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ABSTRACT

TRIONIC OPTICAL POTENTIALS FOR CHARGE CARRIERS IN

SEMICONDUCTORS

By

Martin Johannes Alexander Schiitz

Optical trapping of neutral particles has led to remarkable advances in precision

measurement, quantum information, and addressing fundamental longstanding ques-

tions in condensed matter physics. Despite recent advances in the optical and elec-

tronic control in semiconductor systems, a similar laser-induced technique to trap and

manipulate charged carriers in semiconductor devices has not yet been investigated.

In this thesis, we will propose for the first time analogues optical trapping poten-

tials for charge carriers embedded in a semiconductor quantum well by driving the

trion resonance with intense, detuned laser light. A trion is a bound state between

an exciton and an excess carrier, that modifies the exciton resonance frequency in the

vicinity of a carrier. Accordingly, the Stark energy is modified in proportion to the the

light intensity at the carrier location, which serves as a source of mechanical potential

energy for the carrier. We show that this novel trion-mediated potential exhibits a

non—local character, but can confine carriers at the lengthscale of optical wavelengths.

It can be deep compared to the the single electron recoil energy and the carrier’s ef-

fective temperature which benefits from the omnipresent cooling mechanism of the

phonon bath. The model is extended to the new paradigm of a spin-selective carrier

lattice in a true Solid State environment which is potentially much simpler to engineer

and control than similar lattices in AMO physics. Our results suggest the possibility

of integrating ultrafast optics and gate voltages in new single-carrier semiconductor

devices with promising applications in quantum information processing, and explor-

ing the physics of interacting electrons in the presence of a periodic potential readily

controllable in space and time.
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IntrOduction

Laser induced optical trapping and manipulation of neutral particles have played key

roles to the advancement of modern atomic physics and biophysics [1, 2]. The realiza-

tion of optical traps has enabled numerous fascinating experiments: in biology optical

traps, also known as optical tweezers. have led to probing the mechanical properties

of DNA [2]. In atomic physics. optical cooling and trapping has become a flourishing

technology paving the way to remarkable advances in precision measurement, quan-

tum information and addressing fundamental questions in condensed matter physics.

In particular optical lattices, a regular array of microtraps for atoms generated by

a standing wave laser field, have made important contributions to a deeper under-

standing of fundamental Solid State questions and serve as a platform for various

promising candidates in quantum information schemes. One exciting outgrowth of

this general technique is for example the experimental implementation of a quantum

phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms

[44] and, very recently, Anderson localization in a disordered optical lattice has been

investigated experimentally [3, 4]

A the same time, semiconductor nanostructures continued to attract significant

interest due to the technological progress in their fabrication. Some of the most

peculiar features of semiconductors become manifest in their optical properties. De-

spite advances in the optical and electronic control in semiconductors [93. 94], a laser

induced method to trap and manipulate charged carriers has not yet been explored.



In this thesis, we will merge for the first time the expertise of these two blossom-

ing fields, semiconductor heterostructure physics and cold atom physics, to propose

the laser-induced trapping of a new system: an electron gas confined within a two-

dimensional quantum well (QW). In analogy to optical potentials for atoms, an AC

Stark shift is generated for the conduction electrons by driving the trion resonance

with intense, detuned laser light. Trions are negatively (X‘) or positively charged

(X+) excitons that have been observed as an important spectral signature of QW’s in

which excess carriers are introduced by modulation doping [16, 17] or optical excita—

tion [19]. In essence, this novel trion—mediated potential for carriers in semiconductors

originates from the following mechanism: The trion resonance modifies the exciton

resonance frequency in the vicinity of a carrier. Accordingly, the Stark energy of the

complete system is modified in proportion to the light intensity at the carrier loca-

tion. The dependence of the total energy on the carrier’s position serves as a source

of mechanical potential energy for the carrier.

The thesis is structured as follows: In the first Chapter we will review the core

concepts of excitations in semiconductors. We will present a quantum mechanical

treatment of excitons, the dominant excitations in undoped semiconductors. Readers

familiar with the concept of excitons can skip this introductory part. In the next step,

we will obtain a Hyllereaas—type wavefunction based on Ritz’s variational technique

to accurately describe the trion state. We will verify that trions are stable against

dissociation into an exciton and a free excess carrier for every possible electron-hole

mass ratio. Our results for the trion binding energies are in a good agreement to

experimental values and confirmed by previous theoretical investigations [28, 22]. In

addition, we will underline the characteristics of the coupling to light for excitons

and trions. While excitons display themselves as a coherent excitation over the whole

sample, the trion oscillator strength shows a very different behaviour. In a last step,

we will focus on the radiative properties of excitons and trions by calculating their

2



radiative transition rates and lifetimes, respectively.

The second Chapter gives an introduction to the quantum optical foundation of

this thesis. We will review the underlying mechanism of laser-induced dipole poten-

tials for atoms, before we turn to our first theoretical treatment of the trion-mediated

optical trapping potential for carriers. Here, we have modelled the QW sample as a

collection of two—level systems. The collection consists of exciton-sized cells that can

be excited by the photocreation of an exciton or of a trion state if a carrier is in the

vicinity of this cell. We will find that the effective polarizibility of the background

due to the exciton resonance marks a major distinguishing feature of the trionic po—

tential. It leads to a correction factor to the pure trion contribution and gives a very

different scaling behaviour of the potential depth with the detuning, compared to

atomic optical potentials.

Chapter 3 is devoted to a derivation of an effective Hamiltonian and the corre-

sponding Schréidinger equation for a single electron that is coupled to virtually excited

bound and unbound trion states. The features embodied in the effective Schriidinger

equation are discussed in the next chapter.

In Chapter 4 we will report on the results of our investigations. In particular, the

trion-mediated potential displays a non-local character that is a consequence of the

light effective mass of the electron m: and the ’quivering’ of the electron motion once

it has virtually mixed with the extended trion state. This non-locality occurs on a

lengthscale of the order of the trion size (N 30-nm). We have been able to show that

this effect can be neglected in the analysis of the electron trapping at the nodes or

antinodes of the intensity pattern, because the trion size is small compared to the

periodicity of the potential. In addition, we will show that the extended size of the

excited trion level accounts for an effective enhancement factor X for the potential

depth of almost two orders of magnitude with respect to typical excitonic Stark shifts.

The quantity X has been intuitively linked to the integral over all possible bound trion

3



configurations having one electron and one hole ’on top of each other’. More simply,

X can be viewed as the number of excitons that fit into the trion size without spatial

overlap. Also, we will encounter and analyze the correction factor that first appeared

in the framework of the previous cell model in Chapter 2. The results of the toy

model and the effective Hamiltonian are in a very good agreement, qualitatively and

quantitatively: the correction is smaller than one for red detuning and therefore

accounts for a decrease in the potential depth. However, for blue detuning, it can

give a strong enhancement to the potential depth. We will show that this novel

type of potential can be deep compared to the single photon recoil energy ER and

the equilibrium temperature of the electrons. It also benefits from an omnipresent

cooling mechanism in the semiconductor environment: the phonon bath.

Chapter 5 is devoted to an analysis of the phonon bath. We will calculate the

effective equilibrium temperature of the electrons that arises from the competition

of the interaction with the phonons and the heating due to spontaneous emission of

photons. According to our results, it even seems feasible to obtain a potential depth

that exceeds both the recoil energy and the thermal energy of the carriers by a factor

of 10. Therefore, we predict the possibility of confining carriers embedded in a QW

system on a lengthscale of optical wavelengths.

In Chapter 6 we will extend our model to the idea of a spin-selective electron

lattice which is much simpler to engineer and control than similar lattices for atoms.

A possible setup for the experimental investigation of this system is depicted in Fig.

(1). The strong Coulombic interactions between the trapped particles give rise to

a very strong on-site repulsion and, in contrast. to the atomic counterpart, even the

interaction between different sites of the lattice is not negligible. The combination of

a periodic potential whose properties can be tuned in real time and which is strong

enough to trap carriers at. a single site, but weak compared to the inter-particle

interaction paves the way for intriguing new experiments not feasible in conventional



solid state physics. The level structure of our system allows for a directive mapping

of the spin of the localized electron and the optical polarization of the photon that

can couple to the trion state. Owing to this scheme. two different potentials for the

two possible spin configurations might be created. This property may open up the

way to important applications in quantum information processing.

     
electron

lattice

/GaAs / AIGaAs  

2DEG /

Figure 1: Schematic of optically—confined electron lattice. The 2DEG sample already

has electrons confined to an .r — y plane below the sample surface. Four incident lasers

achieve further confinement using the AC Stark shift effect. For clarity, here the lasers

are shown in the m-direction only: an identical pattern of light will be applied in the

y-direction, too. The charge modulation can be probed based on a STM technique.

We will focus on small side effects in Chapter 7.

In summary, we will apply recently developed concepts from AMO physics to gen—

erate new, interesting ideas for semiconductor systems. Owing to the specific proper-

ties of these systems, like the background polarizability, the light particle masses, and

the strong inter—particle interactions, semiconductor optical potentials are very differ-

ent from the conventional optical trapping potentials in AMO systems. The outlook

of optically manipulating the motion of electrons seems very promising for at least

two purposes: we may expect a deeper understanding of fundamental models like the

Hubbard model that are well established in the solid state community. The system

proposed in this thesis stimulates further investigations, since this fermionic many-

particle quantum state on a regular lattice possibly bridges the gap between current
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ultracold atom systems and fundamental concepts in condensed matter physics. A

unique dynamic control over all the relevant parameters of the optical lattice allows

for experiments not feasible in condensed matter physics. In contrast to ultracold

atom systems, strong long range interactions in a true solid state environment can

be studied. In addition, the use of the trapped electrons as qubits in quantum in-

formation systems may give rise to applications, well beyond the scope of this thesis.

Owing to its spin-selectivity, electron spins may be addressed individually and used

to create entanglement. In essence, our system might enable the implementation of

the pioneering idea of real-time quantum simulation by dynamically simulating one

complex quantum system with another.

The thesis ends with a discussion of possible applications of this novel system

and identifies possible future directions of research that go beyond the investigations

presented in this thesis.



Chapter 1

Excitations in semiconductors

Typically, the optical spectra of undoped semiconductor QWs are dominated by exci-

tons; these are optically excited bound electron-hole pairs that follow the absorption

of photons in a semiconductor and result from the binding of the negatively charged

electron of the conduction band with the positively charged hole left behind in the

valence band. In the case of a small excess density of carriers, an exciton can capture

an additional electron to form a charged exciton, which is the bound state of two

electrons and a hole or two holes and one electron, depending on the type of dop-

ing. The three—body structure of these charged excitons is the origin of its common

name in the literature: trions [5]. The first theoretical prediction of the existence

of trions by Lampert has celebrated its 50th anniversary in 2008 [6]. In best-quality

samples, trions exist as free particles and thus carry original properties as mobile

charged quasiparticles [7]. Just as excitons, trions can decay radiatively when one

electron and one hole recombine emitting a photon. While the exciton problem can

be mapped onto the hydrogen problem and is therefore analytically solvable, the anal-

ysis of trions from a theoretical point of view bears at least two major difficulties:

(i) As trions represent the eigenstates of two electrons and one hole - or viceversa

- in the presence of Coulomb interaction, their energies and their wavefunctions are
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not analytically known; (ii) since trions are bound objects, they cannot be described

using from a (finite) perturbative approach [8].

In this introductory chapter, we will review excitons as the elementary excitations

of undoped semiconductors and analytically derive their binding energies and wave-

functions for the two dimensional limit. Based on a variational approach, we will do

the same for trions and show that they are st able against dissociation for any possible

electron-hole mass ratio. The binding energies we obtain are in a reasonable agree-

ment with experimental values. We will present our numerical results for the two

cases of GaAs/Ga.1-IAlIAs and CdTe/Cd1_IZnJ-Te QW systems. The material

parameters we used are summarized in Appendix A. Using the so found wavefunc-

tions, we will analyze the coupling of excess electrons to bound and unbound trions,

induced by a standing electromagnetic wave. The optical matrix elements are a key

ingredient for the work presented in this thesis and will be discussed in section 1.3.

In the last section, we will focus on the radiative character of excitons and. trions by

computing their decay rates and radiative lifetimes.

1.1 Excitons in quantum wells

1.1.1 Wannier-Mott theory

The optical properties of semiconductors are strongly related to interband transitions

between valence and conduction bands. Excitons are electronic crystal excitations

that have become an indispensable concept in the understanding of these interband

transitions. In principle, the term exciton has been coined to signify the modification

of the absorption spectrum of photons because of the Coulomb interactions between

the conduction band electron and the valence band hole. A very intuitive explanation

for the exciton concept can be given based on the schematized configuration in Fig.

(1.1). We assume a direct semiconductor, i.e. the conduction band minimum and the
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valence band maximum are at the same point in k—space. The zero energy is chosen

to be at the top of the valence band. Therefore, the bottom of the conduction band

lies at the bandgap energy cc.

  
 

Figure 1.1: Optical transition between the full valence band (VB) and the empty

conduction band (CB) for a direct transition.

Initially the system is assumed to be in its ground state, which means that the

valence band is filled, and all conduction band states are empty. Optical transitions

are induced by photons. For photons in the optical frequency range, the wavevector

Q is small enough to be neglected, so that the photon is schematized as a vertical

arrow. The photon promotes a valence band electron to an unoccupied state in the
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conduction band. For simplicity we assume quadratic dispersion relations for both

the valence and the conduction band, so that the single electron energies are

h2k2 h2k2

613(k) 2' —--277;:-, CC (k) :- 6C + E, (1.1)

where m]; and m; are the effective masses of the valence and conductions electrons,

respectively. In 1937, Wannier was the first to interpret the interband transitions

in semiconductors as a two-particle process [9]: as all the valence band states are

completely filled, the removal of an electron from this band is accompanied by the

creation of an excitation termed a. hole. The hole represents the absence of an electron

in an otherwise filled band. It can be treated as a particle with an effective mass

m2, positive charge 6 and energy 6,, (k). In the two-particle picture, the absorption

of a photon of energy ha) in the semiconductor entails two excitations: one is the

electron in the conduction band of wavevector k and energy cc (k) and the second

one is the hole in the valence band of wavevector —k and energy 6h (k) = 712132 /2771:.

Accordingly, conservation of energy for this process implies

h2k2 h2k2

2m; 2m; '

  

In the framework of this two-particle picture additional physics arise that are con-

cealed in a one-particle approach. The essential idea is that the electron and the hole

are particles with opposite charges. Therefore, there is a Coulomb attraction —e2/cr

between them. Here, 6 is the static dielectric constant due to the effective screening

of all not explicitly included charges (electrons and ions). The frequency dependence

of e is neglected.

The optical absorption rate for this transition was first calculated by Elliott in

1957 [10]. The final state of the system is described by a two—particle Schriidinger
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2V2 2V2 2

h e h h e
 

_ it

27718

 

[(1) (119,172) = Ed) (re,rh). (1.3)
* _

2mh 6 [re — rhl

The problem can be transformed into relative r 2 re — rh and center of mass coor-

dinates R in the standard way to obtain the reflective mass equation for excitons in

real space representation

 

—— — 9——“ — 7:] (D (R, r) = E<I> (R, r). (1.4)

Here, [VI = m: + m]; is the total mass and pm 2 mZ‘mZ/ (m: + 771.71) is the reduced

mass of the electron-hole pair. The center of mass motion is plane-wave like. In

optical experiments the corresponding wavevector K equals the photon wave vector,

which is, however, small. The center of mass motion can be separated as

4’ (R,rl = ‘1’ (R) 975(1‘) (1-5)

and the Coulomb interaction essentially applies only to the envelope part of the

wavefunction

 [IRE—flair) = Erase) <1-6>
2pm er

E : 60+ Err'i‘ —. (1.7)

This is an intriguing and remarkable result: the exciton problem can be mapped

in one-to-one correspondence to the well—known hydrogen problem. Excitons appear

as quasiparticles in a solid that are the hydrogenic bound state solutions of an excited

electron in the conduction band and the remaining hole in the valence band. Eqn.

(1.6) is known as the Wannier equation [12].

At this point, we mention that the effective mass equation can be derived from
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first principles, taking into account the full electron-electron interaction [11]. Based

on a Green’s function formalism, Eqn. (1.4) can be obtained in the lowest order

approximation to the effective electron-hole interaction.

Moreover, Elliott showed that the optical transition rate A(w) depends on the

relative wavefunction, evaluated at r = 0. The transition rate for the absorption of

photons is

2 -
At») = hipped: [463- (0)]25(m—ec—ej), (1.8)

2‘

where the summation over j includes both bound (cj < 0) as well as unbound (63- > 0)

states of the relative motion of the electron-hole pair. The dependence on the relative

wavefunction, taken at r = 0, can be understood by very intuitive arguments. Let

us consider the situation of an emission process whereby the electron and the hole

recombine to emit a photon of energy fun. Since the relative wavefunction governs

the probability to find the electron and the hole at the same spot in the solid, the

necessary condition for radiative recombination, it is evident that the emission rate

should depend on the relative wavefunction at r = 0. Recombination occurs when the

electron and the hole are “on top” of each other, consistent with physical intuition.

Since the matrix elements for absorption and emission processes are identical by time

reversal, the absorption rate must have the same dependence. Indeed, typical absorp-

tion spectra of a direct gap semiconductor show sharp distinct exciton resonances well

below the bandgap energy corresponding to the 13, 2s, . . . solutions of the Hydrogen

problem.

1 .1.2 Confined Excitons

Up to now, our review of excitonic excitations in semiconductors has been general.

In the following we will focus on confined semiconductor structures, which attract

significant interest due to their applications in submicrometer technology. The tech-
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nological advances in crystal growth techniques have made possible the fabrication

of various types of semiconductor heterostructures whose characteristic dimensions,

typically a few nanometers, become comparable to the free carriers DeBroglie wave—

length. In this regime the electronic and optical properties can deviate substantially

from those of bulk materials, because the effects of spatial confinement become ap-

preciable and restrict the electron and hole mobility to a reduced dimensionality. The

energetically low lying electron and hole states are confined in one or more directions

within a region of length LC. Since LC is still larger than the lattice constant but small

enough to cause a quantization of the carriers envelope wave functions, structures of

this size are called mesoscopic [12].

The most prominent examples of such. mesoscopic semiconductor structures are

quantum wells (QW), where confinement along one spatial direction occurs due to

the variation of the bandgap energy from one material to another. The translational

motion in the plane perpendicular to the confinement direction is still unrestricted.

Such a quantum well , e.g. for the III-IV compound semiconductor GaAs, can be

realized by molecular beam epitaxy to sandwhich several GaAs layers in between

layers of a material with a wider band gap, typically GamAl1_xAs, with 0 < :1: <

0.4. For substantially larger Al concentrations, the barrier becomes an indirect-gap

semiconductor [12]. The barrier height, i.e. the strength of the confinement, is

determined by the difference in the bandgap energies of the two materials involved.

Quantum wells are currently the best studied quantum confined structure and

they can serve as a paradigm for others. The system we study is also based on a

quantum well structure, so that for the rest of this thesis we will refer to a quasi

two dimensional or pure two dimensional system. For completeness, however, we

mention the possibility to fabricate quantum wires, where the free electronic motion

is confined in two dimensions and even quantum dots, where confinement exists in all

three space dimensions.
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Our next imminent goal is an accurate description of \N’annier excitons, confined

in a QW structure. In QVV structures, excitons were first observed in an absorption

experiment in 1974 [13], where up to eight resolved exciton transitions have been

measured.

For simplicity, we consider the pure two-dimensional limit, corresponding to a QW

with a very thin QW width. In Appendix B we give a detailed treatment of excitons

in two-dimensional structures. The two-dimensional exciton bound state energies are

found to be

1

E. =—E ———., n=0,1,..., 1.9
n ()(71+I/2)2 ( )

where E0 serves as the energy unit

ft? e2 8211,-

E : ‘ Z Z —.—' 1.10

0 2.1110(2) 2600 262122 ( )

 

and a0 = eh2/pxe2 is the natural lengthscale. In principle, these are the bound state

energies for the 2D hydrogen problem. Quite remarkably, the binding energy of the

ground state exciton is 4E0, which is four times the bulk value. Intuitively, this

increase in the binding energy due to the reduced dimensionality can be understood

if one considers quantum well structures with decreasing width. Since the admixture

of p-wave functions is energetically unfavourable, the wave function tries to conserve

its spherical symmetry as much as possible [12]. Therefore, confinement parallel

to the quantum wells induces a decrease in the Bohr radius perpendicular to the

wells: the oppositely charged electron and hole approach each other, resulting in a

higher binding energy. By reducing the dimensionality of the system, the binding

energy is considerably increased, which relaxes the requirements for an experimental

observation. This is one of the reasons for the remarkable theoretical and experimental

interest in systems of reduced dimensionality.

The lowest lying exciton state, the 13 exciton wavefunction will be of peculiar
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interest, so that we explicitly state its wavefunction

a. (r) = 00,0 (r) = i-gexm-Qr/aol- (1.11)
0

The exciton radius can be deduced from the exponential term of the relative wave—

function. Indeed, in the 13 ground state of the two dimensional limit the exciton

radius ax is only half the Bohr radius, [i.e. ax = a0/2, whilst the bulk value for the

exciton radius is simply the Bohr radius no. The reduction in dimensionality from

bulk to a purely two dimensional system causes the exciton radius to shrink to half

of its original value.

For a more accurate description of excitons in quantum well structures one has to

take into account a finite well width and a subsequent finite extension of the exciton’s

wavefunction in the direction perpendicular to the well width. The enhancement

factor, which is simply four in the 2D limit, for real QWs is then a function of both

the well width and the barrier height. At a first glance, one might be led to think that

this enhancement factor of four is an upper threshold for excitons that are confined in

real quantum well structures. However, accurate theories that have taken into account

various effects as valence-band mixing, nonparabolicity of the bulk conduction band,

the difference in the dielectric constants between well and barrier materials and the

Coulomb coupling between excitons belonging to different subbands, predict very high

binding energies, particularly for very narrow quantum wells, that can even exceed

the two—dimensional limit of four times the bulk Rydberg [14].

1.2 Trions in quantum wells

In the quantum-mechanical description of excitons, we encountered a striking analogy

between the exciton problem and the conventional hydrogen atom. Pushing this
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analogy a step further, Lampert envisaged the existence of a class of mobile charged

excitons, in analogy to the negative hydrogen ion H_ and the positively charged

hydrogen molecule H2+ [6] . It can be regarded as a major breakthrough in our

understanding of the optical response of doped semiconductor quantum wells. Indeed

his theoretical predictions were demonstrated experimentally both in II-VI and III-V

semiconductors [15, 16, 17]. Mobile charged excitations had been identified via their

optical signature in quantum wells as the negatively X‘ and positively charged X1'

exciton, commonly referred to as trions. A trion is a charged bound three-particle

complex, consisting of two electrons and one hole (eeh) or two holes and one electron

(ehh), interacting via the Coulomb potential. When viewing the trion as a carrier

bound to an exciton, it is immediately evident that, as the exciton is neutral, its

attraction must be relatively weak which results in a comparatively small binding

energy. This is why the unambiguous observation of a spectral line due to the charged

excitons did not follow until the advent of high quality lightly doped QW structures

where the binding energies are enhanced by approximately an order of magnitude

relative to bulk [5].

The possibility of observing trions is tightly linked to the excess density of car-

riers in the QW. The presence of free excess carriers in the sample is necessary to

photocreate trions, whereas excitons can be created just by photoabsorption. This

explains why trions appear in the absorption and emission spectra of QWs containing

small excess carrier densities only. The most common way to realize an excess carrier

density in the QVV is by modulation doping. The first observation of trions was also

based on this technique [15]. It works as follows: The doping is introduced during the

growth process of the sample, but only within a specific region of the barrier mate—

rial. In order to hold the Fermi energy level constant throughout the doped sample,

the donors tend to ionize. As a consequence, the freed carriers will migrate to the

lower energy QW. Therefore. the two-dimensional carrier gas exists inside the QVV,
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spatially separated from the donor layer. In contrast to bulk materials, the ionized

donors do not affect the mobility of the electron gas. Subsequently, this technique

allows for for high carrier mobilities [20].

The exciton and trion photoluminescence (PL) spectra in QWS have been investi-

gated as a function of the doping [18]: starting from low doping, where the trion line

is hardly seen, the excess carrier density has been progressively increased leading to

a stronger signal of the trion line. The intensity of the exciton line decreases to the

profit of the trion line by increasing the carrier density. The energy between these

two lines defines the trion binding energy: it is the energy necessary to dissociate a

trion into a neutral exciton and an excess carrier. It should be mentioned, however,

that excitonic effects are quenched due to screening and phase space filling for carrier

concentrations sufficiently high [21].

1.2. 1 Hamiltonian

We explicitly consider a negatively charged trion X_, consisting of two electrons and

one hole, which we assume to be described by their effective isotropic masses m: and

m2. We restrict ourselves to the limit of a purely two dimensional semiconductor,

therefore omitting the form factors due to the finite extension of the electron’s and

hole’s QW wavefunctions along the QW growth directionl. We neglect the electron-

hole exchange interaction . Within the envelope—function approximation, the effective-

mass Hamiltonian HT of the three-particle system reads

Hr = T + Vc + 26c. (1.12)

 

1The growth direction is "taken to be the é-direction throughout this thesis.
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where cc is the energy at the bottom of the conduction band, while the top of the

valence band was set to zero. T is the kinetic: energy operator

A)

6226‘2’322T: __ _ _ _ _——V , 1.13

2m; 1 2m; 2 2772.}: h ( )

The electrons and the hole carry a charge 6 and therefore the interactions are governed

by mutual Coulombic potentials

9

e“ 1 1 1"c = __( + __ _), (1.14)
7Ilh T2}; 7'12

where we introduced the mutual distances between the three particles r1 h, r2h and fig

in a self-explaining notation. To be accurate, ’HT should also include a contribution

originating from image charges owing to the discontinuity in the dielectric constant

at the interfaces of the well. Usually, however, the dielectric constants of the two

materials involved are very similar and this effect can be simply modelized by taking

into account an effective dielectric constant e, which is assumed to be the same in the

two materials [22].

The total evelope energy is governed by the Hamiltonian

H“)t : HT — 26... (1.15)

we note that the Hamiltonian HW commutes with both the in-plane momentum

operator P and the projection £z of the total angular momentum operator along the

i-axis. Therefore the center of mass motion may be separated

HtOt =HT+—. (1.16)

Here, HT describes the ’relative’ envelope Hamiltonian of the trion complex. Since
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this part of HT accounts for the binding energy, it is of peculiar interest. The total

envelope energy is then given by

13%?

. 1.17

2mt ' < )

EtOt : Eégfi +

with E§9t being the ’relative’ envelope energy and K being the in-plane wavevector

of the center of mass motion; mt = 2m; + m}: is the total effective trion mass.

The stability of the trion complex X‘ against dissociation into an exciton and a free

electron is ensured, if Eff” is smaller than EX, the exciton ground state energy: It has

to be energetically favourable to bind the second electron to the exciton. Therefore,

we can write the stability criterion for the trion as

__ tot
ET—EX-ET >0, (1.18)

where ET is defined as the actual trion binding energy. In this notation it is defined

as a positive quantity for a stable bound three particle object.

In what follows, we restrict our considerations to the most stable state, i.e. a

symmetric orbital envelope wave function with a zero angular momentum projection

along the 2-axis. As a direct consequence of this simplification, the ’relative’ envelope

wave function gob depends solely on the mutual interparticle distance 71h» r2}, and 7:12.

In this spirit, the total envelope wave function for the trion factorizes into a center of

mass, the relative motion and the spin part

1 , 1

‘Pr = — exp (’IKR) 90b(7‘1h~7‘2/u7‘12lxse.s , (91:: 82:» Shzlv (1-19)
x/Z 27r h~

 

where R gives the center of mass position, A is the area of the sample and the factor

1/\/ 271' accounts for the normalization of the overall angle degree of freedom. The

fact that we only consider wavefunctions with a zero angular momentum projection
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along the 2~axis m. = 0 gives rise to the simplification exp (21716) ——> 1, with 6 being

the angle that does not affect the mutual distances between the particles.

3,, and Sh ,3 describe the spin state; the variables 81;, 32,: and Shz represent the spin

components along the growth direction 2. we only consider heavy holes which are

the the highest confined valence band in typical QW systems with a heavy—hole band

angular momentum projection Shz E {i3/2}. The spins of the two electrons can

either form an antisymmetric nondegenerate singlet state of zero total spin Se 2 0

or a symmetric triply degenerate state (triplet) with total spin Se 2 1. In total,

heavy hole trions have eight spin states. To fulfill the Pauli exclusion principle for a

symmetric relative motion wavefunction gob, the spin state XScShz has to be an anti-

symmetric singlet state. Since we are interested in finding the trion ground state,

we will only consider singlet trion states which are twofold degenerate because of

the additional spin of the heavy hole. Bearing this in mind, the spin part of the

trion wavefunction X5835)”, will be dropped in the following. The specific picture of

a negatively charged singlet trion that we have in mind for the rest of this thesis is

schematized in Fig. (1.2).

This assumption is well justified since the X— triplet state is unbound in zero

magnetic field and therefore it has been only observed at finite magnetic fields [17].

1.2.2 Variational solution

As stated earlier, .the theoretical treatment of trions is difficult. It is a few body

problem with strong Coulombic interactions. However, we are interested only in the

ground state, and we will use variational techniques. The Ritz procedure that has

been successfully applied by Hylleraas to the similar problem of the He ground state

in the early days of quantum mechanics [23]. In general, the starting point of this
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Figure 1.2: A schematic X_ trion singlet.

procedure is the variational principle

‘I’IHI‘I’l
E[\Il] = (H [II']) = ( (‘I’l‘yl ——> min. (1.20)

Where H as usual denotes the Hamilton operator of the system of interest. One then

has to make an “educated” guess for the general form of the eigenfunction \II. To begin

with, its general form is assumed, but a number of parameters are left arbitrary. In the

next step, the necessary integrals are carried out, so that E becomes a function of the

parameters which have been introduced previously. By finding the absolute minimum

of this function, the parameters, thereby the ground state eigenfunction, and above

all, the energy of the system are determined. Subsequently, two major aspects are

essential for a successful application and accurate results in this variational method:
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first, a choice of the trial wave function suitable for the problem at hand and, second,

a number of variational parameters commensurate with a reasonable handling of the

calculation and optimization process [24].

Striving for a class of trial wavefunctions to handle two-electron problems that

explicitly take into account correlation effects without having to deal with cumber-

some angles, Hylleraas was led to introduce only metric distances that have a direct

physical interpretation as variables. They are expressed in terms of the three distance

coordinates, the two “elliptic coordinates” plus the inter-electron distance which are

related to the mutual in—plane distances as

S = 7‘1h. + T212,» t: 7‘11: — 72h, ‘u = 7‘12- (121)

The variables 3 and u are positive by definition, whereas the variable t can take

both positive and negative values. Owing to the Pauli exclusion principle, \11 can

either be an even or an odd function of the variable t. Since H is necessarily an even

function of t and since the integrals in the variational problem contain two factors, the

contributions to the integral from -—t has to be the same as that from +t. Therefore, it

is a legitimate simplification to restrict ourselves to positive values of t in the integrals

and multiply the volume element by a factor of 2. The volume element that has to be

respected when performing the necessary integrals is derived in detail in Appendix C.

The transformation from Cartesian coordinates to the coordinate set {R, 6, s, t, u} it

is given by

21(32 — t2)

2\/(s2 — 212) (u2 — it?)
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with the limits of integration for the Hylleraas coordinates

.920. 031133, Ogtgu. (1.23)

Ever since the introduction of this class of coordinates, their use has proved to be an

efficient tool in a number of variational studies [25].

In general, the trial wavefunction used to analyzed the ground—state properties of

two-electron problems is assumed to have the form

\IJH (3, 15,11) = Ne—ks/2 Z chmlean'sltm-u", (1.24)

where k and and the coefficients chm," are to be determined variationally. N is the

normalization constant. The exponential decay factor ensures convergence and more

accurate results are achieved by a systematic increase of the expansion lengths. This

class of Hylleraas type wavefunctions haven proven successful for three body problems

as they allow for a diffusive character of the wavefunction but also manage to take into

account two—body correlations. Radial and internal angular correlations effects are

reasonably modeled by the third Hylleraas coordinate u = r12. Therefore, a Hylleraas

type wavefunction is expected to lead to an accurate calculation of the ground state of

the charged exciton. The next step is a transformation of the “relative” Hamiltonian

HT that governs the trion binding energy by using the Hylleraas coordinates s, t, and

U.

The notation can be simplified by switching to effective atomic units: We will

e2 as a measure for length and Eh = mie‘1 #2172use the atomic units aD 2 6712/77);

as energy unit; aD is the effective 3D neutral donor Bohr radius and E, twice the

effective 3D neutral donor Rydberg. l\«'loreover we introduce the effective mass ratio

a 2 7712/7722 as an important parameter to characterize the specific QVV system.
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The “relative” Hamiltonian in Hylleraas coordinates is given by

 

 

2 2 2

HT - ea_ - 5% — .212 (Se-ta» 00.2 - is
2.9 (u2 — t2) 2 2t (32 — 112) 02

u (82 t2) 5" u. (.92 — t2) t“

_20 (32—222 02 11.2—t2_6_2_ s 8 t 8)

82—t2832 32—96132 92 2.9 s2—t2t

_lii-‘l ‘ Iii-’I +5 “'25)

which corresponds to the strictly two dimensional limit of the Hamiltonian given in

[22]. The first two lines govern the kinetic energy of the two electrons, the third line

stands for the kinetic energy of the hole and the last line represents the Coulombic

potential energy.

