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ABSTRACT

ECONOMIC ANALYSIS OF US. ETHANOL EXPANSION ISSUES

By

Malika Chaudhuri

The dependency of the US. economy on crude oil imported from politically unstable

countries, escalating energy demand world wide, growing nationwide environmental

consciousness, and the Renewable Fuels Standards (RFS) government mandates are some

of the primary factors that have provided a favorable environment for the growth and

development of the US. ethanol industry.

The first essay derives decision rules for a discrete-time dynamic hedging model

in a multiple commodity framework under expected utility maximization and basis risk.

It compares hedging performance of three types of hedging models, namely constant

hedging, time-varying static hedging model and the new dynamic hedging rule derived in

this study. Findings show that natural gas futures contracts were effective instruments for

hedging ethanol spot price risk before March, 2005, when ethanol futures trading was

initiated on the CBOT. However, post-March, 2005, corn and ethanol futures contracts

proved to be efficient hedging instruments. Results also indicate that ethanol producers

may effectively decrease variance of cumulative cash flows by hedging using ethanol,

natural gas and corn futures prices using the traditional techniques. The study concludes

that using the new dynamic hedge model in a three period and two commodity set up,

producers can effectively reduce variance of cumulative cash flow by 13.2% as compared

to the ‘no hedge’ scenario.



In my second essay, I use choice based, conjoint analysis methods to estimate

consumers’ willingness to pay (WTP) for alternative transportation fuels in the US. In

this study, I consider unleaded gasoline and ethanol, which may be derived from corn or

three different sources of cellulosic biomass as alternative transportation fuels. Results

suggest that age and household income are some of the socioeconomic variables that

significantly influence consumer’s choice behavior. Results indicate considerable

consumer preference heterogeneity. Welfare effects are analyzed when consumers are

faced with restricted choice sets. Results suggest that possible government mandates on

the consumption of E-lO and E-85 diminish welfare of individuals belonging to the

segment ‘Conventional Gasoline Acceptor’. Similarly, individuals belonging to ‘Ethanol

Acceptor’ segment experience welfare losses if corn grain ethanol is not available as an

alternative transportation fuel.

Ethanol is increasingly being used as a gasoline oxygenate and a volume extender

in the refinery and blender industry in the US. This paper estimates refinery and blender

factor demand and evaluates price responsiveness of inputs. The study also develops and

tests hypotheses regarding existence of structural change in the industry’s demand for

inputs. It determines whether there is a common shift point and adjustment rate for

structural change in all the refinery and blender inputs by using gradual switching

multivariate regression techniques and maximum likelihood methods. Results suggest a

structural change in factor demand for inputs in the industry that occurs at different points

and rates. Results also suggest that the demand for inputs, except for capital and

unfinished oil, has become more inelastic over time.



To myfamily, who oflered me unconditional love and support
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Chapter 1

Optimal Futures Market Hedging by Ethanol Producers

1.1 Introduction

In the ethanol industry, profit depends on a set of commodity prices (corn, natural gas,

ethanol and distiller’s dried grain with solubles (DDGS)). Of these, ethanol has an

illiquid futures market and DDGS does not have a futures market at all. With volatile

input and output prices, ethanol plant owners face significant challenges in protecting

profit margins given the unpredictability of commodity prices (CARD, 09). Additionally,

with the financial risk stemming from initial capital outlays and increasing competition

for resources, existing and future ethanol producers may consider hedging as a risk

management tool. Hedging may allow market participants to increase the predictability of

future cash flows, lock-in profit margins, and reduce downside risk (Varangis, Thigpen

and Satyanarayan, 1994). Contractual agreements like futures contracts for ethanol were

introduced in March, 2005 (Funk et al., 2008). Given their relative newness, these

markets are comparatively illiquid and thinly traded (Franken and Parcell, 2002).

However, assuming that contracting in cash markets alone may leave ethanol producers

subject to price risk exposure, participation in the fiitures market may provide valuable

risk management strategies for ethanol producers.

This paper uses dynamic programming to develop a multiple-commodity,

multiple-period hedging model (henceforth referred to as Generalized Dynamic Hedge



(GDH) model) to manage ethanol profit risk. We extend the current prevailing literature

(i.e. Myers and Hanson, 1996) by considering multiple commodities and multiple

maturities, and at the same time utilizing some of the standard features like dynamic and

cross hedging strategies. The intertemporal hedging model assumes that a typical ethanol

producer faced with unpredictable input and output prices hedges in the futures market to

mitigate price risk. He initiates a multiple period hedging strategy at an initial time period

for the next T periods of production. As he moves to the next period, he completes all

cash market transactions and liquidates the futures contract that has the closest maturity

date lying beyond the current month. With the advent of additional information, he

updates the futures position for the remaining futures contracts. We derive the sequence

of optimal hedging positions at each time period that maximizes utility of cumulative

cash flow of the ethanol producer at the end of period T.

The hedging effectiveness of three types of hedging techniques is compared. The

first technique is the constant hedge strategy where the hedge ratio is obtained by

regressing the returns from the spot market transaction on the returns to holding the

hedging instruments over the entire sample period. The second strategy is the time

varying static hedge technique where we use simple twelve month lagged historical

volatility to obtain the time varying hedging rule. We assume that at any given point, the

spot price of a commodity is a function of its futures prices and that of other related

commodities along with time to expiration of the nearest futures contract. In the third

case, we obtain the dynamic hedging rule based on the solution to the GDH model

described above. Next we compare results across the three hedging techniques.



The remainder of the paper is organized as follows. Section 1.2 explains the

rationale for hedging by the ethanol producers. Section 1.3 gives an overview of the

literature on the methodology utilized and relevant research on hedging in the ethanol

market. Section 1.4 describes the dynamic hedging model. Section 1.5 presents the

preliminary summary statistics of the data. Section 1.6 illustrates the empirical

application of the generalized dynamic hedging model and a comparison with constant

and time varying hedging model and also presents the empirical results. Section 1.7

concludes.



1.2 Rationale for Hedging

Ethanol producers are exposed to an array of risks, namely price risk, basis risk, yield

risk, storage risk, institutional risk, financial risk and transportation cost risk (Coltrain,

2004). Price risk arises due to price volatility of the inputs and outputs related to ethanol

production. More specifically, price risk may arise due to the possibility of negative

profitability due to unfavorable combinations of input prices (corn, natural gas) and

output prices (ethanol, distiller’s dried grain with solubles (DDGS)). Each of these

commodity prices present varying degrees of risk depending on their respective price

volatility, the relative amount of each commodity used or produced, and the risk

management tools available to the respective producers. Basis is defined as the difference

between the spot price of a hedged asset and the price of an underlying futures contract.

Basis risk is the risk associated with imperfect hedging using futures contracts (Castelino,

1992). It arises when the settlement prices on the futures contracts at expiration are

correlated with, but not equal to, actual cash prices at which the producer makes

transactions (Lapan and Moschini, 1994). With high degrees of volatility in input and

output prices, producers may be exposed to significant basis risk from multiple

commodities.

Institutional risk arises due to government intervention in the form of subsidies,

taxes and regulations. Adoption of unfavorable government policies may inject greater

degree of volatility in the profit margin. Financial risk may also be significant since it

limits the firm’s access to capital and the latest technology. Given the current technology,



yield risk is not a major concern for ethanol producers.l Ethanol producers usually haul

corn from elevators, or directly from corn farmers, to their plants and deliver ethanol and

DDGS to end users. Thus any uncertainties in freight rates expose the ethanol producers

to transportation price risk. In this paper, however, we assume that the producers are

primarily exposed to price and basis risk. Other categories of risk (i.e. yield and storage

risk, institutional and financial risk and transportation risk) will be relatively less

important in the case of ethanol production and are left as topics for future research.

Ethanol producers may actively trade in the futures, swaps and options markets as

well as engage in forward contracts to manage risk. Ethanol currently has only two such

securities available for risk management, a futures contract traded on the Chicago Board

of Trade and another on the Brazilian Mercantile and Futures exchange (Paddrik and

Davis, 2008). The ethanol futures market lacks liquidity due to comparatively low

volume of contracts traded. However, with time, the ethanol market is increasingly

gaining efficiency with additional new entrants from producers as well as financial firms

trading actively (CBOT, 2009). Currently hedgers in the ethanol markets are able to

hedge nearly two years of production. This enables them to create more long-term

protection and take on more leverage (EAR, 2008).

In a futures market transaction, delivery, or the possibility of delivery, promotes

convergence of the spot price and the futures price at the delivery point at expiration.

However, according to the CBOT, the predominant economic function of ethanol futures

contracts is risk transfer and price discovery, rather than merchandising or title transfer

for the underlying commodity. The CBOT’S ethanol futures contracts are designed to

 

' 1 bushel of corn and 165 thousand British thermal units of natural gas are needed to create 2.7 gallons of

ethanol and 17 pounds ofDDGS (Hart, 2005).



provide high degrees of flexibility for market participants throughout the delivery

process. For example, once the shipping certificate has been issued, there is no specified

timeframe in which the buyer and seller must exchange physical ethanol.2 Moreover,

small ethanol production cycles (i.e. 40 to 75 hours) and monthly ethanol futures

contracts might induce basis risk between the futures and cash markets.

Standard & Poor’s conducted a risk analysis of all the major factors of ethanol

production (government, yield margins, margin volatility, industry growth, and industry

dynamics). The report concluded that typical ethanol plants demonstrated characteristics

of a “B” rated entity, where “B” indicates that even though the ethanol industry primarily

has a strong foot hold it still has an appreciable margin of risk in its pricing (Paddrik and

Davis, 2008). Thus capital market imperfections coupled with high price volatility

provide incentives to ethanol producers to use hedging instruments to hedge against price

risk (Simmons, 2002; Panell et a1. 2008).

 

2 CBOT Ethanol Futures, The delivery Process, url: http://www.cbot.com/cbot/docs/7440 1 .pdf, viewed on

07/04/08



1.3 Background Literature

Historically, hedging has been one of the most effective risk management strategies used

by competitive firms to deal with price uncertainty (Peck, 1975; Johnson, 1960). An

optimal hedge ratio is usually defined as the proportion of a cash position that should be

covered with an opposite position on a futures market (Myers, 1991). Static hedge ratios

are obtained by regressing returns in the spot market on the return in the futures market.

Given the restrictive assumptions underlying static hedging, several dynamic hedging

strategies have been developed where hedgers may be able to improve hedging

performance. Anderson and Danthine (1983) generalize the static hedging model to a

dynamic framework that allows the hedger to update the hedge as new information

arrives. The cash-holding period is divided into discrete time intervals such that at the

end of each interval, futures positions are ‘marked to market’ and the size of the hedge

may be adjusted. At the end of the final period, the cash position is liquidated along with

any remaining futures positions. However, this study assumes no basis risk and negative

exponential utility with normally distributed random variables. Duffie and Jackson

(1987) solve the optimal futures hedging problem in continuous time settings such that a

hedge is defined as a vector stochastic process specifying a futures position in each

futures market. A hedge is considered optimal if it maximizes the expected utility of

terminal wealth, which is the sum of the market value of a committed portfolio of spot

market assets and the value of the margin account on termination. Mathews and

Holthausen (1991) developed a multiperiod hedging model that allows for periodic

adjustment of the hedge while minimizing the producer's profit variance. The study



concluded that simple models may perform better for simple hedges, while the multi-

period model with adjustable hedges may perform better under complex hedging

situations such as those involving cross hedges. Karp (1987) developed a dynamic

hedging problem with stochastic production. Myers and Hanson (1996) derived an

optimal dynamic hedging rule where futures positions can be updated at regular intervals

over a cash-holding period. The paper assumes cash positions to be nonstochastic and

current futures price to be an unbiased predictor of upcoming futures prices.

To account for commodity price volatility, the possibility of autocorrelation in

spot and futures prices, and to investigate the effect on hedging strategy with the arrival

of new information, dynamic hedging methods may be more appropriate in many

applications. The commonly used approaches for estimating time-varying optimal hedge

ratios on futures markets are the moving sample variances and covariances approach and

generalized autoregressive conditional heteroscedasticity (GARCH) model of Bollerslev

(1986). Over the last decade, several studies on dynamic hedging have demonstrated that

hedging models, particularly GARCH, which factors in the dynamic relationship between

spot and futures contracts, outperforms traditional hedging models in hedging

effectiveness (Cecchetti, Cumby and Figlewski, 1988; Kroner and Sultan, 1991; Park and

Switzer, 1995). Baillie and Myers (1991) adopted the bivariate GARCH to estimate the

optimal hedge ratio. They found that the resulting optimal hedge ratio varies with time

and its effectiveness is better than those of the OLS constant hedge ratio models.

To avoid losing long-run information when dealing with the issues of

nonstationarity, Krehbiel and Adkins, (1993) utilized cointegration to illustrate the long-

run relationship between variables, as suggested by Engle and Granger (1987). If the spot



and fiitures price series are nonstationary in levels, but stationary in first differences and

additionally if a linear combination of the series is stationary, then the series are said to

be cointegrated. An Error correction model (ECM) combines the long run, cointegrating

relationship between the levels variables and the short run relationship between the first

differences of the variables (Banerjee et al., 1993).

1.3.1 Background Literature on Hedging in the Ethanol Industry

Ethanol was introduced in the CBOT futures trading list in March, 2005. According to

Funk et al. (2008), CBOT ethanol contracts may add efficiency to the cash ethanol

market. CBOT futures contracts are a source of pricing information for producers,

marketers, and purchasers of ethanol. Dahlgram (2009) examines the effectiveness of

one-through eight-week ethanol hedges between 2005 and 2008. The study concludes

that ethanol inventory hedging effectiveness is significant for two-week and longer

hedges and increases with the hedging horizon. The analysis also concludes that ethanol

futures are significantly superior to gasoline futures for hedging ethanol price risk for

two-week and longer hedges. The study by Franken and Parcell (2002) estimated the

cross-hedge relationship between New York Mercantile Exchange (NYMEX) unleaded

gasoline futures price and Michigan spot ethanol price. The cross-hedge ratios varied

from 0.175 to 0.418 depending on the hedging period. The hedging effectiveness

increased for longer cross-hedging periods. The study also concludes that considerably

fewer gallons of unleaded gasoline futures are required to hedge a particular amount of

ethanol. However, with a typical 50 million gallon/year ethanol producing plant, the



quantities of gasoline futures required to implement an effective cross-hedge ratio should

not be a major deterrent for the producers to engage in cross hedging. A study by Brinker

et a1. (2007) used four locations for cash DDGS prices, namely Atlanta, Boston, Buffalo

and Chicago markets. The estimated hedge ratios for the four locations are similar in

value with very little variation in both the corn and soybean hedge ratios. The study

suggests that a combination of both corn and soybean meal futures contracts provides a

hedge that effectively manages DDGS price risk.

10



1.4 Generalized Dynamic Hedging Model

Consider an ethanol plant operating with fixed production capacity. Corn and natural gas

are the main inputs used in the production process, with ethanol and Distiller's Dried

Grains with Solubles (DDGS) being the primary outputs. Other than DDGS, all the

commodities are traded in futures markets.

The producer faces a non-stochastic production process (i.e. no yield risk) with

fixed scale ofproduction. As discussed in the previous section, the producer is exposed to

price and basis risk. Suppose the producer has a fixed cash position for corn, natural gas,

ethanol and DDGS. The cash position for the agent represents a commitment to buy

inputs or sell outputs, in known quantities, in the future. Future prices of the products are

stochastic at earlier periods so there is price risk over the cash-holding period (Myers and

Hanson, 1996). Producers may hedge price risk by establishing futures contracts. Even

though ethanol has been produced and traded in the cash market in the U.S. for the last

couple of decades, futures have been traded on the CBOT only Since March, 2005. Given

the high correlation between ethanol spot and gasoline and crude oil futures prices,

producers may cross-hedge ethanol price risk by establishing futures contracts in these

commodities. Similarly, DDGS is not traded in the futures market but the producer may

be able to reduce price risk through cross-hedging cash DDGS with any actively traded

futures market commodity (Anderson and Danthine, 1981).

Assuming the cash positions for corn, natural gas, ethanol and DDGS to be fixed

and the futures positions of corn, natural gas, ethanol, crude oil and gasoline to be

stochastic, the decision process for an ethanol producer can be illustrated as follows:

11



t-i t

 

t +j

I
I

I

I
I

I

Establish Close out existing hedges All hedges are closed

- - for inputs (corn and natural out, ethanol and

antlcrpatory hedges gas), buy corn and natural DDGS are sold in the
with corn, ethanol,

natural gas, crude

oil and gasoline

futures contracts.

gas in cash market and cash market.

consider updating ethanol,

crude oil and gasoline

futures contract position.

where t —i is the initial time period, 1' is the time span before the production process

starts and j is the time required in the production of ethanol. The first stage (t -—i )

corresponds to the initial decision making stage where the producer initially makes

decisions regarding futures positions. The second stage (t) corresponds to the beginning

of the production process when the inputs are acquired in the cash market. The third stage

(t + j) corresponds to the end of the production process where the final outputs have

been produced and sold in the cash market.

With small production cycles (j = 40 to 75 hours) and monthly futures contracts,

multiple production cycles are completed between any two consecutive terminations of

fiitures contracts. We assume that the firm completes 10 production cycles in a month

and the entire spot market transactions are completed on the first day of the month. The

decision process for the ethanol producer is therefore reduced to a two-period model:

1 . .

t +1+j

l I

I I

All hedges are closed out, corn

and natural gas are bought from

the cash market; ethanol and

ethznohlnatgral gals‘, DDGS are sold in the cash

cm 6 01 an 8330 me.
market.

Establish anticipatory

hedges with com,
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We assume no transaction costs and that the firm does not have a liquidity constraint.

