s), Ei(t)〉|〈∇X(t), Ei(t)〉 = 0}

σ1(t, s)σ2(t, s)
.

Similarly to the rectangle case, one can check that there exits positive constants C5 and C6

such that

C5‖s− t‖2 ≤ σ2
2(t, s) ≤ C6‖s− t‖2. (3.5.8)
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Applying Taylor formula, we obtain

ρ(t, s) =
1

σ1(t, s)σ2(t, s)

(
E{X(t)〈∇X(s), Ei(t)〉}

− E{X(t)〈∇X(t), Ei(t)〉}E{〈∇X(s), Ei(t)〉〈∇X(t), Ei(t)〉}
Var(〈∇X(t), Ei(t)〉)

)
=

1

σ1(t, s)σ2(t, s)

(
E{X(t)〈∇X(t) +∇2X(t)(s− t) + ‖s− t‖1+ηYt,s, Ei(t)〉}

− E{X(t)〈∇X(t), Ei(t)〉}
Var(〈∇X(t), Ei(t)〉)

E{〈∇X(t), Ei(t)〉〈∇X(t) +∇2X(t)(s− t)

+ ‖s− t‖1+ηYt,s, Ei(t)〉}
)

=
‖s− t‖

σ1(t, s)σ2(t, s)

(
E{X(t)〈∇2X(t)et,s + ‖s− t‖ηYt,s, Ei(t)〉}

− E{X(t)〈∇X(t), Ei(t)〉}
Var(〈∇X(t), Ei(t)〉)

E{〈∇X(t), Ei(t)〉〈∇2X(t)et,s + ‖s− t‖ηYt,s, Ei(t)〉}
)
.

By our assumption, (E{X(s0)∇X(s0)})|L=0, therefore E{X(t)〈∇X(t), Ei(t)〉} gets close to

0 for t ∈ J ∩B(s0, δ) and δ small enough. Thus, as ‖s− t‖ → 0,

ρ(t, s) =
‖s− t‖

σ1(t, s)σ2(t, s)
(〈ΣJ (t)et,s, Ei(t)〉 − o(1))

≤ ‖s− t‖
σ1(t, s)(C5‖s− t‖2)1/2

(−bi − o(1))

< −ε2

(3.5.9)

for some positive constant ε2, where the second inequality comes from (3.5.8) and the defi-

nition of Di.

By similar arguments in the proof for Gaussian fields on rectangle, we see that there
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exists positive constants C7, C8, N2 and N3 such that

E{|det∇2X|J (t)||det∇2X|J ′(s)||X(t) = x,∇X|J (t) = 0,∇XJ ′(s) = 0, 〈∇X(s), Ei(t)〉 = w}

≤ C7(xN2 + (w/‖s− t‖)N3 + 1)

and

detCov(X(t),∇X|J (t),∇X|J ′(s), 〈∇X(s), Ei(t)〉) ≥ C8‖s− t‖2(m+1).

Combining this with (3.5.7), and making change of variable w̃ = w/‖s− t‖ and σ̃2(t, s) =

σ2(t, s)/‖s− t‖, we obtain

A(t, s) ≤ C9‖s− t‖−(m+1)
∫ ∞
u

dx

∫ ∞
0

dw (xN2 + (w/‖s− t‖)N3 + 1)

× exp

{
− 1

2(1− ρ(t, s)2)

(
x2

σ2
1(t, s)

+
w2

σ2
2(t, s)

− 2ρ(t, s)xw

σ1(t, s)σ2(t, s)

)}
≤ C9‖s− t‖−m

∫ ∞
u

dx

∫ ∞
0

dw̃ (xN2 + w̃N3 + 1)

× exp

{
− 1

2(1− ρ(t, s)2)

(
x2

σ2
1(t, s)

+
w̃2

σ̃2
2(t, s)

− 2ρ(t, s)xw̃

σ1(t, s)σ̃2(t, s)

)}
(3.5.10)

for some positive constant C9. Applying Lemma 2.3.10 yields that
∫ ∫

Di
A(t, s)dtds is super-

exponentially small.

Estimating
∫ ∫

D′j
A(t, s)dtds for j = m+ 1, . . . , k′ is similar. And the proof for the case

when k = 0 is also similar. Now we obtain that E{ME
u (J)ME

u (J ′)} is super-exponentially

small, completing the proof. �

Remark 3.5.3 Our proof in Theorem 3.5.2 only focuses on the neighborhood of s0, and

therefore the proof is also valid for the case when T is locally convex [cf. Adler and Taylor

(2007, p.189, Definition 8.2.1)].
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Chapter 4

The Expected Euler Characteristic of

Non-centered Stationary Gaussian

Fields

It has been shown that the expected Euler characteristic of the excursion set, denoted

by E{ϕ(Au)}, can be used to approximate the excursion probability very accurately. Now

we turn to the computation of E{ϕ(Au)}. In the monograph Adler and Taylor (2007), the

authors considered centered Gaussian fields with constant variance and they obtained very

general formulae [cf. Theorem 12.4.1 and Theorem 12.4.2 therein] for E{ϕ(Au)} involving the

so called Lipschitz-Killing curvatures. Usually, it is very hard to simplify these Lipschitz-

Killing curvatures. As a consequence, for general centered smooth Gaussian fields with

constant variance, E{ϕ(Au)} is difficult to compute. Therefore, E{ϕ(Au)} would become

even more complicated for general smooth Gaussian fields with non-constant variances.

However, for some relatively simple models and nice parameter space T , for example

centered stationary Gaussian fields on rectangles, E{ϕ(Au)} can be simplified a lot [cf.

Theorem 11.7.2 and Corollary 11.7.3 in Adler and Taylor (2007)]. The results there rely

heavily on the zero mean function. If the Gaussian field is stationary, but the mean function

is varying, then the computation for E{ϕ(Au)} will become more complicated. In this
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chapter, we will show the formulae of E{ϕ(Au)} for stationary Gaussian fields with varying

mean functions, and also for isotropic Gaussian fields on the sphere with varying mean

functions.

4.1 Preliminary Gaussian Computations

The following result is Lemma 11.6.1 in Adler and Taylor (2007).

Lemma 4.1.1 (Wick formula). Let Z1, Z2, ..., ZN be a set of real-valued random vari-

ables having a joint Gaussian distribution and zero means. Then for any integer k,

E{Z1Z2 · · ·Z2k+1} = 0,

E{Z1Z2 · · ·Z2k} =
∑

E{Zi1Zi2} · · ·E{Zi2k−1
Zi2k},

(4.1.1)

where the sum is taken over the (2k)!/(k!2k) different ways of grouping Z1, ..., Z2k into k

pairs.

Let ∆N be a symmetric N ×N matrix with elements ∆ij such that each ∆ij is a zero-

mean normal variable with arbitrary variance but such that the following relationship holds:

E{∆ij∆kl} = E(i, j, k, l)− δijδkl, (4.1.2)

where E is a symmetric function of i, j, k, l, and δij is the Kronecker delta function. Write

|∆N | for the determinant of ∆N .
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Let ∆̃N be a symmetric N ×N matrix with elements ∆̃ij such that each ∆̃ij is a zero-

mean normal variable with arbitrary variance but such that the following relationship holds:

E{∆̃ij∆̃kl} = Ẽ(i, j, k, l) + δijδkl, (4.1.3)

where Ẽ is a symmetric function of i, j, k, l, and δij is the Kronecker delta function.

Let ∆′N be a symmetric N ×N matrix with elements ∆′ij such that each ∆′ij is a zero-

mean normal variable with arbitrary variance but such that the following relationship holds:

E{∆′ij∆
′
kl} = E ′(i, j, k, l), (4.1.4)

where E ′ is a symmetric function of i, j, k, l.

Lemma 4.1.2 Let BN = (Bij)1≤i,j≤N be a real symmetric N × N matrix and let n be a

positive integer. Then for ∆n satisfying (4.1.2),

E{|∆n +Bn|} =

bn/2c∑
k=0

G2kSn−2k(Bn), (4.1.5)

where G2j = (−1)j(2j)!/(j!2j), Sk(Bl) is the sum of the
( l
k

)
principle minors of order k

in Bl, and G0 = S0(Bn) = 1 in convention. Similarly, for ∆̃′n satisfying (4.1.3) and ∆′n

satisfying (4.1.4),

E{|∆̃n +Bn|} =

bn/2c∑
k=0

G̃2kSn−2k(Bn),

E{|∆′n +Bn|} = |Bn|,

(4.1.6)
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where G̃2j = (2j)!/(j!2j).

Proof We first consider the case when n is even, say n = 2l, then

|∆2l +B2l| =
∑
P

η(p)(∆1i1
+B1i1

) · · · (∆2l,i2l
+B2l,i2l

), (4.1.7)

where p = (i1, i2 · · · , i2l) is a permutation of (1, 2, · · · , 2l), P is the set of the (2l)! such

permutations, and η(p) equals +1 or −1 depending on the order of the permutation p. Then

E{|∆2l +B2l|} =
∑
P

η(p)E{(∆1i1
+B1i1

) · · · (∆2l,i2l
+B2l,i2l

)}. (4.1.8)

It follows from Lemma 4.1.1 that for k ≤ l, E{∆1i1
· · ·∆2k+1,i2k+1

} = 0 and

E{∆1i1
· · ·∆2k,i2k

} =
∑
Q2k

{E(1, i1, 2, i2)− δ1i1δ2i2} × · · ·

× {E(2k − 1, i2k−1, 2k, i2k)− δ2k−1,i2k−1
δ2k,i2k

},

where Q2k is the set of the (2k)!/(k!2k) ways of grouping (i1, i2, · · · , i2k) into pairs without

regard to order, keeping them paired with the first index. Let P̃ be the set of all the
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permutations of (2k + 1, . . . , 2l), then

∑
P

η(p)E{∆1i1
· · ·∆2k,i2k

}B2k+1,i2k+1
· · ·B2l,i2l

=
∑
P

η(p)

(∑
Q2k

{E(1, i1, 2, i2)− δ1i1δ2i2} × · · ·

× {E(2k − 1, i2k−1, 2k, i2k)− δ2k−1,i2k−1
δ2k,i2k

}
)
B2k+1,i2k+1

· · ·B2l,i2l

=
∑
P

η(p)
∑
Q2k

(−1)k(δ1i1δ2i2) · · · (δ2k−1,i2k−1
δ2k,i2k

)B2k+1,i2k+1
· · ·B2l,i2l

=
(−1)k(2k)!

k!2k

∑
P̃

η(p̃)B2k+1,i2k+1
· · ·B2l,i2l

=
(−1)k(2k)!

k!2k
|(Bij)2k+1≤i,j≤2l|,

where the second equality is due to the fact that all products involving at least one E term

will cancel out because of their symmetry property, and the third equality comes from noting

that for only one permutation in P is the product of the delta functions nonzero. Thus

E{|∆2l +B2l|} = |B2l|+G2S2l−2(B2l) + · · ·+G2l−2S2(B2l) +G2l.

Similarly, we obtain that

E{|∆2l+1 +B2l+1|} = |B2l+1|+G2S2l−1(B2l+1) + · · ·+G2lS1(B2l+1).

Then we obtain (4.1.5). The proof for (4.1.6) follows similarly. �

Corollary 4.1.3 Let ∆N , ∆̃N , ∆′N , BN , G2j, G̃2j and Sk(Bl) be as in Lemma 4.1.2. Let
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IN be the N ×N unit matrix, and x ∈ R. Then

E{|∆N +BN − xIN |} = (−1)N
N∑
n=0

(−1)n
( bn/2c∑

k=0

G2kSn−2k(BN )

)
xN−n, (4.1.9)

and similarly,

E{|∆̃N +BN − xIN |} = (−1)N
N∑
n=0

(−1)n
( bn/2c∑

k=0

G̃2kSn−2k(BN )

)
xN−n,

E{|∆′N +BN − xIN |} = (−1)N
N∑
n=0

(−1)nSn(BN )xN−n.

(4.1.10)

Proof It follows from the usual Laplace expansion of the determinant that

|∆N +BN − xIN | = (−1)N
N∑
n=0

(−1)nSn(∆N +BN )xN−n. (4.1.11)

It follows from Lemma 4.1.2 that

E{Sn(∆N +BN )} =

bn/2c∑
k=0

G2kSn−2k(BN ), (4.1.12)

and hence we obtain (4.1.9). (4.1.10) follows similarly. �

4.2 Stationary Gaussian Fields on Rectangles

Consider a centered stationary Gaussian random field Z = {Z(t), t ∈ RN}. It has represen-

tation

Z(t) =

∫
RN

ei〈t,λ〉W (dλ)
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and covariance

C(t) =

∫
RN

ei〈t,λ〉ν(dλ),

where W is a complex-valued Gaussian random measure and ν is the spectral measure

satisfying ν(RN ) = C(0) = σ2. We introduce the second-order spectral moments

λij =

∫
RN

λiλjν(dλ),

and denote Λ = (λij)1≤i,j≤N . Denoting also differentiation via subscripts, so that Zi =

∂Z/∂ti, Zij = ∂2Z/∂ti∂tj , etc., we have

E{Zi(t)Zj(t)} = λij = −Cij(0) = −E{Z(t)Zij(t)}.

The covariances among the second-order derivatives can be similarly defined. However,

all we shall need is that

E0(i, j, k, l) := E{Zij(t)Zkl(t)} =

∫
RN

λiλjλkλlν(dλ) (4.2.1)

is a symmetric function of i, j, k, l. Also note that for any fixed t, Zi(t) is independent of

both Z(t) and Zkl(t).

Let X(t) = Z(t) + m(t), where m(·) ∈ C2(RN ) is a real-valued deterministic function.

Let T =
∏N
i=1[ai, bi], −∞ < ai < bi <∞.

Theorem 4.2.1 Let X(t) = Z(t) + m(t), where Z(·) ∈ C2(RN ) a.s. is a stationary Gaus-

sian field and m(·) ∈ C2(RN ) is a real-valued deterministic function. Suppose also that Z

109



satisfies (H3′). Then we have

E{ϕ(Au(X,T ))}

=
∑

{t}∈∂0T

P{∇X(t) ∈ E({t})}Ψ
(
u−m(t)

σ

)
+

N∑
k=1

∑
J∈∂kT

|ΛJ |1/2

(2π)(k+1)/2σk+1

×
∫
J
dt

∫ ∞
u

dx exp

{
− 1

2
(∇m|J (t))TΛ−1

J ∇m|J (t)− 1

2σ2
(x−m(t))2

}
× P{(XJ1

(t), · · · , XJN−k(t)) ∈ E(J)|∇X|J (t) = 0}

×
[ k∑
j=0

(−1)j
( bj/2c∑

i=0

G2iSj−2i(σQJ∇2mJ (t)QJ )

)(
x

σ

)k−j]
,

(4.2.2)

where G and S are defined in Lemma 4.1.2 and QJ = Λ
−1/2
J .

Proof If J = {t} ∈ ∂0T , then

E{µ0(J)} = P{X(t) ≥ u, ε∗jXj(t) ≥ 0 for all 1 ≤ j ≤ N}

= P{∇X(t) ∈ E({t})}Ψ
(
u−m(t)

σ

)
,

(4.2.3)

where the last equality is due to the independence of X(t) and ∇X(t) for each fixed t.

Now we consider J ∈ ∂kT for some k ≥ 1. Let Di be the collection of all k × k matrices

with index i. Applying Kac-Rice formula [cf. Theorem 11.2.1 or Corollary 11.3.2 in Adler

and Taylor (2007)], together with the definition (2.2.2), we obtain

E
{ k∑
i=0

(−1)iµi(J)

}
=

∫
J
p∇X|J (t)(0)dt

k∑
i=0

(−1)iE{|det∇2X|J (t)|1{∇2X|J (t)∈Di}

× 1{X(t)≥u}1{(XJ1
(t),··· ,XJN−k

(t))∈E(J)}|∇X|J (t) = 0}.

(4.2.4)

Note that on the event Di, the matrix ∇2X|J (t) has i negative eigenvalues which implies
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(−1)i|det∇2X|J (t)| = det∇2X|J (t). Also, ∪ki=0{∇
2X|J (t) ∈ Di} = {∇2X|J (t) ∈ Rk}, and

∇X(t) is independent of both X(t) and ∇2X(t) for each fixed t, thus (4.2.4) becomes

∫
J
p∇X|J (t)(0)dtE{det∇2X|J (t)1{X(t)≥u}1{(XJ1

(t),··· ,XJN−k
(t))∈E(J)}|∇X|J (t) = 0}

=
1

(2π)(k+1)/2|ΛJ |1/2σ

∫
J
dt

∫ ∞
u

dx e
−1

2(∇m|J (t))TΛ−1
J ∇m|J (t)

e
− 1

2σ2 (x−m(t))2

× P{(XJ1
(t), · · · , XJN−k(t)) ∈ E(J)|∇X|J (t) = 0}E{det∇2X|J (t)|X(t) = x}.

(4.2.5)

Now we turn to computing E{det∇2X|J (t)|X(t) = x}. Since ΛJ is positive definite,

there exists a unique k× k positive definite matrix QJ (called principal square root of Λ−1
J ,

also denoted as Λ
−1/2
J ) such that

QJΛJQJ = Ik,

where Ik is the k × k identity matrix. Hence

E{Z(t)(QJ∇2Z|J (t)QJ )ij} = −(QJΛJQJ )ij = −δij , (4.2.6)

where δij is the Kronecker delta function. One can write

E{det(QJ∇2X|J (t)QJ )|X(t) = x}

= E{det(QJ∇2Z|J (t)QJ +QJ∇2m|J (t)QJ )|X(t) = x}

= E{det(∆(x) +QJ∇2mJ (t)QJ )},

where ∆(x) = (∆ij(x))i,j∈σ(J) with all elements ∆ij(x) being Gaussian variables. To study

∆(x), we only need to find its mean and covariance. Applying Lemma 2.5.1 and (4.2.6), we
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obtain

E{∆ij(x)} = E{(QJ∇2Z|J (t)QJ )ij |X(t) = x} = − x

σ2
δij

and

E{(∆ij(x)− E{∆ij(x)})(∆kl(x)− E{∆kl(x)})}

= E{(QJ∇2Z|J (t)QJ )ij(QJ∇2Z|J (t)QJ )kl} −
δijδkl
σ2

= E(i, j, k, l)−
δijδkl
σ2

,

where E is a symmetric function of i, j, k, l by Lemma 2.1.7 with A replaced by QJ . Then

we have

E{det(QJ∇2X|J (t)QJ )|X(t) = x}

= E
{

1

σk
det(σQJ (∇2X|J (t))QJ )

∣∣∣X(t) = x

}
=

1

σk
E
{

det

(
∆ + σQJ∇2mJ (t)QJ −

x

σ
Ik

)}
,

where ∆ = (∆ij)i,j∈σ(J) and all ∆ij are Gaussian variables satisfying

E{∆ij} = 0, E{∆ij∆kl} = σ2E(i, j, k, l)− δijδkl.

Applying Corollary 4.1.3, we get

E{det(QJ∇2X|J (t)QJ )|X(t) = x}

=
(−1)k

σk

k∑
j=0

(−1)j
( bj/2c∑

i=0

G2iSj−2i(σQJ∇2mJ (t)QJ )

)(
x

σ

)k−j
.

(4.2.7)
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It follows from (4.2.7) that

E{det∇2X|J (t)|X(t) = x}

= E{det(Q−1
t QJ∇2X|J (t)QJQ

−1
t )|X(t) = x}

= |ΛJ |E{det(QJ∇2X|J (t)QJ )|X(t) = x}

=
(−1)k

σk
|ΛJ |

k∑
j=0

(−1)j
( bj/2c∑

i=0

G2iSj−2i(σQJ∇2mJ (t)QJ )

)(
x

σ

)k−j
.

Plugging this into (4.2.5), we obtain

E
{ k∑
i=0

(−1)iµi(J)

}

=
(−1)k|ΛJ |1/2

(2π)(k+1)/2σk+1

∫
J
dt

∫ ∞
u

dx e
−1

2(∇m|J (t))TΛ−1
J ∇m|J (t)

e
− 1

2σ2 (x−m(t))2

× P{(XJ1
(t), · · · , XJN−k(t)) ∈ E(J)|∇X|J (t) = 0}

×
[ k∑
j=0

(−1)j
( bj/2c∑

i=0

G2iSj−2i(σQJ∇2mJ (t)QJ )

)(
x

σ

)k−j]
.

(4.2.8)

Combining (4.2.3), (4.2.8) and the definition (2.2.1) yields the desired result. �

Corollary 4.2.2 Let Z be an isotropic Gaussian random field with Var(Z1(t)) = γ2, then
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under the conditions in Theorem 4.2.1, we have

E{ϕ(Au(X,T ))}

=
∑

{t}∈∂0T

P{∇X(t) ∈ E({t})}Ψ
(
u−m(t)

σ

)
+

N∑
k=1

∑
J∈∂kT

γk

(2π)(k+1)/2σk+1

×
∫
J
dt

∫ ∞
u

dx exp

{
− 1

2γ2
‖∇m|J (t)‖2 − 1

2σ2
(x−m(t))2

}
× P{(XJ1

(t), · · · , XJN−k(t)) ∈ E(J)}

×
[ k∑
j=0

(−1)j
( bj/2c∑

i=0

G2iSj−2i(σγ
−2∇2mJ (t))

)(
x

σ

)k−j]
.

(4.2.9)

Proof The result follows by applying Theorem 4.2.1 and noting that ΛJ = γ2Ik and hence

QJ = γ−1Ik. �

Corollary 4.2.3 Under the conditions in Theorem 4.2.1, assume that t0, an interior point

in T , is the unique maximal point of m(t) and that ∇2m(t0) is nondegenerate. Then as

u→∞,

E{ϕ(Au(X,T ))} =
|Λ|1/2uN/2

σN | − ∇2m(t0)|1/2
Ψ

(
u−m(t0)

σ

)
(1 + o(1)).

Proof By Theorem 4.2.1,

E{ϕ(Au(X,T ))} =
|Λ|1/2

(2π)(N+1)/2σN+1

∫ ∞
u

dx

∫
J
e−

1
2(∇m(t))TΛ−1∇m(t)

× e
− 1

2σ2 (x−m(t))2
(
x

σ

)N
dt(1 + o(1)).

(4.2.10)
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Applying Laplace method, we obtain that as x→∞,

∫
J
e−

1
2(∇m(t))TΛ−1∇m(t)e

− 1
2σ2 (x−m(t))2

dt

=
(2π)N/2σN

xN/2| − ∇2m(t0)|1/2
e
− 1

2σ2 (x−m(t0))2
(1 + o(1)).

(4.2.11)

Thus as u→∞,

E{ϕ(Au(X,T ))} =
|Λ|1/2

(2π)1/2σN+1| − ∇2m(t0)|1/2

∫ ∞
u

xN/2e
− 1

2σ2 (x−m(t0))2
dx(1 + o(1))

=
|Λ|1/2uN/2

σN | − ∇2m(t0)|1/2
Ψ

(
u−m(t0)

σ

)
(1 + o(1)).

�

4.3 Isotropic Gaussian Random Fields on Sphere

We consider isotropic Gaussian random fields on N -dimensional unit sphere SN . For x =

(x1, · · · , xN+1) ∈ SN , we shall use the spherical coordinates as follows.

x1 = cos θ1,

x2 = sin θ1 cos θ2,

x3 = sin θ1 sin θ2 cos θ3,

...

xN = sin θ1 sin θ2 · · · sin θN−1 cos θN ,

xN+1 = sin θ1 sin θ2 · · · sin θN−1 sin θN ,

(4.3.1)
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where 0 ≤ θi ≤ π for 1 ≤ i ≤ N − 1 and 0 ≤ θN < 2π. Let θ = (θ1, · · · , θN ). Accordingly,

let y = (y1, · · · , yN+1) be another point in SN , we use ϕ = (ϕ1, · · · , ϕN ) to denote its

corresponding spherical coordinates.

Let ‖ ·‖, 〈·, ·〉 be the Euclidean norm and the inner product respectively. Denote by d(·, ·)

the distance function in SN , i.e., d(x, y) = arccos 〈x, y〉, ∀x, y ∈ SN .

The following theorem by Schoenberg (1942) characterizes the covariance function of

isotropic Gaussian field on sphere.

Theorem 4.3.1 A real continuous function C(d) is a valid covariance on unit sphere SN

for every dimension N ≥ 1 if and only if it has the form

C(d) =
∞∑
n=0

bn cosn d, d ∈ [0, π],

where bn ≥ 0 and
∑∞
n=0 bn <∞.

Recall d(x, y) = arccos 〈x, y〉,∀x, y ∈ SN . It follows from the above theorem that a

function C(x, y), which is the covariance function of an isotropic Gaussian field on SN for

every dimension N ≥ 1, has the form

C(x, y) =
∞∑
n=0

bn〈x, y〉n, ∀x, y ∈ SN , (4.3.2)

where where bn ≥ 0 and
∑∞
n=0 bn <∞.

Let ϕ(Au(X, SN )) be the Euler characteristic of excursion set Au(X, SN ) = {x ∈ SN :

X(x) ≥ u}. Then according to Corollary 9.3.5 in Adler and Taylor (2007),

ϕ(Au(X, SN )) = (−1)N
N∑
i=0

(−1)iµi(SN ) (4.3.3)
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with

µi(SN ) := #{x ∈ SN : X(x) ≥ u,∇X(x) = 0, index(∇2X(x)) = i}, (4.3.4)

where ∇X and ∇2X are the gradient and Hessian on manifold respectively.

Let X(x) = Z(x) +m(x), x ∈ SN , where Z is a centered, unit-variance smooth Gaussian

random field on SN with covariance function C(·, ·) and m(·) ∈ C2(SN ) is a real-valued

deterministic function. Under the spherical coordinate, let X(θ) = X(x), Z(θ) = Z(x),

m(θ) = m(x), C(θ, ϕ) = C(x, y).

Lemma 4.3.2 Let h(x, y) = 〈x, y〉n, x, y ∈ SN , where n is a nonnegative integer, and let

h(θ, ϕ) be its spherical version. Then h(θ, θ) = 1 and

∂h(θ, ϕ)

∂θi
|θ=ϕ =

∂3h(θ, ϕ)

∂θi∂ϕj∂ϕk
|θ=ϕ = 0,

∂2h(θ, ϕ)

∂θi∂ϕj
|θ=ϕ = −∂

2h(θ, ϕ)

∂θi∂θj
|θ=ϕ = nδij ,

∂4h(θ, ϕ)

∂θi∂θj∂ϕk∂ϕl
|θ=ϕ = n(n− 1)(δijδkl + δikδjl + δilδjk) + nδijδkl.

(4.3.5)

Let Θ = {θ ∈ RN : 0 ≤ θN < 2π, 0 ≤ θi ≤ π,∀1 ≤ i ≤ N − 1} and let dσ(θ) be the

volume element on the sphere, i.e.,

dσ(θ) =

(N−1∏
i=1

sinN−i θi

)
dθ, ∀θ ∈ Θ.

Then we can state our result as follows.

Theorem 4.3.3 Let X = {X(x) = Z(x) + m(x) : x ∈ SN}, where Z is a Gaussian field

on SN satisfying (H3′) and m(·) ∈ C2(SN ) is a real-valued deterministic function. Suppose
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also that X has the covariance function C(·, ·) such that

C(x, y) =
∞∑
n=0

bn〈x, y〉n, ∀x, y ∈ SN , (4.3.6)

where bn ≥ 0,
∑∞
n=0 bn = 1 and

∑∞
n=1 n

4bn < ∞. Let β =
∑∞
n=1 nbn, m(θ) = m(x), and

let G, G̃ and S be as in Lemma 4.1.2. Then for β > 1,

E{ϕ(Au(X, SN ))} =
(β − 1)N/2

(2π)N/2

∫
Θ
dσ(θ)

∫ ∞
u

dw exp

{
− 1

2β
‖∇m(θ))‖2

}

×
[ N∑
j=0

(−1)j
( bj/2c∑

i=0

G2iSj−2i

(
∇2m(θ)√
β2 − β

))(
βw√
β2 − β

)N−j]
;

for β < 1,

E{ϕ(Au(X, SN ))} =
(1− β)N/2

(2π)N/2

∫
Θ
dσ(θ)

∫ ∞
u

dw exp

{
− 1

2β
‖∇m(θ))‖2

}

×
[ N∑
j=0

(−1)j
( bj/2c∑

i=0

G̃2iSj−2i

(
∇2m(θ)√
β − β2

))(
βw√
β − β2

)N−j]
;

and for β = 1,

E{ϕ(Au(X, SN ))} =
1

(2π)N/2

∫
Θ
dσ(θ)

∫ ∞
u

dw exp

{
− 1

2
‖∇m(θ)‖2

}

×
[ N∑
j=0

(−1)jSj(∇2m(θ))wN−j
]
.

Remark 4.3.4 It is easy to check that the condition
∑∞
n=1 n

4bn < ∞ makes C(·, ·) ∈

C4(SN × SN ) and hence X(·) ∈ C2(SN ).
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Proof Case 1: β > 1. Let κ =
∑∞
n=2 n(n− 1)bn. Then by Lemma 4.3.2,

E{Z(θ)Zi(θ)} = E{Zi(θ)Zjk(θ)} = 0,

E{Zi(θ)Zj(θ)} = −E{Z(θ)Zij(θ)} = βδij ,

E{Zij(θ)Zkl(θ)} = κ(δijδkl + δikδjl + δilδjk) + βδijδkl.

