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ABSTRACT

THE EXCURSION PROBABILITY OF GAUSSIAN AND
ASYMPTOTICALLY GAUSSIAN RANDOM FIELDS

By

Dan Cheng

The purpose of this thesis is to develop the asymptotic approximation to excursion prob-
ability of Gaussian and asymptotically Gaussian random fields. It is composed of two parts.
The first part is to study smooth Gaussian random fields. We extend the expected Euler char-
acteristic approximation to a wide class of smooth Gaussian random fields with non-constant
variances. Applying similar techniques, we also find that the joint excursion probability of
vector-valued smooth Gaussian random fields can be approximated via the expected Euler
characteristic of related excursion sets. As useful applications, the excursion probabilities
over random intervals and infinite intervals are also investigated. The second part focuses on
non-smooth Gaussian and asymptotically Gaussian random fields. We study the excursion
probability of Gaussian random fields on the sphere and obtain an asymptotics based on
the Pickands’ constant. Using double sum method, we also derive the approximation, which
involves the generalized Pickands’ constant, to excursion probability of anisotropic Gaussian

and asymptotically Gaussian random fields.
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Chapter 1

Introduction and Review of Existing

Literature

1.1 Gaussian Random Fields

A real-valued random field is simply a stochastic process defined over a parameter space
T, which could be a subset of RV or even a manifold, etc. The following is the rigorous

definition [cf. Adler and Taylor (2007)].

Definition 1.1.1 Let (2, F,P) be a complete probability space and T a topological space.
Then a measurable mapping X : Q — RT (the space of all real-valued functions on T') is
called a real-valued random field. Measurable mappings from 2 to (RT)d, d > 1, are called

vector-valued random fields.

Thus, X is a real-valued function X (w,t), where w € Q and t € T. For convenience,
usually, we abbreviate X (w,t) as X (t) or X.

We define a real-valued Gaussian (random) field to be a real-valued random field X on
a parameter space T' for which the finite dimensional distributions of (X (¢1),..., X (¢,)) are
multivariate Gaussian ( i.e., multivariate Normal) for each 1 < n < oo and each (t1,...,t,) €
T™. The functions m(t) = E{X(t)} and C(t,s) = E{(X(t) —m(t))(X(s) —m(s))} are called
respectively the mean and covariance functions of X. If m(t) = 0, we call X a centered

1



Gaussian field. A vector-valued Gaussian field X taking values in R is the random field for
which (€, X(t)) is a real-valued Gaussian field for every & € R%.
The following result is Theorem 1.4.1 in Adler and Taylor (2007), which gives a sufficient

condition such that a Gaussian field X is continuous and bounded.

Theorem 1.1.2 Let {X(t) : t € T} be a centered Gaussian field, where T is a compact set

of RN, If there exist positive constants K, o and n such that

E{|X(t) - X(s)]*} < Klogl[t = sl 77, V|t —s| <n,

then X is continuous and bounded on T with probability one.

Note that the sufficient condition in the above theorem only depends on the covariance
function of X. This is a huge advantage for studying centered Gaussian random fields: all of
their properties only depend on the covariance structure. Similar sufficient conditions for the
differentiability of Gaussian fields can also be obtained, see Chapter 1 in Adler and Taylor

(2007) for more details.

1.2 Excursion Probability

The excursion probability above level u > 0 is defined as P{sup;cy X(t) > u}. Due to
the wide applications in statistics and many other related areas, computing the excursion
probability becomes a classical and very important problem in probability theory. However,
usually, the exact probability is unable to obtain, instead, we try to find the asymptotic
approximation as u tends to infinity.

There is a classical result of Landau and Shepp (1970) and Marcus and Shepp (1972) that



gives a logarithmic asymptotics for the excursion probability of a general centered Gaussian
process. If we assume that X (¢) is a.s. bounded, then they showed that

9
> b= — 2.
ulgréou logIP’{ ?ggX(t) > u} , (1.2.1)

where 0% = supyer Var(X(t)).
We present here a non-asymptotic result due to Borell (1975) and Tsirelson, Ibragimov

and Sudakov (TIS) (1976).

Theorem 1.2.1 (Borell-TIS inequality). Let {X(t) : t € T} be a centered Gaussian
field, a.s. bounded, where T is a compact subset of RN. Then E{sup;cr X(t)} < 00 and for
all u >0,

IP’{ iggX(t) - E{ iéng(t)} > u} < e_u2/(2a%).

It is evident to check that the Borell-TIS inequality implies (1.2.1). There are also several
non-asymptotic bounds for the excursion probability of general (only assume continuity and
boundedness a.s.) Gaussian fields, see Chapter 4 in Adler and Taylor (2007) for more details.

If assume X to be stationary or locally stationary, then there is a famous approximation
obtained by the double sum method. This technique was developed by Pickands (1969a,
1969b) for Gaussian processes, extended to Gaussian fields by Qualls and Watanabe (1973),

and surveyed and developed in a monograph of Piterbarg (1996a).

Theorem 1.2.2 Let T be a bounded Jordan measurable set in RN such that dim(T") = N,

and let {X (t) : t € T'} be a centered Gaussian field with covariance function C(-,-) satisfying

C(t,s)=1— |t —s[|“(1+0(1)) as|t—s| —0.



Then as u — 00,

IP{ sup X (1) > u} — HoVol(T)u®N/ () (1 + o(1)), (1.2.2)
teT

2
where Hy, is the Pickankds™ constant and V(u) = (2%)_1/2 quo e~ 2y

This result was developed further by Chan and Lai (2006) for Gaussian fields with a
wider class of covariance structures. The coefficient H,Vol(T) above was generalized as
J7 Ha(t)dt, where Hq(+) is a function on T. Moreover, the result in Chan and Lai (2006) is
applicable to certain asymptotically Gaussian random fields.

In Chapter 7, we investigate Gaussian random fields on the sphere and obtain Theorem
7.2.4, which is similar to Theorem 1.2.2. In Chapter 8, we extend the result in Chan and Lai
(2006) to anisotropic and asymptotically anisotropic Gaussian random fields, see Theorem
8.1.1 and Theorem 8.2.6.

Can we get more accurate approximation to the excursion probability of “nicer” Gaussian
random fields? The answer is yes. Sun (1993) used the tube method to find the approxima-
tion for Gaussian fields with finite Karhunen-Loéve expansion. Also, many authors applied
the Rice method to get accurate approximations for smooth Gaussian fields, see Piterbarg
(1996a), Adler (2000) and Azals and Wschebor (2005, 2008, 2009), etc. Later on, these
approximations were conjectured by statisticians that they should have close connection to
the geometry of the excursion set A, = {t € T : X(¢t) > u}. Taylor, Takemura and Adler
(2005) showed the rigorous proof that the expected Euler characteristic of the excursion set,
denoted by E{p(Ay)}, can approximate the excursion probability very accurately. Their

result is stated as follows.

Theorem 1.2.3 Let X = {X(t):t € T} be a unit-variance smooth Gaussian random field

4



parameterized on a manifold T'. Under certain conditions on the regularity of X and topology

of T, the following approzimation holds:

]P’{ sup X (t) > u} = E{p(Ay) }1 + 0(6_0‘“2)), as u — 00, (1.2.3)
teT

where o 18 some positive constant.

Moreover, E{¢(Ay)} can be computed by the Kac-Rice formula, see Adler and Taylor

(2007),

dim (T

E{p(Au)} = Co¥(u Z Cjul~te °2 (1.2.4)
where Cj, j = 0,1,...,dim(T), are constants depending on X and T. Here is a simple
example. Let X be a smooth isotropic Gaussian field with unit variance and T = [0, L]V

then ’

N NI

E{p(Au)} = Z Ljfl s Hj-1(we 2,
where A\ = Var(g—i(t)) and H;_q(u) are Hermite polynomials of order j — 1. Tt is worth
mentioning here that if X is not centered or not stationary, then E{p(A,,)} becomes com-
plicated to compute. In the recent monograph Adler and Taylor (2007), the authors only
considered centered Gaussian random fields with constant variance. In Chapter 4 here,
we study non-centered stationary Gaussian fields and derive exact formulae for computing
E{o(Au)}-

Comparing (1.2.3) and (1.2.4) with (1.2.2), we see that the approximation in (1.2.2) only
uses one of the terms, which involves u® ~1p-u?/ 2 in E{@(Ay)}. Also, we note that the
error term in (1.2.2) is only o(1), and the expected Euler characteristic approximation in

(1.2.3) is much more accurate since the error is exponentially smaller than the major term



E{p(Ay)}.

The requirement of “constant variance” on the Gaussian random fields in Theorem 1.2.3
is too restrictive for many applications. However, the original proof in Taylor, Takemura
and Adler (2005) relies on this requirement heavily. If the constant variance condition is not
satisfied, little had been known on whether the approximation (1.2.3) still holds. In a recent
paper Azais and Wschebor (2008, Theorem 5), the authors proved (1.2.3) for a special case
when the variance of the Gaussian field attains its maximum only in the interior of T'. But
this special case excludes many important Gaussian fields in which we are interested.

As a major contribution in this thesis, we shall use the Rice method to show (1.2.3) for
more general smooth Gaussian fields without constant-variance. In Chapter 2, we study
smooth Gaussian random fields with stationary increments and obtain the desired results in
Theorem 2.3.7 and Theorem 2.3.8. Meanwhile, we provide a specific formula for computing
E{¢(Ay)} in Theorem 2.2.2. To develop the theory further, we show in Chapter 3 that the
expected Euler characteristic approximation also holds for a large class of smooth Gaussian
random fields with non-constant variances. When computing E{p(Ay)}, we also find that
it can be simplified in certain sense depending on the variance function of X.

As useful applications, we study the excursion probabilities of Gaussian processes over
random intervals and infinite intervals in Chapter 5 and Chapter 6. The approximations we
derived are also more accurate than the existing ones, since the errors are super-exponentially
small.

Lastly, Chapter 9 is on a new topic: the excursion probability for vector-valued Gaussian
random fields. There has been little research on this. The only exceptions are Piterbarg and
Stamatovic (2005) and Debicki et al. (2010) who obtained some logarithmic asymptotics,

and Ladneva and Piterbarg (2000) and Anshin (2006) who obtained certain asymptotics for



non-smooth vector-valued Gaussian random fields with special covariance functions.
Let {(X(t),Y(s)) : t € T,s € S} be an R2-valued, centered, unit-variance Gaussian

random field, where T and S are rectangles in RYV. Define the excursion set

Ay(X,T) x Ay (Y,S) ={(t,s) e T x S: X(t) > u,Y(s) > u}.

We show in Theorem 9.1.9 that under certain smoothness and regularity conditions, as
U — 00,
IP’{ sup X (t) > u,sup Y (s) > u}

teT ses
2

= E{p(Au(X,T) x Ay(Y,8)} + O(exp{ . %(T,S) _ mﬂ}).

where p(T,S) = SUD{eT, sc S E{X ()Y (s)}.
Let {(X(t),Y(t)) : t € T} be an R%-valued, centered, unit-variance Gaussian process,

where T' = [a, b] is a finite interval in R. Define the excursion set
AT, XANY)={teT : (XAY)(t) > u}.

We show in Theorem 9.2.5 that under certain smoothness and regularity conditions, as

U — 00,

P{3t € T such that X (t) > u,Y(t) > u} = IP’{ sup(X AY)(t) > u}
teT
2

=E{p(Au(T, X NY))} + 0<exp{ — %,O(T) - au2}>,

where p(T') = sup;er E{X (t)Y (¢)}.



Chapter 2

Smooth Gaussian Random Fields with

Stationary Increments

2.1 Gaussian Fields with Stationary Increments

Let X = {X(t) : t € RN} be a real-valued centered Gaussian random field with stationary
increments. We assume that X has continuous covariance function C(¢,s) = E{X (¢)X(s)}

and X (0) = 0. Then it is known [cf. Yaglom (1957)] that

C(t,s) = /RN(e“’fvA> — 1) (e SN — 1) F(d)) + (¢, ©s) (2.1.1)

where (z,y) is the ordinary inner product in RN, ©isan N x N non-negative definite (or
positive semidefinite) matrix and F' is a non-negative symmetric measure on RN \{0} which

satisfies

/ AP F(d)) < oo (2.1.2)
R

N 1+ ||)|2

Similarly to stationary random fields, the measure F' and its density (if it exists) f(\) are

called the spectral measure and spectral density of X, respectively.



By (2.1.1) we see that X has the following stochastic integral representation
X(0) = [N -y + v (213)
R

where Y is an N-dimensional Gaussian random vector and W is a complex-valued Gaussian
random measure (independent of Y) with F' as its control measure. It is known that many
probabilistic, analytic and geometric properties of a Gaussian field with stationary increments
can be described in terms of its spectral measure I’ and, on the other hand, various interesting
Gaussian random fields can be constructed by choosing their spectral measures appropriately.
See Xiao (2009), Xue and Xiao (2011) and the references therein for more information.

For simplicity we assume that Y = 0. It follows from (2.1.1) that the variogram v of X
is given by

u(h) = E(X(t+ ) — X(£)% = 2 /RN(1 — cos (b, \)) F(d)). (2.1.4)

Mean-square directional derivatives and sample path differentiability of Gaussian random
fields have been well studied. See, for example, Adler (1981), Adler and Taylor (2007),
Potthoff (2010), Xue and Xiao (2011). In particular, general sufficient conditions for a
Gaussian random field to have a modification whose sample functions are in C* are given by
Adler and Taylor (2007). For a Gaussian random field X = {X(¢) : t € RV} with stationary
increments, Xue and Xiao (2011) provided conditions for its sample path differentiability in
terms of the spectral density function f(\). Similar arguments can be applied to give the

spectral condition for the sample functions of X to be in C’k(RN ).

Definition 2.1.1 [Adler and Taylor (2007, p.22)]. Let

N kN
t,ug,...,up €ERY; v=(v1,...,0) € Q'R

9



We say X has a kth-order L? partial derwative at t, in the direction v, which we denote by

DZQX(t), if the limit

v :
DLQX(t) = h,rl{;{%() Hk ( Zh vl)

exists in L%, where Gx(t, Zle hiv;) is the symmetrized difference

Gy (t,zk:hivi) = ¥ (—1)k_2§=18iX(t—|—isihivi) (2.1.5)
=1

se{0,1}1k i=1

Remark 2.1.2 Recall the fact that a sequence of random variables &, converges in L? if and
only if E{&,&n} converges to a constant as n,m — oo. It follows immediately that DZQX (t)

exists in L2 if and only if

k k
lim ; {GX (t,Zhivi) Gx (t,ZiLZ’UZ) } (2.1.6)
1=1 1=1

Mgy g =0 [Ty hib

exists.

Let eq1,e9,...,en be the standard orthonormal basis of RN, If the direction v consists

ok x (1)

of k; many e;, 1 <i < N, and k = Zf\il k;, then we write DZQX(t) simply as W
1 N

Lemma 2.1.3 Let X = {X(t) : t € RN} be a real-valued centered Gaussian random field

. . . N ok x (1) T O
with stationary increments and let k = > ;21 k;. Then — o ewists in L if and only
oty ot N
2k
if 221—1/% erists.
8t1 ~--6tN

Proof To simplify the notations, we only show the proof for £k = 2 and the proof for general

10



k will be similar. By the definition of the symmetric difference Gx in (2.1.5),

1 . R
——E{Gx (t,h1e; + hoe; )G x (t, h1e; + haoe;
b {Gx(t, hie; + haej)Gx (t, hie; + haej)}
1
= ———E{[X(t + h1e; + hoe;) — X(t + hie;) — X(t + hoej) + X (1)) (2.1.7)
hihohihs

X [X(t+ hye; + hoej) — X (¢ + hie;) — X (t + haej) + X (1)]}.

Expanding the product above and applying the variogram v defined in (2.1.4), we obtain

that (2.1.7) becomes

-1

— {u(hie; + hoe; — hie; — hoe:) — v(hie; + hoe: — hye;
ththth{(lz 9e; — hiej — hoej) — v(hie; + hoej — hye;)

—v(hie; + hgej — ]Algej) + v(hie; + hgej) —v(hie; — iLlei — ]Algej)

+ V(hlei — lAzlei) + V(hlei - ]Alzej) - V(hlez‘) - V(hzej — illei — iLQGj)
(2.1.8)
+v(hoej — hie;) + v(hge; — haej) — v(hoej) + v(—hie; — haej)
— v(=hye;) — v(—haej) +v(0)}
1 . .

= - —G(0,h1e; + hoe; + (—h1)e; + (—ho)es).
A (i) v(0, hie; + hoej + (—h1)e; + (—ho)ej)

Note that as hy, hg, hi, hy — 0, the limit (if it exists) of the last term in (2.1.8) is just

R0

ﬂati B tj? together with Remark 2.1.2, we obtain the desired result. ]

Proposition 2.1.4 Let X = {X(t) : t € RN} be a real-valued centered Gaussian random
field with stationary increments and let k; (1 < i < N) be non-negative integers. If there is

a constant € > 0 such that

N
/ [T 2Pt FdA) < oo, (2.1.9)
[AI>1725

11



~ kv
then X has a modification X such that the partial derivative %
Oty~---0t

1 N

RN almost surely, where k = sz\il ki. Moreover, VI > 0 and n € (0,e A 1), there exists a

18 continuous on

constant Kk such that

kv kv 2
]E( k&) X<t)k _ ka X(S)k ) < /ﬁHt N 8”77, Vi, s € [—T, T]N
oL oY oSt gk

Proof Applying the dominated convergence theorem,

% 1,(0) % 2%
2k ( 2k :/ At AR V()
ot 1...atNN RN

_ /I)\<1 )\ikl ")\?\?NF(d)\) 4 /H)\”>1 )\%1 --A?\I;NF(CZ)\) (2.1.10)

g/ H)\H2F(d)\)+/ AFLLOZEN B(d)) < oo
[Al<1 [Al>1

where the last inequality is due to the requirement (2.1.2) and condition (2.1.9). By Lemma

k
2.1.3, the partial derivative I?L(tl)f exists in L2.

6t11m8tNN
Next, we show that for any n € (0, A 1), there exists a constant s such that

k k 2
oyt 0t N syt 0s NN

Recall that

1) (71N — 1) F(dn)
N (2.1.12)

0 L
/RN cos (t — s, \) — cos (t, \) — cos (s, \) + 1)F(d\),

12



taking the derivative gives

2k
_ ak C(t’ks) = / )\?kl e /\?\I;N cos (t — s, \) F(d)).
ot\L - ot Nos)t - oshN JRN

It follows that

kX (t) Fx(s) \?
E k kny Ak k
atl 1 A atNN 881 1 A 8SNN

:E<M)2+E( "X (s) )2—21@( OFX()  OFX(s) )

k1 kn kq kn kq kN o K1 kn
atl "'atN 851 "'aSN atl "'atN 881 "'aSN

2k 2k
—Q/RN AL AN (1= cos (t — 5, A)) F(d).

Let 5 =t, 81 = (s1,t2,...,tN), $2 = (S1,52,t3 ..., tN )y oy SN—1 = (S1,.--,SN_1,tn) and

Sy =s. Let h=s—t:=(hy,...,hy). Then, by Jensen’s inequality,

F X (t) FX(s) \?
E{ — kny 4k k
8t11~~~(9tNN 6’511~~35NN
N k A k A 2
F X (3, kX (5;_
. + N - N
j=1 NOsq1t -88]-3815].11 Oty 8811---8%{1 8tj‘7---8tN
N N
2k,
_ QNZ/RN (1 coshiy)) [T N2 ()
= i=1 (2.1.13)
N N
< ZNZ/ (1= cos(hjr;)) T] INiI*i F(dn)
PPl PVES! i
N N
+ ZNZ/ (1 - cos(hj)\j)) H |)\i|2kiF(d)\)
j=1 [A>1 i=1
=1+ 1D

13



Combining the result in (2.1.10) with the elementary inequality 1 — cosx < 22 yields

N
I < 2N(Z |hj|2) /” oy WPF(@) < el =P (2.1.14)

j=1

for some positive constant c;.
To bound the jth integral in I, we note that, when ||A|| > 1, either |\;| > 1/v/N or there

is jo # j such that )‘jO >1/ V/N. We break the integral according to these two possibilities.

(1 —cos(hjA\,) TT 1Ni?Fi ()
/||)\||>1 H

< 1 — cos(hj\j) 2R F(d
_/Wlm( H| |12k P (dN)

i=1 (2.1.15)
N
Z/ (1= cos(hjr;)) [ INiI* i F(dN)
jo#i /\ <1, |)\ |>1/\/N il
=13+ 1y.

Combining condition (2.1.9) with the elementary inequality 1 — cosz < 22 yields

N
1 —cos(hj\;) _
< | — (I TT ) i)
LVN<NI< /gl A P

e 2%; (2.1.16)
+/)\>1/|h||/\ IE(MlHIAI ) 4

< ca|h,|®

for some positive constant cg. Similarly, it is evident to check that I < 03]hj|2 for some
positive constant ¢g. Therefore, the Hoder condition for L? partial derivative in (2.1.11)

holds, and then the desired result follows from Kolmogorov’s continuity theorem. U

14



For simplicity we will not distinguish X from its modification X. As a consequence of
Proposition 2.1.4, we see that, if X = {X(¢) : t € RV} has a spectral density f(\) which

satisfies
1
f(A) = O(”/\”Nm) as ||| — oo, (2.1.17)

for some integer k > 1 and H € (0, 1), then the sample functions of X are in C¥(RY) a.s.

2
When X(-) € C2(RY) almost surely, we write 6%(0 = X;(t) and %8?) = X;;(t).
1 195

Denote by VX (¢) and V2X (t) the column vector (X1 (2), ..., Xn(¢))T and the N x N matrix
(X;j(t))i j=1,.. N, respectively. It follows from (2.1.1) that for every ¢ € RV,

9%C(t, s)

Oti0s; ls=t E{X;(t)X;(1)}. (2.1.18)

Nij = /RN NAF(dN) =

Define the N x N matrix A = (A\;j); j—1,.. N, then (2.1.18) shows that A = Cov(VX(t)) for

all ¢. In particular, the distribution of VX (¢) is independent of ¢. Let

N0 = [ Aidjeos ) PN, A = (0o

Then we have

_9%C(t, s)

M) =iy = [ Aeos (0 =1 ) = TR = BXOX0)

s=t

or equivalently, A(t) — A = E{X (t)V?X(t)}.
Let T = Hg\il[ai, b;] be a closed rectangle on RY | where a; < b; for all 1 < i < N and
0 ¢ T (the case of 0 € T will be discussed in Remark 2.4.1). In addition to the stationary

increments, we will make use of the following conditions on X:
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(H1). X(-) € C*(T) almost surely and its second derivatives satisfy the uniform mean-square

Holder condition: there exist constants L,n > 0 such that

E(X;;(t) — X;j(s)* < Lt — s||*", Vt,s€T, di,j=1,...,N. (2.1.19)

(H2). For every t € T, the matrix A — A(t) is non-degenerate.

(H3). For every pair (t,s) € T? with t # s, the Gaussian random vector

(X (1), VX(t), Xi5(t), X(s), VX(s), Xij(s),1 <i < j < N)

is non-degenerate.
(H3'). For every t € T, (X(t), VX (t), X;;(t),1 < i < j < N) is non-degenerate.

Clearly, by Proposition 2.1.4, condition (H1) is satisfied if (2.1.17) holds for k& = 2. Also note

that (H3) implies (H3"). We shall use conditions (H1), (H2) and (H3) to prove Theorems

2.3.7 and 2.3.8. Condition (H3') will be used for computing E{¢(A,)} in Theorem 2.2.2.
The following lemma shows that for Gaussian fields with stationary increments, (H2) is

equivalent to A — A(t) being positive definite.

Lemma 2.1.5 For every t # 0, A — A(t) is non-negative definite. Hence, under (H2),

A — A(t) is positive definite.

Proof Let t # 0 be fixed. For any (ay,...,ay) € RV\{0},

N N 9
Z]zzl aiaj(Aij = dij (1)) = /]RN (;GMZ) (1 —cos (£, A)) F(A). (2.1.20)



Since (sz\il a;\)2(1 —cos (t,A)) > 0 for all A € RN, (2.1.20) is always non-negative, which
implies A — A(t) is non-negative definite. If (H2) is satisfied, then all the eigenvalues of

A — A(t) are positive. This completes the proof. O

It follows from (2.1.20) that, if the spectral measure F' is carried by a set of positive Lebesgue
measure (i.e., there is a set B C RY with positive Lebesgue measure such that F(B) > 0),
then (H2) holds. Hence, (H2) is in fact a very mild condition for smooth Gaussian fields
with stationary increments.

Lemma 2.1.5 and the following two lemmas indicate some significant properties of Gaus-

sian fields with stationary increments. They will play important roles in later sections.

Lemma 2.1.6 For eacht, X;(t) and X, (t) are independent for alli, j, k; and E{X;;(t) Xy, (¢) }

18 symmetric in 1, j, k, [.

Proof By (2.1.1), one can verify that for ¢, s € RV,

93C(t, s .
E{X; ()X (s)} = W(-é‘s)k = /RN AidjAgsin (£ — s, ) F(dN),
Y5
840(25, 9 (2.1.21)
10t
Letting s = t we obtain the desired results. 0

It follows immediately from Lemma 2.1.6 that the following result holds.

Lemma 2.1.7 Let A = (a;j)1<; j<n be a symmetric matriz, then

St(i, . k1) = E{(AVZX (1) A)j;(AVZX (1) A)g }

1s a symmetric function of i, j, k, [.
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2.2 The Mean Euler Characteristic

The rectangle T' = Hizil[ai, b;] can be decomposed into several faces of lower dimensions.
We use the same notations as in Adler and Taylor (2007, p.134).
A face J of dimension k, is defined by fixing a subset o(J) C {1,..., N} of size k and a

subset (J) = {¢;,j ¢ o(J)} C {0, 1IV=F of size N — k, so that

J:{t:(tl,...,tN)ETiaj<tj<bj iijO'(J),

tj = (1 —¢j)aj+ejbjif j ¢o(J)}.

Denote by 0, T the collection of all k-dimensional faces in T, then the interior of 7" is given
by % = JNT and the boundary of T' is given by 9T = Ug:_ol Ujea,T J. For J € 0, T, denote
by VX, ;(t) and V2X|J(t) the column vector (Xj, (¢),... » Xy (t))g;w-,ikGU(J) and the k£ x k
matrix (an(t))mmEU(J), respectively.

If X(-) € C?(RY) and it is a Morse function a.s. [cf. Definition 9.3.1 in Adler and Taylor
(2007)], then according to Corollary 9.3.5 or page 211-212 in Adler and Taylor (2007), the

Euler characteristic of the excursion set A, = {t € T': X(t) > u} is given by

N k
p(A) =D D (FDFY (D)) (2:2.1)

k=0 J€0),T i=0

with
pi(J) = #{t € J: X(t) 2 u, VX ;(t) = O,index(V2X|J(t)) =i,
(2.2.2)
ejX;(t) > 0 for all j ¢ o(J)},

where 5;5 = 2¢; — 1 and the index of a matrix is defined as the number of its negative

18



eigenvalues. We also define
fi(J) == #{t € J: X(t) > u, VX|;(t) = 0,index(V>X|;(1)) = i}. (2.2.3)

Let a? = Var(X(¢)) and let 0% = SUPteT Ut2 be the maximum variance. For Gaussian
fields with stationary increments, it follows from (2.1.4) that v(t) = o7. For t € J € 9T,

where k > 1, let

Ay = Nijlijeo(s): Mg = (Nij(t)i jeo():

0f = Var(X ()| VX (1), 77 = Var(X(1)|VX(#)),

(2.2.4)
{JL SO JN—k} = {17 SR 7N}\O-<J)’
E(J) ={(ty,-otry_) RV P gyt > 0,5 = J1, . In_i}
Then for all t € J,
Ay =Cov(VX;(1), Ay(t) = Ay =B{X()V>X;(1)}. (2.2.5)

Note that 67 > 47 for all ¢ € T and 07 = 77 if t € INT. For {t} € 9T, then VX (1) is
not defined, in this case we set 67 as o7 by convention. Let C;(t) be the (1,7 + 1) entry
of (Cov(X(t), VX (1)1, ie. Cj(t) = My jy1/detCov(X (1), VX(t)), where My j 1 is the
cofactor of the (1,7 + 1) entry, E{X (¢)X;(?)}, in the covariance matrix Cov(X(t), VX(t)).
Denote by H.(z) the Hermite polynomial of order k, i.e., Hy(z) = (—1)kex2/2£(e_$2/2).

dzF
Then the following identity holds [cf. Adler and Taylor (2007, p.289)]:

/OO Hk(x)e_x2/2 dr = Hk_l(u)e_“2/2, (2.2.6)
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where u > 0 and & > 1. For a matrix A, |A| denotes its determinant. Let Ry = [0, 0c0),
R_ = (—00,0] and ¥(u) = (27)"1/2 [ e~ /24y,

The following lemma is an analogue of Lemma 11.7.1 in Adler and Taylor (2007). It
provides a key step for computing the mean Euler characteristic in Theorem 2.2.2, meanwhile,

it has close connection with Theorem 2.3.7.

Lemma 2.2.1 Let X = {X(t):t € RV} be a centered Gaussian random field with station-

ary increments satisfying (H1), (H2) and (H3'). Then for each J € 0T with k > 1,

k k

i~ —1) Ay —AyQ®)] w2202
ES (D)) b = ( Hy (5 )e " /P ar. (227
{i:()( ) :ul< )} (27T)(k+1)/2|AJ|1/2 J Qf k—1 915 ( )
Proof Let D; be the collection of all £ x k£ matrices with index i. Recall the definition
of f1;(J) in (2.2.3), thanks to (H1) and (H3'), we can apply the Kac-Rice metatheorem [cf.

Theorem 11.2.1 or Corollary 11.2.2 in Adler and Taylor (2007)] to get that the left hand side

of (2.2.7) becomes

k

/JPVXU(t)(O)dt Z%(_l)i]EﬂdetVQXJ(t)|1{V2X|J(t)epi}ﬂ{X(t)Zu}|VXJ<t> =0}

(2.2.8)

Note that on the event D;, the matrix \V25¢ | 7(t) has i negative eigenvalues, which implies

(—1)"|detV2X ()] = detV2X|;(t). Also, U_({VZX;(t) € D;} = ©Q as., hence (2.2.8)
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equals

| 7,0 O B T23 (001 20 9 0) = 0}
(2.2.9)

2 2
-z /(2915) %)
- /J (2w)<k+1>/2,AJ‘1/29tdt/u du E{det V=X ()| X () = 2, VX (t) = 0}

Now we turn to computing E{detVQX‘J(t)]X(t) = ,VX|;(t) = 0}. By Lemma 2.1.5,
under (H2), A — A(t) and hence A j — A j(t) are positive definite for every t € J. Thus there

exists a k x k positive definite matrix ) such that
Qe(Ay — Ay(1)Qr = I, (2.2.10)
where [}, is the k x k identity matrix. By (2.2.5),
E{X()(Q: VX 7()Q1)ij} = —(Qe(Ay — As(£)Q1)ij = =i,
where 0;; is the Kronecker delta function. One can write
E{det(Q:VZX);(H)Q1)| X (t) = x, VX ;(t) = 0} = E{detA(t, )}, (2.2.11)

where A(t,z) = (Aj(t, 2)); jes(s) with all elements A;;(¢, ) being Gaussian variables. To

study A(t,z), we only need to find its mean and covariance. Note that VX (t) and V2X (t)
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are independent by Lemma 2.1.6, then we apply Lemma 2.5.1 to obtain

E{Aij(t,2)} = E{(QeV?X | ()Q4)if| X (1) = 2, VX ;(t) = 0}

= (B{X(1)(Q:V?X7(1)Q1)i5}, 0, .., 0)(Cov(X (£), VX 5 (1) (2,0,...,007  (22.12)

X

= (=0645,0,...,0)(Cov(X (1), VX ;(1))) " (x,0,... o) = —
t

0ij

where the last equality comes from the fact that the (1,1) entry of (Cov(X(t), VX‘J(t)))_l
is detCov(V X, ;(t))/detCov(X (1), VX (1)) = 1/62. For the covariance, applying Lemma

2.5.1 again gives

E{(Aj(t, z) = E{Ajj(t, 2)}) (A (t, 1) — E{Ag(t, 2)})}
= E{(Q:V?X);()Q0)i(Q: V2 X1 ()Q0) kY — (B{X (1)(Q: V2 X5 (1)Q1)ij}, 0, ., 0)
- (Cov(X(#), VX (1)) E{X ()@ VX 5 ()Q1)k} 0, ... 0)"

= St(iaja ka l) - <_5Zj> 0,... aO)(COV(X(t)’ VX|J(t)))_1(_5klv 0,... 70)T
0Okl
07

= St(iajakal) -

where & is a symmetric function of 4, j, k, [ by applying Lemma 2.1.7 with A replaced by

Q¢. Therefore (2.2.11) becomes

E{édet(QtQt(V2X|J(t))Qt) X(t) = 2, VX /() = 0} - %E{det (&(t) - %Ik) }

where A(t) = (AZ] (t));,jeo(s) and all gij (t) are Gaussian variables satisfying

E{A;;(t)} =0, E{A;()Ap(t)} = 07Se(i,j. k1) — 6;50%.
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By Corollary 11.6.3 in Adler and Taylor (2007), (2.2.11) is equal to (—1)k9t_ka(x/9t), hence

E{detV>X| ()| X (t) = #, VX ;(t) = 0}
= E{det(Q; Qe VX5 ()Q:Q; M)IX (1) = 2, VX| (1) = 0}

= [Ag = Ay (8)[E{det(QeV7X | (DQ0) X (1) = 2, VX (1) = 0}

(—1)t :
- Ay = Ay @lH(5).
oF A=A @OHe\ 5
Plugging this into (2.2.9) and applying (2.2.6), we obtain the desired result. O

Theorem 2.2.2 Let X = {X(t) : t € RN} be a centered Gaussian random field with

stationary increments such that (H1), (H2) and (H3') are fulfilled. Then

1

N
E{p(Ay)} = Z P(X(t) >u, VX(t) € E({t})) + Z Z (2m)F/2[A |72

{t}cdpT k=1J€d)T

> Ay —Ay(2)]
x dt/ dx// dyydyy AT A0
/J u By IN-ET R (2.2.13)

T
x Hy, <% +75Cp Oy + -+ ’VtCJN,k(t)yJN,Q

XPX ()X, (t),...,XJN_k(t)(x7 Yays - Yay VX g (E) = 0).

Proof According to Corollary 11.3.2 in Adler and Taylor (2007), (H1) and (H3') imply

that X is a Morse function a.s. It follows from (2.2.1) that

N
Elp(4)} =Y 3 <—1>kE{

k .
(-1)%@])}. (2.2.14)
k=0 J€d),T i=0

If J € 0T, say J = {t}, it turns out E{pug(J)} =P(X(t) > u, VX (t) € E({t})). If J € O,.T
with £ > 1, we apply the Kac-Rice metatheorem to obtain that the expectation on the right
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hand side of (2.2.14) becomes

k
/JpvxJ(t)(U)dtZ(—l)ZE{!thszu(t)\1{V2X|J(t)epi}ﬂ{(le (DX gy (D)EE(D)

X Lix()>u}| VX 7(t) = 0}

1 o0
= dt de | - dur ---d
(2m)k/2|A ]1/2 /J /u x/ /E(J) Y IN

x B{detV2X| 5 ()| X (1) = 2, X7 (8) =y Xy (8) = ygy_ - VX 5(8) = 0}

X pX(t),le (t),...,XJN_k(t)(‘ra yJ17 s JyJN_k|VX|J(t) = 0)

(2.2.15)

For fixed ¢, let Q¢ be the positive definite matrix in (2.2.10). Then, similarly to the proof in

Lemma 2.2.1, we can write

E{det(QtVQXU(t)Qt)’X(t) = x7XJ1 (t) = yJ17 s ’XJN—k = yJN—k’ VX|J<t) = O}

as E{detA(t,x)}, where A(f, ) is a matrix consisting of Gaussian entries A;j(t, ) with

mean

E{(QiVZX )y (1)Q0)ij| X (1) = &, X, () = ygys- - Xy = Ysy_p VX (8) = 0}
= <_5ijv 0, ce 70)<COV<X(t)7XJ1 (t)> cee 7XJN7k(t)a VX|J(t)))_1
-(:E,yjl,...,yJN_k,O,...,O)T
——%(H 7Oy (g, + - +EC (1) )
- 7t2 Vi Jl le Vi ‘]N—k yJN—k: ’

(2.2.16)
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and covariance

_ _ _ _ )
E{(A;(t, ¢) — B{A;(t,2)}) By (b, 2) — BB (6, 2) )} = Sili, 4 k, 1) — fyz’“.
t

Following the same procedure in the proof of Lemma 2.2.1, we obtain that the last conditional

expectation in (2.2.15) is equal to

(—DFA; = As@O)] ,, (2
. Hi, (@ +75Cp Oy + -+ ’YtCJN,k(t)yJN,k) (2.2.17)
Plug this into (2.2.15) and (2.2.14), yielding the desired result. O

Remark 2.2.3 Usually, for nonstationary (including constant-variance) Gaussian field X
on RN , its mean Euler characteristic involves at least the third-order derivatives of the
covariance function. For Gaussian random fields with stationary increments, as shown in
Lemma 2.1.6, E{X;;(t)X(t)} = 0 and E{X;;(t) Xy, (t)} is symmetric in i, j, k, [, so the
mean Euler characteristic becomes relatively simpler, contains only up to the second-order
derivatives of the covariance function. In various practical applications, (2.2.13) could be

simplified with only an exponentially smaller difference, see the discussions in Section 2.4.
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2.3 Excursion Probability

As in Section 3.1, we decompose T into several faces as T' = Ui:V:O T = Uivzo UJeakT J.

For each J € 0, T, define the number of extended outward mazima above level u as

My () = #{t € J : X(t) > u, VX ;(t) = 0,index(V>X|;(£)) = F,

£;X;(t) > 0 for all j & o(J)}.

In fact, M[F(J) is the same as p,(.J) defined in (2.2.2) with ¢ = k. We will make use of the

following lemma.

Lemma 2.3.1 Let X = {X(t) : t € RV} be a Gaussian random field satisfying (H1) and

(H3'), then for any u > 0,

N
{supX(t)zu}: U U {(ME()) > 1} as.

teT k=0J€8),T

Proof By the definition of M[(J), it is clear that

teT k=0 J€d),T

Suppose supyer X (t) > u, since X (t) € C2(RY) a.s., there exists ty € T such that X (tg) =
supser X (t). Without loss of generality, assume tg € J € 9;T. Note that ¢y is a local
maximum restricted on J, thus V.X|;(tg) = 0 and V2X 7(to) is non-positive definite. Due
to (H1) and (H3'), we apply Lemma 11.2.11 in Adler and Taylor (2007) to obtain that
almost surely, det(V2XU(t0)) # 0 and hence index(V2X|J(t0)) =k If 6;Xj(t0) < 0 for

some j ¢ o(J), then we can find ¢ty € T such that X(¢;) > X(¢g), which contradicts
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X(tg) = supser X(t). Hence 5§Xj(t0) > 0 for all j ¢ o(J). These indicate M (J) > 1,

therefore
N
{supX(t)>u CU U {ME(J)> 1} as.,
teT k=0 J€d),T
completing the proof. O

It follows from Lemma 2.3.1 that

N N
JP{ sup X () > u} <3 S PMEy =<y Y E(MEW)). (2.3.1)

teT k=0J€d,, T k=0 J€d, T

On the other hand, by the Bonferroni inequality;,

N
P{sup X(t) > uf >3 > PMF() 21} = > PME() > 1L ME() = 1},
teT k=0 J€d, T J#£J!

Let p; = P{M,;(J) = i}, then P{M(J) > 1} = 332, p; and E{My’ ()} = 3332y ip;, it

follows that

E{My ()} =P{My/(J) > 1} =) (i—1)p;




Together with the obvious bound P{MF(J) > 1, ME(J') > 1} < E{ME(J)MEF(J')}, we

obtain the following lower bound for the excursion probability,

IP’{ sup X (t) > u} > Z 3 (E{ME %E{ME(J)(ME(J) _ 1)})

teT k=0J€d),T

- S E(ME)ME(T)).

JAJ!

(2.3.2)

Define the number of local mazima above level u as
My(J) = #{t € J : X(t) > u, VX ;(t) = 0,index(V>X| (1)) = k},

then obviously My (J) > MF(.J), and My (J) is the same as Jix(J) defined in (2.2.3) with

1 = k. It follows similarly that

Z S E{M,(J }>P{supX() }

k=0 Je&kT teT
(2.3.3)

2> (EOLD) - SEOLUOL - 1)) = 3 BOLOMIL

k=0 J€d, T J#J!

We will use (2.3.1) and (2.3.2) to estimate the excursion probability for the general
case, see Theorem 2.3.8. Inequalities in (2.3.3) provide another method to approximate the
excursion probability in some special cases, see Theorem 2.3.7. The advantage of (2.3.3)
is that the principal term induced by Z}Z;V:O > JEO,T E{M,(J)} is much easier to compute
compared with the one induced by Z{CV:O ZJeﬁkT E{ME(J)}.

The following two lemmas provide the estimations for the principal terms in approximat-

ing the excursion probability.
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Lemma 2.3.2 Let X be a Gaussian field as in Theorem 2.2.2. Then for each J € 0T with

k > 1, there exists some constant o > 0 such that

_ 1 Ay —As(t)] u —u2/(262) —au?
E{Mu(1)} = em) D22 [, o Hk—l(e)e P14 o(e™).

