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ABSTRACT

PARTICLE TRACKING USING STOCHASTIC DIFFERENTIAL
EQUATION DRIVEN BY PURE JUMP LEVY PROCESSES

By
Paramita Chakraborty

Stochastic diffusion driven by a pure jump Lévy process is an important core
concept for particle tracking methods used in stochastic hydrology and for tempered
anomalous diffusion models used in (Geo) Physics. In this work we discuss the jump
Lévy diffusion in terms of stochastic differential equations (SDEs). We examine the

existence and uniqueness of solutions of stochastic differential equations of the form
dY; = a(Yy)dt + b(Y;)dX,

where {X}} is a pure jump Lévy process. Further, we rigorously derive the infinites-
imal generator and the backward equation. It can be shown that the infinitesimal
generator is a pseudo differential operator. Using this form with the backward equa-
tion, we derive the forward equation by an involution type technique. The forward
equation associated with the transition density of the solution process is analogous to
the governing advection-dispersion equation used in particle tracking of heavy tailed

flows and tempered anomalous diffusion models.
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Notations

10.

11.

12.

13.

14.

. R : Set of real numbers.

Rg: {z:z € R;z # 0}.
. N:={1,2,3,...}
. Np:={0,1,2,3,..}

Ry:={zecR:z>0}

Cg(R) : All functions f defined on R with compact support and bounded

second order derivatives.
C™(R) : m-times continuously differentiable functions on R.
.C®R): = N C™(R)

meN
. Coo(R) := class of continuous functions on R vanishing at oo.
(92, F, P): Probability space.

LO(£) : Set of all real valued random variables defined on €.

Sa(o, B, 1) : Stable distribution with index of stability a, the skewness param-
eter 3, the scale parameter o and the shift parameter px.

ForO0<a<2,6>0,—-1<3<1and preal

N(ds,du): Poisson random measure defined on B([0, 00) x R) with mean function

v(ds, du).

q(ds,du):Compensated Poisson random measure defined as :

q(ds,du) = N(ds,du) — v(ds,du).
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Chapter 1

Introduction

Stochastic diffusion is a very useful tool in hydrology. It is widely used to describe
water flow through a porous medium. The main hypothesis is that the path of a water
(quasi) molecule is governed by a Markov process. This idea has been discussed by
Bhattacharya, Gupta and Sposito [6, 7, 15]. They argued that the trajectory of a
quasi molecule is a Markov process with continuous sample path. With the drift
coefficient chosen to be the drift speed of a quasi molecule and the diffusion matrix
providing a measure for the random variation of the increment of the sample path, the
Markov process can be shown to be the unique solution of It6’s stochastic differential
equation (SDE) driven by a Brownian motion. Further, the conditional probability
density function of the Markov process solves a forward equation that is analogous
to the advection dispersion equation (ADE) that governs the flow. This mechanical
advection dispersion equation is derived from the Buckingham-Darcy equation [4]
that forms the basis for most current hydrological models of contaminant transport
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[4, 14].

Recently, it has been observed that this advection dispersion equation may not be
adequate for modeling the heavy tailed contaminant transport in saturated porous
media. For such flows an alternative model has been advocated that describes the dis-
persive flux by a fractional space derivative (the space-fractional advection-dispersion
equation or fADE [5]). A stochastic differential equation driven by a stable-Lévy pro-
cess can be associated with this fADE model. If there exists a Markov process that
solves an SDE driven by a stable-Lévy noise then it can be shown that the forward
equation of this Markov process is analogous to the governing equation in the fADE
model. This theory has been used by hydrologists as the basis of random walk par-
ticle tracking methods used to solve the fADE to model heavy tailed ground water
contamination transport (Zhang et al [25],[26],(27]). The primary purpose of this
work is to lay out a rigorous mathematical foundation for this theory that has been

successfully used in hydrology.

Another example of an SDE driven by a jump Lévy process is the tempered
anomalous diffusion model [10, 20], which has useful applications in (geo)-Physics.
Stochastic diffusion driven by a general jump Lévy process can be used to describe
all these cases. With this motivation we start by deriving the governing forward
equation of an SDE driven by a general jump Lévy process. Next, as a special case,
we derive the governing forward equation of an SDE driven by a stable-Lévy process
that can be used for particle tracking of heavy tailed flows.
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In Chapter 2 we give preliminary definitions and results required for the main
part of the thesis. In Chapter 3 we discuss an SDE driven by a general jump Lévy
process and derive the infinitesimal generator and forward equation. Using concepts
developed in Chapter 3, we derive the governing forward equation of an SDE driven
by a stable-Lévy process in Chapter 4.

More detailed discussion and application of the theory presented here can be

found in [11] and [12].



Chapter 2

Preliminaries

The purpose of this chapter is to provide background material for the subsequent

chapters.

2.1 Lévy Processes and Lévy Ité6 Decomposition

We shall be studying a stochastic differential equation driven by a Lévy Process.
This involves defining stochastic integration (in the It6 sense) with respect to a Lévy
process. We begin by defining the Lévy process . Let {Q,F, P} be the underlying

probability space.

Definition 2.1.1. A stochastic process {Xy : t > 0} is a Lévy process if the

following conditions are satisfied:
1. For any choice of n>1 and 0 < tg < t] < ... < tp, random variables XtO’
Xty —Xtyr Xtg— Xty s Xt,—Xt,_, are independent (independent increment
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property).
2. Xo =0a.s.

&. The distribution of Xgyy — Xs does not depend on s (stationary increment

property).

4- It is stochastically continuous, i.e P(| Xy — Xs| > €) — 0 as s — t for every

e > 0.

5. We assume that {X¢,t € Ry} is cidalag without loss of generality. (Sato
[23]).
(There is Qg € F with P[] = 1 such that, for every w € Qp, Xi(w) s

Tight-continuous in t > 0 and has left limit int > 0.)

R emark:

(1) { Xy} is called a Lévy process in law, if it satisfies (1), (2), (3) and (4).
(i) A stochastic process satisfying (1), (2), (4) and (5) is called an additive process.
(iii)  An additive process in law is a stochastic process satisfying (1),(2) and (4).

Definition 2.1.2. A probability measure p on R is infinitely divisible if, for any

Poszizve integer n, there is a probability measure pun on R such that p = pl.

Remark:

a) Here u? gives the n-fold convolution of up, i.e, u? = BXB* . K
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b) We can write up = pl/" and it is uniquely determined. Using this we can define

™ for any rational number 7.

c) For any non-integer ¢ € (0, 00) we can choose a sequence of rational numbers {ry}
such that 7, — t and define the ¢-fold convolution of p as pt = nlimoo p™. For

—’
detailed construction and proof of existence of such limit see Sato ([23], page

35).

Observe that by (1),(2) and (3) in definition 2.1.1 above and the fact that for each
t>0, Xt=Xt—X§n_12t + -+ + X — Xt + Xt — X for every n, we can say
7 n n n
for each ¢, Xy = sum of independent identically distributed random variables. Let
jx, be the measure associated with {X;} and pn be the measure associated with
{X¢ — Xp}, then KX, = Bn*fin:- % pn = pr. Thus px, is infinitely divisible for
n

each t. The next theorem precisely gives the relation between a Lévy process and an

infinitely divisible process.

Theorem 2.1.1. (Theorem 7.10: [23], page 35)

(1) If {X¢ : t > 0} is a Lévy process in law on R, then, for any t > 0, Py, is

infinitely divisible and, letting PX1 = p, we have PXt = ;Lt.

(ii) Conversely, if p is an infinitely divisible distribution on R, then there is a Lévy

process in law {Xy : t > 0} such that Px, =p

An infinitely divisible process can be specified by its characteristic function, which
is given by the Lévy-Khintchine representation as follows:
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Theorem 2.1.2. (Theorem 8.1: [23], page 37) Lévy-Khintchine representation

1) If p is an infinitely divisible distribution on ]Rd, then its characteristic function
/

has following representation:

i) = [ é=utdn)
1 .
= exp [—ﬁ(z,Az) + i{y,2) + /(e’(z’x> -1- i(z,m)lD(x))u(dw)] (2.1)
R4
forz € RY, where D = {z : |z| < 1}, A is a symmetric nonnegative definite

d x d matriz, v is a measure on R4 satisfying,

v({0}) =0 and /(|x|2 A l)y(dr) < o
R4

and vy € RY. The representation of f1 in (i) by A, v, and 7 is unique.

(ii) Conversely, if A is a symmetric nonnegative-definite d x d matriz, v is a measure
as above, and v € Rd, then there exists an infinitely divisible distribution p

whose characteristic function is given by (2.1).
Remark: We call (A,v,7) in the above theorem the generating triplet of p.

In this work we express the stochastic differentiation w.r.t a jump Lévy process
as the stochastic differentiation w.r.t a compensated Poisson random measure. To
understand this representation we need to know the decomposition of general Lévy

7



processes in terms of integration w.r.t Poisson random measures. This is called the
Lévy-It6 decomposition.