(4.3.7)

By the Kac-Rice metatheorem,

E{ϕ(Au(X, SN ))}

= (−1)N
∫

Θ
p∇X(θ)(0)E{det∇2X(θ)1{X(θ)≥u}|∇X(θ) = 0}dσ(θ)

= (−1)N
∫

Θ
dσ(θ)

∫ ∞
u

p∇X(θ)(0)E{det∇2X(θ)|X(θ) = w}dw

=
(−1)N

(2π)N/2βN/2

∫
Θ
dσ(θ)

∫ ∞
u

e
− 1

2β
‖∇m(θ))‖2

E{det∇2X(θ)|X(θ) = w}dw.

(4.3.8)

Now we turn to computing E{det∇2X(θ)|X(θ) = w}. Note that

E{det∇2X(θ)|X(θ) = w}

= E{det(∇2Z(θ) +∇2m(θ))|X(θ) = w}

= (β2 − β)N/2E{det((β2 − β)−1/2∇2Z(θ) + (β2 − β)−1/2∇2m(θ))|X(θ) = w}

= (β2 − β)N/2E{det(∆ + (β2 − β)−1/2∇2m(θ)− β(β2 − β)−1/2wIN )},

(4.3.9)

where ∆ = (∆ij)1≤i,j≤N and all ∆ij are centered Gaussian variables satisfying

E{∆ij∆kl} = (β2 − β)−1E{Zij(θ)Zkl(θ)|X(θ) = w}

= (β2 − β)−1{κ(δijδkl + δikδjl + δilδjk) + βδijδkl − β2δijδkl}

= E(i, j, k, l)− δijδkl,

(4.3.10)
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where E(i, j, k, l) = (β2 − β)−1κ(δijδkl + δikδjl + δilδjk). Applying Corollary 4.1.3, we get

E{det∇2X(θ)|X(θ) = w}

= (−1)N (β2 − β)N/2
N∑
j=0

(−1)j
( bj/2c∑

i=0

G2iSj−2i

(
∇2m(θ)√
β2 − β

))(
βw√
β2 − β

)N−j
.

(4.3.11)

Then

E{ϕ(Au(X, SN ))} =
(β − 1)N/2

(2π)N/2

∫
Θ
dσ(θ)

∫ ∞
u

dw e
− 1

2β
‖∇m(θ))‖2

×
[ N∑
j=0

(−1)j
( bj/2c∑

i=0

G2iSj−2i

(
∇2m(θ)√
β2 − β

))(
βw√
β2 − β

)N−j]
.

Case 2: β < 1. Then (4.3.9) becomes

E{det∇2X(θ)|X(θ) = w}

= E{det(∇2Z(θ) +∇2m(θ))|X(θ) = w}

= (β − β2)N/2E{det((β − β2)−1/2∇2Z(θ) + (β − β2)−1/2∇2m(θ))|X(θ) = w}

= (β − β2)N/2E{det(∆̃ + (β − β2)−1/2∇2m(θ)− β(β − β2)−1/2wIN )},

where ∆̃ = (∆̃ij)1≤i,j≤N and all ∆̃ij are centered Gaussian variables satisfying

E{∆̃ij∆̃kl} = (β − β2)−1E{Zij(θ)Zkl(θ)|X(θ) = w}

= (β − β2)−1{κ(δijδkl + δikδjl + δilδjk) + βδijδkl − β2δijδkl}

= Ẽ(i, j, k, l) + δijδkl,
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where Ẽ(i, j, k, l) = (β − β2)−1κ(δijδkl + δikδjl + δilδjk). Applying Corollary 4.1.3, we get

E{det∇2X(θ)|X(θ) = w}

= (−1)N (β − β2)N/2
N∑
j=0

(−1)j
( bj/2c∑

i=0

G̃2iSj−2i

(
∇2m(θ)√
β − β2

))(
βw√
β − β2

)N−j
.

Then

E{ϕ(Au(X, SN ))} =
(1− β)N/2

(2π)N/2

∫
Θ
dσ(θ)

∫ ∞
u

dw e
− 1

2β
‖∇m(θ))‖2

×
[ N∑
j=0

(−1)j
( bj/2c∑

i=0

G̃2iSj−2i

(
∇2m(θ)√
β − β2

))(
βw√
β − β2

)N−j]
.

Case 3: β = 1. Then (4.3.9) becomes

E{det∇2X(θ)|X(θ) = w} = E{det(∇2Z(θ) +∇2m(θ))|X(θ) = w}

= E{det(∆′ +∇2m(θ)− wIN )},

where ∆′ = (∆′ij)1≤i,j≤N and all ∆′ij are centered Gaussian variables satisfying

E{∆′ij∆
′
kl} = E{Zij(θ)Zkl(θ)|X(θ) = w}

= κ(δijδkl + δikδjl + δilδjk) + βδijδkl − β2δijδkl

= E ′(i, j, k, l),

where E ′(i, j, k, l) = κ(δijδkl + δikδjl + δilδjk). Applying Corollary 4.1.3, we get

E{det∇2X(θ)|X(θ) = w} = (−1)N
N∑
j=0

(−1)jSj(∇2m(θ))wN−j .
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Then

E{ϕ(Au(X, SN ))} =
1

(2π)N/2

∫
Θ
dσ(θ)

∫ ∞
u

dw e−
1
2‖∇m(θ)‖2

×
[ N∑
j=0

(−1)jSj(∇2m(θ))wN−j
]
.

�
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Chapter 5

Excursion Probability of Smooth

Gaussian Processes over Random

Intervals

Let {X(t) : t ∈ [0,∞)} be a Gaussian process and let T > 0 be a fixed number, the tail

probability P{sup0≤t≤T X(t) ≥ u} for large u has been extensively studied in the literature.

However, the supremum over the a fixed domain [0, T ] is not adequate in certain applications

[cf. Kozubowski et al. (2004, 2006)], instead, one needs to consider the asymptotics for

sup0≤t≤T X(t) where T is a non-negative random variable independent of X.

To study P{sup0≤t≤T X(t) ≥ u}, we have to take into account the behaviors of both

X and T . Therefore, some interesting phenomena arise due to the connection between the

Gaussian process and the random interval. Recently, M. Arendarczyk and K. Debicki (2011,

2012) considered the case when the Gaussian process X is non-smooth (i.e. the sample path

is not twice differentiable), and obtained the following result under certain conditions:

P
{

sup
0≤t≤T

X(t) ≥ u
}

= g1(u)(1 + o(1)), as u→∞, (5.0.1)

where g1(u) is a function depending on X and T .
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In the theory of approximating P{sup0≤t≤T X(t) ≥ u} for a fixed domain [0, T ], the

asymptotic results for smooth Gaussian processes [cf. Adler and Taylor (2007) and Azäıs and

M. Wschebor (2009)] are much more accurate than those for non-smooth Gaussian processes

[cf. Piterbarg (1996a)]. More specifically, under certain smoothness condition, one can get

a higher-order approximation such that the error term decays exponentially faster than the

principle term. Motivated by this, one may expect that for smooth Gaussian processes over

random interval [0, T ], the following approximation holds under certain conditions:

P
{

sup
0≤t≤T

X(t) ≥ u
}

= g2(u)(1 + o(e−αu
2
)), as u→∞, (5.0.2)

for some α > 0, where g2(u) is a function depending on X and T . Obviously, compared with

(5.0.1), (5.0.2) provides a much more accurate approximation. In this chapter, we apply the

Rice method [cf. Azäıs and Delmas (2002) and Azäıs and M. Wschebor (2009)] to prove our

main results Theorem 5.1.6 and Theorem 5.2.5 which are of the form as (5.0.2).

5.1 Stationary Gaussian Processes

Let X = {X(t) : t ∈ R+} be a centered stationary Gaussian process with Var(X(0)) = 1.

Define

r(t) := E{X(t)X(0)}, λ2 := Var(X ′(0)).

We will impose conditions (H1), (H3) and the following regularity condition (A1) on X.

(A1). For any fixed δ > 0, supt≥δ r(t) < 1.
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The number of maxima above level u over [0, T ] becomes

Mu(0, T ) = #{t ∈ (0, T ) : X(t) ≥ u,X ′(t) = 0, X ′′(t) < 0}. (5.1.1)

Note that for each fixed t, X(t) and X ′(t) are independent, by (2.3.1), we have the following

upper bound for the excursion probability,

P
{

sup
0≤t≤T

X(t) ≥ u
}

≤ P{X(0) ≥ u,X ′(0) ≤ 0}+ P{X(T ) ≥ u,X ′(T ) ≥ 0}+ E{Mu(0, T )}

= Ψ(u) + E{Mu(0, T )}.

(5.1.2)

Similarly, by (2.3.2), the lower bound becomes

P
{

sup
0≤t≤T

X(t) ≥ u
}

≥ Ψ(u) + E{Mu(0, T )} − 1

2
E{Mu(0, T )(Mu(0, T )− 1)}

− P{X(0) ≥ u,X ′(0) ≤ 0, X(T ) ≥ u,X ′(T ) ≥ 0}

− E{Mu(0, T )1{X(0)≥u,X′(0)≤0}} − E{Mu(0, T )1{X(T )≥u,X′(T )≥0}}.

(5.1.3)

Lemma 5.1.1 Let X be a centered stationary Gaussian process satisfying (H1) and (H3).

Then there exists some universal α > 0 such that for all T > 0, as u→∞,

E{Mu(0, T )} =
λT

2π
e−u

2/2(1 + o(e−αu
2
)).
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Proof Due to (H1) and (H3), one can use the Kac-Rice metatheorem and get

E{Mu(0, T )} =

∫ T

0
pX′(t)(0)E{|X ′′(t)|1{X(t)≥u,X′′(t)<0}|X

′(t) = 0}dt

= −
∫ T

0

1

2πλ
dt

∫ ∞
u

E{X ′′(t)1{X′′(t)<0}|X(t) = x,X ′(t) = 0}e−x
2/2dx

= − T

2πλ
dt

∫ ∞
u

E{X ′′(0)1{X′′(0)<0}|X(0) = x}e−x
2/2dx,

(5.1.4)

where the second equality is due to the independence of X(t) and X ′(t), the last equality is

due to the stationarity of X. Note that E{X(0)X ′′(0)} = −λ2, by Lemma 2.5.1,

E{X ′′(0)|X(0) = x} = −λ2x.

Make change of variable V = X ′′(0) + λ2x, then V |X(0) = x is a Gaussian variable with

mean 0 and variance κ2 = Var(X ′′(0)|X(0)). Let us denote its density by g(v), then

E{X ′′(0)1{X′′(0)<0}|X(0) = x}

= E{X ′′(0)|X(0) = x} − E{X ′′(0)1{X′′(0)≥0}|X(0) = x}

= −λ2x−
∫
v≥λ2x

(v − λ2x)g(v)dv.

(5.1.5)

But the last integral in (5.1.5) is non-negative and bounded by

∫
v≥λ2x

vg(v)dv =

∫
v≥λ2x

v√
2πκ

e
− v2

2κ2 dv =
κ√
2π
e
−λ

4x2

2κ2 .

Since λ2 and κ2 are both constants not depending on T , plugging (5.1.5) into (5.1.4), we

obtain the desired result by choosing some α ∈ (0, λ4/(2κ2)). �
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Lemma 5.1.2 Let X be a centered stationary Gaussian process satisfying (H1), (H3) and

(A1). For t2 > t1 > 0, let

f(t1, t2) := min
{

1, inf
t1≤t≤t2

detCov(X(0), X ′(0), X(t), X ′(t))
}
. (5.1.6)

Then for any ε > 0, there exist positive constants C, δ and ε1 such that for all (0, T ) ⊂ R

and u large enough,

E{Mu(0, T )(Mu(0, T )− 1)}

≤ CT exp

{
− u2

2β2 + ε

}
+ T 2(f(δ, T ))−5/2 exp

{
− u2

2− ε1

}
,

where C, δ and ε1 do not depend on T and β2 = Var(X(0)|X ′′(0)) < 1.

Remark 5.1.3 Note that X is stationary, hence for any fixed t ≥ 0, X ′(t) is independent

of both X(t) and X ′′(t), thus

detCov(X(0), X ′(0), X(t), X ′(t)) = det



1 0 r(t) r′(t)

0 λ2 −r′(t) −r′′(t)

r(t) −r′(t) 1 0

r′(t) −r′′(t) 0 λ2


= [λ4 − (r′′(t))2][1− r2(t)] + (r′(t))2[(r′(t))2 − 2r(t)r′′(t)− 2λ2].

Proof Let b > a ≥ 0 and b− a ≤ 2δ for some δ > 0. Due to (H1) and (H3), one can use

the Kac-Rice formula for factorial moments [cf. Theorem 11.5.1 in Adler and Taylor (2007)],
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thus

E{Mu(a, b)(Mu(a, b)− 1)}

=

∫ b

a
dt

∫ b

a
ds pX′(t),X′(s)(0, 0)

× E{|X ′′(t)X ′′(s)|1{X(t)≥u,X′′(t)<0}1{X(s)≥u,X′′(s)<0}|X
′(t) = X ′(s) = 0}

≤
∫ b

a
dt

∫ b

a
ds

∫ ∞
u

dx pX(t)(x|X
′(t) = X ′(s) = 0)pX′(t),X′(s)(0, 0)

× E{|X ′′(t)X ′′(s)||X(t) = x,X ′(t) = X ′(s) = 0}.

(5.1.7)

Let E(t, s) = E{|X ′′(t)X ′′(s)||X(t) = x,X ′(t) = X ′(s) = 0}. By Taylor’s formula,

X ′(s) = X ′(t) +X ′′(t)(s− t) + |s− t|1+ηYt,s, (5.1.8)

where Yt,s is a centered Gaussian variable. In particular, for s > t,

Yt,s =
X ′(s)−X ′(t)−X ′′(t)(s− t)

|s− t|1+η
=

∫ s
t (X ′′(v)−X ′′(t))dv

(s− t)1+η
,

and thus by (H1), Var(Yt,s) ≤ L2. Due to (5.1.8), we have

E(t, s) = E{|X ′′(t)X ′′(s)||X(t) = x,X ′(t) = 0, X ′′(t)(s− t) = −|s− t|1+ηYt,s}

= |s− t|ηE{|Yt,sX ′′(s)||X(t) = x,X ′(t) = 0, X ′′(t)(s− t) = −|s− t|1+ηYt,s}.

(5.1.9)
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By stationarity and (H1),

Var(X ′′(t)|X(t) = x,X ′(t) = X ′(s) = 0) ≤ Var(X ′′(t)) ≤ C1,

Var(Yt,s|X(t) = x,X ′(t) = X ′(s) = 0) ≤ Var(Yt,s) ≤ L2,

(5.1.10)

where C1 is a positive constant. On the other hand, for |s− t| small enough,

|E{X ′′(s)|X(t) = x,X ′(t) = X ′(s) = 0}|

= |E{X ′′(s)|X(t) = x,X ′(t) = 0, X ′′(t) + |s− t|ηYt,s = 0}|

= |E{X ′′(s)|X(t) = x,X ′(t) = 0, X ′′(t) = 0}|(1 + o(1))

≤ C2|x|,

(5.1.11)

and similarly,

|E{Yt,s|X(t) = x,X ′(t) = X ′(s) = 0}| ≤ C3|x|, (5.1.12)

for some C2, C3 > 0. Note that for any Gaussian variables ξ1 and ξ2,

E|ξ1ξ2| ≤ Eξ2
1 + Eξ2

2 = (Eξ1)2 + Var(ξ1) + (Eξ2)2 + Var(ξ2). (5.1.13)

Applying (5.1.13) and plugging (5.1.10), (5.1.11) and (5.1.12) into (5.1.9), we obtain that

there exists some C4 > 0 such that

E(t, s) ≤ C4|s− t|η(1 + x2). (5.1.14)

129



By Taylor’s formula (5.1.8),

Var(X(t)|X ′(t), X ′(s))

= Var(X(t)|X ′(t), X ′(t) +X ′′(t)(s− t) + |s− t|1+ηYt,s)

= Var(X(t)|X ′(t), X ′′(t)± |s− t|ηYt,s)

= Var(X(t)|X ′(t), X ′′(t))(1 + o(1))

= Var(X(0)|X ′′(0))(1 + o(1)),

(5.1.15)

where the last equality is due to the fact that X ′(t) is independent of both X(t) and X ′′(t).

Hence for any ε > 0, if |b− a| is small enough and u is large enough, then

∫ ∞
u

(1 + x2)pX(t)(x|X
′(t) = X ′(s) = 0)dx ≤ e

− u2

2β2+ε . (5.1.16)

Note that

pX′(t),X′(s)(0, 0) ≤ 1

2π
√

detCov(X ′(t), X ′(s))

and by Taylor’s formula (5.1.8),

detCov(X ′(t), X ′(s)) = detCov(X ′(t), X ′(t) +X ′′(t)(s− t)± |s− t|1+ηYt,s)

= |s− t|2detCov(X ′(t), X ′′(t)± |s− t|ηYt,s)

= |s− t|2detCov(X ′(t), X ′′(t))(1 + o(1)),

(5.1.17)

as |s − t| → 0 uniformly. Thus there exists some C5 > 0 such that for |s − t| sufficiently

small,

pX′(t),X′(s)(0, 0) ≤ C5

|s− t|
. (5.1.18)
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Plugging (5.1.14), (5.1.16) and (5.1.18) into (5.1.7) we obtain that for any ε > 0, if δ is small

enough, then there exists C6 > 0 such that for large u,

E{Mu(a, b)(Mu(a, b)− 1)} ≤ C4C5e
− u2

2β2+ε

∫ b

a

∫ b

a
|s− t|η−1dtds

≤ C6(b− a)1+ηe
− u2

2β2+ε

≤ C6(b− a)e
− u2

2β2+ε .

(5.1.19)

The set [0, T ] may be covered by congruent intervals Ii = [ai, ai+1] with the same length

δ and disjoint interiors. Then

E{Mu(0, T )(Mu(0, T )− 1)} ≤ E
{∑

i

Mu(Ii)

(∑
i

(Mu(Ii)− 1)

)}

= E
{∑

i

Mu(Ii)
∑
j

Mu(Ij)−
∑
i

Mu(Ii)

}

=
∑
i

E{Mu(Ii)
2}+

∑
i6=j

E{Mu(Ii)Mu(Ij)} −
∑
i

E{Mu(Ii)}

=
∑
i

E{Mu(Ii)(Mu(Ii)− 1)}+
∑
i6=j

E{Mu(Ii)Mu(Ij)}.

(5.1.20)

If Ii and Ij are neighboring, say j = i+ 1, we have

E{Mu(Ii ∪ Ii+1)(Mu(Ii ∪ Ii+1)− 1)}

= E{(Mu(Ii) +Mu(Ii+1))(Mu(Ii) +Mu(Ii+1)− 1)}

= 2E{Mu(Ii)Mu(Ii+1)}+ E{Mu(Ii)(Mu(Ii)− 1)}+ E{Mu(Ii+1)(Mu(Ii+1)− 1)}.

(5.1.21)

131



It follows from (5.1.19) and (5.1.21) that for any ε > 0, if δ is small enough and u is large

enough, then

E{Mu(Ii)Mu(Ii+1)} ≤ 1

2
E{Mu(Ii ∪ Ii+1)(Mu(Ii ∪ Ii+1)− 1)}

=
1

2
E{Mu(ai, ai+2)(Mu(ai, ai+2)− 1)}

≤ C6

2
(ai+2 − ai)e

− u2

2β2+ε

(5.1.22)

and hence

∑
i

E{Mu(Ii)(Mu(Ii)− 1)}+
∑

i 6=j,Ii∩Ii+1 6=∅
E{Mu(Ii)Mu(Ii+1)} ≤ 2C6Te

− u2

2β2+ε . (5.1.23)

Next we consider the case when Ii = [ai, ai+1] and Ij = [aj , aj+1] are non-neighboring,

which implies aj − ai+1 ≥ δ. By the Kac-Rice formula for higher moments [cf. the proof is

the same as that of Theorem 11.5.1 in Adler and Taylor (2007)],

E{Mu(Ii)Mu(Ij)}

=

∫ ai+1

ai

dt

∫ aj+1

aj

ds pX′(t),X′(s)(0, 0)

× E{|X ′′(t)X ′′(s)|1{X(t)≥u,X′′(t)<0}1{X(s)≥u,X′′(s)<0}|X
′(t) = X ′(s) = 0}

≤
∫ ai+1

ai

dt

∫ aj+1

aj

ds

∫ ∞
u

dx

∫ ∞
u

dy pX′(t),X′(s)(0, 0|X(t) = x,X(s) = y)pX(t),X(s)(x, y)

× E{|X ′′(t)X ′′(s)||X(t) = x,X(s) = y,X ′(t) = X ′(s) = 0}.

(5.1.24)
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By Lemma 2.5.1 and the stationarity of X, there exists some C7 > 0 such that

|E{X ′′(t)|X(t) = x,X(s) = y,X ′(t) = X ′(s) = 0}|

≤ C7(|x|+ |y|)
detCov(X(t), X(s), X ′(t), X ′(s))

and

|E{X ′′(s)|X(t) = x,X(s) = y,X ′(t) = X ′(s) = 0}|

≤ C7(|x|+ |y|)
detCov(X(t), X(s), X ′(t), X ′(s))

.

Together with (5.1.13), similarly to (5.1.14), we obtain that

E{|X ′′(t)X ′′(s)||X(t) = x,X(s) = y,X ′(t) = X ′(s) = 0}

≤ C8

(
1 +

x2 + y2

[detCov(X(t), X(s), X ′(t), X ′(s))]2

)
,

(5.1.25)

for some C8 > 0. On the other hand,

pX′(t),X′(s)(0, 0|X(t) = x,X(s) = y)

≤ 1

2π
√

detCov(X ′(t), X ′(s)|X(t), X(s))

=
1

2π

√
detCov(X(t), X(s))

detCov(X(t), X(s), X ′(t), X ′(s))

≤ C9√
detCov(X(t), X(s), X ′(t), X ′(s))

,

(5.1.26)
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for some C9 > 0. Plugging (5.1.25) and (5.1.26) into (5.1.24), we obtain that for large u,

E{Mu(Ii)Mu(Ij)}

≤ 2(ai+1 − ai)(aj+1 − aj)(f(δ, T ))−5/2
∫ ∞
u

∫ ∞
u

(x2 + y2)pX(t),X(s)(x, y)dxdy.

(5.1.27)

Let R(δ) := supt≥δ r(t) which is strictly less than 1 by (H3), then for sufficiently large u,

sup
|s−t|≥δ

∫ ∞
u

∫ ∞
u

(x2 + y2)pX(t),X(s)(x, y)dxdy

≤ sup
|s−t|≥δ

E{(X(t)X(s))2
1{X(t)≥u,X(s)≥u}}

≤ sup
|s−t|≥δ

E{(X(t) +X(s))4)1{X(t)+X(s)≥2u}}

≤ u4e−u
2/(1+R(δ)).

(5.1.28)

Let ε1 > 1−R(δ), by (5.1.27) and (5.1.28), we obtain that for sufficiently large u,

∑
i 6=j,Ii∩Ij=∅

E{Mu(Ii)Mu(Ij)} ≤ T 2(f(δ, T ))−5/2e−u
2/(2−ε1). (5.1.29)

Combining (5.1.20) and (5.1.23) with (5.1.29), we obtain the desired result. �

Lemma 5.1.4 Let X be a centered stationary Gaussian process satisfying (H1), (H3) and

(A1). Then there exist some universal positive constants δ and α such that for all T > 0

and u large enough,

E{Mu(0, T )1{X(0)≥u,X′(0)≤0}} ≤ T [f(δ, T )]−3/2e−αu
2−u2/2,

E{Mu(0, T )1{X(T )≥u,X′(T )≥0}} ≤ T [f(δ, T )]−3/2e−αu
2−u2/2,
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where f(δ, T ) is defined in (5.1.6).

Proof We shall only prove the first inequality, since the proof for the second one is similar.

By Kac-Rice formula,

E{Mu(0, T )1{X(0)≥u,X′(0)≤0}}

=

∫ T

0
dt

∫ ∞
u

dx

∫ ∞
u

dy

∫ 0

−∞
dz E{|X ′′(t)|1{X′′(t)<0}|X(t) = x,X(0) = y,

X ′(t) = 0, X ′(0) = z}pX(t),X(0),X′(t),X′(0)(x, y, 0, z)

≤
∫ T

0
dt

∫ ∞
u

dx

∫ ∞
u

dy

∫ 0

−∞
dz E{|X ′′(t)||X(t) = x,X(0) = y,X ′(t) = 0, X ′(0) = z}

× pX(t),X(0),X′(t),X′(0)(x, y, 0, z)

:=

∫ T

0
Au(t)dt.

Let δ be a positive constant to be specified. We first consider

∫ T

δ
Au(t)dt ≤

∫ T

δ
dt

∫ ∞
u

dx

∫ ∞
u

dy E{|X ′′(t)||X(t) = x,X(0) = y,X ′(t) = 0}

× pX′(t)(0|X(t) = x,X(0) = y)pX(t),X(0)(x, y).

(5.1.30)

Note that E|ξ| ≤ E|ξ − Eξ|+ |Eξ| ≤
√

Var(ξ) + |Eξ| for any random variable ξ,

Var(X ′′(t)|X(t), X(0), X ′(t)) ≤ Var(X ′′(t)) = Var(X ′′(0)).
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By Lemma 2.5.1 and the stationarity of X, there exists some C1 > 0 such that

sup
δ≤t≤T

|E{X ′′(t)|X(t) = x,X(0) = y,X ′(t) = 0}|

≤ sup
δ≤t≤T

C1(|x|+ |y|)
detCov(X(t), X(0), X ′(t))

= sup
δ≤t≤T

C1(|x|+ |y|)Var(X ′(0)|X(t), X(0), X ′(t))
detCov(X(t), X(0), X ′(t), X ′(0))

≤ C1λ
2[f(δ, T )]−1(|x|+ |y|).

It follows that there exists some C2 > 0 such that

E{|X ′′(t)||X(t) = x,X(0) = y} ≤ C2(1 + [f(δ, T )]−1)(|x|+ |y|). (5.1.31)

Similarly, there exists some C3 > 0 such that

sup
δ≤t≤T

pX′(t)(0|X(t) = x,X(0) = y)

≤ sup
δ≤t≤T

1√
2πVar(X ′(t)|X(t), X(0))

≤ C3[f(δ, T )]−1/2.

(5.1.32)

On the other hand, for sufficiently large u,

sup
t≥δ

∫ ∞
u

dx

∫ ∞
u

dy(x+ y)pX(t),X(0)(x, y)

= sup
t≥δ

E{(X(t) +X(0))1{X(t)≥u,X(0)≥u}}

≤ sup
t≥δ

E{(X(t) +X(0))1{X(t)+X(0)≥2u}} ≤ ue−u
2/(1+R(δ)).

(5.1.33)
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Plugging (5.1.31), (5.1.32) and (5.1.33) into (5.1.30), we obtain that for all T > 0, if u is

sufficiently large, then ∫ T

δ
Au(t)dt ≤ T [f(δ, T )]−3/2e

− u2
2−ε1 ,

where ε1 > 1−R(δ).

Next we consider

∫ δ

0
Au(t)dt ≤

∫ δ

0
dt

∫ ∞
u

dy

∫ 0

−∞
dzE{|X ′′(t)||X(0) = y,X ′(0) = z,X ′(t) = 0}

× pX(0),X′(0),X′(t)(y, z, 0).

Note that

pX(0),X′(0),X′(t)(y, z, 0)

= pX(0)(y|X
′(0) = z,X ′(t) = 0)pX′(0)(z|X

′(t) = 0)pX′(t)(0)

≤ (2π)−3/2[detCov(X(0), X ′(0), X ′(t))]−1/2e
−

(y−µt,z)2

2σ2
t e

− z2

2γ2
t ,

where

µt,z = E{X(0)|X ′(0) = z,X ′(t) = 0},

σ2
t = Var(X(0)|X ′(0), X ′(t)),

γ2
t = Var(X ′(0)|X ′(t)).

By (H1) and Taylor’s formula, we can write

X ′(t) = X ′(0) +X ′′(0)t+ Y0,tt
1+η,
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where Y0,t is a centered Gaussian variable. We find that for t ∈ (0, δ) with δ sufficiently

small,

E{X(0)X ′(t)} = t(E{X(0)X ′′(0)}+ tηE{X(0)Y0,t})

= t(−λ2 + tηE{X(0)Y0,t}) ≤ 0.