(2.3.4)

Proof Following the notations in the proof of Lemma 2.2.1, we obtain similarly that

E{Mu(J)} = /Jpvx|J<t)(O)th{!detVQXu(t)|1{V2XJ(t)epk}]l{xa)zu}!VXJ(t) =0}

00 vk —22/(202)
:/dt/ P Gt '
J u (27T)(k+1)/2\AJ]1/29t

x B{det V2X) (1)1 g2 X, (e X () = 2, VX|5(1) = 0}

(2.3.5)

Recall VQX\J(t) = Qt_thVQXU(t)QtQt_l and we can write (2.2.12) as
E{Q¢V2X| 7 (DQ:|X (1) = 2,V X (1) = 0} = — 5 Ij.

Make change of variables

V(t) = QV2X (1) Qs + %Ik,
t

where V(t) = (Vi;j(t))1<ij<k- Then (V($)|X(¢) = =, VX ;(t) = 0) is a Gaussian matrix
whose mean is 0 and covariance is the same as that of (QtV2X|J(t)Qt|X(t) =z, VX|;(t) =

0). Denote the density of Gaussian vectors ((Vi;(t))1<i<j<klX () = 2, VX|;(t) = 0) by
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hi(v), v = (vij)1<i<j<i € REEFD/2 then

E{det(QuV2X| (000 g2y, (yep, X () =2, VX|;(t) =0}

= E{det(QtVQXU(t)Qt)H{Qtv2X|J(t>Qtepk}|X(t) =z, VX\J(t) =0} (2.3.6)

det((vij) - e%fk> he(v) dv,

t

/”:(Uij)_ég[kepk
t

where (v;;) is the abbreviation of matrix (v;;)1<; j<g. Since {0? :t € T} is bounded, there

exists a constant ¢ > 0 such that

k 1/2
X T
) - Sl e D Vil= () <2

t

Thus we can write (2.3.6) as

s xXr
det ( (vi5) — =1, ) he(v)do — det ( () — =1,  he(v) d
[ ((”]) 07 k> e /v:wij)—g%fwk ) ((U”) 07 ’“> e

t

= E{det(QeV2 X, (0)Q0)|X (1) = 2, VX (1) = 0} + Z(t, ),

(2.3.7)

where Z(t, x) is the second integral in the first line of (2.3.7) and it satisfies

ht(v)dv.

xr
det ((U”) — ﬁfk)
t

Zt)| < |
I(wipll=&

Denote by G(t) the covariance matrix of ((Vi;(¢))1<i<j<klX () = 2, VX ;(t) = 0), then
by Lemma 2.5.2 in the Appendix, the eigenvalues of G(t) and hence those of (G(t))™!

are bounded for all t € T. Tt follows that there exists some constant o/ > 0 such that
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—o!||(v;.) || 2
he(v) = o(e” @ i)l ) and hence |Z(t,z)| = o(e=*"") for some constant o > 0 uniformly
for all ¢ € T. Combine this with (2.3.5), (2.3.6), (2.3.7) and the proof of Lemma 2.2.1,

yielding the result. O

Lemma 2.3.3 Let X be a Gaussian field as in Theorem 2.2.2. Then for each J € 0T with

k > 1, there exists some constant o > 0 such that

E
E{M, (J)} = @) k/Q\AJ|1/2/dt/ dx/ / dyy - dygy

DL —AJ( )|H

"; <7 +1Cr Oygy + -+ 1Cry )yJN_k)
t

_O[U2
XPX(8),X ), (t),...,XJNik(t)(xa Yap - Uiy | VX () = 0)(1 4 0(e™™)).

(2.3.8)

Proof Under the notations in the proof of Theorem 2.2.2, applying the Kac-Rice formula,

we see that E{ME(J)} equals

/J PyX, J(t)(O)th{ldetV2X|J(t)!]l{v2 be J(heppy HX (020

<X @0 X @)eBNH VX () = 0}

e
— d de [ - dur - d
(2m)k/2|A 12 ) tu v E() Y YIn_i

E{detV>X ;(t)1 (V2,0 e X0 = 2. X5 () =y Xy (0 =y s

VX (t) = 0}pX(t)7XJ1 (t),- ’XJka(ﬂ(x’le’ gy VX () = 0).
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Recall V2X‘J(t) = Qt_thVQXU(t)QtQt_l and we can write (2.2.16) as

E{QiV2X;()Qe| X (1) = &, X5, (8) =y Xy () = yay_ . VX () = 0}

X
= - <7—t2 + 05 Wy +--- + CJN_k(t)yJN_k)]k-

Make change of variables

W(t) = QiV2 X, (1)Q: + %%
i

where W (t) = (W (t))1<; j<k- Denote the density of

(Wi <i<j<kl X (@) =2, Xp () =yyp, - Xy () =gy VX 5(8) =0)

by ft,yJ17~-~ (w),w = (wij)1<i<j<k € RF(E+1)/2 - Similarly to the proof in Lemma

7yJka

2.3.2, to estimate

X (8) =2,V X 7(t)=0,
E{detV2X|J(t) X 0 }

1
{v2X| JOED X =y Xy O=y7y
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we will get an expression similar to (2.3.7) with Z(¢, z) replaced by Z(t, z, Yy ,yJN_k).

Then, similarly, we have

I(t,l’) = / o /é(J) dyjl e dy‘]N—k: pX(t),le (t),... ’XJN—k;(t)<x7yJ1’ T 7yJN—kZ|
|VX|J(t) = 0)|Z<t7$7yJ1’ e ’y‘]N—k)|
= /"'[E(J) dyJ1"'dyJN—kpX(t),le(t),---7XJN_k(t)(x7yJ1"" YZjvn

VX (1) = 0) /| ( der( (i) - v—tgfk)
det((wz’j) - %%)

where the last inequality comes from replacing the integral region E(.J) by RV=F and fr(w)

(w)dw

fty ve
Y Jqi1 YT
wi)I=% LNk

< pX(t)(QJ‘VXlJ(t) = 0)/ fr(w)dw,

I(wi )=

is the density of ((Wi;(t))1<i<j<k|X(t) = 2, VX ;(t) = 0). Hence by the same discussions
2_,2 2
in the proof of Lemma 2.3.2, I(t,z) = o(e” *" /(2UT)) uniformly for all ¢ € T" and some

constant a > 0. Combining the proofs of Lemma 2.3.2 and Theorem 2.2.2, we obtain the

result. O

We call a function h(u) super-exponentially small (when compared with P(supsep X (t) >

_au2_u2/(20%)) as u — 00.

u)), if there exists a constant « > 0 such that h(u) = o(e
The following lemma is Lemma 4 in Piterbarg (1996b). It shows that the factorial

moments are usually super-exponentially small.

Lemma 2.3.4 Let {X(t) : t € RN} be a centered Gaussian field satisfying (H1) and (H3).

Then for any € > 0, there exists €1 > 0 such that for any J € O,.T and u large enouth,
—u2/(282+e) |, —u2/(20%2—¢1)
E{Mu(J)(M(J) = 1)} < e /@) 4 =/ @oj=en)
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where 53 = SUPgeJ SUP, _gk—1 Var(X(t)|VX|J(t), V2X|J(t)e) and 0?] = supey Var(X()).

Here SF=1 is the (k — 1)-dimensional unit sphere.

Corollary 2.3.5 Let X = {X(t) :t € RN} be a centered Gaussian random field with sta-
tionary increments satisfying (H1), (H2) and (H3). Then for all J € 0T, E{My(J)(My(J)—

1)} and E{ME () (MEF(J) — 1)} are super-exzponentially small.

Proof Since M (J) < My(.J), we only need to show that E{M,(J)(My(J)—1)} is super-
exponentially small. If k& = 0, then M, (J) is either 0 or 1 and hence E{M,,(J)(My(J)—1)} =
0. If £ > 1, then, thanks to Lemma 2.3.4, it suffices to show that ﬁ?] is strictly less than a%.

Clearly, Var(X (1)|VX|;(?), V2X|J(t)e) < a%. Applying Lemma 2.5.1 yields that

Var(X (1)|VX (1), V2X s (t)e) = 0F = B{X(t)(V> X ;(t)e)} = 0.

Note that the right hand side above is equivalent to (A j(t) —Aj)e = 0. By (H2), Aj(t)— Ay

is negative definite, which implies (A j(t) — Aj)e # 0 for all e € S¥~1 so that

sup  Var(X(1)|V| ;X (1), vaX(t)@ < 0%
ecSk—1

Therefore 53 < 0'% by continuity. O

The following lemma shows that the cross terms in (2.3.2) and (2.3.3) are super-exponentially
small if the two faces are not adjacent. For the case when the faces are adjacent, the proof

is more technical, see the proofs in Theorems 2.3.7 and 2.3.8.

Lemma 2.3.6 Let X = {X(t) : t € RN} be a centered Gaussian random field with station-

ary increments satisfying (H1) and (H3). Let J and J' be two faces of T such that their
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distance is positive, i.e., inf,_; 51 ||s —t|| > &y for some 0y > 0, then E{ My (J)My(J')} is

super-exponentially small.

Proof We first consider the case when dim(J) = k > 1 and dim(J") = ¥ > 1. By the
Kac-Rice metatheorem for higher moments (the proof is the same as that of Theorem 11.5.1

in Adler and Taylor (2007)),

E{ M, ()M, ()} = /J dt /J S E{det VX (0]|AetV2X 1 (5) L )20 5)2)
X 1{v2X|J(t)€Dk,V2X|J/(3)€Dk/}‘X(t) =, X(S) =Y VX‘J(t) =0,
(3) ('Tu Y, 07 0)

VX pi(s) = O}PX(t),X(s),vxu(thlj,

/dt/J/ds/ d:v/ Ay E{[detV2X, ()] |det VX, (s)|

=, X(s) =y, VX ;(t) = 0, VX, 51(s) = 0}px (1) x (5) (£, ¥)

XPUX| 5 (0).V X jr(s) (s)(0,0[X(t) = =, X(s) = y).

(2.3.9)

Note that the following two inequalities hold: for constants a; and bj,

k K 1 k . K ,
ITlail TT 1850 < ( D laal™ + > o)
, . k4 k" \ “ ,
=1 7=1 =1 j=1
and for any Gaussian variable £ and positive integer [,

El¢l' < E(|E¢| + [¢ — E|)! < 2'(|E¢| + Ele — Ee|l) < 2/(JE€|! + Cy(Var(€))/2),
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where the constant € depends only on /. Combining these two inequalities with Lemma

2.5.1, we get that there exist some positive constants C'; and Nj such that for large x and v,

sup  E{|detVZ X ;(1)]|det VX 5 (s)|| X (1) = 2, X (s) = v,
ted seJ!

VX|J(t) =0, VX|J/(5) = 0} < Cllele_

(2.3.10)

Also, there exists a positive constant Cgy such that

sup pvxu(t),vxu,(s)((),OIX(t) =z, X(s) =y)
ted,seJ’

< sup (27-(-)_(k?+k/)/2[detCOV<VX|J(t), VX|J/(3)|X(t) =x,X(s)= y)]_1/2 < (h.
ted,seJ’!

(2.3.11)

Let p(dg) = SUD |5 ]| >4 E{XOX )} hich is strictly less than 1 due to (H3), then Ve > 0,

0t0s

there exists a positive constant Cg such that for all ¢ € J, s € J' and u large enough,

/ / My y i x5y (@ y)ddy = B{X OX (I x ()50 x(5)5u)
woo (2.3.12)

2
2N1 2 _ U—
< EUX() + X)L x ()4 x ()220} ) < C3exp (5“ (1+ P(%))a%)

Combine (2.3.9) with (2.3.10), (2.3.11) and (2.3.12), yielding that E{MF(J)ME(J)} is

super-exponentially small.
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When only one of the faces, say J, is a singleton, then let J = {tg} and we have

LM< [ ds [ de [ dyi 9 o @0

x E{|det VX, j1(s)[| X (to) = @, X (s) = y, VX y(5) = 0}.

(2.3.13)

Following the previous discussions yields that E{ M, (J)M,(J’)} is super-exponentially small.
Finally, if both J and J' are singletons, then E{ M, (J)M,(J')} becomes the joint prob-

ability of two Gaussian variables exceeding level u and hence is trivial. 0

Theorem 2.3.7 Let X = {X(t) : t € RN} be a centered Gaussian random field with

stationary increments such that (H1), (H2) and (H3) are fulfilled. Suppose that for any face

J,

{teJ v(t) = O'%,Vj(lf) =0 for some j ¢ o(J)} = 0. (2.3.14)

Then there exists some constant o > 0 such that

]P’{SupX } Z Z E{Mu }+0( au2_u2/(20%))

teT k=0 J€d),T
= > W +Z >
YEED2[A 172
{t}eaOT ( ) k= 1J8T27T i /|A "/
- 2 (052 22 (92
<[ Ay €£J< ”%1(%)6“ J0) gy 1 oo’ =02/ 27
t

(2.3.15)

Proof Since the second equality in (2.3.15) follows from Lemma 2.3.2 directly, we only need
to prove the first one. By (2.3.3) and Corollary 2.3.5, it suffices to show that the last term

in (2.3.3) is super-exponentially small. Thanks to Lemma 2.3.6, we only need to consider
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the case when the distance of J and J’ is 0, or I := J N J’ # (. Without loss of generality,

assume

o(y={1,....mm+1,.. .k}, o(J)={1,...omk+1,... k+k —m},  (2316)

where 0 < m < k <k < Nand k' > 1. If k = 0, we consider o(J) = @ by convention.
Under such assumption, J € 9T, J' € 9,yT and dim(I) = m.

Case 1: k = 0, i.e. J is a singleton, say J = {tg}. If v(tg) < J%, then by (2.3.13),
it is trivial to show that E{My(J)M,(J")} is super-exponentially small. Now we consider
the case v(tg) = 0%. Due to (2.3.14), E{X (t9)X1(t9)} # 0 and hence by continuity, there
exists 0 > 0 such that E{X (s)X1(s)} # 0 for all ||s — tg|| < 4. It follows from (2.3.13) that

E{ My (J)My(J)} is bounded from above by

o0 o0
/ ds/ da:/ dy ]E{]detVQXU/(s)HX(tO) =ux,X(s) =y, VX|J/(3) =0}
seJ!:||s—tgl|>0 u u

X pX(to),X(S),VX|J/(s) (1’, Y, O)
00 ) - B
+ /seJ’:|st0||§5 ds/u dy E{|detV X|J/(8)||X(S) = ?J,VXU/(S) = 0}px(5)’VX|J,(S)(y,O)

=11 + I>.

Following the proof of Lemma 2.3.6 yields that I; is super-exponentially small. We apply

Lemma 2.5.1 to obtain that there exists g > 0 such that

sup  Var(X(s)[VX p(s) € sup  Var(X(s)|X1(s)) < 0F — =0,
seJ’:||s—tgl|<é seJ!:||s—tg| <o

Then I and hence E{M,(.J)M,(J’)} are super-exponentially small.
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Case 2: k > 1. For all t € I with v(t) = 0'%, by assumption (2.3.14), E{X (¢)X;(t)} # 0,
Vi=m+1,...,k+ k" —m. Note that I is a compact set, by Lemma 2.5.1 and the uniform

continuity of conditional variance, there exist 1,461 > 0 such that

sup  Var(X(8)|Xm41(t), - Xg(t), Xppy1(8)s -+, Xpp gt _pn(8)) < a% —e1, (2.3.17)
teB,seB’

where B = {t € J : dist(t,I) < §1} and B' = {s € J' : dist(s,I) < §1}. It follows from

(2.3.9) that E{M,(J)M,y(J")} is bounded by

dtd d d ,0,0
//(JXJ’)\(BXB’) S/u a:/u ypX(t)aX(3)>VX|J(t)7VX|J/(s)('T Y )

X E{‘detV2X|J(t)"detv2X|J/(8)HX(t) = x,X(s) =, VX|J(t) — O, VX|J/(S) _ 0}
+ / /B e /u dz px (1) (VX7 () = 0, VX| y(s) = O)pyx, J(t)’vxu,(S)(o, 0)

X E{\detv2X|J(t)|ydetv2X|J/(s)\|X(t) =, VX|;(t) =0,VX, y(s) = 0}

=I5+ I4.
Note that

(J x JW\(B x B') = ((J\B) X B’) g (B X (J\B)) U <(J\B) X (J\B)). (2.3.18)

Since each product set on the right hand side of (2.3.18) consists of two sets with positive
distance, following the proof of Lemma 2.3.6 yields that I5 is super-exponentially small.

For 14, taking into account (2.3.17), one has

sup  Var(X (1)|VX (1), VX u(s)) < 0F —e1. (2.3.19)
teB,seB’
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To estimate
PUX|(0).VX ()(0,0) = (2m) =D/ (detCov (VX1 (1), VX () V2 (23.20)

we write the determinant on the right hand side of (2.3.20) as

detCov(Xp11(t), -, Xp(t), X1 (8)s s Xy pr 1 (8)[ X1 (8), -, Xon (1), X1(8), -+ -, Xim(5))
x detCov(X1(t),..., Xm(t), X1(s),..., Xmn(s)),

(2.3.21)

where the first determinant in (2.3.21) is bounded away from zero due to (H3). By (H1), as

shown in Piterbarg (1996b), applying Taylor’s formula, we can write
VX(s)=VX(t)+ V2X(t)(s — ) + ||s — t]|* TV, (2.3.22)

where Y} s = (Y1

s Yt]\g )T is a Gaussian vector field with bounded variance uniformly for

allt € J, s € J'. Hence as ||s — t|| — 0, the second determinant in (2.3.21) becomes

detCov(X1(t), ..., Xm(t), X1(t) + (VX1(t),s — t) + ||ls — |V, ..
Xin(t) + (VX (t), s = t) + ||s — tl| " 1Y)
= detCov(X1(t), ..., Xm(t), (VX1(t),s — t) + ||s — ¢ T7YL, ...
(VXn(1),5 = 1) + [|s — tl|"F7Y77%)
= ||s — t|*"detCov(X1(t), ..., Xm(t), (VX1(t), 1,6, -, (VXm(t), er,5)) (1 + 0(1)),

(2.3.23)
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where e; s = (s — )T /|ls — t|| and due to (H3), the last determinant in (2.3.23) is bounded
away from zero uniformly for all ¢ € J and s € J'. It then follows from (2.3.21) and (2.3.23)

that

detCov (VX ;(1), VX|J/(3)) > Cls — t|I>™ (2.3.24)
for some constant C'; > 0. Similarly to (2.3.10), there exist constants Co, N1 > 0 such that

sup  B{[detVZX | ;(t)[|detV? X (X (1) = 2, VX 5(t) = 0, VX js(s) = 0}
teJseJ! (2.3.25)

< Co(1+ ™M),

Combining (2.3.19) with (2.3.20), (2.3.24) and (2.3.25), and noting that m < k' implies
1/]|s — t||" is integrable on J x J', we conclude that Iy and hence E{My(J)My,(J')} are

finite and super-exponentially small. O

Theorem 2.3.8 Let X = {X(t) : t € RN} be a centered Gaussian random field with
stationary increments such that (H1), (H2) and (H3) are fulfilled. Then there exists some

constant o > 0 such that

]P’{supX } Z Z E{ME (1)} + o(e” au?—u? /(20%))

teT k=0 J€0),T (2.3.26)

2_,2 2
= E{p(Au)} +ofe” ™7 T)),
where BE{p(Ay)} is formulated in Theorem 2.2.2.

It is worth mentioning here that the main idea for the proof of Theorem 2.3.8 comes

from Azals and Delmas (2002) (especially Theorem 4). Before showing the proof, we list the
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following two lemmas.

Lemma 2.3.9 Under (H2), there exists a constant ag > 0 such that

(e,(A—A(t))e) >ag, VteT,eeSVN L

Proof Let My« be the set of all N x N matrices. Define a mapping ¢ : RY x My n — R
by (&, A) — (€, AE), then ¢ is continuous. Since A—A(t) is positive definite, ¢(e, A—A(t)) > 0
for each t € T and e € S¥~1. On the other hand, {(e,A — A(t)) : t € T,e € SN "1 is a

compact subset of RV x M Nx N and ¢ is continuous, completing the proof. U

Lemma 2.3.10 Let {£1(t) : t € T1} and {&2(t) : t € Ty} be two Gaussian random fields.

Let

o2(t) = Var(&(t)), @;=supo;(t), o;= inf o;(t),

1

tET,L' tGTi
E{&1(8)82(s _ .
olt ) = SR o g g o= it plns),
Ul(t)02(5> tely,s€ly tely,s€Ty

and assume 0 < g; < 7; < 00, where i =1,2. If0 < p <p <1, then for any N1, No > 0,

there exists some o > 0 such that as u — oo,

2 2 —2
E{(1 + & ()M + N2)1 weg(s)<op} = o™ ),
L 08 0OM + 16 20 = o )

Swmilarly, if =1 < p <p <0, then

2 2 —2
E{(1 + & ()M + N2)1 weg(s)>0p} = o™ ),
o L8 0OM + 16 20} = o )
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Proof We only prove the first case, since the second case follows from the first one. By

elementary computation on the joint density of 1 (¢) and &3(s), we obtain

E{(1+ & (6)[M + Noy1 wbols
teﬁl}feTQ {1+ 1&@)] [€2()172) Liey (1) > w69 (s) <0}

00 2
S N S A
2ra05(1— )2 Ju 27

0 2
1 T9PT
+lz1 |22 eXpY — oo o\ T2 —— 2
/ (1+] |N1 | |N2) { ( & 1) }d

o 253(1 — p?) a1
2 22,2
U gop~u
:o(exp{— 5 59 20 2_2—|—5u2}>,
as u — 0o, for any € > 0. O

Proof of Theorem 2.3.8 Note that the second equality in (2.3.26) follows from Theorem
2.2.2 and Lemma 2.3.3, and similarly to the proof in Theorem 2.3.7, we only need to show
that B{ME(J)ME(J")} is super-exponentially small when .J and .J’ are neighboring. Let
I:=JNJ #0. We follow the assumptions in (2.3.16) and assume also that all elements in

£(J) and £(J') are 1, which implies £(J) = RY ™ and B(J') = RY "
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We first consider the case k > 1. By the Kac-Rice metatheorem, E{ M, (J)My(J")} is

bounded from above by

o0 0 o0 0 o0 0
dt/ ds/ d:v/ dy/ dz; 1/ dz, 11 / dw 1/ dwy,
/J J o Ju u 0 * 0 FHk-m f m 0

E{[det V2, (1) [detV2X ()| X (1) = 2, X (5) = 1, VX (1) = 0, Xpar () = 241,
. an+k’_m(t) = Z]H_k/_ma VX|J’(S) = 0>Xm+1(3) = Wm41y--- 7Xk(8) = wk‘}

X pt,s(2,1,0, 2541, - - - 2kl —mo 0y W15 - , W)

= // A(t, s) dtds,
JxJ'

(2.3.27)

where p; (2, 9,0, 2541, -, 2k —m 0s Wit 1, - - - ,wp.) is the density of

(X (1), X(5), VX (0, X1 (8, -+, X1 (8, VX o (), X1 (), -, X (5))

evaluated at (z,v,0, 2511, ... 2kl —me 05 Wit 1 - - W)
Let {e1,e9,...,en} be the standard orthonormal basis of RN, Fort e J and s € J', let

ers = (s — t)T/||s — t|| and let o;(t,s) = (e, (A — A(t))et,s), then

(A= A(t))er,s =

Mz

(eis (A= A(t))er s)e Zaz (t,s) (2.3.28)
1=1

By Lemma 2.3.9, there exists some aq > 0 such that

(et,5, (A — A(t))er,s) = (2.3.29)
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for all t and s. Under the assumptions (2.3.16) and that all elements in £(.J) and &(J') are

1, we have the following representation,

t: (t17’tm’tm‘i'l’7tk’bk+17’bk+k/—m’0770)7

S = (517"'7Sm7bm+17"'7bk'78k+17'"7Sk—|—kj/—m707"’70>7

where t; € (aj,b;) for all i € o(J) and s; € (aj,b;) for all j € o(J'). Therefore,

(eivers) >0, Vm+1<i<k,
(ejers) <0, Vh+1<i<k+k —m, (2.3.30)

(ej,ers) =0, Vk+k —m<i<N.
Let

Dy ={(t,s) € Jx J :qj(t,s) > p;}, ifm+1<i<k,

D;={(t,s) € JxJ :qj(t,;s) < -5}, ifk+1<i<k+k —m, (2.3.31)

Dy = {(t, syeJxJ: Zai(t75)<€z’7€t,s> > 50},

=1

/
where 5y, 81, - .., 5, k! _y are positive constants such that 50+ziﬂi£;{ﬂ Bi < ap. It follows

from (2.3.30) and (2.3.31) that, if (¢,s) does not belong to any of Do, D, ..., Dy s,

then by (2.3.28),

N k+k'—m
(A= A()ers,ers) = > ailt,s)esers) <Po+ > Bi <ao,
i=1 i=m+1
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which contradicts (2.3.29). Thus Dy U Uf;fl/;{nDi is a covering of J x J', by (2.3.27),

k+k —m

E{ME()ME(I)} < / s At s)dtds + ) / /D A(t, s) dtds.
0 1

i=m+1

We first show that [ [ Dy A(t, s) dtds is super-exponentially small. Similarly to the proof

of Theorem 2.3.7, applying (2.3.20), (2.3.24) and (2.3.25), we obtain

/ /D 0 Alt, s) dtds

< [ [ s [ depx 0%, 0 0. 00x )@V X (0) = 0.9 () = 0)
0

u

x B{|det V> X, J(t)||detV2X| 7 $)IX(8) =2, VX (1) = 0,V X y1(s) = 0}
u

< C{//D dtds/ dz(1 4 2™M)||s — ™" px ) (x[ VX 5 (t) = 0, VX|J/(8) =0),
0

(2.3.32)

for some positive constants C’i and Ni. Due to Lemma 2.3.6, we only need to consider the

case when ||s — t|| is small. It follows from Taylor’s formula (2.3.22) that as ||s — || — 0,

Var(X (8)|VX| 5 (t), VX, y1(5)) < Var(X (8)[ X1(8), .., Xpn(t), X1(5), - -, Xn(s))
= Var(X ()| X1(t), ..., Xm (), X1(t) + (VX1(t), s — t) + [|s — ¢TIV, .,
Xin(t) + (VX (1), s = 1) + [ls = ¢l T7¥/%)
= Var(X ()| X1(8), -, Xo (1), (VX1 (8), et,6) + |5 =tV - (2.3.33)
(VXm(t),ers) + lIs — t]"Y7)5)
< Var(X (O(VX1(), ex,s) + |5 — "V (VXom(8), e1,5) + Ils — t]7Y/7)

= Var(X(B)(VX1(1), er.6), - (VX (t), er.6)) + o(1).
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By Lemma 2.5.2, the eigenvalues of [Cov((VX1(t),ets), .., (VXm(t),er.5))] " are bounded
uniformly in ¢ and s. Note that E{X (¢)(VX;(t),et )} = —a;(t,s). Applying these facts and
Lemma 2.5.1 to the last line of (2.3.33), we see that there exist constants Co > 0 and g > 0

such that for ||s — ¢|| sufficiently small,

Var(X ()|VX| 5 (), VX y1(s)) < 07— Ca Y ai(t,s) +o(1) < oF — p, (2.3.34)
=1

where the last inequality is due to the fact that (¢,s) € Dy implies

m m 1 m 2 62
D000 Dok lew el 2 1o Lt ohersen) = B
1= 1= i=

m

Plugging (2.3.34) into (2.3.32) and noting that 1/||s—¢|" is integrable on J x J’, we conclude
that [ [ Dy A(t, s) dtds is finite and super-exponentially small.

Next we show that [ [, A(t,s)dtds is super-exponentially small for i = m+1,... k. It
1

follows from (2.3.27) that | [, A(t,s)dtds is bounded by
7

//DZ dtds/u dx/o dwipX(t),VX|J(7,‘),XZ-(S),VX|J,(s)(x’O7wi70)

x E{]det V2 Xy ()|ldetV2X i (s)[|X (1) = &, VX (1) = 0, X(s) = wi, VX yr(s) = 0}

We can write

1
om0y (t)oa(t, s)(1 — p2(t,s))1/2

B 1 2 wi2 _ 2p(t, s)zw;
“Xp{ 2<1—p2<t,s>>(o%<t>+a§<t,s> 0’1(15)02(t78))}’

PX(t),x;(s) (@ wil X;(t) = 0) =
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where

o2 (t) = Var(X(1)|X;(t) = 0), p(t,s) = E{X (1)Xi(s) [ Xi(t) = 0}
o1(t)oa(t, s)
o5(t, s) = Var(X;(s)|X;(t) = 0) = detCov(X)'\iiES), Xit)).

and p?(t,s) < 1 due to (H3). Therefore,

PX().VX () X4().V.X) 1s(s) (z,0,w;,0)
= pVXU,(s),Xl(t),...,XZ-_l(t),XZ-H(t),...,Xk(t)(0|X(t) =z, Xi(s) = w;, X;(t) = 0)
X DX (1),X;(s) (% wil Xi(t) = 0)p . (4)(0) (2.3.36)
1 2 wi2 2p(t, s)zw;
=G exp{ REERE) (a%@) T3t el ))}

x (detCov(X(t), VX‘J(t),XZ'(S), VX|J/(3)))_1/2

for some positive constant C'3. Also, by similar arguments in the proof of Theorem 2.3.7,

there exist positive constants Cy, C5, Cg, C7, No and N3 such that
detCov (VX (1), Xi(s), VX‘J/(S)) > Cyl|s — t||2(m+1), (2.3.37)

Cslls — t]|* < o3(t,5) < Cells — 1%, (2.3.38)
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and

E{|detV2X|J(t)||detV2X|J/(s)||X(t) =2, VX);(t) = 0, X;(s) = w;, VX yr(s) = 0}
= E{|detV2X| 5 ()[|det V2X| s (s)||X (1) = 2, VX| 5 () = 0,
(VXi(t), er,s) = wi/lls = tll + 0(1), VX, yr(s) = 0}
< Cr(@™2 + (wi/||s = t)™3 + 1).

(2.3.39)

Combining (2.3.35) with (2.3.36), (2.3.37) and (2.3.39), and making change of variable w =

w;/||s — t||, we obtain that for some positive constant Cf,

/ / At o) s
<08// dtds|)s — ¢ 1/ dx/ dwi (z2 + (wi/||s — )3 + 1)
<o 5 s>>( () +a2<§ 5 - i)} (2340
—C’g// dtds|s —t||~ m/ dx/ dw(zV2 + w3 + 1)

<on{ - (alof) ’ 8“5@7 5o n) |

where o9(t, s) = o3(t, s)/||s — t|| is bounded by (2.3.38). Applying Taylor’s formula (2.3.22)

to X;(s) and noting that E{X (t)(VX;(t),ers)} = —;(t, s), we obtain

1 1
p(t,s) = LoD <JE{X ) X;(s)} — )\—Z_Z_E{X(t)Xi(t)}]E{ X;(s) Xi(t)})
s _ B .
= o1(D)oa(t, s) < —aj(t,s) +[|s — ¢ "E{X (£) Y/} (2.3.41)

s ="
Aii

E{X(t)XZ-(t)}E{Xi(tmfs}).
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By (2.3.38) and the fact that (¢,s) € D; implies o;(t,s) > f; > 0 for i = m+1,...,k,
we conclude that p(t,s) < —dy for some &y > 0 uniformly for ¢t € J, s € J' with ||s — ¢||
sufficiently small. Then applying Lemma 2.3.10 to (2.3.40) yields that | [ D, A(t, s) dtds is
super-exponentially small.

It is similar to prove that [ [ D; A(t, s)dtds is super-exponentially small for i = k +

1,....k+k —m. In fact, in such case, [ [, A(t,s)dtds is bounded by
1

/ /Did’fds /u de /0 =i Px ().9X) ;(0.%;(0). X 5 (5) (7 0 20, 0)

x B{|detV2X| 7 (1)][detV2X s (5)[| X (£) = 2, VX5 (1) = 0, X;(t) = 2, VX js(5) = 0},

We can follow the proof in the previous stage by exchanging the positions of X;(s) and X;(t)
and replacing w; with z;. The details are omitted since the procedure is very similar.
If k=0, then m = 0 and o(J') = {1,...,k'}. Since J becomes a singleton, we may let

J = {tp}. By the Kac-Rice metatheorem, E{ M, (J)M,(J")} is bounded by

o0 o0 o0 o0
/ ds/ dx/ dy/ dzl~~-/ A2y pry,s(T, Y, 21, - -+, 241, 0)
J! U U 0 0

x E{|detV2X, ;()[|X (to) = 2, X(5) = y, X1(to) = 21, .. Xy (t0) = 23, VX yo(s) = 0}

::/ Alto, s) ds,
J!

where Pt07s(9€, Y, 21, - -, 21, 0) is the density of (X (tg), X(s), X1(to), ..., X (to), VX|J/(5))

evaluated at (v,y,21,...,24,0). Similarly, J' could be covered by Ufilﬁi with 152 ={s¢€
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J ity s) < —EZ} for some positive constants 51-, 1 < <k'. On the other hand,

/ﬁlg(toﬁ)dSS/ﬁ

2 2

(0.9] (0]
ds/ dx/o dz; pX(to),Xi(to),VXU/(s) (x,2;,0)
u

x E{|detV2X, 1r(s)[|X (o) = &, Xi(to) = =i, VX (s) = 0}.

By similar discussions, we obtain that E{ME (J)ME(J)} is super-exponentially small and

hence complete the proof. O

2.4 Further Remarks and Examples

Remark 2.4.1 (The case when T contains the origin). We now show that Theorem 2.3.7
and Theorem 2.3.8 still hold when 7' contains the origin. In such case, (H3) is actually
not satisfied since X (0) = 0 is degenerate. However, we may construct a small open cube
Ty containing 0 such that SUPtery, atZ is sufficiently small, then according to the Borell-TIS

inequality, P{supteTO X(t) > u} is super-exponentially small. Let T = T\Tp, then

]P’{ j;ng(t) > u} < ]P’{ iggX(t) > u} < IP’{ ?;?X( ) > } +]P{ tseuj% X(t) > u} (2.4.1)

To estimate P{sup, 7 X (t) = u}, similarly to the rectangle 7', we decompose T into several
faces by lower dimensions such that T' = Ué\fzoﬁkT = U]k;v:o Ure 0, T L. Then we can get the
bounds similar to (2.3.3) with T" replaced with T and J replaced with L. Following the proof

of Theorem 2.3.7 yields

P{SupX } Z S E(Mu(L)} +ole au2_u2/(20%)).

te k=0 Leo), T
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Due to the fact that SUPteT 0752 is sufficiently small, E{ M, (L)} are super-exponentially small
for all faces L such that L C 9T with 0 < k < N — 1 (note that T} is a closed rectangle).
The same reason yields that for 1 < k < N, L € 8kf, J € 0T such that L C J, the

difference between E{M,, (L)} and E{M,(J)} is super-exponentially small. Hence we obtain

P{SUBX(t)ZU}: Z W(%) Z Z 2D /2|A i

teT (teopr Y k=1JeaT
Ay —As() u —u2/(292) —auQ—uQ/(202 )
rdg 2 JANIT — t
y Hf H;, 1(0)6 dt + o(e T7).
(2.4.2)

2 2
Here, by convention, if §; = 0, we regard e “ /@05 a5 0. Combining (2.4.1) with (2.4.2),
we conclude that Theorem 2.3.7 still holds when 7' contains the origin. The arguments for

Theorem 2.3.8 are similar.

Example 2.4.2 (Refinements of Theorem 2.3.7). Let Gaussian field X be as in Theorem
2.3.7. Suppose that v(ty) = UT for some tg € J € 0, T (k> 0) and v(t) < O’T for all ¢t # tg.
(i). If k = 0, then, due to (2.3.14), SUDeT\ {10} 6? < 0%—50 for some g¢ > 0. This implies

that E{M,(J')} are super-exponentially small for all faces J’ other than {ty}. Therefore,

IP{ ?él%X(t) > u} = W(%) + o(e_u2/(20%)+au2), as u — o0. (2.4.3)

2
For example, let Y be a stationary Gaussian field with covariance p(t) = eIt and define
X(t) =Y (t)—Y(0), then X is a smooth Gaussian field with stationary increments satisfying
conditions (H1)-(H3). Let T = [0,1]"V, then we can apply (2.4.3) to approximate the

excursion probability of X with ¢g = (1,...,1).
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(ii). If & > 1, then similarly, E{M,(J")} are super-exponentially small for all faces
J' # J. Tt follows from Theorem 2.3.7 that
k-1

- u Ay = Ay —u2/202)
P{fg}p’X(ﬂz“}_ Cn DA J; gt € ) dt(1 4 o(1)).

Let 7(t) = 62, then Vi € o(J), 7;(tg) = 0, since t( is a local maximum point of 7 restricted

on J. Assume additionally that the Hessian matrix

©(to) = (7:5(0))i jeo (1) (2.4.4)

is negative definite, then the Hessian matrix of 1/ (29?) at tq restricted on J,

1

>(Tij(t0))i,jea(J) = —-—79(t),

0(ty) = ——5—
J(to) 272 (tg 20%

is positive definite. Let g(t) = |Aj — AJ(t)|/0t2k_1 and h(t) = 1/(29%), applying Lemma

2.5.3 with T replaced with J gives us that as u — oo,

)

IF’{ sup X (t) > u
teT

= ( WA Ayl oM /e (1+0(1))

2m) (D2 7 |1/2025 1 uk|© 5 (1) /2
_2M2IA — Ag(to)] <1
[As 12 =0t /2 Nor

(2.4.5)

)+ o(1)).

Example 2.4.2 (Continued: the cosine field). We consider the cosine random field on RZ:

Z(t):%_

2

(& cost; + Elsinty), t=(t1,t9) € R2,

2
=1
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where &1, fi, &9, fé are independent, standard Gaussian variables. Z is a well-known centered,
unit-variance and smooth stationary Gaussian field [cf. Adler and Taylor (2007, p.382)].
Note that Z is periodic and Z(t) = —Z11(t) — Z22(t). To avoid such degeneracy, let X (t) =
€0+ Z(t)— Z(0), where t € T C [0,27)? and & is a standard Gaussian variable independent
of Z. Then X is a centered and smooth Gaussian field with stationary increments. The

variance and covariance of X are given respectively by

v(t) = crt2 =3 —cost] — costy,
2 (2.4.6)
1
C(t,s) =2+ 3 Z[Cos(ti — §j) — cost; — cos ;).
=1

Therefore, X satisfies conditions (H1), (H2) and (H3) [though X;2(t) = 0, it can be shown
that this does not affect the validity of Theorems 2.3.7 and 2.3.8|. Taking the partial deriva-
tives of C' gives us that

E{X(1)VX(t)} = %(Sintl,sintg)T A= Cov(VX(t) = %12,
(2.4.7)

A—A®) = —E{X()V2X ()} = %[12 _ diag(costy, costa)],
where I is the 2 x 2 unit matrix and diag denotes the diagonal matrix.

(i). Let T = [0,7/2]2. Then by (2.4.6), v attains its maximum 3 only at the cor-
ner (7/2,7/2), where both partial derivatives of v are positive. Applying the result (i) in
Example 2.4.2, we obtain P{supjeq X (£) > u} = W(u/v3)(1 + ofe %)),

(ii). Let T'=[0,37/2] x [0,7/2]. Then v attains its maximum 4 only at the boundary
point t* = (m,7/2), where vo(t*) > 0 so that the condition (2.3.14) is satisfied. In this case,

t* € J = (0,37/2) x {r/2}. By (2.4.7), we obtain Ay = & and Ay —Aj(t*) = 1(1—cost}) =
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1. On the other hand, for ¢ € J, by Lemma 2.5.1 and (2.4.7),
1
7(t) = 07 = Var(X (t)| X1(t)) = 3 — costq — costy — 5 sin? t, (2.4.8)

therefore © 7(t*) = 711(t*) = —2. Plugging these into (2.4.5) with & = 1 gives us that
P{super X (t) > u} = vV2¥(u/2)(1 + o(1)).

(iif). Let T = [0,37/2]>. Then v attains its maximum 5 only at the interior point
t* = (m,m). In this case, t* € J = (0,37/2)%. By (2.4.7), we obtain A; = %]2 and

Ay — Aj(t*) = I5. On the other hand, for ¢ € J, by Lemma 2.5.1 and (2.4.7),
2 L. 9 L. o9
7(t) = 0f = Var(X(t)|X1(t), Xo(t)) = 3 — costy — costyg — 5 sin t1 — 5 sin to, (2.4.9)

therefore © ;(t*) = (7;(t*)); j=1,2 = —2[2. Plugging these into (2.4.5) with k = 2 gives us

that P{sup;cp X () > u} = 2¥(u/v/5)(1 + o(1)).

