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ABSTRACT

PARTICLE TRACKING USING STOCHASTIC DIFFERENTIAL

EQUATION DRIVEN BY PURE JUMP LEVY PROCESSES

By

Paramita Chakraborty

Stochastic diffusion driven by a pure jump Lévy process is an important core

concept for particle tracking methods used in stochastic hydrology and for tempered

anomalous diffusion models used in (Geo) Physics. In this work we discuss the jump

Lévy diffusion in terms of stochastic differential equations (SDES). We examine the

existence and uniqueness of solutions of stochastic differential equations of the form

dYt = (IO/(5)6125 + b(Yt)dXt

where {Xt} is a pure jump Lévy process. Further, we rigorously derive the infinites-

imal generator and the backward equation. It can be shown that the infinitesimal

generator is a pseudo differential operator. Using this form with the backward equa-

tion, we derive the forward equation by an involution type technique. The forward

equation associated with the transition density of the solution process is analogous to

the governing advection-dispersion equation used in particle tracking of heavy tailed

flows and tempered anomalous diffusion models.
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Notations

l.

10.

11.

12.

13.

14.

R : Set of real numbers.

. 1R0: {:1:::I:ER;:B#O}.

. N :2 {1,2,3,...}

. N0: ={0,l,2,3,...}

.R+:={$ER:$ZO}

. CgGR) : All functions f defined on R with compact support and bounded

second order derivatives.

Cm(lR) : m-times continuously differentiable functions on R.

.CO°(R):: 0 0mm)

mEN

. COOUR) :: class of continuous functions on IR vanishing at 00.

(Q, .77, P): Probability space.

L0(Q) : Set of all real valued random variables defined on (2.

50(0, 5, p) : Stable distribution with index of stability at, the skewness param-

eter ,8, the scale parameter a and the shift parameter p.

ForO<a§2,aZO,—1gfiglandpreal.

N(ds,du): Poisson random measure defined on B([O, oo) XR) with mean function

11(ds, du).

q(ds,du):Compensated Poisson random measure defined as :

q(ds,du) : N(ds,du) -— z/(ds, du).
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Chapter 1

Introduction

Stochastic diffusion is a very useful tool in hydrology. It is widely used to describe

water flow through a porous medium. The main hypothesis is that the path of a water

(quasi) molecule is governed by a Markov process. This idea has been discussed by

Bhattacharya, Gupta and Sposito [6, 7, 15]. They argued that the trajectory of a

quasi molecule is a Markov process with continuous sample path. With the drift

coefficient chosen to be the drift speed of a quasi molecule and the diffusion matrix

providing a measure for the random variation of the increment of the sample path, the

Markov process can be shown to be the unique solution of Ito’s stochastic differential

equation (SDE) driven by a Brownian motion. Further, the conditional probability

density function of the Markov process solves a forward equation that is analogous

to the advection dispersion equation (ADE) that governs the flow. This mechanical

advection dispersion equation is derived from the Buckingham-Darcy equation [4]

that forms the basis for most current hydrological models of contaminant transport

1



[4, 14].

Recently, it has been observed that this advection dispersion equation may not be

adequate for modeling the heavy tailed contaminant transport in saturated porous

media. For such flows an alternative model has been advocated that describes the dis-

persive flux by a fractional space derivative (the space-fractional advection-dispersion

equation or fADE [5]). A stochastic differential equation driven by a stable-Levy pro-

cess can be associated with this fADE model. If there exists a Markov process that

solves an SDE driven by a stable-Levy noise then it can be shown that the forward

equation of this Markov process is analogous to the governing equation in the fADE

model. This theory has been used by hydrologists as the basis of random walk par-

ticle tracking methods used to solve the fADE to model heavy tailed ground water

contamination transport (Zhang et al [25[,[26[,[27]). The primary purpose of this

work is to lay out a rigorous mathematical foundation for this theory that has been

successfully used in hydrology.

Another example of an SDE driven by a jump Lévy process is the tempered

anomalous diffusion model [10, 20], which has useful applications in (geo)-Physics.

Stochastic diffusion driven by a general jump Lévy process can be used to describe

all these cases. With this motivation we start by deriving the governing forward

equation of an SDE driven by a general jump Le’vy process. Next, as a special case,

we derive the governing forward equation of an SDE driven by a stable-Levy process

that can be used for particle tracking of heavy tailed flows.

2

 



In Chapter 2 we give preliminary definitions and results required for the main

part of the thesis. In Chapter 3 we discuss an SDE driven by a general jump Lévy

process and derive the infinitesimal generator and forward equation. Using concepts

developed in Chapter 3, we derive the governing forward equation of an SDE driven

by a stable-Levy process in Chapter 4.

More detailed discussion and application of the theory presented here can be

found in [11] and [12].



Chapter 2

Preliminaries

The purpose of this chapter is to provide background material for the subsequent

chapters.

2.1 Lévy Processes and Lévy Ito Decomposition

We shall be studying a stochastic differential equation driven by a Levy Process.

This involves defining stochastic integration (in the Ito sense) with respect to a Lévy

process. We begin by defining the Lévy process . Let {9,17, P} be the underlying

probability space.

Definition 2.1.1. A stochastic process {Xt : t 2 0} is a Lévy process if the

following conditions are satisfied:

1. For any choice of n21 and 0 g to < t1 < < tn, random variables XtO’

th‘Xt02 th—th , ., th—th_ are independent (independent increment
1

4



property).

2. X0 = 0 as.

5’. The distribution of Xs+t — X3 does not depend on s (stationary increment

property).

4. It is stochastically continuous, i.e P(|Xt — XSI > c) —> 0 as s —> t for every

e>0.

5. We assume that {Xt,t E R+} is cadalag without loss of generality. (Sato

[23]).

(There is (20 E (F with P[90] = 1 such that, for every w E 00, Xt(w) is

right-continuous in t Z O and has left limit in t > 0.)

Remark:

0) { Xt} is called a Levy process in law, if it satisfies (1), (2), (3) and (4).

(ii) A stochastic process satisfying (1), (2), (4) and (5) is called an additive process.

(iii) An additive process in law is a stochastic process satisfying (1),(2) and (4).

Definition 2.1.2. A probability measure ,u on IR is infinitely divisible if, for any

POSiti've integer n, there is a probability measure #72 on R such that p. : pg.

31%

a) Here pg gives the n-fold convolution of an, i.e, #ii : El, * 'u, * . . . * p.

n



b) We can write pn = til/n and it is uniquely determined. Using this we can define

urn for any rational number rn.

c) For any non-integer t E (0, 00) we can choose a sequence of rational numbers {rn}

such that rn ——> t and define the t-fold convolution of p as pt : lim urn. For

n—+oo

detailed construction and proof of existence of such limit see Sato ([23], page

35).

Observe that by (1),(2) and (3) in definition 2.1.1 above and the fact that for each

t>0,X 2X —X _ + +X2 —Xt +Xt —X forevery n,wecan say
If t [nn1)t it 5 r7, 0

for each t, Xt 2 sum of independent identically distributed random variables. Let

,aXt be the measure associated with {Xt} and [An be the measure associated with

{XL — X0}, then “Xi : #n a: #n - - - * pn 2 pg. Thus I‘Xt is infinitely divisible for

7?.

each t. The next theorem precisely gives the relation between a Lévy process and an

infinitely divisible process.

Theorem 2.1.1. (Theorem 7.10: [23], page 35)

(i) If {Xt : t 2 O} is a Le’vy process in law on IR, then, for anyt 2 0, PXt is

infinitely divisible and, letting PX1 = ,u, we have PXt 2 at.

(ii) Conversely, if p is an infinitely divisible distribution on IR, then there is a Le’vy

process in law {Xt : t Z 0} such that PX1 : p.

An infinitely divisible process can be specified by its characteristic function, which

is given by the Lévy-Khintchine representation as follows:

6



Theorem 2.1.2. (Theorem 8.1: [23], page 37) Lévy-Khintchine representation

(i) If p is an infinitely divisible distribution on le, then its characteristic function

has following representation:

[42) = / emmdw)

: exp [—%(z,Az) + i(’7,z) + [(ei<z’x> — 1 —i(z,:v)lD(:r))1/(d;1:)] (2.1)

le

for z 6 Rd, where D : {:r: : [SCI 5 1}, A is a symmetric nonnegative definite

d x d matrix, 1/ is a measure on le satisfying,

u({0}) : 0 and [flat]2 /\1)1/(d:r) < 00

Rd

and 7 E Rd. The representation of [t in (i) by A, V, and 7 is unique.

(ii) Conversely, if A is a symmetric nonnegative-definite d x d matrix, I! is a measure

as above, and ”y 6 Rd, then there exists an infinitely divisible distribution ,u

whose characteristic function is given by (2.1).

Remark: We call (A, 11,7) in the above theorem the generating triplet of p.

In this work we express the stochastic differentiation w.r.t a jump Lévy process

as the stochastic differentiation w.r.t a compensated Poisson random measure. To

understand this representation we need to know the decomposition of general Lévy

7



processes in terms of integration w.r.t Poisson random measures. This is called the

Levy-Ito decomposition.