However it is important to note that even with small production cycles, anticipatory

hedging by the ethanol producers is a rational risk management strategy given the

considerable sunk cost of building the plant (Schmit et a1, 2008).

1.4.1 Multi-Period Model Specification

Consider an ethanol producer hedging in the ethanol, natural gas, corn, crude Oil and

gasoline futures markets. Since DDGS is not traded in the futures market, the producer

may mitigate DDGS spot price risk by cross-hedging using futures contracts of related

commodities. To keep the analysis simple, we model the optimal hedging strategy for

ethanol producers assuming ethanol to be the primary output. Let the producer initiate a

multiple period hedging strategy starting at I: 0 for input requirements and expected

outputs from time period t: lonwards, for the next T periods of production. The

producer establishes hedging positions for commodity bundles at each period against a

portfolio of futures contracts with maturities over each of the next T periods. We may

restrict our model by assuming that m inputs are being used to produce n =1 output.

Thus at t= O, the producer establishes positions in T x(m+1) futures contracts for

m + 1commodities for the next T periods. However, as he moves to the next period (i.e.

t =1), he completes all cash market transactions (i.e. buys inputs and sells output in the

spot market), liquidates the futures contract that has the closest maturity date lying

beyond the current month and updates the futures position for the

remaining (T — 1)x (m +1) futures contracts with additional available information. The
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following timeline illustrates the futures positions established and updated at each period

where btfl is a vector of futures positions held at time t for maturity at r .3

 

2 T—3 T—2 T—l T

I l I I . I I

I I I | I | |

b
0.1 hm b2,3

b

b b b bT—3 T—2
”“2 l,'1‘—2 2,T—-2 ’

1103-1 b1,T-—1 b2,T—l bT—3,T—1 bT-2,T—1

l’0,T b1“. b2,T bT—3,T bT_2,T bT—1,T

Let ft; be the 1x (m+ 1) vector of futures prices corresponding to bin at time t with

expiration at r .

Z Z Z

11,. =[f,3;, .143......my] [14,...” (1.1)

Z Z Z

hm —_- [bag ,b,} 12,} , ..... ,b,,'," ] [lx(m+l)] (1.2)

where y and (21,..., 2”,) represent output and inputs respectively. Let Pt be the vector of

stochastic cash prices for the commodities at time t (positive for outputs and negative

for inputs), At be the vector of spot positions of the commodities at period t(assumed

given) and Ct () be the non-stochastic cost function at t that depends on all inputs that

 

3 For example, b2,T represents the vector of futures positions held at time 2 maturing at T for all the

commodities that the producer is interested in hedging.
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cannot be hedged (i.e. labor, capital etc). Futures prices of the commodities at all maturity

dates (ft), hedge positions at all maturity dates (ht ), cash prices (Pt) and quantities

(At ) at period tare represented as follows:

ft = I‘LI’ftJ-I-I ’ft,t+2’°""ft,T LIX(m+I)X(T-I+I)] (13)

bt = Ibt,t+1’bt,t+2’"”’bt,T I[1x(m+l)x(T—t)] (1'4)

Pt -_— [13y ,—P,21 ,—P,22 , ..... ,—P,""] [H (m+1)I (1.5)

A =l z1 22 2m] (16)
t yr, t9 1’""" 9 t [lx(m+l)]

.

The futures position is negative for a short hedge and positive for a long hedge. We

assume that there is no initial cost of establishing futures positions because margin

requirements can be satisfied with interest-bearing government securities. Let us define

if” as:

ftL = Flt—13’ft—l,t+1’ft—l,t+2"""ft—1,T le(m+l)x(r_,+1)] (1'7)

The producer’s realized cumulative cash flow (In) at period tis given by:

7:, = (1 + rer,_1 — C,_l )+ Artb',_l + PtA't (1.8)

where r is a constant per period interest rate representing the hedger’s Opportunity cost of

funds, ”H is the producer's cumulative cash flow in period t-l and Aft = ft — ftL. The

producer’s objective is to choose a sequence of futures positions {bt_1 It; to maximize

the expected utility from cumulative cash flow at the end of period t = T ,
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Max E0u(7rT) (1.9)

{ht—1 IL]

where E0 denotes the expectation operator conditional on information available at t = 0 ,

and u is an increasing and strictly concave von Neumann-Morgenstem utility function.

The maximization is subject to the cash flow constraint (1.8) and can be solved using

stochastic dynamic programming. Consistent with Myers and Hanson (1996), we make

the following four assumptions:

Assumption 1 (Al): The futures market is unbiased in that prices follow a martingale,

ft =1}L +°t where et is a vector of zero mean random shocks which cannot be

predicted and dim(et)= [1 x (m + 1)x (T —t + 1)]. This implies that on an average, hedgers

cannot predict upcoming fiitures prices more efficiently than the aggregate market

prediction. Given that most studies have found little or no systematic bias in futures

market, this assumption is reasonable for practical applications (Martin and Garcia,

1981).

Assumption 2 (A2): Expectations of cash prices at each period evolve according to

P1. = E,(P,)+ V”, r >t where v” is a zero mean random shocks which cannot be

predicted and dimIvm I: [1 x (m + 1)]. This is a very general assumption and implies that

expectations are consistent. Let us define v as
t

vt =[(1+ r)T—(‘+1)vt,t+1,....,(1 + r)vt,T_1,vt,TJ (1.10)
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such that dim(vt ) = [1x (m +1)>< (T -t + 1)]. This might seem arbitrary, but will help us in

the following sections to obtain a more tractable form of the final solution.

Assumption 3 (A3): Expectations of innovations in cash prices given by:

E,+h]vt,,]= vt,T + 11”.”, r > t + h where 'lt+h,1- is a zero mean random shocks which

cannot be predicted and dim(1|t+h,, )= [1 x (m + 1)].

Assumption 4 (A4): The innovations in futures prices and expectations of cash prices are

related according to vt = etdt +st , where at is a vector of zero mean random shocks

which cannot be predicted and is independent of etat all lags, and 5t is a matrix of

parameters that may vary over time. Note that dim(8t ) = 1 x (m +1)x (T -t +1) and fit is

a [(m +1XT — t)x (m +1)(T — t + 1)] matrix. This assumption allows for a wide set of basis

relationship between the cash and futures price. Specifically, it does not require the

firtures price to be an unbiased predictor of the cash price at maturity.

We determine the optimal hedge ratio using backward recursion. At the last decision

period, T — 1, the hedging problem reduces to a one period problem:

Max ET-l [WIT )I

bT—I

st. ”7 .=(1+r)[7zT_1—CT_1]+AITIIIF_,+1)TA'T (1.11)

Second order conditions for maximization are satisfied by the concavity of the utility

function and the first order condition is given by:
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ET_1]u'(zzT)*eT]-.=o (1.12)

where AfT = eT according to assumption (A1). If 7rT and er are independent, then their

joint density factorizes and equation (1.12) may be written as:

ET—lIu'(”T)I* ET—l(eT):0 (1.13)

Thus we need to obtain an optimal decision rule for bT_1 which makes 7rT independent

of eT. Using assumptions (Al) through (A4), the cumulative cash flow constraint may

be written as (for details please refer to Appendix A1 .1):

”T = (1+rX7FT-1 “CT-1)+eTbT—l +IET—1(Pr)+eT5T +8TIAT (1-14)

In equation (1.14), er and ST are the stochastic components and by construction, 3T is

independent oferr. Let bin] = —5TA:1~; this renders cumulative cash flow independent

of movement of futures prices. Therefore b:r_1 = —6TAZI~ is the optimal hedging rule for

the two period problem. Note that it can be demonstrated that in a two-period scenario,

5Tis the matrix of the ratios of the covariance between one-period innovations in cash

and futures prices to the variance of one-period futures prices innovation, conditional on

information available at t = T —1. This is the standard one period cross hedging formula

that has been used previously in the literature (Kahl, 1983; Benninga, Eldor and Zilcha,

1984)

Following the dynamic programming algorithm, we move sequentially backwards

from the terminal decision date to derive decision rules for earlier periods. Assuming an

optimal strategy will be followed at T —1, the T— 2 period problem may be expressed

as:
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Max ET_2 ]u((l + r)(7r7~_1 — CT—l )‘I’ [ET-1(PT)+ 8TIAT II

bT-z

SI. ”IT—I = (I + I‘Xfl'T_2 - CT-'2)+ AfT_le_2 + PT-IAT-I (1.15)

Assuming the second-order condition is satisfied, the necessary condition for the optimal

bT_2 is given by:

(1+r)ET_2]u'(7r7-)*e1~_2]=0 (1.16)

The Objective is to find any bT_2 which makes IZ'T independent of eT_2 will satisfy

(1.16) and therefore be optimal. Let us consider the cumulative cash flow in period

T assuming the optimal one-period rule is used in period T —1 , given by equation (1.14).

”T =(1+rX7[T—1‘CT—l)+IET-1(PT)+3TIAT (1-17)

Substituting the expression for ”724 from equation (1.15),

= (1+ r)I(1+ r)(7r7._2 — CT~2 ) + AfT—le—Z + PT-IAT—I _ CT—1I+ [ET-1(PT)+ 8TIAT

2

=(1+ r)2 ”7-2 " 20 + rYCT-i +(1+ rkT—le—Z +(1+ rIPT-IAT—I

i=1
(1.18).

+IET—1(PT)+ ETIAT

Following assumption (A2), we substitute PT_1 = ET_2(PT_1 )+v1~_2,1~_1 and

PT = ET-Z (PT ) + vT—2,T into (1.18) yielding.

2 ' V '

=(1+ ”)2 ”T—z — 2(1 + ”II CT—i + (I + rIET-IbT—z +(1+ r)ET—2(PT—1)AT—I (1 19)

1:1 .

+(1+ ’)"T-2,T—1AT—l + ET—l [ET—2 (PT)+ VT—2,TIAT + STAT

Following the rule of iterated expectations we have:
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2 ' I '

=(1+ rIZ ”T—z - 2(1 + ”)1 CT-r‘ +(1+ ”FT—IbT—z +(1+ r)ET—2(PT—1)AT—1 (1 20)

1:1
. .

+ (1 + rIVT—2,T—1AT—1 + ET-2(PT)A:1~ + ET—IVT—2,TAT + STAT

Following assumption (A3), we substitute ET_1 IVT—2,T ] = VT—2,T + flT_1,T and obtain

2 ' V 0

=(1+ VIZ ”T—2 — 2(1 + r)I CT—r‘ +(1+ rIET-IbT—z +(1+ "IET-z (PT—1 )AT—l

i=1

+(1+ ’IvT—2,T—1AT-1 + ET—2IPTIAT + (VT—2,,T + 'IT—1,,TIAT + 8TAT

2 . . I

= (1+ r)2 ”T—z - Z (1 + r)! CT—i + (I + rICT-le—z +(1+ "IET-z (PT—1 )AT-l

i=1

. , (1.21).

I I AT_1 I

+ 8TAT + ET-z (PT)AT +l(1+ r)VT—2,T-1 , vT—2,TI|:A. ]+ flT—1,TAT

T

Let us define A? as:

T

At = [At , At+l ,..., AT J [lx(m+l)(T-t+l)] (I ..22)

Q A. -

Substituting v1~_l =](1+r)v1~_2,1~_1, VHS] and AL, =] T l]into(21)yields

AT

2 .
.

'
= (1 + r)2 ”F2 _ 2(1 + r)’ CT_,- + (1 + r)eT_1bT_z + (1 + 7)ET—2(PT—1)AT—l (1 23)

i=1

'F O T ' V

+ 8TAT + ET-Z (PT)AT + VT—1A1~_1 + 'IT—1,TAT

Following assumption (A4), we substitute vT_1 = eT_16T_l + aT_1 yielding

2 .
.

'
= (1 + r)2 ”7—2 _ 2(1 + r)’ CT_,- +(1+ r)eT-1b1~-2 +(1+ rIET—z (PT—l )AT—r (1 24)

i=1

.

+3TAT + ET-Z (PTIAT +(eT—15T—1 +3T—1)A¥_1 + flT—1,TAT

Thus to make 727* independent of e74 , we let
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* '

bT—z = '(1+ r)_1 5T—1AT—1

More generally, considering a multi-period model, we have:

*

b',_l =—(1+r)"Ta,A,T (1.25).

These decision rules make terminal wealth independent of futures price movements at

every t, assuming optimal rules will be followed in the future when positions are

updated. According to equation (1.25), the optimal hedging rule is a function of fit , the

matrix of the ratios of covariance to variance weighted by a discount factor, (1 + r)"T

and a matrix of cash positions. This reflects the fact that profits or losses from futures

price movements are marked to market in every period. Moreover, the hedging rule

obtained generalizes the dynamic hedging rule obtained by Myers and Hanson (1996) by

considering multiple commodities, accommodating for multiple cash market transactions

and allowing for cross-hedging. It is to be noted that if we reduce the multivariate set up

to a single commodity frame work with single cash market transaction at the terminal

period, dynamic hedge rule obtained in equation (1.25) reduces to that obtained by

Myers and Hanson (1996) (page 16).
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1.5 Data and Preliminary Statistics

Monthly price data from January 1993 to May 2009 has been used in the analysis.

Ethanol spot price data has been obtained from official Nebraska Government website

(Nebraska Government Website, 2009). The data source for corn and DDGS spot price is

the United States Department of Agriculture (USDA, 2009). Futures price data for corn,

natural gas, gasoline and crude oil has been obtained from Commodity Research Bureau

(CRB, 2009). Spot price data for natural gas and futures price data for ethanol was

obtained from Reuters (Reuters, 2009). At any given point of time, ethanol and natural

gas has twelve outstanding futures contracts and corn has five futures contracts. Since

multiple contracts usually trade simultaneously for a given commodity, futures prices

form multiple time series corresponding to different contracts. Researchers usually follow

‘nearbys’ or ‘constant-maturity price series’ to convert discontinual futures price data

into continual time series (Holton, 2003). Following Park and Switzer (1995) and Myers

and Thompson (1989), to estimate the constant hedge ratio and the time varying static

hedge ratios, we consider the closing price of the nearby futures contract on the first

Wednesday of the month. Historic monthly risk free rate of return was Obtained from

Wharton Research Data Services (WRDS, 2009).

Analyses of the time series properties of the historic price data are important in

choosing the best model specification (Koutmos and Pericli, 1999). Descriptive statistics

for the price series are reported in table (1.1). Initial data analysis revealed high

correlation between crude oil and gasoline futures price, even in first differences. Thus, to

avoid the problem of multi-collinearity, our analysis does not include crude oil futures
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contracts. The estimated skewness and kurtosis for the times series indicate departure

from normality. Corn spot and futures price series exhibit evidence of fat tails, since the

kurtosis exceeds 3, which is the value under normality. The time series data, in general,

exhibits positive skewness, which implies that the right tail is particularly extreme.

The Shapiro-Wilk test examines non-nonnality in small to medium sized samples.

Table (1.1) reports the test statistics (W). Normality is strongly rejected for the spot as

well as the futures price data of all commodities. The Anderson-Darling test for normality

is also designed to detect departures from normality. According to the test statistics

reported in table (1.1), with the exception of ethanol futures price series, the rest of the

time series data are likely to be from non-normal distributions. Non-normality may be

due to temporal dependencies in the return series. Next we also conduct the Ljung-Box

test that tests whether there is any autocorrelation in the series or whether the

observations are just a set of random, identically distributed variables (Baillie and

Bollerslev, 2002). Table (1.1) presents the Ljung- Box test statistic(Q). According to the

P- value, we can say that there is autocorrelation in the series.

Several diagnostic checks on the distributional properties of the data were

performed to test for stationarity and presence of unit root for each of the price series.

The Durbin-Watson Test for serial correlation assumes that the disturbances are

stationary and normally distributed with mean zero. Since the reported Durbin-Watson

test statistics are far from 2, there is strong evidence that the errors are strongly

autocorrelated.

Next, we conduct the augmented Dickey-Fuller test (ADF) and the Phillips-

Perron Test (PP) to test for presence of unit root in the univariate time series. Table (1.2)

23



reports the results for the spot and futures price series data for levels and the first

differences. According to the ADF test results, some of the price series have unit roots

and become stationary on first differencing. The Phillips-Perron test is a test of a unit root

hypothesis on a data series. It reports three types of test statistics corresponding to zero

mean, single mean and trend. According to the Phillips-Perron test statistics, all the price

series are non-stationary in their levels and that with first differencing, price series are

rendered stationary. Thus the PP test confirms the presence of unit root in the time series

data. The results, in general, suggest that all variables are integrated of order one

(i.e. 1(1)).

Prior to testing the existence of cointegration in the model, we conduct pair wise

cointegration test among spot and futures prices while accounting for time to maturity

(T—r) (Engle and Granger, 1987). Time to maturity is included in the equilibrium

relationship to reflect the fact that cash and futures prices are expected to converge at

maturity (Moschini and Myers, 2002). Table (1.3) presents the results of these tests.

According to the trace statistics and maximal eigen value statistics, with the exception of

ethanol, natural gas, and corn spot against DDGS spot; and corn spot against gasoline

futures, the rest of the spot and futures price series are cointegrated at the 5% significance

level. To further explore possibility beyond pair wise cointegration, we test the

hypotheses whether spot and futures prices are cointegrated, sharing a common stochastic

trend (Engle and Granger, 1987).

Table (1.4) reports the Johansen Cointegration Test Results among the spot and

firtures price series. The first row tests the null hypothesis r = 0 against r > Owhere

rrepresents the number of linearly independent cointegrating vectors; similarly the
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second row tests r S lagainst r >1.The trace test statistics and the maximal eigen value

statistics are reported in columns 2 and 4 respectively. Results reported in Table (1.5)

indicate that there is one cointegrating relationship among the seven price series.

According to the results there is a feedback relationship between ethanol and gasoline

firtures and ethanol spot, corn and ethanol futures, Significant at 1% level of significance.