In order to describe the binding of the trion complex, we use a trial wavefunction

which looks strikingly simple in Hylleraas coordinates. It is the so called “Dritte

Naherung”

gob (s, t, u) = Ne_°‘s (1 +611. + 712) (1.26)

that is equipped with the three variational parameters a, ,6 and r)»: Necessarily,

tpb(s,t,u) is an even function of t to describe a trion singlet. Its normalization

constant N is given by

1 7t (2560/1 + 240M313 + 405mm + 115272 + 25602 (3,32 + 27))
_ ___ 8 . (1.27)
N2 4096a

 

The actual values of the parameters a, 1'3 and 7 are determined by varying these

parameters until the mean value of ’relative’ Hamiltonian (HT), which gives the

’relative’ ground state energy E”, reaches its minimum. As a consequence, the
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variational parameters must satisfy the conditions

   = , = ,. :0. (1.28)

However, no matter what the result for the variational parameters, the chosen trial

wavefunction cpb (s, t, u.) only fulfills its assigned job if it can explain the experimen-

tally confirmed trion binding energy reasonably well- When applying the dissociation

criterion stated in Eqn. (1.18), we need to apply our variational found result to the

exciton ground state energy EX. We obtain the ground state energy for the exciton

from Eqn. (1.9) in effective atomic units as a simple function of the effective mass

ratio a given by

2

EX =—4E0= -1+0. (1.29) 

Our results are presented in Fig. (1.3). We can confirm that the trion complex

is indeed stable against dissociation for any possible effective mass ratio 0. Since

ET is always positive, it is evident that the binding is stable in all cases. Indeed,

the binding of an excess electron to a “neutral” exciton appears to be energetically

favourable. Moreover we present the trion binding energy ET measured relative to

the exciton ground state binding energy ET in Fig. (1.4). Intriguingly, this ratio is

rather constant over the whole effective mass spectrum and is approximately 10%.

Proceeding from this result, we can suggest the following useful rule of thumb: the

exciton problem being by far simpler than the trion physics, accurate numbers for

the exciton binding energies are very well known for all common QW structures.

According to our result, a first valid approximation for the trion binding energy in

this QW system can be simply achieved by taking 10% of the exciton binding energy.

This result also supports the idea, that the trion originating from the electron-exciton

interaction is rather loosely bound compared to the exciton. In this spirit, the trion

binding stems from a dipole—charge interaction, whereas the exciton binding energy
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Figure 1.3: Ground state exciton binding energy and variationally optimized “rela-

tive” trion energy in Hartree units. The trion is stable against dissociation for any

possible massratio 0.

comes from a pure attractive charge-charge interaction, which is essentially stronger

than the dipole-charge interaction.

The result shown in Fig. (1.3) proves the stability of the trion with respect to the

dissociation to an exciton and a free electron. The binding energy is given in terms of

the effective Hartree energy E), = mge‘f/ezhz, which is twice the effective 3D donor

Rydberg energy. This quantity, however, strongly depends on the properties of the

QW material. A heavier effective electron mass and particularly a smaller dielectric

constant lead to a bigger Hartree energy, favouring an increased trion binding energy.

Intuitively, it is evident that a smaller dielectric constant 6, equivalent to less screening

and therefore stronger Coulomb forces, enhances the binding energy. We specify our

results for the two typical QW systems GaAs and CdTe. They are summarized in

Tab. (1.1).
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Figure 1.4: Variationally optimized trion binding energy ET measured relative to the

exciton binding energy EX-

 

] GaAs CdTe

ET/EX 0.11 0.10

ET[meV] 2.05 3.61

 

 

 

  
 

Table 1.1: Calculated trion binding energies for GaAs and CdTe.

Although the relative trion binding energy is comparable in both systems, a much

stronger absolute trion binding energy can be expected for CdTe, evidently owing to

the fact that E}, is more than two times bigger in CdTe than in GaAs. Our results for

the absolute trion binding energies in these two systems are in an excellent agreement

to previous theoretical studies and experimentally measured values. In real finite size

GaAs QWs the trion binding energy varies with the well width, from~ 1meV in

Wide 30 nm wells up to ~ 2meV in 10mm QW [5]. Our theoretical value is closer

to the latter, which is no suprise at all, as our calculation refers to the purely two

dimensional QW. As far as CdTe is concerned, previous theoretical studies have

27



obtained the value ET 2 3.7meV and experimentally values of ET z 3meV were

reported [22, 26]. As a side note, we mention that, by taking the limit a ——> 0, we

recover the two dimensional H‘ binding energy [27].

We have obtained an analytic expression for (HT (a, ,3, 7)), which is presented in

Appendix D along with the results for the variational parameters a, ,3 and y. We

have specified the variationally optimized values for the QVV structures GaAs and

CdTe.

Despite its simple form and the fact that our trial wavefunction depends on three

variational parameters only, it obviously captures the essential physics and produces

very good results. For our purposes, it represents a very good trade-off between

simplicity and accuracy.

Now that we have obtained wavefunctions to describe both ground state excitons

and ground state trions, we are in the position to investigate several properties of

these two different semiconductor excitations. The first goal will be a comparison

of their typical spatial extensions. We have already considered the “size” of the

exciton in a purely two dimensional QW; we found that its characteristic size or is

aw = 00/2 = aD(1+ o) /2, where aD is the natural lengthscale that we are using.

Naturally, we expect the trion “size” to be more extended compared to the exciton,

as its binding energy is about one order of magnitude smaller. To approximate the

extension of the three—particle complex of a trion, we calculate the expectation value

(.9) for the Hylleraas coordinate .9, based on the variationally found wavefunction

99b (s, t, u), and compare this result to ax.

Qualitatively, but very intuitively we can also understand the “size” of the trion

at from the following picture: If we interpret at as the characteristic length associated

to the weak binding of the trion’s second electron, we can express at in terms of the
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trion binding energy

ET 2 it” (mg—1 + (m; + n2;)_1)/2at2. (1.30)

Similarly we define the size of an exciton or via

EX 2 h” (mg—1 + 7712—1) /2a§,. (1.31)

Both approaches lead to similar results; they are summarized in Tab. 1.2. In the

case of GaAs we used EX = 20 meV, ET = 2meV and for CdTe EX 2 40 meV

and ET = 3.6meV, which are the results we obtained for a strictly two dimensional

QW with the corresponding material properties. As expected the trion has a more

diffusive character compared to an exciton, its typical ”size” being about one order

of magnitude bigger than the excitons typical spatial extension.

 

] GaAs ] CdTe

((19/61)? 11.6 12.6

(at/6,.)2 9.7 9.9

  

 

   

Table 1.2: Typical trion “size” compared to exciton “size” in GaAs and CdTe.

1.3 Light-matter interaction: Optical matrix ele-

ments

In this section we focus on the coupling of light with a semiconductor quantum

well by calculating the optical matrix elements. These matrix elements express the

transition amplitudes between different semiconductor eigenstates. Physically, they

are based on the absorption and emission of photons. To be specific, we consider the

interaction of the semiconductor QW with a classical monochromatic standing wave
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E (r, t) = E0 cos (Qr) cos (tut), where E0 is the amplitude of the electric field, Q the

in—plane wavevector and w the frequency of the light. Therefore, the spectrum of

photonic modes contains only two contributions, namely photons with the in-plane

momenta :le.

Before going into the detailed calculations, let us understand the underlying

physics first. Fig. (1.5) draws a scheme of the possible processes that we are about

to investigate.

Let us consider the case first where the conduction band is initially empty. This

situation refers to the upper half of Fig. (1.5). Under this condition, we can only

expect to photoexcite excitons, but not trions. For the creation of excitons the initial

state [2) is characterized by a photon of momentum Q, which corresponds to a plane

wave. It can either excite a bound exciton X or an unbound electron-hole pair.

However, the creation of an exciton is much more likely to happen, because the

center of mass of the exciton is a plane wave as well, and therefore the matching

between the initial and the final state is larger. The matching is much poorer in the

second case, because one initial plane wave photon Q has to split up into two plane

waves, one for the free electron with momentum kg = k + aeQ and one for the free

hole with momentum with momentum kc = —k + ahQ. The QW is translationally

invariant and therefore the center of mass momentum is always conserved. Hence,

in the first case the exciton’s center of mass momentum is just the momentum of

the incoming photon Q, while in the second case it splits between the two particles

according to their masses, cre = 1 — a), = 7712/ (m: + mi); k describes the relative

motion momentum of the electron hole pair.

Now, let us turn to the situation where the conduction band is not initially empty,

i.e. excess electrons are assumed to be already present in the sample. As explained,

this can be easily achieved by the method of modulation doping. This situation

refers to the lower half of Fig. ( 1.5). The semiconductor-photon interaction then
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Figure 1.5: Schematic transition processes for a semiconductor QVV, coupled to pho-

tons with momenta Q. Photonic lines, excitonic lines and trionic lines are marked by

a red dot, green dot and blue dot respectively; free electrons and holes by black and

grey dots, respectively. The upper half displays transitions of photons to excitons

or unbound electron-hole pairs. The lower half describes the possible transitions to

unbound and bound trions if the initial state contains also an excess electron. See

also [32].
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couples the excess electrons to bound and unbound trion states. Unbound trion

states refer to ionized trions, i.e. to the combination of excitons with free electrons,

essentially independent of each other. In contrast to the situation highlighted above

the initial state lie) contains, besides the photon plane wave, an additional electron

with momentum ke. Two plane waves, one for the free electron and one for the photon,

can now either transform into two plane waves, if the final state is an unbound trion,

or into one plane wave, if the final state is a bound trion. The bound trion just has one

center of mass momentum K = Q+ke, whereas K splits between the electron-exciton

pair according to their masses, namely fie = 1 — {7’33 2 fizz/(2m; + mi) = mg/mt, for

an unbound trion. Accordingly, the total center of mass K is linked to the momentum

ofthe initial electron kt.3 and the exciton momentum Q as

Q 2 _pi + ,3HK (133)

which shows that

Pi = firke _ fgeQ (134)

is the relative motion momentum of the initial electron - photocreated exciton pair.

The goal of this section is to derive the transition matrix elements for bound

and unbound trions, induced by the light-matter coupling. We will emphasize and

discuss their different characteristics. We restrict our analysis to bound singlet trions

described by the variationally obtained wavefunction and 13 excitons respectively.

We can safely neglect the possibility of the photon transforming into an unbound

electron-hole pair, because first of all the phase matching is poor for this transition

and, moreover, the laser light is assumed to be tuned closer to the trion and 13 exciton

resonances. To model the interaction Hamiltonian, the first step is to get rid of the

fast oscillating time dependence of the electric field by transforming the system into a
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“rotating frame” rotating at the detuned laser frequency by a unitary transformation

and applying the rotating wave approximation. This widely used procedure will be

covered in more detail in the next chapter. We present two models, one modelling the

interaction in position space, while the second one models the coupling in momentum

space. In position space the light matter coupling is governed by

Hm, = d0 [(1% tam) (r) filo/2) (r) E (r) + h.c., (1.35)

where \II;(1/2) (r) is the field operator to create an electron at position r with spin

2F1/2. Similarly, \II:H3 )2) (r) is the field operator to create a heavy hole at position

r with spin :l:3/2. An essential ingredient is the interband dipole moment do for a

valence, conduction band transition. Its specific value is material dependent, but

can be calculated conveniently from the Kane energy parameter Ep as

do = 4 —-——. (1.36)

Here, m0 is the bare electron mass and 6c the bandgap of the material. The specific

values for GaAs and CdTe are listed in Appendix A.

The second approach to model the light matter coupling is formulated in momen-

tum space and reads

. _ T T '
Hmt — AC: 2: CQ+k.;(1/2)d—k,i(3/2)0’Qai + 12.0., (1.37)

so k

where aQ,i is the destruction operator of a (0i, Q) photon with energy fiw. Note

that momentum is conserved only iii-plane, which is already included in the above

formulation of the coupling Hint- The operators 0L8 and dim account for the cre-

ation of an electron and a hole respectively. Furtermore, AC denotes the light-matter

coupling constant. We will show that for Ac = d0E0/2 = 90/2 the two approaches
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yield to the same result; E0 is the amplitude of the electric field, and (20 has been

defined as the bare Rabi frequency

90 = dOEO. (1.38)

The Rabi frequency is a key component in the analysis of any transition, as it measures

the strength of the coupling between the light and the transition. Note that we will

refer to the Rabi frequency expressed in units of energy.

We only consider trion singlets, made with heavy holes. Therefore, for a given

electron spin, the polarization of the light that applies to the transition of this electron

to a trion singlet state is fixed. Proceeding from a spin down electron, only light with

a- polarization applies for the transition. For an initial spin up electron, the situation

is vice versa and the electron-trion transition can only be induced by 0+ polarized

light. This reasoning is schematized in Fig. (1.6). Based on this argument, we can

simplify the notation by considering an initial electron with a given spin, so that only

one light polarization applies. Therefore, for a fixed initial spin, we can drop the

polarization index of the light and just assume it to be the “right” one.

 

 
8822—1/2 1 l 8622+1/2

Figure 1.6: Coupling of a free electron to a bound trion singlet state.
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1.3.1 Coupling to bound trions

To begin with, let us consider the coupling of a free excess electron to a bound trion

state. For the sake of clarity, the initial electron’s spin is assumed to be spin down

1, as depicted on the left-hand side of Fig. (1.6). Therefore, the transition can only

be induced by a a- photon. We will cover the problem in position space first. We

specify the initial lie) and the final state | f) according to

lie)

If) : [d2r1d2rld2rhwt(rT, rl,rh,)\I1l (FT) @1- (rl) {I}; (rh) I0) . (1.40)

/ er a) (r) 11:) (r) )0) (1.39)

Let us just convince ourselves that the final state If) does represent a singlet

trion. By adding and subtracting the same term, we can rewrite the pair of electron

creation operators as

©l(r))\i’l(r1) = %{@l(r1)‘i’l(r1)-‘i’l(r1)@

( U ( lPT)‘i’ 11)}. (1.41)

Obviously, the pair of electron creation operators we are dealing with now displays

itself as a superposition of a singlet and a triplet state in the first and the second line,

respectively. However, by using the fermion anticommutation relation, the symmetry

property of ‘Ilt and interchanging the integration dummy variables rT <—-> r1 in the

last term, we can see that the triplet part indeed vanishes and we are left with

. . 1 - . - -

‘I’l (1‘1) ‘Pi (1‘1) = 5 {‘1’}; (1‘1) ‘I’j (1‘1) — ‘I’l (1‘)) ‘I’j (11)}- (142)

The initial state lie) describes a free excess electron, which is simply taken to be
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a plane wave with momentum kg

6:91 (1‘) = 31% (1-43)

normalized to the area of the sample A. The final state is a bound trion state with

total wavefunction \I't (r1, r1, rh), that separates into three pieces

 

1 ’ 7726 (PT + r1)+ mhrh 1 .

\Ilt (rT,rl,rh) = Til—exp [7K( 771T )] —\/2_—7—;,9b(s,t,u), (1.44)

namely a center of mass motion with wavevector K, a rotational part that is simply

in its ground state, and the “relative” part 9% (s, t, u) that accounts for the binding of

this three particle object and was determined by our variational approach. Electrons

and holes being fermions, we can use the anticommutation relations for fermions

{x11 (r) , \Ill,(r')} = 5.93/5 (r — r’) , (1.45)

to write the transition amplitude for this process in the general form

(fl Hint lie) = d0 fdzrdQI‘I ‘1’? (r,r',r) <15) (r') E(r). (1.46)

Although this is not the ultimate result and will be subject to a further evaluation, it

already bears some physical insight for the problem at hand. It shows the physically

intriguing property that the photoexcited electron—hole pair is created exactly on

top of each other at r, exactly at the spot where the photon is destroyed, as the

dependence on E(r) in the integral shows. Owing to this property, we can circumvent

a cumbersome evaluation of the remaining integrals due to the relative wavefunction

formulated in Hylleraas coordinates: For one electron and one hole at the same spot

- the situation we face now - the Hylleraas coordinates boil down to the simple case

36



where they all take on the same value, namely: 3 = t = 'u = |r -— r’ I. The evaluation of

the remaining integrals essentially becomes a two body problem between an electron

* . fi . * * . . ..

of mass me and an excrton of maSs 77L; = me + mh, so that it IS appropriate for a

solution in center of mass R = (ml-r + er’) /mt and relative coordinates r — r’.

In this fashion, we find that the transition amplitude can be written in the compact

form

(fl Hint lie) = 32 l0K,ke+QI+ (ke) + 0K,ke—Q1— (1%)] 1 (1-47)

where we have defined the quantities Ii (ke) as

1+ (kg) = %[frexpweowanna“):r) (1.48)

I- (k6) = \/—1§: /d2r exp (2 (—,136Q — flyke) r) 5011 (717‘, 7“) . (1.49)

The first term in Eqn. (1.47) stands for the interaction with the +0, mode of the

standing wave, whereas the second term stems from the interaction with the —Q

mode. The Kronecker deltas take care of the in-plane momentum conservation: They

simply require that the trion center of mass momentum has to match the sum of the

photon momentum :le and the initial momentum of the electron kg. The essential

physics, however, are buried into the expressions Ii (ke). They cover the intrinsic

coupling strength of a single electron to a bound trion. We note that expression (1.48)

is identical to the optical matrix element found in previous theoretical studies for the

trion-related absorption at T = OK [30, 31].

Before we we give a detailed analysis of the expressions Ii (k8), let us first show

that we can derive the same expression using a formulation of the problem in k—space,

based on the interaction Hamiltonian in Eqn. (1.37). Again, we fix the spin of the

initial electron to be in the spin down state 1, whereby the polarization of the light

has to be 0'_. The initial state we are to consider contains an electron of momentum
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kc and a photon of in-plane momentum Q. Therefore, we can represent the initial

state as

lie) 2
 

k3,,Q) .—_ cLe’iaEr )0) '_ (1.50)

The energy of this state E,- is simply the sum of the energy of the free electron in the

conduction band and the photon

12kg

’ fiw. 1.51

2771' + ( )
3k

8

Eizfc‘j‘
 

The final state If) of the transition is assumed to be a singlet bound ground state

trion. By already incorporating momentum conservation into the notation, we express

the final, state in short as

If) 2 Ike +Q)t1 (1.52)

where the subscript denotes a bound trion state. The center of mass momentum of

the trion ke + Q appears in the bracket. No further quantum numbers are needed to

specify the bound trion state, since we restrict our analysis to singlet trions described

by the wavefunction given in (1.44). The energy of the final state Ef contains a bound

trion, made of two electrons in the conduction band and one hole in the valence band.

The necessary energy has been provided by the initial photon, so that Ef takes on

the form

’12 (kc + Q)2 _

th

 

In k-space the information about the wavefunction enters explicitly via its Fourier

transform. In general, a singlet bound trion state is twofold degenerate with respect

to the spin of the heavy hole; with a fixed center of mass momentum q can be
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represented in second quantization as

_ ” T .T T ,

IQ)t — 1;]; W1 (k11k21q — k1 - k2) CR1,TCkgaldq—kl—kgiwfl) |0), (1.54)

1: 2

where \Ilt is the Fourier transform of total trion wavefunction \Ilt, defined by

~

‘1’t(k1,k2,P) =
 43flf(12md2r2d2rhe"i(klrl+k2r2fl’rh)‘11);(r1,r2,rh), (1.55)

where p = q — k1 — k2. Using the anti-commutation relations for electron creation

and annihilation operators

{61(33, Ck’,$’} : 0, {Ck"s’c1(’,s’} = 68,8,6k,k, (1.56)

and similarly for the hole creation and destruction operators, we obtain that the

transition amplitude becomes

(kt. Q) Him Ike + Q). = Aco‘memu (kg). (1.57)

This reasoning was based on a fixed mode +Q, because we only considered the final

state Ike + Q>t- Taking into account the presence of both the +Q and the —Q mode

of the standing wave, we find

<3

Therefore, we have proven the equivalence of the two approaches (see Eqn. (1.47)),

Hint |K), = )‘c [5K,ke+Q1+ (ke) + 5K,ke—Q1— (ke)] - (1-58)
 

if the light matter coupling constant AC is chosen to be

292132.410
AC 2 2

39



The factor of 1/2 arises from the expansion of the standing wave profile cos (Qr) into

its two mode contributions according to

90 cos (Qr) = % (eiQr + e‘iQr) . (1.60)

We have shown, that both approaches arrive at the same result. After all, the

result should be independent of the basis. However, the analysis in terms of both

basis provides a better insight on the physics of the process. Let us pause for a

moment and give a physical interpretation to the expressions Ii (kg) in Eqn. (1.48)

and (1.49). The trion transition amplitude, also called the trion oscillator strength,

appears in terms of the Fourier transform 1+ (k) of the relative motion part of the full

trion wave function; the Fourier transform taken for the situation of photocreation -

photons create one electron and one hole ‘on top’ of each other - and k equal to the

relative motion momentum p, of the e-X pair made with the initial electron ke and

the photocreated exciton Q.

On top of this physically intriguing result, we have obtained analytic expressions

for the quantities Ii (k6). For the ‘relative’ trial wavefunction, given in Eqn. (1.26),

they read

_ ' 01 Isaac — ark)“ + 02 lifieQ -,13:rk|2 + 03
_ «m 2 2 7,2 .

(a + liBeQ "' 5.1-kl )

 Ii (k) (1.61)

Here, C1, Cg and Cg are simply constants, determined by the variational parameters

(1,8 and 7 via the expressions

C2 = a- (a (26 +13) — 95,) (1.63)

C3 = a3 (a2 + 203 + 6,) . (1.64)
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In order to gain a better physical insight, we present plots of the functions Ii (k)

in k-space in Fig. (1.7). To be specific, the parameters for GaAs were taken, but no

actual differences occur for CdTe. we can see that both are strongly peaked around

k z 0. The different shifts of the centers are negligible, because the photon wavevector

Q is very small on this scale. While in real space the wavelength A of the laser is much

bigger than the trion size at, about one to two orders of magnitude, in momentum

space the relation of the associated quantities is reversed: The momentum of the

photon Q = 27r//\ is negligibly small compared to l/at, which gives the appropriate

scaling behaviour of the Fourier transform of the relative trion wavefunction. This is

why the functions Ii (k) rapidly go to zero on a scale of w a N 1/at.

The fact that we have analytic expressions for the trion oscillator strength will

turn out to be a helpful tool for further calculations.

1.3.2 Coupling to unbound trions

Going back to Fig. (1.5), we see that an electron is not only coupled to the bound

trion state, but also unbound trions, meaning free electron — exciton pairs. The bound

trion state is energetically more favourable, but the photoexcited exciton can only

capture the excess electron if it is created close enough to the electron. A intuitive

picture we will refer to later is that the electron and the exciton have to be within

the typical trion size ~ at2 to be able to generate a bound trion state. Otherwise the

exciton and the electron are essentially independent of each other and coexist in the

semiconductor Q\N.

We are going to give a closer look at the transition rate for this process involv-

ing unbound electron-exciton pairs. To characterize the unbound trion states, we

restrict ourselves to 13 excitons, which typically give the strongest peak in absorption

measurements and are well separated from the next higher exciton level by about
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Figure 1.7: Plots of the functions Ii (k): They govern the trion oscillator strength

for the interaction with a iQ mode. The variational parameters for GaAs were used.

The value for Q corresponds to laser light tuned close to the trion resonance at an

angle of 30° with respect to the é-axis.
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~ 3.5E0. we start from a free electron state as our initial state

, , exp (iker)

(0(r) = (r1) = ————, (1.65)
l 6 «E

which is a plane wave with momentum kg. The final state, which shall be described by

the wavefunction \IIC (r1,r2, rh), contains two plane waves, one for the free electron

and one for the 13 exciton. The subscript 0 indicates the exciton states form a

continuum. We can write \Ilc (r1,r2, rh) as a simple product of the electron and the

exciton wavefunction

exp ('ikx (aer1 + (111%)) exp (ikrzz)

WI x/Z

1

(913(1‘1 _ 171), (L66)
 

\I’c (1‘111‘211'5) = (I‘lf> =

where we introduced 016/}, = m:/h /mx; the electron has an wavevector k, while the

exciton’s wavevector is km. Note that to describe this state we have to assign it the

quantum numbers k and km, while for bound trions one wavevector was sufficient to

characterize the state. We could equivalently assign it a center of mass momentum,

but would still have to define a relative momentum. The nomenclature “exciton

continuum” is based on this reasoning. It is important to emphasize that this ansatz to

describe the continuum states \Ilc is not properly symmetrized. However, in Appendix

E.1 we show in detail that for a macroscopic sample the exchange effects that arise

from a proper symmetrization of the wavefunction are negligible.

To calculate the transition amplitude, we can simply refer to Eqn. (1.46) by re-

placing \I't with ‘116. Expanding the cos (Qr) into its two modes, we find the transition

amplitude to be

(kel Hint lkx, k>c = 9x5ke,k [5K—ke,Q + 6K—ke,—Q] « (1-67)
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Here we introduced the effective exciton Rabi frequency (2,, as

o .
or = 7051,. (0) «Z. (1.68)

Although the bare coupling (20 being the same, the overall nature of this transition

amplitude is strikingly different than from the one we have obtained before for bound

trion states. Let us mention the obvious part first: The Kronecker deltas handle

the impulse conservation, whereby the photo—excited exciton just takes the photon

momentum, while the free electron is unaffected by the transition and simply stays in

its initial momentum eigenstate. The fact that the amplitude is proportional to the

relative exciton wavefunction taken at r = 0 goes along the line with the result found

by Elliott in Eqn. (1.8). In this picture the corresponding expression for bound trions

in Eqn. (1.48) can be regarded as a natural generalization of the excitonic transition

rate, one relative coordinate being set to zero. The more interesting part is that

the exciton oscillator strength appears as an extensive quantity that scales with the

area of the sample according to the dependence ~ x/Z. Owing to the normalization

constant of the 13 wavefunction

(4515' (0) N 1/ (7mm)? (1.69)

it can be visualized as proportional to the number of excitons that fit into the sample

without spatial overlap. The bigger the sample is, the more excitons can be excited.

Every single exciton transition at a particular spot is driven by the bare Rabi fre-

quency {20, but the macroscopic size of the sample accounts for a huge collective

enhancement factor for the exciton oscillator strength. This result sheds an interest-

ing light on the nature of excitons: they appear as a coherent elementary excitation

over the whole sample, resulting in a macroscopic transition dipole moment and sharp
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absorption peaks in ideal cases. Since the presence of the electron effectively does not

affect the process studied here, the unbound trion has essentially the same oscillator

strength as the exciton.

The oscillator strength decrease from ionized to bound trions is therefore of the

order of ~ (lg/A, which is vanishingly small in the large sample limit. However, this is

not suprising, because it. considers the somewhat artificial limit of a single electron in

a huge macroscopic sample. One single electron cannot have a sizeable effect on the

photon absorption. The exciton’s oscillator strength is approximately ~ A/(13,, while

the trion oscillator strength scales as ~ (A/0.3,) (0.3/14) :3 a? /(1%, which corresponds

to a picture in which the trion oscillator strength is proportional to the number of

excitons that fit into a single trion without spatial overlap [32]. We already estimated

this ratio to be of the order of 10.

1 .4 Radiative lifetimes

In this section we will present the radiative properties of excitons and trions. The

intrinsic radiative decay of both free excitons and trions in low-dimensional systems is

due to the coupling with a continuum of photon states. We will analyze the different

characteristics of these two decay processes. The calculations will be based on the

assumption of conservation of the in—plane wavevector, thereby disregarding possible

effects of interface roughness and acoustic phonon scattering. The effect of the latter

can be minimized in the low temperature regime. Therefore we will consider the

T —+ 0 limit. The wavevector conservation is likely to be a plausible assumption,

whenever the coherence length of the quasiparticles is longer than the wavelength

of the light [33]. This condition can be satisfied in good quality samples at low

temperatures.

The proper framework to perform the actual calculations is Fermi’s Golden Rule:
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The decay rate of a state [(1) or equivalently the probability to make a transition from

the initial state [07) to the final state [3) per unit time to first order in perturbation

theory is given by

2
11,43 = 7” [140,3]2 5 (12,3 — E0), (1.70)

where M03 is the matrix element which couples the initial and the final states. To

find the total decay rate F of the initial state [(1) we have to sum over all possible

final state configurations, the 6-function appearing in Fermi’s Golden Rule effectively

taking care of energy conservation in this process. We then find the general expression

27f 2

r = 7 2]./V103] 6 (E3 — Ea). (1.71)

,8

The interaction Hamiltonian H1 that couples the initial and final states can be ex-

pressed in second quantized form as

_ T T
H1 — g2 cQ+k.;(1/2)d—k,i(3/2)aQ~i + h.c. (1.72)

Q,k

Note that in-plane momentum conservation is already included, but the é-component

of the photon is left arbitrary. The coupling constant 9 is the only difference from

Eqn. (1.37), where we considered transitions induced by a classical electromagnetic

standing wave. In order to describe the spontaneous decay process, we take 9 to be

9 : doég. (1.73)

Here, (10 denotes, as before, the interband transition dipole moment, 6 is the polar-

ization of the photon and the quantity 8

f2.»
5 = ”5.? (1.74)
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Figure 1.8: Schematic diagrams of the exciton (left) and trion (right) in—plane dispe-

rion relations and the coupling to light. For excitons the radiative zone is restricted

by the light cone effect (dashed lines).

can be visualized as the ‘electric field per photon‘ inside the material; 6 incorporates

the refractive index of the material and V is the quantization volume.

Let us first consider the case of an exciton decay. In a bulk crystal, the exciton

can interact only with a photon that has the same wavevector in order to obey the

translational invariance of the system, resulting in a hybrized exciton — photon mode, a

polariton, which is the stationary state of an infinite dielectric medium. The situation

is different for a QW system: the exciton with in-plane center of mass wave vector

K interacts with all the photon modes that have the same in—plane wave vector, but

no further restriction is imposed on the S-component of the photons wavevector.

Compared to the bulk case, where radiative recombination occurs only by a leak of

the polariton through the surface of the crystal or by (non-)radiative recombination

at crystal imperfections, this leads to a large radiative recombination rate in the

QW system [34]. In a two—dimensional QW system, an exciton combines the dual

47



merits of coherent nature on the two-dimensional QVV plane and superradiant decay

in one direction along the growth direction, owing to its macroscopic transition dipole

moment. Therefore, the breakdown in translational symmetry in the growth direction

gives rise to profoundly modified coupling of excitons to photons. The radiative

zone, however, is restricted by the light cone effect: Radiative recombination can

only occur, if the exciton’s wavevector [Kl can be matched the photon’s wavevector:

Consequently, it obeys the constraint [K] < nw/c. This is schematized on the left

side in Fig. (1.8). Only excitons around K m 0 can couple efficiently to light; they

are called bright states. States outside the light cone are called dark states and can

be thermally populated for sufficiently high temperatures.

We elegantly circumvent these problems by performing the calculation in the

exciton’s restframe, i.e. we set K = 0, and assume the low temperature limit T —>

0. The initial state of the exciton decay process is characterized by the exciton’s

wavefunction \le (re,r},). We will restrict our analysis to 13 excitons and neglect

higher states as the interaction with the radiation field is typically dominated by this

lowest state, particularly under near resonant excitation. The final state is given by

the crystal ground state and the emitted photon. We fix the spin configuration of the

initial state as composed of a spin down electron a = -1/2 and a heavy hole with

spin Uhh = +3/2. As a consequence, the polarization of the photon is determined

to be a 0+ photon. With this simplification, we will drop the spin indices for the

moment and make the replacement 92 ——+ 9’2 : 92 /3 to correct the dipole moment.

we write the initial state [2) for an exciton with center of mass wavevector K as

)7) = Z is. (k, K -— k) c]d]<__k )0), (1.75)

k
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where the Fourier transform of the exciton wavefunction ‘le (re, rh) is defined via

~ 1 . .

\IIJE (k, K — k) = Z fdzredzrh \le (re, rh) exp (—27kr€) exp (—i (K — k) rh). (1.76)

The energy of this initial state E) is given by

h‘ZK'Q

E) = + 6,3 — Ex. (1.77)

2771,:

 

Similarly, we write the final state If) as

If) = (11,10) (1.78)

with the photon energy

.Ef::ns. (179)

Using the (anti)-commutation relations for fermions (bosons), we obtain indeed the

macroscopic superradiant transition amplitude for a QW exciton

(fl H. II) = g’ f ,2, exp (-iQr) 111.». (r. r) ——— 9'31, (0) 7.1—5m. (1.80)

We can recognize that the in-plane photon momentum has to fulfill momentum con-

servation, but no condition is imposed on Q2. In the subsequent step, the calculation

of the radiative decay rate I‘m, the value of Q; will be determined by energy conser-

vation. Inserting the transition amplitude into Fermi’s Golden rule (1.71), taking the

large volume limit to replace the sums by integrals and evaluating the expression for

simplicity in the exciton restframe, we find that the exciton‘s decay rate I}, and the

exciton’s lifetime 7,;- can be obtained from

2
Mon

—1
T_ : F : ——

J: I 37ra.(2)h2ce

cV—Ea. new

49



Here and in the following, 0 is the speed of sound in vacuum, 71 the refractive index

of the QW material and (10 the effective exciton Bohr radius. The values obtained

for the specific QW systems GaAs and CdTe are summarized in Tab (1.3). We also

state the natural linewidths of the exciton level 75.1117, because we will refer to them in

the course of the rest of this thesis.