Since z < 0, it follows from Lemma 2.5.1 that µt,z ≤ 0. If δ is sufficiently small, we also

have, similarly to (5.1.15),

σ2
t = Var(X(0)|X ′′(0))(1 + o(1)) < 1− ε0,

and similarly to (5.1.17),

C4t
2 ≤ γ2

t ≤ C5t
2,

detCov(X(0), X ′(0), X ′(t)) ≥ C6t
2,

where ε0, C4, C5 and C6 are some positive constants. Together with the fact that

E{|X ′′(t)||X(0) = y,X ′(0) = z,X ′(t) = 0}

= E{|X ′′(t)||X(0) = y,X ′(t)− tX ′′(t) + t1+ηYt,0 = z,X ′(t) = 0}

= E{|X ′′(t)||X(0) = y,X ′′(t)− tηYt,0 = z/t,X ′(t) = 0}

≤ C7(y + |z/t|+ 1)
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for some C7 > 0, where the first equality is due to Taylor’s formula, we obtain that for δ

sufficiently small and u sufficiently large,

∫ δ

0
Au(t)dt ≤ (2π)−3/2C

−1/2
6

∫ δ

0

1

t
dt

∫ ∞
u

dy

∫ 0

−∞
dz(y + |z/t|+ 1)e

−
(y−µt,z)2

2σ2
t e

− z2

2γ2
t

≤ (2π)−3/2C
−1/2
6

∫ δ

0

1

t
dt

∫ ∞
u

dy

∫ 0

−∞
dz(y + |z/t|+ 1)e

− y2

2σ2
t e
− z2

2C5t
2

= (2π)−3/2C
−1/2
6

∫ δ

0
dt

∫ ∞
u

dy

∫ 0

−∞
dz(y + |z|+ 1)e

− y2

2σ2
t e
− z2

2C5

≤ δe
− u2

2(1−ε0) .

(5.1.34)

Combining (5.1.30) with (5.1.34), we obtain that there exist some universal δ, α > 0 such

that for all T > 0 and u large enough,

E{Mu(0, T )1{X(0)≥u,X′(0)≤0}} ≤ T [f(δ, T )]−3/2e−αu
2−u2/2.

This completes the proof. �

Lemma 5.1.5 Let X be a centered stationary Gaussian process satisfying (H1), (H3) and

(A1). Then there exists some universal α > 0 such that for all T > 0 and u large enough,

P{X(0) ≥ u,X ′(0) ≤ 0, X(T ) ≥ u,X ′(T ) ≥ 0} ≤ e−αu
2−u2/2.
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Proof Let δ > 0, then similarly to (5.1.33), we obtain that for sufficiently large u,

sup
T≥δ

P{X(0) ≥ u,X ′(0) ≤ 0, X(T ) ≥ u,X ′(T ) ≥ 0}

≤ sup
T≥δ

P{X(0) ≥ u,X(T ) ≥ u} ≤ e−u
2/(1+R(δ)).

(5.1.35)

For T ∈ (0, δ), by Taylor’s formula,

X ′(T ) = X ′(0) +X ′′(0)T + Y0,TT
1+η,

it follows that

P{X(0) ≥ u,X ′(0) ≤ 0, X(T ) ≥ u,X ′(T ) ≥ 0}

≤ P{X(0) ≥ u,X ′(0) ≤ 0, X ′(T ) ≥ 0}

= P{X(0) ≥ u,X ′(0) ≤ 0, X ′(0) +X ′′(0)T + Y0,TT
1+η ≥ 0}

≤ P{X(0) ≥ u,X ′′(0) + Y0,TT
η ≥ 0}.

(5.1.36)

Let ξ(T ) = X ′′(0) + Y0,TT
η, κ2(T ) = Var(ξ(T )) and ρ(T ) = E{X(0)ξ(T )}/κ(T ), T ∈ (0, δ).

Since E{X(0)X ′′(0)} = −λ2, if δ is sufficiently small, sup0≤T≤δ ρ(T ) < −ε0 for some ε0 > 0.

Let

κ = sup
0≤T≤δ

κ(T ), κ = inf
0≤T≤δ

κ(T ),

ρ = sup
0≤T≤δ

ρ(T ), ρ = inf
0≤T≤δ

ρ(T ),
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then 0 < κ ≤ κ <∞ and −1 < ρ ≤ ρ < −ε0. We obtain that as u→∞,

sup
0≤T≤δ

P{X(0) ≥ u,X ′′(0) + Y0,TT
η ≥ 0}

= sup
0≤T≤δ

1

2πκ(T )(1− ρ2(T ))1/2

∫ ∞
u

dx1

∫ ∞
0

dx2

× exp

{
− 1

2(1− ρ2(T ))

(
x2

1 +
x2

2

κ2(T )
− 2ρ(T )x1x2

κ(T )

)}
= sup

0≤T≤δ

1

2πκ(T )(1− ρ2(T ))1/2

∫ ∞
u

dx1 exp{−x2
1/2}

×
∫ ∞

0
exp

{
− (x2 − κ(T )ρ(T )x1)2

2κ2(T )(1− ρ2(T ))

}
dx2

≤ 1

2πκ(1− ρ2)1/2

∫ ∞
u

dx1 exp{−x2
1/2}

∫ ∞
0

exp

{
− (x2 − κρx1)2

2κ2(1− ρ2)

}
dx2

= o

(
exp

{
− u2

2
− κ2ρ2u2

2κ2(1− ρ2)
+ εu2

})
,

(5.1.37)

for any ε > 0. Combining (5.1.35) and (5.1.36) with (5.1.37) yields the result. �

Theorem 5.1.6 Let {X(t) : t ∈ R+} be a centered stationary Gaussian process satisfying

(H1), (H3) and (A1), and let T be a non-negative random variable independent of X. If

ET 2(f(δ, T ))−5/2 <∞ for any fixed δ > 0, then there exists α > 0 such that as u→∞,

P
{

sup
0≤t≤T

X(t) ≥ u
}

= Ψ(u) +
λET
2π

e−u
2/2 + o(e−αu

2−u2/2).

Proof Let FT be the cumulative distribution function of T . Note that

P
{

sup
0≤t≤T

X(t) ≥ u
}

=

∫ ∞
0

P
{

sup
0≤t≤T

X(t) ≥ u
}
FT (dT ), (5.1.38)
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combining (5.1.2), (5.1.3), Lemma 5.1.1, Lemma 5.1.2 and Lemma 5.1.4 with Lemma 5.1.5,

we obtain the result. �

Example 5.1.7 Let X be a centered stationary Gaussian process with covariance function

r(t) = e−
t2
2 . Then Var(X ′(0)) = Var(X(0)) = 1,E{X ′(t)X(0)} = −E{X(t)X ′(0)} =

r′(t) = −te−
t2
2 and E{X ′(t)X ′(0)} = −r′′(t), thus

detCov(X(t), X ′(t), X(0), X ′(0)) = (1− e−t
2
)2, (5.1.39)

which is increasing in t > 0. Hence if ET 2 <∞, then

P
{

sup
0≤t≤T

X(t) ≥ u
}

= Ψ(u) +
ET
2π

e−u
2/2 + o(e−αu

2−u2/2).

5.2 Gaussian Processes with Increasing Variance

In this section, we consider a Gaussian process {X(t) : t ∈ R+} with increasing variance at

infinity. Let

σ2
t = Var(X(t)), λ2

t = Var(X ′(t)), θ2
t = Var(X(t)|X ′(t)). (5.2.1)

Let T be a non-negative random variable satisfying

P{T ≥ t} = exp{−βtα(1 + o(1))} as t→∞, (5.2.2)
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where α, β > 0. We write T ∈ E(α, β) if T satisfies (5.2.2). Note that (5.2.2) implies that

the corresponding cumulative distribution function FT (t) is continuous when t is sufficiently

large.

In additional to conditions (H1) and (H3), we will impose the following two conditions

(A2) and (A3) on X.

(A2). There exist α∞ > 0 and D1 > D2 > 0 such that as t→∞,

σ2
t = D1t

α∞(1 + o(1)), θ2
t = D2t

α∞(1 + o(1)).

(A3). There exists N1 > 0 such that as t→∞,

max{λ2
t ,Var(X ′′(t)), (detCov(X(t), X ′(t)))−1} = O(tN1).

We will make use of the following inequality to estimate the excursion probability over

each fixed interval [0, T ]:

P{X(T ) ≥ u} ≤ P
{

sup
0≤t≤T

X(t) ≥ u
}
≤ P{X(T ) ≥ u}+ P{X(0) ≥ u}+ E{Mu(0, T )}.

(5.2.3)

The following result is Lemma 6.2 in Arendarczyk and Decicki (2011), which is analogous

to the Laplace method.

Lemma 5.2.1 Let α1, α2, β1, β2 > 0 and a(u) = u(1−δ)α1/(α1+α2), A(u) = u(1+δ)α1/(α1+α2),

where 0 < δ < α2/α1. Then as u→∞,

∫ A(u)

a(u)
exp

{
− β1u

α1

xα1
− β2x

α2

}
dx = exp{−β3u

α3(1 + o(1))},
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where

α3 =
α1α2

α1 + α2
,

β3 = β
α2/(α1+α2)
1 β

α1/(α1+α2)
2

[(α1

α2

)α2/(α1+α2)
+
(α2

α1

)α1/(α1+α2)]
.

Now we prove a lemma similar to Lemma 2.1 in Arendarczyk and Decicki (2011).

Lemma 5.2.2 Let X ∈ E(α1, β1), Y ∈ E(α2, β2) be independent non-negative random vari-

ables. Then XY ∈ E(α, β) with

α =
α1α2

α1 + α2
,

β = β
α2/(α1+α2)
1 β

α1/(α1+α2)
2

[(α1

α2

)α2/(α1+α2)
+
(α2

α1

)α1/(α1+α2)]
.

Proof Let a(u) = u(1−δ)α1/(α1+α2), A(u) = u(1+δ)α1/(α1+α2), where 0 < δ < α2/α1.

Then

P{XY ≥ u} =

∫ ∞
0

P{X ≥ u/y}dFY (y),

=

∫ a(u)

0
P{X ≥ u/y}dFY (y) +

∫ A(u)

a(u)
P{X ≥ u/y}dFY (y)

+

∫ ∞
A(u)

P{X ≥ u/y}dFY (y)

= I1(u) + I2(u) + I3(u).

For any ε > 0 and u large enough, we see that

I1(u) ≤ P{X ≥ u/a(u)} ≤ exp{−(β1 − ε)[u/a(u)]α1}

≤ exp{−(β1 − ε)uα1α2/(α1+α2)+δα2
1/(α1+α2)} = o(exp{−uα3+ε0})
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and

I3(u) ≤ P{Y ≥ A(u)} ≤ exp{−(β2 − ε)(A(u))α2}

≤ exp{−(β2 − ε)u(1+δ)α1α2/(α1+α2)} = o(exp{−uα3+ε0}).

Next we estimate I2. Note that both u/a(u) and u/A(u) tend to ∞, hence for any ε > 0

and u large enough, we have

I2(u) ≥
∫ A(u)

a(u)
exp{−(β1 + ε)(u/y)α1}dFY (y)

=

∫ A(u)

a(u)

∂

∂y
exp{−(β1 + ε)(u/y)α1}P{Y ≥ y}dy

+ exp{−(β1 + ε)[u/a(u)]α1}P{Y ≥ a(u)}

− exp{−(β1 + ε)[u/A(u)]α1}P{Y ≥ A(u)}

≥
∫ A(u)

a(u)
exp{−(β1 + ε)(1 + ε)(u/y)α1} exp{−(β2 + ε)uα2}dy

+ exp{−(β1 + ε)[u/a(u)]α1} exp{−(β2 + ε)(a(u))α2}

− exp{−(β1 + ε)[u/A(u)]α1} exp{−(β2 − ε)(A(u))α2}

= I2(u, ε) +R1(u, ε)−R2(u, ε),

and similarly,

I2(u) ≤
∫ A(u)

a(u)
exp{−(β1 − ε)(1− ε)(u/y)α1} exp{−(β2 − ε)uα2}dy

+ exp{−(β1 − ε)[u/a(u)]α1} exp{−(β2 − ε)(a(u))α2}

− exp{−(β1 − ε)[u/A(u)]α1} exp{−(β2 + ε)(A(u))α2}

= I2(u, ε) +R1(u, ε)−R2(u, ε).
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Applying Lemma 5.2.1, we obtain that for any ε > 0, as u→∞

I2(u, ε) = exp{−β
3
(ε)uα3(1 + o(1))}, I2(u, ε) = exp{−β3(ε)uα3(1 + o(1))},

where

α3 =
α1α2

α1 + α2
,

β
3
(ε) = [(β1 + ε)(1 + ε)]α2/(α1+α2)(β2 + ε)α1/(α1+α2)

×
[(α1

α2

)α2/(α1+α2)
+
(α2

α1

)α1/(α1+α2)]
,

β3(ε) = [(β1 − ε)(1− ε)]α2/(α1+α2)(β2 − ε)α1/(α1+α2)

×
[(α1

α2

)α2/(α1+α2)
+
(α2

α1

)α1/(α1+α2)]
.

Together with the fact that there exists some ε0 > 0 such that all I1(u), I3(u), R1(u, ε),

R2(u, ε), R1(u, ε), R2(u, ε) are o(exp{−uα3+ε0}), we obtain the desired result. �

Lemma 5.2.3 Let X be a Gaussian process satisfying (A2) and (A3) and let T ∈ E(α, β)

be a non-negative random variable independent of X. Then X(T ) ∈ E(α̃, β̃1) with

α̃ =
2α

α + α∞
,

β̃1 = βα∞/(α+α∞)
( 1

2D1

)α/(α+α∞)[( α

α∞

)α∞/(α+α∞)
+
(α∞
α

)α/(α+α∞)]
.

(5.2.4)

Proof Let N be the standard Normal random variable and let ν(·) be the standard

deviation function of X, i.e. ν(t) = σt. Note that

P{X(T ) ≥ u} = P{ν(T )N ≥ u}. (5.2.5)
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On the other hand, as u→∞,

P{ν(T ) ≥ u} = P{T ≥ ν−1(u)} = exp{−β(ν−1(u))α(1 + o(1))}

and

ν−1(u) = D
−1/α∞
1 u2/α∞(1 + o(1)),

thus

P{ν(T ) ≥ u} = exp{−βD−α/α∞1 u2α/α∞(1 + o(1))},

i.e., ν(T ) ∈ E(2α/α∞, βD
−α/α∞
1 ). Note that N ∈ E(2, 1/2), applying Lemma 5.2.2 in

(5.2.5), we conclude the result. �

Lemma 5.2.4 Let X be a Gaussian process satisfying (H1), (H3), (A2) and (A3), and let

T ∈ E(α, β) be a non-negative random variable independent of X. Then for any ε > 0,

∫ ∞
0

E{Mu(0, T )}FT (dT ) = o(exp{−(β̃2 − ε)uα̃}) as u→∞,

where

α̃ =
2α

α + α∞
,

β̃2 = βα∞/(α+α∞)
( 1

2D2

)α/(α+α∞)[( α

α∞

)α∞/(α+α∞)
+
(α∞
α

)α/(α+α∞)]
> β̃1.

(5.2.6)
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Proof By the Kac-Rice formula,

E{Mu(0, T ))}

=

∫ T

0
dt

∫ ∞
u

dxE{|X ′′(t)|1{X′′(t)<0}|X(t) = x,X ′(t) = 0}pX(t),X′(t)(x, 0)

≤
∫ T

0
dt

∫ ∞
u

dxE{|X ′′(t)||X(t) = x,X ′(t) = 0}pX(t)(x|X
′(t) = 0)pX′(t)(0)

=

∫ T

0

1

2πλt
dt

∫ ∞
u

dxE{|X ′′(t)||X(t) = x,X ′(t) = 0} 1

θt
e−x

2/2θ2t

Note that E|ξ| ≤ E|ξ − Eξ|+ |Eξ| ≤
√

Var(ξ) + |Eξ| for any random variable ξ, and

Var(X ′′(t)|X(t), X ′(t)) ≤ Var(X ′′(t)),

E{X ′′(t)|X(t) = x,X ′(t) = 0}

=
E{X ′′(t)X(t)}λ2

t − E{X ′′(t)X ′(t)}E{X ′(t)X(t)}
detCov(X(t), X ′(t))

x.

thus

E{|X ′′(t)||X(t) = x,X ′(t) = 0}

≤
√

Var(X ′′(t)) +
|E{X ′′(t)X(t)}λ2

t − E{X ′′(t)X ′(t)}E{X ′(t)X(t)}|
detCov(X(t), X ′(t))

x,

Now let

h(t) ,
1

λtθt

(√
Var(X ′′(t)) +

|E{X ′′(t)X(t)}λ2
t − E{X ′′(t)X ′(t)}E{X ′(t)X(t)}|

detCov(X(t), X ′(t))

)
.

By (A3), there is some N2 > 0 such that

h(t) = o(tN2) as t→∞.
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Let T0 be a large number such that for t > T0, h(t) ≤ tN1 , θ2
t is increasing and θ2

t ≤ tα1+1.

Let A be a large number such that sup0≤t≤T0
h(t) ≤ A and sup0≤t≤T0

θ2
t ≤ A, then for u

large enough,

E{Mu(0, T ))} ≤
∫ T0

0

1

2π
h(t)dt

∫ ∞
u

dxe−x
2/2θ2t +

∫ T

T0

1

2π
h(t)dt

∫ ∞
u

dxe−x
2/2θ2t

≤ T0

2π
Ae−u

2/(2A) +

∫ T

T0

1

2π
tN1dt

∫ ∞
u

dxe
−x2/2θ2T

≤ T0

2π
Ae−u

2/(2A) +
1√
2π
TN1+α1/2+3/2

∫ ∞
u

dx
1√

2πθT
e
−x2/2θ2T .

Hence we have

∫ ∞
0

E{Mu(0, T )}dFT (T )

≤ T0

2π
Ae−u

2/(2A) +

∫ ∞
0

TN1+α1+2dFT (T )

∫ ∞
u

1√
2πθT

e
−x2/2θ2T dx,

= I1(u) + I2(u).

Let T̂ be a non-negative random variable with cumulative distribution function satisfying

dFT̂ (t) = tN1+α1+2dFT (t), then T̂ ∈ E(α, β). Let {X̂(t) : t ∈ R+} be a Gaussian process

with Var(X̂(t)) = θ2
t , then by Lemma 5.2.3,

X̂(T̂ ) ∈ E(α̃, β̃2),

where α̃ and β̃2 are as shown in (5.2.6). Note that

I2(u) = P{X̂(T̂ ) ≥ u}

and 2 > α̃ hence I1(u) = o(exp{−uα̃+δ}) for any δ ∈ (0, 2− α̃). Thus both I1(u) and I2(u)
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are o(exp{−(β̃2 − ε)uα̃}) for any ε > 0. The proof is completed. �

Theorem 5.2.5 Let {X(t) : t ∈ R+} be a Gaussian process satisfying (H1), (H3), (A2)

and (A3), and let T ∈ E(α, β) be a non-negative random variable independent of X. Then

X(T ) ∈ E(α̃, β̃1) and as u→∞,

P
{

sup
0≤t≤T

X(t) ≥ u
}

= P{X(T ) ≥ u}+ o(exp{−(β̃2 − ε)uα̃})

= P{X(T ) ≥ u}(1 + o(exp{−(β̃2 − β̃1 − ε)uα̃})

for any ε > 0, where α̃, β̃1 and β̃2 are as shown in (5.2.4) and (5.2.6).

Proof Note that

P
{

sup
0≤t≤T

X(t) ≥ u
}

=

∫ ∞
0

P
{

sup
0≤t≤T

X(t) ≥ u
}
FT (dT ),

combining (5.2.3) and Lemma 5.2.3 with Lemma 5.2.4, we obtain the result. �

Example 5.2.6 Let X(t) =
∫ t

0

∫ s
0 B(v)dvds, where B(v) is the standard Brownian motion.

Then one has

σ2
t =

t5

20
, λ2

t =
t3

3
, Var(X ′′(t)) = t,

E{X(t)X ′(t)} =
t4

8
, E{X(t)X ′′(t)} =

t3

6
, E{X ′(t)X ′′(t)} =

t2

2
,

θ2
t = Var(X(t)|X ′(t)) =

t5

320
.

Example 5.2.7 Let X(t) =
∫ t

0

∫ s
0 Z(v)dvds, where Z(v) is a continuous stationary Gaussian
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process with covariance function R(t) such that R(0) = 1 and

R(t) = Dtα∞−4(1 + o(1)) as t→∞,

where D > 0, 2 < α∞ < 4. Then

σ2
t =

2D

α∞(α∞ − 2)(α∞ − 3)
tα∞(1 + o(1))

and

θ2
t = σ2

t − [E{X(t)X ′(t)}]2/Var(X ′(t))

=
(4− α∞)D

2α∞(α∞ − 2)(α∞ − 3)
tα∞(1 + o(1)).
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Chapter 6

Ruin Probability of a Certain Class of

Smooth Gaussian Processes

Let {X(t) : t ≥ 0} be a centered smooth Gaussian process with variance t2γ for some

γ > 2. We consider the probability P{supt≥0(X(t) − ctβ) ≥ u} as u → ∞, where c > 0

and β > γ. We derive some asymptotic approximations to such probability which refine the

result of Hüsler and Piterbarg (1999).

6.1 Self-similar Processes

Let {X(t) : t ≥ 0} be a centered smooth Gaussian process with variance t2γ for some γ > 2.

We say X is self similar if its covariance function C(t, s) satisfies

C(at, as) = a2γC(t, s), ∀t, s ≥ 0, a > 0. (6.1.1)
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Let Y (t) =
X(t)

1+ctβ
, then

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}

= P{X(t) ≥ u+ ctβ for some t ≥ 0}

= P{X(u1/βt) ≥ u+ c(u1/βt)β for some t ≥ 0}

= P{uγ/βX(t) ≥ u(1 + ctβ) for some t ≥ 0}

= P
{

sup
t≥0

X(t)

1 + ctβ
≥ u1−γ/β

}
= P

{
sup
t≥0

Y (t) ≥ u1−γ/β
}
,

(6.1.2)

where the third equality is due to the self-similarity (6.1.1). Note that Var(Y (t)) = t2γ

(1+ctβ)2
,

as a function of t, attains its maximum

σ2 =

(
γ

c(β − γ)

)2γ/β( β

β − γ

)−2

at the unique point

t0 =

(
γ

c(β − γ)

)1/β

.

Theorem 6.1.1 Let {X(t) : t ≥ 0} be a centered self-similar Gaussian process with variance

t2γ for some γ > 2. Let β > γ and c > 0. Suppose X satisfies (H1) and (H3). Then there

exists some α > 0 such that as u→∞,

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}

= P
{

sup
t≥0

Y (t) ≥ u1−γ/β
}

= −
∫ 2t0

t0/2
dt

∫ ∞
u1−γ/β

E{Y ′′(t)|Y (t) = x, Y ′(t) = 0}
2π
√

detCov(Y (t), Y ′(t))
e−x

2/2θ2t dx

+ o

(
exp

{
− u2−2γ/β

2σ2
− αu2−2γ/β

})
,

(6.1.3)
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where Y (t) =
X(t)

1+ctβ
and θ2

t = Var(Y (t)|Y ′(t)).

Proof The first equality in (6.1.3) is the result in (6.1.2). Note that

P
{

sup
t0/2≤t≤2t0

Y (t) ≥ u1−γ/β
}
≤ P

{
sup
t≥0

Y (t) ≥ u1−γ/β
}

≤ P
{

sup
t0/2≤t≤2t0

Y (t) ≥ u1−γ/β
}

+ P
{

sup
0≤t≤t0/2

Y (t) ≥ u1−γ/β
}

+ P
{

sup
t≥2t0

Y (t) ≥ u1−γ/β
}
,

(6.1.4)

where the last two terms are super-exponentially small due to the Borell-TIS inequality [cf.

Theorem 2.1.1 in Adler and Taylor (2007)]. On the other hand, by Theorem 3.1.9,

P
{

sup
t0/2≤t≤2t0

Y (t) ≥ u1−γ/β
}

= −
∫ 2t0

t0/2
dt

∫ ∞
u1−γ/β

E{Y ′′(t)|Y (t) = x, Y ′(t) = 0}
2π
√

detCov(Y (t), Y ′(t))
e−x

2/2θ2t dx

+ o

(
exp

{
− u2−2γ/β

2σ2
− αu2−2γ/β

})
.

Combining this with (6.1.4) yields the desired result. �

Corollary 6.1.2 Under the assumptions in Theorem 6.1.1, as u→∞,

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}

= P
{

sup
t≥0

Y (t) ≥ u1−γ/β
}

=

(
Var(Y ′(t0))

E{Y (t0)Y ′′(t0)}
+ 1

)−1/2

Ψ
(u1−γ/β

σ

)
(1 + o(1)).

Proof One can check that the second derivative of the variance function of Y , Var(Y (t)) =

t2γ

(1+ctβ)2
, at t0 is not equal to 0. This implies that the condition in (3.2.6) holds. Applying
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Corollary 3.2.3 and Theorem 6.1.1, we obtain the result. �

6.2 Integrated Fractional Brownian Motion

In this section, we show the application to a typical example, the double integrated fractional

Brownian motion.

Let X(t) =
∫ t

0

∫ s
0 BH(u)duds, where BH is fractional Brownian motion with Hurst index

H, i.e. Cov(BH(t)BH(s)) = 1
2(t2H+s2H−|t−s|2H). Then X satisfies (6.1.1) with γ = H+2,

it also satisfies (H1) and (H3), and

Var(X(t)) =
t2H+4

2(2H + 1)(2H + 4)
. (6.2.1)

Let β > H + 2 and Y (t) =
X(t)

1+ctβ
, we consider the probability

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}

= P
{

sup
t≥0

Y (t) ≥ u1−(H+2)/β
}
. (6.2.2)

We see that

Var(Y (t)) =
t2H+4

2(2H + 1)(2H + 4)(1 + ctβ)2
, (6.2.3)

which attains the maximum at the unique point

t0 =

(
H + 2

c(β −H − 2)

)1/β

. (6.2.4)
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Note that

E(Y (t)Y ′(t)) =
t2H+3

2(2H + 1)(1 + ctβ)2

{
1

2
− cβtβ

(2H + 4)(1 + ctβ)

}
,

Var(Y ′(t)) =
t2H+2

(1 + ctβ)2

{
1

2H + 2
+

c2β2t2β

2(2H + 1)(2H + 4)(1 + ctβ)2
− cβtβ

2(2H + 1)(1 + ctβ)

}
,

and

E{Y (t)Y ′′(t)}

=
t2H+2

2(2H + 1)(1 + ctβ)2

{
2H2 +H + 1

2H + 2
+
c2β(β + 1)t2β − cβ(β − 1)tβ

(2H + 4)(1 + ctβ)2
− cβtβ

1 + ctβ

}
,

it follows that

Var(Y ′(t0))

E{Y (t0)Y ′′(t0)}
=

H2 −H
(β − 2)(H + 1)− 2H2

.

Thus by Corollary 6.1.2,

P
{

sup
t≥0

(X(t)− ctβ) ≥ u

}
= P

{
sup
t≥0

Y (t) ≥ u1−(H+2)/β
}

∼
(

Var(Y ′(t0))

E{Y (t0)Y ′′(t0)}
+ 1

)−1/2

Ψ

(
u1−(H+2)/β√

Var(Y (t0))

)
∼
(

(β − 2)(H + 1)− 2H2

(β −H − 2)(H + 1)

)1/2

Ψ

(
u1−(H+2)/β√

Var(Y (t0))

)
.

(6.2.5)

Now let H = 1/2, β = 3 and c = 1. By the discussions above,

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}
∼
√

4/3Ψ

(√
144u1/6

51/3

)
. (6.2.6)

However, applying the Laplace approximation of higher order to (6.1.3), we will get a more

156



accurate approximation:

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}

∼ 1

2π

∫ ∞
u1/6

{√
πc0 +

(√
π

2
c2 + c̃0

)
1

x2

}
exp

(
− 72x2

52/3

)
dx,

(6.2.7)

where

c0 =
8
√

3051/6

5
, c2 =

19
√

3055/6

2700
, c̃0 =

√
15

5
.

6.3 More General Gaussian Processes

Assume that {X(t) : t ≥ 0} is a centered smooth Gaussian process with variance t2γ for

some γ > 2. Let Xu(t) =
X(u1/βt)

uγ/β(1+ctβ)
, then

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}

= P{X(t) ≥ u+ ctβ for some t ≥ 0}

= P{X(u1/βt) ≥ u+ c(u1/βt)β for some t ≥ 0}

= P
{

X(u1/βt)

uγ/β(1 + ctβ)
≥ u1−γ/β for some t ≥ 0

}
= P

{
sup
t≥0

Xu(t) ≥ u1−γ/β
}
.

(6.3.1)

Note that Var(Xu(t)) = t2γ

(1+ctβ)2
, as a function of t, attains its maximum

σ2 =

(
γ

c(β − γ)

)2γ/β( β

β − γ

)−2

at the unique point

t0 =

(
γ

c(β − γ)

)1/β

.
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We see that neither σ2 nor t0 depend on u.

Let r(t, s) =
E{X(t)X(s)}√

Var(X(t))Var(X(s))
, we will make use of the following condition.

(A1′). For any fixed δ > 0, R(δ) := sup|t−s|≥δ r(t, s) < 1.

Let M
u1−γ/β (Xu, (t0/2, 2t0)) be the number of local maximum points t ∈ (t0/2, 2t0)

such that Xu(t) exceeding level u1−γ/β .

