
 

PLACE IN RETURN BOX to remove this checkout from your record.

To AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

 

DATE DUE DATE DUE DATE DUE

 

 

 

 

 

 

 

 

 

      
5108 K'IProjIAcc8Pres/ClRC/DateDue.rndd

 



DEC‘()I\'S"I‘RIIC"I‘ED HIGGSLESS MODELS OF ELECTROWEAK SYMMETRY

BREAKING

By

Baradhwaj Pan-ayancheri-Coleppa

A DISSERTATION

Submitted to

h’lichigan State University

in partial fulfillment. of the I'cquirmnvms

for the degree of

DOCTOR. OF PHILOSOPHY

Physics and Astronomy

2009



ABSTRACT

DECONSTRUCTED HIGGSLESS MODELS OF ELECTROWEAK

SYMMETRY BREAKING

By

Baradhwaj Panayancheri-Coleppa

\Ve study deconstructed Higgsless models of electroweak symmetry breaking. As the

name implies. these models break electroweak symmetry without the presence of a

scalar Higgs boson in the spectrum. These models are inspired by compaetified extra

dimensional models, where the ll’Lll’L scattering amplitude is unitarized by a tower

of new. heavy vector bosons in place of the l-liggs. We study a simplified theory with

only one set of extra vector bosons and derive the wavefunctions and couplings in this

theory. we then extend this model to include a “top-Higgs“ link, so as to separate

the top quark mass generzittion from the rest. of electroweak symmetry breaking. which

still goes through via a Higgsless mechanism. This enables us to have new, heavy

Dirac fermions that are light enough to be (.lisccwered at the LHC. we present. the

phenomenoh)gy of these heavy fermions. showing that. they are discoverable at. the

50 level at the LHC for a wide range of masses. Finally. we move on to consider the

question of unitarity and the heavy Dirac fermion mass generat ion by investigating

the printess H- -—+ W; W"; in a family of deconstructed Higgsless models. and show

how the Appehmist-Clianowit7. bound can be substantially weakened for sufficiently

light Dirac fermions.
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2.1

2.3

3.1

3.3

The three site model analyzed in this paper. g0 and f} are the gauge

couplings of the SU(2) groups, while the coupling of the U( 1) is rep—

resented by g’. The left—handed fermions are denoted by the lower

vertical lines (located at sites 0 and 1), and the right-handed fermions

are denoted by the upper vertical lines (at sites 1 and 2). The dashed

lines correspond to Yukawa couplings, as described in the text. As

discussed below. we will take (201) = (212) = V/2 "v.

One-loop contributions to Ap arise from vacuum 1;)olarizatitm diagrmns

involving two left handed fermionie currents (left) and mixed left and

right. handed currents (right). The RR piece is the same as the LL

piece. The X and Y indicate the type of fermions in the loop. We

compute the leading contribution in the limit 5 L ——-, 0 and g’ —+ 0.

Phenoment)logically acceptable values of MD and 111‘,“ in CeV for

(1T 2 2.5 x 10‘3 (solid curve) and 5 x 1()—3 (dashed curve). The

region bounded by the lines 380 GeV < A IW’ < 1200 GeV and above

the appropriate curve is allowed. For a given MD and MW” the value

of 5,1? is determined by Eqn. (2.125).

The gauge structure of the model in Moose notatitm [25]. g and g, are

approximately the SM 8U ( 2) and hypercharge gauge couplings while

f) represents the “bulk” gauge coupling. The left (right) handed light.

fermions are mostly localized at. site 0 (2) while their heavy counter-

parts are mostly at site 1. The links connecting sites 0 and 1 and sites

1 and 2 are non linear sigma. model fields while the one cmtnecting sites

0 and 2 is the top Higgs field.

The decay modes of the heavy quarks in the theory. The decay rate

is controlled by the off-diagonal left handed coupling of the vector

boson to a. heavy fermion and the corresponding light fermion ( the

corresponding right handed coupling vanishes in the limit of massless

ligl'it fermions).

The plot of the branching ratio of the heavy quark into the charged

and neutral gauge bosons. The masses of the W’ and Z' gauge bosons

were taken to be 500 GeV each.

(a). Pair production of the heavy quarks occurs through {it} annihilat ion

and gluon fusion.
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The cross section for pair production (for one flavor) as a. function of

the Dirac mass. As can be seen from the figure, for low values of :1 II),

the cross section for the gluon fusion channel is higher than the quark

aimihilation process. As MD increases, the quark annihilation process

becomes equally important because the pdf of the gluon falls rapidly

with increasing parton momentum fraction. .1:.

The I] distribution of the outgoing hard jets for the process pp ——> QQ —>

1'1"qu —+ llIz/jj, corresponding to MD 2 700 GeV and MW’ : 500

GeV for a luminosity of 100 f(2‘1. One can see that the events are .in

the central region: —2.5 < 1) < 2.5. The slight asymmet ry in the shape

of the curve is because we add the distrilgmtions corresponding to the

jets from both the Q and the (2 decays.

Predicted signal invariant mass distributions AIII- for 11/D = 300 GeV

and MD = 700 GeV for a fixed MW’ 2 500 GeV. The small off peak

events arise because we added the. distributions corresponding to the

jets from both Q and Q decays.

Contour plot of number of events in the pair production case for a fixed

integrated luminosity of 100 fb‘l. The shaded region corresponds

to MW; > 2.14D and is non perturbative and is excluded from our

analysis. as discussed in the beginning of this section.

Feynman diagram for the t channel single productimi of the heavy

fermion via the exchange of the. Z and the ZI bosons.

Cross section for the t channel single production of the heavy fermion

as a function of the Dirac mass 111D' It is seen to fall more gradiuilly

as compared to that. of the pair Infodiictirm case.

The transverse mass distribution for the single production of a heavy

quark in the model for MD 800 GeV and 1 TeV.fo1 a. fixul 1]”I

= 500 Ge\ It is seen that. the signal falls sharph at 11I).

Contour plot of the number of signal events for the single production

channel for an integrated luminosity of 100 fb‘l. The shaded region

is where MW’ > 2MD and is non perturbative. One can see there is a.

considerable number of events in the low Allw, region of the parameter

space.
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The SM backgroimd for the single production channel, pp ———+ 11/ij —+

jjlz/ll. calculated by summing over the u. d. c, s and gluon jets and the

first two families of leptons, and with the cuts in Table 3.4 imposed.

The bin size is 20 GeV.

Luminosity required for a 5 0 discovery of the heavy vector fermions at

the LHC in the single (blue) and pair (red) production channels. The

shaded portion is non perturbative and not included in the study. It

is seen that the two channels are complementary to one another and

allow almost the entire region to be covered in 300 fifl'.

The diagrams that contribute to the process t+f+ —+ W211"; in the

Higgsless SM. There are analogous diagrams for the process I.-t_ ——>

11’311’5. Each diagram has an amplitude that. grows linearly with

\/§ for all energies. However, most (but not all) of this linear VG

growth cancels when the diagrams are summed. The remaining piece

that grows linearly with \/3 comes from the t channel diagram, and

it eventually surpasses the unitarity bound. In the SM, this unitarity

90

97

violation is eliminated by the contribution of the Higgs in the s channel.105

The diagram that contributes linear growth in V3 to the process 15+ fir. ——+

77+
7r" in the Higgsless SM. where we have used the equivalence theo-

rem to replace the longitudinally polarized gauge-boson by the corre-

sponding “eaten" Goldstone Bosons. There is an analogous diagram

for the process L]: ——+ n+7r-

This diagram. corresponding to s-channel Z-boson exchange in the

equivalcnce-theorem limit. does not contribute to the J z 0 1:)artial

wave scattering amplitude for the process t+f+ ——> ”n+7” in the Hig-

gsless SM.

Moose [25] diagram of the n( +2) site model. Each solid (dashed) circle

represents an SU(2) (U ( 1)) gauge. group. Each horizontal line is a.

non-linear sigma model. Vertical lines are fermions, and diagonal lines

represent Yukawa couplings.

the process {+17+ —+ 117211"; in the 'n(+—2) site Higgslcss model. There

are analogous diagrams for the process L7- —+ lit/+11"! . As in the

SM. most of the linear growth in V: will cancel. All the persisting

linear growth in \/s_. comes from the 1' channel diagrams. .
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1---?" —+ 77+7r—. The top diagram grows linearly with x/z for all en-

ergies, whereas the bottom diagrams only grow with \/._9 up to Alp/fl,

after which they fall off as l/\/§.

The scale where unitarity breaks down in the helicity nonconserving

channel in the n(+‘2) site model. Unitarity is valid in the region below

and to the left of a. given curve. The bottom-most. curve. is for n. = (l

and is the AC- bound. The line directly above the bottom one is for
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Chapter 1

Introduction

There are [our basic kinds of forces in the world: the strong nuclear force, the weak nu-

clear force. electromagnetism, and gravity. These. are distinguished from one another

based on their strengths and range. For example. the gravitational force between two

ol_)je(;-.ts is proportional to the product of their masses and hence is relevant only when

the objects involved are very massive. But gravity has an infinite range and hence

plays the dtmiinant role in determining the large scale structure of the universe. On

the other hand. in the sub-atomic world, the strong, weak and electrtnnagnetic forces

dmninatxe. The quantum theory that explains the nature of these sub—atomic forces

is called the Standard Model of Particle Physics (SM for short), while the nature of

gravity is so far explained by the classical theory of General Relativity.

The SM is a gauge theory and incorporates two different classes of particles - the

matter content (fermions) and the force carriers (the gauge bosons). The force ex-

terted 11)); one particle on another is transmitted via the gauge bosons. The range of

the force is dictated by the mass of the gauge boson involved - for example, electro—

magnetic forces that have infinite range are transmitted by massless photons while

the short range weak nuclear force is transmitted by the heavy W and Z bosons. The

bez-inty of the SM lies in the fact that it explains these two different kinds of forces



in one unified framework. i.c.. as an clectro—wcz-ik theory [1].Of course. the strong

nuclear forces are also built into the SM as a “color” gauge theory and the complete

gauge group of the SM is SU(3)C X SU (2)”; x U(1)y, where the. subscripts C, ll",

and Y stand for color. weak, and hypercharge respectively. In this thesis. we will be

largely concentrating on the electro—weak sector, i.e.. the $1.112)”; ix t."(1)y part. To

understand how the SM operates. let. us begin by describing the simpler theory of

Quantum Electrodynamics (QED).

1.1 Quantum Electrodynamics

Let us start by writing down the Dirac Lagrangian for a free electron of mass m:

E = Eiyflapxr — 'IIIEQJ, (1.1)

where \I/ is a. four component Dirac spinor. This Lagrangian is invariant: under a

phase transformation:

‘11 -> exp (tell) \II, (1.2)

where c is the electric charge. The parameter H is independent of space-time and

correspt)I'irlingly, the transformation is termed "global”. l\loreover, since this is a

one parameter group. the. above Lagrangian is said be invariant under global (2(1)

transformatitins, where U tells us that this is a unitary group. But suppose we insist

that the parameter H depend on sl')ace~t.inie. i.e.. H —+ 9(1) (i.e.. a local or gouge

transformationi). Then, of course. Eon. (1.1) is no longer invariant.

C —> Tier“ (9M1! —— mfiq! — (5(7),.071771“ \II. (1.3)

2



It is clear that. the theory of a free electron cannot be invariant, under local trnas—

formations. If we demand that this theory still be invariant, we are forced to add

another ingredient whose [7(1) transformation would cancel the extra piece in Eon.

(1.3). From :\"Iaxwell"s classical electromagnetic theory. we know that the photon field

transforms inhoinogenously under gauge transformations as follows:

{1” ‘4’ 4” "" If)“0(.'.f). (1.4)

This suggests that. we add the photon field. A”. in such a fashion as to cancel the

extra term in Eqn. (1.3). Thus, we write down the interaction term:

—- )—f\/ l t l"

£11”; -— (.‘I’ ‘1/ W41”. (1.))

It. can be verified that adding this term to the Dirac Lagrangian makes it": invariant

under local 1" (1) transformations. The (5(1) gauge symmetry allows a kinetic energy

term for the photon that. takes the form:

1 my
£= _1FIUIF , (1D)

where F)“, = (9),.41, — fit/.4”. Note that a mass term for the photon of the form

marl/1:1” is not allowed since this is not (3(1) invariant. Thus. the complete QED

Lagrangian. is given by (restricting ourselves to terms of dimension 4):

._ It ~ 1 '1 ‘#1/ —
—

EQED 21(1),? Dliqj— ELM/[v —m.\IJ\I’,
(14)

where

1))[7 (9,1— ILA/1. (1.8)



is the covariant derivative. Promoting the ordinary (‘lerixj'ative to a. covariant derivative

in the form of Eqn. (1.8) to make the Lagrangian gauge im'ariant is called the

"';\Iinirnal coupling” prescription. Thus. we see that the principle of local gauge

invariance determines the structure of the Lagrangian and also naturally introduces

a vector boson into the tl‘icory. Next, we turn to the full Standard Model.

1.2 The Standard Model

The Standard Model Lagrangian can be constructed by extending the [)I‘i'lltfiplC‘S of

the last section for the full group SU(3)C x .S'I.I'(2)W x U(1)y. The matter content

of the SM (quarks and leptons) come in three families (or gem-nations). Both the

quark and lepton families have electroweak interactitms and hence transform under

the .S'1_."(2)W X I.="(1)y part of the SM gauge group. However, strong interactions

(mediated by gluons) are only felt by the quarks. and thus only the quarks and

gluons have SI} (3) charges (The non-Abelian nature of the gauge group permits self

cotuiling of gluous, as opposed to electromagnetism). we give the quantum numbers

of the quark and lepton fields under the SM gauge group below:

Q = ”L ~(32+1.) 1"~(3’1—1) "~(‘3‘1+?).L .,6.(1? .,3, UR ..3.

(IL

v 1 .
LL: L ~(1.2,—§), (J‘R~(1,1,1). (1-9)

({L

The L and R stand for left. and right. handed helicit y states. based on the Lorentz

tra—msforniation properties of the fermion. The gauge interactions of the. quarks can

now be written down by extending the covariant derivative in Eqn. (1.8) to include

the eight. gluons (Cl/Ii)” the three weak gauge bosons (IV/ii). and the hypercharge

4



gauge l‘_)oson ( l)’)1).

 

  

[:EEWFQU” 3/1*‘igaégaif—fglojwif ""5038!“ QL

+ "5%?“ pay — magi-Cf? fig-”2191i “it

+13%?” f8” -'i932\7;6'}f - igg‘zB/ti it

Him” e),,t_.g9192‘—4Hff+ 'iérrznw 14L

f i757” l3” - 'ir12Bul 6'??- (171”)

Here. 93. 91 and 92 are the SU(3)C SU('2)W and U (1)y couplings respectively and

the A‘A’s and (IA’s are the Cells-farm and Pauli matrices for the SII(3) and 51(2)

gauge groups.

As explained in the previous section. invariance under local gauge transforma-

tions demands that the associated gauge bosons be massless. But we. know from their

short range interactions that the weak gauge bosons do indeed have. a mass. Thus. we

conclude that in order to have massive gauge bosons. the symmetry must somelum

be ln‘oken. i.e.. the vacmun state must not respect the symmetries the Lagrangian

does. This phenomenon. wherein the Lagrangian is symmetric under certain transfor-

rmitions while the ground state is not. is called “Spontaneous Symmetry Breaking"

(8813). In the SM. the breaking of the electroweak symmetry is engineered by in-

trodtu-ing a scalar Iliggs field [2], which has the following quantum numbers under

311(2)”: and U(1)y:

(pic

a: ~(1.2.+%). (1.11)

C
I
!



The Lagrangian for the Higgs field can written as (restricting ourselves to terms of

dimension four or less):

£Higgs = éTr [IN‘HpTIJHcD] — é-ringrfiDl‘o) — $Tr(olo)2. (1.12)

where the. covariant derivative is given by:

[We = 0/" + sugar/i“ — 7%”? B“ d). (1.13)

The lliggs also has \"11k2,iwa. couplings to the matter fields as follows:

['Yukawa == 6.1/11. emI? + @g/(f'iagd)* (IR + IygcfieR ”l“ [1.0. (1.14)

where the y's are the ’ukawa couplings. The quark and lepton fields should be written

with a. generatioru-rl index ((22) to accomodate the three families - we are sluipressing

these indices here.

The potential for the Higgs field in Eqn. (1.12) takes the form of a. “l\'1exica.n

hat”, as shown in Figure 1.1. The minimum of the potential does not. lie at q) z: 0,

but rather lies on a continuous 31/(2) manifold along the “trough” of the Mexican

hat. One could do perturbation theory around any one of these minima. The choice

of a particular vacuum breaks the gauge symmetry as it corresponds to choosing a

particular direction in, the. SU(‘2) space, so the vacuum is no longer invariant under

SUB) rotations. Vt’riting the Higgs doublet in a form that separates the Goldstone

bosons (denoted 7r(.7:)) from the Higgs boson,

0

c+h(:r)

v72

we) — Catt-swim



 

Figure 1.1: The potential for the Higgs field takes a “Mexican hat” form. The

“trough” corresponds to continuous directions in which one can move expending zero

energy — these correspond to the Goldstone boson modes.

we can write the vacuum expectation value (vev) of the Higgs as:

0

<0|¢10) = 1.» . (1.16)

fl

where v = (l—mi/A. The gauge interactions of the Higgs, Eqn. (1.12), now give

rise to mass terms for the gauge bosons when we insert the vev 0f the Higgs. For the

neutral gauge bosons, we find

, 71gg¥v2 ‘i9192v2 3"

E: 13,) H3 - (1-17)
p. _ 1 2 1 2 2 will

191921) 2:92“ 3

We can diagonalize this matrix by unitary transformation using the matrix:

c086 sine

U = w w (1.18)

—Sin 6w C0861”,



where tan 0),: = (11/.‘12- we can identify the two mass eigenstates as:

.4” = cos ()mBu + sin 071,113”.

Z“ = — sin 9153):. + cos 6101173“.

with masses

mi 2 0.

1 f r)

111% = :4—( f + g§)v2

The charged gauge bosons also acquire a mass:

where

1 . 1
wt = —— (W1 ; 2211/3) .

#- \/§ 11 u

(1.19)

(1.20)

(1.21)

(1.22)

We started with n'iassless gauge bosons and a complex Higgs field with four real scalar

degrees of freedom. We see that three of the four degrees of freedom of the f'figgs

have now become the longitudinal components of three gauge bosons. niz‘tking them

massive. However. there is one scalar pl‘iysical degree of freedom that remains, which

we identify as the Higgs boson. Wit-h 1118533

III/2' == 2Au2. (1.23)

Expressing the gauge eigenstates in Eqn. (1.10) in terms of the mass eigenstates, we



can write down the charged and neutral current interactions of the fermions.

e

.C _ = ————- (71‘ ’j/Hl'l'r—(I +7 “fill/lbw ) + hc. (1.24CC «25111 0w L )1 L L 11. L >

)

£NC = {713" - Qf sin2 011:)77"pr + (0f7?” .4111} (135)
Sill (In) COS 0-“?

Here. Y1; = i1 /‘2 is the third component of weak-isospin of the left—handed fermion

IL (Is;f = t) for [3). and Qf r: 71; + Yf. The electric charge. c. is defined as:

. (' (9 —.

e = 92 sin 911: = 91 cos 6w = ———J—U;—— (1.20)

/ 2 2'
.01 + 92

The Yukmva lIlllPI‘a('l-10’ns of the Higgs. Eqn. (1.14), now turn into mass terms for the

fermions. and the Yukawa couplings are chosen so as to reproduce the correct fermion

mass. Thus. we see. that the phenomenon of 3813 gives rise to mass terms for both

the gauge and the fermionic sector of the SM.

1.2.1 Remarks on the Higgs sector

The SM is a phenomeno11;)gically successful theory whose predictions have been borne

out by various experiments. But. two facts still remain: the Higgs boson has not

been found in collider experiments and, more importantly. the SM does not offer an

explanation for why Electroweak Symmetry Breaking (EWSB) occurs in nature (the

Higgs only engineer‘s EVVSB). These considerations motivate us to build models that

go beytmd the SM. Before we move on to present one such alternative. let us remark

on one more purpose the Higgs serves in the SM. All calculations within the SM are

performed as perturbative expansions in the small coumings. \Vhen one performs

a computation for the. cross-section of a particular process. it is ii’imortant to check

that the l_)1'ol.)211l)ility that the process occurs is less than one, so the results make

9
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Figure 1.2: The Feynman diagrams for the ltiingitudinal gauge boson scattering in

1 L . . . . _ . ‘)

the Standard Model. The. E 1 contributions cancel due to gauge 11'1var1ance. The 1?"

contributions only vanish when we include. the Higgs exchange diagrams.

physical sense. In other words. the theory has to be unitary. This is crucial because

absence of unitarity indicates that the perturbation theory has broken down. and

thus. self-(:1insistency of perturbation theory requires the probability be btmnded by

0110.

As an example. let us look at the longitudinal gauge boson see-uterine; i.e., the

process ll'L WL —+ H’LH'L in the SM - the reason for the. choice is that the longitudinal

components are the ones acquired by the gauge bosons by eating the Goldstone fields.

and hence are most. closely asscociated with the Higgs mechanism. The Feynman

diagrams that. contribute to this process are shown in Figure 1.2. When we compute

the amplitude for the entire process W], H"); -+ ”7].. WL, and look at the large energy

behavior. i.e., in the limit E/””W >> 1. we find that the pieces of the amplitude

that grows like It"1 cancel between the contact interaction and the photon and Z

exchange diagrams. (This is due to gauge invariance which guarantees the relation

e = 92 sin 0m). However, for the pieces that grows like [52 to cancel, we have. to

include the lliggs exchange diagrams. Thus. we find that the Higgs not only serves

to give masses to the gauge. bosons and the fermions. but also serves to regulate the

10



 

SU(2) % U(1)

Figure 1.3: The Standard Model without. the scalar Higgs boson. The result is an

.S'I..5(‘21) L X SIJ'(2)R non—linear sigma model with the Str’(‘2) X If ( 1) part gauged.

had high energy behavior of the theory. If we are to formulate a theory that. goes

beyond the SM and does not have a Higgs, we. have. to make sure the theory does not

violate unitarity.