 

] GaAs [ CdTe

7.» [p5] 15.9 6.9

1‘, [10103-1] 6.3 14.5

711:, [,ueV] 41 95

 
 

 

 

   

Table 1.3: Calculated radiative exciton lifetimes, decay rates and level widths for

GaAs and CdTe.

Indeed, we find very short lifetimes in the range of picoseconds: an evidence for

the enhanced radiative recombination rate of excitons, caused by the breakdown of

the translational symmetry of the system. Our results are in a good agreement with

values from other theoretical and experimental investigations: For GaAs a radiative

lifetime of 7'3; = 10 :t 4 ps has been measured in the absence of dephasing mechanisms

[35]. Due to a smaller dielectric constant e and a bigger effective electron mass mg,

the radiative lifetime in a CdTe semiconductor QW is found to be smaller. Esser et

al. found T3 = 13 193 for GaAs and T1- : 4 p3 for CdTe in the T —> 0 limit.

Let us turn to the radiative decay of a bound trion. The coupling of delocalized

trions to light is very different from that of excitons, since not only a photon, but also

an excess electron is involved. In an optical transition, where the photon momentum

is negligible, the electron can absorb the trion center of mass momentum K. This

fact opens up a radiative decay channel for trions with high K vectors, that doesn’t

exist for excitons. In other words, there is no light cone effect for trions. A schema-

tized version of this argument is presented in Fig. (1.8). All trion states can decay

radiatively, since the mismatch in the wavevectors between the trion and the photon

is absorbed to the excess electron during the optical transition.
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The initial state [2) = TK>t contains a trion with center of mass momentum K.

Again, we fix the spin configuration. The transition amplitude for this process can

then be conveniently calculated from an adapted form of (1.47), the optical matrix

element, where we replace the coupling constant 90 /2 -—+ g’ to find

Mif = <f|H1|i> = 9,5K.k€+Q1+(ke)- (182)

We have calculated the trion decay rate F); in the trion restframe, where K = 0,

as depicted in Fig. (1.9). In this frame, the in-plane momentum conservation takes

on the form k6 = —Q.

 

 

Figure 1.9: A trion in its rest frame decaying into a photon and an electron.

We have obtained an approximative analytic expression for Ft, whose derivation

is presented in detail in Appendix F. Our numerical results for GaAs and CdTe are

summarized in Tab. (1.4).

 

[ GaAs [ CdTe

'rt [ps] 18.9 18.4

P, [10103-1] 5.3 5.4

hr. [...eV] 34 35

  

 

 

   

Table 1.4: Calculated radiative trion lifetimes, decay rates and level widths for GaAs

and CdTe.

For both GaAs and CdTe we approximate the trion lifetime to be about ~ 20 ps.

Experimentally very similar values have been measured in the range 45 — 60 ps [36].

Our theoretical prediction is in a good agreement to these experimental values, so that
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our variational trial wavefunction again proves to be reliable and produces reasonable

results.

As a last remark, we want to address the question, why the lifetimes of excitons

and trions are in a comparable range, although their oscillator strengths for a light

induced transition are very different? While the exciton’s oscillator strength f); is

an extensive quantity that scales as fI ~ A/AI, the trions oscillator strength ft is

much smaller. since the presence of an excess carrier is required. It has the scaling

behaviour of ~ Alt/Ax, that can be interpreted as the number of excitons that fit into

a trion without spatial overlap. Here, A, At and AI are the sample, the typical trion

and the typical exciton size respectively.

In the case of an exciton’s radiative decay, the final state is marked by a photon

with momentum Q = (Q,Qz). Since momentum conservation requires that the

exciton’s momentum equals the photons in-plane momentum, Q is fixed. Moreover,

the value of Qz is determined by energy conservation, so that in total there is no

degree of freedom for the final state of this transition.

The situation is different in the case of trions. When a trion decays radiatively, the

final state is not only characterized by a photon, but also by an excess electron that is

left in the two-dimensional sample. Consequently, in the case of a radiative decay of a

trion the final state is completely determined by five momenta components, three for

the photon and two for the free. electron. Since momentum and energy conservation

again only fix three components, two degrees of freedom are left and need to be

summed over to obtain the correct transition rate. This summation dies out for large

k values and has the characteristic size of the trion‘s relative wavefunction’s Fourier

transform, namely ~ 1/At. Thus we can get the scaling behaviour

. 1 At A

E — ~——~A A 1.83

it A) .4, A, / I ( )



which is exactly what we expect in the case of excitons. So, the fact that the trion’s

final state of a radiative decay has two more degrees of freedom than the exciton’s

exactly cancels the bigger oscillator strength the exciton has due to its macroscopic

dipole moment. This gives an explanation for the fact that the radiative lifetimes of

trions and excitons are not as different as one maybe expected at a first glance, when

considering their very different decay channels and different oscillator strengths.



Chapter 2

Optical Potentials: Atoms vs.

semiconductors

The possibility of trapping atoms at the nodes or antinodes of an intense laser standing

wave was suggested first by Lethokhov in 1968 [37]. From 1986 on, when the first

experimental observation of optically trapped atoms was reported, laser cooling and

trapping has become a flourishing new field of modern physics [38]. Laser cooling

and trapping rely on the fundamental interaction between laser light and atoms to

exert controllable forces on the atoms. Today, the use of lasers to coherently control

atoms is a well established technique and many sophisticated schemes have been

developed based on special properties of the interaction. For cold atoms, a great

variety of potentials can be designed via their interaction with the electromagnetic

field, including static magnetic fields (Zeeman shifts), static electric fields (Stark

shifts) and optical fields (light shifts).

In this chapter, we will first review the mechanical effects of light on atoms, refer-

ring to the concrete example of a two-level atom interacting with a single-frequency

light field. Although this marks an idealized model rarely encountered in practice,

it is pedagogically very valuable, because it shows many features that will be en-
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countered in the rest of this thesis. We will restrict our attention to the problem of

trapping atoms in a standing wave. A special property in the study of atoms confined

in optical wavelength-size potential wells is that they can simulate many body physics

previously accessible only in condensed matter systems. In these systems, the con-

fining force is the so-called dipole force, which is proportional to the laser-intensity

gradient, and which is based on a potential V (r) varying in space exactly as the laser

intensity pattern. Technically, optical dipole traps rely 011 the coupling between an

induced dipole moment in the atom d and an external electric field. The atoms then

experience a spatially varying AC Stark shift which creates a trapping potential V (r)

for the atoms

v (r) = —a - E(r) o< (1(a)) |E(r)|2, (2.1)

where a (w) gives the frequency-dependent polarizability of an atom and I (r) oc

[E (r)|2 describes the intensity of the laser light field; E (r) is the electric field ampli-

tude at the position r [39]. The sign of the polarizability a (w) is crucial in that it

determines if the potential is attractive or repulsive.

It is important to note that the light force is not fully conservative. Since the opti—

cal potential derives from optical transitions between two atomic levels, spontaneous

emission is inevitable and gives rise to an imaginary part of the polarizability [40].

Therefore, we will discuss below dissipation in optical potentials, an omnipresent, but

readily controllable side effect of laser induced potentials.

By reviewing the fundamentals of optical physics of two—level atoms, we will es-

tablish notations and conventions and provide reference points we will further use in

this thesis. Moreover, in the second part of this chapter, we will introduce our first

theoretical approach to model an optical potential for carriers in semiconductors in

the second part of this chapter. We will develop a simple picture, which essentially

decomposes the quantum well into a collection of single two level systems. Based on

C
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this toy-model, we will be able to deduce similarities between the well established

optical dipole trap for atoms and the novel scheme for carriers in a semiconductor

QW we propose in this thesis. Besides the similarities, the existence of the extensive,

coherent exciton excitations will give rise to striking and physically intriguing new

effects that are not present in the case of optical potentials for atoms.

2.1 Optical potentials for atoms

2.1.1 Optical dipole traps for atoms

Based on the dipole interaction between an atom and an electromagnetic standing

wave, we will first derive the physics of optical trapping potentials for atoms from first

principles. In the course of this derivation we will introduce the rotating reference

frame and the rotating wave approximation.

For simplicity, we consider a two-level system atom with an internal ground state

[1) and an excited state [2) which is coupled to a monochromatic classical laser field

with a detuning A. The system, including the chosen sign convention for the detuning

A, is schematically shown in Fig. (2.1).

The bare Hamiltonian H0 of the two level system can be written as

H. = e1|1><1|+ e212) <2) , (2.2)

with 61/2 being the energy eigenvalues of the eigenstates [1) and [2) for the unper—

turbed problem. An optical field couples to the the dipole moment of the atom d.

Explicitly, we consider the case of a monochromatic standing electromagnetic wave

in the dipole approximation, i.e. we neglect the variation of the electromagnetic field

E (r,t) across the atom and ignore the effects of the magnetic field B (r, t). Since a

typical wavelength A used in optics is of the order of A ~ 400 71771, whereas the char-
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Figure 2.1: Interaction of a laser with a single two-level atom with the chosen sign

convention for the detuning A.

acteristic size of the atom is about a Bohr radius 0.0 ~ 0.1 run, this approximation is

usually very good [41]. The interaction between the atom and the standing wave can

be expressed as

Hint = —d - E0 cos (Qr) cos (wt), (2.3)

where E0 is the amplitude of the electric field, Q the wavevector of the laser and w the

frequency of the light. The laser drives the transition between the two atomic states

with a Rabi frequency (2 (r) which serves as a. measure of the interaction strength

Q (r) = (1] d [2) E0 cos (Qr) = d12E0 cos (Qr) = {20 cos (Qr). (2.4)
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It is proportional to the laser field and the dipole transition matrix element of the

atom d12. The amplitude 00 is a constant that depends on the laser intensity as well

as the properties of the atom. Without loss of generality, we can choose its phase such

that it is a real-valued quantity (2 (r) = {2* (r); with this definition, we can express

the coupling term of the Hamiltonian as

Hm. = -9 (1)608 (wt) [[1) (2| + [2) (ill - (2-5)

We now introduce a time-de endent unitary transformation U 75 to a frame rotatingP -

at the laser frequency 6.2

U (.) = exp (erg. (I2) <2I — |1> <19). (2.6)

For the remainder of this section, we set 71. = 1. Defining the transformation as

[\II (t)) = U (t) [\11 (t)>, the Schréidinger equation in the rotating frame reads

. 5 ~ _ ~ ~ - ~ _ ”t . T -

25—. 12(0) —H[\Il(t)>, H—L HU—zU U. (2.7)

To simplify the further analysis, we split up the Hamiltonian in the rotating frame

H into two contributions

H : f{0 + Hint (2-8)

H0 = UTHoU — 11fo (2.9)

H... = UTH...U (2.10)

As far as H0 is concerned, we obtain the expression

H. = e01) (1| + I2) <2I) + 5,3 (I?) <2) — 11) (1|). (2.11)



where we defined the detuning A as the deviation of the laser frequency w from the

transition frequency of the two level system

A: (62—61)—w=w12—w. (2.12)

In this definition, A is defined as a positive quantity for red detuning (see Fig. (2.1)).

With E given by E = %(61 + 62), the first term in fig just gives a constant shift in

energy, that we can drop in the following. Consequently, we can express H0 in the

simplified form

~ A

H. = 3 (I2) <2I — I1) (1|). (213)

Let‘s focus on the evaluation of 1:1,") 2 UTHz-mU 2: —Q (r) cos (wt) Ii (t), where we

defined f1. (75) as

(“2 (.) = UT (5 (I1) <2I + I2) (1|) U (.). (2.14)

Taking the time derivative twice of h (t), we notice that Ii (t) obeys the differential

equation of a simple harmonic oscillator with oscillation frequency w

11(t) + ...2/3. (t) = 0. (2.15)

Using that U (t = O) = U] (t = 0) = 1, the complete solution is given by

fi(t) = li(0)cos(wt)+$fz(0)sin(wt) (2.16)

13(0) = I1><2I+I2><1I (2.17)

13(0) = w(I2><1I—I1)(2I). (2.18)

In this fashion, we find Him to be

~

Hint = —Q (r) cos (wt) f7 (0) cos (wt) + g}? (0) sin (wt)] . (2.19)
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Since in optics the frequency w is typically very high, of the order of 1.) ~ 1015 H2, we

will average the Hamiltonian if over one period of oscillation. This approximation

is known as the rotating wave approximation, which helps us to get rid of the fast—

oscillating terms. It is valid whenever the detuning A is small compared to the light

frequency (.1. By introducing the time-avergaged Hamiltonian

_ ,3 2.)... -
H = — / dtH (t), (2.20)

27f 0

the Hamiltonian If in the rotating frame reads

{2(r)

H: (l2><2|-|1><1|)- 2 (|1><2|+|2><1|)- (221)
 A

2

We can see that by applying the rotating wave approximation we are left with a time—

independent problem. This is indeed a very valuable simplification of the problem.

The eigenvalues of [:1 show that the light—shifted energies are given by

 

1
I 1 2 9

. = — - 2.22,0 4,st +12 (r) ( )fir-:1:

They are illustrated as a function, of the detuning A in Fig. (2.2). We see that the

coupling Q (r) lifts up the degeneracy at A = 0. The level crossing is avoided as soon

as a perturbation is applied to the system. The eigenstates of the Hamiltonian (2.21)

are called dressed states; the light-induced perturbation mixes the states, so that the

ground state is mixed with a component of excited state and vice versa. Compared

to the unperturbed system, the levels of the dressed states are split farther apart,

namely by the amount 52’. The coherent modification of the atomic spectrum in

the electric field of a laser is called optical Stark effect. However, we can recognize

another striking feature, namely that an inhomogeneous light field, as in a standing

wave, produces a spatially dependent light shift. This is the physical origin, of an
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Figure 2.2: Eigenvalues (i of the Hamiltonian If in the rotating frame after the

rotating wave approximation.

optical dipole trap. The force. that stems from this gradient of energy is called the

dipole force. It is simply based on the spatial variation of the internal energy of the

atom.

Proceeding from the Hamiltonian H it is straight forward to explain the presence

of an optical potential for atoms. The energy shift to the ground state in second order

perturbation theory due to the perturbation V (r) = —Q.];2 ([1) (2] + [2) (1]) is

  

(2) _ |<2|V(r)|1>|2 _ _122 (r) _ _9_8 ..
AE1 — BSD—Ego) — 4A — 4A cos (Qr), (2.23)

which leads to the definition of an optical dipole potential for the specific, but im-

portant case of a standing wave as

V (r) = — , = —— cos2 (Qr) (2.24) 



The optical potential due to the optical Stark effect takes on the spatial pattern of the

intensity profile with its characteristic spatial dependence ~ cos2 (Qr). However, the

sign of the detuning will decide about the energetically favourable spots for atoms.

For red detuning, corresponding to a positive detuning A > 0, the potential minima

will be at the anti-nodes of the intensity profile, so that the atoms seek the spots of

strong field intensities. In the case of blue detuning, where the detuning is negative

A < O. the potential minima are at the dark spots of the intensity profile, i.e. the

atoms are attracted towards the weak field spots.

Similarly, we can derive the form of the optical potential starting from the eigen-

values ci (r). Expanding them for a small perturbation Q (r), small compared to the

detuning A, we get

2 2 r

.. (5 = H) 1 (24(2) . 1H. 2 < >. 5....

 

 

Dropping the spatially homogeneous term, we obtain

2

43):] cos‘2 (Qr) . (2.26) 

6:); (r) z i

To show the equivalence to the optical potential V (r) we have to be careful about the

choice for the sign in the expression (2.26). In the case of a large positive detuning

A, we have to pick up the eigenvalue e_ to asymptotically approach the ground state

of the unperturbed problem, whereas in the case of a large negative detuning it is

vice versa. However, in both cases the spatial dependence of the perturbed ground

state is then given by the same expression as derived for V (r) in Eqn. (2.24).

In conclusion of this discussion. we may summarize that optical dipole potentials

for atoms are based on the the light-induced Stark shift of the atomic energy levels.

The essential findings are schematized in Fig. (2.3), where the different character of
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Figure 2.3: The bare two—level system with eigenenergies E9 and E6 are shown in

the center. The light shifts for red detuning are displayed on the right, creating an

attractive potential. For blue detuning the potential is repulsive, as depicted on the

left-hand side.

the potential for blue and red detuning is underlined.

2.1.2 Dissipation in optical potentials

In the course of our introduction to light forces, we have swept one phenomenon under

the rug: spontaneous emission. As a direct consequence of momentum conservation,

the emission of a photon into the continuum of modes of the electromagnetic field

must be accompanied by an atomic recoil. In quantum optics, the recoil aspect of

spontaneous emission was ignored until the advent of ultracold atomic samples. The

spontaneous emission events lead to random kicks in the atomic momentum, which

has the ability to cause an unwanted heating of the atomic sample. We are going to

address this dissipative character of the light—atom coupling in the following.

63



Let us first mention that the decay of the excited state is an irreversible process.

In principle, the modes of the spontaneously emitted light also couple to the ground

state of the system, but the number of modes is infinite in free space. To find the

amplitude for the reverse process, all the contributions from the different modes have

to be summed over. Since they add destructively, the total probability for the reverse

process becomes zero. However, it is the competition between the excitation by an

incident wave and the damping processes due to spontaneous emission that allows the

atom to reach a steady state. To handle spontaneous emission, the standard approach

is to introduce the density matrix p“ of the system and discuss the excitation of the

atoms in terms of populations and coherences instead of ammitudes. The optical

Bloch equations express that the rate of change of the atomic density matrix is a sum

of two contributions describing the coupling with the incident wave and the coupling

with the empty modes. To describe the effects of spontaneous emission, we add a

phenomenological decay term P, which is the natural line—width of the excited state,

equal to the inverse of the radiative lifetime of the excited state 7.

The optical Bloch equations describing the two-level system subject to spontaneous

emission read

P22 = -FP22 — % (P12 — P21) (227)

P11 = +FP22 + g; (P12 - P21) (228)

P12 = (2A — g) P12 + 2% (P22 — P11) (229)

P21 = - (2A + 3%) P21 - ig- (P22 — P11) . (230)

where we recognize p11 and p22 as the population of the ground state [1) and the

excited state [2) respectively as well as the coherence terms p12, p21. Note that the

normalization of ,6 is conserved: 522 + .011 = 0. Throughout this thesis we will be
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particularly interested in a weakly driven system, where the detuning is much bigger

than the Rabi frequency. Therefore, the probability to be in the excited state p22 is

small, resulting in a small loss rate out of the system and a quasi-closed system. In

this regime we approximate the population of the upper state p22 with the steady

state solution for a closed system given by

Q2

2 4&2 + 202 + P2

  ‘90 (2.31)
1

22 - -

p 21+ 80 + (2A/F)2

Here, we defined the on-resonance saturation parameter so as

80 = --—. (2.32)

In the regime where the detuning from the resonance A is much bigger than the

driving Q and the natural linewidth I‘ of the excited state, the population of the

excited state is approximately

92

p22 % 4—A—2. (2.33)

Since the population in the excited state decays at a rate F, the total scattering

rate of light from the laser field, or the effective spontaneous emission rate F58, is

given by

80 F/‘Z

. . 2.34

1 + 801+(2A/r’)2 ( )

 

Fse = P22F =

For very high intensities, where 30 >> 1, F38 saturates at F/2, since an intense ex—

citation equalizes the populations of the two levels. In the last step we defined the

power-broadened linewidth of the transition

I" = 1V1 + 30. (2.35)

If the transition is “saturated”, the linewidth of the transition is effectively broadened
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from its natural linewidth F to its power-broadened value F’.

The absorption of an incident photon with momentum fiQ leads to a momentum

transfer from the optical fields to the atom. The momentum is regained by the

incident beam, if the photon is re-emitted by stimulated emission. However, if the

atom returns to its ground state by spontaneous emission, the loss of momentum is

zero on average, since the recoil associated with the spontaneous fluorescene occurs

in a random direction. This picture leads to a dissipative force Fsp, often called

“radiation pressure force” or “dissipation force”, that arises from absorption followed

by spontaneous emission

which is equal to the momentum transfer per photon liQ times the photons spon-

taneously emitted per unit time. It relies on the scattering of photons out of the

laser beam. The randomness of the spontaneous emission, being itself an irreversible

process, gives rise to a heating mechanism, that needs to be taken into account. 11—

lustratively it can be mapped onto a random walk problem in momentum space with.

step size EQ and rate F36. Fig. (2.4) depicts the situation of an atom starting out

from the origin in momentum space at k = 0.

The first kick takes it to a point somewhere on the first circle. The question is

where the atom will be after the second kick. Clearly, it will be somewhere on the

second circle. The red shaded area accounts for heating, since the energy of the atom

has increased with respect to the energy it has gained from the first momentum recoil

kick. The blue shaded area depicts an effective cooling process, because the atom’s

energy has decreased again. However, the red shaded area is bigger than the blue one,

so that the probability of a heating kick is bigger than the probability for a cooling

kick; eventually, after several kicks, the electron will always have gained energy. We

define the corresponding heating rate Rheat - the energy the atom absorbs because
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Figure 2.4: Random walk problem in momentum space.

of the dissipative light forces and measured in energy per unit time - as

Rheat = PseER = P22FER (2.37)

where we have introduced the single photon recoil energy ER- It is a figure of merit

that sets a natural energy scale for the problem; physically, it is the kinetic energy of

an atom of mass m with a momentum whose magnitude hQ equals that of the laser

photons

h2Q2

E

R 2m

 (2.33)

Also, we have to consider this heating mechanism in the framework of optical

dipole traps, since the light fields that form the basis for the traps can induce op-
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tical transitions in atoms, which subsequently can result in spontaneous emission

and a heating of the atomic sample. There is, however, a easy way to remedy this

problem, resulting in an effectively dissipation-free, conservative potential. Assuming

A >> 9, F, the potential depth of the optical trap is V0 = 92/4A, while the atoms

spontaneously scatter photons from the field at a rate Fse = FQ2/4A2. If 92, which

is proportional to the intensity, can be increased as A is increased, then the same

potential well depth can be obtained with a reduced scattering rate. By choosing

high laser intensities and large detunings, one can combine deep potentials with low

scattering rates, because the excited level has been eliminated adiabatically. We can

conclude that finite dissipation occurs in the optical dipole trap due to spontaneous

photon scattering, but it can be sufficiently suppressed to an arbitrary degree in

the far-detuned limit, provided that sufficient laser power is available to achieve the

desired potential.

2.2 Toy-model optical potentials in semiconduc-

tors

Our fundamental review of optical dipole potentials for atoms has taught us that their

basic mechanism relies on optical transitions between two internal atomic energy levels

driven by intense off-resonant laser light. There, the electromagnetic field couples to

to the dipole moment of the atom, inducing a shift in the atom’s ground state energy

due to the AC Stark effect. For a non—uniform electromagnetic field the atom’s energy

is spatially modified. Then, the atoms see an optical potential.

Now, we draw an analog picture in a. semiconductor host environment: The elec-

tron to trion optical transition effectively gives a second internal state to the spin-

polarized electron, which is otherwise a pointlike, structureless particle in free space.

In a simplified picture, the trion may be viewed as the excited state of an atomic
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system, while the electron can be considered as the ground state. However, this com-

parison has to be handled with care, since, in contrast to a single two—level atom, an

optical excitation in a semiconductor material has to be described taking into account

its spatially coherent nature in an ideal extended system. To cover this effect in our

first theoretical approach, we propose the following idea: We envisage the quantum

well as a collection of independent two level systems, each associated with a tiny

region whose size is equivalent to exciton size AI = 7mg. Therefore, the system is

discretized into small cells, as depicted in Fig. (2.5), and the total number of cells is

J 17 = A/AI.

First, let us think about the physics when no conduction electron is present in

the sample. Under this assumption, of course, we expect excitations of excitons only.

Every single cell is coupled to the laser light; we denote the Rabi frequency for this

transition as the bare Rabi frequency {20 (r), since it refers to one specific cell and,

. as a consequence, has no macroscopicly enhanced dipole moment. The ground state

of one specific cell lg) is marked by the absence of an exciton, while the excited state

of one cell Ie) is described by the presence of a photo-excited exciton. The ground

state of the system does not contain a single exciton excitation, all the cells of the

system are in the ground state which we express as |g, g, . . . , g). The elementary

excitations of the total system are states in which one of the cells is “filled” with an

exciton, such as for example the states |e,g, . . . , g), |g, e, . . . ,g) or |g,g, . . . e, ). Since

excitons are plane waves that are coherent over the whole sample, in the language of

the cell-model the creation of an exciton appears as an collective excitation over all

the cells

1 .

, (le,g,...,g)+|g,e....,g))+---+|g,g,...,e)). (2.39)

MAT,
 

The light-matter interaction creates states that are a linear superposition of all the

elementary excitations, whereby every single cell is addressed with the the bare Rabi
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Figure 2.5: An extract from the QW sample: It is discretized into small cells of size

AI, the typical exciton size. If an electron is present, centered at re, excitons created

within the area At, the typical trion size, give rise to the formation of a bound trion.

In this model, the electron is coupled effectively to Nt : fit/AI, trion states.
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frequency 90 (r). Compared to the creation of an exciton in one specific cell, the

collectivity of the exciton state gives rise to an enhanced, macroscopic dipole moment

Now, let us examine the situation where conduction electrons are present in the

system. If an exciton is photoexcited in one of the cells close to the electron, assumed

to be centered at re, it is energetically favourable to form the three particle state of a

bound trion; the exciton “captures” the excess electron. The coupling of the electron

to the trion resonance is strongly enhanced, since the excited trion level is highly

degenerate. Within this toy model the degeneracy factor is N = At/Ax, which is the

number of excitons that fit into a trion. Literally, the exciton can be created anywhere

within the trion size At around the initial electron, with the final result always being

the same, namely a bound trion. Thus, the electron is coupled to M; degenerate trion

states, as schematized in Fig. (2.5). It is well known, that the resulting effective Rabi

frequency for the electron—trion transition Qt (r) is

a (r) = mg, (r). (2.40)

where we assumed 90(1‘) to be constant over At. Since the spatial extension of the

bound trion is much smaller than the optical wavelength A, this is the equivalent

to the approximation of evaluating the electric field at the atom’s center of mass

position only. Still, we must not forget the excitation of excitons, even if conduction

electrons are present in the system. We assume an unbound trion state Whenever an

exciton is photoexcited outside the range At around the electron, because in this case

the exciton is too far away from the single electron to capture it for a subsequent

formation of a bound trion.

Let us mention that we have not. restricted ourselves to the case of one single

electron in the system. To be realistic, we assume a low density electron gas, but
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Figure 2.6: Level scheme with trion and exciton resonances and the chosen sign

convention for the detuning. The ground state with an electron (blue dot) in the

conduction band as well as th excited state after the creation of an electron hole

(green dot) pair is depicted on the right.

the essential physics occur near a single electron. Therefore, when contemplating

the effects on one electron, we can focus on the cells around that electron solely,

disregarding the rest of the macroscopic sample.

In the following we set up a Hamiltonian that takes into account both the trion

as well as the exciton resonance. Thus, the system we investigate is drawn in Fig.

(2.6). The detunings At and Ax from the trion and exciton resonances, respectively,

are by definition positive for red detuning. They are separated by the trion binding

energy ET, so that the following relation holds
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Again, we will first analyze the situation in which only excitons may be excited,

since initially the conduction band is assumed to be empty. We proceed from the

many-body Hamiltonian H. given in the frame rotating at. the detuned laser frequency.

We express H as

H 2 HO + V (2.42)

with the excitonic bare Hamiltonian

H6" 2 AI/dgr I1‘,r) (2:,r| (2.43)

and the light matter coupling

V1; 2 /d2rp1. (r) H0) (.27, rl + Ir, 1‘) (0H (2.4-4)

Here |0) denotes the crystal ground state, i.e. a completely filled valence band

and an empty conduction band. The light matter coupling creates excitons, where

we restrict ourselves to the case of one type of excitons, the 13 excitons. The state

|:r., r) describes such a 13 exciton with its center of mass located at r. The strength

of the coupling is governed by the quantity pl; (r), which is the spatially dependent

Rabi frequency 90 (r) per exciton cell size

_ Q0 (1‘) r
pl? (1‘) _ m a (240)

since the definition of the bare Rabi frequency 90 (r) is related to one cell of size AI.

Even if this definition might seem cumbersome at a first glance, it is evident that the

square of it over the detuning AI gives the energy shift density. This is the quantity

we are interested in and which we will encounter below.
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The orthonormalization relations are given by

(0|0) = 1, (0|.r, r) = 0, (a:,r|.r,r’) = (5 (r — r’). (2.46)

Along the lines of our analysis for atoms, we use second-order perturbation theory in

order to calculate the ground state energy shift E0 as

 

‘ ' v, 0 2 44 2

I .I,‘

where we have taken the spatial dependence of the bare Rabi frequency as 90 (r) =

{20 cos (Qr), corresponding to a electromagnetic standing wave. The square of this

spatially dependent Rabi frequency is averaged over the area of the sample A, which

accounts for the factor of 1 / 2. We discover that the coherent excitation of excitons

results in a macroscopic background energy shift

N, 9,2, (22
E = ___ = —N. — 2.48
0 2 A, la, ( )

that is proportional to NT. For notational convenience, we defined Q2 = $28 /2.

The consecutive step is to include the possibility of an excess electron, whose

position we denote as re. The essential idea of the toy model is that the presence of

the initial electron displaces all exciton states from an area given by the trion area At

(centered at re) and replaces them with less energetic trion states. Furthermore, the

assumption that the variation of the field intensity over At is negligible will explicitly

enter our calculations.

With the initial energy of the electron taken to be zero, the new bare Hamiltonian

H6 in the rotating frame is

H6 2 Ax/d2r |.r,r) (.r,r| — Ar/ dzr |r,r) (.r,r| + At/ d2r |t,r) (t,r| (2.49)

A t At
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which underlines that within the trion area At all exciton states are replaced by

energetically more favourable trion states; we denote a bound trion with center of

mass position r as lt, r). The light matter coupling can be written as

v2 = / d2rpi: (r) [10> <13 rl + Ix,r> <01}

— - re 2r :c,r .r rm )fAtd no>< . |+| , ><0|l

+p. (re) [4 fr H0) (tarl + It,r> <0”, (2.50)
‘ t

where the vacuum state ID) is now meant to include the presence of the initial electron,

but no excitons or trions. In analogy to p33 (r), we introduced pt (r) as the effective

trion Rabi frequency related to one trion cell of size At

Pt (1‘) = Ni 03%) -
 (2.51)

With the presence of the initial electron, the ground state of the system to second

order perturbation theory is

E0(re) = ——/d2r m, (r) — a, saws/it)? —— —/ er |9t(re)|2, (2.52)

where 6 (r,At) is the two dimensional unit step function, i.e. unity for r 6 At and

zero else. We can simplify this expression further to find

  

prfi +Nth(re) N agape).

E0(r€):——2—A.r A17 — t At

(2.53)

The total second order energy shift at the electrons position re consists of three terms:

First of all, we discover again a macroscopic shift due to the coherent excitation of

excitons. Moreover, the trion resonance causes a shift that is stimulated by the
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degeneracy factor Nt. The exciton shift has to be corrected, since it is not allowed

to count the exciton cells that are displaced around the electron. The number of

these cells is exactly M, with the Stark shift of one single exciton cell inside At being

(28 (re) /A3. The second term accounts for the excitonic shift that is replaced by

a trionic shift. Therefore, the first two terms give the total excitonic contribution,

while the third term represents the shift due to the bound trion state.

We define the optical potential for the electron V (re) as the total optical Stark

shift at re, measured with respect to the total optical Stark shift when the electron

is placed at a node of the intensity pattern, where the electron sees no light and

which therefore simply gives the excitonic background shift. In this way, the optical

potential varies with the electrons position as

 

1 1 _ 92 (re)

V .= ’92 ——— =—N 0 A 2’4(re) t 0(1‘e) [A13 At] t At ft( t): ( 0 l

Where the factor ft (At) is defined as

ET < 1 ,At > 0 (red)

ft (At) = (2-55)

ET + At 2 1 ,At 3 0 (blue)

This is definitely an intriguing result with no analog in atomic systems. Because

of its importance, we will reconstruct it based on Fig. (2.7).

On the left, the macroscopic background shift is depicted. It is constant in space

because of the coherent excitations of excitons. It gives the total shift of the system

when no conduction electrons are present or, equivalently, when the conduction elec-

tron is at the node of the laser light. When on electron is present (right side of Fig.

(2.7)), the optical potential starts out from this macroscopic shift and shows a very

different behaviour depending on the sign of the detuning from the trion resonance

At. For red detuning the potential is attractive, whereas it is repulsive for blue de-
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Figure 2.7: Level shifts due to the optical Stark shift. The colouring of the level

shifts indicates, if the laser frequency w is chosen below (red) or above (blue) the

trion resonance. The presence of the trion shift causes a lower collective exciton shift,

but an additional trion shift.

tuning. The electrons will be attracted either to the antinodes or the nodes of the

intensity pattern. The optical trapping potential for electrons we study here shares

this property with the optical potentials for atoms we analyzed earlier. However,

new physics arises from the factor ft (At). This factor can be smaller than one (red

detuning) or bigger than one (blue detuning), and consequently it causes a reduction

or an enhancement to the potential depth, respectively. As it can be seen from Eqn.

(2.54), the effects of the trion resonance and the exciton correction counteract, if the

laser frequency w is tuned below the trion resonance. If the detuning from the trion

resonance is in the blue regime, however, i.e. A; < O in our notation, the two effects

actually add up in their contribution to the potential depth. Of course, there are

subtleties that we have to take into account. As we approach the exciton resonance,
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the potential depth increases, but. at the same time the probability of creating real

excitons in the system goes up, in contrast to virtual excitations of the two level cells.