Lemma 6.3.1 Let {X(t) : t ≥ 0} be a centered Gaussian process with variance t2γ for some

γ > 2. Assume X ∈ C2(R+) a.s. and that X satisfies the regularity conditions (H3) and

(A1′). Suppose there exist positive constants C0, N0 and η0 such that for all t ≥ 0,

Var(X ′′(t)) ≤ C0(tN0 + 1),

[detCov(X(t), X ′(t), X ′′(t))]−1 ≤ C0(tN0 + 1);

(6.3.2)

for all t 6= s,

E(X ′′(t)−X ′′(s))2 ≤ C0[(t+ s)N0 + 1](t− s)2η0 ; (6.3.3)

and all |t− s| ≥ δ0, where δ0 > 0 is some fixed number,

[detCov(X(t), X ′(t), X(s), X ′(s))]−1 ≤ C0(t+ s)N0 . (6.3.4)

Then there exists some α > 0 such that as u→∞,

E{M
u1−γ/β (Xu, (t0/2, 2t0))[M

u1−γ/β (Xu, (t0/2, 2t0))− 1]}

= o

(
exp

{
− u2−2γ/β

2σ2
− αu2−2γ/β

})
.

158



Proof By the Kac-Rice metatheorem, one has

E{M
u1−γ/β (Xu, (t0/2, 2t0))[M

u1−γ/β (Xu, (t0/2, 2t0))− 1]}

≤
∫ 2t0

t0/2
dt

∫ 2t0

t0/2
ds

∫ ∞
u1−γ/β

dxE{|X ′′u(t)X ′′u(s)||Xu(t) = x,X ′u(t) = X ′u(s) = 0}

× pXu(t)(x|X
′
u(t) = X ′u(s) = 0)pX′u(t),X′u(s)(0, 0).

(6.3.5)

Let Eu(t, s) := E{|X ′′u(t)X ′′u(s)||Xu(t) = x,X ′u(t) = X ′u(s) = 0}. By Taylor’s formula,

X ′u(s) = X ′u(t) +X ′′u(t)(s− t) + |s− t|1+ηYt,s,u, (6.3.6)

where Yt,s,u is a centered Gaussian variable. In particular, for s > t,

Yt,s,u =
X ′u(s)−X ′u(t)−X ′′u(t)(s− t)

(s− t)1+η
=

∫ s
t (X ′′u(v)−X ′′u(t))dv

(s− t)1+η
.

Differentiating Var(X(t)) = t2γ with respective to t twice, we see that

2(Var(X ′(t))) + E{X(t)X ′′(t)} = 2γ(2γ − 1)t2γ−2.

Since |E{X(t)X ′′(t)}| ≤ Var(X(t))Var(X ′′(t)) = t2γVar(X ′′(t)), together with condition

(6.3.2), we get

Var(X ′(t)) ≤ C1(tN1 + 1)

for some positive constants C1 and N1. Combining this fact with conditions (6.3.2) and

(6.3.3), we obtain

sup
t0/2≤t<s≤2t0

Var(Yt,s,u) ≤ C2u
N2
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for some positive constants C2 and N2.

Applying (6.3.6), we have

Eu(t, s) = E{|X ′′u(t)X ′′u(s)||Xu(t) = x,X ′u(t) = 0, X ′′u(t)(s− t) = −|s− t|1+ηYt,s,u}

= |s− t|ηE{|Yt,s,uX ′′u(s)||Xu(t) = x,X ′u(t) = 0, X ′′u(t)(s− t) = −|s− t|1+ηYt,s,u}.

(6.3.7)

For any Gaussian variables ξ1, ξ2, the following inequality holds,

E|ξ1ξ2| ≤ Eξ2
1 + Eξ2

2 = (Eξ1)2 + Var(ξ1) + (Eξ2)2 + Var(ξ2). (6.3.8)

We have

Var(X ′′u(t)|Xu(t) = x,X ′u(t) = X ′u(s) = 0) ≤ Var(X ′′u(t)) ≤ C3u
N3 ,

Var(Yt,s,u|Xu(t) = x,X ′u(t) = X ′u(s) = 0) ≤ Var(Yt,s,u) ≤ C2u
N2 ,

for some positive constants C3 and N3.

On the other hand, for s > t and |s − t| → 0, there exist positive constants C4, C5, N4

and N5 such that for large x and u,

|E{X ′′u(t)|Xu(t) = x,X ′u(t) = X ′u(s) = 0}|

= |E{X ′′u(t)|Xu(t) = x,X ′u(t) = 0, X ′′u(t) + |s− t|ηYt,s,u = 0}|

≤ |E{X ′′u(t)|Xu(t) = x,X ′u(t) = 0, X ′′u(t) = 0}|+ o(1)uN4|x|

≤ C4|x|
detCov(Xu(t), X ′u(t), X ′′u(t))

+ o(1)uN |x| ≤ C5|x|uN5 ,

where the last line is due to condition (6.3.2). In fact, let (ξ1, ξ2, ξ3) be a non-degenerate
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Gaussian vector, then

detCov(ξ1, ξ1 + ξ2, ξ1 + ξ2 + ξ3) = detCov(ξ1, ξ2, ξ3).

By using this identity, we see that condition (6.3.2) implies that there exist positive constants

C ′0 and N ′0 such that for large u,

sup
t0/2≤t<s≤2t0

[detCov(Xu(t), X ′u(t), X ′′u(t))]−1 ≤ C ′0u
N ′0 .

Similarly we obtain that as |s− t| → 0, there exist positive constants C6 and N6 such that

for large x and u,

|E{Yt,s,u|Xu(t) = x,X ′u(t) = X ′u(s) = 0}| ≤ C6|x|uN6 .

Combining these results with (6.3.7) and (6.3.8), we get

Eu(t, s) ≤ |s− t|η(C3u
N3 + C4u

N4 + C2
5 |x|

2u2N5 + C2
6 |x|

2u2N6). (6.3.9)

By Taylor’s formula (6.3.6), as |s− t| → 0,

Var(Xu(t)|X ′u(t), X ′u(s))

= Var(Xu(t)|X ′u(t), X ′u(t) +X ′′u(t)(s− t) + |s− t|1+ηYt,s,u)

= Var(Xu(t)|X ′u(t), X ′′u(t)± |s− t|ηYt,s,u)

= Var(Xu(t)|X ′u(t), X ′′u(t))(1 + o(1)).
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Let

κ2 := sup
u>0,t0/2≤t≤2t0

Var(Xu(t)|X ′u(t), X ′′u(t)).

One can check that the second derivative of the variance function of Xu(t), Var(Xu(t)) =

t2γ

(1+ctβ)2
, at t0 is not equal to 0. Therefore supu>0 E{Xu(t0)X ′′u(t0)} < 0 and moreover,

κ2 < σ2.

For any ε > 0, if |s− t| is sufficiently small, then for large u,

∫ ∞
u1−γ/β

x2pXu(t)(x|X
′
u(t) = X ′u(s) = 0)dx ≤ e

−u
2−2γ/β

2κ2+ε .

Note that

pX′u(t),X′u(s)(0, 0) ≤ 1

2π
√

detCov(X ′u(t), X ′u(s))
,

and by the Taylor expansion, for |s− t| → 0 and large u,

detCov(X ′u(t), X ′u(s))

= detCov(X ′u(t), X ′u(t) +X ′′u(t)(s− t) + |s− t|1+ηYt,s,u)

= |s− t|2detCov(X ′u(t), X ′′u(t) + |s− t|ηYt,s,u)

= |s− t|2detCov(X ′u(t), X ′′u(t))(1 + uN7o(1)),

where N7 is some positive constant. Note that

detCov(X ′u(t), X ′′u(t)) =
detCov(Xu(t), X ′u(t), X ′′u(t))

Var(Xu(t)|X ′u(t), X ′′u(t))
.
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Thus by conditions (6.3.2) and (6.3.3), there exists positive constant N8 such that for small

|s− t| and large u,

pX′u(t),X′u(s)(0, 0) ≤ uN8

|s− t|
.

Note that when u tends to infinity, the polynomials of u will be killed by the exponential

decay of u. Plugging these results into (6.3.5), we obtain that for any ε > 0, there exists

δ > 0 small enough, such that for large u,

E{M
u1−γ/β (Xu, (t0 − δ, t0 + δ))[M

u1−γ/β (Xu, (t0 − δ, t0 + δ))− 1]}

≤ e
−u

2−2γ/β

2κ2+ε

∫ t0+δ

t0−δ

∫ t0+δ

t0−δ
|s− t|η−1dtds

≤ C7δ exp

{
− u2−2γ/β

2κ2 + ε

}

for some positive constant C7.

The set [t0/2, 2t0] may be covered by congruent intervals Ii = [ai, ai+1] with disjoint

interiors such that the lengths are less than δ/2. By similar discussions in Lemma 5.1.2, we

only need to consider non-neighboring Ii = [ai, ai+1] and Ij = [aj , aj+1], say aj−ai+1 ≥ δ/2.

Then

E{M
u1−γ/β (Xu, Ii)Mu1−γ/β (Xu, Ij)}

=

∫ ai+1

ai

∫ aj+1

aj

dtds

∫ ∞
u1−γ/β

∫ ∞
u1−γ/β

dxdyE{|X ′′u(t)X ′′u(s)||Xu(t) = x,Xu(s) = y,

X ′u(t) = X ′u(s) = 0}pX′u(t),X′u(s)(0, 0|Xu(t) = x,Xu(s) = y)pXu(t),Xu(s)(x, y).

Similarly to (6.3.9), by conditions (6.3.2) and (6.3.3), there exists a positive constant N9
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such that for large u,

E{|X ′′u(t)X ′′u(s)||Xu(t) = x,Xu(s) = y,X ′u(t) = X ′u(s) = 0}

≤ uN9(x2 + y2)

[detCov(Xu(t), Xu(s), X ′u(t), X ′u(s))]2
;

and also,

pX′u(t),X′u(s)(0, 0|Xu(t) = x,Xu(s) = y)

≤ 1

2π
√

detCov(X ′u(t), X ′u(s)|Xu(t), Xu(s))

=
1

2π

√
detCov(Xu(t), Xu(s))

detCov(X ′u(t), X ′u(s), Xu(t), Xu(s))

≤ uN9√
detCov(X ′u(t), X ′u(s), Xu(t), Xu(s))

.

Thus by condition (6.3.4), there exists a positive constant N10 such that for large u,

E{Mu(Ii)Mu(Ij)}

≤ u2N9(ai+1 − ai)(aj+1 − aj)
∫ ∞
u1−γ/β

∫ ∞
u1−γ/β

dxdy(x2 + y2)pXu(t),Xu(s)(x, y)

×
[

inf
t,s∈[t0/2,2t0]:|t−s|≥δ/2

detCov(Xu(t), Xu(s), X ′u(t), X ′u(s))

]−5/2

≤ uN10(ai+1 − ai)(aj+1 − aj)
∫ ∞
u1−γ/β

∫ ∞
u1−γ/β

dxdy(x2 + y2)pXu(t),Xu(s)(x, y).
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By (A1′), R(δ) = sup|s−t|≥δ r(t, s) is strictly less than 1 hence for u sufficiently large,

sup
|s−t|≥δ/2

∫ ∞
u1−γ/β

∫ ∞
u1−γ/β

dxdy(x2 + y2)pXu(t),Xu(s)(x, y)

≤ sup
|s−t|≥δ/2

E{(Xu(t)Xu(s))2I(Xu(t) ≥ u1−γ/β , Xu(s) ≥ u1−γ/β)}

≤ sup
|s−t|≥δ/2

E{(Xu(t) +Xu(s))4)I(Xu(t) +Xu(s) ≥ 2u1−γ/β)}

≤ u4 exp

{
− u2−2γ/β

1 +R(δ/2)

}
.

Combining the results completes the proof. �

Theorem 6.3.2 Suppose the assumptions in Lemma 6.3.1 hold. Then there exists α > 0

such that as u→∞,

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}

= P
{

sup
t≥0

Xu(t) ≥ u1−γ/β
}

= −
∫ 2t0

t0/2
dt

∫ ∞
u1−γ/β

E{X ′′u(t)|Xu(t) = x,X ′u(t) = 0}
2π
√

detCov(Xu(t), X ′u(t))
e−x

2/(2θ2u(t))dx

+ o

(
exp

{
− u2−2γ/β

2σ2
− αu2−2γ/β

})
,

(6.3.10)

where Xu(t) =
X(u1/βt)

uγ/β(1+ctβ)
and θ2

u(t) = Var(Xu(t)|X ′u(t)).

Proof The first equality in (6.3.10) is the result in (6.3.1). Note that

P
{

sup
t0/2≤t≤2t0

Xu(t) ≥ u1−γ/β
}
≤ P

{
sup
t≥0

Xu(t) ≥ u1−γ/β
}

≤ P
{

sup
t0/2≤t≤2t0

Xu(t) ≥ u1−γ/β
}

+ P
{

sup
0≤t≤t0/2

Xu(t) ≥ u1−γ/β
}

+ P
{

sup
t≥2t0

Xu(t) ≥ u1−γ/β
}
,

(6.3.11)
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where the last two terms are super-exponentially small due to the Borell-TIS inequality [cf.

Theorem 2.1.1 in Adler and Taylor (2007)]. On the other hand, by Lemma 6.3.1 and the

bounds in (2.3.3),

P
{

sup
t0/2≤t≤2t0

Xu(t) ≥ u1−γ/β
}

= E{M
u1−γ/β (Xu, (t0/2, 2t0))}+ o

(
exp

{
− u2−2γ/β

2σ2
− αu2−2γ/β

})
= −

∫ 2t0

t0/2
dt

∫ ∞
u1−γ/β

E{X ′′u(t)|Xu(t) = x,X ′u(t) = 0}
2π
√

detCov(Xu(t), X ′u(t))
e−x

2/(2θ2u(t))dx

+ o

(
exp

{
− u2−2γ/β

2σ2
− αu2−2γ/β

})
,

where the last equality comes from the combination of similar discussions in Lemma 2.3.2

and Lemma 6.3.1. Combining this with (6.3.11) yields the desired result. �

Applying the Laplace method, we obtain the following result.

Corollary 6.3.3 Under the assumptions in Theorem 6.3.2, one has that as u→∞,

P
{

sup
t≥0

(X(t)− ctβ) ≥ u
}

= P
{

sup
t≥0

Xu(t) ≥ u1−γ/β
}

=

(
Var(X ′u(t0))

E{Xu(t0)X ′′u(t0)}
+ 1

)−1/2

Ψ
(u1−γ/β

σ

)
(1 + o(1)).

Example 6.3.4 Let β > H > 2, X(t) = tHZ(t), Xu(t) =
X(tu1/β)

uH/β(1+ctβ)
=

tHZ(tu1/β)

1+ctβ
,

where Z is a smooth stationary Gaussian process with covariance r(t) and r(0) = 1. Then

Var(X(t)) = t2H , and

P
{

sup
t>0

(X(t)− ctβ) ≥ u
}

= P
{

sup
t>0

Xu(t) ≥ u1−H/β
}
.
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Notice that Var(Xu(t)) attains it maximum

Var(Xu(t0)) =

(
H

c(β −H)

)2H/β( β

β −H

)−2

at the unique point

t0 =

(
H

c(β −H)

)1/β

.

By tedious computations, we get

X ′u(t) =
HtH−1 − c(β −H)tH+β−1

(1 + ctβ)2
Z(tu1/β) +

tHu1/β

1 + ctβ
Z ′(tu1/β),

and

X ′′u(t) =
H(H − 1)tH−2 + c((2H − β)(H − 1)− β2)tH+β−2 + c2(β −H)(1−H)t2β+H−2

(1 + ctβ)3

× Z(tu1/β) +
2[HtH−1(1 + ctβ)− cβtH+β−1]u1/β

(1 + ctβ)2
Z ′(tu1/β) +

tHu2/β

1 + ctβ
Z ′′(tu1/β).

Notice that E{Z(t)Z ′(t)} = 0 and Var(Z ′(t)) = −E{Z(t)Z ′′(t)} = r′′(0) for all t, we obtain

Var(X ′u(t)) =
(HtH−1 − c(β −H)tH+β−1)2

(1 + ctβ)4
− t2Hu2/β

(1 + ctβ)2
r′′(0)

=
t2H−2

(1 + ctβ)2

(
(H − c(β −H)tβ)2

(1 + ctβ)2
− t2u2/βr′′(0)

)
,

and

E{Xu(t)X ′′u(t)} =

(
(H(H − 1) + c((2H − β)(H − 1)− β2)tβ + c2(β −H)(1−H)t2β

(1 + ctβ)2

+ t2u2/βr′′(0)

)
t2H−2

(1 + ctβ)2
.
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It follows that

E{Xu(t0)X ′′u(t0)}
Var(X ′u(t0)) + E{Xu(t0)X ′′u(t0)}

=
−H(β −H) + t20u

2/βr′′(0)

−H(β −H)

= 1− H2/β−1u2/βr′′(0)

c2/β(β −H)2/β+1
,

and thus

P
{

sup
t>0

(X(t)− ctβ) > u
}

= P
{

sup
t>0

Xu(t) > u1−H/β
}

∼
(

E{Xu(t0)X ′′u(t0)}
Var(X ′u(t0)) + E{Xu(t0)X ′′u(t0)}

)1/2

Ψ

(
u1−H/β

Var(Xu(t0))1/2

)
=

(
1− H2/β−1u2/βr′′(0)

c2/β(β −H)2/β+1

)1/2

Ψ

(
u1−H/β

Var(Xu(t0))1/2

)
.
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Chapter 7

Excursion Probability of Gaussian

Random Fields on Sphere

In this chapter, we consider a real-valued Gaussian random field X = {X(x) : x ∈ SN}

indexed on the N -dimensional unit sphere SN . The approximations to excursion probability

of the field P{sup
x∈SN X(x) ≥ u}, as u → ∞, are obtained for two cases: (i) X is locally

isotropic and the sample path is non-smooth; (ii) X is isotropic and the sample path is twice

differentiable. For the first case, it is shown that the asymptotics is similar to Pickands’

approximation on Euclidean space which involves Pickands’ constant; while for the second

case, we use the expected Euler characteristic method to obtain a more precise approximation

such that the error is super-exponentially small.
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7.1 Notations

For x = (x1, . . . , xN+1) ∈ SN , its corresponding spherical coordinate θ = (θ1, . . . , θN ) is

defined as follows.

x1 = cos θ1,

x2 = sin θ1 cos θ2,

x3 = sin θ1 sin θ2 cos θ3,

...

xN = sin θ1 sin θ2 · · · sin θN−1 cos θN ,

xN+1 = sin θ1 sin θ2 · · · sin θN−1 sin θN ,

where 0 ≤ θi ≤ π for 1 ≤ i ≤ N − 1 and 0 ≤ θN < 2π.

Throughout this chapter, for two points x = (x1, . . . , xN+1) and y = (y1, . . . , yN+1)

on SN , we always denote by θ = (θ1, . . . , θN ) the spherical coordinate of x and by ϕ =

(ϕ1, . . . , ϕN ) the spherical coordinate of y respectively.

Let ‖ · ‖, 〈·, ·〉 be Euclidean norm and inner product respectively. Denote by d(·, ·) the

distance function in SN , i.e., d(x, y) = arccos 〈x, y〉, ∀x, y ∈ SN .

7.2 Non-smooth Gaussian Fields on Sphere

7.2.1 Locally Isotropic Gaussian Fields on Sphere

Let X = {X(x) : x ∈ SN} be a centered Gaussian random field with covariance function C

satisfying

C(x, y) = 1− cdα(x, y)(1 + o(1)) as dα(x, y)→ 0, (7.2.1)
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for some constants c > 0 and α ∈ (0, 2].

Covariance functions satisfying (7.2.1) behave like isotropic in local sense, hence they fall

under the general category of locally isotropic covariance. Also, there are many examples

of covariances of isotropic Gaussian fields on SN satisfying (7.2.1). For instance, C(x, y) =

e−cd
α(x,y), where c > 0 and α ∈ (0, 1].

Recall the spherical coordinate representation, we define X̃(θ) := X(x) and denote by C̃

the covariance function of X̃ accordingly.

Lemma 7.2.1 Let x, y ∈ SN and let x be fixed. Then as d(y, x)→ 0,

d2(y, x) ∼ (ϕ1 − θ1)2 + (sin2 θ1)(ϕ2 − θ2)2 + · · ·+
(N−1∏

i=1

sin2 θi

)
(ϕN − θN )2,

where θ = (θ1, . . . , θN ) and ϕ = (ϕ1, . . . , ϕN ) are the spherical coordinates of x and y

respectively.

Proof Note that x, y ∈ SN implies ‖x‖2 = ‖y‖2 = 1, hence as d(y, x) → 0, ‖x − y‖ → 0

and

cos ‖y − x‖ ∼ 1− 1

2
‖y − x‖2 = 〈y, x〉.

Applying the spherical coordinates, we obtain that as d(y, x)→ 0, or equivalently ‖ϕ−θ‖ →

0 (There is an exception for θ with θN = 0, since for those ϕ such that d(y, x)→ 0 and ϕN

tending to 2π, ‖ϕ− θ‖ does not tend to 0. In such case, we may treat θN to be 2π instead
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of 0 and this does not affect the result thanks to the periodicity.),

d2(y, x) = arccos2 〈y, x〉 ∼ ‖y − x‖2

= (cosϕ1 − cos θ1)2 + (sinϕ1 cosϕ2 − sin θ1 cos θ2)2 + · · ·

+ (sinϕ1 sinϕ2 · · · sinϕN−1 cosϕN − sin θ1 sin θ2 · · · sin θN−1 cos θN )2

+ (sinϕ1 sinϕ2 · · · sinϕN−1 sinϕN − sin θ1 sin θ2 · · · sin θN−1 sin θN )2

= 2− 2 cos(ϕ1 − θ1) + 2(sinϕ1 sin θ1)[1− cos(ϕ2 − θ2)]

+ · · ·+ 2

(N−1∏
i=1

sinϕi sin θi

)
[1− cos(ϕN − θN )].

It then follows from Taylor’s expansion that

d2(y, x) ∼ (ϕ1 − θ1)2 + (sinϕ1 sin θ1)(ϕ2 − θ2)2 + · · ·+
(N−1∏

i=1

sinϕi sin θi

)
(ϕN − θN )2

∼ (ϕ1 − θ1)2 + (sin2 θ1)(ϕ2 − θ2)2 + · · ·+
(N−1∏

i=1

sin2 θi

)
(ϕN − θN )2,

completing the proof. �

Next, we need some existing results on the approximations to excursion probability of

Gaussian random fields over Euclidean space.

Let 0 < α ≤ 2 and let {Wt(s) : t ∈ RN , s ∈ [0,∞)N} ba a Gaussian random field such

that

EWt(s) = −‖s‖αrt(s/‖s‖),

Cov(Wt(s),Wt(v)) = ‖s‖αrt(s/‖s‖) + ‖v‖αrt(v/‖v‖)

− ‖s− v‖αrt((s− v)/‖s− v‖),

(7.2.2)
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where rt(·) : SN−1 → R+ is a continuous function satisfying

sup
v∈SN−1

|rt(v)− rs(v)| → 0 as s→ t. (7.2.3)

Define

Hr
α(t) = lim

K→∞
K−N

∫ ∞
0

euP
{

sup
s∈[0,K]N

Wt(s) ≥ u
}
du. (7.2.4)

Denote by Hα the usual Pickands’ constant, that is

Hα = lim
K→∞

K−N
∫ ∞

0
euP

{
sup

s∈[0,K]N
Z(s) ≥ u

}
du,

where {Z(s) : s ∈ [0,∞)N} is a Gaussian random field such that

EZ(s) = −‖s‖α,

Cov(Z(s), Z(v)) = ‖s‖α + ‖v‖α − ‖s− v‖α.

It is clear that Hr
α(t) becomes Hα when rt ≡ 1.

Let D ⊂ RN be a bounded N -dimensional Jordan measurable set. Let Y = {Y (t), t ∈

RN} be a real-valued, centered Gaussian field such that the covariance function CY satisfies

CY (t, t+ s) = 1− ‖s‖αrt(s/‖s‖)(1 + o(1)) as ‖s‖ → 0, (7.2.5)

for some constant α ∈ (0, 2], uniformly over t ∈ D̄.

We will make use of the following theorem of Chan and Lai (2006).

Theorem 7.2.2 [Theorem 2.1 in Chan and Lai (2006)] Suppose the Gaussian random field

{Y (t) : t ∈ RN} satisfies condition (7.2.5), in which rt(·) : SN−1 → R+ is a continuous
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function such that the convergence (7.2.3) is uniformly in D̄ and sup
t∈D̄,v∈SN−1 rt(v) <∞.

Then as u→∞,

P
{

sup
t∈D

Y (t) ≥ u
}
∼ u2N/αΨ(u)

∫
D
Hr
α(t)dt.

Lemma 7.2.3 Let {Wt(s) : t ∈ RN , s ∈ [0,∞)N} be a Gaussian random field satisfying

(7.2.2) with

rt(v) = ‖Mtv‖α, ∀v ∈ SN−1,

where Mt are non-degenerate N ×N matrices. Then for each t ∈ RN ,

Hr
α(t) = |detMt|Hα.

Proof Let W̃t(s) = Wt(M
−1
t s), ∀s ∈ [0,∞)N . Then under the above conditions, W̃t

satisfies

EW̃t(s) = −‖s‖α,

Cov(W̃t(s), W̃t(v)) = ‖s‖α + ‖v‖α − ‖s− v‖α.

Let BK = [0, K]N and define MtBK = {s ∈ RN : ∃v ∈ BK such that s = Mtv}. Note that

Vol(MtBK) = |detMt|Vol(BK) and sups∈BK Wt(s) = sups∈MtBK W̃t(s), it follows from

(7.2.4) that

Hr
α(t) = lim

K→∞
1

Vol(BK)

∫ ∞
0

euP
{

sup
s∈BK

Wt(s) ≥ u
}
du

= lim
K→∞

Vol(MtBK)

Vol(BK)

1

Vol(MtBK)

∫ ∞
0

euP
{

sup
s∈MtBK

W̃t(s) ≥ u
}
du

= |detMt| lim
K→∞

1

Vol(MtBK)

∫ ∞
0

euP
{

sup
s∈MtBK

W̃t(s) ≥ u
}
du.
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By modifying the proofs in Qualls and Watanabe (1973), we can check that

Hα = lim
K→∞

1

Vol(MtBK)

∫ ∞
0

euP
{

sup
s∈MtBK

W̃t(s) ≥ u
}
du,

completing the proof. �

Now we can prove our main result.

Theorem 7.2.4 Let {X(x) : x ∈ SN} be a centered Gaussian random field satisfying condi-

tion (7.2.1) and let T ⊂ SN be an N-dimensional Jordan measurable set. Then as u→∞,

P
{

sup
x∈T

X(x) ≥ u
}
∼ cN/αArea(T )Hαu

2N/αΨ(u),

where Area(T ) denotes the spherical area of T .

Proof Let Mθ = c1/αdiag(1, sin θ1, . . . ,
∏N−1
i=1 sin θi). If N = 1, we set Mθ = c1/α. By

Lemma 7.2.1, condition (7.2.1) becomes

C̃(θ, θ + ξ) = 1− ‖ξ‖αrθ(ξ/‖ξ‖)(1 + o(1)) as ‖ξ‖ → 0,

where rθ(τ) = ‖Mθτ‖α, ∀τ ∈ SN−1. Denote by D the domain of T under spherical coordi-

nates. Then by Theorem 7.2.2, as u→∞,

P
{

sup
x∈T

X(x) ≥ u
}

= P
{

sup
θ∈D

X̃(θ) ≥ u
}
∼ u2N/αΨ(u)

∫
D
Hr
α(θ)dθ. (7.2.6)

It follows from Lemma 7.2.3 that for any θ such thatMθ is non-degenerate( i.e.,
∏N−1
i=1 sin θi 6=
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0),

Hr
α(θ) = cN/α

(N−1∏
i=1

sinN−i θi

)
Hα.

Note that (
∏N−1
i=1 sinN−i θi)dθ is the spherical area element and Mθ are non-degenerate for

θ ∈ D almost everywhere, we obtain

∫
D
Hr
α(θ)dθ = cN/αArea(T )Hα.

Plugging this into (7.2.6), we finish the proof. �

7.2.2 Standardized Spherical Fractional Brownian Motion

Theorem 7.2.4 is an application of Lemma 7.2.1 and Theorem 7.2.2, and it provides a nice

formula since (7.2.1) has a simple form. More generally, the local behavior of covariance

function may be more complicated, but we can still apply Lemma 7.2.1 to find the corre-

sponding local behavior of covariance function under spherical coordinates and then apply

Theorem 7.2.2 to obtain the asymptotics for the excursion probability. Here, we present an

example about spherical fractional Brownian motion on sphere.

Let o be a fixed point on SN . The Spherical Fractional Brownian Motion Bβ(x) is defined

as a centered real-valued Gaussian random field such that

B(o) = 0

E(B(x)−B(y))2 = d2β(x, y) ∀x, y ∈ SN ,
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where β ∈ (0, 1/2]. It follows immediately that

Cov(B(x), B(y)) =
1

2

(
d2β(x, o) + d2β(y, o)− d2β(x, y)

)
.