1.3 A Higgsless Standard Model

Though we established in the last. section that the SM without. the Higgs would not.

be unitary. it is still instructive to ask what the theory would look like if we do not

include /l(.’1,') in the theory. Let. us start by reproducing Eqn. (1.15).

0

i'+h.(:r.)

t/‘Z

' (I. (I. .‘

(:3:ch (7/11

The above form clearly separates out the three Goldstone bosons (7r”) that become the

ltnigitudinal components of the gauge bosons from the 1;)hysical Higgs boson. When

the Higgs boson is eliminated, what; remains is a non-linear .5'1..-"(‘2) L x 81 (2)1? sigma

model of which the SI."(‘2) x U (1) part is gauged. We show this in pictorial notation

in Figure 1.3. To derive the Lagrangian for this low energy cil'ective theory, we plug

in Eqn. (1.15) in the Higgs Lagrangian, Eqn. (1.12).

1 . - 1 . .- l r i /\ , , p

: Z(i,'—t~-Ii.)‘)Tr [(12,127) (0/12)]+'2‘(()/th)(duh1*37”}2,(1‘+h)2":fi(""+hl4- (1.28)

11



In the limit In}, ~4 00, we can read off the effective Lagrangian from the above

equation by simply disregarding the Higgs field and it is given by:

n2

£Goldstone = TTr [(DflET) (””2” - (1.29)

and contains only the eaten pious. This picture is called a “non—linear sigma nuidel".

The Goldstone boson equivalence theorem [3,, 4] tells us that at high energies. the

amplitude for absorption or emission of longitudinal gauge bosons is the same as the

one. for the corresponding eaten pion. We can determine the Feynman rules for 17 — 7r

. . . . . brand/1' . q .

scattering 111 this model by pluggmg in E : e . 1n Eqn. (1.2.1) and expanding

in powers of TF/‘t’. At, tree level. there is only a contact, interaction term and the

amplitude for this is given by:

 
1 - :6 E ‘2 ‘ .

.ll(7r+7r_ —» 7r+7r") = g2 (lg—(1L) . (1.30)

In”:

where 9 is the scattering angle. It is hardly sm‘prising that the 1?“ growth does not

cancel. as there is no physical Higgs boson in the spectrum. But the question we

would like to address is whether it is possible to extend a theory of this kind by

including additional. particles to retain unitarity. in place of a Higgs.

How would one (i'tmstruct an electroweak symmetry breaking sector without. a

scalar particle? A glimpse to an answer to this question is provided by QCD. Consider

QCD with two flavors - the up and down quarks. Let. us. for the moment, assume

that. these are. nn-issless — the u and d quarks are light compared to the QCD scale,

AQCD‘: 300 :\IeV, and hence this is a good approximation. Then. the Lagrangian of

QCD can be. written down (with \I/ z (u. (1)) as:

12



and is seen to possess a global 81," (2)1, X .91.."(2)R symmetry, the chiral symme—

try. When the running QCD coupling constant. becomes large at. the scale of QCD

(AQCD), the strong interactions bind quark anti—quark pairs into a composite spin—(l

object: ((ll‘TJ t11(0) - this is analogous to the formation of Cooper pairs in the theory

of superconductivity. This, like the Higgs in the SM, develops a. vacuum expec-

tation value (\TNII) :2 A2201), thus spontaneously breaking the 8L" (2) L x .S'I'.f('2)R

chiral synnnetry down to the diagonal subgroup, SI/'(2)V. Each ferrnimi lield has

a mass dimension 3/2, and thus the condensate has a mass dimension 3. Typically,

spontaneously breaking a continuous symmetry generates massless Goldstone bosons.

But. the three QCD pious will not; be Inassless, as we started with an approximate

symmetry (i.e., valid only in the limit mud. —> 0). For this reason, the QCD pi-

ous are really pseudo Goldtone bosons. Now, if we were to describe EW’SB using

this picture, we would let these three pious be eaten by the W: and the Z , thus

making the. gauge bosons massive. Unfortunately, the scale characterizing the gauge

boson masses would be wrong - the pion decay constant that. sets the scale in this

model is ffl = 93h’1eV. but we know that the electroweak scale that sets the. scale

of the llv' and Z bosons is v 2246 GeV. Thus, QCD, though successful in achiexdng

the correct. symmetry breaking pattern, cannot reproduce the correct gauge boson

masses. Hmvever, one could construct a. “scaled up” version of QCD, called Techni-

color [5, 6. 7], wherein technicolor interactions (assumed to be confining. like QCD)

bind teclnii—(piark techni—antiquark pairs into a (‘i’TC‘PTC> condeusate. The scale

of technicolor interactions (i.e., the scale at which technicolor interz-tctions become

strong and form comlensates) can be tuned to reproduce the correct gauge boson

masses. To get fermion masses, this picture has to be extended. and the resulting

theory, called "Extended Technicolor” (ETC) is described in [T 8. 9, 10, ll].

Theories like the one described above are stronrrly interactin r. and. thus, cannot be
h .

treated as perturbative quantum field theories. One has to develop lat tice calcula-rtirms

13



and other non-permirbative tools in order to be able to compute in such theories.

Ht’m-‘ever. recently. there has emerged a special[correspondence that relates strongly

interacting four dimensional theories to weakly interacting five dimensional ones - the

AdS—CF'I‘ correspontlence [19, 2t). 21. 22] first. arose in the context of string themies

describing the duality between type IIB string theory and classical supergravit y. Later

works have established that such a duality exists more generally and that many

strttmgly interacting theories have a dual description in an extra dimensiom-il context.

Higgsless models in an extra. dimension have thus emerged as viable theories of EV‘VSB

that. are the analogues of technicolor theories. We turn our attention to these extra

(lirncnsimial models in the next sections.

1.4 Extra dimensional theories

It is possible that our universe may have dimensions other than the customary :1-

D spa-ice—time [12. 13, 14. 15. 16. 17. 18]. These extra dimensions must have to be

compact... so we dont realize their existence in everyday life. This compact fifth

dimension can be thought of as an interval. without loss of generality. For example. if

the extra dimension is a circle of radius R. one could map it onto an interval [(1.27r1{[

with periodic boundary (.;on(_lit.ions. li' a rcllcction symmetry (a 22 symmetry) is

imposed on top of the circle, we could map it onto the interval [0. 7TH[. The fields can

have odd or even t.ransformation properties under the Z2 symmetry and the extra

dimensitm is said to be "(i-oinpactified” on an interval. A circle is a 1-D surface. 51 -

the process of imposing the Z2 symmetry on top of this surface is called “()rbifolding“.

in particular. 51/23 orbifold. As we will see below. this picture naturally offers a rich

spectrum of new. heavy particles that would be (.)l")serva.ble at energies greater than

the inverse t‘OII’lpElCtil‘lt?£ltlt)ll radius. i.e.. E > 1/H. where It is the radius or size of

the extra dimmsion. Let us first try to understand the features of such a theory by

14



having the extra dimension populated by a scalar field. for simplicity.

1.4.1 Scalar field in the bulk

Consider a rnassless ('oinplex smlzu‘ field living in 5-D. The action for Sl'lt'll a theory

is given by:

S : [(15I£(:E. z), (1.32)

where is the fifth ('lilnension co—ordinate and the Lagrangian is given by:

We will let 5; run from 0 to 27rH, with the points 2 == 0 and z = ‘27? H. identified. This

n'ieans that. we are cori‘ipnct.ifyi11g the extra dimension on a (*irt'le. and thus. we can

expand (l) as a Fourier series in the following way:

+30 _

on: 7:) = Z oln‘)(1~)e(W/m. (1.34)

nz—oo

In this form, it is clear that (Mi, 0) : (I)(i’,27rR). Plugging hack the solution. Eqn.

(1.34) in the action, Eqn. (1.32), and integrating over 2. we get:

+00

E = Z (i9aq)(n))l(aa<1>("))— 777%(<l)(n))l<l)(”). (1.335)

nz—x

where

‘) TI. ‘

Thus. we see that we have ended up with a. theory in which the lowest 11. = 0 state

is ninssless and a tower of additional resonances whose masses are given by Eqn. '

‘9

u

g(1.36). This tower is Called the “Kalnzn-Klein Resonances ._ or KK tower, for short.



Thus. this simple example demonstrates how a colnpactilied extra dimensioned theory

naturally yields a rich spectrum of particles. Next, we apply this idea to gauge field

theories.

1.4.2 Gauge theory in the bulk

Let. us consider a gauge theory living in the. bulk of the extra (ilirnension, letting the

group (I be arbitrary. We will let the. extra dimension be flat, i.e.. the metric is given

by GM“ .—. (1,—1.—-1.—1.-1).

The action for the extra (.limensional gauge theory can be written as:

O r 1 L , . I 1 . - - e ‘7

Sgaugc = / (10.1; ~Zq—2Ffilwv17("’ll‘\ -— 70.26 (8,1:1‘1“ +gi->;;1“~)“ ., (1.37)

where

“j;,N = 8A,,Ajt — 6N4}, + Who/431 Aft. (1.38)

and 95 is the five dimensional gauge. coupling and the second term in Eqn. (1.37) is

the gauge. fixing term. The form of the gauge fixing term is so chosen that it cancels

. . . , ¢ 3 . .

the nnxnig between the. gauge and Goldstone helds, (9;.4fidlylfi0, that arises from the

PL"; Fm”. The variation of the action Eqn. (1.37) leads to the equations of motion:

(7A1 I'wQAIU _ ./.(lb(.,"b."11!//‘E\II + Edi/(104;; __ ()I/£)Z1g : 0‘ (1.39)

a". .312 — f”’"‘F”zA"” + 8;, (in/1”" - {8:211}; = t). (1.41))

The requirement. that. the boundary piece \A'anishes leads to the condition:

,a , (11/ r (m -: a - (1 NR __ '-
[13,251 + ((10.4 — 5193.45) 0.45]0 o. (1.41)

The behavior of the fields at the boundaries of the extra dimension (the boundary

16



conditions) now have to be chosen. There are three choices that respect 4-D Lorentz

invariance:

r1?! = 0, A” = const.. (1.42)

.4?) = 0, 83.43 = 0, (1.43)

F/(iz = 0. 12 = const.. (1.44)

The choice of the boundary condition determines the pattern of symmetry breaking.

Once we choose a particular breaking pattern. we can expand the gauge fields in Ix'K

modes like in the last section:

.1;1(.i", 3, = Zfr1(3)/1iip($)

It

ago. 2) = Z,0n(:)7r;',j(r). (1.453)

7?.

Thus. we see that the 5-D gauge. field is decomposed into a vector and a 5—D scalar.

In a r talistic model. one lets the bulk gauge group be 911(2) and the. boundary

conditions have to be chosen so that we have a zero mode that represents the W and

the Z bosons. plus a tower of vector bosons. The Higgs mechanism still operates:

the .15 fields become the longitudinal components of these KK vector bosons. making

them massive. Thus. the spectrum consists of the SM particles and their heavy copies.

Let us briefly discuss a toy model with these f‘atures. 'We will let the bulk gauge

group be SU(2) and let the following boundary ctmditions break 51(2) down to U(1)

at. one end of the interval: At :5 = ()2

(“)Aj’, = 0. (1.41;)

.43 = t). (1.47)

17



and at = 7tl1’:

A}? = 0, 05/43 = 0 (1.48)

83.11/32 =0, .43 =0. (1.49)

We will work in the unitary gauge. Ag 2 t). The KK expansions are:

.(tiflf. z) = Z fn(z)1t".,.,ifl(.r) (1.50)

1?.

{12(f,z) = Zr].,7(:)Zn/,(:r). (1.51)

n.

The eigeiil'unctions [(2) and g(:) are combinations of sines and cosines. Using the

BCs. we can derive the following mass equations:

cos (iii/$7111) = 0, (1.52)

sin (it/2715’) = 0 (1.53)

where 11/)? and 111,3: are. the masses of the neutral and charged gauge boson towers

respectively. The solutions are given by:

_ . — 1/2
11,:r = "—17; n, = 1.2, (1.54)

.112 = 3% n, = 0. 1.2. (1.55)

(1.51;)

we see that. the lowest mode of the charged tower is a massive particle, which we can

identify with the SM W boson. The n. = 0 state of the. neutral tower corresponds

to the massless photon. and the n 2 1 state can be identified with the Z boson. ()1.

course. the precise W and Z mass relation does not come out - but our purpose here

18
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Figure 1.4: The Feynman diagrams for the ltmgitudinal gauge boson scattering in

extra dimensional model. Unitarity in this process is achieved by the exchange of the

heavy vector boson instead of a Higgs.

is to develop a toy model that. has the essential features of extra dimensional theories.

Thus. we see that even in a toy model. one could choose the trioundary conditions

appropriately to get. a. rich particle spectrum in which the lowest. KK modes can be

identified with the SM particles. while the higher modes represent the KK resomuices.

These KK resonances serve an in'iportant purpose. As explained in the beginning

of the section. we have to ensure that the WI -— WL scattering amplitude is unitary.

and the unitarization is carried out by the exchange of these hmvy vector bosons in

place of a Higgs in these theories. The Feynman diagrams for llll'Ll't’L —.~ 11111714 is

shown in Figure 1.4. The amplitut‘le can be written in a. generic form:

"4 _. 52

If... .1. [1(21LA = AW _. .
11;; 11,-;
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1 . '. ‘) . .

The expressions for All) and 21f”) can be derived to be:

“111) = 1: (1127177171 __ Z ggnk [fabt’f(‘(1k(3 _+_ GCOS H __ €052 6) .+ 2(3 _ (.052 H)j'(l.(l(’f()d(f

k

(1.58)

l

11/2 ‘2'
”II

p j . . ' . . _ ,: .} 3’ . - H .. . . .
11(2) _. __ 4.012117771111115 __ 3 Z “(linkj‘lkz jute] )d( _ sm2 __ l‘dbf’j ((18 . (1.5”)

k

If the masses and couplings of the KK modes satisfy the. following two sum rules:

”grin-n : 2.072111]; (1110)

k

2 .2 3 2 4. 2 .

97111717111111 = I Zgnnk‘l'lk‘ (1.b1)

k

. . . m, 4) .. .

the pleces of the amplitude that grow as [31 and 19“ are cancelled. (In the expressions

for the. amplitudes above. the first sum rule has already been used to simplify the

form of 11(2)). Thus. we see that it. is possible to maintain unitarity the exchange of

new heavy vector states in a model with no physical scalar particle.

1.4.3 Fermions in 5-D

Now that we have seen a toy model to generate gauge boson masses in an extra

dimei’isional theory. we will now investigate the problem of fermions living in an extra

dimension. A 5—D Dirac spinor deconmoses under the 4-D Lorentz subgroup into two

tee-compel1m1t spinors:

11: = . (1.62)



In 5-D, the Dirac matrices read:

_ U n” 5 _ 1 U . ,

F”: , I" =2 (1.623)

a“ () 0 1.

where the as are the usual Pauli matrices. Now let us inmost-2 the ZQ orbifold pro—

jection. : --> ~:. In order to leave the 5—D Dirac etpiation invariant... ‘11 has to satisfy:

- 3'

\ll(—z) = —’2F’\ll(:), (1.64)

i.e..

“”3“” and 'e”(-r)=—dr(:)- (1.0.5)

This suggests that. X and. I...” can be written as:

.x»

n: .. .

\(2:. 2) = 2 cos (7) \((")(2‘), (1.06)

1120

x n.

1,9(1. 2;) = 2 sin (n7?) '9';'(”)(.r) r (1.67)

7120

Thus. we see that only ,\ has a le’. zero mode.

"7‘. \r' 10W .v 'etovr 1's ”s . s'nv‘ : 1e " ineva” 2 roar: . ie ._)- 23.1“c \1111 tr” 1( (Itll 1( ult 111 Otl ‘nt 1 la)1 h Tl L'D l(l1)Il

for \11 reads:

H : /(‘f5.1' [% (\llll‘luiiliu‘li — ()Mxi; 1‘1” \11) _ milky] . (1.08)

where the last term is a “bulk mass”. The above action can be recast in 4—D compo-

IlCIllS 'clSI

' .— _ ea +——+_ _

S = / (1%: [am/‘0,“ — tern/‘10,, a") + (W); t —— {4% c) + m (m t W0] . (1159)
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where ('9; = 2(83 — 32). The variatnm of thls action leads to the equations of mot ion:

— tar/WM — 6315+ ‘m'l; = 0 (1.70)

— iaf‘aflg—f + 82x + my = t). (1.71)

Requiring that. the variation of the action at the boundary vanishes gives the condi-

tion:

—\(6u) + link + (5);:- —- for?) = 0. (1.72)

We also have to impose a boundary eondition for \11 in the form f()(. 13') == 0 at. the

two bmmdaries of the interval, and this. along with the equations of motion, will

fix all the arbitrary coefficients in the complete solution to the spinor equation. For

instance. we can require that the spinor U" vanishes on both boundaries. This would

lead to:

((72 + 7!?)Ylo‘wR = 0. (.173)

Solving the er nations of motion with these boundary conditions would result in ae) l .

zero mode for [\3 but not 2;).

As in the ease of gauge fields. we can expand the spinm‘s in KK modes. Performing

this KK deconmosition gives us:

x = Zantznntr) (1.7.1)

77.

= Z .rntziwne). (1.75)
n,

The fermions obey the Dirac equation:

— 7'6/"(‘3;1..\’(1") + mntfln) = 0 (L76)

_ .mflawfifnl + mnxtl'll = ()_ (1.77)
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Substituting the KK (ilecomposition into these equations gives:

(1;; + mfin - "Inf" = 0 (1.78)

ff: “ mfn + 777-11971. = 0- (1.71))

\Ve can combine these two coupled first order equations to form two uncoupled second

order equations.

” 2 2 ,_

9n + (In; ‘ m )917 = 0 (1.8.0)

[I .'

In + (711% "N12101:” (1.81)

The solutions are simply sums of sines and cosines, whose coefficients are (.letermined

by reimposing the first order equations and the boundary conditions. For instz-mce. .if

we impose 1.1"? = 0 at both .: = t) and z = u R. we. obtain:

 

 

fn(z) = an sm —.—, (1.82)

11’

a ,7 n n .: , m: ‘

917(2) = —— (— cos —- — msm —) , (1.8.3

mn If R, H )

where,

'm-n —. (1.84)

and the coefficient an is fixed by the normalizatimi condition

'7]? 0

/ dzf7';(..) —1 (183)

. (’1

The boundary conditions also allow for a zero mode for x:

91))
~ ——mz . '

: = —— e . 1.150got > \/1 __H.,m,.1. t >
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We see that the 5-D mass does not contribute to the mass of the lightest fermion (it.

stays n'iassless). This is important - in a realistic theory, we should have. all the SM

fermions nearly massless (except the top—quark).

Now that we have discussed gauge theories and fermions in extra dimensions. let.

us move on to see if we can develop an understanding of the features of these theories

based purely on physics in 4-D.

1 .5 Deconstruction

As we have seen. compactified extra dimensions naturally have an associated. le'

tower. We would like to see if we can write down a. simple gauge invariant. Lagrangian

to describe these KK modes without the full machinery of the extra dimension. This

is done using the idea of “Deconstruction” (23, ‘24] -— a manifestly 4-D (.lescription of

5-D physics.

Consider a gauge theory living in a slice of extra (jlimension. Now. if we imagine

slicing up the. extra dimension into an infinite munber of segments. each plane is

described by a 4-D gauge. theory. So a 5-D gauge theory can be thrmght of as in

infinite collection. of 4-D gauge groups. Let us sum'iosc the gauge group is 813(2). \-\"e

have to let the gauge symmetries be broken so the KK resonances become massive.

We can do this by having a Higgs field. (NI). that. transforms between two adjacent

gauge groups 311(2) groups as (2. '2). When the Higgs field (.levclops a diagonal vev.

c 0

i.e., ((1)) = , it breaks SI.."(2) >< SU(2) down to the diagonal sub group. and

t) 1.!

thus we will have 1‘1‘1assive W and Z bosons plus their KK pz'u‘tners. But since our only

goal is to break the gauge symmetry, we can do away with the scalar Higgs (‘legrer-i of

freedom and employ a. non-linear sigma model, in the spirit of the Higgsless Standard

Model. Thus. the picture that emerges is one that is exactly like in Figure (1.3).
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Figure 1.5: A deconstructed picture of the extra dimension. The 4—D gauge groups

are connected by means of non-linear sigma model fields.

albeit with replicated gauge groups. This picture is called a “;\'Ioose" or “Quiver“

diagram [‘25]. We sl‘iow a general deconstructed model in Figure 1.5.

The non—linear sigma fields transform as fundamentals and anti-fumlamentals un-

der the adjacent gauge groups. Zirt+1 —+ L.7z-712i..,-+1Uj +1. The action for this theory

can be written down by simply extending Eqn. (1.29) to include multiple sigma fields

and gauge groups:

 

' 1 “3 1 . . ' 4 “3 f2 9

k_ ’,. . firu;e ,, ..;L , s_' “ -7

s _ /.z izjginp I 1,”) +/d .12: 4 T1 Iran“) (125.)

' 2'21 4 2:1

where the covariant derivative is given by:

“113mm = ”#3144 - ”Magma +"':'l‘i+1;1£i.~i+l' (L88)

To check that this picture is indeed right, let. us look at the continuum limit, i.e.. in

the limit N ——> 00. In this limit, we should recover the full 5-D gauge theory. To do

this, let us start by relabeling the couplings and the decay constants.

g.) = V 1V + 2 H7: (1.89)

  

fz- = x/N + 1 hi- (1.90)

with the constraints

N+1 . N+1

l. l 1 s 1
.___ = . . — = 1.

1.S)1

fV + 2 _ 52 1V +1 2‘ I}? I ( )

1:0 7 1:0 I



which come from

1 1V+l 1

(,2 Z (1.2 l l
‘ F20 '2

Air-+1

1 1 . .
F = Z -—2 (1.9.3)

i=0 1?.

Let us now define the dimensionless coordinate:

 ~. = , (1.91)

 

~i '_’ .

1

AZ: —— 12..

N+1—H '

1 N+1

iv +1 :0 d/(iz.

1;:

A/jhr) —’ le-(J'. z).

 

M
(rm-1) [ii/.’_+_51(r-) — Aide] —, ( ”4

 

 

J J ('9:

51,1“ —’ r;(:)./z(:),

N+1 . .

1 l l

— —> 12— =1.

N ‘ Z 2 /( {2 5+2 {:0 ml . I (~)

N—l—l

1 . 1 1

—~ -—‘> (13%— Z l.