Moreover, we have not addressed the issue of spontaneously emitted light and the

subsequent heating processes so far. We will make up for that shortcoming later,

when thoroughly discussing the properties of the optical potential in chapter 4. Still,

we have introduced here the essential ideas that make this optical potential for carri-

ers feasible, and encountered a novel feature that distinguishes this type of potential

from the conventional optical trapping potentials for atoms.
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Chapter 3

Effective Hamiltonian from second

order perturbation theory

This chapter will be essentially devoted to a derivation of an effective Hamiltonian

Heff for a conduction electron embedded in a semiconductor QW coupled to an

electromagnetic standing wave. The interaction with the light field is treated pertur-

batively to second order, in both the eigenenergies and the eigenstates of the coupled

system. This approach is valid as long as the Rabi frequency for a creation of a bound

trion is small compared to the detuning from the trion resonance.

The light field induces transitions to bound and unbound trion state with a small

probability, according to our perturbative method. Therefore, the basic ingredients

for this derivation will be the matrix elements for transitions to the bound trion

states, as defined in Eqn. (1.47), and unbound trion states, as given in Eqn. (1.67).

As we have observed in the discussion of the toy model, the exciton continuum with

its macroscopic dipole moment is crucial to capture the physics of the optical dipole

potential for the conduction electron. Since the overlap O (K,ke) = (K|K, kg) of a

bound trion state |K) with the continuum states |K, Re) is non-zero, we have orthog-

onalized the continuum states to the bound trion states, so that we can treat these
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two different excitations as distinct levels in a three level system. In the next step,

we will present Feynman like diagrams that illustrate the basic processes contributing

to the second order Hamiltonian. The diagrams are meant to provide an intuitive

understanding of the calculations to come that lead to the effective Hamiltonian and

to the corresponding Schrodinger equation for a single electron. As it will turn out,

this Schrodinger equation features some striking physical properties and will be the

focus of the discussion in the subsequent chapters.

In the course of our calculation we will often take the limit Q ——> 0 for the

photon’s wavevector, since optical wavevectors are in general small compared to

the the electron’s wavevector k: while Q scales as the inverse of the wavelength

Q = 27r/A z 107m'1, the electron wavevector is of the order of the reciprocal lattice

constant k = 27r/a x 10mm"1 and thus much bigger than Q. In the two dimensional

QW system we study in this thesis the validity of this approximation can be further

extended with respect to bulk systems, since translational invariance is given only in

the QW. The in-plane wavevector Q depends on the angle between the laser and the

QW, and by tuning this angle, we can easily control Q without changing the energy

of the incident photons. In this spirit, it is easy to find a configuration in which the

recoil energies can be neglected with respect to the detuning from the trion resonance.

3. 1 Perturbation theory

Let us first explain the general scheme for the upcoming derivation of the effective

Hamiltonian Heff of the coupled semiconductor - laser system. Following the stan-

dard procedure of perturbation theory, the full Hamiltonian H of the system we are

about to study can be split up into the unperturbed problem H0, which basically

describes the conduction electron in the QW system, whose solutions are known and

for simplicity taken to be two dimensional plane waves in the effective mass approxi-
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mation, and into the perturbation V, induced by the light field, which gives rise to the

formation of bound and unbound trions. Introducing the conventional perturbation

parameter A, the full Hamiltonian H can be expressed as

H: Hod-AV, (3.1)

and the corresponding time—independent Schrodinger equation reads

H |k) = E(k) lk). (3.2)

In the next step, we expand both the eigenvalues as well as the eigenstates to sec-

ond order perturbation theory. For the energy eigenvalues we introduce the notation

E (k) = Em) (k) + AEm (k) + A2E(2) (k), (3.3)

where the orders of perturbation theory in the energy eigenvalues are given by

 

 

- 2:3:
E”) (k) = (k(0>lv|k<0)> =0 (3.5)

.. (0) V km) 2
EB) (k) n¢k l<nEl((0l) _lEg0)>l (3.6)

The zeroth order E(0) (k) simply represents the dispersion of a free electron of effective

mass m2. We have already set the the first order energy correction E(1) (k) to zero,

since it projects a single electron state |k(0)> onto a bound or unbound trion state,

which is assumed to be orthogonal to the free electron state ’k(0)>. In the same
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fashion, we analyze the new eigenstates of the system to second order

k) = (140)) + A'k(1)>+ A2 lk(2-)>. (3.7)

For the special case that the first. energy correction E(1) (k) vanishes - the case we con-

sider here — the general solutions for the first and second order eigenstate corrections

in terms of the zeroth order eigenstates are given by

 

k(1)> : :15de0)> (3.8)

 

 

nsék

' V 1 V. V

.191)- :ze—gsglnH140): <39)
nyéklaék laék lk

For convenience, we introduced the shorthand notation

v,,,, = <n<0ll V lkml) (3.10)

and

E,,,, _—E(0-—) Eff). (3.11)

Note that in this fashion, we have chosen the state Ik), expanded to second order, to

be normalized to one. These equations are the ingredients that allow us to express

all the quantities in terms of the well known zeroth order solutions lk(0)>'

The starting point for the effective Hamiltonian Heff is

Heff = Z (E(O) (k) + E(Q) (k)) [16”) (140)) + Z E(O) (k) (1140)) (162)] + he] ,

k k (3.12)

where all orders higher than second order have been dropped as well as all terms

involving the first order corrections to the eigenstates ’k(1)>, whose eventual projec-

tion onto electron position eigenstates Ir) give zero because of orthogonality, when
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computing the effective Schrodinger equation for the single free conduction electron.

In addition, the effective second order theory should also include the first order cor-

rections to the bound and unbound trion states, because these are coupled to zeroth

order electron eigenstates. However, in the Appendix 1.3 it is shown that these terms

are higher order corrections that are proportional to ~ 1/Ai’t. Our model is set up

for large detuning values and only respects contributions of the order ~ 1/A1;,t-

In order to keep track of the various contributions, we split up the effective Hamil—

tonian ”Heff into three terms as follows

Heff=H1+H},+H§I. (3.13)

Note that in the following we will drop the superscript to indicate the perturbation

theory order of the states, since all expressions will be given in terms of the zeroth

order solutions, i.e. the free electron states. The first term simply describes the

altered dispersion of the electron due to the mixing with the excited trion states

HI = 2 (E(“) (k) + E(2) (k)) |k) (k| (3.14)

k

This term is diagonal in k—space; therefore, it cannot lead to the optical potential in

r-space, because, when sandwiched between electron position eigenstates Ir) and |r'),

it only depends on r —- r'. However, an optical potential requires terms that depend

on r+r’ instead. The next two contributions, 71;] and 71%] originate from the second

term in Eqn. (3.12), which we have expressed in terms of the zeroth order eigenstates

solely and subsequently split up into a diagonal Hh and off—diagonal contribution

71%,. They are given by

 

V ' 2 ‘

H11 = — 2 El“) <k>1k> (kIZ ' "' (3.15)
k

’2

17a: EU:

83



and

713’, = 2 EU” (k) E cg, |q) (kl + h..c., (3.16)

k q;£k

where we have defined the quantity ch as

Vql Vlk

. (3.17)

Equlk

 

qu:Z

laék

The term H31 will be of peculiar interest, because it is the only one that is not

diagonal in k—space. As it will turn out, the optical trapping potential for the electron

originates from the off-diagonal nature of H?1.

3.2 Orthogonalization of the excitonic continuum

The exciton continuum states |K,c) that we consider in the effective Hamiltonian

Heff have to be orthogonal to the bound trion states which we denote as |K);

therefore,|K,c) describes an electron - exciton pair with total crystal momentum

K, properly orthogonalized to the bound trion states IK) according to

(KlK’, c) = 0. (3.18)

We can achieve the required orthogonality relation by defining the continuum

states |K, c) in the following way

lKacl = NC (lKvkel ‘“ 0(K1k6) HQ) 1 (3-19)

where we introduced the overlap integral as

o (K,ke) = (K|K,k,.). (3.20)
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Since we assume both |K) and |K,ke) to be normalized to one, the normalization

constant NC reads

 

 NC = 1 . (3.21)

([1 — I<9(K.1<e)l2

It is easy to check that this definition for |K,c) indeed provides us with the desired

relation of (KIK', c) = 0. Up to now, this method has been general, without having

to specify the actual expression for the overlap integral 0 (K, kc).

In order to describe the overlap between the bound and unbound trion states we

have derived the following approximate expression

9

1 -"' 2 2

0 (K, kg) 2 (/ 7:: f 3/2‘ (3.22)

' (1+ at? LBGK —— ke|2)

where at is a parameter which describes the typical size of a bound trion. A detailed

 

derivation is presented in E2. To obtain this result, exchange effects that vanish in

the limit of a macroscopic sample size have been neglected. Moreover, we simplified

the result using the fact that bound trions are typically much more spatially extended

than 18 excitons due to a weaker binding.

Two remarks on this result: first of all, we can recognize that the overlap O (K, ke)

between the bound trion state IK) and the diffusive electron - exciton pair vanishes

in the large sample limit. In fact, the overlap is proportional to the square root of

the “trion size” 7m,2 over the sample size. The center of mass motions are assumed to

be ideally coherent plane waves, equally distributed over the whole sample area A, so

that the overlap has to decrease as the sample size is increased. Moreover, we notice

that (9 (K,ke) depends on the relative motion momentum of the initial electron -

photocreated exciton pair pi, just as the optical matrix element for a bound trion,

since momentum conservation tells us: 138K — k6 = 136 (Q + kc) — k8 = fieQ — flrke =

—p,. In retrospect, this fact underlines that the optical matrix element for a bound
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trion essentially depends on the overlap betwen the bound and diffusive trion states.

3.3 Diagrammatic approach

Now that we have set up the general expression for the effective Hamiltonian Heff

in Eqn. (3.12), and approximatively orthogonalized the bound trion states to the 13

exciton continuum in Eqn. (3.19), we are in the position to begin with the actual cal-

culations. Before doing so, however, we will illustrate some of the processes involved

in Heff by drawing the corresponding Feynman-like diagrams.

Let us first consider a “typical” second order process, as known from calculating

the second order energy correction E(2) (k). It is schematized in Fig. (3.1). There are

only two modes present in the standing wave, +Q and —Q respectively, with which

the initial electron of momentum k can interact and possibly form a bound trion

state with center of mass momentum k :1: Q. The coupling strength of this interaction

process is proportional to ((20/2) 13; (k), where {20 /2 represents the coupling of the

interband transition dipole to the electric field of the laser, and Ii (k) gives the

intrinsic coupling that contains the information about the wavefunctions of the initial

and the final state of the process. Second order, of course, implies a second interaction:

the virtual trion with crystal momentum k:l: Q can interact again with the laser light

and decay into the final electron and a photon. A possible configuration for the final

state consists of a photon with momentum :l:Q and a free electron with momentum k,

whereby the final state equals the initial state of the process. The coupling strength

is the same as for the first vertex, namely (90/2) [3; (k); therefore, we expect the

overall transition amplitude of this process to be proportional to (00/2)2 I; (k).

Very interestingly, the effective Hamiltonian Heff does not stop here. It also

incorporates processes that are off-diagonal in k-space, as schematized in Fig. (3.2).

In our system, the final state doesn’t have to resemble necessarily the initial state,
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Figure 3.1: Feynman—like diagrams for diagonal contributions.

already in second order: This will occur, if the two vertices are related to different

modes. The initial electron with wavevector k could first interact with the +Q mode

to form a virtual bound trion of center of mass mOmentum k+Q. If this trion interacts

with the —Q mode, the final state will consist of a photon with momentum —Q and,

since the in-plane momentum has to be conserved, a free conduction electron with

wavevector k + 2Q. Indeed, the final state is not equal to the initial state. Naturally,

we expect the coupling strength of this off-diagonal process to be proportional to

(90/2)2 1+ (k) I- (k + 2Q). If one interchanges the order of the two processes, as

depicted in the lower part of Fig. (3.2), the reasoning goes along the lines of the

process we explicitly considered here.
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Figure 3.2: Feynman—like diagrams for off-diagonal contributions.

In conclusion, an incident electron with wavevector k can be coupled to a final

electron state with wavevector k :l: 2Q, already in. second order perturbation theory.

We will prove that these off-diagonal processes are crucially important in order to

derive an optical trapping potential which carries the signature of the intensity profile,

/

namely ~ cos2 (Q5514).

3.4 Second order energy correction

As a first important ingredient of the effective Hamiltonian Heff, we will derive the

second order energy shift of the system E(2) (k). For clarity we break it up into
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two pieces, the contributions that arise from the presence of the bound trion states

Etc) (k) and the ones that come fi‘om the diffusive continuum states E?) (k),

E(Ql (k) = E)” (k) + E?) (k) (3.23)

Bound trion states: Let us first cover the bound states only, that contribute to

E?) (k). The matrix element that couples a free electron of wavevector k to a bound

trion with center of mass momentum K is expressed as

(k1 v IK> = 92—“ [5K,k+Q1+ (k) + 6K,k_QI— (1)]

(2)
When computing Et (k), the sum over the intermediate states is de facto a sum over

K, which, however, is readily simplified due to the in-plane momentum conservation.

As a consequence, we obtain right away

  
<2) _ 9% 11+<k>12 11-0012

Et (k) __4— 521:2 112mm2 11212 sac-Q22 (324)

2771? — 277% _ At 2111: — mt — At

This result is what we already expected, based on our discussion of the Feynman-like

diagrams. We defined the detuning from the trion resonance At as

AtzeC—Eéf’t—fiwzec—EX—ET—hw. (3.25)

We can simplify expression (3.24) with the following approximations: as already

argued, the limit Q —> 0, is a valid approximation. Moreover, we exploit the fact

that the functions lIi (k)|2, physically the squared Fourier transforms of the relative

trion wavefunction, are strongly peaked around k z 0, as illustrated in Fig. (3.3).

Thus, we will keep only the value k z 0 in the denominator, meaning that the kinetic

energy terms in the denominator can be neglected compared to the detuning At.
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Figure 3.3: Plot of the function |I_ (k)|2: The variational parameters for GaAs were

used. The value for Q corresponds to laser light tuned close to the trion resonance

at an angle of 30° with respect to the 2—axis.

Within this approximation, we find

(2) 93 2
E: (k) z —2—Ct lI+ (k)lQ=01 (326)

Where we used the fact, that in the limit Q —> O we do not need to distinguish

between the two modes. Of course, for Q = 0 the relation 1+ (k) = I. (k) holds. We

already recognize that the strength of the electron’s energy shift is enhanced by the

fact that the electron effectively couples to many trion states. The position where

the additional electron-hole pair is photo—created can be literally anywhere within the

trion size. In real space this degeneracy is described by the extension of relative trion

wavefunction taken with one hole on top of one electron. In momentum space, this

degeneracy is accounted for by the corresponding Fourier transform, namely Ii (k).
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Unbound trion states: The next step is to find the second order energy shift

E(2) (k) that arises from the unbound trion states. The total center of mass mo— .

mentum K is not sufficient to specify these states; indeed, we can take the electron

momentum k6 as an additional quantum number. Therefore, we aim at calculating

 

__ZZ (lech) (KclVlk) (3.27)

EK,ke;k

Since the evaluation of E?) (k) is rather lengthy and requires some approximations,

a detailed derivation of EC?) (k) is presented in Appendix H. It is shown that E512) (k)

can be written in the following form

 

. 2 2
(2) _— QO 90 2

EC 0‘) — ”Arm—A: ‘21:;Xl(Cm41?) lI-l- (k)IQ=0

Q

+2139... l0 (k + Q k) I+<k>1Q=o (3.28)

where we introduced the quantity

N, = 12- (3.29)
7mm

as the number of excitons that fit into the sample without spatial overlap. Therefore,

we can recognize that the presence of the exciton resonance accounts for a constant

background shift that is simply proportional to N33, which describes a macroscopic

enhancement factor for the intrinsic shift 95/1333. Physically, this macroscopic en-

hancement factor arises from the fact that the exciton is a coherent excitation over

the whole sample and thus carries a macroscopic dipole moment.

Moreover, to shorten the notation, we introduced the quantity

AI _ 11212+A '

Re ‘27? I
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where we at is the reduced mass of the trion

1712mm

2 ——'——— 3.31

M m; +7721 ( )

We will discuss the physical meaning of Xc (AI) in more detail later on.

(2) . . . .
Let us make some remarks on EC (k). Besrdes the macroscopic excitonic. back-

ground shift, it contains competing terms with opposite signs which include infor-

mation about the relative wavefunction of the bound trion and arise from the or-

thogonalization of the diffusive electron - exciton pairs to the bound trion states.

These physical results would not occur if we had not applied the orthogonalization

procedure to obtain two distinct states.

Full second order correction: we can combine the second order energy cor-

rections, obtained for the bound trion states in Eqn. (3.26) and for the excitonic

continuum states in Eqn. (3.28). to give the total second order energy shift E(2) (k).

In total, we write it as

92 1 1 xx A,

E12) (k) = wee—A: — 9811+(k>13=0 i (Z. + ___!1))

S)

21,—”0. 10 (k + an 1+ (1315:.) (3.32)

This result for E(2) (k) represents a major piece of the puzzle in the derivation of the

effective Hamiltonian Heff. The next section will be devoted to a discussion of the

terms H}! and H;11 as defined in the expressions (3.15) and (3.16), respectively.

3.5 Effective Hamiltonian, Schrodinger equation

In this section we will present an analytic form of the effective Hamiltonian Heff.

Before achieving this ultimate goal, we will give the missing pieces, namely the con-
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tributions H}! and H;1’ which are by definition diagonal and off-diagonal in k-space,

respectively. The intermediate steps that give rise to a more compact form for them

are presented in detail in Appendix I.

In the Appendix it is shown, that the diagonal part H}! can be approximated by

1 . 96 (0) »
1111 e :13:2 E 1k11k> <k1 (3.33)

.r k

As this expression is proportional to ~ 1 /A1:1 we will drop this term in the further

analysis and focus on H1 and Hi].

Let us summarize the result for H1 first. It is diagonal and comprises the zeroth

order solution as well as the second order energy shift E?) (k). In total, it can be

expressed as

Q2

=ZE()((>0 )(k| — NT——:Z|k)

k

_123 + ..
.20(5:+“(:A‘ )) 211+ (1)13,=,1k) (k1

k

9 QB

10: 2k: '0 (k + Q1 1‘) 1+ (k)|Q=0 |k> (kl (3.34)

 

 

+2

As far as the off-diagonal part Hg] is concerned. we have derived the following

form

92 (- Alf

Hf] “ “’19 (A: + X: )) Z lI+ (k — Qll2Q=0 (lk —‘ Q) 0‘ + Ql + h-C-l

1’ k

 

c o,
+ £3: ‘11; 10 (k, k + Q) 1+ (k — Q)IQ=U (lk + Q) (k — £21 + h-c-)(3-35) 

These results mark a major result of this research: We have obtained an effective

Hamiltonian that approximatively describes our system, an electron in a semiconduc—
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tor QW coupled to standing wave that is tuned close to the trion resonance. Since

we consider the limit Q = 0, we recognize that the diagonal and off-diagonal part

of the effective Hamiltonian Heff contain similar contributions. As a result, we will

be able to combine them; this simplification and a further analysis of the features of

the effective Hamiltonian will be done in the framework of the corresponding position

space Hamiltonian.

Our ultimate goal is to derive an optical trapping potential in position space.

Therefore, we will switch the basis from momentum space to position space. In order

to translate our result from k-space to r-space, we sandwhich our expressions in

momentum space with electron position eigenstates Ir) and |r’). Here, we use the

relation

<r1<1k — Q) <k + Q1 + 1k + Q) <k — Ql) 1r’) = gale cos <2QR) (3.36)

with x and R being defined as

x:r—r’, R=r+r’ (3.37) 

This relation, being proportional to ~ cos (2QR), clearly illustrates that the form

of the optical potential will be deduced from the terms that are off—diagonal in mo-

mentum space.

Furthermore, we take the usual large volume limit, where k becomes continuous,

 
A 9

-—> 9 (Pk 3.38

g (271)“ f ( A
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We find that the matrix elements are given by

 

 

h2v'2 112
I : _ 6 _ / _ NT __0 _ I

(r|H11r) 2m; (r r) 1 IA$6 (r r)

122 122 -.
+1—(im6 (r — r') — —29 (it + X2131») mt (r — r') (3.39)

and

122 .
(r| H?! 1r') 2 +21“ch (x) cos (2QR)

1‘

9(2) 1 KC (AI)
__ __ —‘ ‘ 1 ‘ 2 .402 (At + Am )mt (x)cos( QR) (3 )

where we introduced the functions mt (x) and me (x) in. the following way

 

2 .

m (x) = f (:73, elk" 11+ (k— @1320 (3.41)

and

2 .

m.- (x) = +11... (0) (Ef 7% elk" 10 (1.1. + Q) 1+ (k — Q)1Q=O 13.42)

They give rise to a nonlocal character of the effective Hamiltonian, as they connect

the electron’s position coordinates r and r’ in a way different from the local expres-

sion (5 (r — r’). The notation underlines the picture in which we will identify them:

They can be interpreted as memory functions. We will address their specific physical

meaning in the next chapter.

We have been able to find an analytic form of mt (x), since in the limit Q = 0

the problem naturally becomes isotropic. \Ne specifically evaluate mt (x) in the case

of the QW systems GaAs and CdTe. The results are plotted in Fig. (3.4).

Qualitatively, we see that both systems exhibit a. very similar character; for both
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Figure 3.4: Memory functions 7m (x) for GaAs and CdTe. Note that the natural

length scale, the 3D donor Bohr radius aD, is slightly different for the two systems.

GaAs and CdTe, mt (x) falls off on a scale of approximately ~ 3aD- We will discuss

this behaviour in more detail in the next chapter and give a physically intuitive

explanation for this characteristic lengthscale of ~ 3aD-

The second memory function me (x) that we encounter arises from the hybrid

mixing of the diffusive electron-exciton pairs with the bound trion states, as the

overlap function in its definition indicates. The exact value of me (x) depends on our

choice of the parameter at that we introduced when simplifying the calculation of the

overlap integral and, in principle, its best value should be obtained from a variational

calculation. For consistency we approximate the actual value of at by tuning it to

a reasonable trion binding energy according to the expression (1.30). Based on this

approach, with ET 2 2.0meV and ET = 3.6 meV for GaAs and CdTe respectively,

we estimate the values for (IT as 0T m 1.8 (1D and aT z 2.3aD. The corresponding
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Figure 3.5: Memory functions me (x) for GaAs and CdTe. Note that the natural

length scale, the 3D donor Bohr radius (11), is slightly different for the two systems.

results are shown in Fig. (3.5). We see that the functions me (x) are very similar to

the memory kernel mt (x) that arises from the trion resonance. We will exploit this

fact for a further simplification by approximating the two types of memory kernels

that we encountered in our calculation as equal, i.e. mt (x) z me (x) z m (x).

Proceeding from the matrix elements given in expression (3.39) and (3.40), respec-

tively, we can present the effective Hamiltonian of the system Heff in the following

 

 

 

way

521’ h2v?
_ . U 2

”Heff — _NIE +/c:AAr |r))<— 277% ) (r|

I

—Q% i +———-—Z:H/(Frdgr cos2 Qr + r mt (r — r’) |r) (r'l

At 2

92

+250“ [d2rAid2r cos22(Qr+ r) 7m (r — r’) Ir) (r’l (3.43)

I
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where we used the trigonometric relation 1+cos (2:13) 2 2 cos2 (:1?) to express the result

in a more compact form.

The first term represents the constant background shift owing to the coherent

excitation of excitons over the whole sample that we previously encountered in the

toy model. The last two terms indeed carry the signature of the intensity profile

and mark the optical potential for the conduction electron. Compared to the optical

trapping potentials for atoms, however, there are important differences: The first

one arises from the obvious non-locality of the potential, governed by the memory

functions mt (x) and me (x). The second one stems from the presence of detuning

dependent correction factors. We will discuss the details and the consequences of this

result in the next chapter.

We acknowledge the presence of the macroscopic excitonic background shift, but

we will drop it in the following, since it only marks a constant shift in energy and has

no influence on the electron’s kinetic or potential energy. Moreover, as announced

above, we set the two memory functions equal for simplicity, because they show a

similar behaviour. In this way, we find an effective Hamiltonian Heff that contains

two terms, a conventional kinetic contribution as well as a term that arises from the

interaction with the standing wave

112:7?

Heff = /d2r Ir) (— 27,1,“ ) (r|

8

 

I

r ) m (r — r’) Ir) (r'l (3.44) 

Here, we introduced the quantity fc (At). Since the detuning from the exciton res—

onance Ax is uniquely related to the detuning from the trion resonance At via the

trion binding energy ET, we can introduce the correction factor fc (At) as a function
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of At only

A A
fc (At) = 1+ Xc (AI) —t — 2—‘ . AI = A, + ET (3.45)

A1: A:

The correction factor fc (At) pays tribute to the presence of the exciton continuum

level in our system and will be subject to a further analysis. In particular, it will be

compared to the correction factor ft (At), Eqn. (2.55), predicted by the toy model.

For completeness, we state the effective Schrodinger equation for an electron with

effective mass m: and wavefunction Q! (r) in the system we investigate:

h2V2 r + r'

*

2mg

  

s22 .
‘11 (r) — ngc (At)/d2r' cos2 (Q ) m (r — r’) \I/ (r’) = E‘IJ (r).

t

(3.46)

This equation underlines that a lot of intriguing physics is ahead of us, but, for now,

it shall mark the end of this chapter.
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Chapter 4

Optical potentials for carriers in

semiconductor quantum wells

We have predicted the existence of an optical trion—mediated trapping potential for

carriers in a semiconductor QW system following two different approaches. First,

based on an analogy to the well-established optical potentials for atoms, we have

developed a toy model which stressed the importance of including the exciton level

and its coherent character in our analysis. Second, we set up an effective Hamiltonian

and extracted the corresponding Schrodinger equation that describes a conduction

electron which virtually mixes with the extended bound and unbound trion states

and, as a consequence, experiences light shifts.

In this chapter we will cover the key points that feature this novel optical potential

for carriers in a QW. Throughout this analysis, we will substantiate the results with

simple, but plausible and physically intuitive explanations. In a first step, we will

address the origin and the effects of the correction factor fc (At); we will highlight

the stunningly comparable behaviour that our two different models predict in this

respect. We will then turn to the non—local character of the potential embodied

by the kernel m (x) and justify its presence with the properties of the trion wave
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function and the light masses of the particles under study. Although the nonlocality

is a striking feature of this potential, we will neglect it at first in order to predict

the actual potential depth of this optically induced trion-mediated potential. Here,

we will stress the key ingredients that support a deep potential with controllable

dissipation. In the last section, we will characterize the potential using a harmonic

oscillator approximation to show the quantization of the electron motion. Since this

approximation is a well-established in the analysis of optical potentials for atoms,

we will be able to draw analogies and emphasize the differences to optical dipole

potentials for atoms. Finally, the fact that we neglected the non-locality within the

harmonic oscillator approximation will be justified by a variational calculation which

explicitly incorporates the memory function m (x) in the analysis.

4.1 Influence of exciton level

In both theoretical approaches the toy model as well as the effective Hamiltonian

method, we encountered detuning dependent factors which we called ft (At) and

fc (At) respectively. They take into account the presence of the coherent, many-

body excitation of the exciton level and its competition with. the formation of bound

trions. The factors strongly affect the actual potential depth. In this section, we will

Show that the predictions of our two distinct models are in an excellent agreement.

Let us first summarize the expressions we have obtained. It is convenient to present

ft (At) and fc (At) in terms of the dimensionless, system-independent quantity

ET ET

__ = ___— 4.1g:
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which obeys the conditions

l'm =1. l'm :0. 4.2aft—>05 , Athocé ( )

In terms of the quantity g, the toy model yields the compact result

while the effective Hamiltonian approach leads to

262(6— 1—1n(§)>

(5 — 1)2

 

fc (i) = (4.4)

Although these two results might look very different at a first glance, it turns out

that they agree not only on a qualitative, but even on a quantitative level. Fig.

(4.1) displays the results of our two models in terms of the dimensionless parameter

a: = At/ET, the detuning from the trion resonance At in units of the trion binding

energy ET. It is positive for red detuning and negative for blue detuning, and related

to 5 via the relation g = 1/(1+ :13).

For red detuning (At > 0), both models predict that the correction factors and

therefore the potential depth approach zero as the detuning from the trion resonance

goes to “infinity”. On resonance, i.e. for At = 0, both correction factors become one:

on resonance, the presence of the exciton level has no net effect on the potential for

the electrons, so that there is no reduction nor enhancement in the potential depth.

When we go to blue detuning (At < 0), where the potential swaps from attractive

to repulsive, the correction factors start to increase non-linearly on the blue side,

resulting in a drastic enhancement for the potential depth seen by the conduction

electrons. For detunings closer to the exciton resonance than at = —0.9, the correction

factors even cause an enhancement of more than a factor of 10, which directly maps
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Figure 4.1: Predictions of the toy model and the effective Hamiltonian approach for

the detuning dependent correction factors.

onto an increased potential depth by the same factor. As it will turn out later, this

rather strong enhancement is crucial to obtain potential depths that dominate over

competing effects such as the recoil energy or the thermal energy.

In conclusion, we see that the predictions of our two models concerning the role

of the coherent exciton level converge to a beautiful agreement. Therefore, in the

following we will use only the correction factor ft (g) that we derived in the framework

of the cell model in order to specify the potential due to its simpler, convenient

algebraic form.
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4.2 Memory effect: Non-locality of the potential

Let us turn to another peculiar feature that is included in the effective Schrodinger

equation (3.46), its non-locality. It is governed by the kernel m (x), that we identified

and labeled as a memory function. According to its definition, it represents the

interaction strength per unit area of a second order process in position space: the

electron mixes with the extended trion state and “jumps” back gain.

we have two physically intuitive ideas to explain the physics that cause this non-

locality with its characteristic length of ~ 3aD: as seen in Fig. (3.4) and (3.5).

The first idea is to associate the non—locality with the momentum kick that the

virtual trion obtains from the photon absorption. After this kick, the virtual trion

‘travels’ for the period of its lifetime. The lifetime of the virtual excitation of the

trion level is approximately ~ l/At. We work in the electron’s restframe, since the

off-diagonality is independent of the thermal momentum of the electron ke. We can

estimate the distance d the virtual trion travel as

h|Q|_1_ _ 27th

d. z _ _—

Tllt At filtAHAt

(4.5) 

where we expressed the magnitude of the in plane momentum Q in terms of the in

plane wavelength A... Only close to the trion resonance, i.e. for small At, d can

be comparable to aD, but for larger detunings it becomes smaller and falls short in

explaining the nonlocality of the potential.

However, we can give an even simpler explanation for the potentials non-local

character that is essentially independent of the detuning. The optical potential is

not diagonal in r-representation because the trion is a rather large object (N 20.1))

and the effective masses of the particles are relatively small. When the very light

electron mixes with the diffusive extended trion state, it wiggles ‘inside’ the trion

complex. Since the characteristic size of the trion matches perfectly with the char—
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acteristic length of the kernel m (x), we believe that this simple picture explains the

nonlocality of the optical trion-mediated potential. In principle, one can argue that

optical potentials for atoms are nonlocal as well, but, due to the large proton mass

and the small atomic size, the nonlocal effect is not observable.

Let us mention that the form. of the memory function 772 (x) is well approximated

by a Gaussian of the form

9 (x) z; (re-bf? (4.6)

We have obtained the numerical values for the fitting parameters a and b based on

a least-squares fit; the results are listed in Tab. (4.1). In Fig. (4.2) we present the

memory function m (x) and the corresponding fitted Gaussians g (x) for both GaAs

and CdTe. The very good agreement will allow us to simplify further calculations

that explicitly include the kernel m (x) by using the fitted gaussian g (x).

 

I GaAs I CdTe

a 2.727 2.262

b 0.109 0.085

  

 

   

Table 4.1: Fitted parameters for g (x) for GaAs and CdTe in effective atomic units.

So far, we have only considered the form of the nonlocal memory effect in the

Q —+ 0 limit. For completeness, we present a numerical solution for a finite value of

Q, corresponding to an angle of 70° between the laser and the QW plane. We can

see that the Q ——> 0 limit is perfectly justified. The numerical solution is centered

around k = 0 and shows a characteristic size of ~ 30.D, just as the approximative

Q = 0 solution. It is displayed in Fig. (4.3).

One might be led to think that the omnipresent quivering motion of the electrons

due to their mixing with the excited trion state might impose a serious reduction

on the localization effect of the potential. However, the characteristic length of this

effect is one to two orders of magnitude smaller than the periodicity of the potential

A“ /2, depending on the chosen angle between the incoming laser and the QVV plane.
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Figure 4.2: Memory function mt (x) (solid lines) in the Q = 0 limit and fitted Gaus-

sians g (1:) (dashed lines): GaAs is displayed in blue, CdTe in orange.

Indeed, after this analysis of the nonlocality of the potential, our next step will be

to neglect the nonlocality in order to prove the possibility to trap electrons and to

estimate the actual strength of the potential.

