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ABSTRACT

DECONSTRUCTED HIGGSLESS MODELS OF ELECTROWEAK
SYMMETRY BREAKING

By
Baradhwaj Panayancheri-Coleppa

We study deconstructed Higgsless models of electroweak symmetry breaking. As the
name implies, these models break electroweak symmetry without the presence of a
scalar Higgs boson in the spectrum. These models are inspired by compactified extra
dimensional models, where the W W scattering amplitude is unitarized by a tower
of new. heavy veetor bosons in place of the Higgs. We study a simplified theory with
only one set of extra vector bosons and derive the wavefunctions and couplings in this
theorv. We then extend this model to include a “top-Higgs™ link, so as to separate
the top quark mass generation from the rest of electroweak symmetry breaking. which
still goes through via a Higgsless mechanism. This enables us to have new, heavy
Dirac fermions that are light enough to be discovered at the LHC. We present the
phenomenology of these heavy fermions. showing that they are discoverable at the
50 level at the LHC for a wide range of masses. Finally, we move on to consider the
question of unitarity and the heavy Dirac fermion mass generation by investigating
the process (F — Hr'g W, in a family of deconstructed Higgsless models, and show
how the Appelguist-Chianowitz bound can be substantially weakened for sufliciently

light Dirac fermions.
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Chapter 1

Introduction

There are four basic kinds of forces in the world: the strong nuclear force, the weak nu-
clear force, electromagnetism, and gravity. These are distinguished {rom one another
based on their strengths and range. For example. the gravitational force between two
objects is proportional to the product of their masses and hence is relevant only when
the objects involved are very massive. But gravity has an infinite range and hence
plays the dominant role in determining the large scale structure of the universe. On
the other hand, in the sub-atomic world, the strong, weak and electromagnetic forces
dominate. The quantum theory that explains the nature of these sub-atomic forces
is called the Standard Model of Particle Physics (SM for short), while the nature of
gravity is so far explained by the classical theory of General Relativity.

The SM is a gauge theory and incorporates two different classes of particles - the
matter content (fermions) and the force carriers (the gauge bosons). The force ex-
terted by one particle on another is transmitted via the gauge bosons. The range of
the force is dictated by the mass of the gauge boson involved - for example, clectro-
maguetic forces that have infinite range are transmitted by massless photons while
the short range weak nuclear force is transmitted by the heavy W oand Z bosons. The

heauty of the SM lies in the fact that it explains these two different kinds of forces



in one nnified framework, i.c., as an clectro-weak theory [1]. Of course. the strong
nuclear forces are also built into the SM as a “color™ gange theory and the complete
gauge group of the SM is SU(3) x SU(2)yr x U(1)y ., where the subscripts C', W,
and Y stand for color. weak, and hypercharge respectively. In this thesis, we will be
largely concentrating on the electro-weak sector, i.e., the SU/(2)y, x U'(1)y part. To
understand how the SM operates, let us begin by describing the simpler theory of

Quantumn Electrodynamics (QED).

1.1 Quantum Electrodynamics

Let us start by writing down the Dirac Lagrangian for a free electron of mass m:
L= Wi*ix“'()p\ll —myy, (L.1)

where ¥ is a four component Dirac spinor. This Lagrangian is invariant under a
phase transformation:

¥ — exp (ie0) W, (1.2)

where ¢ is the electric charge. The parameter # is independent of space-time and
correspondingly, the transformation is termed “global”. Moreover, since this is a
one parameter group. the above Lagrangian is said be invariant under global U7(1)
transformations, where U7 tells us that this is a unitary group. But suppose we insist
that the parameter # depend on space-time, ie.. § — 6(r) (i.c.. a local or gauge

transformation). Then, of course, Eqn. (1.1) is no longer invariant.

L— rIl—iﬂ,‘“('),,lll = mWWV — ¢V, (1.3)

2



It is clear that the theory of a free electron cannot be invariant under local trnas-
formations. If we demand that this theory still be invariant, we are forced to add
another ingredient whose {7 (1) transformation would cancel the extra piece in Eqn.
(1.3). From Maxwell's classical electromagnetic theory, we know that the photon field

transforms inhomogenously under gauge transformations as follows:
4‘1,1 i /\/l — /l)/l”(l) (14)

This suggests that we add the photon ficld, Ay, in such a fashion as to cancel the

extra term in Eqn. (1.3). Thus, we write down the interaction term:
Lyt = (%@7”\1"4#. (1.5)

[t can be verified that adding this term to the Dirac Lagrangian makes it invariant
under local 17(1) transformations. The U'(1) gauge symmetry allows a kinetic energy

term for the photon that takes the form:
1 yiy )
£= _EFIHII: N (1‘())

where Fy, = 0y Ay — 9y Ay, Note that a mass term for the photon of the form
11:2414,,,:1“ is not allowed since this is not /(1) invariant. Thus, the complete QED

Lagrangian is given by (restricting ourselves to terms of dimension 4):
TN ] 1 - UV = -
ﬁQED:l\l’A’I D!lq"' z]'p_]/[' —”7\1/\1/, (1‘)

where

])“ =4 ()/1 - i(',"‘/l. (12\‘)



is the covariant derivative. Promoting the ordinary derivative to a covariant derivative
in the form of Eqn. (1.8) to make the Lagrangian gauge invariant is called the
“Minimal coupling” prescription. Thus, we see that the principle of local gauge
invariance determines the structure of the Lagrangian and also naturally introduces

a vector boson into the theory. Next, we turn to the full Standard Model.

1.2 The Standard Model

The Standard Model Lagrangian can be constructed by extending the principles of
the last section for the full gronp SU(3)~ x SU(2)yy x U(1)y. The matter content
of the SM (quarks and leptons) come in three families (or generations). Both the
quark and lepton families have electroweak interactions and hence transform under
the SU(2)yyr x U(1)y part of the SM gauge group. However, strong interactions
(mediated by gluons) are ouly felt by the quarks, and thus only the quarks and
gluons have SU7(3) charges (The non-Abelian nature of the gauge group permits self
coupling of ghions, as opposed o electromagnetism). We give the quantum numbers

of the quark and lepton fields nnder the SM gauge group below:

(1)) .
Qu=| "|~B2+§. dp~GL-g). up~GL+3).
\’L)
Ly = \1/[,\ ~(1‘2,—%), e’k~(1,1,1), (1.9)
(fL

The L and R stand for left and right handed helicity states, based on the Lorentz
transformation properties of the fermion. The gauge interactions of the quarks can
now be written down by extending the covariant derivative in Eqn. (1.8) to include

the eight gluons ((7{}), the three weak gauge bosons (1‘1"/’14). and the hypercharge

4



gauge boson (/31).

A

3 — , a4 . .ot 1
Lo = 1QLY |0~ igy Gl — i = Wil =i By | Q1

— . M4 2 ,
+ zu‘R'\//’ Ay — l!}:}?('}‘? + 15!)213,1 u'p

L

s . )‘A A0 1 «
+idpy " O - zg3—2—(,l, - 25!12/3;: dp
[ A

T .0 | 1
+ l],L')‘, ()Il' - 1917‘1# + ‘592 I},I ]1L

+ieGAy [0 = igaBy) e (1.10)

Here, g3. g1 and g9 are the SU(3), SU(2)y and U(1)y couplings respectively and
the M5 and o's are the GellMann and Pauli matrices for the SU(3) and SU/(2)

2ANZ e Lroups.
o

As explained in the previous section, invariance under local gange transforma-
tions demands that the associated gauge bosons be massless. But we know from their
short range interactions that the weak gauge bosons do indeed have a mass. Thus, we
conclude that in order to have massive gauge bosons, the symmetry must somehow
be broken, i.e., the vacuum state must not respect the symetries the Lagrangian
does. This phenomenon, wherein the Lagrangian is symmetric under certain transfor-
mations while the ground state is not, is called “*Spontaneous Symmetry Breaking™
(SSB). In the SM, the breaking of the electroweak symmetry is engineered by in-
troducing a scalar Higgs ficld [2], which has the following quantum numbers under

SU2)y and U(1)y:

i
2
—
=
'

p 4. (1.11)

0

[S1]



The Lagraugian for the Higgs field can written as (restricting ourselves to terms of

dimension four or less):
Lhiggs = %Tr [l)lhp’fl)W] - %mﬁfrr(@'i'gs) - %Tr(gg%a)?. (1.12)
where the covariant derivative is given hy:
Dito = |0 + -i,glgl‘lr'A“ - ‘/égr_)B“ o. (1.13)
The Higgs also has Yukawa couplings to the matter ficlds as {ollows:
Lyukawa = QUuoupg + Quqicod™dp + Lyede g + h.c. (1.14)

where the y's are the Yukawa couplings. The quark and lepton ficlds should be written
with a generational index (Q‘L) to accomodate the three families - we are suppressing

these indices here.

The potential for the Higgs field in Eqn. (1.12) takes the form of a “Mexican
hat”, as shown in Figure 1.1. The minimum of the potential does not lie at ¢ = 0,
but rather lies on a continuous SU/(2) manifold along the “trough™ of the Mexican
hat. One could do perturbation theory around any one of these minima. The choice
of a particular vacuum breaks the gauge svmmetry as it corresponds to choosing a
particular direction in the S{/(2) space, so the vacuum is no longer invariant under
SU(2) rotations. Writing the Higgs doublet in a form that separates the Goldstone

bosons (denoted x(x)) from the Higgs hoson,
le}

0
1'+h,_(.'r )

V2

o(x) = Cin"‘(.n)oi/v

(1.15)



Figure 1.1: The potential for the Higgs field takes a “Mexican hat” form. The
“trough” corresponds to continuous directions in which one can move expending zero
energy - these correspond to the Goldstone boson modes.

we can write the vacuum expectation value (vev) of the Higgs as:

0
(01610 = : (1.16)

4

V2
where v = ,/4111,%/;\. The gauge interactions of the Higgs, Eqn. (1.12), now give
rise to mass terms for the gauge bosons when we insert the vev of the Higgs. For the

neutral gauge bosons, we find

1,955 1 2 "
9707 —10192v B

L= (n,t ”':m) 17 : 5 71 - e (1.17)
—19192v 195V wy

We can diagonalize this matrix by unitary transformation using the matrix:

cos 0 sin 6,
U= b v (1.18)
—sinfy cos by,



where tanfhy, = g1 /go. We can identify the two mass eigenstates as:

Ay = coslhy By + sin ()7,,W3#.

Zy = —sinfly By + cos ()15111"3“. (1.19)
with masses
m% =0,
mQZ = i—(g% + g%)uQ. (1.20)

The charged gauge bosons also acquire a mass:

2 192 .,
Myt = 19307 (1.21)
where
SR I AT o
Wi = (w“ =2 mu) . (1.22)

We started with massless gauge bosons and a complex Higgs field with four real scalar
degrees of freedom. We see that three of the four degrees of freedom of the Higgs
have now become the longitudinal components of three gauge bosons, making them
massive. However, there is one scalar physical degree of freedom that remains, which

we identify as the Higgs boson, with mass:
2 2 .
mj, = 2Av”. (1.23)

Expressing the gauge eigenstates in Eqn. (1.10) in terms of the mass eigenstates, we
SaUg 1 2



can write down the charged and neutral current interactions of the fermions.

e
Lo = —e——— (FpH Wi dp + 70 Wyvg) + he 1.21
cc \/§Sill HlL' L " L L K L ( ( )
= ¢ 15 0 cin20,. 3 Tl O T
EA‘C - Si Oz COS Orp {’3 Qf s ()uf} S pr +(for -hlfa (1.25)

Here. T‘{ = £1/2 is the third component of weak-isospin of the left-handed fermion

IL (I{ =0 for [p). and Qf = T3f + Y. The clectric charge, ¢, is defined as:

9192
R

The Yukawa interactions of the Higgs. Eqn. (1.14). now turn into mass terms for the

e = gosinby = g1 cosby = (1.26)

fermions, and the Yukawa couplings are chosen so as to reproduce the correct fermion
mass. Thus, we see that the phenomenon of SSB gives rise to mass terms for both

the gauge and the fermionic sector of the SM.