N +1 7;” I)? / [13(3)

Using the above rel)lacemcnts and working in the unitary gauge ()3; = l ), the action,

(Eqn. (1.87:). becomes:

9 /15 1 T (r rim) + f2h'2(:)T (r r112) (10')r ya )' i Z ( IL‘ —_.-—.——— I' ‘ / 4 ' —— 1’ ,‘ -- ' ' . A .u)gauge . 292H2(:) in 4 [n .
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where

F”; = 82.4“. (1.91))

since in the unitary gauge. .4;- = 0. The above equation represents the action for a 5-

D gaugc in a “xx-'arped" or “curved" background. i.c., a geometry that. is not flat“ (Note

that if we had started with all the gi’s and ffs the same. we would have ended up

with the action for a gauge theory in a flat extra dimension, Eqn. (l.37)). Relabcling

g ——> gr; and f ——> fh. we see that this is reflected in the fact that the gauge couplings

and f constants depend on the extra dimensional co—ordinate 2. Thus, the process of

deconstruction allows us to recover the complete 5-D theory in the continuum limit.

1.6 Deconstructed Higgsless Model

\vVe. will develop a dcconstructed Higgsless model [26, 27, 28 ‘29] derived from a flat

extra dimension. i.e.. we will choose all the bulk gauge crmplings and the. decay

constants, f, to be the same through the moose. When we integrate out all the heavy

le' states, we. should be left with an SL/'(‘2) >< U(1) Higgsless standard model. We

will thus choose the coupling at the first site to be 9. which is almost the same as the

SM 811(2) coupling and. at the last. site, we will gauge the U ('1) part. of the 812(2)

and give it. a SM-like hypercharge coupling 9' - the couplings of the first and last site

gauge groups being different from the rest of the moose is indicative of the boundary

ctmditions imposed at the two ends of the. extra dimension in the underlying 5-D

.1, - ,. .. - N—lwv: .. ‘-.,
theory. Thus. the gauge group of this IV site moose 1s “1.20 51 (2),- x I (1) (P igure

1.6). The sigma fields connecting two adjacent gauge groups transform, as before. as

$21241 —~.» I F2712 m- +1132- +1. \Vhen the sigma fields develop a vev (f) and break every

adjacent. Sl.-'(‘2) x SU ( 2) groups down to the diagonal SU("2). the lowest lying modes

(which we identify as the SM H" and Z bosons) and the le’ tower get masses.
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Figure 1.6: A deconstructed Higgsless model deriver'l from a flat extra (limensitm. All

the bulk gauge couplings are the same and so are the decay constants. The left. and

right handed fermions have Yukawa couplings to the sigma fields and also hz-rve a bulk

Dirac mass term.

1.6.1 Gauge sector

The gauge sector Lagrangian reads:

1 ,am/ viaw/ 1 ~p1/ . f2 "1 2 -.
15-32117. u: -113 Emma—Z‘npzz-Hll . (1.9;)

i i

where the covariant derivative is given by:

. _, , .- 7 1.- , 7,711-1 .

”Him“ = ()pEm'H +1.9”;1L'i,i+l - ’QLLHIHH (1-98)

and f; is the gauge. coupling of the internal (or the bulk) SU ( 2) groups. The mass

terms for the gauge bosons can be derived from the last. term of Eqn. (1.97) by

working in the unitary gauge (2 = l). The charged gauge boson mass matrix is given

by:

  

(2:3 —:c 0 0 0 0)

2 2 —.7: 2 —1 0 (l (l

‘ {,7 ' . -
.1157, = —4j— o —.r 2 —1 0 0 (1.99)

\0 0 0 0 —1 2}
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where :r = 9/3) is a small parameter. The matrix can be diagonalized pertiurln-uivcly

in .7: to yield the mass eigenvalues of the standard W boson and the l\' K resonances.

‘2 '2 r r
. (I / N(21~ 'l‘ 1)l ‘_) J

11/2,; = —,——— —— —— ‘ + - (1.101)

” Inw+1)l 6(N +1) )

112 —— = "fl' 2 2112 - ' ’1” 2 1 101
" ”'I H .92.2f {3111m + 1 ll" L015m . ( . - )

In the continuum limit. (N —-+ 00), we see that the second term inside the parenthesis

goes to zero. Thus. to recover the correct formula for the mass of the W gauge boson.

f should scale like 1.1/\/ N +1. Similarly. the neutral gauge. boson mass matrix is

given Irv:

 

  

(x3 —w t) t) () -~ 0)

—r 2 -4. 0 0 --- 0

~22 0 —$ 2 —1 e --- 0
.2 III .
AI = run

Z 4 I I I I I ( )

0 0 0 0 -~ 2 y

(t) 0 0 0 --- —y y?)

where y = {1’ / f]. The light and heavy eigenvalues are given by:

2 ’2 2 T t’ .7 I I 2 2

.2 o +9)! -NQW+4) 2 :2 Amy .
A/ =-—~—¢—s—-1-—7e————»-+~ +—~w—-».~ 11am
Z 4(.»\ + 1) [ em +1) ( y ) (3:2 +7172 (

2 2 [271' 2 2 ”71' 2

’llZ,‘—- g2f (sinm) + ZAIZ (COSm) . (1.104)

1 .6.2 Fermion sector

To construct a realistic theory. we have to put. in the fermions. In Figure (1.6).

we show left (right) handed fermions as top (bottom) lines attached to each gauge
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group. How do we, write down mass terms for these fermions in the (jleconstriieted

language? In the spirit of Eqn.(l.68), we can write down a "bulk” mass term of the

form M it). But the gauge symmetries also allow a term that couples fermions in

adjacent sites - this “hopping” term ties left and right. handed fermions through a

Yukawa coupling to the sigma field and takes the. form 'QEL.,jZ.i.,Z-+112R.”1. When the.

sigma field develops a vev. this becomes a mass term for the fermions. It. was shown

in [26. 27] that a Higgsless model with the light SM fermions localized on the branes

(in the deconstructed picture, deriving the 311(2) charge only from the first. site.) does

not satisfy precision electrowealt measurements. Thus, one has to allow the fermions

to “(,lelocalize". i.e.. derive their SU(2) charge from more than one. site. In the 5—D

picture. this corretmnds to the wavefunction 0f the fermion “leaking" into the hulk

of the extra dimensitm. We write. down the fermion Lagrangian below:

['fermicms : A‘IDEL (3510201 ’f’Rl + ‘MD 2 (fl/”'Ll'i'i’Ri (L105)

'i

.. 3 u r)

+ 11/1) “(’LNENJ’Va—l ”R R“ + Ire.

Ede dRQ

To get. fermion flavor mixing. we could add generatimial indices to all the fermion

fields. and choosing EL and MD to be generation-(1iagonal, embed all the min-trivial

flavor structure in the Yukawa matrix in the last term of Eqn. (1.106). Here, 5L and

sz an be understood as the degree of delocalization of the left and right-handed

fermions respectively. We will show how to determine the values of these parameters

in the context of a model with only one extra 813(2) group (a “three site model”)

in the next chapter. Diagonalizing the fermion mass matrix. we obtain the light and



heavy eigenvalues:

l

 
 

 

  

_ ,7 72 _ - g2 A. 73 __ 7 72 yr 7 :11

'f '— , 9 _ Ngz
IE:- v R

- R 48 1+ fif—H +

(1.106)

7711.72.71“). (1.107)

Thus. a simple (ileconstructed model can be constructed without. a physical Higgs

boson in the spectrum. We have. only sketched the general outline of such a theory in

this section. We will construct simpler models in the next chapters and investigate

their pheuommxology in detail.

This thesis is organized as follows: in the next. chapter. we will construct a simple

model with only one site in the “bulk” ( a three. site model). In Chapter 3. we will look

at. a simple extension of the three site model by appealing to the idea of “top-color”

that will enable us to have KK fermions in the spectrum that are light enough to be

discrwered at the LHC - we will investigate the phenomenology of these heavy fermions

in detail and show that they are discoverable at the LHC for a. wide range of masses.

In Chapter 4. we will address the issue of unitarity in the process If ——-> W;W; in

a family of deconstructed Higgsless models and show how the Appelquist-Chanowit7.

bound can be. substantially weakened for a proper choice of the heavy fermion mass.

Finally, in Chapter 5. we offer our conclusions.



Chapter 2

A Three Site Higgsless Model

2.1 A minimal model

Higgsless models, as we have seen. break the elect-roweak symmetry without requiring

a fundamental scalar in. the spectrum and the WLWI. scattering amplitude in these

theories is unitari'zed by a tower of heavy gauge bosons. analagous to the SM W and Z

bosons. Typically. these gauge l.)()S(_)IlS get. progressively heavier and one can only see a.

few of the lowest lying resonances at the CERN LHC. Thus, it is phenomenologically

useful to have an effective theory that retains only a few of the extra gauge bosons and

yet captures all the phenomenologically interesting features of Higgsless models. In

this chapter, we will present the Three Site Model [30], the simplest possible example

of (let-(mstructed Higgsless models of the kind described in the introduction. This

chapter is based on work published in [30].

The model has the same color group as in the Standard ;\‘Iodel and an extended

3151(2) x SIM?) X (7(1) electroweak gauge group. Accordingly, there is one set of

extra H" and Z’ bosons that. are heavy compared to their S;\l counterparts. This

theory is in the same class as models of extended electroweak gauge symmetries

[31, 3‘2] motivated by i‘nodels of hidden local symmetry [33, 34. 35, 36, 37]. “’0 will
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Figure 2.1: The three site model analyzed in this paper. go and g are the gauge

couplings of the SU(2) groups, while the coupling of the U (1) is represented by g].

The left-handed fermions are denoted by the lower vertical lines (located at sites 0

and 1), and the right—handed fermions are denoted by the upper vertical lines (at

sites 1 and 2). The dashed lines correspond to Yukawa couplings, as described in the

text. As discussed below, we will take. (201) = (212) = $2 11.

also introduce a heavy fermionic partner for every SM fermion and these, along with

the heavy gauge bosons, complete the extra particles in the spectrum. The scale of

unitarity violation in the WLWL scattering amplitude is delayed by the exchange of

the H”, as opposed to a tower of gauge bosons [43, 44. 45, 46. 47]. In Figure 2.1, we

illustrate the model using “Moose notation” [25].

The. model incorporates an SU(2) X SU(2) x U (1) gauge group, and 2 nonlin-

ear (SU(2) x SU(2))/SU(‘2) sigma models in which the global symmetry groups in

adjacent sigma models are identified with the corresponding factors of the gauge

group. The symmetry breaking between the middle SU(‘2) and the U(1) follows an

SU(2)L x SU(2)R/SI.7(2)V symmetry breaking pattern with the U(1) embedded as

the T3—gene.rator of SU(2)R.

The left—handed fermions are 511(2) doublets coupling to the groups at the first

two sites, and which we will correspondingly label a“L0 and ”I’LL The right-handed

fermions are an 807(2) doublet at site 1, 117131, and two singlet. fermions. denoted in

figure 2.1 as “residing" at site 2. uR2 and dR2- The fermions 71/10, y”:L17 and LR 1
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have U(1) charges typical of the left-handed doublets in the stzn‘idard model, +1/6

for quarks and —1 /2 for leptons. Similarly, the fermion 11.er has U(1) charges typical

for the right.-hande(.1 tip—quarks (+2/3), and dim has the U (1) charge associated with

the right-handed dram-quarks (—1/3) or the leptons (—1).

In the analysis of a general linear moose model in Ref. [48], it was shown that a

Higgsless model with localized fermions does not satisfy precision electroweak mea-

surements. Thus. for these models to be viable, the fermions have to be “delocalized” —

in the (":ontext of the three site model, this means that the fermions derive their 81.5(2)

charges from site 0 and site 1. (In an extra dimensional scenario, this is analagous to

the “leale-rge” of the fermion wavefunction into the bulk). We will denote the amount

of delocalization of the left(right) handed fermions by €L(.€R).

\v-Vith the arrangement of fermions in Figure 2.1. we can write down Ynkawa cou-

plings linking adjacent left and right handed fermion fields via the non linear sigma

model of the form tam-31?. Thus, the fermion mass terms read:

u. “R?

Cf = Afl 'JLUEIERI + fixv'lf’filfi’Ll + f2 1.71122 + /I.(‘. (2.1)

I
Ad (1R2

We will set the vev’s of the sigma fields the same - f1 2 f2 :2 fit! (The reason for the.

V? was explained in the introduction - for a Higgsless model derived from a flat extra

dimension, the f constant should scale like \/ N + 1 to recover the right. continuum

limit. and in the three site model, N =2 .1).

- r , “ ,— 5 R “R?

3f ZN!) €LL"I.()ZH"Ri+wn174-5’Li+‘b”"L1$2 u +7”?-

5d]? (’32

(2.2,)

“’0 have set. x/ZRI :: MD and set A/;\ = aL and /\’/5t 2: 5R. It is now straightforward

to incorporate quark flavor and mixing in a minimal way. To get the SM quark flavor
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mixing, we could add generational indices to each of the fermion fields. and, choosing

sL and the mass term MD to be generation-(1iagonal, embed all of the nontrivial

flavor structure in the Yukawa matrix in the last term in Eqn. (2.2) -- preciser as

in the standard model; the only mixing parameters that appear are. the ordini-iry

Cabiblm—Kohayashi—l\=1askawa (CK\l) angles and phase.

2.2 Masses and Eigenstates

This section reviews the mass eigenvalues and the waveflinctions of the gauge bosons

and fermions of the three-site model. The gauge sector is the same as that ol' the. BESS

model [31]. Ref. [43] has also previously discussed the gauge boson eigenfunctions.

but wrote them in terms of the. parameters 0. zl/IW, MZ. :l'lwl. and ill-12,.

2.2.1 Gauge bosons

The gauge boson 111185808 arise from the kinetic: energy terms for the. sigma fields:

where the covariant derivatives are:

l#15301 = “#201 + WWSZOI -- 'i.?1$01ll",l (2.4)

0,,201 = 0,312 + wit/1212 — ig’zlgufi (2.5)

In the unitary gauge (with 2301 : 212 = 1), Eqn. (2.3) gives terms quadratic in

the gauge fields. for example.

.2 ‘2 .t

j I l" (2.6)
TTrlD/‘Z'gu

nxlzml -+ :4— ~—2‘.gw/9 H.011";
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from which we can read off the mass matrix for the gauge bosons. \-\'e will work in

the. limit

:1: = 9/5) <<1 , y = gI/f} <<1 , (2.7)

in which case we expect a. massless photon, light W and Z bosons. and a. heavy set

of hosons H" and Z'. Numerically. then, 9 and g’ are approximately equal to the

standard model SU(2)W and U(1)y winnings. Vt’e also define an angle 6 such that

9’ sin 6
 (22s

9 cos 6

Il
l

fi
l
m

The charged gauge-boson mass-squared matrix may be written in terms of the

small parz-rineter .7: as

 

  

J) 2 ,.2 __
U .l- L

‘72 (21»

—.’1: 2

Diagonalizing this matrix perturbatively in {17. we find the light eigenvalue

2 2 .2 .6
- q 1: :1. IL ,

.112,.v==——1——+—+... . 2.10

it 4 4 64 ‘ ( l

and the. corresponding t-éigenstate

[L _ ,0 , 7/1 ,‘1 [ll—11

,.2 r, .4 3 r ,.5
.r 0.1. , t ;r. I 3.1, , /1

== —-——-— -+... 1tt +— <—+—-+-— -+ It . 211
s 128 0 2 16 256 1 l l

where l-lv’o‘l are the gauge bosons associz-lted with the SU(2) groups at sites 0 and

1. Note that the light W is primarily located at site 0. The heavy eigenstat e has an

eigenvector orthogonal to that in Eqn. (2.11) and a. mass

'2 4‘ ~‘ ‘ ‘1‘ :1‘
. ‘ ,

Alli” =3 {[2122 1 + T "'l’ T6 + . . . , (2.12)
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Comparing Eqns. (2.10) and (2.12). we find

 

‘1”2 1‘2 1'4 (176 . .

Mil; =—4——§+6—+... . (2.13)

‘“ W’

or, equivalently.

2 1le I'll/,2 ,' 2 A, 2 r 3

(13.) 2.9:. .___;V +8 _rv- +28 _;L +.... (2.1.4)
9 1‘] VI All...” A] 7,

w W W

which confirms that the W’ boson is heavy in the limit of small 1'.

The neutral bosons” mass—squared matrix is

 

r2 —:r 0

22 2
g u

——1: 2 —.rt (212)
2

0 ~11 .7212

where t E tan/7’ = 3/('. This matrix has a zero eigenvalue. corresponding to the

massless photon. with an eigenstate which may be written

f (‘ (’ , ,

A" = Lu}; + :l/Vf" + —,B/" . (2.16)
g .0 .9

where ”11.1 are the gauge bosons associated with the 51.7(2) groups at sites () and 1,

the B is the gauge boson associated with the U(1) group at site 2. and the electric

charge c satislies

1 'l '1

c + :7 ' —-—. . (2.17)
92 92 9/2

 

The light. neutral gauge boson, which we associate with the 7., has a mass

' Z M 402 4 (:2 G4 (‘6 ’ _. i
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with a. corresponding eigenvector

 

  

 

fluugmfiwéwf+fiefl (2w)

w%=0_x%%1+33—mh Om»

z W2- e +<> + . .. (2.21)

1.22 = —s — 32862” —8212 — [1) + . .. . (2.22)

The heavy neutral boson has a mass

2 .1 .2 2
.2 ~2 2 it 1' (1 — t )

r .' .

AI, = '2 1+——.—+—-——————+... , 2.2.5
[I .(1 f 462 16 i l

with the corresponding eigenveetor

VII-1v _ 40 2“ ,1 ”7” 1,2 [l .1

.4 ~— 12,110 +1..Z,ll1 +1'Z’B (2.24)

1‘0 _ _£ _ (1T3(1— 3(2) (2 )5)

Z" 2 16 '—
K) . 2

(‘1 ___.’II‘(l+/) ‘0‘

. 3. - 2
.- l. : l .3 —— I , _

#,=—i E—LT—ls”. (2%)
Z 2 lb

2.2.2 Fermions

Consider the fermion mass matrix

‘ 5L (l m 0 '

‘Uu. (I = ill/D E (2.28)
. - g I

l "URJiR MD mud

The notation introduced at the far right is used to emphasize that in the limit. MD >>

m. m’. the above matrix displays a “see-saw" form. In what. follows. we will largely
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be interested in the top- and bottom-quarks. and therefore in it]? and EbR.

Diartmalizin ‘ the. to )-( uark seesaw—style mass matrix )erturbativelv in s . we
_ l \l L [I

find the light eigenvalue

2
M 3 a 5 . -

mt =M 1--+—+ . .. . (2.29))
r ":2 2

l+€tZR 2(“fR+1)

This is precisely the same. form as found in a. continuum model (51]. For the bottmn-

quark. we find the same expression with 511? —~+ EbRi and therefore (neglecting higher

order terms in £2 )
' ”M?

H 5 .

Lfig,ifi 1+€32 (2am

mt 51R ’

The heavy eigenstate (T) corresptmding to the top-quark has a mass

r—. - ,2 ' ; r
11sz MD 1+: 1+——-.————:—+... . (2.51)

*1? 2 (53 +1)2
(I? _

and similarly for the heavy eigenstate corresponding to the bottom-quark (B) with

5”? -—> 57],]? (or. equivalently, m; —’ mg).

The left- and right-handed light mass eigenstates of the top quark are

0,t 1a

1L=¢Ltmettrwri

  

  

-2 .-2 1

_ —1+ cL wfiR‘3kll ’

_ M1+“ ) M3 +1” [0CH? CH?

3 ( 3-2 “1)5'5 .
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and

1 It 2

9

CIR 3$35.11
= — + t

9 2 5 2 R1
1+3)?” (1+5le/

1 32 :2

+ ’R L IR; (2.34)
2 (1+ p2 )r/Z ‘—

1+C R ctlf

and similarly for the left- and right-handed b—quarks with it]? ——+ 51,5» Here we denote

* ‘ " ‘v‘ '3 '\ it -’-)t r‘ ‘-‘i
the upper components of the fall (2) douliltt fit lds as 1;:L0,L1,R1’ (1ch the smaller

the value of EL (311?): the more strongly the left-handed (right-handed) eigenstate

will be concentrated at site. 0 (site 2). The left- and right-handed heavy fermion nurss

eigenstates are the orthogonal eornlnnations

b
‘
fl

'l

0,5]. , l ,-'t I ‘7‘

' ,2 3

_ _ 3L _ (2CtR_1)‘L 1

" 2 2 3 +~- Lm

52 (852 — 3)a4 .

+ (—1 + {)(1 L + if? (L -l- . . .) @5le (2.30)

  

  

 

 

TR = Th4}, + 7%! n2 , (2.37)

x _ 1 _ 51.21? 5% + . .. U1

1??? <1 + sew/2 “1

g :2
+ 5H? + "R“L (R2 , (2.38)

:2 5’2

1+ 52?]? (1 VB) /

and similarly for the left- and right-handed heavy B (marks with 5t I? —-> 5M?-

Analogous results follow for the other ordinary fermions and their heavy partners

with the appropriate 5 f1; substituted for 5,3 in the expressions above. As mentioned
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before, 5:L is flavor universal whose Value is dictated by ideal fermion dtrltiealization.

which we will explain in the next section. We will choose SR for each fermion in

accordance w1th Illf a: A’IDEI’JEfR. In the hunt mf ——> 0. 5f I? is very small.

2.3 Couplings

2.3.1 Ideal fermion delocalization

We mentioned before that for higgsless models to satisfy precision electroweak data,

the fermions have to be delocalized. Most tree-level corrections to precision observ-

ables eome necessarily from the coupling of SM fermions to heavy gauge bosons, and

this suggests that a phcnomenologically efficient means of deloealization is one that

will render this coupling zero. The coupling of the heavy W’ to SM fermions is of

”19 form 2.010;”fifth/V" Thus choosing the. light fermion profile such that (t-’:/~I,)2
2' .