Example 2.4.3 (Refinements of Theorem 2.3.8). Let X be a Gaussian field as in Theorem

2.3.8. Suppose tg € J € 0,T is the only point in T such that v(ty) = cr%. Assume

o(J) ={1,...,k}, all elements in e(J) are 1, vy(tg) = 0 for all k+1 < &’ < N. Then by

Theorem 2.3.8,

N 2 2
IP){ SupX(t) Zu} :E{MUE<J)}—|— Z Z E{M5<Jl)}+0(e—au2—u /(QOT))'
tet k' =k+1 J’e@k/T,j’ﬂJ;é@
(2.4.10)
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Lemma 2.3.3 indicates E{M [ (J)} = (—l)kE{Zi?:O(—l)iui(J)}(l + 0(670&2)), therefore
E/m 1k 2
BOIEDY = (0 [ pox o OFEQT2X 00

2
X 1(x (1)2u} VX (1) = 0}(1 + 0(e7%%))

00 (_1>ke—x2/(29t?) )
:/u dx/Jdt (%)(kﬂwlAJ|1/29tE{detv X001

{(Xpy1(8), X ()R 7FY

X () = 2, VX 5(t) = 0}(1 + o(e "))

= /UOO Ajy(x)dx(1+ 0(€_au2))a

(2.4.11)
and similarly,
2 2
% ) et/ 207)
E{ME (]’ :/d/d ( E{detV2X
{ u( )} u T J/ t (27T)(k/+1)/2’AJ/‘1/29t { etv |J/(t)
2
x 1 [ X)) =2, VX, 4(t) = 0H1 + ole” ).
{(XJi(t),...,XJJ,Vk/(t))eRﬂ\_f 8! 7

(i). First we consider the case k > 1. We shall follow the notations 7(¢), © s(t) and

©(t) in Example 2.4.2. Let h(t) = 1/(293) and

gu(t) = (-1)* E{detV2X, ;(t)1

(2m)*+D/2|A (120, (X1 (0 X (1)) eRY 7Ry

X (1) = &, VX|(t) = 0}.

Note that sup;er gz (t)| = o(zN1) for some Ny > 0 as  — co, which implies that the growth
2
of gx(t) can be dominated by the exponential decay e™* h(t), hence both Lemma 2.5.3 and

2.5.4 are still applicable. Applying Lemma 2.5.3 with T replaced by J and u replaced by z2,
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we obtain that as x — oo,

/2 )
Ase) = xk<d§§éi<to>>1/zgm<to>e 191 (1 4 o(1)). (2.4.12)

On the other hand, it follows from (2.2.17) that

(1) = ! / / d d
Jall) = (27T)(k+1)/2|AJ|1/20t Rﬂ\_f*k Yk+1 YN
Aj—Aj(t x
x wfjk (% + 1Ok 1 (Y1 + -+ %CN(t)yN>
/

X DXy (8 Xy () Wk 15 YN X () = 2, VX (1) = 0).

Note that X (#p) and VX (() are independent, and C}(tg) = 0 for all 1 < j < N. Therefore,

anlto) = Ay —As(t0)l < x )

(27)(k+1)/2\AJ|1/2aéﬁ+1 E

x P{(Xj11(t), -, Xn(to)) € RY VX (tg) = 0}.

Plugging this and (2.4.12) into (2.4.11), we obtain

B 2PN = Ap(0)| u
E{M,/ (J)} = A2 @J(to),mqj(gT) (2.4.13)

x P{(Xp11(t0), -, Xn(to) € RY F|VX 5 (tg) = 0}(1 + o(1)).

For J' € 0T with J'NJ # 0, similarly, applying Lemma 2.5.4 with T replaced by .J/, we
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obtain that

B 2k’/2|AJ/—AJ/(tQ)| \I;(i

E{ME(J")} =
t (7} |AJ/|1/2|_@J/(tO)‘1/2 or

)P{Z0(to) € RE )

XXy lt0) - Xpr (t0)) € RY M |VX s (to) = 0}(1 + o(1),

(2.4.14)

where Z ;/(tg) is a centered (k' — k)-dimensional Gaussian vector with covariance matrix
_(Tij>z‘,jea(J’)\a(J)' Plugging (2.4.13) and (2.4.14) into (2.4.10), we obtain the asymptotic
result.

(ii). k=0, say J = {tg}. Note that X (t9) and VX({y) are independent, therefore
E u N
B (1)) = (- )PV X (1) € BY). (2.4.15)

For J' € 0,yT with J'N.J # 0, then E{MZ(J')} is given by (2.4.14) with k = 0. Plug-
ging (2.4.15) and (2.4.14) into (2.4.10), we obtain the asymptotic formula for the excursion
probability.
Example 2.4.3 (Continued: the cosine field). We consider the Gaussian field X defined
in the continued part of Example 2.4.2.

(i). Let T = [0,n]2. Then v attains its maximum 5 only at the corner t* = (m, ), where
Vu(t*) = 0 so that the condition (2.3.14) is not satisfied. Instead, we will use the result
(ii) in Example 2.4.3 with J = {t*} and k = 0. Let J' = (0,7) x {n}, J" = {7} x (0, 7).

Combining the results in the continued part of Example 2.4.2 with (2.4.15) and (2.4.14), and
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noting that A = %_[2 implies X1 (¢) and X5(t) are independent for all ¢, we obtain

E(ME()} = 19(u/VE), E(ME@T)} = S0(w/VE)(1+o(1),

V2

B{ME(J')} = B{ME (")} = Y20/ VE)(1+o(1))

Summing these up, we have P{sup;cr X (t) > u} = [(3 + 2v/2)/4]¥(u/V/5)(1 + o(1)).

(ii). Let T'= [0,37/2] x [0,7]. Then v attains its maximum 5 only at the boundary
point t* = (mw,7), where v9(t*) = 0. Applying the result (i) in Example 2.4.3 with J =
(0,37/2) x {7} and k = 1, we obtain

V2

E{M, (1)} = 5" U(u/V5), E{M;(9:7)} = W(u/V5)(1+0(1)).

which implies P{sup;c7 X (£) > u} = [(2 + v/2)/2]¥(u/v/5)(1 4 o(1)).

Remark 2.4.4 Note that we only provide the first-order approximation for the examples
in this section. However, as shown in the theory of the approximations of integrals (see
e.g. Wong (2001)), the integrals in (2.3.15) and (2.3.26) can be expanded with more terms
once the covariance function of the Gaussian field is smooth enough. Hence for the exam-
ples above, higher-order approximation is available. Since the procedure is similar and the

computation is tedious, we omit such arguments here.

2.5 Some Auxiliary Facts

The following lemma is well-known and is quoted here for reader’s convenience.

Lemma 2.5.1 LetY and Z be two Gaussian random vectors of dimension p and q, respec-

tively. Then Y|Z = z is still a p-dimensional Gaussian random vector having the following
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mean and covariance:

E{Y|Z =z} = EY +E{(Y —EY)(Z —EZ)"}[Cov(2)] "} (z — EZ),

Cov(Y|Z = z) = Cov(Y) —E{(Y —EY)(Z —EZ)}Cov(2)|'E{(Z — EZ)(Y —EY)T}.

In particular, if p=q=1 and EY =EZ =0, then

JE(YZ)
Var(Z)’

(E(Y2))

E{Y|Z = 2} = R

Var(Y|Z = z) = Var(Y) —

Using similar arguments in the proof of Lemma 2.3.9, we can obtain the following result.

Lemma 2.5.2 Let {A(t) = (a;;(t))1<i j<n : t € T} be a family of positive definite matrices
such that all elements a;;(-) are continuous. Denote by x and T the infimum and supremum

of the eigenvalues of A(t) overt € T respectively, then 0 < z < T < 00.

The following two formulas state the results on the Laplace method approximation.
Lemma 2.5.3 can be found in many books on the approximations of integrals, here we refer
to Wong (2001). Lemma 2.5.4 can be derived by following similar arguments in the proof of

Laplace method for the case of boundary point in Wong (2001).

Lemma 2.5.3 (Laplace method for interior point). Let ty be an interior point of T'. Suppose
the following conditions hold: (i) g(t) € C(T) and g(to) # 0; (ii) h(t) € C*(T) and attains

its unique minimum at to; and (iii) V2h(tg) is positive definite. Then as u — oo,

N/2
Pe—uh(®) gy — (27) ~uh(to) (1 1 o(1)).
] atoe e o)

Lemma 2.5.4 (Laplace method for boundary point). Lettg € J € 0T with0 < k < N—1.

Suppose that conditions (i), (ii) and (i11i) in Lemma 2.5.3 hold, and additionally Vh(ty) = 0.
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Then as u — 00,

—u @2m)N2P{Z,(to) € (—E(J))} —u
/Tg(t)e = uN/2(dengh(to))1/2 gto)e™" M0 (1 +0(1)),

where Zj(tg) is a centered (N — k)-dimensional Gaussian vector with covariance matric
(hij(tO))JlﬁiajﬁjN—k’ —E(J)={z e RN : —z € E(J)}, and the definitions of J1, ..., Jn_p

and E(J) are in (2.2.4).
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Chapter 3

Smooth Gaussian Random Fields with

Non-constant Variances

3.1 (Gaussian Fields on Rectangles

Let {X(t) : t € RV} be a smooth centered Gaussian random field with non-constant variance
and let T' = H{il [a;, b;] be a closed rectangle in RN . In this Chapter, we study the excursion
probability of X over T

Let v(t) := o7 = Var(X(t)) and assume sup;c v(t) = 1. A matrix is called negative
semidefinite if all of its eigenvalues are nonpositive. In addition to conditions (H1) and (H3)

in the previous chapter, we will make use of the following condition.

(H4). Vt € J € 0T such that v(t) =1 and 0 < k < N — 2, (E{X(¢)X;;(t)}); jec(r) i

negative definite, where ((t) = {n:v,(t) =0,1 <n < N}.

Proposition 3.1.1 Let X(-) € C2(RY) a.s. If (vij(t)i jec(r) is negative semidefinite for

each t € J € 0T such that v(t) =1 and 0 < k < N — 2, then (H4) holds.

Proof Since %Vij (t) = E{X(t)X;;(t)} + E{X;(1)X; (D)},

(E{X()Xi; ()i jecr) = %(Vij(t))z’,jeg(t) — (B{X(0) X0 i jec(t)- (3.1.1)
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But (v45(t)); jec(r) 1s negative semidefinite and (E{X;(t)X;(t)}); je¢(s) is positive definite,

it follows that (E{X (¢)X;;(t)}); jec(s) is negative definite and hence (H4) holds. O

Remark 3.1.2 In (H4), v(t) = 1 implies vy, (t) = 0 for all n € o(J) and thus ((t) D o(J).
Additionally, we only consider t € J € 0.7 with 0 < k < N — 2, this is because for
N—-1<k<N, (E{X(#)Xi;j{)}); jec(r) is automatically negative definite due to v(¢) =1,
as shown below.

(i). If £ = N, then ¢ becomes a maximum point of v in the interior of 7', and ((t) =
o(J) ={1,---, N}, hence (vj(t)); jec(s) is always negative semidefinite. By (3.1.1), we see
that (E{X(¢)X;;(t)}); je¢(r) i negative definite.

(ii). If K = N — 1, we distinguish two cases. If ((¢) = o(J), then (E{X (¢)X;;(t)}); jec(s)
is negative by the same arguments in the previous step. If ((t) = {1,---, N}, it follows from
Taylor’s formula that

v(s) = v(t) + V) (s — )T + (s — )V2u(t)(s — )T + o(||s — t]|*)
(3.1.2)

= v(t) + (s — )V (t)(s — )T +o(||s — t]|?),

for all s € T such that ||s — ¢|| is small enough. Since t € J € dy_17, {iﬁ L s €

T} contains all the directions e € S¥~1. Note that v(t) = 1, V2u(t) does not have
any positive eigenvalue and hence (v45(t)); jec(r) = V2u(t) is negative semidefinite, then

(E{X ()X ()})i jec(r) is negative by (3.1.1).

If D is a subset (not necessary open) of J € 0,7, we define

MY (D) = #{t € D\OD : X(t) > u, VX ;(t) = 0,index(V>X;(t)) = F,

5;Xj(t) >0 for all j ¢ o(J)}.
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For t € J € 0;T, let

A@) = (B{X; (X0 Di<ijen,  Ag(t) = B{XG(OX;5(0)}); jeo (),

5(t) = (E{XO)Xij (O Di<ijen, Zg) = E{X )X} jeq():

(3.1.3)
{17"' 7N}\0<‘]) = {le"' aJN—k},
E(‘]) - {(tjla e 7t‘]N—k’> € RN_k : tjgj Z O;] = Jl, s ,JN_k}.
. ; -1 N My 41
Let C(t) be the (1,7 + 1) entry of (Cov(X(t), VX()))™ ", ie. Cj(t) = IO (X ) VX))

where My j11 is the cofactor of the (1, j+1) element, E{ X (¢) X;(?)}, in the covariance matrix
Cov(X(t), VX(1)).
Note that the notations A(t) and A j(t) are different from those defined in Chapter 2.
The result Lemma 3.1.3 below follows immediately from similar argumentss in the proof

of Proposition 3.1.1.

Lemma 3.1.3 Iftg € J € 0, T satisfies v(tg) = 1, where k > 1, then E{X (t9)X;(tg)} =0

for alli € o(J) and X j(tg) is negative definite.

Corollary 3.1.4 Let {X(t) : t € RV} be a Gaussian random field satisfying (H1), (H3)

and (H4), then there exists some constant o > 0 such that

N 2 .2
SN BME)ME(T) = 1)} = ofe T4/,

k=0 Je&kT

Proof Due to Lemma 2.3.4, it suffices to show that 63 < 1 for each J € 9T, which is
equivalent to Var(X(t)|VX|J(t),V2X‘J(t)e) <1lforallte J=JUdJ and e € SF~1 by

continuity.
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(). Suppose Var(X(t0)|VX|J(t0), V2X|J(t0)e) =1 for some ¢y € J, then
1= Var(X (to)|V X s (to), V2X| s (to)e) < Var(X (t0)|V>X|;(to)e) < Var(X(tg)) < 1.

Note that

Var(X (t)|V2X| s (to)e) = Var(X (f9))
& E{X(1)(V?X)(to)e)} = 0

& Y y(tg)e = 0.

Since tp is a maximum point, by Lemma 3.1.3, X j(¢g) is negative definite and hence
S 1(to)e # 0 for all e € S¥~1, which is a contradiction.

(ii). Suppose Var(X(11)|VX|;(t1), V2X|J(t1)e) = 1 for some t; € 0J. It then follows
from similar arguments in step (i) that Var(X(¢1)[VX|;(¢1)) = 1 and hence v;(t1) = 0 for
all i € o(J), which implies (E{X(1)Xi;(t1)}); jes(s) is negative definite by (H4). Thus

there will be a contradiction as in step (i), completing the proof. O

Lemma 3.1.5 Let {X(t) : t € RV} be a Gaussian random field satisfying (H1), (H3) and

(H4). Then there ezists some constant o > 0 such that as u — oo,

Z S E{ME()} = Efp(Au)} + ofem 1 /2), (3.1.4)

k= OJG@kT
Proof Due to (2.2.1), we only need to show that for each k € {0,1,..., N} and J € 9,.T,
i 2_.2
E{ME(J)} = (=1)F 3 (1) E{i(J)} + ofe™ > 747/2), (3.1.5)
1=0

65



Without loss of generality, let o(J) = {1,--- , k} and assume all elements in £(.J) are 1. Let

OJ)={teJ:vt)=1}u{ted] v(t)=1,yt) =0,V1 <i<k}.

Our aim is to find an open neighborhood of O(J) restricted on J, say Us(J) = {t € J :

d(t,0(J)) < 6}, such that as u — oo,

E{ME(J)} = E{ME (Uy(J))} + o(e—~%/2)

k

= CDF L EGUs) + ofem o ~2/2) (3.1.6)
k . 2 .2

= (~D)F Y () E{pi()} + ofe ™),
1=0

Forn=k+1,...,N, let
On(J)={teJ:v(t)=1uv,{t) =0} U{t €dJ :v(t) = 1,u,(t) = 0,1(t) = 0,V1 < i < k}.

Firstly, we consider the subset UL(.J) = ﬂfl\f:k JrlOn(j ) and define its open neighborhood in
J, U(%l(J) = {t e J:d(t,UY(J)) < 61}, where 61 is a small positive number to be specified.

Then, by the Kac-Rice metatheorem, E{ M. (U 511 (J))} becomes

(=D* /°° / 2
dt E{detV2X, (1)1
/Uglm @) 2 (deth ()2 Ju SRV 1detVX) O w2y, (epy]

‘X(t) =z, v‘XV|J(1'L) =0, XkJrl(t) = Yk+1s--- ,XN(t) = yN} (3'1'7>

X DX (1), X gy 1 (0 Xy () (T3 Yt 15+ YNV Xy () = 0) dvdypeyy - - dyn,

where D;. is the collection of all £ x k matrices with k negative eigenvalues.
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Due to (H4) and continuity, we can choose §; small enough such that ¥ ;(¢) are neg-
ative definite for all ¢ € Ugl(J). Write V2X);(t) = Q;}Qm TV2X| (1)@, JQ;}, where

Qu (=X (1) Qp,7 = I Let al;(t) = B{X;(£)(Q,7V?X| ;(1)Qq,1)ij} for [ =1,--- , N, then

E{(Qt,Jv2X|J(t)Qt,J)ij|X(t) =2, VX|;(t) =0, Xp41(t) = Ypy1, - Xn(t) = yn}
= (B{XO)(Qr. s VX7 ()Qu.1)ij}s ajj (), - . ajy (8)(Cov(X (¢), VX (£))) !
’ (SL’,O,"- 707yk—|—17"' 7yN>T
= (_5ij’ allj(t)7 e >ag(t))<COV(X(t)> VX(t)))_1<x> 07 o 707 Ye+1," ’yN>T‘
Make change of variables W (t) = (W;;(t))1<; j<k, Where

N

Wis(t) = (Q1.sV2X 5 (1)Qs.1)j — ( - S0+ Za£j<t>cl<t>x>,
t =1

ie.,

N
X
QuuTA,5(0Qes = W) - 1+ o S als(0Ci0))
% P 1<ij<k

— W(t) — 2B(t),

where B(t) = ’Y%Ik - (Z{\il aéj (t)C1(t))1<i j<k- Denote the density of
t

(Wij(t)h<i<j<kl X () = 2, VX ;) = 0, Xp1(t) = Y1, -+, XN (E) = yn)

by gt(w),w = (w;; : 1 <id,j <k) € Rk(k+1)/2, then g¢(w) is independent of z. Let (w;;) be
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the abbreviation of the k x k symmetric matrix (w;j)1<;<;j<g, then

E{det VX ;(t)1p, (V2 X |, (D)X (1) = 2, VX|;(t) = 0, Xjp1 (1) = Y1, -+ Xn (1) = yn'}
= det(—ZJ(t))E{det(Qt,JVQXu(t)Qt,J)ﬂ{Qt’JVQXU(t)Qt’JGDk}!
[ X(t) =2, VX ;(t) = 0, Xp11(8) = Yp41, -+ - XN () = yn}

— det(~2, (1)) [ det((w;5) — wB(#))gi(w) du.

(wj;):(wj;)—zB(t)€Dy,

Since vp(t) = 0 forallt € UY(J) and n = k+1,--- , N, we can find §; small enough such that
Cj(t) are close to 0 for all i =1,--- N and t € Ugl(J). Together with the fact {72 : ¢ € J}

is bounded, there exists a constant ¢; > 0 such that
x
(wij) —xB(t) € Dy, V|[(w;;)] < o
It then follows from similar arguments in Lemma 2.3.2 and Lemma 2.3.3 that
i 2_,2
E k: — — 2
E{My (U§ () 2% VE{i(U3, (1)} + oe™ " ~"/2),
1=

Next, we consider the subset U?(J) = (ﬂg:_lirlOn(j)) \ Ugl (J), and define its neighbor-

hood U(; (J)={t € J:dt,U*J)) < da}\ U(; (J), where d9 is a small positive number to
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be specified. Then we can write E{Mf(U%(J))} as

/U(? VX0 it B{ etV X (1) Lv2x, jen X (020
2

X Lex, ()50, X n_q (1>03 VX (8) = 0}

(3.1.8)
2
—/U%(J)pvxu(t)(()) dt E{|detV X|J(t)IH{V2X|J(t)eDk}1{X(t)Zu}
XXy (050, Xy (10X 5 (<0} VX (8) = O}
The second term in (3.1.8) is bounded by
o0 0
[y, [ de [ B(aevE 01X = o X0 = . VX0 = 0)
U2 (J) u —00

59 (3.1.9)

% pX(t),XN(w,vxu(t)(:m YN, 0, -+, 0)dyy.

Note that the conditional expectation in (3.1.9) can be bounded by ca(|2z|V1 + |yn|V2) when

u is large, for some positive constants co, N1 and Na; and

pX(t),XN(t),VX|J(t) (SL’, (USRS 7O>
= pVX|J(t)<Oa oL 01X () = 2, XN (1) = yn)Px (1), x 5 (1) (8, UN)
< e3Px (1), X (¢ (T YN)
for some positive constant c3. On the other hand, U 2(j ) is a compact set and for all

t € U(J), vn(t) # 0 which implies vp(t) > 0 due to v(t) = 1, thus we can choose ds

sufficiently small such that E{X (¢)Xx(¢)} > ¢ for all t € U(?Q(J) and some 0y > 0. Hence
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(3.1.9) is super-exponentially small by Lemma 2.3.10. Similar arguments give

k
VP> (DE{w(UF, ()}
1=0
=0 [ Po O BT 0L 0
—au2—u2
X Lex, ()50, X n_q (1)>03 VX () = 0} +ofe 2).

Combining this with (3.1.8), and following the same arguments to simplify E{ME (U 511 (J))},

we obtain

k
E{MEUZ (1)} = (~DF (- EGu(U, (1)} +ofe™ 1),
=0

Continue this procedure at most finite many times, and take the union of those disjoint
neighborhoods (U(Sll(J), U522(J), ...), we can find Ug(J) = {t € J : d(t,O(J)) < &} inside
the union for some § > 0 such that the second equality in (3.1.6) holds. On the other hand,

By the Kac-Rice metatheorem,

E{ME (J)} — E{ME (Us(J)} = E{ME (J \ Us(J))}

1 1 00
i @ X ;(t) =
= 2n) /J\U(;(J) (detA ()12 t/u Px () (@|VX);(t) = 0) (3.1.10)

x B{|det V> X ;(1)[|X (t) = z, VX (t) = 0} da.

But, by the definition of Ug(J) and continuity,

sup  Var(X(?)[VX;(t) =0) <1-¢g
te\Ug(J)
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for some £y > 0, hence the first equality in (3.1.6) holds and the third equality in (3.1.6)

follows similarly. We finish the proof. U
Following the same proof in Lemma 2.3.6, we obtain the following result.

Lemma 3.1.6 Let X = {X(¢t) : t € RN} be a centered Gaussian random field satisfying
(H1) and (H3). Let J and J' be two faces of T such that their distance is positive, i.e.,
inf,c ;e lls =t > do for some 9 > 0, then E{ME(1)ME(J')} is super-exponentially

small.
The next result is an extension of Theorem 2.3.7.

Lemma 3.1.7 Let X = {X(t) : t € RN} be a centered Gaussian random field satisfying

(H1) and (H3). Let J and J' be two neighboring faces, that is J N J' # 0. Suppose
{teInJ v(t)=1vj(t)=0,¥j € o(J)Ua(J)} =0, (3.1.11)

then B{ME (J)ME(J")} is super-exzponentially small.

Proof Condition (3.1.11) implies that there exists €g > 0 such that

sup Var(X(t)]VXU(t),VX|J/(t)) <1-—¢g,
tel(9)

where U(§) = {t € JUJ' : d(t,J N J') < §} and ¢ is a sufficiently small positive number.

Following the same proof in Theorem 2.3.7 yields our desired result. U

The next result follows from similar arguments in the proof of Theorem 2.3.8.
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Lemma 3.1.8 Let X = {X(¢t) : t € RN} be a centered Gaussian random field satisfying
(H1), (H3) and (H4). Let J and J' be two neighboring faces, that is J N .J' # 0. Then

E{ME(1)ME(J')} is super-exponentially small.

Proof Let I = JnN.J/. We follow the assumptions in (2.3.16) and assume also that all
_ , S N—Fk / N—K
elements in (/) and ¢(J°) are 1, which implies £(J) = R ™" and E(J') =R} ™" .
If condition (3.1.11) is satisfied, then E{ME (J)ME (J')} is super-exponentially small by

Lemma 3.1.7. So we will focus on the alternative case, which is
Ip:={tel:vt)=1v;t)=0,V1<j< k4K —m} #0.

Let B(Iy,6) = {t € JUJ' :d(t, ) < 6}, where § is a small number to be specified.

Note that E{ME (J)MEF(J')} can be written as

E{[My (J 0 B(Io.9)) + My (J 1 B(Io, )| [My (J' 1 B(Io, 8)) + My (J' 1 B(Io. 6))]}

— B{ME (T B(Io, §))ME(J' 1 B(Iy, 6))} + o(e— %" —4%/2),

since the rest terms are super-exponentially small by the same arguments in Lemma 3.1.7.
Therefore, to prove the result, we may estimate E{ME (J N B(Iy,d))MEF(J' 0 B(Iy,6))}
instead of E{ME (J)MPE(J)} itself, with only a super-exponentially small difference. By
(H4),

Syoug ) =E{XOXi50} 1 ekl —m

are negative definite for all ¢ € I, so that by continuity (similar to Lemma 2.3.9), we can
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choose § small enough such that
&=, (&) > ap, Vte B(ly,d),e e Sk -m-1 3.1.12
JUJ

for some constant o > 0.

We first consider the case k£ > 1. By the Kac-Rice metatheorem,

E{MEF(J N B(Iy,0))MF(J N By, )}

< / dt / ds / dz / dy
JNB(Iy.0)  JJ'NB(Iy.0)
(0.¢] o0
dzp1 - / dz,. 1 / dwy,+1 - / dwy,
/ Ty TR fy T

E{|det V2 X ;(1)||det V2 X, s ()] X (t) = 2, X (5) = y, VX| 5 (t) = 0, Xjo1(£) = 241,
. 7Xk+k:’fm(t) = ZkJrk/im, VXU,(S) = O,Xm_H(S) = Wm+1,--- 7Xk(3) = wk}

X pt,s(2,1,0, 2541, - - - 2tk —mo 0y W15 - , W)

= // A(t, s) dtds,
(JNB(Ip,8))x (J'NB(Ip,d))

(3.1.13)

where p; (7, 1,0, 2541, -, 2k —m 0 Wit 15 - - , W) is the density of

(X (1), X(5), VX (5), X1 (8-, X g1 (8, VX g1 (), X1 (), -, X (5))

evaluated at (z,v,0, 2541, ... s 2kl —m 05 Wit 1 - - W)
o~ ~ ~ . /
Let {e1,€2,...,€,s_,,} be the standard orthonormal basis of RFTF =M For ¢ € J

and s € J', let & ¢ be the projection of (s — )T /|ls — t]| on span{.J, J'}, and let a;(t,s) =
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k+k —m k+kE —m
—Y s = Y (@G-S e B = Y ot s)e;. (3.1.14)
i=1 1=1

It follows from (3.1.12) that

(et,s, =2 7 (t)ers) > ag (3.1.15)

for all t € J N B(Iy,d) and s € J' N B(Iy,d). Let

D; = {(t,s) € (JN B(ly,8)) x (J' N B(Iy,0)) : aj(t,s) > B}, if m+1<i <k,

s) € (JNB(Iy,0)) x (J'NB(Iy,0)) : a;(t,s) < =B}, if k+1<i<k+k —m,

{(z,
{ e (JN B(Iy,d)) x (J' N B(Iy, d) Zazts el,et5)>,60}

(3.1.16)

+k —m

mi1 Bi < ap. Asin

where By, £, . .. ’Bk+k’—m are positive constants such that £y + Zk
the proof of Theorem 2.3.8, we see that Dy U Uf‘LT]fL_HmDZ' is a covering of (J N B(1y,d)) x

(J' 0 B(Iy, 8)). By (3.1.13),

E{ME(Jn B(Iy,0))MF(J N B(Iy,8))}

k+k' —m

g//D At s)dtds + > // (t,s) dtds.
0

1=m+1

Following the same arguments in the proof of Theorem 2.3.8, we obtain that [ [ Dy A(t, s) dtds
and [ [ D, A(t, s) dtds are all super-exponentially small for i = m +1,...,k + k' — m, com-

pleting the proof. 0
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Theorem 3.1.9 Let X = {X(¢t) : t € RN} be a centered Gaussian random field satisfying

(H1), (H3) and (H4). Then there exists some constant o > 0 such that as uw — o0,

IP’{ sup X (t) > u} =E{p(Au)} + 0(6_0‘“2_“2/2).
teT

Proof The result follows from the combination of (2.3.1), (2.3.2), Corollary 3.1.4, Lemma

3.1.5, Lemma 3.1.6, Lemma 3.1.7 and Lemma 3.1.8. [

3.2 Applications for Gaussian Fields with a Unique

Maximum Point of the Variance

In this section, we consider the case when v(t) attains its maximum 1 at a unique point

to € J € 04T such that v;(ty) # 0 for all j & o(J).

Lemma 3.2.1 Let X be as in Theorem 3.1.9. Suppose v(ty) = 1, where ty € J € 0T and

k> 1, then as x — o0,
E{detV>X|;(t0)|X (to) = =, VX| ;(to) = 0} = |S(to)[2" (1 + o(1)).

Proof Since v(tg) =1, ¥ j(tg) is negative definite. Let Q4,7 be the k x k positive definite

matrix such that Qg (=%, (t0))@¢,,; = - Then we can write

V2X|(t0) = Q; ) yQug, VX (10) Q1 @y -
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and therefore,

E{detV2 X ;(to)|X (to) = z, VX ;(to) = 0}
(3.2.1)

=|- EJ(to)|E{de‘3(QﬁO,JV2X|J(?fO)QtO,J)\X(to) =z, VX (to) =0},

Since X (t9) and V.X|;(to) are independent,
E{QtOvJVQXU(tO)Qto,J|X(t0) =, V‘X|J(to> = 0} = —xlj.
It follows that

E{det(Qg,7 VX (t0) Qe )| X (t0) = 7, VX[ (to) = 0} = E{det(A(to) — 1)}, (3:22)

where A(tg) = (Ai;(t0)); jeo(s) 18 @ k x k Gaussian random matrix such that E{A(tg)} =0

and its covariance matrix is independent of x. By the Laplace expansion of the determinant,

det(A(to) — x1j,) = (=1)"[2* — S1(A(t0)2" " + Sa(A(t0))a" 2 + - + (=1)" Sy (A(to))],

where S;(A(tg)) is the sum of the (]:) principle minors of order i in A(ty). Taking the

expectation above, we see that as x — oo,

E{det(A(tg) — 21;)} = (—1)*2*(1 + o(1)).

Combining this with (3.2.1) and (3.2.2) completes the proof. O
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Let 7(t) = 9?, then Vi € a(J), 7;(tg) = 0, since t( is a local maximum point of 7 restricted

on J. Assume additionally that the Hessian matrix

©(to) := (735(t0))i jeo (1)

is negative definite, then the Hessian matrix of 1/ (29?) at tq restricted on J,

~ 1 1
0,(t0) = —W(Tij(to))i,j@(J) = _E@J@O)a (3.2.3)

is positive definite. Let g(t) = |Aj — AJ(t)]/Ht%_l and h(t) = 1/(2607), applying Lemma

2.5.3 with T replaced with J gives us that as u — oo,

Proposition 3.2.2 Let X be as in Theorem 3.1.9. Suppose that v(t) attains its mazximum
1 at a unique point tg € J € O T such that vj(ty) # 0 for all j ¢ o(J). If © j(to) is negative

definite, then as u — oo,

k/2) _
IP{ sup X() > u 287 = X (o)

S = Tyt 6, (g7 Y+ o)

Proof Since t( is the only point attaining the maximum variance, and also, v;(tg) # 0 for

all j ¢ o(J), similarly to Example 2.4.2, we obtain that as u — oo,

k

7 fau2fu2
PLoup X(1) 2 u} = <—1>k§)<—1> E{pi(J)} + ole )
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for some a > 0.

k

(-DF> (-

1=0

Note that

D'E{pi()}

= (0" [ pox, 0 OBLAV2X (01 x 1200 VX (0) = O}

_(=DF
B (2m)k/2 /T

(=D*

- (27T)(k+1)/2 u

|AJ(1)‘1/2 dt /OO E{detV>X ()| X (t) = #, VX ;(t) = 0}
XPX(t (x]V X|J( ) = 0)dx

/ " / —E{detV2X JOIX () =2, VX (1) = 0}6—5‘72/ 207 1.
7 01| A (1)]/2 | |

Now we apply the Laplace method in Lemma 2.5.3 with

)= ——— E{detV2X|;()|X(t) = 2, VX ;(¢ :0},
. (3.2.4)
_ 2
h(t) - @7 U=,
and obtain
k
kZ E{,Uz
1=0

(—DF(2m)k/2

~ @2mFD2(A (1)]1/2]6 5 ()| 12

x / - E{detV>X ;(t0)|X (to) = =, VX ;(t0) = 0} ke 2(1 £ o(1))dx  (3:25)

(—DF2m)*2|Z, (t)]

@R 2|A (o) 218 1 (t) |2
2k/2| — %2 (tg))|

U(u)(1+0(1))

1A (to)]

gy P o),

where the second equality is due to Lemma 3.2.1 and the last line is due to (3.2.3). O
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If dim(7") = 1, then the result in Proposition 3.2.2 becomes much simpler as stated in

the following.

Corollary 3.2.3 Let T' C R and let X be as in Theorem 3.1.9. Suppose v(t) attains its

mazimum 1 at a unique interior point tg, and additionally,

Var(X'(t9)) + E{X (to) X" (o)} # 0. (3.2.6)

Then as u — o0,

ar( X! -1/2
Jp{ EX@) > u} - (E{Z((t(g;%l)} + 1) U (u)(1+o(1)).

Proof Note that, under our assumptions, k = 1,

S(to) = E{X(to)X"(to)}, Alto) = Var(X'(t)).
Also, 7(t) = 07 = Var(X (t)| X’(t)) implies

2E{ X (to) X" (to) } (Var(X'(to)) + E{X(to) X" (0)})

O(ty) = (o) = — Var(X (to)) |

Applying Proposition 3.2.2 gives

_ 21/2| — ¥(1)]
PLasp X () 2 u} = g Y o)

_ E{X (1) X" (t0)} /2
~ (vt o) Y o)

completing the proof. 0
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3.3 (Gaussian Fields on Manifolds without Boundary

In this section, we assume that T is an N-dimensional smooth manifold without boundary
(SN for example). Let {8/8xi}1§i§N be a natural coordinate vector field and let X be a

smooth function on 7T'. Define

0X 0X )7

VX:(@,...,&C—N

9°X ot e (02X .
and let (8xi8xj (t)) be the abbreviation of the N x N matrix (amiaxj ()i j=1,..N-

If X is a Morse function, then according to Corollary 9.3.5 or page 211-212 in Adler and
Taylor (2007), the Euler characteristic of the excursion set Ay, = {t € T': X(t) > u} is given

by

where

1 (T) = #{t eT:X(t)>u VX(t) =0, index(aijgij (t)> — k}

We also define the number of local maxima above level u as

My(T) = #{t €T X(t) >u VX(t) = O,index<8ij;ij (t)) - N}.

Since T has no boundary, we have the following much simpler bounds for the excursion

probability.

E{My(T)} = P{ g{X(t) > U} > B{My(T)} - %E{MU(T)(Mu(T) -1} (3.3.1)
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We assume again super Var(X(t)) = 1.

Lemma 3.3.1 Let T be an oriented, compact C® manifold without boundary. Let {X(t) :
t € TV be a Gaussian random field such that X € C3(T) a.s. and (H3) is fulfilled. Then

there exists some constant o > 0 such that as u — 0o,

E{ My (T)(My(T) — 1)} = ofe~w"~/2),

Proof Since T is compact it has a finite atlas. Let (U, ¢) be one of its charts and consider
X:=Xop t:pU)cRY SR
Then it follows immediately from the definition of M, that
My(X,U) = My(X, ¢(U)).
Since X € C3(M), the condition (H1) holds for X. Applying Lemma 2.3.4 yields
E{M(X, p(U) (MK, (1)) = 1)} = ofe™ @72,
This verifies the desired result. 0

Lemma 3.3.2 Let T be an oriented, compact C® manifold without boundary. Let {X(t) :

t € TV be a Gaussian random field such that X € C3(T) a.s. and (H3) is fulfilled. Then
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there exists some constant o > 0 such that as u — 00,

E{My(T)} = E{p(Ay)} + ofe 0" —4*/2),

Proof The result follows from Lemma 3.1.5 and the arguments in the proof of Lemma

3.3.1. 0

Theorem 3.3.3 Let T be an oriented, compact C3 manifold without boundary. Let {X(t) :
t € TV be a Gaussian random field such that X € C3(T) a.s. and (H3) is fulfilled. Then

there exists some constant o > 0 such that as u — 00,

]P’{ sup X (t) > u} = E{p(Ay)} + 0(6_a“2_“2/2),
teT

where E{o(Ay)} is formulated by

9*°X
: N
(—1) /TE{det<8xi8xj (t)> H{X(t)Zu}‘VX(w = O}pVX(t)(O)aiﬁl A Aoy

Proof The result follows immediately from the combination of (3.3.1), Lemma 3.3.1,
Lemma 3.3.2 and the Kac-Rice metatheorem on manifolds [cf. Theorem 12.1.1 in Adler and

Taylor (2007)]. O
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3.4 Gaussian Fields on Convex Sets with Smooth Bound-

ary

Let T be a compact, convex, N-dimensional subset of RYY with smooth boundary 7. Morse

theorem gives

p(Au) = ()N 3 (— 1)k (1) + (~1)N ! Z Ve, (0T),

where

e (T) = #{t €T X(1) > u, VX (1) = 0, index(V2X (1)) = k1,

up(OT) = #{t € 9T : X () > u, VX|pp(t) = 0, (VX (), n(t)) > 0, index(V2X 57(t)) = k},

and n(t) is the unit normal vector pointing outwards. We also define the number of extended

outward local maxima above level u as

ME(T) = #{t €T X(t) > u, VX(t) = 0, index(VZX (1)) = N},
MJF(OT) = #{t € 0T : X(t) > u, VX |pp(t) = 0,(VX(t),n(t)) > 0,

index(V*Xpp(t)) = N — 1}.

Note that T' can be stratified into i: UOT. We have the following bounds for the excursion
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probability.

E{ME(T)} + E{ME(&T)} > IP’{ sup X (1) 2 u}
te

> E{ME (1)} + E{MZ(0T)} - E{ME(T)MF (oT)} (341)
— SE(ME@)(ME(T) ~ 1)) — SE(ME@T)(ME@T) - 1),

Since T is a hypersurface. We may consider 97" as an (/N — 1)-dimensional submanifold

embedded on RV, Similarly, we have the following result.

Lemma 3.4.1 LetT be a compact, convex, N-dimensional subset ofRN with smooth bound-

ary OT. Let {X(t) : t € T} be a Gaussian random field such that (H1) and (H3) are fulfilled.

Then there exists some constant o > 0 such that as u — o0,

o o 2 2
E{ME(T)(ME(T) - 1)} = ofe="4"/2),
2_,2
E{ME(OT)(ME(OT) — 1)} = o(e—0u"—4/2),
r 2_,2
E{ME(T)} + E{ME(0T)} = E{p(Ay)} + o(e~ % —47/2),
The next lemma shows that the crossing term is also super-exponentially small.

Lemma 3.4.2 Let T be a compact, convezr, N -dimensional subset ofRN with smooth bound-

ary OT. Let {X(t) : t € T} be a Gaussian random field such that (H1) and (H3) are fulfilled.

Then there exists some constant o > 0 such that as u — oo,

E{ME(T)ME(0T)} = o(e=0*~4*/2),
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Proof By the Kac-Rice metatheorem,

E{MF (1) ME(OT)}
< /%dt/aTds/u dx/u dy E{|det V=X (#)|det V=X 57(s)[| X (t) =

X(s) =4, VX(1) = 0.VXjr(s) = 0}px (1), (). VX (1), V| gy (s) (#:4: 0. 0):

By similar arguments in Theorem 2.3.7, if VX (s) # 0 for all s € 0T such that v(s) = 1, then
E{MF (%)Mf (0T)} is super-exponentially small. Hence we will consider the alternative case
when

Ip:={s€dT :v(s)=1,VX(s) =0} #0.

Let B(Ip,0) = {t € T : d(t,1y) < 0}, where § is a small positive number to be spec-
ified. As discussed in Lemma 3.1.8, E{Mf(%)ME(@T}} can be reduced to E{ME(]Z
NB(sg,8))ME(OT N B(Iy,6))} with only a super-exponentially small difference. Due to
the compactness of T, it suffice to show that E{Mf(jc: NB(s0,8))ME(OT N B(sg,0))} is

super-exponentially small for some sg € Iy and 6 > 0, where
B(sg,0) ={t €T :d(t,sg) <}.

Notice another fact that for all s € T such that v(s) = 1, V2u(s) are negative semidefinite
and hence X(s) = E{X(s5)V?X(s)} are negative definite. Therefore by continuity, we may

choose § small enough such that

(= S(t)er.s,ers) > ag, Wt €T NB(s0,0), s € IT N B(sp, ), (3.4.2)
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for some positive constant ag, where ez s = (s —t)/[|s — t|.
For s € 9T N B(sp,9), let Z(s) = (VX(s),n(s)), and denote by Il the projection onto

the tangent space of OT" at s, so that V.X|5p(s) = II;VX(s). Then

E{ME(T NB(s0,6))) MF(OT 1 B(s0,6))}
_ / dt/ ds /OO dr /OO dy /OO dz E{|det V2 X (1) |det V2 X g (s)]
TNB(s(,9)) 0TNB(s(,0) u u 0
[ X(t) =2, X(s) =y, VX(t) =0, VX|gp(s) =0, Z(s) = 2}
XPX(8),X(5), VX (£).VX g7 (5). 2(5) (,9,0,0, 2)
< / dt/ ds /OO dx /OO dz B{|det VX (1)|[det V> X op(s) | X () = =,
TNB(s(,9)) 0TNB(s(,9) U 0

VX(t)=0, VX|8T(8) =0,7Z(s) = Z}pX(t),VX(t),VX|aT(S),Z(S) (x,0,0, z)

://o Alt, s)dtds.
(TNB(s0.8)) % (9TNB(s0.0))

(3.4.3)

We can bound the integral in (3.4.3) as the following.