We start with the definition of Poisson random measures. Let

Z, = {0,1,2,3,..} U {+o0}

Definition 2.1.3. Let (0, B, p) be a o-finite measure space. A family of Z -valued
random variables {N(B) : B € B} is called a Poisson random measure on © with

intensity measure or mean function p, if the following hold:

(1) for every B, N(B) has Poisson distribution with mean p(B);
(2) if By, ..., Bn are disjoint, then N(By), ..., N(Br) are independent;

(3) for everyw, N(.,w) is a measure on ©.

The random measure q defined by q(B) = N(B) — p(B) ts called the compensated

Poisson random measure.

The next theorem gives a constructive decomposition of a Lévy process as a
sum of a jump part and a continuous part. In this theorem we shall use stochastic
integration w.r.t a Poisson random measure (see Section 2.2 for precise definitions).

Let H = (0,00) x (R%\ {0}). The Borel o-algebra of H is denoted by B(H).The

basic decomposition theorem is given by,

Theorem 2.1.3. (Theorem 19.2 : [23] page 120)
Let {X¢ :t > 0} be an additive process on R¢ defined on a probability space (2, F, P)
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with system of generating triplets {(Ag¢,vt,7t)} and define the measure ¥ on H by
7((0,t] x D) = 14(D) for D € B(Rd). Using 2 from definition(1.1) of an additive
process, define for B € B(H), |

#{s: (S,Xs(w) - Xs_(w)) € B} , for w €y,

0 yfor w ¢ Q,

J(B,w) =

Then the following holds:

(i) {J(B) : B € B(H)} is a Poisson random measure on H with intensity measure

v.

(ii) There is Q € F with P[] = 1 such that, for any w € §,

Xt(l)(w):leirg / (zJ(d(s, 7),w)—zi(d(s,z))} + / zJ(d(s,z),w)
(0,t] x {e<|z|<1} (0] x{|z|>1}

is defined for allt € [0,00) and the convergence is uniform in t on any bounded
interval. The process {Xt(l)} is an additive process on R with {(0,1,0)} as
the system of generating triplet.

(iii) Define, X\?(w) = Xy(w) — XV () forw e 0.

There is Qp € F with P(Qg] = 1 such that, for any w € Qo, Xt(Q)(w) is contin-

uous in t. The process {Xt(2)} is an additive process on R% with {(A¢,0,7¢)}
as the system of generating triplet.

(iv) The two process {Xt(l)} and {Xt(2)} are independent. {Xt(l)} is called the jump
part and {Xt(2)} is called the continuous part of the process {X;}.

9



Finally the Lévy-Ité6 decomposition of a Lévy process is given as follows:

Theorem 2.1.4. (Theorem 2.4.16:[23],page 108) (The Lévy-Ité6 decomposition)

If X is a Lévy process in R% with generating triplet (A,v,7), then there exists a
Brownian motion B 4 with covariance matriz A and an independent Poisson random
measure N on R X (Rd \ {0}) with intensity measure 0((0,t] x B) =t x v(B) for

B € B(Rg), such that, for eacht > 0,

X(t) = 7t + By(t) + / zq(t,dz) + / zN(t,dr)
=<1 |z|>1
where q is the compensated Poisson random measure associated with N as in Defini-
tion 2.1.3. The Brownian motion part gives the continuous part of the Lévy process
whereas the integration w.r.t Poisson and compensated Poisson random measure con-
tribute to the jump part. In the next section we shall formally define integration with

respect to a Poisson random measure and a compensated Poisson random measure.

In this work we shall consider a pure jump Lévy process with A = 0 and v = 0,

i.e a Lévy processes of the form:

X(t) = /xq(t,dx) + /xN(t,da:)
|z <1 |z(>1

10



2.2 Stochastic Calculus w.r.t Lévy Processes

In the previous section the Lévy-Ité decomposition shows a Lévy processes can be
expressed in terms of a Brownian motion and a Poisson integral. However, here
we shall be considering only pure jump Lévy processes. Therefore for the main
results we shall ignore the Brownian motion part and concentrate solely on stochastic
integration w.r.t a Poisson (compensated) random measure. We shall follow the
concepts discussed by A.V Skorokhod in [24] to define stochastic integration w.r.t a
compensated Poisson random measure.

Let us consider 0 < tg < T < oo and let v be a measure defined on [tg, T] x R.
Let B be the ring of all Borel sets A in [tg,T] x R for which v(A) < oo.
Let N be a Poisson random measure defined on B with intensity measure v. For

every A € B we shall denote by g(A4) the random measure defined by the relation:

g(A) = N(A) - EN(A) = N(A) - v(4)

We suppose that for every t € [tg, T, a o-algebra F; of events A is defined, such that
A C [tg,T] x R (that is, (s,u) € A only if s € [tg,t]). Also we assume that N(A)
is measurable w.r.t F;. Also, for all sets Ay, Ag,---, A in [t,T] x R the quantities
N(A;) are mutually independent of any event in Fy.

We shall use the following function spaces in our definition:

M(Fy) = {f(t,u): f(t,u) is a random function measurable w.r.t F;}.

11



We shall call the function f(t,u) a step function if there exists 5 < t; < --- <
tn = T and Borel sets By, Bg,- -, By in R such that f(t,u) is constant on every set
[tk’tk+1] X Bj, k=01:--(n-1),7=0,1--- n, and UB] = R. We set the

following:

My(F;) = {step functions f(t,u) in M(Fy): 3 e >0, f(t,u) =0 for |u| < €}.

T
]\711(,1) = {f(t,u) : //Elft u)|v(dt,du) < oo}.
to R

D = (ftw) [f |ftu|udtdu)<oo]—1}

T
Y = (i) // E|f(t,w)2u(dt, du) < oo},
to R

P = {f(tw) P[f/ (8, u)| 20 dtdu)<oo]—1}
o R

Definition 2.2.1. Stochastic Integral w.r.t compensated Poisson random measure

(See [24], page 35-37):

(a) Assume f(t,u) € My(Ft). Taking u; € Bj, we define

T
[ [rewddna) = reuaintin < By).
to R 0<k<(n-1)

1<j<n

12



Remark : Note that in this case it can be shown that the following Ité isometry

holds:

T 2 T
/ / (t,u)q(dt, du)| = / / E|f(t,u)|?v(dt, du)
to R

to R

(b) It can be shown that For every f(t,u) € Mél)(ft), there exists a sequence of

functions fr(t,u) € My(F)N ]\7!51)(.7-}) such that

lim / / E|fn(t,u) — f(t,w)2u(dt, du) =

1—00
o R
T
Hence the sequence of random variables [ [ fn(t,u)q(dt,du) will converge in
o R

probability to some particular random variable which we shall denote by:

fff t,u)q(dt,du), whenever f(t,u) € M, 5% )( Fr).
toR

(c) Now let f(t,u) € M§2)(.7-'t), define gn(z)= 1 for |z| < n and gn(z)= 0 for

|z| > n. Then for alln € N,

T
fn(t,u) = f(t,U)gn(/ / If(t»U)IQQ(dt,dU))

oR
T
belongs to Mél)(}"t), and consequently the expression [ [ fn(t,u)q(dt,du) is
toR

13



meaningful from (b). Also it can be shown for ' > n,

P If/fn/(t,u)q(dt,du) ~ /T/fn(t,u)q(dt,du)|>0}

to R tp R
T
< P[‘//If(t,u)|2u(dt,du) >n]

o R

Since the probability on righthand side approaches to zero as n — oo, the

T
sequence of random variables [ [ fn(t,u)q(dt, du) will converge in probability to
toR
T
some particular random variable which we shall denote by [ [ f(t,u)q(dt,du),

o R
whenever f(t,u) € MéQ) (F¢)-

Next, we give the definition of a stochastic integral with respect to a Poisson

random measure N.

Definition 2.2.2. Stochastic Integral w.r.t Poisson random measure (See [24], page
38-41):
T

(@) If f(t,w) € M (F) N 18D () thenfff b u)a(d, du) and [ J(t, (e, du)
to R o

both are finite. We set for f(t,u) € M,§2) (FHN M,g2) (Ft)

f/f(t,u)N(dt,du //ftu)q (dt du)+/ft u)v(dt, du)

to R to R

(b) For every function f(t,u) € MI(,I)(}}), it is possible to construct a sequence

14



fn(t,u) € M,(,l)(ft) N M,Sz)(ft) such that

lim //Elfn t,u) — f(t,u)|v(dt,du) =0

n—0o0
o R
and therefore
T
nllm //Elfn(t,u) — filt,u)|v(dt,du) =0
l—ooty R
T
Hence the sequence of variables [ [ fn(t,u)N(dt,du) will converge in probabil-
R

ity to some limit, which we shall denote by

f / £(t, w)N(dt, du)

th R

(c) For f(t,u) € M,(,Q)(ft). Then for every n € N,
T
fa(t,u) = f(t7u)gn<| |f(t,u)|2z/(dt,du))

will belong to MI(,I)(ft), and for n/ > n,

f/ (t,u) N(dt,du) — //f,l(t u)N(dt,du)| >0
to R

to R

15



T
< Pl;//]f(t,u)lu(dt,du) >nf.
oR

T
Consequently nleoo J f(t,u)N(dt,du) ezists in the sense of convergence of prob-
t

ability. We shall denote this limit by,

T
/ f(tu)N(dt,du) for f(t,u) € M (F)).

to
Now we can proceed to define stochastic integration w.r.t jump Lévy processes.