“i

is proportional to Law. would make this coupling automatically vanish because the
z _.

heavy and light It" fields are orthogonal to one. another [49]. Thus we retpiire:

' 4

gift-9,1 )2 = giv'z’iv (239,)

“-"e will refer the above as Ideal Fermion Delocalization (IFD) [49]. In the three-

site model, if we. write the wavefunction of a deloealized left-handed fermion (L =

f
flllf’ft) + f1111/: [1 then ideal delocalization imposes the following condition (having

taken the ratio of the separate constraints for 2' = 0 and i = 1):

i
9(f2)‘2 _ LlL

- - . -— . (2.40)

My 1er

Based on our general expressions for fermion mass eigenstates (Eqns. (“3.32) and

(2.34)) and the. IV mass eigenstate (Eqr1.(f2.11)), it is clear that Eqn.(‘2.4()) relates
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the flavor-independent. quantities 2' and aL to the flav<_)r-sper::ilir 5f R‘ Hence, if we

construe this as an equation for E‘L and solve perturbatively in the small quantity 2:.

we find

 
1'3 1 ‘2“? 5 Pin "6-2 -2 2 ;_ _ _ , ,.4 “ .' . ,

Note that, as we will see. ff]? is only substantiz—rl for the top-quark - and so ideal de-

localization for the light fermions corresponds to the case 5f}; 2: t). Regardless of the

precise value of 5f1? involved, it is immediately clear that ideal delocalization implies

5L = 0(1). Since. 1' << 1. this justifies the expansions used above in diagonalizing the

fermion mass matrix. We will now derive the fermion couplings to light. and heavy

gauge. boson imposing this condition.

2.3.2 Charged currents

We will start by computing the left. handed coupling of the W to the fermions.

Throughmit this section and the next. we will be writing down the couplings specif-

ically for the top—bottom doublet. The couplings for other fermions can simply read

off by the replacen'ient 5,}? —+ EfR‘ Also, we will work in the limit Eb]? ——> t), which

simply means that. the couplings are. computed in the mb —> 0 limit.

IV”) _ 0 b0 ‘0 ~. 1 b1 1 r) if)

9L “WL L'H’+gtL LUW f—-‘ -l

which can be evaluated to be:

  

. -4 .2 .- .- :8 .56 . .4 .2 .

L ‘ 8(sz + 1)2 128(512R4r1)4
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The (‘-('.)1‘res1i)omling equation for the coupling of standard model fermions other than

the top—quark to the W may be obtained by taking SIR —-v 0 in the equation above.

yielding

 

3 15

g}? =g(1——:L'2+ ,

.4 ‘ .

.: . 2.44

8 1281 + ) l )

Combining this with eqns. (2.8). (2.10). (2.17). and (2.18) we find

[1 + 0(32 251)) . (2.45)

 

which shows that the l‘I"-feai'rrii()ri couplings (for fermions other than top) are of very

nearly standard model form, as consistent with ideal delocalization. Eqn. (2.44)

corresponds to a value of (3'F

 

W 2 2 7 4

G»-_(9Ll -1 _-‘Z- i; '9 ~v-6). _ 411131,. -12 (1 2 + 4 +... . (-.40)

The W also couples to the heavy partners of the ordinary fermions. Here. we quote

the results for the ’1‘ and B fermions; analogous results follow for other generations

when 5t]? is replaced by the appropriate EQR. There. is a (iliagonal lit-"TB coupling of

the f( )rm

 

 

g? *1 B = ngBgear + Qi“1f13]1}=,1,,. , (2.47)

c4 _ ~2 _

= ‘1 (1— "R 6c”? 5 .253 + ) (2 4s)
‘ - a2 ‘2 u . o

.... k

W -.1-2

= fl 1+ "1? + be”? + 4r? + (2 4.9)2 , ,2 2 . ... , . ,

0.1. . . . 1.

where T? 1 and I3? 1 are the heavy—fermion analogs of the. components (ll 1 and b] .
I

There are also smaller off-diagonal couplings involving one heavy and one ordinary
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fermion

 

77))Tb -—“171.0”1’ 91' + gT)b)/.,s)V , (2.51))

9(1 -— E . 7

1:21?) (.17 + (9(zrr'3)) , (2.51)

=2fi(:? +1)

and

1;)3’3 91-11132?) + g1)113)1;,1V , (2.5-2)

 

g(1+2s(R) )($

+023 . 2.3’321/2(321ml 1 >) (,)

Because 11? is a doublet under 511(2)1. the threc-site model i1111ud1s righthandtd

couplings of the W

£1171? x IV);f [F] 117171.11:er ’7'"f “Rlll + h.(':. . (2.54)

Note that the right—handed fermions exist only on sites 1 and 2 while the W is limited

to sites (I and 1: hence. the right—handed coupling comes entirely from the overlap at

site 1. For the tb doublet we find

)3”9 —31)?!) u3V (2.5.3)

53R ab]? (1 + C(12)) (2.56)

:2

\/1+:1R\/1+51711

N91!» 511?2

2 mt 1 +cL 2]?

 

 

where reaching the last line requires use of Eqn.(2.3()). We thus see. that. the. right

handed coupling for all fermions vanishes in the limit "If ——-> 0. The H" also has
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right-handed couplings to T and I3, for which we compute the diagonal coupling

 

A .2
C + ()1 Al— 1 1 I .

=__JL__ 1+t32 1R..fl+.n new

and the off-diagonal coupling

W318 __~l 14,1 1 .1

- A (g _.
Own (V+vn+2wn 3g+_n)

. 1‘) 2

2J1+§R MqR+1)

”(in
As in the case of .1} I? . the right—handed coupling 1;)3'7717’ turns out to be proportional

 men

to 311R? and is therefore very small. ()ther right-handed Wff’ couplings involfing the

light. standard fermions are straightforward to deduce from eqn. (2.56) and clearly

I
.. . . l'II’F

suppressed by the small values of Ef [1" Similarly. the off-diagonal g)? f are propor—

tion-11 to small “ Tl ‘ l" 0‘ ‘l WFF, ‘ 1 -' "l I" ' ' f t ‘2 ’0). 1. . . .. CH). 1e11agona 1])? are anaogous 111 orm o( 1 .

2.3.3 Neutral Currents

\Ve will now compute the Z coupling to fermions. Like the W". the Z may couple to a

pair of ordinary or heavy-partner fermions, or to a mixed pair with one ordinary and

one heavy-partner fermion. The left-handed coupling of the light. Z-hoson to quark

fields may be written

  

3

() I f. T 1 "V “ 1 ‘7 T 1 r

£21xswzemogfiflmw4rrmzemi2¢®1n41

.‘l, 1,2 7, )1 . . T. «)1, (‘7 (51)
‘6 kg (1411,07 lrt‘Lt) + Li’Ll é’ LI’LI) ‘ “' “)



where the first two terms give rise to the left-handed “T3" coupling and the last.

term (1‘111'1p11rtional to 9') gives rise to the left-handed hypereharge coupling. The

expression for leptons would be similar, replacing hypercharge 17/6 with —1/2.

Similarly. the right-handed coupling of the Z to quark fields is

7.3 q!

- ~ 2
[ZR 9‘ -‘I’17;("°1?1'2_7/"’R1)Z/1-+ %'Z(UR1”1111)th

'2 1 ..

9,1322 (317]?27/JUR2 — ng‘)”(udRQ) Z), , (2.0.5)

where the last three terms arise from the hypereharge. For leptons, 1/6 —+ —1/2 in

the second term. ‘2/3 ——1 0 in the third term (for neutrinos), and —1/3 —+ —1 in the

last term for the charged leptons.

The left handed T3 coupling of the light fermion field to the Z is given by:

 

Z .. ¢
’

s n

931’f = g1f£>21%+ 911112112 12.14)

T202 (3 + 612 — (‘1)

The coupling of left—handed light fermions to hypercl‘iarge arises from the overlap be-

tween the fraction of the Z wavefunction arising from site 2 (the locus of hypercharge)

and the left-handed fermion wavefunetions which are limited to sites 0 and 1:

 

qf)’ =11"; [<12>++1.1>2]=1% (“Z-“61
7,2,2.-__+.2__4

= -g’.s (1+ I (' (‘5 8% f ') +...). (2.67)
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The left-handed coupling of the top—quark to T3 is

 

.1132]? =1}(f%)27‘% +1}(f}1)21‘lz (2.08)

=72 2 + 572 r i

:1?” 1+ ’3‘ ’R). :12 + . .. 12.1111)
13L ) 9 ) ,

‘ 4 all + SIR)“

and the corresponding right. handed coupling is:

th_~,1 I2 12 2'70

113;; -(.9"Z‘97'Zl(tfil t .. )

”‘2
C

= %——fl—22——(1 + C(12)). ((3-71)

-‘ ’ 1 + TTR

The left and right handed couplings to hypercharge can be. evaluated:

J I ) | '6 Z ~;

917% = 9122 [(1)12 + (1)412] =11y‘f’ (2 12)

t I 2 ‘ Z ( , _.

”21$: 91% [(#2) + (1%?)2] = 9Y3?! . ' (2.1.5)

The T3 couplings of the Z to a pair of heavy-partner fermions or an off-diagonal pair

can all be similarly computed. We give the result. for the top-bottom pair and their

heavy partners below: (The. couplings for the other generatirms can be read off by

replacing ‘tR —+ ‘le-
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1 . 1 .1 1 ()52,(2+32 1)..

11.57,“ : ('11——_—1:3g(3+6f‘2—f1).1'2+ H H

8 4c(l+€tR)

5‘2 « ”‘2 2 2:2 ,2 _ I _ 11-2 _ ‘2

_ 2 .2 ”‘2 - ‘2 '21cm+n 81 (emu)

 

. . . 2 . 3
cg (4 (1,3 + 1) — (:3 (sz + 1) (13 — 1) )

ZH' 1 02_O+_ 0

 

 

 

93L :- —I3(l(/
2 .r

‘ 16(3ER+1)

(132151“ : 7—79——

f1R+ll

. 13 ..., 3 "

211’ 9

9 = I
‘L 2V§thrtll

-2 2
+ 1(1:,1,+ 1)2 +‘(112+011? 3—41-41:31.4.11) 3

1 :1;

‘ 16\/§c3(€;R+1)3

(ZtT __ 95H?

.13]? “‘ ""—
2(‘(522 +1)

1‘]?

+ 11:? .. .7 . J'

‘1? 16c315fiR-+-115

 

The hyperclmrge couplings of the Z to a pair of left—handed or right-handed heavy—

partner fermions follow the. pattern of the ordinary fermions:

ZFF 1;) 7FF .

gYR =gtz=91L , (-1
v

5
]

,
4
—

v

and the hypercharge coupling of the Z to an off-diagonal (fla.\'or-c()11ser\-'i11g) fl" pair

a 1ways vanishes

ZfF_ ZfF__0 (9,.)
'(IYL —- gyrR -—-' q .1... (1,)
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because the F and f wavefunctions are orthogonal.

Weak mixing angle: Before closing this section, let us calculate the “Z stan-

dard" weak mixing angle. Using Eqns. (2.17) and (2.18) and the relation

(ll- )2
\/— ., 9L 1 11:2 :1,"1 _,

20F: g. =— 1— +—+... , (2.16)
4.115;, 1,2

  

we can calculate:

‘)

P“

8212 — _-——.—2
41/21,, F1112

- + 1 , , , .
= 521:2 + 52(1'2 — 52) (c2 — 1).!‘2 + 0(1‘1). (2.77)

l

where 5Z E sin HWIZ and cZ E cos HWI Z- The relationship between the weak mixing

angle (In) 2 and the angle 0 defined in Eq. (2.8) is expressed as follows:

822 = .52 + A, (:22 = (:2 ~ A. (2.78)

r 1 r ,

A a .92 (c2 — :1) 13 + 011:4). 12.79)

In other words. 5“ and $22 differ by corrections of order :rZ.

2.4 Phenomenological bounds

The three site model has the following parameters in addition to the SM: 5 [1.5f R

and MD. W'e are interested in finding bounds on I)ll__\;"Sl(_:Zl.l 1.):11'21111eters. in particular.

Alum the mass of the gauge boson and MD. the mass scale of the heavy fermions.
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2-4-1 9711/11" and lull"

Exl.)1—)r'i111ental constraints on the Z ll'l'V vertex in the three—site model turn out. to

provide useful bounds on the fermion delocalizat ion parameter EL.

To leading order. in the absence of CID-violation, the triple gauge boson vertices

may be written in the. Hagiwara-Peccei-Zeppenfeld—Hikasa triple—gauge-vertex nota~

tion [58]

 

['TGV I “’"(fZ‘ l1 + AHzl W; W17 Z’w * 1'1: [1+ Am] 1411'1T11’,7111“’

_ “CZ [1+ A1112] (”Pi-#171»): _ Wr-N-L/WJ)ZV
(2,80)

.52

— azoi'fwwlj — 11"‘Wu’pay .

where the two-index tensors denote. the Lorentz field-strength tensor of the corre-

sponding field. In the standard model. AHZ : A») : 13ng E 0.

As noted in ref. [59]. in any vector-resonance model, such as the Higgsless mod—

els considered here, the interactions (2.80) come from re-ex1:)ressirig the nonalwlian

couplings in the kinetic energy terms in the original Lagrangian in terms of the mass-

eignestate fields. In this case one obtains equal contributions to the deviations of the

first. and third terms, and the second and fourth terms in Eqn. (2.80). In addition

the coeffirient of the fourth term is fixed by electron)agneti1" gallge-invariance. and

therefore in these models we find

Asia]. E 0 AHZ E A1112 . (2.81)



Computing the ZWW coupling explicitly in the three-site model yields

 

‘ 1 ‘ .

fizww=9Write) v%+.w‘z(iflzrz (2.82)

[-1-7 1 212-14 ,
=()c(1:—- ‘1 ' (+4 H...) (ass)

fo °

thus. the deviation of the coupling from the SM value is given by:

2
.72

Ang = fl (2.85,)

a;-

The 95% CL. upper limit. from LEP-Il is A912 < 0.028 [52]. Approximating (:2 3

cos2 (2W x 0.77, we find the bound on :1:

 

 

<0.42 A92 (’2 86)

0028 "‘

and hence. from eqn. (2.13),

(l. (l.28 -

n H
. A91

This lower bound on :1le translates into an upper bound on 5L through the IFD

condition, Eqn. (2.41). Finally, we recall that, in the. absence of a Higgs boson,

ll’Lll’L spin-t) isospin=0 scattering would violate unitarity at a scale of \/8—mr and

that: exchange. of the heavy electroweak bosons is what unitarizes lrll’lrl" scattering in

Higgsless models. Hence, i‘lzlwl g 1.2 TeV in the. three-site model. This, along with

Eq. (2.87) constrains aL to lie in the range

0.09:3 3 3L 3 0.30 . (2.88)



2.4.2 13/) and MD

The isospin violating p parameter is defined as the ratio of isotriplet neutral current

and charged current interactions at zero momentum. Neglecting the exchange of

heavy gauge bosons. as apprtmriate in the case of ideal fermion ('l<.:loca.lization. p can

also be expressed in terms of the masses of the H" and Z bosons as follows:

flit-‘1;

= ————. (2.89

,0 Mg cos2 6 )

At tree level in the SM. /) is one - the reason for this is an (I.(I(."t(1(’71.f'(Lf syntmetrjt/ in

the. Higgs sector of the SM. To see. what this symmetry is. let us start by writing the

components of this Higgs field as [:33]:

<15 = (2.90)

Then, i026?“ is also an 843(2)L doublet with components:

. 950*
2'0ng)" = . (2.91)

_¢—

This lets us define the Higgs matrix field:

(I 1 (420* 62+ (2 ( ))

> = — ‘ .J‘.

\/§ _0 — 990

Now we can rewrite the Higgs Lagrangian as:

cHiggS = —;12Tr (Ducal (We) — we). (2.03)

r

02



where the potential is given by:

, ,, ‘2 ‘ ’

v («11) = — )1,“T1-c1)l(1‘» + XII-(NMZ.

and the (:-(,)variant derivative is:

I

) .

(2.94)

(2.95)

Now, in the limit. 9’ —-» 0. the Higgs Lagrangian has an SU(2) L x 812(2)}? global

synnnetry. Under this syrmnetry. matrix field transforms as:

(1» —-. teal.

\Vhen the Higgs field develops a vev,

(2.96)

(2.97)

it. breaks both 812(2) L and SU(2)L. leaving only the diagonal subgroup .8”! 1(2) 11+]? =

SU(2)V unbroken. Thus. there are three massless Goldstone bosons generated that.

are eaten by the W and the Z to make them massive. It. is this accidental St} ( 2) global

synnnetry. called the custodial symmetry. that. guarantees the relation between the

W and the Z masses (Eqn. (2.89)) in the SM. In the fermionic sector, the S'U( 2) L x

811(2) R symmetry guarantees that the masses of the up and down components of a.

fermion doublet. have. equal masses. Significant fermionic one loop corrections to the

p parameter arise from the breaking of this custodial isospin symmetry. thus making

the up and down type fermions non—degenerate. The largest. correction wines from



the top-bottom doublet and is given by [55]:

. 2. 2 ‘2

30F 2 2 Ht, mb mt

) = 1+ -—.—-—- m + m — 2—.——————ln—— . (2.98)

I 87tZ\/2 t b m; — mg mg

For the other fermion doublets. the up and down type components have. almost the

same mass and hence the correction vanishes.

In the three site model, in addition to the SM 1. and b quark contribution. the

existence of the T and B quarks gives rise to new contrilmtions to Ap. We will

evaluate this correction and use this and mt to constrain MD.

Since 6?L is flavor independent. it cannot contribute to custodial synnnetry vi-

olation and hence we will work in the limit. 5L —> 0 to extract. only the leading

contrilmtion in 5t R- The corrections due to the heavy top-bottom doublet arises out.

of vacuum. polarization diagrams (symbol 11(0), where the 0 indicates that. these are.

evalua ted at zero momentum) shown in Fig. (2.2). In particular. the formula for Ap

is given by:

4

Ap = (7 (1111(0) - 1133(0)]. (2.99)

Note that the subscripts 11 and 33 in this formula refer to the Ill-'1 and H73 bosons

that couple to the fermions. The WI and 1V3 are not mass eigenstates. Subsequently.

we have defined (mantities like 11 LL~ and the subscripts here should be understood

as the currents to which the bosons couple. for example, 11LL refers to the coupling

to two left handed currents. We will call the vacuum polarizatitm diagrams with

left handed currents HLL' Similarly. we will also define HR}? (only right handed

currents) and 11 l.R (with both left and right. hantiled currents). At zero momentum
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nu.
1Tue

Figure 2.2: One-loop contributions to Ap arise from vacuum polarization (gliagrams

involving two left handed fermionic currents (left) and mixed left and right handed

currents (right). The RR piece is the same as the LL piece. The X and Y indicate

the type of fermions in the loop. \Ve compute the leading contribution in the limit:

5L —» 0 and g, —> 0.

these functions are [54]

 

 

 

. 1 . . 1

HLL(O) —-: (57r2 (mi, + ”lg/)1? — 2(nzib1(mX,'/ny;0) + m?b1(my,m_\v;0))Jl

(2.100)

1 .

I1L1?(()l : 1(‘—‘2 [*2771X'myE + 2meyb0(-mJ\n 'my; 0)], (2.101)

m

where

.- '1 :1‘1n2+(1——3:)rr12:,:1—1—3(2

meX, my; (fl) = / dr log ( X 2} )1 (2.102

. 0

. '1 331122 +1—3:7112,—3:(1— 3.)q2

121(mx\-.my;q‘2) = / (13' 3'log( Y ( I)2} (2.105)

. 0 p.

.s,y's 'U“ t") ) "we. ‘0" ' is" 2. why. .Here F 1 the dmrgtnt p nt (f the l( op di igr 1111 ft in (llIIltIl 1011 11 rtgnluuition

[:7 = — 11 + log(47r) —— log([12) (5 = 4 — d), and [I is the renormalization mass scale.

M
I
N
;

The RR piece has the same form as the. LL piece. We will treat. the LL, RR and the

LR pieces separately and show explicitly that. the divergences cancel and compute

the finite part. For sinuilicity. we will rclabel b(ml, mg, 0) as simply 0(1. 2,0). We

will be ct)ncentrating on the top-bottom doublet and their heavy partners, as they

C
"
!

C
)
"



codify maximum flavor violation.

LL diagrams: The vacuum polarization amplitude with left handed external

currents at zero momentum is given by:

4 -~1 ‘ .— 1 ( . «-

Hill”) = —T4_"')—2— [—4— (mf + 71%)]? + 5 (I125h1(120)+mfbl(210))] (2.101)

There are contril'mtions due to (tb). (1.13), (T, b) and (T B) fermions in the loop.

The divergent part is thus given by:

- "3 . L 2 2 9 . . ‘ 2 2
Hllfoldiv = W (2(5),!) (””t + mg) + 201,113)2 (7171 +1113)

+2fQ-510)? (1111721 +1113) + 2(9TB)2 ("311+ n33» ' (2.105,)

Plugging in the couplings, we find the the divergent part of 1111(0) is:

.2
E 171’. 1 ‘2 ‘2 ‘ .

“llfoldiv : W [-7 + ,— ("114- 7223)] . (2.106)

which cancels the divergent contribution from the 1133(0) piece:

(

 

I: t ‘ “ ‘) ‘ ~‘.) ‘1

”33(0)div = (—1_7r)—2 [2(y,{2)2,11? + AUTTVWT + 2f.‘lf§Bl“"’i3

, ‘7 ‘ r)

+2(gtLT)‘ (m? + 777%) + 2(515’B)2112.B]

2
E m, 1 9 .2 ’

Z .. —+— ("'7'+ ’ ) 2.107
(4”,)2 [ 2 8 1 ”B :l f. )



To evaluate the finite part, we will consider two cases. "’1 = 711-2 and m1 # III-2.

_2 . ..

—-—):2—m log 7772(3 (2.108)
’ 71"

m1 = m2 : “LLfUlfinite =

1

2(47r).2 (ml +1173

 ml 75 mg : I‘llLLfolfinite = ) (mf— m2— 2m, log m1

+2mg log mg] (2.100)

.7,.‘,. ,. ‘. -3 .,_ '..3.,- ,, _,. ‘ .. __ 3,2

\M. recall that to thc ()I‘(l(..1‘ M are interested 111, MB — .1 ID and MT — IUD ‘ / 1 + 23,3.

Evaluating the finite contributions due to [111(0) and 1133(0), we get:

 

‘)

, . 4 m" .