//O A(t,s)dtdsﬁ// A(t,s)dtds+// Alt, s)dtds, (3.4.4)
(TNB(s(),0))x(0TNB(s(,0)) Dq Do

where
— {t €7 NB(s9,6),5 € T 1\ B(s,0) : ( — S(t)etson(s) = bi},
o N-1
= {t €T NB(s0,0),s € TN B(s0,8) : Y _ (= S(t)ers, Bi(s)){er,s. Ei(s)) > b},
1=1
b1 and by are positive numbers such that by + by < ag, {E1(s), -+, Enx_1(s)} is the or-

thonormal basis of the tangent space of 9T at s. This is because, if (¢, s) does not belong to
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D1q nor Do, then

(— 2@)6&& 6t,s>
N-1

= (= S(t)er,s,n(s))(ersn(s)) + > (= S(t)ers, Bils)) (et Ei(s))

1=1

< b1 + by < «ap,

where we use the fact that the convexity of 7" implies (et s,n(s)) > 0. But this conflicts
(3.4.2), hence D1 U Dy is a covering of (joﬂ NB(sp,0)) x (0T N B(sg,9)).

We first show that [ [ Dy A(t, s)dtds is super-exponentially small. By similar arguments
in the proof for Gaussian fields on rectangle, we see that there exists positive constants (',

C9 and N7 such that
E{JdetV2X (4)[det V2X o ()] X () = 2, VX (8) = 0, VX pp(5) = 0} < Oy (a1 + 1),
detCov(VX(t), VX|or(s)) = Cafls — t||2(N—1)'

Therefore,

At s) < /u - E{|det V2X (1)]|detV2X o (s)[| X (1) = &, VX(t) = 0, VX g7 (s) = 0}

X px (1) (#IVX () = 0, VX|or(s) = 0Py (1) v, 5(s) (0 0)d (3.4.5)

< Cylls =o' [ (14 M)y (VX () = 0,9 X[gp(s) = 0)do

u

for some positive constant C'5.
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On the other hand, as ||s — t|| — 0,

Var (X (8)| VX (1), VX yr(s)) = Var(X ()| VX (1), TT; VX (s))
= Var(X (1) VX (1), I (VX (s) = VX(8)/lls — t])
= Var(X (£)|VX (1), T5(VZX (t)er.s)) + o(1)
< Var(X (t)|T1s(V2X (t)er,s)) + o(1)

< 1= (ILs((t)er,s) [Cov(ILs(V2X (ter,s))) ™ (Ts(E(Her,s)) " + o),

where the third equality is due to Taylor’s formula. Note that Cov(ITs(V2X (t)ers)) is
bounded away from 0 because of the regularity condition (H3). Also, by the definition of
Ds, the vectors I5(X(t)e,s) are not vanishing for all (¢, s) € Do, thus there exists a constant

€1 > 0 such that

Var(X(1)|[VX(1), VXjor(s) <1—e1, V() € Da.

Combining this with (3.4.5), and noting that ||s — ¢/~ is integrable on (% NB(sp,d))) x
0T N B(sq,0)), we conclude that A(t, s)dtds is super-exponentially small.
Dy

Now we turn to estimating [ fDl A(t, s)dtds. For (t,s) € Dy, we have

PX (1), VX (8),VX| 7 (5).2(5) (2,0,0, 2)
= pHS(VX(t)),VX|aT(s)(Oa 01X (t) =z, Z(s) = 2,(VX(t),n(s)) = 0)
X Dx(),2(s) (@ 2| (VX (£),1(8)) = 0)prw x(8).n(s)) (0) (3.4.6)
< Cy(detCov(X (1), VX (1), VX or(s). Z(s)) /2
<o {_ 1 ( 2 N 22 _ 2p(t, s)T2 )}
AT 20— p(t, D) \o2(ts) | o3(ts) o1t s)oalt, s)
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for some positive constant Cy4, where

o2 (t,s) = Var(X () (VX (£), n(s))) = detos/‘;i“() << )?i ((2);;( )}
03(t, 5) = Var(Z(s)[ (VX (£), n(s))) = detc?/lia(v))(((tv)ﬁ ((t35>7;(8)>) |
E{X()Z(s)|(VX (1), n(s)) = 0}

p(t, S) = al(t, S)UQ(ta 5)

Recall Z(s) = (VX (s),n(s)), similarly to the rectangle case, one can check that there exits

positive constants C5 and Cg such that

Cslls — t]2 < o3(t, ) < Colls — t]|> (3.4.7)

Applying Taylor formula, we obtain

o Ly E(X(O(VX(0).n(s) VE(Z(5) (VX (1), ()
#0.9) = S (EOZ0) Var((VX(0),n(s))) )

- 1 2 5 — s— |1t n(s

_aﬂﬁhﬁ@(MX@WX@+VX®( )+ s — 1Y n(s)}
CE{X()(VX(t),n(s))} » e

Var((VX(t),n(s))) E{(VX(1), n(s))(VX(t) + VZX(t)(s — 1)

+%—NHWbm®H)

_ﬁjié[ me (t)ets + s — t]"Ve s n(s))}
E{X()(VX(D).n()} st e gy s
o (9 () ) (VX 0t + | twn&<»0.

By our assumption, E{X (s9)V X (s¢)}=0, therefore if § is sufficiently small, E{X (*)VX ()}
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gets close to 0 for ¢ 672 NB(sg,d). Thus, as ||s —t|| — 0,

A =g <ws||,i>:f§|<|t, 5y (BBets, n(s) = o(1))
Is — |
= o1(t, s)(Cs|s — t]|2)/2 (=b1 —o(1)) (3.4.8)
< —€9

for some positive constant €9, where the second inequality comes from (3.4.7) and the defi-
nition of Dj.
By similar arguments in the proof for Gaussian fields on rectangle, we see that there

exists positive constants C'7, Cs, No and N3 such that

E{[det VX (t)||det V> X o7 (s)|| X () = 2, VX (t) = 0, VX o7(s) = 0, Z(s) = 2}

< Cr(a™2 4 (/s — t]) V3 + 1)

and

detCov(X (t), VX (t), VX|o7(s), Z(s)) = Cs|ls — t)|2N.

Combining this with (3.4.6), and making change of variable Z = z/||s — t|| and &5(t, s) =

o9(t,s)/||s — t||, we obtain
0 0
Alt, s) gcgus—tH—N/ dx/ dz (N2 4 (2/]ls — )3 + 1)
U 0

B 1 22 22 _ 2p(t, s)zz
: eXp{ 2(1 = p(t, 5)2) (a%<t,s> T3t il sl >)}

(e.¢] o0
< Colls=tl'N [Taw [z o 2N
u 0

woxnd 1 2 52 _ 2p(t,s)xz
p{ 2(1 —p(t, 3)2) (U%@?S) " &%(tv 8) Ul(tv 8)&2(tv S))}

(3.4.9)
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for some positive constant Cy. Applying Lemma 2.3.10 yields that [ [ Dy A(t, s)dtds is super-

exponentially small. O

Theorem 3.4.3 Let T be a compact, convex, N-dimensional subset of RN with smooth
boundary OT. Let {X(t):t € T} be a Gaussian random field such that (H1) and (H3) are

fulfilled. Then there exists some constant o > 0 such that as u — 00,

IP’{ sup X (t) > u} =E{p(Ay)} + 0(6_0‘“2_“2/2).
teT

Proof The result follows immediately from applying (3.4.1), Lemma 3.4.1 and Lemma

3.4.2. U

3.5 Gaussian Fields on Convex Sets with Piecewise

Smooth Boundary

Let T be an N-dimensional compact and convex set in RN, Suppose it has piecewise smooth
boundary and can be stratified as T' = Ufi 00iT, where 0;T is the i-dimensional boundary
of T made up of the disjoint union of a finite number of i-dimensional manifolds without
boundary.

Define the support cone [cf. Adler and Taylor (2007, p.188)] of T" at ¢ as

ST :={£ € RN 35> 0,0 curve v (=0,0) — R such that

7(0) =, V~(0) =¢&,v(s) € T for all s € [0,6)}.

It is easy to check that S§T' contains the tangent space of t.
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Define the normal cone [cf. Adler and Taylor (2007, p.189)] of T" at ¢ as

NT = {zeRN :(z,¢) <0forall & € ST}

So t € T is called extended outward critical point if VX (t) € NiT.

Morse theorem gives

N k
P(Ad) =D D (DR (1)),
k=0 J€d; T i=0

where

i) = #{t € 2 X (1) > u, VX (1) = 0,index(V2X| 5 (1)) = i, VX(t) € NiT}}

= #{t € J: X(t) > u, VX () € NiT, index(V* X ;(1)) = i},

and the last line above is due to the fact that VX (¢) € N¢T implies VX|J(t) = 0 for all
tel.

We will need a modified version of (H4), say (H4'), as the following.
(H4'). Vt € J € 9T such that v(t) =1 and 0 < k < N — 2, (E{X(t)V2X(t)})|[, is negative
definite, where L is the largest subspace of RY such that (Vv (t))|;, = 0.
Here, (E{X (t)V2X(t)})|, and (Vu(t))|;, are the projections of E{X (t)V2X (t)} and Vu(t)
onto the subspace L, respectively.

Similar to Proposition 3.1.1, we have the following result.

Proposition 3.5.1 Let X(t) € C2(RN) a.s. and let L be the largest subspace of RN such
that (Vv(t))| = 0. If (V2u(t))| is negative semidefinite for each t € J € 0T such that

v(t)=1and 0 <k < N —2, then (H4) holds.
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For J € 0, T, we also define the number of extended outward maxima above level u as

MY (J) = #{t € J: X(t) > u, VX ;(t) = 0,index(V2X | ;(t)) = k, VX () € N;T}

=#{t € J: X(t) > u, VX (t) € NiT,index(V>X ;(t)) = k}.

Then similarly to Lemma 2.3.1, one has

N
{supX(t)Zu}: U U {ME()) > 1} as.

teT k=0 J€0),T

Thus by similar discussions, we get

S B > B{sup X0 > o)

k=0 J€d, T teT

>Z Z (]E{ME %E{ME(J)(Mf(J)—n}) (3.5.1)

k=0 Je@kT

= > E(M7()M ()}

J#£J

Theorem 3.5.2 Let T be a compact, conver, N-dimensional subset of RN with piecewise
smooth boundary. Let {X(t) :t € T} be a Gaussian random field such that (H1), (H3) and

(H4') are fulfilled. Then there exists some constant o > 0 such that as u — oo,

Plsup X(1) > u} = E{p(Au)} + ofe™ ™12,
teT

Proof Similar to the arguments in proving the smooth boundary case, we only need to
show that E{ME (J)ME(J")} is super-exponentially small for neighboring faces J € 9T and

J' € 9,yT. Moreover, similarly, it suffices to show that E{ME(JNB(sy,8))ME(J'NB(sg,0))
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is super-exponentially small for s € I = J N .J’ such that v(sq) = 1 and (Vv (sg))|r, = 0,
where L = span{SstU Ssoj’}, B(sg,0) ={t € T : d(t,sg) < 0} and ¢ is a small positive
number to be specified. Without loss of generality, we assume k& > k' and k > 1.

Denote by {Ej,---, Ey} the normal basis on I. Since J is a k-dimensional face, there
are (k—m) many (m+1)-dimensional faces which belong to the closure of J and are adjacent
to I as well. Denote these (m+ 1)-dimensional faces by {Jn+1, -, Ji} C Oma1T. Now, for
each i =m+1,..., k, we may view [ as an m-dimensional boundary of J;, and let E;(sq)
be the unit normal vector pointing outwards at s, i.e., E;(sg) € N Soji- In such way, we
have a smooth frame (not necessary orthogonal) {E1(t),- - , Em(t), Epi1(t), -+, Ei(t)} on
J N B(sg,6).

Similarly, since J’ is a k’-dimensional face, there are (k' —m) many (m + 1)-dimensional
faces which belong to the closure of J’ and are adjacent to I as well. Denote these (m + 1)-
dimensional faces by {J7'n+1, e ,J;g,} C Oma1T. Now, for each i =m +1,..., k', we may
view I as an m-dimensional boundary of J/, and let E/(s() be the unit normal vector pointing
outwards at sq, i.e., EZ/-(SQ) € NSOJZ{' In such way, we have a smooth frame (not necessary

orthogonal) {E1(s),- -+, Em(s), E!

m

1(3)++ L EL(s)} on J7 1 B(so, 0)
By (H4'), ¥1(t) == (B{X(t)V2X(t)})}, is negative definite at t = sg. If § is small

enough, by continuity;,
(= Sp(ets ers) > ag, Vte JNB(sy,d),s€J NB(sp,o), (3.5.2)

for some positive constant ag, where e 5 is the projection of (s —t)/||s —t|| on L (in fact, the

projection only removes the vanishing components of (s — t)/||s — t|| such that the number
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of components in e 4 is the same as dim(L)). For (¢,s) € (JNB(sp,d)) x (J' N B(sg,d)), let

ai(t,s) =(— EL(t)et’S,Ei(t», 1=1,...mm+1,... k,

At s) = (= Spters Eis)), j=m+1,....K.

We claim that there exist positive constants by, by,+1, - , b, b;n ETRRE b;ﬂ,, whose prop-

/
erty needs to be specified later, such that Dy U (Uk D;)u (Uk

/ . .
=1 j:erle) is a covering of

(J N B(sp,d)) x (J' N B(sg,d)), where

D; ={(t,s) € (JN B(sg,08)) x (J'NB(sg,0)) : aj(t,s) >b;} ifm+1<i<k;

D} ={(t,s) € (JN B(sg,0)) x (J' N B(sp,0)) : a}-(t,s) < —b;} ifm+1<j<k;
m

Do = {(t, s) € (JN B(s0,8)) x (J' N B(s0,6)) > lei(t, s)|* = bo}.
=1

(3.5.3)

Note that as § gets smaller, (J N B(sg,d)) U (J' N B(sp,d)) becomes more similar to two

intersecting flat faces, and e; ¢ will be around the convex cone created by vectors

{(£E1(1), -, £En(t), Eng1 (1), -, Bp(t), —Ep 1 (s), ., —Ep(s)}-

Hence due to the convexity of T', there exists g > 0, whose property needs to be specified
later, such that for all (¢,s) € (J N B(sg,d)) x (J'N B(sp,d)) and ¢ sufficiently small, the

following representation holds:

k K
et =D et BiOVE(t)+ > (et () Ej(s), (3.5.4)
=1 j=m+1
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where (er s, Ei(t)) € R fori=1,...,m, and

(et,s, Bi(t)) > —ep, Yi=m+1,...k,

(et E(s)) 20, Wi=m+1,.. K,

By continuity, there exists a universal positive constant r such that

sup  max{|a;(t, s)|, [aj(t, )]} <,
(t,s)eJxJ!

foralli=m+1,....,kand j=m+1,... k.

If (t,5) € (J N B(sp,0)) x (J'N B(sp,d)) does not belong to any of sets in (3.5.3), then

by (3.5.4),
k

(= Ep)ets: et,s) Zaztb‘ ers, Bi() + Y ai(t,s){ers, Bi(t)

1=m+1

+ Z s)(ets, Ej(s)) (3.5.5)
j=m+1

k K

< by + Z max{b;, reg} + Z max{b",reo},
t=m-+1 j=m+1

where the last inequality we use the facts that for i = m + 1,... k, if (t,s) ¢ D; and
(et,s, Ei(t)) > 0, then a;(t, s){er,s, E;(t)) < b;; and for j =m+1,... .k, if (¢, s) ¢ D; and

<et,87E§'(S)> <0, then o (t 3)<€tSan( s)) < b/

Now, we choose the positive constants by, by,41,- - , by, b;nJrl, e ’b;g and (g such that
the last line of (3.5.5) is strictly less than ap. Then (— X (t)er s, er,s) < ap conflicts (3.5.2).

D;)U(UE.

This verifies our claim that Dy U ( [—

a1 D’) is a covering of (J N B(sgp,d)) x
(J'' N B(sg,9)).
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Due to the convexity of 7', if § is small enough, then for each (¢,s) € (J N B(sg,d)) x

(J' 1 B(so, ),

VX(t) € T & VX ;(t) = 0 and (VX(t), Ei(s)) >0, Vj=m+1,... K,

and for each s € J' N B(sg, ),

VX(s) e NiT & VX|J/(5) =0and (VX(s),E;(t)) >0, Yi=m+1,... k.
By the Kac-Rice metatheorem,

E{M;(J 1 B(s0,8)) My (J' 1 B(s, )

00 00
g/ dt/ ds/ dx/ dy
JNB(s0),0) J'NB(s(,8) u u
o) o) 0 00
dz 1/ Az / dw 1/ dw

E{|det V2 X, (1)[[det VX i(5)[| X (8) = 2, X (s) = y,
VX () = 0,(VX (1), Enpi1 () = zmg1s - - (VX(1), By (5)) = 2,
VX j(s) = 0,(VX(s), Emy1(t) = w1, (VX (s), E(t)) = wi}

X pt,S(‘ra Y, 07 Zm+1," 7Zk/7 07 Wm+1, " ,’Ujk)
= // A(t, s) dtds,
(JNB(59.0)x (/N B(s0.6))
where p; s is the density of
(X (), X(s), VX (1), (VX (1), Epy 1 (5)), -+ (VX (E), By (s)),

VX j1(8), (VX(5), By (1), -+, (VX (s), Eg(1)))-
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Moreover, due to the covering discussed before, this integral can be bounded as

// Alt, s) dtds
JﬂB 80 (5 (J/ﬂB(SO 5))

Z // (t, s) dtds + Z // tsdtds+//DO (t, s) dtds.

i=m-+1

We first show that [ [, D, A(t, s) dtds is super-exponentially small. By similar arguments
in the proof for Gaussian fields on rectangle, we see that there exist positive constants (',

C9 and N7 such that
E{|det V2 X7 (£)]|detV2X 1 (s)|| X (1) = 2, VX| 5 (1) = 0, VX yi(s) = 0} < C1 (2N 4 1),
detCov (VX ;(1), VX|J/(S)) > Cylls — ¢

Therefore,

A(t,s) < /u . E{|det VX, J(t)||detV2X| 7 (NX () = 2. VX 5(t) = 0, VX yu(s) = 0}

< Px(n) (V| (8) = 0, VX j(5) = 0pwx, (1), X, ;1(s)(0: 0)dw

7!
< Cylls =l [0+ (61X (0) = 0.V X r(s) = )
(3

(3.5.6)

for some positive constant Cf.
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On the other hand, let IT; be the projection onto span{E1(t),--- , En(t)}, then as 6 — 0,

Var(X (£)| VX (), VX r(s)) < Var(X (DY X] 5 (1), VX 1o (s))
= Var(X ()| VX (£), T VX (s)) + o(1)
= Var(X (1) [T, VX (), IL,(VX(s) = VX(£))/]ls = tl]) + o(1)
= Var(X ()| VX (1), T (V2X (t)ers)) + o(1)
< Var(X(6)| (VX (t)er,s)) + o(1)

< 1= (Te(SL(t)et,s)) [Cov (T (VX (Der,s))] ~ (Te(Sr(et,s)) T + o(1),

where the third equality is due to Taylor’s formula. Note that Cov(II;(VZX (t)et,s)) is
bounded away from 0 because of the regularity condition (H3). Also, by the definition of
Dy, the vectors I (X1, (t)es ) are not vanishing for all (¢, s) € Dy, thus there exists a constant

€1 > 0 such that

Var(X )|V X (1), VX|J/($)) <1-—¢1, V(ts)€ Dy.

Combining this with (3.5.6), and noting that ||s —¢||™ is integrable on (J N B(sg,d))) x (J'N
B(sp,9)), we conclude that [ [ Dy A(t, s) dtds is super-exponentially small.
Now we turn to estimating [ [ A(t,s)dtds, i =m+1,... k. Let II; be the projection
1

onto span{E1(t),..., Em(t), Epi1(t), ..., Ei_1(t), Eix1(t), ..., EL(t)}, then for (¢,s) € D,
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we have

pX(t)vVXU(t)aVXw/(8),<VX(S),EZ~(t)> (2,0,0,w)

= iy 09,y o 00X (0) = 2 (VX (). B4 (D) = w0 (VX (0. Bi1) = 0

X DX (1),(v X (s),E; (1)) (1 wl (VX (8), B (1)) = 0)pivx (1)) (0) (3:57)

< CyldetCov (X (t), VX| 5 (1), VX js(s), (VX (s), Ei(1)))]~'/?

e ] 1 2 w? _ 2p(t,s)zw
. p{ 2(1 —p(t, 3)2) (U%(ta 3) - U%(tv S) Ul(tv S)UQ(tv S))}

for some positive constant Cy, where

B ' _ detCov(X (1), (VX(t), E;(t)))
(1) = Var (XY X (1), B (1) = =

o3t = Vax(VX(9), BV X (1), B, (o)) = o S T B,

E{X()(VX(s), Ei(t)[(VX(t), E;(t)) = 0}

p(t,s) = o1(t, s)oa(t, s)

Similarly to the rectangle case, one can check that there exits positive constants C5 and Cyg
such that

Cslls — t]* < o3(t,5) < Colls — t]*. (3.5.8)
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Applying Taylor formula, we obtain

1
o1(t,5)oa(t, 5) (EW (VX (s), Ei(1))}

_EXOKNVX(Q), E (t)>}E{<VX(5)aEi(t)><VX(t)7Ei(t)>})
Var((VX(#), Ei(t)))

p(t,s) =

- e (E{X )+ V2X(B)(s = ) + lls — 11V, Ei(0)
X(t),

_E{X(@®) Ei(t)} 2 B
Var(( (t) (1)) E{(VX(1), E;(t))(VX(t) + V°X(t)(s — t)

s — )Y B <>>})
s —

B o1(t, s)oa(t, s)

_ B{XO(VX(), Ei(1) }
Var((VX(t), Ei(t)))

(E{X<t><v2X<t>et,s lls = Y, B (6)}

E{(VX (1), E;()){V2X (t)et,s + I|s — t]"Yis, Ei(t>>}>‘

By our assumption, (E{X (sg)VX (s0)})|r,=0, therefore E{X (¢)(VX (t), E;(t))} gets close to

0 for t € JN B(sg,d) and § small enough. Thus, as ||s — t|| — 0,

p(t,s) = 01<t||,2)_0;|(|t,3)(<2J(t>6t75’ E;(t)) — o(1))
s — ¢l
o1(t, s)(C5H3_tH2)1/2 (=bi —o(1)) (3.5.9)
< —€9

for some positive constant £9, where the second inequality comes from (3.5.8) and the defi-
nition of D;.

By similar arguments in the proof for Gaussian fields on rectangle, we see that there
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exists positive constants C'7, C's, No and N3 such that

E{|det V2, J(t)HdetVQX‘ S SNX () =2, VX 5(t) = 0,V X js(s) = 0, (VX (s), Ey(t)) = w}

< Cr(e™2 + (w/]|s — ™3 + 1)

and

detCov(X (), VX| 5 (1), VX i(s), (VX (s), E;(t))) > Cgl|s — |20+,

Combining this with (3.5.7), and making change of variable w = w/||s —t|| and 72(t, s) =

o9(t,s)/|ls — t||, we obtain
[o.@] o0
Al ) gcg||s—t||<m+1>/ dx/ dw (V2 + (w/||s — )™ + 1)
u 0

o ] 1 2 w? _ 2p(t,s)zw
. p{ 2(1 —p(t, 8)2) (U%(ta 8) - U%(tv S) Ul(tv S)UQ(ta S)>}

&) o0
< ol =t "o [ aw (@)
U 0

o] 1 2 e _ 2p(t,s)zw
: p{ 2(1 = p(t,s)?) (0%(75, 9" a3(t,s) o1t 5)52(?578))}

(3.5.10)

for some positive constant Cy. Applying Lemma 2.3.10 yields that [ [ p. A(t, s)dtds is super-
(3
exponentially small.
Estimating [ [, A(t,s)dtds for j =m +1,... k' is similar. And the proof for the case
J
when k = 0 is also similar. Now we obtain that E{MF (J)ME(J')} is super-exponentially

small, completing the proof. O

Remark 3.5.3 Our proof in Theorem 3.5.2 only focuses on the neighborhood of sgp, and
therefore the proof is also valid for the case when 7" is locally convez [cf. Adler and Taylor

(2007, p.189, Definition 8.2.1)].
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Chapter 4

The Expected Euler Characteristic of

Non-centered Stationary (zaussian

Fields

It has been shown that the expected Euler characteristic of the excursion set, denoted
by E{x(A4)}, can be used to approximate the excursion probability very accurately. Now
we turn to the computation of E{p(A,)}. In the monograph Adler and Taylor (2007), the
authors considered centered Gaussian fields with constant variance and they obtained very
general formulae [cf. Theorem 12.4.1 and Theorem 12.4.2 therein] for E{(A,,)} involving the
so called Lipschitz-Killing curvatures. Usually, it is very hard to simplify these Lipschitz-
Killing curvatures. As a consequence, for general centered smooth Gaussian fields with
constant variance, E{¢(Ay)} is difficult to compute. Therefore, E{¢(Ay)} would become
even more complicated for general smooth Gaussian fields with non-constant variances.

However, for some relatively simple models and nice parameter space T', for example
centered stationary Gaussian fields on rectangles, E{p(Ay)} can be simplified a lot [cf.
Theorem 11.7.2 and Corollary 11.7.3 in Adler and Taylor (2007)]. The results there rely
heavily on the zero mean function. If the Gaussian field is stationary, but the mean function

is varying, then the computation for E{p(A,)} will become more complicated. In this
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chapter, we will show the formulae of E{¢(A,,)} for stationary Gaussian fields with varying
mean functions, and also for isotropic Gaussian fields on the sphere with varying mean

functions.

4.1 Preliminary Gaussian Computations

The following result is Lemma 11.6.1 in Adler and Taylor (2007).

Lemma 4.1.1 (Wick formula). Let Zy, Zo, ..., Zx be a set of real-valued random vari-

ables having a joint Gaussian distribution and zero means. Then for any integer k,

E{Z1Z5--- Zop 41} =0,
(4.1.1)

E{Z1Zy - Zop} = Y B{Zi\ Zin} - Bl Zi, _ Zi, },

where the sum is taken over the (2k)!/(k'2F) different ways of grouping Zy, ..., Zoy into k

PaITs.

Let Ay be a symmetric N x N matrix with elements A;; such that each A;; is a zero-

mean normal variable with arbitrary variance but such that the following relationship holds:
E{AjjAp} = E(i, 4.k, 1) — 650k, (4.1.2)

where £ is a symmetric function of 7, j, k, [, and 4;; is the Kronecker delta function. Write

|A | for the determinant of A .
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Let A N be a symmetric N x N matrix with elements &ij such that each Ez‘j is a zero-

mean normal variable with arbitrary variance but such that the following relationship holds:
B{AijAw} = E(i,j, k. 1) + 6;50p, (4.1.3)

where € is a symmetric function of 7, j, k, [, and 4;; is the Kronecker delta function.
Let A?\f be a symmetric N x N matrix with elements Ag j such that each A; j is a zero-

mean normal variable with arbitrary variance but such that the following relationship holds:
E{AL Ay = €', 5, k1), (4.1.4)

where &' is a symmetric function of 4, j, k, .

Lemma 4.1.2 Let By = (B;j)1<; j<n be a real symmetric N x N matriz and let n be a
positive integer. Then for Ay, satisfying (4.1.2),
[n/2]

E{|An+Bn|} - Z GQkSn—Qk;(Bn)a (415)
k=0

where Go; = (—=1)7(25)!/(4'27), S(By) is the sum of the (li;) principle minors of order k
in By, and Go = So(Bp) = 1 in convention. Similarly, for &;1 satisfying (4.1.3) and Al
satisfying (4.1.4),

[n/2]

E{|An + Bpl} = Z GotSn—21(Bn).
k=0 (4.1.6)

E{|A}, + Bul} = [Bul,
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where égj = (25)!/(j'29).

Proof We first consider the case when n is even, say n = 2[, then

A9y + Bagl = Y n(p)(Aviy + Buiy) -+ (Darin, + Baiiy): (4.1.7)
P

where p = (i1,i9- - ,i9;) is a permutation of (1,2,---,2l), P is the set of the (2[)! such

permutations, and 7(p) equals +1 or —1 depending on the order of the permutation p. Then

E{|Ag + Byl} =Y n(p)E{(A1;, + Bi)) - (Ag1ig; + Batig) - (4.1.8)
P

It follows from Lemma 4.1.1 that for & <, E{Ay;, - A2k+lvi2k+1} =0 and

E{Ay; - Doy, } = > {E(1,01,2,89) — 613 Gain } X -+
Qok

X {E(2k — 1 igg 1,2k, igk) = O2k—1in; 02k,in; )

where Qqy, is the set of the (2k)!/(k12¥) ways of grouping (i1, s, - - - ,ig) into pairs without

regard to order, keeping them paired with the first index. Let P be the set of all the
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permutations of (2k + 1,...,2l), then

D nPE{AL - Dogig, YBok1g,,,  Batiy,
P

= Zn(p) ( Z{E(l,z’l, 2,i) — 01y 02jg } X -+
P Qok

x {E(2k — 1, 1951, 2k, ig)) — 52k—1,i2k_152k,i2k}) Bok+Lig 1

= ; n(p) Qz:(—l)k@uﬁzzg) < (02k—1,igp,_1 92k,iny ) Bok41,igp
2%
(—1)F(2k)!
=k Z U(@B2k+1,z’2k+1 T B2l,i2l
P
(—1)F(2k)!
= WKBij)Qngi,ngl\a

- Bagig,

- By iy,

where the second equality is due to the fact that all products involving at least one £ term

will cancel out because of their symmetry property, and the third equality comes from noting

that for only one permutation in P is the product of the delta functions nonzero. Thus

E{|Ag; + By|} = |By| + GoSgj_o(Bgy) + - - - + Goj_252(By;) + Go.

Similarly, we obtain that

E{|Ags41 + Boji1l} = |Boyg1| + G2S91—1(Bay41) + -+ - + Go9S1(Baj41)-

Then we obtain (4.1.5). The proof for (4.1.6) follows similarly.

Corollary 4.1.3 Let Ay, ZN, A?\N By, Gy, CN;QJ- and Si.(B;) be as in Lemma 4.1.2. Let

107



Iy be the N x N unit matriz, and x € R. Then

N [n/2]
E{|Ay + By — zlyl} = (<1 <—1>”( 3 Gkan2k<BN>)a:N—", (4.1.9)
n=>0 k=0
and similarly,
N N [n/2]
E{|Ay + By — alyl} = (-} Z(—n"( 3 szsn_szN))xN—”,
n=0 k=0 (4.1.10)

E{|Aly + By —zly|} = (=D > (=1)"Su(By)z™ ",

WE

0

n

Proof It follows from the usual Laplace expansion of the determinant that

N
Ay + By —zly| = (=D)V Y (=1)"Sp(An + By)aN " (4.1.11)
n=0
It follows from Lemma 4.1.2 that
[n/2]
E{Sn(AN +Bn)} = Y GopSn_op(Bn). (4.1.12)
k=0
and hence we obtain (4.1.9). (4.1.10) follows similarly. O

4.2 Stationary Gaussian Fields on Rectangles

Consider a centered stationary Gaussian random field Z = {Z(t),t € RV}. It has represen-

tation



and covariance

C(t) = /R N e BN L (dN),

where W is a complex-valued Gaussian random measure and v is the spectral measure

satisfying v(RYV) = C'(0) = 62. We introduce the second-order spectral moments

)‘ij = /]RN )\i)\jl/(d)\),

and denote A = ()\ij)lgi,jg n- Denoting also differentiation via subscripts, so that Z; =

0Z[0t;, Z;j = (92Z/(9ti8tj, etc., we have
E{Z;(t)Zj(t)} = Nij = —C;;(0) = —B{Z(t)Z;;(1)}.

The covariances among the second-order derivatives can be similarly defined. However,

all we shall need is that

go(i,j, k?, l) = E{sz(t)zkl(t)} = /RN Al)\JAk)\lU(CD\) (4.2.1)

is a symmetric function of i, j, k, . Also note that for any fixed ¢, Z;(¢) is independent of
both Z(t) and Zj(t).
Let X(t) = Z(t) + m(t), where m(-) € C2(RY) is a real-valued deterministic function.

Let T = H?Ll[ai,bi], —00 < a; < b; < o0.

Theorem 4.2.1 Let X(t) = Z(t) +m(t), where Z(-) € C?>(RN) a.s. is a stationary Gaus-

sian field and m(-) € CQ(RN) is a real-valued deterministic function. Suppose also that Z
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satisfies (H3'). Then we have

E{p(Au(X,T))}
N

U—m 1/2
— Y Pvx()e E({t})}xp(T@)) B> A

k+1)/2 k+1
{tyedyT k=1J€d). T (2m) (5120

o© 1 _ 1
X /Jdt/u dx exp{ — i(VmU(t))TAJleU(t) — 2—2(x — m(t))Q} (4.2.2)

o

X P{X g (@), Xy (1) € E(J)|[VX (1) = 0}

X {zk:(—l)j ( %%J G2iSj—2i(0QJv2mJ(t)QJ)> (g) k_j]7

j=0 i=0

~1/2

where G and S are defined in Lemma 4.1.2 and Qj = A ;

Proof If J = {t} € 0yT, then

E{ug(J)} =P{X(¢) > u,S;X]‘(t) >0forall<j<N}

o (4.2.3)
—P{VX(l) € E({t})}@(%(t)),

where the last equality is due to the independence of X (¢) and VX (t) for each fixed t.
Now we consider J € 0,1 for some k > 1. Let D; be the collection of all £ x k£ matrices
with index 7. Applying Kac-Rice formula [cf. Theorem 11.2.1 or Corollary 11.3.2 in Adler

and Taylor (2007)], together with the definition (2.2.2), we obtain

k

k
i, _ VB det U2
E{i:0< Vtnf = [ ros O B Ol ey

X Vewza o, 00, 0)eB) VX)) =0}

Note that on the event D;, the matrix \V2D'¢ | 7(t) has i negative eigenvalues which implies
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(—1)"[detV2X| (1) = detV2X| ;(1). Also, UF_({V2X;(t) € D;} = {V2X|;(t) € R}, and

VX (t) is independent of both X (¢) and V2X (t) for each fixed ¢, thus (4.2.4) becomes

/JPVXJ(t)(O)dtE{detVZXU(t)H{X(t)Zu}]l{(XJl (t), ,XJN_k(t))eE(J)}|VX\J(t) =0}

1 0
~ (2n)RHD/2|A 125 /Jdt/u dre

X P{(X g, (1), Xy, (1) € E(J)|VX| () = 0}E{det V> X ; ()| X (t) = =}

~5(Vm O AT (1)~ (o=mit)?

(4.2.5)

Now we turn to computing E{detVQXu(t)\X(t) = x}. Since Ay is positive definite,
there exists a unique k x k positive definite matrix @ ; (called principal square root of Afl,

also denoted as A;l/ 2) such that

QiAN;Qy = Iy,

where [, is the k x k identity matrix. Hence

E{Z(t)(QJVZZ\J(t)QJ)ij} = —(QsA;Q1)ij = —0ij, (4.2.6)
where 9;; is the Kronecker delta function. One can write

E{det(Q VX, (1) Q)| X (1) =}
= B{det(Q;V*Z);(1)Q + QyV>m; ()Q 1) X (t) = x}

— E{det(A(z) + Q;V2m(H)Q. )},

where A(z) = (A;(2)); jeq(y) With all elements A;;(z) being Gaussian variables. To study

A(x), we only need to find its mean and covariance. Applying Lemma 2.5.1 and (4.2.6), we
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obtain

E{Ay(@)} = E{(QsV*Z,(0Q)ij|X (1) = 2} = = 53
and

E{(Ajj(z) = E{A;(2)})(Ag(r) — E{A(z)})}

50
— E{(QJV2Z|J(t)QJ)ij(QJV2Z|J(t)QJ)kl} - izkl
=E(i, 5, k1) — %,

where £ is a symmetric function of 4, j, k, by Lemma 2.1.7 with A replaced by @ ;. Then

we have

B{el(Q VX, (@)X (1) = 2}
= B{ Zpdet(0Qy (VX (0)Q)|X(0) = o}

= %E{det (A + UQJVQWJ(t>QJ - gjk) }’

o

where A = (Aij)i,jEJ(J) and all A;; are Gaussian variables satisfying
E{A;j} =0,  E{A;jAp} =00, 5,k 1) — 6;0k.

Applying Corollary 4.1.3, we get

E{det(QV2X|;()Q)|X (1) = x}

oL 2 K
= (1) GoiSj—2i(0Q V" my()Q)) )| = | -
(X s msen) ()

j i=0

(4.2.7)
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It follows from (4.2.7) that

E{detV>X| ;(t)|X(t) = x}
= B{det(Q; 'Q VX ;(1)QQ; )X (1) =z}

= |AJ[E{det(Q VX, ()Q1)|X (1) = x}

—1)/ ( %%J GZiSj—Zi(UQJvsz(t)QJ)) (f) kij-

1=0

Plugging this into (4.2.5), we obtain

k

B{ Y1}

=0

_ DM / dt/ i e 3T O AT V(1) =5 5 @=m(®)?
(27T>(k+1 /2 k41 (1.28)
X ]P){(le (t)a e 7XJN_k(t)) € E(‘])|VX|J(t) - 0}
k /2] 2\ ki

X {Z(—l)j( > G2i5j—2i(UQJV2mJ(t)QJ)) (;) }

=0 i=0

Combining (4.2.3), (4.2.8) and the definition (2.2.1) yields the desired result. O

Corollary 4.2.2 Let Z be an isotropic Gaussian random field with Var(Z1(t)) = 72, then
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under the conditions in Theorem 4.2.1, we have

E{o(Au(X,T))}

N
_ Z IP{VX()GE({t})}\I’( ) Z Z k+1 )/2 kA1
k=1J€0,T

{t}eoyT

« /Jdt /uoo dz exp{ - 2—;||Vm|<](t)||2 - %(m - m(t))Z} (4.2.9)

X P{(X (1), Xy (8) € E(J)}

[Se (S eusatrtemn) (2) )

7=0

Proof The result follows by applying Theorem 4.2.1 and noting that A ; = 72] . and hence

Q=711 U

Corollary 4.2.3 Under the conditions in Theorem 4.2.1, assume that ty, an interior point
in T, is the unique mazimal point of m(t) and that V>m(tg) is nondegenerate. Then as

U — 00,

|A|1/2 N/2

Bp(Au(X, )} = o= o )|1/2m(“‘j<t0>)<1+0<1>)_

Proof By Theorem 4.2.1,

IA[L/2 L (Ome)TA=1om(t)
E{p(A4(X,T))} = (27r) (N+1)/2 N+1/ da:/

1 (4.2.10)
« o Tz Emm(D)? (_) dt(1 + o(1)).

g
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Applying Laplace method, we obtain that as z — oo,

/ 5 (Om) A 1Vm() 5 e-m®)?
J

__ @oNRN b aemg)? i
o $N/2‘—V2m(t0)‘1/26 g ( +0( ))
Thus as u — 00,
_ A2 * N2~ (a—m(tg)?
E{p(Au(X.T))} = (2%)1/20N+1| _ V2m(t0)|1/2 /u NPe 207 dx(1+o(1))

||/ 2y N/2 u —m(tp)
:aNr—v‘zm(to)W?q’( o 0)(”0“))'

O
4.3 Isotropic Gaussian Random Fields on Sphere
We consider isotropic Gaussian random fields on N-dimensional unit sphere SN, For z =
(1, ,oN11) € sV , we shall use the spherical coordinates as follows.
r1 = cosfq,
9 = sin 61 cos b9,
x3 = sin A sin 09 cos 63,
(4.3.1)

xn =sinfysinfy - --sinfp_q cosby,

TN41 =sinfysinby---sinfy_qsinby,
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where 0 < 6; <mfor1 <i< N—1land 0<60y <27 Let 6§ = (01,---,0y). Accordingly,
let vy = (y1,--- ,yn+1) be another point in SN, we use ¢ = (o1, ,oN) to denote its
corresponding spherical coordinates.

Let || -, (-, -) be the Euclidean norm and the inner product respectively. Denote by d(-, -)
the distance function in SV, i.e., d(x,y) = arccos (z,y), Vx,y € SV,

The following theorem by Schoenberg (1942) characterizes the covariance function of

isotropic Gaussian field on sphere.

Theorem 4.3.1 A real continuous function C(d) is a valid covariance on unit sphere S

for every dimension N > 1 if and only if it has the form
(0. 9]
C(d) = bpcos"d, del0,m],
n=0

where by, > 0 and Y57 o by < 0.