We start with the definition of Poisson random measures. Let

2+ 2 {0,1,2,3,..}U{+OO}

Definition 2.1.3. Let (G, B, p) be a o-finite measure space. A family of Z+-tralued

random variables {N(B) : B E B} is called a Poisson random measure on G with

intensity measure or mean function p, if the following hold:

(1) for every B, N(B) has Poisson distribution with mean p(B);

(2) if Bl, ..., Bn are disjoint, then N(Bl), ..., N(Bn) are independent,-

(3) for every (.2, N(.,w) is a measure on 6-).

The random measure q defined by q(B) = N(B) — p(B) is called the compensated

POiSSOTl TUTLdO’ITl measure.

The next theorem gives a constructive decomposition of a Lévy process as a

sum of a jump part and a continuous part. In this theorem we shall use stochastic

integration w.r.t a Poisson random measure (see Section 2.2 for precise definitions).

Let H = (0,00) x (le \ {0}). The Borel o-algebra of H is denoted by B(H).The

basic decomposition theorem is given by,

Theorem 2.1.3. (Theorem 19.2 : [23] page 120)

Let {Xt : t 2 0} be an additive process on le defined on a probability space (9, f, P)

8



with system of generating triplets {(At,z/t,ryt)} and define the measure 17 on H by

17((0, t] x D) :- I/t(D) for D E B(le). Using 90 from definition(1.1) of an additive

process, define for B E B(H),

#{s: (s,Xs(w) — X3_(w)) E B} ,for w E 90,

0 ,for wfiéQO,

J(B,w) 2

Then the following holds:

(i) {J(B) : B E B(H)} is a Poisson random measure on H with intensity measure

~

V.

(ii) There is 91 E f with P[91] = 1 such that, for any or E 91,

X§1)(w)_—_1€ir3 / {st(d(s,a:),w)—xz7(d(s,:v))} + / xJ(d(s,:1:),w)

(0,tl><{€<|1'|<1} (Ottlelxlzll

is defined for allt E [0, 00) and the convergence is uniform in t on any bounded

interval. The process {Xt(l)} is an additive process on le with {(0, Vt,0)} as

the system of generating triplet.

(iii) Define, Xt(2)(w) = Xt(w) — X§I)(w) for w E 91.

There is 92 E f with P[92] = 1 such that, for any a) E (22, Xt(2)(w) is contin-

uous in t. The process {XP} is an additive process on le with {(At,0,’yt)}

as the system of generating triplet.

(iv) The two process {Xt(1)} and {Xt(2)} are independent. {Xt(1)} is called the jump

part and {X§2)} is called the continuous part of the process {Xi}.

9



Finally the Levy-ltd decomposition of a Lévy process is given as follows:

Theorem 2.1.4. (Theorem 2.4.16:[23],page 108) (The Le’vy-Ité decomposition)

If X is a Levy process in le with generating triplet (A,1/,7), then there exists a

Brownian motion BA with covariance matrix A and an independent Poisson random

measure N on IR x (le \ {0}) with intensity measure 17((0,t] X B) = t x 11(8) for

B 6 EURO), such that, for each t Z 0,

X(t) : 7t + BA(t) + / xq(t,dx) + / xN(t,dx)

[x[<1 |x|21

where q is the compensated Poisson random measure associated with N as in Defini-

tion 2.1.3. The Brownian motion part gives the continuous part of the Lévy process

whereas the integration w.r.t Poisson and compensated Poisson random measure con-

tribute to the jump part. In the next section we shall formally define integration with

respect to a Poisson random measure and a compensated Poisson random measure.

In this work we shall consider a pure jump Lévy process with A = 0 and 7 = 0,

i.e a Lévy processes of the form:

X(t) = / xq(t,dx) + / xN(t,dx)

[x[<1 [11:]21

10



2.2 Stochastic Calculus w.r.t Lévy Processes

In the previous section the Lévy-Ité decomposition shows a Lévy processes can be

expressed in terms of a Brownian motion and a Poisson integral. However, here

we shall be considering only pure jump Lévy processes. Therefore for the main

results we shall ignore the Brownian motion part and concentrate solely on stochastic

integration w.r.t a Poisson (compensated) random measure. We shall follow the

concepts discussed by A.V Skorokhod in [24] to define stochastic integration w.r.t a

compensated Poisson random measure.

Let us consider 0 S to < T < 00 and let V be a measure defined on [t0,T] x R.

Let B be the ring of all Borel sets A in [t0,T] x IR for which 1/(A) < 00.

Let N be a Poisson random measure defined on B with intensity measure V. For

every A E B we shall denote by q(A) the random measure defined by the relation:

We suppose that for every t 6 [to, T], a o-algebra ft of events A is defined, such that

A C [t0,T] x R (that is, (s,u) E A only ifs E [t0,t]). Also we assume that N(A)

is measurable w.r.t ft. Also, for all sets A1,A2, . -- ,Ak in [t,T] x IR the quantities

N(A2) are mutually independent of any event in ft.

We shall use the following function spaces in our definition:

M(ft) = {f(t,u) : f(t,u) is a random function measurable w.r.t ft}.

11



We shall call the function f(t,u) a step function if there exists to < t1 < <

tn 2 T and Borel sets B1, Bg, - -- , Bn in IR such that f(t,u) is constant on every set

ltkatk+1l x Bj, k = 0,1 (n— 1), j = 0,1 n, and UBj : IR. We set the

following:

M003) 2 {step functions f(t,u) in MUQ) : 3 e > 0,f(t,u) = 0 for [u] S e}.

T

A7151) 2 E[f(,)(tu|z/dt,du) <00}.

w
T

MI?) : f(,tu)):P[ /|f(,)(,tu|udtdu)<00[=1}.

to R

T

M51) : u):/ E|f(,)tu|2u(dt,du) <00}.

H
-

q
a
\
,

0

Mi” = {f(t,u) P

fl
.
‘

I

u)2z/ u =.0M )|(dt,d)<00[ 1}

Definition 2.2.1. Stochastic Integral w.r.t compensated Poisson random measure

(See (24/, page 35-37):

(a) Assume f(t,u) E MOU't). Taking uj E Bj, we define

T

f/f(t,u>q<dt,du) = Z f(tkauj)9(ltkatk+1lXBj)-

to R 0.<_ks(n—1)

ISan

12



Remark : Note that in this case it can be shown that the following [to isometry

holds: 9

T “ T

Ef//f(t,u q(dt, du)=//E[f(t,u)|21/(dt,du)

toR t0 R

(b) It can be shown that For every f(t, u) E Nfé1)(ft), there exists a sequence of

functions fn(t,u) E N10(ft) fl Mglnft) such that

T

lim //E[fn(t,u)——f(t,u)|21/(dt,du) = 0
n—+00

to R

T

Hence the sequence of random variables I f fn(t,u)q(dt,du) will converge in

tolR

probability to some particular random variable which we shall denote by:

T

tféf(t,u)q(dt,du), whenever f(t,u) E MgDU-ft).

0

(c) Now let f(t, u) E M?)(ft), define gn(x): 1 for [x] S n and gn(x): 0for

[x] > n. Then for all n E N,

T

fn(t,U) = f(t,U)9n('//|f(t,U)|2q(dt,dU))

0 IR

— (1) . T .
belongs to Mq (ft), and consequently the expression f f fn(t,u)q(dt,du) is

tolR

13



meaningful from (b). Also it can be shown for n’ > n,

P [f/fn;(t,u)q(dt,du) — [T/fn(t,u)q(dt,du)| >0]

to R to IR

i/g P [f(t,u)[2u(dt,du) >72]

[I0 R

Since the probability on righthand side approaches to zero as n —> 00, the

T

sequence of random variables f f fn (t, u)q(dt, du) will converge in probability t0

to IR

 

T

some particular random variable which we shall denote by f f f(t, u)q(dt,du),

t0R

whenever f(t,u) E Mé2)(}'t).

Next, we give the definition of a stochastic integral with respect to a Poisson

random measure N.

Definition 2.2.2. Stochastic Integral w.r.t Poisson random measure (See (24/, page

38-41).

592(7) T

t),henfff(,)qtud(t, du))andff(t,u)1/(dt,du)

tolR

both are finite. We set for f(t,u) E Mé2)(ft) fl thft)

f/faw(,=dtdu) f/f(,)qtu(dtdu)+/f(,)tuz/(,)dtdu

tOIR t0R

(a) Iff(t u) e M‘2 (a) 0M

(b) For every function f (t,u) E MI?) (E), it is possible to construct a sequence

14



fn(t,u) E M£1)(.7:t) fl Mzgghft) such that

nlimOO/T/EIfMt,u)— tu)[1/(dt du)——- 0

to IR

and therefore

T

"Ii%//E[fn(t,u) — fl(t,u)[1/(dt,du) = 0

1600“) IR

T

Hence the sequence of variables I f fn(t,u)N(dt, du) will converge in probabil-

toR

ity to some limit, which we shall denote by

T

f/f(t,u)N(dt,du)

tolR

(c) For f(t,u) E Mflm). Then for every n E N,

T

fn(tIU) = f(t,UIgn(/|f(t,UII2V(dt,dU))

0

will belong to M181)(.Ft), and for n’ > n,

T
T

Ptof/fn/(tmwdtd
u)—t[1{fn(t,u)N

(dt,du) >0

15



g PLZR/lf(t,u)|zx(dt,du) >n .