1.2.1 Remarks on the Higgs sector

The S\ is a phenomenologically successful theory whose predictions have been borne
out by various experiments. But two facts still remain: the Higgs boson hLas not
been found in collider experiments and, more importantly, the SM does not offer an
explanation for why Electroweak Symmetry Breaking (EWSB) occurs in nature (the
Higgs only engineers EWSB). These considerations motivate us to build models that
go bevond the SM. Before we move on to present one such alternative, let us remark
on oue more purpose the Higgs serves in the SM. All calculations within the SN are
performed as perturbative expansions in the small couplings. When one performs
a computation for the cross-scction of a particular process, it is important to check

that the probability that the process occurs is less than one, so the results make

9
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Figure 1.2: The Feynman diagrams for the longitudinal gauge boson scattering in
the Standard Model. The E* contributions cancel due to gauge invariance. The IJ¢
contributions only vanish when we include the Higgs exchange diagrams.

physical sense. In other words, the theory has to be unitary. This is crucial because
absence of unitarity indicates that the perturbation theory has broken down, and
thus. self-consistency of perturbation theory requires the probability be bounded by

Ol1C.

As an example, let us look at the longitudinal gauge boson scattering, i.e., the
process Wy W — W W7 inthe SM - the reason for the choice is that the longitudinal
components are the ones acquired by the gauge bosons by eating the Goldstone fields,
and hence are most closely asscociated with the Higgs mechanism. The Fevnman
diagrams that contribute to this process are shown in Figure 1.2.  When we compute
the amplitude for the entire process Wy W — W Wy, and look at the large energy
beliavior, i.e., in the limit E/my, >> 1, we find that the pieces of the amplitude
that grows like 1 cancel between the contact interaction and the photon and #
exchange diagrams. (This is due to gauge invariance which guarantees the relation
e = gosinfy). However, for the pieces that grows like E2 to cancel, we have 10
include the Higgs exchange diagrams. Thus, we find that the Higgs not only serves

to give masses to the gauge bosons aud the fermions, but also serves to regulate the

10



Su@) u(1)

Figure 1.3: The Standard Model without the scalar Higgs boson. The result is an
SU(2), x SU(2) p non-linear sigma model with the SU(2) x /(1) part gauged.

bad high energy behavior of the theory. If we are to formulate a theory that goes
bevond the SM and does not have a Higgs, we have to make sure the theory does not

violate unitarity.

1.3 A Higgsless Standard Model

Though we established in the last section that the SM without the Higgs would not
be unitary, it is still instructive to ask what the theory would look like if we do not

include 2(2) in the theory. Let us start by reproducing Eqn. (1.15).

0
v+h(r)

V2

e (L
a 3
(.b — LLF /

The above form clearly separates out the three Goldstone bosons (7%) that become the
longitudinal components of the gauge bosons from the physical Higgs boson. When
the Higgs boson is eliminated, what remains is a non-linear SU(2); x SU/(2) p sigma
model of which the SU(2) x U(1) part is gauged. We show this in pictorial notation
in Figure 1.3, "To derive the Lagrangian for this low energy effective theory, we plug
in Eqn. (1.15) in the Higgs Lagrangian, Eqn. (1.12).

1
4

] , . . 9 A .
= (r+~h)”Tr[(D,,ST) (1),12)]+%(a,,h)(aﬂh)—émf,(-pwz)-l~(n+h,)4. (1.2%)

4!
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In the limit sy, — oc, we can read off the effective Lagrangian from the above

equation by simply disregarding the Higgs field and it is given by:

2

LGoldstone = TT" [(I)}IZT) (D;tz)] . (1.29)
and contains only the eaten 'pions. This picture is called a “non-linear sigma model”.

The Goldstone boson equivalence theorem (3, 4] tells us that at high energies, the
amplitude for absorption or emission of longitudinal gauge bosons is the same as the
one for the corresponding eaten pion. We can determine the Feynman rules for 7 — «

. . . . . e /v ¢ .
scattering in this model by plugging in £ = ¢* in Eqn. (1.29) and expanding
in powers of 7/, At tree level, there is only a contact interaction term and the
amplitude for this is given by:

. .\ 2
Mrtr —ata) = g2 (1 +;"‘“”> ( lF > , (1.30)
my

. . . . 2

whiere € is the scattering angle. It is hardly surprising that the £ growth does not
cancel, as there is no physical Higgs boson in the spectrum. But the question we
would like to address is whether it is possible to extend a theory of this kind by

inclnding additional particles to retain unitarity. in place of a Higgs.

How would one construct an electroweak symmetry breaking sector without a
scalar particle? A glimpse to an answer to this question is provided by QCD. Consider
QCD with two flavors - the up and down quarks. Let us. for the moment, assume
that these are massless - the u and d quarks are light compared to the QCD scale,
Aqcp= 300 MeV, and hence this is a good approximation. Then, the Lagrangian of

QCD can be written down (with ¥ = (u.d)) as:

CQCD = i\i/L","l DYy + i\T/R",’u D, p. (1.31)

12



and is seen to possess a global SU7(2); x SU(2)p svmmetry, the chiral symmie-
try. When the running QCD coupling constant. becomes large at the scale of QCD
(AQCD), the strong interactions bind quark anti-quark pairs into a composite spin-()
object: (()|\Il \11}0> - this is analogous to the formation of Cooper pairs in the theory
of superconductivity. This, like the Higgs in the SM, develops a vacunm expec-
tation value (YV) = A%CD’ thus spontaneously breaking the SU(2)p x SU(2)p
chiral symmetry down to the diagonal subgroup, SU(2)y,. Each fermion ficld has
a mass dimension 3/2, and thus the condensate has a mass dimension 3. Typically,
spontaneously breaking a continuous symmetry generates massless Goldstone bhosons.
But the three QCD pions will not be massless, as we started with an approximale
symmetry (i.e., valid only in the limit m, 4 — 0). For this reason, the QCD pi-
ons are really pseudo Goldlone bosons. Now, if we were to deseribe EWSB using
this picture, we would let these three pions be eaten by the W= and the Z, thus
making the gauge bosons massive. Unfortunately, the scale characterizing the gauge
boson masses would be wrong - the pion decay constant that sets the scale in this
model is fr = 93MeV. but we know that the electroweak scale that sets the scale
of the 1" and Z bosons is v =246 GeV. Thus, QCD, though successful in achieving
the correct symmetry breaking pattern, cannot reproduce the correct gauge boson
masses. However, one could construct a “scaled up” version of QCD, called Techini-
color [5, 6. 7], wherein technicolor interactions (assumed to be confining. like QCD)
bind techni-quark techni-antiquark pairs into a <‘DTC‘I’T(‘> condensate. The scale
of technicolor interactions (i.e., the scale at which technicolor interactions become
strong and form condensates) can bhe tuned to reproduce the correct gauge boson
masses. To get ferniion masses, this picture has to be extended, and the resulting

theory. called “Extended Technicolor”™ (ETC) is described in [7, 8. 9. 10, 11].

Theories like the one described above are strongly interacting. and thus. cannot be

treated as perturbative quantum field theories. One has to develop lattice calculations

13



and other non-perturbative tools in order to be able to compute in such theories.
However. recently, there has emerged a special correspondence that relates strongly
interacting four dimensional theories to weakly interacting five dimensional ones - the
AdS-CFT correspondence {19, 20. 21, 22] first arose in the context of string theories
describing the duality between type IIB string theory and classical supergravity. Later
works have established that such a duality exists more generally and that many
strongly interacting theories have a dual description in an extra dimensional context.
Higgsless models in an extra dimension have thus emerged as viable theories of EWSB
that are the analogues of technicolor theories. We turn our attention to these extra

dimensional models in the next sections.

1.4 Extra dimensional theories

It is possible that our universe may have dimensions other than the customary 4-
D space-time [12. 13, 14, 15, 16, 17, 18]. These extra dimensions must have to be
compact, so we don’t realize their existence in everyday life. This compact fifth
dimension can be thought of as an interval. without loss of generality. For example, if
the extra dimension is a circle of radius K, one could map it onto an interval [0. 27 7]
with periodic boundary conditions.  If a reflection symmetry (a Zg syvmmetry) is
imposed on top of the circle, we could map it onto the interval [0, # R]. The fields can
have odd or even transformation properties under the Zo symmetry and the extra
dimension is said to be “compactified” on an interval. A circle is a 1-D surlace. st
the process of imposing the Zy symmetry on top of this surface is called “Orbifolding™,
in particular, Sl/ZQ orbifold. As we will sce below, this picture naturally offers a rich
spectrum of new. heavy particles that would be observable at energies greater than
the inverse compactification radius, i.c., £ > 1/R, where R is the radins or size of

the extra dimension. Let us first try to understand the features of such a theory by

14



having the extra dimension populated by a scalar field, for simplicity.

1.4.1 Scalar field in the bulk

Consider a massless complex scalar field living in 5-1). The action for such a theory
o .

is given by:
S = /dsfﬁ(:i’. ), (1.32)

where  is the fifth dimension co-ordinate and the Lagrangian is given by:

We will let z run from 0 to 27 R, with the points z = 0 and z = 27 R identified. This
means that we are compactifying the extra dimension on a circle, and thus. we can

expand ¢ as a Fourier series in the following way:
+2C )
orz) = Y eM(r)elinz/R), (1.34)
n=-oo

In this form, it is clear that ®(F,0) = ®(F, 27 R). Plugging back the solution, Eqn.

(1.34) in the action, Eqn. (1.32), and integrating over z, we get:

+oc
L= 5 @30 @00) - m2(@(m)ialn), (1.35)
n=-x

where
9 N ,
M = 3 (1.306)

Thus, we see that we have ended up with a theory in which the lowest n = () state
is massless and a tower of additional resonances whose masses are given by Equ.

(1.36). This tower is called the “Kaluza-Klein Resonances™, or KK tower, for short.



Thns. this simple example demonstrates how a compactified extra dimensional theory
naturally vields a rich spectrum of particles. Next, we apply this idea to gauge field

theories.

1.4.2 Gauge theory in the bulk

Let us consider a gange theory living in the bulk of the extra dimension, letting the
group G be arbitrary. We will let the extra dimension be flat, i.e.. the metric is given
by GMN = (1, -1,-1.-1.-1).

The action for the extra dimensional gauge theory can be written as:

" r ]_ g NS l 5 N}
Spause = / dx |- F& N FOMN (9, A% 4 €0, A%)7| L (1.37)
gauge 1] E 1 QU ;
where
-~ . . I ) e
9y = O AN — O AL + SbeAl A (1.38)

and gy is the five dimensional gauge coupling and the second term in Eqn. (1.37) is
the gauge fixing term. The form of the gauge fixing term is so chosen that it cancels
ad

the mixing between the gauge and Goldstone fields, d; .4%(‘)/,_/\“ . that arises from the

Fil. FOHZ. The variation of the action Eqn. (1.37) leads to the equations of motion:

o paMy _ abe pbMw e Loy, " .
iy My pabepbMy qe A = 048 = 0 (1.39)
DOF, = fUCFE AT 40,0507 — 0248 = 0, (1.40)

The requirement that the boundary piece vanishes leads to the condition:
| . 5 AW R /
[F9.0AY + (9o AYT = 0 A8) 048] = 0. (1.41)

The belhavior of the fields at the boundaries of the extra dimension (the houndary

16



conditions) now have to be chosen. There are three choices that respect 4-D Lorentz

mvariance:

A?l =0, g = const., (142)
Al =0, 345 =0, (1.43)
Fﬁz = 0. 12 = const.. (1.49)

The choice of the boundary condition determines the pattern of symmetry breaking.
Once we choose a particular breaking pattern, we can expand the gauge fields in KK

modes like in the last section:

-‘1;’1(f, z) = Z fn(z)"ﬁlzu(l')
n

AS(T,2) = Z‘(]n(i)ﬂ;’[(d‘). (1.45)
n

Thus. we see that the 5-D gauge field is decomposed into a vector and a 5-D scalar.
In a realistic model. one lets the bulk gauge group be SU(2) and the boundary
conditions have to be chosen so that we have a zero mode that represents the W oand
the Z bosons. plus a tower of vector bosons. The Higgs mechanisin still operates:
the g fields become the longitudinal components of these KK vector bosons. making
them massive. Thus, the spectrum consists of the SM particles and their heavy copices.
Let us briefly discuss a toy model with these features. We will let the bulk gauge
group be SU(2) and let the following boundary conditions break S (2) down to {(1)

at one end of the interval: At z = 0:

3. A% = 0. (1.46)
A% = 0. (1.47)
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and at z =7

At =0, o543 =0 (1.48)
o ¢1.2 :
d:A,° =0, A =0 (1.19)

We will work in the unitary gauge, Af: = (). The KK expansions are:

A (F2) = )W, () (1.50)
n

Az(f,::) = z.(ln(:)zn;l(-'”)- (1.51)
n

The eigenfunctions f(z) and g(z) are combinations of sines and cosines. Using the

BCs. we can derive the following mass equations:

cos (M,%yr}f) =0, (1.52)

sin (M}}nn) =0 (1.53)

where 1\/,(,) and M ,:,t are the masses of the neutral and charged gauge boson towers

respectively. The solutions are given by:

+ n — 1/2 . -
."[n = —r, n = 12 (1)1)
MY = ’T; n=0.12.. (1.55)

We see that the lowest mode of the charged tower is a massive particle, which we can
identify with the SM W boson. The n = 0 state of the neutral tower correspouds
to the massless photon, and the n = 1 state can he identified with the Z boson. Of

course. the precise W and 7Z mass relation does not come out - but our purpose here
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Figure 1.4: The Feynman diagrams for the longitudinal gauge boson scattering in
extra dimensional model. Unitarity in this process is achieved by the exchanuge of the
heavy veetor boson instead of a Higgs.

is to develop a toy model that has the essential features of extra dimensional theories.
Thus, we see that even in a toy model, one could choose the boundary conditions
appropriately to get a rich particle spectrum in which the lowest KK modes can be

identified with the SM particles, while the higher modes represent the KK resonances.