Recall d(x,y) = arccos (z,y),Vz,y € SN. It follows from the above theorem that a
function C(z,y), which is the covariance function of an isotropic Gaussian field on SV for

every dimension N > 1, has the form

o0
Clz,y) = balz,y)", Va,yesh, (4.3.2)
n=0

where where by, > 0 and Y ;% b, < 00.
Let ¢(Ay(X,SN)) be the Euler characteristic of excursion set A, (X,SV) = {z € SV :

X(z) > u}. Then according to Corollary 9.3.5 in Adler and Taylor (2007),

N

P(Au(X, M) = (DN Y (= 1) p(s™) (4.3.3)
=0
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with

1 (SN) i= #{z € SV : X(2) > u, VX(2) = 0, index(V>X (z)) = i}, (4.3.4)

where VX and V2X are the gradient and Hessian on manifold respectively.

Let X(z) = Z(2) +m(z), z € SV, where Z is a centered, unit-variance smooth Gaussian
random field on SV with covariance function C(-,-) and m(-) € C2(SV) is a real-valued
deterministic function. Under the spherical coordinate, let X(0) = X(x), Z(0) = Z(x),

m(0) = m(z), C(0,¢) = C(z,y).

Lemma 4.3.2 Let h(z,y) = (z,y)", z,y € SN, where n is a nonnegative integer, and let

h(0, ) be its spherical version. Then h(0,0) =1 and

55(9,s0)| _ Oh(b, ) e =0
00; =T 90,0000, "7
(0, 9) _O*h(0, )
_ 4.3,
00,00 0,00, 9=¢ 00,00, 06,00, 0=¢ = "0 (4:3.5)
(6, )

00,0001, 0¢; lo—p = n(n = 1)(0450k + 0ikdj1 + dirji) + 1930k

Let © = {0 e RN : 0 < Oy < 27,0 < 6; <7Vl <i< N —1} and let do(f) be the

volume element on the sphere, i.e.,

N-1 .
= ( [T sin™ 9@->d9, Vo € O.
=1

Then we can state our result as follows.

Theorem 4.3.3 Let X = {X(z) = Z(z) + m(z) : © € SN}, where Z is a Gaussian field

on SN satisfying (H3') and m(-) € C2(SN) is a real-valued deterministic function. Suppose
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also that X has the covariance function C(-,-) such that

o0
v.y) =Y bulr,y)", Vryesh, (4.3.6)

where by, > 0, 300 1 by = 1 and 3.5° 1 n*b, < 00. Let B =300 nby, m(0) = m(x), and

let G, G and S be as in Lemma 4.1.2. Then for g > 1,

_ 1\N/2 00
Bl 50} = L [ aot0) [ dw e { - ivmio 2]

(QW)N/Z

N 1j/2] 2 w N—j
RS e (m0) (=) |

for B <1,

Ny (1= BN/ > Lo a2
Ble(an(X, 80} = Lol o) [ aw e { = 551V mO)I?}

x Lﬁé(l)j ( L:z? GaiSj-2i <%)) (\/%) Nj] |

and for f =1,

Ble((X 8N} = iy [ aot0) [T oo~ Siomoe)

X {%(_1)J‘sj(v2m<e>)wfv—il.

j=0

Remark 4.3.4 It is easy to check that the condition Y °°; ntb, < oo makes C(-,-) €

CHSN x SN and hence X(-) € C2(SN).
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Proof Case 1: f>1. Let kK =Y 2 gn(n — 1)b,. Then by Lemma 4.3.2,

E{Z(6)Z:(6)} = E{Z:(0)Z;1(6)} = 0,
E{Zi(0)Z;(0)} = ~E{Z(0)Z;(0)} = Bdj, (4.3.7)

E{Zj(0)Z11(0)} = w(8ij0k1 + idj1 + 0indjp) + B0k

By the Kac-Rice metatheorem,

E{p(Au(X,SV))}

= (=N /@ pvm)(O)E{detVQY(e)n{m)Zu}|vY(9>:o}da(e)

~ - (4.3.8)
_ (<N /@ do(6) /u Py () (OE{detV2X (6) (X (6) = w}dw
_N\N 0o _ 1 iom(e))2 L
_ mSW% /@ do(6) /u ¢ 28IV g 46w 2% (0)[X(0) = whdw.
Now we turn to computing E{detV2X (0)|X(f) = w}. Note that
E{detV>X (6)|X(0) = w}
= E{det(V?Z(0) + V*m(0))|X (0) = w}
(4.3.9)

= (82 — BYN2E{det((5? — B)"Y2V2Z(0) + (82 — B)"V2VEm(9))| X (0) = w}

= (82 = BYNPE{det(A + (8% - B)7V2VPm(6) - B(B% - B) "V wiy)},

where A = (Aj)1<; j<n and all A;; are centered Gaussian variables satisfying

E{A;jAw} = (8% — B) 'EB{Z;;(0)Z1,(0)| X (0) = w}
= (8% = B) k(0081 + 0101 + 0udik) + BOii0k — B26;;0k1} (4.3.10)

= g(7'7‘]7 k7l) - 51]6kl7
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where E(i, 5, k, 1) = (8% — ﬂ)_lﬁ(ézjékl + 0051 + 0951). Applying Corollary 4.1.3, we get
E{detVZX ()X (0) = w}

(1)N(B2B)N/2]§%( (§G2W(V2‘<9>))( fu )N_j.(

B2 =5 B2 B

4.3.11)

Then

Ny (B= DN o Lvm()?
E{p(Au(X,S ”}—@W)—N/z/@d”(@)/u dwe 2

N 1i/2] 2 w N—j
AR (R e () s) |

Case 2: 8 < 1. Then (4.3.9) becomes

E{detVZX ()X (0) = w}
— E{det(V?Z(0) + V?m(0))|X (0) = w}
= (8 — BHN2E{det((8 — 87)72V2Z(0) + (8 — 87)H2AVPm(0)[X (6) = w}

= (8- BHN2E{det(A + (8 — 827V m(0) - (5 - 82"V wiy)},

where A = (Eij)lgz', j<N and all Aij are centered Gaussian variables satisfying

E{A;;jAu} = (B — BY) E{Z;(0)Z1y(0)| X (0) = w}
= (B — B%) " HK(8;j0k1 + 0ikdj1 + 610 1) + B0;;0k1 — B20;501}

= E(i, j, k1) + 6;;0n1,

120



where £(i,j, k1) = (8 — 62)_1/1(51-3-51{35 + 0051 + 0951). Applying Corollary 4.1.3, we get

E{detVZX ()X (0) = w}

Then

Ny (L= BN < Lvme))?
E{p(Au(X,S ))}—(%)—Nm/@dU(e)/u dwe 2

/2] — w —j
(S s () (2) ]
Case 3: f = 1. Then (4.3.9) becomes

E{detVZX (0)[X (0) = w} = E{det(V2Z(0) + VZm(0))| X (0) = w}

= E{det(A + V?m(0) — wiy)},

where A’ = (A J1<ij<n and all A are centered Gaussian variables satisfying

E{A}; ALY = E{Z;;(0)Z1,(0)|X(0) = w}
= k(001 + Oik0j1 + 010 1) + B0k — B20:501

= g/(iaja ka l)?

where E'(4, j, k, 1) = £(030p1 + 0;30j; + 0510;)- Applying Corollary 4.1.3, we get

N
E{detVZX ()X (0) = w} DY (=) 8;(VEm(0))w™ .
j=0
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Then
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Chapter 5

Excursion Probability of Smooth
Gaussian Processes over Random

Intervals

Let {X(t) : t € [0,00)} be a Gaussian process and let 7" > 0 be a fixed number, the tail
probability P{supp<t<7 X (t) > u} for large u has been extensively studied in the literature.
However, the supremum over the a fixed domain [0, 7] is not adequate in certain applications
[cf. Kozubowski et al. (2004, 2006)], instead, one needs to consider the asymptotics for
supg<¢<7 X (t) where T is a non-negative random variable independent of X.

To study P{supg<;<7 X(t) > u}, we have to take into account the behaviors of both
X and T. Therefore, some interesting phenomena arise due to the connection between the
Gaussian process and the random interval. Recently, M. Arendarczyk and K. Debicki (2011,
2012) considered the case when the Gaussian process X is non-smooth (i.e. the sample path

is not twice differentiable), and obtained the following result under certain conditions:

]P’{ sup X(t) > u} =g1(u)(1+0(1)), asu— oo, (5.0.1)
0<t<T

where g1 (u) is a function depending on X and 7T .
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In the theory of approximating P{supg<;<7 X(t) > u} for a fixed domain [0,77], the
asymptotic results for smooth Gaussian processes [cf. Adler and Taylor (2007) and Azais and
M. Wschebor (2009)] are much more accurate than those for non-smooth Gaussian processes
[cf. Piterbarg (1996a)]. More specifically, under certain smoothness condition, one can get
a higher-order approximation such that the error term decays exponentially faster than the
principle term. Motivated by this, one may expect that for smooth Gaussian processes over

random interval [0, 7], the following approximation holds under certain conditions:

IP’{ sup X (t) > u} = go(u)(1+ 0(6_0‘“2)), as u — 00, (5.0.2)
0<t<T

for some o > 0, where go(u) is a function depending on X and 7. Obviously, compared with
(5.0.1), (5.0.2) provides a much more accurate approximation. In this chapter, we apply the
Rice method [cf. Azals and Delmas (2002) and Azais and M. Wschebor (2009)] to prove our

main results Theorem 5.1.6 and Theorem 5.2.5 which are of the form as (5.0.2).

5.1 Stationary Gaussian Processes

Let X = {X(¢) : t € R4} be a centered stationary Gaussian process with Var(X(0)) = 1.
Define

r(t) = E{X()X(0)}, A*:=Var(X'(0)).
We will impose conditions (H1), (H3) and the following regularity condition (A1) on X.

(A1). For any fixed § > 0, sup;>s7(t) < 1.
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The number of maxima above level u over [0, 7] becomes
My(0,T) = #{t € (0,T): X(t) >u, X'(t) =0, X"(t) < 0}. (5.1.1)

Note that for each fixed ¢, X (t) and X'(¢) are independent, by (2.3.1), we have the following
upper bound for the excursion probability,

IP’{ sup X (¢) Zu}
0<t<T

< P{X(0) > u, X'(0) < 0} + P{X(T) > u, X'(T) > 0} + E{M,(0,T)} (5.1.2)

— W(u) + E{M,(0,T)}.

Similarly, by (2.3.2), the lower bound becomes
IP’{ sup X(t) > u}
0<t<T
1
> W(w) + B{ML(0,T)} - ZE(M0.T)(M,(0.7) - 1)} 515
—P{X(0) > u, X'(0) < 0, X(T) > u,X'(T) > 0}

Lemma 5.1.1 Let X be a centered stationary Gaussian process satisfying (H1) and (H3).

Then there exists some universal a > 0 such that for all T > 0, as u — 00,

T2
U /2

B{M,(0,T)} = 5 (1 + o(e—)).
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Proof Due to (H1) and (H3), one can use the Kac-Rice metatheorem and get

T
E{M,(0,T)} = /0 pX/(t)(O)E{‘X”(t)|]1{X(t)2u’X//(t)<0}’X/(t) = 0}dt
T > 2
— —/0 ﬁdwc/u E{X”(t)ﬂ{X//(t)<O}|X(t) =2, X'(t) = 0}e 24y

T o0 —a?
_ _ﬁdt/u E{X"(0)1{yn(g) <oy | X (0) = }e /d,

(5.1.4)

where the second equality is due to the independence of X () and X'(t), the last equality is

due to the stationarity of X. Note that E{X(0)X”(0)} = =2, by Lemma 2.5.1,
E{X"(0)|X(0) = 2} = =%z

Make change of variable V = X”(0) + Az, then V|X(0) = z is a Gaussian variable with

mean 0 and variance x2 = Var(X”(0)|X(0)). Let us denote its density by g(v), then

E{X"(0)1 (x"(0)<0y X (0) = =}

=E{X"(0)|X(0) = 2} — E{X”(O)IL{X//(O)ZO}IX(O) =} (5.1.5)

= Nz — / (v — A22)g(v)dv.
UZ)\QLE
But the last integral in (5.1.5) is non-negative and bounded by

2 34,2

v -5 K

2 2

vg(v)dv—/ e 2k%dv = e 2r% .
/1;2)\% v>\2z V2TK V2

Since A2 and k2 are both constants not depending on 7', plugging (5.1.5) into (5.1.4), we

obtain the desired result by choosing some a € (0, \*/(2x2)). O
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Lemma 5.1.2 Let X be a centered stationary Gaussian process satisfying (H1), (H3) and

(Al). Forty >ty >0, let

£(t1,12) := min {1, , dnt detCov(X(0), X'(0), X (1), X’(t))}. (5.1.6)

Then for any € > 0, there ezist positive constants C, § and €1 such that for all (0,T) C R

and u large enough,

E{Mu<0a T) (Mu(0> T) - 1)}

u? 2 —5/2 u?
e p T ) e { - S

< C’Texp{ —

where C, 8 and €1 do not depend on T and 5% = Var(X (0)|X"(0)) < 1.

Remark 5.1.3 Note that X is stationary, hence for any fixed ¢t > 0, X’(¢) is independent

of both X (t) and X" (), thus

detCov(X(0), X'(0), X (t), X' (t)) = det

Proof Letb>a>0andb—a < 2§ for some § > 0. Due to (H1) and (H3), one can use

the Kac-Rice formula for factorial moments [cf. Theorem 11.5.1 in Adler and Taylor (2007)],
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thus

E{My(a,b)(My(a,b) — 1)}

b b
:/ dt/ dst/(t)’X/(s)(O,O)
x E{IX" (X" ()11 (420,57 (1) <0y L (5) 20, X7 (5) <0y} X (1) = X' (5) = 0} (5-1.7)
b b 00
g/ dt/ ds/ dx py ) (x| X' (t) = X'(s) = 0)px/(1),x/(5)(0;0)

< E{|X" () X" ()||X (£) = 2, X' (1) = X'(s) = O}.

Let E(t,s) = E{| X" (t) X" (s)|| X (t) = z, X'(t) = X'(s) = 0}. By Taylor’s formula,
X'(s) = X'(t) + X" () (s — t) + |5 — t|T TV}, (5.1.8)

where Y; ¢ is a centered Gaussian variable. In particular, for s > ¢,

v X)) = X'(1) = X"(0)(s — 1) _ Jr(X"(v) = X"(0))dv
te = s — t|1+7 a (s — )1+ ’

and thus by (H1), Var(Y; ) < L?. Due to (5.1.8), we have

E(t,s) = B{IX"()X"(s)||X (1) = &, X'(8) = 0, X" (1) (s — t) = —|s — | Vi 5}
= |s = t"E{|Yz,s X" ()||X () = 2. X'(8) = 0, X" (t)(s — t) = —|s — [ "F"Y 5.

(5.1.9)
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By stationarity and (H1),

Var(X"(t)| X (t) = 2, X'(t) = X'(s) = 0) < Var(X"(t)) < Oy,

(5.1.10)
Var(V,s| X (t) = 2, X'(t) = X'(s) = 0) < Var(V;5) < L,
where C is a positive constant. On the other hand, for |s — ¢| small enough,
[E{X"(s)|X(t) = 2, X'(t) = X'(s) = 0}
= [E{X"(s)|X () = 2, X'(t) = 0, X" (t) + |s — t|T¥1,s = O}
(5.1.11)
= [E{X"(s)|X(t) = 2, X'(t) = 0, X" (t) = O}|(1 + o(1))
< 02"%‘7
and similarly,
E{Yi,sX(t) = 7, X(t) = X'(5) = 0}] < Cla, (5.112)
for some C9,Cg > 0. Note that for any Gaussian variables £; and &9,
Elé16s| < Eef + E& = (B&1)” + Var(€y) + (E€2)” + Var(&). (5.1.13)

Applying (5.1.13) and plugging (5.1.10), (5.1.11) and (5.1.12) into (5.1.9), we obtain that

there exists some C4 > 0 such that

E(t,s) < Cyls — t[1(1 + 22). (5.1.14)
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By Taylor’s formula (5.1.8),

Var(X ()| X'(1), X'(s))
= Var(X ()| X'(£), X'(t) + X" (1)(s = 1) + |5 — 1] T"¥ 5)
= Var(X ()| X" (t), X" (t) % |s — t]"Y;.5) (5.1.15)
= Var(X ()| X"(1), X" (1))(1 + o(1))

= Var(X(0)|X"(0))(1 + o(1)),
where the last equality is due to the fact that X'(¢) is independent of both X (¢) and X”'(¢).
Hence for any € > 0, if |b — a| is small enough and w is large enough, then

/UOO(1 + )y (@l X' (1) = X'(s) = 0)da < e 2%+, (5.1.16)

Note that
(0,0) < :
PXI0.X" )T = 5 TetCov(X/(£), X/(5))

and by Taylor’s formula (5.1.8),

detCov(X'(t), X'(s)) = detCov(X'(t), X' (t) + X" (t)(s — t) £ |s — t|1+’7Yt7s)
= |s — t?detCov(X'(t), X" (t) + |5 — "V 5) (5.1.17)

= |5 — t|2detCov(X'(t), X" () (1 + o(1)),

as |s — t| — 0 uniformly. Thus there exists some C5 > 0 such that for |s — t| sufficiently

small,

C
pX’(t)7X’(s)(070) < s —5t|‘ (5.1.18)
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Plugging (5.1.14), (5.1.16) and (5.1.18) into (5.1.7) we obtain that for any € > 0, if § is small

enough, then there exists Cg > 0 such that for large u,

__u b b
E{My(a,b)(My(a,b) — 1)} < CyCse 26%+e / / s — |7 Ldtds
v

2

u

< Cg(b— a)e_252+5.

The set [0,7] may be covered by congruent intervals I; = [a;, a;41] with the same length

0 and disjoint interiors. Then

B01,0.1)04,0.7) - 1) < 09 ( Z 0t - 1)}

_ E{ S (1) S M) Zwm}

(5.1.20)
= STEML(I)%) + ST E{Mu(1) Mu(1))} — S E{Mu(I;)}
i i£j i
= E{Mu(I;)(Mu(I;) = D)} + Y B{Mu(I1;) Mu(I;)}.
i i#]

If I; and I; are neighboring, say j =i + 1, we have

E{My(L; U L;p1)(My(L; U Liy1) — 1)}
= E{(Mu(L;) + Mu(Li1))(Mu(L;) + Mu(Ii+1) — 1)}
= 2E{ My (I;) Mu(Ii1) } + E{My(L;)(Mu(L;) — 1)} + E{Mu(L;11)(Mu(Liy1) — 1)}

(5.1.21)
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It follows from (5.1.19) and (5.1.21) that for any € > 0, if 0 is small enough and u is large

enough, then

E{M(5)Ma(Fi41)} < SE(M(3 U Ti41) (Ma( U i41) = 1)}

1
= §E{Mu(ai, a;12)(My(a;,a;19) — 1)} (5.1.22)
C, e
< 76(ai+2 —a;)e 27HE
and hence
2

u

STEMu(I)(Mu(1) - D3+ Y E{Mu([)My(Ii1)} < 2C5Te 277+, (5.1.23)
1 i;éj,fiﬂfi_i_l?é@

Next we consider the case when I; = [a;,a;41] and I; = [a;,a;j41] are non-neighboring,
which implies a; — a;11 > 0. By the Kac-Rice formula for higher moments [cf. the proof is

the same as that of Theorem 11.5.1 in Adler and Taylor (2007)],

E{My(1;) Mu(I;)}
@41 @jt1

:/ dt/ ’ dSpX/(t)’X/(s)(O,O)
CLZ' aj

< B{IX"(OX" ()L x (450, x7 (1) <0y L x ()30, () <0} | X (8) = X (5) = 0}

aZ‘Jrl a i+1 (0.9] oo
< / dt/ J ds/ dIL’/ dpr/(t),X/(s) (O, O|X<t) =z, X(S) = y)pX(t),X(s) (13, y)
a; aj u u

x B{|X"(O)X"(s)||X (t) = 2, X(s) =y, X'(t) = X'(s) = 0}

(5.1.24)
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By Lemma 2.5.1 and the stationarity of X, there exists some C7 > 0 such that

E{X" ()X (1) = 2, X(s) =y, X(t) = X'(s) = 0}

Cr(|=| + [y])
= detCov(X (1), X (5), X/ (1), X'(5))

and

[E{X"(s)|X () = 2, X(s) = y, X'(t) = X(s) = 0}

Cr(lz| + |yl)
~ detCov(X (), X(s), X'(t), X'(s))

Together with (5.1.13), similarly to (5.1.14), we obtain that

E{IX" (1) X" (s)|IX () = 2, X (s) = y, X'(t) = X(s) = 0}

s o (5.1.25)
<C <1 + Ty )
=P [detCov (X (1), X (), X7(0), X'(3))]2 )
for some Cg > 0. On the other hand,
pX/(t),X/(s)(O7 01X (t) =2, X(s) =y)
< 1
~ 2my/detCov(X/(t), X' (s)| X (t), X (s))
(5.1.26)

detCov(X(t), X (s), X'(t), X(s))
< o
= \/detCov(X (1), X (s), X'(), X (5))

1 \/ detCov(X (1), X (s))
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for some Cy > 0. Plugging (5.1.25) and (5.1.26) into (5.1.24), we obtain that for large u,

E{ My (1;) My (1)}
. (5.1.27)
< 2 = alaje ) (FGTN 2 [ [ 7@ 4 P (o ()

Let R(0) := sups>s r(t) which is strictly less than 1 by (H3), then for sufficiently large u,

sup / / (mQ+y2)pX(t)7X(S)(x,y)dxdy
|s—t|>0Ju  Ju

< sup B{(X()X(5) 1 x(1)>ux(s)>u)

|s=t=0 (5.1.28)
< sup B{X(1) + X () L (r) 4 x(s)>2u} )
|s—t|>d
< yAe—u?/(1+R(8))
Let e1 > 1 — R(6), by (5.1.27) and (5.1.28), we obtain that for sufficiently large u,
_ —u2/(2—
S E{Mu(I)Mu(I))} < T2(f(5,T)) %277/ 7e1), (5.1.29)
i?éj,fiﬁszm
Combining (5.1.20) and (5.1.23) with (5.1.29), we obtain the desired result. O

Lemma 5.1.4 Let X be a centered stationary Gaussian process satisfying (H1), (H3) and
(A1l). Then there exist some universal positive constants 6 and o such that for all T > 0

and u large enough,
2_,2
E{Mu(0. D)L (0)u,x7(0)<0y ) < L1/ )|/ 2emon T2,

2_,2
E{Mu(0. D) (12, x/(1)20)} < TG D727,
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where f(0,T) is defined in (5.1.6).

Proof We shall only prove the first inequality, since the proof for the second one is similar.

By Kac-Rice formula,

E{Mu(0, )V x (0)u,x7(0) <0}
T o0 o0 0
:/0 dt/ dx/ dy/ A= E{[X"(0)|L <0y X (1) = 2, X(0) = v,
X'(t) = 0,X7(0) = 2}px (s x(0).x' (1), X" (0) (% ¥, 0, 2)

T 00 00 0
S/o dt/u dx/u dy/_oodzEﬂX BX () = 2, X(0) = 3, X' (1) = 0, X'(0) = 2}

X PX(1),X(0),X'(t),X"(0) (z,9,0,2)

= /OT Au(t)dt.

Let 0 be a positive constant to be specified. We first consider

T T 00 00
/5 Au(t)dt§/5 dt/u dx/u dy B{|IX" (0)|| X () = 2, X(0) = y, X' (£) = 0} o

X pxr () (01X (E) = 2, X(0) = y)px (1), x (0) (% ¥)-

Note that E|¢| < E|¢ — EE| + |EE| < /Var(§) + |E£| for any random variable &,

Var(X” (t)| X (t), X(0), X'(t)) < Var(X"(t)) = Var(X"(0)).
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By Lemma 2.5.1 and the stationarity of X, there exists some C'7 > 0 such that

sup [E{X"(1)|X(t) = =, X(0) =y, X'(t) = 0}
o<t<T

oy Cillel )

~ s<t<T detCov (X (), X(0), X'(t))

oy Call] l)Var(X'(0) X (). X(0). X'(1)
5<t<T detCov(X (t), X(0), X'(t), X'(0))

< OYN[F8. T (] + [y)-

It follows that there exists some C9 > 0 such that

E{|X"(OIIX (1) = 2. X(0) = y} < Co(1+ [f(8, 1)) ) (|| + |y)- (5.1.31)

Similarly, there exists some Cg > 0 such that

sup pX/(t)(O|X(t) =2, X(0) =y)
o | (5.1.32)
su ~1/2.
= 5§t£T \/QWVar(X’(t)\X(t)’X(O)) < C3[f(0,T)]

On the other hand, for sufficiently large u,

sup / dx / dy(x +y)px (1),.x (0) (%> Y)
t>6 Ju u

= ig};E{(X(t) + X)L x(4)>u,x(0)>u} } (5.1.33)
u2

<sup E{(X(t) + X(0)>1{X(t)+X(O)>2u}} < ue” /(1+R(5))
t>6 -
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Plugging (5.1.31), (5.1.32) and (5.1.33) into (5.1.30), we obtain that for all 7" > 0, if u is

sufficiently large, then
2

/T Ay(t)dt <T[f(5, T)]*?’/Qefﬂigl,
5

where 1 > 1 — R(0).

Next we consider

§ é 00 0
/0 Au(t)dtg/o dt/u dy/oo d=E{| X" (£)[|X(0) = y, X"(0) = =, X'(t) = 0}

X Px(0),X"(0),x" () (¥ % 0)-

Note that
pX(0)7X/(Q)7X/(t)(?/;Z,0)
= px(0) WX (0) = 2. X (1) = O)pyr ) (Z1X(8) = O)p 71 (0)
w2
< (2m) 732 [detCov(X(0), X'(0), X'(1))] M2 %% e 2,
where

. = E{X(0)|X(0) = 2, X'(1) = 0},
o = Var(X (0)|X'(0), X'(1)).

7 = Var(X'(0)| X' (1)).

By (H1) and Taylor’s formula, we can write

X'(t) = X'(0) + X" (0)t + Yo 411,
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where Y(; is a centered Gaussian variable. We find that for ¢ € (0,6) with § sufficiently

small,

E{X(0)X"(t)} = t(E{X(0)X"(0)} + t"E{X(0)Yp})

= t(=A% + t"E{X (0)Yp}) <O0.

Since z < 0, it follows from Lemma 2.5.1 that p¢, < 0. If ¢ is sufficiently small, we also

have, similarly to (5.1.15),

o7 = Var(X(0)|X"(0))(1 + o(1)) < 1 — g,

and similarly to (5.1.17),
Cyt* <7 < Cst?,

detCov(X(0), X'(0), X'(t)) > Cgt?,

where €(, Cy, C5 and Cg are some positive constants. Together with the fact that
E{|X"(1)[|X(0) =y, X'(0) = 2, X'(t) = 0}
= B{|IX"()|IX(0) =y, X' (1) — tX"(£) + £ g = 2, X'(£) = 0}
= E{|X" ()| X(0) = y, X" (t) = t"YV; 0 = 2/t, X' (t) = 0}

< Crly+|z/t|+1)

138



for some C7 > 0, where the first equality is due to Taylor’s formula, we obtain that for ¢§

sufficiently small and u sufficiently large,

(y—p2)? .2

0 - 09 [ 0 T2 9.2
/ Au(t)dt < (27) %2 1/2/ zalt/ dy/ dao(y + |2/t + Ve 2% ¢ 2%
0 0 U —00

i_zz

1) 00 0
_ 1 2 2
< (2m)732¢y 1/2/ —dt/ dy/ dz(y + |2/t| + 1)e 2%t e 205t
0ot U —00
5 2
N oo 0 - 7 __Z
= (2#)*3/206 1/2/ dt/ dy/ dz(y+|z| + 1e 291 ¢ 205
0 U —00
u2

<
[\)

S (56 2(1*80)'

(5.1.34)

Combining (5.1.30) with (5.1.34), we obtain that there exist some universal d, « > 0 such

that for all 7' > 0 and u large enough,
E{M, (0, T)1 < TUf(8, 7)) 320w =u?/2
{ My (0,T) {X(O)ZU,X/(O)g(]}} <T[f(6,T)] € .
This completes the proof. O

Lemma 5.1.5 Let X be a centered stationary Gaussian process satisfying (H1), (H3) and

(A1l). Then there exists some universal o > 0 such that for all T > 0 and u large enough,

P{X(0) > u, X/(O) <0,X(T)>u,X'(T) > 0} < e—au2—u2/2
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Proof Let § > 0, then similarly to (5.1.33), we obtain that for sufficiently large u,

sup P{X(0) > u, X'(0) < 0, X(T) > u, X'(T) > 0}

T (5.1.35)

< sup P{X(0) > u, X(T) > u} < o—u%/(1+R(5))
T>6

For T € (0,6), by Taylor’s formula,

it follows that

P{X(0) > u, X'(0) < 0,X(T) > u, X'(T) > 0}
< P{X(0) > u, X'(0) <0, X(T) > 0}
(5.1.36)
=P{X(0) > u, X'(0) < 0,X'(0) + X" (0)T + Yo 7T > 0}

< P{X(0) > u, X" (0) + Yo rT" > 0}.

Let £(T) = X"(0) + Yo 7T, 53(T) = Var(&(T)) and p(T) = B{X(0)&(T)}/x(T), T € (0,6).
Since E{X (0)X"(0)} = —A2, if § is sufficiently small, supg<r<s p(I') < —¢&¢ for some gy > 0.

Let
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then 0 < x <K <ooand —1 < p <p < —¢gp. We obtain that as u — oo,

sup P{X(0) > u, X"(0) + Yo 77" > 0}

0<T<6
= sup / d:cl/ dxo
0<7<6 2mrR(T )( p2(T))1/2
X exp { x 2:0<Z;);3)1x2> }
dry exp{—a71/2 5.1.37
0<T<5 27m(T( pQ(T))l/Q/ 1 exp{—11/2} ( )
_ 2
o - O,
2(T)(1 - A(T))
- 2
< dx1exp{—=x 2/ ex{ M}dx
P / opt-at/2) [ o] - Lo b,
2 2-2.2
u K=p~u 9
_O(exp{‘E‘mm })
for any £ > 0. Combining (5.1.35) and (5.1.36) with (5.1.37) yields the result. 0

Theorem 5.1.6 Let {X(t) : t € Ry} be a centered stationary Gaussian process satisfying
(H1), (H3) and (A1), and let T be a non-negative random variable independent of X . If

ET2(f(5,T))5/2 < oo for any fired 6 > 0, then there exists a > 0 such that as u — oo,

7u2/2 + 0<€—au27u2/2).

} AET

IP’{ sup X(t) >up=V(u)+ P

0<t<T

Proof Let Fr be the cumulative distribution function of 7. Note that

1@{ O;IETX@) > u} _ /0 = p{ O;IETX@) > u}FT(dT), (5.1.38)
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combining (5.1.2), (5.1.3), Lemma 5.1.1, Lemma 5.1.2 and Lemma 5.1.4 with Lemma 5.1.5,

we obtain the result. O

Example 5.1.7 Let X be a centered stationary Gaussian process with covariance function
2
t
r(t) = ¢ 2. Then Var(X’(0)) = Var(X(0)) = 1,E{X'(#)X(0)} = —-E{X(#)X'(0)} =
2
t
r'(t) = —te” 2 and E{X'()X'(0)} = —"(t), thus

2
detCov (X (¢), X'(t), X (0), X' (0)) = (1 — e~ )2, (5.1.39)
which is increasing in t > 0. Hence if ET? < oo, then

IP{ sup X(t) > u} = WU(u) + He_u% +O(e—au2_u2/2)'
0<t<T 2

5.2 Gaussian Processes with Increasing Variance

In this section, we consider a Gaussian process { X (t) : t € Ry} with increasing variance at

infinity. Let
o = Var(X(t)), A2 =Var(X'(t)), 602 = Var(X(t)|X'(t)). (5.2.1)
Let 7 be a non-negative random variable satisfying

P{T >t} = exp{—0t*(1 +0(1))} ast— oo, (5.2.2)
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where «, 5 > 0. We write T € E(a, ) if T satisfies (5.2.2). Note that (5.2.2) implies that
the corresponding cumulative distribution function F7-(¢) is continuous when ¢ is sufficiently
large.

In additional to conditions (H1) and (H3), we will impose the following two conditions

(A2) and (A3) on X.

(A2). There exist ax > 0 and Dy > Dy > 0 such that as t — oo,
of = D1t (1+0(1)), 07 = Dyt (1+o(1)).
(A3). There exists N1 > 0 such that as t — oo,

max{\?, Var(X"(t)), (detCov(X (), X'(t))) '} = O(t1).

We will make use of the following inequality to estimate the excursion probability over

each fixed interval [0, T7:

P{X(T) > u} < P{ s X(0)2 up <PAX(T) > u} + P{X(0) > u} + E{M,(0,T)}.
(5.2.3)

The following result is Lemma 6.2 in Arendarczyk and Decicki (2011), which is analogous

to the Laplace method.

Lemma 5.2.1 Letay,a, 51,02 > 0 anda(u) = u(1-0)ar/(ar+ag) Au) = u(I+0)ay/(aytag)

where 0 < 6 < ag/ay. Then as u — oo,

pru™l

Au) !
[ o] = B etz b = exp {04 o),
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where

1o
ag = ———,
a1 + a9
_ sao/(atag) jaq/(ag+ag) (a1 2/ (@1Fa2)  ragyar/(a+ag)
b3 =06 B2 [(ag) * <a1> }

Now we prove a lemma similar to Lemma 2.1 in Arendarczyk and Decicki (2011).

Lemma 5.2.2 Let X € E(aq,51),Y € E(ag, B2) be independent non-negative random vari-

ables. Then XY € E(a, B) with

109
Cartag
5= sz/(aﬁaz)ﬁ;ﬂ(aﬁ%) [(%)%/(aﬁaz) N (%)al/(aﬁ%)]'

Proof Let a(u) = u(1-0)ar/(ag+ag) A(u) = uItd)ar/(a1+ag) where 0 < § < ag/ay.

Then

PIXY 2 0= [ TR > u/y)dFy ()

a(u) A(u)
= /0 P{X > u/y}dFy (y) + / | P{X > u/y}dFy(y)

a(u

+/OO P{X > u/y}dFy(y)
Au)

u

= I1(u) + Io(u) + I3(u).

For any € > 0 and u large enough, we see that

Ii(u) < P{X > u/a(u)} < exp{—(61 — )[u/a(u)]"1}

<exp{—(81 — S)Ual%/(al+a2)+6a%/(a1+a2)} = o(exp{—uo‘3+50})
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and

I3(u) < P{Y > A(u)} < exp{—(B2 — €)(A(u))"2}

< exp{—(B2 — €)U(1+§)a1a2/(al+a2)} = O(exp{—uo‘3+50}).

Next we estimate Io. Note that both u/a(u) and u/A(u) tend to oo, hence for any € > 0

and u large enough, we have

A(u)
Iy(u) > / exp{— (81 + &) (u/y)°1 }dFy (y)

(u)

Alw) 9 o
_ / w3y P W Y 2 )y

+exp{—(b1 + &)[u/a(u)| 1 }P{Y = a(u)}
— exp{—(B1 + &)[u/A(u)] " }P{Y > A(u)}

A(u)
> / exp{—(B1 + &) (1 + &) (u/y)*1 } exp{— (B2 + £)u"2 }dy

(u)
+exp{—(f1 + &)[u/a(u)|*1} exp{—(f2 + ) (a(u))*2}
— exp{— (1 + &)[u/A(u)]"1 } exp{—(F2 — &)(A(u))*2}

= l2(“> 5) + El(u7 5) - BZ(U’ 5)7

and similarly,

A(u)
I(u) < / exp{—(B1 — £)(1 — £)(u/y)1 } exp{— (B — £)u®2}dy

+exp{—(B1 — &)[u/a(u)]"1 } exp{—(B2 — ) (a(u))*?}
— exp{—(B1 — &)[u/A(u)]"1} exp{—(f2 + €)(A(u))*2}

= Io(u, &) + Ri(u, &) — Ro(u,¢).
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Applying Lemma 5.2.1, we obtain that for any € > 0, as u — oo

Iy(u,e) = exp{—P4(e)u3(1+ o(1))}, T2(u,e) = exp{—B3()u3(1 + o(1))},

where

10
a1 + a9 7

By(e) = [(B1 +)(1 + )2/ (C1te2)(, 4 g)ar/ (o1 +ag)

" [(% 042/(a1+042)+ (@ 041/(a1+042)}’

a3 =

o
Ba(e) = [(B1 — )(1 — e)]2/(@1ta2) (g, — o)a1/(ar+a)
ap\@/(et+ag)  ragyar/(aj+ag)
< (%) +(2) |

Qag a1

Together with the fact that there exists some €y > 0 such that all I1(u), I3(u), Rq(u,¢),

Ry(u,¢), Ri(u,¢e), Ro(u,e) are o(exp{—u®3T€0}), we obtain the desired result. O

Lemma 5.2.3 Let X be a Gaussian process satisfying (A2) and (A3) and let T € E(a, B)

be a non-negative random variable independent of X. Then X (T) € E(a, 1) with

- 2«
~a ! aa+ C/M(O:;a ) 1 \o/(ataco) a \ oo/ (atacc) oo\ &/ (atano) (5:24)
b= et () (o) ()T

Proof Let N be the standard Normal random variable and let v(-) be the standard

deviation function of X, i.e. v(t) = oy. Note that

P{X(T) > u} =P{v(T)N > u}. (5.2.5)
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On the other hand, as u — oo,
P{u(T) > u} =P{T > v~ " (u)} = exp{—B(r" ' (u))*(1 + o(1))}
and
v () = Dy a0 (14 o(1)),

thus

P{v(T) > u} = exp{—BD; */“u20/0 (1 4 o(1))},

ie., v(T) € 5(2a/aoo,ﬁD1_a/aoo). Note that N' € £(2,1/2), applying Lemma 5.2.2 in

(5.2.5), we conclude the result. O

Lemma 5.2.4 Let X be a Gaussian process satisfying (H1), (H3), (A2) and (A3), and let

T € E(a, B) be a non-negative random variable independent of X. Then for any e > 0,

/Ooo E{ M, (0, T)}Fr(dT) = o(exp{— (B2 — e)ut}) as u — oo,

where

~ 2x
a= ,
o+ Qo

(5.2.6)
> 61.

32 _ ﬁaoo/(01+0¢oo) (ﬁ)a/(a—i—aoo) [( a >aoo/(a+aoo) N (aoo)a/(oz—l—ozoo)]

Qo «
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Proof By the Kac-Rice formula,

E{My(0,T))}
T 00

:/0 dt/u de E{LX ()1 ) <o X () = 2, X' (8) = O} ) 70 (2. 0)
T 00

< [ [T amBIXT@OIX 0 = 2. X0 = 0} (alX(0) = O 0)

9\, " = T4y = l —22 /262
/0 QﬂAtdt/u dz B{|X7(1)[|X (1) = 2, X°(t) _o}et@ B

Note that E|¢| < E[¢ — EE| + |EE| < /Var(§) + |E£| for any random variable &, and

Var(X"(8)|X (t), X'(t)) < Var(X"(1)),

E{X"(t)|X(t) = z, X'(t) = 0}

_EX"()X (I — E{X"(0) X (0)}E{X' (1) X (1)}
detCov(X (1), X/(1))

x.

thus
E{|X"(t)|| X (t) = =, X'(t) = 0}
7 E{X" (1) X (t)}\? — B{X" (1) X' (1) }E{ X' (1) X (1)}
< v/ Var(X7(t) + 2etCov (X(0). X7(0) z
Now let

a 1 7 IE{X" (1) X (1) }AF — E{X"(t) X' (t) }E{ X' (t) X (1)}
hlt) = _( Var(X"(1)) + detCov (X(0). X(0) )

By (A3), there is some No > 0 such that
h(t) = o(t™2) ast — oo.
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Let Ty be a large number such that for ¢ > Tj, h(t) < N1, 0752 is increasing and 0t2 < ¢+l
Let A be a large number such that supg<;<7;, h(t) < A and SUPO<¢<T}, 9t2 < A, then for u

large enough,

To 1 > 2002 [T 1 00 2 1902
BOLO.TN < [ oohar [ ane R [ L [ e
0 27T u TO 27’(’ U

T, 2 T 00 9,002
< 29 ge—u”/(24) +/ —tNldt/ dpe /207
2m T, 2m u

o0
< Loy 24y L L pNprajeage [T gL a?/26

2m V2T u V21O

Hence we have

/ ¥ E{M(0.T)}dF(T)

Ty . _,2 o0
< U peu /(2A) / TN1+a1+2dF T /
= o0 e -+ A 7'( ) ; ——27T0T

= I1(u) + I2(u).

00
1 e—x2/20% du
)

Let 7 be a non-negative random variable with cumulative distribution function satisfying
dF%(t) — tN1+1F2g 1 (t), then T € E(o, B). Let {X(t) : t € Ry} be a Gaussian process

with Var(X(t)) = 02, then by Lemma 5.2.3,
X(T) € €@ ),
where @ and 3 are as shown in (5.2.6). Note that
Ip(u) = P{X(T) = u}

and 2 > & hence I (u) = o(exp{—u®T9}) for any &§ € (0,2 — &). Thus both I1(u) and I5(u)
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are o(exp{—(By — £)u®}) for any e > 0. The proof is completed. O

Theorem 5.2.5 Let {X(t) : t € Ry} be a Gaussian process satisfying (H1), (H3), (A2)
and (A3), and let T € E(a, B) be a non-negative random variable independent of X. Then

X(T) € &(a, 51) and as u — 0o,

P{ sup X(1) > uf =P{X(T) > u} +olexp{~(F — )u})
0<t<T
= P{X(T) > u}(1 + ofexp{— (B — f1 — £)u})

for any € > 0, where a, 51 and 52 are as shown in (5.2.4) and (5.2.6).