T

Consequently ”limoo f f(t, u)N(dt, du) exists in the sense of convergence ofprob-

t

ability. We shall denote this limit by,

T

[f(t,u)N(dt,du) for f(t,u)eM§Q)(J-'t).

t0

Now we can proceed to define stochastic integration w.r.t jump Lévy processes.

Definition 2.2.3. (Stochastic Integral w.r.t Lévy processes).

Let {Xt} be a pure jump Le’vy process taking values on IR with generating triplet

(0, V, 7). We want to define stochastic integration of the form Yt = Y0+f6 L(s)dXs.

The Lévy-Ité decomposition shows that {Xt} can be expressed in terms of a Poisson

integral. Using that form we can define:

where we assume to = 0 and L(t) E Mé2)(ft)[u:0.

In general a stochastic process taking values in IR is called a jump Levy-type

16



st ochastic integral if it can be written in the following form:

t t t

=I/(3(.9+/G)ds+/ / H((s ,(x)qds, dx))+/ / K(8,$)N(d3ad$)

0 0 0l$l<1 |I|.>_1

where [G'Il/2 E Mé2)(ft)[u:0 ; H(t,-) E My)(ft) and K predictable. Here N is

a Poisson random measure on (IR+ x R0) and q is the corresponding compensated

Poisson random measure.

2.3 Stochastic Diffusion Driven by a Jump Lévy

Process & Existence and Uniqueness of the

Solution

Let {Xt} be a pure jump Lévy process with generating triplet (0,1/,0) of following

form

X(t): / xq(t,dx)+ / xN(t,dx) (2.2)

0<|x|<1 |x|21

where N is a Poisson random measure with intensity measure 17((0, t] x D) = tl/(D)

for D E 3(R0).

Let us consider the drift coefficient functions a and the dispersion coefficient

function b, where a, b : IR —> IR. We are interested in the diffusion equation driven

l7



by pure jump Lévy process {Xt}, i.e, SDE of the form:

dYt = a(Yt)dt + b(Yt)dXt (2.3)

Using the Lévy-Ité decomposition of Xt we can rewrite (2.3) as :

dYt = a(Yt)dt + / b(Yt)xq(dt, dx) + / b(Yt)xN(dt,dx) (2.4)

0<|x|<1 [lel

Thus, we get a special case of the (jump) Levy-type stochastic difierential equation.

Under certain conditions on the coefficient functions a and b of the diffusion

process, we can show that there exists a unique solution process to the diffusion

equation (2.3). The general stochastic differential equation w.r.t a Lévy process with

the existence and uniqueness of the solution is discussed by D. Applebaum ([1] :

section 6.2). Therefore for the following theorem we give just a sketch of the proof

and refer to [1] for details.

Theorem 2.3.1. Let coefi‘icient functions a and b of diffusion equation (2.3) satisfy

the following growth condition and Lipschitz condition

(A) Growth condition: there exists constant C > 0 such that \7’ y in IR

la(v)l2 + Ib(y)|2 .<_ C(1+ In?)

18



(B) Lipschitz condition: there exists constant C’ > 0 such that V y1 y2 in IR

9

MM) - avg»? + lb(yi) — but? 3 d(t/1 — yzl“)

Then, there exists a unique solution process Yt for the equation (2.3); also the solution

process is continuous w.r.t the initial value.

Proof. To prove the theorem use the alternative form of the diffusion process as in

(2.4). The proof is done in two steps. In the first step consider equation (2.4) up to

small jumps only, i.e consider

dZt : a(Zt)dt + / b(Zt)xq(dt, dx)

0<|x|<1

Such a process {Zt} can be constructed using Picard’s method (Skorokhod [24]) and

using conditions (A), (B). Further it can be shown the solution {Zt} is unique.

In the second step the large jumps can be added to {Zt} using an interlacing tech-

nique (Ikeda and Watanabe [17]) and hence the solution process {Yt} for the main

equation (2.4) is constructed. Uniqueness follows from uniqueness of {Zt} and the

interlacing structure.

For detailed constructions and proof of uniqueness see [1] (Theorem 6.2.3,

page 304 & Theorem 6.2.9, page 311). For the proof of continuity w.r.t initial value

and Markov property see [24]. CI
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Chapter 3

Derivation of the Infinitesimal

Generator, Backward and Forward

Equations

In the previous chapter we observed that, under certain restrictions on the drift and

the diffusion coefficients, a unique solution process {Yt} of the diffusion equation in

(2.3) exists. Further, the solution is a Markov process. In this chapter we derive

the infinitesimal generator and associated backward equation of the Markov process

{Yt}. Using Fourier analysis concepts we can show that the infinitesimal generator is

a pseudo-differential operator. Then we derive the governing forward equation from

the backward equation using an involution type technique.

For simplification of calculations we restrict the study to one dimension and also
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to the case where drift and diffusion coefficients are only space dependent. The

theory can be easily extended to an SDE with time homogeneous coefficients defined

on W.

3.1 PrOperties of the Solution Process

3.1.1 Time Homogeneity of the Solution Process

Let us consider the SDE in (2.3) with a little modification. Consider

dYt = a(Yt)dt + b(Yt)dXt (3.1)

for t 2 3, given Y3 = y and X3 is a jump Lévy process.

Also, we assume coefficient functions a and b satisfy growth condition and Lips-

chitz condition from Theorem 2.3.1.

Denote the unique solution of (3.1) by Yt = Yty,s . Then,

t+h t+h

33% : y + f a (Yé’f) du + f b (Yff’t) qu

t t

= y + foha (32%) d” + [Ohb (YEW) CD?”

with u = t + v and Xv = Xt+v — Xt. On the other hand,

Y5’0 = y + tha(Y5"0) dv + fotb(Y,§”O) dXv
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Now from the definition of Lévy processes, {Xv} and {X1,} have same XO-distribution.

. . . . ,t
Then it follows from the uniqueness of the solution for SDE in (3.1) that {YtgihhtZO

and {YE’O}, h 2 0 have same I’D-distribution; i.e, {YtItZO is time homogeneous.

3.1.2 Markov Pr0perty of the Solution Process

Let {7}} be the o-field generated by {X3 : s S t}. Let {Yt} be the solution process

of equation (2.3). From the equation we know that Yt is ft measurable.

Theorem 3.1.1. If there exists a unique solution of SDE (2.3), then the solution

process is a Markov process.

Proof. By construction we can re—write Yt+s as follows:

Y7+3==Y}—Ffi40$t—fs)

where

t+s t+s

M(s,t + S) : / a(Yv)d’U + / b(Yv)dXv

s 3

Following the Lévy-Ité decomposition M(s,t + s) is a{N(v, A) - N(u, A),s S u <

v S t,A E B(IR0)} measurable ( EURO) is the Borel sigma field of R0). Clearly

M(s,t + s) is independent of .7-"3 Q o{N(u,A),u g s,A E B(IR0} and that leads to

the Markov property. See [24] (page 75, Theorem 1) for a more detailed proof. CI
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3.1.3 Feller Property of the Solution Process

Let {Yt} be the solution process of equation (2.3). Let {Yty} be the solution process

with initial condition y. We want to show that the solution process is continuous in

terms of initial value. Let functions a and b be the drift and diffusion coefficients as

in (2.3). We assume the coefficients satisfy the growth condition in Theorem 2.3.1.

Define

tt

2,9 =y+ [a(zg’)ds+ / / b(Z3y)uq(ds,du)

0 0<[u[<1

where compensated random variable q is defined as in (2.4). We want to show that

2

if yn —-> y, then Z?" 9+ Z? for 0 < t < T. Now

2
t

K)

IZty" — Ztyl“ S 3|yn - :yl2 + 3 f[a(Z§’”) — a(ZSy)]ds

0

t 2

+ 3 f / [b(Z§’") — b(z§’)] uq(ds, du)

0 0<[u[<1

If we write f(,, = f u21/(du), then using Cauchy-Schwarz inequality and Doob’s

0<[u[<1

martingale inequality in the right hand expression above, we get:

t

E( sup [an — 2,9?) g 3|yn —- y|2 +3T/E( sup [a(zg") — a(zgl)|2)ds

0<t<T 0 0<t<T

t

+12RV/E( sup [b(Zgn)_b(Zg)l2)ds

0<t<T
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By the growth condition

t

E( sup [an — 2,342) g 3|yn — yl2 + CT/E( sup E [23” — Z§|2)ds

0<t<T 0 0<t<T

where CT is a constant that depends on T and constant C, in growth condition

given in theorem 2.3.1 only.