Causal relationships have also been revealed between corn spot and natural gas futures,

natural gas spot against DDGS spot, ethanol spot and natural gas futures at 5% level of

significance. The rest of the feedback relationships may be interpreted accordingly.
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1.6 Empirical Application and Results

1.6.1 Constant Hedge Model

Following Chiu et al. (2005) and Myers and Thompson (1989), the traditional regression-

based hedging model may be represented as:

AP." = a3 + amt + 6 Afi‘ + PxAP,x_1 + ZrtAf.”(T)+ v... (1.26)

h

where AP,x and Aftx represents the rate of return for the spot and futures market for the

x'h commodity at period t, respectively, T represents the nearby expiration date, ,u,_l is

the error correction term, on is the prediction error, 6 is the hedge ratio,

and a; , alx , px , y}, are parameters to be estimated.

While estimating the constant hedge ratio, we partition the data set such that the

first set corresponds to the time period when ethanol futures contracts were not available

to the producers to hedge risk (i.e. January, 1991 to March, 2005) and is referred to as

‘Regime 1’. The second data set refers to data from April, 2005 onwards, when ethanol

futures contracts are available and is referred to as ‘Regime 2’. We assume that the

ethanol producer may cross hedge ethanol spot price risk using natural gas, corn and

gasoline futures contracts in both the regimes.

Once the cointegrating relationships and the time to maturity effects have been

evaluated, we estimate equation (1.26) (Krehbiel and Adkins, 1993). We derive the hedge

ratio for ethanol, corn and natural gas assuming that in addition to the commodity’s own
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futures contracts, the ethanol producer can also cross hedge ethanol spot price against

gasoline futures contracts.4 Results from constant hedge models are displayed in table

(1.6). In regime 1, we cross hedge returns from ethanol spot market against returns from

natural gas, corn and RBOB gasoline futures markets. After correcting for

autocorrelation, the constant cross-hedge ratio to hedge returns from ethanol spot market

using returns from natural gas futures market is 0.0842, significant at 1% level of

significance. This implies that for every gallon of ethanol produced and sold in the spot

market in regime 1, on an average, the producer may engage in 0.0842 thousand cubic

feet of natural gas futures contracts. Effect of error correction term with respect to natural

gas futures is significant at 1% level of significance. Results also indicate that lag of

ethanol spot price and natural gas futures price series are important in hedge ratio

determination, significant at 1% level of significance.

In the second regime ( i.e. April, 2005 to May, 2009), the ethanol producers may

use returns from ethanol futures market as the additional hedging instrument to hedge

against returns from the ethanol spot market. The constant hedge ratio using ethanol and

corn futures markets are 0.3018 and 0.0015 respectively, both significant at 5% level of

significance. This implies that for every gallon of ethanol produced and sold in the spot

market in regime 2, on an average, the producer may engage in 0.3018 gallons of ethanol

futures contracts and 0.0015 bushels of corn futures contracts. Since 1 bushel of corn

yields 2.7 gallons of ethanol, the cross-hedge ratio using corn futures contratcs is.

expected to be much less than unity (Hart, 2005). Results are consistent with those in

 

" No significant difference in results was observed when the analysis was conducted using crude oil futures

contracts instead of gasoline futures contracts.
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Dahlgram (2009) and Brinker et a1. (2007). Effect of lag ethanol spot price is also

significant at 1% level of significance implying the persistence in spot prices (table 1.6).

It is to be noted that there is a sudden drop in constant cross-hedge ratio for hedging

ethanol spot prices against natural gas futures contracts from 0.0842 to 0.0167 as we

move across regimes (figure 1.2). This coincides with the time period when ethanol

futures contracts were introduced in the CBOT commodity trading list. Moreover, the

constant hedge ratio estimates for hedging returns from natural gas spot market against

natural gas futures contracts jumps up from 0.3798 in regime 1 to 0.6849 in regime 2,

both significant at 1% level of significance (figure 1.5). Similarly, results indicate that

there has been an increase in constant hedge ratio estimates for hedging returns from corn

spot prices against corn futures prices from 0.0025 in regime 1 to 0.009 in regime 2, both

significant at 1% level of significance (figure 1.6).

1.6.2 Time Varying Static Hedge Model

To estimate the time varying static hedge model, we estimate equation (1 .26) for different

sample periods of twelve month windows starting from January, 1991 to May, 2009

(Myers, 1991). For example, the first estimate is obtained by estimating equation (1.26)

for the time period of January, 1991 to December, 1991. Similarly, the second estimate is

obtained by estimating equation (1 .26) for the time period of February, 1991 to January,

1992.

Consistent with constant hedge ratio estimation, we derive the time varying static

hedge ratio for ethanol, corn and natural gas assuming that in addition to the
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commodity’s own futures contracts, the ethanol producer can also cross hedge ethanol

spot price against gasoline futures contracts. Figure (1.2) illustrates estimated optimal

cross-hedge ratio paths for hedging ethanol spot prices against natural gas futures

contracts using moving sample variances and covariances over the first and second

regime. Similarly, figure (1.3) illustrates the optimal hedge ratio paths for hedging

ethanol spot prices using nearby corn futures contracts. Given that com futures contracts

provide effective hedging instrument to hedge ethanol spot price risk in the second

regime (i.e. April, 2005 to May, 2009), for analysis of cross-hedge ratio using corn

futures contracts, we focus our attention exclusively on the second regime. Results

indicate that the time varying static hedge ratio towards the beginning of the second

regime is large and volatile. However, from end 2008 onwards, the hedge ratios seem to

converge to the corresponding constant hedge ratio estimate, (i.e. 0.0015). Figure (1.4)

displays the time varying hedge ratio path to mitigate ethanol spot price risk using nearby

ethanol futures contracts in regime 2. Even though the constant hedge ratio over the

sample period is 0.3018, the time varying static hedge ratios to hedge returns from

ethanol spot market using returns from ethanol futures market exhibits variability over

time. This may be due to the volatility in ethanol futures trading volume over the time

period (Reuters, 2009).

Figure (1.5) and (1.6) illustrates the optimal hedge ratio path for hedging natural

gas and corn spot price series against near-by natural gas and corn futures contracts

respectively. Results suggest a change in hedging strategy by ethanol producers to hedge

its input and output spot price risk.
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1.6.3 Generalized Dynamic Hedge Model

For a simple illustration of the GDH rule derived in this paper (equation 1.25), we restrict

our empirical analysis to two commOdities (i.e. ethanol, the primary output and natural

gas, one of the primary inputs) and a three period time frame. Given that ethanol futures

contracts are available for trading only since March, 2005, we restrict our analysis in

regime 2. Consistent with equation (1.3), let us define ft =]ft,t+1,ft,t+2] where

ethn

ftt+1lft,t+lftt,+lI' Thus

ft 41::th frng,t+lftertfig’fft,t+2lI1X4I (1’27)'

In deriving the optimal hedging rule for the GDH model, key assumptions made are

given by (A1) through (A4). During empirical estimation, it may be desirable to impose

these assumptions. In a two commodity-three period framework, assumption 1 (A1) may

be written as:

ethn ethn

IAftt+l ’ Aftng,t+1 ’ Aft,t+2’ Afrngt+2 (1.23).

The price vector given by equation (1.5) may be restated as:

th n

Pt = [pf " ,_p, 8]“le (1.29).

Following assumption 2 (A2), we can restate price in period t +1 and t + 2 as

(1+r)Pt+1=Er((1+r)Pt,+1)+(l+r)vtt+l and

PHI-_ E1(Pt.‘+2)+vtt+2

Combination of the two price vectors may be stated as:

[(1 + r)Pt+lsPt+2I= Er[(1+r)Pt+1,Pt+2I+I(l+r)vr,t+1,vr,r+2]
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[Ft]=Et[l:t]+vt (1.30)

where Pt =I(1+ r)Pt+19Pt+2I and vt =I.(1+ r)"t,t+l th,t+2 I

Utilizing the relationship between vt and et under assumption 4 (A4), equation (1.30)

may be written as:

[Pt]=Et[Pt]+et8t +et (1.31).

A more appropriate way of expressing equation (1.30) would be to include an additional

set of control variables that include additional information available. More specifically,

equation (1.31) may be written as:

[Pt]=E,[Pr]+orXt +Aft8t +3, (1.32)

~

where Xt is a set of variables in the information set predicting Pt ,0: is a vector of

unknown parameters and fit is a 4 x 4 matrix. This is a very general representation of the

estimated model that has been implemented in this paper and can incorporate any

particular model explaining spot prices. For example, to model spot prices with AR(1)

specification, we model E, [Pt] in the following way:

Pt =flPt-1'I'Yt (1.33).

Then the estimated model would be

Pt =flPt—I‘I'aXt +Aft5t+pt
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The OLS estimate of fit may then be substituted in equation (1.25) to obtain the optimal

*

dynamic hedge bt_1 in period t— 1.

Next we attempt to empirically examine the GDH model developed in this paper.

Figures (1.7) and (1.8) reports the persistence in ethanol and natural gas spot price. The

persistence in ethanol Spot price ranges from 0.1 to 0.89. However, the persistence in

natural gas spot price has a bigger range (i.e. from 0.07 to 1.2). Figure (1.9) illustrates the

dynamic path of hedge positions ethanol producers may establish to hedge returns from

ethanol spot market using returns from natural gas and ethanol futures contracts. Results

indicate that paths representing dynamic hedge positions set in period 0 with maturity in

period I (the graph represented by *) and hedge positions set in period 0 with maturity in

period 11 (the graph represented by +) follow each other closely. However, the optimal

hedge path representing updated hedge position set by the producer in period I with

maturity in period 11 (the graph represented by #) deviates from the former two graphs.

This may reflect the effect of new information arrival on the optimal hedge path,

assuming no transaction cost for updating hedge positions. Similarly, figure (1.10)

illustrates the optimal path of hedge positions to mitigate natural gas spot price risk using

natural gas and ethanol futures contracts. In this time period, the static hedge ratios to

mitigate ethanol and natural gas spot price risk are -1.1 and .03 respectively.

Figure (1.11) compares the cumulative cash flow earned by the ethanol producers

using different hedging techniques. The graph (represented by ‘*’) illustrates the

cumulative cash flow path under the three-period dynamic hedging model. Similarly, the

graphs (represented by ‘x’ and ‘#’) represent the cumulative cash flow under no-hedge

and constant hedge strategies respectively.
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1.6.4 Performance Test

Performance test results for constant hedge model, time varying static hedge model and

GDH model as compared to a ‘no hedge’ scenario are reported in table (1.7). Given the

fluctuations in cumulative cash flow caused by volatility in ethanol, natural gas and corn

spot prices, the ethanol producer establishes futures contracts to minimize spot price risk.

The producer’s wealth at the end of the period equals the sum of net gain on futures

transactions and net cash value from spot market transactions. The futures positions can

be adjusted on a monthly basis. Performance is evaluated in terms of effects on the

variance of the producer’s cumulative cash flow position for the three types of hedging

techniques compared to ‘no hedge’ strategy.

1.6.4.1 Constant Hedge Model

Results indicate that in regime 1, producers may utilize constant hedging technique to

hedge returns from ethanol spot market using natural gas futures contracts. This

decreases variance of cash flow returns by 0.2902%. Interestingly, in regime 2, utilizing

corn and ethanol futures contracts as hedging instruments, the producer may be able to

decrease variance of cash flow returns by 3.2819%. However, magnitude of variance

reduction and direction of change varies across natural gas and com. If the producer

engages in constant hedging technique to hedge natural gas spot price against natural gas

futures contracts, variance of cumulative cash increases by 3.0354% in regime 1.

However, it decreases by 2.2805% in regime 2. Similarly, utilizing constant hedge

strategy, the producer may mitigate returns from corn spot market using returns from
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corn futures contracts. Results indicate a decrease in variance of cumulative cash flow

returns by 3.7722 and 8.7670 percentage points in regime 1 and 2 respectively.

Next we consider the effect of hedging on the portfolio comprising of ethanol as

the primary output. and natural gas and corn as the two primary inputs. Under constant

hedge strategy, variance of cumulative cash flow decreases by 2.1216% and 0.9978% in

regime 1 and 2 respectively.

1.6.4.2 Time Varying Static Hedge Model

According to the analysis, in regime 1, hedging ethanol spot price using time varying

static hedge strategy decreases the variance of cash flow returns by 0.2315%. Similarly,

utilizing this strategy to mitigate natural gas spot price risk using natural gas futures

contracts, the producer is able to decrease variance of cumulative cash flow by 0.0944

and 1.0155 percentage points in regime 1 and 2 respectively. Results for hedging corn

spot prices may be similarly interpreted. Next we analyze the performance of time

varying static hedge strategy while considering the portfolio of commodities (i.e. ethanol,

natural gas and corn). Variance of cumulative cash flow decreases by 1.9514 and 4.1662

percentage points in regime 1 and 2 respectively.

1.6.4.3 Generalized Dynamic Hedge Model

Next we analyze the performance of the GDH model developed in this paper. To

demonstrate a simple application of the model and test its effectiveness, we consider two

commodities, namely ethanol and natural gas and limit the analysis to three periods.

Results indicate that producers can effectively reduce variance of cash flow return by
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13.2105% by engaging in the three period hedging strategy as opposed to the ‘no

hedging’ technique. Similarly, the producer may reduce the variance by 11.4222% under

the constant hedge rule, assuming no transaction costs.
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1.7 Conclusion and Policy Implications

This study develops a discrete-time dynamic hedging model for ethanol producers in a

multiple commodity-period framework under expected utility maximization and basis

risk. The basic assumptions made are futures markets to be unbiased and the size of the

cash positions to be nonstochastic. A typical ethanol producer, to mitigate price risk for

inputs and outputs, initiates a multiple period hedging strategy at initial time period for

the next T periods of production. As he moves to the next period, he completes all cash

market transactions and liquidates the futures contract that has the closest maturity date

lying beyond the current month. With new information available, he updates the futures

position for the remaining futures contracts. We derive the sequence of optimal hedging

positions at each time period that minimizes the variance of cumulative cash flow of the

ethanol producer at the end of periodT . The model concludes that the Optimal dynamic

hedge depends on interest rates, the length of time remaining in the cash-holding period,

and a particular covariance-to-variance ratio. The hedging rule obtained generalizes the

dynamic hedging rule obtained by Myers and Hanson (1996) by considering multiple

commodities, accommodating for multiple cash market transactions and allowing for

cross-hedging.

Next the study compares dynamic hedge ratios and hedging effectiveness using

the optimal hedging rule derived in this paper and the dynamic error-correction hedging

model utilizing moving sample variances and covariances. Given that ethanol was

included in the CBOT futures trading list on March, 2005, the ethanol producers has the

option to hedge against ethanol futures contracts from March, 2005 onwards. Empirical
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results Show that natural gas futures contracts may have been a good cross-hedging

instrument prior to this time period. However, post March, 2005, ethanol producers may

effectively hedge using ethanol futures contracts and cross hedge using corn futures

contracts. Natural gas spot and corn spot price risk may be hedged effectively using their

respective futures contracts. The performance test results indicate in regime 1, under

dynamic hedge strategy, variance of cumulative cash flow of the portfolio decreases by

1.9514%, where as, it decreases by 2.1216% under constant hedging strategy. However,

in the second regime, with ethanol futures contracts being the additional hedging

instrument available, the variance decreases by 4.1662% and 0.9978% under dynamic

and static hedge strategies respectively.

Dynamic hedging model performs better than the ‘no hedge’ scenario in reducing

the producer’s variance of cumulative cash flow. For a simple illustration of the hedging

model derived in this paper, we consider a three-period and two commodity framework.

Performance analysis indicates a 13.2105% decreases in variance of cumulative cash

flow compared to the no-hedge scenario where the producer only engages in cash market

transactions. Similarly, the producer may effectively 11.4222% in variance of cumulative

cash flow employing static hedging strategy. Given the data limitations, results are very

encouraging.