Definition 2.2.3. (Stochastic Integral w.r.t Lévy processes):

Let {X;} be a pure jump Lévy process taking values on R with generating triplet
(0,v,7). We want to define stochastic integration of the formY; = Y0+f(§ L(s)dXs.
The Lévy-It6 decomposition shows that {X;} can be expressed in terms of a Poisson

integral. Using that form we can define:

where we assume tg = 0 and L(t) € MéZ) (Ft)lu=0-

In general a stochastic process taking values in R is called a jump Lévy-type

16



st ochastic integral if it can be written in the following form:

t t
Yt=YO+/G(s)ds+/ / st)qud:c)+/ K(s,z)N(ds,dz)
0 0

lz|<1 |z|>1

where |G|1/2 € M( )(ft Nu=0; H(t,-) € M( )(ft) and K predictable. Here N is
a Poisson random measure on (Rt x Ry) and g is the corresponding compensated

Poisson random measure.

2.3 Stochastic Diffusion Driven by a Jump Lévy
Process & Existence and Uniqueness of the

Solution

Let {X;} be a pure jump Lévy process with generating triplet (0,v,0) of following
form

X(t) = / zq(t,dx) + / zN(t,dr) (2.2)
0<|z|<1 |z|>1

where N is a Poisson random measure with intensity measure ((0,¢] x D) = tv(D)

for D € B(Rg).

Let us consider the drift coefficient functions a and the dispersion coefficient
function b, where a, b : R — R. We are interested in the diffusion equation driven

17



by pure jump Lévy process {X;}, i.e, SDE of the form:
dY; = a(Yy)dt + b(Y3)d X} (2.3)
Using the Lévy-It6 decomposition of X; we can rewrite (2.3) as :
dYy = a(Yy)dt + / b(Yz)zq(dt,dz) + / b(Yy)xN(dt,dr) (2.4)

0<|z|<1 |z|>1

Thus, we get a special case of the (jump) Lévy-type stochastic differential equation.

Under certain conditions on the coefficient functions a and b of the diffusion
process, we can show that there exists a unique solution process to the diffusion
equation (2.3). The general stochastic differential equation w.r.t a Lévy process with
the existence and uniqueness of the solution is discussed by D. Applebaum ([1] :
section 6.2). Therefore for the following theorem we give just a sketch of the proof

and refer to [1] for details.

Theorem 2.3.1. Let coefficient functions a and b of diffusion equation (2.3) satisfy

the following growth condition and Lipschitz condition

(A) Growth condition: there exists constant C > 0 such thatV y in R

@)+ 1bw)* <€ (1+y?)

18



(B) Lipschitz condition: there exists constant C' > 0 such thatV y; yo in R
l)
la(v1) - aly)|? + lb(y1) — bw2)l* < € (Iv1 - val?)

Then, there exists a unique solution process Yy for the equation (2.3); also the solution

process is continuous w.r.t the initial value.

Proof. To prove the theorem use the alternative form of the diffusion process as in
(2.4). The proof is done in two steps. In the first step consider equation (2.4) up to

small jumps only, i.e consider

dZs = a(Zy)dt + / b(Z¢)xq(dt, dr)
0<|z|<1

Such a process {Z;} can be constructed using Picard’s method (Skorokhod [24]) and
using conditions (A), (B). Further it can be shown the solution {Z;} is unique.
In the second step the large jumps can be added to {Z;} using an interlacing tech-
nique (Ikeda and Watanabe [17]) and hence the solution process {Y;} for the main
equation (2.4) is constructed. Uniqueness follows from uniqueness of {Z;} and the
interlacing structure.

For detailed constructions and proof of uniqueness see [1] (Theorem 6.2.3,
page 304 & Theorem 6.2.9, page 311). For the proof of continuity w.r.t initial value

and Markov property see [24]. O
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Chapter 3

Derivation of the Infinitesimal
Generator, Backward and Forward

Equations

In the previous chapter we observed that, under certain restrictions on the drift and
the diffusion coefficients, a unique solution process {Y;} of the diffusion equation in
(2.3) exists. Further, the solution is a Markov process. In this chapter we derive
the infinitesimal generator and associated backward equation of the Markov process
{Y:}. Using Fourier analysis concepts we can show that the infinitesimal generator is
a pseudo-differential operator. Then we derive the governing forward equation from

the backward equation using an involution type technique.

For simplification of calculations we restrict the study to one dimension and also

20



to the case where drift and diffusion coefficients are only space dependent. The

theory can be easily extended to an SDE with time homogeneous coefficients defined

on Rd.

3.1 Properties of the Solution Process

3.1.1 Time Homogeneity of the Solution Process

Let us consider the SDE in (2.3) with a little modification. Consider
dY; = a(Yy)dt + b(Yy)dX; (3.1)

fort > s, given Ys =y and Xs is a jump Lévy process.
Also, we assume coefficient functions a and b satisfy growth condition and Lips-

chitz condition from Theorem 2.3.1.

Denote the unique solution of (3.1) by ¥; = Yty,s . Then,

y¥h =y + /t “h (Y&”t) du + /t “h (Y&”t) dXu

—y + /Oha(yti‘{;ﬁ))dv + /Ohb(yt%)d)fv

with u =t + v and Xy = Xt4+v — Xt On the other hand,

PO =y 4 /Oha(y,}/’o) dv + /Otb(}q}/’o) dX,
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Now from the definition of Lévy processes, { Xy} and { Xy} have same Xg-distribution.
. . : . it
Then it follows from the uniqueness of the solution for SDE in (3.1) that {Yﬁh}hzo

and {Y,?’O}, h > 0 have same Yp-distribution; i.e, {¥;};>( is time homogeneous.

3.1.2 Markov Property of the Solution Process

Let {F¢} be the o-field generated by {Xs:s < t}. Let {Y;} be the solution process

of equation (2.3). From the equation we know that Y; is F; measurable.

Theorem 3.1.1. If there ezists a unique solution of SDE (2.3), then the solution

process s a Markov process.

Proof. By construction we can re-write Y; ¢ as follows:

Yits=Ys+ M(s, t+s)

where
t+s t+s
M(S,t + S) = / a(Yv)d'U + / b(Yv)dXv
s s

Following the Lévy-1té6 decomposition M(s,t + s) is o{N(v,A) — N(u,A),s < u <
v < t,A € B(Rg)} measurable ( B(Rg) is the Borel sigma field of Rp). Clearly
M(s,t + s) is independent of Fs C o{N(u, A),u < s,A € B(Rg} and that leads to

the Markov property. See [24] (page 75, Theorem 1) for a more detailed proof. O
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3.1.3 Feller Property of the Solution Process

Let {Y;} be the solution process of equation (2.3). Let {Yty} be the solution process
with initial condition y. We want to show that the solution process is continuous in
terms of initial value. Let functions a and b be the drift and diffusion coefficients as
in (2.3). We assume the coefficients satisfy the growth condition in Theorem 2.3.1.

Define
t

t
Zy =y + / a(Z¥)ds + / / b(Z¥ ) uq(ds, du)
0 0<|ul<1

where compensated random variable g is defined as in (2.4). We want to show that

. Yy L? Yy
if yn — y, then Z;" = Z; for 0 <t < T. Now

¢ 2
23— 2V < Sy =yl + 3] [ a8 - a(2)]ds
0
¢ 2
+3 / / [b(zsyn) - b(zg)] ug(ds, du)
0 o<u|<1
If we write K = il u21/(du), then using Cauchy-Schwarz inequality and Doob’s

O<ul<1

martingale inequality in the right hand expression above, we get:

t

2

E( sup |zgm—zf|2) < 3|yn—yl2+3T/E( sup |a(Z¥") — o(2Y))| )ds
0<t<T 0 0<t<T

t
+12RV/E( sup |b(Z-’SJn)_b(Z§/)|2>ds
0<t<T
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By the growth condition

t
B sup 12§ - Z}) <3lyn—yl*+ CT/E( sup E|24" - ZY|*)ds
0<t<T 0 0<t<T

where C is a constant that depends on T and constant C’ in growth condition

given in theorem 2.3.1 only.