Without loss of generality, we take o = (1, 0, . . . , 0) ∈ RN+1, whose corresponding spherical

coordinate is (0, . . . , 0) ∈ RN . Define

X(x) =
B(x)

dβ(x, o)
, ∀x ∈ SN\{o}.

Then the covariance is

C(x, y) = Cov(X(x), X(y)) =
d2β(x, o) + d2β(y, o)− d2β(x, y)

2dβ(x, o)dβ(y, o)
.

Note that under the spherical coordinates, d(x, o) = θ1 and d(y, o) = ϕ1, together with

Lemma 7.2.1, we obtain that as d(x, y)→ 0,

C̃(θ, ϕ) = Cov(X̃(θ), X̃(ϕ)) = 1− (1 + o(1))
1

2θ
2β
1

[
(ϕ1 − θ1)2 + (sin2 θ1)(ϕ2 − θ2)2

+ · · ·+
(N−1∏

i=1

sin2 θi

)
(ϕN − θN )2

]β
.

Let

Mθ =
1

21/(2β)θ1
diag

(
1, sin θ1, . . . ,

N−1∏
i=1

sin θi

)
,

rθ(τ) = ‖Mθτ‖2β , ∀τ ∈ SN−1.
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Then as ‖ξ‖ = ‖ϕ− θ‖ → 0,

C̃(θ, θ + ξ) = 1− ‖ξ‖2βrθ(ξ/‖ξ‖)(1 + o(1)).

Let T ⊂ SN be an N -dimensional Jordan measurable set such that o /∈ T̄ , and denote its

domain under spherical coordinates by D. Then by Theorem 7.2.2, as u→∞,

P
{

sup
x∈T

X(x) ≥ u
}

= P
{

sup
θ∈D

X̃(θ) ≥ u
}
∼ uN/βΨ(u)

∫
D
Hr

2β(θ)dθ.

It follows from Lemma 7.2.3 that for any θ such thatMθ is non-degenerate( i.e.,
∏N−1
i=1 sin θi 6=

0),

Hr
2β(θ) =

1

2N/(2β)θN1

(N−1∏
i=1

sinN−i θi

)
H2β .

Therefore,

P
{

sup
x∈T

X(x) ≥ u
}
∼ uN/βΨ(u)2−N/(2β)H2β

∫
D
θ−N1

(N−1∏
i=1

sinN−i θi

)
dθ.

7.3 Smooth Isotropic Gaussian Fields on Sphere

In this section we consider the excursion probabilities for smooth isotropic Gaussian fields

on sphere.
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7.3.1 Preliminaries

Given λ > 0 and an integer n ≥ 0, the function Pλn (t) is defined by the expansion

(1− 2rt+ r2)−λ =
∞∑
n=0

rnPλn (t), t ∈ [−1, 1],

and Pλn (t) is called the ultraspherical polynomial (or Gegenbauer polynomial) of degree n.

If λ = 0, we follow Schoenberg (1942) and set P 0
n(t) = cos(n arccos t) = Tn(t), where Tn,

n ≥ 0, are Chebyshev polynomials of the first kind defined by the expansion

1− rt
1− 2rt+ r2

=
∞∑
n=0

rnTn(t), t ∈ [−1, 1].

For reference later on, we need the following formulae on Pλn .

(i). For all n ≥ 0, P 0
n(1) = 1, and if λ > 0 [cf. Szegö (1975, p.80)],

Pλn (1) =

(
n+ 2λ− 1

n

)
. (7.3.1)

(ii). For all n ≥ 0,

d

dt
P 0
n(t) = nP 1

n−1(t), (7.3.2)

and if λ > 0 [cf. Szegö (1975, p.81)],

d

dt
Pλn (t) = 2λPλ+1

n−1 (t). (7.3.3)

The following theorem by Schoenberg (1942) characterizes the covariance function of an

isotropic Gaussian field on sphere [see also Gneiting (2012)].
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Theorem 7.3.1 Let N ≥ 1, then a continuous function C(·, ·) : SN × SN → R is the

covariance of an isotropic Gaussian field on SN if and only if it has the form

C(x, y) =
∞∑
n=0

anP
λ
n (〈x, y〉), x, y ∈ SN ,

where λ = (N − 1)/2, an ≥ 0,
∑∞
n=0 anP

λ
n (1) <∞.

Remark 7.3.2 Note that for N = 1, λ = 0 and
∑∞
n=0 anP

0
n(1) < ∞ is equivalent to∑∞

n=0 an < ∞; while for N ≥ 2, λ = (N − 1)/2 and by (7.3.1),
∑∞
n=0 anP

λ
n (1) < ∞ is

equivalent to
∑∞
n=0 n

N−2an <∞.

When N = 2, λ = 1/2 and Pλn become Legendre polynomials. For more results on

isotropic Gaussian fields on S2, we refer to a recent monograph by Marinucci and Peccati

(2011).

The following statement (S) is a smoothness condition for Gaussian fields on sphere. In

Lemma 7.3.3 below, we show that it implies C(·, ·) ∈ C4(SN × SN ).

(S). The covariance C(·, ·) of {X(x) : x ∈ SN} satisfies

C(x, y) =
∞∑
n=0

anP
λ
n (〈x, y〉), x, y ∈ SN ,

where λ = (N − 1)/2, an ≥ 0, and
∑∞
n=1 n

8an <∞ if N = 1,
∑∞
n=1 n

N+6an <∞ if

N ≥ 2.

Lemma 7.3.3 Let {X(x) : x ∈ SN} be an isotropic Gaussian field such that (S) is fulfilled.

Then the covariance C(·, ·) ∈ C4(SN × SN ) and hence X(·) ∈ C2(SN ) a.s.
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Proof We first consider N ≥ 2. By Theorem 7.3.1, each Pλn (〈t, s〉) is the covariance of an

isotropic Gaussian field on SN and hence

|Pλn (〈x, y〉)| ≤ Pλn (〈x, x〉) = Pλn (1), ∀x, y ∈ SN . (7.3.4)

Combining (S) with (7.3.1), (7.3.3) and (7.3.4), together with the fact Pλ0 (t) ≡ 1, we obtain

that there exist positive constants M1 and M2 such that

sup
t∈[−1,1]

∞∑
n=0

an

∣∣∣( d4

dt4
Pλn (t)

)∣∣∣ ≤M1

∞∑
n=4

anP
λ+4
n−4 (1) ≤M2

∞∑
n=1

nN+6an <∞.

This gives C4(SN × SN ). The proof for N = 1 is similar once we apply both (7.3.2) and

(7.3.3). �

By Schoenberg (1942) or Gneiting (2012), C(·, ·) is a covariance function on SN for every

N ≥ 1 if and only if it has the form

C(x, y) =
∞∑
n=0

bn〈x, y〉n, x, y ∈ SN ,

where bn ≥ 0 and
∑∞
n=0 bn < ∞. Then we may state (S′) below as another form of

smoothness condition for Gaussian fields on sphere.

(S′). The covariance C(·, ·) of {X(x) : x ∈ SN} satisfies

C(x, y) =
∞∑
n=0

bn〈x, y〉n, x, y ∈ SN ,

where bn ≥ 0 and
∑∞
n=0 n

4bn <∞.
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We obtain an analogue of Lemma 7.3.3 below. Since the proof is similar, it is omitted.

Lemma 7.3.4 Let {X(x) : x ∈ SN} be an isotropic Gaussian field such that (S′) is fulfilled.

Then the covariance C(·, ·) ∈ C4(SN × SN ) and hence X(·) ∈ C2(SN ) a.s.

7.3.2 Excursion Probability

Let χ(Au(X, SN )) be the Euler characteristic of excursion set Au(X, SN ) = {x ∈ SN :

X(x) ≥ u}. Denote by Hj(x) the Hermite polynomial, i.e.,

Hj(x) = (−1)jex
2/2 d

j

dxj
(
e−x

2/2).
Let ωj := Area(Sj), where Sj is the j-dimensional unit sphere.

Lemma 7.3.5 Let {X(x) : x ∈ SN} be a centered, unit-variance, isotropic Gaussian field

satisfying (S). Suppose also that the joint distribution of (X(x),∇X(x),∇2X(x)) is non-

degenerate for each x ∈ SN . Then

E{χ(Au(X, SN ))} =
N∑
j=0

(C ′)j/2Lj(SN )ρj(u),

where

C ′ =


(N − 1)

∑∞
n=1

(n+N−1
N

)
an if N ≥ 2,∑∞

n=1 n
2an if N = 1,

(7.3.5)

ρ0(u) = Ψ(u), ρj(u) = (2π)−(j+1)/2Hj−1(u)e−u
2/2 with Hermite polynomials Hj−1 for
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j ≥ 1 and, for j = 0, . . . , N ,

Lj(SN ) =


2
(N
j

) ωN
ωN−j

if N − j is even

0 otherwise

(7.3.6)

are the Lipschitz-Killing curvatures of SN .

Remark 7.3.6 In Lemma 7.3.5, if condition (S) is replaced by (S′), then it can be seen

from the proof below that C ′ would be changed to a much simpler form

C ′ =
∞∑
n=1

nbn. (7.3.7)

Proof Due to Theorem 12.4.1 in Adler and Taylor (2007), we only need to show that the

Lipschitz-Killing curvatures induced by X on SN is Lj(X, SN ) = (C ′)j/2Lj(SN ).

The Riemannian structure induced by X on SN is defined as [cf. Adler and Taylor (2007,

p.305)]

g
X,SN
x0

(ξx0 , σx0) := E{(ξx0X) · (σx0X)} = ξx0σx0C(x, y)|x=y=x0 , ∀x0 ∈ SN ,

where ξx0 , σx0 ∈ Tx0S
N , the tangent space of SN at x0. We may choose two smooth curves

on SN , say γ(t), τ(s), t, s ∈ [0, 1], such that γ(0) = τ(0) = x0 and γ′(0) = ξx0 , τ
′(0) = σx0 .

183



We first consider N ≥ 2, then

ξx0σx0C(x, y)|x=y=x0

=
∂

∂t

∂

∂s
C(γ(t), τ(s))|t=s=0 =

∂

∂t

∂

∂s

∞∑
n=0

anP
λ
n (〈γ(t), τ(s)〉)|t=s=0

=
∂

∂t

∞∑
n=1

an(N − 1)Pλ+1
n−1 (〈γ(t), x0〉)〈γ(t), σx0〉|t=0

=
∞∑
n=2

an(N − 1)(N + 2)Pλ+2
n−2 (〈x0, x0〉)〈ξx0 , x0〉〈x0, σx0〉

+
∞∑
n=1

an(N − 1)Pλ+1
n−1 (〈x0, x0〉)〈ξx0 , σx0〉

=

( ∞∑
n=1

an(N − 1)Pλ+1
n−1 (1)

)
〈ξx0 , σx0〉 = C ′〈ξx0 , σx0〉,

where the third and fourth equalities are from (7.3.3), the fifth equality comes from 〈x0, x0〉 =

1 and 〈ξx0 , x0〉 = 〈σx0 , x0〉 = 0, since the vector x0 is always orthogonal to its tangent space.

The case of N = 1 can be proved similarly once we apply (7.3.2) instead of (7.3.3).

Hence the induced metric is

g
X,SN
x0

(ξx0 , σx0) = C ′〈ξx0 , σx0〉, ∀x0 ∈ SN .

By the definition of Lipschitz-Killing curvatures, one has

Lj(X, SN ) = (C ′)j/2Lj(SN ),

where Lj(SN ) are the original Lipschitz-Killing curvatures of SN given by (7.3.6). We finish

the proof. �
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Theorem 7.3.7 Suppose the conditions in Lemma 7.3.5 hold. Then, under the notations

therein, there exists α > 0 such that as u→∞,

P
{

sup
x∈SN

X(x) ≥ u
}

=
N∑
j=0

(C ′)j/2Lj(SN )ρj(u) + o(e−αu
2−u2/2). (7.3.8)

Remark 7.3.8 Under the conditions in Theorem 7.3.7, the covariance function C satisfies

(7.2.1) with α = 2. Also note that when α = 2, Pickands’ constant H2 = π−N/2. Then

one can check that the approximation in Theorem 7.2.4 only provides the leading term of

the approximation in Theorem 7.3.7. This also affects the errors in two approximations: the

error in the former one is only o(1), while the error in the latter one is o(e−αu
2
).

Proof The result is an immediate consequence of Lemma 7.3.5 and Theorem 14.3.3 in

Adler and Taylor (2007). �

If the set SN is replaced by a more general subset T ⊂ SN , by simply revising Lemma

7.3.5 and applying Theorem 14.3.3 in Adler and Taylor (2007) again, we obtain the following

corollary.

Corollary 7.3.9 Suppose the conditions in Lemma 7.3.5 hold. Let T ⊂ SN be a k-dimensional,

locally convex, regular stratified manifold [cf. Adler and Taylor (2007)], then there exists

α > 0 such that as u→∞,

P
{

sup
x∈T

X(x) ≥ u
}

=
k∑
j=0

(C ′)j/2Lj(T )ρj(u) + o(e−αu
2−u2/2),

where Lj(T ) are the Lipschitz-Killing curvatures of SN [cf. Adler and Taylor (2007)], C ′

and ρj(u) are as in Lemma 7.3.5.
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Example 7.3.10 Canonical field on SN , whose covariance structure is given by C(x, y) =

〈x, y〉. Since C(x, y) = cos d(x, y), it satisfies

C(x, y) = 1− 1

2
d2(x, y)(1 + o(1)), as d(x, y)→ 0.

Applying Theorem 7.2.4, one can get an approximation to the excursion probability. How-

ever, by applying Theorem 7.3.7, we will get a more precise approximation for N ≥ 2.

Example 7.3.11 Consider the Hamiltonian of the pure p-spin model on SN−1

HN,p(x) =
1

N (p−1)/2

N∑
i1,...,ip=1

Ji1,...,ipxi1 · · ·xip , ∀x = (x1, · · · , xN ) ∈ SN−1,

where Ji1,...,ip are independent standard Gaussian random variables. Then

E{HN,p(x)HN,p(y)} =
1

Np−1
〈x, y〉p.

Let

X(x) =
∞∑
p=2

bpHN,p(x),

where (bp)p≥2 is a sequence of positive numbers such that
∑∞
p=2 2pbp < ∞, and HN,p and

HN,p′ are independent for any p 6= p′. Then X is a smooth Gaussian random field on sphere

with covariance

C(x, y) =
∞∑
p=2

b2p

Np−1
〈x, y〉p.
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Example 7.3.12 We show how to apply Corollary 7.3.9. If T is the semisphere of dimension

one, then L0(T ) = 1 and L1(T ) = π. If T is the semisphere of dimension two, then

L0(T ) = 1, L1(T ) = π and L2(T ) = 2π. Basically, L0(T ) is the Euler characteristic, Lk(T )

is the volume and Lk−1(T ) is half of the surface area. Usually, one may use Steiner’s formula

[Adlar and Taylor (2007, p.142)] to compute the Lipschitz-Killing curvatures exactly.

Example 7.3.13 Consider the covariance structure C(x, y) = 1 − 2
πd(x, y), which can be

verified to be a valid covariance on sphere. Since d(x, y) = arccos 〈x, y〉, we can write

C(x, y) = 1− arccos 〈x, y〉 =
2

π

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
〈x, y〉2n+1

:=
∞∑
n=0

bn〈x, y〉n,

it is easy to check that
∑∞
n=0 nb

n = ∞, hence Theorem 7.3.7 is not applicable. In fact,

C(x, y) is not smooth neither. Instead, we may use Theorem 7.2.2 to get the approximation

to excursion probability.

187



Chapter 8

Excursion Probability of Anisotropic

Gaussian and Asymptotically

Gaussian Random Fields

8.1 Preliminaries

For vectors u, v ∈ Rd, the relation u ≤ v means ui ≤ vi for all i and u < v means ui < vi for

all i, also we let uv := (u1v1, · · · , udvd). For t = (t1, · · · , td) ∈ Rd and ζ = (ζ1, · · · , ζd) > 0,

define

It,ζ =
d∏
i=1

[ti, ti + ζi).

Let ‖ · ‖ be the Euclidean norm of a vector, b·c be the greatest integer function, µ(·) be the

volume of set. For bounded and Jordan measurable set D ⊂ Rd and δ > 0, define

[D]δ = {t+ u : t ∈ D, ‖u‖ ≤ δ}.
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Let 0 < α ≤ 1, p = (p1, · · · , pd) with 0 < pi ≤ 2 for all 1 ≤ i ≤ d and let {Wt(u) : u ∈

[0,∞)d} be a Gaussian random field such that Wt(0) = 0 and

E(Wt(u)) = −
( d∑
i=1

u
pi
i

)α
rt

(
u
p1
1∑d

i=1 u
pi
i

, · · · ,
u
pd
d∑d

i=1 u
pi
i

)
,

Cov(Wt(u),Wt(v)) =

( d∑
i=1

u
pi
i

)α
rt

(
u
p1
1∑d

i=1 u
pi
i

, · · · ,
u
pd
d∑d

i=1 u
pi
i

)

+

( d∑
i=1

v
pi
i

)α
rt

(
v
p1
1∑d

i=1 v
pi
i

, · · · ,
v
pd
d∑d

i=1 v
pi
i

)

−
( d∑
i=1

|ui − vi|pi
)α

rt

(
|u1 − v1|p1∑d
i=1 |ui − vi|pi

, · · · , |ud − vd|pd∑d
i=1 |ui − vi|pi

)
,

(8.1.1)

where rt : S = {v ∈ [0,∞)d :
∑d
i=1 vi = 1} → R+ is a continuous function satisfying

sup
v∈S
|rt(v)− rs(v)| → 0, as ‖t− s‖ → 0. (8.1.2)

In particular, we define

HK(t) =

∫ ∞
0

eyP
{

sup
0≤ui≤K,∀i

Wt(u) > y

}
dy,

H(t) = lim
K→∞

K−dHK(t).

(8.1.3)

Let L be a slowly varying function, define

∆c,i = min{x > 0 : xαpiL(x) = c−2}, ∀1 ≤ i ≤ d, (8.1.4)
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and ∆c = (∆c,1, · · · ,∆c,d). For example, if L(x) ≡ 1, then ∆c = (c
− 2
αp1 , · · · , c

− 2
αpd ).

Our goal is to investigate the asymptotic property of centered Gaussian fields satisfying the

following condition:

E(X(t)X(t+ u))

= 1− (1 + o(1))

( d∑
i=1

|ui|pi
)α

L

( d∑
i=1

|ui|pi
)
rt

(
|u1|p1∑d
i=1 |ui|pi

, · · · , |ud|pd∑d
i=1 |ui|pi

)
,

(8.1.5)

as ‖u‖ → 0, uniformly over t ∈ [D]δ.

Theorem 8.1.1 Suppose Gaussian random field X satisfies condition (8.1.5), where 0 <

α ≤ 1, p = (p1, · · · , pd) with 0 < pi ≤ 2 for all 1 ≤ i ≤ d, and rt : S → R+ is a continuous

function such that the convergence in (8.1.2) is uniform in t ∈ [D]δ and supt∈[D]δ,v∈S
rt(v) <

∞. Then as c→∞,

P
{

sup
t∈D

X(t) > c

}
∼ Ψ(c)

( d∏
i=1

∆−1
c,i

)∫
D
H(t)dt.

8.2 Asymptotically Gaussian Random Fields

For c > 0, let Xc be random fields such that EXc(t) = 0, EX2
c (t) = 0 for all c and t. Define

ρc(t, u) = E(Xc(t)Xc(u)). We impose the following conditions for Xc.

(C). There exist 0 < α ≤ 1, p = (p1, · · · , pd) with 0 < pi ≤ 2 for all 1 ≤ i ≤ d and a slowly
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varying function L such that as ‖u‖ → 0,

ρ(t, t+ u)

= 1− (1 + o(1))

( d∑
i=1

|ui|pi
)α

L

( d∑
i=1

|ui|pi
)
rt

(
|u1|p1∑d
i=1 |ui|pi

, · · · , |ud|pd∑d
i=1 |ui|pi

)

uniformly over t ∈ [D]δ and c > 0.

(B1). As c→∞,

P{Xc(t) > c− y/c} ∼ Ψ(c− y/c)

uniformly over t ∈ [D]δ and positive, bounded values of y.

(B2). The convergence in (8.1.2) is uniform over t ∈ [D]δ, with supt∈[D]δ,v∈S
rt(v) < ∞.

Moreover, for any a > 0, a = {a1/p1 , · · · , a1/pd} and positive integers mi, as c→∞,

{c[Xc(t+ ak∆c)−Xc(t)] : 0 ≤ ki < mi}|Xc(t) = c− y/c

⇒ {Wt(ak) : 0 ≤ ki < mi}

uniformly over positive, bounded values of y.

(B3). There exists a positive function h such that limy→∞ h(y) = 0 and

P{Xc(t+ u∆c) > c− γ/c,Xc(t) ≤ c− y/c} ≤ h(y)Ψ(c),

for all u ≥ 0 (u is a vector) and γ > 0.

(B4). Let pi0 = min{pi, 1 ≤ i ≤ d}, a = (a1/p1 , · · · , a1/pd). There exist nonincreasing func-

tions Na on R+ and positive constants γa such that γa → 0 and Na(γa)+
∫∞

1 ωsNa(γa+
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ω)dω = o(a
d/pi0 ) as a→ 0, and

P
{

sup
v∈It,a∆c

Xc(v) > c,Xc(t) ≤ c− y/c
}
≤ Na(γ)Ψ(c),

for all γa ≤ γ ≤ c and s > 0.

(B5). There exists a nonincreasing function f : [0,∞)→ R+ such that f(y) = O(e−y
q′

) for

some q′ > 0 and for all γ ≥ 0 and c sufficiently large,

P{Xc(t) > c− γ/c,Xc(t+ u∆c) > c− γ/c} ≤ Ψ(c− γ/c)f
( d∑
i=1

|ui|pi
)

uniformly in t and t+ u∆c belonging to [D]δ.

For K > 0 and a > 0, let At = (At(K, a, c)) , {t + ak∆c : 0 ≤ ki < mi, k ∈ Zd},

where mi = bK/a1/pic and a = (a1/p1 , · · · , a1/pd). As a discrete set, At will be used to

approximate It,K∆c .

Lemma 8.2.1 Under (C) and (B1)-(B3),

HK,a(t) ,
∫ ∞

0
eyP
{

sup
0≤ki<mi,∀i

Wt(ak) > y

}
dy

is uniformly continuous in t ∈ [D]δ and supt∈[D]δ
HK,a(t) < ∞. Moreover, for γ ≥ 0, as

c→∞,

P
{

sup
u∈At

Xc(u) > c− γ/c
}
∼ Ψ(c− γ/c)(1 +HK,a(t)) (8.2.1)

uniformly in t ∈ [D]δ.
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Proof Let ε > 0. By (B3), there exists y∗ > γ such that h(y∗) < ε/(
∏d
i=1mi) and

0 ≤ P
{

sup
u∈At

Xc(u) > c− γ/c
}
− P{Xc(t) > c− γ/c}

− P
{

sup
u∈At

Xc(u) > c− γ/c, c− y∗/c < Xc(t) ≤ c− γ/c
}

= P
{

sup
u∈At

Xc(u) > c− γ/c,Xc(t) ≤ c− y∗/c
}

≤
( d∏
i=1

mi

)
h(y∗)Ψ(c) < εΨ(c),

(8.2.2)

since card(At) =
∏d
i=1mi. By (B1), there exists ξc → 0 such that

|P{Xc(t) > c− y/c}/Ψ(c− y/c)− 1| = O(ξ2
c ) (8.2.3)

uniformly for γ ≤ y ≤ y∗; we can also assume that ξ−1
c (y∗−γ) ∈ Z. Since eξc = 1+ξc+O(ξ2

c )

and Ψ(c− y/c) ∼ eyΨ(c), (8.2.3) implies

P{c− (y + ξc)/c < Xc(t) ≤ c− y/c}

= (1 +O(ξ2
c ))ey+ξcΨ(c)− (1 +O(ξ2

c ))eyΨ(c) ∼ ξce
yΨ(c).

By (B2), uniformly for t ∈ [D]δ and γ ≤ y ≤ y∗,

P
{

sup
u∈At

Xc(u) > c− γ/c, c− (y + ξc)/c < Xc(t) ≤ c− y/c
}

∼ P
{

sup
0≤ki<mi,∀i

Wt(ak) > y − γ
}
P{c− (y + ξc)/c < Xc(t) ≤ c− y/c}

∼ P
{

sup
0≤ki<mi,∀i

Wt(ak) > y − γ
}
ξce

yΨ(c).

(8.2.4)
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Summing (8.2.4) over y = jξc + γ for j = 0, 1, · · · , ξ−1
c (y∗ − γ)− 1, we obtain

P
{

sup
u∈At

Xc(u) > c− γ/c, c− y∗/c < Xc(t) ≤ c− γ/c
}

∼ Ψ(c)

∫ y∗−1

γ
eyP
{

sup
0≤ki<mi,∀i

Wt(ak) > y − γ
}
dy

∼ Ψ(c− γ/c)
∫ y∗−γ−1

0
eyP
{

sup
0≤ki<mi,∀i

Wt(ak) > y

}
dy.

Plugging this in (8.2.2) and letting y∗ →∞, we get (8.2.1).

Since
∫∞

0 eyP{Wt(ak) > y}dy < ∞ for all k and At is a finite set, HK,a(t) is finite and

its uniform continuity follows from (8.1.1) and (8.1.2), with the fact described in (B2) that

the convergence in (8.1.2) is uniform over t ∈ [D]δ. Racall that supt∈[D]δ,v∈S
rt(v) < ∞,

yielding the finiteness of supt∈[D]δ
HK,a(t). �

Theorem 8.2.2 Let K > 0. Assume (C) and (B1)-(B4). Then as c→∞,

P
{

sup
u∈It,K∆c

Xc(u) > c

}
∼ Ψ(c)(1 +HK(t))

uniform over t ∈ [D]δ, where HK(t) is defined in (8.1.3) and is finite and uniformly contin-

uous in t ∈ [D]δ.
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Proof Let a > 0. By (B4) and (8.2.1), we have for all large c,

0 ≤
[
P
{

sup
u∈It,K∆c

Xc(u) > c

}
− P

{
sup
u∈At

Xc(u) > c

}]/
Ψ(c)

≤
[
P
{
c− γa/c < sup

u∈At
Xc(u) ≤ c

}
+
∑
u∈At

P
{

sup
v∈Iu,a∆c

Xc(v) > c,Xc(u) ≤ c− γa/c
}]/

Ψ(c)

≤ 2(Ψ(c− γa/c)−Ψ(c))(1 +HK,a(t))/Ψ(c) +
d∏
i=1

(K/a1/pi)Na(γa)

≤ 3(eγa − 1)(1 +HK,a(t)) + (Kd/a
∑d
i=1 1/pi)Na(γa).

(8.2.5)

By (B4), for any ε > 0, we can choose a∗ small enough such that Na(γa)/a
∑d
i=1 1/pi < ε/Kd

and 3(eγa − 1) < ε for all 0 < a ≤ a∗. Therefore, by (8.2.1) and (8.2.5),

(1− ε)(1 +HK,a(t)) ≤ P
{

sup
u∈It,K∆c

Xc(u) > c

}/
Ψ(c) ≤ (1 + 2ε)(1 +HK,a(t)) + ε,

for all large c and all t ∈ [D]δ and 0 < a ≤ a∗. By uniform continuity of Wt(u), HK,a(t)→

HK(t) as a ↓ 0. Therefore,

1 +HK,a(t) ≤ 1 +HK(t) ≤ (1 + ε)(1 +HK,a∗(t)), (8.2.6)

for all t ∈ [D]δ and 0 < a ≤ a∗.

First note that M , 1 + supt∈[D]δ
HK(t) < ∞ in view of (8.2.6) and Lemma 8.2.1,

therefore

|HK(t)−HK,a∗(t)| ≤Mε (8.2.7)
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for all t ∈ [D]δ, by (8.2.6) with a = a∗. Because HK,a∗ is uniformly continuous by Lemma

8.2.1,

|HK,a∗(t)−HK,a∗(u)| ≤ ε, ∀‖t− u‖ < δ∗, t, u ∈ [D]δ, (8.2.8)

for some δ∗ > 0. It follows from (8.2.7) and (8.2.8) that, if ‖t− u‖ < δ∗,

|HK(t)−HK(u)|

≤ |HK(t)−HK,a∗(t)|+ |HK(u)−HK,a∗(u)|+ |HK,a∗(t)−HK,a∗(u)|

≤ 2Mε+ ε.

Hence HK(t) is uniformly continuous in t ∈ [D]δ.

Combining (8.2.7) and the definition of M yields that for all large c and t ∈ [D]δ,

−εM − ε(1− ε)M ≤ P
{

sup
u∈It,K∆c

Xc(u) > c

}/
Ψ(c)− (1 +HK(t))

≤ 2εM + ε(1 + 2ε)M.