The solution to the dynamic hedging model derived under the generalized set up

is most effective provided there is little or no uncertainty surrounding the size of the cash

position being hedged and also if the assumption of an unbiased futures market is a good

approximation. We also assume no transaction cost for setting up and updating hedge

positions. An extension of the current work may be to derive the optimal dynamic
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hedging rule relaxing the above assumptions. The empirical analysis is restricted to the

commodity set related to the ethanol industry. The effectiveness of the hedging strategy

may be tested using a wider set of commodities. Moreover, this paper considers futures

contracts as the risk management tool. Future research work may consider discussion and

analysis of options and forward contracts as alternative risk management tools by the

agricultural producers and analyze relative efficiency of each of these contracts with

respect to futures contracts.
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Chapter 1 Appendix
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A1 .1 Derivation of Cumulative Cash Flow

The culumlative cash flow in terminal period T is given by equation (1.11):

7:, =(1+errT_1 —CT_1]+ArTIr1r_l +PTA'T (1.11)

Using assumptions (Al) and (A2), the cumulative cash flow constraint may be expressed

as:

”T =(1+r)(”T—1 ‘CT—II'I‘eTbT—l + [ET—1(PT)+ VT—1,TIAT (1-11a)

”T =(1+ ’X”T—1 - CT—1)+ eTl’:1‘—1‘I'IET—1(PT)+ VTIAT (1-11b)

Using assumptions (A4), equation (1.11b) may be restated as:

”T =(1+rX”T—1 —CT—1)+eTbT—1+IET-1(PT)+9T5T +8TIAT (1-14)
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Table 1.3

Johansen Test Results for pair wise Cointegration between Spot and Futures

Prices, accounting for ‘Time to Maturity’
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pair of prices Number of Null Trace Maximal Eigen

lags in VAR hypothesis Statistics Value Statistics

Ethanol Spot/ Ethanol 2 r = 0 47.3 809** 38.0423”

futures r S1 9.3386 8.9990

r S 2 0.3395 8.9990

Ethanol spot/ DDGS spot 2 r = 0 10.0418 9.6158

r S 1 0.4260 0.4260

Ethanol spot/ Gasoline 2 r = 0 42.9541 ** 38.2552“

futures r S 1 4.6989 4.5759

r S 2 0.1230 0.1230

Ethanol Spot/ Natural gas 2 r = 0 46.8761 ** 35.0760“

futures rgl 11.8001 11.6121“

r S 2 0.1880 0.1880

Ethanol Spot/ Corn futures 2 r = 0 75.2361 ** 65.0783“

r S1 10.1578 10.0958

r S 2 0.0620 0.0620

Natural gas Spot/ Natural 2 = 0 67.9993” 51.6840"

gas futures r 31 16.3152** 16.0424“

r S 2 0.2728 0.2728

Natural gas Spot/ Ethanol 2 = 0 49.2950“ 40.2994“

futures r s 1 8.9956 8.7722

r S 2 0.2234 0.2234

Natural gas Spot/ Corn 2 r = 0 65.4804" 60.83 80**

futures r 31 4.6424 4.6138

r S 2 0.0285 0.0285

Natural gas Spot/ DDGS 2 = 0 4.7151 4.7073

3110t r S 1 0.0078 0.0078

Corn Spot/ Corn futures 2 r = 0 132.7806" 86.0461 **

r S1 46.7345“ 46.5533"

rS2 0.1812 0.1812

Corn Spot/ DDGS spot 2 = 0 22.3451 18.6640

r S1 3.6811 3.5583

r S 2 0.1229 0.1229

Corn Spot/ Gasoline futures 2 r = 0 15.9986 11.2633

r S 1 4.7354 4.6665

r S 2 0.0689 0.0689

Corn Spot/ Ethanol futures 2 = 0 42.5180“ 40.1154M

r S 1 2.4027 2.3425

r S 2 0.0601 0.0601

Corn Spot/ Natural gas 2 r = O 35.8036M 28.7524M

futures r 31 7.0512 6.9845

r S 2 0.0667 0.0667      
** implies significance at 5% level
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Table 1.4

Johansen Cointegration Test Results among the Spot and Futures Price

Series, accounting for ‘Time to Maturity’
 

 

 

 

 

 

 

 

  

Null Trace 5% Critical Maximal Eigen 5% Critical

Hypothesis Statistics Value Value Statistics Value

r = 0 143.4892” 140.74 52.3455“ 47.99

r S1 91.1436 109.93 30.6705 41.51

r S 2 60.4731 82.61 22.5775 36.36

r S 3 37.8956 59.24 17.9234 30.04

r S 4 19.9723 39.71 10.8647 23.80

r S 5 9.1075 24.08 6.3021 17.89

r S 6 2.8054 12.21 2.3242 11.44

r S 7 0.4813 4.14 0.4813 3.84     
 

** implies significance at the 5% level
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Table 1.6

Constant Hedging Models
 

Hedgi_ng ethanol spot price using Near-by futures contracts
  

(1991, January — 2005, March)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Intercept 0.8436***

Error correction term with respect to natural gas futures price 0.8716***

Difference in natural gas futures price 0.0842***

Difference in com futuresLice 0.0000

Difference in RBOB gasoline futures price -0.0337

_I_._agethanol spotprice -0.8232***

3g natural gps futures price 0.0637***

(2005, April - 2009-May)

Intercept -0.0 129

gig ethanol spot price 0.3491 ***

Difference in ethanol futures price 0.3018"

Difference in natural gas futuresprice 0.0167

Difference in corn futures price 0.0015“

Difference in RBOB gasoline futuresprice 0.0022

Lag natural gas futures mice 0.0167
 

Hedging corn spotJirice usingjear—by futures contracts
  

(1991, January — 2005, March)
 

 

 

 

 

 

 

 

 

 

 

 

 

Intercept 1.8598***

Error correction term with respect to natural gas futures price 0.7030***

Difference in corn futures price 0.0025***

Difference in natural gas futures price -0.0330***

_I_.gg corn spot price -0.9051***

__Lagcom futures price 0.2088***

3g natural gas futures price -0.0440***

(2005, April - 2009-May)

Intercept 0. 1697

Difference in corn futures price 0.0090***

Difference in naturaljas futures price -0.0159

Lag corn spot price -1.0539***

3g corn futures price 0.9989***  
Hedging naturaljps spot price using Near-by futures contracts
  

(1991, January — 2005, March)
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
Intercept 3.4625***

Error correction term with respect to natural gas futures price 0.3489***

Error correction term with respect to corn futures price 0.2531 ***

Difference in natural gas futures price 0.3798 ***

Difference in corn futures price -0.0019***

rlpgg natural gas spot price -0.6602***

fig natural gas futures price 0.3793***

figcom futuresmice -0. 1819*"

(2005, April — 2009-May)

Intercept 0.0850

Difference in natural gas futures price 0.6849***

Difference in corn futures price 0.0012

3g natural gas spot price -0.6418***

Egnatural gas futures price 0.4135

Lag corn futures price 0.0255 
*, ** and *** represents significance at 10%, 5% and 1% levels respectively
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Comparison of the Effects of Hedging on Cumulative Cash Flow across

Table 1.7

 

 

 

 

 

 

 

 

 

 

 

 

Models*

Conventional Hedge Models

I Moving Sample Hedge I Constant Hedge

Regime 1 (January-1991 to March, 2005)

Ethanol Spot -0-2315 -0.2902

Natural Gas Spot -0.0944 3.0354

Corn Spot -1.1748 -3.7722

All commodities -1 .6814 -2.1216

Regime 2 (April, 2005 to May, 2009)

Ethanol SJ)0t 74565 ~3.2819

Natural Gas Spot -1.0155 -2.2805

Corn Spot -2.4579 8.7670

All commodities -4. 1662 -0.9978
 

Dynamic Two Period Hedge Model (Three Periodsy(April, 2005 to May, 2009)
 

Dynamic Model Constant Hedge
  Variance in Cash Flow  -13.2105  -1 1.4222
 

*Represents percentage change in variance of cumulative cash flow using different hedging techniques

compared to ‘no hedge’ scenario
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Chapter 2

Consumer Preference for Alternative Transportation Fuels: A

Conjoint Analysis

2.1 Introduction

Recent decades have witnessed persistent effort by the U.S. government to enhance

ethanol production and promote ethanol blended gasoline as an alternative transportation

fuel (Rask, 1998; Yacobucci 2006, 2008). Successful implementation of such mandates

and market acceptance of fuel alternatives may aid the government in solving ongoing

energy crises by slowing U.S. gasoline demand growth rates. Use of ethanol, considered

thecleanest liquid fuel alternative to fossil fuels, may also reduce greenhouse gas (GHG)

emissions, help prevent radical climate change and bolster local economies (Lin and

Tanaka, 2005; Niven, 2004). However, less energy efficiency and limited availability as

compared to conventional gasoline are some of the major drawbacks of alternative firels.

The pros and cons of ethanol blended gasoline as an alternative transportation fuels may

result in consumers holding heterogeneous preferences. Thus for policy prescriptions and

for strategic product positioning in the U.S. market, analyses of consumer preference for

alternative transportation fuels and welfare analyses are of vital importance.

We evaluate the characteristics of consumer preferences for alternative

transportation fuels with differing fuel attributes including fuel cost and availability,

emission level, bio-feedstock source, and purchase and maintenance cost of the
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appropriate vehicle. Alternative transportation fuels considered in this study are E-lO and

E-85 where E-x implies motor fuel blends of x% ethanol with (100 - x) % gasoline.

Ethanol may be derived from corn or cellulosic biomass including com stalks, wood

stalks and switch grass. Thus the choice set consists of a set of hypothetical fuels and a

set of real transportation fuel alternatives available in the market. We employ choice

based conjoint analysis to estimate consumer willingness to pay (WTP) to switch from

conventional gasoline to alternative transportation fuels in a U.S. based survey (Louviere,

1988; Lusk et al., 2003; Alfnes and Rickertsen, 2003). A latent segmentation approach is

employed to allow for and evaluate consumer preference heterogeneity (Boxall and

Adamowicz, 2002). Our analyses of consumers’ WTP for alternative transportation fuels

uses observed variables (i.e. the demographic and socio-economic characteristics) as well

as unobserved or latent variables. We also evaluate whether willingness to pay for

alternative fuels varies across consumer segments and how availability of alternative

fuels impacts social welfare. Three particular hypothetical situations are considered

where due to varied reasons, either conventional gasoline, corn grain based ethanol or

cellulosic ethanol is not available for consumption. We identify welfare effects across

consumer segments in each of these three cases.

The remainder of the paper is organized as follows. Section 2.2 gives an overview

on the existing research on alternative fuel vehicles and the methodology. Section 2.3

describes the latent class model. Section 2.4 presents a description on the research design.

Section 2.5 gives the empirical specifications. Section 2.6 presents the empirical results

and Section 2.7 concludes.
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2.2 Previous Studies

Studies on consumer demand for alternative transportation fuels are few and limited in

scope. Bhattacharjee et a1. (2008) measured willingness to pay for E-10 fuel by U.S.

consumers employing a contingent valuation (CV) technique in a simultaneous latent

variable equation framework. The authors found self-described liberals have significantly

higher WTP, WTP is higher for males, and WTP increases as familiarity with ethanol

increases. However, supporters of alternative fuels, but who are not sympathetic to

ethanol, have significantly lower WTP for E-10. Results Show that the mean WTP for

E10 is almost .049 cents higher than the prevailing national average price of regular

gasoline during the time of survey ($2.55/gallon,).

Several studies on the potential demand for alternative fuel vehicles have been

conducted over the last decade using discrete choice analyses (Ahn et al., 2008; Home et

al., 2005;). Potoglou and Kanaroglou (2007) examined the potential demand for

alternative fuelled vehicles in Canada. The study concluded that purchase tax reliefs and

low emission levels may attract potential buyers whereas limited fuel availability may

prove to be a major deterrent factor. Ewing and Sarigollu (2000) assessed preferences for

clean-fuel vehicles in Canada using a discrete choice experiment. The study concluded

that even though consumers value the environmental impact, vehicle performance

characteristics are critical decision variables. It also concluded that government

regulations are not sufficient to create a market for clean-fuel vehicles.

Following Boxall and Adamowicz (2002) and Greene and Hensher (2008), we use

a latent segmentation model to analyze consumer preference heterogeneity for alternative
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transportation fuel in the U.S. using an intemet based survey and employing choice based

conjoint analysis. This is the first known study to assess U.S. consumer preference for

alternative transportation fuels besides conventional gasoline.

Choice experiments present respondents with the task of choosing one alternative

among multiple product profiles, each described in terms of a generally common attribute

set. Traditionally, resulting choice data are modeled through models such as the

Multinomial Logit (MNL), Nested MNL, and Probit models (Swait and Adamowicz,

2001). However, each of these models suffers from several shortcomings. The MNL has

an error structure assuming Independence from Irrelevant Alternatives (11A). The IIA

property states that ‘the relative odds of one alternative being chosen over a second

should be independent of the presence or absence of unchosen third alternatives’

(McFadden, 1974). Moreover, conventional MNL assumes homogeneity in consumer

preference. That is, all respondents have the same preferences across alternative fuel

attributes (Lusk et al., 2003). To account for consumer preference heterogeneity, Boxall

and Adamowicz (2002) use a latent class model and introduces sociod'emographic

variables to understand systematic heterogeneity. The approach assumes that consumers

can be grouped into discrete segments where each segment is characterized by

homogenous preferences while preferences are heterogeneous across segments (Swait,

1994). The model simultaneously assesses the influence of latent variables such as

attitudes, perceptions, socioeconomic effects and choice-based attributes in the estimation

of the latent segments and predicting product choice (McFadden, 1986; Swait 1994).

Internet surveys offer the possibility of large sample sizes allowing the researcher

to investigate a range of methodological questions (Berrens, 2003). Internet-based data
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collection method has the potential to yield higher-quality data with lower nonresponse

rates and is less costly than traditional methods (Fleming and Bowden, 2009). According

to Lindhjem and Navrud (2008), data quality and welfare estimates are not significantly

different or substantially biased using Internet as the data collection mode of choice

compared to in-person interviews. A study by Kypri et a1. (2004) deals with nonresponse

bias in intemet surveys of alcohol use. The findings from the study indicate that the bias

resulting from nonresponse is arguably too small to be of concern with respect to

estimating other important attributes such as consumption levels, the incidence of

alcohol-related problems etc.

In response to the need for more rapid and iterative feedback on customer

preferences, researchers are increasingly employing web-based adaptive conjoint analysis

(ACA) methods that adapt the design of conjoint questions based on a respondent’s

answers to previous questions as opposed to the traditional non-adaptive design (Fixed).

A study by Dahan et a1. (2002) reveal that results from both methods exhibit a remarkable

level of consistency and this finding holds across estimation methods.
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2.3 Model of Fuel Choice

Random utility models are based upon the assumption that individual i derives utility

U,j (X,1) from selecting option j where Xi]- is a vector of attributes ofj as perceived by

individuali. The utility function, Ui]- (X ) is composed of two components, theij

deterministic component that depends on the attributes of the alternatives Vij- (X,1) and

the random component represented by the error term, 8,] :

Uij = Vij(Xl-j)+ 3,]. (2.1)

In this study, V,~ is the systematic portion of the utility function determined by the

alternative fuel attributes and their levels:

Vij = AX.)- v j = 4.3.6 (2.2)

V,-j=6 Vj=D (2.3)

where Xg. is the vector of choice attributes, ‘A’, ‘B’ and ‘C’ are alternative choices

available to the consumer, ‘D’ refers to the option Of not purchasing either of the three

alternatives and 5 is a constant. The fuel attributes (Xij) considered in the analysis are

fuel cost, fuel availability, level of emission, purchase and maintenance cost, and bio-

feedstock or not.

The latent class approach assumes that latent variables such as general attitudes

and perceptions and observable variables such as socioeconomic characteristics influence

segment membership and classifies the respondent into one of S segments (Swait, 1994).

The probability that a randomly chosen individual i chooses j and lies in segment

8 where s = 1,....,S is given by (McFadden, 1974; Swait, 1994):
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    ..I

where the first expression gives the probability of membership for respondent i in

segment 3 (i.e. firs) and the second expression gives the choice probabilities conditional

on segment membership (i.e. 7r,-IS(j)). us and A, are segment specific scale and utility

parameters respectively, fits are segment membership parameters and Z,- is a vector of

both the socioeconomic variables (11') as well as latent characteristics. Socioeconomic

characteristics used in this analysis are gender, age, level of education, income,

employment, race, family size, state of residency, vehicle characteristics and willingness

to buy a Flex Fuel Vehicle (FFV) in the next five years. This model permits choice

attribute data and individual consumer characteristics to simultaneously explain choice

behavior. Moreover, latent class approach relaxes the requirement of the analyst to make

specific assumptions about the distributions of parameters across individuals (i.e.

normality not assumed). The parameters, i.e. ls , [35, ,us ,or are estimated via maximum

likelihood methods. The log likelihood function may be written as:

lnL(auBIS)=fiZ Z aimj ln[i7ri|s(j)*”is] (2-5)

i=1 m jeA,B,C,D

where N is the total respondents who participated in the survey, m represents the total

number of choice sets per person for which the choice data were provided, j represents

the alternatives from the choice experiment and 6,-1- equals 1 if individual i chooses j and
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0 otherwise. The scale parameters a and p s are set to unity (Boxall and Adamowicz,

2002)
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2.4 Research Design

Our unique consideration of cellulosic biomass based fuel, which is not currently

available to consumers, necessitates our use of hypothetical choice experiments.

Following Gao and Schroeder (2009 AJAE), e-Rewards, Inc. a marketing research

company conducted an intemet based survey and collected complete response from 1,400

U.S. residents in January, 2009. Table (2.1) gives the descriptive profile of the stated

choices sample versus the 2000 U.S. Census. As is evident from the table, the sample is a

good representation of the population.

A questionnaire was developed that gathered information on the socio-

demographic characteristics of the respondents, their degrees of awareness and their

attitudes and perceptions on related issues such as the blender’s credit offered by the

government for every gallon of ethanol blended with gasoline, possibility of industry

level production of cellulosic ethanol etc. The demographic characteristics include age,

gender, education, annual income, number of adults and children in the family, state of

residency, vehicle characteristics, average number of miles driven annually, average the]

cost etc.

Six additional pieces of information were collected that were used in the latent

segment model. These involved a series of 22 statements (Appendix 2A.1) that

represented reasons why individuals may favor the usage of ethanol as an alternative fuel

based on environmental issues with reference to air pollution, level of GHG emission,

and probable effects on climate change, deforestation and loss of grasslands. The other

issues considered were the effect of production of corn based ethanol on the local
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economy in terms of job creation, income generation and opportunity for corn farmers.

Some of the geo-political issues considered were the nation’s dependency on foreign oil

and the possibility of food price volatility injected in the system due to increased corn

based ethanol production. Respondents were asked to rate the level of importance of each

statement on a 5 point Likert scale ranging from “Strongly Agree” to “Strongly Disagree”

(Crandall, 1980; Beard and Ragheb, 1983). The scores of the respondents were analyzed

with factor analysis to measure consumer’s attitude towards using ethanol as the

alternative transportation fuel.