U2

+107905.72,, +-,,3+1210gu,2, +63%,310g mg) (2.110)

and

4 TI?- 2 1 , I) ‘2 1

“33(0)finite = “W("Fig—103%mt +15MB10s MD+32”DIR

+1 1 . , .

and thus the finite part of the difference in the vacuum polarization amplitude for

the LL piece is given by:

4 "'f 4 wDEII?n- '—n«« 0 .» - .=——.—f 11(0) .33( )lfimtt (4%)) 16 +(47t)2192

 (2.112)

we recognize the first term as the SM contribution to the one loop correction to the.

p parameters[55] and the second. term is due to the heavy t.op-l_)(_)ttom (ltmblet.

RR diagrams: As before. the divergent pieces of 1111 and U33 are equal and
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("aneel

F 3?
Inland-33,. : 11:53“wa = —(_3332

 

(mgr +1233) (1 — 532]?)

(2.113)

0
0
3
.
.
.
;

‘ (In;2 + mg?) +

  

Using Eqn. (2.108). we can evaluate the finite (‘(_)Iltl'll)tlt.lt)l)S due to the RR enr-

I'PIllSI

 

 

4 ‘_’D2 L’D1 ., ,

3 4 112 11,33 3

[133((UfilllTHZ—W [-1—16l-lDlogfllD'i' 64DCt)R— 1)8 51R (2.115)

Thus. the finite eontrilmtion from the vacuum polarization diagrams involving two

right handed currents is given by:

(Hum)—I133(()))finm, = (433.3 3383* . (2.111,) 

LR diagrams: The LR diagrams are evaluated to be (Ref. [54]):

 
2

11,3];(0) = — (4w)? [1171711313 — ‘1)11'7I72f)()(120)]. (2.117)

The divergent part. of 1111 (.‘tlll now be evaluated:

2E

”11(01111v = —
 2rnth(_q,1%3)(g3LB) + 2meBthLB)({/¥B)] . (2.118.)

In the above formula, we have. omitted terms proportiorml to rub. Plugging in the

eouplings. we see that:

1111mm“, :: —W Z‘rl’IT‘I‘H.B 16 1 -— 7 . (2.11))

r
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It. can be easily shown that the divergent part of' 1133 exactly cancels this. We now

proceed to compute the finite contributions.

‘)

 
" . L I?
ll11(0)3333330 = )2 2(933)(gtB)‘mt-meM-mt. 172.87 0)

(4 :
1

‘)
H

471'

2 2 2 . 2 . 2 . . 2

2 M M s M AI. log .\I

(471') 8 16 , 48 1(3

)2 207143) (”1
38 l’""Tme0(

mT-. 721.1330)
 

+
A
‘

 

I
v

(2.120)

() 3

. .. r) 3 .

1133(1))3333333. = m [(113131)(ggbnfbmmt, mt. 0) + ((15111)(IQ/£271)Illfiubohllfr. INT. 0)

+(91I§B)(.qu)”’%3b()(mB~ NIB. 0) + 2(gf’T)(1);?)7123711'11120(mt. (”"1“ 0)]

  

 

. , 2 2 -2 , 2 ,. 2 . ,. , 2

(471—)? s ' - ' D 113 H? :32 16 '

(2.121)

Thus, we see that the finite contribution due to the LR diagrams is:

4 1‘12 3.4

(1111(0) — H3st0llfinae = D m- (2123)
 

(47.)2 192

The total fermionic contribution to Ap in the three site model is obtained by adding

Eons. (2.112), (2.116) and (2.122) and is given by (after subtracting out. the SM

contrilmtion and multiplying by a factor of 3 for color):

1 2 -4 . ...

y, .P . . 3 3 . _ _ 3 3 . . 3 3 3 -

The. H” and 1’ contributions to Ap are discussed in [56]. The phenontenological

bounds on the value of Ap depend (since they include the one-loop standard model
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corrections) on the refereniee. Higgs mass chosen. \N’e are interested in the bounds

on Ap corresponding to Higgs masses between about 380 GeV (from Eqn.(2.87))

and the unitarity bound 1.2 TeV [56]. Current. bounds (see for example, Langacker

and Erler in (57]) yield (approximately) Ap g 2.5 X 10"3, at 90% C.L.. assuming

the existence of a moderately heavy (340 GeV) Higgs boson. while it is relaxed to

approximately Ap S 5 x 10‘3 in the ease of a heavy (1000 GeV) Higgs boson. \\-"e

therefore expect. that the upper bound on Ap in the three site model varies from

a})proxiinz-rtely 2.5 x 10_3 to 5 X 10'3. For (IT = 5 X 10‘3, we find the upper bound

3,, 1/2
533<0.94 (U) . (2121)

Our upper limit. on a, R and our knowledge of the top quark mass allow us to derive

a. lower bound on I'll . Our expression (2.29) for Tllf reminds 11s that.

5 5 M
3,3, : _I___t£_3_ (2.125)

1 53,?

For a given value of MD. the existence of an upper bound on 53 I? implies that there

is a smallest allowed value of EL. which we denote 5

o 1 1 r

,3. . 2.5 X10”3 / In, (17" 1/3 1,- ,, .
a ,= 1.211 —,—— 1+0.6.5 ——+ —— . (2.1211)

. of 3/qu 2.5 x 111-3 M

:1:

Since eqn. (2.88) requires 5L < 0.30, for (IT = 2.5 X 10"“3 we find that MD must

:1:

 

 

be greater than 2.3 TeV. and for (1T = 5 x 10—3 we. find that MD must be greater

than 1.8 TeV. The joint range of MD and 11-13333; is summarised in Fig. (“2.3), for both

values of QT. Using 11/ > 1.8 TeV and the bound in Eqn. (2.1.24), we see that.

53113 < 0.35. The right handed Wtb coupling contrilimtes to the process I) ——> .97, and

this gives an upper bound on 53.1; of 0.67. which is superceded by this limit...
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Figure 2.3: I’henon1enologically acceptable values of 51/D and Il'IW/ in GeV for (17' =

2.5 x 10“3 (solid curve) and 5 x 10‘3 (dashed curve). The region bounded by the

lines 380GeV < MW, < 1200 GeV and above the appropriate curve, is allowed. For

a given MD and M334. the. value of 5112 is determined by Eqn. (2.125).

2 .5 Remarks

In this chapter, we have described in detail a. minimal deconstructed Higgsless model

that. is simple, in the sense that there is only one extra set of vector bosons in-

stead of‘ the infinite tower of vector bosons present. in the continuum limit. Likewise.

there need be only a single heavy fermion partner for each of the standard. model

fermions, instead of a tower of such states. The three site model serves as a conve-

nient framework to understand many important ideas in Higgsless models. like the

concept. of ideal fermion delocalization. After deriving the mass eigenstates and cou—

plings, we investigated the phenomenological bounds on the mass scales of the gauge

and fermionic sector by appealing to precision low energy measurements. We found

that the lower bound of 1113,33 is around 380 GeV. which makes its discovery at the

CERN LHC a realistic possibility. However. the s "ale that sets the mass of fermions.

11:!D has a. lmver bound exceeding a TeV, because. of the twin r(&*(',p.1ireinents of getting
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the correct value of the top quark mass and having a phent)menologieally acceptable

value for Ap. This renders the discovery of the heavy fermirms rather difficult. It.

is interesting to explore avenues to relax these constraints, so we could have extra

fermions that are light. enough to have a strong discovery potential. This. however,

will involve extending the three site. model in some specific way so as to free MD from

the constraints of mt and Ap and this will be the subject of the next chapter.
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Chapter 3

Triangle Moose Model

In Chapter 2. we presented the details of the three site model [30], a maximally

deconstriictcd version of a higgsless extra. dimensional model, with only one extra.

SU( 2) gauge group, as compared to the SM. Thus, there are three extra gauge bosons.

which contribute to unitarizing the WLWL scattering in place of a higgs. (The LHC

phcnonrenology of these extra vector bosons can be found in [60]). Also incorporated

in the three site model is a heavy Dirac partner for every SM fermion. The presence

of these new fermions, in particular, the heavy top and bottom quarks. gives rise to

new one, loop contributions to Ap. Low energy precision measurements require Ap to

be < O(.1.()*3) and so, the combination of parameters 51 R and MD have to be tuned

to both make Ap small and obtain the large top quark mass. These twin constraints

push the heavy quark mass into the multi TeV range, too high to be seen at the

LHC. Our goal in this chapter is to construct a model that retains the. features of

the higgsless mechanism, but allows for Dirac fermions that are lighter. To achieve

this. we. separate top quark mass generation from the rest of electroweak synn’netry

breaking. by analogy with top color models.
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Fignre 3.1: The gauge structure of the model in Moose notation [25] g and g’ are

approximately the SM 811(2) and hypercharge gauge couplings while 9 represents the

“bulk" gauge coupling. The left (right) handed light fermions are mostly localized at

site 0 (2) while their heavy counterparts are mostly at site 1. The links connecting

sites 0 and 1 and sites 1 and 2 are non linear sigma model fields while the one

connecting sites 0 and 2 is the top Higgs field.

3.1 The Model

The clectroxwak gauge structure of the model is the same as that in the three. site

model and is 811(2) >< SU(2) >< U(1) (shown using the “Moose Notation" in Figure

(3.1)). with the SM fermions deriving their 81.}(2) charges mostly from site 0 (which is

most. closely associated with the SM SU(2)”,1) and the bulk fern‘iions mostly from site

1. The extended electroweak gauge structure of the theory is the same as that of the

BESS models (31. 3’2], motivated by models of hidden local syn‘rmetry (with a 74- 1)

[33. 34, 35. 36. 37]. The non linear sigma field 201 is responsible for breaking the.

SU( 2) X SU (2) gauge symmetry down to SU(2). The left. handed fermions are 57%?)

doublets residing at sites 0 (#10) and 1 (t'2L-1). while the right handed fermions are a
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doublet under 8I (2)1011) 1) and two 311(2) singlet, fermions at site ‘2 (1le and (1132).

The fermions 't-Z'LO. t":L1~ and a”:R1 have. 811(2) charges typical of the left—handed SU(2)

doublets in the. SM, +1/6 for quarks and —1/2 for leptons. Similarly. the fermion

7.1.32 has U(1) charge typical for the right-handed tip—quarks ( +2/3) and (132 has the

U(1) charge typical for the right-handed down—quarks (~1/3).

Our goal is to separate top quark mass generation from the rest of electroweak

syimuetry breaking. We do this by introducing a “top Higgs" field (I), motivated by

top-color models [38. 39[, and let. the top quark couple preferentially to the top Higgs

via the Lagrangian:

£t0p: —/\tt;'LU<I?fR+h.C. (3.1)

Thus. the model incorporates two non-linear sigma fields (the l’liggsless sector) and a

top Higgs field that. couples to the top quark. We point. out. that electroweak symmetry

breaking goes through via a Higgsless mechanism - we will see in the next sect ion that

the W and Z gauge boson masses are dominated by the vev of the non-linear sigma

model fields and that. the top Higgs link only has a sub-dmninant contril'mLion. Using

the AdS-CFT correspondence [19, 20, 21, 22], this model can be thought of as being

dual to Top-Color assisted Technicolor (T672) thoeries [7, 40, 41].

The top Higgs field can be written as:

0

f+H(:1.-)
,—

v"?

. (I. (l'

(9:62” a /f

ll(.r) is the physical top Higgs and the 7r‘s are the associated Goldstone bosons that

are not eaten. Thus, the spectrum consists, in addition to the SM particles and their

her—ivy copies. a. top-Higgs boson and three uneaten top-pious. 7:0, 7r+, and 7F". \er

assmne that Extended Technicolor (ETC) dynamics [7] induces “plaquette” terms

that align the technicolor vacuum with the topcolor vacuum and give mass to the top
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pions. The mass term can be written down as:

cr. = 47rti'e3Tr(<I))30123[2) , (3.3)

where s is a dimensionless parameter.

The top I‘liggs field is described by the Lagrangian:

f2
I_)#<I)[l)),,<1)~ V(<I)). (3.4.)

The potential V015) is minimized at ((1)) = f. V’thn the field (I) develops a non zero

vactuun expectation value, Eqn.(3.1) generates a top quark mass term. We choose

the vacuum expectation value associated with the non linear sigmal model fields to

be P = fl (2 cosw (for simplicity, we choose the vev of both the non linear sigmz-t

model fields to be the same) and the one associated with the top Higgs sector to be

f = ((1)) = if sinw (where w is a small parameter).

The mass terms for all the light fermions arise from Yukawa couplings of the

fermionic fields with the non linear sigma fields and is the same as that in the three

site model discussed in the previous chapter.

T , f ' T 571.1? 0 uR2

3: “D 3L”-’L()2()1"”R1+'9"’R1@”L1 +71"le12 . (3.5)

0 5d}? (7m

“’0 have denoted the Dirac mass (that sets the scale of the heavy fermion mass) to

be A ID. One can see. that flavor violation (in all but the top-quark sector) is encoded

in the last term. Here, 5L is a parameter that describes the degree of delocalization

of the left handed fermions and is flavor universal. The delocalization parameter for

the right handed fermions, sz, can be tuned to realize the mass difference bet ween

the up and down type fermions. For our phenolncnological study. we will, for the

66



most part, assume that all the fermions (except. the top) are rnassless and hence will

set this parameter to zero. It will turn out that. even for the top quark. a”? can be

small since its. mass is dominated by the top Higgs contribution (see Eqn.(1)). V'Ve

will see in Section VI that the top quark mass does not severely constrain Ap. and

correspondingly. there will exist no tension between the. heavy quark mass. MD. and

one loop contributions to Ap, as in the three site model. This enables us to have

heavy quarks in this model that are light enough to be found at the LHC — we. will

investigt-rte this point in Section VII.

3.2 Masses and Eigenstates

In addition to the SM 7, Z and W b(,)sons, we also have the heavy partners. H"

and Z’ because of the extra Sb" ('2) group. The canonically normalized kinetic energy

terms of the gauge fields can be written down in the usual way:

1 1 1 . ,.

fih’E = —:1‘FBVF0/IV _ zFfil/leluj — Elfin/13“”. (3b)

In this SCCtlt)“. we review the masses and wave functions of the. gauge l-)osons. which

are almost the same as the ones for the three site model, except. for small w dependent.

factors.

3.2.1 Charged Gauge Bosons

The masses of the gauge bosons come from the kinetic terms of the sigma fields:

J

F“ t - F2 1 f2 — t —
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where the gauge covariant derivatives are:

”/1301 = 0/1301 + ”I'IIl'VBXel * iri£er”")i (3-8)

.- .~ ,. . I f -
1.515301 = (9,1212 + 79(17):.” ~19 212115, (3.9)

and 201 and 21-2 are unitary 2x2 matrix fields.

Let us write the gauge couplings in the following form:

(3» f“ i (7'

(. = —— " = ————+ = . 3.10

'10 sint‘icosq') g sinfv’sinc’) 9 cost} ( )

 

\Ve will find the mass eigenvalues and eigenvectors perturbatively in the small pa-

rameter sine). which we will call 1'.

From’the above Lagrangian, one. can get the mass matrix for the gauge bosons

by working in the unitary gauge (2 = l) and collecting the coefficients of the terms

quadratic in the gauge. fields. The charged gauge, boson mass matrix is thus given by:

t) ‘

.L"‘(1+cos2 w) _ ‘2 .1: cos2 a)

,2 . .2 ——T_ .

\llZl : _(_(_____ 1"”: ‘ V l—I‘)’ . (511)

4 172 Bill2 6 _ 2 :1“ cos2 a;
4 cos2u;

1—.‘II2

This matrix can be diagonalized perturbatively in .1'. \Ne find the. light. W has the

follmving mass and (V‘igeiwector:

 

2 2 2
o e c 3r

Mt, = —— 1+ 3.12
H 4 sin? 0 4 ( )

0 1 T2 1I r l r I " 1' 1 I . [r I a I

lit/’21:",l/t-(f) + “Wu/f = 1— E- ((6 + in) [. (3.1.3)

Here. W0 and W1 are the gauge bosons associated with sites 0 and 1. Since :1: is

small, we note that the light l’V resides primarily at site 0. (The above formulas are
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valid to C(12), as are all the other eigenvalues and couplings in this chapter).

The heavy ll" eigenvector is orthogonal to the above and has a mass:

2 2 ‘2
2 e ‘1?- cos w( 2) .‘ .

M . = ————.— 4+rr . 3.14

W, 4 sin2 6:112 i )

To leading order, the relation between the light and heavy W boson masses is

 

  

  

M? H

y =——§< (aw)

jlle, 4eos u.)

3.2.2 Neutral gauge bosons

The neutral gauge bosons’ mass matrix is given by:

/ 3‘2 1+(‘052 w) _ ‘2 37 cos2w _ .172 sinQVu tan :9 \

.. he Vefl VPH

‘2 “21"2 2 recs2 ' 2 ‘2 . ..
“Z = —-——'—~’——-'——"——°"— 4cos a} ”21' cos a; tan() (3.10)

 

VII—$2

   
. ‘2 2 , . . -'

K —I “Ill—$129110 -—‘2:reos2w taut} 1‘20, + ('os2w)tangt9 /

V 1—13“

This mass matrix has a. zero eigtz‘nvalue (the photon). the eigenvector of which may

be written exactly as:

.W=3afi+§wf+%MR (3H)
9 g 9

Reaning that this state be properly normalized, we get the relation between the

couplings:

7=T+§+W' (3.18)

The light Z boson has the mass
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2 2
_ 2

2 ‘- 7" 2 . sec 9 ‘

Ix] : -— ‘
1 + J: 1' _

‘
('3.1S)

z 4 sin2 6 cos2 6 ( ( 4 ))
l

and the ctirresptgmding eigenvector

r . (l /1 1 x . 2 . .
z” = Inga") + irzttf + 1:21;”. (3.20)

where

1 « .

I? = S(4(—2 + 3.72)Cosfl — 3.7:Zsec6) (3.21)

1

3% = §;l'(—2COS2 H + 1)sect‘;l (3.22)

.- l _

‘1’; = si116 — 512 sect) tan 6. (3.23)

The heavy neutral vector boson. which we call Z’, has a mass and eigenvector

2 2 2
: e n“ cos w 9 2 .

3/2 = ——.———. (4 + I“sec a) (3.24
2’ 4 sin2 6 1'2 )

Z’” = "*9IW6’ + Win/Vt" + viz/13".. (3.25)

where

1

1:9, = 7 :1: (3.26)

4 an!

, 1 . _

127’, = —l + £1") sec.2 6 (3.27)

‘ 1 .

vi, = 3:1: tant). (3.28)

For small :17. it is seen that. the Z, is mainly at. site 1, while the Z is at sites 0 and 2.

as one would expect.



3.3 Fermions and Ideal delocalization

In this section. we will review the masses and wave functions of the light. fermions

and their heavy partners. We will then discuss how to “ideally delocz‘tlize” the light.

fermions. which will make the tree level value of the S parameter vanish [49].

3.3.1 Masses and wave functions

W’orking in the unitary gauge ($01 : 212 = 1), the mass matrices of the light. quarks

and their Dirac. fermion partners can be derived from Eqn.(1) and are given by:

EL 0

Mud = MD . (3.29)

1 5mm?

The subscripts u(d) denote up (down) quarks and MD is the Dirac mass, introduced

in Eqn. (3.5). Diagtmalizing the matrix perturb-atively in 9L- we find the light.

eigenvalue:

, 2

1"] 5 E S

R
/ .2 2 1+52

1+”‘uR ( u.

Note that m - is ro ortional to the flavor-s eeific arameter 5 - . where ' is any
I f R -

light SM fermion (except the top). The heavy Dirac quark has a mass:

22

/ ,-2 CL .» .
[NU : 111D 1+ :11]? 1+W+ . (Jil)

'u.

The left and right handed eigenvectors of the light. quarks are

"L ='IL(I)J (PLO + Uit’iLl

.2

L [J ‘ EL " ' '1= —1 + —.—— m+ (———.,—) "(‘21 (3.32)
( 2(1+512¢R)2) 1+.31-1R



UR =?.Ii?‘l.’"’n_1 + “f?“fi’Z

   

(3.33)

The left and right handed eigenvectors of the heavy partners are orthogtmal to

Et‘m.(3.32) and E('(r1.(3.33):

: r0 r1,
l/‘L =’/L1~L0 + ("LL'LI

.2
El) 1 CL ’A ‘ '= __.._ w + —1 + ———-——‘.-—— t,» (3.34)
,2 4L0 . ,2 2 - L1

" _ v1 :2.
("IR "1"RL"‘R1+(’R’11?2

..2 -2 - :2 _~

_ 1 tLc'ul't’ CUR + CLIVU'R
   __ -- -— '91}R1 + ...

‘ . —,..= ‘ . '(IR2.

‘) C2 5 2 ‘ Cl 5 2

11—577.]? (1+“uRl/ \/1+EiR (1+°u.1?,)/

(3.35)

In the above expressions. U and D stand for the heavy up and down quarks re-

spectively. The masses and eigenvectors of (other fermitms can be obtained by the

replacement 5a11’ —> SIR.

3.3.2 Ideal fermion delocalization

The leat‘ling tree level contributions to precision measurements in Higgsless models

come necessarily from the coupling of standard model fermions to the heavy gauge

bosons. It was shown in [49] that it is possible to delocalize the light fermions in such

a way that they do not couple to these heavy fields and thus minimize the deviations

in precision electroweak parameters. The coupling of the heavy it” to SM fermitms is
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*ll

of the form 2 92(1’9fl- )ZU’W.” Thus choosing the light fermion profile such that. (ti-f. )2

I I

is proportional to t’l'Wz. would make this coupling automatically vanish because the

heavy and light W fields are orthogonal to one another. This procedure (called Ideal

fermion delocalizatitm) also equates the coupling of the W to two light fermions to

the SM value. Thus. an equivalent way to impose ideal fermion delocalization (IFD)

is to demand that the tree level 9W“, coupling (say) equal the SM value.

we will use the latter procedure to implement IFD. The deviation of the ow“,

coupling from the SM value can be parametrized in terms of the Peskin-Takeuchi

parameters [42] S. T and U parameters as [50]:

. 0 . ‘ ‘ .
(LS (:“(i'F ((32 — .sz)r.tfj

432— 23-2 — 832

 

gll-"eI/ = E 1 + (3.30)

where c = cos 0w = ..r'lVIW/i’llz and s =2 sin 0w = V1 — c2 are the “mass defined"

angles. It was shown in [48] that at tree level, in models of this kind. the parameters

‘T and U have negligible values that are (9(14), and so we can impose ideal. fermion

delocalization by requiring S to vanish at tree level (which would make own, the SM

value. from Eqn. (3.36)).