Hence by Gronwall’s lemma we can say, if y, — y then E( sup |Ziy" - ZZJ|2) — 0.
0<t<T

Adding the large jump part to {Z;} by interlacing we can get {Y;} and thus the

process {Y;} is continuous in terms of initial value.

3.2 Infinitesimal Generator and Backward
Equation

Let P(t,z,y) be the transition probability for the Markov process Y;. That is, for any
A € B(R), (B(R) is Borel sigma field of Rg), we have P(t,z, A) = Pr{Y; € A}. Here,
Py(-) should be interpreted as conditional probability with given condition Yy = z.
The transition probabilities of a Markov process defines a transition semigroup; and
the semigroup uniquely defines the infinitesimal generator. Let us start with the

definition of a semigroup.

Definition 3.2.1. A family {Ty;t > 0} of bounded linear operators on a Banach
space B is called a strongly continuous semigroup if
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(a) T4Ts = Tyys fort,s €[0,00)

(c) ltiln(}th = f for any f € B.

Definition 3.2.2. The infinitesimal generator of a semigroup {T}} is defined by the

formula

_ e Inf =1
Af—}:ir(l) .

Its domain D 4 consist of all f € B for which the above limit exists.

Let C be the space of bounded continuous functions on R. For f € C define the

following operator:

T,f(z) = / () P(t,,dy) = EZ[f(Y})

This infinitesimal generator is also called the infinitesimal generator of the Markov
process {Y;}.

In section 3.1 we already observed that the solution process {Y;} of the SDE in
(3.1) is a Markov process. In this section we shall derive the infinitesimal generator
of the solution process. We shall use the Ité formula for stochastic integrals with
respect to Poisson random measure. The It6 formula for general Lévy type integrals
is given by lkeda and Watanabe [17]. Using their theorem we can state the It6

formula for our case as follows:

Theorem 3.2.1. ([17] Theorem 4.1, page 66): Let {Y;} is a pure jump Lévy type
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integral, i.e,
0)+/G ds+/ / H(s,z)q(ds,dzx) + / / K(s,z)N(ds,dz)
0<|z|<1 |z|>1

where N is a random Poisson process on ([0,00) x Rg) with intensity measure o, with
H(t,') € 1\71(52) (Ft) and K predictable. Let C2(R) be the set of twice differentiable

functions on R. Then for any function F € C’2(R) following holds:

F(Y(t)) - F(Y(O))
/ F’ G(s )ds + /t {F(Y(s—) + K(s,a:)) — F(Y(s—)) }N(ds,d:c)
0 |z]>1

; /t { ( (s=) + H(s, m>> ( (s—))}q(ds,dm

0 0<lz|<1

) /t {F( =)+ Hs)) = P (¥(6)) - HGs. )P (Y(60)) }ﬂ(ds,dw

0 0<|z|<

8~

—

Let us assume the coefficient functions a and b satisfy growth condition and
Lipschitz condition as in Theorem 2.3.1. Then a unique solution process {Y;} for the
SDE in (3.1) exists and it is a Markov process. For f € C if we define (T3 f)(z) =

E* f(Y}), then the infinitesimal generator of Ty exists.

Note that equation (3.1) or (2.3) has alternative form as a pure jump Lévy type
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SDE as in equation (2.4), so we can express Y; as :
t t t
Y; :YO+/a(Ys)ds+/ / b(Ys)zq(ds d$)+/ / b(Ys)zN(ds,dz) (3.2)
0 0 0

|z|<1 lz|>1

where N is Poisson random measure with intensity measure (dt,dr) = dtv(dz).

Equation (3.2) with Theorem 3.2.1 gives us the infinitesimal generator as follows:

Theorem 3.2.2. (Infinitesimal Generator): Let {Y;} be the solution process of
the stochastic differential equation: dYy = a(Yy)dt + b(Yy)d Xy, where { Xt} is a real
valued pure jump Lévy process with generating triplet (0,v,0). Also, suppose that the
coefficient functions a and b satisfy the growth condition (A) and Lipschitz condition
(B) as in Theorem 2.3.1.

If Cy= f|17|>1 zv(dz) < oo, then for any function f € Cg(R) the infinitesimal

generator A of {Y:} is given by:
A1) = 1) (al) + C) + [{#(u+bwx) = 1) = Fbiwafuids) 339)

alternatively, if K, = f0<|x|<1 zv(dz) < 0o, then for any function f € Cg(R) the

infinitestmal generator A of {Y;} is given by:

Af() = 1) (aly) ~ Kubly / {(v+bw)) - 1) ) (3.3b)
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Proof. Let us assume Yy = y. Using Theorem 3.2.1 for any f € Cg(R),

f(Yt) f(y)
/f (Ys)a(Ys)ds + O/MZI { ( —) +b(Ys ):L') - f(Y(s-—))}N(ds,dzr)
+ / / { f(Y(s ) + b(Ys )w) f(Y(s—)> }q(ds,dx)
0 O<|z|<1
t
+ / / { ( 5=) + b(Y, )w) (Y(s—)) _b(ys)xf'(Y(s—))}f/(ds,dx)
0 o<|z|<1

By definition of infinitesimal generator we have:

Af(y) = ltllrg ;
) t
— lim —_FY !
= ltllnol tE /f (Ys)a(Ys)ds
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f(Y(s—) b)) - f(Y(s—))} dsi(d)

f(Y(s—) #bvae) - 1(¥(s-)) - b(Ys)xf'<Y(s—))}dSV(d:v)

0<|z|<1

Now let us write

Ky == d
o ™

Cy, = /|$|Zl zv(dzx).
Then :
@) (aw) - Kib(w)) + figg{ /(v + b)) = F) ptda),
'lf KU < 00;
Af(y) =
7@ (alw) + Cob®)) + fry{ £ (v + bw)z) - 1) = F' W)z fr(da),
if Cy < oo.
This completes the proof. a
Remark:

i) In case Cy and K, both are finite we can use either form because both forms will

be equivalent.
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ii) In case neither of Cy and K, are finite we can use equation (3.4) form of the

infinitesimal generator.

We can show, for the infinitesimal generator of any Markov process, in particular
for the solution process of the SDE driven by pure jump Lévy process the following

backward equation holds.

Theorem 3.2.3. (The backward equation) : Let A be the infinitesimal generator
as in Theorem 3.2.2 for the solution process {Y;} of the SDE (3.1). Let f € Cg(R).

Define, u(y,t) = EY [f(Y})]. Then, a’t‘ exists and

Ou
— = A .
T (v) (3.5)
where the R.H.S is to be interpreted as A applied to the function y — u(y,t).

Proof. Let g(z) = u(zx,t). Then, using Markov Property,

EY[g(Yr)] — 9(y)

r

= {Bv[E" (o)) - E¥Ietvin}

= L{EY[EY oY) F)] — EY[o(V)}

= %-Ey l9(Yt4+r) — 9(Y2)]

U(y,t+r)r— u(y.t) | %tu—asrlo.

Therefore, A(u) = lim, | Ey[g(Yry ~ 9(v) exists, and % = A(u). Hence the
backward equation. a
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3.3 Pseudo Differential Operator Form of the
Infinitesimal Generator and the Forward
Equation

Using Fourier analysis we can show that the infinitesimal generator in (3.3) is a
pseudo-differential operator (in sense of Jacob [18], definition 3.3.3) defined on the
anistropic Sobolev space HEZ’Q(R). Here we show that the transition probability
density function of the solution process satisfies a deterministic differential equation
viz. the forward equation. The forward equation can be derived from the backward
equation using the infinitesimal generator in its pseudo differential operator form.
This forward equation gives the governing equation of diffusive flows and thus vali-
dates the key role of jump Lévy SDE in stochastic modeling of anomalous diffusion.
To derive the forward equation we assume the density function of the solution process
belongs to the anistropic Sobolev space H €22 (R). For this section we are going to

use the Fourier transform of a real function f as follows:

o0

() = P(£(6)) = (2m) "1/ / eI () de

—00
We shall discuss other required concepts and definitions as we proceed.
Lemma 3.3.1. Let {Y;} be the solution process of the SDE in (3.1). Let A be the

infinitesimal generator for {Y;}, given as in Theorem 3.2.2. Let us make a change
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o variable b(y)r = —v in (3.3). Let J(v) be the Jacobian of the transformation. We

Z e fine vi(y,dv) = J(v)u(b:(%'). Then A can be expressed as follows:

v
1+ |v|2

]ul w.dv)  (36)

12
[a(y) + Cyb(y) + fRo v(ljﬂ—vlz)ul (y,dv)], if Cy <oo;

o) ~ Kubly) ~ Jry (o)W dv)], if Ky <oo.

wwFrere B(y) =

£700f. From Theorem 3.2.2, if we consider form (3.3a), the infinitesimal generator

Cca.n be written as:
A1) = 1) (a0) + Cob)) + [{1(v+ b0)z) - 1) - £} po(da)
Ro

L.et us consider the change of variable b(y)z = —v. Letting J(v) be the Jacobian of

t i is transformation we define : v (y,dv) = J(v)v (g(—‘?)’) Then

A f(y)

Il

7®(atw) + b)) + [{rw =)= 1) + Pl .o

Ro
= £)otw) + bt + [ of
Ro

v R/ {fv-v- 10+ 7O )
0

|v|?