The second part of the survey was an application of a choice experiment where

the respondents provide their choices among sets of alternative transportation fuels or

opting out from choosing any of these products (Alfnes, 2004; Lusk et al., 2003). We

personalized the survey to include choice experiments revealing resident preferences for

alternative transportation fuels based on information provided by respondents (i.e., car

type, miles driven per year, purchase/lease status) earlier in the survey. Table (2.1) lists

the attribute-level specification for the alternative fuel choice experiment:

2.4.1 Attributes of Alternative Fuels and Their Levels:

1. Fuel cost refers to the total annual cost of buying transportation fuel. It is a function

of fuel per gallon prices, fuel efficiency, and the average number of miles driven by

the respondent annually. Price of fuel per gallon refers to the price of the

transportation fuel per gallon. Fuel efficiency refers to the energy content/ mileage

per gallon of alternative transportation fuels.
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Level ofpollution and GHG emissions refers to the amount of health-damaging and

smog-forming airborne pollutants the vehicle emits and the level of green house gas

emitted in terms of the annual tons of C02 due to combustion of given volume of

ethanol blends as compared to gasoline.

Fuel Availability: Fuel availability is defined as the proportion of existing stations

offering fuels other than gasoline in the area. It may be measured by the percentage of

gas stations Offering the alternatives within a 5 mile radius from the respondent’s

residence.

Cost ofbuying and maintaining FFV: Includes purchase price Of a FFV, annual repair

and maintenance cost.

Feedstock: Feedstock refers to the basic ingredient the altemative transportation fuel

is derived from. At present, ethanol used in the commercial sector is predominantly

corn based. Cellulosic ethanol may be produced from a wide variety of cellulosic

biomass feedstocks including agricultural plant wastes (corn stover, cereal straws,

sugarcane bagasse), plant wastes from industrial processes (sawdust, paper pulp) and

energy crops grown specifically for fuel production, such as switchgrass (Moller,

2005)

2.4.2 Cheap Talk:

Current literature suggests willingness-to-pay is overstated in hypothetical valuation

questions as compared to when actual payment is required (Lusk, 2003). We introduced

cheap talk in our survey to eliminate the potential bias in hypothetical valuation

questions. Cheap talk refers to process of explaining hypothetical bias to individuals prior

to asking a valuation question.
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The experience from previous similar surveys is that people often state a

higher willingness to pay than what one actually is willing to pay for the

good. It is important that you make your selections like you would if you

were actually facing these fuel-vehicle choice decisions, noting that

allocation of funds to these alternative fuels means you will have less money

available for other purchases. Please place an “X” in the “I choose” box,

below the option that you would choose from each of the following

scenarios:
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2.5 Empirical Specification

In this choice experiment, a typical choice scenario (Figure 2.1) consisted of four

alternatives. The first three choices present the respondent with multiple different sets of

hypothetical alternative transportation fuels and vehicle choice. The underlying

assumption being that standard vehicles run on conventional gasoline or E-10 where

FFVs have the choice of running on gasoline, E-10 or E-85. The fourth option gives the

respondents an option to opt out. The conventional gasoline constituted the base

alternative with the levels of the attributes being held constant, excepting that of

respondent’s fuel cost. Attributes of the rest of the alternatives were varied in the design.

A design matrix was developed using SAS for designing discrete choice experiments and

considering 33"‘24*24"‘24"‘24 orthogonal main-effects design, yielding 31 scenarios

(Louviere et a1. 2000; Kuhfeld, 2005). The scenarios were randomly assigned into 4

blocks each consisting of 8, 8, 8 and 7 choice exercises respectively.

2.5.1 Factor Analysis:

The first step in developing the latent segmentation model involved a factor analysis Of

the 22 statements (motivational indicators) to provide estimates of the latent motivational

constructs which enter the membership likelihood function. The scores from the 22

statements were factor analyzed using principal component analysis with varimax

rotation (Sprotles And Kendall, 1986). We used confirmatory factor analysis to verify the

factor structure of the set of observed variables (Suhr, 2006). The analysis identified four

components of motivations for choice of alternative transportation fuels and the factor
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structure thus obtained explains 91.68% of the variance in the data. These motivational

components were labeled based on magnitudes of the loadings of individual statements

(Appendix 2A.l).

The first component was called “Economic and Environmental Effect” because

statements related to the positive biofuel economic impact of production and usage of

ethanol on the U.S. economy as well as the positive environmental effects loaded highly

in this factor. The second factor was labeled “Positive intentions toward biofirel” because

statements related to how positive individual effort may initiate changes towards

adoption of eco-friendly transportation fuel and also make other individuals

environmentally consciousness loaded highly in this factor. The third factor involved

statements related to the impact of production of corn based ethanol on food supply and

on the effect on food price volatility. This factor was labeled “Negative biofuel impact on

food”. The fourth factor was called “Crisis Overrated”. Scores of the four latent factors

were then calculated for each individual in the sample yielding four variables to be

included in the Z,- vector in equation (2.4), to explain latent segment membership.

2.5.2 Estimation of the Number of Latent Segments

In estimating the latent segment models, statistical criteria are used to select the ‘optimal’

number of segments in a set of estimations and the number of segments imposed varies

across estimations. The underlying idea being that as the number of segments increase,

the log likelihood value improves. However, the model fit gets compromised as the

number of parameters increases due to additional segments. Following Kamakura and

Russell (1989), this study uses two criteria to assist in determining the optimal number of

71

 



segments, the minimum Akaike Information Criterion (AIC) and the minimum Bayesian

Information Criterion (BIC) (Boxall and Adamowicz, 2002; Allenby, 1990).

2.5.3 Willingness-to-Pay Estimates and Welfare Measures

Consumer willingness to pay (WTP) estimates are of particular interest. Following Lusk

et a1. (2003) and Tonsor et al. (2009, CJAE), we quantify the value that consumers place

on each of the fuel-vehicle attributes by taking the ratio of the attribute coefficients to the

purchase and maintenance cost coefficient (multiplied by two if effects coding is

applicable) (Boxall and Macnab, 2000). In order to consider statistical variability in

parameter estimates, we utilize simulation techniques and generate 20,000 values of each

WTP estimate using a bootstrapping procedure proposed by Krinsky and Robb (1986).

More specifically, 20,000 observations were drawn from a multivariate normal

distribution parameterized by using the coefficients and estimated variance-covariance

matrix. The simulated WTP statistics from each model were utilized to empirically test

for differences in WTP preferences across segments. First, mean WTP estimates and 95%

confidence intervals were identified incorporating both statistical and preference

variability in LCM. We repeat similar simulation procedure to obtain the mean WTP

estimates and 95% confidence intervals for the MNL model.

We use the utility estimates to examine how restricted alternative fuel choice sets

affect consumer welfare. Other than unleaded conventional gasoline, our choice

experiment contains four different attribute levels for bio-feedstock: corn grain ethanol

and also ethanol derived from cellulosic biomass (i.e. wood, corn stalks and switch

grass). We estimate welfare impacts of government policies mandating the use of ethanol
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blended gasoline (i.e. unleaded conventional gasoline is no longer an option) and of

banning usage of corn grain ethanol considering the controversy linking food price

volatility with its increased production. Lastly, considering the fact that production of

cellulosic ethanol is still in the experimental stage, we examine changes in consumer

welfare if it never becomes available to consumers. Following Lusk et al. (2006), Small

and Rosen (1978) and Tonsor, Olynk and Wolf (JAAE, forthcoming), expected

maximum utility (EU) from consumeri ’3 choice set selection is given by:

EU,- = ln[z exp(V,.j )] + K (2.6)

1'

whereK is Euler’s constant and Vi]. is defined by equations (2.2) and (2.3). Under the

assumption of no income effects, general welfare changes may be given by:

CV,- = l 11]}: exp(V,-} )] — ln[z exp(V,-J(-))] (2.7)

7 j j

where CViis the compensating variation for individual i,7 is the marginal utility of

income, the 0 subscript refers to the initial state andl superscript refers to the new state

following some change in Vij- (Hanemann, 1982; Boxall and Adamowicz, 2002).
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2.6 Results and Discussion

In estimating the latent segment models, 1 to 6-segment solutions were attempted. The

log likelihood values at convergence reveal improvement in the model fit as segments are

added to the procedure, particularly with the 2, 3 and 4 segment models. This is evident

in the pseudo R-squared values which increase from the base of 0.074 to 0.341 with the 4

segment model. The minimum BIC and AIC statistics are clearly associated with the four

segment model (Boxall and Adamowicz, 2002; McLachlan and Basford, 1988).

2.6.1 Characterizing the Segments and Comparing the Models

The segment membership parameters (2.3) for the 4-segment solution are displayed in

Table (2.3). According to the segment membership probabilities, segment 1 and 2 each

had 20.9% members of the total 1400 respondents, 13.8% were members of segment 3,

and the remaining 44.4% belong to segment 4. Only the second and fourth segments have

significant, negative coefficients on the ‘opt out’ parameter. This indicates that the

members who belong to the first and third segments (approximately one-third of

consumers) are statistically indifferent to all options available.

The data revealed high correlation between the number of adults and number of

children in the household and also number of vehicles owned by the household. It also

revealed high correlation between age and employment status of the respondent. Thus we

included age of the respondent, plans of buying a FFV. in the next five years, number of

adults in the household and annual pre-tax household income in the set of demographic
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factors used in the analysis. Note that the parameters for the fourth segment are

normalized during estimation.

The utility function parameters for the multinomial logit (MNL) model and the 4-

segment model are displayed in table (2.4). We labeled the segments based on their

preferences (e.g., utility coefficients) as well as their demographic and socioeconomic

characteristics (e.g., segment membership variables) displayed in tables (2.4) and (2.3)

respectively. Segment one was labeled ‘Cellulosic Ethanol Acceptor’ since the members

who belong to this segments exhibit significant preference for ethanol derived from

cellulosic biomass (i.e. wood, corn stalk and switch grass). The second segment was

labeled ‘Corn Grain Ethanol Rejecter’ because members lying in this segment exhibit

disutility from the use of corn grain based ethanol. These segment members are however

indifferent to the use of cellulosic ethanol. Finally the third segment was labeled

‘Conventional Gasoline Acceptor’ because members in this segment exhibit disutility

from the consumption of wood and corn stalks based cellulosic ethanol. Members of this

segment however are indifferent towards corn grain ethanol and switch grass based

cellulosic ethanol. The fourth segment was labeled ‘Ethanol Acceptor’ since members

who belong to this segment exhibit preference for ethanol as the alternative fuel,

independent of the source for ethanol. They also exhibit sensitivity towards all the fuel

attributes, significant at 1% level of significance. More specifically, the parameters on

feedstock for production of ethanol (i.e. corn, wood, stalk and switch grass) are all

unifome positive and statistically significant unlike the other three segments.

According to the parameter estimates displayed in table (2.3), older individuals

and those belonging to lower household income with higher number of adults in the
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household are more likely to reject corn grain ethanol. Based on the latent variables,

individuals who have ‘Positive intentions toward biofuel’ (factor 2), ‘Negative biofuel

impact on food’ (factor 3) and ‘Economic and Environmental Effect’ (factor 1) are also

more likely to reject corn grain ethanol. However, individuals who believe that the

biofuel related crisis is overrated (factor 4) are less likely to reject com grain based

ethanol. Similarly, individuals who have plans of buying or leasing a FFV in the next five

years are less likely to lie either in segment ‘Corn Grain Ethanol Rejecter’ (segment 2) or

in ‘Conventional Gasoline Acceptor’ (segment 3).

It is to be noted that there are some anomalies in results that may be attributed to

data error. For example, everything else remaining the same, individuals characterized by

‘Positive intentions toward biofuel’ (factor 2) are more likely to lie in ‘Ethanol Acceptor’

(segment 4) as opposed to ‘Conventional Gasoline Acceptor’ (segment 3) or ‘Corn Grain

Ethanol Rejecter’ (segment 2) as reflected in table (2.3). This could be due to poor factor

analysis or poor random utility model setup or both and it may be difficult to separate out

the effects. Moreover, our choice experiment requires the respondent to make tradoffs

amongst multiple desirable alternatives. On the other hand, Likert scale requires them to

agree or disagree with the statement. Given the inherent methodological differences,

choice experiment results may not be completely at sink with Likert-scale judgments,

though both are derived from a common data set.5

According to the preference information displayed in table (2.4), parameters for

level of emission and purchase and maintenance cost are negative and statistically

significant for both MNL and the 4-segment models. Similarly, parameters for fuel

 

5 It is to be noted that we had similar conclusions from the latent class model run exclusively using the fuel-

vehicle choice variables and ignoring the latent factors.
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availability are positive and statistically significant across models. These results are

consistent with economic theory. However, parameters for fuel cost are variable across

the models and segments. Results from the 4-segment model imply that preference for

alternative transportation fuel increases for ‘Cellulosic Ethanol Acceptor’ (segment 1),

‘Corn Grain Ethanol Rejecter’ (segment 2) and ‘Ethanol Acceptor’ (segment 4) with a

decrease in fuel cost. However, the ‘Conventional Gasoline Acceptor’ (segment 3) set of

respondents are indifferent towards fuel cost. Moreover, the ‘Cellulosic Ethanol

Acceptor’ (segment 1) and ‘Ethanol Acceptor’ (segment 4) respondents have preference

for cellulosic ethanol (i.e. ethanol derived from wood, corn stalks and switch grass). On

the contrary, ‘Conventional Gasoline Acceptor’ (segment 3) exhibit disutility for wood

and corn stalks based ethanol and is indifferent towards the rest. Similarly, ‘Corn Grain

Ethanol Rejecter’ (segment 2) and ‘Ethanol Acceptor’ (segment 4) have reversed

preference for corn grain ethanol with the later segment exhibiting a preference for the

fuel. Differing magnitudes of estimates and degrees of significance across fuel attributes

and segments suggest preference heterogeneity among respondents. These effects are

absent in the single segment model which suggests that individuals would prefer

alternative fuel with lower fuel cost universally. According to the MNL model estimates,

consumers exhibit significant preference for cellulosic ethanol and derive disutility from

consumption of corn grain ethanol.

2.6.2 Willingness to Pay

In the latent class model, WTP estimates for each attribute specific to each segment is

simply the ratio of the parameter on the attribute to the corresponding parameter on the
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purchase and maintenance cost coefficient (multiplied by two because of effects coding,

when ever applicable).6 Table (2.5) presents the WTP estimates and corresponding 95%

confidence intervals for fuel attributes. According to the MNL model estimates, the

representative consumer is willing to pay 79 cents less in purchase and maintenance fees

for every annual dollar spent in fuel cost. They are also willing to pay an additional

$9,573.77 in purchase and maintenance cost for 100% increase in alternative fuels

availability in the existing gas stations within 5 miles radius from their respective

residence. Similarly, consumers reveal significant discount for level of emissions as they

are willing to pay $205.1 less in purchase and maintenance fees for every additional

pound of green house gas (GHG) emission caused by the combustion of unit gallon of

fuel. Additionally, the MNL estimates reveal that consumers exhibit significant

preference for cellulosic ethanol and derive disutility from consumption of corn grain

ethanol. The representative consumer is willing to pay $1,698.02 and $2,299.81 more in

purchase and maintenance cost for vehicles run on corn stalks and switch grass based

ethanol relative to unleaded gasoline. On the other hand, they are willing to pay

$1,243.17 less in purchase and maintenance fees for vehicles run on corn grain based

ethanol relative to unleaded gasoline.

Examining preference heterogeneity using a latent class model lays out more

intricate details. Even though mean WTP is consistently high across all segments, the

WTP for all other fuel attributes vary significantly across segments. In particular, the

latent class model indicates that the ‘Ethanol Acceptor’ (segment 4) exhibit preference

towards consumption of corn based ethanol over gasoline. Individuals who belong to this

segment are willing to pay an additional $1,074.49 in purchase and maintenance cost for

 

6 Willingness-to-pay values are in $ per purchase and maintenance cost units.
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vehicles run on corn grain ethanol over unleaded gasoline. However, ‘Cellulosic Ethanol

Acceptor’ (segment 1), ‘Conventional Gasoline Acceptor’ (segment 3) and ‘Corn Grain

Ethanol Rejecter’ (segment 2) exhibit indifference for corn grain ethanol over unleaded

gasoline. Similarly, ‘Cellulosic Ethanol Acceptor’ (segment 1), ‘Corn Grain Ethanol

Rejecter’ (segment 2) and ‘Conventional Gasoline Acceptor’ (segment 3) exhibit

disutility from higher fuel cost (mean WTP of -$10.59, -$2.72 and -$3.89 respectively) as

Opposed to ‘Conventional Gasoline Acceptor’ (segment 3) being indifferent towards the

fuel attribute.

The four classes are also very diverse in their valuations for ethanol derived from

cellulosic biomass over unleaded gasoline. Segments ‘Cellulosic Ethanol Acceptor’

(segment 1) and ‘Ethanol Acceptor’ (segment 4) exhibits high WTP for cellulosic ethanol

(mean WTP of $1,434.95 and $2,186.39 for wood based ethanol, mean WTP of

$2,917.57 and $3,404.62 respectively for corn stalks based ethanol and mean WTP of

$1,447.72 and $3,891.97 respectively for switch grass based ethanol). ‘Conventional

Gasoline Acceptor’ (segment 3) exhibit disutility from consumption of wood based and

corn stalks based ethanol (mean WTP of -$l3,137.82 and -$6,731.91 respectively) and

indifferent towards the consumption of switch grass based ethanol. ‘Corn Grain Ethanol

Rejecter’ (segment 2) is indifferent towards consumption of ethanol as alternative

transportation fuel in general. The willingness-to-pay values also convey some important

characteristics about consumer preferences for different fuel attributes. Consumers, in

general, are willing to pay large premiums for higher fuel availability. Similarly,

respondents who belong to ‘Conventional Gasoline Acceptor’ (segment 3) are willing to

pay large negative premiums so as to prevent wood based and corn stalks based cellulosic
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ethanol from being viable options as alternative transportation fuel. Even though the

estimated premiums appear large and reflect some overstatement of willingness to pay in

a hypothetical setting, we can be more confident about their relative magnitudes

assuming that hypothetical-bias is similar across attributes (Cummings et al., 1995; Fox

et al., 1998; Fox et al., 2001).