Hence by Gronwall’s lemma we can say, if yn —> y then E( sup [ngn — ZtyIQ) —> 0.

0<t<T

Adding the large jump part to {Zt} by interlacing we can get {Yt} and thus the

process {Yt} is continuous in terms of initial value.

3.2 Infinitesimal Generator and Backward

Equation

Let P(t, x, y) be the transition probability for the Markov process Yt. That is, for any

A E B(IR), (B(IR) is Borel sigma field oflRO), we have P(t,x, A) = Pg;{Yt E A}. Here,

Pg;(-) should be interpreted as conditional probability with given condition Y0 = x.

The transition probabilities of a Markov process defines a transition semigroup; and

the semigroup uniquely defines the infinitesimal generator. Let us start with the

definition of a semigroup.

Definition 3.2.1. A family {Tt;t 2 0} of bounded linear operators on a Banach

space B is called a strongly continuous semigroup if
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(a) TtTS : Tt-I—S f0?" ta 3 E [03 00)

(c) ltilrthf = ffor anyf E B.

Definition 3.2.2. The infinitesimal generator of a semigroup {Tt} is defined by the

formula

Thf - f _
A :l'm

f rho

Its domain DA consist of all f E B for which the above limit exists.

Let C be the space of bounded continuous functions on IR. For f E C define the

following operator:

are) = [ f(y)P(t,x.dy) = Eflf(Yt)l

This infinitesimal generator is also called the infinitesimal generator of the Markov

process {Yt}.

In section 3.1 we already observed that the solution process {Yt} of the SDE in

(3.1) is a Markov process. In this section we shall derive the infinitesimal generator

of the solution process. We shall use the Ité formula for stochastic integrals with

respect to Poisson random measure. The Ité formula for general Lévy type integrals

is given by Ikeda and Watanabe [17]. Using their theorem we can state the Ité

formula for our case as follows:

Theorem 3.2.1. ([17] Theorem 4.1, page 66): Let {Yt} is a pure jump Lévy type
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integral, i. e,

Y(t).=Y(0)+/tG(s)ds+/Ot / H(s,x)q(ds,dx)+/Ot / K(s,x)N(ds,dx)

O 0<[x[<1 [xIZI

where N is a random Poisson process on ([0, 00) x 1R0) with intensity measure 17, with

H(t, -) E Mé2)(.7:t) and K predictable. Let C2(IR) be the set of twice diflerentiable

functions on IR. Then for any function F E C2 (IR) following holds:

Let us assume the coefficient functions a and b satisfy growth condition and

Lipschitz condition as in Theorem 2.3.1. Then a unique solution process {Yt} for the

SDE in (3.1) exists and it is a Markov process. For f E C if we define (Ttf)(x) :—

E”f(Yt), then the infinitesimal generator of Tt exists.

Note that equation (3.1) or (2.3) has alternative form as a pure jump Lévy type
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SDE as in equation (2.4), so we can express Yt as :

t t t

Yt—— Y0+/a(YS)ds+/ /(b()YS)xq((dsd,x)+/ b(Y3))xN(ds ,dx) (3.2)

0 O O
lr|<1 le21

where N is Poisson random measure with intensity measure 17(dt,dx) = dtI/(dx).

Equation (3.2) with Theorem 3.2.1 gives us the infinitesimal generator as follows:

Theorem 3.2.2. (Infinitesimal Generator): Let {Yt} be the solution process of

the stochastic difierential equation: dYt : a(Yt)dt + b(Yt)dXt, where {Xt} is a real

valued pure jump Le’vy process with generating triplet (0, 11,0). Also, suppose that the

coefi‘icient functions a and b satisfy the growth condition (A) and Lipschitz condition

(B) as in Theorem 2.3.1.

If Cu 2 flib‘IZl xu(dx) < 00, then for any function f E CgflR) the infinitesimal

generator A of {Yt} is given by:

AM) = r’(y)(a<y) + claw) + ] {f(y + but.) — f(y) — f’(y)b(y):v]v(d:v) (3.3a)

IR0

alternatively, if Ky : f0<|x|<1$V(dx) < 00, then for any function f E C8(IR) the

infinitesimal generator A of {Yt} is given by:

AM) = f'(y) (a(y) — Kym») + ] {f(y + bum) — f(u)]l/(d-r) (3%)

1R0
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Proof. Let us assume Y0 = y. Using Theorem 3.2.1 for any f E CgUR),

f()/I) - f(y) t

: ff,(Y3)a(Ys)d3 +/ {f(Y(s—) + b(YS):L‘) - f(Y(S—)) }N(d3, (1:17)

0 0 le21

 

Af(y) = 13er t

1 t

_ - _ y I
— ltlflI tE ff (Y3)a(Ys)ds
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Now let us write

Cu 2 / xu(dx).

Iévlzl

 

Then

I

my) (a(y) — Kym) + fR0{f(y + bun) — r<y)}u(dx>,

Af(y) = <

my) (a(y) + Cum) + fR0{f(y + beam) — f(y) — f’(y)b(y):v}1/(drv),

if CV < 00.

This completes the proof. Cl

Remark:

i) In case CV and KV both are finite we can use either form because both forms will

be equivalent.
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ii) In case neither of CV and Ky are finite we can use equation (3.4) form of the

infinitesimal generator.

We can show, for the infinitesimal generator of any Markov process, in particular

for the solution process of the SDE driven by pure jump Lévy process the following

backward equation holds.

Theorem 3.2.3. (The backward equation) : Let A be the infinitesimal generator

as in Theorem 3.2.2 for the solution process {Yt} of the SDE (3.1). Let f E C3(IR).

Define, u(y,t) : Ey [f(Yt)]. Then, %% exists and

Bu

BT = A(u) (3.5)

where the R.H.S is to be interpreted as A applied to the function y H u(y,t).

Proof. Let g(x) : u(x, t). Then, using Markov Property,

Eyller2I—9W) : %{E9[EY"(9(Yt))] — Eyl9(Ytll}
 

= §{Ey[Ey(gm+r>Ifr>i - E” W01}

= ;,1‘Eyl9(Yt+r) - g(YtII

H(y,t+r) — H(yi) _) 9383,10.

r 0t

 

Eyl9(Y-r)I - 90/)
7.Therefore, A(u) = lim,.10 exists, and 53%” = A(u). Hence the

backward equation. CI
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3.3 Pseudo Differential Operator Form of the

Infinitesimal Generator and the Forward

Equation

Using Fourier analysis we can show that the infinitesimal generator in (3.3) is a

pseudo-differential operator (in sense of Jacob [18], definition 3.3.3) defined on the

anistropic Sobolev space H€2t2(IR). Here we show that the transition probability

density function of the solution process satisfies a deterministic differential equation

viz. the forward equation. The forward equation can be derived from the backward

equation using the infinitesimal generator in its pseudo differential operator form.

This forward equation gives the governing equation of diffusive flows and thus vali-

dates the key role of jump Lévy SDE in stochastic modeling of anomalous diffusion.

To derive the forward equation we assume the density function of the solution process

belongs to the anistropic Sobolev space H€2,2(IR). For this section we are going to

use the Fourier transform of a real function f as follows:

00

f(€)=F(f(€))=(2r)"1/2 [ immune

—00

We shall discuss other required concepts and definitions as we proceed.

Lemma 3.3.1. Let {Yt} be the solution process of the SDE in (3.1). Let A be the

infinitesimal generator for {Yt}, given as in Theorem 3.2.2. Let us make a change
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of variable b(y)x 2 —v in (3.3). Let J(v) be the Jacobian of the transformation. We

define V1(y, dv) 2 “MI/(€65). Then A can be expressed as follows:

Af(y) = B(y)f'(y) + [ [f(y - v) - f(y) + f'(y)Tv|U|§]I/1(y.dv) (3-6)

R0

,2

[a(y) + Cyb(y) + fRO u(l—l_:[—v|2)l/1(y,dv)], if CV < 00;

a(v) - Kub(v) - IRO(W)V1(y,dv)], z'f Ky < 00.

where B(y) 2

Proof. From Theorem 3.2.2, if we consider form (3.3a), the infinitesimal generator

can be written as:

Af(y) = my) (a(y) + aux) + [{f(y + b(y)x) — f(y) — r’(y)b<y>x}u(dx)

IR0

Let us consider the change of variable b(y)x 2 —v. Letting J(v) be the Jacobian of

this transformation we define : V1(y, dv) 2 J(v)1/ (fig—1;). Then

Ara) = f’(y)(a(y)+Cub(y))+ [{fu—v)—r(y)+f’(y>v}u1(y.dv)

= f’(y)[a(y)+Cub(3/)+ ] v(

R0

+ {f(y —' )— M) + f’(y)fi}vi(y,dv)

)Vl (31,010)]
1+ [v]2

v

1+ |v|2

 

] 1/1 (y, aIv)



2

Where Bu) = [a(y) + Cuba) +Rf (fill—[12)V1(y,dv)]-
0

Ram Theorem 3.2.2, if we consider form (3.3b), the infinitesimal generator can be

written as

Again change of variable b(y)x 2 —v gives,

Af(y) = f’(y)(a(y) — Kub(y)) + [{f(y — v) — f(y)}u1(y, du)

 = Buu’u) + [ [f(v — v) — f(y) + my) 1 +"lv|2]u1(y,dv>

1R0

Where B(y) = a(y) — Kub(y) — f —L,7 Vite/adv) -
1R0 1+[il

Hence the lemma is proved.