These KK resonances serve an important purpose. As explained in the beginning
of the section, we have to ensure that the W — W scattering amplitude is unitary,
and the unitarization is carried out by the exchange of these heavy vector bosous in
place of a Higgs in these theories. The Feynman diagrams for W W, — W7 W s

shown in Figure 1.4. The amplitude can be written in a generic form:

EL @ B

A=A 5.
Y M2
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The expressions for A and A?) can be derived to be:

AW = g?,,, nn — Z g;zmk [fab"f(‘d"(3 4 6cost — cos ¢) + 2(3 — con? H)j'('”'(’j"’d':
k
(1.5%)

9 ] . . ¢ ace +hde X, .
A2 = W 2 ME =33 g2 ME [/”“ Fhde  sin® 5_/“"ﬁ/”’”] . (L5Y)
Sin k

If the masses and couplings of the KK modes satisfy the following two sum rules:

.‘/?mnn = Z”?I'nk (1.60)
k
2 2_3%" 2 2 -
Grnmn My = 1 Zgnnk“”k’ (1.61)
k

. . . . ~ .
the pieces of the amplitude that grow as EYand E? are cancelled. (In the expressions
for the amplitudes above, the first sum rule has already been used to simplify the
form of /1(2)). Thus, we see that it is possible to maintain unitarity the exchange of

new heavy vector states in a model with no physical scalar particle.

1.4.3 Fermions in 5-D

Now that we have seen a toy model to generate gange boson masses in an extra
dimensional theory, we will now investigate the problem of ferinions living in an extra
dimension. A 5-D Dirac spinor decomposes under the 4-D Lorentz subgroup into two

two-component spinors:

V= . (1.62)



In 5-D. the Dirac matrices read:

0 ot e 1 0
. P = (1.63)
at 0 0 1,

# =

where the ¢'s are the usual Pauli matrices. Now let us impose the Zg orbifold pro-

jection, - — —z. In order to leave the 5-D Dirac eguation invariant, W has to satisfy:
R =4
V(—2) = —iIPW¥(z), (1.64)

e,

\(=2)=2a(x) and ¢(-z)=—v¢(2). (1.65)

e ~

x(r.2) = Z cos (%) \((")(r), (1.66)
n=0

. x . n=y . (n) -

v(r,z) = Z sin (W) v\ (r) (1.67)
n=0

Thus, we see that only x has a KK zero mode.

We will now try recover this result using the “iuterval” approach. The 5-D action

for ¥ reads:

S = / Ar [‘ (@1‘*" DU — g IrM \v) - m\fl\ll} . (1.68)

(N3

where the last term is a “bulk mass”. The above action can be recast in 4-D compo-

nents as:

S = /(]5.‘): [_,'\-,5'/1('%\ - ‘lf'c’fr;/'l('),, W+ (4;":7)—;\( - {"(‘—);UT!) +m (et \_/'L‘—’)] . (1.69)
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where 9. = %( > —02). The variation of this action leads to the equations of motion:

=i\ — Dz +me =0 (1.70)

— ot + 9 + my = 0. (1.71)

Requiring that the variation of the action at the boundary vanishes gives the condi-
tion:

—\0u 4 vdx + 0%y — Vov = 0. (1.72)

We also have to impose a boundary condition for ¥ in the form f(x.v:) = 0 at the
(,\;’o boundaries of the interval, and this, along with the equations of motion, will
fix all the arbitrary coefficients in the complete solution to the spinor equation. For
instance, we can require that the spinor  vanishes on both boundaries. This would

lead to:

(32 +m)xlgrp = 0. (1.73)

Solving the equations of motion with these boundary conditions would result in a

zero mode for y, but not .

As in the case of gauge fields. we can expand the spinors in KIx modes. Performing

this KK decomposition gives us:
X = Zgn(:)‘(n(l') (1.7:4)
n
¢ = fa(z)un(r). (1.75)
n
The fermions obey the Dirac equation:

_ 7'6“:‘-)’,\'(”) +mpe™ = (1.76)

—iota, M 4o, (0 = 0. (1.77)
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Substituting the KK decomposition into these equations gives:

dn +mgn = mpfn =0 (1.78)

fI,‘I —mfn+ mpgn = 0. (1.79)

We can combine these two coupled first order equations to form two uncoupled second

order equations.

n

9n * (”7;_);, - ""'2)!117 =0 (1.80)
" :
Jn + (mfl — )y = 0. (1.81)

The solutions are simply sums of sines and cosines, whose coefficients are determined
by reimposing the first order equations and the boundary conditions. For instance, if

we impose ¥ = 0 at both = = 0 and z = 7 R, we obtain:

. onz 8
fn(Z) = ap Sl —, (182)
R
an (n - n: . n:) .
gn(z) = — | —=cos — —msin — |, 1.83
gnz) = Do\ Reos g —msin g ) (1.83)
where
mp = (184)
and the coeflicient ay, is fixed by the normalization condition:
TR N
/ dzf;(z) =1 (1.89)
JO

The boundary conditions also allow for a zero mode for y:

(5) =/ — 2 oma 1.86
w0G) =\ T mr ¢ (1.86)
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We see that the 5-D mass does not contribute to the mass of the lightest fermion (it
stays massless). This is important - in a realistic theory, we should have all the SM
fermions nearly massless (except the top-quark).

Now that we have discussed gauge theories and fermions in extra dimensions. let
us move on to see if we can develop an understanding of the features of these theories

based purely on physics in 4-D.

1.5 Deconstruction

As we have seen, compactified extra dimensions naturally have an associated KKK
tower. We would like to see if we can write down a simple gauge invariant Lagrangian
to describe these KK modes without the full machinery of the extra dimension. This
is done using the idea of *Deconstruction™ (23, 24] - a manifestly 4-D description of
5-D physics.

Consider a gauge theory living in a slice of extra dimension. Now. if we imagine
slicing up the extra dimension into an infinite number of segments, cach plane is
deseribed by a 4-D gauge theory. So a 5-D gauge theory can be thought of as in
infinite collection of 4-D gange groups. Let us suppose the gauge group is SU(2). We
have to let the gange symmetries be broken so the KK resonances beconie massive.
We can do this by having a Higgs ficld. ®(z), that transforms between two adjacent
gauge groups SU/(2) groups as (2.2). When the Higgs field develops a diagonal vev.

v 0

Le., (P) = , it breaks SU(2) x SU(2) down to the diagonal sub group. and
0

thus we will have massive W and Z bosons plus their KK partners. But since our only
goal is to break the gauge symmetry, we can do away with the scalar Higgs degree of
{recdom and employ a non-linear sigima model, in the spirit of the Higgsless Standard

Model. Thus. the picture that emerges is one that is exactly like in Figure (1.3),
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CROSCENO

Figure 1.5: A deconstructed picture of the extra dimension. The 4-D gauge groups
are connected hy means of non-linear sigma model fields.

albeit with replicated gauge groups. This picture is called a “Moose™ or “Quiver”
diagram [25]. We show a general deconstructed model in Figure 1.5.

The non-linear sigma fields transform as fundamentals and anti-fundamentals un-
der the adjacent gauge groups, £; ;41 — Ui—lEi_.,-JrlUHI. The action for this theory
can be written down by simply extending Eqn. (1.29) to include multiple sigma fields

and gauge groups:

/ Z__Tr(,ﬂuw/w /(14 Z——Tll/)“ ”“l (1.87)

where the covariant derivative is given by:

DpZiiv1 = i1 — AipDiiv1 i Siit (1.88)

To check that this picture is indeed right, let us look at the continuum limit, i.e.. in
the limit N — oc. In this limit, we should recover the full 5-D gange theory. To do

this, let us start by relabeling the couplings and the decay coustants.

= VN ¥ 2k (1.89)
= VN +1h (1.90)

with the constraints

—y

N+ N+1

1 1 1 ,
Z = =% Z z = 1. (1.91)
: I

=()




which come from

N+1
1 1 ,
— = — (1.92)
9 iz0 %
N+1
1 1 ,
Eh > = (1.93)
i—0 /i
Let us now define the dimensionless coordinate:
7
5= N1 (1.91)

..L‘ - .
1
Az = —— — 2,
N+1 ¢z
1 N+l
‘,‘V +l ZO ——s/dZ.
1=

/1/;(:1:) — Aj(r.z),
8/\“
o

(N 41) [/19’_4_, (1) = Ag"(f)] -

Kihp— k(). (=),

1 1 : 1
- — (iZ—,-—— = 1
N+2 IX:%) fcf / 12(2)
N+1
1 1 1
—_— - — d:—‘——— =1
N+1 ?::0 n? / h2(z)

Using the above replacements and working in the unitary gange (¥; = 7). the action,

(Eqn. (1.87). becomes:

v /. 5 l ( ”,) j"z’llz(-I)T ('—v r/ll) (l (’ )
Dgange — (i X Y YN Ir r ]/‘ r ! L2 ' [} w0
g lllj__( . ‘2! 2 . !( ) /l I /
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where

F#: = 32.4#. (19())

since in the unitary gauge. A. = 0. The above equation represents the action for a 5-
D gauge in a “warped” or “curved” background, i.c., a geometry that is not flat (Note
that if we had started with all the g;’s and f;’s the same. we would have ended up
with the action for a gauge theory in a flat extra dimension, Egn. (1.37)). Relabeling
g — gt and f — fh. we see that this is reflected in the fact that the gauge couplings
and f constants depend on the extra dimensional co-ordinate z. Thus, the process of

deconstruction allows us to recover the complete 5-D theory in the continuum limit.

1.6 Deconstructed Higgsless Model

We will develop a deconstructed Higgsless model [26, 27, 28, 29] derived from a flat
extra dimension, ie., we will choose all the bulk gauge couplings and the decay
constants, f, to be the same through the moose. When we integrate out all the heavy
KK states, we should be left with an SU7(2) x 7(1) Higgsless standard model. We
will thus choose the coupling at the first site to be g, which is almost the same as the
SM SU/(2) coupling and. at the last site, we will gauge the {7(1) part of the S1/(2)
and give it a SM-like hypercharge coupling ¢’ - the couplings of the first and last site
gange groups being different from the rest of the moose is indicative of the boundary
conditions imposed at the two ends of the extra dimension in the underlving 5-D
theory. Thus. the gauge group of this N site moose is Hfif)l S17(2); x U(1) (Figure
1.6). The sigma ficlds connecting two adjacent gauge groups transform, as belore, as
Siiv1 — ! f'i_lEinI "i+1- When the sigma fields develop a vev (f) and break every
adjacent SU7(2) x SU(2) groups down to the diagonal SU(2). the lowest lyving modes

(which we identify as the SM W and Z bosons) and the KKK tower get masses.
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Figure 1.6: A deconstructed Higgsless model derived from a flat extra dimension. All
the bulk gauge couplings arc the same and so are the decay constants. The left and
right handed fermions have Yukawa couplings to the sigma ficlds and also have a bulk
Dirac mass term.