2.6.3 Consumer Welfare Evaluation

Table (2.6) presents estimates of welfare impacts across segments of restricting

alternative transportation choice sets in three distinct cases. The first scenario assumes a

hypothetical situation where government policy mandates the use of E-10 or E-85 (i.e.

ban use of unleaded conventional gasoline). Welfare estimates capture the change in

welfare that would result from moving from a world where consumers could choose

between conventional gasoline, E-lO or E-85 with ethanol derived either from corn grain

or cellulosic biomass and none to a world where the choice was only between E-10, E-85

and none. The welfare estimates can be interpreted as the maximum amount consumers

would pay to keep unleaded conventional gasoline in their choice set. The welfare

estimates from the MNL model implies that restricted choice set results in welfare gain of

approximately $346.09 for the representative consumer. This implies that on an average,

the consumers are willing to pay $346.09 to prevent the consumption of unleaded

conventional gasoline. Estimates for the four segments identified by the LCM reveal

mixed welfare effect across segments. Segments ‘Conventional Gasoline Acceptor’

(segment 3), comprising approximately 14% of the population have significantly large

welfare losses with restricted choice set (mean welfare loss being $2,000.00). On the
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contrary, ‘Cellulosic Ethanol Acceptor’ (segment 1) and ‘Ethanol Acceptor’ (segment 4),

comprising approximately 65% of the population, experience welfare gain as a result of

the ban (mean welfare gain being $546.38 and $1,089.53 respectively). However, the

welfare impact for individuals belonging to ‘Corn Grain Ethanol Rejecter’ (segment 3) is

not different from zero. It is to be noted that the above analysis assumes no income effect

as the set of alternative transportation fuel available to the consumer changes.7

In the second scenario, we consider the case where due to controversial debate

relating world food price volatility with the production of corn grain ethanol, the later

ceases to be one of the options in the alternative transportation fuel choice set (Trostle,

2008; Leibtag, 2008). According to the estimates of the MNL model, the new restricted

choice set leads to welfare enhancement for the representative consumer by

approximately $89.38. However, the 4 segments LCM portray a different story. Only the

‘Ethanol Acceptor’ segment, comprising of 44.44% of the population, experiences

welfare loss (mean welfare loss being $77.25). The welfare impacts for rest of the three

segments when faced with the restricted choice set are not different from zero.

At present, in the U.S., ethanol is predominantly produced by fermentation of

corn glucose. Given the nation’s significant agronomic base, technology development for

ethanol production from nonfood-plant sources, also known as cellulosic biomass, which

can be converted into fuel ethanol, holds promise (Lin and Tanaka, 2006). However,

current technology is still in the experimental stage. In the third scenario, we analyze

consumer welfare if cellulosic ethanol never becomes available to consumers. The 1-

segment model indicates significant welfare loss by the consumers if faced with the

 

7 Another reason explaining consumer’s gain in welfare when faced with restricted choice set may be

reduction in search cost. Moreover, in reality, the assumption of no income effect might not hold well.
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restricted fuel choice set (mean welfare loss being $330.78). As expected, the variation in

consumer welfare levels across the four segments reveals preference heterogeneity.

‘Cellulosic Ethanol Acceptor’ (segment 1) and ‘Ethanol Acceptor’ (segment 4),

constituting 65% of the evaluated consumer population have preferences for cellulosic

ethanol and hence experience welfare loss with the restricted choice set (mean welfare

loss being $362.64 and $674.87 respectively). On the other hand, ‘Conventional Gasoline

Acceptor’ (segment 3) experiences a welfare gain when exposed to the restricted choice

set (mean welfare gain being $1,420.00). The welfare impact for individuals belonging to

‘Corn Grain Ethanol Rejecter’ (segment 2) is not different from zero.
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2.7 Summary and Conclusions

In recent years, production of fuel ethanol by com grain fermentation or by conversion of

cellulosic biomass has gained momentum. Use of ethanol blended gasoline is also a

rapidly increasing alternative transportation fuel in the U.S. market. This study examines

consumer preference heterogeneity and estimates consumers’ willingness to pay (WTP)

to switch from conventional gasoline to alternative transportation fuels by employing

choice based conjoint analysis and applying latent segmentation approach.

Fuel-vehicle attributes used in the analysis are fuel cost and availability, emission

level, bio feedstock and purchase and maintenance cost of the appropriate vehicle.

Evaluated consumer base was segmented into four broad classes based on the

socioeconomic characteristics, latent constructs of the consumers as well as their fuel

attribute choice. Results from the latent class model indicate strong consumer

heterogeneity for fuel attributes. Analysis of consumer preference heterogeneity and

WTP may be of considerable value to policy makers.

Age, annual pre-tax household income and plans of buying or leasing a flex fuel

vehicle (FFV) in the next 5 years are some of the socioeconomic variables that influenced

the respondents’ choice of alternative transportation fuels. Our analysis indicates that

state of residency, specifically whether the respondent is from the Mid-West or from

California did not have a significant impact on decision choice made by the respondent.

Similarly, degree of awareness as indicated by the respondents did not play a significant

role in their decision making process. According to the parameter estimates of the latent

variables, individuals who are more economically and environmentally conscious are
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more likely to lie in the ‘Corn Grain Ethanol Rejecter’ segment. Similarly, individuals

who believe that production of corn based ethanol adversely affects production of corn

for human consumption and also affects overall food prices are more likely to belong

either to the ‘Cellulosic Ethanol Acceptor’ or the ‘Corn Grain Ethanol Rejecter’ segment.

Additionally, individuals who believe that the crisis involving production and usage of

transportation fuels is overrated are less likely to lie either in ‘Corn Grain Ethanol

Rejecter’ or in ‘Conventional Gasoline Acceptor’ segments.

The WTP estimates validate suspected consumer preference heterogeneity.

Results from the MNL model and the 4-segment model indicate that on an average,

consumers are willing to pay significantly higher amounts for higher fuel availability and

pay less for fuel cost and Green House Gas (GHG) emissions. Moreover, the WTP for

bio-feedstocks vary across the segments in the latent class model. Three particular

hypothetical situations are considered where due to varied reasons, either conventional

gasoline, corn grain based ethanol or cellulosic ethanol is not available for consumption.

The consumer welfare estimates indicate notable diversity among consumers in each of

the three cases. ‘Conventional Gasoline Acceptor’, comprising approximately 14% of the

evaluated consumer population experiences welfare loss when faced with a restricted

choice set with unleaded conventional gasoline being not an option, with mean welfare

loss being $2,000.00. Individuals belonging to ‘Ethanol Acceptor’ segment,

approximately 44.44% of the evaluated consumer population experiences welfare loss if

corn grain ethanol is not made available in the U.S. market as alternative transportation

fuel choice, with mean welfare loss being $77.25. On the other hand, if cellulosic ethanol

is not available as the alternative transportation fuel, individuals lying in segments
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‘Cellulosic Ethanol Acceptor’ and ‘Ethanol Acceptor’, constituting approximately 65%

of the sample set experience welfare loss under the restricted choice set, with mean

welfare loss being $362.64 and $674.87 respectively.

Thus analysis of consumer preference heterogeneity for alternative transportation

fuel and their WTP estimates may be important in determining marketing opportunities

for farmers and rural small businesses, biofirel producers, petroleum suppliers, and fuel

marketers. Such analysis may also aid the policy makers. Future research work may

consider some of the alternative transportation fuels available in the market, namely

hydrogen, liquefied natural gas, Liquefied Petroleum Gas (LPG), Compress Natural Gas

(CNG), Bio-diesel etc to estimate consumer preference structure and their WTP for

various fuel-vehicle attributes.
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Table 2.1

Descriptive Statistics
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

 

    

Total Number of Household Respondents (1400)

Survey 2000 US

Data Census

Statistics

Gender Females 46.49 49.1

Males 53.51 50.9

Age 20 years and less 1.21 28.60

21 - 30 years 15.83 13.63

31 — 40years 16.96 15.36

41 —50 years 14.55 15.11

51-60Em 12.99 11.03

61 — 70 years 27.04 7.23

71 — 80 years 10.93 5.78

81 years and over 0.50 3.26

Income Less than $20,000 12.63 22.10

$20,000 to $39,999 25.05 25.29

$40,000 to $59,999 22.07 19.66

$60,000 to $79,999 14.83 13.34

$80,000 to $99,999 9.30 8.37

$100,000 to $119,999 4.90

$120,000 - $139,999 2.91

$140,000 - $159,999 2.63 1 1.24

$160,000 - $179,999 1.49

$180,000 or more 4.19

Education Did not graduate from high school 0.78 19.60

Graduated from 13h school, Did not attend college 14.48 28.60

Attended college, no degree earned 23.85 21.10

Attended college, associates or trade degree earned 12.70 6.30

Attended college, Bachelor’s (BS. or BA.) degree 28.46

earned 15.5

Graduate or advanced degree (M.S., M.A., Ph.D., 17.89

Law School) 8.90

Other 1.85 -

Race White, Caucasian 80.27 75.1

Black, African American 9.01 12.3

Asian, Pacific Islander 1.49 3.7

American Indian 0.21 .9

Other 2.20 -

Mexican, Latino 6.81 12.5

Employmen Full-time employed 44.22

t Part-time employed 10.50 63.9

Unemployed 4.26

House maker 4.12

Retired 30.02 36.1

Student 4.47

Other 2.41
 

Source: U.S. Census, 2000 ; url : hip://factfinder.censusgov/home/saff/main.html?_lang=en.
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Table 2.2

Attributes and Levels of Alternative Fuel Choice Experiment 

   

 

 

 

 

 

Experimental Gasoline E-lO E-85

Design

Attributes

Fuel Cost ($) First level/ base calculated in the program based on available

information on primary vehicle class, approximate miles driven

per year and the average cost of fuel per gallon. The other 2

levels are 15% lower and higher than the base.

Fuel 100% (1) 90% (1) 90%

Availability(% (2) 75% (2) 75%

of existing (3) 50% (3) 50%

stations within (4) 25% (4) 25%

5 miles radius

from the house)

Emission 19.40 (1) -10% than the base (1) -10% than the

(pounds/gallon) pounds/gallon (2) -20% than the base base

(base) (3) -50% than the base (2) -20% than the

(4) -75% than the base base

(3) -50% than the

base

(4) -75% than the

base

Feedstock Not (1) Corn (1) Corn

Applicable (2) Cellulose: Wood (2) Cellulose: Wood

(3) Cellulose: Corn (3) Cellulose: Corn

Stalks Stalks

(4) Cellulose: Switch (4) Cellulose: Switch

Grass Grass

Cost of buying $21,500 (base) (1) -20% than the base (1) -20% than the

and maintaining (2) -10% than the base base

the vehicle ($) (3) base (2) -10% than the

(4) +10% than the base base   (3) base

(4) +10% than the

base 
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Table 2.3

Segment membership variables for the four segment model'

 

 

 

 

 

 

 

 

 

    

Variables Segment 1’” Segment 2 Segment 3 Segment 4

(Cellulosic (Corn Grain (Convention (Ethanol

Ethanol Ethanol a1 Gasoline Acceptor)

Acceptor) Rejecter) Acceptor)

Intercept -3.7264*** -6.0427*** -5.6414*** 0

Age -0.0112 0.0400*** 0.0040 0

Plans of buying/ 0

leasing a FFV in the

next 5 years -0.2528 -1.1224*** -0.8360***

Number of adults in the 0

household 0.0824 0.2623” -0.0407

Annual pre-tax 0

household income 0.0600 -0. 1467* * 0.0040

Factor 1 0

(Economic and

Environmental Effect) 0.0571 ** 0.0658“ 0.1487**"‘

Factor 2 0

(Positive intentions

toward biofuel) 0.0417 0.2008" * 0.1869***

Factor 3 0

(Negative biofuel

impact on food) 0.0546 0.0776** -0.0621

Factor 4 0

(Crisis Overrated) —0.0080 -0.1755*** -0.2825***  
 

*, **, *** indicates 10%, 5% and 1% level of significance respectively

1 Log likelihood at convergence (LL): -5,690.359

‘1’ Average probabilities of lying in class 1, 2, 3 and 4 are .209, .209, .138 and .444 respectively.

Pseudo R—squared: 0.341

AIC: 11,517.72
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Figure 2.1

An example of choice scenario from the choice experiment

 

 

 

 

 

 

  

Gasoline E-10 E-85 Not Purchase

Fuel Cost $731.25 $989.34 $731.25 I choose not to

Fuel Availability(% 100% 50% 25% purchase either

of existing stations) of these

Emission 19.40 9.70 14.55 products.

(pounds/gallon)

Bio-Feedstock Not Cellulose: Cellulose:

Applicable Switch Corn Stalks

Grass

Cost of buying and $21,500 $19,350 $19,350

maintaining the

vehicle
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Chapter 3

Factor Demand Analysis for Ethanol in the U.S. Refinery Industry

3.1 Introduction

The demand for ethanol as a complement to and substitute for gasoline has increased

significantly in the last decade. This is primarily in response to government policies such

as the Clean Air Acts, the Federal Reformulated Gasoline (RFG) programs, mandatory

Renewable Fuel Standard (RFS), and a series of tax exemptions and subsidies targeted at

the ethanol and gasoline industries. Other contributing factors influencing the demand for

ethanol are high demand for fuel, volatile gasoline prices, technological advancement and

environmental awareness. Methyl tertiary butyl ether (MTBE) was initially used as the

primary petroleum-based oxygenate. However, given that MTBE is bio-accumulative and

an active polluting agent, the major environmental hazard involved with its expanded use

was ground water contamination (RFA, 2008). A gradual phase out of MTBE as an

oxygenate and replacement by ethanol was initiated in 1999. This provided an additional

boost to the factor demand for ethanol at the refinery industry in the U.S. (Miranowski,

2007). These policies may lead to short and long term effects on the U.S. economy and

may even result in a permanent structural change in factor demand in the country’s

refinery and blender industry.

The objectives of this study are three fold. First, factor demand relationships for

material inputs from the U.S. refinery industry are estimated using a static translog

model. Second, we examine whether there has been a structural change in the factor
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demand of refinery inputs. Finally we examine whether the gradual switching process has

been simultaneous for all factor inputs with a common adjustment rate or individual

switching paths with unique adjustment rates.

In our analysis, we employ two alternative switching regression models. The first

model is a gradual switching regression model that allows the independent factors

affecting the share equations to shift at different change-points and at individual

adjustment rates. The second model is a restricted version of the first model and assumes

the shift point (or join point) and rate of adjustment for all independent factors to be

identical for the set of share equations of the translog system. Results obtained across the

two models are compared. We then proceed to obtain bootstrap distributions and

confidence intervals of the common shift point and the rate of adjustment.

The remainder of the paper is organized as follows. Section 3.2 provides a

discussion of the factors influencing the demand for ethanol in the refinery and blender

industry. Section 3.3 gives an overview on the existing research on structural change

analysis, specifically those using switching regression models. Section 3.4 describes the

translog cost function, two alternative gradual switching regression methods and the

associated assumptions. Section 3.5 describes the data. Section 3.6 presents the empirical

results and Section 3.7 concludes.
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3.2 Motivation

Federal and some state level governments have offered an array of tax credits,

exemptions and investment incentives to boost the demand for and future development of

the ethanol industry as well as the domestic production of ethanol (Duffield and Collins,

2006). Volumetric ethanol excise tax credit (VEETC) is a production-linked subsidy

offered to the U.S. ethanol industry by the Federal government. It ranges from

approximately $4.5 to $6.4 billion per year with no limit or dependence on the price of

fuels for which ethanol may be considered to be a substitute (Koplow, 2006).

Blender’s credit is an incentive policy offered by the government to the petroleum

refining industry for every gallon of ethanol blended with gasoline. This provides an

additional boost to the factor demand for ethanol. Initiated in 1980, refiners and blenders

receive an income tax credit for every gallon of ethanol blended with gasoline (Energy

Information Administration, 2008). Petroleum blenders currently receive 51 cents per

gallon income tax credit, which is scheduled to expire in 2010.

Renewable Fuel Standard (RFS) is a mandatory requirement aimed at reducing

the nation’s dependence on foreign oil by increasing the supply of alternative fuel

sources. Figure (3.1) demonstrates the effect of mandates on ethanol production. The

government mandates and initiatives have successfully increased the production of

ethanol by more than 400% over the last ten years (Anderson and Coble, 2008).

Crude oil is the major raw material used in the U.S. petroleum refining industry,

with other inputs being capital, labor, liquefied petroleum gases (lpg), oxygenates,
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unfinished oilss, motor gasoline blending components, etc. The factor demand for ethanol

at the refinery level has increased from 1,857 thousand barrels in January, 2002 to 14,768

thousand barrels in May, 2008. At the same time, the factor demand for MTBE has

decreased by 99.77% where as liquefied natural gases exhibited a cyclical pattern.

However, the factor demand for crude oil has been comparatively stable experiencing

only a 2.15% increase in this time period (Energy Information Administration, 2008).

The capital intensity of the U.S. refining industry, measured by the ratio of total

capital expenditure to refinery capacity, registered a sharp rise between January, 2000

and January, 2002, reflecting the surge in investments in upgrading refineries. The

industry registered a second phase of steady increase in investments from January, 2006

to January, 2007. The capital intensity in the interim period (i.e. 2002 to 2006) has

fluctuated. Labor intensity in the petroleum refining industry, measured by the ratio of

the total number of production workers to operating crude oil distillation capacity,

registered a steady decrease from 1993 onwards. However, it has experienced an upward

trend from 2006 onwards. Thus there is evidence to suggest structural change in the

factor demand in the U.S. refinery and blender industry due to several contributing

factors such as high demand for oil, volatile gasoline prices, governmental policies and

environmental awareness (Rask, 1998).