Proposition 3.3.1. (Le’vy Khinchin representation, see [18])

We say If) : IR ——> (C is a continuous negative definite function, if w has the following

i"€19resentation:

 w(£) 2 c + dig + q(t) + [(1 — e435 — ixé )z/(dx) 3.7

1 + [x]2 ( )

R0

with c > 0, d E IR, q is symmetric positive semidefinite quadratic form on IR and V
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is the Lévy measure associated with if: such that,

[at]? A1)z/(dx) < 00

1R0

and 7,!) is uniquely determined by (c, d, g, V).

Definition 3.3.1. We call a function Q : IR x IR —> C a continuous negative definite

symbol if Q is locally bounded and for each x E IR the function Q(x, .) : IR ——+ C is

continuous negative definite.

Definition 3.3.2. We define the Schwartz space S(IR) as all functions u E COO(IR)

Such that for all m1, m2 E No

pmiim2(uli: 22%[UH13I2I71 Z Iaku($)l] < 00

16sz

The pseudo-differential operator associated with the symbol Q(x,§) are defined

as follows:

Definition 3.3.3. For a continuous negative definite symbol Q(x,§), we define the

PSeudo-diflerential operator Q(x, D) by :

Q(x,D)u(-'r) z: (2r)‘1/2[ei$5Q(x.€)fi(€)d€ (3.8)

IR

fOru E S(IR).
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The next theorem gives the pseudo-differential operator representation of the

infinitesimal generator. Consider an SDE of form (3.1). For the coefficient functions

a and b let us define

M(x) z: max{la(rc)|. tori} (3.9)

Theorem 3.3.1. Let us use the measure V1 and coeflicient function B from Lemma

3- 3.1 to define following continuous negative definite symbol:

 Q(x,€) 2 R[(1— e—ivé — 1f0i|2)1/l($,dv) — iB(x)§ (3.10)

0

Let A be the infinitesimal generator defined in section 3.2. Then the infinitesimal

generator, restricted in 8(IR) is a pseudo-differential operator with negative definite

Symbol Q as above. That is :

Ar(x)=—Q<m,D>r(x) ~—— _(2..)-% [armament (3.11)

where f is the Fourier transformation of f E 8(IR)

Proof. To prove this theorem we need the following bound of symbol (3.10).

Lemma 3.3.2. Let the function M() be defined as (3.9). For the continuous negative

definite symbol Q(x,£) given in (3.10), then for some constant c

|Q(rv,€)l s cM(:c)(1+€2)- (3.12)
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Proof. Consider Q(x,§) given in (3.10).

[2

First, consider the form B(x): a(x) + Cyb(x +RvaI—H—IZV1(y,dv)

 aao=](v+r“— w€)mauv—ka

 

1 + [v]2

R0

_ —Z’U€ ' ’U ' I’Ul2 - D

_/ 1—e —21+lvl2€_w—1_fl7[2€ V1(.’L‘,d‘U)—’t a(x)+CV (x)€

IRo

:: /(1 — e—ivé — ivg) 111(16, dv) — i [a(x) + CVb(x)]£

180

Using reverse transformation b(x)y 2 —v

8W3)y€ + ib(x)y€>VV01?!) — i [0(1) + CVb(x)[€link

2R:1( —eWivhaa))y§)1/(dy)—i§[a(x)+b(x) ] yu(dy)[

=0/1
yl<

lylzl

_Hz-b(x)y£+,-b()yg)u(dy)+ ] (l—eib(x)y€)u(dy)—i§a(x)

0<l||y|21

Next, consider the form B(x) 2 a(x) — f(,/b(x) -— f Div—[2V1 (y, dv).

IRo

 ano=](vwd%— w€)aeao—wux
R0 1 + [v]2

z [(1— (”5) V1(x, dv) — i[a(x) -— Kub(:c)]€

R0
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Using reverse transformation —b(x)y 2 v as the previous case,

Q(:v,€) = ] (1 — eib<x>y€)u(dy> — 2' [am — mm]:

R0

: / 1 _ eibfoy€ + ib(x)y§) V(dy) + f (I _ eib(1’ly£)1/(dy) — i€a(x)

0<|yl<1 |y|21

Thus, for both forms of B() we can write:

62013.5): [ (1—eib($>y€+ib(x>ys)u(dy)+ [ (l—eibixiyi)u(dy)—zra(x>

0<Iyl<1 Iyl21

(3.13)

Further, note that we can get the following bounds :

[1— etblxiyi + than: s lb($)£vl2 and |1 — eibixiyél s 2
 

also, [5] _<_ (1 + [5|2). Recall that V, the Lévy measure for Q(x, D) in (3.10),

satisfies f [yl2V(dy) < 00. Therefore, since f V(dy) < 00 we have the

0<|y|<1 Ilel

following:

IQ(:v,£)l _<_ 15:21me [ lyl2v(dy)+ [ 2V(dy)+|a(:v)ll€|

0<lyl<1 lylzl

s cM(:v)(1+|€|2)

where M(x) 2 max{|b(x)|2,a(x)} and c is a constant that depends only on V. CI
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Proof of Theorem 3.3.1 continued

We shall use the notation f 2 F(f) to denote Fourier transform as defined in the

beginning of this section. Also recall that, the inverse Fourier transform of a function

g is given by F—lgm) .—_- (2704/2 cf eixng(x)dx and that F(g("))(k) = (am

—00

where g(n) is the nth-derivative of g, n E N .

Using Lemma 3.3.2 we can say for f E 8(IR)

[[gramme] s. cM(:v)[(1+€2)|f(€)ld€

M(x) [ |f(z)| + lf”(z)ldzI
/
\

Since the functions in 8(IR) are rapidly decreasing, it is easy to see that f, f’’ E L1 (IR)

(see the norm used in Definition 3.3.2). This justifies the use of the Fubini theorem

the next steps of the proof. By Lemma 3.3.1,

—Q(rv.D)f = —<2w)*i [ eix€Q($,€)f(€)d€

: —(2rr)_2 ] eixé [/ (1 — e-ivé _ 1:”;I2)u1 (x, dv) — racing] f(g)dg

IRo

= - ] [op—i ] ei$€F(r(t>-f<€—v)—1+]vlgr’(o)d€](,u1xdv)

R” viewan
]:1(x(.)dv)+ B(a:)r’ (x)

 

 

v
x _—

1+ [v]2
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Hence, Theorem 3.3.1 is proved. CI

Next,the we shall discuss spaces associated with the pseudo differential operators.

For a real valued continuous negative definite function w(§) and s _>_ 0 let us define

a norm

Halli), == [l1+ gangsta

An anistropic Sobolev space with a negative definite function w is given by

Hitachi) :2 {u e L2(IR) : Maui’s < 00}

These are Hilbert spaces under norm “all?” and arise naturally in the discussion of

the pseudo-differential operators (See [16, 19]). Jacob and Schilling [19] showed that

with appropriate choice of 2]), a pseudo-differential Q(x, D) operator associated with

the generator of a Lévy type processes maps the space Ari/1.8+? to HIf”? and hence

using Sobolev’s embedding theorem, Q(x, D) can be extended to COO(IR). Thus we

can say the pseudo differential operator representation of infinitesimal generator A

can be extended to COO(IR).

In our case we shall use the Sobolev space H€2’2. In most cases, the density of a

Lévy type processes belongs to this class, for example use the stable characteristic

2

function to see that the stable-Levy density belongs to H‘5 ’2.

Theorem 3.3.2. (The forward equation)

Let {Yt} be the solution process for the SDE in (2.3). Let us further assume that
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there exists a transition probability density for Yt and that px(t,y) is the density of

Yt, given Y0 2 x. We assume p1.(t,) is in H€2’2 for all x E IR.

Let us make a change of variable b(y)x 2 —v in (3.3). Let J(v) be the Jacobian of the

transformation. We define V1(y,dv) 2 J(v)V(b:(%‘)—’). We consider the case when the

measure V1 is of the form V1(1‘,dy) 2 h(x),u.(dy), where h is a measurable function

on IR and [x is a measure on IR.

For coefi‘icientfunctions a and b in the SDE (2.3) define M(x) :2 max{[a(x)|, |b(x)|2}.

Let us assume the coefficient functions are such that

[ M2(x)dx < 00 (3.14)

IR

Then the transition probability density function satisfies the following equation:

’lny <00,

033mm) = [ [rpm - hrs, y - r) - (p. - h)(s, y) + rum - h>’(s, y)]#(d(-7‘))

R0

0

— 55(1):: ' (3(3)?!) (3-153)

where (Pa: - h)(s, v) = h(y)p:v(s,y) and 0(9) == 0(9) + Cub(y).