Since ε is arbitrary, this proves the theorem. �

Lemma 8.2.3 Under (C) and (B1)-(B4), supt∈[D]δ,K≥1K
−dHK(t) < ∞ and {K−dHK :

K ≥ 1} is uniformly equicontinuous on [D]δ, that is,

sup
K≥1,t,s∈[D]δ,‖t−s‖≤ε

|K−dHK(t)−K−dHK(s)| → 0, as ε→ 0.
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Proof Let

a = (a1/p1 , · · · , a1/pd), mi = bK/a1/pic,

N(K, a) = b(
d∏
i=1

mi)/(
d∏
i=1

ba−1/pic)c.

Note that the integrand of HK,a(t) involves the set {ak : 0 ≤ ki < mi}, which can be

partitioned into N(K, a) + 1 disjoint subsets Lj such that card(Lj) =
∏d
i=1ba−1/pic for

1 ≤ j ≤ N(K, a) and card(LN(K,a)+1) =
∏d
i=1mi − N(K, a)

∏d
i=1ba−1/pic. It is possible

that card(LN(K,a)+1) = 0, in this case LN(K,a)+1 is regarded as an empty set. We can

therefore use the arguments at the end of the proof of Lemma 8.2.1 to bound

K−d
N(K,a)+1∑

j=1

∣∣∣∣P{ sup
k∈Lj

Wt(ak) > y

}
− P

{
sup
k∈Lj

Ws(ak) > y

}∣∣∣∣
and thereby establish the uniform equicontinuity and boundedness of {K−dHK,a : K ≥ 1}

on [D]δ. Moreover, by partitioning the cube [0, K)d similarly into Kd cubes, it can be shown

that supK≥1,t∈[D]δ
|K−dHK(t)−K−dHK,a(t)| → 0, as a→ 0. Hence we can proceed as in

(8.2.7) and (8.2.8) but with HK,a and HK replaced by K−dHK,a and K−dHK respectively

to prove the uniform equicontinuity and boundedness of {K−dHK : K ≥ 1}. �

Lemma 8.2.4 Under (C) and (B1)-(B5), there exist constants sK → 0 as K → ∞ such

that

P
{

sup
u∈It,K∆c

Xc(u) > c, sup
v∈B\It,K∆c

Xc(v) > c

}
≤ sKK

dΨ(c) (8.2.9)

for c large enough, uniformly over t ∈ [D]δ and over subsets B of [D]δ.
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Proof Let a > 0 and 0 < q < q′. Then by the property of f described in (B5),

Ga ,
∑

w∈aZd
exp

( d∑
i=1

|wi|pi
)
f

( d∑
i=1

|wi|pi
)
<∞.

Let n be positive integers that are large enough such that

∑
w∈aZd,

∑d
i=1 |wi|

pi≥np1a

exp

( d∑
i=1

|wi|pi
)
f

( d∑
i=1

|wi|pi
)
< εa

∑d
i=1 1/pi ;

and K > 0 be large enough such that

[
1−

d∏
i=1

(1− 2n/mi)

]
Ga < εa

∑d
i=1 1/pi ,

where mi = bK/a1/pic. Let F1,t = {t + ak∆c : n ≤ ki < mi − n, k ∈ Zd}, F2,t = At\F1,t,

Bt = {t+ ak∆c ∈ B\It,K∆c , k ∈ Zd}, guv = min{c− γa, (
∑d
i=1 |(ui − vi)/∆c,i|pi)q}. Then

by (B5),

P
{
Xc(u) > c− (γa + guv)/c,Xc(v) > c− (γa + guv)/c

}
≤ Ψ(c− (γa + guv)/c)f

( d∑
i=1

|(ui − vi)/∆c,i|pi
)

≤ 2eguvΨ(c− γa/c)f
( d∑
i=1

|(ui − vi)/∆c,i|pi
)
,

(8.2.10)

for all large c. For u ∈ F1,t and v ∈ Bt,
∑d
i=1 |(ui − vi)/∆c,i|pi ≥ np1a and guv ≤

(
∑d
i=1 |(ui − vi)/∆c,i|pi)q. Noting that card(F1,t) ≤

∏d
i=1mi, card(F2,t) ≤

∏d
i=1mi −∏d

i=1(mi − 2n) =
∏d
i=1mi[1−

∏d
i=1(1− 2n/mi)], and that

∑
u∈At =

∑
u∈F1,t

+
∑
u∈F2,t

,
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we obtain from (8.2.10) that for all large c,

∑
u∈At

∑
v∈Bt

P
{
Xc(u) > c− (γa + guv)/c,Xc(v) > c− (γa + guv)/c

}

≤ 2Ψ(c− γa/c)
( d∏
i=1

mi

){ ∑
w∈aZd,

∑d
i=1 |wi|

pi≥np1a

exp

( d∑
i=1

|wi|pi
)
f

( d∑
i=1

|wi|pi
)

+

[
1−

d∏
i=1

(1− 2n/mi)

]
Ga

}

≤ 4εKdΨ(c− γa/c).

(8.2.11)

Define λw = minu∈At guw if w ∈ Bt, and λw = 0 if w ∈ At. Then

P
{

sup
u∈It,K∆c

Xc(u) > c, sup
v∈B\It,K∆c

Xc(v) > c

}

≤
∑
u∈At

∑
v∈Bt

P
{
Xc(u) > c− (γa + guv)/c,Xc(v) > c− (γa + guv)/c

}

+
∑

w∈At∪Bt

P
{

sup
z∈Iw,a∆c

Xc(z) > c,Xc(v) ≤ c− (γa + λw)/c

}
.

(8.2.12)
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On the right-hand side of (8.2.12), the first sum can be bounded by (8.2.11) and the second

sum by

∑
u∈At

P
{

sup
z∈Iu,a∆c

Xc(z) > c,Xc(u) ≤ c− γa/c
}

+
∑
v∈Bt

P
{

sup
v∈Iv,a∆c

Xc(z) > c,Xc(v) ≤ c− (γa + λv)/c

}

≤
( d∏
i=1

mi

)
Na(γa)Ψ(c) +

∑
v∈Bt

Na(γa + λv)Ψ(c)

≤ Kda−
∑d
i=1 1/piNa(γa)Ψ(c) +

∑
v∈Bt

Na(γa + λv)Ψ(c),

(8.2.13)

in view of (B4) and that card(At) =
∏d
i=1mi. To bound the last sum

∑
v∈Bt in (8.2.13),

first consider the case d = 1. Since λv ≥ min{c−γa, (akp)q} if akp ≤ infu∈At(|v−u|/∆c)
p <

a(k + 1)p, and since Na is nonincreasing, it follows that

∑
v∈Bt

Na(γa + λv)

≤ 2

{ ∞∑
k=1

Na(γa + (akp)q) +Na(c)µ(B)/(a∆c)

}

= 2

{ ∞∑
k=1

Na(γa + (a1/pk)pq) +Na(c)µ(B)/(a∆c)

}

≤ 2

{
a−1/p

∫ ∞
0

Na(γa + ypq)dy + µ(B)Na(c)/(a∆c)

}
.

(8.2.14)

Making change of variable by ypq replaced by ω, and noting that Na(γa) +
∫∞

1 ωsNa(γa +

ω)dω = o(a) for all s ≥ 0 as described in (B4), yield that a−1/p
∫∞

0 Na(γa + yq)dy = o(1)

as a → 0. Moreover, in view of (8.1.4), Na(c)/∆c = O(
∫ c−γa
c/2−γa ω

sNa(γa + ω)dω) = o(a1/p)

as a→ 0 and c→∞, for s > 2/(αp). Therefore,
∑
v∈Bt Na(γa + λv) ≤ ε for all large c and
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small a.

In general, for d > 1, note that λv ≥ min{c − γa, (a
∑d
i=1 j

pi)q} if a
∑d
i=1 j

pi ≤∑d
i=1 |(ui − vi)/∆c,i|pi < a

∑d
i=1(j + 1)pi . Let U = {σ ⊂ {1, · · · , d} : card(σ) = d − 1},

since Na is nonincreasing, it follows that

∑
v∈Bt

Na(γa + λv)

≤ 2

{
2d
∞∑
j=1

(∑
σ∈U

∏
l∈σ

(a−1/plK + 2j)

)
Na

(
γa +

(
a

d∑
i=1

jpi

)q)

+
Na(c)µ(B)∏d
i=1(a1/pi∆c,i)

}

≤ 2

{
2d
∞∑
j=1

(∑
σ∈U

∏
l∈σ

(a−1/plK + 2j)

)
Na(γa + dq(a

1/pi0 j)
pi0

q
)

+
Na(c)µ(B)∏d
i=1(a1/pi∆c,i)

}
≤ 2

{
2da
−1/pi0

∫ ∞
0

(∑
σ∈U

∏
l∈σ

(a−1/plK + 2a
−1/pi0y)

)
Na(γa + dqy

pi0
q
)

+
Na(c)µ(B)∏d
i=1(a1/pi∆c,i)

}
≤ εKd−1,

(8.2.15)

for all large c and small a, as can be shown by arguments similar to those in the case d = 1.

Combining (8.2.11)-(8.2.15) yields the desired conclusion. �

Theorem 8.2.5 Assume (C) and (B1)-(B5). Let `c → ∞ and `c = o(∆c,i) for all i and

hence `c∆c = o(1) as c→∞. Then

P
{

sup
u∈It,`c∆c

Xc(u) > c

}
∼ H(t)Ψ(c)`dc , (8.2.16)
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P
{

sup
u∈It,`c∆c

Xc(u) > c, sup
v∈B\It,`c∆c

Xc(v) > c

}
= o(Ψ(c)`dc ), (8.2.17)

as c → ∞, uniformly over t ∈ [D]δ and over subsets B of [D]δ, where H(t) is defined in

(8.1.3) and is uniformly continuous and bounded below on D.

Proof Let ε > 0. There exists K∗ such that sK ≤ ε/3 for all K ≥ K∗. For fixed t ∈ D

and K ≥ K∗, define

Λ = {u ∈ K∆cZd : Iu,K∆c ⊂ It,`c∆c},

Λ = {u ∈ K∆cZd : Iu,K∆c ∩ It,`c∆c 6= ∅}, Ju = Iu,K∆c .

(8.2.18)

Covering It,`c∆c by rectangles with edges length K∆c,i, 1 ≤ i ≤ d. and letting B be a subset

of [D]δ containing It,`c∆c , we have

∑
u∈Λ

(
P
{

sup
v∈Ju

Xc(v) > c

}
− P

{
sup
v∈Ju

Xc(v) > c, sup
w∈B\Ju

Xc(w) > c

})

≤ P
{

sup
u∈It,`c∆c

Xc(u) > c

}
≤
∑
u∈Λ

P
{

sup
v∈Ju

Xc(v) > c

}
.

(8.2.19)

By Theorem 8.2.2 and Lemma 8.2.4, as c→∞,

(1+o(1))Ψ(c)
∑
u∈Λ

(1 +HK(u)− sKKd)

≤ P
{

sup
u∈It,`c∆c

Xc(u) > c

}
≤ (1 + o(1))Ψ(c)

∑
u∈Λ

(1 +HK(u)),

(8.2.20)

uniformly over t ∈ [D]δ. In view of `c∆c → 0 and the uniform equicontinuity in Lemma

8.2.3, we can choose c∗ large enough so that |K−dHK(u)−K−dHK(t)| ≤ ε/3 for all c ≥ c∗,

√
`c ≥ K ≥ K∗, t ∈ D and u ∈ Λ. Putting this and the bound sK ≤ ε/3 in (8.2.20) and
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dividing (8.2.20) by Ψ(c)`dc , we obtain that for all c ≥ c∗,
√
`c ≥ K ≥ K∗ and t ∈ D,

(1− ε)(K−dHK(t)− 2ε/3) ≤ P
{

sup
u∈It,`c∆c

Xc(u) > c

}/
(Ψ(c)`dc )

≤ (1 + ε)(K−dHK(t) + ε/3),

(8.2.21)

since card(Λ) ∼ card(Λ) ∼ K−d`dc . By Lemma 8.2.3, M , supt∈[D]δ,K≥1K
−dHK(t) < ∞.

Therefore, it follows from (8.2.21) that

sup
t∈D

∣∣∣∣P{ sup
u∈It,`c∆c

Xc(u) > c

}/
(Ψ(c)`dc )−K−dHK(t)

∣∣∣∣ ≤ εM + 2ε/3, (8.2.22)

for all c ≥ c∗ and
√
`c ≥ K ≥ K∗. Letting c→∞ in (8.2.22) yields

sup
t∈D
|K−dHK(t)− K̃−dH

K̃
(t)| ≤ 2εM + 4ε/3,

ifK, K̃ ≥ K∗, establishing that {K−dHK} is uniformly Cauchy. HenceK−dHK(t) converges

uniformly in t ∈ D to H(t), which is also bounded by M . We can therefore proceed as in the

second paragraph of the proof of Theorem 8.2.2 to show that H(t) is uniformly continuous

in t ∈ D. Moreover, taking K large enough such that supt∈D |K−dHK(t)−H(t)| ≤ ε/3, it

follows from (8.2.22) that

sup
t∈D

∣∣∣∣P{ sup
u∈It,`c∆c

Xc(u) > c

}/(
Ψ(c)`dc

)
−H(t)

∣∣∣∣ ≤ ε(M + 1)

for all c ≥ c∗, proving (8.2.16).

We next show that inft∈DH(t) > 0. For the function f in (B5), we can choose a > 0 large

enough so that
∑
k 6=0 f

(
a
∑d
i=1 |ki|pi

)
≤ 1/2. Let K large enough and mi = bK/a1/pic,
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1 ≤ i ≤ d, and At = At(K, a, c) as defined before so that card(At) =
∏d
i=1mi. Then by

(B1) and (B5), as c→∞,

P
{

sup
u∈At

Xc(u) > c

}
≥
∑
u∈At

(
P(Xc(u) > c)−

∑
v∈At,v 6=u

P(Xc(u) > c,Xc(v) > c)

)

≥
∑
u∈At

(1 + o(1))Ψ(c)/2

= (1 + o(1))

( d∏
i=1

mi

)
Ψ(c)/2,

(8.2.23)

uniformly in t ∈ D and mi ≥ 2. Combining (8.2.23) with Theorem 8.2.2 yields

1 +HK(t) = lim
c→∞

P
{

sup
u∈It,K∆c

Xc(u) > c

}/
Ψ(c)

≥ lim sup
c→∞

P
{

sup
u∈At

Xc(u) > c

}/
Ψ(c) ≥

( d∏
i=1

mi

)
/2

uniformly in t ∈ D and mi ≥ 2. Since limK→∞K−dHK(t) = H(t), it then follows that

H(t) ≥ (
∏d
i=1 a

−1/pi)/2 for all t ∈ D.

Finally, to prove (8.2.17), apply Lemma 8.2.4 to obtain that for all t ∈ D and large c,

P
{

sup
u∈It,`c∆c

Xc(u) > c, sup
v∈B\It,`c∆c

Xc(v) > c

}

≤
∑
u∈Λ

P
{

sup
v∈Ju

Xc(v) > c, sup
v∈B\Ju

Xc(v) > c

}

≤ card(Λ)sKK
dΨ(c).

Since sK → 0 as K →∞ and card(Λ) ∼ K−d`dc as `c/K →∞, (8.2.17) follows. �
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Theorem 8.2.6 Assume (C) and (B1)-(B5). Then as c→∞,

P
{

sup
t∈D

Xc(t) > c

}
∼ Ψ(c)

( d∏
i=1

∆−1
c,i

)∫
D
H(t)dt.

Proof A basic idea of the proof is to cover the set D by rectangles with edges length

`c∆c,i, 1 ≤ i ≤ d, and also `c → ∞ and `c∆c,i → 0 for all i and hence `c∆c → 0 as

c→∞. Define Λ,Λ and Ju as in (8.2.18) but with K∆cZd replaced by `c∆cZd, Iu,K∆c by

Iu,`c∆c , and It,`c∆c by D. Then (8.2.19) still holds with these new definitions of Λ,Λ and Ju

and also with B replaced by [D]δ. Labeling it as (8.2.19′), the upper and lower bounds

in (8.2.19′) are both asymptotically equivalent to (`dc
∏d
i=1 ∆c,i)

−1(`dc )Ψ(c)
∫
DH(t)dt =

Ψ(c)(
∏d
i=1 ∆−1

c,i )
∫
DH(t)dt, since `c∆c → 0 and H(t) is continuous. This finishes the proof.

�

8.3 Proof of Theorem 8.1.1

In view of Theorem 8.2.6, we only need to show that (B1)-(B5) holds for such Gaussian

fields. (B1) is obvious. To show (B2), it follows from (8.1.5) that as c→∞,

E{c[X(t+ u∆c)−X(t)]|X(t) = c− y/c}

= −c[1− ρ(t, t+ u∆c)](c− y/c)

→ −
( d∑
i=1

|ui|pi
)α

rt

(
|u1|p1∑d
i=1 |ui|pi

, · · · , |ud|pd∑d
i=1 |ui|pi

)
,

(8.3.1)
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Cov{c[X(t+ u∆c)−X(t)], c[X(t+ v∆c)−X(t)]|X(t) = c− y/c}

= c2[ρ(t+ u∆c, t+ v∆c)− ρ(t, t+ u∆c)ρ(t, t+ v∆c)]

→
( d∑
i=1

u
pi
i

)α
rt

(
u
p1
1∑d

i=1 u
pi
i

, · · · ,
u
pd
d∑d

i=1 u
pi
i

)

+

( d∑
i=1

v
pi
i

)α
rt

(
v
p1
1∑d

i=1 v
pi
i

, · · · ,
v
pd
d∑d

i=1 v
pi
i

)

−
( d∑
i=1

|ui − vi|pi
)α

rt

(
|u1 − v1|p1∑d
i=1 |ui − vi|pi

, · · · , |ud − vd|pd∑d
i=1 |ui − vi|pi

)
.

(8.3.2)

Since {c[X(t+ ak∆c)−X(t)] : 0 ≤ ki < mi} is multivariate normal, (B2) then follows.

Let γ > 0, φ be the density of standard normal. Since Ψ(c− z/c) ∼ ezΨ(c) for all z ≥ 0

and there exist constants B > 0, B′ > 0 such that P{Wt(u) > z − γ} ≤ B exp(−B′z2), it

follows from (8.3.1) and (8.3.2) that as c→∞,

P{X(t+ u∆c) > c− γ/c,X(t) ≤ c− y/c}

= P{X(t) ≤ c− y/c}
∫ c−y/c

−∞
P{X(t+ u∆c) > c− γ/c|X(t) = x}φ(x)dx

= P{X(t) ≤ c− y/c}
∫ ∞
y

P{X(t+ u∆c) > c− γ/c|X(t) = c− z/c}c−1φ(c− z/c)dz

≤ (1 + o(1))Ψ(c)

∫ ∞
y

ezP{Wt(u) > z − γ}dz

≤ h(y)Ψ(c),

where h(y)→ 0 as y →∞, establishing (B3).
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To show (B5) holds, note that

P{X(t) > c,X(t+ u∆c) > c}

≤ P{X(t) +X(t+ u∆c) > 2c}

∼ Ψ

([
2c2

1 + ρ(t, t+ u∆c)

]1/2)
= Ψ(c)

(
1 + ρ(t, t+ u∆c)

2

)1/2

exp

[
− c2

1 + ρ(t, t+ u∆c)
+
c2

2

]
≤ Ψ(c) exp

[
− c2

2

(
1− ρ(t, t+ u∆c)

2

)]
.

By (8.1.5), there exists η > 0 such that c2[1−ρ(t, t+u∆c)] ≥ η(
∑d
i=1 |ui|pi)αL(

∑d
i=1 |ui|pi)

for all t, t + u∆c ∈ [D]δ. Hence (B5) holds with f(y) = Bλ exp(−yλ) with 0 < λ < α, for

some Bλ > 0.

Finally we turn to (B4). Let a > 0, a = {a1/p1 , · · · , a1/pd}, 0 < ζ < α, 1 < ξ < 2
pi0

ζ/2
,

κ =
∑∞
r=0 ξ

−r and wr = ξ−r/(2κ). Define

Br = {t+ 2−rak∆c : 0 ≤ ki < 2r, k ∈ Zd},

F =

{
sup

u∈It,a∆c

X(u) > c

}
,

E−1 = {X(t) ≤ c− γ/c},

Er =

{
sup
v∈Br

X(v) ≤ c− γ(1− w0 − · · · − wr)/c)
}

for r ≥ 0,

recalling that
∑∞
r=0wr = 1/2. Note that Br ⊂ Br+1 ⊂ It,a∆c and that by the continuity of
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X, P(F ∩ E−1) ≤
∑∞
r=0 P(Er−1 ∩ Ecr). Moreover,

P(Er−1 ∩ Ecr)

≤ 2r+d sup
v∈It,a∆c,ε∈{0,1}

d\{0}
P{X(v) ≤ c− γ(1− w0 − · · · − wr−1)/c),

X(v + ε2−ra∆c) > c− γ(1− w0 − · · · − wr)/c}.

(8.3.3)

Given X(v) = c− y/c, the conditional distribution of c[X(v + ε2−ra∆c)−X(v)] is normal

with mean −c(c− y/c)[1− ρ(v, v + ε2−ra∆c)] < 0 and variance c2[1− ρ2(v, v + ε2−ra∆c)],

which is bounded by B(a
∑d
i=1 2−rpi)ζ for some B > 0, in view of (8.1.5). Hence

P
{

sup
ε∈{0,1}d

c[X(v + ε2−ra∆c)−X(v)] > wry|X(v) = c− y/c
}

≤ 2d exp

[
− C(wry)2

/(
a

d∑
i=1

2−rpi
)ζ]

≤ 2d exp

[
− C(wry)2

/(
da2
−rpi0

)ζ]
(8.3.4)

for some C > 0.

Let η , 2
pi0

ζ
/ξ2 > 1. Combining (8.3.3) and (8.3.4) with fact P{X(v) ∈ c − y/c} ∼

Ψ(c)eydy then yields

P(F ∩ E−1)

≤ (1 + o(1))Ψ(c)
∞∑
r=0

2−r
∫ ∞
γ/2

exp[y − Cηry2/(4aζdζκ2) + C ′r]dy
(8.3.5)

for some C ′ > 0. Let γa = aζ/3. Then for large c and γa ≤ γ ≤ c, (8.3.5) is bounded above
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by Ψ(c)Na(γ), where

Na(γ) = 2
∞∑
r=0

2−r
∫ ∞
γ/2

exp[y − Cηry2/(4aζdζκ2) + C ′r]dy

satisfies Na(γa) +
∫∞

1 ωsNa(γa + ω)dω = o(al) for all s > 0 and l > 0.

8.4 Example: Standardized Fractional Brownian Sheet

For a given vectorH = (H1, · · · , Hd) ∈ (0, 1)d, a d-fractional Brownian sheetBH = {BH(t) :

t ∈ Rd} with Hurst index H is a real-valued, centered Gaussian field with covariance function

given by

E(BH(t)BH(s)) =
d∏
i=1

1

2

(
|ti|2Hi + |si|2Hi − |ti − si|2Hi

)
, t, s ∈ Rd.

Let D ⊂ Rd such that D̄ having no intersection with any coordinate, define the standardized

field

X(t) =
BH(t)√

Var(BH(t))
, t ∈ D.

It follows that

E(X(t)X(s)) =
d∏
i=1

|ti|2Hi + |si|2Hi − |ti − si|2Hi
2|tisi|Hi

,

and hence

E(X(t)X(t+ u)) = 1− (1 + o(1))
1

2

( d∑
i=1

∣∣∣∣uiti
∣∣∣∣2Hi), (8.4.1)
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as ‖u‖ → 0, uniformly over t ∈ [D]δ. Hence (8.1.5) is satisfied with pi = 2Hi for 1 ≤ i ≤ d,

α = 1, L(
∑d
i=1 |ui|2Hi) ≡ 1/2 and

rt

(
|u1|2H1∑d
i=1 |ui|2Hi

, · · · , |ud|2Hd∑d
i=1 |ui|2Hi

)
=

( d∑
i=1

|ui|2Hi
)−1 d∑

i=1

∣∣∣∣uiti
∣∣∣∣2Hi .

In other word,

rt(v) =
d∑
i=1

vi

|ti|2Hi
, t ∈ D, v ∈ S.

Applying Theorem 8.1.1, we obtain

P
{

sup
t∈D

X(t) > c

}
∼ Ψ(c)

(
c2

2

)∑d
i=1

1
2Hi

∫
D
H(t)dt, (8.4.2)

where

H(t) = lim
K→∞

K−d
∫ ∞

0
eyP
{

sup
0≤ui≤K,∀i

Wt(u) > y

}
dy,

and {Wt(u) : u ∈ [0,∞)d} is a Gaussian random field such that Wt(0) = 0 and

E(Wt(u)) = −
d∑
i=1

∣∣∣∣uiti
∣∣∣∣2Hi ,

Cov(Wt(u),Wt(v)) =
d∑
i=1

u
2Hi
i + u

2Hi
i − |ui − vi|2Hi
|ti|2Hi

.

By similar discussions in Lemma 7.2.3, we obtain further that

P
{

sup
t∈D

X(t) > c

}
∼ Ψ(c)

(
c2

2

)∑d
i=1

1
2Hi H̃

∫
D

( d∏
i=1

1

|ti|2Hi

)
dt, (8.4.3)
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where H̃ is the Pickands’ constant defined by

H̃ = lim
K→∞

K−d
∫ ∞

0
eyP
{

sup
0≤ui≤K,∀i

W̃ (u) > y

}
dy,

and {W̃ (u) : u ∈ [0,∞)d} is a Gaussian random field such that W̃ (0) = 0 and

E(W̃ (u)) = −
d∑
i=1

u
2Hi
i ,

Cov(W̃ (u), W̃ (v)) =
d∑
i=1

(
u

2Hi
i + u

2Hi
i − |ui − vi|2Hi

)
.

Especially, when H = (1/2, · · · , 1/2), then H̃ = 1 and thus

P
{

sup
t∈D

X(t) > c

}
∼ Ψ(c)2−dc2d

∫
D

( d∏
i=1

|ti|
)−1

dt. (8.4.4)

This result is very similar to Example 2.2 in Chan and Lai (2006).

It is worth mentioning here that we may also apply Piterbarg’s result to get the ap-

proximation. Due to the covariance structure (8.4.1), applying Theorem 7.1 on Page 108 in

Piterbarg (1996a), we obtain

P
{

sup
t∈D

X(t) > c

}
∼ Ψ(c)c

∑d
i=1

1
Hi H̃

∫
D

( d∏
i=1

2
1

2Hi |ti|2Hi
)−1

dt,

which is the same as (8.4.3).

Remark 8.4.1 In certain sense, Theorem 8.1.1 generalize Theorem 7.1 on Page 108 in
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Piterbarg (1996a), since the latter one is the case that

rt(v) = Ctv, t ∈ D, v ∈ S,

where Ct is some nondegenerate d× d matrix.

8.5 Example: Standardized Random String Processes

We study an anisotropic Gaussian field which is the solution to a stochastic partial differential

equation in Mueller and Tribe (2002). We write the original process {Ut(x) : t ≥ 0, x ∈ R}

in Mueller and Tribe (2002) as {U(t) : t1 ≥ 0, t2 ∈ R}. Then it is a centered Gaussian

field with stationary increments and U(0) = 0. It has the following covariance structure: for

t2, s2 ∈ R, t1 = s1 ≥ 0,

E{(U(t)− U(s))2)} = |t2 − s2|,

and for t2, s2 ∈ R, t1 > s1 ≥ 0,

E{(U(t)− U(s))2)} =
√
t1 − s1F

(
|t2 − s2|√
t1 − s1

)
,

where

F (a) = (2π)−1/2 +
1

2

∫
R

∫
R
G(a− z)G(a− z′)(|z|+ |z′| − |z − z′|)dzdz′

= −(2π)−1/2 +

∫
R
G(a− z)|z|dz

= −(2π)−1/2 + 4G(a) + 2a

∫ a

0
G(z)dz,
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and G(x) = 1√
4π
e−

x2
4 . Now we define the standardized field

X(t) =
U(t)√

Var(U(t))
, t ∈ R+ × R. (8.5.1)

Note that

Var(U(t)) =
√
t1F

(
|t2|√
t1

)

=
√
t1

(
− 1√

2π
+

2√
π
e
−
t22
4t1

)
+ |t2|

∫ |t2|√
t1

0

1√
π
e−

z2
4 dz,

and

E(X(t)X(s)) =
Var(U(t)) + Var(U(s))− E{(U(t)− U(s))2)}

2
√

Var(U(t))Var(U(s))
.

Thus we obtain that as ‖u‖ → 0,

E(X(t)X(t+ u)) = 1− (1 + o(1))

[
rt,1

(
|u2|√
|u1|

)√
|u1|+ rt,2

(
|u2|√
|u1|

)
|u2|
]
,

where

rt,1

(
|u2|√
|u1|

)
=

1

2Var(U(t))

(
− 1√

2π
+

2√
π
e
−

u2
2

4|u1|
)
,

rt,2

(
|u2|√
|u1|

)
=

1

2Var(U(t))

∫ |u2|√
|u1|

0

1√
π
e−

z2
4 dz.
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Hence (8.1.5) is satisfied with p1 = 1/2, p2 = 1, α = 1, L(
√
|u1|+ |u2|) ≡ 1 and

rt

( √
|u1|√

|u1|+ |u2|
,

|u2|√
|u1|+ |u2|

)
=

1√
|u1|+ |u2|

[
rt,1

(
|u2|√
|u1|

)√
|u1|+ rt,2

(
|u2|√
|u1|

)
|u2|
]

In other words,

rt(v) = rt,1

(
v2

v1

)
v1 + rt,2

(
v2

v1

)
v2, t ∈ D, v ∈ S.