Proof Note that

]P’{ sup X(t) > u} = /OOO IP’{ sup X(t) > u}FT(dT),

0<t<T 0<i<T

combining (5.2.3) and Lemma 5.2.3 with Lemma 5.2.4, we obtain the result. O

Example 5.2.6 Let X (¢ fO f() v)dvds, where B(v) is the standard Brownian motion.

Then one has

2 0 2 § "

o = 2—0, )\t = g, V&I’(X (t)) = t,
t4 t3 t2
E{X()X'(0)} =5, E{X@OX"()} =7, BX(OX"(0)} =3,
9

07 = Var(X ()| X' (1)) = =

P = Var(X (0] X'(1) = -

Example 5.2.7 Let X (¢ fo fO v)dvds, where Z(v) is a continuous stationary Gaussian
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process with covariance function R(t) such that R(0) =1 and

R(t) = Dt =41 4 0(1)) ast — oo,

where D > 0,2 < apo < 4. Then

O-tQ - Oéoo(Oéoo _Qé))(aoo - 3) tam(l " 0(1))

and

07 = of — [E{X ()X (1)}]?/Var(X'(¢))
B (4 — aso)D
T 2000(a00 — 2)(ao — 3)

$200 (1 4 o(1)).
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Chapter 6

Ruin Probability of a Certain Class of

Smooth Gaussian Processes

Let {X(t) : t > 0} be a centered smooth Gaussian process with variance 27 for some
v > 2. We consider the probability P{sup;>(X(t) — P) > u} as u — oo, where ¢ > 0
and 8 > . We derive some asymptotic approximations to such probability which refine the

result of Hiisler and Piterbarg (1999).

6.1 Self-similar Processes

Let {X(t) : t > 0} be a centered smooth Gaussian process with variance #27 for some 7 > 2.

We say X is self similar if its covariance function C(¢, s) satisfies

Clat,as) = a®>C(t,s), Vt,s>0,a> 0. (6.1.1)
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X

Let Y (t) = il

then

]P’{ sup(X(t) — ct?) > u} =P{X(t) > u+ ct” for some t > 0}
t>0

= P{X(ul/ﬁt) > u+ c(ul/ﬂt)ﬁ for some t > 0}

= P{U’Y/BX(t) > u(1 + ct?) for some t > 0} (6.1.2)
X@) o 1- }
—P /8
(e >

“Flpyo =

27

where the third equality is due to the self-similarity (6.1.1). Note that Var(Y (t)) = TP
C

as a function of ¢, attains its maximum

() ()

Theorem 6.1.1 Let {X(t) : t > 0} be a centered self-similar Gaussian process with variance

at the unique point

t2V for some v > 2. Let 8 >~ and ¢ > 0. Suppose X satisfies (H1) and (H3). Then there
exists some a > 0 such that as u — oo,

IP{ igg(X(t) — ctﬁ) > u} = IP’{ §1>118Y(t) > ul—W/ﬁ}

2t0 E{Y” |Y( ) = Y/(t) _ 0} _x2/202
/ /1 v/B QW\/detCov ( ),Y/(t)) € tdr (6.1.3)

2-2v/p
+0(exp{ U 52 —ozu2_27/6}>,
o
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where Y () = —Cg and 02 = Var(Y (1)|Y'(t)).

Proof The first equality in (6.1.3) is the result in (6.1.2). Note that

P{ sup  Y(t) > Ul_V/B} < ]P{ sup Y (t) > ul_W/ﬁ}

to/QStSZtO t>0
< ]P’{ sup  Y(t) > ul_wﬂ} + IP’{ sup  Y(t) > ul_v/ﬁ} (6.1.4)
to/2<t<2t 0<t<t(/2

+IP’{ sup Y (t) > ulffy/ﬂ},
£>2t

where the last two terms are super-exponentially small due to the Borell-TIS inequality [cf.

Theorem 2.1.1 in Adler and Taylor (2007)]. On the other hand, by Theorem 3.1.9,

]P{ sup Y (t) > ulffy/ﬂ}
to/2<t<2t

/ 0 / E{Y"(O)[Y (1) =2, Y'(t) =0} 2226
1=9/8 27\/detCov(Y (1), Y'(t))

2-2v/pB
+0<exp{ _ 52 —au2_27/5}>.
o

Combining this with (6.1.4) yields the desired result. O

Corollary 6.1.2 Under the assumptions in Theorem 6.1.1, as u — o0,

IP’{ sup(X(t) — ctﬂ) > u} = IP’{ sup Y (t) > u1*7/ﬂ}

t>0 t>0
[ Var(Y'(tg)) -2 1-v/8
_(E{Y(to)y”(to)}+1) ¥( )t o)

Proof One can check that the second derivative of the variance function of Y, Var(Y (t)) =

27

TP at tq is not equal to 0. This implies that the condition in (3.2.6) holds. Applying
C
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Corollary 3.2.3 and Theorem 6.1.1, we obtain the result. 0

6.2 Integrated Fractional Brownian Motion

In this section, we show the application to a typical example, the double integrated fractional
Brownian motion.

Let X(t) = fg Jo Br(u)duds, where By is fractional Brownian motion with Hurst index
H,ie. Cov(Bg(t)By(s)) = $(t*H +s2H —|t—s|?H). Then X satisfies (6.1.1) with v = H+2,
it also satisfies (H1) and (H3), and

12H+4

Var(X () = s e (6.2.1)

Let 8> H+2and Y (t) = 1)i(?5, we consider the probability
C
IF’{ sup(X (1) — ct?) > u} - IP’{ sup Y (t) > ul(H+2)/8 } (6.2.2)
t>0 t=>0
We see that
(2H+4
Var(Y(t)) = (6.2.3)

2(2H + 1)(2H + 4)(1 + ctP)2’

which attains the maximum at the unique point

B H+2 \Y°
ty = (m) . (6.2.4)
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Note that

B0 WY0) = g s )
C2QH+ 1)1 +ctP)2 2 2H+4)(1+ctP) [
, 12H+2 1 62521526 Cﬁtﬂ
Var(Y(t)) = (1 + ctP)2 {ZH 2" 202H + 1)(2H + 4)(1 + ct?)2  2(2H + 1)(1 + ctP) }
and
E{Y (t)Y"(1)}

B {2H+2 {2H2 +H+1 BB+ —cp(B— 1t cpt? }

©2(2H + 1)(1 + ctP)2 2H +2 (2H + 4)(1 + ctP)? 1+ cth |’
it follows that

Var(Y(tg)) H?-H

E{Y (t)Y"(t0)} (3 —2)(H + 1) — 2H2

Thus by Corollary 6.1.2,

P{ sup(X (t) — ct?) > u} = IP’{ sup Y (t) > ul—(H+2)/ﬁ}

£20 >0
N Var(Y'(tg)) -1/2 w
(E{Y(to)Y”(tO)} + 1) ‘I’< Var(Y(tO))) (6.2.5)

(B2 ) —2m\ 2T
(o) Var<Y<to>>)'

Now let H =1/2, =3 and ¢ = 1. By the discussions above,

P{sup(X(t)—ctﬂ >u} \/_qf< 141;;1/6). (6.2.6)

t>0

However, applying the Laplace approximation of higher order to (6.1.3), we will get a more
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accurate approximation:

P{ sup(X(t) — ctﬂ) > u}

tz;) N " 1 2 (6.2.7)
T — X
~ %/ulm {\/Eco + (702 —I—Co)ﬁ} exp ( — —52/3>dx,
where
. 81/3051/0 o 19+/305%/6 - _ V15
0= "5 27 900 VT 5

6.3 More General Gaussian Processes

Assume that {X(¢) : t > 0} is a centered smooth Gaussian process with variance 27 for

N X(ul/ﬁt)

= ———"— th
u')’/ﬂ(l-i-ctﬂ)’ e

some v > 2. Let Xy(t)

IP{ sup(X (t) — ct?) > u} = P{X(t) > u + ct” for some t > 0}
t>0

= P{X(ul/ﬁt) > u+ c(ul/ﬂt)ﬁ for some ¢t > 0}

1/B
— P{M > w8 for some ¢ > 0}
wI/B(1 + ctP)

(6.3.1)

= IP’{ sup Xy (t) > ul_Wﬂ}.
t>0

_ 2
(14ct?)2’

(o) ()

Note that Var(X,(t)) = as a function of ¢, attains its maximum

at the unique point



We see that neither o2 nor ¢y depend on .

E{X(#)X(s)}

Let r(t,s) = /Var(X (t))Var(X (s))

, we will make use of the following condition.

(A1’). For any fixed § > 0, R() := SUp|_g|>5 7(t,s) < 1.

Let Mul—v/ﬂ(X“’ (to/2,2tp)) be the number of local maximum points ¢t € (tg/2,2tg)

such that X, (t) exceeding level u!~7/5.

Lemma 6.3.1 Let {X(t) :t > 0} be a centered Gaussian process with variance t*7 for some
v > 2. Assume X € C%(Ry) a.s. and that X satisfies the regularity conditions (H3) and

(A1"). Suppose there exist positive constants Cy, Ny and ng such that for all t > 0,

Var(X" (1)) < Co(t™0 + 1),

(6.3.2)
[detCov(X (¢), X"(t), X" ()]~ < Co(t™N0 + 1);
for all t # s,
E(X"(t) = X"(s))* < Col(t + )"0 + 1)(t — 5)*™; (6.3.3)
and all [t — s| > &y, where g > 0 is some fized number,
[detCov (X (t), X'(t), X (s), X' (s))] L < Cp(t + s)™0. (6.3.4)

Then there exists some o > 0 such that as u — o0,

B{M 1 /5(Xu, (t0/2,2t0))[M 1 5(Xu, (to/2,2t0)) — 1]}
2-27/8
= o(exp{ _ 4 20; — ozu2_27/5}>.
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Proof By the Kac-Rice metatheorem, one has

E{M 1 )p(Xu, (t0/2,2t0))[M 1 ;5(Xu, (to/2,2t0)) — 1]}

2t 2t 00
< / Ut / Y ds / dE{| X! (1) X" ()| Xu(t) = 2, X(8) = X!(s) =0} (6.3.5)
to/2  Jig2  Julm/B
X PXy(t) (x‘X’l/L(t) = X{;(S) = O)pX{L(t),X{L(s)(O’ 0).

Let Ey(t,s) := E{| X/ () X]](s)|| Xu(t) = z, X],(t) = X],(s) = 0}. By Taylor’s formula,
X0(8) = X0(0) + XU(t) (s — ) + |5 — V3 s, (63.6)

where Y; ¢ 4, is a centered Gaussian variable. In particular, for s > ¢,

() = Xp(t) = Xp()(s — 1) [{(Xy(v) = Xy(t))dv
(s —t)Hn N (s —t)1Hn

U
Y;f,s,u =

Differentiating Var(X (t)) = t*7 with respective to t twice, we see that

2(Var(X' () + E{X (1) X" (t)} = 2y(2y — 1)t2772.

Since [E{X(t)X"(t)}| < Var(X(t))Var(X"(t)) = t*YVar(X"(t)), together with condition
(6.3.2), we get

Var(X'(t)) < C1 (™1 + 1)

for some positive constants C; and Ni. Combining this fact with conditions (6.3.2) and
(6.3.3), we obtain

sup Var(Y; s.u) < CQUN2
t0/2<t<s<2t
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for some positive constants C'y and No.

Applying (6.3.6), we have

Eu(t,s) = E{|X ()X (5)| Xu(t) = &, X3(t) = 0, Xy (0)(s — 1) = —|s — t| M50}
= |s — t/"E{|Yz,,u X0, ()| | Xu(t) = 2, X0 (t) = 0, X7 () (s — t) = =[5 — | TV 50}

(6.3.7)

For any Gaussian variables &1, &9, the following inequality holds,
El¢1&o| < BEE + EE3 = (B&p)? + Var(6y) + (Eé)? + Var(&). (6.3.8)

We have

Var(Xy ()| Xu(t) = 2, X, (1) = X{,(s) = 0) < Var(X}/(1)) < C3u™3,

Var(Y 5.0 Xu(t) = 2, X1,(t) = X},(s) = 0) < Var(Y;s.4) < Coul¥2,

for some positive constants C'5 and V3.
On the other hand, for s > ¢ and |s — t| — 0, there exist positive constants Cy, C5, Ny

and N such that for large x and w,

[E{Xy (0] Xu(t) = 2, X,,(t) = X, (s) = 0}
= [B{X0 ()| Xu(t) = 2, Xy, (t) = 0, Xy/(t) + |s — t|"Y,5.u = O}

< [B{XY(D)|Xu(t) = 2, X}(8) = 0, X}/ (1) = 0}| + o(1)u"4[a]

Cylz|

= Nz < Ns
= detCov (X, (1), X1 (1), XI'()) +o(1)u" |z| < Cslz|u’s,

where the last line is due to condition (6.3.2). In fact, let (£1,&2,&3) be a non-degenerate

160



Gaussian vector, then

detCov(&1, &1 +&2,81 + &2 + €3) = detCov(&y, &2, €3).

By using this identity, we see that condition (6.3.2) implies that there exist positive constants

C’é and Né such that for large wu,

!/
sup  [detCov(Xyu(t), X (1), X1/ (1))] 7! < Chu™0.
t0/2§t<5§2t0

Similarly we obtain that as |s — t| — 0, there exist positive constants Cg and Ng such that

for large x and wu,
[BAY: 5,0l Xult) = 2, X, (1) = X3 (s) = 0}] < Cglau™6.

Combining these results with (6.3.7) and (6.3.8), we get

Eu(t,s) < |s — t](C3u™3 + Cyu™4 + C2|z2u®N5 + O3z 2u?N6), (6.3.9)
By Taylor’s formula (6.3.6), as |s — t| — 0,

Var(Xu (1) X0, (1), Xo(s))
= Var(X, ()| X0 (1), X, (8) + X (8) (s — 1) + |5 — ¢ 1Y 50)
= Var(Xu(t)| Xy, (), Xy (t) £ [s — t|"Y,5.0)

= Var(Xy,(t)| X, (t), X0 (1))(1 + o(1)).
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Let

e s Vas(u(OXL0, XU0)
u>0,t0/2§t§2t0

One can check that the second derivative of the variance function of X (t), Var(Xy(t)) =

2
L, at tg is not equal to 0. Therefore sup E{Xy(t9) X" (ty)} < 0 and moreover,
(1+ct5)2 0 u>0 u
K2 < o2

For any ¢ > 0, if |s — t| is sufficiently small, then for large u,

/ 1 TP (0 (FIXL() = X (s) = 0)dw < e 26%4e
U

Note that

1
0,0
Pt 0 S e ) X))

and by the Taylor expansion, for |s — ¢t| — 0 and large u,

detCov(X],(t), X (s))
= detCov (X, (), X},(t) + Xy (t)(s — t) + |5 — | Y} 5.0)
= |s — t?detCov(XL,(t), X/ (t) + |s — t|"Vz.5.0)

= |5 — t|2detCov (X (t), X" (1)) (1 + u™V70(1)),

where N7 is some positive constant. Note that

/ " . detCov(Xy (1), X’I/J,(t)7X’lIJ,/<t>>
detCov(Xult). Xult)) = X O IXT (1), X7(1)
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Thus by conditions (6.3.2) and (6.3.3), there exists positive constant Ng such that for small

|s — t| and large u,

0,0) < 2
Pt .49 00 = T

Note that when u tends to infinity, the polynomials of u will be killed by the exponential
decay of u. Plugging these results into (6.3.5), we obtain that for any € > 0, there exists

0 > 0 small enough, such that for large u,

B{M 1 /5(Xu, (to = 0,t0 + O)[M 1 /5(Xu, (to — 0,10 +6)) — 1]}

_M to+o  rtogt+o
<e 2wi+e / s — t|7 Ldds
t0—5 t0—5
C 5 u2_27/ﬁ
< ex -
= LTOeEp { 2K2 + ¢ }

for some positive constant C'y.

The set [tg/2,2tg] may be covered by congruent intervals I; = [a;,a;11] with disjoint
interiors such that the lengths are less than §/2. By similar discussions in Lemma 5.1.2, we
only need to consider non-neighboring I; = [a;, a;41] and I; = [a;,aj 1], say aj—a; 41 > 0/2.

Then

E{M 1 )p(Xu, )M 1y 5(Xu, 1)}

I e A A o > " " _ _
-, /aj s [ [ s B XXX = . Xalo) =
Xult) = Xu(s) = 0315 x7,(9) (0 O Xult) = @ Xu(s) = )P 1) X (5) (7 )

Similarly to (6.3.9), by conditions (6.3.2) and (6.3.3), there exists a positive constant Ng
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such that for large wu,

E{1Xy (1) X3 ()| Xu(t) = 2, Xu(s) = y, X, (1) = Xy (s) = 0}

- uN9(x2+y2) ‘
= [detCov(Xy(t), Xu(s), XL (t), X/, (5))]2’

and also,

pX’()X’( (0,01 Xy(t) =z, Xu(s) = y)

1
= 2/ detCov (X7, (1), X1, (s)| Xu(t), Xu(s))
1 detCov(Xy (1), Xu(s))
B detCov (X (t), X7,(s), Xu(t), Xu(s))
uN9
<

V/detCov (X (t), X7,(s), Xu(t), Xu(s))

Thus by condition (6.3.4), there exists a positive constant Ny such that for large u,

B{ My (13) Mu (1)}

< u2N9<ai+1 —a;)(a aj41 — )/1 —+/8 /1 /B dmdy(mQ +y2)pXu(t),Xu(S)($7y)

—5/2
X inf detCov(Xy(t), Xu(s), X (1), X!
tvSE[to/Z?ltrS]rlt—sEa/z etCov(Xu(t), Xu(s), Xy (1), Xy (s))

< M0G0 oo~ ) [ [T e P, 0 @00
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By (A1), R(d) = SUP|s_¢|>5 7'(L, s) Is strictly less than 1 hence for u sufficiently large,

\s—stlga/g /ul—v/ﬁ /ul—v/ﬁ drdy(x” + y7)Px (1), Xy (5) (€5 V)

< sup E{(Xu(t)Xu(S))2[(Xu(t) > ul_Wﬁ,Xu(s) > ul—ﬂy/ﬁ)}
|s—t|>5/2

< sup E{(Xu() + Xu(s)))I(Xult) + Xuls) = 2u' /7))

|s—t|>6/2
e -
=P T I RG2S
Combining the results completes the proof. O

Theorem 6.3.2 Suppose the assumptions in Lemma 6.5.1 hold. Then there exists o > 0

such that as u — oo,

p{ sup(X (1) = ct’) 2 u} =p{ op Xa(1) 2 118

/2to / E{Xu (@ Xu(t) = 2, Xu(t) = 0} 22262 (1)), (6.3.10)
1=/B 2wy /detCov(Xy(t), X/,(t))

2-2v/B
—l—o(exp{ L 52 —auQQWﬂ}),
o

X (ul/Pt)
WV B (14ctP)

where Xy (t) = and 02 (t) = Var(Xy(t)| X1, (1)).

Proof The first equality in (6.3.10) is the result in (6.3.1). Note that

Pl s Xu(t) > P} <PLoup (1) > w11/}

to/2<t<2t t20
< IP’{ sup  Xy(t) > ulf'y/ﬂ} + IP’{ sup  Xy(t) > ulfvw} (6.3.11)
t0/2§t§2t0 0§t§t0/2

+ IP){ sup Xy (t) > ul_V//B},
1>2t
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where the last two terms are super-exponentially small due to the Borell-TIS inequality [cf.
Theorem 2.1.1 in Adler and Taylor (2007)]. On the other hand, by Lemma 6.3.1 and the
bounds in (2.3.3),

IP’{ sup  Xy(t) > ul_wﬁ}
t0/2§t§2t0

2—2 /ﬁ
= E{M 1 _5(Xu, (f0/2,260))} + 0<exp{ _w au2—2w}>

22

/2t0 / E{X7 (1) Xu(t) = 2, X3 (t) = 0} 2/(263(0) gy
L=v/B 27m/detCov (X, (1), X[,(t))

2-2v/8
+o(exp{ U 52 —ozu2_2'7/6}),
o

where the last equality comes from the combination of similar discussions in Lemma 2.3.2

and Lemma 6.3.1. Combining this with (6.3.11) yields the desired result. O

Applying the Laplace method, we obtain the following result.

Corollary 6.3.3 Under the assumptions in Theorem 6.3.2, one has that as u — o0,

IP’{ sup(X(t) — ctﬁ) > u} = IP’{ sup Xy (t) > ul—v/ﬁ}

>0 >0
[ Var(X)(to)) Y2l /B
- <E{Xu(t0)X{{(to)} “) ¥(— ) o)
Example 6.3.4 Let 5 > H > 2, X(t) = tH2(t), Xu(t) = Ij(/g?lliﬁgﬂ) - tHIZfZ;/B),

where Z is a smooth stationary Gaussian process with covariance r(t) and r(0) = 1. Then

Var(X (t)) = t?7 | and

IP{ i;lg(X(t) — Py > u} = IP{ igg Xy(t) > ul_H/ﬁ}.
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Notice that Var(X,(t)) attains it maximum

vt = () ()

at the unique point

By tedious computations, we get

H-1 _ _ H+p-1 H_ 1/8
Ht c(f—H)t Z(tul/ﬂ)—l—t u

(1 —i—Ctﬁ)Q 1—{—ct5

X/ (t) = 7' (tut!P),

and
X (t) = H(H - 1)tH—2 +c((2H — B)(H — 1) — 52)tH+5*2 2B - HY(1 - H)t25+H*2
o (1 + cth)3
— By — ptH+B-111/8 (H,2/8
2/’ AU = 7'ty £ 2 g (4,1 B,
X Z(tu''P) + 17 ) (tu'/P) + s (tul/B)

Notice that E{Z(t)Z'(t)} = 0 and Var(Z'(t)) = —E{Z(t)Z" (t)} = " (0) for all ¢, we obtain

VXl = (1+ cth)t TWrane
_ (22 (H —c(f - H)tﬁ)Q 2.2/B..1
B (1+ct5)2( (1 + ctP)2 — e (0))’

and

(H(H = 1) + (2H = B)(H — 1) = B2t + (8 — H)(1 — H)i2”
(1 + ctP)2

E{Xu(t)X (1)} = (
tQH—Q

2,2/8,.1
+ t*u ' Pr (0)) 1+ ahp
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It follows that

E{Xu(to) Xy (o) } _ —H(8—H) + t5u®Pr"(0)
Var(X},(t)) + E{Xu(to) X7/ (t0)} —H(6 - H)

. H2/ﬁ—1u2/ﬁr//(0>
T2 e

and thus

P{ §1>115(X(t) — ctﬁ) > u} = IP’{ igg Xyu(t) > ul—H/ﬁ}

- < E{X(t) Xy (to)} )1/2 \P( WA= H/8
Var(X,(t)) + E{Xu(t0) X7/ (t0)} Var(Xo(tg)) /2

H2/6—1u2/6r1/(0) 1/2 ul—H/B
1— U .
( AP — H)WH) <Var<Xu<to>>1/2)

N———
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Chapter 7

Excursion Probability of Gaussian

Random Fields on Sphere

In this chapter, we consider a real-valued Gaussian random field X = {X(z) : z € SV}
indexed on the N-dimensional unit sphere SN, The approximations to excursion probability
of the field P{sup _ v X(z) > u}, as u — oo, are obtained for two cases: (i) X is locally
isotropic and the sample path is non-smooth; (ii) X is isotropic and the sample path is twice
differentiable. For the first case, it is shown that the asymptotics is similar to Pickands’
approximation on Euclidean space which involves Pickands’ constant; while for the second
case, we use the expected Euler characteristic method to obtain a more precise approximation

such that the error is super-exponentially small.
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7.1 Notations

For x = (x1,...,xn41) € SV, its corresponding spherical coordinate 6 = (01,...,0N) is

defined as follows.

r1 = cosfq,
r9 = sin 1 cos b9,

x3 = sin A sin 09 cos 03,

xn =sinfysinfy - --sinfp_q cosby,

TN41 =sinfysinby---sinfy_qsinby,

where 0 <6, <mfor1<i<N—-1and 0 <60y < 27.

Throughout this chapter, for two points © = (x1,...,zy41) and v = (y1,...,YNL1)
on SV, we always denote by 6 = (01,...,0N) the spherical coordinate of z and by ¢ =
(¢1,-..,on) the spherical coordinate of y respectively.

Let || - ||, (-,-) be Euclidean norm and inner product respectively. Denote by d(-,-) the

distance function in SV, i.e., d(x,y) = arccos (z,y), Vx,y € S,

7.2 Non-smooth Gaussian Fields on Sphere

7.2.1 Locally Isotropic Gaussian Fields on Sphere

Let X = {X(z): z € SN} be a centered Gaussian random field with covariance function C'
satisfying
Clz,y) =1—cd®(z,y)(1 +0(1)) asd(x,y) — 0, (7.2.1)
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for some constants ¢ > 0 and « € (0, 2].

Covariance functions satisfying (7.2.1) behave like isotropic in local sense, hence they fall
under the general category of locally isotropic covariance. Also, there are many examples
of covariances of isotropic Gaussian fields on SV satisfying (7.2.1). For instance, C(z,y) =
e~ (@) where ¢ > 0 and o € (0,1].

Recall the spherical coordinate representation, we define X (#) := X () and denote by C

the covariance function of X accordingly.
Lemma 7.2.1 Let z,y € S and let = be fized. Then as d(y,x) — 0,

N-1
d*(y, ) ~ (p1 — 01)” + (sin® 01) (02 — 02)* + -+ + < I] sin® 9z’) (en = On)?,

where 0 = (01,...,0n) and ¢ = (p1,...,oN) are the spherical coordinates of x and y

respectively.

Proof Note that z,y € SV implies ||z||2 = ||y||? = 1, hence as d(y,z) = 0, ||z —y|| = 0
and

1
cosly =zl ~ 1= S lly — z]* = (y,2).

Applying the spherical coordinates, we obtain that as d(y, z) — 0, or equivalently ||¢ —0| —
0 (There is an exception for § with 6 = 0, since for those ¢ such that d(y,z) — 0 and ¢x

tending to 27, ||¢ — 6|| does not tend to 0. In such case, we may treat 65 to be 27 instead
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of 0 and this does not affect the result thanks to the periodicity.),

@2y, ) = arceos? (y, z) ~ |ly — o]

= (cos p1 — cos 91)2 + (sin 1 cos g — sin By cos (92)2 + o
+ (sin g sin g - - -siny_1 cos p — sinfq sinfy - - - sin O pr_1 cos GN)Z
+ (sin ¢y sin gy - - sin 1 sin @y — sin By sinfy - - - sin O _q sinO)?

=2 —2cos(p; — 01) + 2(sin 1 sinO1)[1 — cos(pg — 02)]
N-1
+-+ 2< H sin ; sin@i) [1—cos(pny —On)].
1=1

It then follows from Taylor’s expansion that

N-1
d*(y, z) ~ (@1 — 01) + (sin oy sinfy) (g — 09)* + -+ + < [ sinessin 9¢) (N — On)?
i=1

N-1
~ (o1 = 01)% + (sin® 01) (2 — B2)* + -+ + ( I] sin? 9@) (en — On)%,

completing the proof. O

Next, we need some existing results on the approximations to excursion probability of
Gaussian random fields over Euclidean space.
Let 0 < a < 2 and let {Wy(s) : t € RN, s € [0,00)V} ba a Gaussian random field such

that

EWi(s) = —[[sl|“re(s/lsl),
Cov(Wi(s), Wi (v)) = [|s||%re(s/]Is|]) + [Jv]|“re(v/]v]]) (7.2.2)

= lls = ol %re((s = v)/lls — vl)),
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where 7¢(+) : SN=1 5 R, is a continuous function satisfying

sup |re(v) —rs(v)] =0 as s —t.

vesN—1
Define
0
H(t) = lim KN e"Ps  sup  Wi(s) > u}du.
K=o 0 sel0,K]N

Denote by H, the usual Pickands’ constant, that is

o0
Hyo = lim KN euIP{ sup  Z(s) > u}du,
K—=00 0 se[0, K1V

where {Z(s) : s € [0,00)V} is a Gaussian random field such that

EZ(s) = —[sl|*

Cov(Z(s), Z(v)) = lIs|* + loll* = lls = v[|*.

It is clear that H (t) becomes H, when r; = 1.

(7.2.3)

(7.2.4)

Let D € RY be a bounded N-dimensional Jordan measurable set. Let ¥ = {Y(t),t e

RN } be a real-valued, centered Gaussian field such that the covariance function Cy satisfies

Cy (t,t+s) =1—[Is]|%r¢(s/lIs])(1 +o(1)) as [|s]| =0,

for some constant « € (0, 2], uniformly over t € D.

We will make use of the following theorem of Chan and Lai (2006).

(7.2.5)

Theorem 7.2.2 [Theorem 2.1 in Chan and Lai (2006)] Suppose the Gaussian random field

Y():t e RN satisfies condition (7.2.5), in which r(-) : SV=1 s R is a continuous
{Y'(?) +
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function such that the convergence (7.2.3) is uniformly in D and SUD, . yesN—1 rt(v) < 00.

Then as u — o0,

]P{ tsgBY(t) > u} ~ 2N () /D HE(t)dt.

Lemma 7.2.3 Let {Wy(s) : t € RN s € [0,00)N} be a Gaussian random field satisfying
(7.2.2) with

re(v) = |Mp||®, Yo e SVL

where My are non-degenerate N x N matrices. Then for each t € ]RN,

H(t) = |detM;| Hq.

Proof Let Wy(s) = Wt(Mt_ls), Vs € [0,00)Y. Then under the above conditions, Wy

satisfies

EWi(s) = —|ls[|,

Cov(We(s), Wi(v)) = [[s|% + [[o]|® = ||s — v]|

Let Bi = [0, K]V and define M; By = {s € R™ : 3v € By such that s = Myv}. Note that
Vol(M;Bg) = |detMy|Vol(Bg) and SUDse B Wi(s) = SUDse M, B Wi(s), it follows from
(7.2.4) that

1 o0
H() = lim ——— “]P’{ W, >}d
N0 = i o |, o Wils) 2 upd

VOl(MtBK) 1 /OO u -~
_ P Wi(s) > uld
Kos Vol(Bg) Vol(M;Bg) Jo © {sei}lt%K t<5)—“} "

1 o0 —
= |detMy| lim —/ euIP’{ sup  Wi(s) 2u}du.
| |K—>0<>V01(MtBK) 0 seM By
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By modifying the proofs in Qualls and Watanabe (1973), we can check that

1 o0 —
H, = lim —/ e“IP){ sup  Wi(s Zu}du,
“ " K=o Vol(MiBg) Jo seM; By 2

completing the proof. 0

Now we can prove our main result.

Theorem 7.2.4 Let {X(z): z € SV} be a centered Gaussian random field satisfying condi-

tion (7.2.1) and let T C SN be an N-dimensional Jordan measurable set. Then as u — oo,

IP’{ sup X (z) > u} ~ cN/O‘Area(T)HQUQN/O‘\IJ(u),
x€T

where Area(T) denotes the spherical area of T

Proof Let My = cl/adiag(l,sinel,...,Hfi}l sinf;). If N =1, we set My = /e, By

Lemma 7.2.1, condition (7.2.1) becomes

C(0.0+€) =1 [[€]*rp(¢/lI€N(L +o(1) as [I€] 0,

where 79(7) = | Mp7||%, ¥7 € SN, Denote by D the domain of 7' under spherical coordi-

nates. Then by Theorem 7.2.2; as u — oo,

IED{ iggX(x) > u} = IP’{ ggg)?(e) > u} ~ UZN/O‘\I/(U) /D H[(0)d6. (7.2.6)

It follows from Lemma 7.2.3 that for any 6 such that My is non-degenerate( i.e., Hlj\i Il sin6; #
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N-1
H(0) = CN/O‘( H sin™ ¢ Hi) H,.
1=1
Note that ( f\i Il sin?V 0;)d0 is the spherical area element and My are non-degenerate for

0 € D almost everywhere, we obtain
/ H”(0)d0 = N/ Area(T) Ha.
D

Plugging this into (7.2.6), we finish the proof. O

7.2.2 Standardized Spherical Fractional Brownian Motion

Theorem 7.2.4 is an application of Lemma 7.2.1 and Theorem 7.2.2, and it provides a nice
formula since (7.2.1) has a simple form. More generally, the local behavior of covariance
function may be more complicated, but we can still apply Lemma 7.2.1 to find the corre-
sponding local behavior of covariance function under spherical coordinates and then apply
Theorem 7.2.2 to obtain the asymptotics for the excursion probability. Here, we present an
example about spherical fractional Brownian motion on sphere.

Let o be a fixed point on S, The Spherical Fractional Brownian Motion B 3(7) is defined

as a centered real-valued Gaussian random field such that

B(o) =0

E(B(x) - B(y))* = d*f(x,y) Va,y e sV,
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where 5 € (0,1/2]. It follows immediately that

Cov(B(z), B(y)) = = (d*7(x,0) + d**(y, 0) — d*F (x,y)).

DN | —

Without loss of generality, we take o = (1,0,...,0) € RV whose corresponding spherical

coordinate is (0,...,0) € RY. Define

Then the covariance is

_ dQB(xa O) + dQﬂ(ya O) B dQB(xv y)

C(x,y) = Cov(X (x), X (y)) 248 (z, 0)dB (y, 0)

Note that under the spherical coordinates, d(x,0) = 61 and d(y,0) = ¢1, together with

Lemma 7.2.1, we obtain that as d(z,y) — 0,

Clb.0) = Cov(X(0). £() =1~ (1 +0(1) 5 o1 = 002 + Gsin )2 — 6)°
1

N-1 B
4+t ( I sin® 92') (N — 9N)2}
=1
Let
) N—-1
My = mdlag(l,sm@l, e Zzl_Il Sln9i>7

ro(r) = [ Myr|?P, vr e sV,
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Then as [|€]| = [l — 0| =0,

C(0,0+€) =1 1] rg(¢/1E]) (L + o(1)).

Let T SN be an N-dimensional Jordan measurable set such that o ¢ T, and denote its

domain under spherical coordinates by D. Then by Theorem 7.2.2, as u — oo,

IP’{ zggX(x) > u} = ]P’{ ;}21]%5((9) > u} ~ uN/*B\IJ(u) /DHgﬁ(O)dG.

It follows from Lemma 7.2.3 that for any 6 such that Mpy is non-degenerate( i.e., Hf\; Il sin 0; #

0),
N-1
1 . N—i
1=
Therefore,

€T

N-1

]P’{ sup X (z) > u} ~ uN/ﬁxp(u)z—N/@ﬁ)Hgﬁ/ el—N( [T sin™ ei) do.
D i=1

7.3 Smooth Isotropic GGaussian Fields on Sphere

In this section we consider the excursion probabilities for smooth isotropic Gaussian fields

on sphere.
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7.3.1 Preliminaries

Given A > 0 and an integer n > 0, the function P () is defined by the expansion
0
(L—2rt+rH)" 2 =>"1"P(1), te[-1,1],
n=0

and P2(t) is called the wultraspherical polynomial (or Gegenbauer polynomial) of degree n.
If A\ = 0, we follow Schoenberg (1942) and set PY(t) = cos(narccost) = Tj,(t), where Ty,

n > 0, are Chebyshev polynomials of the first kind defined by the expansion

For reference later on, we need the following formulae on P

(i). For all n >0, PY(1) = 1, and if A > 0 [cf. Szegd (1975, p.80)],

20 —1
PM1) = (n * ) (7.3.1)
n
(ii). For all n >0,
d
EPg(t) = nP,_(t), (7.3.2)
and if A > 0 [cf. Szego (1975, p.81)],
d o\ A+l
%P" (t) = 2AP/" /(). (7.3.3)

The following theorem by Schoenberg (1942) characterizes the covariance function of an

isotropic Gaussian field on sphere [see also Gneiting (2012)].
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Theorem 7.3.1 Let N > 1, then a continuous function C(-,-) : SNV x SV — R is the

covariance of an isotropic Gaussian field on SY if and only if it has the form

0.}
Cle.y) = 3 anPi((@,y), @,y €Y,
n=0
where A = (N —1)/2, an >0, 320° s an PR (1) < oo.

Remark 7.3.2 Note that for N = 1, A = 0 and 32 ja, P)(1) < oo is equivalent to
S jan < oo; while for N > 2, A = (N —1)/2 and by (7.3.1), 32 ja, P)N1) < oo is

N_2an < 0.

equivalent to Y 7 on

When N = 2, A = 1/2 and Pﬁ‘ become Legendre polynomials. For more results on
isotropic Gaussian fields on S2, we refer to a recent monograph by Marinucci and Peccati
(2011).

The following statement (S) is a smoothness condition for Gaussian fields on sphere. In

Lemma 7.3.3 below, we show that it implies C(-,-) € C4(SN x V).
(S). The covariance C(-,-) of {X(z) : x € SV} satisfies

oo

Clz,y) =Y anPp((z,y)), w,yesh,

n=0

where A = (N —1)/2, ap, > 0, and 350 n8a;, < 00 if N =1, 300, n?¥46q,, < oo if

N > 2.

Lemma 7.3.3 Let {X(z): x € SV} be an isotropic Gaussian field such that (S) is fulfilled.

Then the covariance C(-,-) € CHSN x SV) and hence X(-) € C2(SN) a.s.
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Proof We first consider N > 2. By Theorem 7.3.1, each P)((t, s)) is the covariance of an

isotropic Gaussian field on S?V and hence
P2 (o) < Po((z.2)) = B(1), Va,y e SV, (7.3.4)

Combining (S) with (7.3.1), (7.3.3) and (7.3.4), together with the fact Pg‘(zﬁ) = 1, we obtain
that there exist positive constants M; and My such that
00 4 00 00
—PT?(??))‘ <MY an P H(1) < My > n?*0q,, < co.
te[-1.1] n=0 n=4 n=1

This gives C4(SY x S¥). The proof for N = 1 is similar once we apply both (7.3.2) and

(7.3.3). O

By Schoenberg (1942) or Gneiting (2012), C(-,-) is a covariance function on SV for every

N > 1 if and only if it has the form

o0
Clz,y) = balz,y)", zyes,
n=0

where b, > 0 and Y o2 b, < oo. Then we may state (S’) below as another form of

smoothness condition for Gaussian fields on sphere.

(S). The covariance C(-,-) of {X(z) : z € SV} satisfies

0
Clz,y) =D balz,y)", wz,yesh,
n=0

where b, > 0 and Y o7 ntb,, < co.
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We obtain an analogue of Lemma 7.3.3 below. Since the proof is similar, it is omitted.

Lemma 7.3.4 Let {X(z): z € SV} be an isotropic Gaussian field such that (S') is fulfilled.

Then the covariance C(-,-) € C*(SN x SV) and hence X(-) € C*(SV) a.s

7.3.2 Excursion Probability

Let x(Ay(X,SY)) be the Euler characteristic of excursion set Ay (X,SV) = {z € SV -

X (x) > u}. Denote by H;(z) the Hermite polynomial, i.e.,

Hj(@) = (-1 2L (=a22)

dxJ (
Let wj := Area(S/), where S7 is the j-dimensional unit sphere.

Lemma 7.3.5 Let {X(2) : © € SN} be a centered, unit-variance, isotropic Gaussian field
satisfying (S). Suppose also that the joint distribution of (X (z), VX (z),V?X (z)) is non-

degenerate for each x € SN. Then

N
E{x(Au(X,SV))) Z (Y2 L;(SM)pj(u),

where

N-1)Y>, ("N Na, ifN>2,
o ( )2zt (TN )a iy N = (7:3.5)

S nZay, if N =1,

po(u) = V(u), pj(u) = (27r)_(j+1)/2Hj_1(u)e_“2/2 with Hermite polynomials Hj_q for
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7 >1and, forj=0,...,N,

—v if N — 7 is even
N jlun_

L;(SY) = N=j (7.3.6)

0 otherwise

are the Lipschitz-Killing curvatures of SN,

Remark 7.3.6 In Lemma 7.3.5, if condition (S) is replaced by (S’), then it can be seen

from the proof below that C’ would be changed to a much simpler form

oo

C'="nby. (7.3.7)

n=1

Proof Due to Theorem 12.4.1 in Adler and Taylor (2007), we only need to show that the
Lipschitz-Killing curvatures induced by X on SV is L;(X, sV = (C”)j/2ﬁj(SN).
The Riemannian structure induced by X on S is defined as [cf. Adler and Taylor (2007,

p-305)]

x,sN — _ N
9z (fxoaaxo) = E{(gon) ’ (Ux0X>} = fa:oaxoc(xayﬂxzy:xoa Vzg € 57,

where gy, 02 € T, xOSN , the tangent space of SN at xp. We may choose two smooth curves

on SN say v(t), 7(s), t, s € [0,1], such that 4(0) = 7(0) = 2 and ~/(0) = fxO,T’(O) = 0z
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We first consider N > 2, then

2020 C (@, Y) |l z=y=2

= 2 000, 7 limsm0 = > an P (1), 7(5)) s

= 2 an(N = )P ((4(1), 20)) (4(1), 0 1=

= ianw = 1)(N + 2) P2 ({20, 70)){€xg» 70} (0, 0
+ ianw — )P (20, 0)) (g )

= (i an(N — 1>P$_+f<1>) (€g» Tg) = C'(Exg g,

where the third and fourth equalities are from (7.3.3), the fifth equality comes from (xq, z¢) =
Land (§z), 7o) = (02, To) = 0, since the vector zg is always orthogonal to its tangent space.
The case of N =1 can be proved similarly once we apply (7.3.2) instead of (7.3.3).