Alternatively, if KV < 00,

_2
anyx-Hfisay) (3.151))319mm: ] [(Px-h)(s,y—r)-(px-h)(s,y)]#(d(-r))

Os

R0
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when? (Px - h)(8, y) = b(y)px(s. y) and H(y) = a(y) - Kub(y)-

Proof. Let p3,.(t, y) be the transition probability density of Yt starting at Y0 2 x. Let

uO E L2(IR) be a twice differentiable bounded function. Let us write

u(x,» = Exluthll = ] ”0(ylpx(tay)dy-

R

Then Au(x, t) 2 6 u(x, t) is defined. Since uo E L2(IR) we can have a constant c’ so

that following holds:

um) = Ema/rm): [uo(y+a:>po(t.y)dy

R

u0(z)p0(t, z — x)dz

2 21(5, t) 2 u0(z)p0(t, z — §)dz

”Wk-”£1500, -93.

=> |fi(€,t)l2 s luo(z)l2|fio(t,—€)|2dz

fi
\
fi
\
%
\
W
\

a was)? s c’lp‘o(t,€)l2 (3.16)

If we assume the transition density function vanishes at t 2 00, then integration by

parts gives

00 00 a 00 00 a

f [ —U(v,t)px(t,y)dtdy = - f / n(y,t)—pa:(t,y)dtdy (3-17)
—00
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Now substituting the backward equation in the left hand side we get,

(9

[:0 [00 P2201304 u(y,t))dtdy= —[_: [00 u(ty,)apatyIdtdy (3.18)

The operator A acts on u(y,t) as u being a functions of y. Consider the integration

part with respect to y in the left hand side of (3.18) and to simplify the notations

we ignore the other variables in the term for next steps of computation and write:

[00 p.(t,y)A(u(y.t))dy = [pIyIAuIIIdy
—00

Using the Cauchy-Schwarz inequality,

[fI0(y)x4u(:t/)dy[2 S [ |p(y)l2dy / lAu(y)|2dy

The Parseval identity gives

[IpIy>I2dy = [lp(€)l)l2dé < [(1+€2)l(€)=|2d€ IIpII§22

Then the pseudo-differential operator form of the generator, equation (3.16) and

Lemma 3.3.2 gives

[IAU(y)l2dy = ‘1/[[ ezy€Q((y,€ 11(2€)d€

s cw)—)1[[IQ<y.eI2lfi(€)l2d€dy
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s ] M2Iy) [(1+€2)|fi(€)|2d€dy

C'llPllgrzg / M2("i/)dv|
/
\

2

Now by hypothesis of the theorem f A12(y)dy < 00, therefore since pm E H5 ’2

Vx E IR, we have [fp(y)Au(y)dy[2 < 00. Thus we can apply the Fubini theorem for

to (3.18).

Also for the negative definite symbol Q given in (3.10) the following holds:

 

Q($,€) = R] (1 — €225 — 1:”élg)vl(x,dv) — 2'8ka

0

2

If we use B(x) 2 a(x) + Cyb(x) + f vl—iggV1(x,dv) then

R0

can ——- f (1 — (2‘22 — Wat/10:, du) — it [a(x) + Cub($)]

R0

we write

Q(x,§) 2 [(1 — eTivé — ivfi) V1 (x, dv) — iC(x)€ (3.19a)

IRo

where C(x) = [a(x) +Cyb(x)].

If we use B(x) 2 a(x) — f(,/b(x) — f 1%?” (x,dv) then

IRio
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00.35) = [RO(1 — e_iv€ )V1 (x, dv) — 23g [a(x) — 1913(1)]

we write

Q(x, ) = [R (l—e—i'U€)V1(x,dv)—iH(x)€ (3.1%)

0

In order to get a closed form of the forward equation, we need to assume V1 has

the form 1/1(1L‘,dy) 2 h(x)u(dy), where h is real valued function and ,u is a measure

on IR. Using the pseudo differential representation of A and Fubini theorem we get:

ZpIxIAquIda: = —<2w)—1/2]O[Oe22€c2(w, )&(€)p(w)d€dcv

= 7[_(2..)-1 [0 70eixie—i2’5c2e,tIpIxIdtdx]u(x’Idcc’

- pm...) I...

where Ip(x’)2 [—(27r)_1/ feixée—ixiéQw,€)p(x)d€dx[ (3.21)

—00 —OO
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Using Q(x,§) from (3.19a)

:_(27.)-17O 70232225222 L] (1 — 23-222 435) V1(x,dv) — iC(x)€[p(x)d€dx

00 00

where 11 2 —(2rr)”1/—:/‘/]‘R eixéeTixlg(l—e—iv€—iv€)p(x)V1(x,dv)d£dx

0

oo 00

I2 = (2701[ [e222922’2IGI@thth

—00

For the first part we have,

11 2 —(27r)—1 / / feixge—i$,€(1—e—iy€ —iy€)p(x)V1(x,dy)d§dx

: —(27r)—1 70 70‘/-eim€e_iflc"$(1—e—iyé —iy§)p(x)h(x)p(dy)d§dx

—OO o—OOORO

= —(27r)1/2[ ] e-22’1—e2(222—212)F (tr-h)(-€))u(dy)d€

: _(27r)—1/2 70 [1222,20 —e225 +iy€)F((P'h)(€))/2(dy)d€

= —()271)1/2]/ 2e2’2[-F(p h)( —Ip h)(£+y)+y(p h)’(€)]d€u(dy)

R0 -00
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= — [ F—1 o F[(p - h)(:v’) — (p- hIIx’ + y) + yIp- h)’(rv’)]2(dy)

R0

= [ [Ip- hIIrc’ + l!) — (p - h)(rc’) — yIp~ h)’($’)]u(dv)

R0

= -/[(p h)(x —y)—(p-h)(a:’)+y(p h)’(2:’)]u(d(-y))

R0

Thus, in case we use the negative definite symbol from (3.19a), we can write

 

110(33') = - [Ra [(P' h)(:v' - y) - (ID- h)(23') + 90" h)'(rv’)] - (G - P)'($’)[

(3.22a)

Using Q(x,§) of the from (3.19b) in (3.22) Ip(x’) 2 13 + I4. Where

I3 2 —(27r)_1 edge—”TU — e_iv€)p(x)V1(x,dv)d€dx

1.1.1.
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14 = (271)—1 f ] e222e-22'2IH(grandam.

—CXD —00

Here for the first part we have,

13 = —I2vrI‘1/2 [ [ e‘2‘2'2I1—6‘222)F(Ip-hII—tI)II(dyId€

: _(2..)—1/2 ] [.2260_e222)F(Ip-hII£I)IIIdyIdt

= —(22)‘1/2 ] ] e22'2F[(p-hII€I—Ip-hII£+yI]d52IdyI

R0—00

= _ ] 12-1 o F[(p - hIIx’I — (p. h)(:v' + yI]IIIdyI

= [ [Ip - h)(:v’ + y) — (p- h)(:v’)] #(dy)

For the second integration term,

I4 2 (2rr)—1/ feTixiéeix£i£H(x)p(x)d§dx

—OO —00

OO

: (2704/2 [ 2‘22'225F[(p-HII-€I]d§

—OO

00

= I2vrI—1/2 ] e22'2’F[Ip-HI’I€’I]da’

: F‘10F(p‘H)'(IL") = (P-H)’($')
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Therefore, in case we use the negative definite symbol from (3.19b), we can write:

112(21): - f [(P ' h)(:v' - y) - (P- h)(~1")]u(d(-y)) - (H - p)'(:v’) (32%)

R0

Then from (3.20) and (3.18) we have,

H(y. t)1pa:(t. y)dtdy

3
'
\
.
8

a

u(y, t)a—tpx(t, y)dtdy

a

119.202) + Emmy) u(31.022612I
I

II

O
\
.
8
8
\
8
O
'
\
8

f
—
_
'
l

I 8

l I 0

Note that, this is true for any arbitrary choice of twice differentiable bounded u.O(-) E

L2(IR). Hence we must have [Ipx(t, y)+%p$(t, y)] 2 0, thus gzpdt, y) 2 —Ipx(t, y).

Then, combining (3.22a) and (3.22b), the forward equation is given as follows:

52pm, y) = [ [(px - hIIs, y — r) — (p... - hIIs, y) + ((122: - hI’Is, y)]u(d(-r))

IRo

--8-(px-G)(s,y) (3232)
2y

where (pa; - h)(s, y) 2 h(y)pa;(s,y) and C(y) 2 a(y) + CVb(y) ; in case CV < 00.

Alternatively,
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gnaw): [[(px-h)(s,y—r)-(pm-h)(8.y)]u(d(-7‘))- 0%(px-H)(s,v)

1R20

(3.23b)

where (pa; - h)(s,y) 2 h(y)pg;(s,y) and H(y) 2 a(y) —- f(,/b(y) ; in case Ky < 00.