1t IU|2) v1(ys dv)]

v
1+ |v|2

J v1(y,dv)



2
v tere B() = [o) 1 C) + 1 o( 155z a0, 0]
0

T om Theorem 3.2.2, if we consider form (3.3b), the infinitesimal generator can be

<~ T itten as

A7) = 16 (o) - kb)) + [{1(v+ bw)z) - 10 Joia)
Ro

A\ gain change of variable b(y)r = —v gives,

Afw) = 1'0)(a0) - Kob(w) + [{#0-) - 1) (w0

Rg

=B+ [ [fr=2) = 1)+ P ) 5 g
Ro

where 8) = [atn) - Kb - J (52 )tnan].
Ro
H ence the lemma is proved.

P xoposition 3.3.1. (Lévy Khinchin representation, see [18])

We say ¢ : R — C is a continuous negative definite function, if 1 has the following

representation:

B(E) = c+ dif +§(€) + / (1 — et 1 flfd?) v(dz) (3.7)
Ro

with ¢ > 0, d € R, § is symmetric positive semidefinite quadratic form on R and v
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Z.< the Lévy measure associated with i such that,
/(|x|’-’ A1)v(dz) < 0o
Ro
ca72d Y is uniquely determined by (c,d, §,v).
I efinition 3.3.1. We call a function Q : R x R — C a continuous negative definite

szymbol if Q is locally bounded and for each x € R the function Q(z,.) : R — C s

continuous negative definite.

ID efinition 3.3.2. We define the Schwartz space S(R) as all functions u € C*°(R)

Sech that for all my, mg € Ny
m
pmymg(w) = sup [(141s37 3 oku@)| < oo
The pseudo-differential operator associated with the symbol Q(z,£) are defined

as follows:

D efinition 3.3.3. For a continuous negative definite symbol Q(x,&), we define the

P s eudo-differential operator Q(x, D) by :
Q(z, D)u(z) = (2m)~1/2 / e Q(z,€)i(€) de (3.8)
R

for u € S(R).
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The next theorem gives the pseudo-differential operator representation of the
i xa finitesimal generator. Consider an SDE of form (3.1). For the coefficient functions

«ce and b let us define

M(z) := max{|a(z)], |b(z)|?} (3.9)

"X Theorem 3.3.1. Let us use the measure v| and coefficient function B from Lemma

. 3.1 to define following continuous negative definite symbol:

—iv vE )
Q(z,&) = R/<1_e ¢ _ lflv'z)ul(x,dv)-zB(x)g (3.10)
0

L. et A be the infinitesimal generator defined in section 3.2. Then the infinitesimal
g e nerator, restricted in S(R) is a pseudo-differential operator with negative definite

S zymbol Q) as above. That is :

Af(z) = —Q(z, D) f(z) = —(2r)"2 / e Q(x,€) f(£)de (3.11)

wheere f is the Fourier transformation of f € S(R).
£2700f. To prove this theorem we need the following bound of symbol (3.10).

L.emma 3.3.2. Let the function M(-) be defined as (3.9). For the continuous negative

definite symbol Q(z,&) given in (3.10), then for some constant ¢

Q(z,6)] < cM(z)(1 + €2). (3.12)
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Proof. Consider Q(z,£) given in (3.10).

)2
First, consider the form B(z) = a(z) + Cub(z) + [ v%lllv—lgl/l (y,dv)
Ro

Qo= | (l—e—ivﬁ— vk )m(w,dv)—iB(w)&

1+ |v]2
Ro
= /(1 — e _ £— l 2 E) vi(z,dv) — ¢ [a(x) + Cyb(.’l)‘)}
Tt |v|2 + |of?
Ro
= /(1 — e ivf) vi(z,dv) —i [a(:c) + Cyb(l')] 13
Ro
Using reverse transformation b(z)y = —v

o= [ (1 - eMNE i)y Juldy) - i ale) + Cobia)

Ry

- / (1_eib<w)y€+ib(z)yg)u(dy)—z‘é[a(x)+b(x) / yv(dy)]

Ry ly|>1

= / (1 _ e t@)yE ib(x)y{) v(dy) + / (1 - eib(z)yg)l/(dy) — ia(x)

0<fyl<1 ly|>1

Next, consider the form B(z) = a(z) — Ky b(z f mul (y, dv).

Qo = [ (l—e—“’f— g )vl(x,dv)—z’BmE

2 1+ jv|2
_ ﬁ{ (1 _ e—iv£>y1(a:, dv) — i [a(z) - Kub(x)]§

36



Using reverse transformation —b(z)y = v as the previous case,

€)= _ Gibla)ye “ila@) — K,
Q(z,6) R/O (1 28 )ota) - i ata) - Koo
_ / (1-eib(x)y£+ib(m)yg)u(dy)+ / (1—eib(1‘)y5)u(dy)—i£a(x)

0<lyl<1 ly|>1

Thus, for both forms of B(-) we can write:

Q(z, &) = / (1—ei"(x)y5+ib(x)y5)u(dy)+ / (1—eib(x)yﬁ)u(dy)—iga(x)

0<ly|<1 ly|>1
(3.13)

Further, note that we can get the following bounds :

Il — e@WE 4 ib(z)ye| < b(x)éyl? and |1 - eP@VE| < 2

also, [€] < (1 + |£|2). Recall that v, the Lévy measure for Q(z, D) in (3.10),
satisfies [ |y|2z/(dy) < 00. Therefore, since [ wv(dy) < oo we have the

0<|y|<1 ly|>1
following:

Q@0 < IEllb()? / 1yI20(dy) + / 20(dy) + la()€]
o<lyl<1 i1
< eM(z)(1+ €%

where M(z) = max{|b(z)|2,a(z)} and c is a constant that depends only on v. O
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Proof of Theorem 3.3.1 continued

We shall use the notation f = F(f) to denote Fourier transform as defined in the
beginning of this section. Also recall that, the inverse Fourier transform of a function
oo
g is given by F~1g(n) = (2r)~1/2 J €*Mg(z)dz and that F(g™)(k) = (k)"
—00

where g(™) is the nth-derivative of g, nEN.

Using Lemma 3.3.2 we can say for f € S(R)

\ / e“’fQ(;r,g)f(g)d&‘ < eM(@) [+ EDIf©las

IA

cM(z) / £+ 17"(2)ld=

Since the functions in S(R) are rapidly decreasing, it is easy to see that f, f” € L} (R)
(see the norm used in Definition 3.3.2). This justifies the use of the Fubini theorem

the next steps of the proof. By Lemma 3.3.1,

—Q(z,D)f = —(2m) 2 / e TEQ(x, £) f(€)de

= —(m)h [t [ (1o et N ) - ilore] e
Ry

= - / [(2w>‘% / e (f(&) — f(E—v) - #f’(&))d&] v (z, dv)

Ro

+B@|en7? [ e“fF(f’(s))ds]

]ul(x,dm + B@)/f ()

Y
1+ |v|2
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Hence, Theorem 3.3.1 is proved. a

Next,the we shall discuss spaces associated with the pseudo differential operators.
For a real valued continuous negative definite function #(§) and s > 0 let us define

a norm

g = [+ v@lace) g
R

An anistropic Sobolev space with a negative definite function ¢ is given by
HYS(R) := {u € LA(R) : [[u], , < oo}

These are Hilbert spaces under norm “u”i,s and arise naturally in the discussion of
the pseudo-differential operators (See [16, 19]). Jacob and Schilling [19] showed that
with appropriate choice of 9, a pseudo-differential Q(z, D) operator associated with
the generator of a Lévy type processes maps the space H ¥,5+2 t6 H%S and hence
using Sobolev’s embedding theorem, Q(z, D) can be extended to Coo(R). Thus we
can say the pseudo differential operator representation of infinitesimal generator A
can be extended to Coo(R).

In our case we shall use the Sobolev space H€2’2. In most cases, the density of a
Lévy type processes belongs to this class, for example use the stable characteristic

2
function to see that the stable-Lévy density belongs to H §2,

Theorem 3.3.2. (The forward equation)
Let {Y3} be the solution process for the SDE in (2.3). Let us further assume that

39



there exists a transition probability density for Yy and that pr(t,y) is the density of
Y:, given Yo = . We assume pr(t,-) is in H52’2 for all z € R.