Hence the induced metric is

x,sN
9z (gxoa 01‘0) = O/<§$0’ Ux0>7 Vg € SN
By the definition of Lipschitz-Killing curvatures, one has

L£;(x,sN) = ()L,

where L; (SV) are the original Lipschitz-Killing curvatures of S% given by (7.3.6). We finish

the proof. 0
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Theorem 7.3.7 Suppose the conditions in Lemma 7.5.5 hold. Then, under the notations

therein, there exists a > 0 such that as u — o0,

N
P{ sup X() 2 u} = 3OV s )+ o= =2y, (7.3.8)
zeSN j=0

Remark 7.3.8 Under the conditions in Theorem 7.3.7, the covariance function C' satisfies
(7.2.1) with & = 2. Also note that when o = 2, Pickands’ constant Hy = 7 /2. Then
one can check that the approximation in Theorem 7.2.4 only provides the leading term of

the approximation in Theorem 7.3.7. This also affects the errors in two approximations: the

2
error in the former one is only o(1), while the error in the latter one is o(e™*"").

Proof The result is an immediate consequence of Lemma 7.3.5 and Theorem 14.3.3 in

Adler and Taylor (2007). O

If the set SV is replaced by a more general subset 7 C SV, by simply revising Lemma
7.3.5 and applying Theorem 14.3.3 in Adler and Taylor (2007) again, we obtain the following

corollary.

Corollary 7.3.9 Suppose the conditions in Lemma 7.3.5 hold. LetT C SN be a k-dimensional,
locally convex, reqular stratified manifold [cf. Adler and Taylor (2007)], then there exists

a > 0 such that as u — o0,

k
]P’{ sup X (z } Z (c 3/2[, pj(u) + o(e_auz_“2/2),

where L;(T) are the Lipschitz-Killing curvatures of SN [ef. Adler and Taylor (2007)], C'

and pj(u) are as in Lemma 7.3.5.
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Example 7.3.10 Canonical field on SN whose covariance structure is given by C(z,y) =

(x,y). Since C(x,y) = cosd(z,y), it satisfies
Clevy) = 1= 5w, 9)(1 +o(1)), s d(r.y) 0.

Applying Theorem 7.2.4, one can get an approximation to the excursion probability. How-

ever, by applying Theorem 7.3.7, we will get a more precise approximation for N > 2.

Example 7.3.11 Consider the Hamiltonian of the pure p-spin model on SV—1

N
—1 N-1
N(-1)/2 Z JifenipTiy ** Ty V= (21,0 an) €877,

HN,p<x> =

where Jil,...,i are independent standard Gaussian random variables. Then

p

1

E{HN,p(x)HN,p(y)} = W(xa y>p‘

Let

X () = bpHpy (),
p=2

where (bp),>2 is a sequence of positive numbers such that Z;i? 2Pby < oo, and Hy ,, and

H N are independent for any p # p’. Then X is a smooth Gaussian random field on sphere

b

with covariance

_ D D
C(I7y) - ZQ Npil <$,y> .
p:
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Example 7.3.12 We show how to apply Corollary 7.3.9. If T"is the semisphere of dimension
one, then Lo(7T) = 1 and L£1(T) = w. If T is the semisphere of dimension two, then
Lo(T) =1, L1(T) = 7 and Lo(T) = 27. Basically, Lo(T") is the Euler characteristic, £;(T)
is the volume and £;,_1(T) is half of the surface area. Usually, one may use Steiner’s formula

[Adlar and Taylor (2007, p.142)] to compute the Lipschitz-Killing curvatures exactly.

Example 7.3.13 Consider the covariance structure C(z,y) = 1 — %d(x, y), which can be

verified to be a valid covariance on sphere. Since d(z,y) = arccos (z,y), we can write

=1 — arccos (z,y) = 2 (2n)! z,y)2ntl
= ey,
n=0

it is easy to check that Y o (nb" = oo, hence Theorem 7.3.7 is not applicable. In fact,
C(z,y) is not smooth neither. Instead, we may use Theorem 7.2.2 to get the approximation

to excursion probability.
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Chapter 8

Excursion Probability of Anisotropic
Gaussian and Asymptotically

Gaussian Random Fields

8.1 Preliminaries

For vectors u, v € R%, the relation v < v means u; < v; for all @ and w < v means u; < v; for

all 4, also we let uv := (uyvy, -+ ,uqvg). For t = (t1,--- ,tyg) € R? and ¢ = (C1,-++,¢q) >0,
define
d
Lie = [t ti + G-
=1

Let || - || be the Euclidean norm of a vector, |-| be the greatest integer function, u(-) be the

volume of set. For bounded and Jordan measurable set D ¢ R% and § > 0, define

D]y = {t+u:t € D, <6}
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Let 0 <a<1,p=(p1, - ,pg) with 0 <p; <2foralll <i<dandlet {Wi(u):ue€

[0, 00)%} be a Gaussian random field such that W;(0) = 0 and

i i\ upt “Zd
E(Wi(u)) = _( ui’) n(—. _>
d P ' d 2
-1 D=1 Uy D=1 U
i i\ up! “Zd
Cov(Wi(u), Wi(v)) = ( UZ-Z) Tt( - )
! d b;”’ ! d p
i=1 2lim14! D=1
d @ D1 Dq
Pi U1 Yd
+<Z”iz> Tt( d P’ ~d p’)
i=1 D=1 2 i=1Y;
d o p p
. up — v |1 ug — vg|hd
—<Z|Ui—vi|p2> Tt( C|l | p_7”'a C|ld d| p.>7
i=1 i1 |ug — vgPi > i=1 |ui — vgfPi
(8.1.1)
where ¢ : S = {v € [0, 00)% : Z?:l v; = 1} — Ry is a continuous function satisfying
sup |r¢(v) — rs(v)| — 0, as ||t — s|]| — 0. (8.1.2)
veES
In particular, we define
o0
i) = [ eyP{ wwp Wiu) > y}dy,
H(t) = lim K 9Hg ().
K—o0
Let L be a slowly varying function, define
Ac;=min{z > 0: 2%PiL(z) = ¢ 2}, V1 <i<d, (8.1.4)
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2 2

and Ac = (Ag1, -+ ,Arg). For example, if L(z) = 1, then A, = (c OP1 ... ¢ %Pd),
Our goal is to investigate the asymptotic property of centered Gaussian fields satisfying the

following condition:

E(X ()X (t+u))

_1_(H()(m(i,uﬂpz-)aL(i,uﬂpi)rt( ]
1=1 1=1

d O Sd -
> iet luglPi > it luglPi

(8.1.5)

as |lu|]| — 0, uniformly over ¢ € [D]s.

Theorem 8.1.1 Suppose Gaussian random field X satisfies condition (8.1.5), where 0 <
a<l,p=(p1, - ,pg) with0<p; <2 foralll <i<d, andr;:S — Ry is a continuous
function such that the convergence in (8.1.2) is uniform int € [D]s and SUPte (D)5 veS re(v) <
oo. Then as ¢ — o0,

d

IP{ sup X (t) > c} ~ W(c) ( H

teD bl

A;}) /D H (t)dt.

8.2 Asymptotically Gaussian Random Fields

For ¢ > 0, let X, be random fields such that EX.(t) = 0, EX?(t) = 0 for all ¢ and ¢. Define

pe(t,u) = E(Xe(t)Xc(u)). We impose the following conditions for X..

(C). There exist 0 <a <1, p=(p1,---,pg) with 0 <p; <2 for all 1 <i <d and a slowly
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(B1).

(B2).

(B3).

varying function L such that as |Ju| — 0,

p(t,t+u)
d d

:1_(1+0(1))<Z|ui,p¢)aL<Z|ui|pi)rt<|“1¢ . M)

; = .
i=1 i=1 > i—1 |uilPi >ie1 |uilPi
uniformly over ¢ € [D]s and ¢ > 0.

As ¢ — o0,

P{Xc(t) > c—y/c} ~ V(c—y/c)
uniformly over t € [D]s and positive, bounded values of y.

The convergence in (8.1.2) is uniform over ¢ € [D]s, with SUDte[D] s veS re(v) < oo.

Moreover, for any a > 0, a = {al/pl, e ,al/pd} and positive integers m;, as ¢ — 00,

{c[Xc(t+akAe) — Xe(t)] : 0 < k; <m;}HXe(t) =c—y/e

= {Wi(ak) : 0 < k; <m;}
uniformly over positive, bounded values of .

There exists a positive function h such that limy s h(y) = 0 and
P{Xc(t +ule) > c—y/c, Xe(t) < c —y/c} < h(y)¥(c),

for all uw > 0 (u is a vector) and v > 0.

. Let pj; = min{p;,1 <i < d}, a= (al/P1, ... ,al/pd). There exist nonincreasing func-

tions N, on R and positive constants 7, such that v, — 0 and Ny (74)+ floo w¥Ng(va+
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w)dw = o(ad/pi()) as a — 0, and

IP’{ sup  Xe(v) > e, Xe(t) < c— y/c} < Ng(7)¥(e),
UEIt,aAC

for all v, <y <cand s > 0.

/
(B5). There exists a nonincreasing function f : [0,00) — R4 such that f(y) = O(e*yq ) for

some ¢’ > 0 and for all v > 0 and c sufficiently large,

P{Xc(t) > c—7/c, Xe(t + ule) > c—7/c} < U(e—v/c)f (Z \ul\pl>

uniformly in ¢ and t + uA. belonging to [D];.

For K > 0 and a > 0, let Ay = (A¢(K,a,¢)) & {t +akA, : 0 < k; < m;,k € Z%},
where m; = |K/a'/Pi] and a = (a!/P1,- .. ,al/pd). As a discrete set, Ay will be used to

approximate [y gA,.-

Lemma 8.2.1 Under (C) and (B1)-(B3),

o0
Hp (1) & / ey]P’{ sup  Wi(ak) > y}dy
' 0 ngi<mi,Vi

is uniformly continuous in t € [D]s and SUDte( D] 5 Hp o(t) < oo. Moreover, for v > 0, as

c — 00,

P{ sup Xelu) > ¢~ /ef ~ Wl /o)1 + Hicalt) (32,1
ucA;

uniformly in t € [D];.
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Proof Let e > 0. By (B3), there exists y* > v such that h(y*) < 5/(]_[?:1 m;) and

0< IF’{ Sél}{) Xe(u) > c— 7/0} —P{X.(t) >c—~/c}
u€A

—IF’{ sup Xe(u) >c—~/c,e—y* /e < Xe(t) < c—v/c}
uEAt

(8.2.2)
= IED{ sup Xe(u) > c— /e, Xe(t) < c— y*/c}
u€A;
d
< m; | h(y*)¥(c) < e¥(c),
(1)
since card(Ay) = H;-izl m;. By (B1), there exists £ — 0 such that
[P{Xc(t) > ¢ —y/e}/ (e —y/c) — 1] = O(&) (8.2.3)

uniformly for v < y < y*; we can also assume that £, L(y*—~) € Z. Since e8¢ = 1+&.+0(£2)

and ¥(c —y/c) ~ e¥V(c), (8.2.3) implies

Plc—(y+&)/c < Xe(t) <c—y/c}

= (14 O(E2))e! e (c) — (1 + O(E2))e¥T(c) ~ eV T(c).

By (B2), uniformly for ¢ € [D]s and v <y < y*,

IP’{ sup Xe(u) > c—v/c,e— (y+&0)/c < Xe(t) < c— y/c}
uGAt

NIP{ sup ~ Wi(ak) > y—y}JP’{c— (y+&)/c< Xe(t) <ec—vy/c} (8.2.4)
0<k;<m;,Vi

~ IP’{ sup  Wi(ak) >y — ’y}gceylll(c).
OSk‘Z'<mi,V7;
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Summing (8.2.4) over y = j& + for j =0,1,--- ,Sc_l(y* —7) — 1, we obtain

IP’{ sup Xe(u) >c—7/c,e—y* /e < Xe(t) <c— ”y/c}

uEAt
y* -1
~ \If(c)/ eyIP’{ sup  Wy(ak) >y — fy}dy
Y OSk‘Z'<mZ',V7;
y*—y—1
~U(c— v/c)/ ey]P’{ sup  Wi(ak) > y}dy.
0 0§k2<mZ,VZ

Plugging this in (8.2.2) and letting y* — oo, we get (8.2.1).

Since [;~ eVP{W;(ak) > y}dy < oo for all k and A; is a finite set, Hp 4(t) is finite and
its uniform continuity follows from (8.1.1) and (8.1.2), with the fact described in (B2) that
the convergence in (8.1.2) is uniform over ¢ € [D]s. Racall that SUPte (D)5 .0eS re(v) < oo,

yielding the finiteness of sup;¢py 5 Hp oft). O

Theorem 8.2.2 Let K > 0. Assume (C) and (B1)-(B4). Then as ¢ — oo,

P{ sup Xc<u>>c}~w<c><1+HK<t>>
ug[t,KAc

uniform overt € [D]gs, where Hg (t) is defined in (8.1.3) and is finite and uniformly contin-

uous in t € [D]s.
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Proof Leta > 0. By (B4) and (8.2.1), we have for all large c,

o< [¢{ Xl > o} -7 sup Xelw) > ] /e

< {]P’{c— Ya/c < sup X¢(u) < c}
uEAt

+ ) IP’{ sup  Xe(v) > ¢, Xe(u) < c—’ya/cH/\I/(c) (8.2.5)

ucAy velyan,
d
< 2(W(e —va/c) = W(e)(L+ Hi 1))/ ¥(e) + [J(K/a'Pi) Na(ya)
i=1

< 3(0 — 1)(1+ Hy o(t)) + (K /aZi=1 Y20 Ny ().

d ;
By (B4), for any € > 0, we can choose a* small enough such that Na(fya)/azizl Upi e/K?

and 3(e7@ — 1) < ¢ for all 0 < a < a*. Therefore, by (8.2.1) and (8.2.5),

(=)0 + Hica®) <P swp ol > ¢} /() < (14 211+ Higa(0) +
Sl KA

for all large c and all ¢ € [D]; and 0 < a < a*. By uniform continuity of Wi(u), Hg ,(t) —

Hpg(t) as a | 0. Therefore,
L+ Hpo(t) S 1+ Hpe(t) < (1+e)(1+ Hpg g+ (1)), (8.2.6)

for all t € [D]s and 0 < a < a™.
First note that M 2 1 + SUPte D] 5 Hg(t) < oo in view of (8.2.6) and Lemma 8.2.1,

therefore

|Hp (t) — Hpe ox (t)] < Me (8.2.7)
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for all ¢ € [D]g, by (8.2.6) with a = a*. Because Hp o+ is uniformly continuous by Lemma

8.2.1,

|Hp¢ o (1) — Hpg g (u)| < ¢, V||t —ul] < 6%, t,u € [D]g, (8.2.8)
for some §* > 0. It follows from (8.2.7) and (8.2.8) that, if ||t — u|| < 6%,
|Hp (t) — Hpe (u)]

< [Hg (t) = Hpe ox ()] + [Hg (w) = Hg gx (w)| + [Hg g+ (t) = Hp gx(u))]

< 2Me + «.

Hence Hy (t) is uniformly continuous in ¢ € [D];.

Combining (8.2.7) and the definition of M yields that for all large ¢ and ¢ € [D]s,

—eM —e(l—e)M < ]P’{ ?up Xe(u) > c}/\I/(c) —(1+ Hg(t))
uely KA

<2eM +e(1+2¢)M.

Since ¢ is arbitrary, this proves the theorem. O

Lemma 8.2.3 Under (C) and (B1)-(B4), SUDte[D] s, K >1 K~ 9Hp (1) < 0o and {K~“Hp -

K > 1} is uniformly equicontinuous on [D]g, that is,

sup |K~Hp(t) — K~ Hp (s)| — 0, as € — 0.
K>1t,s€[Dlg,|[t—s]|<e

196



Proof Let

a=(al/P1,... al/Pd), m; = |K/a'/Pi],

d d

N(K,a) = [(T]ma)/(J] la=Y7i])).
] 1

=1 1=

Note that the integrand of Hp ,(t) involves the set {ak : 0 < k; < m;}, which can be
partitioned into N (K, a) + 1 disjoint subsets L; such that card(L;) = ngl la=1/Pi] for
1 < j < N(K,a) and card(Ly g q)11) = [1fe1 mi — N(K,a) [Tl [aV/Pi]. Tt is possible
that Card(LN(K,a)+1) = 0, in this case LN(K,a)+1 is regarded as an empty set. We can

therefore use the arguments at the end of the proof of Lemma 8.2.1 to bound

N(K,a)+1
K4 Z ]P{ sup Wi(ak) > y} —IP’{ sup Ws(ak) > y}’
j=1 k‘GLJ kELJ

and thereby establish the uniform equicontinuity and boundedness of { K —dH Ka: K > 1}
on [D]s. Moreover, by partitioning the cube [0, K)? similarly into K¢ cubes, it can be shown
that SUPK >1 te[Dls |K~9CHp(t) — K*dHK’a(t)| — 0, as @ — 0. Hence we can proceed as in
(8.2.7) and (8.2.8) but with Hp , and H replaced by K_dHKﬂ and K~ Hp respectively

to prove the uniform equicontinuity and boundedness of {K~9¢Hy : K > 1}. O

Lemma 8.2.4 Under (C) and (B1)-(B5), there exist constants s — 0 as K — oo such
that

IP’{ sup  Xe(u) >¢,  sup  Xe(v) > c} < sgKMW(c) (8.2.9)
uely KA, veB\I; KA,

for ¢ large enough, uniformly over t € [D]s and over subsets B of [D];.
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Proof Leta>0and 0 < g < ¢. Then by the property of f described in (B5),

d d
6ot 3 e (Yl )1 Ll ) <o
=1 =1

weaZd

Let n be positive integers that are large enough such that

d d
Z exp (Z !wilpi)f(z \wi\pz) < ngl:l 1/pi;

weaZd, 54 jw;|Pi>nPla i=1 i=1

and K > 0 be large enough such that

d
{1 -]10- 2”/?7%')1 Go < caXiz1 1/Pi

1=1

where m; = | K/a'/Pi]|. Let Fip={t+akAc:n <k <m; —n,k € z4, Fop = A\F1 4,

— {t+akAc € B\, gca,k € 20}, guy = minfe — va, (S [(us — 07)/De4|P1)7}. Then

by (B5),

IP’{XC(U) >c— (Ya+ guw)/c, Xe(v) > c— (va + guv)/c}

< V(e (vt gun)/)f (Z| =)/ Beil)

< QGQUU‘I/ C_’Va/c <Z’ Uiy — Uy /Acz‘pz>

for all large c¢. For u € Fi; and v € B, chjlzl [(uj — v;)/AcilPi > nPla and gyy <

(X% [(u; — v;)/Ac;Pi)e. Noting that card(Fy ) < % my, card(Fyy) < [0, m; —

d d
[Ty (mi — 2n) = [Ty mil1 — [T¢2, (1 — 2n/m;)], and that 2ueAy = 2ueFy ;T 2iueRy
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we obtain from (8.2.10) that for all large c,

5 3 ) > ¢ (b ) Xe) > = (kg

uEAt UEBt

d P p
cvof)] X e(Smn(Sen)
=1 weaZd Y0 |w;|Pi>nPla i=1 i1
d

+ [1 -JJa- 2n/mi)1 Ga}

1=1

< 4e KWW (c — ~4/c).

(8.2.11)
Define A\, = minueAt Juw if w € By, and Ay = 0 if w € A¢. Then
IP’{ sup  Xe(u) >e¢, sup  Xe(v) > c}

uefthAc UGB\It,KAC

<3 5 P{Xw) > em b gl e Xel0) > e - (utowdleh s2.1)
uEAt ’UEBt
b P s Xl e Xelo) S e (ot M),

weAUB, *€lwale
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On the right-hand side of (8.2.12), the first sum can be bounded by (8.2.11) and the second

sum by

S s Xl > e Xl < e e

u€Ay 2€ly an,

+ Z P{ sup  Xe(z) > ¢, Xe(v) <e—(va+ )\U)/c}
’UEBt Ue[v,aAc
(8.2.13)

d
< ([[1 mz-)Na(%)\I/(c) + 3 Mol + M) W(0)

UEBt

d
< K™ 2i=1 P Ny (7,) T (c) + )~ Nalva + X0)¥(0),
vGBt

in view of (B4) and that card(A4;) = ngl m;. To bound the last sum zveBt in (8.2.13),

first consider the case d = 1. Since Ay > min{c—1q, (ak?)?} if ak? < infye 4, (Jv—ul/Ac)P <

a(k + 1)P, and since N, is nonincreasing, it follows that

Z Na('Ya + /\v)
vEBt
00

{3 Nt + (@h?)1) + Nl B) (a0}
k=1 (8.2.14)

2f 3 Nuloa + (@PR) 4 Nullu(B) (a)
k=1

IN

< z{a—l/p [ Nt iy + M(B)Na(C)/(aAc)}-

Making change of variable by yP¢ replaced by w, and noting that Nu(va) + [ w*Na(ya +
w)dw = o(a) for all s > 0 as described in (B4), yield that a=1/? [ No(vq + y9)dy = o(1)
as a — 0. Moreover, in view of (8.1.4), Ng(c)/Ac = O(fcc/gzam w* No(7a + w)dw) = o(al/P)

as a — 0 and ¢ — oo, for s > 2/(ap). Therefore, ZvGBt No(va + M) < € for all large ¢ and
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small a.

In general, for d > 1, note that A\, > min{c — g, (a Zglzl gPi)a} it azgzl gPi <

S (g — v AP < a0 (4 P Lot U = {0 C {1, .d} : card(o) = d — 1},

since N, is nonincreasing, it follows that

Z Na(Va + )\U)
UEBt
<of' (3 T e (oo (32 )
j=1 “o€eUleo i=1
n Na(c)u(B) }
[T (a!/Pins ;)
< Z{de ( > [Tt + 2j>) Na(ya + di(a 0 )%
j=1 “oeUleo (8.2.15)
Na(c)p
T
< 2{ 1/% ( —1/P1K+2a_1/pi0y))Na(’m+dqypi0q)
celUleo
i H 1/p2A }
S 5Kd_1,

for all large ¢ and small a, as can be shown by arguments similar to those in the case d = 1.

Combining (8.2.11)-(8.2.15) yields the desired conclusion. O

Theorem 8.2.5 Assume (C) and (B1)-(B5). Let lc — 0o and le = o(A.;) for all i and

hence LeAe = o(1) as ¢ — oo. Then

1@{ sup  Xe(u) > c} ~ H(t)¥(c)es, (8.2.16)
uEIt’gcAc
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]P’{ sup  Xe(u) >c¢,  sup  Xe(v) > c} = o(U(c)ed), (8.2.17)
ue]t,chc ’UEB\ItygcAc

as ¢ — oo, uniformly over t € [D]s and over subsets B of [D]s, where H(t) is defined in

(8.1.3) and is uniformly continuous and bounded below on D.

Proof Let e > 0. There exists K* such that s < /3 for all K > K*. For fixed t € D
and K > K*, define

A={ue KAZ: Iy ga, C Iigon,
(8.2.18)

K:{UGKACZd5]u,KAcﬂIt7£cAc7£®}7 Ju =Ty KA.
Covering I y.A,. by rectangles with edges length KA. ;, 1 <4 < d. and letting B be a subset
of [D]s containing I; g.A,., we have

> (IP’{ sup Xe(v) > c} - IP’{ sup Xc(v) > ¢, sup Xe(w) > c})

u€A vEJy veJy weB\Jy,

< ]P’{ sup  Xe(u) > c} < ZIP’{ sup Xe(v) > c}.

ue]l‘,,chc welk veJy

(8.2.19)

By Theorem 8.2.2 and Lemma 8.2.4, as ¢ — 00,

(1+0(1)¥(c) > (1 + H(u) — s KY)
ueEA

< ]p{ sup Xo(u) > c} < (1+0(1)(0) 3 (1 + Hi(w)),

UEIt’gcAc ’U,EK

(8.2.20)

uniformly over ¢t € [D]s. In view of {.A, — 0 and the uniform equicontinuity in Lemma
8.2.3, we can choose ¢* large enough so that |[K~¢Hp (u) — K~ Hy (t)| < ¢/3 for all ¢ > ¢*,

Vle> K > K* t € D and u € A. Putting this and the bound s < £/3 in (8.2.20) and
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dividing (8.2.20) by ¥(c)¢?, we obtain that for all ¢ > ¢*, v/fo > K > K* and t € D,

(1-— 5)(K_dHK(t) —2¢/3) < ]P’{ sup  Xe(u) > c}/(\lf(c)ﬁg)

el en, (8.2.21)

< (L+e) (K Hy(t) +¢/3),

since card(A) ~ card(A) ~ K~%9 By Lemma 8.2.3, M £ SUPte(D]g, K>1 K~ Hp (1) < 0.

Therefore, it follows from (8.2.21) that

sup ‘]P’{ sup  Xe(u) > c}/(\IJ(c)Eg) — K~ Hg ()| < eM + 2¢/3, (8.2.22)
teD uely p. A,

for all ¢ > ¢* and /f, > K > K*. Letting ¢ — oo in (8.2.22) yields

sup |[K T Hpe(t) — K™ H (1) < 2eM + 4¢3,
teD

if K, K > K*, establishing that { K~ H} is uniformly Cauchy. Hence K~ H(t) converges
uniformly in t € D to H(t), which is also bounded by M. We can therefore proceed as in the
second paragraph of the proof of Theorem 8.2.2 to show that H(t) is uniformly continuous
in t € D. Moreover, taking K large enough such that sup;cp |K~PHy (t) — H(t)| < /3, it

follows from (8.2.22) that

sup ‘IED{ sup  Xe(u) > c} / (qf(c)zgl) - H(t)’ < e(M+1)

teD Ue[t,gcAc

for all ¢ > ¢*, proving (8.2.16).
We next show that inf;cp H(t) > 0. For the function f in (B5), we can choose a > 0 large

enough so that » ;4 f(a Z?:l |ki|pi) < 1/2. Let K large enough and m; = |K/a/Pi],

203



1 <i<d, and Ay = A(K,a,c) as defined before so that card(A;) = H;-izl m;. Then by

(B1) and (B5), as ¢ — oo,

IP’{ sup Xe(u) > c}

uEAt
> Z (]P’(Xc(u) >c) — Z P(Xe(u) > ¢, Xe(v) > C))
ue Ay vEAL vFU
(8.2.23)
> 37 (14 0(1)W(e) 2
uEAt

d
= (14 o) ( [T mi)wor2
1=1
uniformly in ¢t € D and m; > 2. Combining (8.2.23) with Theorem 8.2.2 yields

1+ Hpe(t) = lim p{ sup  Xe(u) >c}/\lf(c)

Cc—00
UEIt’KAC

> imsuop sup X, > ¢} /() > (ﬁlmi)p

CcC—00 UEAt

uniformly in ¢ € D and m; > 2. Since limg_,oo K~%Hp(t) = H(t), it then follows that
H(t) > ([[&y a=YPi)/2 for all t € D.

Finally, to prove (8.2.17), apply Lemma 8.2.4 to obtain that for all ¢t € D and large c,

IP’{ sup  Xe(u) >c¢,  sup  Xe(v) > c}

UGILECAC UEB\It7€CAC
< Z ]P’{ sup X¢(v) >¢, sup Xe(v) > c}
wek vey vEB\Jy

< card(K)sKKd\I/(c).
Since s — 0 as K — oo and card(A) ~ K% as £./ K — 00, (8.2.17) follows. O
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Theorem 8.2.6 Assume (C) and (B1)-(B5). Then as ¢ — oo,

d

1T Ag}) /D H(t)dt.

IP’{ sup X.(t) > c} ~ \I/(c)(

teD e

Proof A basic idea of the proof is to cover the set D by rectangles with edges length
leAcj, 1 <1 < d, and also £ — oo and (cA.; — 0 for all ¢ and hence (cA; — 0 as
¢ — 00. Define A, A and Jy, as in (8.2.18) but with KA.Z% replaced by (oA Z2, Iy k. by

I

u

LeAe> and Iy g A, by D. Then (8.2.19) still holds with these new definitions of A, A and Jy,
and also with B replaced by [D]s. Labeling it as (8.2.19), the upper and lower bounds
in (8.2.19') are both asymptotically equivalent to (¢4 %, Aci) LU (e) [, H(t)dt =
\I'(c)(Hgizl A;}) Jp H(t)dt, since €A — 0 and H(t) is continuous. This finishes the proof.

0

8.3 Proof of Theorem 8.1.1

In view of Theorem 8.2.6, we only need to show that (B1)-(B5) holds for such Gaussian

fields. (B1) is obvious. To show (B2), it follows from (8.1.5) that as ¢ — oo,

E{c[X(t 4+ ule) — X()]|X(t) = c—y/c}

= —c[l = p(t,t + ulc)](c —y/c) (8.3.1)

d Q P D

Z . uy|P1 ug|td
_>_( |ui|p2) Tt( C‘l | p’ C‘ld’ P')’

i=1 > ie1 luglPi Do Jug|Pi
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Cov{e[ X (t +ule) — X(8)], c[X (¢ + vAc) — X ()| X (t) = ¢ — y/c}

= P[p(t + ule, t + vAC) — plt,t 4+ ule)p(t, t + vAL)]

TR
— ’LLZ) ’r‘t( —, . >
i d P’ 'x—d P
i=1 Di=1U;' D=1 (8.3.2)
d a P1 Pq
. v v
(Y (e
d D0 '—d P
i=1 >l v; ! > iel v’
d
o) |ug — v P1 |ug — vglPd
- Zlul_vz|l Tt d p_7"'a d v )
i=1 Zi:l lu; — v; |Pi Zi:1 lu; — v;|Pi

Since {c[X (t + akA.) — X (t)] : 0 < k; < m;} is multivariate normal, (B2) then follows.
Let v > 0, ¢ be the density of standard normal. Since V(c — z/c) ~ e*¥(c) for all z > 0
and there exist constants B > 0, B’ > 0 such that P{W;(u) > z — v} < Bexp(—B'z?), it

follows from (8.3.1) and (8.3.2) that as ¢ — oo,

P{X(t+ulA¢) >c—~v/c,X(t) <c—y/c}
c—y/c
=P{X(t) <c— y/c}/ ! P{X(t+ul¢) >c—/c|X(t) = z}p(x)dx
=P{X(t) <c—vy/c} /yoo P{X(t +ule) > ¢ —y/c|X(t) = ¢ — z/cye Lo(e — z/c)dz

(0.¢]

<1+ 0(1))\11(0)/y FP{W(u) > = — 7}

< h(y)¥(c),

where h(y) — 0 as y — oo, establishing (B3).
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To show (B5) holds, note that

P{X(t) > ¢, X(t + ul¢) > c}

< P{X(t) + X(t +ule) > 2}

262 1/2
~ \D({lep(t,t—i-uAc)] )

B 1+ p(t,t + ule) 1/2 2 2
_\P(C)( 2 ) eXp{_l—i—p(t,t—l—uAc)jL?
2 _

By (8.1.5), there exists 17 > 0 such that ¢2[1— p(t, t+uAe)] > (L Jui|PHCLL  ui|Pi)
for all t,t + uA. € [D]s. Hence (B5) holds with f(y) = By exp(—y?) with 0 < A < a, for
some By > 0.

Finally we turn to (B4). Let a > 0, a = {al/P1,. .. ,al/pd}, 0<(<a,1l<¢é< 217@'0(/2’

k= o0& " and wy = 77 /(2k). Define

By ={t+2 "akA,: 0 < k; < 2" k € 7},

F:{ sup X (u) >c},

’U,G_Tt’aAC
B ={X(t) <c—n/c,

Er—{supX(v)gc—fy(l—wo—---—wr)/c)} for r > 0,
'UGBT

recalling that "2 yw, = 1/2. Note that B, C By41 C It an, and that by the continuity of
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X, P(FNE_1) <> 2gP(E—1 N EE). Moreover,

P<ET—1 N Eﬁ)

< 2T+d sup P{X(’U) <c— ’y(l —wy — - — wr—l)/c)’ (8.3.3)

vGItvaAc,se{O,l}d\{O}

X(v+e27"alAe) > c—y(1 —wo — - —wy)/c}.

Given X (v) = ¢ — y/c, the conditional distribution of ¢[X (v + 27 "aA.) — X (v)] is normal
with mean —c(c — y/c)[1 — p(v,v 4+ €2 "aA.)] < 0 and variance c2[1 — p?(v,v + 2 "al,)],

which is bounded by B(a Zglzl 277Pi)S for some B > 0, in view of (8.1.5). Hence

IP’{ sup c[X(v+e27"aA.) — X(v)] > wpy| X (v) =c— y/c}
ec{0,1}4

<o [ - s /(aég—rmﬂ (834

< 2% exp {— C(wry)2/<da2_”’io>c}

for some C' > 0.
Let 7 2 20 /¢2 > 1. Combining (8.3.3) and (8.3.4) with fact P{X(v) € ¢ — y/c} ~

U(c)e¥dy then yields

P(FNE_q)
00 00 (8.3.5)
< (1+0(1)¥(e) Y 27" / exply — Cn"y?/(4a*d*x?) + C'r]dy
r=0 /2

for some C’ > 0. Let v, = aS/3. Then for large ¢ and v, < v < ¢, (8.3.5) is bounded above
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by W(c)Ny(7), where

& 00

Nalo) = 23227 [ exply = Oy (e + Oy
r=0 /2

satisfies No(7a) + [7° w¥Na(Ya + w)dw = o(al) for all s > 0 and [ > 0.

8.4 Example: Standardized Fractional Brownian Sheet

For a given vector H = (Hy,--- , Hy) € (0,1)%, a d-fractional Brownian sheet B = {BH(¢) :
t € R} with Hurst index H is a real-valued, centered Gaussian field with covariance function

given by

d
1 . . .
BB (0B (5)) = [ 5 (1625 + i = |t — i), 1,5 € RY
1=1

Let D ¢ R% such that D having no intersection with any coordinate, define the standardized

field
B (t)

V/Var(BH (1))’

X(t) = teD.
It follows that

2 45y 2Hi — Jt; — 52

o It]
E(X(1)X(s) = [[ X
1=1

2t i 7
and hence
1 d w; |2Hi
E(XO)X(t+u)=1- (1—1—0(1))5(2 t—Z ), (8.4.1)
i=1'"

209



as ||u]] — 0, uniformly over ¢ € [D]s. Hence (8.1.5) is satisfied with p; = 2H; for 1 < i <d,

o =1, L3y [u;Hi) = 1/2 and

12H;

|2H1 i

d -1 d
( |u1 |ud|2Hd ) — (Z ‘U~‘2Hi> Z i
i) ) d i - 1
Z |Ui|2Hl Zi:l |“i|2HZ i=1 i=1 t

1

In other word,
d

_ Yy
rt(v)—z|z|2H , teDveS.
1=1

Applying Theorem 8.1.1, we obtain

IP’{ sup X(1) > c} ~ U (c) <§>z;f1 ot /D H(t)dt,

where

o0
Hlt) = lim K¢ eyP{ sup  Wi(u) > y}dy,
K—o00 0 0<u;<K\Vi

and {W;(u) : u € [0,00)%} is a Gaussian random field such that W;(0) = 0 and

2Hi

N

=1

ti
2H; 2H;

d T lu; — v;
COV(Wt Z |t-|2Hi
=1

2H;

By similar discussions in Lemma 7.2.3, we obtain further that

{0 b~ w0 (£) 7 [ (1] )
su cp ~VY(c)| = ,
teg 2 D\ \tiPHi
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where H is the Pickands’ constant defined by

o~ m —_—
H= lim K¢ eyIP{ sup  W(u) > y}dy,
K—00 0 0<u; <K.Vi

and {W(u) : u € [0,00)%} is a Gaussian random field such that W(0) = 0 and

COV( i ( — |u; — Ui|2Hi>.

=1

Especially, when H = (1/2,---,1/2), then H = 1 and thus

1@{ sup X (t) > c} ~ U(c)27 2d/ (H It |> dt. (8.4.4)

teD

This result is very similar to Example 2.2 in Chan and Lai (2006).
It is worth mentioning here that we may also apply Piterbarg’s result to get the ap-
proximation. Due to the covariance structure (8.4.1), applying Theorem 7.1 on Page 108 in

Piterbarg (1996a), we obtain

d 1

1 1 -1
]P’{ sup X () > c} ~ W(c)e i ;g / (H22Hz' |ti|2Hi) dt,
teD 1

which is the same as (8.4.3).

Remark 8.4.1 In certain sense, Theorem 8.1.1 generalize Theorem 7.1 on Page 108 in
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Piterbarg (1996a), since the latter one is the case that
re(v) =Cp, teDveS,

where C is some nondegenerate d x d matrix.

8.5 Example: Standardized Random String Processes

We study an anisotropic Gaussian field which is the solution to a stochastic partial differential
equation in Mueller and Tribe (2002). We write the original process {Us(z) : t > 0,z € R}
in Mueller and Tribe (2002) as {U(t) : t; > 0,t3 € R}. Then it is a centered Gaussian
field with stationary increments and U(0) = 0. It has the following covariance structure: for
ty,s9 € R, t; =51 >0,

E{(U(t) = U(s))*)} = [t2 — 52,

and for t9,s9 € R, t1 > s1 > 0,

E{(U(t) — U(s)?)} = Vi — 51 w('j%)

where

a) = 7T71/2 1 a—z a—2")(|z A= |z = 2'Ndzds!

F(a) = (2) +2/R/RG( )G( )zl + 127 = | |)dzd
= —(2m)"1/2 a— z)|z|dz
(2m) +/RG( )|zld

— @0 V2 446l + 20 [ Gt
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2
and G(z) = \/Lfﬂe_%. Now we define the standardized field

X(t) = s (EReXR (8.5.1)
Note that
Var(U(0) = v (V2
(e 2R g [ L
and

Var(U(t)) + Var(U(s)) — ]E{(U(t)—U(s))2)}.

E(X(t)X(s)) = 2,/Var(U (1)) Var(U (s))

Thus we obtain that as ||u|| — 0,

where
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Hence (8.1.5) is satisfied with p; =1/2, po =1, a =1, L(\/|u1| + |ug|) = 1 and

Tt( VAL |ug| )
V] 4 Jug| v/ |ur] + [ug|

= e o () VT el el

In other words,

[ v
re(v) =71 (ﬁ) vy + 742 (v_i) vy, teDveS.

Hence we can apply Theorem 8.1.1 to get the approximation to the excursion probability.

However, Piterbarg’s result is not applicable for such case.
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Chapter 9

Vector-valued Smooth Gaussian

Random Fields

9.1 Joint Excursion Probability

Let {(X(t),Y(s)):t € T,s € S} be an R%-valued, centered, unit-variance Gaussian random

field, where T and S are rectangles in RY. Let

p(t,s) =E{X@)Y(s)}, p(T,5)= te;upesE{X(t)Y(S)}-

We will make use of the following conditions.

(Cl). X,Y € C2(RN ) almost surely and their second derivatives satisfy the uniform mean-

square Holder condition: there exist constants L,n > 0 such that

E(X;;(t) — X)) < LIt =1, v, €T, i,j=1,...,N,

E(Y;(s) — y;;j(s’))2 < Lls—¢|?", Vs,seS ij=1,...,N.

(C2). For every (t,t',s) € T? x S with t # t/, the Gaussian vector

(X (1), VX (1), Xi5(), X ('), VX (1), Xj5('), Y (), VY (5), Yij(s), 1 < < j < N)
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is non-degenerate; and for every (s,s’,t) € S2 % T with s +£ 5, the Gaussian vector

(Y(s), VY (s),Yij(5), Y (s), VY (s'), Yi;(s"), X (1), VX (), X;5(t), 1 <0 < j < N)

is non-degenerate.

(C3). For all (t,s) € T x S such that p(t,s) = p(T,S),

E{XG OV () Vi jecsy EXOYp (N recrs)
are both negative semidefinite, where

C(t,s) ={n :E{Xn()Y(s)} =0,1 <n < N},

C'(t,s) ={n BE{X()Yn(s)} =0,1 <n < N}

Remark 9.1.1 Note that

dp d9%p
i (69 “ELNOYO) () = BX (Y (),
dp 9%p

a—%(t, s) = E{X(1)Y;(s)}, 95:0s; (t,5) = E{X(#)Yi;(s)}

Therefore, similarly to Remark 3.1.2, in order to verify (C3), it suffices to consider those
points (t,s) € T xS such that t € 9T with0 <k < N—2or s € 0jyS with 0 < k' < N—-2.

We decompose T and S into several faces as

T:GakT Uy 7 s= Uals UUL

k=0 k= OJeakT = OLE@ZS

216



For each J € 0,1 and L € 0;S, define the number of extended outward maxima above level

u as

MY (X, J) = #{t € J: X(t) > u, VX|;(t) = 0, index(V>X ;(t)) = k,
5’;Xj(t) >0 forall j ¢ o(J)},
MYP(Y,L) = #{s € L:Y(s) > u, VY|f(s) = 0, index(V?Y](s)) =,

e;Yj(s) = 0 for all j ¢ o(L)};
and define the number of maxima above level u as
My(X, J) = #{t € J: X(t) > u, VX|;(t) = 0,index(V>X (1)) = k},
My(Y,L) :==#{s € L:Y(s) 2 u, VY| (s) = O,indeX(VQY‘L(s)) =1}.
Similarly to Lemma 2.3.1, we have the following result.