That concludes the theorem. Cl

Remark: The forward equation theorem can be used to solve an interesting

analytical problem. Let 8’ (IR) be the space of tempered distribution which is the

dual space of 8(IR). If we assume u(y, t) in S(IR), then Au(y, t) 2 —Q(y, D)u belongs

to 8(IR) The solution of the forward equation actually produces an element in 8’ (IR),

which is the solution of the adjoint operator (forward operator) given by the transition

function.

49



Chapter 4

Application to a Special Case :

Diffusion Driven by an a-stable

Lévy Process

In this section we shall discuss a special case of SDE driven by a pure jump Lévy

process, viz. an SDE driven by a stable Lévy process. Generally, the fractional

advection dispersion or fADE is used to model a variety of anomalous diffusion

processes, where observation shows that the plume spreads away from its center of

mass faster than (t1/2) scaling implied by the Brownian motion model. This is called

super diffusion. A diffusion equation driven by an a-Stable Lévy noise can be applied

to these situations. Here we show that the transition density of the solution process

of a stochastic differential equation driven by an a-Stable Lévy process solves the
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fADE equation.

Definition 4.0.4. A random variable X is said to have a stable distribution with

index of stability a, scale parameter a, skewness parameter S and the shift parameter

,u if its characteristic function has the following form:

exp{—oa[0[a(1—if3(sign 0) tan(%)) + i116}, if a 2 1

E[exp i6X] 2

exp{—o|0[(1+iI3-;‘);(sign 0) In |0|) + ipd}, if a 2 1

where0<ozg2,020,—1§,8$1,pEIRand

1 ,if ,0>0,

sign02 0 ,if ,0:0,

—1,if,0<0.

We write X ~ Sa(o, 8,11).

Definition 4.0.5. {Xt} is a-Stable Le’vy Process if

1. X(0)2 0 as.

2. X has independent increments.

3. X(t)-X(s)~ Sa((t — s)1/a,fi,0) ,‘for0 g s < t < 00 and —1_<_ fl 3 1.

4.1 Existence and Uniqueness

Consider the SDE

dYt 2 a(Yt)dt + b(Yt)dXt (4.1)
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here Xt is a standard, centered stable Lévy process with the index of stability 0,

(0 < a < 2) and the skewness parameter (3, (—1 g B S 1). That is, {Xt} is a Lévy

process with (Xt — X3) ~ 501 ((t — s)1/a,(3,0).

Since Xt is a pure jump Lévy process, from Theorem 2.3.1 and from section 3.1

we get the following:

Proposition 4.1.1. Suppose the coefficient functions a and b satisfy the growth

condition and Lipschitz condition as in section 3, i.e

(A) Growth condition: there exists constant C > 0 such that V y in IR

IaIyII2 + InyII2 s c(1+ IyI2)

(B) Lipschitz condition: there exists constant C’ > 0 such that V y1, y2 in IR,

la(yI) — a(y2ll2 + Ib(v1)— b(22H2 S 0' (Ii/1 - y2l2)

Then there exists a unique stochastic process {Yt} that satisfies the stochastic differ-

ential equation (4.1). Also, {Yt} is a time homogeneous Markov process.
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4.2 Infinitesimal Generator, Backward and For-

ward Equations

Since {Yt} is a Markov process we can get the corresponding infinitesimal generator

and associated forward and backward equation. For an SDE driven by an a-stable

Lévy process, the infinitesimal generator of the solution process can be expressed in

terms of fractional derivatives of order a. This forward equation given in terms of

fractional derivatives of order a is used in hydrology to model ground water flows.

First let us define the fractional derivative of order a.

Definition 4.2.1. The fractional derivative of order a for a function f is derived by

solving inverse Fourier transform. Let g(x) 2 flaflx), then g(g) 2 (ii§)af(§).

Hence, g(x) :2 F—1[(ii€)af(§)].

Proposition 4.2.1. (see [3] for details.)

The fractional derivative of order a for a function f can be expressed as follows:

(a) For0<a< 1,

 

0

as 0 d

8(—$)a f(x) : m—{O
(f(SU — U) — “livm

(4.3)



(b)For1<a<2,

 

('30 dv

axaffi): —'—:'(%()—f/f(x—v()+ vf’(x))lv|1+a

  

0

(90‘ _ a(a — 1) ,

a(_$)a f(ii?) — Era—[O (f(iF " U) - f(l‘) + Uf($))[’U[1+a

(4.4)

(4.5)

Now we return to SDE driven by a-Stable Lévy process. We shall use the following

theorem to get the Lévy type stochastic integration representation of {Yt}.

Theorem 4.2.1. (Theorem 3.12.2: [22]).

Let N be a Poisson random measure defined on [0, 00) x IRO with intensity measure

(1 +fi)dsW, if u>0,

(1‘5)d3m1%3 , if u <0.

du

lull+a

n(ds, du) 2 E[N(ds, du)] 2

2 Ifl(u)ds 

(1+fi), if u>0,

Where [g(u) 2

(l—S), if u<0.

Now if we set 3 to be the skewness parameter of an a-Stable Le’vy process {Xt}; then,

for a random function f : [0, 00) X D ——> IR,
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(i) ForO < a <1:

[0t de3 .2. Ca f()t [no f(s)uN(ds,du)

(ii) For 1 < a < 2:

[0t fax, g Ca x (If?) ([01 /(—6,6)2 f(s)u q(ds,du))

where constant Ca is defined as follows:

(C )a (2a_1(F(1—a))cos%—f) , if 0<a<1,

_ —l

(2F2 a)(—coslrQC—')) , if 1<a<2.
a a—l)

Using the above two theorems we can derive the precise infinitesimal generator

of the solution process {Yt} of the SDE (4.1). For rest of this chapter we shall use

the following notation:

Ib(°)|a Iif b(-)>0.

—lb(-)la , z'f b(')<0.

b2I-I =

Theorem 4.2.2. Consider a stochastic difierential equation driven by an a-Stable

Le’vy process as in (4.1). Suppose the solution process {Yt} exists. Then the infinites-
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imal generator of {Yt} is given by: if0 < a < 1,

Af(y) = a(y)f’(y) + [I1—2I(2cos(1,3))‘1b2IyIdd—a—OIIIII

+ (1+ )3) (2 cos (£22))—1ba(y)d(i:)af(y)[ (4.6a)
 

if1<oz<2,

Af(y) = a(y)f’(y) + [I1—4I(—2cos(1§))’1bWI:ny

+ (1+ 5) (—2cos (%)) 71b2(y)a,g)—df(y)] (4.6b)

Proof. Let us define a Poisson random measure N as in Theorem 4.2.1. Then,

for0<a<1
 

t t

O 0

t t

: Y0 + /a(YS)ds + Ca//D(Y3)UN(d3,dU)

0 0 R0

Let us define a Poisson random measure Na(-, ) as Na(s,u) 2 N(s, Cau). Let V be

the intensity measure of Na. Then a change of variable gives

du

[u[1+a

 V(ds,du) = n(ds,d(Cau)) = 13(2WdSICQ) —dSVa(du), (say)
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where Va(du) = 13(u)(Ca)al—qul%r3 ; Ifi(-) defined as in Theorem 4.2.1. Further, we

define the compensated Poisson random measure qa by qa(-, ) : NO,(~, ~) — 17(-, o).

Thus a change of variable gives:

t t

Yt :- YO + f0.(Y3)dS + f/b(Y3))UNa(dS,dU)

0 0RR0

t t

: Y0 + /a(Y3))ds + / b()Y3)uqa(ds, du)

O 0 O<|u|<1

t t

+ / f b()YsUNa(d3, (171) + /(b()Y3)Ul/((d8 ,dU)

0 |u|21 0 0<|u|<1

t

2 Y0 + /a()(“8d3 + / /(()()YS UdSI/a((dU)

0 0<|u|<1

t

b((Y3)Uqad3,dU) + f b()YsUNQ(d3,dU)

0 |u|21

t

+/
0

Let us denote by d, the function: a(y) = a(y) +b(y) f Ulla(du) . Then we have:

0<[u[<1

0<|u|<1

t t

0 00<|u|<1 IuIZI

This is of the same form as the equation given in (3.2). Also, we have function EL

in place of a and the Poisson random measure NO. From Theorem 3.2.2 using the

infinitesimal generator as in (3.3b), we can derive the infinitesimal generator in case

of an a-stable Lévy process as follows:
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Any) = f’(y)(&(y) — mm) + /{f(y + b(y)x) — f(y)}l/a(drr)

IR0

Here, KVa 2 f xua(da:). Thus,

O<|x|<1

Af(y) = f’<y>[a(y>+b<y) / wade—be) / wade]

0<|u|<1 0<|x|<1

+ / {f(y + b(y)x) — f(y)}ua(drc)

IR0

= a(y)f’(y)+ f{f(y+b(y>x) —f(y)}ua(da:)

R0

= a(yn’o) + (can / {f(y + b(y)x) — f(y)}15(rv)l;fifi—a

R0

= a(y)f’(y) + (cadre) [My — v) — f(y)}Ifi(—v) lvl‘f‘ia

R

 

0

= a(y)f’(y)++(C)abaty) (1— (3)/{11(y— u)—f(y)}l—v-—If“;

0

+(Ca)aba(y)(1+fl) /{f(y—v)— f(y)}lv——3:0

P(oz — 1) da

0 dyaf(y)]

P(a - 1) da

 = a(y)f'(y) +(Ca)aba(y)(1 — m[

+(Ca>aba(y)(1 + a)[
 

Hence, for O < oz < 1, the infinitesimal generator of the solution process for SDE in
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(4.1) can be written as:

Any) ——— a(y)f’(y) + (<1—a)(2cos(%))“1ba(y>};,-f(y>

 

 

7ra -1 a do .