Hence we can apply Theorem 8.1.1 to get the approximation to the excursion probability.

However, Piterbarg’s result is not applicable for such case.
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Chapter 9

Vector-valued Smooth Gaussian

Random Fields

9.1 Joint Excursion Probability

Let {(X(t), Y (s)) : t ∈ T, s ∈ S} be an R2-valued, centered, unit-variance Gaussian random

field, where T and S are rectangles in RN . Let

ρ(t, s) = E{X(t)Y (s)}, ρ(T, S) = sup
t∈T,s∈S

E{X(t)Y (s)}.

We will make use of the following conditions.

(C1). X, Y ∈ C2(RN ) almost surely and their second derivatives satisfy the uniform mean-

square Hölder condition: there exist constants L, η > 0 such that

E(Xij(t)−Xij(t′))2 ≤ L‖t− t′‖2η, ∀t, t′ ∈ T, i, j = 1, . . . , N,

E(Yij(s)− Yij(s′))2 ≤ L‖s− s′‖2η, ∀s, s′ ∈ S, i, j = 1, . . . , N.

(C2). For every (t, t′, s) ∈ T 2 × S with t 6= t′, the Gaussian vector

(X(t),∇X(t), Xij(t), X(t′),∇X(t′), Xij(t
′), Y (s),∇Y (s), Yij(s), 1 ≤ i ≤ j ≤ N)
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is non-degenerate; and for every (s, s′, t) ∈ S2 × T with s 6= s′, the Gaussian vector

(Y (s),∇Y (s), Yij(s), Y (s′),∇Y (s′), Yij(s
′), X(t),∇X(t), Xij(t), 1 ≤ i ≤ j ≤ N)

is non-degenerate.

(C3). For all (t, s) ∈ T × S such that ρ(t, s) = ρ(T, S),

(E{Xij(t)Y (s)})i,j∈ζ(t,s), (E{X(t)Yi′j′(s)})i′,j′∈ζ′(t,s)

are both negative semidefinite, where

ζ(t, s) = {n : E{Xn(t)Y (s)} = 0, 1 ≤ n ≤ N},

ζ ′(t, s) = {n : E{X(t)Yn(s)} = 0, 1 ≤ n ≤ N}.

Remark 9.1.1 Note that

∂ρ

∂ti
(t, s) = E{Xi(t)Y (s)}, ∂2ρ

∂ti∂tj
(t, s) = E{Xij(t)Y (s)},

∂ρ

∂si
(t, s) = E{X(t)Yi(s)},

∂2ρ

∂si∂sj
(t, s) = E{X(t)Yij(s)}.

Therefore, similarly to Remark 3.1.2, in order to verify (C3), it suffices to consider those

points (t, s) ∈ T×S such that t ∈ ∂kT with 0 ≤ k ≤ N−2 or s ∈ ∂k′S with 0 ≤ k′ ≤ N−2.

We decompose T and S into several faces as

T =
N⋃
k=0

∂kT =
N⋃
k=0

⋃
J∈∂kT

J, S =
N⋃
l=0

∂lS =
N⋃
l=0

⋃
L∈∂lS

L.
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For each J ∈ ∂kT and L ∈ ∂lS, define the number of extended outward maxima above level

u as

ME
u (X, J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = k,

ε∗jXj(t) ≥ 0 for all j /∈ σ(J)},

ME
u (Y, L) := #{s ∈ L : Y (s) ≥ u,∇Y|L(s) = 0, index(∇2Y|L(s)) = l,

ε∗jYj(s) ≥ 0 for all j /∈ σ(L)};

and define the number of maxima above level u as

Mu(X, J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = k},

Mu(Y, L) := #{s ∈ L : Y (s) ≥ u,∇Y|L(s) = 0, index(∇2Y|L(s)) = l}.

Similarly to Lemma 2.3.1, we have the following result.

Lemma 9.1.2 Under (C1) and (C2), the following relation holds for each u > 0:

{
sup
t∈T

X(t) ≥ u, sup
s∈S

Y (s) ≥ u
}

=
N⋃

k,l=0

⋃
J∈∂kT,L∈∂lS

{ME
u (X, J) ≥ 1,ME

u (Y, L) ≥ 1} a.s.

It follows from Lemma 9.1.2 that

P
{

sup
t∈T

X(t) ≥ u, sup
s∈S

Y (s) ≥ u
}
≤

N∑
k,l=0

∑
J∈∂kT,L∈∂lS

P{ME
u (X, J) ≥ 1,ME

u (Y, L) ≥ 1}

≤
N∑

k,l=0

∑
J∈∂kT,L∈∂lS

E{ME
u (X, J)ME

u (Y, L)}.

(9.1.1)
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On the other hand, by the Bonferroni inequality, Lemma 9.1.2 implies

P
{

sup
t∈T

X(t) ≥ u, sup
s∈S

Y (s) ≥ u
}
≥

N∑
k,l=0

∑
J∈∂kT,L∈∂lS

P{ME
u (X, J) ≥ 1,ME

u (Y, L) ≥ 1}

−
N∑

k,l=0

∑
J,J ′∈∂kT,J 6=J

′
L∈∂lS

P{ME
u (X, J) ≥ 1,ME

u (J ′, X) ≥ 1,ME
u (Y, L) ≥ 1}

−
N∑

k,l=0

∑
J∈∂kT

L,L′∈∂lS,L 6=L
′

P{ME
u (X, J) ≥ 1,ME

u (Y, L) ≥ 1,ME
u (L′, Y ) ≥ 1}

−
N∑

k,l=0

∑
J,J ′∈∂kT,J 6=J

′

L,L′∈∂lS,L6=L
′

P{ME
u (X, J) ≥ 1,ME

u (J ′, X) ≥ 1,ME
u (Y, L) ≥ 1,ME

u (L′, Y ) ≥ 1}.

Let pij = P{ME
u (X, J) = i,ME

u (Y, L) = j}, then P{ME
u (X, J) ≥ 1,ME

u (Y, L) ≥ 1} =∑∞
i,j=1 pij and E{ME

u (X, J)ME
u (Y, L)} =

∑∞
i,j=1 ijpij , and hence

E{ME
u (X, J)ME

u (Y, L)} − P{ME
u (X, J) ≥ 1,ME

u (Y, L) ≥ 1}

=
∞∑

i,j=1

(ij − 1)pij ≤
∞∑

i,j=1

[i(i− 1)j + j(j − 1)i]pij

= E{ME
u (X, J)[ME

u (X, J)− 1]ME
u (Y, L)}+ E{ME

u (Y, L)[ME
u (Y, L)− 1]ME

u (X, J)}.
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We therefore obtain the following lower bound for the excursion probability,

P
{

sup
t∈T

X(t) ≥ u, sup
s∈S

Y (s) ≥ u
}
≥

N∑
k,l=0

∑
J∈∂kT,L∈∂lS

{
E{ME

u (X, J)ME
u (Y, L)}

− E{ME
u (X, J)[ME

u (X, J)− 1]ME
u (Y, L)} − E{ME

u (Y, L)[ME
u (Y, L)− 1]ME

u (X, J)}
}

−
N∑

k,l=0

∑
J,J ′∈∂kT,J 6=J

′
L∈∂lS

E{ME
u (X, J)ME

u (X, J ′)ME
u (Y, L)}

− 2
N∑

k,l=0

∑
J∈∂kT

L,L′∈∂lS,L6=L
′

E{ME
u (X, J)ME

u (Y, L)ME
u (Y, L′)}.

(9.1.2)

We will show that the upper bound in (9.1.1) makes the major contribution and the other

terms in the lower bound in (9.1.2) are super-exponentially small.

Lemma 9.1.3 Let Di be compact sets in RN , i = 1, 2, 3. Let

{(ξ1(x1), ξ2(x2), ξ3(x3)) : (x1, x2, x3) ∈ D1 ×D2 ×D3}

be an R3-valued, C2, centered, unit-variance, non-degenerate Gaussian random field and let

ρ12(x1, x2) = Eξ1(x1)ξ2(x2), ρ12 = sup
x1∈D1,x2∈D2

ρ12(x1, x2),

ρ13(x1, x3) = Eξ1(x1)ξ3(x3), ρ13 = sup
x1∈D1,x3∈D3

ρ13(x1, x3),

ρ23(x2, x3) = Eξ2(x2)ξ3(x3), ρ23 = sup
x2∈D2,x3∈D3

ρ23(x2, x3).
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If ρ12 ≥ ρ13 ∨ ρ23, then there exists some constant α > 0 such that as u→∞,

sup
x1∈D1,x2∈D2,x3∈D3

E{|ξ1(x1)ξ2(x2)ξ3(x3)|m1{ξ1(x1)≥u,ξ2(x2)≥u,ξ3(x3)≥u}}

= o

(
exp

{
− αu2 − u2

1 + ρ12

})
,

(9.1.3)

where m is a fixed positive number.

Proof Let ξ(x1, x2, x3) = [ξ1(x1) + ξ2(x2) + ξ3(x3)]/3, then there exists a positive number

m′ such that for all (x1, x2, x3) ∈ D1 ×D2 ×D3 and u large enough,

E{|ξ1(x1)ξ2(x2)ξ3(x3)|m1{ξ1(x1)≥u,ξ2(x2)≥u,ξ3(x3)≥u}}

≤ E{(ξ1(x1) + ξ2(x2) + ξ3(x3))m
′
1{ξ1(x1)≥u,ξ2(x2)≥u,ξ3(x3)≥u}}

≤ E{(ξ1(x1) + ξ2(x2) + ξ3(x3))m
′
1{[ξ1(x1)+ξ2(x2)+ξ3(x3)]/3≥u}}

= E{(3ξ(x1, x2, x3))m
′
1{ξ(x1,x2,x3)≥u}}.

(9.1.4)

It follows from the assumption ρ12 ≥ ρ13 ∨ ρ23 that

sup
x1∈D1,x2∈D2,x3∈D3

Var(ξ(x1, x2, x3))

= sup
x1∈D1,x2∈D2,x3∈D3

3 + 2[ρ12(x1, x2)) + ρ13(x1, x3) + ρ23(x2, x3)]

9

≤ 3 + 6ρ12

9
=

1 + 2ρ12

3
,

and hence ρ12 ∈ (−1/2, 1). Combining this with (9.1.4), we see that for any ε > 0, as

u→∞, the first line in (9.1.3) is o(exp{εu2− 3u2

2(1+2ρ12)
}). Now the result follows by taking
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α to be a positive number less than

3

2(1 + 2ρ12)
− 1

1 + ρ12
=

1− ρ12

2(1 + ρ12)(1 + 2ρ12)
.

�

Lemma 9.1.4 Let D1, . . . , Dn be compact sets in RN , where n ≥ 3, and let

(ξ1(x1), ξ2(x2), ξ3(x3), . . . , ξn(xn) : xi ∈ Di, i = 1 . . . , n)

be an Rn-valued, C2, centered, unit-variance, non-degenerate Gaussian random vector. Let

m be a fixed positive number and

ρ12(x1, x2) = E{ξ1(x1)ξ2(x2)}, ρ12 = sup
x1∈D1,x2∈D2

ρ12(x1, x2).

Then

lim
u→∞

u−2 logE{|ξ1(x1)ξ2(x2)|m1{ξ1(x1)≥u,ξ2(x2)≥u}|ξ3(x3) = · · · = ξn(xn) = 0}

≤ − 1

1 + ρ12(x1, x2)
.

If

{(x1, . . . , xn) ∈ D1 × · · · ×Dn :

ρ12(x1, x2) = ρ12,E{(ξ1(x1) + ξ2(x2))ξi(xi)} = 0,∀i = 3, . . . , n} = ∅,
(9.1.5)
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then there exists some constant α > 0 such that as u→∞,

sup
xi∈Di,i=1,...,n

E{|ξ1(x1)ξ2(x2)|m1{ξ1(x1)≥u,ξ2(x2)≥u}|ξ3(x3) = · · · = ξn(xn) = 0}

= o

(
exp

{
− αu2 − u2

1 + ρ12

})
.

Proof Let ξ(x1, x2) = [ξ1(x1) + ξ2(x2)]/2, then there exists a positive number m′ such

that for all xi ∈ Di, i = 1, . . . , n and u large enough,

E{|ξ1(x1)ξ2(x2)|m1{ξ1(x1)≥u,ξ2(x2)≥u}|ξ3(x3) = · · · = ξn(xn) = 0}

≤ E{[(ξ1(x1) + ξ2(x2))/2]m
′
1{[ξ1(x1)+ξ2(x2)]/2≥u}|ξ3(x3) = · · · = ξn(xn) = 0}

= E{(ξ(x1, x2))m
′
1{ξ(x1,x2)≥u}|ξ3(x3) = · · · = ξn(xn) = 0}.

Note that

Var(ξ(x1, x2)|ξ3(x3) = · · · = ξn(xn) = 0) ≤ Var(ξ(x1, x2)) =
1 + ρ12(x1, x2)

2
,

where the equality holds if and only if ξ(x1, x2) is independent of (ξ3(x3), . . . , ξn(xn)). Now

our result follows from the continuity of the conditional expectation and the compactness of

Di, i = 1, . . . , n. �

The following result is similar to Lemma 3 in Piterbarg (1996b).

Lemma 9.1.5 Let (X, Y ) = {(X(t), Y (s)) : t ∈ K ⊂ RN , s ∈ D ⊂ RN} be an R2-valued,

centered, unit-variance Gaussian random field satisfying (C1) and (C2). Then for any ε > 0,
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there exists δ > 0 such that for K with diam(K) ≤ δ and u large enough,

E{Mu(X,K)[Mu(X,K)− 1]Mu(Y,D)} ≤ Vol(K) exp
{
− u2

2βX(K,D)
+ εu2

}
,

where

βX(K,D) = sup
t∈K,s∈D,e∈SN−1

Var
(X(t) + Y (s)

2

∣∣∣∇X(t)=∇Y (s)=0,

∇2X(t)e=0

)
.

Similarly, for any ε > 0, there exists δ > 0 such that for D with diam(D) ≤ δ and u large

enough,

E{Mu(X,K)Mu(Y,D)[Mu(Y,D)− 1]} ≤ Vol(D) exp
{
− u2

2βY (K,D)
+ εu2

}
,

where

βY (K,D) = sup
t∈K,s∈D,e∈SN−1

Var
(X(t) + Y (s)

2

∣∣∣∇X(t)=∇Y (s)=0,

∇2Y (s)e=0

)
.

Proof The proof will be similar to the original proof of Lemma 3 in Piterbarg (1996b).

The only difference is that the integral here involves both X and Y exceeding u. But we

may apply the arguments for proving Lemma 9.1.3 and Lemma 9.1.4 to handle the double

integral, to make it bounded above by the integral of (X + Y )/2 exceeding u, and then the

desired result follows. �

Lemma 9.1.6 Let (X, Y ) = {(X(t), Y (s)) : t ∈ J ⊂ RN , s ∈ L ⊂ RN} be an R2-valued,

centered, unit-variance Gaussian random field satisfying (C1), (C2) and (C3). Then there
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exists α > 0 such that as u→∞,

E{Mu(X, J)[Mu(X, J)− 1]Mu(Y, L)} = o
(

exp
{
− u2

1 + ρ(J, L)
− αu2

})
,

E{Mu(X, J)Mu(Y, L)[Mu(Y, L)− 1]} = o
(

exp
{
− u2

1 + ρ(J, L)
− αu2

})
,

(9.1.6)

where ρ(J, L) = supt∈J,s∈L ρ(t, s).

Proof We only prove the first line in (9.1.6), since the proof for the second line is the same.

The set J may be covered by congruent cubes Ki with disjoint interiors, edges parallel to

coordinate axes and sizes so small that the conditions of Lemma 9.1.5 are satisfied for each

union of two neighboring cubes Ki and Kj . Then

E{Mu(X, J)[Mu(X, J)− 1]Mu(Y, L)}

≤ E
{(∑

i

Mu(X,Ki)
∑
j

[Mu(X,Kj)− 1]
)
Mu(Y, L)

}
= E

{(∑
i

Mu(X,Ki)
∑
j

Mu(X,Kj)−
∑
i

Mu(X,Ki)
)
Mu(Y, L)

}
=
∑
i

E{Mu(X,Ki)
2Mu(Y, L)}+

∑
i 6=j

E{Mu(X,Ki)Mu(X,Kj)Mu(Y, L)}−

−
∑
i

E{Mu(X,Ki)Mu(Y, L)}

=
∑
i

E{Mu(X,Ki)[Mu(X,Ki)− 1]Mu(Y, L)}+
∑
i 6=j

E{Mu(X,Ki)Mu(X,Kj)Mu(Y, L)}.

(9.1.7)
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Then by the Kac-Rice formula and Lemma 9.1.3, there exists α′ > 0 such that for u large

enough,

∑
|i−j|≥2

E{Mu(X,Ki)Mu(X,Kj)Mu(Y, L)} ≤ exp
{
− u2

1 + ρ(J, L)
− α′u2

}
. (9.1.8)

If Ki and Kj are neighboring, say j = i+ 1, we have

E{Mu(X,Ki ∪Ki+1)[Mu(X,Ki ∪Ki+1)− 1]Mu(Y, L)}

= E{[Mu(X,Ki) +Mu(X,Ki+1)][Mu(X,Ki) +Mu(X,Ki+1)− 1]Mu(Y, L)}

= 2E{Mu(X,Ki)Mu(X,Ki+1)Mu(Y, L)}+ E{Mu(X,Ki)[Mu(X,Ki)− 1]Mu(Y, L)}

+ E{Mu(X,Ki+1)[Mu(X,Ki+1)− 1]Mu(Y, L)}.

Applying Lemma 9.1.5, we see that for u large enough,

∑
i

E{Mu(X,Ki)[Mu(X,Ki)− 1]Mu(Y, L)}+
∑
|i−j|=1

E{Mu(X,Ki)Mu(X,Kj)Mu(Y, L)}

≤ exp
{
− u2

2βX(J, L)
+ εu2

}
.

(9.1.9)

It is obvious that βX(J, L) ≤ 1+ρ(J,L)
2 , and we will show

βX(J, L) <
1 + ρ(J, L)

2
. (9.1.10)
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By the definition of βX(J, L) in Lemma 9.1.5, if βX(J, L) =
1+ρ(J,L)

2 , then due to the

continuity, there are some (t, s) ∈ J̄ × L̄ and e ∈ SN−1 such that

Var
(X(t) + Y (s)

2

∣∣∣∇X(t)=∇Y (s)=0,

∇2X(t)e=0

)
=

1 + ρ(J, L)

2
. (9.1.11)

This implies

ρ(t, s) = ρ(J, L), E{X(t)∇Y (s)} = E{Y (s)∇X(t)} = 0.

By (C3), E{Y (s)∇2X(t)} becomes negative semidefinite. But E{X(t)∇2X(t)} is always

negative definite due to the constant variance, so that

(
E{Y (s)∇2X(t)}+ E{X(t)∇2X(t)}

)
e 6= 0, ∀e ∈ SN−1.

This contradicts (9.1.11) and hence (9.1.10) holds. Plugging (9.1.8) and (9.1.9) into (9.1.7),

we finish the proof. �

Lemma 9.1.7 Let {(X(t), Y (s)) : t ∈ T, s ∈ S} be an R2-valued, centered, unit-variance

Gaussian random field satisfying (C1), (C2) and (C3). Then there exists α > 0 such that

as u→∞,

E{ME
u (X, J)ME

u (X, J ′)ME
u (Y, L)} = o

(
exp

{
− u2

1 + ρ(J, L)
− αu2

})
,

E{ME
u (X, J)ME

u (Y, L)ME
u (Y, L′)} = o

(
exp

{
− u2

1 + ρ(J, L)
− αu2

})
,

(9.1.12)

where J and J ′ are different faces of T , L and L′ are different faces of S.
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Proof We only prove the first line in (9.1.12), since the proof for the second line is the

same. If the two faces J and J ′ are not neighboring, by similar arguments in Lemma 2.3.6

and Lemma 9.1.3, it is straightforward to verify that the high moment in (9.1.12) is super-

exponentially small. Thus we turn to considering the case when J and J ′ are neighboring,

i.e., I := J̄ ∩ J̄ ′ 6= ∅. Without loss of generality, assume

σ(J) = {1, . . . ,m,m+ 1, . . . , k},

σ(J ′) = {1, . . . ,m, k + 1, . . . , k + k′ −m},

σ(L) = {1, . . . , l},

where 0 ≤ m ≤ k ≤ k′ ≤ N and k′ ≥ 1. If k = 0, we consider σ(J) = ∅ by convention.

Under such assumption, J ∈ ∂kT , J ′ ∈ ∂k′T , dim(I) = m and L ∈ ∂lS. We assume also

that all elements in ε(J) and ε(J ′) are 1.

We first consider the case k ≥ 1. By the Kac-Rice metatheorem,

E{ME
u (X, J)ME

u (X, J ′)ME
u (Y, L)}

≤
∫
J
dt

∫
J ′
dt′
∫
L
ds

∫ ∞
u

dx

∫ ∞
u

dx′
∫ ∞
u

dy∫ ∞
0

dzk+1 · · ·
∫ ∞

0
dzk+k′−m

∫ ∞
0

dwm+1 · · ·
∫ ∞

0
dwk

E{
∣∣det∇2X|J (t)||det∇2X|J ′(t

′)||det∇2Y|L(s)||X(t) = x,X(t′) = x′, Y (s) = y,

∇X|J (t) = 0, Xk+1(t) = zk+1, . . . , Xk+k′−m(t) = zk+k′−m,

∇X|J ′(t
′) = 0, Xm+1(t′) = wm+1, . . . , Xk(t′) = wk,∇Y|L(s) = 0}

× pt,t′,s(x, x
′, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk, 0)

:=

∫ ∫ ∫
J×J ′×L

A(t, t′, s) dtdt′ds,

(9.1.13)
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where pt,t′,s(x, x
′, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk, 0) is the density of

(X(t), X(t′), Y (s),∇X|J (t), Xk+1(t), . . . , Xk+k′−m(t),

∇X|J ′(s), Xm+1(s), . . . , Xk(s),∇Y|L(s))

evaluated at (x, x′, y, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk, 0).

Similarly to Lemma 3.1.7, by Lemma 9.1.4 and continuity, if

I0 := {(t, s) ∈ I × S̄ :ρ(t, s) = ρ(T, S),E{Xi(t)Y (s)} = E{X(t)Yj(s)} = 0,

∀i = 1, . . . , k + k′ −m, j = 1, . . . , l} = ∅,

then E{ME
u (X, J)ME

u (X, J ′)ME
u (Y, L)} is super-exponentially small. Therefore, similarly

to the proof in Lemma 3.1.8, we only need to consider the alternative case, which is I0 6= ∅.

Define

B(I0, δ) := {(t, t′, s) ∈ J × J ′ × S : d((t, s), I0) ∨ d((t′, s), I0) < δ},

where δ is a small positive positive number to be specified. Then the difference between∫ ∫ ∫
J×J ′×LA(t, t′, s)dtdt′ds and

∫
B(I0,δ)

A(t, t′, s)dtdt′ds is super-exponentially small. Hence

we turn to estimating
∫
B(I0,δ)

A(t, t′, s) dtdt′ds.

Due to (C3), we may choose δ small enough such that for all (t, t′, s) ∈ B(I0, δ),

ΛJ∪J ′(t, s) = −(E{[X(t) + Y (s)]∇2X(t)})i,j=1,...,k+k′−m

are positive definite.
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Let {e1, e2, . . . , eN} be the standard orthonormal basis of RN . For t ∈ J and s ∈ J ′, let

et,t′ = (t′ − t)T /‖t′ − t‖ and let αi(t, t
′, s) = 〈ei,ΛJ∪J ′(t, s)et,t′〉, then

ΛJ∪J ′(t, s)et,t′ =
N∑
i=1

〈ei,ΛJ∪J ′(t, s)et,t′〉ei =
N∑
i=1

αi(t, t
′, s)ei. (9.1.14)

There exists some α0 > 0 such that

〈et,t′ ,ΛJ∪J ′(t, s)et,t′〉 ≥ α0 (9.1.15)

for all t and t′. Since all elements in ε(J) and ε(J ′) are 1, we have the following representation,

t = (t1, . . . , tm, tm+1, . . . , tk, bk+1, . . . , bk+k′−m, 0, . . . , 0),

t′ = (t′1, . . . , t
′
m, bm+1, . . . , bk, t

′
k+1, . . . , t

′
k+k′−m, 0, . . . , 0),

where ti ∈ (ai, bi) for all i ∈ σ(J) and t′j ∈ (aj , bj) for all j ∈ σ(J ′). Therefore,

〈ei, et,t′〉 ≥ 0, ∀ m+ 1 ≤ i ≤ k,

〈ei, et,t′〉 ≤ 0, ∀ k + 1 ≤ i ≤ k + k′ −m,

〈ei, et,t′〉 = 0, ∀ k + k′ −m < i ≤ N.

(9.1.16)

Let

Di = {(t, t′, s) ∈ B(I0, δ) : αi(t, t
′, s) ≥ βi}, if m+ 1 ≤ i ≤ k,

Di = {(t, t′, s) ∈ B(I0, δ) : αi(t, t
′, s) ≤ −βi}, if k + 1 ≤ i ≤ k + k′ −m,

D0 =

{
(t, t′, s) ∈ B(I0, δ) :

m∑
i=1

αi(t, t
′, s)〈ei, et,t′〉 ≥ β0

}
,

(9.1.17)
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where β0, β1, . . . , βk+k′−m are positive constants such that β0+
∑k+k′−m
i=m+1 βi < α0. It follows

from (9.1.16) and (9.1.17) that, if (t, s) does not belong to any of D0, Dm, . . . , Dk+k′−m,

then by (9.1.14),

〈ΛJ∪J ′(t, s)et,t′ , et,t′〉 =
N∑
i=1

αi(t, t
′, s)〈ei, et,t′〉 ≤ β0 +

k+k′−m∑
i=m+1

βi < α0,

which contradicts (9.1.15). Thus D0 ∪ ∪k+k′−m
i=m+1 Di is a covering of B(I0, δ), by (9.1.13),

E{ME
u (X, J)ME

u (X, J ′)ME
u (Y, L)}

≤
∫
D0

A(t, t′, s) dtdt′ds+
k+k′−m∑
i=m+1

∫
Di

A(t, t′, s) dtdt′ds.

We first show that
∫
D0

A(t, t′, s) dtdt′ds is super-exponentially small.

∫
D0
A(t, t′, s) dtdt′ds

≤
∫
D0

dtdt′ds
∫ ∞
u

dx

∫ ∞
u

dy p∇X|J (t),∇X|J ′(t
′),∇Y|L(s)(0, 0, 0)

× pX(t),Y (s)(x, y|∇X|J (t) = 0,∇X|J ′(t
′) = 0,∇Y|L(s) = 0)

× E{|det∇2X|J (t)||det∇2X|J ′(t
′)||det∇2Y|L(s)||X(t) = x, Y (s) = y,

∇X|J (t) = ∇X|J ′(t
′) = ∇Y|L(s) = 0}.

(9.1.18)
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Note that

Var(X(t) + Y (s)|∇X|J (t),∇X|J ′(t
′),∇Y|L(s))

≤ Var(X(t) + Y (s)|X1(t), . . . , Xm(t), X1(t′), . . . , Xm(t′))

= Var(X(t) + Y (s)|X1(t), . . . , Xm(t), X1(t) + 〈∇X1(t), t′ − t〉+ ‖t′ − t‖1+ηY 1
t,t′ , . . . ,

Xm(t) + 〈∇Xm(t), t′ − t〉+ ‖t′ − t‖1+ηYm
t,t′)

= Var(X(t) + Y (s)|X1(t), . . . , Xm(t), 〈∇X1(t), et,t′〉+ ‖t′ − t‖ηY 1
t,t′ , . . . ,

〈∇Xm(t), et,t′〉+ ‖t′ − t‖ηYm
t,t′)

≤ Var(X(t) + Y (s)|〈∇X1(t), et,t′〉+ ‖t′ − t‖ηY 1
t,t′ , . . . , 〈∇Xm(t), et,t′〉+ ‖t′ − t‖ηYm

t,t′)

= Var(X(t) + Y (s)|〈∇X1(t), et,t′〉, . . . , 〈∇Xm(t), et,t′〉) + o(1).