Lemma 9.1.2 Under (C1) and (C2), the following relation holds for each u > 0:

N
{supX(t) > u,sup Y(s) > u} = U U (MEXx,7)>1,ME(y,L) > 1} as.
teT s€S k=0 J€, T,LED;S

It follows from Lemma 9.1.2 that
N
plap X() > usp¥(9)>u} < 3 Y BMEE.D) > LMEV.L) > 1)
teT s€8 k=0 J€d).T,Led;S

N
<Y Y B{MP(X, )M (Y, L)}
k,1=0 JG@kT,LéalS

(9.1.1)
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On the other hand, by the Bonferroni inequality, Lemma 9.1.2 implies

N
P{sup X(t) >usupY(s) >up > 3 > P{ME(X,J)>1,ME(v,1) > 1)
tet s€s k,I=0J€0),T,L€d;S

N
-3 Y PMEPG ) 2 LMEP( LX) 2 L, ME(Y, L) > 1)

k=0 J.J' €0, T, T4 ]
LE@IS

N
-3 Y rExonyzuMEyin) >1,MEWL ) > 1)
k=0 JeakT
L.L'eq;S,.L#L]

N
- > > PMEX ) > 1L ME( X)) > 1L, ME(Y, L) > 1, M (L, V) > 1}

k=0 J.J' €0, T, 04 ]
L.L'ed;S,.L#L]

Let p;; = P{ME(X,J) = i, ME(Y,L) = j}, then P{ME(X,J) > L, ME(Y,L) > 1} =

S5y pij and E{ME (X, J)MEF (Y, L)} = 3229_, ijpij, and hence

E{My (X, )My (Y, L)} = P{M (X, J) > 1, My (Y, L) > 1}

=3 (ij—Dpij < Y [iti = 1)j +5(j — D)ilp;;
ij=1 4,j=1

= E{My (X, J)[My (X, J) = Mg (Y, L)} + E{M (Y, L)[My (Y, L) = M (X, J)}.
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We therefore obtain the following lower bound for the excursion probability,

N
Ploup X(1) > wsupY(s) >uf > Y > {BFx HME(y, L)}
ter s€s k=0 J€d),T,Led;S

— B{M (X, D) [My (X, 7) = UMy (Y, L)} = E{M (Y, L)[M (Y. L) = 1]M, (X, J)}}

N
-3 Y B ME(x TYMEY, D)

k=0 7.1 €0, T, J#T
LE@ZS

N
-2y > B{MJ(X, )M (Y, LM (Y, L)}

kl=0  Jeo,T
L.L'ed;S,.L#L]

(9.1.2)

We will show that the upper bound in (9.1.1) makes the major contribution and the other

terms in the lower bound in (9.1.2) are super-exponentially small.

Lemma 9.1.3 Let D; be compact sets in RN, = 1,2,3. Let

{(€1(21),2(22),&3(w3)) : (x1,79,23) € D1 X Dy x D3}

be an R3-valued, C2, centered, unit-variance, non-degenerate Gaussian random field and let
p12(71,72) = E&(21)62(72), pr2= sup  pia(x1,22),
r1€D7,29€D9

p13(z1, 23) = E&1(21)83(23),  p13 = sup p13(21, 23),
z1€D1,73€D3

p23(z2, x3) = E&o(22)E3(23), po3 = sup pa3(x2, x3).
xQGDQ,xgeDg
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If p12 > p13 V pa3, then there exists some constant o > 0 such that as u — oo,

E mq
mleDlvm;ggwgeDg {161 (21)&2(22)E3(23)[" Uie, (2y)>u o (29)>u,tg(g)>u} }

2 u?
=o| exps —au” — )
L+ pi2

where m is a fized positive number.

(9.1.3)

Proof Let {(z1,72,23) = [£1(21) + &o(w2) + &3(23)]/3, then there exists a positive number

m/ such that for all (z1,79,73) € D1 x Dy x D3 and u large enough,

E{161(21)82(22)€3(23)[ " Lig (a1) 2,60 (wg) >3 (23)>u} )
< E{(§1(z1) + &a(22) + 53(173))m/11{51 (1) >ubo(w9) >ut3(w3)>u} 0.4
< E{(§1(z1) + &a(22) + 53(563))m/1{[51(xl)+52(x2)+§3(g;3)]/32u}}

/

= ]E{(3g(l‘1, ro,73))" ﬂ{g(x1,$2,$3)2u}}'

It follows from the assumption p1o > p13 V pog that

sup Var(§(v1, v2,73))
x1€D1,29€D9,23€D3

_ sup 3+ 2[p12(21,72)) + pr3(x1, 23) + pag (a2, 73)]
z1€D1,29€D9,73€D3 9

< 346p12 _ 1+2p19
-9 3

and hence p1o € (—1/2,1). Combining this with (9.1.4), we see that for any ¢ > 0, as

3u2

N . )
u — 00, the first line in (9.1.3) is o(exp{eu® — IESTIY]

}). Now the result follows by taking
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a to be a positive number less than

3 R 1 —p12
2(1+2p12)  14+p12 2(1+p12)(1+2p12)

Lemma 9.1.4 Let Dy, ..., Dy be compact sets in RN, where n > 3, and let

(&1(x1),&2(x2),&3(x3), ..., &n(an) 1 x; € Djyi=1...,n)

be an R™-valued, C2, centered, unit-variance, non-degenerate Gaussian random vector. Let

m be a fized positive number and

p12(z1, 29) = E{{1(21)&(22)}, p12 = sup p12(x1, 22).
r1€D1,29€D9

Then

Jim w2 log E{J€1 (21)€2(@2)|™ Lig, (o)) 2,69 (eg) 2u} 163 (23) = -+ = &n(2n) = 0}

= 14 pra(zr, )

If

{(z1,...,2n) €Dy X -+ X Dy, :
(9.1.5)

p12(w1,22) = p12, E{(&1(71) + &2(22))&i(wi) } = 0,Vi=3,...,n} =0,
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then there exists some constant o > 0 such that as u — oo,

sup  B{[S1(21)€(@2)[" L, (o) 269 (wg) >u} 163(23) = - -+ = &n(an) = 0}

:C,L'EDZ',i=1,...,n

= 0| X _OZ'LLQ— U2
B P 1+p12) )

Proof Let &(x1,29) = [£1(21) + £2(22)]/2, then there exists a positive number m

! such

that for all x; € D;, 1 =1,...,n and u large enough,

E{l&1(z1)€(02) " Lig (5)) >89 (wg)>u} 1€3(23) = -+ = Enlwn) = 0}
< E{[(&1(z1) + 52($2))/2]ml1{[51(x1)+§2(m2)]/22u}|§3(J73) =+ =¢np(wn) = 0}
= E{({(x1, Iz))mll{z(xl,xg)zu}|§3(I3) = =p(on) = 0}
Note that

Var (€1, 22)|a(x3) = - = Enlen) = 0) < Var(E(ay, z)) = L P2LT2)

where the equality holds if and only if £(z1, 29) is independent of (£3(x3), ..., &n(2y)). Now

our result follows from the continuity of the conditional expectation and the compactness of

Di,izl,...,n. 0
The following result is similar to Lemma 3 in Piterbarg (1996b).

Lemma 9.1.5 Let (X,Y) = {(X(1),Y(s)):t € K C RN, s € D ¢ RN} be an R%-valued,

centered, unit-variance Gaussian random field satisfying (C1) and (C2). Then for any e > 0,
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there ezists § > 0 such that for K with diam(K) < 6 and u large enough,

u?

E{ M (X, K)[My(X, K) — 1]M,(Y, D)} < Vol(K) eXP{ T 23x(K, D)

+5u2},

where

X(t) +Y(s) |[VX(1)=VY (5)=0,
5X(K, D) = sup Var( —~~_~ 7/ 5 - .
teK,seD,ecSN—1 ( 2 V=X (t)e=0 )

Similarly, for any € > 0, there exists § > 0 such that for D with diam(D) < § and u large
enough,

u2

E{Mu(X, K)Mu(Y, D)[My(Y, D) = 1]} < Vol(D) exp { - 20y (K. D)

—|—6u2},

where

X(t)+Y(s) vx(t):VY(s):o,>

Py (K, D) = Sup Var( 2 V2Y (s)e=0

teK,seD,eeSN—l

Proof The proof will be similar to the original proof of Lemma 3 in Piterbarg (1996b).
The only difference is that the integral here involves both X and Y exceeding u. But we
may apply the arguments for proving Lemma 9.1.3 and Lemma 9.1.4 to handle the double
integral, to make it bounded above by the integral of (X + Y')/2 exceeding u, and then the

desired result follows. O

Lemma 9.1.6 Let (X,Y) = {(X(1),Y(s)) :t € JC RN s € L ¢ RV} be an R%-valued,

centered, unit-variance Gaussian random field satisfying (C1), (C2) and (C3). Then there
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exists a > 0 such that as u — oo,

u2
E{Mu(X, J)[Mu(X, J) = My (Y, L)} = o exp { - 0D )

Y (9.1.6)
E{M (X )MV, DIMUY, L) = 1)} = o exp { = 3 — e} ),

where p(J, L) = supge s ol s).

Proof We only prove the first line in (9.1.6), since the proof for the second line is the same.
The set J may be covered by congruent cubes K; with disjoint interiors, edges parallel to
coordinate axes and sizes so small that the conditions of Lemma 9.1.5 are satisfied for each

union of two neighboring cubes K; and K. Then

E{ My (X, J)[Mu(X, J) — 1]My(Y, L)}

< B{ (30 MulX. 5) Y [Mu(X. Kj) — 1)) Mu(Y. L) }

J
= E{ (D0 MulX.K5) D7 Mu(X. Kj) = 3 Mu(X, K7) ) Mu(Y, L)}
) 7 7

= Y CB{Mu(X, K;)*Mu(Y, L)} + > E{Mu(X, K;) My(X, Kj) My (Y, L)} —
i i#]

- Z E{Mu(Xv Kl)MU(Y> L)}

7

= Y CB{Mu(X, Kj)[My(X, Ki) = My (Y, L)} + > B{Mu (X, Ki) My (X, Kj) My (Y, L)}
i i#]
(9.1.7)
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Then by the Kac-Rice formula and Lemma 9.1.3, there exists o’ > 0 such that for u large

enough,

2

|i§>2]E{Mu(X, Ki) Mu (X, Kj)Mu(Y, L)} < eXp{ - *(J,L) - O/u2}~ (9.1.8)

If K; and K are neighboring, say j = ¢+ 1, we have

E{My(X, K; U KH—l)[Mu(X, KiUKj1) — 1 My(Y, L)}
= E{[Mu(X, K;) + My (X, K;11)][Mu(X, K;) + My (X, K1) — 1My (Y, L)}
= 2E{ M (X, K;) My (X, K; 1) My (Y, L)} + E{ M, (X, K;)[My(X, K;) — 1M, (Y, L)}

+ E{M’LL(X7 Ki+1)[Mu(X7 Ki+1) - 1}Mu(Yv L)}

Applying Lemma 9.1.5, we see that for u large enough,

D E{Mu(X, K)[My(X,K;) = UM (Y, L)} + Y E{My(X, K;) My (X, K;) M (Y, L)}

i—j[=1
< exp{ —u—2—|—5u2}
B 2Bx(J. L) '
(9.1.9)
It is obvious that Sx(J, L) < %, and we will show
1 J, L
Bx(J,L) < # (9.1.10)
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By the definition of 8x(J, L) in Lemma 9.1.5, if fx(J,L) = M, then due to the

continuity, there are some (¢,s) € J x L and e € S¥~1 such that

(9.1.11)

Var<X(t) +Y(s) VX(t)zVY(s)zO,) _ 1+t L)

V2X (t)e=0 2

This implies

p(t,s) = p(J, L), E{X()VY(s)} = E{Y (s)VX(t)} = 0.

y (C3), E{Y (s)V2X(t)} becomes negative semidefinite. But E{X(t)V2X(t)} is always

negative definite due to the constant variance, so that

(E{Y (s)V2X (1)} + E{X()V2X(t)})e #0, VeesN L

This contradicts (9.1.11) and hence (9.1.10) holds. Plugging (9.1.8) and (9.1.9) into (9.1.7),

we finish the proof. O

Lemma 9.1.7 Let {(X(t),Y(s)) : t € T,s € S} be an R?-valued, centered, unit-variance

Gaussian random field satisfying (C1), (C2) and (C3). Then there exists o > 0 such that

as u — 0o,
E{ME(x, ))ME(x, J)ME(y,L)} = o(exp{ . #(QJL) - au2}>, o
! 9.1.12
E{ME(x, ))ME(v, L)ME (Y, 1))} = o(exp{ - % - au2}>,

where J and J' are different faces of T, L and L' are different faces of S.
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Proof We only prove the first line in (9.1.12), since the proof for the second line is the
same. If the two faces J and J’ are not neighboring, by similar arguments in Lemma 2.3.6
and Lemma 9.1.3, it is straightforward to verify that the high moment in (9.1.12) is super-
exponentially small. Thus we turn to considering the case when J and J’ are neighboring,

i.e., I:=JnNJ #0. Without loss of generality, assume

o(J)={1,....mm+1,...,k},
o(JY={1,....omEk+1,... k+k —m),
o(L)=A{1,...,1},
where 0 < m < k <k < Nand k' > 1. If k = 0, we consider o(J) = @ by convention.
Under such assumption, J € 0;T, J' € 9T, dim(I) = m and L € 9;S. We assume also

that all elements in &(J) and £(J’) are 1.

We first consider the case k > 1. By the Kac-Rice metatheorem,

E{My (X, )M (X, J") My (Y, L)}
o0 o0 (0.¢]

§/dt/dt’/ds/ da:/ da:// dy
J J! L u u U
O O O O

dz 1/ dz,._ .1 / dw 1/ dwy,
/0 + 0 k+k"—m 0 m—+ 0
E{|det VX, J(t)HdetVQX‘ et VYL ()||X (1) = 2, X(¢) =2/, Y (s) = y,

VX‘J(t) = 07Xk+1<t> = Zk+1y--- 7Xk-_|_k;/_m<t) == Zk_|_k/_m7

VX (") = 0, Xpny1(t') = wing1, o, Xp (') = wy, VY (s) = 0}

/
X pt7t/7s(w,x Yy 0, 2k 1o s 2 i s 05 Wit 15+ -+ W, 0)

::/// A(t,t', s)dtdt' ds,
IxJ'xL
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where pm/?S(x7 2y, 0, 2501, - . 2! —me 0 Wi 1+ -+ 5 W 0) is the density of

(X(t)7 X(tl)7 Y(8)7 VX|J(t)7 Xk‘-l—l(t)v tee 7Xk+k/—m(t)7

VX|J/<S)7 Xm—|—1<5>7 s >Xk(8)7 V}/]L<S>>

/
evaluated at (z,2",y,0, 2511, ... 2ot —mm 05 Wit 15+« + 5 W, 0).

Similarly to Lemma 3.1.7, by Lemma 9.1.4 and continuity, if

Iy ={(t,s) € I x S:p(t,s) = p(T,5), E{X;(t)Y (s)} = B{X(£)Y;(s)} =0,

Vi=1,.. k+k —m,j=1,...,1} =0,

then E{ME (X, JYME(X,JYME(Y,L)} is super-exponentially small. Therefore, similarly
to the proof in Lemma 3.1.8, we only need to consider the alternative case, which is I # ().

Define

B(1y,0) :=={(t,t',s) € Jx J x S :d((t,s),Io) Vd((t,s),Iy) <3},

where ¢ is a small positive positive number to be specified. Then the difference between
[ fJXJle A(t,t', s)dtdt'ds and fB(IO 5) A(t,t', s)dtdt' ds is super-exponentially small. Hence
we turn to estimating fB(IO 5) A(t, ', s) dtdt'ds.

Due to (C3), we may choose § small enough such that for all (¢,t',s) € B(Iy,?),

AJUJ’ (t,s) = —(E{[X(t) + Y(S)]V2X(t)}>i7j:17.__7k+/€/_m

are positive definite.
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Let {e1,€e9,...,en} be the standard orthonormal basis of RN, Fort e J and s € J', let

ey = ' — )T /||t — t|| and let oy(t, ', s) = (ei, Ay (2, S)Qt,t’>’ then

N N
Ay g(t,s ett Z ei, Ny g0 (t; 8)e, t’>61 = Zai(t,t/,s)ei. (9.1.14)
i=1 1=1

There exists some ag > 0 such that
(e s Mgt s)e ) 2 ag (9.1.15)
for all t and ¢’. Since all elements in e(J) and £(J’) are 1, we have the following representation,

t= (tlw-'atmatm—l—la"'atkabk—i—L-"akark/fm’Ov"'?O)v

= (t’h,..,t;n,bmH,...,bk,t§€+1,...,t;ﬁk,_m,o,...,0),
where t; € (a;,b;) for all i € o(J) and t;- € (aj,bj) for all j € o(J'). Therefore,
(ejie, ) >0, Vm+1<i<k,

(eie, ) <0, VE+1<i<k+k —m, (9.1.16)

(ei,e, ) =0, Vk+k —m<i<N.
Let

D; = {(t,t',s) € B(Iy,0) : oj(t,t',s) > B;}, ifm+1<i<k,

D; = {(t,t',s) € B(1y,9) : ozi(t,t',s) <=3}, itk+1<i<k+ K —m, (9.1.17)

Do ={(8.65) € BlI,0) S ittt 9)einer ) 2 o |

1=1
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k+k —m

imma1 Bi < ap. It follows

where g, 51, - - - 76k+k/—m are positive constants such that g+
from (9.1.16) and (9.1.17) that, if (¢,s) does not belong to any of Do, D, ..., Dy s,

then by (9.1.14),

N k+k —m
(Ao ts)ey prepy) = > ailt. ' s) (e, e ) < Bo+ Y Bi<ap,
i=1 i=m+1

/
which contradicts (9.1.15). Thus Dy U Ufi;i;{nDz is a covering of B(lp,d), by (9.1.13),

E{My (X, J) My (X, J) My (Y, L)}

k+k —m

< / At s)dtdt'ds + / A(t,t, s) dtdt'ds.
Dy i=m+1 7 Di

We first show that A(t,t', s) dtdt'ds is super-exponentially small.
Dy

/DOA(t, t',s) dtdt'ds

(0.] o0
< dtdt'ds / dx / dyp / 0,0,0
/Do g g VX 50,V X) s (#).VY] () )

9.1.18
X DX (1),¥ () (Y VX s () = 0, VX (') = 0, VY] (s) = 0) (9.1.18)

x E{]det V2 X (1)[|det V> X s ()| det VY, ()| X (1) = 2, Y (s) = v,

VX (t) = VX p(t') = VYL (s) = 0}.
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Note that

Var(X(t) +Y(s)|[VX| 5(t), VX, 71, VY 1(9))
< Var(X(t) + Y ()| X1(t), ..., Xm(@t), X1(t)), ..., X (1))

= Var(X(t) + Y (5)|X1(t), ..., Xpn(£), X1 () + (VX1 (£), 8 — 1) + [/ —t[|"TY,,

/
4

X (1) + (VX (), ¢ =) + ||t =] F7Y)7)

= Var(X(1) + Y ($)IX1 (1), ... Ximn(0), (VX1 (8), e ) + I — £]7V )

(VX (t). g p) + I/ = H7Y7)

< Var(X (1) + Y (){VX1(8), e o) + 1t = t7Y o (VX (), € 0) + 1t — ¢ 7Y)7)

= Var(X(t) + Y () (VXL(t), ey 1), - (VXm(E), €, 1)) + 0(L).

(9.1.19)

Hence there exist constants Cy > 0 and £ > 0 such that for ||¢’ — ¢|| sufficiently small,

Var((X (1) +Y(5))/2/VX| (1), VX| s (¢), VY| (5))

p(T,S) +1 o, p(T,S) +1
ST—@Z%@LSHOQKT

1=1

(9.1.20)
— €0,

where the last inequality is due to the fact that (¢,,s) € Dy implies

m m 1 m 2 52
St ts) = 3 aket sl eney ) 2 (S aittt s)ley e ) 200
1=1 i=1

1=1

Similarly, we can use the techniques in the proof of Theorem 2.3.8 to show that for

i=m+1,... . k+k —m, Ip. Alt, t',s) dtdt'ds are super-exponentially small, . O
(3
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Now, the approximation obtained still contains the absolute values of determinants, which
are hard to be computed. However, we will show that removing these absolute values only
causes exponentially small difference, and then we will get the approximation based on the

mean FEuler characteristic of the excursion set.

Proposition 9.1.8 Let {(X(t),Y(s)) : t € T,s € S} be an R%-valued, centered, unit-
variance Gaussian random field satisfying (C1), (C2) and (C3). Then there exists a > 0

such that for any J € 0;,T, L € 0,5, as u — o0,

E{MEF (X, J)ME (Y, L)}

= (—1)k+l/J/LE{detVQX(t)detVZY(S)ﬂ{X(t)gu, SEX (120 for all jgo(J)}
(9.1.21)

XLy (s)zu, £5Yj(5)20 for al jeoIVX) 5 (t) = VYL (s) = 0}

u2

2
P93 0 0 )t + o exp { — gy — o} ).

where p(T, S) = supser ses Pt 9)-
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Proof To simplify the proof, let us consider the case when k = [ = N, and the proof for

general cases is similar. By the Kac-Rice formula,

E{My (X, )My (Y, L)}

— 2 2
_ /J /L E{]det VX (5] [detV2Y ()1 5 . inden( 02X (1))

Ly (s)>u, index(v2y (s)=n} VX (£) = VY (s) = 0} x (1) vy (5)(0; 0)dtds

_ (VN / / P (0.9 (5)(0, 0)dtds / - / " E{detV2X (1)detv2Y (s)
JJL U u

X L ndex(V2X (1) =N} Lindex(92y ()=} X (1) = 2, Y (s) =y, VX(t) = VY (s) = 0}

X D (1).y (s) (@ yIVX (1) = VY (s) = 0)dady

//pvx VY (s OOdtds/ / Az, y,t, s)dzdy.

Similarly to the proof in Lemma 3.1.5, define

O(J, L) = {(t,s) € T x L: p(t,s) = p(T, S),E{X(t)VY (s)} = E{Y (s)VX(£)} = 0},

Us(J,L) = {(t,s) € J x L:d((t,s),0(J, L)) < &},

where 0 is a small positive number to be specified. Then, similarly, we only need to estimate

/ pvx(t)yy(s)(0,0)dtdS/ / Az, y,t, s)dzdy.
U(S(JvL) u U

Due to (C3), we may choose & small enough such that E{[X(t) + Y (s)]V?Y(s)} and

E{[X(t) + Y(s)]V2X(t)} are negative definite for all (t,s) € Us(J,L). Also note that as
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d — 0, both E{X ()VY(s)} and E{Y (s)VX(t)} tend to 0, therefore,

E{X;;(#t)|X(t) =2,Y(s) =y, VX(t) = VY (s) =0}

1 p(T,S) x
= (14 o(1))(E{ X5 (1) X (8)}, B{X;;(t)Y (s)}) ( ) ( )
p(T,S) 1

1 T — p(T> S)y
_ W(E{Xij(t))((t)},E{Xij(t)y(s)}) )
: y—p(T,9)z

and similarly,

E{Yij(s)|X(t) = 2,Y(s) =y, VX(t) = VY (s) = 0}

. z—p(T,S)y
= _(E{Yii(s)X()},E{Y;i(s)Y(s)}) -
L= (T, 52 ! ( y—p(T.5) )

Note that E{ X (£)V2X (t)} and E{Y (s)V2Y (s)} are both negative definite, E{X (£)V2Y (s)}
and E{Y (s)V2X(t)} both negative semidefinite. There exists e¢ € (0,1 — p(T,S)) such that

for 6 small enough and all (z,y) € [u, 00)? with (eg + p(T, S))y < = < (g9 + p(T, S)) "y,

Sz, y) = E{V2X(t)|X(t) = 2,Y(s) =y, VX(t) = VY (s) = 0},

Sa(a,y) = E{V2Y (s)|X (1) = 2, Y (s) = y, VX (t) = VY (s) = 0},

are both negative definite. Define

Al(x7y> = VQX(t> - 21(&3,3/), A2(x7y> = VZY(S) - 22(3773/)
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Then, conditioning on (X (t) = z,Y(s) = y, VX(t) = VY (s) = 0), A1(x,y) and Ay(z,y)

are both centered Gaussian random matrices. We write

o rlegtaT.5) Ny
/ / A(x,y,t,s)dzdy —/ dy/ Az, y,t, s)dz+
U (eg+p(T,5))

/ dy/ Az, y,t,s dx+/ dx/ Az, y,t, s)dy.
(eg+p(T,S)) (eg+p(T,S))

Since (g9 + p(T,5))~! > 1, the last two integrals above are super-exponentially small.

Meanwhile,

(eg+np(T.9))
A(.CE, y,t,s)dx
(eg+p(T,5))

(eg+np(T,5))
/ dy / E{det<A1<x, y) + S1 (e, y)det (Aa(z, y) + Sa (e, 1))
(e0+p(T.,9))

X ﬂ{index(Al(x,y)+21(x,y)):N}l{index(AQ(:U,y)JrZQ(x,y))):N}|

X(2) =2,V (s) =4, VX () = VY (5) = Oy )y (s) (2] VX (1) = VY (5) = 0)d.

Using the same arguments in the proof of Lemma 2.3.2, we see that removing the two
indicator functions above only causes a super-exponentially small difference. Therefore,

there exists a > 0 such that for u large enough,

E{My (X, J)My (Y, L)}
:[I/vax(t),VY(s)(O,O)dtds/ / Px 1),y (s) (@Y VX () = VY (s) = 0)

x E{detV2X (£)detV2Y (s)|X (1) = 2,Y (s) = y, VX (t) = VY (s) = 0}dzdy
u2
+ 0<6Xp{ 12T 9 (T S) — au2}>.
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Define the excursion set

Ay X, T)={teT: X(t) > u},
Ay(Y,S) ={s € S:Y(s) > u},

Au(X,T) x Ay (Y,S) ={(t,s) €e T x S: X(t) > u,Y(s) > u}.
Let

pi(X,J) == #{t € J: X(1) > u, VX 5(t) = 0, index(V> X ;(1)) = 4,
e5X;(t) > 0 for all j ¢ o(J)},
pi(Y, L) :==#{s € L:Y(s) 2 u, VY|(s) =0, indeX(VQY‘L(s)) =1,

e;Yj(s) > 0 for all j ¢ o(L)},

where 5; = 2¢; — 1 and the index of a matrix is defined as the number of its negative
eigenvalues. Then, it follows from the Morse theorem that the Euler characteristic of the

excursion set can be represented as

Since for two sets D1 and Da, ¢(D1 X Do) = ¢(D1)p(D3), we have

(A (X, T) x Ay (Y, S)) = p(Au(X, T)) x p(Au(Y, S))
k

N . l '
=> > (—D’“”(Z(—l)%(ﬂ) (—1)%-(L)>.
7=0

k,1=0 Je@kT,LealS =0

(9.1.22)
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Now we can state our result as follows.

Theorem 9.1.9 Let {(X(t),Y(s)) : t € T,s € S} be an R?-valued, centered, unit-variance
Gaussian random field satisfying (C1), (C2) and (C3). Then there exists o > 0 such that

as u — 00,

IP’{ sup X (t) > u,sup Y (s) > u}
tel seS

u2

N
= Y BPEMEY D o en{ - s — 0}
k=0 J€d),T,L€d,S + (T, 5)

2

= E{p(Au(X,T) x Au(Y,9))} + o(exp{ - *(TS) N 0‘“2}>’

(9.1.23)
where p(T, S) = supser ses p(t, 5).

Proof The first equality in (9.1.23) follows from the combination of (9.1.1), (9.1.2), Lemma
9.1.6 and Lemma 9.1.7. The second equality in (9.1.23) follows from applying Proposition

9.1.8 and (9.1.22). U
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Example 9.1.10 Let T'= S = [0, 1], then

IP’{ sup X (£) > u, sup Y (s) > u} = P{X(0) > u,Y(0) > u, X'(0) < 0,Y(0) < 0}
teT seS

+P{X(0) > u,Y(1) >u,X'(0) <0,Y'(1) >0}
+P{X(1) >u,Y(0) >u X'(1) >0,Y'(0) <0}

+P{X(1)>u,Y(1)>uX'(1)>0,Y'(1) >0}

/pX/ dt/ / / Px (1) 0) (., 2| X' (t) = 0)

x B{X"(t)|X(t) = 2,Y(0) = y,Y'(0) = 2, X'(t) = 0}dwdyd=

/pX, dt/ //pX (@, 21X () = 0)

x B{X"()|X(t) =z, Y (1) =y, Y'(1) = 2, X' (t) = 0}dadyd=

+<_1)/py, ///pX 0) (.1, 2[Y'(5) = 0)

< E{Y"(s)|X(0) = 2, Y(s) = y, X'(0) = 2,Y'(s) = O}dxdydz

e / Dy / / / Py )@y, 2]Y(s) = 0)

x B{Y"(s)|X(1) = 2,Y(s) =y, X'(1) = 2,Y(s) = 0}dadyd=

//pX/ Yi(s OOdtds/ / Px 1)y (s) (@Y X (1) = Y'(s) = 0)

< E{X"(t)Y"(s)| X (t) = 2, Y (s)
u2
—l—o(exp{ — m — au2}>.

y, X'(t) = Y'(s) = 0}dudy
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9.2 Vector-valued Gaussian Processes
Let {(X(t),Y(t)) : t € T} be an R?-valued, centered, unit-variance Gaussian process, where
T = [a,b] is a finite interval in R. We want to estimate the following probability

P{3t € T such that X (t) > u,Y(t) > u}.

Let

p(t) =E{X@®)Y ()}, p(T)= sup p(t).

We will make use of the following conditions.

(D1). X,Y € C?(RN) almost surely, and for each pair (¢,s) € T2 with ¢ # s,

(X (1), X'(1), X" (1), Y (1), Y'(£), Y(t), X (5), X'(5), Y (5), Y(5))

is non-degenerate.

(D2). For all t € T such that p(t) = p(T) (hence E{X'()Y (t)} + E{X' ()Y (¢)} = 0),

E{X'(0)Y (1)} = —E{X()Y'(t)} # 0.
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Define

w(X, :%) = #{t c T Y(t) > X(t) >u, X'(t) =0,X"(t) <0},
WY, T) = #{t €T X(t) > V() > u,Y'(t) = 0,Y"(t) < 0},

WX =Y, T) = #{t € T: X(t) = V() > u, X'())Y'(t) < O},

(X, @) = iy (g)s X ()2, X! (a) <0} (9-2.1)
p(Ysa) = L x ()5 v (@)>u, (a) <0}
X 0) = Ly ()5 X () >0, X (0) >0}
p(Y0) = L x ()5 v (b) =0, Y/ (5) >0}
Lemma 9.2.1 Under (D1), for each u > 0, we have
{3t €T such that X(t) > u,Y (t) > u}
— {u(X,T) > 1} U{u(Y.T) = 1} U {u(X = V,T) > 1}
O {u(X,0) > 1} U{u(Y,a) > 1} U {u(X,8) > 11U {u(Y,8) > 1} a5
Proof Note that
{3t € T such that X(t) > u, Y (t) > u}
= {3t € T such that (X AY)(t) > u}.
Then the result follows similarly to Lemma 2.3.1. U
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Lemma 9.2.2 Under (D1) and (D2), there exists some constant o > 0 such that asu — oo,

Proof We only show the proof for Eu(X, T, since the proof for Eu(Y,T') will be the same.
By the Kac-Rice formula,

o

b 00 00
EN(X7T):/pX’(t)<O)/ dx/ dypx e)y (1 (@ y1X'(t) = 0)

X E{\X”(t)y]l{X,,(t)<O}\X(t) =x,Y(t) =y, X'(t) =0}.

We only need to show that P{Y (t) > X (t) > u|X'(t) = 0} is super-exponentially small. But
P{Y(t) > X(t) > u|X'(t) = 0} <P{(X(t) +Y(1))/2 > u|X'(t) = 0},
and due to (D2), for each ¢ € T such that p(t) = p(T),
Var((X(t) + Y (1))/21X'(t) = 0) < Var((X(t) + Y (1))/2) = (1 + p(T))/2.

By continuity, we obtain

sup Var(X(1) + Y (0)/21X'(1) = 0) < (1 +p(T))/2

completing the proof.
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Lemma 9.2.3 Under (D1) and (D2), there exists some constant o > 0 such that as u — oo,

u

E{u(X =Y, T)[u(X = Y,T) — 1]} = o e { - Tj(:r) —au?}).

Proof By the Kac-Rice formula,

E{u(X = Y.T)[u(X = Y,T) — 1]}
= / ’ / bPX(t)—Y<t>7X<s>—Y<s>(070>dtds
< [T sty i olX ) - YO =0.X(5) - Y(5) =0
X E{X'(1) = Y OIIX' () = Y/ ()L xrv7(6y<0) L 07 )¥ ) <01

X (1) = 2, X(s) =y, X(t) — Y(t) = 0, X(s) — Y(s) = 0}

Similarly to the proof of Lemma 3 in Piterbarg (1996b), we will write 7" as the union of

several small intervals, and then it suffices to prove that there exists o/ > 0 such that

14 p(T) /

Var(X ()X (1) = Y (£), X(s) = Y (5)) < —— —a, V|t —s| <3 (9.2.2)

and

Jim u2logP{X (t) > u,Y(s) > ulX(t) = Y(t) =0, X(s) — Y(s) = 0}

1 /
< —d, Vt—s|>,
1+ p(T) | 1z

where ¢ is a small positive number to be specified.
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Note that for allt € T,

LA =p®) _ 14p(t) _ 1+ p(T)
20 —p(t) 2 — 2

Var(X (1) X (1) - Y (1)) =

But for those t such that p(t) = p(T), E{X(t)(X'(t) = Y'(t))} = —E{X(#)Y'(t)} # 0 by
(D2), it then follows from continuity that

sup Var(X ()| X () — Y (), X' (t) = Y'(t)) < H—’)(T).

sup 5 (9.2.4)
€

Therefore (9.2.2) follows by noting that as [t — s| — 0,

Var(X ()X (1) = Y(t), X(s) = Y(s))

= (1+o0(1))Var(X(t)|X(t) =Y (), X'(t) = Y'(t)).

Now we turn to proving (9.2.3). By continuity, it suffices to show that there is not any

pair (¢,s) with |t — s| > ¢ such that

lim u 2logP{X (t) > u,Y(s) > u|X(t) — Y () = 0, X(s) — Y(s) = 0}

U—00

1
1+ p(T)
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By (9.2.4) and the following evident inequality

P{X(t) > u,Y(s) > u|X(t) - Y(t) = 0, X(s) — Y(s) = 0}
< min {P{X () > u[X(t) — V() = 0, X(s) — Y(s) = O},
P{Y (s) > ulX(t) = Y(£) = 0, X(s) — Y'(s) = 0},

P{X(t) + Y (s)]/2 > ulX(t) = Y(t) = 0,X(s) — Y(s) = 0} },

if (9.2.5) holds, then we have

E{X@)[X(s) = Y(s)]} = E{Y ())[X(s) = Y(s)]} = O, (9-2.6)

and

Var([X () + Y (s)]/2|X () = Y (t) = 0, X (s) — Y(s) = 0) = . (9.2.7)

But by the conditional formula for Gaussian variables, (9.2.6) implies

Var([X(t) + Y(s)]/2|X(t) = Y (t) =0,X(s) = Y(s) =0)

_LHEXWX(} (g 200 A EXOX ()} - 1
2 2

1+ p(T)
2 )

<

which contradicts (9.2.7). Thus there is no pair (¢, s) with |t —s| > § such that (9.2.5) holds,

and hence (9.2.3) is true, completing the proof. O
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Lemma 9.2.4 Under (D1) and (D2), there exists some constant o > 0 such that asu — oo,

o

max {E{u(X = Y. T)u(X, )}, E{u(X = ¥, T)u(Y, 0)},

E{u(X = Y, T)u(X, b)} E{u(X = Y, T)u(Y,b)}}
2

= o(exp{ — %p(T) —auz}),

(¢]

Proof We only show the proof for E{u(X =Y, T)u(X,b)}, since the other terms can be

proved similarly. By the Kac-Rice metatheorem,

o

b
E{u(X =Y, T)u(X, )} = / E{X'(8) = Y (O x (550,57 ()Y (1) <0)
X Ly () x (b)2u,x! (503 X (1) = V() = 0}dt.

We only need to show that there exists o/ > 0 such that for § small enough,

Tim w2 log P{X(t) > u, X(b) = Y (b) < 0,X'(b) > 0]X(t) = Y(t) = 0}

. (9.2.8)
< - —a, V[t-b<$§
and
lim v 2logP{X () > u, X (b) > u,Y(b) > u|X(t) — Y(t) = 0}
U—00
. (9.2.9)
<———d!, Vt—b>4
R

We show (9.2.8) first. Note that we only need to consider the case when p(b) = p(7T'). Un-

der this situation, by (D2), either E{X'(0)Y (b))} < 0or E{Y'(b) X ()} < 0. FE{X' (b)Y (b)} <
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0, then as |t — b| — 0,

E{X()X'(b)|X (1) = Y (t) = 0}
E{X'(b)[X(t) - Y(t)]}
2(1 = p(1))

—E{x (/) - L)

E{X(0)Y (5)}

= (14 o(1)) 22

It then follows from Lemma 2.3.10 that

lim u 2logP{X(t) > u, X'(b) > 0| X () = Y(t) = 0}
e (9.2.10)

1 /
<= = V|t —s] < 0.

For the alternative case, E{Y’(¢)X (¢)} < 0, consider Taylor’s expansion,

X(b) =Y (b) = X(1) =Y () + (b= ) (X (1) = Y(8) + (b = 1) F71 2y,

where 7 > 0 and Z;j is a Gaussian random field with uniformly finite variance. Then as

|t — b — 0,

E{X(®)[X(0) =Y (0)]|X(t) - Y (t) = 0}

_E(x()[X () - (o)) - LB 202)1 - 5;5)))] X() ~ Y ()}

= —(140(1))(b— OE{X ()Y’ (b)},

246



and also Var(X (b) =Y (b)| X (t) =Y (t)) < C(t—b)? for some positive constant C. Therefore,

E{X()[X(b) = Y(O)[|X(#) - Y(#) = 0}
V Var(X (6)[ X (t) — Y (t)) Var(X (b) — Y(b)| X (t) — Y (1))

> —CoE{X (0)Y'(b)} > 0,

for some positive constant Cy. It then follows from Lemma 2.3.10 that

1 (9.2.11)
14 p(T)

Tim w2 log P{X(£) > u, X (b) — Y (b) < 0]X () — Y (£) = 0}

—ao, V|t—s| <o.

Now, (9.2.10) and (9.2.11) imply (9.2.8).

We turn to proving (9.2.9). Note that

P{X(£) > u, X(b) > u, Y(b) > ulX(t) — Y(¢) = 0}

< PLX(1) = w, [X(0) + Y (0)]/2 = u] X (1) = V(1) = 0},

and

Var(X(]X(1) - v (1) < 2T,
Var(LX () + Y ()21 (1) - () < AT

Due to the regularity condition (D1), we obtain
Jim P log PLX (1) > u, [X (B) + Y (0)]/2 > ul X (1) = Y (1) = 0}
_ 1
1+ p(T)

/

—a, V[t—10]>9,

and then (9.2.9) follows.
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Define the excursion set Ay (T, X AY) ={t € T : (X AY)(t) > u}. Then Morse theorem

gives

P(Au(T, X NY)) = p(X,T) — /(X T) + p(Y, T) — 1/ (V. T)
(9.2.12)

o

+u(X =Y, T) + p(X, a) + p(Y, a) + p(X, 0) + (Y, b),

where

o] [0}

p (X, T)=#{tcT Y(t)>X(t)>u X'(t)=0,X"(t) >0},

LY T) = #{t €T X(t) > V() > u,Y'(t) = 0,Y"(t) > 0},

and the rest terms on the right hand side of (9.2.12) are defined in (9.2.1).

Now we obtain the following mean Euler characteristic approximation.

Theorem 9.2.5 Let {(X(t),Y(t)) : t € R} be an R?-valued, centered, unit-variance Gaus-
sian process satisfying (D1) and (D2), and let T = [a,b] be a closed finite interval in R.

Then there exists some constant o > 0 such that as u — o0,

P{3t € T such that X(t) > u,Y(t) > u}

— E{u(X = V. T)} + E{u(X, a)} + E{u(Y, )} + E{u(X, b)} + E{u(Y, b)}
2 (9.2.13)

—i—o(exp{ — %p(T) —au2})
2

=E{p(Ay(T, X NY))} + o<exp{ — %p(T) - Oéuz}),

where p(T) = supyer p(t).

Proof By Lemma 9.2.1, we can find the upper bound and lower bound, similarly to (2.3.1)

and (2.3.2) respectively, for the excursion probability. Applying Lemma 9.2.2, Lemma 9.2.3
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and Lemma 9.2.4 yields the first equality in (9.2.13). The last line of (9.2.13) follows from

(9.2.12). 0

Remark 9.2.6 Based on the proof of Lemma 9.2.3 and Lemma 9.2.4, the term E{u(X =
Y,T)} in the approximation (9.2.13) can be replaced by a simpler one E{y/(X = Y, T)},

where

[©] [©]

WX =Y T)=#{teT:X(t)=Y(t) > u}.

It follows from the Kac-Rice metatheorem that

° b
E{(/(X = V,T)} = / E{1X'(t) = Y/ ()1 x (2 | X (£) = Y (2) = O}t
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