+ (1+fi)(2COS(—2-)) b (y)d(_y)af(y)l (4-8)

for 1 < oz < 2: Again from Theorem 4.2.1

t t

0 0

t t

0 0(—6,6)C

Using a similar change of variable as in previous case,

t

Yt : Y0+ /a(Y3)ds+lim/ / b(Y3)uqa(ds,du)

0 0 (—6,6)C

t

+/ b(Ys)uNa((ds, du)—- / b(Y3))u17((ds ,du)

0

O lul21

—|/b(Ys))u1/(ds ,du)

UIIZ

t t

+/ /(b()YS)uqa((ds, du) + / b(Y3)uNa(ds,du)

0 0<[u[<1 0 |u|21
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Let us denote by EL, the function, a(y) : a(y) — b(y) flul>1 uVa(du). Then, we have:

t t

0 00<[u[<1 |u|21

(49)

which is of the same form as the equation given in (3.2). Also we have the function

6 in place of a and the Poisson random measure Na. Mom Theorem 3.2.2 using the

infinitesimal generator as in (3.3a), we can derive the infinitesimal generator in case

of a-Stable Lévy process as follows:

Any) = my) (a(y) + Guam) + /{f(y + b(y)x) — f(y) — f’(y)b('y)x}I/a(d:v)

130

Here, CV0, = f xVa(d:1:). Therefore,

|svl21

Af(y) = f'(y)(a(y)-b(y) / uua(dU)+Cuab(z/))

|u|_>_1

+ f {f (y + b(y)x) - f (y) - f'(y)b(y)x}ua(dx)

 

R0

= a(y) () (Ca)“/{f(y+b(y>$l‘le—f'(y)b(y)$}’fi(xllxfi:a

IR0

: a(y)f’(y) + (Comm) /{f(y — v) — f(y) + f’(y)v}1ra<-v>,,—fi%

1RD
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OO

 

 

 

= a(y)f’(y) + (Ca)aba(y>(1— a) f{f(y — v) — f(y) + f’bMfi’j—a

0

0 d

+<Ca)aba<y>(1+m / {f(y—v) —f(y)+f’(y)v}lvl1:a

= a(yn’o) + (Ca)aba(y)(1—m[:E:‘_j’( diam]

+(Ca>aba(y)<1 + m [2):ng d(fy)af(y>]

Hence, in case we have 1 < oz < 2, the infinitesimal generator for SDE in (4.1) can

be written as:

 

Combining Equation (4.8) and Equation (4.10) we get the infinitesimal generator in

(4.6), and the theorem is proved. Cl

The Backward equation :
 

The backward equation can be obtained using Theorem 3.2.3. Let A be the infinites-

irn a1 generator for the solution process {Yt} of SDE driven by a-Stable Lévy process

as in (4.1). Let f 6 03m),

D813 ne, u(y,t) : Ey [f(Yt)] . Then,%‘ti : A(u) . That is:
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fiO<a<1

 

 

 

3:5,: t) = a(y)U'(y,t) + [(1— m (2cos<%>)’1ba<y);—:u<y, t)

+(1+ fi)(2 005C?» -lba(y)d(fy)au(y,t)] (4.11a)

fil<a<2

9%? = a(y)U'(y,t) + [(1 — m( — 2cos<329))’lba<y)g5u(y,t>

+(1+ fl) ( — 2cos(%))_lba(y) d(iy)au(y, 15)] (4.11b)

The Forward equation :
 

Theorem 3.3.2 can be used to obtain the forward equation. Let {Yt} be the solution

process for the SDE in (4.1). Let us further assume that there exists a transition

probability density for Yt and let px(t, y) be the transition p.d.f of Yt, given Y0 = as.

We have already stated that the Lévy measure for the a-Stable Lévy process {Xt}

is given by law?» = Igoxcaalgfisz.

Note that, the measure 111(1‘, u) in Theorem 3.3.2 is the measure derived from the

Lévy measure Va(dy) by change of variable —u = b($)y. So in this case the change

of variable leads to 111(13, u) : 13(u)(Ca)a(b(x))a|—Jfiy+—a.

Now we see V1 is of the form 111(1), dy) = h(:c),u(dy), where h(:1:) : ba(:1:) and p E Va.

Thus, if condition (3.14) holds, then the transition probability density function of
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Yt satisfies the forward equation given in Theorem 3.3.2. This leads us to the next

theorem.

Theorem 4.2.3. (The forward equation for an a-stable Lévy diffusion)

Consider a stochastic differential equation driven by an a-stable Le’vy process (01 yé 1,

O < a < 2) as in (4.1), such that the solution process Yt exists and is unique. Then

if the coefi‘icient functions a and b satisfy assumption (3.14), and if there emists

a transition probability density function p1;(s,y) of the solution process {Y3} given

Y0 = :13, then the following forward equation holds:

if0<oz<1,

gpx(s,y) = [(1 + fi)(2005(%€))—1g;a(ba(y)px(s,y))

 +<1 — m (2cos ("—2‘3'-))"1 (“f/)0. (Maw, 20)] — i:- [a(y)px(s,y)]<4.12a>

fil<a<z

7m -1 do‘

gain) = ((1+s)(—2cos(7)) @(buymaayn

 +<1 — m (—2 (”—2‘J’-))_1 (“$6. (ba(y)px(s, 30)] — flame, y)](4.12b)

Proof. Case I : 0 < a < 1: In this case

(1

Kl/a Z (Ca)a / $IB($)-|;;|1$m Z 2(Ca)a B
 

<00.

l—a
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Therefore we shall use the forward equation from (3.3b), i.e,

Eighty) = / [(px - may — r) - (pm - h)(8,y)]V(d(-T)) — Egon: - may)

R0

where (Pa: - h)(w) = h(9lP$(3ay) and H(y) = a(y) - Kuabty).

Note, in this case H(y) : a(y) —— KVOb(y) : a(y). Thus, the forward equation:

a a a a
7mm): / [(px-b )(s.y—r>—(pxob )(s,y>]ua(d(—r))—gummy)
(‘3

R0

or a 01 d7 0

= (Ca) R/[(Px'b )(s,y—r)—(px-b )(say)]1p(-T)W—a—ybixoaflsay)

0

: (1+ mean / [(px - may — r) — (pa: - were]W
0

0

+(1— WOO)“ / [(px -ba)(s,y — r) — (P2: - ba)(s,y)lI—T|1—+(;

2 [(1+ fl) (2 cos (£23) )—1ga(ba(y)px(8,y))

 

+(1 — fl) (2 C05 (7129') )_1d(i:)a (ba(ylpx(3ay))] " 2%" [a(y)px(8, 31)]

Case II : 1 < a < 2: In this case
 

 

CV0 = / mVa(d:r) : 2(Ca)a

lxlzl

01—1
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Therefore we shall use the forward equation from (3.3a) here, i.e,

grass!) = / [(px-th-r,s)—(pa:-h)(s,y)+r(px-h)'(y,8)]M(d(-7'))-%(Px'cl(y,S)

R0

where (Pa: - h)(s, y) = h(v)px(s,y) and C(31) = a(y) + Cuab(y)-

In this case C(y) = a(y) + Cuab(y) : a(y) . Thus, the forward equation is given by:

gm“): f[<px-ba>(y—r,s)—(mine, snaps. We s>]ua(d(——v~>)

R0

— %(px-a)(y,8)

a a o a I dr

= (Ca) / [ox-b )(s,y—r)—(px-b )(s.y>+r<px-b mom—om

R0

— 3%(p33 (”(3,111)

= <1+fi><ca)af[(px-ba)(s,y—r)— (px bows y)+r(px bans y)]fia

0

0 d

+(1—6)<Ca)a / [(pm wey—r)— (Pm ms y)+r<px bans y)]Ir—T—lia

8

_ 5%(p1' ' a)(39 y)

= [(1+m( 20041;»5;: (bad(mew)

u—m<—mes)
 

:Iab"((()p:c(s y))]- 5%[a(y)px(s,y)]

We combine the two cases to get the forward equation of the form (4.12). This

concludes the proof. 1:]
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Remark : The above fractional derivative form representation of the forward

equation is just a special representation in this case. This form agrees with the

space-fractional advection-dispersion equation used in hydrology. The main forward

equation form derived as in (3.3a) or (3.3b) can be used for analytical purposes.
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