1.6.1 Gauge sector
The gauge sector Lagrangian reads:
1 Lapy -tapy ]' w f2 &l 2 -
L= =g WY gy, 4 S D] (1.97)
i i
where the covariant derivative is given by:
DpSi i1 = QuSii1 +10WEEi 41 — g8 Wit (1.93)

and g is the gauge coupling of the internal (or the bulk) SU(2) groups. The mass
terms for the gange bosons can be derived from the last term of Eqn. (1.97) by
working in the unitary gauge (X = 1). The charged gauge boson mass matrix is given

by:

22 =2 0 0 0 - 0\
s | 2 oo 0

‘ g
\0 0 0 o0 -1 2
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where r = /g is a small parameter. The matrix can be diagonalized perturbatively

in x to vield the mass eigenvalues of the standard W boson and the KK resonances.

242 TN )
D) g f A(ZAN + 1) 9
Vi = —— — - =4 1.100
MWE N 1)[ 6(N + 1) (1.100)
2 2
a2 22 nm ors2 [ MT ,
‘”W’ =g°f (bm ———————2(N " 1)) + 20y ((,Ob SV 1)) . (1.101)

In the continuum limit (N — ), we sec that the second term inside the parenthesis
goes to zero. Thus, to recover the correct formula for the mass of the 1 gauge boson,
f should scale like v/ N + 1. Similarly, the neutral gauge boson mass matrix is

given hy:

(:1;2 —x 0 0 o --- 0

- 2 -1 0 0o --- 0

220 —r 2 -1 0 - 0
o _9°f ‘
A% = 1.102
z 4 : : : : : ( )

0 0 0 0 - 2 oy

\0 0 0 0 - -y yz.)

7~ . . .
where y = ¢ /3. The light and heavy eigenvalues are given by:

2 12y 2 T AT 12,2
9 (g°+4g°)f N@N+1), 9 o Na-y ‘
My=-—r""—ll-—m— (" + Yy )+ ——5 + - 1.103
27 4N+ 1) 6(N + 1) SRS (r2 + y2 (L 105)
2 2
2 2.2 nmw 9 oo )
‘\IZ’ =g°f (sm —2(}\‘, " 1)) +2M% (C()h —Q(N m 1)) . (1.104)

1.6.2 Fermion sector

To construct a realistic theory, we have to put in the fermions. In Figure (1.6).

we show left (right) handed fermions as top (bottom) lines attached to cach gauge
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group. How do we write down mass terms for these fermions in the deconstructed
angnage? In the spirit of Eqn.(1.68), we can write down a “bulk™ mass term of the
form Mey. But the gauge svinmetries also allow a term that couples fermions in
adjacent sites - this “hopping” term ties left and right handed fermions through a
Yukawa coupling to the sigma ficld and takes the form ¢ ;%; ;01w pi41. When the
sigma field develops a vev, this becomes a mass term for the fermions. It was shown
in [26. 27] that a Higgsless model with the light SM fermions localized on the branes
(in the deconstructed picture, deriving the SU(2) charge only from the first site) does
not satisfy precision electroweak measurements. Thus, one has to allow the fermions
to “delocalize”, i.e., derive their SU/(2) charge from more than one site. In the 5-D
picture, this correponds to the wavefunction of the fermion “leaking” into the bulk

of the extra dimension. We write down the fermion Lagrangian below:

Ltormions = MpereroXoivpr +Mp Z CLiYRi (1.105)
i
- g upRo
+ MpepLNEN N+ - L
<ar) \R2

To get fermion flavor mixing, we could add generational indices to all the fermion
ficlds. and choosing ¢ and A to be generation-diagonal, embed all the non-trivial
avor structure in the Yukawa matrix in the last terin of Eqn. (1.106). Here, e anc
fi truct the Yuks t the last t f Eqn. (1.106). H ey, and
£fR can be understood as the degree of delocalization of the left and riglit-handed
fermions respectively, We will show how to determine the values of these parameters
f tively. W 1l show how to det th ] ftl l
in the context of a model with only one extra SU(2) group (a “three site model™)

in the next chapter. Diagonalizing the fermion mass matrix, we obtain the light and
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heavy eigenvalues:

I =2 AT QA2 g ATy
. MperefR 1 12N + 6(N? - 2N)etp + (N3 =382 120 ):}n
i f = - 7 o2
N¢e
181+ %
(1.106)
mp = Mp. (1.107)

Thus, a simple deconstructed model can be constructed without a physical Higgs
boson iu the spectrum. We have only sketched the general outline of such a theory in
this section. We will construct simpler models in the next chapters and investigate
their phenomenology in detail.

This thesis is organized as follows: in the next chapter, we will construct a simple
model with only one site in the “bulk” ( a three site model). In Chapter 3, we will look
at a simple extension of the three site model by appealing to the idea of “top-color™
that will enable us to have KK fermions in the spectrum that are light enough to be
discovered at the LHC - we will investigate the phenomenology of these heavy fermions
in detail and show that they are discoverable at the LHC for a wide range of masses.
In Chapter 4, we will address the issue of unitarity in the process (f — WEL 4] E in
a family of deconstructed Higgsless models and show how the Appelquist-Chanowitz
bound can he substantially weakened for a proper choice of the heavy [ermion mass.

Finally. in Chapter 5, we offer our conclusions.
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Chapter 2

A Three Site Higgsless Model

2.1 A minimal model

Higgsless models, as we have seen, break the electroweak symmetry without requiring
a fundamental scalar in the spectrum and the W W scattering amplitude in these
theories is unitarized by a tower of heavy gauge bosons, analagous to the SM W and Z
bosons. Typically. these gauge bosons get progressively heavier and one can only see a
few of the lowest lying resonances at the CERN LHC. Thus, it is phenomenologically
useful to have an effective theory that retains only a few of the extra gauge bosons and
vet captures all the phenomenologically interesting features of Higgsless models. In
this chapter, we will present the Three Site Model [30], the simplest possible example
of deconstructed Higgsless models of the kind described in the introduction. This
chapter is based on work published in [30].

The model has the same color group as in the Standard Model and an extended
SU(2) x SU(2) x U7(1) clectroweak gauge group. Accordingly, there is one set of
extra W/ and Z’ bosons that are heavy compared to their S\ counterparts. This
theory is in the same class as models of extended electroweak gauge svimmelries

[31. 32] motivated by models of hidden local symmetry [33, 34, 35, 36, 37]. We will
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Figure 2.1: The three site model analyzed in this paper. gg and § are the gauge
couplings of the SU(2) groups, while the coupling of the U(1) is represented by ¢'.
The left-handed fermions are denoted by the lower vertical lines (located at si 0
and 1), and the right-handed fermions are denoted by the upper vertical lines (at
sites 1 and 2). The dashed lines correspond to Yukawa couplings, as described in the
text. As discussed below, we will take (£01) = (X19) = V2 v.

also introduce a heavy fermionic partner for every SM fermion and these, along with
the heavy gauge bosons, complete the extra particles in the spectrum. The scale of
unitarity violation in the Wy Wy scattering amplitude is delayed by the exchange of
the W/, as opposed to a tower of gauge bosons (43, 44, 45, 46, 47). In Figure 2.1, we

illustrate the model using “Moose notation™ [25].

The model incorporates an SU(2) x SU(2) x U(1) gauge group, and 2 nonlin-
ear (SU(2) x SU7(2))/SU(2) sigma models in which the global symietry groups in
adjacent sigma models are identified with the corresponding factors of the gange
group. The symmetry breaking between the middle ST/(2) and the [7(1) follows an
SU(2)f, x SU(2)p/SU(2)y, symmetry breaking pattern with the /(1) embedded as

the T3-generator of SU(2) .

The left-handed fermions are

J(2) doublets coupling to the groups at the first
two sites, and which we will correspondingly label v’y and v, The right-handed
fermions are an SU(2) doublet at site 1, ¥y, and two singlet fermions, denoted in

figure 2.1 as “residing™ at site 2, upy and dpo. The fermions vrp g, v 1. and vy
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have /(1) charges typical of the left-handed doublets in the standard model, +1/6
for quarks and —1/2 for leptons. Similarly, the fermion u po has /(1) charges typical
for the right-handed up-quarks (+2/3), and d gy has the U(1) charge associated with

the right-handed down-quarks (—1/3) or the leptons (—1).

In the analysis of a general linear moose model in Ref.[48], it was shown that a
Higgsless model with localized fermions does not satisfy precision electroweak mea-
surements. Thus, for these models to be viable, the fermions have to be “delocalized™ -
in the context of the three site model. this means that the fermions derive their S17(2)
charges from site 0 and site 1. (In an extra dimensional scenario, this is analagous to
the “leakage” of the fermion wavefunction into the bulk). We will denote the amount

of delocalization of the left(right) handed fermions by e (s ).

With the arrangement of fermions in Figure 2.1, we can write down Yukawa cou-
plings linking adjacent left and right handed fermion ficlds via the non lincar sigma

model of the form v Xwp. Thus, the fermion mass terms read:

A UR9

[:j = /\fl ‘L;L(]Sll.""/?l + \/5:\11'1;"_’]?1'&»'[11 + f2 QELIZ?. + h.c. ('2.1)

/
A(I (iR‘z

We will set the vev's of the sigma fields the same - f1 = fo = v/2¢ (The reason for the

V2 was explained in the introduction - for a Higgsless model derived from a flat extra

dimension, the f constant should scale like VN + 1 to recover the right continuum

limit, aud in the three site model, N = 1).

_ - ; - , - SuRt UnRo
ﬁf =Mp lepvoXivm +vmvn + o1 + h.e.

cdr ] \1Rr2
(2.2)

We have set v2Ar = My and set A/A = e and M /A = e p. It is now straightforward

to incorporate quark flavor and mixing in a minimal way. To get the SN quark flavor
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mixing, we could add generational indices to each of the fermion ficlds. and, choosing
ey, and the mass term M) to be generation-diagonal, embed all of the nontrivial
flavor structure in the Yukawa matrix in the last termn in Equ. (2.2) - precisely as
in the standard model; the only mixing parameters that appear are the ordinary

Cabibbo-Kobayashi-Maskawa (CKM) angles and phase.

2.2 Masses and Eigenstates

This section reviews the mass eigenvalues and the wavefunctions of the gauge bosons
and fermiions of the three-site model. The gauge sector is the same as that of the BESS
model [31]. Ref. [43] has also previously discussed the gange hoson eigenfunctions,

but wrote them in terms of the parameters e, My, My, My, and Moy

2.2.1 Gauge bosons

The gauge boson masses arise from the kinetic energy terms for the sigma fields:

/2 i f? t .

where the covariant derivatives are:

DuZo1 = duSop +igWisgp - igS0 W (2.4)

DuEg1 = g +igW AT g — ig'S1pWa (2.5)

In the unitary gange (with g = X190 = 1), Eqn. (2.3) gives terms quadratic in

the gauge fields, for example,

S ] J2 0 ] 5
DSl DuSor) - ]v—z,qwu W] (2.6)
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fromi which we can read off the mass matrix for the gange bosons. We will work in

the limit

r=g/j<l, y=4g/7<1, (2.7)

in which case we expect a massless photon, light W and Z bosons. and a heavy set
of hosous W/ and Z’. Numerically. then, g and ¢’ are approximately equal to the

standard model SU7(2)1y7 and {7 (1)y couplings. We also define an angle # such that

g siné (2.8)

g cosf

i

al®

The charged gauge-boson mass-squared matrix may be written in terms of the

small parameter x as

99 (.2 _ ..
v x T
g > (2.9)
-r 2
Diagonalizing this matrix perturbatively in 2, we find the light eigenvalue
2,2 2 .6
; gev x x _
MR =S 1-—+—+...| . 2.10
Wy [ T } (2.10)

and the corresponding eigenstate

S = 0 A ,‘1 TH
M Iz — lvl"” ‘1 0 + "IV ‘,1 1
2 52l 3 g0
T ba T T 9
— — ,'l“l - _ ,'ll R
(1 - 128+...)M0+(2+——w 25(i+'”>”1 : (2.11)

where 1) 1 are the gauge bosons associated with the SU(2) groups at sites () and

1. Note that the light W is primarily located at site 0. The heavy cigenstate has an

eigenvector orthogonal to that in Eqn. (2.11) and a mass
2 4
¢ ¢ ‘ .r T p
./\[fv, = 22 [1 tohTp e ] , (2.12)
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Comparing Egns. (2.10) and (2.12). we find

Sy (2.13)

or, equivalently,

2 M2 M2\ 2 M2\ 3
('3) == ) as ) s ) 4 (2.14)
F A2, A2 M

¥ Myt W

which confirms  that the W/’ boson is heavy in the limit of small .