 

8 In the petroleum refining and processing industry, unfinished oil refers to all oils that require further

processing, except those oil that require only mechanical blending. They are produced as a result of partial

refining of crude oil. Naphthas and lighter oils, kerosene and light gas oils, heavy gas oils, and residuum

fall under this category of unfinished oils (Energy Information Administration, 2008).
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3.3 Literature Review

Extensive research has been conducted on identifying, measuring and testing the

hypotheses of structural change in demand systems. Goodwin and Brester (1995) utilized

gradual switching regression techniques to evaluate structural change in factor demand

relationships in the U.S. food industry. Rickertsen (1995) investigated structural change

in the Norwegian demand for meat and fish utilizing a dynamic switching specification of

the almost ideal demand system. Stern et al (1979) analyzed evidence of structural

change in the demand for aggregate U.S. imports and exports. Schafer (2005) illustrates

structural change in the energy sector for eleven world regions using time series data and

discusses their impact on the decline in energy intensity. This current paper evaluates the

structural change in factor demand in the U.S. petroleum refinery industry, a study being

conducted for the first time known.

Since Quandt (1958) proposed the switching regression model, it has often been

utilized to test for structural change in demand systems. Tsurumi (1980) and Katayama et

al ( 1987) considered the switching regression model assuming that structural change was

gradual. Ohtani and Kakimoto (1989) and Ohtani and Katayama (1990) extended the

switching regression model by setting a switching regression model with a transition path

specified by a polynomial of time and considering a gradual switching regression model

with autocorrelated errors respectively. Although the majority of the literature on

switching regression models assumes that coefficients shift at a common shift point,

Toyoda and Ohtani (1989) developed a less restrictive switching regression model such

that the individual coefficients may have differing change-points. In this paper, we extend
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the literature by setting up a switching regression model where the inputs follow

individual transitional paths characterized by unique shift points and adjustment rates for

the US petroleum refinery industry.
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3.4 Model Specification

3.4.1 Specification of the Translog Model

In this study, a static translog model is used to estimate factor demand of inputs for the

U.S. petroleum refinery industry. We use time as a proxy for technological progress.

Since the translog model provides a test for structural change while identifying the exact

nature of any shifts, this empirical approach proves to be advantageous over other

approaches given its flexible functional form and its representation of the cost structure

of an industry (Goodwin and Brester, 1995; Fischer et al, 2001). The translog cost model

may be expressed as:

N N N

Inc, (Ptha’): (20 +205.- lnPn my 1119: +azt+%22aa lnPn 111sz
i=1 i=1j=l

(3.1)
N N

+Zaiq lnPit an, +ZaittlnPi, +%ayy an, an, +ayttan, +%a,,12

i=1 i=1

where C: ( ) is total cost; Pj, is price of input j in period t; a ’s are parameters to be

estimated and Q, is output in period I, measured by the total amount of gasoline

produced in that period. The cost-share equations are estimated rather than the cost

function to ease potential estimation problems and conserve degrees of freedom (Huang,

1991). The cost-minimizing factor demands are obtained by applying Shephard’s lemma

(Shephard, 1953),

xf : aC*(Pi9Qt’t)

r aPi

 (3.2).
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The input share equation is:

N

w,-, = ai + 2a,] ln Pj, + aiq ln Q, + aitt; i =1,....,N (3.3),

j=1

where w" is the cost share of input iat timet and subscript i stands for i = 1 for crude oil

(co ),i = 2 for ethanol (e ),i = 3 for MTBE (mtbe ), i = 4 for liquefied petroleum gases

(ng ), i = 5 for labor (l),i = 6 for capital (k) and i = 7 for unfinished oil( uo ).

3.4.2 Structural change identification allowing separate shift points & adjustment

rates

Consider multiple regression models for each of the N linear share equations as given by

equation (3.3). A structural change can be interpreted as a shift in parameters from one

regime to another. We allow the system of share equations to follow separate transition

paths with respect to coefficients on each of the individual independent variables such

that they may have different join points and adjustment rates. Building from equation

(3.3) we assume that the parameters (i.e.a ’5) shift gradually from one regime to the

other along the transition path trni(s,-, / 77,-) at an unknown join point (1;) and rate of

adjustment (77,-) such that the gradual switching translog demand system may be

expressed as:
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Wit =a,‘ +2019- lnPj, +aiq anI +ai,t+a,-trn,-(s,-, /77i)

/

+ Zay-trni(s,-, /77,-)ln Pj, +aiqtrn,(s,-, /77,-)ln Q, +ai,trn,-(s,-, /77,~)r+ Sit; (3.4)

f

i=1,....,N —1 t =1,..,T

where

Sit = {0 for t 5 ti } (3.5).

t — t; otherwise

The transition function, (rm-(Si, / 17,.) satisfies (Tsurumi, 1982)

“ms—m "‘"ilsit / 771'): 1;

1im,7_,0 Inn (3;, /77,- ) = 1; and (3.6).

limtrni (0) = 0

We assume that the error term is normally and independently distributed with zero mean

and constant covariance 03.2 and remains constant over the whole period

(i.e. 8,, ~ NID(0,0,?' j i = 1,..., N ) (For more details on model specifications please refer to

Appendix A3.1).

3.4.3 Structural change identification assuming common join point and rate of

adjustment

In this section, we assume that that the parameters in equation (3.3) shift gradually from

one regime to the other at an unknown join point (*and an unknown gradual rate of

adjustment 77 common to all shares (i.e.t: =t;;77,- =77j Viij ). Here we use the
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transition function trn(s, / 77) (i.e.trni = trnj‘v’ i at j ). Equation (3.3) being re—expressed

as:

w: Xfl+trn(s, /77)X6+e, t= 1,...,T (3.7),

where w is an T(N —l)xl vector of observations on the dependent variable; X is an

T(N — 1)x k matrix of observations on the explanatory variables, ,6 and6 are

k xlvectors of unknown demand parameters and unknown transitional parameters

respectively used to transform the parameters to their post-shift values. Since only

(N -l) of the share equations are independent, one equation is deleted. We impose the

adding up constraints by eliminating the cost share equation for uo (unfinished oil) and

recovering these parameters post-estimation. Please refer to Tsurumi et al (1986),

Tsurumi and Wago (1986) for details.

Following Goodwin and Brester (1995), we conduct an F-test on the joint

significance of the transitional parameters to test for structural change. Assuming

structural change on factor demand to be initiated at the optimal join point parameter t*

at a slow adjustment rate 77 , we also test for structural change using the following

multiple regression model:

w=z*w+z*d,y +5.1, +5 (3.8)

where Z * is the matrix of price and output data, y/ is the vector of unknown parameters,

y and 6 are the coefficient vectors and a is the vector of random disturbances. d, is a

dummy variable such that

1f0rtZt*

dt = * (3.9).

0f0rt<t
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Defining d, by equation (3.9) implies that the coefficient vector shifts fromw to y/ + y

at an unknown change interval given by t* (Toyoda and Ohtani, 1989). To test for

structural change, we test the following hypothesis:

H0:y=0 vs. ley¢0 (3.10).

3.4.4 Transition function specifications

Estimation of the gradual switching translog system requires the selection of a specific

functional form for the transition function, which satisfies the conditions given by

equation (3.6). Since the choice of transition functional form is not believed to have a

significant impact on the outcome, we represent the transition between alternative

regimes with the hyperbolic tangent function given by equation (3.11) (Tsurumi and

Wago, 1986):

explsit / 771' ) — exp(‘ Sit / 771')

CXP(Sit /77i)+ CXP(" Sit /77i)

 

trn(s,~,/77,~)= (3..11)

Assuming that a is distributed as a multivariate normal distribution with mean 0

and variance-covariance matrix 0217, the log-likelihood function is (Ohtani and

Katayama, 1986):

L(w.a|t*,n*)— _[T_(__A;—1m>)g2fl_ [(__T2‘1))10g20 __(w—Zw)(w-Zw) (3.12)

202

 

* . . . .

where 1* and 77 are the vectors of jom pomt and rate of adjustment parameters

4' 1!

respectively (i.e. tat =(t;,...1;) and 77* =[n1 ,....,777 j) and l/l(t*,77*) is the set of
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*

regression coefficients and is a function of t* and 77 . Differentiating (3.12) with respect

I: t 2 . . . .
to VII ,7] and a , and equating resultant equations to zero, we obtain the maxrmum

III *

likelihood estimates (MLE) of t/l(t*,7] )and 0'2 conditional on 1* and 77 :

 

(IA/=(Z'Zflz'w (3.13)

A [w-ZVCJ [w—ZQ]

2 _

Substituting (3.13) and (3.14) into (3.12), we obtain the concentrated log-likelihood

function:

Lm,x(z*,.7*)= _(_T(_Ni;1_))(1 +log27r)—[T(A;_l)]log0'2 (3.15).

t t

/\ /\
at: * t

The MLE of t and 77 , say t and 77 are obtained by a grid search over I and 77* that

 

maximizes (3.15) (Toyoda and Ohtani, 1989; Moschini and Meilke, 1989). More

specifically, let the inputs be characterized by distinctive join point (i.e. t: ) and rate of

adjustment (i.e. 77; ) for i: 1,...,7. We use SAS program to conduct an extensive grid

. . . . . * a-

search over the sample data set to determine the unique comblnatlon of t and 77 for all

the inputs that maximizes the value of the concentrated log-likelihood function given by

equation (3.15).9

 

9 The SAS program is available on request.
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3.4.5 Imposing Concavity Constraints

The translog model has been noted to suffer from certain limitations. It may exhibit ‘well

behaved’ results for only a restricted range of relative prices. However, outside this

limited range, the model may fail to satisfy the theoretical regularity conditions of

negative own-price elasticity (quasi-concavity) and positive shares (non-negativity)

(Caves and Christensen, 1980, Lutton and LeBlanc, 1984). Moreover, given that the

translog function’s curvature property is data dependent, under typical estimation

procedures, concavity is not guaranteed. Thus, we have imposed local concavity in the

translog function following Ryan and Wales (1998, 2000). While this approach does not

provide a global solution it improves the curvature property of the estimated function,

while still preserving the flexibility of the translog functional form (Chua, Kew and

Yong, 2005).

Let X* = (P*,Q*,t*) denote the chosen normalization point. We scale the prices,

state of nature variables, and output (but not the time and dummy variables) such that

they are equal to one atX*. The Hessian (H) of the translog cost function will be

negative semi-definite, providing C*(P, Q,t)> Oif and only if the matrix G as defined

by (16) below is negative semi-definite (Diewert and Wales, 1987). The ij’h element

ofG , evaluated at t* , is defined as

gij=a,-j—a,-*K,-j+a,-*aj i,j=1, ..... ,n (3.16),

where gij denotes the ij’h element of G matrix, ay- , aiand aj are the estimated

parameters shown in equation (3.3) and Ki]- =1 if i = jand 00therwise. Imposing
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curvature at the reference point is attained by setting G = -—DD'with D being a triangular

matrix. Let (DD'L- denote the ij’h element ofDD', and substituting (DD'),-j into (3.16)

and rearranging the terms, we obtain:

aij=—(DD'),-j+a,-*K —a,-*a- i,j=1, ..... ,n (3.17),
ij 1

where a,1- denotes the ij’h element ofA . The a)!- ’s in (3.17) are replaced in the system of

cost equation (3.1) and the cost share equations (3.3), thus guaranteeing that G , and

hence H, is negative semi-definite. Negative semi-definiteness of G guarantees

. . . ..

concavrty of the cost functron at the reference pomt, t .

3.4.6 Symmetry and Adding-up Constraints

In order for the demand system to be consistent with neoclassical production theory, the

following restrictions are imposed:

at] =aji Viij,i,j=1,...,N; (3.18),

N

2a,- :1 (3.19).

i=1

N

Zag- = o v i =1,....,N (3.20),

i=1

N

2a,, = o v i = 1,....,N (3.21),

i=1

N

201,-, = 0 v i = 1,....,N (3.22).
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Equation (3.18) gives the symmetry condition, while equations (3.19)-(3.22) gives the

necessary and sufficient adding up conditions ensuring that C(.) is linearly homogeneous

in input prices. In addition, for a well behaved technology, the cost function must be

concave in input prices and the underlying technology must be monotonic. Concavity

implies that the matrix of second derivatives of the cost function with respect to prices is

negative semi-definite. Monotonicity requires that the predicted cost shares be positive

(Goodwin and Brester, 1995).
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3.5 Data

Monthly time series data, October, 1993 through May, 2008 was collected for crude oil,

ethanol, liquefied petroleum gases (lpg), MTBE and unfinished oil used as refinery and

blender net inputs. Historic price data of crude oil, lpg and unfinished oil were obtained

from Energy Information Administration publications (Energy Information

Administration, 2008). Monthly average ethanol rack prices and MTBE prices were

collected from Nebraska website and Platts respectively (Nebraska Government Website,

2008; Platts, 2008). Labor costs were derived from the number of total production

workers in the U.S. petroleum refinery industry and the average weekly earnings of

production workers from the reports published by the U.S. Department of Labor Bureau

of Labor Statistics (2008).

Capital expenditure was measured as the product of total capital stock and rental

price of capital. In this study total productive capital stock in the petroleum refinery

industry has been used as a proxy for measure of capital (Rasmussen, 1997). Productive

capital stocks attempt to measure the total productive capacity of capital assets in

existence at a point in time. However, the capital stock and cost of capital measure should

be formed taking into account the loss in productive capacity of capital assets and the

decline in asset prices as the age ofthe asset increases.

Total nominal investment in the petroleum refinery industry (V,) was assumed to

be the sum of the additional property, plant, equipment and activity during the year and

additional investment and advances made in the refinery industry in that year. The

volume of investment in the asset (1,) was obtained by dividing the nominal investment
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series by the. corresponding price series. Assuming that information regarding

investments in a particular asset type was available for period t— s to period t such that

s = 0,1 ....,S , the productive capacity of the asset in period t that is now 5 periods old is

given by:

R1,. = ¢sIt—s (3.23)

where (153 is the age-efficiency schedule representing the relative productive capacity of a

s period vintage asset to the productive capacity of-a new asset. We also assumed that the

life of the asset is ten years and the loss of productive capacity is linear. Thus the

productive capital stock K, for a particular asset type in period t was calculated as

follows (McLellan , 2004; Diewert, 1990; Diewert and Lawrence, 2000):

S

Kt = Z¢sIt-s (324)-

3:0

The depreciation rate used in the study was consistent with the petroleum refining

industry depreciation rate as published by the Bureau of Economic Analysis (2008).

Annual data on the cost of capital, the weighted average cost of equity and after-tax cost

of debt, weighted by the market values of equity and debt, was used as the proxy for

rental rate of capital (Value Line database, 2008). Data on additional property, plant,

equipment and activity during the year and additional investment and advances made in

the refinery industry in that year were available from Energy Finance (Energy

Information Administration, 2002). Table 3.1 presents summary statistics with respective

cost shares. Reviewing the statistics we observe that the expenditure on capital

contributes to 75.3% of the total cost with expenditure on crude oil being the second

largest component.
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3.6 Results

Specification tests, such as the Wu-Hausman test was conducted to test for the exogeneity

of prices and aggregate output in the translog system. Iterated SUR estimates and iterated

3SLS estimates were compared using the Hausman (1978) specification test. Instruments

employed were lagged input prices, ending input and output stocks, lagged and

contemporaneous refinery capacity, and crude oil accrual costs. Natural gas and corn are

the major inputs for the production of ethanol while butane is the main input for MTBE

production. Prices for natural gas, corn and butane were included in the list of

instruments. The Hausman test suggests prices are endogenous, and hence iterated 3SLS

are used.

3.6.1 Estimation of separate join points and rate of adjustments

Following the approach of Moschini and Meilke (1989), the separate join points and

speed of adjustment parameters were estimated via a grid search over all possible values

that maximized the concentrated log-likelihood function given by equation (3.15). Table

3.2 reports the separate individual shift points and rate of adjustments of the refinery

inputs. The estimated change point for factor demand of capital was September, 1998,

which led to a more capital intensive refinery and blending operation. This increased

expenditure on capital may reflect the surge in investments made in the refinery industry

to upgrade refineries to be able to respond to government mandates, implement

technological changes and increase product yields (Rasmussen, 1997). The corresponding
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steady decline in the employment of labor in the industry over the last decade resulted in

a structural shift in the demand for labor and the estimated shift point is January, 2001.

With time, labor has been increasingly substituted by capital leading to a higher capital-

labor ratio. The refinery industry also experienced a structural change in the demand for

oxygenate with a fall in the demand for MTBE and a substantial increase in the demand

for ethanol. The government policy of a gradual phase out of the use of MTBE as

gasoline oxygenates was initiated in 1999 with a targeted deadline of December 2002.

Given that the requirement was not effective immediately and the deadline was extended,

the change in factor demand were observed with a lag. According to the estimates,

structural change in the factor demand of ethanol occurred in November, 2003 followed

by that of crude oil and MTBE in January, 2004 and March, 2004 respectively.

Moreover, once the process of structural change has been initiated, the rate of adjustment

has been consistently very slow for the refinery inputs. Results are in accordance with the

findings of the American Petroleum Institute (API) which states that the phase down of

MTBE use and increase in the use of ethanol as an oxygenate added to gasoline occurred

on a time schedule that allowed refiners and marketers to make an ‘orderly transition’

(API, 2008). Additionally, the estimates indicate that the adjustment rate for capital is

higher than the rest of the inputs.