In computing the couplings, we will use the mass defined angles. (W'e will indicate

this by a suffix w in all the couplings). From Eqns.(3.12) and (3.19). we can see that

811103,: is related to sin!) defined implicitly in the couplings in Eqn. (3.10) by:

, .2

sum)”: l—iT sint). (3.37)
L

Using the W and the fermion wave functions. we can calculate the (itnlrflillg .‘ltt’m/ “5

,-2

e :1: c, L

+ 1 — 3.33
8111010 4 8 ( )

gll’cu :

Thus. we find the ideal fermion delocalization condition in the model to be:
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(3.39)

Note that. this relation is the same as the one obtained in the three site model.

3.4 Light Fermion couplings to the gauge bosons

3.4.1 Charged Currents

Now that we have the wave functions of the vector bosons and the fermions, we

can compute the couplings between these states. Since all the light fermions are

approximately massless. we set sz for all the light fermions to zero in this section.

We will calculate all couplings to C(12). We begin with the left handed ll"ud coupling.

(7?

 
0}} ud

= goritugdg + (Hamid) = (3.40)
sin Hw ‘

This result follows from the fact that we have implemented ideal fermion delocaliza—

tion in the model.

All other char ‘ed current cou )line's both left. and ri‘rht handed can be similarlv
b t.» ..

computed. The couplings in this model are only very slightly different from the ones

in the three site model. The difference is attributable to the fact that the expansion

parameter we have chosen. .1'. is sine), as opposed to tang“) in the three site model. \Ve
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now summarize the results:

 

 

113331“: 1101L3, 11([) 119 + {/1LL.111,11L= sniff/11,1 (3.411)

g‘L""'f‘r"(=11‘L‘""'U) 2 11012331333113 + 13113113113 = ———9fit“ 011- (3.42)

1133”” = 90133.1.12113+131},,11L11L—2L—‘i'l’m77 (1 + 21-2) (3.43)

1133 “-—"_1,1-,1,,1133113L = o (3.44)

33U"(= 133“0): 1, 1,1,.1'1 1,133 :0 (3.45)

”3:21.113 : 9.3.1.1313 =m (1 - $173) (3.46)

9333"”! = 1)(‘)'1'0;,11(l)-L(I(L)L + .6113111311'3’ '2 t) (3.47)

Llp”1.111(:Lap/"1111) = 1,0113,,1L11L + 1,113,03113 =—m (3.48)

1133'“) =11010,1(Ll/1L +111113113 =m (1 —- 143-19) (3.49)

1133 "d‘!“l"--’.1,,1“i1di1 = 0 (3.50)

1133 ’f"(= 1133"”) = 1111:3311331133 = 0 (3.51)

1133;,UD = QNIILJXRDI = 1sii10w (l — £12) (33.52)

Two comments are in order. The right. handed ll’lz’d. W’ud couplings are zero in the

limits in which we are working (EUR = 5d}? = (l). The right handed coupling of H'

with two heavy fields arises. in this limit, solely from site 1 and is not zero. The left.

and right-handed H", coupling to two heavv fermions is enhantitet‘l by a factor 1/:1:

1e.latiVe to qLfl’ with .1 being the small expansion paramettr Thus for Very small

values of .1'. this coupling becomes large and consequently, F (1114”) [WWI >> 1. We.

therefore exclude the region 1111”,, 2 2MD of the MD — MW; parameter space in our

phent)menological study of the heavy quark production in Section 3.6.

*
1

C
f
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3.4.2 Neutral Currents

We can now calculate the coupling of the fermions to the neutral bosons. All the

charged fermions couple to the photon with their standard electric charges.

0
511.7111 = 9113121. =51tc/glft’1.

We will. be calculating the couplings in the “T3 -— Q” basis. To do this we use

the standard relation between the three quantum numbers: Q = F; + Y. Since the

fermions derive their SU(2) charge from more. than one site, we will calculate, for

(

example. the T3 coupling of two light fields to the Z as 293(11332113. The left.

7.

handed Z coupling to SM fermions is calculated to be:

) 2 ~ 1 . 'l 2 I 2 ' O ' l 2

gLZuu. : (90712019.) + gl’ZOl'L-l ) T3 + 9 "Z (MIL).z + (UL) ) (Q '— T-ll

e - , 2 .

= —————————— F — . sm (7.1.) 354

sinHw cos ”11.: ( '3 Q u ( ')

All the other couplings can be similarly computed and we summarize the. results
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below:

 

Z1111 (" (- 1 - ‘2 ) . rr'
1 =—— ]« —- ( sin (I ,- 3..

IL Sill 6'1" COS 6'“) .3 2 U ( ) ))

2111/" PT . _.. .

(I = — T (3.00)

L 2 \/§ Sill H'IL! ('05 ”(U

. 2

ZL/YL'T (1' 1 II" 2 r 1 ' 2 r -w

1 =——.———-—— — l+— 4—sec 0 ,1 /. —Qs1n ()1 13.111)

'IL s1nfiu1cos6m 2 8 ( 11) ‘5 11 i ’

1]?” = (’(Q —— 733mm)“; (358)

9121"U = 0 (3.59)

7.1111 ‘1 1(1 1'2” Q - 21,1 ('3 ("(1)( " =—— — —— -— .‘m 1 ..1

JR Sill H1“, C05 6“) 2 8 .3 S U

, 1, 1

11121 11.11. = —§ user-19,1,- tant‘tm (T3 — Q) (3.01)

Z'UU ‘0' 1 $21 211 T (‘5 f")f] ' = ——'—— — — $111 1 .1‘ ' Ll . )—

L VT 81110“, 8 11 ‘5

_ 1 2 .- ‘2
Z/UU c: 15.7? . 2 0 m 1 5111 H?!" . ~-

1 = ——_———— 1— — 2.‘ec, (l ,1 —— 3tan‘t) 1 I + — c:'————( 13.03)

IL 131110”: 8 ( S U U ) 3 2 l (7050”: 2 ( I

"I. FIE ,, . .

11g 111 = E—secflwtanflw(Q — ‘13) (3.51)

r I ,

1114‘. “U = 0 (3.65)

ZIUU C 1 I132 (0 0 f) r' t 2 f) ) ,1, + l SlIl2 H4112 () (3 (if)

‘ = —— - -.-— ..sec“ ~1— 1.) an 1 1 — e .1: —— . .1)

9R :1 sin 011,- 8 11 U’ ‘5 ‘2 cos (1w ' '

While ideal fermion tlelt)calization makes gW’ud zero. in the case of the neutral cur-

rents. the corrcsponding (1)7121“ is seen to have a small hypercharge coupling. (The

'T3 portion is. of course, zero). Also, 9qu is seen to have only a T3 coupling because

the term multiplying Q — T3 (hypercharge) vanishes due to the orthogonality of the

fermion wave functions. In the limit cost)“, ——> 1, 1317:1131

to the off diagonal coupling of the H", g33'UD. As

is seen to correspond exactly

in the case of charged currents.

the coupling of two heavy quarks to the Z’ is enhanced by a factor 1/:1:. This makes

l‘(Z')/.lIZ/ >> 1 for small values of .‘I‘, and hence we will restrict. ourself to the region
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M7; 3 2ND in our phenornenogical analysis in Section 3.6.
J

3.5 The Top quark

The top quark in the model has different properties than the light. quarks since its

mass is generated by the top Higgs. This section reviews the masses and eigenstates

of the top quark and proceeds to analyze the delocalization pattern of the top and

bottom quarks.

3.5.1 Masses and wave functions

The top quark mass n‘iat'rix may be read from Eqns. (3.1) and (3.5) and is given by:

MDELt Atesinw

(3.67)

1WD AIDE”?

Let us define the parameter

,\ esinw _,

a = -—’-,——. (3.68)

in terms of which the aliiove matrix can be written as:

a a.

M) = MD I” . (3.69)

1 51R

Note that we have introduced the left. handed delocalization parameter EL). that

is technically distinct from the one for the light. fermions. We will see in the next.

subsection that “1’7Lt = L is the preferred value. i.e.. the top quark is delocalized in

exactly the same way as the light. quarks.

7'8

-
”I

r



Diagonalizing the top quark mass matrix perturbatively in SLt and 511;, we can

find the light. and heavy eigenvalues:

 

 

2 2 2- A
C: + 5 + ‘1‘ 5

mt = At‘t’SlIlw‘ [1+ Lt O(t1§;+(12)Lt ”2] . (3.70)

_ — a

-2 2 . ,-
C: +5 +2tlc 5-

M, = MD 1— L’ ’1? 2“ ’R (3.71)
2(—1+a )

Thus. we see (hat. mt depends mainly on 1' and only slightly on 5H?» in contrast to

the light fermion mass, Eqn. (3.30), where the dominant term is s [1? dependent.

The wave functions of the left and right. handed top quark are:
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The. left. and right handed heavy top wave functions are the orthogonal combinations:
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3.5.2 Zbf) and choice of em

Since the (left-hai'ided) bottom is the SU(2) partner of the (left-handed) top. it is

delocalized in exactly the same way as tL' Thus. we can compute the tree level value

of the ZbLchouplmg and use it to constrain 5L1: This coupling is given by:

( ‘ '4 . 1 T ‘ ‘ i 2 r 1

”Lbe = (Ilut'ozf’ff +(I1'1'lszil2) 73 + 9'27; (“9.12 + (bi) ) (Q - l3)

0 1 + .172 5%f )T Q . 2 6 ('3 ”(3)

= _— ———- -—-."i )-

sin Hw cos 9w ( ' 4 2 3 S n a. I )

Now this exactly corresponds to the tree-level SM value provided that SLt satisfies

We see that. this matches the delocalization condition for the. light quarks, Eqn.

(3.39). Thus, we see that the left—handed top quark is to be delocalized in exactly

the. san’ie way as the light. fermions if we are to avoid significant tree-level corrections

to the SM ZI)Lf’L value. Henceforth. we shall be choosing this value for 6L).

3.5.3 Ap and All)

The (,‘mitril'nititm of the heavy top-bottom doublet. to Ap can be evaluated in this

model in the same way as in the three site model discussed in Chapter 2 and the

result is the same as in Eqn. (2.123). We give it. below:

A/) = 412-113. (3.78)

The import ant. (..liffcrence now is that, since the top quark mass is (‘lominated by the

vev of the top Higgs instead of MI) (see Eqn. (3.70)), it]? could be as low as the. ER
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of any light fermion. Thus, there is no constraint between the twin goals of getting

a large. top quark mass and having an experimentally admissible value. of Ap. This

enables us to have. heavy fermions in this model that are light. enough to be seen at

the LHC. We explore this in detail in the next section.

3.6 Heavy fermion phenomenology at hadron col-

liders

We are now prepared to investigate the collider phenomenology of this model. As we

have. just seen. there is no tension between getting the correct values of the top quark

mass and the p parameter in this model. Thus, the mass of the heavy quark does not

necessarily lie in the TeV range as in the three site nmdel discussed in Chapter 2 [3(ll.

This enables us to investigate the phenomenology of these heavy quarks for MD of

the order of hundreds of GeV. The current CDF lower bounds on heavy up (decaying

via charged currents) and down type quarks (decaying via neutral currents) are 284

GeV and ‘270 GeV respectively at. 95% CL. [61}. Thus, in our phenomenologk'al

analysis. we will be concentrating on quarks whose masses are lmtween 300 GeV and

1 TeV.

Let us recall that. the diagonal coupling of the heavy ll" or ZI with two heavy

fermimis is enhanced by a factor 1 /;r. , where .I.‘ = sin (I) is our small expansion parame-

ter. Thus. if the masses are such that the heavy gauge bosons can decay to two heavy

fermions. then we are in a situation where Pug/MW; > 1. rendering perturbative

analysis invalid. Thus. for perturbative consistency, we will always stay in the region

of the sly/W, — ii ID paran‘ieter space where MW’. Z’ g ‘21‘l ID- We. will study both pair

and single production channels.
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3.6.1 Heavy fermion decay

The heavy fermions in the model decay to a. vector boson and a light fermion. If the

heavy fermion is massive enouglh the vector boson could even be the W’ or Z’ in the.

theory (Fig. 3.2). (The Situation changes slightly for the heavy top quark for which

decay into top pions is allowed).

 V

f

Figure 3.2: The decay modes of the heavy quarks in the theory. The decay rate

is controlled by the off-diagonal left handed coupling of the vector boson to a heavy

fermion and the corresponding light fermion (the cm‘responding right: handed coupling

vanishes in the limit of massless light fermions).

In the limit. that the mass of the light fermion is zero, the rate of decay to charged

gauge bosons is given by:

 

2 3 0 2 2
{I ,r M m“ ’m x': £217}? 2D _ l: 1+ 2____l;)_ . (3.79)

‘ 7T ”IL; j‘ID A [D

In the hunt that. the Dirac mass 18 much higher than the H and ll boson masses,

the terms in the parentheses can be approximated by 1. Thus, in this limit, the dmm.’

width is ('lcterminctl by the factor ”3’1" [/2116 This can be evaluated for the. H7 and
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the l’V’ couplings to be:

2 , 2

gW’Qq/mW’

2 2 ~
-(]1v'Qq/7Hlv' N

(6212/8 sin2 6“,)

(e2212/4 sin2 6“,)

1:2

—— (3.80)

1'2 .

(6.2/2 sin2 6w)

(c2v2/4 sin2 6.11.172)

2
{1.7

—. 3.81[,2 < >

 

 

Thus, we see that in this limit, the decay of the heavy fermion into 14/ and W' become

equally important because gfvoq/miv a: 9124"Qq /ma”. This is further illustrated in

Figure (3.3).
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Figure 3.3: The plot of the branching ratio of the heavy quark into the charged and

neutral gauge bosons. The masses of the W, and ZI gauge bosons were taken to be

500 GeV each.
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3.6.2 Heavy quarks at the LHC

Our goal in this section is to analyze the possible discovery modes of the heavy

quarks at the LHC. We will show that it is possible to discover them at 50 level for

a large range in the NW; — MD parameter space. We will consider both the (QCD

dominated) pair production and the (electroweak) single prtxluction of the heavy

quarks. Each produced quark inunediately decays to either a SM gauge boson plus a

light. quark (for AlD < MW’) or a heavy gauge boson plus a light quark ( for illD >

A IWI). W'e will (,‘onsider the first possil,>lity in the pair production scenario (subscct ion

1) and the second in the single production analysis (subsection ‘2) and show that these

cover much of the MD — MW; parameter space. For our phenomenological analysis,

we used the CachEP package [62].

Pair production: pp —+ (X) —, ”"qu —+ (”l/(ii

We first consider the process pp —> QQ at the LHC. Pair production of heavy quarks

occurs via gluon fusion and quark annihilation processes (Figure 34) In Figure

3.5. we present the production cross section as a function of Dirac mass for a single

flavor. we see that the cross-section for the gluon fusion process is higher than its

ctmnterpart for low values of MD. However. as MD increases, the qr’i channel starts

to dominate. This is because the parton distribution function (pdf) of the gluon falls

rapidly with increasing parton momentum fraction, 1'.

Each heavy quark decays to a vector boson and a light fermion. For MD <

iii/”42;. the decay is purely to the standard model gaulge bosons. The decay to

heavy gauge bosons opens up for I”D > 1")leZ” and we will analyze this channel

while discussing single production of heavy fermions in the next subsection. Here.

we look at the signal in the case where one of the heavy quarks decays to a Z and

the other decays to a W. with the gauge bosons subsequtmtly decaying leptonical1y.

Thus. the final state is pp -—-> QC? -+ [Ill/jj.
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Figure 3.4: (a). Pair production of the heavy quarks occurs through (jq annihilation
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Figure 3.5: The cross section for pair production (for one flavor) as a function of the

Dirac mass. As can be seen from the figure, for low values of AID, the cross section

for the gluon fusion channel is higher than the quark annihilation process. As MD

increases, the quark annihilation process becomes equally important because the pdf

of the gluon falls rapidly with increasing parton momentum fraction, :r.



To enhance the signal to backgrotmd ratio, we have imposed a variety of cuts. We

note that the. the two jets in the signal should have a high PT (~ AID/2), since they

each come from the 2-body decay of a very heavy fermion. Thus, imposing strong pT

cuts on the outgoing jets can eliminate much of the SM background without affecting

the signal too much. We also expect the 7) distribution of the jets to be largely

central (see Figure 3.6), which suggests an 1) cut: (”I S 2.5. Lastly, we. will unpose a

separation cut on the jets to avoid IR divergences in our computations.
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Figure 3.6: The 1} distribution of the outgoing hard jets for the process pp —’ QQ —+

Wqu —+ lllujj, corresponding to MD = 700 GeV and MW, 2 500 GeV for a

luminosity of 100 fb“1. One can see that the events are in the central region: —2.5 <

7) < 2.5. The slight asymmetry in the shape of the curve is because we add the

distributions corresponding to the jets from both the Q and the Q decays.

We also impose PT cuts on the leptons and missing energy (Table 3.3). In re-

constructing the heavy fermion nuiss, we have a choice between reconstructing the Q

and the Q. We let one of them decay to VII", j and the other to Z, j with the ”7's and
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Kinematic variable Cuts

PT(jets) >100 GeV

pT(leptons) >15 GeV

|AR|(jets) _>_0.4

Missing ET >15 GeV

njetsl ——<— 2-5

Ill“ 89 GBV< All) < 93 GeV    
 

Table 3.1: The complete set of cuts employed to enhance the signal to background

ratio in the process pp —-v QQ ——+ Wqu —-> lllz/jj.

Z ’3 further decaying to leptons. Since the leptonic decay of W involves neutrinos, it

is more conveniant to use the Z. 3' combination (to avoid the two fold ambiguity in

determing momenta when one uses neutrinos). One could simply identify the leptons

that came out of the Z and construct the invariant mass of the lepton pair with the

outgoing jet. Thus. we will impose the cut (MZ -— ‘2)GeV < M“ < (MZ + ‘3)GeV.

\Ve present the complete set of cuts in Table 3.3

\Vhen generating the signal events. we, included 4 flavors of heavy quarks. We do

not. consider the heavy top and bottom in this analysis. Including them would further

enhance the signal, but since the top quark couples to the uneaten top pions. the

branching ratios to gauge bosons would be different from that of the heavy partners

of the first two generations. In Fignre 3.6, we present the invariant mass distribution

(of jet. 41 2 leptons) for two dil‘fercnt values of MD (with Milt”: 500 GeV) with the

cuts (Table 3.3) imposed. Since one cannot distinguish between the jets from the Q

and Q decays. we. added the distrilfmtions corresponding to each jet. i.e.. the invariant.

mass distribution was constructed by identifying the leptons from the decay of the Z

and cornlnning that. with both jets separately and adding the two distributions. This

enhances the number of signal events, but also creates the small off-peak events in

the distril'mtions (Figure 3.6). We checked that. for the MD values we are interested

in. these ell-peak events are not. big enough to compete with the signal. This can

be directly seen from Figure 3.6 - the fluctuation around the signal peaks is just too
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small to overwhelm the signal.
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Figure 3.7: Predicted signal invariant mass distributions Mll’ for MD 2 300 GeV

and MD 2 700 GeV for a fixed MW’ 2 500 GeV. The sma off peak events arise

because we added the distributions corresponding to the jets from both Q and Q

decays.
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In each of the plots, the signal distribution is clearly seen to peak at the value of

MD. We estimate. the size of the peak by counting the signal events in the invariant

mass window:

(MD —- 10)GeV < Mfl, < (MD +10)ch. (3.82)

To analyze the SM background, we fully calculated. the irreducible pp —+ Zl't'jj

process and subsequently decayed the W and Z leptonitally. Once we imposed all the

cuts discussed above on the final state [I l ujj, we find that the cuts entirely eliminate

the background for the range of MD values of interest. to us. The most effective cut-

for reducing the SM background is the strong PT cut imposed on both the jets.

“7e find there is an appreciable number of signal events in the region of parameter

space where Q —+ Vq decays are allowed but Q ——> V,q decays are. kinematically

forliiidden. The precise number is controlled by the l_)ranching ratio of the heavy

fermion into the standard model vector bosons. In Fig 3.8. we present. a contour plot.

of the number of expected events in the MD —— MW; plane for a fixed luminosity of

100 fb—l.

Since the SM background is negligible. we can take 10 events to represent a 50

discovery (this is the minimum number of events required to report discovery). Thus.

we see that this process spans almost. the entire parameter space. However. as may

be seen from Figure 3.8, the region where MD _>_ 900 GeV and “it" _<_ MD will not.

yield enough signal events for the discovery of the heavy quark. In order to explore

this region, we will now investigate the single production channel where the heavy

quark decays to a heavy gauge boson.

Single production: pp ——> Qq ——) lit/”qq’ —+ Wqu’

The. single production channel of heavy fermions is electroweak in nature. in contrast

to pair production where gluon fusion is important. But. the smaller cross sections
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Figure 3.8: Contour plot of number of events in the pair production case for a fixed

integrated luminosity of 100 fb‘l. The shaded region corresponds to MW’ > 2M0

and is non perturbative and is excluded from our analysis, as discussed in the begin-

ning of this section.

can be compensated if we exploit the fact that the u and d are valence quarks, and

hence their parton distribution functions do not fall as sharply as the gluon’s for

large I (parton momentum fraction). Also. there is less phase space suppression in

the single production channel than in the pair production case. Thus, we analyze

the processes [11. u —> 11., Ul, [d, d —> d, D] and [u., (l —> u, 1)]. These occur through a t

channel exchange of Z and 2' (Figure 3.8). In Figure 3.9, we show the cross section

for the single production of one flavor of the heavy quark as a function of the Dirac

mass. Since we want to look at the region of parameter space where JWWI is smaller
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than xiv/D. we let. the heavy quark decay to a W’. (One can also consider decays to

Z’. The only (small) difference would be that. the Z’ does not. decay to a pair of

it"s 100% of the time - the ideal fermion delocalization condition only makes the. T3

crmpling of the Z to SM fermions zero, but there is a small non zero hyrmrrflmrgc

coiniling proportitmal to .r). The W, decays 100% of the time to a W and Z , because

its coupling to two SM fermions is zero in the limit of ideal fermion deloealization

(see Eqn.(3.39)). \Ve constrain both the Z and W to decay leptonically so the final

state is lll_j_jET.