The neutral bosons’ mass-squared matrix is

[ a— 0
=2 2
gcv
2 -t 2 —uxt (2.15)
0 —at 2212
where { = tanf# = s/c. This matrix has a zero eigenvalue, corresponding to the

massless photon, with an eigenstate which may be written

Al =Syl Syt Spr (2.16)
9 7 g

where 1y 1 are the gauge bosons associated with the SU(2) groups at sites 0 and 1.
the B is the gauge boson associated with the /(1) group at site 2. and the electric
charge ¢ satisfies

2 5t 5+ 55 (2.17)
The light neutral gauge boson, which we associate with the Z. has a mass

s gh? [ s - 522 . 26 (2 = $2)1

My =—[1-— : -
27 42 4 2 64 Iy

4o (2.18)
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with a corresponding eigenvector

Zh =Wl bl o2 e (2.19)
2.3 o2 _ gyt
0 xfe?(1+ 20 = 317) 5
N 4o 2,90
IZ (« R ( )
. 2 3.3 243
1 we(l—=1t%)  a2c?(1-1t7) .
vy = 2.21
2.2 2 1
9 resct(3=2t° = t) )
vy = —8 — +.. . 2.22
IZ S S ( )

The heavy neutral boson has a mass

2 1'1(1 _ f2)2

M2 =g ﬁ P | (2.23)
with the corresponding eigenvector
2 =Gl ol w4, B (2.24)
l,O _ T 3f3(1 — 3"2) (2.25)
z' 3 16 =
2. 2
= (1+ 1 .
vhy =1~ I—(T—) + (2.26)
. 3¢ 2
. rl (3 -1 ,
7"22’:"7+(1—6)+‘“ . (2.27)
2.2.2 Fermions
Consider the fermion mass matrix
€L 0 m 0 ,
M,qg=Mp = (2.28)
. ) ’ ,
SuR.dR Mp mya

The notation introduced at the far right is used to emphasize that in the limit Al >

m.m’. the above matrix displavs a “see-saw™ form. In what follows, we will largely
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be interested in the top- and bottom-quarks, and therefore in =4 and ¢y, p.

Diagonalizing the top-quark seesaw-style mass matrix perturbatively in sy, we

find the light cigenvalue

MpeLair i
mp=—2 Ly L . (2.29)

142 )2

“tR

This is precisely the same form as found in a continuum model [51]. For the bottom-
quark, we find the same expression with ¢4 p — ¢ p. and therefore (neglecting higher
der ter iy 22
order terms in 7 p)

M R 1y 22, (2.30)
m¢ &tR

The heavy cigenstate (T') corresponding to the top-quark has a mass

-2
meyp = i ] £2 __C_L___ 9
”’1"‘“‘”D\“+'t}? [1+2(¢,~R+1)2+...]. (2.31)
Tt

and similarly for the heavy eigenstate corresponding to the bottom-quark (/3) with
sir — SpR (or, equivalently, m; — m’b).
The left- and right-handed light mass cigenstates of the top quark arc

0.t 1.t

lL=1 Vo tiLvn
£2 (822, — 3)e

=(—1+ L th L+...) o

o7 RV : : VLo
2(1+e2)2  8(e2p+ 1)
22 -3
L (2:'”?“ 1)"L ) .t o o
+ — + =+ ... | (2"3—))
2 9(~2 3 L1
(”'*m 2z5p + 1)
(2.33)
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and

{p=1} VR + 1R R

f)
EIR StR], t
= |- + S B
2 1122 1\5/2 R1
l+€‘t‘n (1+51R) /
! 2 .2
+ 4L Vg, (2.34)

. 2 \5/2
/1 +“:I2R (1+5[1{))/

and similarly for the left- and right-handed b-quarks with =y — ¢, p. Here we denote
the upper components of the SU/(2) doublet ficlds as l/'riol L1.RL’ clearly the smaller
the value of €, (z;p). the more strongly the left-handed (right-handed) ecigenstate
will be concentrated at site 0 (site 2). The left- and right-handed heavy fermion mass

cigenstates are the orthogonal combinations

Tp =Teh o+ Tt (2.35)

(2 3

_|_ L (Q‘tn_l):L ot

- 1_1_“.2 2( 2 +1)3 T Lo
iR IR

2 (85.2 - 3)5.‘4
+ (-—1 + - ]’2 5+ tR IL +... urle (2.36)
2(1 +e7p) 8(cip +1)

Tp=Theh +Thipy (2.37)
: 2 .2
-\ - Lt v
1+ E?R (1+ .':‘fn)')/Q '
3 51R52
+ B [ S— L4  Jips. (2.38)

B -2 \5/2
Jitein (L)

and similarly for the left- and right-handed heavy B quarks with &;p — ¢pp.

Analogous results follow for the other ordinary lermions and their heavy partners,

with the appropriate € ¢ p substituted for €; p in the expressions above. As mentioned
fR tR
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before, ¢ is flavor universal whose value is dictated by ideal fermion delocalization.,
which we will explain in the next section. We will choose zp for each fermion in

accordance with my = Mpepzsp. In the limit my — 0. e p is very small.

2.3 Couplings

2.3.1 Ideal fermion delocalization

We mentioned before that for higgsless models to satisfy precision clectroweak data,
the fermions have to be delocalized. Most tree-level corrections to precision observ-
ables come necessarily from the coupling of SM fermions to heavy gauge bosons, and
this suggests that a phenomenologically efficient means of delocalization is one that
will render this coupling zero. The coupling of the heavy W/ to SM fermions is of
he f NIV N Thus choos : : ofile <reh that (o - )2
the form g/7(c.fi) Gyt T'hus choosing the light fermion profile such that (L;A,’_)
- i ~
i
is proportional to 57 would make this coupling automatically vanish becanse the

heavy and light W ficlds are orthogonal to one another [49]. Thus we require:
{ g 2 ] ¢ v
.(Iz‘(w,-j )* = gw iy (2.39)

We will refer the above as Ideal Fermion Delocalization (IFD) [49]. In the three-
site model, if we write the wavefunction of a delocalized left-handed fermion f; =
fgu'-‘{” + fliz/‘){l then ideal delocalization imposes the following condition (having

taken the ratio of the separate constraints for i = 0 and i = 1):

p )
aUD? vy

1 (2.40)
atrh? vy

Based on our general expressions for fermion mass cigenstates (Eqns. (2.32) and

(2.34)) and the W mass eigenstate (Equ.(2.11)), it is clear that Eqn.(2.40) relates
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the flavor-independent guantities o and €, to the flavor-specitic € fR Hence, if we

construe this as an equation for £ and solve perturbatively in the small gquantity 2,

we find
9 ¢-2 [ rd 6
2 PEVIE BT A DA Y

Note that, as we will sce, EFR IS only substantial for the top-quark - and so ideal de-
localization for the light fermions corresponds to the case e fp = 0. Regardless of the
precise value of ¢ IR involved, it is immediately clear that ideal delocalization implics
g1 = O(x). Since & < 1. this justifies the expansions used above in diagonalizing the
fermion mass matrix. We will now derive the fermion couplings to light and heavy

gauge boson imposing this condition.

2.3.2 Charged currents

We will start by computing the left handed coupling of the 1 to the fermions.
Throughout this section and the next. we will be writing down the couplings specif-
ically for the top-bottom doublet. The couplings for other fermions can simply read
off by the replacement s p — £fR- Also, we will work in the limit e5p — 0, which

simply means that the couplings are computed in the my, — 0 limit.
q}f th - gf%h?/r?v + g}l}/b}l n‘l,‘, (2.12)

which can be evaluated to be:

Wb 3+ 42, +3 o 38 41658, 4+ 50=)p + 82, + 15
9 =911~ D) re+ 5 ' Tt
8(e5py +1)2 128(7), + 1)
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The corresponding equation for the coupling of standard model fermions other than

the top-quark to the ' may be obtained by taking €, — 0 in the equation above,

vielding
W_ _3 2 15 4 o 1
ar —g(l 8.1, +1281 +) . (2.44)

Combining this with eqns. (2.8), (2.10). (2.17). and (2.18) we find

(}}f S — [1 + 0(32 :1;4)] \ (2.45)
M3,
|- M
WYE

which shows that the W-fermion couplings (for fermions other than top) are of very
nearly standard model form, as consistent with ideal delocalization. Egn. (2.44)

corresponds to a value of G

W2 2 4
gr ) 1 e o e

The W also couples to the heavy partners of the ordinary fermions. Here, we quote
the results for the 1" and B fermions; analogous results follow for other generations
when &4 p is replaced by the appropriate 4R There is a diagonal WTB coupling of

the form

WI1B ) aplppl ] o 4=
gL = QTEB(I)Il'%" + ngl;Ile‘l," , (2,1‘)
elp —6e2p -5
I (1B TR _Z 2, (2.48)
W 4 a2
[ e,p+ 065, +4
=L B R 2y ) (2.19)
2 derp+ 1)

where T(])'l and 13([)‘1 arc the heavy-fermion analogs of the components [,(;’1 and b(;’l.

There are also smaller off-diagonal couplings involving one heavy and one ordinary
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fermion
}1 Tbh _ = g9 9, + (/,} bhody (2.50)

_00=¢fR) (o os o5
v ey (.I‘-i-(')(., )) : (2.51)

and
= gt LB%I‘% +th Bl (2.52)
2\f D)

H tB
qr

- +(’)(.1'3)) . (2.53)
Because v is a doublet under SU(2)1, the three-site model includes right-handed

couplings of the W

Ly p x H"/T [[) z,"lV(‘(,7[?11'_","“'1;5'1?1)] + h.c. . (2.54)

Note that the right-handed fermions exist only on sites 1 and 2 while the W is limited
to sites 0 and 1: hence, the right-handed coupling comes entirely from the overlap at

site 1. For the tb doublet we find

EtR bR (1 +@(,,;2)) (2.56)

2
\/““m\/”mn

qu,, 5#1?
2’"t1+sR

where reaching the last line requires use of Eqn.(2.30). We thus see that the right

handed coupling for all fermions vanishes in the limit my — 0. The W also has
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right-handed couplings to T and 13, for which we compute the diagonal coupling

an T8 —grkihid, (2.58)
A a2
B 2 8(=2, +1)2 o
2./l +¢ R “tR

WeB _si1 pl 1 20
g =9 RBRew (2.60)
192

£ & + 2z -3 .
L) (1 R L ) (2.61)
2/1+ 2, 8(ip +1)

As in the case of g}}"”' . the right-handed coupling g}}'r"[ b turns out 1o he proportional

to 2, p. and is therefore very small. Other right-handed W f f! couplings involving the

light standard fermions are straightforward to deduce from eqn. (2.56) and clearly

Ty
suppressed by the small values of EfR- Similarly. the off-diagonal q}; Fy are propor-

r gl )
tional to small & p. The diagonal g}g' FE are analogons in form to (2.59).

2.3.3 Neutral Currents

We will now compute the Z coupling to fermions. Like the W, the Z may couple to a
pair of ordinary or heavy-partner fermions, or to a mixed pair with one ordinary and
one heavy-partner fermion. The left-handed coupling of the light Z-boson to quark
fields may be written

3

M.

3
0= Ty v a1 TS
VLS Vo) 4y + 9"2(”’!,172-7”% L2y

Lz x gryl

I}I ¢

q 2 % A TS a
+5 vz (0po vro +vpern) (2.62)



where the first two terms give rise to the left-handed =737 coupling and the last
term (proportional to ¢') gives rise to the left-handed hypercharge coupling. The

expression for leptons would be similar, replacing hypercharge 1/6 with —1/2.

Similarly, the right-handed coupling of the Z to ¢uark fields is

3 /
S , P g9 2. 7 ; .
Lzrx §rz(Ri5 VRO Zu + 5 7RI R Zp

2 1 7 r, 3
g' l.'2Z (gflRQ‘)’#URQ - §(]R2","udn~2) ZI‘ s ('..)..()J)

where the last three terms arise from the hypercharge. For leptons, 1/6 — —1/2 in
the second term, 2/3 — 0 in the third term (for neutrinos), and —1/3 — —1 in the

last term for the charged leptons.