4.3 Potential depth

Although certainly an intriguing feature, we will neglect the non-locality of the optical

trion-mediated potential in this section to present one of the main results of this

thesis: the depth of the trapping potential. In order to achieve this goal we make the

replacement

m (r — r') —+ xd (r — r') , (4.7)

which enforces a corresponding local potential for the electrons. The dimensionless

quantity X takes into account the presence of the trion resonance and its electron-hole
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Figure 4.3: Memory function mt (x) for a finite value of the laser photon momentum

Q projected onto the QW plane. We used the parameters for GaAs.

correlation effects. By definition, it is given by

 
2 .

x= /d2xm(x) = /d2x/ (:52ezkxlr+(k)|5=0. (4.8)

The integration is readily done and we obtain the result

2

 

X = Ifi/dzrcpbhwm) (4.9)

The correlation factor x appears as the integral over all possible three particle trion

configurations corresponding to one electron and the hole on top of each other. This

is the natural extension of the two particle exciton picture, where at the moment of

photocreation the electron and hole are at the same spot. The coefficient x takes

into account that the exciton needs to be created somewhere inside a reasonable

range to possibly bind to an electron and form a bound trion; the range is essentially

governed by the relative trion wavefunction (,0), (737", r): the arguments of 9% simply
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Figure 4.4: Enhancement factor x as a function of the electron hole massratio a.

underline that the wavefunction is evaluated with one electron and the hole on top

each other, so that the Hylleraas coordinates we used in the formulation of gob boil

down to s = t = u = r. The factor of 1/\/ 27r arises from the normalization of the

overall angular degree of freedom.

Inserting the relative wavefunction given in Eqn. (1.26), we obtain a compact

analytic expression for X

 

2

o2 + 204/3 + 67

0,4x=2mV2( aim

that depends only on the values of the variational parameters (1,73 and y. Conse-

quently, it can be expressed as a function of the electron hole mass ratio a = m:fin;

solely. The result for X = X (a) is presented in Fig. (4.4). We recognize that X can

take on rather large values: we obtain ~ 80 for GaAs and even ~ 90 for CdTe.

At this point. we can close the circle between the cell model and the effective
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Hamiltonian approach. In the toy model, the effective range around the electron

in which the creation of an exciton leads to the formation of a bound trion was

simply modelled by a step function around the electron of the trion size At. Based

on this simplified picture, the fact that one electron is effectively coupled to many

trion states gave rise to the definition of Nt = At/Ax, the number of excitons that

fit into the bound trion state without spatial overlap. In principle, the effective

Hamiltonian model yields the same result in terms of the relative wavefunction gob.

Here, the step function is replaced by an integral over all the possible combinations

in which the conduction band electron and the photoexcited exciton form a bound

trion configuration. Therefore, based on their physical interpretation, the quantities

Nt and X are equivalent. They express the degeneracy factor of the trion levels the

free electron is coupled to, since the spot where the additional electron—hole pair is

created can be literally al'iywhere within the trion size. While Nt was found to be

~ 10, the quantity X is in the range ~ 80 — 90, thus a factor of 8 —9 times bigger than

the corresponding prediction of the toy-model. This is far away from being a perfect

agreement, but still Nt and X are within the same order of magnitude. In addition,

Nt only serves as an illustrative ingredient in the toy-model, but does not affect our

results. For the numerical calculations, we will use the enhancement factor X, since

it contains the actual information about the trion wavefunction.

Based on the local limit in Eqn. (4.7), we recover a simplified Schrodinger equation

for the electron with a local potential that obeys the profile of the laser intensity

pattern

2 2

’3' V m)—x:—(Zf..<at)cos?(er)v(r> =E\I’<r>- (“1)‘ :1:
27726

 

Consequently, the trapping potential V (r) varies with the electron position as

V (r) = V0 cos? (Qr) = —6Atfc (At) cos2 (Qr), (4.12)
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where we introduced the saturation parameter c for the electron trion transition

2 X (Bay. (4.13)

The parameter 6 essentially describes two effects: Since the factor X08 can be viewed

as an effective Rabi frequency for the electron trion transition, in the limit At >> Ft it

gives the probability to be in the excited trion state. By choosing 6 sufficiently small,

the dissipative aspects of the electron dynamics due to spontaneous emission of pho-

tons are efficiently suppressed. Photon scattering occurs at the effective spontaneous

emission rate I‘se = 61}, with I} N 10103—1 being the natural linewidth of the trion

level. While I‘se scales as ~ 1/A2, the scaling behaviour of the trap depth V0 is very

different for red and blue detuning, owing to the background-polarizability correction

factor fc(At). While l/b scales as N l/Ai.r2 for red detuning, it scales as N 1/At

only for blue detuning. Therefore, intense blue—detuned light far enough from the

trion-resonance provides strong confinement with minimal dissipation with respect to

the trion-resonance. However, in this case one has to take into account the presence

of the exciton resonance and the subsequent creation of real excitons in the system.

we will do so later on by estimating the probability to excite one exciton per cell.

Note that the degeneracy factor X gives rise to a reduction of almost two orders of

magnitude in the required intensity to reach a given trap depth. In addition, a small

6 value prevents power broadening of the trion resonance and subsequent creation

of real trions. Thus, we are interested in the large detuning, low saturation limit

where the excess conduction band electrons are the only real particles in the system,

whereas excitons and trions are excited only virtually.

In the following, we will always associate the potential depth

V0 = —€Atfc (At) (4-14)
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with a fixed value of the saturation parameter 6 in order to control the dissipative

effects. In this representation, the potential depth increases with the detuning from

the trion resonance At, because simultaneously the Rabi frequency (20 is increased.

For red detuning the only limitation is set by the maximum laser power available,

while for blue detuning we will have to take into account the increasing probability

of creating real excitons in the system as we approach the exciton resonance. Below,

we will discuss both limitations.

Before outlining the differences with respect to conventional optical dipole poten-

tials for atoms. let us mention the similarities first. The potential V (r) given in (4.12)

follows the spatial dependence of the intensity pattern of the laser and its depth is

proportional to the applied laser intensity. For red detuning (At > 0) the potential

is attractive, the electrons are attracted towards the bright spots, whereas for blue

detuning (At < 0) the potential is repulsive, so that the electrons tend to accumulate

at the nodes of the standing wave pattern, i.e they seek the dark spots of the intensity

profile.

Now, let us reiterate the specific properties of the trion-mediated optical poten-

tial for electrons embedded in QW system that are distinctive and not present for

conventional optical potentials for atoms. The major difference arises from the pres-

ence of the factor fc (At). This is substantially underlined in Fig. (4.5), where the

potential depth V0 is given for both red and blue detuning for various values of the

control parameter c, which corresponds to a constant rate of spontaneous emission.

The detuning At as well as the the potential depth l/b are represented in terms of the

trion binding energy ET, which is of the order of ~ meV for typical semiconductor

QVV systems.

For red detuning the effects of the exciton level and the trion level on the shift

of the electron’s ground state energy with respect to the excitonic background shift

counteract. As a consequence, the potential depth I?) shows a saturation behaviour,
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Figure 4.5: Potential depth V0 for red (At > 0) and blue (At < 0) detuning in terms

of the trion binding energy ET for various values of the saturation parameter 6.
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reaching the value eET at maximum, if sufficient laser power is provided. To reach the

saturative regime we estimate the necessary laser intensity I to be I z 6 X 105VV/cm2

for both GaAs and CdTe QVV systems.

The physics is different for blue detuning: The effects of the exciton level and

the trion level on the shift of the electrons ground state energy with respect to

the excitonic background shift add up, resulting in a potential depth that can reach

several meV. For blue detuning and 6 held constant, the potential depth keeps on

increasing when increasing the detuning from the trion resonance, thereby showing

a highly non-linear behaviour. Of course, in doing so one approaches the exciton

resonance whose natural linewidth I}; for both GaAs and CdTe is approximately

I‘m/ET ~ 0.03. We can estimate the time-averaged probability for the excitation of

real excitons (PI) using the two-level Rabi model. Referring to one exciton cell of

size Am, the time-averaged probability that this “two-level” system is in the excited

state reads

> = f/X' (At/ET)2

4 (1 + At/ETl2 + 2e/x (At/ET)2 + (It/ET)”

 (P, (4.15)

where we expressed all energies in terms of the trion binding energy ET and used the

relation

0?, = 3A3. (4.16)

In this way, (P55) essentially depends only on At, once the saturation parameter 6 is

fixed. The results for (P1) are presented in (4.6).

At this point, we have built up a powerful scheme which suggests that we can

pick a (small) value for the saturation parameter c and tune the detuning from the

trion resonance At. We will find a combination of the potential depth V0 and the

time-averaged probability for exciton creation (PI). Four possible combinations are

listed as examples in Tab. (4.2). Let us just describe one specific example explicitly:
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Figure 4.6: Time averaged probability of formation of real excitons per exciton-cell

as a function of the detuning from the trion resonance At for various values of the

saturation parameter c.

for e = 0.05 we find that a potential depth of V0 % 0.45ET is feasible, while the

probability to excite an exciton per cell is still only about 1.2%. Here, laser intensities

of I z 2.5 x 103W/cm2 and I z 7.7 x 103W/cm2 would be required in GaAs and

CdTe respectively to achieve potential depths of VO :3 0.9 meV and V0 z 1.6meV.

 

j A, = —0.9 ET] A, = —0.95 ET

6 = 0.05 1.2%, 0.45 4.7%, 0.95

e = 0.01 0.2%, 0.09 1.0%, 0.19

 

 

 

  
 

Table 4.2: Combinations of the time averaged probability for exciton creation and

potential depth are presented as pairs in the form (Pm), V0 for two values of the

saturation parameter 6 and the detuning from the trion resonance At.

Lastly, we note that the excitons are created at the bright spots of the intensity

pattern, whereas the electrons are located at the dark spots for blue detuning. This

combination of a controllable, low excitation probability with significant spatial sep-
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aration should strongly suppress the interaction of the electrons with real excitons in

the system.

The strength of Optical dipole traps for atoms is routinely measured in units of the

single photon recoil energy ER = 71.2Q2/2m2. It simply sets a natural energy scale for

the problem. Translational invariance along the QW implies conservation of the in-

plane momentum only, which reduces the average recoil kick an electron experiences

in the process of spontaneous photon emission. By averaging over the solid angle, the

average recoil energy is (ER) = (2/3) ER. The small effective masses of the electrons,

though, give rise to huge recoil energies, compared to atoms. The effective electron

masses are about seven orders of magnitude smaller than the masses of rubidium

atoms, one of the standard systems for atomic physics and quantum optics so that

the recoil energies are correspondingly larger by a factor of ~ 107. For GaAs and

CdTe, the average recoil energies amount to (ER) % 0.29meV and (ER) z 0.16meV

respectively. Referring to the specific example just given above, the potential depth

V0 exceeds the recoil energy ER. by a factor of three and even 10 in GaAs and CdTe

respectively.

Based on atomic optical potentials, many ground-breaking experiments have been

performed. Some examples are the evidence for macroscopic Quantum interference

[42], the observation of Bloch oscillations of atoms [43] and the investigation of the

quantum phase transition from a superfluid to a Mott insulator [44] to name a few.

In principle, they all relied on the power and versatility of optical potentials. The

maximum potential depths in these experiments have been 2.1ER, 6ER and 22ER

respectively. The fact that, despite the huge recoil energies involved in our system,

we can still predict potential depths of several ER substantiates the strength of the

trion-mediated trapping potential mechanism we investigate here. So the question

that naturally arises in this context is: Why is the trion—mediated potential actually so

strong? The bare interband dipole moment do in our system is N 66A, while the dipole
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moment for an atom datom can be approximated based on the Bohr radius in vacuum

as ~ 5 X 10‘16A. However, the effective dipole moment d for the electron-trion

transition is enhanced by the degeneracy factor of the excited trion state. In total, we

can estimate that the squared effective dipole moment in our system exceeds its atomic

2

atom '
counterpart by three to four orders of magnitude, i.e. d2 2 X118 as 103 — 104 x d

Let us briefly summarize the parameters that are in favour of a deep potential

depth: In general, a larger value for the saturation parameter yields a deeper po—

tential, but at the same time the dissipative effects due to spontaneous emission of

photons become more important. With 6 held constant, one can deepen the potential

depth V0 by increasing the detuning from the trion resonance At, provided that suffi-

cient laser power is available. Note, that when following this technique the behaviour

is very different for blue and red detuning because of the correction factor fc (At). Fi-

nally, host materials with higher trion binding energies allow for considerably stronger

potentials.

4.4 Harmonic oscillator approximation

In principle, the Bloch theorem states that the exact solutions to any periodic Schréidinger

equation take on the form of non—localized Bloch wavefunctions 4’n,q (r). They are

labeled by a discrete band index n and a quasimomentum q within the first Brillouine

zone of the reciprocal lattice. Upon translation by an arbitrary lattice vector R, Bloch

functions are multiplied by a pure phase factor exp (z'qR). As a consequence, they

are coherently extended over the whole lattice [40].

From this point of view, the next step we will take seems strikingly contradictive

at a first glance and needs some clarification. In the framework of optical lattices

of atoms, it has become well~established to approximate the atomic motion near the

bottom of the wells by a simple harmonic oscillator that is thermally excited (see
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for example [40, 58]). The basic idea is that for deep optical lattice potentials the

atoms are tightly confined at a single lattice site which is approximately harmonic.

The oscillation frequency who and the trapping frequency V1- : who/2w respectively

which are easily obtained from this approximation have become figures of merit to

characterize the optical potential. However, we note, that it. is only meaningful to

talk about oscillatory motion if the trapped particle resides at one particular lattice

site for a time at least comparable to the oscillation frequency [58]. This is precisely

the regime where one has to describe the electrons motion quantum-mechanically.

For atoms, this picture has already been justified experimentally: atoms have

been successfully cooled down to the lowest bound state [45, 46, 47] entering a regime

where their localized quantum wavepackets could be controlled in real time [48, 49].

As far as our system is concerned, it is easy to imagine mechanisms that lie beyond

the scope of our model and do not appear in the Schréidinger equation formulated

above: impurities due to defects in the lattice, phonons interactions, just to name a

few. These effects can lead to decoherence which makes the picture of a single electron

trapped at one lattice site more plausible by suppressing delocalization. Apart from

that argument, an appropriate superposition of Bloch states, the energy eigenstates

for single electrons, yields a set of Wannier functions which are well localized on the

individual trapping sites.

In this spirit, we will derive the essential quantities of the optical potential in

the harmonic oscillator approximation to characterize its localization strength and to

compare the results to typical values for atomic optical lattices. We will do so first in

the limit of a local potential proceeding from Eqn. (4.12); in the second step we will

explicitly include the nonlocality governed by the memory function 711 (x) and show

that is is legitimate to neglect the nonlocality when describing the properties of an

electron trapped at the bottom of the effective harmonic oscillator potential.
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4.4.1 Without memory: Local potential

Our considerations start out from (4.12). Without loss of generality, we align the in-

plane photon wavevector along the sis-direction as Q = Qi‘. Expanding the cos2 (Qr)

to second order around the local minimum at r = 0 (for red detuning At > 0) gives

cos2 (Qr) z 1 — Q2$2. (4.17)

The potential term in the Schrédinger equation becomes flat in the Q- direction and a

simple harmonic oscillator in the fit-direction. In this approximation the Schrodinger

equation consequently boils down to

52v?

4 =1<
2771.8

4! (r) + V002 sin‘2 (6) 1:211; (r) : E\II (r), (4.18) 

where we expressed the momentum of the photon projected onto the QW plane

in terms of the angle 6 between the 2~direction perpendicular to the sample area

and Q according to Q = Qsin (6). By tuning the angle 6, one can easily alter the

periodicity of the lattice a. = An /2, while holding the potential depth of the lattice

constant. The smallest periodicity is reached for two counterpropagating laser beams,

which corresponds to the specific case where Q is in the plane of the sample and

subsequently 6 takes on the value 7r/2, by definition the maximum value for 6. By

choosing smaller values, one can control the validity of the harmonic approximation:

a variation of the angle 6 has no impact on the depth of the potential since V0 is only

affected by the total energy of the photons. However, the angle 6 does influence the

periodicity of the lattice: making the angle 6 smaller leads to a bigger periodicity of

the lattice, because the in-plane momentum Q decreases; equivalently, the in—plane

wavelength increases. If the angle 6 is chosen sufficiently small, the harmonic oscillator

approximation steadily improves, since the slope of the potential-well flattens out.
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The Schrodinger equation describing our system has become the one for a simple

harmonic oscillator in the indirection and we can readily identify

m*

fix/2:0 = ”.ng Sin? (6) 1 (4'19)

where who is the oscillation frequency of the harmonic oscillator. Since the two dimen-

sions are decoupled, we proceed by making the product ansatz ‘11 (r) = \le (:13) \I'y (y)

for the electrons wavefunction and separate the energy eigenvalue E = Ex + E3, to

obtain two decoupled one-dimensional Schrodinger equations. The solution to the

Schréidinger equation in the g-direction

h? a?
___—‘11. . = E 11;. ,_

2771;05/2 y (y) y y (y) (4 20)

is sim ly a lane wave with wavevector j: 2771’5E h.
. C 9

Since we are about to study the localization effect of the optical potential, the

fi-direction is of no further interest. Owing to the separability of the problem, we

have simplified the problem to a one dimensional Schrédinger equation

51’ a? m; 2 9
‘_“—_ 13(1‘) ‘1’ f—Cul} 1"”‘I/J; (.I‘) = E1:‘Px($), (4.21)

2771:0172 2 ’0

whose solutions are well known. The normalized ground state wavefunction of the

one-dimensional harmonic oscillator in the Cir-direction is given by

 

 

 

*, , 1/4 and

4114,0613) = (BE—(751E) exp (—%i£9.r2) . (4.22)

The level spacing of the harmonic oscillator is

2V - 2.‘ 2 6 V
hay“) = h\/ GO in ( ) = 2\/V0ER sin2 (6) (4.23)

me
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In our context his)“, is the energy of local oscillations inside the trapping well. For

a deep optical lattice with Vb >> (E3). the energy had/,0 of local oscillations in the

well is large compared to the recoil energy and each well supports several quasibound
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Figure 4.7: The first three levels of the harmonic oscillator are compared to the

potential depth (dashed black line) for CdTe and blue detuning: The blue branch

shows the ground state level for the angles 6 : 200 (dark blue). 6 = 150 (blue),

6 2 100 (lighter blue). Similarly. the first excited (green) and the second excited level

(orange) are depicted.

Fig. (4.7) shows that for blue detuning in a CdTe system and appropriate val-

ues for the angle 6, the first three energy levels of the harmonic oscillator can be

resolved within the potential depth V0. As speculated above. the harmonic oscilla-

tor approximation is favoured by deeper potentials V0 and bigger periodicities of the

potential.

In the next step, we examine the spatial spread AX of the ground state wave—
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function

 
 

AX .__ \/’,.,— :
x/fi 1 4,

(4.24)
mewho (2772;14in sin2(9)l /

The result for CdTe and various angels 6 is depicted in Fig. 4.8. For red detuning,

the spatial spread saturates, simply because the potential depth follows a saturative

behaviour. Typical values for the spatial spread AX are ~ 10aD, which is about five

to ten times smaller than the corresponding lattice spacing a.
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Figure 4.8: Spatial spread AX of the harmonic oscillator ground state as a function

of the detuning for a fixed saturation parameter e = 0.1 in CdTe and various values

for the angle 6.

For completeness we give the trapping frequency 11,. = who/271 according to

 

1 .- 2
V7. 2 EJVOER sm (6). (4.25)

Typical trapping frequencies for atomic optical lattices are in the regime of ~ 100 kHz
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[40]. On an absolute scale the potential depths and recoil energies in our system are

several orders of magnitudes bigger which yield to trapping frequencies of the order

of ~ 1010 — 1011112. As shown in Fig. (4.9), I/r can easily exceed the comparatively

high effective spontaneous emission rate by two orders of magnitude. Accordingly,

the vibrational level structure can be highly resolved, as the electron is forced to

undergo many oscillations between the inevitable spontaneous emission events where

it is randomly scattered due to a recoil kick.

we note that in the limit ER << who the localization of the electron by the optical

potential strongly suppresses the heating caused by spontaneous emission. This is

because the single-photon recoil energy is not large enough to allow the electron to

make a ’jump’ between the harmonic oscillator levels. In our system, as shown in Fig.

(4.10), we have ER N fiwho, so while heating will not entirely suppressed, it may be

significantly reduced.

4.4.2 With memory: Non-local potential

Our next goal is to investigate the case of a single electron trapped at one site of a

simple harmonic oscillator, but this time we will explicitly keep the non-local character

of the potential in terms of the memory function. For simplicity. we approximate the

memory function m (Ir — r’]) with the Gaussian fit presented in Fig. (4.2). we

will compute the size of a Gaussian ground state wavepacket based on a variational

approach. We will show the procedure for red detuning in detail. The calculation for

blue detuning goes along the lines, but. one has to expand around a different local

minimum as the character of the potential swaps from attractive to repulsive. In this

way, we will be able to estimate the effect. the nonlocality has 011 the result obtained

above in the local limit of the potential.

Proceeding from the non—local Schrbdinger equation, i.e. including the memory
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(4.26)

we will again expand the cos2 (Quill) to second order as

I I 2

cos2 (Qr : r ) = cos2 (Q18 E :17 ) z 1— 94— sin2 ((9) (:17 + x’)2, (4.27)

so that the non-kinetic part of the non—local Schrodinger equation explicitly becomes

92 2

__A_(:fc (At) /d2r' (1— Q7 sin2 (6) (a: + :c’)2> m (Ir — r'l) \I' (r') (4.28)
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To find the ground state of this non-local Schrodinger equation, we can use a varia—

tional approach with the following ansatz

* 2 _,*,_, '2

\ll(r) =Ne‘a I e ’3 (y yo) (4.29)

consisting of two gaussian wave packets. The normalization constant is given

_._ : __ (4.30)

 (Ek) = 2772* (a +3 ) (4.31)

and for the potential term it is given by

.03 ., 1
(V) = —27ra—A—tfc(At) a*;’3*  

\/0‘* (2b + 01*)5’“ (2b + (3*)

_ Q2 sin2 (6)

4\/a*3 (2b + a*) 15* (2]; + (3*)}
(4.32)

 

As we can see, both (Ek) as well as (V) do not depend on the parameter yo, since

for the chosen direction for Q along the i-direction the problem is invariant under

translations in the g-direction. By numerically minimizing the total energy (Ek)+(V),

we obtain for example the values shown in Fig. (4.11) as a function of the (red)

detuning At. While a* which describes the localization in the :E-direction is finite, the

variational parameter [3* which is associated with the Q-direction is zero, independent

of the chosen angle 6 and the detuning At. Thus, the electron’s wave function is

flat in the 'Q-direction and shows no localization. Qualitatively, we obtain the same

behaviour for blue detuning.
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Figure 4.11: Variational parameters (1* and 3* in the harmonic oscillator approxima-

tion including the memory effect for e = 0.1 and red detuning. The results for blue

detuning (not presented here) are qualitatively the same.

Horn the values for a“ we can deduce the spread of the gaussian as

1

0', = —,

'C )1 2a*

which is depicted in Fig. (4.12).

(4.33)

Compared to the case where we neglected the memory term in the previous section

by replacing it with a 6—function (see Fig. (4.8)), we recognize that it is well justified

to neglect the nonlocal character of the potential. The spatial spread of the Gaussian

wavepacket is effectively not affected by the presence of the non-local memory term

m (x), since the additional spread caused by the non-local character of the actual

trionic potential is negligibly small compared the spread that we obtained in the

approximative local limit of the potential.
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Figure 4.12: or of the gaussian wave packet in the ris-direction as a function of the

detuning At for e = 0.1 and CdTe. The results where the nonlocal effect of the

potential was included are shown as solid lines: 6 = 10° (blue). 6 = 15° (green),

0 = 20° (orange). The corresponding values of the local limit where the non—locality

was neglected are depicted as dashed lines. The non-locality causes a slight additional

spread of the electron wavepacket.
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Chapter 5

Effective temperature for the

electrons

Up to now, we have focused on a proper description of the coupling of the conduction

electrons to laser light, tuned close to the trion resonance. However, we should not

forget that these electrons are embedded in a semiconductor host environment at

the lattice temperature T), which also interacts with the conduction electrons. In

this section, we will explore the electron interaction with phonons. More general, we

will investigate the electron heating and cooling processes and calculate the strength

of the different mechanisms. Due to the host environment, the electrons can emit

phonons, whereby the electron energy is lowered; therefore, the emission of phonons

serves as a natural cooling mechanism. In other words, the electrons are linked to a

macroscopic refrigerator, the semiconductor lattice, and energy is exchanged in terms

of its vibrational quanta, the phonons. Here, we will only consider acoustical phonons:

Optical phonons will not contribute, because the exchanged energies we consider are

always smaller than the characteristic optical phonon energy: In GaAs for example

the energy of one optical phonon amounts to thO = 36 meV. Meanwhile, the

electrons also experience effects that tend to increase the electron kinetic energy and
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thus heat them up. In addition to cooling, we also need to consider heating effects:

While phonons can not only be emitted but also absorbed, and in doing so cause a

heating of the electron, such processes need to be activated thermally so that this

effect goes to zero as the lattice is cooled down towards a low temperature regime.

The primary heating effect that we need to take into account is then the intrinsic

omnipresent heating mechanism of any optical potential, namely the spontaneous

emission of photons. Once, the electron has entered the excited trion state after

the absorption of a laser photon it is subject to spontaneous emission of photons

with a rate that is governed by the trion radiative lifetime rt and the excitation

probability of the trion state. The latter is controllable experimentally by the ratio

of the Rabi frequency for the electron—trion transition to the detuning from the trion

resonance. The essential goal of this section is a first-principle derivation of a time-

dependent equation for the electron energy. Based on this equation, we will find

the equilibrium solution at which the heating and cooling mechanisms balance each

other. This equilibrium solution will culminate in the definition of an effective electron

temperature T*, which is necessarily higher than the lattice temperature. We will

have to compare the associated effective thermal energy kBT* to the depth of the

optical potential, seen by the electrons, to determine its ability to effectively trap

electrons.

5.1 Acoustic phonon scattering rate

In a first approach to the problem, we will calculate the emission rate of acoustic

phonons at T) = 0. In this way, we will get a feeling for the typical time scales of

intrasubband relaxation processes, comparing our results to values obtained in pre-

vious theoretical investigations [51]. Although these results are related to a different

energy regime for the electrons and therefore not of interest for the further studies ,
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a good agreement will serve as a direct check of the validity of our approach.

We restrict ourselves to the intrasubband contributions arising from the emission

of acoustical phonons in order to estimate the relaxation time at which a warm

carrier cools down to thermal equilibrium. Usually, it is a very good approximation

to assume that intrasubband relaxations are faster than intersubband ones [51]. In

the low temperature regime the absorption of phonons can be neglected. Moreover,

optical-phonon scattering is negligible at low temperatures (3 40 K) [50]. Indeed,

acoustic phonon scattering is the only way a carrier can relax down to the ground

subband edge when its initial excess energy is smaller than the energy of an optical

phonon th0- To compute the scattering rate Pph of an eigenstate W3) limited by

transitions to all possible final states (21,1212) induced by the electron-phonon interaction

potential He—ph2 we exploit Fermi’s Golden Rule

12,,,.—- 737:: ((3122.p. I2>>I(23 + 33— 22-), (21>

where hid); is the energy of the emitted phonon and 6.2"]? give the energies of the

initial and final electron’s states respectively. The computation of the scattering

matrix element requires the knowledge of w,- and 211.7. As usual, we apply the envelope

function formalism and restrict our considerations to a parabolic description of the

host’s bands. This means that for a finite well—width in the fi-direction we write the

envelope conduction states in the form

1 . -

392. (r) = 33 8XI) (’lkl‘) X2? (2’5) (5'2)

with the corresponding energy

 



where A is the sample area. Furthermore, r = (.r, y) and k 2 (k1, Icy) give the in-

plane components of the electron position vector and wave-vector, respectively, E,- the

confinement energy of the 'i-th subband and x,- (z) the associated envelope function.

Analogue expressions hold for the final states 22,012. For simplicity, we assume a very

thin quantum well with one relevant mode in the growth direction. We do not take

into account the dependence of the envelope function Xi/f (2:) on the energy level and

take the form

xii/f (Z) = 9% (3.4)

for 0 g z s Lz and zero elsewhere; with Lz being the well width. This approximation

is valid for very thin wells that support only a single bound state, so that intersubband

relaxations are suppressed.

The main scattering mechanism for electrons interacting with acoustic phonons is

provided by the deformation potential interaction, and the assumed electron—phonon

interaction Hamiltonian is given by

HG-ph = Z [a (q) e-"'q'rb:i.+ he] (5.5)

(f

where bT is the creation operator for a phonon in the mode q"' and

(Y

D2 D2 2:0
|02 (2012 =

2,0ch V

is the strength of the electron—acoustical-phonon interaction in the deformation po—

tential approximation. For convenience, we buried most of the constants into the

definition of the quantity co. The parameters that enter are the deformation poten-

tial for electrons D, the density of the host material p and the longitudinal speed

of sound cs. We neglect any possible change of the phonon spectra arising from the

existence of the heterostructure and thus take isotropic acoustic branches with sound
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velocity cs.

To apply Fermi’s Golden Rule, we will first evaluate the transition matrix element

for the emission of an acoustic phonon with wavevector q and we obtain

|<¢f| He—ph lulu->12 = Id (21)l2 IE (q.~.-)|2 6ki,kf+q (5.7)

CO __ .

= —5wo I: ((12) 2 (5.8)
V

 

where we introduced the function

2

  

(5.9)E<q.> = f 2222-22222. cm; (2:) = f 3.3—2222 23)) (z)

and the phonons frequency 320 that already incorporates the in—plane momentum

conservation condition

 

(.00 = Cs \/q3 + lki — kfl2' (5.10)

Since the system is translationally invariant in the plane, the difference in the elec-

tron’s in-plane wavevectors has to equal the in—plane component q of the phonons

wavevector cj’ = (q, qz).

For our particular choice of XIi/f (2) being equally distributed on the interval

0 _<_ 2 S L; and zero elsewhere, we obtain

_ 45in2 (QZLz/Q)
5.11

((12123)? ( )

 

Now, that the matrix element is evaluated, we have the necessary ingredients to turn

back to our original goal, the calculation of the actual scattering rate I‘m due to the

inelastic interaction with acoustical phonons. We obtain

 

 CO ‘ l f )2 277 k f ( ) f lP. — / dq; E qz / dp/ dk I: 0206 e: —e —fia20 5.12

ph (27r)2 —oo 0 0 f f I f
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To explore the non-zero temperature limit, this result would have to be multiplied by

1

(5.13)

where f). is the Bose occupation function that in this context can be viewed as a

temperature-dependent stimulation factor.

We have solved the remaining integrals for the computation of I‘m numerically. In

the case of GaAs, the calculations have been performed with the material parameters

D = 8.6 eV, p = 5.39/cm3, and cs 2 3700 m/s [51]. Here, we give the results for the

inverse intrasubband scattering rate 71.11 depending on the well-width Lz that can

be directly compared to the results given in Fig. (6) of ref. [51], where the initial

electron’s energy was chosen to be about ~ 0.25 eV. Our results are about a factor

of 2 off from the ones stated in [51], where a more sophisticated approach for the

electron’s wavefunction in the é-direction was used. For our purposes the simplified

form catches the physics correctly and works fine for very thin well-widths, i.e. the

quasi two-dimensional limit. In this limit, the intrasubband relaxation rate due to

acoustic phonons 71.,1 is very fast, in the range of picoseconds. However, this refers

specifically to the chosen electron’s energy which is different from the energy range

we are to consider. Nevertheless, in this way we have confirmed the validity of our

approach.

5.2 Equilibrium temperature

In the next step, we will calculate one of the most important quantities in our analysis:

the effective temperature of the conduction electrons T*. This effective temperature

deviates from the temperature of the host environment Tl, because spontaneous emis-

sion events render the optical potential dissipative, resulting in an effective heating

133

 

h-



   

  

[T—l— f ff _1 T T ’T—‘I;

2 ]

7.x10‘”; j

l

l

6.x10‘”[
1

,—. 5.x10‘”2 ]

23 2 ;

r _ .. :
: 4.x10 “f ]

3.x10-“§ ]

2.x10‘“[ l

’ l
1%.. -.1_l

00T‘EO”-“80 “T1059 ”_Tédff—TAG—TTGO 180“ ‘2

L: [A]

Figure 5.1: Acoustical phonon scattering at a lattice temperature Tl = 0: Dependence

of the intrasubband relaxation time Tl_,1 on the quantum-well thickness Lz.

of the electron. The rate at which the electron experiences the spontaneous scatter-

ing events is the effective spontaneous emission rate [‘38, which we estimate as the

product of the time-averaged probability to be in the excited trion state times the ra—

diative decay rate, i.e. the natural line-width, of the trion level: [‘38 = (P6) I} = d};

6 is the saturation parameter. For our purposes, the associated energy gain rate or

heating rate Rheat» measured in energy per unit time, is even more important than

the scattering rate I‘se, because it carries the actual information about the strength of

this mechanism to push the electron effective temperature away from the temperature

of the refrigerator T). We approximate the corresponding energy gain rate as

Rheat = (P6) Ft (ER) : GFt (ER) (5214)
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since, on average, every single spontaneous scattering heats the electron up by the

average in-plane recoil energy (E3).

Experiments with Bose-Einstein condensates that are loaded into an optical lattice

essentially take place in vacuum. The atoms are cooled first, before the lattice is

ramped up. Thus, these systems lack a natural cooling mechanism and the heating

process due to spontaneous emission of photons sets a boundary on the time-scale on

which these experiments can be performed successfully. Once, the atoms have been

cooled down to very low temperatures and the interaction with the photons is switched

on, the recoil kicks heat the atoms up, which eventually knocks the atoms out of the

traps. Therefore very small values for the saturation parameter 6 have to be chosen in

order to control the heating rate. In general, when working with laser-cooled atoms

the cooling mechanism stems from the same system as the optical potential, namely

the laser, whereas in our system the cooling mechanism is completely independent of

the laser-induced potential.