 

u,d ‘ U,D

Z,Z’

u,d , u,d 

Figure. 3.9: Feynman diagram for the, I channel single production of the heavy fermion

via the exchange of the Z and the ZI bosons.

As in the ease of pair production. we expect the jet from the. decay of the heavy

quark to have a large. pp and hence we will impose a strong T’T cut on the hard jet.

Also. as before, this jet is going to be largely in the central direction and hence one

can impose the same 7] cut (Table 3.3) on the hard jet. W'e also impose the same

p71 cuts on the leptons and missing energy as in Table 3.3. Also, we expect the 1]

distribution of the soft jet to be in the forward region, 2 < Inl <’ -’1. And finally, we.

impose a separatitm cut, AR, on the outgoing jets. \Ve presmit the. complete set. of

cuts in Table 3.4.

The. lel'itonie W decay introduces the. usual two fold ambiguity in determining the

neutrino IllOll‘lelltllIIl and hence, we did a transverse mass analysis of the process,
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Figure 3.10: Cross section for the I. channel single production of the heavy fermion

as a function of the Dirac mass MD- It is seen to fall more gradually as compared to

that of the pair production case.

defining the transverse mass variable of interest as:

 2

211% = (\/M2(1uj) + pQTnzzj) + lpT(mi88)|) —- Wain) + ?T(miss)|2 (3.83)

The signal to background ratio increases appreciable after applying the transverse

mass cut. We expect the distribution to fall sharply at MD in the narrow Width

armreximation, and indeed we find that there are typically few or no events beyond

MD + 20 GeV in the (,listributitms. Thus, we have chosen the following cut on the

tI'EIIlSVOI‘SO IIIHSS variable:

(MD — 200)ch < MT < (MD + 20)GeV. (3.84)

In Figure 3.9, we show a few exanmle transverse mass distrilmtions of the signal

(with the cuts (Table 3.4) imposed. The distributions can be seen to fall off sharply
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Kinematic variable Cuts

pT( hard jet.) >100 GeV

PT( soft. jet) >15 GeV

pT(lcpto1'is) >15 GeV

|AH|(jets) _>_0.4

Missing ET >15 GeV

lflhardjet $2.5

lnsoftjetl 2< I’ll <4     
Table 3.2: The complete set. of cuts employed to enhance the signal to bz-ickground

ratio in the process pp —+ Qq —+ W’q,q —> WZq'q ——> 1111/jj .

Ell. AID.

We show a. contour plot of the number of signal events for an intergrated luminosity

of 100 ftfl in Figure (3.12). It is seen that there are no events in the MD < MW,

region because we allow the heavy quarks to decay to W, and hence are cmrsidering

only the region MD > MW" Also, in the region of interest. one an see that there is

an appreciable number of events.

The SM background for this process, pp ——«: Wij —+ J'jl 11/1 . was (ZHltf‘lllttlt-‘étl surn-

niing over the u. d, c, s and gluon jets and the first two families of leptons. Since

we apply a. stong prr cut on only one of the jets (unlike in the pair prrxluction case),

there is a non zero SM bt-ickground. We show the SM transverse mass distribution in

Figure 3.13.

The luminosity necessary for a 5 (7 (‘liscovery can be calculi-lied by requiring

("IV-signal / t / NBC) 2 5, as per a Gaussian approximatitm to a Poisson distribution. It

is instructive to look at the results of this analysis by combining it with the previous

pair prmluction case. as the two cover the MH” < MD and 111W; > MD regitms of

the .ill-I‘WI -— MD parameter space respectively. Thus, we present a combined plot: of

the required luminosity for a 5 0 discovery of these heavy vector quarks at the. LHC

in Figure (3.14).

One can see that almost the. entire parameter space is covered. with the pair and
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Figure 3.11: The. transverse mass distribution for the single production of a heavy

quark in the model, for MD 2 800 GeV and 1 TeV, for a fixed A ,W’ = 500 GeV. It

is seen that the signal falls sharply at MD-
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Figure 3.12: Contour plot of the number of signal events for the single production

channel for an integrated luminosity of 100 fb‘ . The shaded region is where MW’ >

2MD and is non perturbative. One can see there is a considerable number of events

in the low MW’ region of the parameter space.

single production channels nicely complementing each other. Before we conclude,

however, we would like to comment briefly on how our analysis compares with other

models with vector quarks.

3.7 Related Vector Quark Models

There are other BSM theories that feature heavy quarks with vector-like. couplings,

as in the present model. In this section, we would like to briefly explain how our phe-
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Figure 3.13: The SM background for the single production channel, pp —+ ”'ij —+

jjlull, calculated by summing over the u, d, c, s and gluon jets and the first two

families of leptons, and with the cuts in Table 3.4 imposed. The bin size is 20 GeV.

nomenological analysis con’ipares with these. One import-(mt feature of deconstructed

Higgsless models of the kind discussed in this paper is ideal fermion (.lelocalization,

which does not allow the heavy gauge bosons in the theory to couple to two standard

model fermions. This constrains the W, to decay only to W and Z, thus providing

a tool to distinguish this class of models from others. There are. however, certain

features of this model that are generic, like the vector nature of the heavy quark

couplings.

In the context of Little Higgs Models [63], there have been studies of the LHC

1'.)henomenology of the T-odd heavy quarks [64]. The cross sections for the production

of heavy T-quark pairs are comparable to the ones in our study. However. in those

models, the heavy T-quark necessarily decays to a heavy photon (due to constraints

of conserving T parity). Also, in [65], the authors study the pair production of
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heavy partners of the 1st. and 2nd generation quarks in the context of the Littlest

Higgs Models (66, 67, 68, 69, '70]. They consider decays exclusively to the heavy

gauge bosons in the theory, which then decay to the standard model gauge bosons

plus a heavy photon. Thus, the final state. though still ”(ij T, is kinemat.ically

different. In particular, strong cuts on the missing energy are. now an important. part

of the analysis, because part. of E T is due to the heavy photons. Kelli?” presents a

cmnprehensive study of the. production and decay of heavy quarks by separating out.

the partners of the 3rd generation from the others and analyzing them separately.

The authors let the heavy quark decay to a SM W boson and a light quark, but

in their analysis, they neglect the mass of the W boson compared to its momentum

(since. it is highly boosted). Thus, when the W decays to a 11/ pair. the directitm of

the neutrino momentum can be approximated to be parallel to that of the charged

lepton, which enables them to recontruct the full neutrino momentum and create a

invariant mass peak. for the heavy quark (as opposed to a. transverse. mass analysis).

In the context of the three site model, the authors of [72] consider the single

production of the heavy top quark. As mentioned before, the heavy top in this model

is necessarily around a few TeV’s and the paper concludes that the most viable

scenario at the LHC is the subprocess qb —+ q'T ——+ q’ll'b with the H" de 'aying

leptonically.

Ref. [73] presents a model independent analysis of the discovery prospeds of

heavy quarks at the Tevatron. The authors write down generic charged and neutral

current interactions mixing the heavy and the light fermions and proceed to analyze

both the pair and single production of these heavy quarks, with decays to the SM

gauge bosons. Understandably, the Tevatron reach is much lower than that of the.

LHC.
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3.8 Remarks

In this chapter. we presented a. minimal extension of the three site model to lift

the constraint that exists between getting the top quark mass right. and having the p

parameter under experimental bounds. This we did by separating the third generation

(marks from the light ones, and having the top quark mass arise from the vev of

a "top Higgs’. This enabled us to have additional vector-like quarks in the model

that are light enough to be discovered at the LHC, without afi'ecting the tree level

couplings of the three site model too much. We encoded the model in CachEP and

analyzed the pherunnenology ol' the heavy quarks. We first considered pair product ion

(pp -~+ (2Q ~> Wij -—~ lllujj) of these heavy fermions. We found that the 50 reach

of the pair prt'.)duction channel was a 1 TeV, but for high Dirac masses, this channel.

is viable only if the W’ mass is in the TeV region also. This is because. in the

A]D > MW; region, there is the possibility of heavy quark decay into W’ and the

signal is don’iinated by the branching ratio of the heavy quark into a W and light

quark. The single production channel (pp —> Qj -+ l"l»"jj —+ ”’ij ——* lllz/jj)

complements this nicely because. we choose to decay the heavy quark to a W, and

hence are. necessarily in the region AIWI < A!D' By combining both these analyses,

we were able to cover most of the MD — MW; parameter space between MD z

300 GeV and MD m 1200 GeV. We conclude that the reach at the LHC for the

vector quarks in this theory can be 2 1.3 TeV (for a 50 disctwery) for an appropriate

choice. of til/”,4.

In doing the pheru)menology, we have implicitly assumed that the value of the

fermion n'iass MD could be anything higher than the experimental lower bounds.

But clearly, in low energy effective theories like the one. discussed in this chapter, the

.Iuasses of particles cannot be. arbitrarily high, since the theory itself breaks down at

some scz-rle. Thus, it. is interesting to see whether we can determine an upper bound
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for the fermion mass scale. We will address this question in the next chapter.
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Chapter 4

Unitarity and Bounds on the Scale

of Fermion Mass Generation

The mechanism of electroweak symmetry breaking must give mass to two very dif—

ferent classes of particles: the electroweak gauge bosons and the fermions. In the

standard model. the scalar Higgs doublet couples directly to both classes of particles.

l\-loreover, the gauge and Yukawa couplings through which the Higgs interacts, respec-

tively, with gauge bosons and fermions are proportional to the masses generated for

those states when the scalar doublet. acquires a vacuum expectation value. Nonethe-

less, in considering physics beyond the standard model. the possibility remains that

the gauge boson and fermion masses are generated through different mechanisms.

In particular. it is possible that electroweak symmetry breaking is transmitted to

the fermions via some intermediary physics specifically associated with fermion mass

generation. This Chapter is based on work published in [74].

Appelquist and Chanowitz [75] have shown (see also [76. 77]) that. the tree—level,

spin-(l scattering amplitude for fermion-anti—fermion pairs to scatter into longitudiimlly-

polarized electroweak gauge. bosons grows linearly with energy below the scale of the.

phxg'sics responsible for transmitting electroweak symmetry breaking to the fermions.
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As the amplitude must. be unitary, one can derive an upper bound on the scale of

fermion mass generation by finding the energy at which the amplitude would grow to

be of order 1/2 . The rate of energy growth is proportional to the mass of the feri’nions

involved. The most stringent bound, therefore. arises from top—quark annihilation.

and the bound on the scale of top—quark mass generation is found to be of order a

few TeV.For light fermions, the scattering of fermions into many garuge-liiosons yields

a stronger result than the Appelquist-Chanowitz bound [78, 79]. For the top-quark,

howwcr, two-body final states yield the strongest bound.

As enmhasized by Golden [77]. the interpretation of the Appelquist-Chanowit7.

(AC) bound on the scale of top-quark mass generation can be problematic: longitudi-

nal electroweak gauge-boson elastic scattering itself grows quadratically with energy

[80. 81, 3, 4. 82] below the scale of the physics responsible for electroweak gauge-bosrm

mass generation. As the scale of the physics responsible for electroweak symmetry

breaking is also bounded by of order a 'l‘eV. it can be difficult to be sure that the

violation of unitarity in fermion annihilation is truly independent of the violation of

unitarity in the gauge-boson sector. The standard model illustrates this difficulty. as

in that case the Higgs boson is responsible for restoring unitarity in both the fermion

annihilatitm and gauge-boson scattering processes.

In this chapter, we will discuss unitarity violation and the resulting bounds on the

scale of top-quark mass generation in the context of deconstructed Higgsless models.

It is straigl‘itforward to generalize the three site model to an arlfltrary number of sites

[83]. In the continuum limit (the limit in which the number of sites goes to infinity).

this model reproduces the fix-"i-dimensional model introduced in [51].

A fermion field in a general compactificd fiVC-(lllllt¥IlSl0Hfll theory gives rise to a

tower of Kaluza-Klein (KK) modes, the lightest of which can (under chiral boundary

conditions) be massless in the absence of electroweak symmetry breaking. The lightest.

states can therefore be identified with the ordinary fermions. The massive Kaluza—
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Klein fermion modes are. however. massive Dirac fermions from the four-dimensit)nal

point of view. Correspondingly. the fermions in a deconstructed Higgsless model

include both chiral and vector-like electroweak states [30, 83]. and generation of the

masses of the ordinary fermions in these models involves the mixing of the chiral and

vector states [84, 50]. As we will demonstrate, the scale of top-quark mass generation

in these models depends on the masses of the vector-like fermions (the “KK” modes).

as well as on the number of sites in the deconstructed lattice.

What is particularly interesting about deconstruct-ed Higgsless models, in this

ccmtext. is that one can. distinguish between the unitarity—derived bounds on the

scales of gauge-lumen and top-quark mass generation. We will demonstrate that. for

an appropriate number of decrmstructed lattice sites, spin—t) top-quark annihilation

to longittudinally-polarized gauge-bosons remains unitary at tree-level up to energies

much higher than the naive AC bound if the vector-like fern'iions are light. However

the AC bound is reproduced as the mass of the vector-like fermion is increased.

'l‘herefore. for fixed top—quark and gauge-boson masses. the bound on the scale of

fermion mass genmation interpolates smoothly between the AC bound and one that

can, potentially, be much higher as the mass of the vector—like fermion varies. The

unitarity bounds on elastic scattering of longitudinal electroweak gauge bosons in

H iggsless models [85]. however. depend only on the masses of the ga.uge-boson KK

modes. In this sense. the bound on the scale of fermion mass generation is in(leperi.t1erz.t.

of the bound on the scale of gauge-boson mass generation.

While our discussion is restricted to deconstructed Higgsless models. many mod-

els of dynamical electroweak symmetry breaking incorporate the mixing of chiral

and vector fermions to accommodate top-quark mass generation. Examples include.

the top-quark seesaw model [86, 87, 88] and models in which the top mixes with

composite fermions arising from a dynamical electroweak symmetry breaking sector

[89. 9t), 91]. Indeed. the fermion delocalization retutired to construct a realistic Higgs-
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less model is naturally interpreted, in the context of AdS/CFT duality [19. 2t). 21. ‘22],

as mixing between fundamental and composite fermions [92]. As chiral—vector fermion

mixing is the basic. feature required for our results, we expect similar effects in these

other models.

In the next section, to set notation and make contact. with the literature, we

reproduce [T7] the Appelquist—Chanowitz bound in the electroweak chiral Lagrangian

[93. 94, 95, 96, 97] - which may be interpreted as a “two—site" Higgsless model. In

section three, we introduce the n(+2) site Higgsless models that we will use for our

calculations. Section four contains our calculations and primary results. The last

section sunnnarims our findings.

4.1 The Appelquist-Chanowitz Bound

In the standard model (SML the helicity non-conserving process I +1-+ ——> H"; WI

rot-renters contrilmtions at. tree level from the diagrams in Figure 4.1.

We are interested in the behavior of the amplitude for large center of mass energy.

x/Z >> MW-mt- This allows us to expand the amplitude in the small parameters

”121/" and mfg/5. Practically, this means that we use the following leading order

am)r<;)xi1nat,ions. For the longitudinal pt.)larizat.ion of the H" gauge bosom we use

k“
W"

:II' N L 4 1

v ll L _ 4‘ Ill' 3 ( I )

 

I. . v . . .

where A'lVI is the tour-moment,um of the corresponding boson. For the spinor chain

in the .5 channel. we use

m (n - #2) out + 91?, Pu) n+ z nu fcosfi (u, +91?) (4.2)

TL. (#1 — 5(2) (gLPL + 9RPR) u,“ 2 —mt\/;cos9 (9L + .01?) , (4.3)
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w;

t+ WE“

b

Figure 4.1: The diagrams that contribute to the process t+T+ —* WEWE in the

Higgsless SM. There are analogous diagrams for the process LL, ——+ WEI/I71": . Each

diagram has an amplitude that grows linearly with \/3 for all energies. However.

most (but not all) of this linear J3 growth cancels when the diagrams are summed.

The remaining piece that grows linearly with J; comes from the t channel diagram,

and it. eventually surpasses the unitarity bound. In the SM, this unitarity violation

is eliminated by the contribution of the Higgs in the 3 channel.

where It}: and HZ” are the momenta of the outgoing bosons, and for the spinor chain

in the t channel we find

I
?

’ t. s .

fill—5i (1 + cos 0) 51L (4.4)

nun/E

Tabb/1 '" 651) [fill/L I’L"+

 'fi—lf‘zll/l‘lelflLPLU— 2 — 2 "(1+Ct‘eHML (4.5)

where

) 1

11. = 30—2/5) (40)

l p.

Pu = 5cm) en)

are chirz-rlity projection operators, and {IL and 91?, are chiral electroweak coupling

constants.

Since the It ——> W+W_ amplitude is the same for each color and only differs
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by a sign for the opposite helicity, we get the largest. amplitude by considering the

incoming state

 

, 1 - _ - _

It") = %( |t1+t1+) + l”2+’2+> + "3+’3+> (*1-8)

— |{1—"1—>- If2—t2—>— It’s—en) )

where the numerical subscripts (1,2, and 3) label the three. different; colors. The state

we consider here. differs from that chosen by [7.3 as we include both comifinations of

incoming helicities. This state allows us to derive a slightly stronger bound, c.f. Eqn

(4.23). Putting the pieces together gives the scatterii’ig amplitude

 

c c n
-'

\, 1m“ .sros ‘ _
2

M = 2 “2 X (29217.93.wW + thzzgzwu' + .qthyZL-VW — gum!!!)

‘ W

V/t3 inn/s 3
4t

“fr—Hum" ~ ( "3)zilw

for \/§ >> MW, mt, where the electroweak crmplings are given by:

 

 

gtte, = 3‘9 . (4.10)

yawn? = f , (4311)

QLUZ = sin flit/(cos ”W (i _ 38in? 6”,.) i (4.12)

HRHZ = sin (in/“cos 6W (—§s11120w) , (4.13)

.(Izww = 2%}???— . (4.14)

.‘JL-th'V = W - (4.15)

Our exln‘ession here differs in the sign of the term proportional to gifbtt” from that

given in {75]. and is correct for the top-quark which is the T33 = +1 f2 member of an

electroxwak (,loublet. The (_~.or1‘(~*spo11ding expression in [75], which is from [98. 99), is
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Figure 4.2: The diagram that contributes linear growth in M3 to the process 1+ t+ ——>

+ - ~ - 1. . - .

7r ' '7: in the Higgsless SM, where we have used the eqtuvalence theorem to replace

the longitudinally polarized gauge—boson by the corresponding “eaten“ Goldstzone

Bosons. There is an analogous diagram for the process t_t__ —-> n+7?"

correct. for the lower member of an electroweak doublet with T3 = ~1/2. With these

couplings. we find the identity

0. a

29m!1»,ww + {ILIIZgZWW + 912/ l.Z.(lZl'VIV — gmw = 0 - (4-10)

The Hunt-lining armilitude is, therefore,

‘ . . 2 ”Lth’ - '
Zulu,

which grows linearly with J: for \/s >> 1“"1‘47.nlf. We note that since (Jump 2 g/ \/2

and It I”: = gr/2. where g is the weak coupling and e 2 246 GeV is the weak scale.

our expression for M simplifies to [7.3]

ff- .
Mzw. (4.18)

1!

We. can check this result using the (xiiiivalence theorem [3. 100:}. where one re-

places the longitudinal gauge—bosons by the corresponding “eaten“ Nambu-Gohlstone

Bosons. In this limit... the only diagram that contributes to the .l 2 0 amplitude is

shown in Figure 4.2. The leading order approximations

{411+ 2 VG emu... 2 —\/§, (4.19)
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coinlnned with the four point coupling

mt ,,

.‘Imfirn— — Tr? (4.20)

yield the same amplitude as in Eqn. (4.18)

M =M . (4.21)
.Iffi

Note that the potential s-channel contribution, illustrated in Figure 4.3, does not

contribute in the J = 0 channel.

1+ 7?

{I}. \ 77—

Figure 4.3: This diagram, corresponding to s—ehannel Z—boson exchz‘tnge in the

eqilivalence-theorem limit, does not contribute to the J = 0 partial wave. scatter-

ing amplitude for the process l+lt+ —> n+7r'“ in the Higgsless SM.

The J 2 0 partial wave is extracted from Eqn. (4.18.) as

(4.22)
1 1 win/Gs

(l = —'— (ICOS 0 1M :2 ——

0 3271 /—1 167m2

To satisfy partial wave unitarity. this tree-level amplitude must be less than 1/2, the

maximum value for the real part of any amplitude lying in the Argand circle. This

produces the bound

 

2
8 t‘,’

W “V 3.5 TeV . (4.23)

'Int\/6 N

Our result differs numerically from that given in [75]. as we include both helicity

x/ES

channels in Eq. 4.8. and bound the. amplitude by 1/2 rather than 1. One may

obtain a slight ly stronger upper bound by considering an isosinglet, spin—(l. final state
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Figure 4.4: Moose [25] diagram of the n(+2) site model. Each solid (dashed) circle

i'e[.')resents an SU(2) (U(1)) gauge group. Each horizontal line is a non-linear sigma

model. Vertical lines are fermions. and diagonal lines represent. Yukawa couplings.

'9

(I = .1 = 0) of ga.uge-l_)osons [16). This amounts to a reduction in the value of the

upper bound in Eqn. (4.23) by a factor of \/’2/1 x 0.8.

4.2 The -n(+'2) Site Deconstructed Higgsless Model

We will be studying the Higgsless model introduced in [83]. denoted the. n(+2) site

model. As we will discuss in subsection 4.2.1, the gauge sector is an HI ;'(2)"+1 x (1(1)

extended electroweak group; the label. 11 thus denotes how many extra 811(2) groups

the model contains relative to the Standard Model. The electroweak chiral lagrangian

[93. 94. 95. 90. 97] can be obtained by setting n = 0 while the Higgsless Three Site

Model [30]. which has one extra SI,.-”'(2) group. can be obtained by setting n = 1.

This model may be schematically represented by a “.\’loose“ diagram [25] as shown

in Figure 4.4. After discussing the gauge. sector, we examine the fermion sector

(subsection 4.2.2). the “eaten Nambu-Goldstone bosons” (subsection 4.2.3) and then

the couplings that. are relevant. to our calculation of If —» ll"+W_.