Let us make a change of variable b(y)xr = —v in (3.3). Let J(v) be the Jacobian of the
transformation. We define vy (y,dv) = J (v)u(b:(%‘)—’) We consider the case when the
measure vy is of the form vy (z,dy) = h(x)u(dy), where h is a measurable function
on R and p ts a measure on R.

For coefficient functions a and b in the SDE (2.3) define M (z) := max{|a(z)|, |b(z)|?}.

Let us assume the coefficient functions are such that
/ M2 (z)dz < oo (3.14)
R

Then the transition probability density function satisfies the following equation:

lny < 00,

goe(sn) = [ e W6y =1 = o W)s.0) + e B (5.9) uld(~r)
Ro

- %(P:c .G)(s,9) (3.158)

where (pz - k)(s,y) = h(y)pz(s,y) and G(y) = a(y) + Cub(y).

Alternatively, if K, < oo,

0 0
5ep(s,0) = [ [(0h)s.=r) = (o), )= - 5y P2 H)(s,) (3.15b)

Ry
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where (pz - h)(s,y) = h(y)pz(s,y) and H(y) = a(y) — Kub(y).

Proof. Let px(t,y) be the transition probability density of Y; starting at Yy = z. Let

ug € LQ(R) be a twice differentiable bounded function. Let us write

u(z,t) = E¥[ug(Y;)] = / wo()p(t,9)dy.
R

Then Au(z,t) = 0 u(z,t) is defined. Since ug € L2(R) we can have a constant ¢’ so

that following holds:

w(z,f) = Eug(Vi+2)= / wo(y + 2)po(t, y)dy
R

ug(2)po(t, 2 — z)dz
= a(§,t) = [ up(2)po(t,z —§)dz
ug(2)e %8 py(t, —€)dz

= a2 < [ lug(2)Plpo(t, —€)2dz

e, B A P

= [a(&, )2 < dlpo(t, &) (3.16)

If we assume the transition density function vanishes at ¢ = oo, then integration by

parts gives

/ / 9 ity Ope(t,y)dtdy = — / / w(y ) Lpa(ty)didy  (3.17)
—0oJo Ot 0 ot

—00
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Now substituting the backward equation in the left hand side we get,

/ / pa(t,1) A (u(y, 1) )didy = / / u(y, ) palty)dtdy  (3.18)

The operator A acts on u(y,t) as u being a functions of y. Consider the integration
part with respect to y in the left hand side of (3.18) and to simplify the notations

we ignore the other variables in the term for next steps of computation and write:

| peteaute.0)ay = [ pwrastay

Using the Cauchy-Schwarz inequality,

l / p(y)Au(y)cml2 < [ )Py [ 14u(w) %y

The Parseval identity gives

[ewiay = [15©P% < [a+eiore = ik,

Then the pseudo-differential operator form of the generator, equation (3.16) and

Lemma 3.3.2 gives
) 2
[ittay = ot | | [ ¥, eriere

< (2m)7! / / Q. &)12/a(€) 2dedy

42



< / M2(y) / (1 + €2)[a(e) 2dedy

dIpl, [ M2y

IN

2
Now by hypothesis of the theorem [ M2(y)dy < 0, therefore since py € H& 2

Vz € R, we have U;r)(y)Au(y)dgA2 < 00. Thus we can apply the Fubini theorem for

to (3.18).

Also for the negative definite symbol @ given in (3.10) the following holds:

Q(z,¢) = / (1_6-2"06 - 1}:’; 12)1/1(1:,(1@)-2'3(1:)5
Ro

If we use B(z) = a(z) + Cyb(z) + f 11—2-1/1 (z,dv) then
Rop

Q&) = [ (1= — gy (2. dv) — i€ [ala) + Cubla)]
Ry

we write

Q(z,§) = /(1 — e~ WE _ iv{) v (z,dv) —iG(z)¢ (3.19a)
Ro

where G(z) = [a(:c) + C,,b(x)].

If we use B(z) = a(z) — Kub(z) — f —21/1 (z,dv) then
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Qw9 = [, 1= ) ~ e o) - Kubto)
we write

Q(z,&) = [R (1— ™) vy (z,dv) — iH(2)¢ (3.19b)
0

In order to get a closed form of the forward equation, we need to assume v; has
the form vj(z,dy) = h(z)p(dy), where h is real valued function and g is a measure

onn IR. Using the pseudo differential representation of A and Fubini theorem we get:

SO (o N o]
S @ = @2 [ [ o guensd
— OO —00 —0O0
= —(2m)1 / / / €760 (1 £)u(2")p(x)dedrda’
= /{—(27r)_1/ /eizfe_ix,EQ(x,§)p(a:)d§dx}u(a:’)da:'
= /Ip(x’)u(x')dx’ (3.20)

where Ip(z') = [—(zwrl [/ e"ffe"”’fcz(x,£>p(x)d<dx] (3.21)

—00 —00
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Using Q(z,£) from (3.19a)

Ip(z’)

= —(2#)_17 7 eixfe_im,g L/ (1 _eTtE _ ivﬁ) vy (z,dv) — iG(x)é] p(z)dédz
—00 —00 0

=1+ 1

where I} = —(2r)71 eimfe_ixlg(l—e_ivg—iv{)p(m)yl(x,dv)d&d:c
S L
Iy = (2m)7} / / %€ e =18 iG(2)ep(x)de.
—00 —00

For the first part we have,

- —en2 [ f e—iw’s(l_e—iyﬁ—iys)F((p-hx—a))u(dy)ds

R
= —(2m)"1/2 70 / ei'é (1 —~ e +z‘y§)F((p-h)(£))u(dy)d£

= 02 [ [ [ h)e) - (- WE + )+ olp- 1)(©)]denle)

Rg —o0
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=~ [ FLoF[p- @) = (0 DE +9) + oo B ()] ld)

Ro
~ oW + 1) - -1 - oo 1Y )]ty
Rop
= = [[o-mE =)= @) + 3o 1Y @] dl-w)
Ro

For the other part we have,

oo o0

Iy = (2n)71 / / e~ € i G (2)p(z) dEdr

—00 —O0
o0

= @07V [ i ier (- o) -)a

—00
o9}

= eV [ R 6ye] e’

= FloF(p-GY() = (-0 ()
Thus, in case we use the negative definite symbol from (3.19a), we can write

Ip(') = - (p-h)(' —y) - (p-B)(") +y(p- b)(@")| — (G- p)(z')
Ro

(3.22a)

Using Q(z, &) of the from (3.19b) in (3.22) Ip(z’) = I3 + I4. Where

I3 = —(277)_1/ //eimse—ix,ﬁ(l—e_“’f)p(a:)ul(x,dv)dgdx

—00 —00 RO
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(o Ol o]
. 4
Iy = (271’)_1 / / i e —IT £iH(;r.)§;D(ﬂlr)d£dr.
o0 —00
Here for the first part we have,

I3 o= —n)7V? / [ 1= e P (- -6 ()i

~ —n) 12 [ [ =60 - ) P (- W)t

= —en ™2 [ [ 7CF [ ne) - ¢ miE + )] dentay
Rg —o0

= = [ Fo Pl e - (- Wi + )] ()

Ro
= [[o-m6 +9) - G- 1]t
Ro
= - [[o-mE -9 - - @] i)
Ro

For the second integration term,
o0

Iy = (2%)“1/ /e“iz’geixgiﬁH(x)p(x)d{dx

—00

= @07V [ e my-)a

_ (27[_)—1/2 / eim’E,F[(P'H)’(ﬁl)]d{’
= FloFp H)(E) = (p- H) (@)
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Therefore, in case we use the negative definite symbol from (3.19b), we can write:

@) == | [ [0 B =) - G- W uld-o) - (2| @220)

Ro

Then from (3.20) and (3.18) we have,

u(y, t)Ipz(t, y)dtdy

é'\8

0
u(y, t)apx(t, y)dtdy

|

0
Ipz(t, )+§pz(t,y) u(y, t)dtdy

J I
O~ g 8T8 o —3

—
-
<

r
8

Il
o

Note that, this is true for any arbitrary choice of twice differentiable bounded ug(-) €
L2(R). Hence we must have [Ipx(t,y)+%px(t, y)] = 0, thus %px(t,y) = —Ipz(t,y).

Then, combining (3.22a) and (3.22b), the forward equation is given as follows:

5epe(s,0) = [ (2 W5,y =) = (o B)(5,) + 7(pa - 1Y (5,3) | (d( 1)
Ry

- gy-@m G)s,y) (3.230)

where (pz - h)(s,y) = h(y)pz(s,y) and G(y) = a(y) + Cpb(y) ; in case Cp < oo.

Alternatively,
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Sepe(s.9) = [ [z R)s,9 =) = (oo W) (=) = 3 (ps- H)5.9)
Ro

(3.23b)

where (pz - h)(s,y) = h(y)pz(s,y) and H(y) = a(y) — Kuvb(y) ; in case Ky < oo.