So far, we have identified unique join points and rates of adjustment specific to

each of the inputs using the gradual switching model. Even though this is the preferred

model of estimation, to keep presentation practical, we have used a restrictive model in

the following sections.
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3.6.2 Estimation of common join points and rate of adjustments

We have used a restrictive version of the original model to estimate the common shift

point and adjustment rates. It is assumed that refinery and blender inputs experienced a

structural change in factor demand simultaneously. The estimated common shift point

It It

A A

(t ) is March, 2004. The speed of adjustment (77 ) has been estimated to be 0.0025. We

would refer to regime 1 as the time period from October, 1993 to March, 2004 and to

regime 2 as the time period from April, 2004 to May, 2008. Next we used bootstrap

techniques to estimate the statistical properties of t* and 77*. After obtaining the MLE

2
estimates of177,0 ,t*,77*the original data set is randomly sampled with replacement

10,000 times with each sample containing exactly 176 observations (our original sample

size). The common joint point (t...) and adjustment rate (77*) have been estimated for

each resulting bootstrap sample. Statistical properties of 7* and 77* have been estimated

from the set of 10,000 bootstrap estimates generated (Krinsky and Robb, 1986). At 99%

confidence interval, the joint point ranges from December, 2003 to June, 2004. The

narrow width of the range of confidence interval suggests small standard error.

As a test for structural change, the hypothesis that the transitional parameters are

jointly equal to zero is strongly rejected based on the results from F-test.lo The hypothesis

that the coefficient vector for the structural change model, 7! is equal to zero is strongly

rejected based on the results from t-test. The significance of structural break was

 

‘0 The F-test statistic for structural change is 2,180.7 and is significant at 1% level of significance.
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confirmed by comparing the parameter estimates of iterated 3SLS in regime l and 2

(Appendix A.3.2). Confirmation of structural change indicates two regimes separated by

a significant, gradually occurring structural shift.ll

3.6.3 Own Price and Cross Price Elasticities

Own price and cross price elasticities of the two regimes were estimated using the

restricted gradual switching regression model which assumes a common shift point and

rate of adjustment.12 The elasticity estimates provide valuable insights into the nature of

the structural change. Own price elasticities were estimated at the normalized point by

using Allen’s partial elasticities of substitution for a translog function (Uzawa, 1962;

Pindyck, 1979):

E _ (777 +W,'Wj —5,]°W,')

if ' 2

W1

 (3.25)

where rig-is the Kronecker delta, 7'". represents the estimated second order derivatives on

the diagonal of Hessian Matrix and w, represents the fitted cost share for the ith input.

The bootstrap technique was used to estimate the statistical properties of the own

price and cross price elasticities (Douglas, 1996; Douglas and Guilkey, 1996). With the

common join point t* being identified as March, 2004, the original data set was split into

two regimes as mentioned above. The original sample section pertaining to regime 1 was

 

” Structural change may also be detected by testing for the constancy of the parameters. Chow test,

CUSUM test or the Cusum-of-squares test may be used to test for break points or structural changes in a

model. Assuming a common shift point and adjustment rate, Chow test result indicates occurrence of

structural change in July, 2002.

'2 Elasticity estimates for the seven inputs at different switch points and rates is difficult to illustrate and

space consuming.
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randomly sampled using the same bootstrap method as before with replacement 126

times for exactly 126 observations. Similarly, the original sample section pertaining to

regime 2 was randomly sampled with replacement 50 times each containing exactly 50

observations using the bootstrap approach. Each of the bootstrap samples generated is

normalized according to the following rule: the 1",? sample was normalized by

choosing X* = (P*,Q*,t* = i) as the normalization point and scale the prices, state of

nature variables, and output (but not the time and dummy variables) such that they are

equal to unity atX*. For each of the resulting, normalized data sets, we estimated the

system of equations using 3SLS and consequently estimate the elasticities, including

cross-price and own-price elasticities. Thus regime 1 has 126 estimates of elasticities and

regime 2 has 50 estimates of estimates, from where we obtain the statistical properties of

the elasticities.

Table 3.3 reports the own-price elasticities and the Hicks-Allen cross price

elasticities of the seven commodities for regime 1 and 2. We have reported the elasticities

correct to two decimal places. In both the regimes, all the estimates are statistically

significant at 10% level of significance or lower except Hicks-Allen cross price elasticity

between labor and MTBE in regime 2. The absolute magnitude of own-price elasticities

of all the inputs except capital and unfinished oil has decreased across regimes, implying

that demand for these goods have become less responsive to own price changes. In

particular, the demand for ethanol and MTBE has become less elastic with the absolute

value of own price elasticity decreasing from 2.25 and 2.03 in the first regime to 2.03 and

1.91 in the second regime respectively. This has occurred at a time when MTBE’s share

of total production cost has fallen dramatically and that of ethanol increased substantially.
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The decrease in ethanol and MTBE own price elasticity across regimes may be due to the

compounded effect of the Federal Reformulated Gasoline programs, mandatory RPS set

by the government and the ban on the use of MTBE has a gasoline oxygenate. Moreover,

across regimes, the factor demand for capital and unfinished oil has become more

responsive to own price changes with their respective own price elasticities increasing

from -0.46 and -1.76 in the first regime to -0.59 and -1.82 in the second regime.

The cross-price effects suggest complementarity between labor and the set of

inputs including crude oil, ethanol, MTBE and lpg in the first regime. However, in the

second regime, estimates suggest complementarity between crude oil and labor, ethanol

and labor, MTBE and labor only. The cross price elasticity estimates between ethanol and

MTBE, lpg, labor and capital have decreased from the first regime to the second regime,

implying that ethanol demand tends to be less elastic to the price changes of these inputs.

On the other hand, the cross price elasticities between capital and crude oil, ethanol and

unfinished oil have increased across regimes whereas that between capital and MTBE,

lpg and labor have decreased over time. Additionally, the cross price elasticities between

MTBE and the rest of the inputs, excepting labor and capital have increased across the

regimes. Similarly, with the exception of capital, the cross price elasticities of all the

inputs with respect to lpg have increased from regime l to regime 2. Thus according to

the Hicks-Allen cross price elasticity estimates, with exceptions, the degree of

substitutability across inputs in the refinery industry has increased as we move across

regimes.
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3.6.4 Morishima Elasticity of Substitution

The definition of factors as substitutes or complements based on the signs of the Hicks-

Allen elasticities of substitution has been criticized (Goodwin and Brester, 1995). In a

more-than-two factor scenario, a scalar measure of curvature and hence relative shares is

inherently asymmetric. According to Blackorby and Russell (1989), Morishima elasticity

of substitution (MES) yields a measure of the curvature of the isoquants, rendering itself

to be a natural extension of the Hicksian two-variable elasticity. It measures the

percentage change in a ratio of two factors in response to a 1% change in the

corresponding relative price ratio. It is the logarithmic derivative of a factor quantity ratio

with respect to the corresponding factor price ratio. The Morishima elasticity of

substitution for the translog function is:

0'17 =[(}’ij +W1Wj)]_[(7ii +w,2 —w,)] (3.26).
  

W1 W1

Substitutability among factors in the refinery and blender industry as revealed by the

Morishima elasticity of substitution for regime (l) and (2) has been reported in table 3.4.

We have reported elasticity estimates correct to three decimal places and across regimes,

the estimates are significant at 1% level of significance or lower. The elasticity estimates

between labor, capital and unfinished oil against the set of the rest of the inputs indicate

increasing substitutability between these inputs across regimes. However, the elasticity

estimates between crude oil, ethanol, MTBE and lpg against the set of the rest of the

inputs indicate decreasing substitutability with time. With the array of government

policies and regulations imposing a ban on the use of MTBE as a gasoline oxygenate and
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simultaneously boosting the demand for ethanol as a gasoline oxygenate as well as a

volume extender, the demand for ethanol has become less responsive to own and cross

price changes. The Morishima elasticity of substitution estimate between capital and all

other inputs in both the regimes are small compared to the rest of the estimates, implying

significantly less degrees of substitutability between capital and the other inputs.

Additionally, the Morishima elasticity of substitution estimates indicates labor and crude

oil to be complementary inputs with the degree of complementarity decreasing over time.
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3.7 Conclusion and Policy Implications

In this paper we have uniquely utilized the multivariate gradual switching regression

techniques and translog factor demand model to estimate factor demand relationships for

inputs used in the U.S. refinery and blender industry. Next we have identified structural

changes in factor demand relationships in the industry and have evaluated separate shift

points and rates of adjustment for the set of inputs. The underlying assumption of the

model being that given external influencing factors such as government mandates,

technological progress, changes in tastes and preferences, prices etc, the inputs tend to

follow separate transitional path, each initiated at different join points with different rates

of adjustment. The flexibility of the empirical method used allows the identification of

the change for each of the inputs while allowing speed of adjustment between alternative

regimes to be gradual and vary across inputs. We found structural change in factor

demand of inputs to exist and occur for the seven inputs at different points and

adjustment rates.

The structural change in the demand for capital and labor was initiated in late

1998 and early 2001 at slow rates of adjustment. There has been a gradual increase in the

cost share of capital followed by a gradual decrease in the cost share of labor. This was

reflective of the fact that the industry made additional capital expenditures to adhere to

the heightened pollution abatement requirements for the refining operations. Structural

change for the rest of the inputs was initiated only in late 2003 and early 2004 at typically

slow rates of adjustment. The Renewable Fuels Standard (RFS) mandates (’02, ’05 and

‘07) along with the ‘Clean Air Act’ and the phase out of the use of MTBE initiated in

121



1999 and be substituted by ethanol have played important roles in the demand for ethanol

in the refinery industry. Even though government policy requiring the gradual phase out

of the use of MTBE as the gasoline oxygenate was initiated in 1999, the requirement was

not mandatory. Thus the change in factor demand was observed with a lag. More over,

the time line of the change in factor demand in MTBE and ethanol occurred on a

schedule that allowed refiners and marketers to make an ‘orderly transition’.

We have used a restrictive version of the original model to estimate the common

shift point and adjustment rates assuming that all the seven refinery and blender inputs

experienced a structural change in factor demand simultaneously. The estimated common

shift point is March, 2004 and the rate of adjustment is of gradual nature. Given the

statistical significance of the common join point and adjustment rate, such an exercise is

practical and relevant. The demand for capital is less elastic than for the other factor

inputs. According to the own-price elasticity estimates, with the exception of capital and

unfinished oil, demand responsiveness of inputs to price changes decreased across

regimes. As we move across regimes, the own price elasticity of ethanol and MTBE have

decreased. This may be a consequence of the compounded effect of the Federal

Reformulated Gasoline programs, the mandatory Renewable Fuel Standard set by the

government and the ban on the use of MTBE has a gasoline oxygenate. The Hicks-Allen

cross price elasticity estimates suggest complementarity between labor and rest of the

inputs including crude oil, ethanol, MTBE and lpg in the first regime and crude oil,

ethanol and MTBE in the second regime. Morishima elasticity of substitution estimates

suggests a decrease in the degree of substitutability among factors in the refinery industry
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across regimes in general. However, capital, labor and unfinished oil have been

increasingly substituted by other inputs as we move from regime 1 to regime 2.

Results indicate that the array of government policies and mandates imposing a

gradual phase out of the use of MTBE as a gasoline oxygenate and simultaneously

encouraging the use of ethanol as the alternative oxygenate as well as the gasoline

volume extender has successfully altered the structure of factor demand in the refinery

and blender industry in U.S. Considerable decrease in the factor demand of MTBE was

confirmed and can be expected to curb associated future environmental hazards.

Simultaneously, the significant increase in the factor demand of ethanol is consistent with

the goal of U.S. policies aimed at decreasing U.S. dependency on foreign oil.

This research work is the first known study that evaluates structural change in

factor demand in the petroleum refining industry in the U.S. We use industry specific

aggregate data in our analysis and impose the symmetry and homogeneity constraints in

the cost function analysis. However, given the nature of the data, some constraints that

are satisfied at the micro units may no longer be satisfied at the aggregate level. Hence

following Illmakunnas (1986), an extension of the current research work may be to

impose the constraints on the parameters stochastically in the system of cost share

equations. Moreover, our methods can be applied in future work to identify separate

switch points and rates of adjustment for individual factors used in other industries while

evaluating structural changes in demand.
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A3.1 Model details

Equation (3.4) may be represented as:

w* = Z*1,u + g, (3.27)

where w* is a T(N — 1)x 1 vector of shares,t// is the vector of unknown parameters and a

is the vector of random disturbances (Tsurumi et a1, 1986). Since only N -— l of the share

equations are independent, one equation is deleted,

w" = (w; , w'2 ,...,w',(,_1 ), (3.28)

where w,- =(w1,-,w2,-,...,wT,-)', i=l,...,N—1. Z*is the matrix of price and output data

given by the following equation:

  

P(X1,trn10X1) O ...... O —

O (X2,trn2 0X2)

2" =

_O 0 ...... (XN_1,trnN_1 0 XN"1)4T(N-1)X2k

(3.29)

— le trnj 0x111

x '2 trn - ox '2 .

(Xj,trnj 0X1): 1 J J _] =1,2,...,7 (3.30)

_ ij trnjoij‘TXZ  
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Let w = (3.31)

,BN—i

-6N-1 _ 2kxl  
where ,6,- and 19,- are vectors of regression coefficients such that

31 = (filis-H-aflki)and6i = (91;. ----- .91“). V i = 1,.--.N-1and

8=[8] £2 ........EN-l].T(N-1)Xl'
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Table A3.2

Parameter Coefficients of the Translog model

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Coefficient Estimates Regime 1 Regime 2

(Pooled model (1993,0ctober to (2004,April to

results) 2004,March) 2008, May)

or, 0.29* 0.28* 0.25*

a2 3.25E-3* 1.37E-3* -l.24E-2*

a3 l.25E-2* 1.09E-2* -2.93E-3

a4 1.93E-3 ** 4.27E-3 * l.64E-2*

a5 7.00E-6* 5.92E-6* 1.71E-6***

0‘6 0.67* 0.69* 0.75*

“crude oil, crude oil 012* 011* 0-18’“

acrude oil, ethanol '1'92E'4 '9-6E'4 '3 -09E-2* *

aonndo oil, lpg 29213-3 4.08E-3*** -1.97E-2

“crude oil, mtbe -4.98E-3 * -4.37E-3 ** 1.28E-3

acrude oil, unfinished oil 8’51E'4 ”2'855’3 '6-965'3

acrude oil, labor 4535'“ -3-01E-6* 6.76E-7

acrude oil, capital '0-12* -0.1 1* -0. 17*

“crude oil, gasoline 5‘81E'4 6-72E'4 -2.00E-5

“crude oil, year 5-55E-4* -4.4lE-4* -5.4lE-4***

aonndo oil, month 3-005-5 -2-32E-4 6.58134

“crude oil, month 3-005'5 432134 -5.58E-4

aethanol, ethanol 6-495'3" 14713-3“ 7.82E-3*

aethanol, lpg -1-6lE-4 -9.1 113.4 1.62E-4

aethanol, mtbe '3725-3 "‘ -l .64E-3 * 9.9E-4**

“ethanol, unfinished oil “95‘3" 3235-3” 4.03E-4

“ethanol, labor '2'47E'7 -8-OlE-7** 8.759E-8

“ethanol, capital '6'92E'3* “2.1933" -4.3 113-3*

aethanol, gasoline l "005-5 -9. 1 213-6 -1 .3E-4* *   
 

 

 



Table A3 .2 Continued
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  acapital, month    

Coefficient Estimates Regime 1 Regime 2

(Pooled model (1993,0ctober to (2004,April to

results) 2004,March) 2008, May)

aethanol, year 3-5'13'6 1515-5” 1.28E-4*

aethanol, month ‘Z‘OOE'S "62436 -4.2 1 B7

alpg, lpg 15213-2“ 1.33E-2* 1.29E-2*

alpg, mtbe -2.81E-3** -1.9113—3** -l.08E-3

“lpg. unfinished oil '4'025'3*** '6-3913-3“ -3.58E-3**

alpg, labor 2.05E-6 3.93E-7 -2.04E-6**

a lpg, capital -1.21E-2* -8.21E-3* -6.52E-3*

a ,pg, gasohne -6.03E-6 -7.38E-6 4,415-4"

a lpg, year '3-00E-5* -7.00E-5* 4.22E-5**

a lpg, month -3-4E-5** 7.5113-5 9.81E—5***

a ”we, mbe 6.78E—3* 6.54E-3* 3.63E—3*

amtbe,unfinished oil '9'61B'4 6-015'4 -1.23E-3

amtbe, labor '1‘6E'7 '8-365'8 4325-7

a mtbe, capital 5'68E'3* 7-795'4 -1.64E-3**

a mtbe, gasoline '2’05 E-S '5-24E'6 15325-4"

a mtbe, year 1-71E-5* 8.94E-6 -1.111=..4*

a mtbe, month 1-64E-6 -3.7E-6 21313-5

alabor, unfinished oil 7-335'7 39313-7 -2.46E-7

“labor, labor l-81E-6* 2.68E-6* 5.15E-6*

alabor, capital '1-715'6" -7-71E-8 -3.2E-6*

alabor, gasoline 36913-8“ 3.86E-8** -2.86E-9

atahor, year -2-97E-8* -2.26E-8 6.08E-9

alabor, month '7-275'9 -1-61E-8 -3 2213-9

“capital, unfinished oil '8'99E'3 * '2-61E'4 'l-OlE-Z"

acapital, capital 0'14,“ 0.12* 0.19*

acapital, gasoline '3'01E'4 '3-415-4 6.13E-4

acapital. year 6-345-4" 4.82E—4* 4.14E-4

-3.4E-4 14113-4 -1.03 5-3

 

*, ** and *** represents 1%, 5% and 10% level of significance respectively
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Table 3.2

Estimated Individual Join Points and Adjustment rates

 

 

 

 

 

 

 

 

Refinery and Individual Shift Point Adjustment

Blender Input Rate

Crude oil January, 2004 0.0025

Ethanol November, 2003 0.0025

LPG September, 2003 0.0025

MTBE March, 2004 0.0025

Unfinished Oil January, 2004 0.0025

Labor January, 2001 0.0025

Capital September, 1998 0.0125   
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Figure 3.1

Renewable Fuel Standard Mandates and Ethanol Production
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