4.2.1 Gauge Boson Sector

The gauge group of the n(+2) site model. as illustrated in Figure 4.4. is

n

(z = 311(2)U x H 31/12),- x U(1)...+1 (4.24)

i=1
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where Sl-"(2)0 is represented by the leftmost circle and has coupling g; the gauge

groups 1875(2) '7 are represented consecutively by the internal circles and have a com—

1non coupling g. Connnon couplings for the “internal” SU (2) groups corresponds to a

continuum model with spatially independent. gauge-coupling [51]. Qualitatively. our

results do not depend on this assumption and should apply in any case in which the

mass of the lt-boson is much less than that of the first gauge-boson KK mode. The

U(1)”+1 is represented by the dashed circle at the far right and has coupling g’. The

coupling {1 is taken to be much larger than g, so we expand in the small quantity

.
.
.
?

ll

G
H
Q

A

1
;
.

t
o

2
.
1

v

We also find it convenient. to define the parameters

(4.26)

29 . . . .
where .s“ + c = 1. In the continuum limit. It ——> 00, this model reduces to the. one

(jlcscribed in [-51].

The horimntal bars in Figure 4.4 represent nonlinear sigma models 27- which

break the gauge symmetry down to electromagnetism

7 —+ U(1)}.jg” (4.27)

giving mass to the other 3(rt + 1) gauge bosons. To leading order. the effective

Lagrangian for these fields is

2

em = [Li—Tr Z (r),,.xj)l1)“z:j (4.28)

3'
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where

“#2,; = 19,127- +ig‘jl1/j‘flgj - ”Zia—133‘ 1134,14,, (4.29)

with go = g. 93- = f] and gn+1 = g’. The nonlinear sigma model fields may be written

5271'; .

27' = c! [/f , (41.30)

in terms of the Goldstone bosons (7rj) which become the longitudinal con‘iponents of

the massive gauge bosons. The 7rj and W]- are written in matrix form and are

1 0 1 +
571'; —7r -

”J, 2 ~ J fl J (4.31)

_1/__7r— -17.?)

v2 1 9 J

11101112+

W111- : i ’1: Vi 3" (4.32)

7‘11): 2”}1:

1 0
w 0

W'nJrLu : 2 PH“ (41-33)

' 0 4,110

The. mass matrices of the gauge bosons can be obtained by going to unitary gauge

(SJ —+ 1). For the neutral gauge bosons, we find

 

  

( x2 —.1: 0 11 - 0 (,1 )

-—:Ir 2 —1 0 - 0 0

.112 _ 914]“? 0 —1 2 —1 - 0 t) (4.34)

—1 0

0 0 0 - —1 2 —:rt

( 0 0 (1 0 41 212 )

while the matiLx Vt 101 the (harged gauge bosons is 111,7 with the last 10“ and
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column removed.

The photon is massless and given by the wavefunction

Q
l
l
’
b

A

H
'
H

,
.
.
;

h
—
J

H
I
H

1
"

v

,
r
—
x

p
.
.
.

1
.
4
0

g
,
‘

v

where.

1 1 n 1 .

_=_,-+—‘+—T-, 4.30

.112 .512 .11” ( )

After diagonalizing the gauge boson mass matrices. we find that the other masses

and wavefunctions are given, at leading order in 1', by the following expressions. The

mass and mwefunction of the. light W boson are

(7 1'4!“ ._
11.1 .. : _-—-_ 4.31

11 0 2 (n, + 1) ( )

((11.0 —_— 1 (1.38)

. 'j _ Ir) — j + 1 ,..
u

L"!‘,’() — T? + 1 J" (40'39)

where the superscript 0 refers to the left-most 91(2) group on the moose while the

superscript j = [1...11] refers to the SU(2) gauge groups on the interior of the moose.

The masses and wavefunctions of the charged KK modes are

 

 

  

(7f 1371' ,

111,,' = 44—— 1— ' .‘ 4.4011 k [2 ‘0“ [12+ 1] t )

0 —.'1,‘ 1177?

‘1: 7 ' 1.: —— ('01, — 4511

‘1' t 21n+11 be + 111 1 1

1' '111

’1'] . = . 2 sin J T . (4.42)

l’l’k 11 + 1 n + l



 Likewise. the mass and wavefunetion of the light Z boson are

in

 

M = —-————— (4.43

20 2e (71. + 1) )

'1 1%0 = e ( 4.411)

”j _ (:(n + 1) — j/e , :-

L-ZO —— n + 1 .I‘ (4.49)

1 7}?)- 1 = —— s, (4.46)

v

I

where, superscript T) + 1 refers to the 1,-(1) group. The masses and wzjm3funet,ions of

 

the neutral KK modes are.

 

 

  

 

  

” k1

A1211? = 15% 1. —— COS [n11] = Alurk (4.47)

0 —1“ kw

’t’r , = ——-——————..__ cot, —— 14-48

1’” \/2(n + 1) [2("+1)] ' )

. r) "k
7 a . J 77

, = q 4.49

721“ n+1s1n [n+1] ( )

. 2 (—1)k :1: _
,II.+ _ , . r
'21- —— 11 +1 1‘. [(11+l)al+ b1] (4.o())

PUk 2 km
, = —— ': —— 4.51

‘” «n+n‘“ 2m+i) (’1

. k ‘ 11“ 1

\< (—1)" sin 7r —12sin ”T

11+ 1 n + 1

—1 1'71

1 ‘2 (0 [201 +1)] ( ) )

We note that the W gauge boson mass is given by

1111“," = 1111170 E g] —' 9—0 (4.53)

mM+1“2‘

and. hence, we have the I‘t‘l'dl ion

f = \/n +1 11 . (454)
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The ratio of the W and Z mass is

MZ .1120 c.

identifying c with cos 9W at. leading order in '1'.

The ratio of NW to the mass of the first KK mode Mil-'1 is

111 r ;.
Vt ____ T (4,

111 ,7

”1 \/2(n. + 1) (1 — cos fig-Ii)

which relates :1.’ to the mass ratio MW/MW1 for a given 11. at leading order. From

0)C
I
!

 
 

this we see that. expansion in '1‘ is justified as long as Mwl >> MW.

4.2.2 Fermion Sector

The vertical lines in Figure 4.4 represent the fermionic fields in the theory. The

vertical lines below the circles represent the left. chiral fermions while the. vertical

lines above the circles are the right. chiral fermions. Each fermion is in a fundamental

representation of the gauge. group to which it is attached and a. singlet. under all the

other gauge groups except 1.1(1)n+1. The charges under U(1).n+1 are as follows: If

the fermion is attached to an 811(2) then its charge is 1 /3 for quarks and —-1 for

leptons. If the fermion is attached to U(1)n+1 its charge is twice its electromagnetic

charge: 0 for neutrinos. —2 for charged leptons. 4/3 for up type quarks and —2/3 for

down type quarks.

The fermion mass terms can be written down by extending the one for the three

site model. Eqn. 2.2, to include 12 bulk terms.
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52.523 = =11}? [ELIELozti'UC’Ri ~ZLTILJ'U’RJ 14-57)

J

j

where the value of eL is the same for all fermions. while 5R is a diagomil matrix which

r

l

(..listinguishes flavors 130. 83]. For example for the top and bottom quark we have

5 . 0 ,

ER: Rt (4.58)

0 5R1)

The. fermion mass matrix can be (‘liagonalized by performing unitary t ransforma—

tions on the left- and right-handed fermions separately. To leading order in eL. I? we

find the following masses and wavefunctions for the lightest fermion. F0. in a given

tower (which we associate with an ordinary standard model fermion)

1111.10 2 MFELERf (4.59)

1.1%,?) = 1 (4.611)

.1in = 5L (4.151)

tam) = st (4.62)

2117?;3 = 1 (1.11:1)



while the expressions for the heavier states, Pk» are

- —- k 1

ill [17k = QAIF ('08 [Kim—iii]

' ‘II

0 EL (n —- k +1)7T >—

.I‘ _, —- _._—..____ t‘ —-—————-—-——

4.0:.

(ka V2” +1 an[ Zn +1 ( ))

 

  

- 2-13' 2'a—k+1 ,.

1’11: = ———,____() sin [ _7(n{ )W] (4.66)

k \/2'n. +1 211 +1

7' (-1)”+"+j+12 . 2(n—j+1)(n— k+1)7r
't“ = ,_____ sm

RF}: V212 + 1 2n. + 1

(4.67)

k

. (-1) 31: .. —k 1

”(Jig-Pl : .___—f tan Lil
(468)

I.- fiFl—l 2n. +1

For small EL. we see that. the left-handed component of the lightest. fermion in each

tower is primarily located at site 0 - and the flavor-universal factor 5L controls the.

amtmnt of fermion “delocalization” along the moose. Likewise, the right—handed

component. is primarily located at. site 71+ 1, and the flavor-deptindent quantities aRf

control the degree of (‘lelocalization Since the amplitude for If ——+ W+W— scattering

will depend on the values of 5L and ERt’ we need to evaluate these quantities: we will

start with E L and then use it to constrain ER].

Precision electroweak (;-.()rrect.ions provide a useful source of constraints on the

parameters of Higgsless models. While custodial symmetry generally keeps the t ree—

level value of Ap = oT sufficiently small, satisfying the bounds on S at". tree level

requires some degree of fermion delocalization [101, 102. 84. 50. 51. ‘26, 103, 49]. We

will implement ideal fermion delocalization exactly as in chapter ‘2, i.e.. by demanding

that the tree—level value of gww equal the SM value. An explicit. calculation of my”,

in this model. which requires expanding the wavel‘unctions, masses. and couplings to

order 5% and order 1'2, yields
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'n(-n.+2) 2 1i. 2 ,

.v, = ,.,r ,, _——— — —€ . 41.

9” “’n 9” WSM (1+ 6(n+1)‘r 2 L) f (’9)

Tl‘ierefore. the condition

  

9 n + 2 2

E“- = ——-——-—.’L‘ 470

L 3(n + 1) ( l )

causes 3 to vanish at tree-level. Using Eqn. (4.56) this is equivalent. to

' ‘ A12 I2 2 ‘ _ _ 7r l'l' _.

€'=—(n+2 (l—c0s[ ]) .. , 4.11)

L 3 l n +1 Mfi-l (

in terms of physical masses. Here again, note that EL is small so long as MW << .91 IW1-

Finally. the parameter sRf can be determined by taking the ratio of the masses

of the light fermion and the first KK mode.

"UFO _ :1st 

Mn 2 cos [Q—Tg: ]

Since we know 5L, this gives a prediction for 5Rf in terms of physical masses

x/Gcos [sf—17:7] MFO MWI , —,.

R _ = . (4.1.3)

' ..f . M ill ,. ,.r

\/(n + 2))(1— cos lfiID F1 H

For all flavors except the top quark, this parameter is tiny; at. leading order. we

 

(
I
)

 

therefore set. 5 = t) for all the light fermions. The size of ER, affects Ap at one

”1‘

loop; comparison of the exI‘)erimental bounds on Ap with the value calculatml in

Higgsless models [30, 83] shows that aRt must also be relatively small. In what.

follows. we therefore keep only the leading terms in ERt.
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4.2.3 Goldstone Boson Sector

We will perform the computation of the process t+f+ ——’ WE WI: in the. n(+~2) site

model using the equivalence theorem. We must. therefore. determine the wzwefunc-

tion of the Goldstone bosons associated with (eaten by) the. massive gauge bosmis.

This is determined by the mixing between the two given in Eqn. (4.28). To find the

mixing, we expand the nonlinear sigma-model field Ej and keep the terms linear in

both the gauge bosons (llj) and the Goldstone bosons (79-). After these manipula-

tions. Eqn. (4.28) becomes

cm- = 49;; {8“qu ., 7- W6‘ — wf’} (4.7.4)

"—1 . . ru _ . x!-

+ 21:1 {WI = ”‘2' Wm}

. 1. . 1

+{al’7r‘n * ”ft — It ill/2+1}

from which we may read off the wavefunctions for the charged Goldstone bosons as

 [01 1 ( 0 1 > —-
‘t’ = 1‘?! .r —7-‘ , 4. t
”it: Na+ u A. u k f t ’l

' k

,- 1 - .- ,

.,.l./:lt = _’V (1%1 — (a); I) (4.76)

Wk 1 Wi k A.”

k

lnl 1 n , —.
.1, __L = Y “H" .

(4.71 )

Wk IV”? 1..

where the N}.—k are. normalization factors. Note that. Namlm—Goldstone boson compo-

nents are associated with the links rather than the gauge grtmps: the superscript [0]

refers to the left-most link, the superscript [n] refers to the right—most link, and the

siuierscripts [j] range from 1 through n—1 and denote the interior links of the ;\'Ioose.

1'18

 

 



The wavefimetions for the neutral Goldstone bosons are similar

 

.135 ._. r17, (. 9k _ 117%) (4.78)
‘1:

(Egg) 2 N:0 ("é/r —1'%:1) (4.79)

' ‘k

Flt—Iii : it; (sz -— art 192:1) . (4.80)

' k

but note that 12:}; includes a contribution from the Zk wavefunction on the U (1) site.

k

These wavefunctions are particularly simple for the. lightest modes, the W and Z:

they are flat

2 =1, )) (4.s1)

with the same value on all links [I = 0...n] of the .\rloose.

4.2.4 Couplings

To obtain the couplings of the Goldstone bosons to the fermions, we start from

Eqn. (4.38). expand the nonlinear sigma-model fields. and plug in the eigenmode

wavcfimetions we. have just. derived. Doing this, we find

viz-Mr 0 H1 [2
.‘ILtFkvr I —"——f [L’LWREk7: +2:Lt k‘t‘w

,n+1 [n]
+vallfIIfIk’n

 
k Ill/QMFEL tan [—(n_ k + 1W] (4.82)

1)

= —1
( )\/‘2n+1(n+' 2I2+1
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.x/ZM (i 1 III-1171

f/RtFkIr = *7- f SU’LleRef?+24"IPARI ’Ir

. . v+1 11‘
“if [”12sz I)?“ lift {l

 

= IfiA'IFER tan [(n (— f.‘ +.1)7r:| (4.83)

\/2H+1(n + 1)c 2n +1

LIF f0] )2 +1 ’l '2

‘qtffi’ffl— 2 f2>3[L7LtRtva + Elwin (7’71" )

z

- . nl .-

+Enfzxztcgtf1(1rir)2]

In, .

= ——\—— . 4.84)

(II + 1)'1I2 ( ’

Here we have denoted the lightest fermions (previously denoted FU) by t. and b. as

apIiropriate. while leaving the corresponding KK modes as Fk (which. t.o leading

order in 5 L. R. have the same properties for all quarks). Note that. the four point

vertex has an extremely simple form. and vanishes in the limit n —> oo.

4.3 Unitarity Bounds on if. ——> W’LWL

The diagrams that contribute at. tree level to t+f+ —> lift/171: are shown in Figure

4.5. \Ve are again interested in the behavior at large energies. so we expand in

the small parameters M121 /s and th/s; we also include all colors and both helicity

polarizations in a coupled channel analysis (Eqn. (4.8)). The calculation is most easily

performed using the equivalence theorem [3, 100]. Again, as in the SM (see Figure

4.3) the potential 3--ehannel diagrams do not c.ontribute to the l:-0 amplitude and

the only diagrams that contribute are shown in Figure 4.6.
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I+ w

Figure 4.5: the process {4.1-5+ -—+ 11’3”"; in the n(+‘2) site Higgsless model. There

are. analogous diagrams for the process Lt: —> WEWE . As in the SM. most of the.

linear growth in \/§ will cancel. All the persisting linear growth in v37 comes from

the f chainiel diagrams.

[.+ , 77+

/

/

/

\

\

_ \

(.1. \ 71'—

L+ , 7T+

/

/

Fl:

\

_ \ __

t+ \ 7T

Figure 4.6: Diagrams contributing to unitarity violation at high energies in the process

for far -—> 7r+7r_. There are analogous diagrams for the process LIT- —» 7T+7T_. The

top diagram grows linearly with \/§ for all energies, whereas the bottom diagrams

only grow with \/s up to Mpk , after which they fall off as 1/ \/§.
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The scattering amplitude arising from the diagrams in Figure 6 is

 

F— MP ‘lLtF’ ‘lRtF
_ a . k‘. kn. 1‘ A77]- , 3

M — V6.5 .qmirfi- —— E f_ 112 (4-65)

It ' ‘ Fl:

where the couplings are given in Eqns. (4.82) ~~~ (4.84).

The ._I = 0 partial wave can be extracted as

1 1
_

(20 = m ‘1dcosfiA/l (4.86)

\/6

k

\/E

MFr

V

W] rere

1 .

g(.I:) = $1110 + 11:2) (4.87)

This partial wave must be less than 1/2 to maintain unitarity. giving a bound on

J3 and/or 1111.11. We have plotted this bound in Figures 4.7 and 4.8 for n =

0. 1. 2. ~ - . . 1t). 20. 30 and 00. The n = O bound corresponds to the original AC bound

of Eqn. (4.23).

We see from these figures that there are two important domains corresponding to

dill‘erent ranges of values for MF1. In the first. domain. where MF1 S 4.5 TeV, we.

find that unitarity can be satisfied up to very large energies. In this limit. we find

that the. I. channel diagram becomes irrelevant and the process is controlled by the

four point vertex (Figure 4.6). For the lmvest fermion masses, MF1 << 4.5TeV. we

 

lind

(10 2 wfiit 1) S % (4-88)

which gives the bound

\/§ S (n + 1) 3.5 TeV (4.89)



 

   
 

50 . w

40*

‘20 30 n=oo

f; 30_ 10

G)

E",

I; 20

10' I

0 4|; 1

2 4 6 8 10

MF1(TeV)

Figure 4.7: The scale where unitarity breaks down in the helicity nonconserving

channel in the n(+2) site model. Unitarity is valid in the region below and to the left

of a given curve. The bottom—most curve is for n = 0 and is the AC bound. The line

directly above the bottom one is for n = 1 and corresponds to the Three Site Model.

The line directly above that is for n. = 2 and so on until 11 = 10. The line above that

is for n = 20, the line to the right of that is for n = 30 and the line to the right of

that is the continuum limit (71 —> 00). We find that unitarity breaks down if either

«.3 is large or [111.11 is large. If MF1 is large, then unitarity breaks down for J; very

close to the AC bound. On the other hand, if MF1 S 4.5 TeV, unitarity can be valid

in this process to very high energies, with the precise value depending on the number

of sites In.

123



 

 

  
 

25 . . . +

10 20 30 11:00

20*

9 15»
(D

5'1

1% 10

5* ‘ , ,,,,, 7

0

2 3 4 5 6

MF1(TeV)

Figure 4.8: Expanded View of low (fl region of Figure 4.7.

In this “low” KK fermion-mass region, unitarity is valid to approximately (11+ 1)

times the AC bound.

In the second domain, where MF1 > 4.5 TeV. we find that, for all n. unitarity

breaks down at a value of \/§ given approximately by the AC bound (Eqn. (4.23)) In

Figures 4.7 and 4.8, we see that at MF1 ~ 4.5 TeV, the curves corresponding to small

71 approach the n : 0 curve, while the curves for large 71 turn back on themselves,

defining a wedge-shaped area in which unitarity is always violated starting at \/§ of

order a few TeV.

To understand why MF1 2 4.5 TeV is the fermion mass value at which the theory

crosses from the first to the second domain. we consider what happens as n —I 00.

In this limit, the four point vertex disappears and we are left with the partial wave
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amplitude

2\/(id/F1 "’7‘ (_1)k+l \/§

«47,2 gals—1V!) (:2k-—1).i/F1
(10 =  lim (4.90)

-n—+oc

This sum is dominated by the first. KK mode (A? = 1). Thus. to locate the left most

edge of the wedge—shaped in the (J? Mp1) plane where unitarity is violated, we need

only keep the first KK fermion mode.

‘2 x/bMF1 mt fl

9 . ‘AIFI
 lim ”U(k = 1) z

n —4 «x. it'd-U2

(4.91)

The function g(\/§/.=‘l lF1) determines the shape of this bound. It is maximized for

\/E = 2:)!F1 and gives the upper limit of MF1,

-41 2
A l}, 5 __‘_"___ ~ 4.25 TeV , (41-92)

1 ‘2 0m,1n(5)

if we want this amplitude to be unitary up to very high scales. Including the higher

fermion KK modes changes this upper bound only slightly, to ~ 4.5TeV. Note that,

in the continuum limit, the scattering amplitude does not. grow at. asymptotically

high energies — a property ensured by various sum-rules satisfied by the couplings

[104. 105]. Nonetheless, as illustrated in Figures 4.7 and 4.8, the properly normalized

spin—0 couple<l-channel amplitude exceeds the unitarity bound for various ranges of

\/E and MF1 .

While this work demonstrates that the bound on the scale of fermion mass gen—

eration is independent of the bound on the scale of gauge-boson mass generatitm in

these models. the physical significance of the fermion-mass—gelierat ion hound depemls

on the "high-energy” (UV) completion which underlies the 'n(+2) site model. The

simplest. possible UV completicm is one in which each of the mmlinear sigma-mmlel
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link theories is replaced by a linear Gell-mann Levy sigma model. In this (use, the

strength of the adjacent site couplings in Eqn. (4.57) is determined by a dimension-

less Yukawa coupling of order .MF/f . The large—MF limit, therefore. corresponds to

large Yukawa coupling. In this case, the bound on MF is expected to be related to

the triviality bound on the corresponding Yukawa coupling [98. 99. 106].

4.4 Summary

In this chapter we have examined upper bounds on the scale of top-(mark mass

generation in viable deconstructed Higgsless models. These bounds are derived from

the scale at. which unitarity is violated in the helicity nonconserving amplitude for

top-anti-top pairs to scatter into pairs of longitudinally polarized electroweak gauge

bosons. We. have shown that the scale of unitarity violation in this process depends on

the mass of the additional vector-like fermion states that occur in these theories and.

in this sense, the scale of fermion mass generation is separate from that of gauge-boson

mass generation. For sufficiently light vector fermions, and for a deconstructed theory

with sufficiently many lattice sites (that is, sufficiently close. to the continuum limit ),

we have shown that the Appelquist-Chanowitz bound on the scale of top-quark mass

generation. is substantially weakened, while the bound is recovered as one increz-ises

the mass of the vector-like fermions. Our results are expected to apply to any model

in which top-quark mass generation occurs. in part, through mixing between chiral

and vector fermions.
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