That concludes the theorem. O

Remark: The forward equation theorem can be used to solve an interesting
analytical problem. Let S’(R) be the space of tempered distribution which is the
dual space of S(R). If we assume u(y,t) in S(R), then Au(y,t) = —Q(y, D)u belongs
to S(R). The solution of the forward equation actually produces an element in S’(R),
which is the solution of the adjoint operator (forward operator) given by the transition

function.
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Chapter 4

Application to a Special Case :
Diffusion Driven by an a-stable

Lévy Process

In this section we shall discuss a special case of SDE driven by a pure jump Lévy
process, viz. an SDE driven by a stable Lévy process. Generally, the fractional
advection dispersion or fADE is used to model a variety of anomalous diffusion
processes, where observation shows that the plume spreads away from its center of
mass faster than (t1/2) scaling implied by the Brownian motion model. This is called
super diffusion. A diffusion equation driven by an a-Stable Lévy noise can be applied
to these situations. Here we show that the transition density of the solution process
of a stochastic differential equation driven by an a-Stable Lévy process solves the

a0



fADE equation.

Definition 4.0.4. A random variable X is said to have a stable distribution with
indez of stability a, scale parameter o, skewness parameter 3 and the shift parameter

p if its characteristic function has the following form:

exp{—oalﬁla(l — iB(sign 0) tan(T)) + z'p&}, if a#l

Elexpi6X] =
exp{—al&[(l + iﬁ%(sign 0)In|0]) + i,uﬂ}, if a=1

where0 < a<2,0>20,-1<3<1,peR and

/

1 ,if , 6>0,

sign =< o Jif , 0=0,

We write X ~ Sq(o, B, 1t).

Definition 4.0.5. {X;} is a-Stable Lévy Process if
1. X(0)= 0 a.s.
2. X has independent increments.

3. X(t)-X(s)~ Sa((t — $)1/®,8,0) ; for0< s <t<ooand -1 < f< 1.

4.1 Existence and Uniqueness

Consider the SDE
dY; = a(Yi)dt + b(Yy)d X (4.1)
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here X; is a standard, centered stable Lévy process with the index of stability a,
(0 < a < 2) and the skewness parameter 3, (-1 < 8 < 1). That is, {X;} is a Lévy
process with (X3 — Xs) ~ Sq ((t - s)l/a,ﬁ, 0).

Since X} is a pure jump Lévy process, from Theorem 2.3.1 and from section 3.1

we get the following:

Proposition 4.1.1. Suppose the coefficient functions a and b satisfy the growth

condition and Lipschitz condition as in section 3, i.e

(A) Growth condition: there exists constant C > 0 such thatV y in R
() + b2 <€ (1+1yl?)
(B) Lipschitz condition: there exists constant C' > 0 such thatV y;, yg in R,

lay1) - a(2)? + Ib(w) - b(w)l? < ¢’ (lv - v2l?)

Then there ezists a unique stochastic process {Y;} that satisfies the stochastic differ-

ential equation (4.1). Also, {Y3} is a time homogeneous Markov process.
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4.2 Infinitesimal Generator, Backward and For-

ward Equations

Since {Y;} is a Markov process we can get the corresponding infinitesimal generator
and associated forward and backward equation. For an SDE driven by an a-stable
Lévy process, the infinitesimal generator of the solution process can be expressed in
terms of fractional derivatives of order a. This forward equation given in terms of
fractional derivatives of order « is used in hydrology to model ground water flows.

First let us define the fractional derivative of order a.

Definition 4.2.1. The fractional derivative of order a for a function f is derived by
solving inverse Fourier transform. Let g(x) = E%Ff(m)’ then §(§) = (:i:i.{)af(f).

Hence, g(z) := F~1 [(:i:i{)af(g)].

Proposition 4.2.1. (see [3] for details.)

The fractional derivative of order a for a function f can be expressed as follows:

(a) For0 < oo < 1,

6% a T dv
Eﬁf(x) “T(1-a) O/(f(x —v) - f(l‘))m (4.2)
o° ? J
@ v
o(—xz)@ fle) = T(1-a) / (f(a: —v) — f($)>_|v|1+a (4.3)



(b) Forl1 < a <2,

0% _ala-—1
928 ® = 1574

(fe-v) - f@+vf @) g @4

(fe-v-r@ o) 69

Now we return to SDE driven by a-Stable Lévy process. We shall use the following

theorem to get the Lévy type stochastic integration representation of {Y;}.

Theorem 4.2.1. (Theorem 3.12.2: [22]):

Let N be a Poisson random measure defined on (0,00) x Ry with intensity measure

n(ds,du) = E[N(ds, du)]

Where 1g(u)

(1+ﬂ)dsﬁ1’i—a, if u>0,
(1—6)dsﬁﬁ3, if u<0.

du

(1+0), if u>0,

(1-8), if u<Oo.

Now if we set 3 to be the skewness parameter of an a-Stable Lévy process { X}; then,

for a random function f: [0,00) x 2 - R,
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(i) ForO< a<1:

/Ot fdXs 2 Cq /Ot /R 0 f(s)uN(ds, du)

(ii) For1 < a < 2:

/0 t fdXs € Cy x LT(])( /0 t /( oy f(s)u q(ds,du))

where constant Cy, is defined as follows:

(Ca)® (2a“1(l‘(l—a))cos%g) , if 0<a<l,

-1
(2F2-a)(—cos7—"29)) , if l<a<?.

ala—1)

Using the above two theorems we can derive the precise infinitesimal generator
of the solution process {Y;} of the SDE (4.1). For rest of this chapter we shall use

the following notation:

Theorem 4.2.2. Consider a stochastic differential equation driven by an a-Stable
Lévy process as in (4.1). Suppose the solution process {Y;} exists. Then the infinites-

%)



imal generator of {Yz} is given by: if 0 < a < 1,

Afy) = a)f'y) + [(1—ﬁ)(2cos (%)) ey ):C;f(y)

da
d(-y)°

+(1+8) (2 cos (fg))_lba(y) f(y)} (4.62)

ifl<a<?2,

da

Af@) = afW) + |(1-8)(-2e0s (Z)) 7 W) el )

+(1+5)(—2cos (%))"lb"() e f(y)] (4.6b)

Proof. Let us define a Poisson random measure N as in Theorem 4.2.1. Then,

for0<a<l

t
0

t t
= Yy + /a(Ys)ds + Ca//b(Ys)uN(ds,du)
0 0 Ry

Let us define a Poisson random measure N (-,-) as Na(s,u) = N(s,Cqu). Let ¥ be

the intensity measure of No. Then a change of variable gives

du
|u|l+a

b(ds,du) = n(ds,d(C’au)) = Ig(u)ds(Ca)® = dsva(du), (say)
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where vq(du) = IB(U)(Ca)adeluTE ; 15() defined as in Theorem 4.2.1. Further, we

define the compensated Poisson random measure gq by ga(:,*) = Na(,-) = (-, ).

Thus a change of variable gives:

\m

Yt:Y0+/asts+ /b(YsuNadsdu)

Rop

OR
t
= Yy + /a Ys)ds + / / b(Ys)uga(ds, du)

0 o<|ul<1

t t
+ / b(Ys)uNq(ds,du) + / / b(Ys)ui(ds, du)
0 [uf>1 0 0<[u|<1

t
= Yy + /a(Ys Yds + / / b(Ys)udsvq(du)

0 O<lul<l
t t
+ / / b(Ys)uga(ds,du) + / / b(Ys)uNq(ds, du)
0 O<|ul<1 0 Ju|>1

Let us denote by @, the function: a(y) = a(y)+b(y) [  uva(du). Then we have:
0<|ul<1

t t t
Y: = Y0+/&(Ys)ds+/ / b(Ys)uga(ds, du) +/ b(Ys)uNq(ds,du) (4.7)
0 0 0<lul<1 0 Jul>1
This is of the same form as the equation given in (3.2). Also, we have function a
in place of a and the Poisson random measure Nqo. From Theorem 3.2.2 using the

infinitesimal generator as in (3.3b), we can derive the infinitesimal generator in case

of an a-stable Lévy process as follows:
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AFw) = 1'0)(30) ~ Kuab@)) + [{#(v+b0)z) = 10 Jralda)
Ro

Here, Ky, = [  zva(dz). Thus,
0<|z|<1

AW = PO+ [ wed) -t [ o)
O<|ul<1 0<|z|<1

* _/{f(y + b(y)"’) - f(y)}l/a(da:)

Ro

= a@®)f'(y) + / {f (y + b(y)x) - f (y)}Va(dlf)
Ro

= aW)f0) + (Ca)® [{#(u+ow)z) - f(y)}lg(x)m%

Ry

= a(®)f'(y) + (Ca)®b*(¥) /{f(y - ”) - f(y)}lﬁ(_v) |v|(iia

Ry

= a(y)f'(y) + (Ca)*b*(y)(1 —B)/{f(y—v) —f(y)}h,ﬁ%

0

0
HCa W +8) [ {#(u=2) -0}

—00

INa-1)
a

= af)+ Ca) W0 - B[ )]