The left handed T coupling of the light fermion field to the Z is given by:

Z : ) -

931;” = g(f)%Y +g(rh)%y, (2.64)
a2 (3462 - 1)

=gc|l- 3 +...]. (2.65)

The coupling of left-handed light fermions to hypercharge arises from the overlap be-
tween the fraction of the Z wavefunction arising from site 2 (the locus of hypercharge)

and the left-handed fermion wavefunctions which are limited to sites 0 and 1:

ﬂy{f =4} [(f?)z + (sz] =% (2.60)
2,20 942 4
r2e4(3— 2% — ¢ _
=—g's (1 MatalC 82 ) +) (2.67)
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The left-handed coupling of the top-quark to Ty is

!ingf =.<1(f(1),)21‘0 +g(t 1,)2 (2.68)
ik (1 + Mw‘z ¥ ) (2.69)
c*(1+¢<7p)
and the corresponding right handed coupling is:
aff = vl - v HR)? (2.70)
_ 9 cim_ (14 0(:?)) . (2.71)
2e1 + sf R

The left and right handed couplings to hypercharge can be evaluated:
oft = G [P + (D] = o7 (2.72)
o =G R+ (2] = ol (2.73)

The T3 couplings of the Z to a pair of heavy-partner fermions or an off-diagonal pair
can all be similarly computed. We give the result for the top-bottom pair and their
heavy partners below: (The couplings for the other generations can be read off by

replacing ¢;p — ffR).
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1 D « ) ) q (2_*_\ )) R
"57/“ = g =3gB3+61% - 1) .2 +__LB____fL2_
| dc(l +¢7p)
2 2 o 2

€ & 3 2 3 :3
o(1(2 1) =2 (1) (2 1))
ZTT 1 (,2_1)+ 2

93 = —54 I
- 16( ,R+1)
ZIT g
93IR = S, 9
(5t 1)
(=325 + D2+ 82(fp + 32 + 1) = 4P + 1))
+ ¢ X
1663 (= R+1)3
2T _ g
93 =

I
2/20(e2, +1)

2 2, 2 a2 4.2 2
. ]((’m“) Hef(sp + 6 = 3) — A (5 + 1) ) 3
‘ — . @
) 16V2c3(s2, +1)3

2tT 9<tR
= 20(z R+l)

(—3(;;R +1)2 +42(2e} 5 + 5225 + 1) — 41 (=2 + 1)2) )
. G " g
16¢3 (7 +1)3

+ UStR

The hypercharge couplings of the Z to a pair of left-handed or right-handed heavy-

partuer fermions follow the pattern of the ordinary fermions:

7 2 .
iRl =g =Lt (2.

8]
=1
Ry
N

and the hypercharge coupling of the Z to an off-diagonal (flavor-conserving) f I pair
always vanishes
ZfF ZfF .y ==
()Y{, = (/){2 =0, (2.75)
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because the I” and [ wavefunctions are orthogonal.

Weak mixing angle: Before closing this section, let us calculate the “Z stan-

dard” weak mixing angle. Using Eqns. (2.17) and (2.18) and the relation

W,2 2 4
((l[ ) 1 o
Grp = L = — — — 4+ ..., 2.76
VG = a2, 2 2 T3 (2:76)
W
we can calculate:
2
¢ g
P A S —
227 a2GpME
1 o .
= 22 4522 - ) (K-’- Z) 2 4ot (2.77)

where s 7 = sinflyyr| 7z and ¢z = cos by | 7. The relationship between the weak mixing

angle Oy1-] 7 and the angle 6 defined in Eq. (2.8) is expressed as follows:
szz =524 A, (27 =c? A, (2.78)

A = 52 ((72 - }—1> 2+ 0(1:4). (2.79)

‘) 3 . . . . &
In other words, s* and szz differ by corrections of order 2.

2.4 Phenomenological bounds

The three site model has the following parameters in addition to the SM: z7 . ¢p
and Mp. We are interested in finding bounds on physical parameters. in particular,

Mypor. the mass of the gauge boson and M, the mass scale of the heavy fermions.
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2.4.1 qg7ww and ,‘“\fw/

Experimental constraints on the ZWH vertex in the three-site model turn out to

brovide useful bounds on the fermion delocalization parameter 7.
1 L

To leading order, in the absence of CP-violation, the triple gauge boson vertices
may be written in the Hagiwara-Peccei-Zeppenfeld-Hikasa triple-gauge-vertex nota-

tion [58]

LTGV —;«g% (L4 Arg|WIEW 2 — e [+ Arqy] W W, AR

— 2 [1 + Ang] WH W —wrw iz, (2.80)
sz
— (WP W TR A,

where the two-index tensors denote the Lorentz field-strength tensor of the corre-

sponding ficld. In the standard model, Ak 7z = Any = Ang =0.

As noted in ref. [59]. in any vector-resonance model, such as the Higgsless mod-
els considered here, the interactions (2.80) come from re-expressing the nonabelian
couplings in the kinetic energy terms in the original Lagrangian in terms of the mass-
eignestate fields. In this case one obtains equal contributions to the deviations of the
first and third terms. and the second and fourth terms in Eqn. (2.80). In addition
the cocfficient of the fourth term is fixed by electromagnetic gauge-invariance, and

therefore in these models we find

Ay =0  Ang=agf (2.81)

[
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Computing the ZWW coupling explicitly in the three-site model yields

) L {
9ZWW = !I(I*?V)“f’% + .(1(*"‘1{,-)21'% (2.82)
2202014 92 — 4
:_{,.;(13I 142 )+...> (2.83)
4
Zjf 2
=937 <I+ST+ ) : (2.34)

thus, the deviation of the coupling from the SM valuc is given by:
2
T
Agf == (2.85)
8=

The 95% C.L. upper limit from LEP-II is Aql < 0.028 [52]. Approximating ¢* 25

cos2 - = 0.77. we find the bound on

<0.42 Aqu (2.36)
0.028 ° -
and hence, from eqn. (2.13),
2 0.028 .
AMir = =My > 380 GeV . (2.87)
1 W A-qu

This lower bound on Ay translates into an upper bound on ¢ through the IFD
condition, Eqn. (2.41). Finally, we recall that, in the absence of a Higgs hoson,
W W spin-0 isospin-0 scattering would violate unitarity at a scale of v8rv and
that exchange of the heavy electroweak bosons is what unitarizes WH scattering in
Higgsless models. Hence, _:\vIW/ < 1.2 TeV in the three-site model. This, along with

Eq. (2.87) constrains £, to lie in the range

0.095 < ey <0.30 . (2.8%)



2.4.2 Ap and M)

The isospin violating p parameter is defined as the ratio of isotriplet neutral current
and charged current interactions at zero momentum. Neglecting the exchange of
heavy ganuge bosons, as appropriate in the case of ideal fermion delocalization, p can
also be expressed in terms of the masses of the 1 and Z bosons as follows:
9
My

=W 2.89
£ M% cos2 6 ( )

At tree level in the SM. p is one - the reason for this is an accidental symmetry in
the Higgs sector of the SM. To see what this symmetry is, let us start by writing the

components of this Higgs field as [53]:
6= (2.90)

Then, ioyd* is also an ST7(2) 7 doublet with components:

o0
iopo* = : (2.91)
—~
This lets us define the Higgs matrix field:
oo ! S gt 2o
) — —— p "':"
V2o 0
Now we can rewrite the Higgs Lagrangian as:
‘CHiggs = —;12Tr (D,,,(I))Jr (DH®) — V(D). (2.93)

[
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where the potential is given by:
V(D) = - 2Tedt o + aTr(efe)2. (2.94)
and the covariant derivative is:
g g
Dy® = (i‘)ﬂfl’ + i“za.li"#(b - i‘;l?lﬁba;j) . (2.95)

Now, in the limit ¢/ — 0, the Higgs Lagrangian has an SU(2)f, x SU(2)p global

symmetry. Under this symmetry, matrix field transforms as:
¢ — LoR. (2.96)

When the Higgs field develops a vev,
(2.97)

it breaks both SU(2); and SU(2) . leaving only the diagonal subgronp SU(2); , p =
ST/ (2)y unbroken. Thus, there are three massless Goldstone bosons generated that
are eaten by the 1V and the Z to make them massive. It is this accidental SU(2) global
svinmetry, called the custodial symmetry, that guarantees the relation between the
W and the Z masses (Eqn. (2.89)) in the SM. In the fermionic sector, the SU(2) x
SU(2) p symmetry guarantees that the masses of the up and down components of a
fermion doublet have equal masses. Significant fermionic one loop corrections to the
p parameter arise from the breaking of this custodial isospin symmetry, thus making

the up and down type fermions non-degenerate. The largest correction comes from



the top-bottom doublet and is given by [55]:

. 22 2

3G p 9 9 mymy m;
y =14+ ——F=|mi+mif -2————2-In—%|. (2.98)
/ 872/ t b mt2 — mg mg

For the other fermion doublets, the up and down type components have almost the

same mass and hence the correction vanishes.

In the three site model, in addition to the SM (¢ and b quark contribution. the
existence of the T and B quarks gives rise to new contributions to Ap. We will

evaluate this correction and use this and my to constrain Mp.

Since £ is flavor independent, it cannot contribute to enustodial symmetry vi-
olation and hence we will work in the limit £; — 0 to extract only the leading
contribution in ; p. The corrections due to the heavy top-bottom doublet arises out
of vacuum polarization diagrams (symbol 11(0), where the 0 indicates that these are
evaluated at zero momentum) shown in Fig. (2.2). In particular, the formula for Ap
is given by:

4 ,
Ap = ) (IT11(0) — TI33(0)]. (2.99)

Note that the subscripts 11 and 33 in this formula refer to the W and W3 bosons
tliat couple to the fermions. The Wy and W3 are not mass eigenstates. Subsequently,
we have defined quantities like 17 7, and the subscripts here should be understood
as the currents to which the bosons couple, for example, I 7 refers to the coupling
to two left handed currents. We will call the vacuum polarization diagrams with
left handed currents Il . Similarly. we will also deline HTpp (only right handed

currents) and I1; p (with both left and right handed currents). At zero momentum

o4



H,_,_ HLR

Figure 2.2: One-loop contributions to Ap arise from vacuum polarization diagrams
involving two left handed fermionic currents (left) and mixed left and right handed
currents (right). The RR piece is the same as the LL piece. The X and Y indicate
the type of fermions in the loop. We compute the leading contribution in the limit
g1 — 0 and g —0.

these functions are [54]

; 1 :
My (0) = 62 [(mf\— + m%/)E -2 (nz?\rbl(mx, my:0) + nz%bl(nzy‘m_\—;()))}

(2.100)

1
Iy p(0) = o2 [=2m xmy E + 2m y:-my-by(m y.my; 0)] (2.101)
i

where

. T m2 + (1——7)m,— 1—7(2
bn(ml\',my;qz) / drl()g,( X } )a ) (2.102)

A '1 zm% + (1 - 2)m? — x(1 — )42
by(my, 'my;q‘z) = / dr rlog ( X+ ) ) il (2.103)
J0 /1,

Here F is the divergent part of the loop diagram from dimensional regularization.
I = % — v+ log(4r) — l()g(/lz) (¢ =4 —d), and yr is the renormalization mass scale.
The RR picce has the same form as the LL piece. We will treat the LL, RR and the
LR pieces separately and show explicitly that the divergences cancel and compute
the finite part. For simplicity, we will relabel b(my, mo,0) as simply b(1.2.0). We

will be concentrating on the top-bottom doublet and their heavy partners, as they

(2}
[Sa]



codify maximmm flavor violation.

LL diagrams: Thlic vacuum polarization amplitude with left handed external

currents at zero momentum is given by:
4 1 , ‘ .
Iy (0) = _('_)_2— [—4— (mf + 'm,) L+ - (111551(12()) + m‘fbl(Qll)))] (2.101)

There are contributions due to (t.b). (t. B), (T,b) and (T. B) fermions in the loop.

The divergent part is thus given by:

I .
M1 (0)giv = (—;)—5 [2((),’@) (’”t + m,) 2((1,3) (ml‘,2 + mf})

-+-’)(q“ (/117 + '”b) + 2((143)) (m% + m%)} . (2.105)
Plugging in the couplings, we find the the divergent part of IT;(0) is:
.2
FE 'ﬂl, 1 2
. —_ — D} N
1 (0) gy = (17)?2 [ 5 + = R ("’1 + 711,;)} (2.1006)
which cancels the divergent contribution from the IT33(0) piece:

FE ‘ 2
H33(0)giy = (4m)?2 [ (a2} + 20aFp) mid + 2afy ) my
+2(~thT)2 (m,2 + m%) + Q(g}é’B)Qm‘ig]

. 2
r 1 .