(9.1.19)

Hence there exist constants C2 > 0 and ε0 > 0 such that for ‖t′ − t‖ sufficiently small,

Var((X(t) + Y (s))/2|∇X|J (t),∇X|J ′(t
′),∇Y|L(s))

≤ ρ(T, S) + 1

2
− C2

m∑
i=1

α2
i (t, t

′, s) + o(1) <
ρ(T, S) + 1

2
− ε0,

(9.1.20)

where the last inequality is due to the fact that (t, t′, s) ∈ D0 implies

m∑
i=1

α2
i (t, t

′, s) ≥
m∑
i=1

α2
i (t, t

′, s)|〈ei, et,t′〉|
2 ≥ 1

m

( m∑
i=1

αi(t, t
′, s)〈et,t′ , ei〉

)2

≥
β2

0

m
.

Similarly, we can use the techniques in the proof of Theorem 2.3.8 to show that for

i = m+ 1, . . . , k + k′ −m,
∫
Di
A(t, t′, s) dtdt′ds are super-exponentially small, . �
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Now, the approximation obtained still contains the absolute values of determinants, which

are hard to be computed. However, we will show that removing these absolute values only

causes exponentially small difference, and then we will get the approximation based on the

mean Euler characteristic of the excursion set.

Proposition 9.1.8 Let {(X(t), Y (s)) : t ∈ T, s ∈ S} be an R2-valued, centered, unit-

variance Gaussian random field satisfying (C1), (C2) and (C3). Then there exists α > 0

such that for any J ∈ ∂kT , L ∈ ∂lS, as u→∞,

E{ME
u (X, J)ME

u (Y, L)}

= (−1)k+l
∫
J

∫
L
E{det∇2X(t)det∇2Y (s)1{X(t)≥u, ε∗jXj(t)≥0 for all j /∈σ(J)}

× 1{Y (s)≥u, ε∗jYj(s)≥0 for all j /∈σ(L)}|∇X|J (t) = ∇Y|L(s) = 0}

× p∇X|J (t),∇Y|L(s)(0, 0)dtds+ o
(

exp
{
− u2

1 + ρ(T, S)
− αu2

})
,

(9.1.21)

where ρ(T, S) = supt∈T,s∈S ρ(t, s).
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Proof To simplify the proof, let us consider the case when k = l = N , and the proof for

general cases is similar. By the Kac-Rice formula,

E{ME
u (X, J)ME

u (Y, L)}

=

∫
J

∫
L
E{|det∇2X(t)||det∇2Y (s)|1{X(t)≥u, index(∇2X(t))=N}

× 1{Y (s)≥u, index(∇2Y (s))=N}|∇X(t) = ∇Y (s) = 0}p∇X(t),∇Y (s)(0, 0)dtds

= (−1)N+N
∫
J

∫
L
p∇X(t),∇Y (s)(0, 0)dtds

∫ ∞
u

∫ ∞
u

E{det∇2X(t)det∇2Y (s)

× 1{index(∇2X(t))=N}1{index(∇2Y (s))=N}|X(t) = x, Y (s) = y,∇X(t) = ∇Y (s) = 0}

× pX(t),Y (s)(x, y|∇X(t) = ∇Y (s) = 0)dxdy

:=

∫
J

∫
L
p∇X(t),∇Y (s)(0, 0)dtds

∫ ∞
u

∫ ∞
u

A(x, y, t, s)dxdy.

Similarly to the proof in Lemma 3.1.5, define

O(J, L) = {(t, s) ∈ J̄ × L̄ : ρ(t, s) = ρ(T, S),E{X(t)∇Y (s)} = E{Y (s)∇X(t)} = 0},

Uδ(J, L) = {(t, s) ∈ J × L : d((t, s), O(J, L)) < δ},

where δ is a small positive number to be specified. Then, similarly, we only need to estimate

∫
Uδ(J,L)

p∇X(t),∇Y (s)(0, 0)dtds

∫ ∞
u

∫ ∞
u

A(x, y, t, s)dxdy.

Due to (C3), we may choose δ small enough such that E{[X(t) + Y (s)]∇2Y (s)} and

E{[X(t) + Y (s)]∇2X(t)} are negative definite for all (t, s) ∈ Uδ(J, L). Also note that as
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δ → 0, both E{X(t)∇Y (s)} and E{Y (s)∇X(t)} tend to 0, therefore,

E{Xij(t)|X(t) = x, Y (s) = y,∇X(t) = ∇Y (s) = 0}

= (1 + o(1))(E{Xij(t)X(t)},E{Xij(t)Y (s)})

 1 ρ(T, S)

ρ(T, S) 1


−1 x

y



=
1

1− ρ(T, S)2
(E{Xij(t)X(t)},E{Xij(t)Y (s)})

 x− ρ(T, S)y

y − ρ(T, S)x

 ,

and similarly,

E{Yij(s)|X(t) = x, Y (s) = y,∇X(t) = ∇Y (s) = 0}

=
1

1− ρ(T, S)2
(E{Yij(s)X(t)},E{Yij(s)Y (s)})

 x− ρ(T, S)y

y − ρ(T, S)x

 .

Note that E{X(t)∇2X(t)} and E{Y (s)∇2Y (s)} are both negative definite, E{X(t)∇2Y (s)}

and E{Y (s)∇2X(t)} both negative semidefinite. There exists ε0 ∈ (0, 1− ρ(T, S)) such that

for δ small enough and all (x, y) ∈ [u,∞)2 with (ε0 + ρ(T, S))y < x < (ε0 + ρ(T, S))−1y,

Σ1(x, y) := E{∇2X(t)|X(t) = x, Y (s) = y,∇X(t) = ∇Y (s) = 0},

Σ2(x, y) := E{∇2Y (s)|X(t) = x, Y (s) = y,∇X(t) = ∇Y (s) = 0},

are both negative definite. Define

∆1(x, y) = ∇2X(t)− Σ1(x, y), ∆2(x, y) = ∇2Y (s)− Σ2(x, y).
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Then, conditioning on (X(t) = x, Y (s) = y,∇X(t) = ∇Y (s) = 0), ∆1(x, y) and ∆2(x, y)

are both centered Gaussian random matrices. We write

∫ ∞
u

∫ ∞
u

A(x, y, t, s)dxdy =

∫ ∞
u

dy

∫ (ε0+ρ(T,S))−1y

(ε0+ρ(T,S))y
A(x, y, t, s)dx+

+

∫ ∞
u

dy

∫ ∞
(ε0+ρ(T,S))−1y

A(x, y, t, s)dx+

∫ ∞
u

dx

∫ ∞
(ε0+ρ(T,S))−1x

A(x, y, t, s)dy.

Since (ε0 + ρ(T, S))−1 > 1, the last two integrals above are super-exponentially small.

Meanwhile,

∫ ∞
u

dy

∫ (ε0+ρ(T,S))−1y

(ε0+ρ(T,S))y
A(x, y, t, s)dx

=

∫ ∞
u

dy

∫ (ε0+ρ(T,S))−1y

(ε0+ρ(T,S))y
E{det(∆1(x, y) + Σ1(x, y))det(∆2(x, y) + Σ2(x, y))

× 1{index(∆1(x,y)+Σ1(x,y))=N}1{index(∆2(x,y)+Σ2(x,y)))=N}|

|X(t) = x, Y (s) = y,∇X(t) = ∇Y (s) = 0}pX(t),Y (s)(x, y|∇X(t) = ∇Y (s) = 0)dx.

Using the same arguments in the proof of Lemma 2.3.2, we see that removing the two

indicator functions above only causes a super-exponentially small difference. Therefore,

there exists α > 0 such that for u large enough,

E{ME
u (X, J)ME

u (Y, L)}

=

∫
J

∫
L
p∇X(t),∇Y (s)(0, 0)dtds

∫ ∞
u

∫ ∞
u

pX(t),Y (s)(x, y|∇X(t) = ∇Y (s) = 0)

× E{det∇2X(t)det∇2Y (s)|X(t) = x, Y (s) = y,∇X(t) = ∇Y (s) = 0}dxdy

+ o
(

exp
{
− u2

1 + ρ(T, S)
− αu2

})
.

�
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Define the excursion set

Au(X,T ) = {t ∈ T : X(t) ≥ u},

Au(Y, S) = {s ∈ S : Y (s) ≥ u},

Au(X,T )× Au(Y, S) = {(t, s) ∈ T × S : X(t) ≥ u, Y (s) ≥ u}.

Let

µi(X, J) := #{t ∈ J : X(t) ≥ u,∇X|J (t) = 0, index(∇2X|J (t)) = i,

ε∗jXj(t) ≥ 0 for all j /∈ σ(J)},

µi(Y, L) := #{s ∈ L : Y (s) ≥ u,∇Y|L(s) = 0, index(∇2Y|L(s)) = i,

ε∗jYj(s) ≥ 0 for all j /∈ σ(L)},

where ε∗j = 2εj − 1 and the index of a matrix is defined as the number of its negative

eigenvalues. Then, it follows from the Morse theorem that the Euler characteristic of the

excursion set can be represented as

ϕ(Au(X,T )) =
N∑
k=0

∑
J∈∂kT

(−1)k
k∑
i=0

(−1)iµi(X, J),

ϕ(Au(Y, S)) =
N∑
l=0

∑
L∈∂lS

(−1)l
l∑

i=0

(−1)iµi(Y, L).

Since for two sets D1 and D2, ϕ(D1 ×D2) = ϕ(D1)ϕ(D2), we have

ϕ(Au(X,T )× Au(Y, S)) = ϕ(Au(X,T ))× ϕ(Au(Y, S))

=
N∑

k,l=0

∑
J∈∂kT,L∈∂lS

(−1)k+l
( k∑
i=0

(−1)iµi(J)

)( l∑
j=0

(−1)jµj(L)

)
.

(9.1.22)
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Now we can state our result as follows.

Theorem 9.1.9 Let {(X(t), Y (s)) : t ∈ T, s ∈ S} be an R2-valued, centered, unit-variance

Gaussian random field satisfying (C1), (C2) and (C3). Then there exists α > 0 such that

as u→∞,

P
{

sup
t∈T

X(t) ≥ u, sup
s∈S

Y (s) ≥ u
}

=
N∑

k,l=0

∑
J∈∂kT,L∈∂lS

E{ME
u (X, J)ME

u (Y, L)}+ o
(

exp
{
− u2

1 + ρ(T, S)
− αu2

})

= E{ϕ(Au(X,T )× Au(Y, S))}+ o
(

exp
{
− u2

1 + ρ(T, S)
− αu2

})
,

(9.1.23)

where ρ(T, S) = supt∈T,s∈S ρ(t, s).

Proof The first equality in (9.1.23) follows from the combination of (9.1.1), (9.1.2), Lemma

9.1.6 and Lemma 9.1.7. The second equality in (9.1.23) follows from applying Proposition

9.1.8 and (9.1.22). �
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Example 9.1.10 Let T = S = [0, 1], then

P
{

sup
t∈T

X(t) ≥ u, sup
s∈S

Y (s) ≥ u
}

= P{X(0) ≥ u, Y (0) ≥ u,X ′(0) < 0, Y ′(0) < 0}

+ P{X(0) ≥ u, Y (1) ≥ u,X ′(0) < 0, Y ′(1) > 0}

+ P{X(1) ≥ u, Y (0) ≥ u,X ′(1) > 0, Y ′(0) < 0}

+ P{X(1) ≥ u, Y (1) ≥ u,X ′(1) > 0, Y ′(1) > 0}

+ (−1)

∫ 1

0
pX′(t)(0)dt

∫ ∞
u

∫ ∞
u

∫ 0

−∞
pX(t),Y (0),Y ′(0)(x, y, z|X

′(t) = 0)

× E{X ′′(t)|X(t) = x, Y (0) = y, Y ′(0) = z,X ′(t) = 0}dxdydz

+ (−1)

∫ 1

0
pX′(t)(0)dt

∫ ∞
u

∫ ∞
u

∫ ∞
0

pX(t),Y (1),Y ′(1)(x, y, z|X
′(t) = 0)

× E{X ′′(t)|X(t) = x, Y (1) = y, Y ′(1) = z,X ′(t) = 0}dxdydz

+ (−1)

∫ 1

0
pY ′(s)(0)ds

∫ ∞
u

∫ ∞
u

∫ 0

−∞
pX(0),Y (s),X′(0)(x, y, z|Y

′(s) = 0)

× E{Y ′′(s)|X(0) = x, Y (s) = y,X ′(0) = z, Y ′(s) = 0}dxdydz

+ (−1)

∫ 1

0
pY ′(s)(0)ds

∫ ∞
u

∫ ∞
u

∫ ∞
0

pX(1),Y (s),X′(1)(x, y, z|Y
′(s) = 0)

× E{Y ′′(s)|X(1) = x, Y (s) = y,X ′(1) = z, Y ′(s) = 0}dxdydz

+

∫ 1

0

∫ 1

0
pX′(t),Y ′(s)(0, 0)dtds

∫ ∞
u

∫ ∞
u

pX(t),Y (s)(x, y|X
′(t) = Y ′(s) = 0)

× E{X ′′(t)Y ′′(s)|X(t) = x, Y (s) = y,X ′(t) = Y ′(s) = 0}dxdy

+ o
(

exp
{
− u2

1 + ρ(T, S)
− αu2

})
.
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9.2 Vector-valued Gaussian Processes

Let {(X(t), Y (t)) : t ∈ T} be an R2-valued, centered, unit-variance Gaussian process, where

T = [a, b] is a finite interval in R. We want to estimate the following probability

P{∃t ∈ T such that X(t) ≥ u, Y (t) ≥ u}.

Let

ρ(t) = E{X(t)Y (t)}, ρ(T ) = sup
t∈T

ρ(t).

We will make use of the following conditions.

(D1). X, Y ∈ C2(RN ) almost surely, and for each pair (t, s) ∈ T 2 with t 6= s,

(X(t), X ′(t), X ′′(t), Y (t), Y ′(t), Y ′′(t), X(s), X ′(s), Y (s), Y ′(s))

is non-degenerate.

(D2). For all t ∈ T such that ρ(t) = ρ(T ) (hence E{X ′(t)Y (t)} + E{X ′(t)Y (t)} = 0),

E{X ′(t)Y (t)} = −E{X(t)Y ′(t)} 6= 0.
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Define

µ(X,
◦
T ) = #{t ∈

◦
T : Y (t) > X(t) ≥ u,X ′(t) = 0, X ′′(t) < 0},

µ(Y,
◦
T ) = #{t ∈

◦
T : X(t) > Y (t) ≥ u, Y ′(t) = 0, Y ′′(t) < 0},

µ(X = Y,
◦
T ) = #{t ∈

◦
T : X(t) = Y (t) ≥ u,X ′(t)Y ′(t) < 0},

µ(X, a) = 1{Y (a)>X(a)≥u,X′(a)<0},

µ(Y, a) = 1{X(a)>Y (a)≥u,Y ′(a)<0},

µ(X, b) = 1{Y (b)>X(b)≥u,X′(b)>0},

µ(Y, b) = 1{X(b)>Y (b)≥u,Y ′(b)>0}.

(9.2.1)

Lemma 9.2.1 Under (D1), for each u > 0, we have

{∃t ∈ T such that X(t) ≥ u, Y (t) ≥ u}

= {µ(X,
◦
T ) ≥ 1} ∪ {µ(Y,

◦
T ) ≥ 1} ∪ {µ(X = Y,

◦
T ) ≥ 1}

∪ {µ(X, a) ≥ 1} ∪ {µ(Y, a) ≥ 1} ∪ {µ(X, b) ≥ 1} ∪ {µ(Y, b) ≥ 1} a.s.

Proof Note that

{∃t ∈ T such that X(t) ≥ u, Y (t) ≥ u}

= {∃t ∈ T such that (X ∧ Y )(t) ≥ u}.

Then the result follows similarly to Lemma 2.3.1. �
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Lemma 9.2.2 Under (D1) and (D2), there exists some constant α > 0 such that as u→∞,

Eµ(X,
◦
T ) = o

(
exp

{
− u2

1 + ρ
− αu2

})
,

Eµ(Y,
◦
T ) = o

(
exp

{
− u2

1 + ρ
− αu2

})
.

Proof We only show the proof for Eµ(X,
◦
T ), since the proof for Eµ(Y,

◦
T ) will be the same.

By the Kac-Rice formula,

Eµ(X,
◦
T ) =

∫ b

a
pX′(t)(0)

∫ ∞
u

dx

∫ ∞
x

dy pX(t),Y (t)(x, y|X
′(t) = 0)

× E{|X ′′(t)|1{X′′(t)<0}|X(t) = x, Y (t) = y,X ′(t) = 0}.

We only need to show that P{Y (t) > X(t) ≥ u|X ′(t) = 0} is super-exponentially small. But

P{Y (t) > X(t) ≥ u|X ′(t) = 0} ≤ P{(X(t) + Y (t))/2 ≥ u|X ′(t) = 0},

and due to (D2), for each t ∈ T such that ρ(t) = ρ(T ),

Var((X(t) + Y (t))/2|X ′(t) = 0) < Var((X(t) + Y (t))/2) = (1 + ρ(T ))/2.

By continuity, we obtain

sup
t∈T

Var((X(t) + Y (t))/2|X ′(t) = 0) < (1 + ρ(T ))/2,

completing the proof. �
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Lemma 9.2.3 Under (D1) and (D2), there exists some constant α > 0 such that as u→∞,

E{µ(X = Y,
◦
T )[µ(X = Y,

◦
T )− 1]} = o

(
exp

{
− u2

1 + ρ(T )
− αu2

})
.

Proof By the Kac-Rice formula,

E{µ(X = Y,
◦
T )[µ(X = Y,

◦
T )− 1]}

=

∫ b

a

∫ b

a
pX(t)−Y (t),X(s)−Y (s)(0, 0)dtds

×
∫ ∞
u

∫ ∞
u

dxdy pX(t),X(s)(x, y|X(t)− Y (t) = 0, X(s)− Y (s) = 0)

× E{|X ′(t)− Y ′(t)||X ′(s)− Y ′(s)|1{X′(t)Y ′(t)<0}1{X′(s)Y ′(s)<0}|

|X(t) = x,X(s) = y,X(t)− Y (t) = 0, X(s)− Y (s) = 0}.

Similarly to the proof of Lemma 3 in Piterbarg (1996b), we will write T as the union of

several small intervals, and then it suffices to prove that there exists α′ > 0 such that

Var(X(t)|X(t)− Y (t), X(s)− Y (s)) <
1 + ρ(T )

2
− α′, ∀|t− s| < δ (9.2.2)

and

lim
u→∞

u−2 logP{X(t) ≥ u, Y (s) ≥ u|X(t)− Y (t) = 0, X(s)− Y (s) = 0}

< − 1

1 + ρ(T )
− α′, ∀|t− s| ≥ δ,

(9.2.3)

where δ is a small positive number to be specified.
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Note that for all t ∈ T ,

Var(X(t)|X(t)− Y (t)) = 1− (1− ρ(t))2

2(1− ρ(t))
=

1 + ρ(t)

2
≤ 1 + ρ(T )

2
.

But for those t such that ρ(t) = ρ(T ), E{X(t)(X ′(t) − Y ′(t))} = −E{X(t)Y ′(t)} 6= 0 by

(D2), it then follows from continuity that

sup
t∈T

Var(X(t)|X(t)− Y (t), X ′(t)− Y ′(t)) < 1 + ρ(T )

2
. (9.2.4)

Therefore (9.2.2) follows by noting that as |t− s| → 0,

Var(X(t)|X(t)− Y (t), X(s)− Y (s))

= (1 + o(1))Var(X(t)|X(t)− Y (t), X ′(t)− Y ′(t)).

Now we turn to proving (9.2.3). By continuity, it suffices to show that there is not any

pair (t, s) with |t− s| ≥ δ such that

lim
u→∞

u−2 logP{X(t) ≥ u, Y (s) ≥ u|X(t)− Y (t) = 0, X(s)− Y (s) = 0}

= − 1

1 + ρ(T )
.

(9.2.5)
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By (9.2.4) and the following evident inequality

P{X(t) ≥ u, Y (s) ≥ u|X(t)− Y (t) = 0, X(s)− Y (s) = 0}

≤ min
{
P{X(t) ≥ u|X(t)− Y (t) = 0, X(s)− Y (s) = 0},

P{Y (s) ≥ u|X(t)− Y (t) = 0, X(s)− Y (s) = 0},

P{[X(t) + Y (s)]/2 ≥ u|X(t)− Y (t) = 0, X(s)− Y (s) = 0}
}
,

if (9.2.5) holds, then we have

ρ(t) = ρ(s) = ρ(T ),

E{X(t)[X(s)− Y (s)]} = E{Y (t)[X(s)− Y (s)]} = 0,

E{X(s)[X(t)− Y (t)]} = E{Y (s)[X(t)− Y (t)]} = 0,

(9.2.6)

and

Var([X(t) + Y (s)]/2|X(t)− Y (t) = 0, X(s)− Y (s) = 0) =
1 + ρ(T )

2
. (9.2.7)

But by the conditional formula for Gaussian variables, (9.2.6) implies

Var([X(t) + Y (s)]/2|X(t)− Y (t) = 0, X(s)− Y (s) = 0)

=
1 + E{X(t)X(s)}

2
− (1− ρ(T )) =

2ρ(T ) + E{X(t)X(s)} − 1

2

<
1 + ρ(T )

2
,

which contradicts (9.2.7). Thus there is no pair (t, s) with |t−s| ≥ δ such that (9.2.5) holds,

and hence (9.2.3) is true, completing the proof. �
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Lemma 9.2.4 Under (D1) and (D2), there exists some constant α > 0 such that as u→∞,

max
{
E{µ(X = Y,

◦
T )µ(X, a)},E{µ(X = Y,

◦
T )µ(Y, a)},

E{µ(X = Y,
◦
T )µ(X, b)},E{µ(X = Y,

◦
T )µ(Y, b)}

}
= o
(

exp
{
− u2

1 + ρ(T )
− αu2

})
,

Proof We only show the proof for E{µ(X = Y,
◦
T )µ(X, b)}, since the other terms can be

proved similarly. By the Kac-Rice metatheorem,

E{µ(X = Y,
◦
T )µ(X, b)} =

∫ b

a
E{|X ′(t)− Y ′(t)|1{X(t)≥u,X′(t)Y ′(t)<0}

× 1{Y (b)>X(b)≥u,X′(b)>0}|X(t)− Y (t) = 0}dt.

We only need to show that there exists α′ > 0 such that for δ small enough,

lim
u→∞

u−2 logP{X(t) ≥ u,X(b)− Y (b) < 0, X ′(b) > 0|X(t)− Y (t) = 0}

< − 1

1 + ρ(T )
− α′, ∀|t− b| < δ,

(9.2.8)

and

lim
u→∞

u−2 logP{X(t) ≥ u,X(b) ≥ u, Y (b) ≥ u|X(t)− Y (t) = 0}

< − 1

1 + ρ(T )
− α′, ∀|t− b| ≥ δ.

(9.2.9)

We show (9.2.8) first. Note that we only need to consider the case when ρ(b) = ρ(T ). Un-

der this situation, by (D2), either E{X ′(b)Y (b)} < 0 or E{Y ′(b)X(b)} < 0. If E{X ′(b)Y (b)} <

245



0, then as |t− b| → 0,

E{X(t)X ′(b)|X(t)− Y (t) = 0}

= E{X(t)X ′(b)} − (1− ρ(t))E{X ′(b)[X(t)− Y (t)]}
2(1− ρ(t))

= (1 + o(1))
E{X ′(b)Y (b)}

2
.

It then follows from Lemma 2.3.10 that

lim
u→∞

u−2 logP{X(t) ≥ u,X ′(b) > 0|X(t)− Y (t) = 0}

< − 1

1 + ρ(T )
− α′, ∀|t− s| < δ.

(9.2.10)

For the alternative case, E{Y ′(t)X(t)} < 0, consider Taylor’s expansion,

X(b)− Y (b) = X(t)− Y (t) + (b− t)(X ′(t)− Y ′(t)) + (b− t)1+ηZt,b,

where η > 0 and Zt,b is a Gaussian random field with uniformly finite variance. Then as

|t− b| → 0,

E{X(t)[X(b)− Y (b)]|X(t)− Y (t) = 0}

= E{X(t)[X(b)− Y (b)]} − (1− ρ(t))E{[X(t)− Y (t)][X(b)− Y (b)]}
2(1− ρ(t))

= −(1 + o(1))(b− t)E{X(b)Y ′(b)},
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and also Var(X(b)−Y (b)|X(t)−Y (t)) ≤ C1(t−b)2 for some positive constant C1. Therefore,

E{X(t)[X(b)− Y (b)]|X(t)− Y (t) = 0}√
Var(X(t)|X(t)− Y (t))Var(X(b)− Y (b)|X(t)− Y (t))

≥ −C2E{X(b)Y ′(b)} > 0,

for some positive constant C2. It then follows from Lemma 2.3.10 that

lim
u→∞

u−2 logP{X(t) ≥ u,X(b)− Y (b) < 0|X(t)− Y (t) = 0}

< − 1

1 + ρ(T )
− α′, ∀|t− s| < δ.

(9.2.11)

Now, (9.2.10) and (9.2.11) imply (9.2.8).

We turn to proving (9.2.9). Note that

P{X(t) ≥ u,X(b) ≥ u, Y (b) ≥ u|X(t)− Y (t) = 0}

≤ P{X(t) ≥ u, [X(b) + Y (b)]/2 ≥ u|X(t)− Y (t) = 0},

and

Var(X(t)|X(t)− Y (t)) ≤ 1 + ρ(T )

2
,

Var([X(b) + Y (b)]/2|X(t)− Y (t)) ≤ 1 + ρ(T )

2
.

Due to the regularity condition (D1), we obtain

lim
u→∞

u−2 logP{X(t) ≥ u, [X(b) + Y (b)]/2 ≥ u|X(t)− Y (t) = 0}

< − 1

1 + ρ(T )
− α′, ∀|t− b| ≥ δ,

and then (9.2.9) follows. �
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Define the excursion set Au(T,X ∧Y ) = {t ∈ T : (X ∧Y )(t) ≥ u}. Then Morse theorem

gives

ϕ(Au(T,X ∧ Y )) = µ(X,
◦
T )− µ′(X,

◦
T ) + µ(Y,

◦
T )− µ′(Y,

◦
T )

+ µ(X = Y,
◦
T ) + µ(X, a) + µ(Y, a) + µ(X, b) + µ(Y, b),

(9.2.12)

where

µ′(X,
◦
T ) = #{t ∈

◦
T : Y (t) > X(t) ≥ u,X ′(t) = 0, X ′′(t) > 0},

µ′(Y,
◦
T ) = #{t ∈

◦
T : X(t) > Y (t) ≥ u, Y ′(t) = 0, Y ′′(t) > 0},

and the rest terms on the right hand side of (9.2.12) are defined in (9.2.1).

Now we obtain the following mean Euler characteristic approximation.

Theorem 9.2.5 Let {(X(t), Y (t)) : t ∈ R} be an R2-valued, centered, unit-variance Gaus-

sian process satisfying (D1) and (D2), and let T = [a, b] be a closed finite interval in R.

Then there exists some constant α > 0 such that as u→∞,

P{∃t ∈ T such that X(t) ≥ u, Y (t) ≥ u}

= E{µ(X = Y,
◦
T )}+ E{µ(X, a)}+ E{µ(Y, a)}+ E{µ(X, b)}+ E{µ(Y, b)}

+ o
(

exp
{
− u2

1 + ρ(T )
− αu2

})
= E{ϕ(Au(T,X ∧ Y ))}+ o

(
exp

{
− u2

1 + ρ(T )
− αu2

})
,

(9.2.13)

where ρ(T ) = supt∈T ρ(t).

Proof By Lemma 9.2.1, we can find the upper bound and lower bound, similarly to (2.3.1)

and (2.3.2) respectively, for the excursion probability. Applying Lemma 9.2.2, Lemma 9.2.3
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and Lemma 9.2.4 yields the first equality in (9.2.13). The last line of (9.2.13) follows from

(9.2.12). �

Remark 9.2.6 Based on the proof of Lemma 9.2.3 and Lemma 9.2.4, the term E{µ(X =

Y,
◦
T )} in the approximation (9.2.13) can be replaced by a simpler one E{µ′(X = Y,

◦
T )},

where

µ′(X = Y,
◦
T ) = #{t ∈

◦
T : X(t) = Y (t) ≥ u}.

It follows from the Kac-Rice metatheorem that

E{µ′(X = Y,
◦
T )} =

∫ b

a
E{|X ′(t)− Y ′(t)|1{X(t)≥u}|X(t)− Y (t) = 0}dt.
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Springer, Heidelberg.

[5] R. J. Adler, J. E. Taylor and K. J. Worsley (2012), Applications of Random Fields
and Geometry: Foundations and Case Studies. In preparation.

[6] A. B. Anshin (2006), On the probability of simultaneous extremes of two Gaussian
nonstationary processes. Theory Probab. Appl. 50, 353–366.

[7] M. Arendarczyk and K. Debicki (2011), Asymptotics of supremum distribution of a
Gaussian process over a Weibullian time. Bernoulli 17, 194–210.

[8] M. Arendarczyk and K. Debicki (2012), Exact asymptotics of supremum of a station-
ary Gaussian process over a random interval. Stat. Prob. Lett 82, 645–652.

[9] A. Auffinger (2011), Random Matrices, Complexity of Spin Glasses and Heavy Tailed
Processes. Ph.D. Thesis, New York University.
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