HCaI W+ 8)[ N )]

Hence, for 0 < a < 1, the infinitesimal generator of the solution process for SDE in
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(4.1) can be written as:

T

Af(y) = a@)f' () + [(1—ﬂ)(2cos(—2—))~1b°‘(y)dy—af(y)

+ (148 (2e0s5) T %) d(_y)af(y)] (4.8)

for 1 <a <2: Again from Theorem 4.2.1

t
}/t = Y0+/a dS+/bstXs
0

t t
= Yy + /a(Ys Yds + Call / / b(Ys)uq(ds, du)
0 0 (-4,6)

Using a similar change of variable as in previous case,

i = Yo+ ja(Ys)ds+llm/ / b(Ys)uga(ds, du)
0

0 (-6,6)°
t t
= Y0+/a(Ys)ds+/ / b(Ys)uga(ds, du)
0 O<lulkl

t
+/ b(Ys)uNq(ds,du) — / b(Ys)ui(ds,du)
0
0

|u|>1

t t
+/ / b(Ys)uga(ds,du) + / b(Ys)uNq(ds, du)
0 |ul>1
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Let us denote by a, the function, a(y) = a(y) — b(y) fIUIZI uvq(du). Then, we have:

t t
Yt:YOJr/ sts+/ / b(Ys)uga(ds,du) +/ / (Ys)uNq(ds, du)
0

0 0<|ul<1 [u|>1
(4.9)

which is of the same form as the equation given in (3.2). Also we have the function
a in place of a and the Poisson random measure Ng. From Theorem 3.2.2 using the
infinitesimal generator as in (3.3a), we can derive the infinitesimal generator in case

of a-Stable Lévy process as follows:
AS®) = ') (aw) + Cuabl®)) + / {7 (v +50)2) ~ 1) ~ F @)Wy Jraldz)

Here, Cy, = [ zva(dz). Therefore,
|z|>1

Af(y) = f'(y)(a(y)—b(y) / UVa(dU)+CVab(y))

|u|>1

* / {#(y+b)2) - F@) - F'@)b(y)z }ralds)

= Fwaw+ [{#(y+b)) - 76) - /@bl pralda)
Rop

= a(®)f' () + (Ca)* / {f (y + b(y):v) - f(y) - f’(y)b(y):c}lﬂ(x) Ixﬁi ~
Ro
= AW W)+ (Ca) W) /{f(y B v) - f(y) + f/(y)v}lﬁ(—v)—_—lvidlia

Rg
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oo

= a®)f () + (Ca)** () (1 - B) /{f(y _ v) ~ fly) + f,(y)v}yuﬁia
0
0

+ (C'a)aba(y)(l + ) / {f(y - v) — fly) + f/(y)v}lvrﬁa

I'2-a)d*
a(a—1) dy_af(y)]

HCa) )1+ ) [ = L )]

= ay)f'(y) + (Ca)"ba(y)(l—ﬁ)[

Hence, in case we have 1 < a < 2, the infinitesimal generator for SDE in (4.1) can

be written as:

A16) = a0+ (0= 9~ 2005 ()W) )

T
2

+(1+ ﬁ)( — 2cos (_7522) )_lba(y)d(f;)a f(y)] (4.10)

Combining Equation (4.8) and Equation (4.10) we get the infinitesimal generator in

(4.6), and the theorem is proved. O

The Backward equation :

Th e backward equation can be obtained using Theorem 3.2.3. Let A be the infinites-
imx za.1 generator for the solution process {Y;} of SDE driven by a-Stable Lévy process
as im (4.1). Let f € C3(R).

De £f3 ne, u(y,t) = EY[f(Y?)] - Then,%t?—‘ = A(u) . That is:
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f0<ax<l

L [(1—ﬁ)(2cos(%>)"lba(y)i—aau<y,t)
+(1+4 1) (2 cos(%)) _lba(y)d(f%u(y,t)] (4.11a)
ifl<a<?2
R0 ity + |(1- ) - 200sZ) 5 0) Stunt
5 = W, > ¥) et
+(1+0) ( - 2COS(_7T2_a))_1ba(y) d(iy)au(y, t)} (4.11b)

The Forward equation :

Theorem 3.3.2 can be used to obtain the forward equation. Let {Y;} be the solution
process for the SDE in (4.1). Let us further assume that there exists a transition
probability density for Y; and let px(t,y) be the transition p.d.f of Y3, given Yy = z.
We have already stated that the Lévy measure for the a-Stable Lévy process {X;}
s given by va(dy) = I(4)(Ca) itk

Note that, the measure vq(z,u) in Theorem 3.3.2 is the measure derived from the
Lévy measure vq(dy) by change of variable —u = b(z)y. So in this case the change
of variable leads to v (z,u) = Iﬁ(u)(Ca)a(b(x))aﬁluTa.

Now we see v is of the form vy (z,dy) = h(z)u(dy), where h(z) = b%(z) and p = vq.

Thus, if condition (3.14) holds, then the transition probability density function of
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Y; satisfies the forward equation given in Theorem 3.3.2. This leads us to the next

theorem.

Theorem 4.2.3. (The forward equation for an a-stable Lévy diffusion)
Consider a stochastic differential equation driven by an a-stable Lévy process (a # 1,
0 <a<2)asin (4.1), such that the solution process Yy exists and is unique. Then
if the coefficient functions a and b satisfy assumption (3.14), and if there exists
a transition probability density function pz(s,y) of the solution process {Ys} given
Yo = z, then the following forward equation holds:

fo<a<l,

2 pats,y) = [(1+ﬁ)(2cos (’L;f))‘l;—;(ba(y>px(s,y>)

+(1 - ) (205 (22)) d(fz)a (b"(y)px(s,w)] - 5 [aps(o.0)] (4120

ifl<a<?2,

%px(s,y) = [(1+ﬁ)(—2cos (%?))_l(zl—aa(ba(y)px(s,y))

+1= (=208 ()7 55z (Wt y))] - 2 [atwpats 120

Proof. CaseI: 0 <a < 1: In this case

Kuy = (Ca)® / xlﬂ(:v)lx(% — 2(Ca)® 2
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Therefore we shall use the forward equation from (3.3b), i.e,

5epe(s.0) = [ (b2 k)50 = 1) = (- W6 0) (1)) = 5P+ H)s.0)
Rp
where (pz - h)(s,y) = h(y)pz(s,y) and H(y) = a(y) — Ky, b(y).

Note, in this case H(y) = a(y) — Ky,b(y) = a(y). Thus, the forward equation:

5ere(s.9) = [ (028069 = 1) = (1) (6,0)]ald(=1) = 372~ 0)(5.0)
Ro
= (Ca)® R/ (02 )53 = 1) = (o -8) 0, Igl=r) T = o )(o10)
0

= (14 8)(Ca)® / pz - b%)(s,y — 1) — (pz - b7)(s, y)]l +a

0
H1=)C [ [oa 8oy = ) = o 4700 =T

"%(Pw -a)(s,y)

- [(1+B)(2cos (wza)) I:O; (ba( )Px(S,y))

+(1-8) (20 (2)) 7 d(fa 5 (b"(y)pz(s,y))] - 2 [apz(s,)

2 y)

Case Il : 1 < o < 2: In this case
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Therefore we shall use the forward equation from (3.3a) here, i.e,

5ere(5.9) = [ (e h) 0=~ pe)(s, ) +r(pah) (0,8) (=)= 5 (2 G 19
Ro

where (pz - h)(s,y) = h(y)pz(s,y) and G(y) = a(y) + Cua b(y).

In this case G(y) = a(y) + Cy,b(y) = a(y) . Thus, the forward equation is given by:

sepe(s.0) = [ [ 1w = 8) = (b 69w, 5) + rlpz 2 (0, 9) =)
Ro
- bz )09

dr

= (Ca)® / )6y =7) = (o 875, + 7oz 67 0 L)

- ;%(px-axs,y)

oo

= (14 6)(Ca)® / (b2 6%)(5, = 7) = (b2 8%} (5,9) + 7(pz -8 (5, y’]| |dra
0
0 d
+(1= B)(Ca)® / (72 85y =) = (6, 9) + ez 6 (5,) | 7

- %(px-a)(s,w

= [(1+ﬁ)( 2cos(7r2a)) -di—(b (¥)pz(s, y))

Y
1= (20 (5)) " s (o) - 2 atweten)

We combine the two cases to get the forward equation of the form (4.12). This

concludes the proof. a
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Remark : The above fractional derivative form representation of the forward
equation is just a special representation in this case. This form agrees with the
space-fractional advection-dispersion equation used in hydrology. The main forward

equation form derived as in (3.3a) or (3.3b) can be used for analytical purposes.
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