— G [Ql)i + 3 (m%- + m%)} (2.107)
T 2




To evaluate the finite part, we will consider two cases. mqp = my and m # my.

_ -2 . . ,
my = mg : 7 7(0)gnite = Wm log m? (2.108)
i 1
my #mg : ;7 (0)gnite = 57 3 5 [ml1 7112 211;1 log ”'l
2(4r)?2 (ml + 1/72)

+‘2m% log m%] (2.109)

We recall that to the order we are interested in, Mg = Mp and M = AMp,/1+ :";ZR.

Evaluating the finite contributions due to I (0) and I133(0). we get:

¢

9
) 4 my .
1 (Dnite = ——(47')2 [——lé (1 —2log mtz)

\ID

+ 70 (65 + 21 + 12108 M + 6710 11, (2.110)

and

4 m ‘ 1.9 9 1,909
H33(0)ﬁllit(f = —W [?t lOg 7)’7{2 + EJID l()g ‘ID + EE‘ID:”,R

l 1 ,

and thus the finite part of the difference in the vacuum polarization amplitude for

the LL piece is given by:

4 77)%_{_ 4 ;\IIQJE;IR
(47)2 16 (4m)2 192

(I 1(0) = M33(0) ipite = (2.112)

We recognize the first term as the SM contribution to the one loop correction to the

p parameter [55] and the sccond term is due to the heavy top-bottom doublet.

RR diagrams: As before. the divergent picces of Iy and II33 are equal and

o7



cancel.

. \ E
11 (0)giy = Uz3(0) iy = ()2 {-8- (”'t + ’”B)

Using Eqn.

rents:

:2

OOI'—'

1O fuine = =7 LEMD log M7, + ofsu?
. 4 | T
33(0) finite = "G _o M3 log M2+ =2

Thus. the finite contribution from the vacuum polarization diagrums

right handed currents is given by:

(IT31(0) =

33(0))ipite =

(4m)2

9
Mp g
19271k

172
\ID1

G4 tRT g MR

4 )\IDCfR
334

LR diagrams: The LR diagrams are evaluated to be (Ref. [54]):

My p(0) = -

The divergent part of I17] can now be evalnated:

M11(0)giv = —

5 [mimal = mymoby (12

).

In the above formula, we have omitted terms proportional to my,.

couplings. we see that:

M (0)giv = =

2K

\

[
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5 {‘ZmTru.B (ILG) (1 -

2
551

R !
5 2/77“773(9,3)({){‘3) + QmeB(g»]L-B)(_q%'?B)] .

(m% + m%) (1 — j})} .

—_

2.113)

(2.108). we can evaluate the finite contributions due to the RR cur-

(2.114)

(2.115)

involving two

(2.116)

(2.117)

(2.11R)

Plugging in the

(2.119)



It can be easily shown that the divergent part of I35 exactly cancels this. We now

proceed to compute the finite contributions.

9
H1100) finite = )2 2af)(975)mym gho(me.m . 0)
2 L \(R
+ 2(g7 mpm pbo(mp.mp, 0
2 (o7 B) T g)mrmpby(mp.mp.0)
1/2 2 .2 U2 A2 e 12
(4m)2 | 8 D 16 22 T 16
(2.120)
2 [ D) . ¢
H33(0)finite = D—ﬂ‘z—) L(_qfl;)(.(1,},"?)111,“1)0('mt, my.0) + (_(/%T)(.‘I'?'T)n/%.b(,(mr. mp.0)

+({}II§B)(ggB)m%bo(mB. mp.0) + Q(gtLT)(gth})mt'me(J(mt. myp. ())]

€ 2 2 »2 2 . 2 y 2
(m2 | s D 16 tn 32 16 '
(2.121)
Thus, we see that the finite contribution due to the LR diagrams is:
4 Mt
(M11(0) = Tg3(0)) inite = 75 g9 (2.122)

(4m)2 192

The total fermionic contribution to Ap in the three site model is obtained by adding
Equs. (2.112), (2.116) and (2.122) and is given by (after subtracting out the SM

contribution and multiplyiug by a factor of 3 for color):

1 92 4 S

The W/ and Z’ contributions to Ap are discussed in [56). The phenomenological

bounds on the value of Ap depend (since they include the one-loop standard model
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corrections) on the reference Higgs mass chosen. We are interested in the bounds
on Ap corresponding to Higgs masses between about 380 GeV (from Equ.(2.87))
and the unitarity bound 1.2 TeV [56]. Current bounds (see, for example, Langacker
and Erler in [57]) yield (approximately) Ap < 2.5 x 1073, at 90% C.L.. assuming
the existence of a moderately heavy (340 GeV) Higgs boson, while it is relaxed to
approximately Ap < 5 x 1073 in the case of a heavy (1000 GeV) Higgs boson. We
therefore expect that the upper bound on Ap in the three site model varies from
approximately 2.5 x 1073 to 5 x 1073, For oT = 5 x 1073, we find the upper bound

v\ 1/2
erp < 0.94 (—"7) 2 (2.121)

Our upper limit on & p and our knowledge of the top quark mass allow us to derive

a lower bound on M. Our expression (2.29) for m4 reminds us that

erespM
my = =t (2.125)
1+<ip

For a given value of M p. the existence of an upper bound on z;p implies that there

is a smallest allowed value of £ . which we denote &7

ay 1/4 i 1/2
25 % 10‘_‘3 m. aTl /2 1
=196 22X t /14063 (—) 2 (212
) ) ( aT ) vull 2.5 % 10~3 Al ( )

Since eqn. (2.88) requires 5*L < 0.30, for aT = 2.5 x 1073 we find that Mp must
be greater than 2.3 TeV, and for aT = 5 x 1073 we find that A p must be greater
than 1.8 TeV. The joint range of A/p and MH" is summarised in Fig. (2.3), for both
values of aT.  Using M > 1.8 TeV and the bound in Eqn. (2.124), we sce that
z4p < 0.35. The right handed Wb coupling contributes to the process b — sv, and

this gives an upper bound on g; p of 0.67, which is superceded by this limit.
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1000 1200 My

Figure 2.3: Phenomenologically aceeptable values of Al and M1 in GeV for aT =
2.5 x 1073 (solid curve) and 5 x 10~3 (dashed curve). The region bounded by the

lines 380 GeV < Afy;r < 1200 GeV and above the appropriate curve is allowed. For
a given Mp and My the value of &4 g is determined by Eqgn. (2.125).

2.5 Remarks

In this chapter, we have described in detail a minimal deconstructed Higgsless model
that is simple, in the scnse that there is only one extra set of vector bosons in-
stead of the infinite tower of vector bosons present in the continuum limit. Likewise.
there need be only a single heavy fermion partner for cach of the standard model
fermions, instead of a tower of such states. The three site model serves as a conve-
nient framework to understand many important ideas in Higgsless models, like the
concept of ideal fermion delocalization. After deriving the mass cigenstates and cou-
plings, we investigated the phenomenological bounds on the mass scales of the gauge
and fermionic sector by appealing to precision low energy measurcments. We found
that the lower bound of M{V i1s around 380 GeV, which makes its discovery at the
CERN LHC a realistic possibility. However. the scale that sets the mass of fermions,

Mp has a lower bound exceeding a TeV, because of the twin requirements of getting
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the correct value of the top quark mass and having a phenomenologically acceptable
value for Ap. This renders the discovery of the heavy fermions rather difficult. It
is interesting to explore avenues to relax these constraints, so we could have extra
fermions that are light enough to have a strong discovery potential. This. however,
will involve extending the three site model in some specific way so as to free My from

the constraints of my and Ap and this will be the subject of the next chapter.
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Chapter 3

Triangle Moose Model

In Chapter 2. we presented the details of the three site model [30], a maximally
deconstructed version of a higgsless extra dimensional model, with only one extra
SU(2) gauge group, as compared to the SM. Thus, there are three extra gauge bosons,
which contribute to unitarizing the W W scattering in place of a higgs. (The LHC
phenomenology of these extra vector bosons can be found in [60]). Also incorporated
in the three site model is a heavy Dirac partner for every SM fermion. The presence
of these new fermions, in particular, the heavy top and bottom quarks, gives rise to
new one loop contributions to Ap. Low energy precision measurements require Ap to
be < O(l()_3) and so, the combination of parameters ;g and A/ have to be tuned
to both make Ap small and obtain the large top quark mass. These twin constraints
push the heavy quark mass into the multi TeV range, too high to be seen at the
LHC. Our goal in this chapter is to construct a model that retains the features of
the higgsless mechanism, but allows for Dirac fermions that are lighter. To achieve
this, we separate top quark mass gencration from the rest of electroweak syvmmetry

breaking. by analogy with top color models.
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Figure 3.1: The gauge structure of the model in Moose notation [25]. ¢ and ¢ are
approximately the SM SU(2) and hypercharge gauge couplings while § represents the
“bulk™ gauge coupling. The left (right) handed light fermions are mostly localized at
site 0 (2) while their heavy counterparts are mostly at site 1. The links connecting
sites 0 and 1 and sites 1 and 2 arc non lincar sigma model ficlds while the one
connecting sites 0 and 2 is the top Higgs field.

3.1 The Model

The clectroweak gauge structure of the model is the same as that in the three site
model and is SU(2) x SU(2) x U(1) (shown using the “Moose Notation™ in Figure
(3.1)). with the SM fermions deriving their SU(2) charges mostly from site 0 (which is
most closely associated with the SM SU(2)yy7) and the bulk fermions mostly from site
1. The extended electroweak gauge structure of the theory is the same as that of the
BESS models {31, 32], motivated by models of hidden local symmetry (with a # 1)
[33. 34, 35, 36. 37]. The non linear sigma field ¢ is responsible for breaking the
SU(2) x SU(2) gauge symmetry down to SU(2). The left handed fermions are SU(2)

doublets residing at sites 0 (v ) and 1 (v:,1). while the right handed fermions are a
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doublet under S17(2)1(¥'p1) and two SU/(2) singlet fermions at site 2 (1o and dpy).
The fermions v . 1271, and ¢ py have SU(2) charges typical of the left-handed S7(2)
doublets in the SM, +1/6 for quarks and —1/2 for leptons. Similarly, the fermion
u g9 has U'(1) charge typical for the right-handed np-quarks (+2/3) and dpy has the

/(1) charge typical for the right-handed down-quarks (—1/3).

Our goal is to separate top quark mass generation from the rest of electroweak
symmetry breaking. We do this by introducing a “top Higgs" ficld &, motivated by
top-color models [38. 39], and let the top quark couple preferentially to the top Higgs
via the Lagrangian:

Liop = —Mupg®ig+he (3.1)

Thus, the model incorporates two non-linear sigma fickls (the Higgsless sector) and a
top Higgs field that couples to the top quark. We point out that electroweak symmetry
breaking goes through via a Higgsless mechanism - we will see in the next section that
the W and Z gauge boson masses are dominated by the vev of the non-linear sigma
model ficlds and that the top Higgs link only has a sub-dominant contribution. Using
the AdS-CFT correspondence [19, 20, 21, 22], this model can be thought of as being

dual to Top-Color assisted Technicolor (T'C) thoeries [7, 40, 41].
The top Higes field can be written as:
0

S+H(x) | (3.2)
V2

A
o= /f

11(r) is the physical top Higgs and the n's are the associated Goldstone bosons that
arc not eaten. Thus, the spectrum consists, in addition to the SM particles and their

0, 71, and 7. We

heavy copies. a top-Higgs boson and three uneaten top-pions,
assume that Extended Technicolor (ETC) dynamics (7] induces “plaquette” terms

that align the technicolor vacuum with the topcolor vacuum and give mass to the top
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pions. The mass term can be written down as:
.3 RS .
Lr = 4nkeSTr (@Lmz‘;?) , (3.3)

where x is a dimensionless parameter.