In contrast to these limitations on the optical potentials for atoms, the system

we study is equipped with the phonon bath which competes with the heating process

described above. In equilibrium, the heating and cooling mechanisms cancel each

other. We will derive the associated effective temperature of the electron at this

equilibrium point.

As a side note in advance of the later discussion we mention that phonons couple

only very weakly to the spin—state of the electrons. so that spin-flip processes due to

the phonon bath occur on rather long timescales. This fact has already been used to

engineer quantum information systems based for example on quantum dot platforms.

The interaction with the acoustic phonons is essentially a scattering problem.

Here, we discuss the validity of Fermi’s Golden rule in the specific problem at hand.

We will calculate not only a scattering rate, but also energy loss and gain rates because

of the emission and absorption of acoustical phonons.
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The Hamiltonian ’H for the problem of one single electron interacting with a bath

of acoustical phonons can be written as

 

H = H0+He_ph (5.15)

h2fc2 1

HO = 2m; + VC + 23c, (31 0,735 (3.16)

q

He—ph 2 Ed (q) [e-i‘mbga— eff; b5] (5.17)

(f

where the unperturbed system contains the electron’s kinetic energy in the QVV plane,

the confinement potential VC of the QW along the 2-direction and the energy of the

phonon bath. Again, He—ph is the interaction of the electron with the phonon bath in

the deformation potential approximation. Since we are only considering intrasubband

scattering, the Hilbert space to describe the problem perpendicular to the QW plane

is truncated to one mode only. Subsequently, the identity operator for the electron

Hilbert space can be represented as 1 = Ix) (xl ® 1“, where we have decomposed the

problem in the in-plane and the out-of—plane part; Ix) describes the wavefunction in

the 2-direction. After this simplification, we can make the replacement

eff”? .3 (XI 6322.222 IX) 2f‘iqR = 33. (Qz) efiqR (518)

where we introduced the Fourier transform of the squared electron’s wavefunction. in

the E-direction

21 (21.) = (21222222 Ix) = / 222-22222 Ix (2)|2 (5.13

so that in the truncated problem which only allows for one mode in the quantized

2-direction the electron phonon interaction simplifies to

~ —= R —- - 2' R
He-ph = 202121) [:._ (q;)e ‘01 03+ 2+ ((1.3)e‘Ql b5] (5.20)

(7
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In this way the dependence on the 2-direction is governed as a matrix element in the

interaction Hamiltonian which essentially goes to zero for large values of qz.

Focussing initially on the emission of a single phonon, a convenient set of basis

states to tackle the problem is

(22> = (2.2.>22IT> (5.21)

_ 1 2 2
[(12+) — m[T(“Q)lhl®bq~lTl] (522)

1 - .

Iq.—> = fi[2(+q>|3>2~3IT>] (5.23

which are tensor products of the electrons state and the state of the bath |T). We

assume that the state [2) as well as the states [q, :t) are eigenstates of the unperturbed

problem with the corresponding eigenvalues

H0 [fl = Eu [17), 7'10 lqa i) = Ed: [(1, i) (524)

The state [2) describes the initial state of the system. The electron is assumed to

be initially in the state

[23) = [19) ® IX) (5135)

which describes an electron free to move as a plane wave with wavevector R, in

the QW and confined in the mode Ly) of the quantized é-direction. To adequately

describe the physics of phonon emission and absorption we have introduced the in-

plane momentum-shift operator T (iq) given by

T (iq) = eiiqR (5.26)

The phonon bath is initially at thermal equilibrium in the state |T). Thus, we
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only require that it obeys the Bose-Einstein distribution

. T _ — ~ 2'
(TI bqbq'f IT) — 71902727 (0.27)

which explains the chosen normalization for the states Iq, 21:), assuming IT) to be

normalized. This assumption basically states that the phonon modes are uncorrelated.

The given basis is sufficient to describe single phonon emission/absorption processes.

The system starts out. in the state [2) and is then found to be in the state Iq, +), if

an acoustic phonon of wavevector q has been emitted and in the state Iq, —), if an

acoustic phonon of wavevector q has been absorbed by the electron. The momentum

shift operator automatically takes care of the inplane momentum conservation.

The orthogonalization conditions read

(q,+lq’,—) = (q,ili)=0 (5.28)

(q, ilq’, 2%) = ‘qar (529)O

In its most general form the state of the system IIII (t)) can be written as

I212 (2» = <2) (12> + 2 [22+ (2: 2) Iq, +> + c— (2: 0 Iq, —>1 (5.30)

(7

where we introduced the time-dependent amplitudes c,- (t) and Ci (4’, t). Normaliza-

tion of the state I‘ll (t)) requires

Io. <2>I‘2 + 2 [I3 (2. 012 + I2- (2,512] = 1 (5.31)
q
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The probability Pin,- (t) to find the system in state I2) at time t is

mm = I2.- (2: 5|? = 1— 2 [3+ (22012 + (2. (27,012] (5.32)
q

which is nothing but the condition of the conservation of probability. Hence we see

that to calculate the transition probabilities to second order, it is only necessary to

compute the corresponding amplitudes to first order.

Later on, we will refer to the completeness relation for the whole system, i.e. the

combination of the electrons Hilbert—space and the bath,

2: lk> (kl 2.2 (a (XI 3 3.3. = 1 (5.33)

k

The time dependence of the state’s system can be buried into the propagator U (1‘)

defined as

i

U (2) = e’fim (5.34)

A similar definition holds for the free propagator U0 (t), where only the Hamiltonian

of the unperturbed system H() enters. Expanding the full propagator U (t) to first

order perturbation theory gives the result

2‘ 2

U (75) = Uo (t) — F/n dti Uo (15 — 1*1) V (t1) UO (t1) (535}

which illustratively states that in first order the system can evolve in the time interval

[0,t] with either no interaction or one interaction taking place somewhere in this

interval. Before and after the interaction, the system evolves essentially as it. would

in the unperturbed system. In first order perturbation theory, the time-dependent
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amplitudes ci (q, t) to find the system in the state Iq, i) are given by

.zj t

Ci (it) = (q,iI\I' (fl) = —E/0 dti (mil Uo (15 — t1) V(t1)U0 (t1) Ii) (5-36)

Now, the interaction term V (t1) couples the initial state [2) to the states Iq, :l:), where

one phonon has been emitted or absorbed. Within a first order theory, as proposed

here, this is everything that can happen. Multi-phonon processes have been neglected

right from the beginning. For the amplitudes Ci ((j’. t) we obtain

7 _2

(2,107.2) = —%a(q>(/nq‘+13_(q,)e Hart/Utedt ‘32IEE+>1 (5.37)

-0212) = —%a<q> r2..13+(q.~.>e‘7’2E—t f0 2222‘iIEE)’1<5.38>

After the integration in time, we find that the probabilities [Ci (2i',1f)|2 to find the

system in the state Iq, +) or Iq, —) respectively are

, j. 2 E.'—E t

4s1n (41—312)

 

 

3.231312 = Ia<q>|2 E_(q.>|2(nq+1) (Bi-13+)? (5.39)

9 4sin2 #5

IC— (2212M2 = |O2(21)|‘|E+ (61:)l2fiq (E: E_)2 ) (5.40)

At this stage, we can already recognize that the absorption of acoustical phonons

becomes negligible in the limit T ——> 0, while there can still be spontaneous phonon

emission. Only the stimulated processes that are proportional to rig vanish in the

low temperature regime. The next step is well known from the general derivation

of Fermi’s Golden Rule. It is a very crucial approximation that is based on the

phenomenon of a separation of time-scales. we are confronted with the function

(50) (Ef — E2) = “Sin ((gf—_1:))t/2h) (5-41)
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which tends to the delta function 6 (Ef — E,) for long times t —> 00. As a matter of

fact, it is a diffraction pattern, whose maximal amplitude lies at t/27rfi for Ef—Ez- = 0.

Its width is on the order of 47rh/t and its integral yields 1. Thus, it is an approximate

delta function that expresses the conservation of energy with an uncertainty h/t

because of the finite duration of the interaction [52]. In the Markovian approximation,

the scattering events are independent of each other, the system is reset after each

interaction: There is no memory. The separation of times scales appears as taking

the limit t —> 00, whilst t has to be sufficiently small to justify the perturbative

treatment of V, as we allowed for single scattering events only. In this limit, the

transition probabilities become

1 23 ._ _ -

(2302.322 = -,;|Q(Q)l2l“—(qz)|2(7‘lq+1)<>(E2—E+)t (5.42)

_4 . 27r ,_ _

(c.— (21.222 = -;,j-l2:2(q)12|:+(qz)1222q5(E2--E—)t (5.43)

from which we can readily deduce that the probability to remain in the initial state

I2) decays at the rate

PM = 2%Z|a(22)|2IE—(qzll2Ifiq+1)5(E2—E+)

 + (2+ ma 2 222.25 (E. — 21.)] (5.44)

The first term accounts for phonon emission, while the second term respects phonon

absorption. However, this is not the end of the story. we will make use of the

same framework to derive the energy gain and loss rates due to phonon emission

and absorption. The strength of these mechanisms as compared to the photon recoil

heating Rheat will then decide about the electrons equilibrium energy kBT*.

In general, the time-dependent expectation value of the electrons energy (E (2‘)),
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which is assumed to be purely kinetic, is

(E (20> = Z ’2”. (212 (0| “12> (kl 22 (a (a 3 3.311223» (5.45)
k ’6

 

where we inserted the completeness relation (5.33). In the next step, we express the

state I‘ll (t)) according to the general expression (5.30) and find that the deviation of

the electrons energy from its initial value is given by

  

 

322? h2(k-——c02 322?
E t — E = E E _ I it 2

222 (k,- + q)2 22.23,? .2

+- i - IC—-Uit)l 0146)
2Q: I 2m, 2m;

The difference in the kinetic energies is exactly the energy hug of the emitted or

absorbed phonon. We define the change in the electron’s energy per unit time Rph (E2)

according to

523?

(EM) - E = Rph.(Ei)t (5247)
. *

22728

 

When we plug in our results for the transition probabilities and use the energy con—

servation, we find a very intuitive and simple result

27r _ _

12,, (13> = 7Z (a (q)!2 I—_ (an2 3..., (n. + 1) 2 (E.- — Ef — 33,)

22'

27r _ _

+72 (a! (q)(2 (2+ (an 32.2232 (E.- — Ef + 33.) (5.48)

(I

The energy loss and gain rates due to acoustical-phonon emission and absorption

respectively are obtained by weighting the scattering rates with the energy of the

corresponding phonon. Thus, we just have to multiply by flow, before the summations

are performed in (5.44).

Now that we have understood the phonon mechanism and its influence on the
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electron energy we will find the equilibrium point for the electron effective temperature

T*. To do so, we also have to take into account the recoil heating. Otherwise, without

this heating process the result would be trivial: T* = T). A thermalized electron

would automatically take on the temperature of its lattice environment. We can set

up an equation for the electrons energy evolution in time, which respects both the

contribution from the recoil heating processes as well as the phonon mechanisms. The

electron’s energy evolves in time according to

2(E(2)> :3
T p12. (E) ”I" Rheat (5°49)

In contrast to Rph (E), the heating rate Rheat depends neither on the lattice tem-

perature Tl nor on the the electrons energy. Still, it can be tuned by changing the

value of the saturation parameter 6. In equilibrium, the time-derivative vanishes and

we find E* = kBT’E‘ as the point where RP), (E) and Rheat cancel each other, i.e. the

equilibrium condition reads

Rph (E*) + Rheat = 0 (5°50)

We specify the results of this procedure in Fig. (5.2) and (5.3) for GaAs and

CdTe, respectively. The lattice temperature was chosen to be T) = 300 mK. In this

temperature regime the absorption of phonons is negligible and the dominant heating

effect is clearly the spontaneous emission of photons. The trion radiative lifetime was

taken to be rt = 100 p3 and the corresponding heating rate Rheat is plotted for the

saturation parameter values 6 = 0.1, e = 0.05 and e = 0.01, respectively. Of course, a

lower value for 6 results in smaller effective temperatures for the electrons, since the

heating rate Rheat is linear in the parameter c. We find lower effective temperatures

in CdTe than in GaAs, because the phonon cooling mechanism shows the same effec-
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Figure 5.2: 022.45: The phonon cooling rate Rph (E) is shown in blue. The heating

rate Rheat is presented in orange for different values of the saturation parameter 6:

6 = 0.1 (solid line), 6 = 0.05 (dashed line), 6 = 0.01 (dotted line). The thermal

equilibrium energies can be found where the cooling rate intersects with the heating

rate.

tiveness, while the recoil energy (ER) is noticeably smaller for CdTe. For saturation

parameter values 6 z 0.01 — 0.1, we obtain equilibrium temperatures kBT* in the

range 0.2 — 0.4meV and 0.1 — 0.3meV for GaAs and CdTe respectively. For red

detuning, this energy range is of the order of or even bigger than the potential depth

V0, even for laser powers that allow for the saturation regime. For blue detuning,

however, we find that the potential depth can exceed 1237““ considerably. In Tab.

(4.2) we have specified for example the potential depth for 6 = 0.05. Compared to

the corresponding electron equilibrium temperatures, the potential depth amounts to

V0 % 3kBT* and V0 z 8kBT’E‘ for GaAs and CdTe respectively. Thus, by tuning the

laser light above the trion resonance one can reach values for the potential depth V0

that are considerably larger than the effective thermal energies of the electrons in the

system.
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Figure 5.3: CdTe: The phonon cooling rate Rph (E) is shown in blue. The heating

rate Rheat is presented in orange for different values of the saturation parameter 6:

6 = 0.1 (solid line), 6 = 0.05 (dashed line), 6 = 0.01 (dotted line). The thermal

equilibrium energies can be found where the cooling rate intersects with the heating

rate.

 



Chapter 6

Optical lattices for carriers in

semiconductor quantum wells

For the sake of simplicity, so far we have focused on the case of two counter-propagating

laser beams, which produces an intensity pattern in the form of periodic stripes along

the QW. In this chapter we will extend this model to an intriguing novel phenomenon,

namely a two-dimensional optical lattice for the conduction electrons in the QW: pe-

riodic arrays of microtraps in one than more dimension are generated by a set of

standing wave laser fields. A periodic potential in two dimensions can be easily

formed by overlapping two optical standing waves along different, most commonly

orthogonal, directions. To eliminate interference terms between the pairs of beams

in the different directions, one can either choose orthogonal polarization vectors for

the two laser fields [40] or slightly different optical frequencies [53]. In both cases,

the resulting optical potential in the center of the trap is simply the sum of a purely

sinusoidal potential in both directions. Superimposing two orthogonal standing waves

in this way in combination with the confinement in the é-direction inside the QVV

results in a two-dimensional array of artificial quantum dots for the electrons.

This step essentially bridges the gap from the concept of a periodic optical po-
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tential for electrons to the idea of an optical lattice for electrons. The concept of

an lattice as a regular arrangement in space underlines a shift away from a picture

of an disordered electron gas towards a possible new physical paradigm of an elec-

tron gas whose density is spatially modulated and whose properties can be strongly

determined by the periodic optical potential in a time-dependent way. To be pre-

cise, we will specify our calculations for a two-dimensional square lattice with lattice

periodicity a = Ali/'2; A” is the in-plane wavelength of the laser.

Thanks to recently developed quantum optical tools, a wide range of many body

Hamiltonians have been realized with cold atoms in optical lattices. In particular, a

whole toolbox to engineer various Hubbard type lattice models for 1D, 2D and 3D

Bose- and Fermi systems has been provided whose properties can be controlled by

varying external field parameters [54]. The original idea suggesting the possibility

of studying non-trivial many-body systems with cold atoms in optical lattices was

developed by Jaksch et al. [55]. The starting point in their analysis was the so-called

Bose-Hubbard model. One of the key parameters that enters any Hubbard model is

the on—site interaction energy U due to a repulsive interaction between the particles

located at the same site of the lattice. In this chapter we will estimate the parameter

U as an integral over a variational on-site wavefunction in a local harmonic oscillator

potential. We will cover both spin singlet and triplet states. Compared to optical

lattices for ultracold atoms, which interact via short-ranged s-wave interactions [40],

we expect this parameter to be very big, because we deal with electrons that carry

a charge 8 and thus interact via the strong, long—ranged Coulomb potential. For the

same reason, the interaction between electrons that are located at different sites is

not negligible and we will estimate the strength of these interactions as well. It is

an interesting feature that the strength of the interaction can be tuned by the laser

parameters in real time: For instance it is evident that the repulsion U increases with

the potential depth due to a tighter squeezing of the on-site wavefunctions.
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Another striking property that comes along with an optical lattice for the electrons

is the possibility to engineer a spin-selective lattice: We will show how the underlying

level structure of our system can be used to design differing traps for different internal

spin states of the electrons.

6.1 Coulomb blocking: On—site repulsion

Before considering into a more accurate approach to determine the on-site repulsion

U, let us first get a feeling for the orders of magnitude with rather rough limiting,

but simple approximations. First, as a lower limit to the actual value of U, we can

easily compute the Coulomb energy between two classical pointlike electrons that

are nearest neighbours on a square lattice and therefore separated by the lattice

spacing a. The periodicity 0, depends only very weakly on the detuning from the

trion resonance At, but can be tuned efficiently by altering the angle between the

laser beam and the QW within about one order of magnitude. Still, a is typically

of the order of ~ 10-7272 up to (2272 for both GaAs and CdTe. In this classical

picture, we estimate the Coulomb energy Vc as VC- = 62/6a and find that the classical

repulsive energy between the next neighbours is w 0.2 —- 0.6 meV for angles 6 in

the range 6 = 10° — 30°. For red detuning and reasonable values for the saturation

parameter 6 this possibly exceeds the potential depth V0. In the case of blue detuning,

however, potential depths in the range of 1 —- 2meV are feasible, which is considerably

larger than the next—neighbour interaction energy. Still, this reasoning underlines the

strength of the Coulomb interaction in our framework and we will come back to these

values when discussing the Coulomb energies between the various neighbours on the

square lattice.

To obtain a better understanding of the on—site interaction term U that goes

beyond the classical approximation, we consider two electrons trapped at one lattice
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site, neglecting the possibility of tunneling. As done before, we approximate the

lattice potential by a harmonic oscillator of trapping frequency who, this time, though,

in two dimensions: we remember that who depends on both the potential depth and

the in-plane lattice periodicity. To describe the two electrons which shall both occupy

the ground state I g) of the trapping potential, we simply take the product of two

Gaussians

9 m*w’h 2 2_ E ( '

(r1,r2Ig.g) = AF exp (—fi—’ (r1 + r2)), (6.1)

. =2: ,

where N is the normalization constant for the single electron solution N = W.

This ansatz for the spatial wavefunction is symmetric with respect to particle ex-

change, so that it only applies to a spin singlet state. Although the two electrons

form a singlet state, both are assumed to couple individually to the trion resonance,

since the trap size is much bigger than the trion size. Based on this ansatz, we cal-

culate the expectation value for the Coulomb energy and obtain the compact result

2 :22.
r 8 71'?” 3(1) .

(9.91 112.9) = ?(/——2‘,,—”—0. (6.2)

Of course, this straightforward calculation only sets a upper boundary on the actual

value for U, since the wavefunctions were not allowed to change their form as a

reaction to the inter-particle Coulomb interaction. With this ansatz we find Coulomb

energies that can enter the range of several meV, depending on the combination of

potential depth and lattice spacing. In total, we found a lower and a upper limit, from

which we deduce that the actual value for U will be more or less around 1 —— 3meV.

After these introductory estimates, let us apply a more sophisticated approach

that covers both singlet and triplet. states on the same footing. The Hamiltonian for

this two particle problem can be decoupled into a center of mass motion HR and the
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relative motion Hr

132 fl] 2 2

2r12+P—+E‘2212+E— (6.3)H=H Hz— —2 —a.
3+ r 2111+ 2%“ 221 -2 ho 6IrI

where we introduced the total mass 1'11 2 2m: and the reduced mass ,u. = m:/2. While

the center of mass of the system R moves in a harmonic potential of the trapping

frequency who, the potential of the relative coordinate r is the sum of a harmonic

trap of frequency who and the interaction potential. In addition, the Hamiltonian H

is spin-independent, so that the total wavefunction can be factorized

‘1’ (12 2) = '22" (1)6 (R) X (31, 82) (6-4)

The solutions to the center of mass Hamiltonian HR are well known; therefore, we

will focus on Hr in the following. In cylindrical coordinates r = (r, (0) the relative

Hamiltonian H,- can be written as

a212fi+16212l 1

= —— — —— 21. — 6.5
Hr 2 82‘2 + r 8r+ r-—3¢2 + E20702 + ( )

where we switched to a unit system with h = ,u = 62 /6 = 1.

Starting from the Schrédinger equation for the relative Hamiltonian

Hr-zi’i (r) 2 61,6 (r) (6.6)

we introduce the replacement

 2 (r) = 3(1) (27)

so that we can express (6.6) in the following way

a? 1 1 a? 1 2 2 1

5,3 + 17.5 + 3535] 9'9 (1‘) + (52'307‘ + —) 99(1‘) = 699 (1') (6-8)

 



Splitting 1,:- (r) up into a radial and an angular part

'2: (r) = R (r) climb (6.9)

the radial wave equation to solve reads

1

r , ‘2 1

1 82 (m — 1) 1 2 2

2 (97“2 + 2712 + gwhor + ; R (T) " ER (7”) (6.10)

and gives rise to the definition of the effective potential

(7712—211) 19 1

————+ ;2~2+— (6.11)
lirffff (r) = 27.2 2 1,0 7.

If we introduce the scaled coordinate 7‘ 2: :r/Vw, this differential equation becomes

. 2 1

26 2 (771 “- 1) 2

- 2 . 2 . , .

Who .I? who”

 

 R” (.1?) + R (.r) (6.12)

Let us mention that for the case with no Coulomb interaction, i.e. if we drop the

term 2 /Mr Eqn. (6.12) can be solved exactly by

12(2) = e—l’g/‘meH/QLEI") (.22) (6.13)

with the quantized energy levels

6 2 who (2n + m + 1) (6.14)

This short aside justifies our two parameter variational ansatz of the form

22+,1301+2‘3
.2 » 2

2,2, : —a-I' , ,3 )1."ng 2 z 6.1.7
L, (r) Ne r c, ., N ___—27d“(13 +1) ( a)
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to find a reasonable approximate solution to the problem including the Coulomb

interaction between the electrons. The factor r5 is crucial in order to handle the

divergence in the Coulomb potential.

Under particle exchange the sign of the radial coordinate flips r —> —r, which

corresponds to (7“. O) —> (r. o + 7r) in cylindrical coordinates. This gives

eim(o+7r) _) ei'mrreimq') : 21:62me

which shows that for even values of m = 0, i2, i4, . . . the system is in a spin singlet

state, whereas for m = i1, :l:3, . . . the system has to be in a triplet state to establish

an overall antisymmetric wavefunction. Therefore, our ansatz allows us to investigate

singlet and triplet states. After performing the integrals, the expectation value for

the “relative energy” is found to be

 

[(7712 +3) 2_3____+1+\/27§1‘(6+1/2)
1 H 1,1,1 u,‘ .
(Ll rllr>= + ho 4aI‘(13+1) (6.16)

‘
C
o
H
I
Q

where F(z) is the Euler gamma function. To ensure convergence the variational

parameters 02,13 have to be greater than zero; thus, we immediately see that the

singlet state with m = 0 will always be the state with the lowest energy.

We identify the on—site interaction matrix element U with the difference in energy

caused by the Coulomb interaction

 

U:(7112+)3) 8+1 2/2221“ (,6+1/2)
a. - — 6.17

+ 110——40 11(3 +1) who 2 ( )

"
C
o
l

9
.

Of course, our results confirm that the strong Coulomb interaction in our system

results in a very strong on-site interaction U, as shown in Fig. (6.1). It is typically

in the range of meV. We plot U for CdTe and a saturation parameter value 6 = 0.1.

The qualitative behaviour is the same in GaAs, but the actual values for GaAs are
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Figure 6.1: On-site repulsion U for CdTe for a square lattice with saturation param— l

eter e = 0.1. Singlet states (771 = 0) and triplet states (m = 1) are shown in blue and

orange, respectively, for angles 6 = 15° (lower branch) and 0 = 30° (upper branch).

considerably smaller due to a higher dielectric constant e and smaller potential depths.

The intuitive picture that an increase in the lattice depth leads to higher barriers,

therefore compressing the two particles and yielding higher values for U, is confirmed.

In addition, we see that the singlet states lead to a smaller on-site interaction U than

the triplet states. Furthermore, the strength of the interaction crucially depends on

the angle 0 which essentially tunes the slope of the trap. A bigger angle 6 leads to a

steeper potential with stronger squeezed wavefunctions and, as a consequence, higher

values for the interaction parameter U.

Based on these results, we are led to conclude that the the potential depth is too

weak compared to the dominant on—site repulsive interaction U to favour more than

one trapped electron per lattice site.
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6.2 Filling factor

Dealing with ultracold atoms in optical lattices, one can usually restrict the analysis

of the interactions between the atoms to the on—site contribution U. In other words,

in the deep optical lattice regime the interaction between Wannier states localized

at R and R’ reduces to a local form U5R,R’ [40]. This regime, however, is different

from our systems, where the r—1 Coulomb behaviour accounts for strong long-range

interactions. Therefore, we will give a rough estimate for the interaction energies

between electrons that are located at different sites of the square lattice in the next

step. The estimate is given by the classical Coulomb energy

 V — (6.18)

corresponding to the repulsive Coulomb interaction between two pointlike electrons

with charge 6, separated by the distance (a. This approximation is allowed, if the

electrons are far enough apart to neglect effects owing to the overlap of the wavefunc-

tions. The parameter Q counts the separation between the two electrons in terms of

the lattice periodicity a. The case C = 1 for example corresponds to next neighbours

in the lattice. For the first six nearest neighbours in the two—dimensional square

lattice, we have

C =1, x/i, 2, x/E, x/é, 3 (6.19)

For laser light tuned close to the trion resonance, the result of this approximation

only depends on the angle 19, directly determining the lattice parameter a. Our results

for CdTe are shown in Fig. (6.2). The values for GaAs are slightly smaller because

of stronger screening effects in GaAs. The repulsive interactions between electrons

trapped at different sites are still very strong and possibly in the range of the depth

of the trapping potential. Only in the regime, where 6’ is chosen appreciably small,
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Figure 6.2: Coulomb interaction energies between electrons at different sites of the

square lattice for the first six neighbours in CdTe. The angle 6 ranges from 7r/36 E 5°

to 71/6 E 30°. Note that, according to Tab. (4.2), the potential depth V0 can reach

values ~ 1.6meV for blue detuning in CdTe, which is considerably larger than Vc.

resulting in larger lattice constans a, the neighbour interactions can become small

compared to the potential depth. For both GaAs and CdTe QW systems, the lattice

parameter a is N 1.5 pm for 6 2 5°. This lattice spacing is in the same range as the

regime in which optical lattices for atoms are usually operated in the laboratory [56].

Last, but not least we would like to address the following question: What is the

maximum electron density 111 to reach a commensurate filling of one electron per

lattice site? With 71.1 = l/a2 = 4/A2 we find that 71.1 is typically in the range of
II’

N 1096m’2. This is an electron gas in the low density regime.
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6 .3 Spin-selectivity

The strength of the optical potential crucially depends on the dipole moment between

the two electron “internal" states. we can exploit the selection rules for optical

transitions to present a remarkable feature of the optical potential we study, namely

its spin selectivity: it depends on the spin state of the electron. Configurations are

realizable where the two electron spin states are exposed to vastly different optical

potentials. This situation is schematized in Fig. (6.3), where, depending on the

spin state of the initial electron in the conduction band, two possibly different Rabi-

frequencies couple the electron to the trion state, where the two electrons form a

singlet state. A spin-down electron only couples to a" photons to form a trion singlet

state, whereas a spin-up electron is coupled to a trion singlet via 0"“ photons only.

Spin-flip Raman transitions are dipole forbidden: Consequently, the trion system at

zero magnetic field appears as a double two—level system [57]; a remarkable feature

that is not found in cold atom systems.

For instance, spin polarized electron lattices can be created in a standing wave

configuration made out of two counterpropagating laser beams with linear polariza-

tion vectors enclosing a variable angle 63 [58]. This configuration is usually called

lin-gb—lin configuration [59]. The result of this experimental setup is a standing

wave light field which can be decomposed into a superposition of a 0+- and a

a'-polarized standing wave laser field. In this way, two separate lattice potentials

V+ (33,65) 2 V0 cos2 ((22: + (9/2) and V. (512,66) 2 V0 cos? (Q3: — (25/2) have been real-

ized. By changing the polarization angle 66, one can control the relative separation

between these two potentials Ar = (ch/7r) Ax/‘Z. Both potentials can be shifted apart

by increasing (1), until they overlap again for 65 2 mr, n being an integer. This theoret—

ical scheme has already been applied to atoms: Based on such a configuration, atoms

have been moved coherently across several lattice sites [60, 61, 62]. If the trapped par-
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Figure 6.3: Spin selectivity of the optical potential: The trion system appears as

a double two-level system. Electron and hole spins are depicted in blue and red,

respectively.

ticle is in a superposition of two internal spin states, state selective optical potentials

can be used to split the wavefunction and transport the corresponding wavepackets

in two opposite directions, as schematized in Fig. (6.4).

This technique could be used to trap two sets of electrons: those in the spin-down

state light shifted by the a- light, and those in the spin-up state light shifted by the

0+ light. We refer to these as the i—species. The ability to dynamically control the

angle (1) allows us to separate and move the electrons of the :lz—species relative to each

other. In this way, two electrons of different species initially separated by Ar can be

made to overlap by rotating 6 by 60 = QwAr/AI.

In this way, a spin~dependent lattice offers the intriguing possibility to tune the

interactions between two electrons in different spin states by controlling the spatial

separation and possibly the overlap of the on—site. spatial wavefunction between zero

and its maximum value, just by shifting the spin-dependent lattices to each other.
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Figure 6.4: Cartoon for the effect of the spin-selective potentials Vi. They overlap for

d) = 0. As <15 is increased adiabatically, the two potentials are pulled in two opposite

directions. As a consequence, the two spin states of the electron move into opposite

directions, and the electron wavepacket is split apart into its two contributions.
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Chapter 7

Additional effects

In principle, our previous theoretical analysis has been based on three major corner—

stones: We have thoroughly covered the coupling of the electrons to the standing laser

light field and discovered the trion-assisted optical trapping potential. In addition, we

have discussed the interaction of the conduction electrons with the phonon bath and

we have determined the resulting effective temperature for the electrons. Then, we

have extended this single-particle discussion by studying the interparticle Coulomb

effects, which coined the picture of a possible electron lattice as a two dimensional reg-

ular array of microtraps. In this final chapter of our investigations, we will complete

our studies by considering a range of possible side-effects that we have not covered so

far. The notation ’side effects’ suggests that these effects will be negligible compared

to the three cornerstones identified above. To prove this statement will be the actual

task of the present chapter. We will highlight the ponderomotive potential, which

is an ubiquitous effect whenever an electron is placed in an intense electromagnetic

field. Lastly, we will pay tribute to a possible ionization of the conduction electrons

above the QW barrier and we will identify the range of electron densities in which an

observation of the trapping potential is feasible.
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7.1 Ponderomotive potential

\Vith ion traps, charged particles have been trapped in potential wells that are up

to several eV deep [63]. In contrast to the trion-mediated potential we propose in

this thesis, however, ion traps do not depend on the internal electronic state of the

trapped particle. One of the most prominent forms of these traps have been developed

by W. Paul [64], in which a spatially varying time-dependent field is used to confine

charged particles in space: typically the so—called Paul traps are operated in the radio—

frequency (rf) domain. Based on this technique, electrons have been successfully

trapped for the first time in 1973 [65].

In this section we study the underlying concept of the “ponderomotive potential”

generated by an electromagnetic standing wave. In principle, this is the interaction

energy that results from the placement of a charged particle in a rapidly oscillating

electric field. The well—known result of this problem states that the average kinetic

energy associated with the quivering forced on an electron by a radiation field acts

as an effective potential for the averaged motion of the electron [66]. In general, this

ponderomotive potential is time dependent. Therefore, the total kinetic energy is not

a constant of motion. As a consequence, the ponderomotive potential is, in general,

not conservative.

we introduce a time average defined by

where u (t) is any dynamic variable and T is the period of the wave.

In the following, we wish to analyze the average motion of an electron exposed to

an electromagnetic standing wave along the i—axis, polarized along the Q-axis with

wavevector Q = Qi‘ and angular frequency 62. Thus the electric field can be written
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in the form

E(r) 2 E09 cos(Q.r) cos(wt) (7.2)

For convenience, we choose a frame of reference in which near t = O the electron

is, on average, at rest at the origin. The easiest approach to gain insight into the

physics of this process is a classical description. With r (t) = (.7: (t) , y (t) ,z (t)) and

v (t) = (i: (t) , y (t) , 2': (t)) denoting the position vector and the velocity of the electron,

the classical equation of motion for the Q-direction reads

y (.12, t) 2 —8E:) cos(Q1¢)cos(wt) (7.3)

me

 

which is simply the Newtonian equation for an electron of mass m; subject to the

Lorentz force in the g—direction. Setting the integration constants to zero, the solution

is readily found to be

E

y(.r, t) = 6* 02 cos(Q;r.) cos(u.1t) (7.4)

mew

 

which shows, that the motion in the g—direction is a function of the sit—position of the

electron. The time—averaged kinetic energy Ek associated with this classical motion

is then given by

(Eklt = J <132>t + §§1<y2>t

<i‘2> + 6.2.533 (3082(Q1?)

t 4111:6222

~
7

\
J

N

0
*

 

m
-
x
-

The average total kinetic energy splits into two parts. The last term acts as an

effective potential for the average motion of the electron; it is the ponderomotive

potential Up(:z:) defined by

 cos2(Q:r) = US cos2(Q.r) (7.5)

161

 

 



Forces arising from this interaction may be directly calculated as a spatial derivative

of ( 7.5). The ponderomotive force simply turns out to be the time-averaged Lorentz

force. Its effect is clearly to push the electron away from regions of high laser intensity,

and it is completely independent of the light polarization.

In this model, the total energy of the electron is the oscillatory energy Up (2:) plus

the directed kinetic energy, the average energy of translation. Once a free electron

travels from a. region of low intensity to a region of higher intensity, its original

translational kinetic energy is converted into oscillatory energy. Thus, the highest

intensity region which an electron can enter is one where the oscillatory energy equals

the initial kinetic energy outside the beam [67].

Using the relation between the intensity of the laser I and the amplitude of the

electric field E0

1

1 = E222:20E3 (7.6)

where 11. gives the refractive index of the material, the potential depth U3 of the

ponderomotive potential can be expressed in terms of the laser intensity I as

r0 = ——e—2—I— (7.7)
p 2771.: 710601112

The ponderomotive potential is proportional to the intensity of the laser, but, at the

same time, indirectly proportional to the squared frequency 7.212 of the field. There-

fore, we can clearly see that the associated Paul traps can possibly represent a strong

confinement mechanism for rf frequencies. Using typical values for our system, how-

ever, with frequencies in the optical domain, the ponderomotive potential is strongly

suppressed: it is of the order of ~ 116V at maximum for rather large laser intensities

of I % 107W/c7112. Despite the small effective masses of the electrons in the semicon-

ductor QW, it is still a negligible effect compared to the strength of the trion-based

optical potential; indeed, it is at least three orders of magnitude smaller than the
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trion—mediated optical potential which can enter the meV range for blue detuning for

relatively small intensities of I ~ 10311707112.

7.2 Electron ionization

Up to now, we have analyzed the interaction of the laser photons with the semi-

conductor QW’ only in terms of photoexcitations of excitons or, if possible, bound

trions. This section will be devoted to the possibility of exciting the conduction band

electrons above the barrier of the QW system, which we shall call electron ionization.

Of course, the occurrence of this effect is objectable to our goal of trapping electrons

that are confined inside the QW.

The ionization process essentially depends on the band structure of the QVV system

at hand: The incoming photons are tuned close to the trion resonance, a few meV

below the conduction band. Since the trion and exciton binding energies are much

smaller than the bandgap cc the photon energies ha) are approximately fiw z 6c- Both

GaAs and CdTe belong to the class of direct semiconductors and their bandgap cc

is shown in Fig. (7.1) between the symmetry points F8 and F5. In principle we also

have to consider ionization processes into the barrier material as Al22Ga.1__2,As, but

the changes in the bandstructure are negligibly small on the energy scales for this

specific process.

The ionization process goes along the following mechanism: In principle, a con-

duction electron initially close to the F6 point in the conduction band may be excited

for example to the F7 point in a higher conduction band. Since photon wavevectors

are very small, this process appears as a vertical line in the bandstructure diagram;

in (7.1) we can see with the naked eye that the gap Eg that needs to be overcome

is much bigger than the bandgap (C, the photons of the laser are close to in energy.

Since we work in the low electron density regime, only this ionization process of con-
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Figure 7.1: Bandstructures of GaAs and CdTe, taken from [29].  
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duction electrons needs to be considered. Therefore, as far as the QVV systems we

have specialized on are concerned, electron ionization can safely be neglected.

For completeness and to keep the discussion as general as possible, though, we

underline this reasoning with a calculation based on Fermi’s Golden rule, assuming

a QW system where the gap Eg for the ionization is comparable to the bandgap cc.

The initial state Ii) 2 |k, Q) of the process we are about to consider is characterized

by a photon of energy hw and momentum Q = (Q, Q2) and a initial excess electron

confined in the QVV of width L2 in the growth direction 2. In If-space, the initial elec-

tron is assumed to be in the lowest conduction band close to the F6 point. Assuming

a plane wave inside the QVV, we write the wavefunction of the initial electron \IJ, (1")

as

__ exp (ikr)

m

with qt (2.) being the electron’s wavefunction along the i-direction and uc (k, r) being

‘112 (‘7‘) Q5 (3) no (k, r) (73)

the periodic Bloch function in the conduction band. Modelling the confinement as a

infinite square well problem in the ground state, (I) (2) is given by

2(2) = gen. (i.:). (7.9)

Consequently, the energy of the initial state E2; is

— EC, (7.10) 

where the electron energy consists of two contributions: the kinetic energy of a two—

dimensional plane wave and the confinement energy E; due to quantized é—direction.

For an infinite square well EC amounts to

EC: fig (”)2. (7.11)  



The final state | f) = [1712> consists of an ionized electron which, as a consequence

of the photon absorption. is supposed to have left the quantum well. Essentially, it

is a free electron which is not subject to the two—dimensional confinement anymore.

Consequently, its wavefunction \I'f (F) is modelled as a three-dimensional plane wave

exp (2316f?)

117(6) = W 22.271222) , (7.12)

where V is the quantization volume and ac) (1712,17) is the Bloch function in the higher

conduction band which we label as c’. The energy of the final state is

 

122k} 122122

E = E ——: 7.13

f g + 2711:: + 2171; ( )

where we have separated the z-component explicitly. We calculate the electron’s

ionization rate F2022 based on Fermi’s Golden rule. The corresponding interaction

term Hint is the light-matter coupling for this specific ionization process; we write it

in the general form

Hm, = 9cZ CL,k+QCC‘kaQ + h..c. (7.14)

k

The light—matter coupling constant for this process is called 92. A photon of in—

plane momentum Q is annihilated, while an electron of in—plane wavevector k in the

conduction band c is promoted to the upper conduction band c’. The strength of the

interaction 92 is essentially governed by the overlap between the two wavefunctions

of the initial and final state which describe electrons in different bands one being

confined in the QW and the other one being free to move in all three directions.

Neglecting a mismatch in the Bloch part of the wavefunctions the coupling constant

166



gc for this transition is

~ exp —il::fF eikr‘ ~ (A:

96 : 9c/d3r (\/F ) fld) (z) = QC V0 (kfz) 6kf,k+Q? (7.15)
 

where _EJC governs the bare dipolemornent for this transition, (,I') (kf‘z) represents the

Fourier transform of (D (s) and the photon momentum was neglected. For the ioniza—

tion rate Til-0,, we obtain

P . = 891.2 1 1+cos (7r‘/Ac//E(_¢)6

mm (1 —AC//EC)2
 (Ad), (7.16)

where AC] 2 fw — (Eg + EC) is the detuning of the photon from the energy that

has to be overcome: The bandgap energy Eg plus the confinement energy EC. This

result confirms our original expectations: Due to the big energy mismatch for this

transition, the ionization rate is zero for the QW systems GaAs and CdTe.

In principle, the conduction electrons could be ionized by a phonon-assisted pro-

cess, i.e. a combination of photon plus phonon excitation, as well. Since, this is a

second—order process, it is less likely to occur than the first-order photon excitation

and can therefore be neglected. In conclusion, we find that the conduction electrons

can be assumed to be perfectly confined inside the QW, since ionization processes do

not play a great role in our setup.

7.3 Restrictions on the electron density

The density of the excess carriers inside the QW can be easily controlled via modu-

lation doping and, in the course of our studies, we have only touched on the electron

density twice: We have determined the density for a commensurate filling of one

2
electron per site nl to be ~ 109cm’" . We have also mentioned before that exci-
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tonic effects are quenched for sufficiently high carrier densities. We will specify this

restriction first: We have presented the trion-mediated potential in the framework

of a single-particle effect. For this regime to be valid, we need to require that the

maximum number of trions that fit into the sample without spatial overlap, given

by Nt’m” = A/(7rag), is much smaller than the number of conduction electrons in

the sample NC = neA; here, 716 denotes the electron density. In a sense, we restrict

our considerations to the regime where the trion state can be assigned to one single

electron only. Consequently, our results are valid in the regime

1

726 << —-—2 (7.17)

flat

Based on a typical trion size of approximately at N 2 — 3aD, the requirement boils

down to me << 8 x 1010c-m—2. Since this density is higher than the one-electron—per-

site density m, the condition, stated in Eqn. (7.17), is a very weak restriction on the

electron density n8.

Let us mention another restriction on the electron density 726 we have to be aware

of: Electrons obey the Fermi—Dirac distribution and therefore acquire energy up to

the Fermi energy simply by phase-space filling. I In a two—dimensional system, the

Fermi energy 61? is related linearly to the electron density: 6F = (th/mz) Ane. For

an electron density of ne 2 10100m‘2, the Fermi energy amounts to 0.25meV and ‘

0.36 meV for CdTe and GaAs respectively. This energy range is comparable to

the the depth of the optical potential for the electrons. If the electron density 716

2
is modulated to be in the lower lOgcm‘ regime, however, the Fermi energy 6F is

appreciably smaller than the depth of the trapping potential.
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Conclusion

We have merged concepts from semiconductor physics and cold-atom physics to prove

the existence of a novel laser—induced optical dipole potential for electrons in a semi-

conductor QW. This potential, generated by driving the trion-resonance with intense,

detuned laser light is proportional to the light intensity. To properly describe the trion

resonance, a bound state between an exciton and a charge carrier, we have obtained a

Hylleraas-type wavefunction using Ritz’s variational technique. We have investigated

the optical potential following two approaches: In Chapter 2.2 we modeled the QVV

sample as a collection of two-level systems. The trion modifies the exciton resonance

frequency in the vicinity of a carrier. Accordingly, the Stark energy is modified in

proportion to the light intensity at the carrier location, which serves as a source of

mechanical potential energy for the carrier. Chapter 3 was devoted to the deriva-

tion of an effective Hamiltonian and the corresponding Schrodinger equation for an

electron that is coupled to virtually excited trion and exciton continuum states.

We have found that this trion-mediated potential exhibits several remarkable fea-

tures. In particular, it displays a non-local character that is a consequence of the light

effective masses of the electrons m: and of the “quivering” of the electron motion once

it has virtually mixed with the extended diffusive trion state. This non-local effect

takes place on a lengthscale of the order of the “trion size”, which is approximately

~ 30mm. Since this lengthscale is small compared to the periodicity of the potential,

we have been able to show that the non—locality can be neglected in the analysis of
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the electron trapping at the nodes or anti-nodes of the intensity pattern.

The diffusive character of the excited trion level accounts for an effective enhance-

ment factor x for the potential depth of almost two orders of magnitude with respect

to typical excitonic Stark effects; the quantity x has been intuitively explained as an

integral over all possible bound trion configurations having one electron and one hole

“on top of each other”. Simply put, X can be seen as the number of excitons that fit

into the trion size without spatial overlap.

The most striking and distinguishing property of this potential relative to its

atomic brother, though, stems from the strong effective background polarizability

of the semiconductor medium, an effect not present for conventional atomic optical

potentials. The coherent exciton resonance gives rise to a very important correction

factor fc (At) to the pure trion contribution: for red detuning, this correction is

smaller than one and thus leads to a decrease in the potential depth. However, for

blue detuning, it can give a strong enhancement to the potential depth.

We have shown that this novel type of potential can be deep compared to the

single photon recoil energy ER and to the effective temperature of the electrons.

The latter strongly benefits from an omnipresent natural cooling mechanism in the

semiconductor environment, the phonon bath. A regime where the potential depth

exceeds both the recoil energy and the effective thermal energy of the carriers by a

factor of 10 seems feasible, according to our calculations.

In addition, we have extended our model to the idea of a spin-selective electron

lattice which is much simpler to engineer and control than similar lattices in AMO

systems. There is a direct mapping of the spin of a localized electron and the optical

polarization of the photon that can couple the electron to the trion state. Owing

to this level scheme, two different potentials for the two spin configurations can be

created.

In summary, we have applied concepts from the AMO community to generate new
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ideas for semiconductor systems. Owing to the specific properties of these systems

like the background polarizability, the light particle masses, the strong inter-particle

interactions, and the electron-phonon cooling, semiconductor Optical potentials are

very different from the conventional optical potentials in AMO systems.

From a fundamental point of view our results can open up a new paradigm in solid

state physics: a gas of charged particles in a periodic potential that is possibly strong

enough to trap the carriers at a single site, but weak compared to the inter-particle

interactions. This system deserves further investigations, since this fermionic many-

particle quantum state on a regular lattice possibly bridges the gap between current

ultracold atom systems and fundamental concepts in condensed matter physics. A

unique dynamic control over not only all the relevant parameters of the optical lattice

allows for experiments not feasible in conventional solid state systems. A wide range

of properties can be adjusted through the laser beam geometry, the polarization, the

intensity and the frequency of the light. Contributions to a fundamental understand-

ing of the quantum behaviour of a many electron system in a solid might be expected

from these systems. In contrast to ultracold atoms in an optical lattice, strong long

range interactions occur, as in a true solid. The system we propose might even touch

on highly complex questions as high-Tc superconductivity or Mott-insulating phases,

since strongly interacting fermionic atoms in optical lattices have previously been sug-

gested for investigations on these ongoing problems [68, 69]. To quote Richard Feyn-

man in 1965: “I think it is safe to say that nobody understands quantum mechanics.”

Undoubtedly, experiments where the motion of electrons is optically manipulated in

real time would continue to push the bizarre features of quantum mechanics to the

forefront, realizing the thought experiments once envisaged by the founding fathers

of quantum theory.

Today, about 45 years later, with the new language of quantum information emerg-

ing we might hope to deepen our understanding of the principles of quantum physics.
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But to get there, we need to master one of the great modern scientific challenges: the

development of tools to prepare, manipulate and measure the quantum mechanical

state of a system. Experimental and theoretical progress has been made based on

many different platforms. Examples in which quantum control is sought or has been

accomplished include quantum optical systems, such as those utilizing trapped ions

[70, 77] or neutral atoms [60, 78, 79], cavity quantum electrodynamics [80, 81, 82] and

nuclear magnetic resonance [83, 84], as well as solid state systems, based on nuclear

spins [85, 86], quantum dots [87] and Josephson junctions [88]. All this work con-

stitutes important steps towards the realization of a “quantum computer”, in which

algorithms are implemented as unitary transformations on a many—body quantum

state. To come back to Feynman, our model, in essence, might lead one day to the

implementation of the pioneering idea due to Feynman of simulating one quantum

system with another [89]. Owing to the long spin decoherence times [90] and the

potential for scalability of a semiconductor based system, electron spins in semicon-

ductors have been identified as one of the most promising candidates for quantum

information science. Cutting-edge technologies for solid state quantum electronics

might be merged with those from quantum optics by using light to localize, manipu-

late and probe the entanglement of electron spins in semiconductors.

Our findings are based on a very general technique so that a wide range of vari—

ous systems with different applications could be investigated. Obviously, our scheme

can be extended for further research including one dimensional systems (quantum

wires) with an increased trion binding energy and/or holes as the excess carriers

with larger effective masses. More strikingly, though, we can envisage for example

a comparable semiconductor based system where the trapped particles interact via

shorter-ranged dipole-dipole interactions, instead of the strong long-ranged Coulom-

bic coupling present in the current system. How could we achieve this? Indirect

excitons are formed from electrons and holes, that are confined to two different par-
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allel QW layers by a potential barrier; they behave as dipoles perpendicular to the

plane [93, 94]. The repulsive character of the their interaction has been evidenced

in experiments as a positive and monotonic line shift with increasing density [95].

Because of the spatial separation between the electron and hole layers in this coupled

QW structure, the intrinsic radiative lifetimes of optically active indirect excitons ex-

ceeds that of their direct counterparts by orders of magnitude and can be in the range

of several microseconds [94]. The system which we propose as a strikingly promising

candidate for interesting future research projects is schematized in Fig. (7.2).

 

   
Figure 7.2: Scheme for a bilayer semiconductor QW system where electrons and

holes are trapped, but short range dipole—dipole interactions are realized. Electrons

are depicted as blue dots, holes as greens dots. Indirect excitons X are composed of

electrons and holes from different QW layers.

We start out from an indirect exciton present in the coupled QVV system. By

coupling the electron or the hole in one of the layers to the trion resonance via a laser

standing wave as proposed in this thesis the carrier’s position can be controlled; at

the same time, its excitonic partner in the other layer will follow due to the strong

exciton binding energy. Since the exciton complex is overall neutral, this system

has the potential to localize and control carriers which are effectively subject to a

short—ranged dipole-dipole interaction because of their excitonic oppositely charged
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companion in the second layer. Based on the spin-selectivity of the trion—mediated

potential for the qubit carriers. two carriers well separated from each other first can

be addressed and subsequently a differential energy shift can be induced due to their

dipole-dipole interaction, conditional on the state of the two qubits. Eventually, this

could implement a two—qubit phase gate, required, for universal quantum computation.

In conclusion, optical trapping and cooling techniques have had a profound impact

on the fields of quantum many-body physics and information processing [91, 92]: the

flexibility they naturally impart could have a similar impact on solid state physics,

vastly beyond the scope of this thesis.
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Appendix A

Material parameters

 

Quantity [Units] GaAs [ CdTe [
 

 

Fundamental gap (2 K)

Electron effective mass

Heavy hole effective mass

Effective mass ratio

3D donor Bohr radius

Hartree

dielectric constant

Kane optical matrix element

Dipole moment  

6c

*

771.e

*

772 h.

 

eV

m0

”lo

nm

meV

6V

6A  

1.5192

0.0665

0.34

0.2

9.95

11.58

12.74

23

6.2  

1.6063

0.096

0.19

0.5

5.4

27.6

9.7

21

r

5.6  

[29]

[22]

[22}

[22]

[22]

[22]

[29]

[29]

 



Appendix B

Excitons in quantum wells

In this Appendix we give a quantum—mechanical description of excitons that are

confined in QW systems. For simplicity, weconsider the pure two-dimensional limit,

corresponding to a QW with a very thin QW width. Introducing the scaled radius

0 = <73 (Bl)

we can express the Wannier equation, Eqn. (1.6), as

 

 

 

A 2prr .
_V2 _ _ = B.2[ p p] W) W W) < >

211.5562 2
= = _— B.3

ch26 cao’ ( )

where do is given by

ch?

a0 = 2. (13.4)

lire

In analogy to the hydrogen—problem, the energy Er is negative for bound states and

positive for the ionization continuum. We define



Here, E0 serves as the energy unit

7,2 2 2 .

2/‘1‘0‘0 2mg QE‘h“

 

A 1

[ p p]¢%p) 4éhfi, ( )

where we introduced A as

2

6 11.1-

: _ _ , B.

he 2E7- ( 8)

With our choice of <2, the parameter A will be real for bound states and imaginary

for the ionized continuum. We are interested in a solution for two-dimensional semi—

conductors. For this purpose, it is convenient to write the Laplace operator in polar

coordinates

2 1 (9 0 5?

=__n__,g 39 

where £3 is the operator for the 2 component of the total angular momentum

2 82

It obeys the eigenvalue equation

Cz—l—eimf‘ = m——1—e'lm*7 m = 0 21:1 :l:2 (B 11)
m 271' 1 ‘ a a 7 ' ' ' ‘

The ansatz

_ 1 ,.

<4” (,0) 2 fm (P) 7:61,)”, (8.12)

I
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yields the following equation for the radial part of the wave function

169 a A 1 772.2 ,

[ +——f“? fm(p)=0' (B'13)

In order to solve this differential equation, we will first examine the asymptotic be-

haviour of the radial wavefunctions for large radii. In the limit p —-> 00, the leading

order equation reads

[ d2 1

Z132- - 1]]voofplz 0- (314)

Therefore, the convergent solution takes on the form

12.. (p) = e‘P/Q. (13.15)

In the next step we investigate the asymptotic form of the wavefunctions for small

p. Thus we express f (p) as f (p) 2: f0 (,0) foo (p) and see that f0 (p) should vary as

plm]. Factorizing the asymptotic solutions, we make the ansatz for the total radial

wave function

fm. (p) = plm’le—p/2R (p). (B16)

Inserting this ansatz into Eqn. (B13) leads to

8212 BR 1
pW+(2|771]+1—p)—0—,0-+ (A— |m| —§) RZO. (Bl?)

To shorten the notation we introduce the quantities

l

p=2|m|, q=A— [772.] —5. (B18)
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We can obtain the solution to Eqn. (B.17) by a power series expansion

R (p) = 2 ap“. (13.19)

V20

By inserting this expansion into Eqn. (B17) and comparing the coefficients of the

different powers of p we get a recursive relation for the coefficients

V—q

(u+1)(u+p+1)°

 
[Bl/+1 = {331/ (8.20)

Of course, only a result that can be normalized has a physical meaning. Therefore,

the series must terminate for some value 1/ = Vma-x, so that all coefficients above this

value vanish, i.e. fiyzllm a1: = 0. The condition um“;- — q 2: 0 gives

1 1

117710.17 + [7n] + a = A E n + 5, (13.21)

where the main quantum number n can assume the values 77. = 0, 1, 2, . . . , respectively,

for [m] = um“, = 0, [m] = 1 and 12mm 2 0 or [m] = 0 and umax = 1, etc. As a matter

of fact, we have derived the bound state energies: Combining Eqs. (B8) and (B21)

yields the two-dimensional exciton bound state energies, as given in Eqn. (1.9).

The solution to the differential Eqn. (B.17) with integer numbers p and q can

be expressed in terms of the associate Laguerre polynominals L3 (,0). Using these

orthogonal Laguerre polynominals, the properly normalized two dimensional exciton

wave functions can be written in general as

 

1 (n — |m|)! . _ 2' , .

3 ' 3plmle p/2L-n.]-i-r]i’n[ (’0) 8mm, (B22)

flag (n + 312—) [(72 + [771”]

 
9571.771 (1') =

where p = 2r/ [(n +1/2)a0].
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Appendix C

Derivation of the volume element

for Hylleraas coordinates

In this appendix we will give a detailed derivation of the volume element in Hylleraas

coordinates for a two dimensional problem. At the expense of mathematical elegance,

but for reasons of intuitivity we choose a multi-step derivation. The ultimate goal is

to find the volume element when one makes a variable transformation from Cartesian

coordinates {r1,r2,r},} to a set of coordinates {R,Q, s,t,u}, where R is the center

of mass of the three-body system, 9 marks the overall angle degree of freedom that

doesn’t affect the mutual distance between the particles and s, t, u are the Hylleraas

coordinates. They are related to the three mutual in-plane distances between the

particles 71h: rgh, r12 as

8=”‘1h+7‘2ha i=7‘1li—7‘2h» 'U-=7"12- (Cl)

Our starting point for this derivation is depicted in Fig. C.1.

In the first step we express the positions of the three particles in terms of the

coordinates {R, 6’, p, 1, a5}, where p is the distance between the hole and the center of

180



:1:

r > 

Figure C.1: Possible set of coordinates to describe a three body problem in two

dimensions. The factor 11. is given by ,u 2 7722/2772;
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mass of the three body system, 1 is the distance between one electron and the center

of mass of the two electron system and Q5 is the angle around the center of mass of

the two electrons, measured with respect to the line connecting the center of mass of

the two electron and the holes position. We can express the Cartesian coordinates

in terms of this set of coordinates. The holes position is given by

.r}, = X+pcos(6)

y}, = Y + p sin (6),

while the positions of the two electrons are

771*

1:1 = X -— h pcos(6) +lcos((,b — 6)

2772.;

 

772;;

 y1 = Y — psin (6) — lsin (gb — 6)
. *

27716

a:

mh

 2mzpcos (6) — [cos (qb — 6)

y2 = Y—2:];psin(6)+lsin(¢—6).

8

 

The Jacobian for this variable transformation

d2r1d2r2 (1%,, s |M (R, 9, p, 1, an (1211719 dp all da

is found to be

|M(R.6,p.z.¢)l =

  9112. 0119
ex z o
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772*

The next step is rather trivial: We introduce the coordinate q = (I + 277%) p, so

’8

that we obtain

d2r1 71‘ng d217, —+ 4ql dQRdB dq (11 da. ((3.10)

Now, that we have already separated the center of mass R and the overall angle 6, we

are left with expressing the coordinates {(1, 1,09} in terms of the Hylleraas coordinates

{3, t, 11}. Before achieving this ultimate goal, we take one more intermediate step by

writing {q, 1.09} in terms of the interparticle distances {r1 h, T217: u} Using the law of

cosines, we find the following relations

 

 

u = 21 (CH)

7‘1}, 2 12 + q2 — 2lq cos (c5) (C.12)

7'2}, 2 \/l2 + q‘2 + 2lq cos ((p), (C.13)

where the identity cos (7r — (:5) = — cos ((9) was used in the last line. Inverting these

equations to solve for l, q and c6 gives

 

 

l = u/2 (CM)

1 r) r) U2

q = \/§(7‘ih+7“§hl ‘1— (015)

7.2 —’f‘2

(b = arccos 2" 1h . (C.16) 

u\/2 (Tfh + r22h.) — ””2

Making use of the relations 7%,, + 7:3}, = % (s2 + t2) and T31: — rfi = —st, the coordi—

nates {q, l, 0} can be expressed in terms of the Hylleraas coordinates {3, t, u} solely
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z = u/2 ((3.17)

 
1 . . .

q = -2-\/32 + t2 — u2 (C.18)

c5 = arccos (— 8t ). (C.19)

176.9? + t2 — u?-

 
 

VVe are now in a position to take the final step of this derivation

d2r1d2r2 d2rh —> 4.] (s, t, u) q (s, t, u) l (s, t, u) d2R d6 d3 dt du. (C20)

The .lacobian for this transformation is

 
 

 

  

 
 

01 (91 01

6.?- 5? M 9 t2

, . _ , a a 07 _ 3" — ,
4J(.s,t, u) — 4 27% (7% Di — 2 2 , (C.21)

., .(2+t2_.2) 1_ 8t

(9a 06) 0e u S u 2 2 2 2
m ‘0?- m u (S +t —u )

so that we can readily deduce

'u (.s2 — t2)

4J (s. t, 'u) q (..s t, u.) l (s, t,u) = — (C22)

1

4 \/(s2 -112) (112 — t2)

If the integrand is symmetric in t, as in our case, we can restrict ourselves to positive

values of If only, multiplying the volume element by a factor of two. Finally, we state

the result

d2r1 d2r2 (1%,, ——> (1211710 ds dt du. (C23) 
 

u. (s2 — t2)

2\/(s2 — 22.2) .72 _ 7‘2)

with the limits of integration for the Hylleraas coordinates

320,03ugs,03t3u (0%)
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Our result for the volume element d7 agrees with the one given in [22], where the

specific case of an integrand independent of 6 was assumed. In this case, the integra-

tion over 6 can be performed right away yielding a factor of 27r. We can confirm their

result

(13 dt du. (C25) 

 

 

 



Appendix D

Results of variational calculus

In this appendix we give a detailed presentation of our results for the variational

calculation of the trion binding energy. Based on the trial wave function, given by

Eqn. (1.26), the expectation value for the ’relative’ Hamiltonian (HT (0,117)) has

been solved analytically. We have found that it obeys the following analytic expression

(HT) = [a [9(5571 — 2048))? + 1024.075 (1 + a) +

+1024 ((2 — 371) ,6 + 2,32 (1 + 0) + 27 (1 + 0)) +

+128an ((16 — 4.577) ,3 + 681.» (1 + 0))

+473 (862 (1571 — 256) + 47 (2171 — 512) + 377,373.: (127 +12oa)) +

64a4 (371 (2 + 36 + 4.30) — 64)] } /

(6402 (1602 + isms + 4862) + 4m) (512a + 405716) + 460872) ,

where the effective mass ratio 0 enters as an external parameter. In a subsequent step

we have minimized this function with respect to the variables a, ,3, c). The results

are presented in Fig. (D.1).

l\onreover, let us mention a trick commonly referred to in the literature in the

context of this type of trial wavefunction to simplify the minimization process [25, 28].

1. 86
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Figure D.1: Numerical results for variational parameters a, ,6, 7 in atomic units.

Omitting the normalization for the moment, one can rescale all the arguments in the

general form of (,2), (3, Lu) as

I f

8‘03 (1+ flu + ";’t2) —> 6‘3 fl (1+ 012/2 + C262) 2 95b (3’, t’, u’) (D.1)

with the scaling factor k = 2a. The parameters C1 and C2 are linked to the param-

eters a, 13 and 7' by the relations

(3 l3 ’7' .

C1 2a k 3 C2 402 k2 ( )

i.e. they absorb the scaling factor k. This scaling factor is often referred to as

“effective charge”. If one substitutes ,5), (s, t, 11.) into the original expectation value

187



(HT), one obtains the (ompa(t form

1211 — kL
ET 2—

with the abbreviations

2—t2 ,

L 2/0DC(is/S (111/0112dt (8 ) [24¢ 2—l]s«5§ (D4)

0 :—u2) (u2—t2) s —t u

(s:2—t:)2 62 82

M = «'3 —— — —[000 ds/S du/Ou dt 2\/a(:2u_ t2) vb] (982 (91,2

 
 

 

 

  

2 1

___—328_ t2 (805— tat) — —a: "‘ £011

28(112 — t2) ,2 2t (32 — U2) 2 ~ r

— 11(32 — t2) 3” — 'u (.92 —11:2) m b (Dd)

 

 N = [000 d9 / du /u2dt ,5; (D6)

0 —(.112) (U2 — t2)

The expressions L, M and N are quadratic in the coefficients Cl and Cg only. Due to

Eqn. (D.3), ET also depends on k. The essential idea is to minimize ET with respect

to k in the first place, which is immediately satisfied by

L
k =

2M’

 (13.7)

which yields the minimum ET to solely depend on the parameters C1 and C2 as

L2

E = — . D-

41111V ( 8)

 

Our results for the scaled variational parameters C1 and C2 are shown in Fig. (D.2).

They are in perfect agreement with previous theoretical investigations [28].

The optimized variational parameters for the specific QVV systems GaAs and

188



 

 

   

 

 

  

0.13~~~—~——- * -..,_.__-... . , j

016* —— C1 1

0.14;
— C2

6 0.12[
,

2.3" 0.10]
,

l

0.03] f

t

0.06: ,
[/

l
.

0.0“" 7*" 0‘2"“ ““7 0.4“" "”06 "““"““‘0.3“"‘“‘” "10

0' = m; /m’,",

Figure D.2: Numerical results for variational parameters Cl and Cg in atomic units.

CdTe are summarized in Tab (D.1).

 

Variational parameters ] GaAs [CdTe
 

 

a 1.293 1.008

(3 0.396 0.260

7 0.347 0.233

C, 0.153 0.129

C2 0.052 0.057  
 

Table D1: Variational parameters for GaAs and CdTe in atomic units.
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Appendix E

Exchange effects

In this section we will highlight the exchange effects that arise from a proper sym-

metrization of the wavefunctions describing the bound and unbound trion states. In

the first part, we will show that exchange can be neglected when computing the

transition matrix element from a free electron to a the unbound exciton continuum,

whenever the sample size A is macroscopic. In the second part, we give a detailed

derivation for the overlap between the bound and unbound trion states, which is a

key ingredient for the orthonormalization procedure. In the course of the derivation,

we present in detail the approximations we made to neglect the exchange effects.

E.1 Exchange effects in the coupling to unbound

trions

The properly symmetrized version of the continuum wavefunction for an exciton with

momentum km and a free electron with momentum k is given by

 \Pc (r1. r2. r1.) = \/2A [elki<‘*er1+0IzI‘/zle‘kr261,, (r1 — rh)

ie-ikr(aer2+ohrh)eikr10518 (r2 _ rh) (El)
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where 076/), = mah/my are the mass ratios of the effective mass of the electron

/ hole to the exciton mass. The upper sign renders an even orbital wavefunction,

corresponding to a spin singlet state, while the lower sign represents an odd orbital

wavefunction and is therefore only valid in combination with a spin triplet state. Note

that, in contrast to the standard textbook examples, this symmetrized ansatz is not

built upon a set of separable orthonormal basis wavefunctions. This circumstance

leads to the occurrence of the normalization constant 00, which we will discuss below.

Proceeding from our ansatz, the wavefunction at the moment of photocreation is

 

ikm (aer’+ohr) lkl‘ I

is e @913 (r — r) (E2)

‘31 . - I - .- I.
= [ezkl‘rezkr 0513 (0) It e‘l(Qhkx+k)l‘elaek1§r $13 (r, _ r):kE3)

flx‘q

Inserting this expression into Eqn. (1.46) gives the transition amplitude

00m . -

(kEI Hlnt lkLE') k>c : 7% {Q18 (0) fiékeak [OkISQ + 6kx’_Q]

:l: Ali/2 [dzr (121‘, e‘1'(9hk.r+k)re—'i0’ek.rl‘l¢’fs
(r’ — r)

xeikel‘, [eiQr + e—z‘Qr] } (E4)

The first. line gives the direct term with the exciton wavefunction taken at zero. Note

that it scales extensively with the sample size. To calculate the second line, we

introduce the variable transformation

r’—»p=r—r’ (E5)
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which leads to

14:72 /(121,dgpe—i(0hk1+k)rei(ke-Oekr)(r—p)¢:{s (,0) [(3,er + e—iQI‘] (E6)

so that the two integrals can be separated

 

1 .-43/" /d2r 6,2(ke—kx—kiQ)r/d2pez(aekI-ke)p@={8 (p) (E7)

The first one simply imposes conservation of total momentum

1 - .- _ ) ,*

'—~"‘lkeiQ.k1~.+k d2P€l(aekI k‘)p@1.s(10) (38)
/11/2

Then, we are left with evaluating the Fourier transform of the relative ls wavefunction.