The top Higgs ficld is deseribed by the Lagrangian:

Lo= f—21),1<1)’f/_)ﬂ<1) ~ V(D). (3.4)

4
The potential V(&) is minimized at (&) = f. When the ficdd € develops a non zero
vacuum expectation value, Eqn.(3.1) generates a top quark mass term. We choose
the vacuum expectation value associated with the non linear sigmal model felds to
be F = V20 cosw (for simplicity, we choose the vev of both the non linear sigma
model ficlds to be the same) and the one associated with the top Higgs scector to be

f =(®) = v sinw (where w is a small parameter).

The mass terms for all the light fermions arise from Yukawa couplings of the
fermionice fields with the non lincar sigma ficlds and is the same as that in the three

site model discussed in the previous chapter.

- - - fur 0 UR2
L=AMp |7L¥LoZo1vR1 + VRIVLL + V' L1E12 - (3.5)

We hLave denoted the Dirac mass (that sets the scale of the heavy fermion mass) to
be Al p. One can see that flavor violation (in all but the top-quark sector) is encoded
in the last term. Here, e is a parameter that describes the degree of delocalization
of the left handed fermions and is flavor universal. The delocalization parameter for
the right handed fermions, FR: can be tuned to realize the mass difference between

the up and down type fermions. For our phenomenological study, we will, for the
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most part, assume that all the fermions (except the top) are massless and hence will
set this parameter to zero. It will turn out that even for the top quark, £, can be
small since its mass is dominated by the top Higgs contribution (see Eqn.(1)). We
will see in Section VI that the top quark mass does not severely constrain Ap. and
correspondingly, there will exist no tension between the heavy quark mass, A/, and
one loop contributions to Ap, as in the three site model. This enables us to have
heavy quarks in this model that are light enough to be found at the LHC - we will

investigate this point in Section VIIL

3.2 Masses and Eigenstates

In addition to the SM ¥, Z and W bosons, we also have the heavy partners. W’
and Z’' because of the extra S [7(2) group. The canonically normalized kinetic energy

terms of the gauge ficlds can be written down in the usual way:

1 1
L= _EFBVFO”V Floplpy _ zlgl“’ B (3.6)

1
_Z uv

In this section, we review the masses and wave functions of the gauge bosons, which
are almost the same as the ones for the three site model. except for small w dependent

factors.

3.2.1 Charged Gauge Bosons
The masses of the gauge bosons come from the kinetic terms of the sigma ficlds:
F? vt F2 . T f2 1 -
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where the gauge covariant derivatives are:

DuXor = DuSop +igWIop — ig¥o W2 (3.8)

DyuSo1 = S 1o +igWiS1g —ig' S0 2. (3.9)

and ¥ and ¥y are unitary 2x2 matrix fields.

Let us write the gauge couplings in the following form:

(& - [ ’ «
- = — = . 3.10
sinf cos @ 9 sinfé sin ¢ g cosf ( )

90 =

We will find the mass eigenvalues and eigenvectors perturbatively in the small pa-
rameter sing, which we will call z.

From the above Lagrangian, one can get the mass matrix for the gauge bosons
by working in the unitary gauge (X = 1) and collecting the coefficients of the terms

uadratic in the gauge fields. The charged gauge boson mass matrix is thus given by:
q gaug ged gaug s A

-52(1+(7(’52 @) _2r cos? w
2 1-a2 V1-r2 oo
My, = ——+— . £ . 3.11)
W 422629 _2x cos? w (
1-r2

2.2

(S b

4 coslw

This matrix can be diagonalized perturbatively in ». We find the light W has the

O (,)\\'.l'l I114ASS aAlld (‘i yenvector:
following 1 1 tor

2 2 2
9 ecr 3z
Mg, = — |1+ — 3.12
W 4sin29( + 4) (3.12)
72 1
W =D Wl + ekt = (1 - —8—) Wi+ s (3.13)

Here. Wy and W are the gauge bosons associated with sites (0 and 1. Since z is

small, we note that the light W resides primarily at site 0. (The above formulas are
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valid to (’)(.1'2), as are all the other eigenvalues and couplings in this chapter).
The heavy W eigenvector is orthogonal to the above and has a mass:
2,2 .2
: ecveCost w 2 .
a2, = (44—r ). (3.14)
W 4sin? 0 z2

To leading order, the relation between the light and heavy 17 boson masses is

12 2
j\l“/‘v’ = ‘ « . (3-1’3)
M lZV , 4 cos w

3.2.2 Neutral gauge bosons

The neutral gauge bosons’ mass matrix is given by:

Tz{ 1+cos? w) _ 2rcos?w _22sin?s tand
l-x V12

2,2 2 Vi-a?
A I% = 4(2—155 —2——\/"% 4 cos?w —22 cos?w tan# 3.16)
B FUR o} -
—zosintwtand _y peos?tanf r2(1 + cos?w)tan?

Vi-z2

This mass matrix has a zero eigenvalue (the photon), the eigenvector of which may
be written exactly as:

e . €. (4 o 1=

A= W+ Wl S B (3.17)

) ) g
Requring that this state be properly normalized, we get the relation between the
couplings:
(3.18)

The light Z boson has the mass
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2.2 .

ecu ‘ sece

5\12 S U 1+1,‘2 1 - — . (3.19
Z 7 4sin26 cos2 ( 4 )

and the corresponding eigenvector

I R o
where
1 : ‘
1'9 = 3 (4(-2 + 372)(7039 — 322500 6) (3.21)
1
1-% = 3 ;:-(—20032 0+ 1)sec (3.22)
‘ 1
zf = sinf — 51'2 secd tan f. (3.23)

The heavy neutral vector boson, which we call Z’, has a mass and cigenvector

2.2 o2

A2, = %%2—; (4 + r2sec? e) (3.24)
7 = -,,-2, Wi + ‘n;,l’l’{l’ + «ff,B/‘, (3.25)
where
W = %1, (3.26)
ui, = -1+ %1'2 sec2 ¢ (3.27)
1!3, = 3)::1: tané. (3.28)

For small 2. it is seen that the Z is mainly at site 1, while the Z is at sites 0 and 2,

as one would expect.



3.3 Fermions and Ideal delocalization

In this section, we will review the masses and wave functions of the light fermions
and their heavy partners. We will then discuss how to “ideally delocalize™ the light

fermions. which will make the tree level value of the S parameter vanish [49].

3.3.1 Masses and wave functions

Working in the unitary gauge (X0 = X1 = 1), the mass matrices of the light gqnarks

and their Dirac fermion partners can be derived from Eqn.(1) and are given by:

£l 0
"”u.d =Mp . (3.29)

1 eyRdr
The subscripts u(d) denote np (down) quarks and Mp is the Dirac mass, introduced
in Eqn.  (3.5). Diagonalizing the matrix perturbatively in ¢7. we find the light

eigenvalue:

Mpereur f
My = U 1- =

9
\/l+5uR

Note that mn f is proportional to the flavor-specific parameter ¢ ¢p. where f is any

+ l . (3.30)

light SM fermion (except the top). The heavy Dirac quark has a mass:
T
my = Mpy14 220 |14+ —S5— + ... (3.31)
veoD uR 1T (1 2 )2
The left and right handed eigenvectors of the light quarks are

ur, =u% Uro + “},L"’Ll

2
T, , <L ; q 9
=1+ —L e+ (——>—> L (3.32)
( 2(1+EiR)2) 1+§,‘-1R



upR 2“}?"5’}?1 + u%uRQ

“uR T2uR 1 TR
u “LTu "L ulRR
=1- + VRl t + =l up»
: 2 52 | VR : 2 52
1+:flR (1+C,,R) / \”+512:.1? (L+&%p)

(3.33)

The left and right handed eigenvectors of the heavy partners are orthogonal to

Eqn.(3.32) and Eqn.(3.33):

ST NS I
Vp=tpero+Upvr

i 9
T+ein 21 +2,p)

S 2
l"'R =( RYRI1 +l/R“R2

: 2.2 i 2.
N “L°uR ep+ | - fuR “L°uR " g
D) ) =
L+c2, (L+enp)/? 1+22,  (L+ep)®?

In the above expressions, U and 1) stand for the heavy up and down quarks re-
spectively. The masses and eigenvectors of other fermions can be obtained by the

replacement €, p — SR

3.3.2 Ideal fermion delocalization

The leading tree level contributions to precision measurements in Higgsless models
come necessarily from the coupling of standard model fermions to the heavy gauge
bosons. It was shown in [49] that it is possible to delocalize the light fermions in such
a way that they do not couple to these heavy ficlds and thus minimize the deviations

in precision electroweak parameters. The coupling of the heavy W/ to SM fermions is

72



of the form Z 9; (¥ fi)ZU’W." Thus choosing the light fermion profile such that (v 5, )2
. [2
i

is proportional to u’:W?. would make this coupling automatically vanish because the
heavy and light W fields are orthogonal to one another. This procedure (called Ideal
fermion delocalization) also equates the coupling of the W to two light fermions to
the SM value. Thus, an equivalent way to impose ideal fermion delocalization (IFD)
is to demand that the tree level gy, coupling (say) equal the SM value.

We will use the latter procedure to implement, IFD. The deviation of the gy,
coupling from the SM value can be parametrized in terms of the Peskin-Takeuchi

parameters [42] S. T and UJ parameters as [50]:

.9 ‘ .
oS 2ol (2= s2)aly

452 B 252 B 852

IWer = i‘ 1+ (3.36)
where ¢ = costhy, = My /My and s = sinfly, = V1 - ¢2 are the *mass defined”
angles. It was shown in [48] that at tree level, in models of this kind, the parameters
T and IV have negligible values that are (9(;1‘4), and so we can impose ideal fermion
delocalization by requiring S to vanish at tree level (which would make gy, the SM
value, from Eqn. (3.36)).

In computing the couplings, we will use the mass defined angles. (We will indicate
this by a suffix w in all the couplings). From Eqns.(3.12) and (3.19). we can sce that

sinfly is related to sind defined implicitly in the couplings in Equ. (3.10) by:

72 ,
sinfy, = | 1- 3 sin 6. (3.37)
C

Using the W and the fermion wave functions. we can calenlate the coupling gyy-,,, as

ro=—— 145 — &) 3.38
IWer = ity ( T 8) (3.38)

Thus. we find the ideal fermion delocalization condition in the model to be:




™

~to
[\

(3.39)

Note that this relation is the same as the one obtained in the three site model.

3.4 Light Fermion couplings to the gauge bosons

3.4.1 Charged Currents

Now that we have the wave functions of the vector bosons and the fermions, we
can compute the couplings between these states. Since all the light fermions are
approximately massless, we set ¢ fR for all the light fermions to zero in this section.

We will calculate all couplings to (’)(r2). We begin with the left handed 1V ud coupling.

€

!}E/ ud

= g + gedul dl = (3.40)

sinf,

This result follows from the fact that we have implemented ideal fermion delocaliza-

tion in the model.

All other charged current couplings (both left and right handed) can be similarly
computed. The couplings in this model are only very slightly different from the ones
in the three site model. The difference is attributable to the fact that the expansion

parameter we have chosen, ., is sind, as opposed to tane in the three site model. We
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now summarize the results:

gy ud ¢ o
= g u u[ d, + gy u,u’L S (3.41)

WUd,_ Wub 0,00 , - er o
ap V=g P = gorb U] + el d] = SN (3.12)
SMUD _ 000010 10 S e — 3,2 3.43
op VY = a0l DL + el 2 sl \ 8" (343)
(]2» wd _ =gl u}?l) =0 (3.4
g V(=¥ uDy = gelirknk =0 (3.45)
WUD _ = 1,11 _ _© 19 o4
o "7 = 9t jDR = 55 (1 —3F ) (3.46)
W ud 0.0 -1 11 a1
gp "= qor, -’“‘Ld(l), +gv jupdp =0 (3.47)

’r/ 7 - - . > .

ap V=0l ) = g U] + gol U] = ——e—— (3.48)

€
\/Q sin fyp
€

W'UD _ 0 200 1 o 1l _ 3,2 3.49
L - Aor, L L Ll I sin By 3" (349)
}% fud _ = gv 1’“Rdl’ =0 (3.50)
y -
(]}; & (I( }; “D) = gf’ JUR"'R =) (‘;51)
WuD _ - ¢ 12 o e
‘ =gl ubpl = 1- - 3.52
IR 9Cw! RVR tsin(hu( 1 ) 502)

Two comments are in order. The right handed W1 d. W/ ud couplings are zero in the
limits in which we are working (s, p = e4p = 0). The right handed coupling of 11’
with two heavy fields arises. in this limit, solely from site 1 and is not zero. The left
and right-handed W<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>