W’ith q = aekr — k5, we obtain

_ oo 27r .- _

[d2pe-qu,=;3(p) = [0 dm’i‘M/fl dices/”08W (5.9)

CO

= 27 f0 dppeis 0) J0 (qp) 02.10)

where J0 (qp) is the Bessel function of the first kind. Inserting the normalized 13

 

 

wavefunction

2

a: (p) = e—p/aw 052.11)
9 7703,

leads to

2 .' 0._

/d pelqu‘éi‘s (p) =2v27l' ;9 3/2 (1:71.12)

[1 + a,£q-]
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Therefore, the contribution to the continuum transition amplitude that comes from

the exchange term is in total

a” W? (13.13)
QomdkeiQakI‘l‘kf ,2 3/2

[1+ (13: Iaekx — kel ]

 

Clearly, it vanishes for a macroscopic sample, where L = V71- >> asp. The importance

of exchange is therefore limited to a small, finite range. At the same time, we have

seen that the contribution from the direct term in Eqn. (E4) scales extensively as

L/(11. Consequently, the direct term outnumbers the exchange term by a factor of

~ A/ag.

Let us address the proper normalization of 91 of our ansatz in Eqn. (13.1). For

convenience, we change variables according to

{r17r23 I'h} -) {r,p,rh} (E'14)

r = r1 — rh (13.15)

p = r2 — rh (£3.16)

Note that under exchange of the two indistinguishable electrons the coordinates r

and p flip: r <—> p. Expressed in terms of these new coordinates, the square of

We (r1, r2, rh) becomes

|‘1’c~(r,iCLI‘ii,)l2 = 5; {I013W + lots (ml2

ace-“aek-r-kefiqo’i‘s (r) eieekx-kws m} (12.17)

We examine the normalization condition by integrating over {r,p,rh}. The first

. . . 9 . . .

two terms 1ns1de the bracket give A“, Since they are normalized With respect to one
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coordinate r and p respectively. In the last two terms, we can switch the dummy

integration variables r and p to combine these two terms. Therefore, we obtain

- l ,- . .-

fd‘zrhdi’rdeIiI/c(mail? = 912{1iZ/d2re"“‘"¢1s(r)/d2pe"qp¢’{s(p)}

2

} (m

where we again used the foe convenience q = aekx — ke. We recognize an additional

 

= m2 {I i ;i 'fdgre'iqrols (7‘)

term which is basically the Fourier transform of the 1.3 wavefunction. Performing the

integral, we find

 

2

/ d21‘hd2rd2i0l‘1’c(r,p,rh)|2 =91? 1i ”0‘" 8 3 (12.19)
A (1 +a§q§.)

so that the result for ‘31 reads

 

7mg: 8

01:1/ 1i

A (1+a§q§)3

(13.20) 

The exchange contribution is of the order 0 (ag/A) and thus usually very small and

can easily be neglected in the large sample limit:

In conclusion of this section, we have shown that for the transition amplitude of a

single electron to the excitonic continuum exchange effects can be easily neglected in

the limit of a macroscopic sample.
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E.2 Exchange effects in the overlap

In this section, we are going to present a detailed calculation of the overlap between

the symmetrized continuum, consisting of a bound ls exciton and a free electron,

s31 . .

‘ch (r1: r2: rh) : 7?; {82k$(aerl+Qhrh)82k€r2¢ls (r1 " rh)

ieikr(o’er-2+ahl‘h)eiker1 $13 (1'2 __ Phl} (E22)

and the bound trion states. In order to estimate the overlap in a tractable way, we do

not apply the variational Hylleraas relative wavefunction in this context, but model

the binding of the trion complex as the combination of one stronger bound electron

with the relative wavefunction @513 and a more weakly bound second electron with

the relative wavefunction (,0; both 4513 and 90 are taken along the corresponding hole

- electron coordinate. Therefore, we describe the bound trions as

N ' I r .

w (r1, r2, m = —— {6than+aer2+ahrh>9,15(,1 — r1.) 90 (r2 — rh>
\/2—A

ie'iK</3er2+fler1“av->961.- (r2 — rh> 99(1‘1 — 17.)} (E23)

The residual factor N takes into account that this symmetrized ansatz is not built

upon the Slater determinant of a set of orthonormal basis wavefunctions. We will give

an explicit expression for N later on. The calculation of the overlap is simplified in

the coordinates {R, r, p} with the three particle center of mass

R : fierl + ,361‘2 +1.83hrh (E.24)

in which the wavefunctions for the continuum and the bound trions respectively read

We (RAND) = W€l(k‘r+k€)R {elprelqpfibls (7‘) i elqrelpp¢913(l))} (E25)
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and

‘11: (R, r, p) = 72—36iKR {6.51.9 (7‘) <9 (p) i 951,, (p) 90 (7‘)} (E26)

Here, for the sake of a more compact notation we introduced the quantities

q : flrke — (38km = ke — (38K (E28)

where we already used in the last step that the total momenta of the continuum and

bound trion states have to be the same to have a nonzero overlap, i.e. K 2 km + ke.

Now, let us turn to the calculation of the overlap between We and ‘IJt. As far as the

bound trion states are concerned, we only consider spin singlet states. Consequently,

\Ilt has to be even under particle exchange, i.e. we pick up the upper plus sign.

To have a nonzero overlap, the spin functions have to match, so that also for the

continuum states We we pick up the plus sign, corresponding to a singlet state of the

two electrons.

In the first step, the integration over the center of mass coordinate R gives the

condition on the total momentum mentioned above. Assuming g0 (p) to be real valued,

we have

‘flN ,

mm = mama. [erde[951.9(r)¢(p)+¢1s(p)¢(r)l

X [eipreiqpqfils (T) ‘l‘ e’iqre’ippéls (10)] (13.29)

By relabeling the integration variables, we can simplify this expression to one direct
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and one exchange term

(‘l’cl‘l'tl = %6K,kr+ke {/ dQPt‘Bi‘”lc“)1s(7‘)l2 / (121062-qu (p)

+/d~reprm (w) () [dzpeepm (pi) (12.30)

In the following, the momentum conservation is assumed to be fulfilled implicitly and

we label the overlap by the total momentum K and the electron momentum kg as

O (K, k3). To better distinguish between the direct and the exchange contributions,

we split 0 (K,ke) as

with

0.1mm = 3% ereip’ImgU)l)Q/deequwp) (12.32)

mN .

06$(K,k..> = fi ere'Pma ,mo/fipequm (p) (E33)

To proceed with our analysis, we have to specify the form of the wavefunction «,9 (7“).

For the sake of simplicity we assume a 13 wavefunction

up (7") = —2—e-T/at (E34)

7rat

with at characterizing the "trion size”; 91.9 (r) was assumed to be the same for the

continuum and the bound trions

. 2 _

0.913(7) = ,l—mge W (192.35)
17
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Carrying out the integrals, we find the following analytic expressions for the overlap

 

2
{RN 8 2(/27rat

0d (K, kc) = (E36)

V A (4 + (1%122)3/2 (1 + a.%q2)3/2

and

‘flN 8 V27ra§a$at (ax + at)

‘ 3 2

fl (1 + (1525(12) / ((

 061: (K, k6) = (13.37)

a]; + at)2 + agagifi)3

Let us compare the overlap 0d (K, kg) to (96$ (K, k3). Both decrease with increasing

momenta p and q. Very interestingly, the magnitudes of both p and q are propor-

tional to [363K - Re, which, due to K = Q + ke, can be equivalently expressed as

fleQ — flmke. This is exactly the relative motion momentum that determined the

momentum dependence of the optical matrix elements (see (1.48) and (1.49)). At

maximum, if the relative motion momentum p,- = ,Bxke — BeQ is zero, (9d (K, kg) and

(9m (K, ke) show the following scaling behaviours

 

. a.

0d (p.- = 0) ~ It (E38)

and

O ( ._ 0) (fie)? 1 at (E 39)

w pz _ L (1+ax/at)2—E '

which shows that the exchange contribution is considerably smaller, by more than a

factor of (2.3/A: this is nothing but the microscopic exciton size over the macroscopic

sample size and therefore a very small number. In the spirit of a1, /L —> 0, we can

focus our analysis on the direct term. We have obtained

 

2
7m Nix/2

Od(K,ke) = mN(/ A‘ 2 3/2 2 3/2

(4 + ago-g I/BQK — kel ) (1+ (1% l/BeK — kel )

(123.40)
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We can make further simplification by using the following approximations: First of

all, a8 = m: /772,,; is relatively small, since the effective masses of the holes are usually

much bigger than the effective masses of the electrons. Moreover, we know that the

typical trion size at is considerably bigger than the exciton size ax due to the weaker

binding. In this limit, we find

2

(9d (K,ke) x mm/ 72‘ N5 3/2 (E41)

(1+ 0'? lfieK — kel2)

Let us address the normalization constants in front: We have already shown in Eqn.

 

(E20) that ‘11 tends to one in the macroscopic limit. However, we have not specified

N so far. We are going to make up for that shortcoming now. In analogy to our

normalization procedure to find 91, for the bound trion states we obtain

/(1%erde 1x11, (R,r, p)|2 = N2

 

1+ (fdgrolsciwr)

 

2

] (E.2)

which leads us to

2 2

/ d‘ZRerde (x11, (R, r, ,o)|2 = N2 1+ 163—31ng (E43)

(“I 'l' at)

The trion is spatially more diffusive than the exciton and in the limit at >> am the

correction term is much smaller than one and, subsequently, N is approximately one.

Using these simplifications, we find that the overlap between the bound trion states

and the continuum states is approximately given by

2

0.1 (K, kc) z (/ Tit 2J2— 3/2 (E44)

‘ (1+ (1%],I'36K — kBIQ)

It is intrinsically small and depends on the relative motion momentum Pi-
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Appendix F

Trion radiative lifetime

In this appendix we present a calculation that gives an approximative analytical

form for the radiative decay rate Ft of a bound trion. First of all we fix the spin

configuration of the initial trion singlet state. We specifically refer to a trion consisting

of a heavy hole with spin 0h}: = —3/2 and an electron singlet. Subsequently, it decays

radiatively to a a- photon and an free electron with spin down i.

Let us analyze the decay process in the usual lab frame first: The initial state

consists of a singlet trion with total momentum K, which we denote as

 

Ii) = lKlt' (F1)

The corresponding initial energy is

h'2K2 t t
Ei 2 2771’. + 266 — ETO , (F.2)

where the ’relative’ energy E?” is measured w.r.t to the bottom of the conduction

band. We can express the initial trion state |i) :2 lK>t with a fixed center of mass K
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in terms of its Fourier transform of the trion wavefunction as

l l |0), (F23)
_ ~

T
M — Z ‘11 (k13k2,K - k1 — k2) Ckl,TCk2,idK—k1—k2.—(3/2)

lqflkg

where the Fourier transform for a trion of center-of—mass momentum K is defined in

qul- (1.55). We write the final state as

 

 

  

If) = ké. Q) = c1,,al, l0) (F4)

with a corresponding final energy of

h2k2
Ef — 2m; + cc + ha) (F5)

which gives us for the energy-conserving 6-function in Fermi’s Golden Rule

h2k2 h2A'2 ~

E—E.- = e iiw— —E. F6

6( f ') 6(2m;+ 2mt ) ( )

where the quantity E was introduced as E 2 cc — Etf’t; it simply expresses the energy

gap between the top of the valence band and the bottom of the bound trion dispersion

curve. In Eqn. (1.82), the transition amplitude was given as

(fl “I I?) = 9,5K,ke+QI+ (Re)

Taking the large volume limit for the photon momentum (Q,Qz)we write the sum

over the final states as

 Es: : VB/d3QZ (R7)
6 C2 (2”) kc
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Consequently the decay rate can be calculated in the trion’s resframe, where the

trions center of mass momentum is set to zero, as

  

 

h2 ..

r: . (13’212— (hQ: hug—E) F.8t (mzh/ Q9 +( (2)6 2m;+ < >

where 13 (—Q) is explicitly given by

C 4 C 2 C" 2
13(_Q)=27rN2( 1Q + 2Q : 3) . (F.9)

(aha?)

The approximation we will make is to neglect the recoil energy of the electron

52g? . . . . .
Emmi) = 21”,, , which drastically Simplifies the evaluation of the energy conserv-

6

ing 6-function. This simplification is allowed, since all the values Q can take on in

the integral are effectively restricted to ~ 1/at owing to the effect of the function

I: (—Q). Because of
0’)

d

<< E (F.10) 
f)

. -* ..
27"th

we neglect the recoil term; in other words, the photon energy takes on the gap E

and we neglect small changes due to the dispersion relation of the electron. Since we

consider a process starting from K = 0 and because of the smallness of the optical

photon wavevector Q, the electron will always end up close to to the bottom of

its dispersion relation, so that the photon energy is approximated as simply hw z

E. In this approximation, we can solve the remaining integrals simply in spherical

coordinates

1 ~ 2

1 CQ41—u22+CQ21—u2 +0

I‘t=3d—(—:N2Q3/0 du( 1 ( ) ~ 2 ( 7 ) 3) , (FM)

6 (a2 + Q2 (1 — 112))

 

where in the last step the quantity Q was introduced as Q = E/ (hc/n). The remaining
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integral over u can be solved analytically.
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Appendix G

Three level system in rotating

frame

In this appendix, we will derive the general form of a driven three level system Hamil-

tonian in a frame rotating at the detuned driving frequency w. We set it ~—- 1 and

follow the steps taken at the derivation of the optical potential for the two—level

atom. Setting the energy of the ground state ll) to zero, the bare Hamiltonian of the

three-level system can be written as

Ho = we l2) (2! +w3 l3) <3l- (G.1)

For the unitary transformation of our system, we define the operator

U (0 : e—ztwt(12><2l+ls> (3|) (G2)

which gives the Hamiltonian H0 in the rotating frame

1% = H0 — w'lU = A2 I2> <2I + A3 l3) (3|, (G3)
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where we defined the detunings A2 and A3 as positive for red detuning in both cases,

i.e.

A2 = tug —- an. A3 = (4J3 - w. ((3.4)

The ground state II) is coupled to the excited states [2) and I3) with the spatially

dependent Rabi frequencies {22 (r) and 93 (r), respectively. Assuming a harmonic

time dependence. we can then write the interaction Hamiltonian in a semiclassical

picture as

Hint = -92 (r)COS(wt) H1) <2I + I?) <1|l - Q3 (1‘) COS (wt) H1) (3| + l3) {1|} (G5)

which becomes in the rotating frame

 

  

- I I3. 0 '
Hint = —Qg(r)cos(wt) l12(0)cos(wt)+—2f(—sin(w’t)

“’ l

‘ f. it 0' l
—§23 (r) cos (wt) h3 (0) cos (wt)+ if )sin(wt) . (G6)

Here, we introduced the quantities

52(0) = |1><2l +|2><1|

132(0) = w [I2><1I — |1> <2I] (G7)

and similarly for I33 (0) and [13(0). We now apply the rotating wave approxima-

tion by averaging over one period of oscillation T = 27r/w. After the rotating wave

approximation, the full Hamiltonian H in the rotating frame reads

H = A2 12> <2I+A3 |3> (3| — 93§H1><2I+I2><11k 9129 HI) (3| + l3) <1”. (G8)
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This is the general form we used extended to the framework of the trion and exciton

resonances in a semiconductor system.
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Appendix H

Excitonic second order energy shift

In this appendix we give a detailed derivation of the second order energy shift E?) (k)

coming from the diffusive unbound trion states. The first approximation we make

when calculating

 

_(2) __ (kIVIK,)c)(K,cI VIk)

EC (kl-{:2 Em. k (H1)
K k8 87

is to identify the energies of the orthogonalized states with the corresponding energies

of the unorthogonalized states. This approximation is based on the fact that the

overlap with the bound trion states O(K,ke) is rather small; it even vanishes as

the sample size A goes to infinity. In this approximation, we express the energy

denominators as

n? (K — k6)2 + 112 (kg — k2)

2m;- 2772:;

—+Aw, (H2)
  

EKkgk“

where we introduced the detuning from the exciton resonance A]; as

A$ = 66 — EX — fiw. (H3)
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Next, we write the orthogonalized states |K,c) in terms of the free continuum

IK, kg) and the bound trion states IK), respectively. Accordingly, we arrive at the

equation

 

[(k| V |K, kel (K, kel V lkl——::g;

+0 (K, ke)2 (kl V IK> (Kl V IR)

—20<K.ke> (kIVIK) <K,ke|vu<>1. (H4)

Here, we used that the matrix elements (kI V IK) as well as (K,k€I V Ik) are real-

valued quantities. Clearly, we recognize that the intermediate states can be free

continuum states IK,ke), but also bound trion states IK), which gives rise to a

contribution proportional to the squared overlap O (K, kg)2 or even a hybrid mixture

that. is proportional to the overlap (9 (K, kc).

We will approximate the squared normalization constant, given by

1

N2 = _ O(K.ke)2 m1 (H.5) 

as one, again owing to the fact that the overlap integral (9 (K, k8) is assumed to

be small, which is always true for a large enough sample. In this fashion, we have

simplified the expression for E52) (k) to

 lelK ke>(K,kelV|kl“Egg:

(2')

+9 (K,kc)2 <k| V IK> (Kl V I19

(3?)

 

EK,ke;k

 

:20<K,ka <k| V|K> <K,ke|v1k>, (H6)
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As indicated by the underlying subscripts, we will evaluate the different contributions

('27), (22') and (2'22) piece by piece.

In 01der to evaluate the first term (2), we exploit the fact that

(kl V |K, kc) (K, kel V IR) = 93:51am? (5K—ke,Q + 5K—ke,—Q) - (H7)

The presence of the Kronecker deltas eases the evaluation of the first term drastically.

We obtain

kyf

 

 
—:ZEKke;l(<

 

1 1
K,k€) (K, keI V Ik) = 423, + .

Ek+Q,k;k Ek-Q,k;k

- (as)

Neglecting the exciton's recoil energy compared to the detuning from the exciton

resonance, i.e.

 

h2Q2

EkiQ,k;k = 2m + Ax % A177 (HQ)
’1'

we obtain

(2.2

—ZZE—_<kIVIK1ke><KakeIl/Ik>=
— —‘?— (H.10)

hl(kek 13x

In order to retrieve a physically very intuitive compact form for the contribution of

the term (2), we can rewrite the effective exciton Rabi frequency QT in terms of the

number of excitons N1; that fit into the sample without spatial overlap

s22 8 92 A 9292 = __Q__A : _fl___ -_— AI. _0 H.11

.r. 4 W012) 2 7rd}; I 2 , ( )

where we used that the exciton radius is half the Bohr radius a1: = a0 /2. To sum it

up, the term (2') gives the contribution

Q2

kV K,k,,) (K,ke| VIk) = —N,.,_L). (H.12)

EK,ke;k Ad?

 -ZZ-E-——  
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The presence of the exciton resonance accounts for a constant background shift that

is simply proportional to NE, which describes a macroscopic enhancement factor for

the intrinsic shift {lg/AI. Physically, this macroscopic enhancement factor arises

from the fact that the exciton is a coherent excitation over the whole sample and

thus carries a macroscopic dipole moment.

Next, we evaluate the term (22') Proceeding from the electron—trion transition

matrix element

'
3
0

H

(KlVlk>—— -,‘—I5K,kk+Q1+()+6K,k_QI_ (k)], (H13)

we find

2
Q -

0(K,ke)2(kIVIK)(KII/Ik) = flax,k+q0(k+o.ke)21+(k)2

+6K,k_Qo (k — Q, k.)2 1. (WI . (H14)

2')

Consequently, the corresponding contribution in the second order shift E(l‘) (k) reads

 

 

(K,)2ke O(k+Q,2ke) 2
— (kVK KVk) = I k223——EU“ (I I )( I I) “732 BMW; +()

0(k—Q,ke)2
 1. (WI . (H.15)

Ek—Q,ke;k

Again, we will approximate this expression by taking the limit Q —+ 0, but also

k —-> 0, because big values for k are effectively suppressed by the functions Ii (k)2.

However, there is no restriction on ke, so that we keep this dependence. In this way,
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the denominators simplify to

  

 

2‘2 (k i Q — H)2 (22 (k3 — k2)
E . = A

kiQ-Ikek 2m. + 2m + 5”

h2k2

z ‘ e + Ax, (H.16)

222);

where we introduced the reduced mass of the trion M as

m*ml~

)2) = —£——— (H.17)
* , _

me + my,

 

Within the approximation of both Q ——> 0 and k —> 0, we find O(k+Q,ke) ==

(9 (k — Q, kg) and 1+ (k) = I_ (k). Finally, we write the term (2'2") in a rather compact

form as

 

O(,)Kk Q? X A,

-22—e<k|V|K>(K|V|k>z—70|I+(k)|a=0 (I), (21.18)
K k E,Kke;k

I

where we introduced the quantity Xc (Ax) as

x145): Z3520kelz (H.19)

ke ‘Q—f'f’Aa:

Since the squared overlap (9 (0, kg)2 boils down to

2
7m. 8

(9(0,k..3)2 = At 2 2 3 (H20) 

we can give an explicit solution to find Xc (AI). Taking the large sample limit in order

to replace the sum by an integral and expressing the integral in polar coordinates, we
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obtain

Xc (AI)

2 00

= 4. die

AI (”/0 e(

ke

2 2 3
£sz + 23,.) (1+ £1,223)

 

 

 

3‘7 I.

0 (ETIC2 + AI) (1+ (C?)

where we identified in the last step the trion binding energy

52

ET = 2, (H22)

This is certainly an approximation; at has not been specified so far, but was left as a

free parameter in the approximative ansatz for the trion wavefunction in (??). Appre-

ciating this ansatz as an educated guess, we should be in the right order of magnitude

with this approximation for the trion binding energy. Based on this approximation,

we have obtained an analytic expression for Xc (Ax), namely

Z2521n(£)+(4—3€>£—1
H23

(5 -— n3 ( )

 

Xc (6)

which is expressed in terms of the quantity g = ET/Ax, the trion binding energy

over the detuning from the exciton resonance.

As far as the evaluation of the (22) term is concerned, we shall halt here.

Therefore, we are left with an evaluation of the (222') term, which has an hybrid

character as it contains as an intermediate state the bound trion part as well as the

unbound diffusive continuum states; this mixed character is governed by the overlap

O (K, kg). The product of matrix elements that occur here are given by

S2 - -

(kl v IK> (K, kel v M = 709,5“, [ox,k+QI+ (k) + 0K,k-QI_ (m1 . (H24)
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Again, neglecting the optical wavevector Q, we find

O(,K k) (2

222——e (kl V IK> (Kakel V M e 2—“92 I0 (k + Q,k>1+(kIIQ=o-
Mth Ax

K ke

(H25)

In conclusion of this appendix, we have shown that the second order energy shift

Egg) (k) due to the orthogonalized continuum states can be approximately expressed

as

(22 (23,
 

J ,
L.( )(k) = ...wrfi— 2A,,Xe (Ax) |I+ (1<)|"Q_0

no

+2E-QI l0 (k ‘l' Q,k)1+(k)lQ=0- (H26)

33
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Appendix I

Derivation of effective Hamiltonian

In this appendix we close the gap in our analysis of the effective Hamiltonian Heff

by deriving compact expressions for H}I and Hg]. We will put emphasis on the

off-diagonal term Hg], which is of a much greater importance for the understanding

of the optical trapping potential for the electron. Therefore we will first cover the

derivation of Hg], before turning to the diagonal part 71),.

1.1 Off-diagonal contribution 71%,,

The starting point for an analysis of the off—diagonal term H;I is the quantity ch,

as defined in Eqn. (3.17). The intermediate states can be bound trion states |K) or

continuum states |K, c), properly orthogonalized to the bound states. Separating ch

into these two pieces we have

  

' qVK)()KVk (qVKc)(,Kch

We emphasize, that, according to the general definition in Eqn. (3.16), the case

q = k is ruled out right away. The energies EKke;k are approximately given by the
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expression (H2).

In the first step we express the orthogonalized continuum states in terms of the

bound trion states |K) and the free diffusive continuum states |K, kg) to obtain

 
(QI V |K) (Kl Vlk)

C- . Z

q,“ E: EquK;k

+Zm<QI V |K,ke) (Kiel V lkl

ke C EquKke;k

 

(2| V |K) (Kl V |k>
 +ZNEO (K,ke)2<

 

ke
EquKke;k

— 21¢me k.) (‘1' VlK) (K,ke| Vlk)
k8 c . ' EquKke;k

 

V K k K V k—ZN§0(K,ka<q' I ,5>( I H

ke . Eqkake;k

(1.2)

We can drop the second line right away, because it imposes the conditions 5k,ke

as well as 6,1,1“: which results in 5k,q and is therefore not allowed. In the consecutive

step, we use that the overlap O (K, kc) is a small quantity to approximate

 

 

. 0(K,ke)2 2
N30 K.ke 2 z: s 0 K,ke 1.3( , ) 1—O(K,ke)2 ( ) ( )

0(K2k8)

N20 K.ke = . so K,ke . 1.4( . ) 1—0(K,ke)2 ( ) ( )

Based on the approximations Q —-> 0 and k ——> O, that we have already made

before, we find

h2K2 722k?
  E . = A as, I.“

K“ 2m, 21772; + " t ( 0)

where we used that, owing to in-plane momentum conservation, K has to be a com-

bination of k and Q, which we both neglect. Proceeding from these approximations,
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we express ch in the following way

(a ) (b)
ch— ch +ch, (1.6)

(a) (b)
where ch and ch have been defined as

 

Z<QIVIK>K|V|1< 1fi§_(__0(,)2Kke (1.7)

q" — EKke;k

and

 

=—Z2: E1.11;;)k| v IK> (K, kel v |k> + (qI v IK, ka (KI v Ik>I .

(1.8)

where the quantity 051:) includes bound, trion states only as intermediate states, while

(1))
ch comprises mixed terms because of the appearance of one single overlap 0 (K, kg).

((1)
Using Eqn. (1.47) for the transition matrix element, we can express ch as

  

  

(22 1+ q) I- (k) O(——k Q, k )2

65161:) = T0 (E (Sqak‘2Q _+2mE 6

(1k ke (k—Qlke;k

1+ (k) I_ (q) 1 0 (k + Q. ka2
+ 6 k 2 — + I (1.9)

E q, + Q At E(k+Q)ke;k

Let us examine the corresponding part of the Hamiltonian which we define as

b b

330/ J =ZE(0)(kk): egg/(q) )(kl +hc. (1.10)

qaék

If we plug in c512) from expression (1.9) into 71%“) and let k —> k + Q in the first line
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and k —> k — Q in the second line, we arrive at

 
2m)_ 25 a» _ Elk-Qfléwsfiv

H” — :§;&3(k<m EthQ

+;———m’kk")? (|k—Q)(k+Q|+hc.)
Alt Ekkeka .

1+(k-Q)I— (k+Q)

Ek—Q,k+Q

X(Z:_t+ke:0(191%);er (|k — Q) (k+ QI + h.c.)}. (1.11)

 +Ef0) (k + Q)

Again, in the expressions Ekke;kiQ we only keep the detuning from the exciton

resonance A); and the dependence on k; as

thQ

6 + A3, (1.12)

2%

 

Ekke;k:tQ %

Using the fact that 1+ (k — Q) I- (k+ Q) are strongly peaked around k z 0,

taking the limit Q —-> 0, and exploiting the relation

    
flmW-QXEWmW+QL;flmW—QI;UWW+Q)

 

—— = -—1 1.13

Ek+Q,k—Q Ek—Q,k+Q Ek+Q,k—Q Ek+Q,k—Q ( )

the simplified version of 72630) is given by

201 X' Ar.

H13“) s—jQZ|I+((—k Q)|Q_0(Z—t + Ch, )) (|k—Q) (k+Ql +h.c.).

(1.14)

(b) 2(5)
Now, let us turn to ch and its contribution to the effective Hamiltonian HI I .
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It implies products of mixed matrix elements which we can write as

Q

((1! v IK. ka (KI v lk) = 399,5qu (dq,k+2Q6K,k+QI+ (k)

+ 6q,k—2Q6K,k—QI— (k)) (1.15)

and similarly

, _ 90

((11V |K) (K, kel V lk) — 792512,ke (5q,k+2Q5K,k+QI- (01)

+ 5q,k—2Q5K,k—QI+ ((1)) - (1.16)

The sums appearing in the definition of CS? are readily taken care of, and we find

  

  

(b) 90 O (k + Q, Q) C9-(k Q C1)
c( = ——o , 1 k)6 + 1_ (k)6 k_

’k 2 m {Equ(k+Q)q;k +( (”HQ Equ(k-Q)q;k q’ 2Q

I (q) 6 . _ I_ (q) 6 (1.17)
Equ(k-Q)k;k + q'k 2 Equ(k+Q)k;k (”ka

which gives rise to the following contribution to the Hamiltonian

2(b) _ E(r)) O(k,k+Q)I+(k—Q)
’H — @xfl (k— x

” ZkE({ Q Ek+Q,k—QEk(k+Q);k—Q

x(|k + Q) (k— QI + 12.0.)

+E(0) (k+Q) 0(kk- Q)I—(k+Q)

Ek—Q,k+QEk(k—Q),k+Q

+E(0) (k++Q) 0,(k k+Q)I+ (k- Q)

Ek—Q,k+QEk(k+Q);k+Q

+E(0) (k _ Q) 0(kak— Q) I— (k + Q)

Ek+Q,k—QEk(k—Q);k—Q

(Ik + Q) (k — Q! + h-c)

(|k + Q) (k — QI + h.c.)

(lk + Q) (k -— Ql + hm}-
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Here, we make the familiar approximations

        

 

 

 

2 2 2

Ek(kiQ);k¥Q = 2,3133: 371+ (1-18)

Ek(k:l:Q);k:l:Q = 2:32 + Ax % As (1-19)

and obtain the simplified expression

Hi)” = if: {0 (k, k + Q) 1+ (k -— Q) (lk + Q) (k — QI + he.)

O(k,kk— Q) I- (k+Q)(|k+Q) <k— Q| +h.c.)} (1.20)

Taking the limit Q ——> O, we get

2(b) Q092:

H11 %T 2 :l0 (R, k + Q) 1+ (k “ Q)|Q=0 (lk + Q) (R '— Ql + h-C) (1-21)
(11' _

k

2(a) 2(1))

In conclusion we have shown that the off-diagonal part HII =71! + HII takes

on the form

1 A
2 ~ Xc ( :1")

H11 ~ Qj(2)::|1+(k Q)|2Q=O (— +——As___)(lk - Q) (R + Ql + h-C)

Q Q:

+ 2, 2k: |0<kik+ Q) 1+ (k — Q)|Q=o (lk+ Q) <k — Ql + h.c.)(I.22) 

1.2 Diagonal contribution H}!

From the general analysis of the Hamiltonian in second order perturbation theory, we

are left with evaluating the contribution

H11:Zank)ldklk (k| (123)
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where dk is given by

  

IviiI2 <qIVIK> <KIVI1<> qIVIKc) <KcIVIk> ,

sex—fl: +223“ - 024)
K ke

- 2 2

lyék Elk K EK;k EKke;k

Plugging in the results for the transition matrix elements, for the contribution

from the bound trion states we obtain

2 <q| VIK) <KI Vlk) N 9%
2 N 2

EK;k 4At

 1+ (k)2 + I_ (102] , (1.25)

K

where we neglected the k dependence in the denominator, since the functions Ii (k)2

are strongly peaked at small values k z 0, and dropped the trion recoil energy versus

the detuning from the trion resonance. In the limit Q —> O, we can further simplify

the expression above to

 
(QIVIK)(K|V|1<)%9(2) 2

2K: I (k)| _ . (1.26)
2 2 l + —0

13Kk 22:, Q

Following the same analysis and approximations as in the derivation of the second

order energy shift E572) (k), we obtain for Hh only terms that are proportional to

1 /A? or 1 /Ag; this arises from the squared denominator in the general equation for

7'61. We then find

, 52(2) (28

H}, = .22“) (k) |k) <1<|{NeA2 2m—‘—’.2|1+(k)Ia:0
k

()2 0(,0k

+70l1+(k))lQ=OZe: 2 (3)2 2
hk

(Tie +2)

l0 (k + Q 101002120} . (1.27)

 

_AQOQT

2A

 

Since all the terms but the first one involve the functions Ii (k) that suppress big
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k values. these terms have to be small due to the smooth function E()() oc k“1'

front. Therefore, we drop all the terms besides the first one and find

123

Hil 3 —Nr—3%: E(Wk (k.| (1.28)

1.3 Trionic contributions in the effective Hamilto-

nian

In principle, the effective second order Hamiltonian also contains terms of the form

(0) (1
Heff=ZEK |K( >><K(1),| (1.29)

where IK(I)> is the first-order correction of the bound or unbound trion states and

(0)
EK is the corresponding zeroth-order energy eigenvalue. The states ‘K(1)> are

coupled to the zeroth-order electron eigenstates lk(0)> via the relation

|K(1)> = 2 $3110»), (1.30)

k

so that 71sz can be rewritten as

Heff ___ZEl'O)Z—V__kK _q_VK |k(0)> <q(0)| . (1.31)

qEKk EKq

When keeping the detuning in the denominators only, we immediately see that this

effect is a higher order correction that is proportional to ~ 1/Ag. The reasoning for

unbound trions goes along the lines. To be consistent, we will neglect this higher

order correction.
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